CN101351893A - 沟槽式多晶硅二极管 - Google Patents

沟槽式多晶硅二极管 Download PDF

Info

Publication number
CN101351893A
CN101351893A CNA2006800500824A CN200680050082A CN101351893A CN 101351893 A CN101351893 A CN 101351893A CN A2006800500824 A CNA2006800500824 A CN A2006800500824A CN 200680050082 A CN200680050082 A CN 200680050082A CN 101351893 A CN101351893 A CN 101351893A
Authority
CN
China
Prior art keywords
diode
groove
polysilicon
type
trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800500824A
Other languages
English (en)
Other versions
CN101351893B (zh
Inventor
陈曲飞
罗伯特·徐
凯尔·特里尔
戴娃·帕塔纳亚克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vishay Siliconix Inc
Original Assignee
Vishay Siliconix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vishay Siliconix Inc filed Critical Vishay Siliconix Inc
Publication of CN101351893A publication Critical patent/CN101351893A/zh
Application granted granted Critical
Publication of CN101351893B publication Critical patent/CN101351893B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/866Zener diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0814Diodes only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66098Breakdown diodes
    • H01L29/66106Zener diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66136PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66727Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the source electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7808Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a breakdown diode, e.g. Zener diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明的实施例包括一种制造沟槽式多晶硅二极管的方法。该方法包括在N+(P+)型基板上形成N-(P-)型外延区域,在N-(P-)型外延区域中形成沟槽。该方法还包括在沟槽中形成绝缘层,和用多晶硅填充沟槽,形成沟槽的顶面。该方法还包括在沟槽中形成P+(N+)型掺杂多晶硅区域和N+(P+)型掺杂多晶硅区域,和在沟槽中形成二极管,其中,二极管的一部分低于沟槽的顶面。

Description

沟槽式多晶硅二极管
技术领域
金属氧化物半导体(MOS)集成电路(IC)和分立式功率MOS晶体管通过MOS晶体管的栅极接收输入信号。如果高电压输入信号被施加到栅极,栅极氧化层可能不能承受该高电压而击穿。当人或机器运输半导体器件时,可能会产生高于正常输入电压的电压,导致对该半导体器件的损坏。
然而,电压异常高的原因有很多种。例如,当从塑料包装中取出IC或分立式MOS晶体管时,由于表面之间的摩擦会产生电荷。静电的范围可从几百伏到几千伏。如果这种高压被施加到IC或分立封装的管脚,封装内的晶体管的栅极氧化层可能会发生电压击穿,这会导致晶体管失效。结果,可能会使整个IC或分立式MOS晶体管失效。
为了防止这种对MOS晶体管的损坏,向IC或分立式MOS晶体管封装的管脚连接保护电路。这种保护电路典型地连接在每个输入/输出(I/O)基垫元件(input/output pad)与集成电路之间。保护电路被设计成在I/O基垫元件被施以高电压的时候导通。这样,这些保护电路提供例如接地的电气路径,以安全地将由高峰值电压引起的高峰值电流释放出去,并保护MOS晶体管免遭栅极氧化层损坏。
对于表面成形(surface-formed)的多晶硅齐纳二极管来说,优选的是沟槽式功率MOS晶体管中的ESD(静电放电)保护。然而,随着半导体IC和器件的特征尺寸(feature size)变小,具有平面形状以便于光刻模块印刷小的特征(feature)从而实现较高的单元密度是非常重要的。传统表面形成的多晶硅齐纳二极管会增加表面拓扑,这限制了在光刻期间印刷小的特征的能力。
发明内容
本发明的实施例包括一种制造沟槽式多晶硅二极管的方法。该方法包括形成N-(P-)型外延层,在该N-(P-)型外延区域中形成沟槽并沿着该沟槽生长出厚的氧化绝缘层,该N-(P-)型外延层取决于N+(P+)型基板上的N沟道(P沟道)沟槽式MOSFET的漏极-源极击穿电压要求。该方法还包括用多晶硅填充沟槽,并对多晶硅进行回蚀,形成沟槽的顶面,并在沟槽式多晶硅区域中形成二极管,其中,二极管的一部分低于沟槽的顶面。
本发明的实施例还包括一种包括静电放电保护的沟槽式MOSFET。该沟槽式MOSFET包括N-(P-)型外延区域,该N-(P-)型外延区域取决于N+(P+)型基板上的N沟道(P沟道)沟槽式MOSFET的漏极-源极击穿电压要求。在N-(P-)型外延区域中形成沟槽,其中,该沟槽包括顶面。栅极氧化层生长在沟槽上,并且栅极多晶硅沉积并被回蚀以形成沟槽式MOSFET的栅极。沟槽式MOSFET还包括P(N)型主体,该P(N)型主体形成于N-(P-)型外延区域中,并且在该P(N)型主体中形成N+(P+)型源极。
本发明的沟槽式多晶硅二极管通过将多晶硅齐纳二极管结构置于硅中,极大地减小了硅表面的拓扑。传统的多晶硅齐纳二极管结构位于硅的表面上并且增加了硅的拓扑,限制了光刻的特征尺寸并减小了单元密度。在本发明的一个实施例中,修改条形源极块(strip sourceblock)可以确定多晶硅齐纳二极管结构的不同的击穿电压。在本发明的一个实施例中,并行排列更多个沟槽式多晶硅齐纳二极管单元可以确定不同的ESD等级。在本发明的一个实施例中,沟槽式多晶硅二极管也可以用于保护、箝位和温度感测功能。
本发明的实施例包括一种制造沟槽式多晶硅二极管的方法。该方法包括在N+(P+)型基板上形成N-(P-)型外延区域,和在N-(P-)型外延区域中形成沟槽。该方法还包括在沟槽中形成绝缘层,用多晶硅填充沟槽,形成沟槽的顶面。该方法还包括在沟槽中形成P+(N+)型掺杂的多晶硅区域和N+(P+)型掺杂的多晶硅区域,和在沟槽中形成二极管,其中,二极管的一部分低于沟槽的顶面。
附图说明
附图结合在说明书中并构成说明书的一部分,附图示出了本发明的各实施例,与说明书一起用来解释本发明的原理。
图1A、1B、1C、1D、1E、1F、1G、1h、1I、1J、1K和1L示出了根据本发明的实施例的制造包括沟槽式多晶硅二极管的沟槽式MOSFET的示例性方法中执行的各个步骤;
图2A示出了根据本发明的实施例的示例性的单条形沟槽式多晶硅齐纳二极管单元的布局;
图2B示出了根据本发明的实施例的单条形沟槽式多晶硅齐纳二极管的第一横截面视图;
图2C示出了根据本发明的实施例的单条形沟槽式多晶硅齐纳二极管的第二横截面视图;
图3A示出了根据本发明的实施例的双条形沟槽式多晶硅齐纳二极管单元布局,该双沟槽式多晶硅齐纳二极管的击穿电压为单条形沟槽式多晶硅齐纳二极管的二倍。沟槽式多晶硅齐纳二极管的击穿电压越高,条形沟槽式多晶硅齐纳二极管单元布局就可以设计得越多;
图3B示出了根据本发明的实施例的双条形沟槽式多晶硅齐纳二极管的横截面视图;
图3C是根据本发明的实施例的用于ESD保护的示例性单级沟槽式多晶硅齐纳二极管的示意图;
图3D是根据本发明的实施例的用于ESD保护的示例性双级多晶硅齐纳二极管的示意图;
图4是根据本发明的实施例的用于制造沟槽式多晶硅二极管的示例性方法的处理流程图;
图5A是根据本发明的实施例的包括垂直沟槽二极管的示例性的感测温度的示意性布局的顶视图;
图5B示出了根据本发明的实施例的包括垂直沟槽式多晶硅二极管的温度感测电路。
具体实施方式
现具体参照本发明的各实施例,附图中示出了这些实施例的例子。尽管以下将结合这些实施例来描述本发明,但应该理解,这些实施例不意欲将本发明限制于这些实施例。相反,本发明将要覆盖所有可替代实施方式、修改和等效体,可替代实施方式、修改和等效体可以包括在本发明的精神和范围内,正如所附的权利要求所定义的那样。而且,在以下的本发明的详细说明中,为了使读者能透彻理解本发明,描述了大量的具体细节。然而,应当理解,本发明的实施可以不使用这些具体细节来实现。在其它例子中,对于公知的方法、步骤、组件和电路并没有进行详细描述,以免对本发明造成不必要的混淆。
本发明的实施例包括沟槽式多晶硅二极管的方法和结构。本发明的沟槽式多晶硅二极管通过将沟槽式多晶硅二极管结构置于硅中,极大地减少了硅表面的拓扑。传统的多晶硅二极管结构被置于硅的表面上,增加了硅的拓扑,减小了单元密度。在本发明的一个实施例中,修改二极管注入法可确定沟槽式多晶硅齐纳二极管结构的不同的击穿电压。在本发明的一个实施例中,修改串联的背对背二极管的数量也可以确定沟槽式多晶硅齐纳二极管结构的不同的击穿电压。在本发明的一个实施例中,形成沟槽式多晶硅齐纳二极管用于ESD保护。在本发明的一个实施例中,可以并联更多个沟槽式多晶硅齐纳二极管单元,以确定ESD等级。在本发明的一个实施例中,沟槽式多晶硅二极管可用于温度感测功能。在本发明的一个实施例中,沟槽式多晶硅齐纳二极管可用于源极-漏极过电压保护和箝位功能。
图1A、1B、1C、ID、1E、1F、1G、1H、1I、1J、1K和1L示出了根据本发明的实施例的在用于制造垂直沟槽式多晶硅二极管的示例性方法中执行的各步骤。
在图1A中,在传统的N+(P+)型掺杂的基板101上形成N-(P-)型掺杂的外延区域102。在N-(P-)型掺杂的外延区域102上形成氧化垫103。在本发明的一个实施例中,氧化垫的厚度约为300埃。在本发明的一个实施例中,氧化垫(oxide pad)包括二氧化硅(SiO2)。在氧化垫103上形成氮化硅层104。在本发明的一个实施例中,氮化硅层104的厚度约为两千埃。
光刻胶层105用于遮蔽沟槽120的位置。图1A示出了沟槽形成之后的半导体器件。在本发明的一个实施例中,沟槽120是静电放电(ESD)沟槽。在本发明的另一个实施例中,沟槽120是沟槽二极管的用于箝位功能或者用于温度感测功能的部分。
在图1B中,光刻胶层105(见图1A)被去除,并且在沟槽120内部形成绝缘层122。在本发明的一个实施例中,绝缘层包括LOCOS(硅的局部氧化)氧化物。在本发明的一个实施例中,绝缘层的厚度为三千埃。在本发明的一个实施例中,绝缘层122的厚度取决于受保护的器件所需的漏极-源极击穿等级,以将齐纳二极管与受保护的器件很好地隔离开。例如,较厚的绝缘层122相比较薄的绝缘层122提供的隔离等级更高。在本发明的一个实施例中,三千埃的绝缘层122包括的击穿电压(BV)大于40伏。在本发明的一个实施例中,绝缘层122不是形成在氮化硅层104的顶面上。
在图1C中,多晶硅层140沉积以填充沟槽120。在本发明的一个实施例中,多晶硅层140的厚度为1.5微米,并且其厚度可以根据沟槽宽度改变。多晶硅层140沉积在绝缘层122上。在本发明的一个实施例中,多晶硅层沉积在氮化硅层104的表面上。在本发明的该实施例中,氮化硅层104用作蚀刻终止器(etch stop)。图1C示出了回蚀之后的多晶硅层140。剩余的多晶硅140填充沟槽120。在本发明的一个实施例中,沟槽被填充,使得沟槽的顶部与N-(P-)型外延区域的顶层齐平。
在图1D中,氮化硅层104和氧化垫层103被去除。在本发明的一个实施例中,缓冲氧化物蚀刻或者HF蚀刻被用于去除氧化垫层103。
在图1E中,一个或多个MOSFET晶体管沟槽155被形成于邻近二极管(ESD)沟槽120处。沟槽掩模(trench mask)(光刻胶)150遮蔽MOSFET晶体管沟槽155的位置。在本发明的一个实施例中,传统的制造工艺被用于形成MOSFET沟槽155。
在图1F中,光刻胶155被去除,并且形成栅极氧化层160,其沿着MOSFET沟槽155。栅极氧化层160也形成于填充二极管(ESD)沟槽120的多晶硅140的顶部。栅极多晶硅层161沉积在栅极氧化层160上。在本发明的一个实施例中,栅极多晶硅161的厚度约为一微米。在本发明的一个实施例中,可在该步骤执行栅极掺杂。
在图1G中,栅极多晶硅161被回蚀,并且栅极多晶硅161的剩余部分填充MOSFET沟槽155。
在图1H中,掩模170用于保护MOSFET沟槽155免于受到ESD注171,以形成P+(N+)型的沟槽式多晶硅二极管。可以修改ESD注入,以调整本发明的沟槽式多晶硅二极管的特性。例如,不同的注入量可被用于二极管的不同的击穿电压。
在图1I中,执行主体注入以形成P(N)型主体区域175。在本发明的一个实施例中,主体阻挡掩模被用于形成主体注入区。在本发明的一个实施例中,主体注入是在注入之后执行的。
在图1J中,源极阻挡掩模被用于形成源极注入区,并且形成N+(P+)型硅区域180。同时,源极注入还用于形成沟槽式多晶硅二极管的N+(P+)型多晶硅区域,图1G中的未被阻挡的多晶硅区域140现成为N+(P+)型掺杂区域。
在图1K和1L中,沟槽晶体管155是以传统方式完成的。在图1K中,形成LTO(低温氧化物)加BPSG(硼磷硅玻璃)层181,并且形成源极和栅极电极的图案。在本发明的一个实施例中,在触点注入(contact implant)期间使用触点掩模以形成触点。在触点形成之后,在本发明的一个实施例中,当需要箝位功能时,可以执行箝位注入。
在图1L中,执行镀金属199以完成MOSFET晶体管的源极/漏极侧189和ESD侧190。
图2A示出了根据本发明的实施例的单条形垂直沟槽式多晶硅齐纳二极管单元布局。一个齐纳二极管电极包括金属区域200、N+(P+)型多晶硅区域203和栅极触点204。接地侧206还包括N+(P+)型多晶硅区域203和接地触点214。P+(N+)型多晶硅区域201位于N+(P+)型多晶硅区域203之间。
NPN(PNP)(例如,N+(P+)203、P+(N+)201、N+(P+)203)区域形成本发明的沟槽式多晶硅齐纳二极管。在一个实施例中,本发明的沟槽式多晶硅齐纳二极管被用于ESD保护。在本发明的一个实施例中,多个多晶硅沟槽的齐纳二极管可以被连接(例如,并联)以实现不同的ESD保护等级。
在本发明的另一个实施例中,本发明的沟槽式多晶硅齐纳二极管被用于箝位功能。在本发明的另一个实施例中,本发明的沟槽式多晶硅二极管可用于温度感测。沿着从A 210到A′216的轴切开齐纳二极管,可看到图2A中的沟槽式多晶硅齐纳二极管的横截面视图(如图2B中所示)。
图2B是图2A的垂直沟槽多晶硅二极管的从(图2A的)A 210到A′216的第一横截面。NPN(PNP)形成对应于图2B的沟槽式多晶硅齐纳二极管280。
图2C是图2A的垂直沟槽式多晶硅二极管的从(图2A的)B 211到B′217的第二横截面。
图3A示出了根据本发明的实施例的双条形垂直沟槽式多晶硅齐纳二极管单元布局。栅极侧300包括N+(P+)型多晶硅区域303和栅极触点304。接地侧306包括N+(P+)型多晶硅区域303和接地触点314。两个P+(N+)型多晶硅区域301位于N+(P+)型多晶硅区域203之间。位于两个P+(N+)型多晶硅区域301之间的是另一N+(P+)型多晶硅区域303。NPNPN(PNPNP)区域形成本发明的多个沟槽式多晶硅二极管。在一个实施例中,本发明的多个沟槽式多晶硅二极管被连接并被用于ESD保护。将齐纳二极管沿着从C 310到C′316切开,可观察到图3A的沟槽式多晶硅齐纳二极管的横截面(如图3B所示)。
图3B是图3A的垂直沟槽式多晶硅齐纳二极管的从(图3A的)C 310到C′316的横截面图。NPNPN(PNPNP)形成对应于连接在一起的多个图3B的沟槽式多晶硅齐纳二极管380。
图3C是根据本发明的实施例的包括垂直沟槽式多晶硅齐纳二极管381的单级ESD保护电路380的示意图。
图3D是根据本发明的实施例的包括第一垂直沟槽式多晶硅齐纳二极管391、沟槽多晶硅阻抗和第二垂直沟槽式多晶硅齐纳二极管392的双级ESD保护电路390的示意图。
图4是根据本发明的实施例的用于制造垂直沟槽式多晶硅二极管的示例性方法的流程图。在本发明的一个实施例中,处理400得到的沟槽式多晶硅齐纳二极管被用于ESD保护。在本发明的另一个实施例中,处理400得到的沟槽式多晶硅二极管被用于过电压保护和/或箝位功能。可以理解的是方法400还可用于制造用于温度感测的沟槽式多晶硅二极管。
在步骤402,处理400包括在N+(P+)型基板上形成N-(P-)型外延区域。
在步骤404,处理400包括在N-(P-)型外延区域中形成沟槽,并在其上生长LOCOS氧化物。在本发明的一个实施例中,在步骤404中形成的沟槽是ESD沟槽。在本发明的一个实施例中,可以修改LOCOS氧化物的厚度以支持完成的二极管所需的击穿电压。
在步骤406,处理400包括沉积多晶硅和回蚀多晶硅,其剩余的多晶硅填充在步骤404中所形成的沟槽的顶面。
在步骤408,处理400包括通过进行P+(N+)型ESD注入,在步骤406中所形成的沟槽多晶硅中形成P+(N+)型多晶硅区域。在本发明的一个实施例中,可以修改P+(N+)型ESD注入量,以实现完成的二极管所需的击穿电压和ESD等级。
在步骤410,处理400包括通过进行N+(P+)型源极注入,在步骤406中所形成的沟槽多晶硅中形成N+(P+)型多晶硅区域。
在步骤412,处理400包括在主体区域中形成二极管,其中二极管的一部分低于沟槽的顶面。在本发明的一个实施例中,执行一系列注入形成二极管。执行第一ESD注入以掺杂沉积在沟槽中的多晶硅(形成P+(N+)型多晶硅区域),执行第二源极注入以掺杂沉积在沟槽(形成N+(P+)型多晶硅区域)中的多晶硅。
图5A是根据本发明的实施例的用于感测温度的示意性布局的顶视图500a。温度传感器500a包括垂直沟槽式多晶硅二极管510和520。沟槽式多晶硅二极管510和520被反并联地电连接,并且被电连接到管脚一502和管脚二504。
沟槽二极管510包括N+型多晶硅区域512的区域和P+型多晶硅区域511的区域。二极管510通过触点513被电连接到管脚一502,并通过触点514被电连接到管脚二504。
沟槽二极管520包括N+型多晶硅区域521的区域和P+型多晶硅区域522的区域。二极管520通过触点523被电连接到管脚一502,并通过触点524被电连接到管脚二504。
可通过测量管脚一502和管脚二504之间的电压来确定温度。可以使用查询表来确定多个电压对应的温度。
图5B示出了图5A的示例性电路500b。沟槽式多晶硅二极管510和520被电连接到管脚一502和管脚二504。可以测量管脚一502和管脚二504之间的电压,并可通过例如查询表来确定对应的温度。可以理解的是,根据本发明的实施例,可以使用对给定电压提取对应的温度的任何数量的方法。
以上已经描述了本发明的实施例,垂直沟槽式多晶硅二极管。虽然在特定实施例中描述了本发明,但应该理解,本发明不应被认为限制于这些实施例,而是应当根据以下的权利要求来解释本发明。

Claims (34)

1.一种制造垂直沟槽式多晶硅二极管的方法,包括:
在N+(P+)型基板上形成N-(P-)型外延区域;
在所述外延区域中形成沟槽;
在所述沟槽中形成绝缘层;
用多晶硅填充所述沟槽,形成所述沟槽的顶面;
注入P+(N+)型掺杂剂,在所述沟槽中形成所述多晶硅的P+(N+)型区域;
注入N+(P+)型掺杂剂,在所述沟槽中形成所述多晶硅的N+(P+)型区域;
在所述沟槽中形成多晶硅二极管,其中,所述二极管的一部分低于所述沟槽的所述顶面。
2.如权利要求1所述的方法,其中所述绝缘层包括氧化物。
3.如权利要求1-2中任一项所述的方法,其中所述沟槽中的所述绝缘层的击穿电压等级大于沟槽式MOSFET晶体管的漏极-源极击穿电压,以在它们之间实现极好的隔离。
4.如权利要求1-2中任一项所述的方法,其中所述绝缘层的厚度为几千埃,并且所述沟槽中的所述绝缘层厚度取决于击穿电压要求。
5.如权利要求1-4中任一项所述的方法,其中所述二极管的形成在所述晶体管的MOSFET沟槽的形成之前。
6.如权利要求1-5中任一项所述的方法,其中所述二极管是齐纳二极管。
7.如权利要求6所述的方法,其中所述齐纳二极管被用于静电放电保护。
8.如权利要求6所述的方法,其中所述齐纳二极管被用于箝位功能。
9.如权利要求1-5中任一项所述的方法,其中,所述二极管是沟槽二极管并且被用于温度感测。
10.如权利要求1-9中任一项所述的方法,其中,所述沟槽中的所述N+(P+)型掺杂多晶硅被用作电阻器。
11.一种包括静电放电保护的沟槽式多晶硅二极管,包括;
N+(P+)型基板;
所述基板上的N-(P-)型外延区域;
在所述N-(P-)型外延区域中形成的沟槽,所述沟槽包括顶面;
沿着所述沟槽的绝缘层;
填充所述沟槽形成所述沟槽的顶面的多晶硅;
所述沟槽中的并且通过P+(N+)型ESD注入形成的P+(N+)型掺杂多晶硅;
所述沟槽中的并且通过N+(P+)型源极注入形成的N+(P+)型掺杂多晶硅;
在所述沟槽中形成的二极管,使得所述二极管的一部分被形成在所述沟槽的所述顶面的下面。
12.如权利要求11所述的沟槽式多晶硅二极管,其中所述绝缘层包括氧化物。
13.如权利要求11-12中任一项所述的沟槽式多晶硅二极管,其中所述沟槽中的所述绝缘层的击穿电压等级大于沟槽式MOSFET晶体管的漏极-源极击穿电压,以在它们之间实现极好的隔离。
14.如权利要求11-12中任一项所述的沟槽式多晶硅二极管,其中所述绝缘层的厚度为几千埃,并且所述沟槽中的所述绝缘层厚度取决于击穿电压要求。
15.如权利要求11-14中任一项所述的沟槽式多晶硅二极管,其中所述二极管是在形成所述晶体管的MOSFET沟槽之前形成的。
16.如权利要求11-15中任一项所述的沟槽式多晶硅二极管,其中所述二极管是齐纳二极管。
17.如权利要求16所述的沟槽式多晶硅二极管,其中所述齐纳二极管被用于静电放电保护。
18.如权利要求16所述的沟槽式多晶硅二极管,其中所述齐纳二极管被用于箝位功能。
19.如权利要求11-15中任一项所述的沟槽式多晶硅二极管,其中所述二极管是沟槽二极管并且被用于温度感测。
20.如权利要求11-19中任一项所述的沟槽式多晶硅二极管,其中所述沟槽中的所述N+(P+)型掺杂多晶硅被用作电阻器。
21.一种制造沟槽式多晶硅二极管的方法,包括:
在N+(P+)型基板上的N-(P-)型外延区域中形成沟槽;
在所述沟槽中形成绝缘层,其中所述绝缘层沿着所述沟槽;
用多晶硅填充所述沟槽,形成所述沟槽的顶面;
在所述主体区域中形成二极管,其中所述二极管的一部分低于所述沟槽的所述顶面。
22.如权利要求21所述的方法,还包括:
在所述N-(P-)型外延区域中形成多个齐纳二极管,并将所述多个齐纳二极管并联以保护所述晶体管免受静电放电影响。
23.如权利要求21-22中任一项所述的方法,其中所述绝缘层包括氧化物。
24.如权利要求21-23中任一项所述的方法,其中所述沟槽中的所述绝缘层的击穿电压等级大于沟槽式MOSFET晶体管的漏极-源极击穿电压,以在它们之间实现极好的隔离。
25.如权利要求21-23中任一项所述的方法,其中所述绝缘层的厚度为几千埃,并且所述沟槽中的所述绝缘层厚度取决于击穿电压要求。
26.如权利要求21-25中任一项所述的方法,其中所述二极管的形成发生在所述晶体管的MOSFET沟槽的形成之前。
27如权利要求21所述的方法,其中所述二极管是齐纳二极管。
28.如权利要求27所述的方法,其中所述齐纳二极管被用于静电放电保护。
29.如权利要求27所述的方法,其中所述齐纳二极管被用于箝位功能。
30如权利要求21-26中任一项所述的方法,其中所述二极管是沟槽式二极管并且被用于温度感测。
31.如权利要求21-30中任一项所述的方法,其中所述沟槽中的所述N+(P+)型掺杂多晶硅被用作电阻器。
32.一种温度传感器,包括:
第一沟槽式多晶硅二极管,其被电连接到第一管脚和第二管脚,其中所述第一沟槽多晶硅二极管的一部分位于N-(P-)型外延区域的表面之下;和
第二沟槽式多晶硅二极管,其被连接到所述第一管脚和所述第二管脚,其中所述第一沟槽式多晶硅二极管和所述第二沟槽式多晶硅二极管被反并联地连接,其中可以通过在所述第一管脚和所述第二管脚之间测量的电压来确定温度,并且其中所述第二沟槽式多晶硅二极管的一部分位于所述N-(P-)型外延区域的所述表面之下。
33.如权利要求32所述的温度传感器,其中所述第一和第二沟槽式二极管是沟槽式多晶硅二极管。
34.如权利要求32-33中任一项所述的温度传感器,还包括查询表,所述查询表包括多个电压和对应的温度值。
35.如权利要求32-34中任一项所述的温度传感器,其中所述第一和第二二极管包括P+型多晶硅区域和N+型多晶硅区域。
CN2006800500824A 2005-12-28 2006-12-22 沟槽式多晶硅二极管 Active CN101351893B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/322,040 2005-12-28
US11/322,040 US7544545B2 (en) 2005-12-28 2005-12-28 Trench polysilicon diode
PCT/US2006/049132 WO2007092089A1 (en) 2005-12-28 2006-12-22 Trench polysilicon diode

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201110147177.0A Division CN102322968B (zh) 2005-12-28 2006-12-22 沟槽式多晶硅二极管

Publications (2)

Publication Number Publication Date
CN101351893A true CN101351893A (zh) 2009-01-21
CN101351893B CN101351893B (zh) 2011-07-13

Family

ID=38192570

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2006800500824A Active CN101351893B (zh) 2005-12-28 2006-12-22 沟槽式多晶硅二极管
CN201110147177.0A Active CN102322968B (zh) 2005-12-28 2006-12-22 沟槽式多晶硅二极管

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201110147177.0A Active CN102322968B (zh) 2005-12-28 2006-12-22 沟槽式多晶硅二极管

Country Status (7)

Country Link
US (4) US7544545B2 (zh)
EP (1) EP1966830B1 (zh)
JP (2) JP5275041B2 (zh)
KR (1) KR101098918B1 (zh)
CN (2) CN101351893B (zh)
TW (1) TWI424572B (zh)
WO (1) WO2007092089A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263105A (zh) * 2010-05-26 2011-11-30 茂达电子股份有限公司 沟渠式半导体组件及其制作方法
CN102299102A (zh) * 2010-06-22 2011-12-28 茂达电子股份有限公司 具备漏极电压保护的功率半导体组件及其制作方法
CN102386099A (zh) * 2010-08-30 2012-03-21 英飞凌科技奥地利有限公司 用于形成半导体器件的方法以及具有集成多晶二极管的半导体器件
CN103489925A (zh) * 2012-06-12 2014-01-01 韩国电子通信研究院 半导体装置及其制造方法
CN104253125A (zh) * 2013-06-28 2014-12-31 株式会社东芝 半导体元件
CN104347720A (zh) * 2013-08-07 2015-02-11 英飞凌科技股份有限公司 半导体装置和用于制造该半导体装置的方法
CN103630254B (zh) * 2013-11-18 2015-12-02 西安电子科技大学 一种石墨烯温度传感器及其制备工艺

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8629019B2 (en) * 2002-09-24 2014-01-14 Vishay-Siliconix Method of forming self aligned contacts for a power MOSFET
US7583485B1 (en) 2005-07-26 2009-09-01 Vishay-Siliconix Electrostatic discharge protection circuit for integrated circuits
DE102005039666B3 (de) * 2005-08-22 2007-05-31 Infineon Technologies Austria Ag Verfahren zum Herstellen einer Halbleiterstruktur mit selektiven Dotierstoffbereichen
JP4991134B2 (ja) * 2005-09-15 2012-08-01 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US7544545B2 (en) 2005-12-28 2009-06-09 Vishay-Siliconix Trench polysilicon diode
CN101361193B (zh) * 2006-01-18 2013-07-10 维西埃-硅化物公司 具有高静电放电性能的浮动栅极结构
US9748346B2 (en) * 2014-11-25 2017-08-29 Alpha And Omega Semiconductor Incorporated Circuit configuration and manufacturing processes for vertical transient voltage suppressor (TVS) and EMI filter
EP2130226B1 (en) * 2007-02-12 2012-06-06 Nxp B.V. ESD-protection device, a semiconductor device and an integrated system in a package comprising such a device
JP5274815B2 (ja) * 2007-11-20 2013-08-28 ルネサスエレクトロニクス株式会社 電力供給制御回路
US10600902B2 (en) 2008-02-13 2020-03-24 Vishay SIliconix, LLC Self-repairing field effect transisitor
US8080851B2 (en) * 2008-08-29 2011-12-20 International Business Machines Corporation Deep trench electrostatic discharge (ESD) protect diode for silicon-on-insulator (SOI) devices
DE102008058974A1 (de) * 2008-09-30 2010-04-29 Infineon Technologies Ag Halbleiterbauelement und Verfahren zum Herstellen eines Halbleiterbauelements
US8089095B2 (en) * 2008-10-15 2012-01-03 Semiconductor Components Industries, Llc Two terminal multi-channel ESD device and method therefor
JP5407438B2 (ja) * 2009-03-06 2014-02-05 トヨタ自動車株式会社 半導体装置
US8169045B2 (en) 2009-04-28 2012-05-01 Infineon Technologies Ag System and method for constructing shielded seebeck temperature difference sensor
US9230810B2 (en) 2009-09-03 2016-01-05 Vishay-Siliconix System and method for substrate wafer back side and edge cross section seals
US9306056B2 (en) 2009-10-30 2016-04-05 Vishay-Siliconix Semiconductor device with trench-like feed-throughs
US8604525B2 (en) 2009-11-02 2013-12-10 Vishay-Siliconix Transistor structure with feed-through source-to-substrate contact
JP2012064849A (ja) * 2010-09-17 2012-03-29 Toshiba Corp 半導体装置
KR20120126433A (ko) * 2011-05-11 2012-11-21 에스케이하이닉스 주식회사 반도체 소자 및 그 제조 방법
US8554671B2 (en) * 2011-07-18 2013-10-08 Rabih Salem Ballout System and associated method and service for providing a platform that allows for the exchange of cash between members in a mobile environment
US10733593B2 (en) * 2011-07-18 2020-08-04 Rabih S. Ballout Kit, system and associated method and service for providing a platform to prevent fraudulent financial transactions
US9401355B2 (en) 2011-12-16 2016-07-26 Infineon Technologies Ag Semiconductor device including a diode arranged in a trench
US9614043B2 (en) 2012-02-09 2017-04-04 Vishay-Siliconix MOSFET termination trench
US9842911B2 (en) 2012-05-30 2017-12-12 Vishay-Siliconix Adaptive charge balanced edge termination
US8941206B2 (en) 2012-07-24 2015-01-27 Infineon Technologies Ag Semiconductor device including a diode and method of manufacturing a semiconductor device
US9012997B2 (en) 2012-10-26 2015-04-21 International Business Machines Corporation Semiconductor device including ESD protection device
EP2747154B1 (en) 2012-12-21 2020-04-01 ams AG Lateral single-photon avalanche diode and method of producing a lateral single-photon avalanche diode
US8710585B1 (en) * 2013-02-25 2014-04-29 Alpha And Omega Semiconductor Incorporated High voltage fast recovery trench diode
EP2779255B1 (en) 2013-03-15 2023-08-23 ams AG Lateral single-photon avalanche diode and their manufacturing method
CN104183483B (zh) * 2013-05-20 2017-06-06 上海华虹宏力半导体制造有限公司 沟槽型肖特基二极管的制备方法
JP5842866B2 (ja) 2013-05-29 2016-01-13 三菱電機株式会社 半導体装置及びその製造方法
WO2014199558A1 (ja) * 2013-06-12 2014-12-18 富士電機株式会社 半導体装置の製造方法
TWI532193B (zh) 2013-12-11 2016-05-01 節能元件控股有限公司 溝渠式金氧半p-n接面二極體結構及其製作方法
US9887259B2 (en) 2014-06-23 2018-02-06 Vishay-Siliconix Modulated super junction power MOSFET devices
CN105304486B (zh) * 2014-07-03 2019-04-30 北大方正集团有限公司 二极管的制造方法
CN115483211A (zh) * 2014-08-19 2022-12-16 维西埃-硅化物公司 电子电路
US9882044B2 (en) 2014-08-19 2018-01-30 Vishay-Siliconix Edge termination for super-junction MOSFETs
US9425304B2 (en) 2014-08-21 2016-08-23 Vishay-Siliconix Transistor structure with improved unclamped inductive switching immunity
DE102014112823B4 (de) * 2014-09-05 2016-07-21 Infineon Technologies Ag Halbleiterschalter mit integriertem Temperatursensor
DE102014019788B3 (de) 2014-09-05 2019-08-08 Infineon Technologies Ag Trench-Transistor mit durch Trenches gerouteter Verdrahtung
EP2996156A1 (en) 2014-09-10 2016-03-16 Ipdia Semiconductor device comprising a diode and electrostatic discharge protection device
JP6526981B2 (ja) 2015-02-13 2019-06-05 ローム株式会社 半導体装置および半導体モジュール
JP6753066B2 (ja) * 2016-02-09 2020-09-09 富士電機株式会社 半導体装置および半導体装置の製造方法
DE102016102493B3 (de) * 2016-02-12 2017-07-20 Infineon Technologies Ag Halbleitervorrichtung mit einem temperatursensor, temperatursensor und verfahren zum herstellen einer halbleitervorrichtung mit einem temperatursensor
US10090294B2 (en) * 2016-03-04 2018-10-02 Rohm Co., Ltd. Semiconductor device
US10381473B2 (en) 2016-12-02 2019-08-13 Vishay-Siliconix High-electron-mobility transistor with buried interconnect
CN106784018B (zh) * 2016-12-31 2019-10-01 江苏宏微科技股份有限公司 集成在晶体管上的温度传感二极管结构及其制备方法
JP2018139346A (ja) * 2017-02-24 2018-09-06 ルネサスエレクトロニクス株式会社 半導体装置及びそれを備えた電子制御システム
DE102017108047A1 (de) * 2017-04-13 2018-10-18 Infineon Technologies Ag Halbleitervorrichtung mit struktur zum schutz gegen elektrostatische entladung
CN109728070A (zh) * 2017-10-31 2019-05-07 华润微电子(重庆)有限公司 一种mos静电防护沟槽器件及其制造方法
JP7113666B2 (ja) * 2018-06-01 2022-08-05 ローム株式会社 半導体装置および半導体装置の製造方法
US10693288B2 (en) 2018-06-26 2020-06-23 Vishay SIliconix, LLC Protection circuits with negative gate swing capability
US10833063B2 (en) 2018-07-25 2020-11-10 Vishay SIliconix, LLC High electron mobility transistor ESD protection structures
US10468402B1 (en) 2018-07-25 2019-11-05 Semiconductor Components Industries, Llc Trench diode and method of forming the same
US11251263B2 (en) 2019-03-13 2022-02-15 Semiconductor Components Industries, Llc Electronic device including a semiconductor body or an isolation structure within a trench
CN109950299A (zh) * 2019-04-16 2019-06-28 成都方舟微电子有限公司 一种功率集成二极管芯片结构及其制作方法
CN112086501B (zh) * 2019-06-13 2024-06-21 彩优微电子(昆山)有限公司 具有高静电防护能力的二极管及其形成方法
TWI695479B (zh) * 2019-07-02 2020-06-01 大陸商彩優微電子(昆山)有限公司 具有高靜電防護能力之二極體及其形成方法
CN114447114A (zh) * 2020-10-30 2022-05-06 创亿半导体股份有限公司 功率半导体元件及其制造方法
US20220238698A1 (en) * 2021-01-26 2022-07-28 Pakal Technologies, Inc. Mos-gated trench device using low mask count and simplified processing
WO2023053439A1 (ja) * 2021-10-01 2023-04-06 三菱電機株式会社 電力用半導体装置

Family Cites Families (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4677369A (en) 1985-09-19 1987-06-30 Precision Monolithics, Inc. CMOS temperature insensitive voltage reference
US4748103A (en) 1986-03-21 1988-05-31 Advanced Power Technology Mask-surrogate semiconductor process employing dopant protective region
JP2667392B2 (ja) 1986-09-26 1997-10-27 株式会社デンソー 多結晶半導体ダイオードの製造方法
US5283201A (en) 1988-05-17 1994-02-01 Advanced Power Technology, Inc. High density power device fabrication process
US20020074585A1 (en) 1988-05-17 2002-06-20 Advanced Power Technology, Inc., Delaware Corporation Self-aligned power MOSFET with enhanced base region
US4922371A (en) 1988-11-01 1990-05-01 Teledyne Semiconductor ESD protection circuit for MOS integrated circuits
US5055896A (en) 1988-12-15 1991-10-08 Siliconix Incorporated Self-aligned LDD lateral DMOS transistor with high-voltage interconnect capability
US5072266A (en) 1988-12-27 1991-12-10 Siliconix Incorporated Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry
US5024535A (en) * 1989-12-20 1991-06-18 United Technologies Corporation Semiconductor light source temperature measurement
DE4200884A1 (de) 1991-01-16 1992-07-23 Micron Technology Inc Integrierte halbleiterschaltungsvorrichtung
JPH0590520A (ja) 1991-09-26 1993-04-09 Nissan Motor Co Ltd 半導体保護装置
US5416351A (en) 1991-10-30 1995-05-16 Harris Corporation Electrostatic discharge protection
US5559044A (en) * 1992-09-21 1996-09-24 Siliconix Incorporated BiCDMOS process technology
US5648281A (en) * 1992-09-21 1997-07-15 Siliconix Incorporated Method for forming an isolation structure and a bipolar transistor on a semiconductor substrate
US5422508A (en) * 1992-09-21 1995-06-06 Siliconix Incorporated BiCDMOS structure
JP3167457B2 (ja) 1992-10-22 2001-05-21 株式会社東芝 半導体装置
JP3311070B2 (ja) 1993-03-15 2002-08-05 株式会社東芝 半導体装置
US5404041A (en) 1993-03-31 1995-04-04 Texas Instruments Incorporated Source contact placement for efficient ESD/EOS protection in grounded substrate MOS integrated circuit
GB9306895D0 (en) 1993-04-01 1993-05-26 Philips Electronics Uk Ltd A method of manufacturing a semiconductor device comprising an insulated gate field effect device
WO1994027325A1 (en) 1993-05-07 1994-11-24 Vlsi Technology, Inc. Integrated circuit structure and method
US5430315A (en) 1993-07-22 1995-07-04 Rumennik; Vladimir Bi-directional power trench MOS field effect transistor having low on-state resistance and low leakage current
US5416036A (en) 1993-10-04 1995-05-16 United Microelectronics Corporation Method of improvement ESD for LDD process
US5374565A (en) 1993-10-22 1994-12-20 United Microelectronics Corporation Method for ESD protection improvement
JP2630242B2 (ja) * 1993-12-28 1997-07-16 日本電気株式会社 温度検出用ダイオード付パワーmosfet
US5529941A (en) 1994-03-28 1996-06-25 Vlsi Technology, Inc. Method for making an integrated circuit structure
JPH07273320A (ja) * 1994-03-31 1995-10-20 Toshiba Corp 半導体装置
US5455444A (en) 1994-04-22 1995-10-03 United Microelectronics Corporation Double polysilicon electrostatic discharge protection device for SRAM and DRAM memory devices
US5519242A (en) 1994-08-17 1996-05-21 David Sarnoff Research Center, Inc. Electrostatic discharge protection circuit for a NMOS or lateral NPN transistor
US5545909A (en) 1994-10-19 1996-08-13 Siliconix Incorporated Electrostatic discharge protection device for integrated circuit
US5733794A (en) 1995-02-06 1998-03-31 Motorola, Inc. Process for forming a semiconductor device with ESD protection
US5637900A (en) 1995-04-06 1997-06-10 Industrial Technology Research Institute Latchup-free fully-protected CMOS on-chip ESD protection circuit
US5567634A (en) 1995-05-01 1996-10-22 National Semiconductor Corporation Method of fabricating self-aligned contact trench DMOS transistors
US5661322A (en) 1995-06-02 1997-08-26 Siliconix Incorporated Bidirectional blocking accumulation-mode trench power MOSFET
US6078090A (en) 1997-04-02 2000-06-20 Siliconix Incorporated Trench-gated Schottky diode with integral clamping diode
US6049108A (en) * 1995-06-02 2000-04-11 Siliconix Incorporated Trench-gated MOSFET with bidirectional voltage clamping
US6140678A (en) 1995-06-02 2000-10-31 Siliconix Incorporated Trench-gated power MOSFET with protective diode
US5998837A (en) 1995-06-02 1999-12-07 Siliconix Incorporated Trench-gated power MOSFET with protective diode having adjustable breakdown voltage
DE69617098T2 (de) 1995-06-02 2002-04-18 Siliconix Inc Grabengate-Leistungs-MOSFET mit Schutzdioden in periodischer Anordnung
WO1997013279A1 (en) 1995-10-02 1997-04-10 Siliconix Incorporated Trench-gated mosfet including integral temperature detection diode
JPH09129877A (ja) 1995-10-30 1997-05-16 Toyota Central Res & Dev Lab Inc 半導体装置の製造方法、絶縁ゲート型半導体装置の製造方法および絶縁ゲート型半導体装置
US5637898A (en) 1995-12-22 1997-06-10 North Carolina State University Vertical field effect transistors having improved breakdown voltage capability and low on-state resistance
US5672527A (en) 1996-03-08 1997-09-30 United Microelectronics Corp. Method for fabricating an electrostatic discharge protection circuit
US5585299A (en) 1996-03-19 1996-12-17 United Microelectronics Corporation Process for fabricating a semiconductor electrostatic discharge (ESD) protective device
US5674761A (en) 1996-05-02 1997-10-07 Etron Technology, Inc. Method of making ESD protection device structure for low supply voltage applications
US5850095A (en) 1996-09-24 1998-12-15 Texas Instruments Incorporated ESD protection circuit using zener diode and interdigitated NPN transistor
US5882967A (en) 1997-05-07 1999-03-16 International Business Machines Corporation Process for buried diode formation in CMOS
JP3502531B2 (ja) 1997-08-28 2004-03-02 株式会社ルネサステクノロジ 半導体装置の製造方法
KR100239424B1 (ko) 1997-09-26 2000-01-15 김영환 정전기 보호회로
US6268242B1 (en) 1997-12-31 2001-07-31 Richard K. Williams Method of forming vertical mosfet device having voltage clamped gate and self-aligned contact
US6060752A (en) 1997-12-31 2000-05-09 Siliconix, Incorporated Electrostatic discharge protection circuit
US5953601A (en) 1998-02-17 1999-09-14 Taiwan Semiconductor Manufacturing Company, Ltd. ESD implantation scheme for 0.35 μm 3.3V 70A gate oxide process
JP3705919B2 (ja) 1998-03-05 2005-10-12 三菱電機株式会社 半導体装置及びその製造方法
US6044018A (en) 1998-06-17 2000-03-28 Mosel Vitelic, Inc. Single-poly flash memory cell for embedded application and related methods
JP3413569B2 (ja) 1998-09-16 2003-06-03 株式会社日立製作所 絶縁ゲート型半導体装置およびその製造方法
JP3574359B2 (ja) 1998-09-18 2004-10-06 セイコーエプソン株式会社 半導体装置
KR100505619B1 (ko) 1998-09-29 2005-09-26 삼성전자주식회사 반도체소자의정전하방전회로,그구조체및그구조체의제조방법
US5998833A (en) 1998-10-26 1999-12-07 North Carolina State University Power semiconductor devices having improved high frequency switching and breakdown characteristics
US6255683B1 (en) 1998-12-29 2001-07-03 Infineon Technologies Ag Dynamic random access memory
JP3743189B2 (ja) 1999-01-27 2006-02-08 富士通株式会社 不揮発性半導体記憶装置及びその製造方法
US6268639B1 (en) 1999-02-11 2001-07-31 Xilinx, Inc. Electrostatic-discharge protection circuit
US6277695B1 (en) 1999-04-16 2001-08-21 Siliconix Incorporated Method of forming vertical planar DMOSFET with self-aligned contact
US6413822B2 (en) 1999-04-22 2002-07-02 Advanced Analogic Technologies, Inc. Super-self-aligned fabrication process of trench-gate DMOS with overlying device layer
US6347026B1 (en) 1999-05-26 2002-02-12 Lsi Logic Corporation Input and power protection circuit implemented in a complementary metal oxide semiconductor process using salicides
US6191447B1 (en) 1999-05-28 2001-02-20 Micro-Ohm Corporation Power semiconductor devices that utilize tapered trench-based insulating regions to improve electric field profiles in highly doped drift region mesas and methods of forming same
US6211018B1 (en) 1999-08-14 2001-04-03 Electronics And Telecommunications Research Institute Method for fabricating high density trench gate type power device
JP3708764B2 (ja) 1999-09-07 2005-10-19 Necエレクトロニクス株式会社 半導体装置
JP3573674B2 (ja) 1999-12-27 2004-10-06 Necエレクトロニクス株式会社 半導体集積回路の入出力保護装置とその保護方法
US6548860B1 (en) 2000-02-29 2003-04-15 General Semiconductor, Inc. DMOS transistor structure having improved performance
JP2001257349A (ja) * 2000-03-09 2001-09-21 Sanyo Electric Co Ltd Mosfetの保護装置
JP3675303B2 (ja) 2000-05-31 2005-07-27 セイコーエプソン株式会社 静電気保護回路が内蔵された半導体装置及びその製造方法
US6472678B1 (en) 2000-06-16 2002-10-29 General Semiconductor, Inc. Trench MOSFET with double-diffused body profile
JP2002016080A (ja) 2000-06-28 2002-01-18 Toshiba Corp トレンチゲート型mosfetの製造方法
US6700158B1 (en) 2000-08-18 2004-03-02 Fairchild Semiconductor Corporation Trench corner protection for trench MOSFET
JP2002110978A (ja) 2000-10-02 2002-04-12 Toshiba Corp 電力用半導体素子
US6631060B2 (en) 2000-11-30 2003-10-07 Winbond Electronics Corporation Field oxide device with zener junction for electrostatic discharge (ESD) protection and other applications
JP2002208677A (ja) * 2001-01-12 2002-07-26 Toyota Industries Corp 温度検出機能を備える半導体装置
JP4932088B2 (ja) 2001-02-19 2012-05-16 ルネサスエレクトロニクス株式会社 絶縁ゲート型半導体装置の製造方法
JP2002270841A (ja) * 2001-03-13 2002-09-20 Denso Corp 半導体装置及びその製造方法
JP2002274640A (ja) 2001-03-19 2002-09-25 Honda Motor Co Ltd パレットストッパ装置
US6657256B2 (en) * 2001-05-22 2003-12-02 General Semiconductor, Inc. Trench DMOS transistor having a zener diode for protection from electro-static discharge
US6882000B2 (en) 2001-08-10 2005-04-19 Siliconix Incorporated Trench MIS device with reduced gate-to-drain capacitance
US6621107B2 (en) * 2001-08-23 2003-09-16 General Semiconductor, Inc. Trench DMOS transistor with embedded trench schottky rectifier
US6514839B1 (en) 2001-10-05 2003-02-04 Taiwan Semiconductor Manufacturing Company ESD implantation method in deep-submicron CMOS technology for high-voltage-tolerant applications with light-doping concentrations
US20030071310A1 (en) 2001-10-11 2003-04-17 Salling Craig T. Method to increase substrate potential in MOS transistors used in ESD protection circuits
DE10297292T5 (de) 2001-11-02 2004-09-16 Fairchild Semiconductor Corp. Verbesserung der Auslösung eines ESD-NMOS durch die Verwendung einer N-Unterschicht
KR100406180B1 (ko) 2001-12-22 2003-11-17 주식회사 하이닉스반도체 플래쉬 메모리 셀의 제조 방법
US7384854B2 (en) * 2002-03-08 2008-06-10 International Business Machines Corporation Method of forming low capacitance ESD robust diodes
US6838722B2 (en) 2002-03-22 2005-01-04 Siliconix Incorporated Structures of and methods of fabricating trench-gated MIS devices
US6855593B2 (en) 2002-07-11 2005-02-15 International Rectifier Corporation Trench Schottky barrier diode
US8629019B2 (en) 2002-09-24 2014-01-14 Vishay-Siliconix Method of forming self aligned contacts for a power MOSFET
US7190563B2 (en) * 2002-10-18 2007-03-13 Agere Systems Inc. Electrostatic discharge protection in a semiconductor device
JP3931138B2 (ja) 2002-12-25 2007-06-13 三菱電機株式会社 電力用半導体装置及び電力用半導体装置の製造方法
TW200411897A (en) 2002-12-30 2004-07-01 Winbond Electronics Corp Robust ESD protection structures
JP2004247455A (ja) 2003-02-13 2004-09-02 Seiko Epson Corp 半導体装置
US6861701B2 (en) 2003-03-05 2005-03-01 Advanced Analogic Technologies, Inc. Trench power MOSFET with planarized gate bus
US6919603B2 (en) 2003-04-30 2005-07-19 Texas Instruments Incorporated Efficient protection structure for reverse pin-to-pin electrostatic discharge
US7019368B1 (en) 2003-07-11 2006-03-28 Actel Corporation Low-capacitance input/output and electrostatic discharge circuit for protecting an integrated circuit from electrostatic discharge
US20050036251A1 (en) 2003-08-12 2005-02-17 Micrel, Incorporated Electrostatic discharge protection for trim-diodes
US7071052B2 (en) * 2003-08-18 2006-07-04 Taiwan Semiconductor Manufacturing Company, Ltd. Resistor with reduced leakage
TWI221033B (en) * 2003-09-01 2004-09-11 Advanced Power Electronics Cor A method for manufacturing a trench power MOSFET with a Schottky diode
US7129557B2 (en) * 2004-05-25 2006-10-31 International Business Machines Corporation Autonomic thermal monitor and controller for thin film devices
US7781826B2 (en) 2006-11-16 2010-08-24 Alpha & Omega Semiconductor, Ltd. Circuit configuration and manufacturing processes for vertical transient voltage suppressor (TVS) and EMI filter
US7279773B2 (en) 2005-03-15 2007-10-09 Delphi Technologies, Inc. Protection device for handling energy transients
US20060268479A1 (en) 2005-05-31 2006-11-30 Atmel Germany Gmbh ESD protection structure
US7583485B1 (en) 2005-07-26 2009-09-01 Vishay-Siliconix Electrostatic discharge protection circuit for integrated circuits
US7544545B2 (en) 2005-12-28 2009-06-09 Vishay-Siliconix Trench polysilicon diode
CN101361193B (zh) 2006-01-18 2013-07-10 维西埃-硅化物公司 具有高静电放电性能的浮动栅极结构
JP2011233641A (ja) 2010-04-26 2011-11-17 Disco Abrasive Syst Ltd 板状物のレーザー加工方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263105A (zh) * 2010-05-26 2011-11-30 茂达电子股份有限公司 沟渠式半导体组件及其制作方法
CN102263105B (zh) * 2010-05-26 2013-04-03 茂达电子股份有限公司 沟渠式半导体组件及其制作方法
CN102299102A (zh) * 2010-06-22 2011-12-28 茂达电子股份有限公司 具备漏极电压保护的功率半导体组件及其制作方法
CN102299102B (zh) * 2010-06-22 2013-11-20 茂达电子股份有限公司 具备漏极电压保护的功率半导体组件及其制作方法
CN102386099A (zh) * 2010-08-30 2012-03-21 英飞凌科技奥地利有限公司 用于形成半导体器件的方法以及具有集成多晶二极管的半导体器件
CN102386099B (zh) * 2010-08-30 2015-04-29 英飞凌科技奥地利有限公司 具有集成多晶二极管的半导体器件及其形成方法
CN103489925A (zh) * 2012-06-12 2014-01-01 韩国电子通信研究院 半导体装置及其制造方法
CN103489925B (zh) * 2012-06-12 2016-02-17 韩国电子通信研究院 半导体装置及其制造方法
CN104253125A (zh) * 2013-06-28 2014-12-31 株式会社东芝 半导体元件
CN104347720A (zh) * 2013-08-07 2015-02-11 英飞凌科技股份有限公司 半导体装置和用于制造该半导体装置的方法
CN103630254B (zh) * 2013-11-18 2015-12-02 西安电子科技大学 一种石墨烯温度传感器及其制备工艺

Also Published As

Publication number Publication date
TWI424572B (zh) 2014-01-21
JP5721674B2 (ja) 2015-05-20
US7544545B2 (en) 2009-06-09
KR20080080368A (ko) 2008-09-03
TW200737527A (en) 2007-10-01
EP1966830B1 (en) 2019-03-27
US20070145411A1 (en) 2007-06-28
US20080135872A1 (en) 2008-06-12
US20120068178A1 (en) 2012-03-22
CN102322968A (zh) 2012-01-18
JP5275041B2 (ja) 2013-08-28
EP1966830A4 (en) 2010-06-02
CN102322968B (zh) 2014-05-07
CN101351893B (zh) 2011-07-13
US8072013B1 (en) 2011-12-06
US9431550B2 (en) 2016-08-30
WO2007092089A1 (en) 2007-08-16
KR101098918B1 (ko) 2011-12-27
JP2013033970A (ja) 2013-02-14
EP1966830A1 (en) 2008-09-10
US7612431B2 (en) 2009-11-03
JP2009522784A (ja) 2009-06-11

Similar Documents

Publication Publication Date Title
CN101351893B (zh) 沟槽式多晶硅二极管
US7786507B2 (en) Symmetrical bi-directional semiconductor ESD protection device
US8878283B2 (en) Quasi-vertical gated NPN-PNP ESD protection device
US7701012B2 (en) Complementary zener triggered bipolar ESD protection
US7808050B2 (en) Semiconductor device with relatively high breakdown voltage and manufacturing method
US9633990B2 (en) Bi-directional ESD protection device
US7405128B1 (en) Dotted channel MOSFET and method
US20100330765A1 (en) Integrated transistor, particularly for voltages and method for the production thereof
US20060138547A1 (en) Reduced finger end MOSFET breakdown voltage (BV) for electrostatic discharge (ESD) protection
US10249614B2 (en) Semiconductor device
KR101392569B1 (ko) 바이폴라 트랜지스터 및 그 제조 방법
CN107346786B (zh) Ggnmos晶体管、多指ggnmos器件及电路
CN100423256C (zh) 半导体集成电路中的静电放电保护电路
CN112490240B (zh) 一种用于esd防护电路的栅极接地场效应管及其制作方法
US9490246B2 (en) Semiconductor device
CN105702672B (zh) 半导体装置
CN117317008A (zh) 一种静电保护器件
JPH11509371A (ja) 集積回路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant