WO2014199558A1 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
WO2014199558A1
WO2014199558A1 PCT/JP2014/002501 JP2014002501W WO2014199558A1 WO 2014199558 A1 WO2014199558 A1 WO 2014199558A1 JP 2014002501 W JP2014002501 W JP 2014002501W WO 2014199558 A1 WO2014199558 A1 WO 2014199558A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
semiconductor device
impurity ions
manufacturing
thin film
Prior art date
Application number
PCT/JP2014/002501
Other languages
English (en)
French (fr)
Inventor
典明 八尾
和 阿部
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2015522490A priority Critical patent/JP6083470B2/ja
Priority to CN201480017180.2A priority patent/CN105103290B/zh
Priority to DE112014001208.4T priority patent/DE112014001208B4/de
Priority to US14/781,533 priority patent/US9543289B2/en
Publication of WO2014199558A1 publication Critical patent/WO2014199558A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1207Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with devices in contact with the semiconductor body, i.e. bulk/SOI hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/167Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device, and in particular, to detect a main semiconductor element and an abnormal temperature rise when the main semiconductor element is energized immediately on the same semiconductor substrate, and suppress element destruction due to thermal runaway.
  • the present invention relates to a technique effective when applied to a method for manufacturing a semiconductor device having a temperature detecting diode.
  • IGBT insulated gate bipolar transistor
  • load short circuit When an insulated gate bipolar transistor (hereinafter also referred to as IGBT) is used in an inverter or the like, there is a mode of overvoltage and overcurrent called load short circuit.
  • IGBT insulated gate bipolar transistor
  • the power device itself has overvoltage and overcurrent resistance such as a function to detect abnormal heat generation due to overvoltage and overcurrent without delay.
  • a main semiconductor element such as a power IGBT or a power MOSFET through which a large current flows and a temperature detection diode (temperature sense diode) are integrally incorporated on the same semiconductor substrate. .
  • the forward voltage (hereinafter referred to as forward voltage) of a diode has a relationship that linearly decreases as the temperature of the element increases.
  • a temperature detection diode layer is formed on the surface of a semiconductor substrate on which a main semiconductor element (hereinafter referred to as a main element) is mounted via an insulating film, a temperature change of the main element can be immediately observed. It can be detected as a voltage change. If the detected temperature of the main element exceeds the allowable temperature of the main element, the main element can be protected from thermal destruction by reducing the gate voltage of the main element and limiting the operating current.
  • the potential difference (Vf: forward voltage) generated between the anode (p region) and the cathode (n region) when a forward current is passed through the temperature detection diode is the junction potential Vpn generated at the pn junction and the p region.
  • Vf Vpn + (I ⁇ Rpn). Since the resistance value Rpn of the p region and the n region is determined by the impurity concentration of the p region and the n region, if the impurity concentration varies, the resistance value Rpn of the p region and the n region varies. As a result, the temperature detection accuracy by the diodes varies.
  • a pn junction diode is formed by impurity doping on a polycrystalline silicon layer grown on the substrate surface of the main semiconductor element via a silicon oxide film.
  • the manufacturing method which forms is known (patent documents 1 and 2).
  • a diode composed of pn impurity layers that are in contact with each other through a junction is formed by ion implantation and laser annealing on a polycrystalline silicon layer grown on an insulating film on the substrate surface of the main element
  • pn A temperature detecting diode structure (FIG. 6 in Patent Document 3) in which a polycrystalline silicon layer is left in a lower layer portion of an impurity layer is disclosed (Patent Document 3).
  • FIG. 9 shows a conventional method for manufacturing a MOSFET having a temperature detection diode (temperature sense diode).
  • a part of hatching representing a cross section is omitted.
  • a polycrystalline silicon layer 104 is formed on the entire surface of the semiconductor substrate 101 including the active region and the inactive region through an insulating film 103.
  • the region where the left main element is formed is the active region
  • the region where the right temperature detection diode is formed is the inactive region.
  • the polycrystalline silicon layer 104 and the insulating film 103 on the active region of the semiconductor substrate 101 are selectively removed.
  • FIG. 9C using the photoresist 112 as a mask, the polycrystalline silicon layer 104 on the inactive region of the semiconductor substrate 101 and boron (B) as impurity ions in the active region of the semiconductor substrate 101. Ions are selectively implanted to form an impurity ion implantation layer 105 a for the diode in the polycrystalline silicon layer 104 and an impurity ion implantation layer for the main element in the active region of the semiconductor substrate 101.
  • arsenic (As) is formed as impurity ions in the polycrystalline silicon layer 104 on the inactive region of the semiconductor substrate 101 and the active region of the semiconductor substrate 101 using the photoresist 113 as a mask. Ions are selectively ion-implanted to form an impurity ion-implanted layer 106 a for the diode in the polycrystalline silicon layer 104 and an impurity ion-implanted layer for the main element in the active region of the semiconductor substrate 101. Then, as shown in FIG. 9 (e), heat treatment is performed to activate the boron ions and arsenic ions implanted in FIGS. 9 (c) and 9 (d). Region 105 and n region 106 are formed.
  • impurity ions are selectively implanted into the polycrystalline silicon layer 104 as shown in FIGS.
  • a process of covering the non-implanted regions with the photoresists 112 and 113 is necessary to shield the ion implantation into the non-implanted regions other than the implanted regions.
  • the p region 105 and the n region 106 constituting the temperature detection diode are formed on the semiconductor substrate 101 as described in paragraphs [0022] to [0023] of Patent Document 1 in order to increase the efficiency of the manufacturing process.
  • the active region is formed in the same process as the main element by ion implantation (see FIGS. 9C and 9D).
  • the conventional temperature detection diode has a large variation in the forward voltage Vf.
  • JP 2002-190575 A (FIG. 1, paragraph 0016) Japanese Patent Laid-Open No. 3-34360 (FIG. 1, first embodiment) JP 2007-294670 A (FIG. 6, paragraph 0019) JP 2010-287786 A (FIG. 3, FIG. 4, paragraphs 0046 to 0050)
  • An object of the present invention is to provide a method of manufacturing a semiconductor device capable of reducing variations in the forward voltage Vf of a temperature detecting diode integrated on the same semiconductor chip of a semiconductor substrate.
  • a method of manufacturing a semiconductor device includes a step of depositing a thin film semiconductor layer through an insulating film 3 formed on a surface of a semiconductor substrate, A step of implanting the first impurity ions under a condition that the range of the first impurity ions is smaller than the film thickness at the time of deposition of the thin film semiconductor layer; and a dose amount of the first impurity ions to the thin film semiconductor layer. And a step of selectively implanting ions at a higher dose, and forming a diode for temperature detection by the region into which the first impurity ions are implanted and the region into which the second impurity ions are implanted in the thin film semiconductor layer To do.
  • the present invention it is possible to reduce the variation in the forward voltage Vf of the temperature detection diode produced by ion implantation into the polysilicon layer formed on the surface of the inactive region of the main semiconductor element via the insulating film.
  • a possible method for manufacturing a semiconductor device can be provided.
  • FIG. 6 is a relationship diagram between the thickness of a polycrystalline silicon layer and the forward voltage Vf when the forward voltage Vf of a conventional temperature sensing diode shows the thickness dependence of the polycrystalline silicon layer. It is a correlation diagram which shows the relationship between the junction temperature of a diode, and a forward voltage.
  • FIG. 10 shows the relationship between the forward voltage Vf and the variation (standard deviation) ⁇ of the temperature detecting diode formed by the conventional manufacturing method and the thickness of the polycrystalline silicon layer as a starting material, which the present inventors have found.
  • the forward voltage Vf of a diode composed of a doped polysilicon layer formed by ion implantation in a non-doped polycrystalline silicon layer having a thickness of about 500 nm is the thickness of polycrystalline silicon as a starting material. It has been found that when the thickness changes by about ⁇ 30 nm, the film thickness dependency is shown such that the film thickness increases and decreases.
  • the variation (standard deviation) ⁇ of the forward voltage Vf was as large as 1.5 mV or more, and increased in proportion to the forward voltage Vf.
  • a film thickness error of about ⁇ 30 nm is inevitable in practice. Therefore, when a diode is manufactured by performing ion implantation into the polycrystalline silicon layer as a starting material at a high energy of 100 keV or more, the forward voltage Vf of the diode has a variation corresponding to the variation in the thickness of the polycrystalline silicon layer. Therefore, it has an unstable cause related to the forward voltage.
  • ion implantation during ion implantation, a part of the ion species penetrates the silicon crystal lattice and penetrates the polycrystalline silicon layer due to a phenomenon similar to the channeling phenomenon. Thus, ions that are electrically ineffective may be generated in part. Since the probability of occurrence of this channeling phenomenon increases as the ion implantation range approaches the film thickness of the polycrystalline silicon layer, the value of the forward voltage Vf becomes further unstable due to this channeling phenomenon, and the temperature detection accuracy decreases. Is a problem. In many cases, ion implantation into the active region is usually performed with high energy of 100 keV or more.
  • the above problem is that when a temperature detection diode is formed in a polycrystalline silicon layer having a thickness of about 500 nm, a small ion species such as boron forming a p region and phosphorus forming an n region has a long range. Therefore, if ion implantation is performed at a high energy of 100 keV or more at the same time as the formation of the main element, there is a possibility that the range of phosphorus may reach the entire thickness of the polycrystalline silicon layer. . Alternatively, even if the ion implantation does not reach the film thickness, it seems to be caused by the fact that the region expands to the film thickness due to thermal diffusion by the subsequent heat treatment.
  • the first conductivity type is n-type and the second conductivity type is p-type is exemplarily described.
  • the first conductivity type is selected by selecting the conductivity type in the reverse relationship.
  • the p-type and the second conductivity type may be n-type.
  • it means that electrons or holes are majority carriers in the layers and regions with n or p, respectively.
  • + and ⁇ attached to n and p mean that the impurity concentration is relatively higher or lower than that of a semiconductor region not attached with + and ⁇ respectively.
  • a polycrystalline silicon layer is used as a thin film semiconductor layer for forming a temperature detection diode for convenience. It is not limited to the silicon layer.
  • the thin film semiconductor layer an amorphous semiconductor layer or the like may be used.
  • a semiconductor device 50 is mainly configured by a second conductivity type (n-type) semiconductor substrate 1 made of, for example, single crystal silicon, as a semiconductor substrate.
  • the semiconductor substrate 1 has an active region 20 related to a main current and an inactive region 21 at the center of the surface thereof.
  • the semiconductor substrate 1 has an edge region related to the breakdown voltage reliability in the outer peripheral portion surrounding the active region 20.
  • the inactive region 21 is located between the active region 20 and the edge region.
  • a power MOSFET is formed as a main element in the active region 20, and a polycrystalline silicon layer 4 as a thin film semiconductor layer is formed on the inactive region 21 via an insulating film 3.
  • the power MOSFET has a structure in which a large amount of power is obtained by electrically connecting a plurality of transistor cells 30 made of MOSFETs with fine patterns in parallel. In FIG. 1, one transistor cell 30 is shown.
  • the transistor cell 30 mainly includes a trench 7, a gate insulating film 7 a, a gate electrode 8, a channel formation region 9, a first conductivity type (p + type) contact region 10, a source region and a drain region. Yes.
  • the trench 7 extends from the surface of the semiconductor substrate 1 in the depth direction.
  • the gate insulating film 7a is formed along the inner wall of the trench 7, and is formed of, for example, a silicon dioxide (SiO 2 ) film.
  • the gate electrode 8 is embedded in the trench 7 via the gate insulating film 7a, and is formed of, for example, a doped polysilicon layer into which an impurity for reducing the resistance value is introduced.
  • the contact region 10 reduces contact resistance with an electrode electrically connected to the channel formation region 9 and is formed on the surface layer portion of the channel formation region 9.
  • the main element electrode region (source region) 11 is formed of a second conductivity type (n + type) semiconductor region provided in the surface layer portion of the channel formation region 9.
  • the drain region is formed of the semiconductor substrate 1 and a semiconductor region of the second conductivity type (n + type) provided on the back surface of the semiconductor substrate 1.
  • a diode protection region 2 of the first conductivity type (p + type) is provided in order to protect a temperature detection diode 31 described later from the electric field of the power MOSFET.
  • a first conductivity type (p-type) electric field relaxation region 9 a is provided between the diode protection region 2 and the transistor cell 30 so as to be in contact with the diode protection region 2. The electric field relaxation region 9 a relaxes the electric field at the interface between the semiconductor substrate 1 and the diode protection region 2.
  • the gate insulating film is not limited to the MOS type formed of an oxide film, and more generally other insulating films such as a silicon nitride (Si 3 N 4 ) film, or The MIS type formed of an insulating film such as a laminated film of these insulating films and oxide films may be used.
  • a temperature detection diode 31 is formed in the polycrystalline silicon layer 4.
  • the diode 31 is for immediately detecting an abnormal temperature rise when the power MOSFET is energized, and suppressing element destruction due to thermal runaway.
  • the diode 31 includes a first conductivity type (p-type) first main electrode region (anode) 5 and a second conductivity type (n-type) provided on the inner surface side of the polycrystalline silicon layer 4 as a starting material.
  • the first main electrode region 5 and the second main electrode region 6 have an interface in the planar direction of the polycrystalline silicon layer 4 to form a pn junction.
  • first main electrode region 5 and second main electrode region 6 extends as a doped polysilicon layer from the surface of polycrystalline silicon layer 4 in the depth direction, and is non-doped polycrystalline silicon layer 4n. Is sandwiched between the insulating film 3 and the doped polysilicon layer.
  • the diode 31 has a structure in which the first main electrode region 5 and the second main electrode region 6 made of a doped polysilicon layer are provided on the upper portion of the high-resistance polycrystalline silicon layer 4n while leaving a part thereof in the lower layer portion. It has become.
  • the ion implantation step into the polycrystalline silicon layer 4 as the starting material is performed simultaneously with the ion implantation step of the power MOSFET. Instead, it is performed in a separate process from the ion implantation of the power MOSFET under the ion implantation conditions in which the acceleration energy is weakened.
  • the depth of the first main electrode region 5 and the second main electrode region 6 (pn layer) formed on the surface side of the polycrystalline silicon layer 4 as described above can be reduced, and the polycrystalline silicon layer
  • the diode 31 having the structure in which the lower layer 4 is left as the non-doped polycrystalline silicon layer 4 can be integrated.
  • FIG. 2 shows the relationship between the forward voltage Vf of the diode 31 thus formed and its variation (standard deviation) ⁇ and the film thickness of the polycrystalline silicon layer 4 as a starting material.
  • the p region of the diode is formed over the entire thickness of the polycrystalline silicon layer, whereas in the method of manufacturing the semiconductor device 50 according to the embodiment of the present invention, the first main diode 31 of the diode 31 is formed.
  • the electrode region 5 was formed as a doped polysilicon layer, the ion implantation acceleration energy was weakened to make the depth of the first main electrode region 5 shallower than the thickness of the polycrystalline silicon layer 4 as a starting material.
  • the thickness of the first main electrode region 5 can be controlled by ion implantation conditions. Therefore, even if the film thickness of the polycrystalline silicon layer 4 varies, the forward voltage Vf and its variation (standard deviation) ⁇ are reduced. I think it can be done.
  • the film thickness of the polycrystalline silicon layer 4 as a starting material is preferably 200 nm or more and 600 nm or less. This is because when the thickness of the polycrystalline silicon layer 4 is 600 nm or more, the variation in the forward voltage Vf with respect to the variation in thickness is reduced, so there is no need to worry about the variation. This is because ion implantation conditions become difficult when the thickness is 200 nm or less.
  • the semiconductor substrate 1 shown in FIG. 3 is prepared, the trench 7 extending in the depth direction from the surface of the semiconductor substrate 1 to be the drift layer is formed by dry etching, and then the gate insulating film 7a is formed.
  • a polycrystalline silicon layer to be the gate electrode 8 is filled in the trench through the gate insulating film 7a.
  • the polysilicon layer and the gate insulating film 7a on the surface of the semiconductor substrate 1 are etched back and selectively removed.
  • each impurity ion implantation layer is selectively formed in a required pattern by ion implantation using a photoresist as a mask, and then each ion implantation is performed. It is formed with a predetermined diffusion depth by performing heat treatment for activating the impurity ions of the layer.
  • a diode protection region (well region) 2 having a depth of about 8 ⁇ m is formed in a region where the diode 31 is to be formed, and an electric field relaxation region 9 a having a depth of about 4 ⁇ m is formed between the trenches 7.
  • an insulating film 3 made of an oxide film such as a high-temperature silicon oxide film (HTO) having a thickness of about 300 nm is formed on the entire surface of the semiconductor substrate 1, and then the insulating film A non-doped polycrystalline silicon layer 4 having a thickness of 500 nm, for example, is formed on the substrate 3 by chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • boron (B) ions B + are ion-implanted as first impurity ions into the entire surface of the polycrystalline silicon layer 4, so that the inner surface of the polycrystalline silicon layer 4 is implanted.
  • Impurity ion implantation layer 5a is formed.
  • a non-doped polycrystalline silicon layer 4n remains under the impurity ion implantation layer 5a.
  • the ion implantation of boron ions B + is conducted under the conditions as boron ions B + Fei than the film thickness of the polycrystalline silicon layer 4 is reduced.
  • the ion implantation of boron ions B + is performed with an acceleration energy of about 45 keV, for example.
  • the impurity ion implantation layer 5a, the polycrystalline silicon layer 4n, and the insulating film 3 outside the photoresist 12 are sequentially etched to obtain the semiconductor substrate 1
  • the impurity ion implanted layer 5a, the polycrystalline silicon layer 4n and the underlying insulating film 3 on the active region 20 on the surface are removed.
  • the non-doped polycrystalline silicon layer 4 is selectively left on the inactive region 21 on the surface of the semiconductor substrate 1 with the insulating film 3 interposed.
  • boron ions B + are selected as impurity ions in the active region 20 on the surface of the semiconductor substrate 1.
  • Impurity ion implantation layer 10a is formed by ion implantation. In this step, ion implantation of boron ions B + is performed with an acceleration energy of about 150 keV, for example.
  • impurity ions on the active region 20 on the surface of the semiconductor substrate 1 and on the surface of the polycrystalline silicon layer 4 are used.
  • arsenic ions As + are selectively ion-implanted as impurity ions into the implantation layer 5a to form an impurity ion implantation layer 11a in the active region 20 of the semiconductor substrate 1, and impurities are implanted into a part of the impurity ion implantation layer 5a.
  • An ion implantation layer 6a is selectively formed.
  • ion implantation of arsenic ions As + is performed with an acceleration energy of about 120 keV, for example. Further, in this step, ion implantation of arsenic ions As + is performed at a dose higher than the dose of boron ions B + in the previous step, and the p + doped polysilicon layer is converted to an n + doped polysilicon layer.
  • a heat treatment for activating the impurity ions B + and As + of the impurity ion implanted layers 10a and 11a and the impurity ion implanted layers 5a and 6a in the active region 20 is performed.
  • a contact region 10 containing a p-type impurity and a main element electrode region 11 containing an n-type impurity are formed in the active region 20, and a first main electrode containing a p-type impurity in the polycrystalline silicon layer 4 is formed.
  • Electrode region 5 and second main electrode region 6 containing n-type impurities are formed.
  • a temperature detection diode 31 having a first main electrode region 5 and a second main electrode region 6 pn-junction with the first main electrode region 5 is formed on the surface of the polycrystalline silicon layer 4.
  • the non-doped polycrystalline silicon layer 4n remains between the bottom of each of the first main electrode region 5 and the second main electrode region 6 and the insulating film 3.
  • the transistor cell 30 constituting the power MOSFET is almost completed.
  • conventional ion implantation of boron ions B + for forming the contact region 10 of the power MOSFET is usually performed with an acceleration energy of about 150 keV as described with reference to FIG.
  • boron ions B + are ion-implanted into the polycrystalline silicon layer 4 having a thickness of 500 nm with the acceleration energy of about 150 keV, the range is about 420 nm. Therefore, as in the conventional method of manufacturing the semiconductor device shown in FIG.
  • the polycrystalline silicon layer 104 is formed in the same process as the impurity ion implantation process for forming the p-type region of the power MOSFET in the active region of the semiconductor substrate 101.
  • boron ions for forming the p-type region 105 see FIG. 9D
  • heat treatment for activating impurity ions thereafter (FIG. 9).
  • the distribution of the p-type region 105 formed by applying (e) extends from the surface of the polycrystalline silicon layer 104 as the starting material to the bottom surface, that is, the vicinity of the interface with the insulating film 103 therebelow.
  • the film thickness dependence of the impurity concentration becomes significant. Furthermore, the probability that an ion species that penetrates the polycrystalline silicon layer 104 due to the channeling phenomenon is increased, thereby increasing the amount of implanted ions that are electrically ineffective. Therefore, when ions are implanted into a polycrystalline silicon layer as a starting material where a temperature sensing diode is formed simultaneously with ion implantation into the active region, the forward voltage is increased due to an increase in the film thickness dependency and the amount of invalid implanted ions. Vf variation increases. On the other hand, in the method for manufacturing the semiconductor device 50 according to the embodiment of the present invention, the impurity ion implantation step (see FIG.
  • boron ions B + are implanted into the entire surface of the polycrystalline silicon layer 4 as a starting material having a film thickness of 500 nm with an acceleration energy lower than the aforementioned acceleration energy of 150 keV.
  • the range distance is about 145 nm.
  • the depth of the p-type first main electrode region 5 after the heat treatment for activating the boron ions B + is as shown in FIG. 8 from the surface of the polycrystalline silicon layer 4 as the starting material.
  • the bottom that is, the vicinity of the boundary with the insulating film 3 is hardly reached, and a non-doped polycrystalline silicon layer 4 n remains between the first main electrode region 5 and the insulating film 3.
  • the probability of penetrating the polycrystalline silicon layer 4 due to the channeling phenomenon is reduced, and the film thickness dependence of the forward voltage Vf is almost eliminated as shown in FIG.
  • impurity ion implantation for forming the main element electrode region 11 of the power MOSFET in the active region 20 of the semiconductor substrate 1 is performed.
  • Arsenic ions As + for forming the second main electrode region 6 (see FIG. 9D) of the diode 31 are implanted into the polycrystalline silicon layer 4 as a starting material in the same process. Since arsenic ( 75 As + ) has a larger mass than phosphorus ( 31 P + ) and a smaller range by ion implantation, it can be performed simultaneously with the ion implantation of arsenic ions As + in the active region 20.
  • a part of the impurity ion implantation layer 5 a is partially n-type converted to a second main electrode by using a higher dose than the boron ion B + ion implantation.
  • Region 6 can be set.
  • boron ions B + to be ion-implanted first when forming the temperature detection diode 31 in which the p-type first main electrode region 5 and the n-type second main electrode region 6 are pn-junctioned, boron ions B + to be ion-implanted first. It is preferable that the dose is 1 ⁇ 10 15 / cm 2 to 4 ⁇ 10 15 / cm 2, and the dose of arsenic ions As + to be ion-implanted later is sufficiently high as 5 ⁇ 10 15 / cm 2 .
  • the non-doped polycrystalline silicon layer 4n is left under the first main electrode region 5 and the second main electrode region 6 in the polycrystalline silicon layer 4 as a starting material.
  • a diode 31 having a temperature sensing function can be formed.
  • the low energy ion implantation process of boron ions B + is performed only immediately after the formation of the polycrystalline silicon layer, and the dose amount of ion species having different polarities to be implanted later, such as phosphorus ions P + or arsenic ions As + , is used. By making it smaller than the implantation amount, there is an advantage that the photolithography process can be omitted once.
  • boron ion B + ion implantation for forming the diode 31 in the polycrystalline silicon layer 4 is performed on the semiconductor substrate 1.
  • the boron impurity distribution starts.
  • the film thickness of the polycrystalline silicon layer 4 having a forward voltage Vf is suppressed by being deepened to the same extent as the film thickness of the polycrystalline silicon layer 4 as a material and suppressing the penetration of ion species of the polycrystalline silicon layer 4 due to the channeling phenomenon. Dependency and its variation can be reduced.
  • the method of manufacturing a semiconductor device having a trench gate type power MOSFET in which a gate electrode is formed in a trench as a main element and a diode has been described.
  • the present invention is not limited to this.
  • the present invention can be applied to a method of manufacturing a semiconductor device having a planar power MOSFET in which a gate electrode is formed on a semiconductor substrate and a temperature detecting diode. it can.
  • the present invention can be applied to a method of manufacturing a semiconductor device having a trench gate type IGBT and a temperature detection diode.
  • the present invention can also be applied to MOS composite devices such as an emitter-switched thyristor (EST), a MOS control thyristor (MCT), a depletion mode thyristor (DMT), and a MOS electric field control thyristor (FCT).
  • MOS composite devices such as an emitter-switched thyristor (EST), a MOS control thyristor (MCT), a depletion mode thyristor (DMT), and a MOS electric field control thyristor (FCT).
  • EST emitter-switched thyristor
  • MCT MOS control thyristor
  • DMT depletion mode thyristor
  • FCT MOS electric field control thyristor
  • the case where a polycrystalline semiconductor layer is used as a thin film semiconductor layer on which a temperature detection diode is formed has been described.
  • the invention is not limited to this, and can be applied to, for example, a method for manufacturing a semiconductor device using an amorphous semiconductor layer.
  • the manufacturing method of the semiconductor device according to the present invention can reduce the variation in the forward voltage Vf of the temperature detecting diode integrated on the same chip by using the thin film semiconductor layer.
  • the present invention is useful for a manufacturing method of a semiconductor device such as an intelligent power device or power IC having a diode for temperature detection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

 半導体装置の製造方法は、半導体基板(1)の表面上に形成された絶縁膜3を介して薄膜半導体層(4)を堆積する工程と、薄膜半導体層に第1不純物イオンを薄膜半導体層の堆積時の膜厚よりも第1不純物イオンの飛程が小さくなる条件でイオン注入する工程と、薄膜半導体層に第2不純物イオンを第1不純物イオンのドーズ量よりも高いドーズ量で選択的にイオン注入する工程とを含み、薄膜半導体層中の第1不純物イオンが注入された領域(5)と第2不純物イオンが注入された領域(6)とによって温度検出用のダイオード(31)を形成する。

Description

半導体装置の製造方法
 本発明は、半導体装置の製造方法に関し、特に、同一の半導体基板に、主半導体素子と、この主半導体素子の通電時の異常な温度上昇を即座に検知し、熱暴走による素子破壊を抑えるための温度検出用ダイオードとを有する半導体装置の製造方法に適用して有効な技術に関する。
 絶縁ゲート型バイポーラトランジスタ(以降、IGBTと称することもある)をインバータ等で使用した場合、負荷短絡という、過電圧、過電流となるモードがある。このようなモードに陥った場合でも素子破壊を回避するためにパワーデバイス自体に、過電圧、過電流による異常発熱をできるかぎり遅延なく検出する機能などの耐過電圧、耐過電流性能を備えることが望ましい。そのようなものとして、大電流の流れるパワーIGBTやパワーMOSFETなどの主半導体素子と、温度検出用のダイオード(温度センスダイオード)とを同一の半導体基板に一体に組み込んだデバイス構造が知られている。
 図11に示すように、一般にダイオードの順方向電圧(以降、順電圧)は、素子の温度上昇とともにリニアに低下する関係があることが知られている。この特性を利用すれば、主半導体素子(以降、主素子と称する)が搭載される半導体基板の表面上に絶縁膜を介して温度検出用ダイオード層を形成すると、主素子の温度変化を即座に電圧変化として検出することができる。検出した主素子の温度が主素子の許容温度を超えていれば、主素子のゲート電圧を下げて動作電流を制限することにより、主素子を熱破壊から保護することができる。
 一方、温度検出用ダイオードに順方向電流を流したときにアノード(p領域)-カソード(n領域)間に生じる電位差(Vf:順電圧)は、pn接合部で生じる接合電位Vpnと、p領域およびn領域の抵抗により生じる電圧降下(I×Rpn)の和である。すなわち、Vf=Vpn+(I×Rpn)である。p領域およびn領域の不純物濃度によってp領域およびn領域の抵抗値Rpnが決まるので、不純物濃度にバラツキがあると、p領域およびn領域の抵抗値Rpnにバラツキが生じる。この結果、ダイオードによる温度検出精度にバラツキが生じることになる。
 このような主素子に一体化された温度検出用ダイオードの製造方法として、例えば、主半導体素子の基板表面上にシリコン酸化膜を介して成長させた多結晶シリコン層に、不純物ドーピングによりpn接合ダイオードを形成する製造方法が知られている(特許文献1、2)。
 また、主素子の基板表面に絶縁膜を介して成長させた多結晶シリコン層にイオン注入とレーザアニールとにより、接合を介して相互に接する各pn不純物層からなるダイオードを形成する際に、pn不純物層の下層部に多結晶シリコン層を残した温度検知用ダイオード構造(特許文献3内の図6)が開示されている(特許文献3)。
 また、ポリシリコンダイオードの製造プロセスの詳細が記述されている文献が公開されている(特許文献4)。
 図9に、従来の温度検出用ダイオード(温度センスダイオード)を有するMOSFETの製造方法を示す。図9では、図面を見易くするため、断面を表すハッチングを一部省略している。
 図9(a)に示すように、活性領域及び非活性領域域を含む半導体基板101の表面上の全面に絶縁膜103を介して多結晶シリコン層104を形成する。ここで、左側の主素子が形成される領域を活性領域、右側の温度検出用ダイオードが形成される領域を非活性領域とする。
 そして、図9(b)に示すように、フォトレジスト111をマスクとして使用し、半導体基板101の活性領域上の多結晶シリコン層104および絶縁膜103を選択的に除去する。
 更に、図9(c)に示すように、フォトレジスト112をマスクとして使用し、半導体基板101の非活性領域上の多結晶シリコン層104および半導体基板101の活性領域に不純物イオンとしてボロン(B)イオンを選択的にイオン注入して、多結晶シリコン層104にダイオード用の不純物イオン注入層105aを形成すると共に半導体基板101の活性領域に主素子用の不純物イオン注入層を形成する。
 そして、図9(d)に示すように、フォトレジスト113をマスクとして使用し、半導体基板101の非活性領域上の多結晶シリコン層104および半導体基板101の活性領域に不純物イオンとして砒素(As)イオンを選択的にイオン注入して、多結晶シリコン層104にダイオード用の不純物イオン注入層106aを形成すると共に半導体基板101の活性領域に主素子用の不純物イオン注入層を形成する。
 そして、図9(e)に示すように、熱処理を施して、図9(c)および図9(d)でイオン注入されたボロンイオン及び砒素イオンを活性化して多結晶シリコン層104に、p領域105及びn領域106が形成される。
 ここで、従来のMOSFETおよび温度検出用ダイオードを有する半導体装置の製造方法では、図 9(c)及び図9(d)に示すように、多結晶シリコン層104に不純物イオンを選択的にイオン注入する際、注入領域以外の非注入領域へのイオン注入を遮蔽するために、非注入領域をフォトレジスト112,113で覆う工程が必要となる。また、温度検出用ダイオードを構成するp領域105およびn領域106は、製造工程の効率化のために、特許文献1の段落[0022]~[0023]に記載されているように、半導体基板101の活性領域にイオン注入による主素子の形成と同一工程で形成されることが多い(図9(c),(d)参照)。
 しかしながら、従来の温度検出用ダイオードは順電圧Vfのバラツキが大きい。
特開2002-190575号公報(図1、段落0016) 特開平3-34360号公報(第1図、第1実施例) 特開2007-294670号公報(図6 段落0019) 特開2010-287786号公報(図3、図4、段落0046~0050)
 本発明は、以上説明した点を考慮してなされたものである。本発明の目的は、半導体基板同一半導体チップ上に集積化される温度検出用のダイオードの順電圧Vfのバラツキを低減することができる半導体装置の製造方法を提供することにある。
 上記目的を達成するために、本発明の一態様にかかる半導体装置の製造方法は、半導体基板の表面上に形成された絶縁膜3を介して薄膜半導体層を堆積する工程と、薄膜半導体層に第1不純物イオンを薄膜半導体層の堆積時の膜厚よりも第1不純物イオンの飛程が小さくなる条件でイオン注入する工程と、薄膜半導体層に第2不純物イオンを第1不純物イオンのドーズ量よりも高いドーズ量で選択的にイオン注入する工程とを含み、薄膜半導体層中の第1不純物イオンが注入された領域と第2不純物イオンが注入された領域とによって温度検出用のダイオードを形成する。
 本発明によれば、主半導体素子の非活性領域表面上に絶縁膜を介して形成されたポリシリコン層へのイオン注入により作製される温度検出用ダイオードの順電圧Vfのバラツキを低減することが可能な半導体装置の製造方法を提供することができる。
本発明の一実施形態にかかる半導体装置の要部断面図である。 本発明の一実施形態にかかる温度検知用ダイオードの順電圧Vfが多結晶シリコン層の膜厚依存性を示す場合の、多結晶シリコン層の膜厚と順電圧Vfとの関係図である。 本発明の一実施形態にかかる半導体装置の製造プロセスフローを説明するための要部断面図である。 本発明の一実施形態にかかる半導体装置の製造プロセスフローを説明するための要部断面図である。 本発明の一実施形態にかかる半導体装置の製造プロセスフローを説明するための要部断面図である。 本発明の一実施形態にかかる半導体装置の製造プロセスフローを説明するための要部断面図である。 本発明の一実施形態にかかる半導体装置の製造プロセスフローを説明するための要部断面図である。 従来の半導体装置の製造プロセスフローを説明するための要部断面図である。 従来の半導体装置の製造プロセスフローを説明するための要部断面図である。 従来の温度センスダイオードの順電圧Vfが多結晶シリコン層の膜厚依存性を示す場合の、多結晶シリコン層の膜厚と順電圧Vfとの関係図である。 ダイオードの接合温度と順電圧との関係を示す相関図である。
 本発明者らが見い出した、従来の製造方法により形成された温度検出用ダイオードの順電圧Vfおよびそのバラツキ(標準偏差)σと出発材料としての多結晶シリコン層の膜厚との関係を図10に示す。図10に示すように、500nm程度の膜厚のノンドープの多結晶シリコン層にイオン注入により形成されたドープドポリシリコン層からなるダイオードの順電圧Vfは、出発材としての多結晶シリコンの膜厚が±30nm程度変化すると、膜厚が大きくなるとともに低下するという膜厚依存性を示すことがわかった。また、順電圧Vfのバラツキ(標準偏差)σも1.5mV以上と大きく、順電圧Vfに比例して大きくなっていくことがわかった。ここで、多結晶シリコン層を500nmの膜厚で堆積させる場合、実際には±30nm程度の膜厚誤差が避けられない。従って、出発材としての多結晶シリコン層へのイオン注入を100keV以上の高エネルギーで行ってダイオードを作製すると、ダイオードの順電圧Vfが多結晶シリコン層の膜厚のバラツキに対応するバラツキを有するという、順電圧に係わる不安定原因を持つことになる。
 更に、本発明者らの検討によれば、イオン注入の際にイオン種の一部がシリコン結晶格子間をすり抜けて特異的に深く浸入するというチャネリング現象に似た現象により多結晶シリコン層を突き抜けて、電気的に無効となるイオンも一部分で発生することがある。多結晶シリコン層の膜厚にイオン注入飛程が近づくほどこのチャネリング現象の発生確率が高くなるので、このチャネリング現象によっても、さらに順電圧Vfの値が不安定となり、温度検出精度が低下することが問題となる。
 活性領域へのイオン注入は通常100keV以上の高エネルギーで注入される場合が多い。上記の課題は、500nm程度の膜厚の多結晶シリコン層に温度検出用ダイオードを形成する場合、p領域を形成するボロンやn領域を形成するリンなどの質量の小さなイオン種は飛程が長いので、主素子の形成との同時工程で100keV以上の高エネルギーでイオン注入すると、リンの飛程が多結晶シリコン層の全膜厚まで到達することがあることに起因している可能性がある。または、イオン注入によっては膜厚近くまで達しない場合でも、その後の熱処理による熱拡散により膜厚近くまで領域が広がることに起因していると思われる。
 以下、本発明の一実施形態にかかる半導体装置の製造方法を、図面を参照して詳細に説明する。以下の一実施形態の説明では、第1導電型がn型、第2導電型がp型の場合について例示的に説明するが、導電型を逆の関係に選択して、第1導電型をp型、第2導電型をn型としても構わない。また、本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれ+および-が付されていない半導体領域に比べて相対的に不純物濃度が高いまたは低いことを意味する。
 なお、以下の一実施形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。また、一実施形態で説明される添付図面は、見易くまたは理解し易くするために正確なスケール、寸法比で描かれていない。本発明はその要旨を超えない限り、以下に説明する一実施形態の記載に限定されるものではない。
 本発明の一実施形態にかかる半導体装置の製造方法では、同一の半導体チップに主素子および温度検出用のダイオードを集積化した半導体装置の製造方法に着目して例示的に説明する。ここでは主素子として電力用MOSFETを用いた場合について説明する。また、本発明の一実施形態にかかる半導体装置の製造方法では、温度検出用のダイオードが形成される薄膜半導体層として便宜上多結晶シリコン層を用いた場合について説明するが、薄膜半導体層は多結晶シリコン層に限定されるものではない。薄膜半導体層としては、アモルファス半導体層などでもかまわない。
 図1に示すように、本発明の一実施形態にかかる半導体装置50は、半導体基板として、例えば単結晶シリコンからなる第2導電型(n型)の半導体基板1を主体に構成されている。半導体基板1は、その表面の中央部に、主電流に係わる活性領域20と、非活性領域21とを有している。そして、半導体基板1は、図示していないが、活性領域20を取り巻く外周部にあって耐圧信頼性に係わるエッジ領域を有している。非活性領域21は、活性領域20とエッジ領域との中間に位置する。
 活性領域20には主素子として電力用MOSFETが形成され、非活性領域21上には薄膜半導体層としての多結晶シリコン層4が絶縁膜3を介して形成されている。電力用MOSFETは、詳細に図示していないが、微細パターンのMOSFETからなるトランジスタセル30を電気的に複数個並列に接続して大電力を得る構造になっている。図1には、1つのトランジスタセル30が示されている。
 トランジスタセル30は、主に、トレンチ7、ゲート絶縁膜7a、ゲート電極8、チャネル形成領域9、第1導電型(p型)のコンタクト領域10、ソース領域およびドレイン領域を有する構成になっている。トレンチ7は、半導体基板1の表面から深さ方向に向かって延びている。ゲート絶縁膜7aは、トレンチ7の内壁に沿って形成され、例えば二酸化シリコン(SiO)膜で形成されている。ゲート電極8は、トレンチ7の内部にゲート絶縁膜7aを介して埋め込まれ、例えば抵抗値を低減する不純物が導入されたドープドポリシリコン層で形成されている。コンタクト領域10は、詳細に図示していないが、チャネル形成領域9と電気的に接続される電極とのコンタクト抵抗を低減するものであり、チャネル形成領域9の表層部に形成されている。主素子電極領域(ソース領域)11は、チャネル形成領域9の表層部に設けられた第2導電型(n型)の半導体領域で形成されている。ドレイン領域は、詳細に図示していないが、半導体基板1およびこの半導体基板1の裏面に設けられた第2導電型(n型)の半導体領域で形成されている。
 半導体基板1の非活性領域21には、電力用MOSFETの電界から後述する温度検出用のダイオード31を保護するために、第1導電型(p型)のダイオード保護領域2が設けられている。そして、このダイオード保護領域2と、トランジスタセル30との間には、ダイオード保護領域2と接するようにして第1導電型(p型)の電界緩和領域9aが設けられている。この電界緩和領域9aは、半導体基板1とダイオード保護領域2との界面の電界を緩和する。
 ここで、電界効果トランジスタ(FET)では、ゲート絶縁膜が酸化膜からなるMOS型に限定されるものではなく、より一般的に窒化シリコン(Si)膜などの他の絶縁膜、或いはこれらの絶縁膜と酸化膜との積層膜などの絶縁膜からなるMIS型でもかなわない。
 多結晶シリコン層4には、温度検出用のダイオード31が形成されている。このダイオード31は、電力用MOSFETの通電時の異常な温度上昇を即座に検知し、熱暴走による素子破壊を抑えるためのものである。ダイオード31は、出発材料としての多結晶シリコン層4の内部の表面側に設けられた、第1導電型(p型)の第1主電極領域(アノード)5および第2導電型(n型)の第2主電極領域(カソード)6で構成されている。
 第1主電極領域5と第2主電極領域6とは、多結晶シリコン層4の平面方向に界面を有してpn接合を形成している。そして、第1主電極領域5および第2主電極領域6の各々は、多結晶シリコン層4の表面から深さ方向に向かってそれぞれドープドポリシリコン層として延び、かつノンドープの多結晶シリコン層4nを絶縁膜3とドープドポリシリコン層との間に挟む構成になっている。
 すなわち、ダイオード31は、高抵抗の多結晶シリコン層4nを下層部に一部残してその上部にドープドポリシリコン層からなる第1主電極領域5および第2主電極領域6が設けられた構造になっている。このような構成とするために、本発明の一実施形態に係る半導体装置50の製造方法では、出発材料としての多結晶シリコン層4へのイオン注入工程を電力用MOSFETのイオン注入工程とは同時ではなく、加速エネルギーを弱くしたイオン注入条件で、電力用MOSFETのイオン注入とは別工程で行っている。この結果、前述のように多結晶シリコン層4の表面側に形成される第1主電極領域5および第2主電極領域6(pn層)の深さを浅くすることができ、多結晶シリコン層4の下部層をノンドープの多結晶シリコン層4として残した構成のダイオード31を集積化することができる。
 最後に半導体基板1を複数の半導体チップに切出せば、本発明の一実施形態にかかる半導体装置50が完成する。
 このようにして形成したダイオード31の順電圧Vfおよびそのバラツキ(標準偏差)σと出発材料としての多結晶シリコン層4の膜厚との関係を図2に示す。この結果より、本発明の一実施形態にかかる半導体装置50の製造方法により形成したダイオード31は、多結晶シリコン層4の膜厚に依存することなく順電圧Vfの値が安定しているとともに、そのバラツキをも小さくすることができるという効果が得られる。
 その理由は、従来は多結晶シリコン層の全膜厚にダイオードのp領域が形成されていたのに対し、本発明の一実施形態にかかる半導体装置50の製造方法では、ダイオード31の第1主電極領域5をドープドポリシリコン層として形成する際に、イオン注入の加速エネルギーを弱くして第1主電極領域5の深さを出発材料の多結晶シリコン層4の膜厚より浅くした。この製造方法により、第1主電極領域5の厚みをイオン注入条件で制御できるため、多結晶シリコン層4の膜厚にバラツキがあっても、順電圧Vfおよびそのバラツキ(標準偏差)σを小さくすることができると考えられる。ここで、出発材料としての多結晶シリコン層4の膜厚は、200nm以上600nm以下である事が好ましい。これは、多結晶シリコン層4の膜厚が600nm以上であると膜厚のばらつきに対する順電圧Vfのバラツキが小さくなるので、あまりバラツキを気にする必要がなく、また多結晶シリコン層4の膜厚が200nm以下ではイオン注入条件が難しくなるためである。
 次に、本発明の実施形態にかかる半導体装置50の製造方法について、図3~図7を用いて詳細に説明する。
 まず、図3に示す半導体基板1を準備し、ドリフト層となる半導体基板1の表面から深さ方向に向かって延びるトレンチ7をドライエッチングにより形成し、その後、ゲート絶縁膜7aを形成した後、ゲート電極8となる多結晶シリコン層をトレンチ内にゲート絶縁膜7aを介して充填する。次に、半導体基板1の表面上の多結晶シリコン層およびゲート絶縁膜7aをエッチバックして選択的に除去する。次に、半導体基板1の表面の活性領域20において、隣接するトレンチ7間の部分にチャネル形成領域9を形成すると共に、非活性領域21に隣接する部分に電界緩和領域9aを形成する。さらに、半導体基板1の表面の非活性領域21にダイオード保護領域2を形成する。これらのダイオード保護領域2,チャネル形成領域9,電界緩和領域9aは、フォトレジストをマスクとするイオン注入により各々の不純物イオン注入層を所要のパターンで選択的に形成し、その後、各々のイオン注入層の不純物イオンを活性化させる熱処理を施すことにより所定の拡散深さで形成される。この結果、ダイオード31の形成予定の領域には約8μmの深さのダイオード保護領域(ウェル領域)2、トレンチ7間には約4μmの深さの電界緩和領域9aが形成される。
 次に、図3に示すように、半導体基板1の表面上の全面に、例えば厚さ300nm程度の高温シリコン酸化膜(HTO)などの酸化膜からなる絶縁膜3を形成し、その後、絶縁膜3上に例えば厚さ500nmのノンドープの多結晶シリコン層4を化学的気相堆積(CVD)法で形成する。
 次に、図4に示すように、多結晶シリコン層4の表面の全面に第1不純物イオンとして例えばボロン(B)イオンBをイオン注入して、多結晶シリコン層4の内部の表面側に不純物イオン注入層5aを形成する。不純物イオン注入層5aの下には、ノンドープの多結晶シリコン層4nが残る。この工程において、ボロンイオンBのイオン注入は、多結晶シリコン層4の膜厚よりもボロンイオンBの飛程が小さくなる条件で行う。ボロンイオンBのイオン注入は、例えば45keV程度の加速エネルギーで行われる。
 次に、図5に示すように、フォトレジスト12をエッチングマスクとして使用し、フォトレジスト12の外側の不純物イオン注入層5a、多結晶シリコン層4nおよび絶縁膜3を順次エッチングして、半導体基板1の表面の活性領域20上の不純物イオン注入層5a、多結晶シリコン層4nおよびその下層の絶縁膜3を除去する。この工程において、半導体基板1の表面の非活性領域21上に絶縁膜3を介在してノンドープの多結晶シリコン層4が選択的に残る。
 次に、フォトレジスト12を除去した後、図6に示すように、フォトレジスト13をイオン注入用マスクとして使用し、半導体基板1の表面の活性領域20に不純物イオンとして例えばボロンイオンBを選択的にイオン注入して、不純物イオン注入層10aを形成する。この工程において、ボロンイオンBのイオン注入は、例えば150keV程度の加速エネルギーで行われる。
 次に、フォトレジスト13を除去した後、図7に示すように、フォトレジスト14をイオン注入用マスクとして使用し、半導体基板1の表面の活性領域20および多結晶シリコン層4の表面の不純物イオン注入層5aに、不純物イオンとして例えば砒素イオンAsを選択的にイオン注入して、半導体基板1の活性領域20に不純物イオン注入層11aを形成すると共に、不純物イオン注入層5aの一部に不純物イオン注入層6aを選択的に形成する。この工程において、砒素イオンAsのイオン注入は、例えば120keV程度の加速エネルギーで行われる。また、この工程において、砒素イオンAsのイオン注入は、前工程のボロンイオンBのドーズ量よりも高いドーズ量で行い、pドープポリシリコン層をnドープポリシリコン層に変換する。
 次に、フォトレジスト14を除去した後、活性領域20の不純物イオン注入層10a,11aおよび不純物イオン注入層5a,6aの各々の不純物イオンB,Asを活性化させる熱処理を施すことにより、図8に示すように、活性領域20にp型不純物を含むコンタクト領域10およびn型不純物を含む主素子電極領域11が形成されると共に、多結晶シリコン層4にp型不純物を含む第1主電極領域5およびn型不純物を含む第2主電極領域6が形成される。この工程により、多結晶シリコン層4の表面に、第1主電極領域5と、この第1主電極領域5とpn接合する第2主電極領域6とを有する温度検出用のダイオード31が形成される。また、第1主電極領域5および第2主電極領域6の各々の底部と絶縁膜3との間には、ノンドープの多結晶シリコン層4nが残る。
 この後、半導体基板1の表面と反対側の裏面に、ドレイン領域としての第2導電型の半導体領域を形成することにより、電力用MOSFETを構成するトランジスタセル30がほぼ完成する。
 ここで、電力用MOSFETのコンタクト領域10を形成するための従来のボロンイオンBのイオン注入は、図6で説明したように、通常150keV程度の加速エネルギーで行われる。この150keV程度の加速エネルギーでボロンイオンBを膜厚500nmの多結晶シリコン層4にイオン注入した場合の飛程距離は約420nm程度である。したがって、図9に示す従来の半導体装置の製造方法のように、半導体基板101の活性領域に電力用MOSFETのp型領域を形成するための不純物イオン注入工程と同一工程で多結晶シリコン層104に温度検出用ダイオードのp型領域105(図9(d)参照)を形成するためのボロンイオンをイオン注入した場合(図9(c)参照)、その後に不純物イオンを活性化させる熱処理(図9(e)参照)が施されて形成されたp型領域105の分布は、出発材料としての多結晶シリコン層104の表面から底面、すなわちその下層の絶縁膜103との界面付近にまで及ぶ。
 この場合、前述したように不純物濃度の膜厚依存性が顕著となる。さらに、チャネリング現象により多結晶シリコン層104を突き抜けるイオン種が発生する確率も高くなることで、電気的に無効となる注入イオンの量が増加する。従って、活性領域へのイオン注入と同時に温度検知用のダイオードが形成される出発材料としての多結晶シリコン層へイオン注入する場合、これらの膜厚依存性や無効注入イオン量の増加により、順電圧Vfのバラツキが大きくなる。
 これに対し、本発明の一実施形態にかかる半導体装置50の製造方法では、半導体基板1の活性領域20に電力用MOSFETのコンタクト領域10を形成するための不純物イオン注入工程(図6参照)とは別工程で出発材料としてのノンドープの多結晶シリコン層4の内部の表面側に温度検出用のダイオード31の第1主電極領域5(図8(d)参照)を形成するためのボロンイオンBをイオン注入している(図4参照)。そして、前述の加速エネルギー150keVよりも低い加速エネルギーで膜厚500nmの出発材料としての多結晶シリコン層4の表面の全面にボロンイオンBをイオン注入している。そして、このボロンイオンBの注入エネルギーを例えば45keVまで下げているので、飛程距離は約145nmとなる。この場合、ボロンイオンBを活性化させる熱処理が施された後のp型の第1主電極領域5の深さは、図8に示すように、出発材料の多結晶シリコン層4の表面から底部、すなわち絶縁膜3との境界付近まではほとんど及ばず、第1主電極領域5と絶縁膜3との間にノンドープの多結晶シリコン層4nが残る。また、チャネリング現象による多結晶シリコン層4を突き抜ける確率も低くなり、順電圧Vfの膜厚依存性についても図2に示すようにほとんどなくなる。
 また、本発明の一実施形態にかかる半導体装置50の製造方法では、図7に示すように、半導体基板1の活性領域20に電力用MOSFETの主素子電極領域11を形成するための不純物イオン注入工程と同一工程で出発材料としての多結晶シリコン層4の内部にダイオード31の第2主電極領域6(図9(d)参照)を形成するための砒素イオンAsをイオン注入している。砒素(75As)はリン(31)より質量が大きくイオン注入による飛程が小さいので、活性領域20の砒素イオンAsのイオン注入との同時工程とすることができる。その砒素イオンAsのイオン注入では、先のボロンイオンBのイオン注入よりも高ドーズ量とすることにより、不純物イオン注入層5aの一部を部分的にn型転させて第2主電極領域6とすることができる。
 具体的には、p型の第1主電極領域5とn型の第2主電極領域6とがpn接合する温度検出用のダイオード31を形成する場合、先にイオン注入するボロンイオンBのドーズ量は1×1015/cm~4×1015/cmとし、後にイオン注入する砒素イオンAsのドーズ量を5×1015/cmと充分に高くすることが好ましい。その結果、図8に示すように、第1主電極領域5および第2主電極領域6の下にノンドープの多結晶シリコン層4nを残した状態で、出発材料としての多結晶シリコン層4内に温度センス機能を有するダイオード31を形成することができる。
 さらに、ボロンイオンBの低エネルギーイオン注入プロセスは多結晶シリコン層の成膜直後のみとし、さらに、ドーズ量は後で注入する極性の異なるイオン種、例えば、リンイオンPまたは砒素イオンAsの注入量より小さくすることで、フォトリソグラフィ工程を一回省略することができるメリットが得られる。
 以上説明したように、本発明の一実施形態にかかる半導体装置50の製造方法によれば、多結晶シリコン層4にダイオード31を形成するためのボロンイオンBのイオン注入を、半導体基板1の活性領域20に電力用MOSFETのコンタクト領域10を形成するためのボロンイオンBを高エネルギーでイオン注入する工程と切り離し、別途低エネルギーでイオン注入する工程を設けることで、ボロンの不純物分布が出発材料としての多結晶シリコン層4の膜厚と同程度に深くなることや、またチャネリング現象による多結晶シリコン層4のイオン種の突き抜けを抑制し、順電圧Vfの多結晶シリコン層4の膜厚依存性およびそのバラツキを低減することができる。
 なお、本発明の一実施形態にかかる半導体装置の製造方法では、主素子としてトレンチ内にゲート電極が形成されたトレンチゲート型の電力用MOSFETとダイオードとを有する半導体装置の製造方法について説明した。しかしながら、本発明はこれに限定されるものではなく、例えば半導体基板上にゲート電極が形成されるプレナー型の電力用MOSFETと温度検出用のダイオードとを有する半導体装置の製造方法に適用することができる。また、トレンチゲート型のIGBTと温度検出用のダイオードとを有する半導体装置の製造方法に適用することができる。
 更に、エミッタ・スイッチド・サイリスタ(EST)、MOS制御サイリスタ(MCT)、ディプリーションモードサイリスタ(DMT)、MOS電界制御サイリスタ(FCT)などのMOS複合デバイスにも適用可能である。
 また、本発明の一実施形態にかかる半導体装置の製造方法では、半導体基板としてシリコン半導体基板を用いた場合について説明したが、本発明はこれに限定されるものではなく、例えば炭化ケイ素(SiC)や窒化ガリウム(GaN)などの半導体基板を用いた半導体装置の場合であっても温度検出用のダイオードを薄膜半導体層を用いて製造するのであれば適用することができる。
 また、本発明の一実施形態にかかる半導体装置の製造方法では、温度検出用のダイオードが形成される薄膜半導体層として多結晶半導体層を用いた場合について説明したが、冒頭で述べたとおり、本発明はこれに限定されるものではなく、例えばアモルファス半導体層を用いた半導体装置の製造方法に適用することができる。
 以上のように、本発明にかかる半導体装置の製造方法は、薄膜半導体層を用いて同一チップ上に集積化される温度検出用のダイオードの順電圧Vfのバラツキを低減することができ、主素子および温度検出用のダイオードを有するインテリジェント化されたパワーデバイスやパワーICなどの半導体装置の製造方法に有用である。
 1 …半導体基板
 2 …ダイオード保護領域
 3 …絶縁膜
 4 …多結晶シリコン層
 5 …第1電極領域
 5a…不純物イオン注入層
 6 …第2電極領域
 6a…不純物イオン注入層
 7 …トレンチ
 7a…ゲート絶縁膜
 8 …ゲート電極
 9 …チャネル形成領域
 9a…電界緩和領域
 10…コンタクト領域
 11…主素子電極領域(ソース領域)
 12,13,14…フォトレジスト
 20…活性領域
 21…非活性領域
 30…トランジスタセル
 31…温度検出用ダイオード
 50…半導体装置

Claims (9)

  1.  半導体基板の表面上に形成された絶縁膜を介して薄膜半導体層を堆積する工程と、
     前記薄膜半導体層に第1不純物イオンを前記薄膜半導体層の前記堆積時の膜厚よりも前記第1不純物イオンの飛程が小さくなる条件でイオン注入する工程と、
     前記薄膜半導体層に第2不純物イオンを前記第1不純物イオンのドーズ量よりも高いドーズ量で選択的にイオン注入する工程と、を含み、
     前記薄膜半導体層中の前記第1不純物イオンが注入された領域と前記第2不純物イオンが注入された領域とによって温度検出用のダイオードを形成することを特徴とする半導体装置の製造方法。
  2.  前記薄膜半導体層にイオン注入された前記第1および第2不純物イオンを活性化させる熱処理を施すことにより、前記薄膜半導体層中に、前記膜厚よりも薄い第1導電型の第1主電極領域および第2導電型の第2主電極領域を形成することを特徴とする請求項1に記載の半導体装置の製造方法。
  3.  前記薄膜半導体層は、多結晶シリコン層であることを特徴とする請求項1に記載の半導体装置の製造方法。
  4.  前記半導体基板の前記ダイオードが形成された部分とは異なる領域に主素子を集積化する工程を含むことを特徴とする請求項1に記載の半導体装置の製造方法。
  5.  前記主素子を集積化する工程は、前記半導体基板の表面に第3不純物イオンをイオン注入して、第1導電型のコンタクト領域を形成する工程を含むことを特徴とする請求項4に記載の半導体装置の製造方法。
  6.  前記第1不純物イオンのイオン注入は、前記第3不純物イオンのイオン注入とは別工程で行われることを特徴とする請求項5に記載の半導体装置の製造方法。
  7.  前記第1不純物イオンのイオン注入は、前記薄膜半導体層の全面に行われることを特徴とする請求項1に記載の半導体装置の製造方法。
  8.  前記第1不純物イオンは、ボロンであることを特徴とする請求項7に記載の半導体装置の製造方法。
  9.  前記薄膜半導体層の膜厚は、200nm以上600nm以下であることを特徴とする請求項1乃至請求項8の何れか1項に記載の半導体装置の製造方法。
PCT/JP2014/002501 2013-06-12 2014-05-12 半導体装置の製造方法 WO2014199558A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015522490A JP6083470B2 (ja) 2013-06-12 2014-05-12 半導体装置の製造方法
CN201480017180.2A CN105103290B (zh) 2013-06-12 2014-05-12 半导体装置的制造方法
DE112014001208.4T DE112014001208B4 (de) 2013-06-12 2014-05-12 Verfahren zum Herstellen einer Halbleitervorrichtung
US14/781,533 US9543289B2 (en) 2013-06-12 2014-05-12 Manufacturing method of semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013123697 2013-06-12
JP2013-123697 2013-06-12

Publications (1)

Publication Number Publication Date
WO2014199558A1 true WO2014199558A1 (ja) 2014-12-18

Family

ID=52021882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002501 WO2014199558A1 (ja) 2013-06-12 2014-05-12 半導体装置の製造方法

Country Status (5)

Country Link
US (1) US9543289B2 (ja)
JP (1) JP6083470B2 (ja)
CN (1) CN105103290B (ja)
DE (1) DE112014001208B4 (ja)
WO (1) WO2014199558A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020077674A (ja) * 2018-11-05 2020-05-21 富士電機株式会社 半導体装置および製造方法
JP2020167338A (ja) * 2019-03-29 2020-10-08 ローム株式会社 半導体装置
JP2021002683A (ja) * 2020-10-02 2021-01-07 ローム株式会社 半導体装置および半導体モジュール
US11257812B2 (en) 2015-02-13 2022-02-22 Rohm Co., Ltd. Semiconductor device and semiconductor module

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014005661B4 (de) * 2013-12-12 2023-01-12 Fuji Electric Co., Ltd. Halbleitervorrichtung und Verfahren zu ihrer Herstellung
DE102016102493B3 (de) * 2016-02-12 2017-07-20 Infineon Technologies Ag Halbleitervorrichtung mit einem temperatursensor, temperatursensor und verfahren zum herstellen einer halbleitervorrichtung mit einem temperatursensor
US10522674B2 (en) 2016-05-18 2019-12-31 Rohm Co., Ltd. Semiconductor with unified transistor structure and voltage regulator diode
US10692863B2 (en) 2016-09-30 2020-06-23 Rohm Co., Ltd. Semiconductor device and semiconductor package
WO2019239084A1 (en) * 2018-06-13 2019-12-19 Dynex Semiconductor Limited A power semiconductor device with a temperature sensor
CN113035949A (zh) * 2019-12-25 2021-06-25 株洲中车时代半导体有限公司 Igbt芯片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334360A (ja) * 1989-06-29 1991-02-14 Nec Corp 半導体装置
JP2002190575A (ja) * 2000-12-21 2002-07-05 Toyota Industries Corp 半導体装置およびその製造方法
JP2007294670A (ja) * 2006-04-25 2007-11-08 Toyota Motor Corp 半導体装置の製造方法および半導体装置
JP2010287786A (ja) * 2009-06-12 2010-12-24 Renesas Electronics Corp 半導体装置
JP2011066184A (ja) * 2009-09-17 2011-03-31 Renesas Electronics Corp 半導体装置、及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665993A (en) * 1994-09-29 1997-09-09 Texas Instruments Incorporated Integrated circuit including a FET device and Schottky diode
JP2002368222A (ja) 2001-06-11 2002-12-20 Yazaki Corp 過熱検出機能付き半導体装置
JP2003069023A (ja) 2001-08-22 2003-03-07 Sony Corp 完全空乏型soiトランジスタの製造方法
US7544545B2 (en) * 2005-12-28 2009-06-09 Vishay-Siliconix Trench polysilicon diode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334360A (ja) * 1989-06-29 1991-02-14 Nec Corp 半導体装置
JP2002190575A (ja) * 2000-12-21 2002-07-05 Toyota Industries Corp 半導体装置およびその製造方法
JP2007294670A (ja) * 2006-04-25 2007-11-08 Toyota Motor Corp 半導体装置の製造方法および半導体装置
JP2010287786A (ja) * 2009-06-12 2010-12-24 Renesas Electronics Corp 半導体装置
JP2011066184A (ja) * 2009-09-17 2011-03-31 Renesas Electronics Corp 半導体装置、及びその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11257812B2 (en) 2015-02-13 2022-02-22 Rohm Co., Ltd. Semiconductor device and semiconductor module
US11495595B2 (en) 2015-02-13 2022-11-08 Rohm Co., Ltd. Semiconductor device and semiconductor module
US11670633B2 (en) 2015-02-13 2023-06-06 Rohm Co., Ltd. Semiconductor device and semiconductor module
US11916069B2 (en) 2015-02-13 2024-02-27 Rohm Co., Ltd. Semiconductor device and semiconductor module
JP2020077674A (ja) * 2018-11-05 2020-05-21 富士電機株式会社 半導体装置および製造方法
JP7268330B2 (ja) 2018-11-05 2023-05-08 富士電機株式会社 半導体装置および製造方法
US11830782B2 (en) 2018-11-05 2023-11-28 Fuji Electric Co., Ltd. Semiconductor device and fabrication method thereof
JP2020167338A (ja) * 2019-03-29 2020-10-08 ローム株式会社 半導体装置
JP7324603B2 (ja) 2019-03-29 2023-08-10 ローム株式会社 半導体装置
JP2021002683A (ja) * 2020-10-02 2021-01-07 ローム株式会社 半導体装置および半導体モジュール
JP7001785B2 (ja) 2020-10-02 2022-01-20 ローム株式会社 半導体装置および半導体モジュール

Also Published As

Publication number Publication date
JPWO2014199558A1 (ja) 2017-02-23
CN105103290A (zh) 2015-11-25
CN105103290B (zh) 2017-11-17
US9543289B2 (en) 2017-01-10
DE112014001208B4 (de) 2024-05-29
DE112014001208T5 (de) 2015-12-24
US20160056144A1 (en) 2016-02-25
JP6083470B2 (ja) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6083470B2 (ja) 半導体装置の製造方法
US9825126B2 (en) Semiconductor device
US8772827B2 (en) Semiconductor device and manufacturing method
US8278706B2 (en) Semiconductor device and method of manufacturing the same
US8933466B2 (en) Semiconductor element
US9825164B2 (en) Silicon carbide semiconductor device and manufacturing method for same
JP6072432B2 (ja) 半導体装置及びその製造方法
US20150357405A1 (en) Semiconductor device
JP2011124464A (ja) 半導体装置及びその製造方法
JP6132032B2 (ja) 半導体装置およびその製造方法
US10516017B2 (en) Semiconductor device, and manufacturing method for same
CN108604600B (zh) 碳化硅半导体装置及其制造方法
US20150279983A1 (en) Semiconductor device
CN111512448A (zh) 半导体装置
JP6304878B2 (ja) 半導体装置および半導体装置の製造方法
JP2017045839A (ja) 半導体装置
CN107768422B (zh) 半导体装置以及半导体装置的制造方法
JP2010258329A (ja) ワイドバンドギャップ半導体素子
JP4222092B2 (ja) 半導体ウェハ、半導体装置および半導体装置の製造方法
US11245010B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP7113386B2 (ja) 半導体装置
CN109952633B (zh) 半导体装置及其制造方法
JP2022130748A (ja) 半導体装置の製造方法
JP2023022327A (ja) 半導体装置
JP2022139402A (ja) 炭化珪素半導体装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017180.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14811677

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14781533

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014001208

Country of ref document: DE

Ref document number: 1120140012084

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2015522490

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14811677

Country of ref document: EP

Kind code of ref document: A1