WO2016053014A1 - 패턴화 기판의 제조 방법 - Google Patents

패턴화 기판의 제조 방법 Download PDF

Info

Publication number
WO2016053014A1
WO2016053014A1 PCT/KR2015/010338 KR2015010338W WO2016053014A1 WO 2016053014 A1 WO2016053014 A1 WO 2016053014A1 KR 2015010338 W KR2015010338 W KR 2015010338W WO 2016053014 A1 WO2016053014 A1 WO 2016053014A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
group
block copolymer
chain
formula
Prior art date
Application number
PCT/KR2015/010338
Other languages
English (en)
French (fr)
Inventor
구세진
이미숙
유형주
김정근
윤성수
박노진
이제권
최은영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140175411A external-priority patent/KR101762487B1/ko
Priority claimed from KR1020150079468A external-priority patent/KR20160038701A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/515,432 priority Critical patent/US10287430B2/en
Priority to EP15845720.0A priority patent/EP3203496B1/en
Priority to CN201580059699.1A priority patent/CN107078026B/zh
Priority to JP2017517282A priority patent/JP6637495B2/ja
Publication of WO2016053014A1 publication Critical patent/WO2016053014A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00388Etch mask forming
    • B81C1/00428Etch mask forming processes not provided for in groups B81C1/00396 - B81C1/0042
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/14Organic medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/022Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations
    • C08F299/024Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations the unsaturation being in acrylic or methacrylic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F32/00Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F32/02Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings
    • C08F32/06Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings having two or more carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/005Modified block copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D153/00Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/162Coating on a rotating support, e.g. using a whirler or a spinner
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/165Monolayers, e.g. Langmuir-Blodgett
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • H01L21/31055Planarisation of the insulating layers involving a dielectric removal step the removal being a chemical etching step, e.g. dry etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • H01L21/31055Planarisation of the insulating layers involving a dielectric removal step the removal being a chemical etching step, e.g. dry etching
    • H01L21/31056Planarisation of the insulating layers involving a dielectric removal step the removal being a chemical etching step, e.g. dry etching the removal being a selective chemical etching step, e.g. selective dry etching through a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31058After-treatment of organic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0147Film patterning
    • B81C2201/0149Forming nanoscale microstructures using auto-arranging or self-assembling material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/301Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one oxygen in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1426Side-chains containing oxygen containing carboxy groups (COOH) and/or -C(=O)O-moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3324Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from norbornene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers

Definitions

  • the present application relates to a method for producing a patterned substrate.
  • the block copolymer has a molecular structure in which polymer blocks having different chemical structures are connected through covalent bonds.
  • the block copolymer may form periodically arranged structures such as spheres, cylinders, or lamellas by phase separation.
  • the shape and size of the domain of the structure formed by the self-assembly of the block copolymer can be controlled in a wide range by, for example, the type of the monomer forming each block or the relative ratio between the blocks.
  • block copolymers are being investigated for fabrication of various next generation nano devices such as nanowire fabrication, quantum dots, or metal dots, or for lithography to form high density patterns on predetermined substrates.
  • next generation nano devices such as nanowire fabrication, quantum dots, or metal dots, or for lithography to form high density patterns on predetermined substrates.
  • the orientation of the nanostructures in the film of the block copolymer is determined by which block of the block copolymer is exposed to the surface or air.
  • blocks of the block copolymer having the higher polarity are wetted to the substrate, and blocks having the smaller polarity are wetted at the interface with the air.
  • various techniques have been proposed for wetting blocks having different characteristics of the block copolymer on the substrate side at the same time, and the most representative technique is the adjustment of the orientation to which the neutral surface fabrication is applied.
  • Non-Patent Document 1 Chaikin and Register. et al., Science 276, 1401 (1997)
  • the present application provides a method of manufacturing a patterned substrate.
  • alkyl group may mean an alkyl group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms.
  • the alkyl group may be a straight chain, branched or cyclic alkyl group, and may be optionally substituted with one or more substituents.
  • alkoxy group may mean an alkoxy group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms.
  • the alkoxy group may be a straight chain, branched or cyclic alkoxy group, and may be optionally substituted with one or more substituents.
  • alkenyl group or alkynyl group means an alkenyl group or alkynyl group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms, unless otherwise specified. can do.
  • the alkenyl group or alkynyl group may be linear, branched or cyclic, and may be optionally substituted with one or more substituents.
  • alkylene group may mean an alkylene group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms.
  • the alkylene group may be a straight chain, branched or cyclic alkylene group, and may be optionally substituted with one or more substituents.
  • alkenylene group or alkynylene group is an alkenylene group or alkynylene having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms unless otherwise specified. Can mean a group.
  • the alkenylene group or alkynylene group may be linear, branched or cyclic, and may be optionally substituted with one or more substituents.
  • the term single bond may refer to a case where no separate atom exists at a corresponding site.
  • B when B is a single bond, it may mean that a separate atom is not present at a site represented by B, and A and C are directly connected to form a structure represented by A-C.
  • an alkyl group an alkenyl group, an alkynyl group, an alkylene group, an alkenylene group, an alkynylene group, an alkoxy group, an aryl group, an arylene group, a chain or an aromatic structure, a hydroxy group, a halogen atom , Carboxyl group, glycidyl group, acryloyl group, methacryloyl group, acryloyl groupoxy, methacryloyl groupoxy group, thiol group, alkyl group, alkenyl group, alkynyl group, alkylene group, alkenylene group, alkynylene group , Alkoxy group or aryl group and the like can be exemplified, but is not limited thereto.
  • the present application is directed to a method of manufacturing a patterned substrate.
  • the manufacturing method may be performed by a lithography method in which a directed self assembly material is applied as a template.
  • the induction self-assembly material may be, for example, a block copolymer.
  • the method of the present application is, for example, manufacturing processes or other uses of devices such as electronic devices and integrated circuits, such as integrated optical systems, guidance and detection patterns of magnetic domain memories, flat panel displays, liquid crystal displays (LCDs), thin film magnetic It can be applied to the manufacture of a head or an organic light emitting diode or the like.
  • the method may also be used to build patterns on surfaces used in the manufacture of discrete track media, such as integrated circuits, bit-patterned media and / or magnetic storage devices such as hard drives.
  • the method may include forming a layer of inductive self-assembly material on a substrate having a template formed thereon and inducing self-assembly.
  • the template may include a mesa structure spaced apart from each other on the surface of the substrate. This mesa structure allows trenches to be formed on the substrate, and inductive self-assembly materials such as block copolymers can be formed within the trenches.
  • the type of substrate applied to the method of the present application is not particularly limited.
  • the substrate for example, all kinds of substrates that require the formation of a pattern on the surface for application to each of the applications described above can be used.
  • this kind of substrate include semiconductor substrates such as silicon substrates, silicon germanium substrates, GaAs substrates, silicon oxide substrates, and the like.
  • a substrate applied to the formation of fin field effect transistors (finFETs) or other electronic devices such as diodes, transistors, or capacitors may be used.
  • finFETs fin field effect transistors
  • other materials, such as ceramics may also be used as the substrate, depending on the application, and the type of substrate applicable to the present application is not limited thereto.
  • each of the mesa structures may be in the form of a line. These mesa structures may be disposed on the substrate surface spaced apart from each other at regular intervals.
  • the mesa structure may be disposed on the surface of the substrate substantially parallel to each other. At least two mesa structures may be formed on the surface of the substrate. That is, the number of trenches formed by the mesa structure on the surface of the substrate may be one or more. The number of mesa structures and the number of trenches is not particularly limited and may be adjusted according to the use.
  • the mesa structure may serve to guide the self-assembly structure of the block copolymer formed when a film including an induction self-assembly material such as a block copolymer is formed in the trench formed by the mesa structure.
  • the exemplary substrate 1 shows an exemplary substrate 1 in which trenches are formed.
  • the exemplary substrate 1 may comprise a sidewall 3 of the mesa structure and a trench 2 formed by the substrate or the surface 4 of the mesa structure.
  • a film 5 comprising an induction self-assembly material such as a block copolymer is formed in the trench 2, so that two domains A and B which are chemically different from each other are formed. It can be formed while forming a so-called lamellar self-assembly structure formed alternately in the form of lines.
  • the shape of the trench on the surface of the substrate may be determined according to the pattern to be formed on the substrate or the self-assembly structure of the block copolymer required accordingly.
  • the ratio (D / H) of the spacing D of the mesa structure and the height H of the mesa structure that is spaced apart to form the trench is 0.1 to 10, 0.5 to 10, 1 to 10, 1 to 1 9, 1 to 8, 1 to 7, 1 to 6, 1 to 5 or 1 to 4.
  • the ratio (D / W) of the spacing D between the mesa structures and the width W of the mesa structures is 0.5 to 10, 1 to 10, 1 to 9, 1 to 8, 1 to 7, 1 to 6, It may be in the range of 1 to 5 or 1 to 4.
  • the ratio D / H or D / W may be changed depending on the intended use.
  • the spacing D of the mesa structure means the shortest distance between adjacent mesa structures that are spaced apart, and the spacing D is, for example, 10 nm to 500 nm, 10 nm to 450 nm, 10. nm to 400 nm, 10 nm to 350 nm, 10 nm to 300 nm, 50 nm to 300 nm or 100 nm to 300 nm or so.
  • the height H of the mesa structure is a dimension of the mesa structure measured in an upward direction along the normal direction of the surface of the substrate with respect to the surface of the substrate.
  • the width W of the mesa structure is a dimension of the mesa structure measured along a direction perpendicular to the normal direction of the substrate surface.
  • the spacing of the mesa structure may be in the range of about 1L to 20L.
  • the thickness of the film including the block copolymer, that is, the film formed in the trench may be in the range of about 1L to 10L or 1L to 8L.
  • the L may refer to the pitch of the lamellar pattern formed by the block copolymer.
  • the manner of forming such a mesa structure on the substrate is not particularly limited, and a known method may be applied.
  • the mesa structure may be formed by etching the substrate in an appropriate manner or by depositing a suitable material on the substrate.
  • the trench with mesa structure may be formed by sequentially forming a layer of mesa structure forming material, an antireflection layer, and a resist layer on a substrate; Patterning the resist layer; Etching the layer of mesa structure forming material using a patterned resist layer as a mask.
  • the layer of material is etched by an etching process using a patterned resist layer as a mask to form a mesa structure.
  • a patterned resist layer as a mask to form a mesa structure.
  • the material SiO 2 , an amorphous carbon layer (ACL), pin-on-glass (SOG), spin-on-carbon (SOC), or silicon nitride may be applied.
  • the layer of such material may be coated by, for example, spin coating or the like, or may be formed by a deposition method such as CVD (Chemical Vapor Deposition).
  • CVD Chemical Vapor Deposition
  • An antireflection layer may be formed on top of the layer of mesa structure forming material.
  • the antireflection layer may be formed of SiARC using a silicon material (Si), and all other known materials may be applied.
  • the antireflection layer can be formed by a known coating or vapor deposition method.
  • a resist layer may be formed on the antireflective layer.
  • the resist layer can be formed using a known material, for example, a material that can be patterned by a known lithographic process. Such a resist layer may be patterned by a known lithography method, and the patterned resist layer may be applied as a mask in the subsequent mesa formation process. Patterning of the resist layer may be performed so that the dimensions of the mesa structure can be adjusted to a desired level in a subsequent etching process.
  • an etching process may be performed in which the patterned resist layer is applied as an etch mask, in which the reflection of the regions other than the regions protected by the etch mask is performed.
  • the barrier layer and the layer of mesa forming material may be etched.
  • Such etching may be performed by a known etching method, for example, by a reactive ion etching (RIE) method.
  • RIE reactive ion etching
  • the aforementioned mesa structure can be formed, whereby a trench can be formed.
  • the etching may be performed until all of the mesa forming material in an area not protected by the etch mask is removed, or may be formed such that the material remains in part.
  • the trench may be formed by the surface of the substrate between the sidewall of the mesa structure and the gap, and may be formed on the surface of the mesa structure forming material between the sidewall of the mesa structure and the gap.
  • the above description has been made based on the formation of one layer of mesa forming material and the antireflective layer on the surface of the substrate, and the lithography proceeding.
  • the above may be alternately formed.
  • the self-assembled structure formed in the trench formed as above may comprise a vertically oriented block copolymer.
  • the term vertical alignment in the present application refers to the orientation of the block copolymer, and may mean a case where the orientation direction of the self-assembled structure formed by the block copolymer is perpendicular to the substrate direction.
  • the vertical orientation may refer to a case where each block domain of the self-assembled block copolymer is placed side by side on the substrate surface, and the interface region of the block domain is formed substantially perpendicular to the substrate surface.
  • the term vertical is an expression in consideration of an error, and may include, for example, an error within ⁇ 10 degrees, ⁇ 8 degrees, ⁇ 6 degrees, ⁇ 4 degrees, or ⁇ 2 degrees.
  • the self-assembled structure of the block copolymer formed in the trench may be, for example, a sphere, a cylinder, a gyroid or a lamellar, and in one example may be a lamella structure.
  • the present invention is not limited thereto.
  • other segments in the segment of the first or second block or other blocks covalently bonded thereto are formed in lamellar form or It may form a regular structure such as a cylinder shape.
  • the surface in the trench in which the film of the block copolymer is formed may be the surface of the substrate on which no known treatment has been performed, known to achieve vertical orientation, including so-called neutral surface treatment or chemical pre-patterning and the like.
  • the surface in the trench to which the film comprising the block copolymer contacts may be a surface that has not been subjected to neutral treatment, wherein the neutral treatment is vertical such as the above-described neutral brush layer or chemical prepatterning. It can be interpreted as including a known treatment for achieving the orientation.
  • a layer or a film is formed in contact with a surface may mean a case in which no other layer exists between the layer or the film and the surface.
  • the side wall of the mesa structure in which the layer of the induction self-assembly material, such as a block copolymer, is in contact with each other may not be further processed.
  • a hydrophilic or hydrophobic treatment may be performed on the sidewalls of the mesa structure in the same manner as described above in order to induce a proper self-assembly structure. In the scheme of the present application, such treatment may not be performed.
  • Some factors may be adjusted to form a vertically oriented self-assembled structure in the film in contact with the sidewalls of the surface or mesa structure in the trench where no known treatment has been performed, such as neutral treatment or the like.
  • the block copolymer described later can be used as the block copolymer deposited in the trench.
  • the block copolymer described later may form a self-assembled structure that is vertically oriented even on the substrate surface of the trench where neutral treatment is not performed.
  • An exemplary block copolymer used in the method may include a first block and a second block different from the first block.
  • Each block of the block copolymer may be formed by only one type of monomer, or may be formed by two or more types of monomers.
  • the block copolymer may be a diblock copolymer comprising only one first block and one second block.
  • the block copolymer also includes one each of the first and second blocks, and further includes one or both of the first and second blocks, or blocks other than the first and second blocks. It may further comprise a block copolymer of triblock or more.
  • the block copolymer includes two or more polymer chains connected by covalent bonds, phase separation occurs, thereby forming a so-called self-assembly structure.
  • the inventors have found that by satisfying any one or two or more of the conditions described below, the block copolymer can realize a vertically oriented self-assembly structure even on the trench substrate surface where the aforementioned neutral treatment is not performed. . Accordingly, the present application is directed to block copolymers that meet at least one of the conditions described below.
  • the shape or size of the nanoscale structure can be controlled, for example, by controlling the size of the block copolymer such as molecular weight, or the relative ratio between blocks.
  • the conditions described later are parallel, and one condition does not take precedence over the other.
  • the block copolymer may satisfy any one condition selected from the conditions described below, or may satisfy two or more conditions. It has been found that the fulfillment of any of the conditions described below allows the block copolymer to exhibit vertical alignment.
  • the term vertical alignment in the present application refers to the orientation of the block copolymer, the orientation of the nanostructure formed by the block copolymer may mean an orientation perpendicular to the substrate direction, for example, It may mean that the interface between the domain formed by the first block and the domain formed by the second block is perpendicular to the surface of the substrate.
  • the term vertical is an expression in consideration of an error, and may include, for example, an error within ⁇ 10 degrees, ⁇ 8 degrees, ⁇ 6 degrees, ⁇ 4 degrees, or ⁇ 2 degrees.
  • the orientation of the nanostructures in the film of the block copolymer is determined by which of the blocks forming the block copolymer is exposed to the surface or air.
  • the block of the block copolymer having the greater polarity contacts the substrate, and the block having the smaller polarity comes into contact with the air. Therefore, various techniques have been proposed to allow the blocks having different characteristics of the block copolymer to contact the substrate at the same time, and the most representative technique is the application of the neutral surface.
  • the block copolymer meets any one of the conditions described below, satisfies two or more of them, or both, so that the block copolymer achieves a vertical orientation including neutral surface treatment and the like. It was confirmed that vertical alignment is possible even for a substrate on which no known treatment known to be performed has been performed.
  • the block copolymers according to one aspect of the present application may exhibit vertical orientation even for both hydrophilic and hydrophobic surfaces without special pretreatment.
  • such vertical orientation may be induced in a large area in a short time by thermal annealing.
  • One exemplary block copolymer used in the present application includes a first block and a second block having a chemical structure different from that of the first block, wherein the block copolymer or the first block is formed of the GIWAXS spectrum. It shows a peak at an azimuth in the range of -90 degrees to -70 degrees of the diffraction pattern of the scattering vector in the range of 12 nm -1 to 16 nm -1 , and also a peak at an azimuth in the range of 70 degrees to 90 degrees (condition 1 ).
  • Another exemplary block copolymer used in the present application includes a first block and a second block having a chemical structure different from that of the first block, wherein the block copolymer or the first block is selected from-in DSC analysis. Melt transition peaks or isotropic transition peaks can be exhibited within the range of 80 ° C to 200 ° C (condition 2).
  • exemplary block copolymers used in the present application include a first block and a second block having a chemical structure different from that of the first block, wherein the block copolymer or the first block is used in XRD analysis.
  • a peak having a half width in the range of 0.2 to 0.9 nm ⁇ 1 in the scattering vector q range of 0.5 nm ⁇ 1 to 10 nm ⁇ 1 may be exhibited (condition 3).
  • Another exemplary block copolymer used in the present application includes a first block and a second block having a chemical structure different from that of the first block, wherein the first block includes a side chain chain and the side chain chain.
  • the number n of chain forming atoms of and the scattering vector q obtained by the XRD analysis of the first block may satisfy the following Equation 2 (condition 4).
  • Equation 2 n is the number of chain forming atoms of the side chain, q is the smallest scattering vector (q) whose peak is observed in the X-ray diffraction analysis for the block containing the side chain, or the largest peak It is the scattering vector q in which the peak of area is observed.
  • Another exemplary block copolymer used in the present application includes a first block and a second block having a chemical structure different from that of the first block, wherein the surface energy of the first block and the surface energy of the second block are included.
  • the absolute value of the difference of may be 10 mN / m or less (condition 5).
  • Another exemplary block copolymer used in the present application includes a first block and a second block having a chemical structure different from that of the first block, and an absolute value of the difference between the densities of the first block and the second block. May be at least 0.25 g / cm 3 (condition 6).
  • Another exemplary block copolymer of the present application includes a first block and a second block having a chemical structure different from that of the first block, wherein the volume fraction of the first block is in the range of 0.2 to 0.6, and The volume fraction of the second block may be in the range of 0.4 to 0.8 (condition 8).
  • Such block copolymers can form so-called lamellar structures.
  • ambient temperature is a naturally occurring temperature that is warmed and undecreased and can mean a temperature of about 10 ° C. to 30 ° C., about 25 ° C. or about 23 ° C.
  • the first block may be a block including side chain chains described later.
  • One block of the block copolymer of the present application is -90 degrees to-of the diffraction pattern of a scattering vector in the range of 12 nm -1 to 16 nm -1 of the Grazing Incident Wide Angle X ray Scattering (GIWAXS) spectrum. Peaks may be exhibited at both azimuthal angles in the range of 70 degrees and azimuthal angles in the range of 70 degrees to 90 degrees.
  • the block representing the peak may be a block including a side chain chain described later. In the present specification, a block including the side chain chain may be a first block.
  • the azimuth angle is an azimuth angle when the angle in the upward direction of the diffraction pattern (the direction of out of plane diffraction) is 0 degrees, which is the azimuth angle measured in the clockwise direction.
  • the angle measured in the clockwise direction is displayed as a positive number
  • the angle measured in the counterclockwise direction is displayed as a negative number.
  • Full width at half maximum (FWHM) of the peak observed at each azimuth may be in the range of 5 degrees to 70 degrees.
  • the full width at half maximum is at least 7 degrees, at least 9 degrees, at least 11 degrees, at least 13 degrees, at least 15 degrees, at least 17 degrees, at least 19 degrees, at least 21 degrees, at least 25 degrees, at least 30 degrees, and at least 35 degrees.
  • the full width at half maximum may be 65 degrees or less or 60 degrees or less in another example.
  • the method for obtaining the GIWAXS spectrum is not particularly limited, and it can be obtained according to the method described in the embodiments described later. After Gaussian fitting the profile of the obtained diffraction pattern peak of the spectrum, the half width can be obtained from the fitted result. In this case, when only half of the Gaussian fitting result is observed, the half width may be defined as twice the value obtained from the half observed result. In the Gaussian fitting, R square is in the range of about 0.26 to 0.95. That is, the half-value width mentioned above may be observed in any of R ranges in the above range.
  • the manner of obtaining the above information is well known, and for example, a numerical analysis program such as origin can be applied.
  • GIWAXS can be measured for polymers made only of the monomers that make up the blocks to be measured.
  • the GIWAXS can be measured after forming a film using the polymer and undergoing thermal annealing on the film.
  • the membrane is a coating liquid prepared by diluting the polymer in a solvent (eg, fluorobenzene) at a concentration of about 0.7% by weight of about 25 nm thick and a coating area of 2.25 cm 2 (width: 1.5 cm, length: 1.5). cm), and this coating can be formed by thermal aging Thermal aging can be carried out, for example, by holding the membrane for about 1 hour at a temperature of about 160 ° C.
  • a solvent eg, fluorobenzene
  • the block copolymer of the present application or any block of the block copolymer may have a melting transition peak or an isotropic transition peak within a range of ⁇ 80 ° C. to 200 ° C. in differential scanning calorimetry (DSC) analysis. Can be represented.
  • DSC differential scanning calorimetry
  • any block of the block copolymer exhibits the behavior in DSC analysis, and the block copolymer containing such a block satisfies the conditions 2 and 3 simultaneously, the block exhibiting the behavior in the DSC analysis is described in condition 2
  • the block copolymer or any block of the block copolymer may exhibit only one peak of the melt transition peak or the isotropic transition peak, and may represent both peaks.
  • Such block copolymer may be a copolymer including a block exhibiting a crystal phase and / or a liquid crystal phase suitable for self-assembly as a whole, or a block representing such a crystal phase and / or a liquid crystal phase.
  • the block copolymer exhibiting the above-described DSC behavior or any block of the block copolymer may further satisfy the following conditions within the condition 2 above.
  • the difference between the temperature Ti at which the isotropic transition peak appears (Ti) and the temperature Tm at which the melting transition peak appears (Ti-Tm) is 5 ° C. to 70 °. It may be in the range of °C.
  • the difference (Ti-Tm) is, in another example, at least 10 ° C, at least 15 ° C, at least 20 ° C, at least 25 ° C, at least 30 ° C, at least 35 ° C, at least 40 ° C, at least 45 ° C, at least 50 ° C, at least 55 ° C. Or 60 ° C. or higher.
  • Block copolymers having a difference (Ti-Tm) between the temperature (Ti) of the isotropic transition peak (Tm) and the temperature (T-Tm) of the melt transition peak or the block copolymer including such blocks maintain excellent phase separation or self-assembly characteristics. Can be.
  • the ratio (M / I) of the area (I) of the isotropic transition peak and the area (M) of the melt transition peak when the isotropic transition peak and the melt transition peak appear simultaneously is in the range of 0.1 to 500.
  • block copolymers having a ratio (M / I) of the area (I) of the isotropic transition peak to the area (M) of the melting transition peak, or a block copolymer including such a block have phase separation or self-assembly characteristics. Can be kept excellent.
  • the ratio (M / I) may be 0.5 or more, 1 or more, 1.5 or more, 2 or more, 2.5 or more or 3 or more in another example.
  • the ratio M / I may be 450 or less, 400 or less, 350 or less, 300 or less, 250 or less, 200 or less, 150 or less, 100 or less, 90 or less, or 85 or less.
  • the temperature (Tm) at which the melt transition peak appears may be in the range of -10 ° C to 55 ° C.
  • the temperature Tm is 50 ° C. or less, 45 ° C. or less, 40 ° C. or less, 35 ° C. or less, 30 ° C. or less, 25 ° C. or less, 20 ° C. or less, 15 ° C. or less, 10 ° C. or less, 5 ° C. or less, or Or less than 0 ° C.
  • the block copolymer may include a block having a side chain as described below.
  • the block copolymer may satisfy the following Equation 1.
  • Tm is the temperature at which the melt transition peak of the block copolymer or block having the side chain is represented
  • n is the number of chain forming atoms of the side chain.
  • the block copolymer satisfying the above formula may have excellent phase separation or self-assembly characteristics.
  • Tm-12.25 ° C ⁇ n + 149.5 ° C in Equation 1 may be -8 ° C to 8 ° C, -6 ° C to 6 ° C or about -5 ° C to 5 ° C in another example.
  • the block copolymer of the present application may include a block representing at least one peak in a scattering vector q in a predetermined range during XRD analysis (X-ray diffraction analysis).
  • the block satisfying the condition 1 and / or 2 may be a block satisfying the condition 3.
  • the block that satisfies condition 3 may be the first block.
  • any block of the block copolymer may exhibit at least one peak in the scattering vector q range of 0.5 nm ⁇ 1 to 10 nm ⁇ 1 in X-ray diffraction analysis.
  • the scattering vector q having the peak may be 0.7 nm ⁇ 1 or more, 0.9 nm ⁇ 1 or more, 1.1 nm ⁇ 1 or more, 1.3 nm ⁇ 1 or more, or 1.5 nm ⁇ 1 or more.
  • the scattering vector q having the peak is 9 nm ⁇ 1 or less, 8 nm ⁇ 1 or less, 7 nm ⁇ 1 or less, 6 nm ⁇ 1 or less, 5 nm ⁇ 1 or less, 4 nm ⁇ 1 or less, 3.5 nm can be -1 or less, or 3 nm or less.
  • the full width at half maximum (FWHM) of the peak identified within the range of the scattering vector q may be in the range of 0.2 to 0.9 nm ⁇ 1 .
  • the full width at half maximum may be at least 0.25 nm ⁇ 1, at least 0.3 nm ⁇ 1, or at least 0.4 nm ⁇ 1 .
  • the full width at half maximum may be 0.85 nm ⁇ 1 or less, 0.8 nm ⁇ 1 or less, or 0.75 nm ⁇ 1 or less.
  • half width may mean the width of the peak (difference of scattering vector q) at a position that represents half the intensity of the intensity of the maximum peak.
  • the scattering vector q and the half width in the XRD analysis are numerical values obtained by numerical analysis using the least-left method of the results obtained by the XRD analysis described later.
  • the profile of the XRD pattern peak is Gaussian fitting with the baseline of the portion showing the least intensity in the XRD diffraction pattern set to zero. After the fitting, the scattering vector and the half width can be obtained from the fitting result.
  • R square is at least 0.9, at least 0.92, at least 0.94 or at least 0.96.
  • the manner in which such information can be obtained from the XRD analysis is well known, and for example, a numerical analysis program such as origin can be applied.
  • the block showing the peak at half maximum within the range of the scattering vector q may include a crystalline site suitable for self-assembly.
  • Block copolymers comprising blocks identified within the range of the scattering vectors q described above can exhibit excellent self-assembly properties.
  • XRD analysis may be performed by measuring the scattering intensity according to the scattering vector after X-rays transmitted through the sample.
  • XRD analysis may be performed using a polymer prepared by polymerizing only one block of the block copolymer, for example, the monomer constituting the first block.
  • XRD analysis can be carried out on these polymers without any special pretreatment, for example, by drying the polymer under appropriate conditions and then transmitting it through X-rays.
  • X-rays an X-ray having a vertical size of 0.023 mm and a horizontal size of 0.3 mm can be applied.
  • a 2D diffraction pattern scattered from a sample can be obtained as an image, and the obtained diffraction pattern can be fitted in the manner described above to obtain a scattering vector, a half width, and the like.
  • the block copolymer of the present application may include a block having a side chain chain described below as a first block, and the number (n) of the chain forming atoms of the side chain chain is performed in the same manner as in the condition 3 above.
  • the scattering vector q obtained by X-ray diffraction analysis and Equation 2 below can be satisfied.
  • Equation 2 n is the number of the chain forming atoms, q is the smallest scattering vector (q) whose peak is observed in the X-ray diffraction analysis for the block containing the side chain chain, or the peak of the largest peak area Is the scattering vector q observed.
  • means circumference.
  • a scattering vector or the like introduced into Equation 2 is a value obtained according to the method mentioned in the aforementioned X-ray diffraction analysis method.
  • the scattering vector q introduced in Equation 2 may be, for example, a scattering vector q within a range of 0.5 nm ⁇ 1 to 10 nm ⁇ 1 .
  • the scattering vector q may be 0.7 nm ⁇ 1 or more, 0.9 nm ⁇ 1 or more, 1.1 nm ⁇ 1 or more, 1.3 nm ⁇ 1 or more, or 1.5 nm ⁇ 1 or more.
  • Scattering vector (q) introduced in Equation 2 is 9 nm -1 or less, 8 nm -1 or less, 7 nm -1 or less, 6 nm -1 or less, 5 nm -1 or less, 4 nm -1 or less , 3.5 nm ⁇ 1 or less or 3 nm ⁇ 1 or less.
  • Equation 2 is the relationship between the distance (D) between the polymer main chain containing the side chain chain and the number of chain forming atoms of the side chain when the polymer consisting of only the block containing the side chain chain of the block copolymer forms a film
  • the crystallinity of the side chain is increased when the number of chain forming atoms of the side chain satisfies Equation 2.
  • the phase separation property or vertical alignment property of the block copolymer is greatly increased.
  • Nq / (2 ⁇ ⁇ ) according to Equation 2 may be 4.5 nm ⁇ 1 or less in another example.
  • the absolute value of the difference between the surface energy of the first block and the surface energy of the second block of the block copolymer of the present application is 10 mN / m or less, 9 mN / m or less, 8 mN / m or less, 7.5 mN / m or less Or 7 mN / m or less.
  • the absolute value of the difference in surface energy may be 1.5 mN / m, 2 mN / m or 2.5 mN / m or more.
  • the structure in which the first block and the second block having the absolute value of the difference in the surface energy in this range are connected by covalent bonds can induce effective microphase seperation by phase separation due to proper incompatibility.
  • the first block may be, for example, a block having a side chain chain described later or a block including an aromatic structure having no halogen atom.
  • the surface energy can be measured using a drop shape analyzer (DSA100 manufactured by KRUSS). Specifically, the surface energy is a coating liquid obtained by diluting a sample (block copolymer or homopolymer) to be measured with a solid content of about 2% by weight in fluorobenzene and having a thickness of about 50 nm and a coating area of 4 cm < 2 > Width: 2 cm, length: 2 cm) can be measured for a film dried at room temperature for about 1 hour and then thermally aged at 160 ° C for about 1 hour. The average value of the five contact angle values obtained is obtained by dropping the deionized water having a known surface tension on the thermally matured film and determining the contact angle five times.
  • a drop shape analyzer DSA100 manufactured by KRUSS.
  • the surface energy is a coating liquid obtained by diluting a sample (block copolymer or homopolymer) to be measured with a solid content of about 2% by weight in fluoro
  • the procedure of dropping the known diiodomethane and determining the contact angle is repeated five times, and the average value of the five contact angle values obtained is obtained.
  • the surface energy can be obtained by substituting the numerical value (Strom value) of the surface tension of the solvent by Owens-Wendt-Rabel-Kaelble method using the average value of the contact angles with respect to the deionized water and diiomethane obtained.
  • the numerical value of the surface energy for each block of the block copolymer can be obtained by the method described above with respect to a homopolymer made only of the monomers forming the block.
  • the block in which the side chain chain is included may have higher surface energy than other blocks.
  • the first block of the block copolymer comprises a side chain
  • the first block may have a higher surface energy than the second block.
  • the surface energy of the first block may be in the range of about 20 mN / m to 40 mN / m.
  • the surface energy of the first block may be 22 mN / m or more, 24 mN / m or more, 26 mN / m or more, or 28 mN / m or more.
  • the surface energy of the first block may be 38 mN / m or less, 36 mN / m or less, 34 mN / m or less, or 32 mN / m or less.
  • Such a first block is included, and the block copolymer exhibiting the difference between the second block and the surface energy as described above can exhibit excellent self-assembly characteristics.
  • the absolute value of the difference between the densities of the first and second blocks in the block copolymer is 0.25 g / cm 3 or more, 0.3 g / cm 3 or more, 0.35 g / cm 3 or more, 0.4 g / cm 3 or more, or 0.45 g / cm 3 or more.
  • the absolute value of the difference in density may be 0.9 g / cm 3 or more, 0.8 g / cm 3 or less, 0.7 g / cm 3 or less, 0.65 g / cm 3 or less, or 0.6 g / cm 3 or less.
  • the density of each block of the block copolymer can be measured using a known buoyancy method, for example, by analyzing the mass of the block copolymer in a solvent having a known mass and density in air such as ethanol. Can be measured.
  • the block including the side chain chain may have a lower density than other blocks.
  • the first block of the block copolymer comprises a side chain
  • the first block may have a lower density than the second block.
  • the density of the first block may be in the range of about 0.9 g / cm 3 to about 1.5 g / cm 3 .
  • the density of the first block may be 0.95 g / cm 3 or more.
  • the density of the first block may be 1.4 g / cm 3 or less, 1.3 g / cm 3 or less, 1.2 g / cm 3 or less, 1.1 g / cm 3 or less, or 1.05 g / cm 3 or less.
  • Such a first block is included, and the block copolymer exhibiting the above-described density difference with the second block can exhibit excellent self-assembly characteristics.
  • the block copolymer may comprise a first block having a volume fraction in the range of 0.4 to 0.8 and a second block having a volume fraction in the range of 0.2 to 0.6.
  • the volume fraction of the block having the chain may be in the range of 0.4 to 0.8.
  • the volume fraction of the first block may be in the range of 0.4 to 0.8
  • the volume fraction of the second block may be in the range of 0.2 to 0.6.
  • the sum of the volume fractions of the first block and the second block may be one.
  • the block copolymer including each block in the volume fraction as described above may exhibit excellent self-assembly characteristics.
  • the volume fraction of each block of the block copolymer can be obtained based on the density of each block and the molecular weight measured by Gel Permeation Chromatogrph (GPC). The density in the above can be obtained according to the manner described above.
  • the block copolymer may satisfy any one of the above conditions 1 to 7, or may satisfy two or more selected therefrom.
  • the block copolymer may be a block copolymer satisfying condition 1, condition 2, condition 3, condition 4, condition 5, condition 6 or condition 7.
  • the block copolymer may include a first block satisfying any one or two or more of the conditions 1 to 4 among the conditions and a second block having a difference in surface energy according to the condition 5. .
  • the block copolymer may include a first block satisfying any one or two or more of the conditions 1 to 4 of the conditions together with a second block having a difference in surface energy according to the condition 5, The ratio of the first and second blocks may be included to satisfy the condition 7.
  • the first block that satisfies any one of the conditions 1 to 4 may exhibit crystallinity or liquid crystallinity, thereby packing with regularity in the formation of the self-assembly structure.
  • the first block and the second block satisfy the difference in surface energy according to condition 5
  • the domains formed by each of the first and second blocks are substantially neutralized, thereby forming the self-assembled film.
  • the film can be vertically oriented.
  • the number average molecular weight (Mn) of the block copolymer may be, for example, in the range of 3,000 to 300,000.
  • the term number average molecular weight is a conversion value with respect to standard polystyrene measured using a gel permeation chromatograph (GPC), and the term molecular weight herein refers to a number average molecular weight unless otherwise specified.
  • the molecular weight (Mn) may be, for example, 3000 or more, 5000 or more, 7000 or more, 9000 or more, 11000 or more, 13000 or more, or 15000 or more.
  • the molecular weight (Mn) is 250000 or less, 200000 or less, 180000 or less, 160000 or less, 140000 or less, 120000 or less, 100000 or less, 90000 or less, 80000 or less, 70000 or less, 60000 or less, 50000 or less, 40000 or less, or 30000 or less. Or about 25000 or less.
  • the block copolymer may have a dispersion degree (polydispersity, Mw / Mn) in the range of 1.01 to 1.60.
  • the dispersity may in another example be at least about 1.1, at least about 1.2, at least about 1.3 or at least about 1.4.
  • the block copolymer may exhibit suitable self-assembly properties.
  • the number average molecular weight of the block copolymer can be adjusted in view of the desired self-assembly structure and the like.
  • the above-mentioned conditions can be achieved through, for example, control of the structure of the block copolymer.
  • at least one or both of the first and second blocks of the block copolymer satisfying one or more of the above mentioned conditions may comprise at least an aromatic structure.
  • Both the first block and the second block may include an aromatic structure, in which case the aromatic structures included in the first and second blocks may be the same or different.
  • at least one of the first and second blocks of the block copolymer that satisfies one or more of the above-mentioned conditions may include the above-mentioned side chain chain or may include one or more halogen atoms described below. The halogen atom may be substituted with the aromatic structure.
  • the block copolymer of the present application may include two blocks or may include more blocks.
  • the first block and / or the second block of the block copolymer may comprise an aromatic structure.
  • Such an aromatic structure may be included in only one of the first and second blocks, or both blocks.
  • both blocks include aromatic structures
  • the aromatic structures included in each block may be the same or different from each other.
  • aromatic structure refers to a structure of an aromatic compound, an aryl group means a monovalent residue derived from an aromatic compound, and an arylene group may mean a divalent residue derived from an aromatic compound.
  • the aromatic compound is a compound having a benzene ring, or two or more benzene rings connected by sharing one or two carbon atoms, or connected by an arbitrary linker, unless otherwise specified. Derivatives.
  • the monovalent moiety derived from the aryl group, that is, the aromatic compound is a substituent in which a radical formed by the departure of one hydrogen atom of the aromatic compound forms a covalent bond, and is derived from the arylene group, that is, the aromatic compound.
  • the divalent moiety may refer to a substituent in which a radical formed by leaving two hydrogen atoms of the aromatic compound forms a covalent bond.
  • the aryl group or arylene group may be, for example, an aryl group or arylene group having 6 to 30 carbon atoms, 6 to 25 carbon atoms, 6 to 21 carbon atoms, 6 to 18 carbon atoms, or 6 to 13 carbon atoms.
  • aryl group or arylene group benzene, naphthalene, azobenzene, anthracene, phenanthrene, tetratracene, pyrene or benzopyrene ( monovalent or divalent residues derived from benzopyrene) and the like can also be exemplified.
  • aromatic structure may be used in the same sense as the aryl group or the arylene group.
  • the aromatic structure may be a structure included in the block main chain or a structure connected to the block main chain in a side chain form. It may be possible to adjust the above-described conditions through appropriate control of the aromatic structure that each block can contain.
  • the block copolymer that satisfies one or more of the above conditions may include a first block comprising a side chain and a second block different from the first block.
  • the side chain chain may be a side chain chain having 8 or more chain forming atoms.
  • the first block may be a block that satisfies any one of the above-described conditions 2, 3, 4, and 5, two or more of the above conditions, or all of the above conditions.
  • the first block includes a ring structure, and the side chain chain may be substituted with the ring structure.
  • the ring structure may be the aforementioned aromatic structure, an aryl group or an arylene group, or an alicyclic ring structure.
  • Such a ring structure may be a ring structure containing no halogen atom.
  • alicyclic ring structure means a cyclic hydrocarbon structure other than an aromatic ring structure, unless otherwise specified.
  • the alicyclic ring structure may be included in the block copolymer in the form of a monovalent residue or a divalent residue.
  • the alicyclic ring structure may be, for example, an alicyclic ring structure having 3 to 30 carbon atoms, 3 to 25 carbon atoms, 3 to 21 carbon atoms, 3 to 18 carbon atoms, or 3 to 13 carbon atoms, unless otherwise specified. .
  • the second block included with the first block as described above is a block chemically different from the first block.
  • This second block may be a block containing a halogen atom, for example, a chlorine atom or a fluorine atom.
  • the second block may include one or more, two or more, three or more, four or more or five or more halogen atoms.
  • the number of halogen atoms may be, for example, 30 or less, 25 or less, 20 or less, 15 or less, 10 or less, 9 or less, 8 or less, 7 or less, 6 or less, or 5 or less. have.
  • the second block includes a ring structure, and the halogen atom may be substituted in the ring structure.
  • the ring structure may be the aforementioned aromatic structure, aryl group or arylene group.
  • branched chain refers to a chain linked to the main chain of the polymer
  • chain forming atom refers to an atom forming the side chain chain and means an atom forming a straight chain structure of the chain.
  • the branched chain may be straight or branched, but the number of chain forming atoms is calculated only by the number of atoms forming the longest straight chain, and other atoms (eg, chain forming valences) bonded to the chain forming atoms In the case of a carbon atom, a hydrogen atom bonded to the carbon atom, etc.) is not included in the calculation.
  • the number of chain forming atoms can be calculated as the number of chain forming atoms forming the longest chain moiety.
  • the chain forming atoms are all carbons and the number is 5, and even when the side chain is the 2-methylpentyl group, the chain forming atoms are all carbon and the number is 5.
  • carbon, oxygen, sulfur or nitrogen may be exemplified, and a suitable chain forming atom may be carbon, oxygen or nitrogen, or carbon or oxygen.
  • the number of chain forming atoms may be at least 8, at least 9, at least 10, at least 11, or at least 12.
  • the number of chain forming atoms may also be 30 or less, 25 or less, 20 or less, or 16 or less.
  • a chain having 8 or more chain forming atoms may be connected to the side chain in the first block of the block copolymer.
  • chain and branched chain may refer to the same object as each other.
  • the branched chain may be a chain comprising at least 8, at least 9, at least 10, at least 11 or at least 12 chain forming atoms as mentioned above.
  • the number of chain forming atoms may also be up to 30, up to 25, up to 20 or up to 16.
  • the chain forming atom may be a carbon, oxygen, nitrogen or sulfur atom, and suitably carbon or oxygen.
  • hydrocarbon chains such as alkyl groups, alkenyl groups or alkynyl groups can be exemplified. At least one of the carbon atoms of the hydrocarbon chain may be replaced with a sulfur atom, an oxygen atom or a nitrogen atom.
  • the chain When the side chain is linked to a ring structure such as an aromatic structure, the chain may be directly connected to the ring structure or may be linked through a linker.
  • R 1 may be hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or an aryl group
  • alkyl It may be a ethylene group, an alkenylene group or an alkynylene group
  • R 2 may be hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or an aryl group.
  • Suitable linkers can be exemplified by oxygen atoms.
  • the branched chain may be linked to a ring structure, such as an aromatic structure, for example via an oxygen atom or a nitrogen atom.
  • the aromatic structure may also be directly connected to the main chain or may be linked through a linker.
  • the aromatic structure included in the first and / or second block of the block copolymer may include at least one, at least two, at least three, at least four, or at least five halogen atoms.
  • the number of halogen atoms may be, for example, 30 or less, 25 or less, 20 or less, 15 or less, or 10 or less.
  • Examples of the halogen atom include fluorine, chlorine, and the like, and the use of a fluorine atom may be advantageous.
  • a block having an aromatic structure including a halogen atom may efficiently implement a phase separation structure through proper interaction with other blocks.
  • an aromatic structure containing a halogen atom an aromatic structure of 6 to 30 carbon atoms, 6 to 25 carbon atoms, 6 to 21 carbon atoms, 6 to 18 carbon atoms or 6 to 13 carbon atoms can be exemplified, but is not limited thereto.
  • both the first and second blocks in the block copolymer comprise an aromatic structure
  • the first block includes an aromatic structure that does not contain a halogen atom
  • the second block contains a halogen atom for the implementation of a suitable phase separation structure. It may include an aromatic structure comprising.
  • the above-mentioned side chain chain may be directly connected to the aromatic structure of the first block through a linker containing oxygen or nitrogen.
  • the block may be, for example, a block including a unit represented by the following formula (1).
  • the block may be a block including a unit of Formula 1 as a main component.
  • a block includes a unit as a main component when the block includes at least 60%, at least 70%, at least 80%, at least 90%, or at least 95% of the unit by weight, or It may mean that the unit comprises at least 60 mol%, at least 70 mol%, at least 80 mol%, at least 90 mol% or at least 95 mol%.
  • R is hydrogen or an alkyl group
  • Y is a substituent including at least a ring structure, for example, when the ring structure is an aromatic ring, the number of the chain forming atoms may be 3 or more, and the chain when the ring structure is an alicyclic ring structure The number of forming atoms may be eight or more. Even when the ring structure is an aromatic ring structure, the chain forming atoms may be five or more, seven or more or eight or more.
  • the monovalent substituent of Y includes a chain structure formed of at least three or eight chain forming atoms.
  • chain forming atom in the present application means an atom which forms a straight chain structure of a predetermined chain, for example, a branched chain.
  • the chain may be straight or branched, but the number of chain forming atoms is calculated only from the number of atoms forming the longest straight chain, and other atoms (eg chain forming valences) bound to the chain forming atoms are In the case of a carbon atom, the hydrogen atom etc. couple
  • the chain forming atoms are all carbon as the number 5, and even when the chain is a 2-methylpentyl group, the chain forming atoms are all carbon as the number 5.
  • carbon, oxygen, sulfur or nitrogen may be exemplified, and a suitable chain forming atom may be carbon, oxygen or nitrogen, or carbon or oxygen.
  • the number of chain forming atoms may be at least 3, at least 5, at least 7, at least 8, at least 9, at least 10, at least 11, or at least 12.
  • the number of chain forming atoms may also be 30 or less, 25 or less, 20 or less, or 16 or less.
  • the appropriate lower limit of the chain forming atom may be determined according to the type of ring structure as described above.
  • the block of the formula (1) may be such that the block copolymer exhibits excellent self-assembly properties, and satisfies the conditions described above.
  • the chain may be a straight chain hydrocarbon chain such as a straight chain alkyl group.
  • the alkyl group may be an alkyl group having 3 or more carbon atoms, 5 or more carbon atoms, 7 or more carbon atoms, 8 or more carbon atoms, 8 to 30 carbon atoms, 8 to 25 carbon atoms, 8 to 20 carbon atoms, or 8 to 16 carbon atoms.
  • One or more of the carbon atoms of the alkyl group may be optionally substituted with an oxygen atom, and at least one hydrogen atom of the alkyl group may be optionally substituted with another substituent.
  • Y includes a ring structure, and the chain may be connected to the ring structure.
  • the ring structure may be an aromatic structure or an alicyclic structure.
  • the chain may be directly linked to the ring structure or may be linked through a linker.
  • Suitable linkers can be exemplified by oxygen atoms or nitrogen atoms.
  • the chain may, for example, be connected to an aromatic structure via an oxygen atom or a nitrogen atom.
  • the linker may be an oxygen atom or -NR 1- (wherein R 1 is hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or an aryl group).
  • Y in Formula 1 may be represented by the following Formula 2 in one example.
  • P is an arylene group or a cycloalkylene group
  • Q is a single bond, an oxygen atom or -NR 3-
  • R 3 is hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or an aryl group
  • Z is the chain having three or more chain forming atoms when P is an arylene group
  • Z is the chain having eight or more chain forming atoms when P is a cycloalkylene group.
  • Suitable examples of P in the general formula (2) may include, but are not limited to, an arylene group having 6 to 12 carbon atoms, for example, a phenylene group.
  • Q in the general formula (2) is an appropriate example, an oxygen atom or -NR 1- (wherein R 1 is hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or an aryl group).
  • a unit of formula As one example of a unit of formula (hereinafter, may be referred to as a unit of a first block), there is a unit represented by the following formula (3). Such a unit may be referred to herein as a 1A block unit, but is not limited thereto.
  • R is hydrogen or an alkyl group having 1 to 4 carbon atoms
  • X is a single bond
  • P is an arylene group
  • Q is Is an oxygen atom or -NR 3-
  • R 3 is hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or an aryl group
  • Z is a straight chain having 8 or more chain forming atoms.
  • Q in Formula 3 may be an oxygen atom.
  • the first block unit may be represented by the following Chemical Formula 4. Such a unit may be referred to herein as a 1B block unit.
  • R 1 and R 2 in Formula 4 are each independently hydrogen or an alkyl group having 1 to 4 carbon atoms
  • T is a single bond or an arylene group
  • Q is a single bond or a carbonyl group
  • Y is a chain having 8 or more chain forming atoms.
  • the first block unit may be a unit in which at least one chain forming valence of the chain having 8 or more chain forming atoms in any one of Formulas 1, 3, and 4 has an electronegativity of 3 or more.
  • the electronegativity of the atom may be 3.7 or less in other examples.
  • such a unit may be referred to as a 1C block unit.
  • a nitrogen atom or an oxygen atom may be exemplified, but is not limited thereto.
  • the kind of other blocks (hereinafter, may be referred to as second blocks) that may be included in the block copolymer together with the first block including the 1A, 1B, or 1C block unit is not particularly limited.
  • the second block may be a polystyrene block such as a polyvinylpyrrolidone block, a polylactic acid block, a polyvinylpyridine block, polystyrene or poly trimethylsilylstyrene, or a polyethylene jade.
  • Polyolefin blocks such as polyalkylene oxide blocks such as polyethylene oxide, poly butadiene blocks, poly isoprene blocks or polyethylene may be exemplified. Such a block may be referred to herein as a second A block.
  • the second block that may be included together with the first block including the first 1A, 1B, or 1C block unit may be a block having an aromatic structure including one or more halogen atoms.
  • Such a second block may be, for example, a block including a unit represented by Formula 5 below.
  • the unit of Formula 5 may be referred to herein as a 2B block unit.
  • the second block may include the second B block unit as a main component.
  • B is a monovalent substituent having an aromatic structure containing one or more halogen atoms.
  • the second block including such a unit may exhibit excellent interaction with the first block so that the block copolymer exhibits excellent self-assembly characteristics and the like.
  • the aromatic structure may be, for example, an aromatic structure having 6 to 18 carbon atoms or 6 to 12 carbon atoms.
  • examples of the halogen atom included in Chemical Formula 5 include a fluorine atom or a chlorine atom, and a fluorine atom may be used as appropriate, but is not limited thereto.
  • B of Formula 5 may be a monovalent substituent having an aromatic structure having 6 to 12 carbon atoms substituted with at least one, at least two, at least three, at least four, or at least five halogen atoms.
  • the upper limit of the number of halogen atoms in the above is not particularly limited, and for example, 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less halogen atoms may be present.
  • Chemical Formula 5 which is the second B block unit, may be represented by Chemical Formula 6.
  • the 2B block unit may be represented by, for example, the following Formula 7.
  • X 2 may be, in another example, a single bond, an oxygen atom, an alkylene group, —C ( ⁇ O) —O—, or —OC ( ⁇ O) —.
  • R 1 to R 5 are each independently hydrogen, an alkyl group, a haloalkyl group, or a halogen atom, and R 1 to R 5 are one or more, two or more, three or more, four or more, or five or more halogen atoms.
  • R 1 to R 5 may contain a fluorine atom.
  • Halogen atoms contained in R 1 to R 5 may be 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less.
  • the second block may be a block including a unit represented by Formula 8 below. Such a block may be referred to herein as a 2C block unit.
  • the second block may include the second C block unit as a main component.
  • T and K are each independently an oxygen atom or a single bond, and U is an alkylene group.
  • the second C block unit in Formula 10, may be a unit in which U is an alkylene group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms.
  • the 2C block unit may be a block in which any one of T and K in Formula 8 is a single bond and the other is an oxygen atom.
  • U may be a block which is an alkylene group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms.
  • the 2C block unit may be a block in which T and K in Formula 8 are both oxygen atoms.
  • U may be a unit having an alkylene group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms.
  • the second block may be a block having a unit including one or more metal atoms or metalloid atoms.
  • a block may be referred to herein as a 2D block.
  • Such a block can improve the etching selectivity, for example, when an etching process is performed on a self-assembled film formed using a block copolymer.
  • metal or metalloid atom included in the 2D block silicon atom, iron atom or boron atom, etc. may be exemplified, but any one capable of showing proper etching selectivity by a difference from other atoms included in the block copolymer is especially It is not limited.
  • the 2D block may include at least one, at least two, at least three, at least four or at least five halogen atoms, for example fluorine atoms, together with the metal or metalloid atoms.
  • Halogen atoms such as fluorine atoms contained in the 2D block may be 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less.
  • the 2D block may include a unit (2D block unit) represented by Formula 9 below.
  • the 2D block may include the 2D block unit as a main component.
  • B may be a monovalent substituent having a substituent including a metal atom or a metalloid atom and an aromatic structure including a halogen atom.
  • the aromatic structure of Formula 9 may be an aromatic structure having 6 to 12 carbon atoms, for example, an aryl group or an arylene group.
  • the second 2D block unit of Formula 9 may be represented by, for example, the following Formula 10.
  • W may be an aryl group having 6 to 12 carbon atoms including a substituent containing a metal atom or a metalloid atom and at least one halogen atom.
  • aryl group at least one or one to three substituents including the metal atom or the metalloid atom are included, and the halogen atom is at least one, at least two, at least three, at least four, or at least five. It may be included above.
  • the halogen atom may be included in 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less.
  • the 2D block unit of Formula 10 may be represented by, for example, Formula 11 below.
  • At least one, one to three, or one to two of R 1 to R 5 may be a substituent including the aforementioned metal atom or metalloid atom.
  • R 1 to R 5 may include one or more, two or more, three or more, four or more, or five or more halogen atoms.
  • the halogen atoms contained in R 1 to R 5 may be 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less.
  • Substituents containing metal or metalloid atoms in the above description include silsesquioxa such as trialkylsiloxy groups, ferrocenyl groups, polyhedral oligomeric silsesquioxane groups and the like. Although a silyl group or a carboranyl group and the like can be exemplified, such a substituent is not particularly limited as long as it is selected so that etching selectivity can be ensured, including at least one metal or metalloid atom.
  • the second block may be a block including an atom having an electronegativity of 3 or more and a non-halogen atom (hereinafter, may be referred to as a non-halogen atom).
  • a non-halogen atom Such a block may be referred to herein as a 2E block.
  • the electronegativity of the non-halogen atom included in the 2E block may be 3.7 or less in another example.
  • non-halogen atom included in the 2E block may include a nitrogen atom or an oxygen atom, but are not limited thereto.
  • the 2E block may include at least one, at least two, at least three, at least four or at least five halogen atoms, for example, fluorine atoms, together with the non-halogen atoms having an electronegativity of at least three.
  • Halogen atoms such as fluorine atoms contained in the 2E block may be 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less.
  • the 2E block may include a unit (2E block unit) represented by Formula 12 below.
  • the unit may be included as a main component in the 2E block.
  • B may be a monovalent substituent having a substituent including a non-halogen atom having an electronegativity of 3 or more and an aromatic structure including a halogen atom.
  • the aromatic structure of Chemical Formula 12 may be an aromatic structure having 6 to 12 carbon atoms, for example, an aryl group or an arylene group.
  • the unit of Formula 12 may be represented by the following Formula 13 in another example.
  • W may be a substituent containing a non-halogen atom having an electronegativity of 3 or more and an aryl group having 6 to 12 carbon atoms including at least one halogen atom.
  • halogen atom may include one or more, two or more, three or more, four or more or five or more. In the above, the halogen atom may be included in 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less.
  • the unit of Formula 12 may be represented by the following Formula 14 in another example.
  • At least one, one to three, or one to two of R 1 to R 5 may be a substituent including a non-halogen atom having the aforementioned electronegativity of 3 or more.
  • R 1 to R 5 may include one or more, two or more, three or more, four or more, or five or more halogen atoms.
  • the halogen atoms contained in R 1 to R 5 may be 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less.
  • a hydroxy group, an alkoxy group, a carboxyl group, an amido group, an ethylene oxide group, a nitrile group, a pyridine group or an amino group may be exemplified.
  • the present invention is not limited thereto.
  • the second block may include an aromatic structure having a heterocyclic substituent.
  • This second block may be referred to herein as a second F block.
  • the 2F block may include a unit represented by the following Formula 15.
  • the following unit may be included as a main component in the 2F block.
  • B is a monovalent substituent having an aromatic structure having 6 to 12 carbon atoms substituted with a heterocyclic substituent.
  • the aromatic structure of formula 15 may contain one or more halogen atoms if necessary.
  • the unit of formula 15 may be represented by the following formula (16).
  • the unit of formula 16 may be represented by the following formula (17).
  • R 1 to R 5 is the heterocyclic substituent, and the rest is a hydrogen atom, an alkyl group or a halogen atom, a hydrogen atom or a halogen It may be an atom or a hydrogen atom.
  • a phthalimide derived substituent a thiophene derived substituent, a thiazole derived substituent, a carbazole derived substituent or an imidazole derived substituent
  • a carbazole derived substituent or an imidazole derived substituent may be exemplified, but is not limited thereto.
  • the block copolymer of the present application may include one or more of the above-described first block, and may also include one or more of the above-described second block. Such block copolymers may comprise two or three blocks, or may include more blocks.
  • the block copolymer may be a diblock copolymer including any one of the first block and any one of the second block.
  • the specific method for producing such a block copolymer is not particularly limited, and for example, the block copolymer may be manufactured by applying a known method for producing a block copolymer using a monomer capable of forming each block. can do.
  • the block copolymer may be prepared by LRP (Living Radical Polymerization) method using the monomer.
  • LRP Living Radical Polymerization
  • an anionic polymerization or an organic alkali metal compound synthesized in the presence of an inorganic acid such as an alkali metal or a salt of an alkaline earth metal is polymerized using an organic rare earth metal complex as a polymerization initiator or an organic alkali metal compound as a polymerization initiator.
  • Anion polymerization method synthesized in the presence of an organoaluminum compound using as an initiator, atom transfer radical polymerization method (ATRP) using an atom transfer radical polymerization agent as a polymerization control agent, an atomic transfer radical polymerization agent as a polymerization control agent is used.
  • RAFT polymerization method of
  • organic tellurium compound, etc. as an initiator
  • the block copolymer may be prepared in a manner that includes polymerizing a reactant including monomers capable of forming the block by living radical polymerization in the presence of a radical initiator and a living radical polymerization reagent. .
  • the method of forming another block included in the copolymer together with the block formed by using the monomer in the preparation of the block copolymer is not particularly limited, and the appropriate monomer is selected in consideration of the type of the desired block. Blocks can be formed.
  • the manufacturing process of the block copolymer may further include, for example, precipitating the polymerization product produced through the above process in the non-solvent.
  • the kind of radical initiator is not particularly limited and may be appropriately selected in consideration of the polymerization efficiency, and for example, AIBN (azobisisobutyronitrile) or 2,2'-azobis-2,4-dimethylvaleronitrile (2,2 ').
  • Azo compounds such as -azobis- (2,4-dimethylvaleronitrile)) or peroxides such as benzoyl peroxide (BPO) or di-t-butyl peroxide (DTBP) can be used.
  • Living radical polymerization processes are, for example, methylene chloride, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, benzene, toluene, acetone, chloroform, tetrahydrofuran, dioxane, monoglyme, diglyme, dimethylform It may be carried out in a solvent such as amide, dimethyl sulfoxide or dimethylacetamide.
  • non-solvent for example, alcohols such as methanol, ethanol, normal propanol or isopropanol, glycols such as ethylene glycol, ether series such as n-hexane, cyclohexane, n-heptane or petroleum ether may be used. It is not limited to this.
  • the method of forming a film in the above-described trenches using the above-described block copolymer is not particularly limited, and in order to form a self-assembly structure, for example, a known film that has been applied to forming a polymer film on a neutral treated surface. Manner may be applied.
  • a polymer film may be formed by dispersing the block copolymer in a suitable solvent at a predetermined concentration to prepare a coating solution, and coating the coating solution by a known coating method such as spin coating.
  • an annealing process for forming a self-assembly structure in the polymer film formed as described above may be further performed.
  • Such annealing can be carried out, for example, by aging or heat treatment of the layer.
  • the aging or heat treatment may be performed based on, for example, the phase transition temperature or the glass transition temperature of the block copolymer, and may be performed, for example, at a temperature above the glass transition temperature or the phase transition temperature.
  • the time for which such heat treatment is performed is not particularly limited, and may be, for example, within a range of about 1 minute to 72 hours, but this may be changed as necessary.
  • the heat treatment temperature of the polymer thin film may be, for example, about 100 ° C. to 250 ° C., but this may be changed in consideration of the block copolymer used.
  • the formed layer may, in another example, be solvent aged for about 1 minute to 72 hours in a nonpolar solvent and / or a polar solvent at room temperature.
  • the method of making a patterned substrate of the present application may also further comprise selectively removing any block from the self-assembled block copolymer of the film formed in the trench as described above.
  • the method may include selectively removing the first or second block from the block copolymer. Through this process, for example, only a block B that is not selectively removed as shown in FIG. 3 may exist inside the trench.
  • the method of manufacturing the patterned substrate may also include etching the substrate after selectively removing any one or more blocks of the block copolymer as described above.
  • the method of selectively removing any block of the block copolymer in the above method is not particularly limited.
  • a method of removing a relatively soft block by irradiating an appropriate electromagnetic wave, for example, ultraviolet rays, to the polymer film may be employed.
  • an appropriate electromagnetic wave for example, ultraviolet rays
  • UV irradiation conditions are determined according to the type of the block of the block copolymer, for example, it can be carried out by irradiating ultraviolet light of about 254 nm wavelength for 1 minute to 60 minutes.
  • the polymer film may be treated with an acid or the like to further remove the segment decomposed by the ultraviolet ray.
  • the step of etching the substrate using the polymer film with the selectively removed block as a mask is not particularly limited, and may be performed through, for example, a reactive ion etching step using CF 4 / Ar ions, and the like. Subsequently, the step of removing the polymer film from the substrate by oxygen plasma treatment or the like may also be performed.
  • the present application relates to a method for producing a patterned substrate.
  • the method is, for example, a manufacturing process or other uses of devices such as electronic devices and integrated circuits, such as integrated optical systems, guidance and detection patterns of magnetic domain memories, flat panel displays, liquid crystal displays (LCDs), thin film magnetic heads or It can be applied to the manufacture of organic light emitting diodes and the like, and is patterned on a surface for use in the manufacture of discrete track mediums, such as integrated circuits, bit-patterned media and / or magnetic storage devices such as hard drives. Can be used to build
  • devices such as electronic devices and integrated circuits, such as integrated optical systems, guidance and detection patterns of magnetic domain memories, flat panel displays, liquid crystal displays (LCDs), thin film magnetic heads or It can be applied to the manufacture of organic light emitting diodes and the like, and is patterned on a surface for use in the manufacture of discrete track mediums, such as integrated circuits, bit-patterned media and / or magnetic storage devices such as hard drives.
  • discrete track mediums
  • FIG. 1 shows an exemplary form of a substrate on which trenches are formed.
  • FIG. 2 schematically shows a form in which a self-assembled polymer is formed in a trench of a substrate.
  • FIG. 3 graphically shows the form after selectively removing any block of self-assembled blow copolymer.
  • FIG. 4 to 8 are SEM images of the polymer film formed of the block copolymers of Production Examples 6 to 10.
  • FIG. 4 to 8 are SEM images of the polymer film formed of the block copolymers of Production Examples 6 to 10.
  • FIG. 9 is a schematic diagram of the substrate 10 on which the mesa structure 20 applied in the embodiment is formed.
  • FIG. 10 is a SEM photograph of the polymer film formed in Example 1.
  • FIG. 10 is a SEM photograph of the polymer film formed in Example 1.
  • NMR analysis was performed at room temperature using an NMR spectrometer including a Varian Unity Inova (500 MHz) spectrometer with triple resonance 5 mm probe.
  • the analyte was diluted to a concentration of about 10 mg / ml in a solvent for NMR measurement (CDCl 3 ), and chemical shifts were expressed in ppm.
  • br wide signal
  • s singlet
  • d doublet
  • dd doublet
  • t triplet
  • dt doublet
  • q quartet
  • p quintet
  • m multiplet.
  • Mn number average molecular weight
  • Mn molecular weight distribution
  • GPC gel permeation chromatography
  • an analyte such as a block copolymer or macroinitiator of Examples or Comparative Examples
  • THF tetrahydro furan
  • the standard sample for calibration and the sample to be analyzed were filtered through a syringe filter (pore size: 0.45 ⁇ m) and measured.
  • the analysis program used ChemStation of Agilent Technologies, and the weight average molecular weight (Mw) and number average molecular weight (Mn) were obtained by comparing the elution time of the sample with the calibration curve, and the molecular weight distribution (PDI) was used as the ratio (Mw / Mn). ) was calculated.
  • the measurement conditions of GPC are as follows.
  • XRD analysis was measured by measuring the scattering intensity according to the scattering vector (q) by transmitting the X-ray through the sample in the Pohang accelerator 4C beamline.
  • a powdered polymer dried by holding the polymer synthesized without special pretreatment for about one day in a vacuum oven was used in an XRD measuring cell.
  • XRD pattern analysis X-rays having a vertical size of 0.023 mm and a horizontal size of 0.3 mm were used, and 2D marCCD was used as a detector. Scattered 2D diffraction patterns were obtained as images. The obtained diffraction pattern was analyzed by a numerical analysis method using the least squares method to obtain information such as a scattering vector and a half-height width.
  • a coating solution was prepared by diluting the material (polymer) to be measured with fluorobenzene at a solid content concentration of about 2% by weight, and the prepared coating solution was coated on a silicon wafer with a thickness of about 50 nm and a coating area of 4 cm 2 (a horizontal side). : 2 cm, length: 2 cm) was spin-coated.
  • the coating layer was dried at room temperature for about 1 hour and then thermally aged at about 160 ° C. for about 1 hour. Deionized water of known surface tension was dropped on the thermally aged film and the contact angle was determined five times, and the average value of the five contact angle values obtained was obtained.
  • the volume fraction of each block of the block copolymer was calculated based on the density at room temperature of each block and the molecular weight measured by GPC.
  • the density was measured using the buoyancy method, and specifically, the sample to be analyzed was put in a solvent (ethanol) which knows the mass and density in air, and it calculated through the mass.
  • the compound of formula A (DPM-C12) was synthesized in the following manner. Into a 250 mL flask, add hydroquinone (10.0 g, 94.2 mmol) and 1-bromododecane (23.5 g, 94.2 mmol), and dissolve in 100 mL acetonitrile and excess. Potassium carbonate was added and reacted at 75 ° C. for about 48 hours under nitrogen conditions. Remaining potassium carbonate after the reaction was filtered off and the acetonitrile used in the reaction was also removed. A mixed solvent of DCM (dichloromethane) and water was added thereto to work up, and the separated organic layers were collected and passed through MgSO 4 to dehydrate. Dichloromethane (DCM) was then used in column chromatography to give the title compound (4-dodecyloxyphenol) (9.8 g, 35.2 mmol) as a white solid in a yield of about 37%.
  • DCM dichloromethane
  • R in formula (A) is a straight-chain alkyl group having 12 carbon atoms.
  • R in formula (B) is a straight-chain alkyl group having 8 carbon atoms.
  • a compound of Formula C was synthesized in the same manner as in Preparation Example 1, except that 1-bromodecane was used instead of 1-bromododecane.
  • the NMR analysis of the compound is shown below.
  • R in formula (C) is a straight-chain alkyl group having 10 carbon atoms.
  • a compound of Formula D was synthesized in the same manner as in Preparation Example 1, except that 1-bromotedecane was used instead of 1-bromododecane.
  • the NMR analysis of the compound is shown below.
  • R in formula (D) is a straight-chain alkyl group having 14 carbon atoms.
  • R in formula (E) is a straight-chain alkyl group having 16 carbon atoms.
  • the yield of the macroinitiator was about 82.6 wt%, and the number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) were 9,000 and 1.16, respectively.
  • Mn number average molecular weight
  • Mw / Mn molecular weight distribution
  • 0.3 g of macroinitiator, 2.7174 g of pentafluorostyrene monomer, and 1.306 mL of benzene were added to a 10 mL Schlenk flask, stirred at room temperature for 30 minutes under nitrogen atmosphere, and then RAFT (Reversible Addition® Fragmentation Chain Transfer) polymerization at 115 ° C for 4 hours. The reaction was carried out.
  • RAFT Reversible Addition® Fragmentation Chain Transfer
  • the block copolymer includes a first block derived from the monomer (A) of Preparation Example 1 and a second block derived from the pentafluorostyrene monomer.
  • a block copolymer was prepared using the macroinitiator and pentafluorostyrene as monomers in the same manner as in Preparation Example 6 except that the monomer (B) of Preparation Example 2 was used instead of the monomer (A) of Preparation Example 1.
  • the block copolymer includes a first block derived from the monomer (B) of Preparation Example 2 and a second block derived from the pentafluorostyrene monomer.
  • a block copolymer was prepared using the macroinitiator and pentafluorostyrene as monomers in the same manner as in Preparation Example 6, except that the monomer (C) of Preparation Example 3 was used instead of the monomer (A) of Preparation Example 1.
  • the block copolymer includes a first block derived from the monomer (C) of Preparation Example 3 and a second block derived from the pentafluorostyrene monomer.
  • a block copolymer was prepared using the macroinitiator and pentafluorostyrene as monomers in the same manner as in Preparation Example 6, except that the monomer (D) of Preparation Example 4 was used instead of the monomer (A) of Preparation Example 1.
  • the block copolymer includes a first block derived from the monomer (D) of Preparation Example 4 and a second block derived from the pentafluorostyrene monomer.
  • a block copolymer was prepared using the macroinitiator and pentafluorostyrene as monomers in the same manner as in Preparation Example 6, except that the monomer (E) of Preparation Example 5 was used instead of the monomer (A) of Preparation Example 1.
  • the block copolymer includes a first block derived from the monomer (E) of Preparation Example 5 and a second block derived from the pentafluorostyrene monomer.
  • Patterning of the substrate to which the block copolymer of Preparation Example 6 was applied was performed in the following manner.
  • a silicon wafer was applied.
  • a layer of SiO 2 was formed to a thickness of about 200 nm by a known deposition method.
  • BARC Bottom Anti reflective coating
  • a PR photoresist layer
  • KrF positive-tone resist layer
  • FIG. 9 illustrates a structure including the substrate 10 and the mesa structure 20 formed on the surface of the substrate 10 as described above.
  • the spacing D between mesa structures formed in this manner was about 150 nm
  • the height H was about 100 nm
  • the width W of each mesa structure was about 150 nm.
  • a polymer membrane was formed by applying the block copolymer of Preparation Example 6 without performing a separate treatment such as the formation of a neutral layer in the trench by the mesa structure formed as described above.
  • the block copolymer was toluene (toluene).
  • Spin-coated the coating solution prepared by diluting to a solid content concentration of 1.5% by weight, dried at room temperature for about 1 hour, and then thermally aged at about 160 to 250 ° C. for about 1 hour to self-assemble. Formed films.
  • FIG. 10 is an SEM photograph of the self-assembled structure formed in the above manner, and it can be seen from the drawing that the straightness of the self-assembled lamella structure is improved.
  • Example 1 Except for applying the block copolymer of Preparation Example 7 instead of the block copolymer of Preparation Example 6, the same self-assembled polymer film as in Example 1 was formed. As a result of confirming the SEM photograph, it was confirmed that the proper self-assembly structure was formed as in Example 1.
  • Example 1 The same self-assembled polymer film as in Example 1 was formed except that the block copolymer of Preparation Example 8 was applied instead of the block copolymer of Preparation Example 6. As a result of confirming the SEM photograph, it was confirmed that the proper self-assembly structure was formed as in Example 1.
  • Example 1 Except for applying the block copolymer of Preparation Example 9 instead of the block copolymer of Preparation Example 6, the same self-assembled polymer film as in Example 1 was formed. As a result of confirming the SEM photograph, it was confirmed that the proper self-assembly structure was formed as in Example 1.
  • Example 1 Except for applying the block copolymer of Preparation Example 10 instead of the block copolymer of Preparation Example 6, the same self-assembled polymer film as in Example 1 was formed. As a result of confirming the SEM photograph, it was confirmed that the proper self-assembly structure was formed as in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Structural Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Architecture (AREA)
  • Graft Or Block Polymers (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Laminated Bodies (AREA)

Abstract

본 출원은, 패턴화 기판의 제조 방법에 대한 것이다. 상기 방법은, 예를 들면, 전자 디바이스 및 집적 회로와 같은 장치의 제조 공정 또는 다른 용도, 예컨대 집적 광학 시스템, 자기 도메인 메모리의 가이던스 및 검출 패턴, 평판 디스플레이, 액정 디스플레이(LCD), 박막 자기 헤드 또는 유기 광 방출 다이오드 등의 제조에 적용될 수 있고, 집적 회로, 비트-패턴화된 매체 및/또는 하드 드라이브와 같은 자기 저장 디바이스 등의 개별 트랙 매체(discrete track medium)의 제조에 사용하기 위해 표면 위에 패턴을 구축하는데 사용될 수 있다.

Description

패턴화 기판의 제조 방법
본 출원은 2014년 9월 30일자 제출된 대한민국 특허출원 제2014-0131964호, 2015년 6월 4일자 제출된 대한민국 특허출원 제2015-0079468호, 2014년 12월 8일자 제출된 대한민국 특허출원 제2014-0175411호, 2014년 12월 8일자 제출된 대한민국 특허출원 제2014-0175414호, 2014년 12월 8일자 제출된 대한민국 특허출원 제2014-0175410호, 2014년 12월 8일자 제출된 대한민국 특허출원 제2014-0175415호, 2014년 12월 8일자 제출된 대한민국 특허출원 제2014-0175412호, 2014년 12월 8일자 제출된 대한민국 특허출원 제2014-0175413호, 2014년 12월 8일자 제출된 대한민국 특허출원 제2014-0175407호, 2014년 12월 8일자 제출된 대한민국 특허출원 제2014-0175406호, 2014년 12월 8일자 제출된 대한민국 특허출원 제2014-0175400호, 2014년 12월 8일자 제출된 대한민국 특허출원 제2014-0175401호 및 2014년 12월 8일자 제출된 대한민국 특허출원 제2014-0175402호에 기초한 우선권의 이익을 주장하며, 해당 대한민국 특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 출원은, 패턴화 기판의 제조 방법에 관한 것이다.
블록 공중합체는 서로 다른 화학적 구조를 가지는 고분자 블록들이 공유 결합을 통해 연결되어 있는 분자 구조를 가지고 있다. 블록 공중합체는 상분리에 의해서 스피어(sphere), 실린더(cylinder) 또는 라멜라(lamella) 등과 같은 주기적으로 배열된 구조를 형성할 수 있다. 블록 공중합체의 자기 조립 현상에 의해 형성된 구조의 도메인의 형태 및 크기는, 예를 들면, 각 블록을 형성하는 단량체의 종류 또는 블록간의 상대적 비율 등에 의해 광범위하게 조절될 수 있다.
이러한 특성으로 인하여, 블록 공중합체는, 나노선 제작, 양자점 또는 금속점 등과 같은 다양한 차세대 나노 소자의 제작이나 소정의 기판 상에 고밀도의 패턴을 형성할 수 있는 리소그래피법 등으로의 적용이 검토되고 있다(예를 들면, 비특허문헌 1 등 참조).
블록 공중합체의 자기 조립된 구조의 배향을 다양한 기판 위에 수평 혹은 수직으로 조절하는 기술은 블록 공중합체의 실제적 응용에서 매우 큰 비중을 차지한다. 통상적으로 블록 공중합체의 막에서 나노 구조체의 배향은 블록 공중합체의 어느 블록이 표면 혹은 공기 중에 노출되는 가에 의해 결정된다. 일반적으로 다수의 기판이 극성이고, 공기는 비극성이기 때문에 블록 공중합체의 블록 중에서 더 큰 극성을 가지는 블록이 기판에 웨팅(wetting)하고, 더 작은 극성을 가지는 블록이 공기와의 계면에서 웨팅(wetting)하게 된다. 따라서, 블록 공중합체의 서로 다른 특성을 가지는 블록이 동시에 기판측에 웨팅하도록 하기 위하여 다양한 기술이 제안되어 있으며, 가장 대표적인 기술은 중성 표면 제작을 적용한 배향의 조절이다.
[선행기술문헌]
[비특허문헌]
(비특허문헌 1) Chaikin and Register. et al., Science 276, 1401 (1997)
본 출원은, 패턴화 기판의 제조 방법을 제공한다.
본 명세서에서 용어 알킬기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬기를 의미할 수 있다. 상기 알킬기는 직쇄형, 분지형 또는 고리형 알킬기일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 명세서에서 용어 알콕시기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알콕시기를 의미할 수 있다. 상기 알콕시기는 직쇄형, 분지형 또는 고리형 알콕시기일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 명세서에서 용어 알케닐기 또는 알키닐기는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알케닐기 또는 알키닐기를 의미할 수 있다. 상기 알케닐기 또는 알키닐기는 직쇄형, 분지형 또는 고리형일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 명세서에서 용어 알킬렌기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기를 의미할 수 있다. 상기 알킬렌기는 직쇄형, 분지형 또는 고리형 알킬렌기일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 명세서에서 용어 알케닐렌기 또는 알키닐렌기는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알케닐렌기 또는 알키닐렌기를 의미할 수 있다. 상기 알케닐렌기 또는 알키닐렌기는 직쇄형, 분지형 또는 고리형일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 출원에서 용어 단일 결합은 해당 부위에 별도의 원자가 존재하지 않는 경우를 의미할 수 있다. 예를 들어, A-B-C로 표시된 구조에서 B가 단일 결합인 경우에 B로 표시되는 부위에 별도의 원자가 존재하지 않고, A와 C가 직접 연결되어 A-C로 표시되는 구조를 형성하는 것을 의미할 수 있다.
본 출원에서 알킬기, 알케닐기, 알키닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, 알콕시기, 아릴기, 아릴렌기, 사슬 또는 방향족 구조 등에 임의로 치환되어 있을 수 있는 치환기로는, 히드록시기, 할로겐 원자, 카복실기, 글리시딜기, 아크릴로일기, 메타크릴로일기, 아크릴로일기옥시, 메타크릴로일기옥시기, 티올기, 알킬기, 알케닐기, 알키닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, 알콕시기 또는 아릴기 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
본 출원은 패턴화 기판의 제조 방법에 대한 것이다. 하나의 예시에서 상기 제조 방법은, 유도 자기 조립(Directed Self Assembly) 재료를 템플릿으로 적용한 리소그래피(lithography) 방식에 의해 수행될 수 있다. 상기에서 유도 자기 조립 재료는, 예를 들면, 블록 공중합체일 수 있다.
본 출원의 방법은, 예를 들면, 전자 디바이스 및 집적 회로와 같은 장치의 제조 공정 또는 다른 용도, 예컨대 집적 광학 시스템, 자기 도메인 메모리의 가이던스 및 검출 패턴, 평판 디스플레이, 액정 디스플레이(LCD), 박막 자기 헤드 또는 유기 광 방출 다이오드 등의 제조에 적용될 수 있다. 상기 방법은, 또한 집적 회로, 비트-패턴화된 매체 및/또는 하드 드라이브와 같은 자기 저장 디바이스 등의 개별 트랙 매체(discrete track medium)의 제조에 사용되는 표면 위에 패턴을 구축하는데 사용될 수 있다.
상기 방법은, 템플레이트(template)가 표면에 형성되어 있는 기판상에 유도 자기 조립 재료의 층을 형성하고, 자기 조립을 유도하는 단계를 포함할 수 있다. 상기에서 템플레이트는 상기 기판의 표면에 서로 간격을 두고 배치된 메사(meas) 구조를 포함할 수 있다. 이러한 메사 구조에 의해 기판상에는 트렌치(trench)가 형성될 수 있고, 블록 공중합체와 같은 유도 자기 조립 재료는 상기 트렌치 내에 형성될 수 있다.
본 출원의 방법에 적용되는 기판의 종류는 특별히 제한되지 않는다. 기판으로는, 예를 들면, 상기 기술한 각 용도로의 적용을 위해 표면에 패턴의 형성이 필요한 다양한 종류의 기판이 모두 사용될 수 있다. 이러한 종류의 기판으로는, 예를 들면, 실리콘 기판, 실리콘 게르마늄(silicon germanium) 기판, GaAs 기판, 산화 규소 기판 등과 같은 반도체 기판을 들 수 있다. 기판으로는 예를 들면, finFETs(fin field effect transistor) 또는 다이오드, 트랜지스터 또는 커패시터 등과 같은 기타 다른 전자 디바이스의 형성에 적용되는 기판이 사용될 수 있다. 또한, 용도에 따라서 세라믹 등의 다른 재료도 상기 기판으로 사용될 수 있으며, 본 출원에서 적용될 수 있는 기판의 종류는 이에 제한되는 것은 아니다.
본 출원의 방법에 적용되는 기판의 표면에는 서로 간격을 두고 메사(mesa) 구조가 형성되어 있다. 예를 들면, 상기 메사 구조는 각각 라인 형태일 수 있다. 이러한 메사 구조는, 서로 일정 간격으로 이격되어 기판 표면에 배치될 수 있다. 메사 구조는 실질적으로 서로 평행하게 기판의 표면에 배치되어 있을 수 있다. 메사 구조는 기판의 표면에 적어도 2개 이상 형성되어 있을 수 있다. 즉, 기판의 표면에 상기 메사 구조에 의해 형성되는 트렌치의 수는 1개 이상일 수 있다. 상기 메사 구조 및 트렌치의 개수는 특별히 제한되지 않으며, 용도에 따라 조절될 수 있다. 메사 구조는 그 메사 구조에 의해 형성되는 트렌치 내에 블록 공중합체와 같은 유도 자기 조립 재료를 포함하는 막이 형성될 때에 형성되는 블록 공중합체의 자기 조립 구조를 가이딩(guiding)하는 역할을 할 수 있다.
도 1은, 트렌치가 형성되어 있는 예시적인 기판(1)을 보여주는 도면이다. 도면과 같이 예시적인 기판(1)은 메사 구조의 측벽(3)과 기판 또는 상기 메사 구조의 표면(4)에 의해 형성된 트렌치(2)를 포함할 수 있다.
예를 들면, 도 2에 나타난 바와 같이, 블록 공중합체와 같은 유도 자기 조립 재료를 포함하는 막(5)은 상기 트렌치(2)의 내에 형성되어, 서로 화학적으로 상이한 2개의 도메인(A, B)이 라인 형태로 교대로 형성되어 있는 소위 라멜라 형태의 자기 조립 구조를 이루면서 형성될 수 있다.
기판의 표면의 상기 트렌치의 형태는 기판상에 형성하고자 하는 패턴 내지는 그에 따라 요구되는 블록 공중합체의 자기 조립 구조에 따라 정해질 수 있다.
일 예시에서 상기 트렌치를 형성하도록 이격 배치되어 있는 메사 구조의 간격(D)과 상기 메사 구조의 높이(H)의 비율(D/H)은 0.1 내지 10, 0.5 내지 10, 1 내지 10, 1 내지 9, 1 내지 8, 1 내지 7, 1 내지 6, 1 내지 5 또는 1 내지 4의 범위 내에 있을 수 있다. 또한, 상기 메사 구조간의 간격(D)과 메사 구조의 폭(W)의 비율(D/W)은 0.5 내지 10, 1 내지 10, 1 내지 9, 1 내지 8, 1 내지 7, 1 내지 6, 1 내지 5 또는 1 내지 4의 범위 내에 있을 수 있다. 상기 비율(D/H 또는 D/W)은, 목적하는 용도에 따라서 변경될 수 있다. 본 명세서에서 용어 메사 구조의 간격(D)은, 이격 배치되어 있는 인접 메사 구조간의 최단 거리를 의미하고, 상기 간격(D)은, 예를 들면, 10nm 내지 500 nm, 10 nm 내지 450 nm, 10 nm 내지 400 nm, 10 nm 내지 350 nm, 10 nm 내지 300 nm, 50 nm 내지 300 nm 또는 100 nm 내지 300 nm 정도일 수 있다. 본 명세서에서 용어 메사 구조의 높이(H)는, 기판의 표면을 기준으로 상기 기판 표면의 법선 방향을 따라 상부 방향으로 측정되는 메사 구조의 치수이고, 예를 들면, 1nm 내지 100 nm, 1 nm 내지 90 nm, 5 nm 내지 90 nm, 10 nm 내지 90 nm, 10 nm 내지 80 nm 또는 20 nm 내지 70 nm 정도일 수 있다. 본 명세서에서 용어 메사 구조의 폭(W)은, 상기 기판 표면의 법선 방향과 수직하는 방향을 따라 측정되는 메사 구조의 치수이고, 예를 들면, 10nm 내지 500 nm, 10 nm 내지 450 nm, 10 nm 내지 400 nm, 10 nm 내지 350 nm, 10 nm 내지 300 nm, 50 nm 내지 300 nm 또는 100 nm 내지 300 nm 정도일 수 있다.
예를 들어, 상기 유도 자기 조립 재료로서 블록 공중합체가 적용되고, 상기 블록 공중합체의 라멜라 패턴을 형성하는 경우에 상기 메사 구조의 간격은 약 1L 내지 20L의 범위 내일 수 있다. 이러한 경우에 상기 블록 공중합체를 포함하는 막, 즉 상기 트렌치 내에 형성되는 막의 두께는 약 1L 내지 10L 또는 1L 내지 8L의 범위 내일 수 있다. 상기에서 L은 상기 블록 공중합체에 의해 형성되는 라멜라 패턴의 피치를 의미할 수 있다.
상기 형태로 메사 구조를 조절하면, 그에 의해 형성된 트렌치 내에서 블록 공중합체의 자기 조립이 효과적으로 가이딩될 수 있다. 그러나, 상기 메사 구조의 치수 등은 본 출원의 하나의 예시이며, 이는 구체적인 태양에 따라서 변경될 수 있다.
기판상에 상기와 같은 메사 구조를 형성하는 방식은 특별히 제한되지 않고, 공지의 방식이 적용될 수 있다. 예를 들면, 상기 메사 구조는, 기판을 적절한 방식으로 에칭하거나, 혹은 기판상에 적절한 재료를 증착시켜 형성할 수 있다.
예를 들면, 메사 구조에 의한 상기 트렌치는, 기판상에 메사 구조 형성 재료의 층, 반사 방지층 및 레지스트층을 순차 형성하는 단계; 상기 레지스트층을 패턴화하는 단계; 패턴화된 레지스트층을 마스크로 하여 상기 메사 구조 형성 재료의 층을 에칭하는 단계를 포함할 수 있다.
상기에서 메사 구조 형성 재료의 종류는 특별히 제한되지 않는다. 예를 들면, 후술하는 바와 같이 상기 재료의 층은, 패턴화된 레지스트층을 마스크로 적용한 에칭(etching) 공정에 의해 에칭되어 메사 구조를 형성하게 되는데, 이 과정에서 적절하게 에칭이 가능한 재료가 사용될 수 있다. 예를 들면, 상기 재료로는, SiO2, ACL(Amorphous carbon layer), SOG(Pin-on-glass), SOC(Spin-on-carbon) 또는 질화 규소(silicon nitride) 등이 적용될 수 있다. 이러한 재료의 층은, 예를 들면, 스핀 코팅 등의 방식에 의해 코팅되거나, CVD(Chemical Vapor Deposition) 등의 증착 방식으로 형성될 수 있다. 상기 재료의 층이 형성 시에 그 두께 등은 특별히 제한되지 않고, 목적하는 메사 구조의 높이(H)를 고려하여 적정 두께로 형성될 수 있다.
메사 구조 형성 재료의 층의 상부에 반사 방지층(Antireflection layer)이 형성될 수 있다. 반사 방지층은, 예를 들면, 규소 재료(Si)를 사용하여 SiARC로 형성할 수 있으며, 이 외에도 공지의 다른 재료가 모두 적용될 수 있다. 반사 방지층은, 공지의 코팅 또는 증착 방식에 의해 형성할 수 있다.
반사 방지층상에 레지스트층이 형성될 수 있다. 레지스트층은, 공지의 재료, 예를 들면, 공지의 리소그래피(lithographic process) 방식에 의해 패턴화될 수 있는 재료를 사용하여 형성될 수 있다. 이러한 레지스트층은, 공지의 리소그래피 방식에 의해 패턴화될 수 있고, 이와 같이 패턴화된 레지스트층은 이어지는 메사 형성 과정에서 마스크로 적용될 수 있다. 상기 레지스트층의 패턴화는 후속하는 에칭 공정에서 메사 구조의 치수가 목적하는 수준으로 조절될 수 있도록 수행될 수 있다.
레지스트층의 패턴화에 이어서 상기 패턴화된 레지스트층을 에칭 마스크(etch mask)로 적용한 에칭 공정이 수행될 수 있고, 이 에칭 과정에서 상기 마스크(etch mask)에 의해 보호된 영역을 제외한 영역의 반사 방지층과 메사 형성 재료의 층이 에칭될 수 있다. 이러한 에칭은, 공지의 에칭 방식으로 수행될 수 있고, 예를 들면, RIE(reactive ion etching) 방식에 의해 수행될 수 있다. 이러한 에칭에 의해 전술한 메사 구조가 형성되고, 그에 의해 트렌치가 형성될 수 있다. 상기 에칭은 상기 마스크(etch mask)에 의해 보호되지 않은 영역의 메사 형성 재료가 모두 제거될 때까지 수행될 수도 있고, 상기 재료가 일부 잔존하도록 형성될 수 있다. 따라서, 상기 트렌치는 상기 메사 구조의 측벽과 그 간격 사이의 기판의 표면에 의해 형성될 수도 있고, 상기 메사 구조의 측벽과 그 간격 사이의 상기 메사 구조 형성 재료의 표면에 형성될 수 있다.
상기에서는 기판의 표면의 각각 1층의 메사 형성 재료의 층과 반사 방지층이 형성되고, 리소그래피가 진행되는 것을 기초로 내용을 설명하였으나, 필요한 경우에 상기 메사 형성 재료의 층과 반사 방지층은 각각 2층 이상이 번갈아 형성될 수도 있다.
상기와 같이 형성된 트렌치 내에서 형성되는 자기 조립 구조는 수직 배향된 블록 공중합체를 포함할 수 있다. 본 출원에서 용어 수직 배향은, 블록 공중합체의 배향성을 나타내는 것이고, 블록 공중합체에 의해 형성되는 자기 조립 구조체의 배향 방향이 기판 방향과 수직한 경우를 의미할 수 있다. 예를 들면, 상기 수직 배향은 자기 조립된 블록 공중합체의 각 블록 도메인이 기판 표면에 나란히 놓이고, 블록 도메인의 계면 영역이 기판 표면에 실질적으로 수직하게 형성되는 경우를 의미할 수 있다. 본 출원에서 용어 수직은, 오차를 감안한 표현이고, 예를 들면, ±10도, ±8도, ±6도, ±4도 또는 ±2도 이내의 오차를 포함하는 의미일 수 있다.
트렌치 내에서 형성되는 블록 공중합체의 자기 조립 구조는, 예를 들면, 스피어(sphere), 실린더(cylinder), 자이로이드(gyroid) 또는 라멜라(lamellar) 등일 수 있고, 일 예시에서는 라멜라 구조일 수 있지만, 이에 제한되는 것은 아니다. 예를 들어, 블록 공중합체로 제 1 및 제 2 블록을 포함하는 블록 공중합체가 사용되는 경우, 상기 제 1 또는 제 2 블록 또는 그와 공유 결합된 다른 블록의 세그먼트 내에서 다른 세그먼트가 라멜라 형태 또는 실린더 형태 등과 같은 규칙적인 구조를 형성하고 있을 수 있다.
블록 공중합체의 막이 형성되는 트렌치 내의 표면은 소위 중성 표면 처리 또는 화학적 예비 패터닝 등을 포함한 수직 배향을 달성하기 위한 것으로 알려진 공지의 처리가 수행되지 않은 기판의 표면일 수 있다. 따라서, 상기 블록 공중합체를 포함하는 막이 접촉하는 상기 트렌치 내의 표면은 중성 처리가 수행되어 있지 않은 표면일 수 있고, 상기에서 중성 처리는 전술한 중성층(neutral brush layer) 또는 화학적 예비 패터닝과 같은 수직 배향을 달성하기 위한 공지의 처리를 포함하는 의미로 해석될 수 있다. 또한, 본 출원에서 어떤 층 또는 막이 어떤 표면에 접촉하여 형성된다는 것은, 상기 층 또는 막과 표면의 사이에 다른 층이 존재하지 않는 경우를 의미할 수 있다.
또한, 상기 방식에서 블록 공중합체와 같은 유도 자기 조립 재료의 층이 접촉하는 메사 구조의 측벽도 별도의 추가 처리가 되어 있지 않은 것일 수 있다. 공지의 방식에서는 적절한 자기 조립 구조의 유도를 위하여 상기와 같은 방식에서 메사 구조의 측벽에도 친수성 또는 소수성 처리와 같은 처리가 수행될 수 있는데, 본 출원의 방식에서는 이와 같은 처리도 수행되지 않을 수 있다.
중성 처리 등과 같이 수직 배향을 유도하기 위하여 수행되던 공지의 처리가 수행되지 않은 상기 트렌치 내의 표면 또는 메사 구조의 측벽과 접촉한 막 내에 수직 배향 자기 조립 구조를 형성하기 위하여 일부 인자가 조절될 수 있다.
예를 들면, 상기 트렌치 내에 침착되는 상기 블록 공중합체로, 후술하는 블록 공중합체를 사용할 수 있다. 후술하는 블록 공중합체는 중성 처리가 수행되지 않은 트렌치의 기판 표면상에서도 수직 배향된 자기 조립 구조를 형성할 수 있다.
상기 방법에 사용되는 예시적인 블록 공중합체는, 제 1 블록과 상기 제 1 블록과는 다른 제 2 블록을 포함할 수 있다. 블록 공중합체의 각 블록들은 일종의 단량체만에 의해 형성되거나, 혹은 2종 이상의 단량체에 의해 형성될 수 있다. 블록 공중합체는 하나의 제 1 블록과 하나의 제 2 블록만을 포함하는 디블록 공중합체일 수 있다. 블록 공중합체는, 또한 상기 제 1 및 제 2 블록을 각각 1개 포함하고, 추가로 상기 제 1 및 제 2 블록 중 어느 하나 또는 모두를 더 포함하거나, 혹은 제 1 및 제 2 블록 외에 다른 블록을 추가로 포함하는 트리블록 이상의 블록 공중합체일 수 있다.
블록 공중합체는 공유 결합으로 연결된 2개 또는 그 이상의 고분자 사슬을 포함하기 때문에 상분리가 일어나고, 소위 자기 조립 구조를 형성하게 된다. 본 발명자들은, 블록 공중합체가 하기 기술하는 조건들 중 어느 하나 또는 2개 이상을 만족함으로써, 전술한 중성 처리가 수행되지 않은 트렌치 기판 표면 상에서도 수직 배향된 자기 조립 구조를 구현할 수 있다는 점을 확인하였다. 따라서, 본 출원은 하기 기술된 조건 중 적어도 하나의 조건을 만족하는 블록 공중합체에 대한 것이다. 상기 나노 스케일의 구조의 형태 또는 크기는, 예를 들면, 분자량 등과 같은 블록 공중합체의 크기나, 블록간의 상대적 비율의 조절을 통해 조절할 수 있다. 후술하는 조건은 병렬적인 것이고, 어느 하나의 조건이 다른 조건에 우선하지 않는다. 블록 공중합체는 후술하는 조건 중에서 선택된 어느 하나의 조건을 만족하거나, 2개 이상의 조건을 만족할 수 있다. 후술하는 조건 중 어느 하나의 조건의 충족을 통해 블록 공중합체가 수직 배향성을 나타내도록 할 수 있음을 밝혀내었다. 본 출원에서 용어 수직 배향은, 블록 공중합체의 배향성을 나타내는 것이고, 블록 공중합체에 의해 형성되는 나노 구조체의 배향이 기판 방향과 수직한 배향을 의미할 수 있으며, 예를 들면, 블록 공중합체의 상기 제 1 블록에 의해 형성되는 도메인과 상기 제 2 블록에 의해 형성되는 도메인의 계면이 기판의 표면에 수직한 경우를 의미할 수 있다. 본 출원에서 용어 수직은, 오차를 감안한 표현이고, 예를 들면, ±10도, ±8도, ±6도, ±4도 또는 ±2도 이내의 오차를 포함하는 의미일 수 있다.
통상적으로 블록 공중합체의 막에서 나노 구조체의 배향은 블록 공중합체를 형성하고 있는 블록 중에서 어느 블록이 표면 혹은 공기 중에 노출되는 가에 의해 결정된다. 일반적으로 다수의 기판이 극성이고, 공기는 비극성이기 때문에 블록 공중합체의 블록 중에서 더 큰 극성을 가지는 블록이 기판에 접촉하고, 더 작은 극성을 가지는 블록이 공기와 접하게 된다. 따라서, 블록 공중합체의 서로 다른 특성을 가지는 블록들이 동시에 기판에 접하도록 하기 위하여 다양한 기술이 제안되어 있으며, 가장 대표적인 기술은 중성 표면의 적용이다.
본 발명자들은, 블록 공중합체가 하기에 기술하는 조건들 중 어느 하나를 만족하거나, 그 중 2개 이상을 만족하거나 혹은 모두를 만족하게 함으로써, 블록 공중합체가 중성 표면 처리 등을 포함한 수직 배향을 달성하기 위한 것으로 알려진 공지의 처리가 수행되지 않은 기판에 대해서도 수직 배향이 가능하다는 점을 확인하였다.
예를 들면, 본 출원의 하나의 측면에 따른 블록 공중합체는, 특별한 전처리가 수행되어 있지 않은 친수성 및 소수성 표면 모두에 대하여도 수직 배향성을 나타낼 수 있다.
또한, 본 출원의 추가적인 측면에서는 상기와 같은 수직 배향을 열적 숙성(thermal annealing)에 의해서 넓은 영역에 단 시간 내에 유도할 수도 있다.
본 출원에서 사용되는 하나의 예시적인 블록 공중합체는, 제 1 블록 및 상기 제 1 블록과는 다른 화학 구조를 가지는 제 2 블록을 포함하고, 상기 블록 공중합체 또는 상기 제 1 블록은, GIWAXS 스펙트럼의 12 nm-1 내지 16 nm-1 범위의 산란 벡터의 회절 패턴의 -90도 내지 -70도의 범위 내의 방위각에서 피크를 나타내고, 또한 70도 내지 90도의 범위 내의 방위각에서 피크를 나타낼 수 있다(조건 1).
본 출원에서 사용되는 다른 예시적인 블록 공중합체는, 제 1 블록 및 상기 제 1 블록과는 다른 화학 구조를 가지는 제 2 블록을 포함하고, 상기 블록 공중합체 또는 상기 제 1 블록은, DSC 분석에서 -80℃ 내지 200℃의 범위 내에서 용융 전이 피크 또는 등방 전이 피크를 나타낼 수 있다(조건 2).
본 출원에서 사용되는 다른 예시적인 블록 공중합체는, 제 1 블록 및 상기 제 1 블록과는 다른 화학 구조를 가지는 제 2 블록을 포함하고, 상기 블록 공중합체 또는 상기 제 1 블록은, XRD 분석 시에 0.5 nm-1 내지 10 nm-1의 산란 벡터(q) 범위 내에서 0.2 내지 0.9 nm-1의 범위 내의 반치폭을 가지는 피크를 나타낼 수 있다(조건 3).
본 출원에서 사용되는 다른 예시적인 블록 공중합체는, 제 1 블록 및 상기 제 1 블록과는 다른 화학 구조를 가지는 제 2 블록을 포함하고, 상기 제 1 블록은, 측쇄 사슬을 포함하며, 상기 측쇄 사슬의 사슬 형성 원자의 수(n)와 상기 제 1 블록에 대한 XRD 분석에 의해 구해지는 산란 벡터(q)는 하기 수식 2를 만족할 수 있다(조건 4).
[수식 2]
3 nm-1 내지 5 nm-1 = nq/(2×π)
수식 2에서 n은 상기 측쇄 사슬의 사슬 형성 원자의 수이고, q는, 상기 측쇄 사슬을 포함하는 블록에 대한 X선 회절 분석에서 피크가 관찰되는 가장 작은 산란 벡터(q)이거나, 혹은 가장 큰 피크 면적의 피크가 관찰되는 산란 벡터(q)이다.
본 출원에서 사용되는 다른 예시적인 블록 공중합체는, 제 1 블록 및 상기 제 1 블록과는 다른 화학 구조를 가지는 제 2 블록을 포함하고, 상기 제 1 블록의 표면 에너지와 상기 제 2 블록의 표면 에너지의 차이의 절대값이 10 mN/m 이하일 수 있다(조건 5).
본 출원에서 사용되는 다른 예시적인 블록 공중합체는, 제 1 블록 및 상기 제 1 블록과는 다른 화학 구조를 가지는 제 2 블록을 포함하고, 상기 제 1 블록과 제 2 블록의 밀도의 차이의 절대값은 0.25 g/cm3 이상일 수 있다(조건 6).
본 출원의 다른 예시적인 블록 공중합체는, 제 1 블록 및 상기 제 1 블록과는 다른 화학 구조를 가지는 제 2 블록을 포함하고, 상기 제 1 블록의 부피 분율은 0.2 내지 0.6의 범위 내에 있으며, 상기 제 2 블록의 부피 분율은 0.4 내지 0.8의 범위 내에 있을 수 있다(조건 8). 이러한 블록 공중합체는 소위 라멜라 구조를 형성할 수 있다.
본 출원에서 젖음각 또는 밀도 등과 같이 온도에 의해 변할 수 있는 물성은, 특별히 달리 규정하지 않는 한, 상온에서 측정한 수치이다. 용어 상온은, 가온 및 감온되지 않은 자연 그대로의 온도이고, 약 10℃ 내지 30℃, 약 25℃ 또는 약 23℃의 온도를 의미할 수 있다.
상기 각 블록 공중합체에서 제 1 블록은 후술하는 측쇄 사슬을 포함하는 블록일 수 있다.
이하 상기 각 조건에 대하여 상세히 설명한다.
A. 조건 1
본 출원의 블록 공중합체의 어느 한 블록은, GIWAXS(Grazing Incident Wide Angle X ray Scattering) 스펙트럼의 12 nm-1 내지 16 nm-1 범위의 산란 벡터(scattering vector)의 회절 패턴의 -90도 내지 -70도의 범위 내의 방위각(azimuthal angle) 및 70도 내지 90도의 범위 내의 방위각(azimuthal angle) 모두에서 피크를 나타낼 수 있다. 상기 피크를 나타내는 블록은 후술하는 측쇄 사슬을 포함하는 블록일 수 있다. 본 명세서에서 상기 측쇄 사슬을 포함하는 블록은 제 1 블록일 수 있다. 상기에서 방위각은 회절 패턴의 윗 방향(아웃오브플레인(out of plane) 회절의 방향)의 각도를 0도로 하였을 때의 방위각이고, 이는 시계 방향으로 측정된 방위각이다. 다시 말해 시계 방향으로 측정된 각도는 양수로 표시되고, 반시계 방향으로 측정된 각도는 음수로 표시된다. 상기 각 방위각에서 관찰되는 피크의 반치폭(Full width at half maximum, FWHM)은 5도 내지 70도의 범위 내일 수 있다. 상기 반치폭은, 다른 예시에서 7도 이상, 9도 이상, 11도 이상, 13도 이상, 15도 이상, 17도 이상, 19도 이상, 21도 이상, 25도 이상, 30도 이상, 35도 이상, 40도 이상 또는 45도 이상일 수 있다. 상기 반치폭은 다른 예시에서 65도 이하 또는 60도 이하일 수 있다. GIWAXS 스펙트럼을 구하는 방식은 특별히 제한되지 않고, 이는 후술하는 실시예의 기재 방식에 따라 구할 수 있다. 구해진 스펙트럼의 회절 패턴 피크의 프로파일을 가우스 피팅(Gauss fitting)한 후, 피팅된 결과로부터 상기 반치폭을 구할 수 있다. 이 경우, 가우스 피팅 결과가 반만 관찰되는 경우에 상기에서 의미하는 반치폭은 상기 반만 관찰되는 결과로부터 구해지는 값의 2배로 정의될 수 있다. 상기 가우스 피팅 시에 R 제곱(R square)은 약 0.26 내지 0.95의 범위 내이다. 즉, 상기 범위 중 어느 한 R 제곱에서 전술한 반치폭이 관찰되면 된다. 상기와 같은 정보를 얻을 수 있는 방식은 공지이며, 예를 들면, 오리진(origin) 등의 수치 해석 프로그램을 적용할 수 있다.
GIWAXS는 측정하고자 하는 블록을 이루는 단량체만으로 제조된 중합체에 대하여 측정될 수 있다. 예를 들면, 상기 중합체를 사용하여 막을 형성하고, 그 막에 대하여 열적 숙성(thermal annealing)을 거친 후에 상기 GIWAXS가 측정될 수 있다. 상기 막은 상기 중합체를 약 0.7 중량%의 농도로 용매(예를 들면, 플루오르벤젠(flourobenzene)에 희석하여 제조한 코팅액을 약 25 nm의 두께 및 2.25 cm2의 코팅 면적(가로: 1.5 cm, 세로: 1.5 cm)으로 코팅하고, 이러한 코팅막을 열적 숙성시켜서 형성할 수 있다. 열적 숙성은, 예를 들면, 상기 막을 약 160℃의 온도에서 약 1 시간 동안 유지하여 수행할 수 있다. GIWAXS의 전술한 방위각에서 상기와 같은 피크를 보이는 블록은 방향성을 가지면서 배열될 수 있고, 이러한 블록은, 상기 블록과는 다른 블록과 함께 우수한 상분리 내지는 자기 조립성과 수직 배향성을 나타낼 수 있다.
B. 조건 2
본 출원의 블록 공중합체 또는 상기 블록 공중합체의 어느 한 블록은, DSC(Differential scanning calorimetry) 분석에서 -80℃ 내지 200℃의 범위 내에서 용융 전이(melting transition) 피크 또는 등방 전이(isotropic transition) 피크를 나타낼 수 있다. 블록 공중합체의 어느 한 블록이 DSC 분석에서 상기 거동을 나타내며, 이러한 블록을 포함하는 블록 공중합체가 상기 조건 2와 3을 동시에 만족하는 경우, DSC 분석에서 상기 거동을 나타내는 블록은, 조건 2에서 기술한 GIWAXS에서의 피크, 즉 GIWAXS 스펙트럼의 12 nm-1 내지 16 nm-1 범위의 산란 벡터(scattering vector)의 회절 패턴의 -90도 내지 -70도의 범위 내의 방위각(azimuthal angle) 및 70도 내지 90도의 범위 내의 방위각(azimuthal angle) 모두에서 피크를 나타내는 블록, 예를 들면 제 1 블록일 수 있다. 블록 공중합체 또는 상기 블록 공중합체의 어느 한 블록은 용융 전이 피크 또는 등방 전이 피크 중에서 어느 하나의 피크만을 나타낼 수도 있고, 2개의 피크 모두를 나타낼 수 있다. 이러한 블록 공중합체는, 자기 조립에 적합한 결정(crystal)상 및/또는 액정(liquid crystal)상을 전체적으로 나타내거나, 혹은 그러한 결정상 및/또는 액정상을 나타내는 블록을 포함하는 공중합체일 수 있다.
위에 기술한 DSC 거동을 나타내는 블록 공중합체 또는 그 블록 공중합체의 어느 한 블록은 상기 조건 2 내에서 하기의 조건을 추가로 만족할 수 있다.
예를 들면, 상기 등방 전이 피크와 용융 전이 피크가 동시에 나타나는 경우에 상기 등방 전이 피크가 나타나는 온도(Ti)와 상기 용융 전이 피크가 나타나는 온도(Tm)의 차이(Ti-Tm)는 5℃ 내지 70℃의 범위 내에 있을 수 있다. 상기 차이(Ti-Tm)는 다른 예시에서 10℃ 이상, 15℃ 이상, 20℃ 이상, 25℃ 이상, 30℃ 이상, 35℃ 이상, 40℃ 이상, 45℃ 이상, 50℃ 이상, 55℃ 이상 또는 60℃ 이상일 수 있다. 등방 전이 피크의 온도(Ti)와 용융 전이 피크의 온도(Tm)의 차이(Ti-Tm)가 상기 범위 내인 블록 공중합체 또는 그러한 블록을 포함하는 블록 공중합체는 상분리 내지는 자기 조립 특성이 우수하게 유지될 수 있다.
다른 예시에서, 상기 등방 전이 피크와 용융 전이 피크가 동시에 나타나는 경우에 상기 등방 전이 피크의 면적(I)과 상기 용융 전이 피크의 면적(M)의 비율(M/I)은 0.1 내지 500의 범위 내에 있을 수 있다. DSC 분석에서 등방 전이 피크의 면적(I)과 용융 전이 피크의 면적(M)의 비율(M/I)이 상기 범위 내인 블록 공중합체 또는 그러한 블록을 포함하는 블록 공중합체는 상분리 내지는 자기 조립 특성이 우수하게 유지될 수 있다. 상기 비율(M/I)은, 다른 예시에서 0.5 이상, 1 이상, 1.5 이상, 2 이상, 2.5 이상 또는 3 이상일 수 있다. 또한, 다른 예시에서 상기 비율(M/I)은 450 이하, 400 이하, 350 이하, 300 이하, 250 이하, 200 이하, 150 이하, 100 이하, 90 이하 또는 85 이하일 수 있다.
DSC 분석을 수행하는 방식은 공지이며, 본 출원에서는 이러한 공지의 방식에 의해 상기 분석을 수행할 수 있다.
용융 전이 피크가 나타나는 온도(Tm)의 범위는 -10℃ 내지 55℃의 범위일 수 있다. 다른 예시에서 상기 온도(Tm)는, 50℃ 이하, 45℃ 이하, 40℃ 이하, 35℃ 이하, 30℃ 이하, 25℃ 이하, 20℃ 이하, 15℃ 이하, 10℃ 이하, 5℃ 이하 또는 0℃ 이하일 수 있다.
블록 공중합체는 후술하는 바와 같이 측쇄 사슬을 가지는 블록을 포함할 수 있다. 이러한 경우에 상기 블록 공중합체는, 하기 수식 1을 만족할 수 있다.
[수식 1]
10℃ ≤ Tm - 12.25℃ × n + 149.5℃ ≤ 10℃
수식 1에서 Tm은 상기 블록 공중합체 또는 상기 측쇄 사슬을 가지는 블록의 용융 전이 피크가 나타나는 온도이고, n은 상기 측쇄 사슬의 사슬 형성 원자의 수이다.
상기 수식을 만족하는 블록 공중합체는, 우수한 상분리 내지는 자기 조립 특성을 가질 수 있다.
수식 1에서 Tm - 12.25℃ × n + 149.5℃는, 다른 예시에서 -8℃ 내지 8℃, -6℃ 내지 6℃ 또는 약 -5℃ 내지 5℃ 정도일 수 있다.
C. 조건 3
본 출원의 블록 공중합체는, XRD 분석(X선 회절 분석, X-ray Diffraction analysis) 시에 소정 범위의 산란 벡터(q) 내에서 적어도 하나의 피크를 나타내는 블록을 포함할 수 있다. 블록 공중합체가 상기 조건 1 및/또는 2와 함께 상기 조건 3을 만족하는 경우에, 조건 1 및/또는 2를 만족하는 블록이 상기 조건 3을 만족하는 블록일 수 있다. 조건 3을 만족하는 블록은 상기 제 1 블록일 수 있다.
예를 들면, 상기 블록 공중합체의 어느 한 블록은, X선 회절 분석에서 0.5 nm-1 내지 10 nm-1의 산란 벡터(q) 범위 내에서 적어도 하나의 피크를 나타낼 수 있다. 상기 피크가 나타나는 산란 벡터(q)은 다른 예시에서 0.7 nm-1 이상, 0.9 nm-1 이상, 1.1 nm-1 이상, 1.3 nm-1 이상 또는 1.5 nm-1 이상일 수 있다. 상기 피크가 나타나는 산란 벡터(q)은 다른 예시에서 9 nm-1 이하, 8 nm-1 이하, 7 nm-1 이하, 6 nm-1 이하, 5 nm-1 이하, 4 nm-1 이하, 3.5 nm-1 이하 또는 3 nm-1 이하일 수 있다. 상기 산란 벡터(q)의 범위 내에서 확인되는 피크의 반치폭(Full width at half maximum, FWHM)는, 0.2 내지 0.9 nm-1의 범위 내일 수 있다. 상기 반치폭은 다른 예시에서 0.25 nm-1 이상, 0.3 nm-1 이상 또는 0.4 nm-1 이상일 수 있다. 상기 반치폭은 다른 예시에서 0.85 nm-1 이하, 0.8 nm-1 이하 또는 0.75 nm-1 이하일 수 있다.
용어 반치폭은, 최대 피크의 강도의 1/2의 강도를 나타내는 위치에서의 피크의 너비(산란 벡터(q)의 차이)를 의미할 수 있다.
XRD 분석에서의 상기 산란 벡터(q) 및 반치폭은, 후술하는 XRD 분석에 의해 얻어진 결과를 최소 좌승법을 적용한 수치 분석학적인 방식으로 구한 수치이다. 상기 방식에서는 XRD 회절 패턴에서 가장 최소의 강도(intensity)를 보이는 부분을 베이스라인(baseline)으로 잡아 상기에서의 강도(intensity)를 0으로 되게 한 상태에서 상기 XRD 패턴 피크의 프로파일을 가우시안 피팅(Gaussian fitting)한 후, 피팅된 결과로부터 상기 산란 벡터와 반치폭을 구할 수 있다. 상기 가우시안 피팅 시에 R 제곱(R square)은 적어도 0.9 이상, 0.92 이상, 0.94 이상 또는 0.96 이상이다. XRD 분석으로부터 상기와 같은 정보를 얻을 수 있는 방식은 공지이며, 예를 들면, 오리진(origin) 등의 수치 해석 프로그램을 적용할 수 있다.
상기 산란 벡터(q)의 범위 내에서 상기 반치폭의 피크를 나타내는 블록은, 자기 조립에 적합한 결정성 부위를 포함할 수 있다. 상기 기술한 산란 벡터(q)의 범위 내에서 확인되는 블록을 포함하는 블록 공중합체는 우수한 자기 조립 특성을 나타낼 수 있다.
XRD 분석은 시료에 X선을 투과시킨 후에 산란 벡터에 따른 산란 강도를 측정하여 수행할 수 있다. XRD 분석은 블록 공중합체의 어느 한 블록, 예를 들면, 상기 제 1 블록을 이루는 단량체만을 중합시켜 제조되는 중합체를 사용하여 수행할 수 있다. 이러한 중합체에 대하여 특별한 전 처리 없이 XRD 분석을 수행할 수 있으며, 예를 들면, 상기 중합체를 적절한 조건에서 건조한 후에 X선에 투과시켜 수행할 수 있다. X선으로는 수직 크기가 0.023 mm이고, 수평 크기가 0.3 mm인 X선을 적용할 수 있다. 측정 기기(예를 들면, 2D marCCD)를 사용하여 시료에서 산란되어 나오는 2D 회절 패턴을 이미지로 얻고, 얻어진 회절 패턴을 전술한 방식으로 피팅(fitting)하여 산란 벡터 및 반치폭 등을 구할 수 있다.
D. 조건 4
본 출원의 블록 공중합체는, 제 1 블록으로서, 후술하는 측쇄 사슬을 가지는 블록을 포함할 수 있고, 상기 측쇄 사슬의 사슬 형성 원자의 수(n)가, 상기 조건 3에서와 같은 방식으로 수행되는 X선 회절 분석에 의해 구해지는 산란 벡터(q)와 하기 수식 2를 만족할 수 있다.
[수식 2]
3 nm-1 내지 5 nm-1 = nq/(2×π)
수식 2에서 n은 상기 사슬 형성 원자의 수이고, q는, 상기 측쇄 사슬을 포함하는 블록에 대한 X선 회절 분석에서 피크가 관찰되는 가장 작은 산란 벡터(q)이거나, 혹은 가장 큰 피크 면적의 피크가 관찰되는 산란 벡터(q)이다. 또한, 수식 2에서 π는 원주율을 의미한다.
수식 2에 도입되는 산란 벡터 등은 전술한 X선 회절 분석 방식에서 언급한 바와 같은 방식에 따라 구한 수치이다.
수식 2에서 도입되는 산란 벡터(q)는, 예를 들면, 0.5 nm-1 내지 10 nm-1의 범위 내의 산란 벡터(q)일 수 있다. 상기 수식 2에 도입되는 산란 벡터(q)는 다른 예시에서 0.7 nm-1 이상, 0.9 nm-1 이상, 1.1 nm-1 이상, 1.3 nm-1 이상 또는 1.5 nm-1 이상일 수 있다. 상기 수식 2에 도입되는 산란 벡터(q)는 다른 예시에서 9 nm-1 이하, 8 nm-1 이하, 7 nm-1 이하, 6 nm-1 이하, 5 nm-1 이하, 4 nm-1 이하, 3.5 nm-1 이하 또는 3 nm-1 이하일 수 있다.
수식 2는, 블록 공중합체의 상기 측쇄 사슬을 포함하는 블록만으로 되는 중합체가 막을 형성하였을 경우에 상기 측쇄 사슬이 포함되어 있는 중합체 주쇄간의 간격(D)과 상기 측쇄 사슬의 사슬 형성 원자의 수의 관계를 나타내며, 측쇄 사슬을 가지는 중합체에서 상기 측쇄 사슬의 사슬 형성 원자의 수가 상기 수식 2를 만족하는 경우에 상기 측쇄 사슬이 나타내는 결정성이 증대되고, 그에 따라 블록 공중합체의 상분리 특성 내지는 수직 배향성이 크게 향상될 수 있다. 상기 수식 2에 따른 nq/(2×π)는, 다른 예시에서 4.5 nm-1 이하일 수도 있다. 상기에서 측쇄 사슬이 포함되어 있는 중합체 주쇄간의 간격(D, 단위: nm)은, 수식 D=2×π/q로 계산될 수 있고, 상기에서 D는 상기 간격(D, 단위: nm)이고, π 및 q는 수식 2에서 정의된 바와 같다.
E. 조건 5
본 출원의 블록 공중합체의 제 1 블록의 표면 에너지와 상기 제 2 블록의 표면 에너지의 차이의 절대값이 10 mN/m 이하, 9 mN/m 이하, 8 mN/m 이하, 7.5 mN/m 이하 또는 7 mN/m 이하일 수 있다. 상기 표면 에너지의 차이의 절대값은 1.5 mN/m, 2 mN/m 또는 2.5 mN/m 이상일 수 있다. 이러한 범위의 표면 에너지의 차이의 절대값을 가지는 제 1 블록과 제 2 블록이 공유 결합에 의해 연결된 구조는, 적절한 비상용성으로 인한 상분리에 의해 효과적인 미세상분리(microphase seperation)를 유도할 수 있다. 상기에서 제 1 블록은, 예를 들면, 후술하는 측쇄 사슬을 가지는 블록 또는 할로겐 원자를 가지지 않는 방향족 구조를 포함하는 블록일 수 있다.
표면 에너지는 물방울형 분석기(Drop Shape Analyzer, KRUSS사의 DSA100제품)를 사용하여 측정할 수 있다. 구체적으로 표면 에너지는 측정하고자 하는 대상 시료(블록 공중합체 또는 단독 중합체)를 플루오르벤젠(flourobenzene)에 약 2 중량%의 고형분 농도로 희석시킨 코팅액을 기판에 약 50nm의 두께와 4 cm2의 코팅 면적(가로: 2cm, 세로: 2cm)으로 상온에서 약 1 시간 정도 건조시킨 후에 160℃에서 약 1시간 동안 열적 숙성(thermal annealing)시킨 막에 대하여 측정할 수 있다. 열적 숙성을 거친 상기 막에 표면 장력(surface tension)이 공지되어 있는 탈이온화수를 떨어뜨리고 그 접촉각을 구하는 과정을 5회 반복하여, 얻어진 5개의 접촉각 수치의 평균치를 구하고, 동일하게, 표면 장력이 공지되어 있는 디요오드메탄(diiodomethane)을 떨어뜨리고 그 접촉각을 구하는 과정을 5회 반복하여, 얻어진 5개의 접촉각 수치의 평균치를 구한다. 그 후, 구해진 탈이온화수와 디요오드메탄에 대한 접촉각의 평균치를 이용하여 Owens-Wendt-Rabel-Kaelble 방법에 의해 용매의 표면 장력에 관한 수치(Strom 값)를 대입하여 표면 에너지를 구할 수 있다. 블록 공중합체의 각 블록에 대한 표면 에너지의 수치는, 상기 블록을 형성하는 단량체만으로 제조된 단독 중합체(homopolymer)에 대하여 상기 기술한 방법으로 구할 수 있다.
블록 공중합체가 전술한 측쇄 사슬을 포함하는 경우에 상기 측쇄 사슬이 포함되어 있는 블록은 다른 블록에 비하여 높은 표면 에너지를 가질 수 있다. 예를 들어, 블록 공중합체의 제 1 블록이 측쇄 사슬을 포함한다면, 제 1 블록은 제 2 블록에 비하여 높은 표면 에너지를 가질 수 있다. 이러한 경우에 제 1 블록의 표면 에너지는, 약 20 mN/m 내지 40 mN/m의 범위 내에 있을 수 있다. 상기 제 1 블록의 표면 에너지는, 22 mN/m 이상, 24 mN/m 이상, 26 mN/m 이상 또는 28 mN/m 이상일 수 있다. 상기 제 1 블록의 표면 에너지는, 38 mN/m 이하, 36 mN/m 이하, 34 mN/m 이하 또는 32 mN/m 이하일 수 있다. 이러한 제 1 블록이 포함되고, 제 2 블록과 상기와 같은 표면 에너지의 차이를 나타내는 블록 공중합체은, 우수한 자기 조립 특성을 나타낼 수 있다.
F. 조건 6
블록 공중합체에서 제 1 블록과 제 2 블록의 밀도의 차이의 절대값은 0.25 g/cm3 이상, 0.3 g/cm3 이상, 0.35 g/cm3 이상, 0.4 g/cm3 이상 또는 0.45 g/cm3 이상일 수 있다. 상기 밀도의 차이의 절대값은 0.9 g/cm3 이상, 0.8 g/cm3 이하, 0.7 g/cm3 이하, 0.65 g/cm3 이하 또는 0.6 g/cm3 이하일 수 있다. 이러한 범위의 밀도차의 절대값을 가지는 제 1 블록과 제 2 블록이 공유 결합에 의해 연결된 구조는, 적절한 비상용성으로 인한 상분리에 의해 효과적인 미세상분리(microphase seperation)를 유도할 수 있다.
블록 공중합체의 각 블록의 밀도는 공지의 부력법을 이용하여 측정할 수 있으며, 예를 들면, 에탄올과 같이 공기 중에서의 질량과 밀도를 알고 있는 용매 내에서의 블록 공중합체의 질량을 분석하여 밀도를 측정할 수 있다.
전술한 측쇄 사슬을 포함하는 경우에 상기 측쇄 사슬이 포함되어 있는 블록은 다른 블록에 비하여 낮은 밀도를 가질 수 있다. 예를 들어, 블록 공중합체의 제 1 블록이 측쇄 사슬을 포함한다면, 제 1 블록은 제 2 블록에 비하여 낮은 밀도를 가질 수 있다. 이러한 경우에 제 1 블록의 밀도는, 약 0.9 g/cm3 내지 1.5 g/cm3 정도의 범위 내에 있을 수 있다. 상기 제 1 블록의 밀도는, 0.95 g/cm3 이상일 수 있다. 상기 제 1 블록의 밀도는, 1.4 g/cm3 이하, 1.3 g/cm3 이하, 1.2 g/cm3 이하, 1.1 g/cm3 이하 또는 1.05 g/cm3 이하일 수 있다. 이러한 제 1 블록이 포함되고, 제 2 블록과 상기와 같은 밀도차이를 나타내는 블록 공중합체은, 우수한 자기 조립 특성을 나타낼 수 있다.
G. 조건 7
블록 공중합체는, 부피 분율이 0.4 내지 0.8의 범위 내에 있는 제 1 블록과, 부피 분율이 0.2 내지 0.6의 범위 내에 있는 제 2 블록을 포함할 수 있다. 블록 공중합체가 상기 측쇄 사슬을 포함하는 경우, 상기 사슬을 가지는 블록의 부피 분율이 0.4 내지 0.8의 범위 내에 있을 수 있다. 예를 들어, 상기 사슬이 제 1 블록에 포함되는 경우에 제 1 블록의 부피 분율이 0.4 내지 0.8의 범위 내이고, 제 2 블록의 부피 분율이 0.2 내지 0.6의 범위 내에 있을 수 있다. 제 1 블록과 제 2 블록의 부피 분율의 합은 1일 수 있다. 상기와 같은 부피 분율로 각 블록을 포함하는 블록 공중합체는 우수한 자기 조립 특성을 나타낼 수 있다. 블록 공중합체의 각 블록의 부피 분율은 각 블록의 밀도와 GPC(Gel Permeation Chromatogrph)에 의해 측정되는 분자량을 토대로 구할 수 있다. 상기에서 밀도는 전술한 방식에 따라 구해질 수 있다
전술한 바와 같이 블록 공중합체는 상기 조건 1 내지 7 중 어느 하나를 만족하거나, 혹은 그 중에서 선택된 2개 이상을 만족할 수 있다.
예를 들면, 블록 공중합체는, 조건 1, 조건 2, 조건 3, 조건 4, 조건 5, 조건 6 또는 조건 7을 만족하는 블록 공중합체일 수 있다.
하나의 예시에서 상기 블록 공중합체는, 상기 조건 중에서 조건 1 내지 4 중 어느 하나 또는 2개 이상을 만족하는 제 1 블록을 상기 조건 5에 따른 표면 에너지의 차이를 보이는 제 2 블록과 포함할 수 있다.
다른 예시에서 상기 블록 공중합체는, 상기 조건 중에서 조건 1 내지 4 중 어느 하나 또는 2개 이상을 만족하는 제 1 블록을 상기 조건 5에 따른 표면 에너지의 차이를 보이는 제 2 블록과 함께 포함하면서, 상기에서 제 1 및 제 2 블록의 비율이 상기 조건 7을 만족하도록 포함할 수 있다.
이론에 의해 제한되는 것은 아니나, 조건 1 내지 4 중 어느 하나를 만족하는 제 1 블록은, 결정성 내지는 액정성을 나타낼 수 있고, 이에 따라 자기 조립 구조의 형성 시에 규칙성을 가지면서 패킹(packing)될 수 있다. 이러한 상태에서 제 1 블록과 제 2 블록이 조건 5에 따른 표면 에너지의 차이를 만족할 경우에 상기 제 1 및 제 2 블록 각각에 의해 형성되는 도메인들은 실질적으로 중성화되고, 그에 따라 상기 자기 조립된 막이 형성되는 표면의 특성과는 무관하게 상기 막은 수직 배향될 수 있다. 상기 각 블록의 비율이 상기 조건 7을 만족하면, 상기 중성화의 효과가 극대화되고, 그에 따라서 상기 수지 배향의 효과가 극대화될 수 있다.
기타 조건으로서 블록 공중합체의 수평균분자량(Mn (Number Average Molecular Weight))은, 예를 들면, 3,000 내지 300,000의 범위 내에 있을 수 있다. 본 명세서에서 용어 수평균분자량은, GPC(Gel Permeation Chromatograph)를 사용하여 측정한 표준 폴리스티렌에 대한 환산 수치이고, 본 명세서에서 용어 분자량은 특별히 달리 규정하지 않는 한 수평균분자량을 의미한다. 분자량(Mn)은 다른 예시에서는, 예를 들면, 3000 이상, 5000 이상, 7000 이상, 9000 이상, 11000 이상, 13000 이상 또는 15000 이상일 수 있다. 분자량(Mn)은 또 다른 예시에서 250000 이하, 200000 이하, 180000 이하, 160000이하, 140000이하, 120000이하, 100000이하, 90000이하, 80000이하, 70000이하, 60000이하, 50000이하, 40000이하, 30000 이하 또는 25000 이하 정도일 수 있다. 블록 공중합체는, 1.01 내지 1.60의 범위 내의 분산도(polydispersity, Mw/Mn)를 가질 수 있다. 분산도는 다른 예시에서 약 1.1 이상, 약 1.2 이상, 약 1.3 이상 또는 약 1.4 이상일 수 있다.
이러한 범위에서 블록 공중합체는 적절한 자기 조립 특성을 나타낼 수 있다. 블록 공중합체의 수평균 분자량 등은 목적하는 자기 조립 구조 등을 감안하여 조절될 수 있다.
상기 언급한 조건들은, 예를 들면, 블록 공중합체의 구조의 제어를 통해 달성할 수 있다. 예를 들면, 상기 언급된 조건 중 하나 이상을 만족시키는 블록 공중합체의 제 1 블록과 제 2 블록 중 적어도 하나 또는 모두는 적어도 방향족 구조를 포함할 수 있다. 제 1 블록과 제 2 블록은 모두 방향족 구조를 포함할 수 있으며, 이러한 경우에 제 1 및 제 2 블록에 포함되는 방향족 구조는 동일하거나 상이할 수 있다. 또한, 상기 언급된 조건 중 하나 이상을 만족시키는 블록 공중합체의 제 1 및 제 2 블록 중에서 적어도 하나는 전술한 측쇄 사슬을 포함하거나, 후술하는 하나 이상의 할로겐 원자를 포함할 수 있는데, 이러한 측쇄 사슬과 할로겐 원자는 상기 방향족 구조에 치환되어 있을 수 있다. 본 출원의 블록 공중합체는 2개의 블록을 포함하거나, 그 이상의 블록을 포함할 수 있다.
기술한 바와 같이 상기 블록 공중합체의 제 1 블록 및/또는 제 2 블록은 방향족 구조를 포함할 수 있다. 이러한 방향족 구조는 제 1 및 제 2 블록 중에서 어느 하나의 블록에만 포함되거나, 양 블록에 모두 포함될 수 있다. 양 블록이 모두 방향족 구조를 포함하는 경우에 각 블록이 포함하는 방향족 구조는 서로 동일하거나 상이할 수 있다.
본 명세서에서 용어, 방향족 구조는 방향족 화합물의 구조를 의미하고, 아릴기는 방향족 화합물로부터 유래되는 1가 잔기를 의미하며, 아릴렌기는 방향족 화합물로부터 유래되는 2가 잔기를 의미할 수 있다. 상기에서 방향족 화합물은, 특별히 달리 규정하지 않는 한, 벤젠 고리를 가지거나, 2개 이상의 벤젠 고리가 하나 또는 2개의 탄소 원자를 공유하면서 연결되어 있거나, 또는 임의의 링커에 의해 연결되어 있는 화합물 또는 그 유도체이다. 따라서, 상기 아릴기, 즉 상기 방향족 화합물에서 유래하는 1가 잔기는 상기 방향족 화합물의 하나의 수소 원자가 이탈하여 형성된 라디칼이 공유 결합을 형성하고 있는 치환기이고, 상기 아릴렌기, 즉 상기 방향족 화합물에서 유래하는 2가 잔기는 상기 방향족 화합물의 2개의 수소 원자가 이탈하여 형성된 라디칼이 공유 결합을 형성하고 있는 치환기를 의미할 수 있다. 상기 아릴기 또는 아릴렌기는, 예를 들면, 탄소수 6 내지 30, 탄소수 6 내지 25, 탄소수 6 내지 21, 탄소수 6 내지 18 또는 탄소수 6 내지 13의 아릴기 또는 아릴렌기일 수 있다. 아릴기 또는 아릴렌기로는, 벤젠(benzene), 나프탈렌(naphthalene), 아조벤젠(azobenzene), 안트라센(anthracene), 페난스렌(phenanthrene), 테트라센(tetracene), 파이렌(pyrene) 또는 벤조파이렌(benzopyrene) 등으로부터 유래된 1가 또는 2가 잔기 등도 예시될 수 있다. 본 출원에서 용어 방향족 구조는 상기 아릴기 또는 아릴렌기와 동일한 의미로 사용될 수 있다.
상기 방향족 구조는 블록 주쇄에 포함되어 있는 구조이거나, 혹은 블록 주쇄에 측쇄 형태로 연결되어 있는 구조일 수 있다. 각 블록이 포함할 수 있는 방향족 구조의 적절한 제어를 통해 전술한 조건의 조절이 가능할 수 있다.
하나의 예시에서 상기 조건들 중 하나 이상을 만족하는 블록 공중합체는 측쇄 사슬을 포함하는 제 1 블록과 그와는 다른 제 2 블록을 포함할 수 있다. 상기에서 측쇄 사슬은 후술하는 바와 같이 사슬 형성 원자가 8개 이상인 측쇄 사슬일 수 있다. 이러한 제 1 블록은 전술한 조건 2, 3, 4 및 5 중 어느 하나를 만족하거나, 상기 중 2개 이상의 조건을 만족하거나, 혹은 상기 조건을 모두 만족하는 블록일 수 있다.
상기 제 1 블록은 고리 구조를 포함하고, 이러한 고리 구조에 상기 측쇄 사슬이 치환되어 있을 수 있다. 상기 고리 구조는 전술한 방향족 구조, 아릴기 또는 아릴렌기이거나, 지환족 고리 구조일 수 있다. 이러한 고리 구조는, 할로겐 원자를 포함하지 않는 고리 구조일 수 있다.
본 명세서에서 용어 지환족 고리 구조는, 특별히 달리 규정하지 않는 한, 방향족 고리 구조가 아닌 고리형 탄화수소 구조를 의미한다. 지환족 고리 구조는 1가 잔기 혹은 2가 잔기의 형태로 블록 공중합체 내에 포함되어 있을 수 있다. 상기 지환족 고리 구조는, 특별히 달리 규정하지 않는 한, 예를 들면, 탄소수 3 내지 30, 탄소수 3 내지 25, 탄소수 3 내지 21, 탄소수 3 내지 18 또는 탄소수 3 내지 13의 지환족 고리 구조일 수 있다.
상기와 같은 제 1 블록과 함께 포함되는 제 2 블록은, 상기 제 1 블록과는 화학적으로 다른 블록이다. 이러한 제 2 블록은 할로겐 원자, 예를 들면, 염소 원자 또는 불소 원자를 포함하는 블록일 수 있다. 상기 제 2 블록은 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상의 할로겐 원자를 포함할 수 있다. 할로겐 원자의 수는, 예를 들면, 30개 이하, 25개 이하, 20개 이하, 15개 이하, 10개 이하, 9개 이하, 8개 이하, 7개 이하, 6개 이하 또는 5개 이하일 수 있다. 상기 제 2 블록은 고리 구조를 포함하고, 이러한 고리 구조에 상기 할로겐 원자가 치환되어 있을 수 있다. 상기 고리 구조는 전술한 방향족 구조, 아릴기 또는 아릴렌기일 수 있다.
상기에서 용어 측쇄 사슬은, 고분자의 주쇄에 연결된 사슬을 의미하고, 용어 사슬 형성 원자는, 상기 측쇄 사슬을 형성하는 원자로서, 상기 사슬의 직쇄 구조를 형성하는 원자를 의미한다. 상기 측쇄 사슬은 직쇄형 또는 분지형일 수 있으나, 사슬 형성 원자의 수는 가장 긴 직쇄를 형성하고 있는 원자의 수만으로 계산되며, 상기 사슬 형성 원자에 결합되어 있는 다른 원자(예를 들면, 사슬 형성 원자가 탄소 원자인 경우에 그 탄소 원자에 결합하고 있는 수소 원자 등)는 계산에 포함되지 않는다. 예를 들어, 분지형 사슬인 경우에 상기 사슬 형성 원자의 수는 가장 긴 사슬 부위를 형성하고 있는 사슬 형성 원자의 수로 계산될 수 있다. 예를 들어, 측쇄 사슬이 n-펜틸기인 경우에 사슬 형성 원자는 모두 탄소로서 그 수는 5이고, 측쇄 사슬이 2-메틸펜틸기인 경우에도 사슬 형성 원자는 모두 탄소로서 그 수는 5이다. 상기 사슬 형성 원자로는, 탄소, 산소, 황 또는 질소 등이 예시될 수 있고, 적절한 사슬 형성 원자는 탄소, 산소 또는 질소이거나, 탄소 또는 산소일 수 있다. 상기 사슬 형성 원자의 수는 8 이상, 9 이상, 10 이상, 11 이상 또는 12 이상일 수 있다. 상기 사슬 형성 원자의 수는, 또한 30 이하, 25 이하, 20 이하 또는 16 이하일 수 있다.
전술한 조건의 조절을 위하여 블록 공중합체의 제 1 블록에는 사슬 형성 원자가 8개 이상인 사슬이 측쇄에 연결되어 있을 수 있다. 본 명세서에서 용어 사슬과 측쇄 사슬은 서로 동일한 대상을 지칭할 수 있다.
측쇄 사슬은, 상기 언급한 바와 같이 8개 이상, 9개 이상, 10개 이상, 11개 이상 또는 12개 이상의 사슬 형성 원자를 포함하는 사슬일 수 있다. 상기 사슬 형성 원자의 수는, 또한 30개 이하, 25개 이하, 20개 이하 또는 16개 이하일 수 있다. 사슬 형성 원자는, 탄소, 산소, 질소 또는 황 원자일 수 있고, 적절하게는 탄소 또는 산소일 수 있다.
측쇄 사슬로는, 알킬기, 알케닐기 또는 알키닐기와 같은 탄화수소 사슬이 예시될 수 있다. 상기 탄화 수소 사슬의 탄소 원자 중에서 적어도 하나는 황 원자, 산소 원자 또는 질소 원자로 대체되어 있을 수 있다.
측쇄 사슬이 방향족 구조와 같은 고리 구조에 연결되는 경우에 상기 사슬은 고리 구조에 직접 연결되어 있거나, 혹은 링커를 매개로 연결되어 있을 수 있다. 상기 링커로는, 산소 원자, 황 원자, -NR1-, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-가 예시될 수 있다. 상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기일 수 있으며, X1은 단일 결합, 산소 원자, 황 원자, -NR2-, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기일 수 있고, 상기에서 R2는, 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기일 수 있다. 적절한 링커로는 산소 원자가 예시될 수 있다. 측쇄 사슬은, 예를 들면, 산소 원자 또는 질소 원자를 매개로 방향족 구조와 같은 고리 구조에 연결되어 있을 수 있다.
전술한 방향족 구조와 같은 고리 구조가 블록의 주쇄에 측쇄 형태로 연결되어 있는 경우에 상기 방향족 구조도 상기 주쇄에 직접 연결되어 있거나, 링커를 매개로 연결되어 있을 수 있다. 이 경우 링커로는, 산소 원자, 황 원자, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-가 예시될 수 있고, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기일 수 있다. 방향족 구조를 주쇄에 연결하는 적절한 링커로는, -C(=O)-O- 또는 -O-C(=O)-가 예시될 수 있지만, 이에 제한되는 것은 아니다.
다른 예시에서 블록 공중합체의 제 1 및/또는 제 2 블록에 포함되는 방향족 구조는 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상의 할로겐 원자를 포함할 수 있다. 할로겐 원자의 수는, 예를 들면, 30개 이하, 25개 이하, 20개 이하, 15개 이하 또는 10개 이하일 수 있다. 할로겐 원자로는, 불소 또는 염소 등이 예시될 수 있고, 불소 원자의 사용이 유리할 수 있다. 이와 같이 할로겐 원자를 포함하는 방향족 구조를 가지는 블록은 다른 블록과의 적절한 상호 작용을 통해 효율적으로 상분리 구조를 구현할 수 있다.
할로겐 원자를 포함하는 방향족 구조로는, 탄소수 6 내지 30, 탄소수 6 내지 25, 탄소수 6 내지 21, 탄소수 6 내지 18 또는 탄소수 6 내지 13의 방향족 구조를 예시할 수 있지만, 이에 제한되는 것은 아니다.
블록 공중합체에서 제 1 및 제 2 블록이 모두 방향족 구조를 포함하는 경우에, 적절한 상분리 구조의 구현을 위하여 제 1 블록은 할로겐 원자를 포함하지 않는 방향족 구조를 포함하고, 제 2 블록은 할로겐 원자를 포함하는 방향족 구조를 포함할 수 있다. 또한, 상기 제 1 블록의 방향족 구조에는 상기 언급한 측쇄 사슬이 직접 또는 산소나 질소를 포함하는 링커를 매개로 연결되어 있을 수 있다.
블록 공중합체가 측쇄 사슬을 가지는 블록을 포함하는 경우에 이 블록은 예를 들면, 하기 화학식 1로 표시되는 단위를 포함하는 블록일 수 있다. 상기 블록은 하기 화학식 1의 단위를 주성분으로 포함하는 블록일 수 있다. 본 명세서에서 어떤 블록이 어떤 단위를 주성분으로 포함한다는 것은, 그 블록이 상기 단위를 중량을 기준으로 60% 이상, 70% 이상, 80% 이상, 90% 이상 또는 95% 이상 포함하는 경우이거나, 혹은 상기 단위를 60몰% 이상, 70몰% 이상, 80몰% 이상, 90몰% 이상 또는 95몰% 이상 포함하는 경우를 의미할 수 있다.
[화학식 1]
Figure PCTKR2015010338-appb-I000001
화학식 1에서 R은 수소 또는 알킬기이고, X는 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이며, 상기에서 X1은 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, Y는 사슬 형성 원자를 가지는 상기 측쇄 사슬이 연결된 고리 구조를 포함하는 1가 치환기이다.
화학식 1에서 Y는 적어도 고리 구조를 포함하는 치환기이고, 예를 들어 상기 고리 구조가 방향족 고리인 경우 상기 사슬 형성 원자의 수는 3개 이상일 수 있고, 고리 구조가 지환족 고리 구조인 경우에 상기 사슬 형성 원자의 수는 8개 이상일 수 있다. 상기 고리 구조가 방향족 고리 구조인 경우에도 사슬 형성 원자는 5개 이상, 7개 이상 또는 8개 이상일 수 있다.
화학식 1에서 X는 다른 예시에서 단일 결합, 산소 원자, 카보닐기, -C(=O)-O- 또는 -O-C(=O)-이거나, -C(=O)-O-일 수 있지만, 이에 제한되는 것은 아니다.
화학식 1에서 Y의 1가 치환기는, 적어도 3개 또는 8개의 사슬 형성 원자로 형성되는 사슬 구조를 포함한다.
전술한 바와 같이 본 출원에서 용어 사슬 형성 원자는, 소정 사슬, 예를 들면, 측쇄 사슬의 직쇄 구조를 형성하는 원자를 의미한다. 상기 사슬은 직쇄형이거나, 분지형일 수 있으나, 사슬 형성 원자의 수는 가장 긴 직쇄를 형성하고 있는 원자의 수만으로 계산되며, 상기 사슬 형성 원자에 결합되어 있는 다른 원자(예를 들면, 사슬 형성 원자가 탄소 원자인 경우에 그 탄소 원자에 결합하고 있는 수소 원자 등)는 계산되지 않는다. 또한, 분지형 사슬인 경우에 상기 사슬 형성 원자의 수는 가장 긴 사슬을 형성하고 있는 사슬 형성 원자의 수로 계산될 수 있다. 예를 들어, 상기 사슬이 n-펜틸기인 경우에 사슬 형성 원자는 모두 탄소로서 그 수는 5이고, 상기 사슬이 2-메틸펜틸기인 경우에도 사슬 형성 원자는 모두 탄소로서 그 수는 5이다. 상기 사슬 형성 원자로는, 탄소, 산소, 황 또는 질소 등이 예시될 수 있고, 적절한 사슬 형성 원자는 탄소, 산소 또는 질소이거나, 탄소 또는 산소일 수 있다. 상기 사슬 형성 원자의 수는 3 이상, 5 이상, 7 이상, 8 이상, 9 이상, 10 이상, 11 이상 또는 12 이상일 수 있다. 상기 사슬 형성 원자의 수는, 또한 30 이하, 25 이하, 20 이하 또는 16 이하일 수 있다. 상기 사슬 형성 원자의 적절한 하한은 전술한 바와 같이 고리 구조의 종류에 따라서 결정될 수 있다.
화학식 1의 블록은 블록 공중합체가 우수한 자기 조립 특성을 나타내고, 전술한 조건를 만족하도록 할 수 있다.
하나의 예시에서 상기 사슬은, 직쇄 알킬기와 같은 직쇄 탄화수소 사슬일 수 있다. 이러한 경우에 알킬기는, 탄소수 3 이상, 탄소수 5 이상, 탄소수 7 이상 탄소수 8 이상, 탄소수 8 내지 30, 탄소수 8 내지 25, 탄소수 8 내지 20 또는 탄소수 8 내지 16의 알킬기일 수 있다. 상기 알킬기의 탄소 원자 중 하나 이상은 임의로 산소 원자로 치환되어 있을 수 있고, 상기 알킬기의 적어도 하나의 수소 원자는 임의적으로 다른 치환기에 의해 치환되어 있을 수 있다.
화학식 1에서 Y는 고리 구조를 포함하고, 상기 사슬은 상기 고리 구조에 연결되어 있을 수 있다. 이러한 고리 구조에 의해 블록 공중합체의 자기 조립 특성 등이 보다 향상될 수 있다. 고리 구조는 방향족 구조이거나, 지환족 구조일 수 있다.
상기 사슬은 상기 고리 구조에 직접 연결되어 있거나, 혹은 링커를 매개로 연결되어 있을 수 있다. 상기 링커로는, 산소 원자, 황 원자, -NR1-, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-가 예시될 수 있고, 상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기일 수 있으며, X1은 단일 결합, 산소 원자, 황 원자, -NR2-, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기일 수 있고, 상기에서 R2는, 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기일 수 있다. 적절한 링커로는 산소 원자 또는 질소 원자가 예시될 수 있다. 상기 사슬은, 예를 들면, 산소 원자 또는 질소 원자를 매개로 방향족 구조에 연결되어 있을 수 있다. 이러한 경우에 상기 링커는 산소 원자이거나, -NR1-(상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기)일 수 있다.
화학식 1의 Y는, 일 예시에서 하기 화학식 2로 표시될 수 있다.
[화학식 2]
Figure PCTKR2015010338-appb-I000002
화학식 2에서 P는 아릴렌기 또는 사이클로알킬렌기이고, Q는 단일 결합, 산소 원자 또는 -NR3-이며, 상기에서 R3는, 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, Z는 P가 아릴렌기인 경우에 3개 이상의 사슬 형성 원자를 가지는 상기 사슬이고, P가 사이클로알킬렌기인 경우에는 8개 이상의 사슬 형성 원자를 가지는 상기 사슬이다. 화학식 1의 Y가 상기 화학식 2의 치환기인 경우에 상기 화학식 2의 P가 화학식 1의 X에 직접 연결되어 있을 수 있다.
화학식 2에서 P의 적절한 예시로는, 탄소수 6 내지 12의 아릴렌기, 예를 들면, 페닐렌기를 예시할 수 있지만, 이에 제한되는 것은 아니다.
화학식 2에서 Q는 적절한 예시로는, 산소 원자 또는 -NR1-(상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기) 등을 들 수 있다.
화학식 1의 단위(이하, 제 1 블록의 단위로 호칭될 수 있다.)의 하나의 예시로는, 하기 화학식 3으로 표시되는 단위가 있다. 이러한 단위는, 본 명세서에서 제 1A 블록 단위로 지칭될 수 있지만, 이에 제한되는 것은 아니다.
[화학식 3]
Figure PCTKR2015010338-appb-I000003
화학식 3에서 R은 수소 또는 탄소수 1 내지 4의 알킬기이고, X는 단일 결합, 산소 원자, -C(=O)-O- 또는 -O-C(=O)-이고, P는 아릴렌기이고, Q는 산소 원자 또는 -NR3-이고, 상기에서 R3는, 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, Z는 사슬 형성 원자가 8개 이상인 직쇄 사슬이다. 다른 예시에서 화학식 3의 Q는 산소 원자일 수 있다.
다른 예시에서 제 1 블록 단위는 하기 화학식 4로 표시될 수 있다. 이러한 단위는, 본 명세서에서 제 1B 블록 단위로 호칭될 수 있다.
[화학식 4]
Figure PCTKR2015010338-appb-I000004
화학식 4에서 R1 및 R2는 각각 독립적으로 수소 또는 탄소수 1 내지 4의 알킬기이고, X는 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이고, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, T는 단일 결합 또는 아릴렌기이고, Q는 단일 결합 또는 카보닐기이며, Y는 사슬 형성 원자가 8개 이상인 사슬이다.
제 1B 블록 단위인 상기 화학식 4에서 X는 단일 결합, 산소 원자, 카보닐기, -C(=O)-O- 또는 -O-C(=O)-일 수 있다.
제 1B 블록 단위에 포함되는 상기 Y의 사슬의 구체적인 예로는, 화학식 1에서 기술한 내용이 유사하게 적용될 수 있다.
다른 예시에서 상기 제 1 블록 단위는 상기 화학식 1, 3 및 4 중 어느 하나의 화학식에서 사슬 형성 원자가 8개 이상인 사슬의 적어도 하나의 사슬 형성 원자가 전기 음성도가 3 이상인 단위일 수 있다. 상기 원자의 전기 음성도는 다른 예시에서는 3.7 이하일 수 있다. 본 명세서에서 이러한 단위는 제 1C 블록 단위로 호칭될 수 있다. 상기에서 전기 음성도가 3 이상인 원자로는, 질소 원자 또는 산소 원자가 예시될 수 있지만, 이에 제한되는 것은 아니다.
블록 공중합체에 상기 제 1A, 1B 또는 1C 블록 단위를 포함하는 제 1 블록과 함께 포함될 수 있는 다른 블록(이하, 제 2 블록으로 지칭할 수 있다.)의 종류는 특별히 제한되지 않는다.
예를 들면, 상기 제 2 블록은, 폴리비닐피롤리돈 블록, 폴리락트산(polylactic acid) 블록, 폴리비닐피리딘 블록, 폴리스티렌 또는 폴리트리메틸실릴스티렌(poly trimethylsilylstyrene) 등과 같은 폴리스티렌(polystyrene) 블록, 폴리에틸렌옥시드(polyethylene oxide)와 같은 폴리알킬렌옥시드 블록, 폴리부타디엔(poly butadiene) 블록, 폴리이소프렌(poly isoprene) 블록 또는 폴리에틸렌(poly ethylene) 등의 폴리올레핀 블록이 예시될 수 있다. 이러한 블록은 본 명세서에서 제 2A 블록으로 지칭될 수 있다.
하나의 예시에서 상기 제 1A, 1B 또는 1C 블록 단위를 포함하는 제 1 블록과 함께 포함될 수 있는 제 2 블록으로는 하나 이상의 할로겐 원자를 포함하는 방향족 구조를 가지는 블록일 수 있다.
이러한 제 2 블록은, 예를 들면, 하기 화학식 5로 표시되는 단위를 포함하는 블록일 수 있다. 상기 화학식 5의 단위는 본 명세서에서 제 2B 블록 단위로 지칭될 수 있다. 제 2 블록은 상기 제 2B 블록 단위를 주성분으로 포함할 수 있다.
[화학식 5]
Figure PCTKR2015010338-appb-I000005
화학식 5에서 B는 하나 이상의 할로겐 원자를 포함하는 방향족 구조를 가지는 1가 치환기이다.
이러한 단위를 포함하는 제 2 블록은, 제 1 블록과 우수한 상호 작용을 나타내어 블록 공중합체가 우수한 자기 조립 특성 등을 나타내도록 할 수 있다.
화학식 5에서 방향족 구조는, 예를 들면, 탄소수 6 내지 18 또는 탄소수 6 내지 12의 방향족 구조일 수 있다.
또한, 화학식 5에 포함되는 할로겐 원자로는, 불소 원자 또는 염소 원자 등이 예시될 수 있고, 적절하게는 불소 원자가 사용될 수 있지만, 이에 제한되는 것은 아니다.
하나의 예시에서 화학식 5의 B는 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상의 할로겐 원자로 치환된 탄소수 6 내지 12의 방향족 구조를 가지는 1가 치환기일 수 있다. 상기에서 할로겐 원자의 개수의 상한은 특별히 제한되지 않고, 예를 들면, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하의 할로겐 원자가 존재할 수 있다.
예를 들어, 제 2B 블록 단위인 화학식 5는 하기 화학식 6으로 표시될 수 있다.
[화학식 6]
Figure PCTKR2015010338-appb-I000006
화학식 6에서 X2는, 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이며, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, W는 적어도 1개의 할로겐 원자를 포함하는 아릴기이다. 상기에서 W는 적어도 1개의 할로겐 원자로 치환된 아릴기, 예를 들면, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상의 할로렌 원자로 치환된 탄소수 6 내지 12의 아릴기일 수 있다.
제 2B 블록 단위는, 예를 들면, 하기 화학식 7로 표시될 수 있다.
[화학식 7]
Figure PCTKR2015010338-appb-I000007
화학식 7에서 X2는, 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이며, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, R1 내지 R5는 각각 독립적으로 수소, 알킬기, 할로알킬기 또는 할로겐 원자이고, R1 내지 R5가 포함하는 할로겐 원자의 수는 1개 이상이다.
화학식 7에서 X2는, 다른 예시에서 단일 결합, 산소 원자, 알킬렌기, -C(=O)-O- 또는 -O-C(=O)-일 수 있다.
화학식 7에서 R1 내지 R5는 각각 독립적으로 수소, 알킬기, 할로알킬기 또는 할로겐 원자이되, R1 내지 R5는 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상의 할로겐 원자, 예를 들면, 불소 원자를 포함할 수 있다. R1 내지 R5에 포함되는 할로겐 원자, 예를 들면, 불소 원자는, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하일 수 있다.
하나의 예시에서 상기 제 2 블록은, 하기 화학식 8로 표시되는 단위를 포함하는 블록일 수 있다. 이러한 블록은, 본 명세서에서 제 2C 블록 단위로 지칭될 수 있다. 제 2 블록은 상기 제 2C 블록 단위를 주성분으로 포함할 수 있다.
[화학식 8]
Figure PCTKR2015010338-appb-I000008
화학식 8에서 T 및 K는 각각 독립적으로 산소 원자 또는 단일 결합이고, U는 알킬렌기이다.
일 예시에서 상기 제 2C 블록 단위는, 상기 화학식 10에서 U는 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기인 단위일 수 있다.
제 2C 블록 단위는, 상기 화학식 8의 T 및 K 중에서 어느 하나가 단일 결합이고, 다른 하나가 산소 원자인 블록일 수 있다. 이러한 블록 단위에서 상기 U는 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기인 블록일 수 있다.
제 2C 블록 단위은, 상기 화학식 8의 T 및 K가 모두 산소 원자인 블록일 수 있다. 이러한 단위에서 상기 U는 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기인 단위일 수 있다.
제 2 블록은 또 다른 예시에서 금속 원자 또는 준금속 원자를 하나 이상 포함하는 단위를 가지는 블록일 수 있다. 이러한 블록은 본 명세서에서 제 2D 블록으로 지칭될 수 있다. 이러한 블록은, 예를 들어, 블록 공중합체를 사용하여 형성한 자기 조립된 막에 대하여 에칭 공정이 진행되는 경우에, 에칭 선택성을 개선할 수 있다.
제 2D 블록에 포함되는 금속 또는 준금속 원자로는, 규소 원자, 철 원자 또는 붕소 원자 등이 예시될 수 있지만, 블록 공중합체에 포함되는 다른 원자와의 차이에 의해 적절한 에칭 선택성을 보일 수 있는 것이라면 특별히 제한되지 않는다.
제 2D 블록은, 상기 금속 또는 준금속 원자와 함께 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상의 할로겐 원자, 예를 들면, 불소 원자를 포함할 수 있다. 제 2D 블록에 포함되는 불소 원자와 같은 할로겐 원자는, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하일 수 있다.
제 2D 블록은, 하기 화학식 9로 표시되는 단위(제 2D 블록 단위)를 포함할 수 있다. 제 2D 블록은 상기 제 2D 블록 단위를 주성분으로 포함할 수 있다.
[화학식 9]
Figure PCTKR2015010338-appb-I000009
화학식 9에서 B는 금속 원자 또는 준금속 원자를 포함하는 치환기 및 할로겐 원자를 포함하는 방향족 구조를 가지는 1가 치환기일 수 있다.
화학식 9의 상기 방향족 구조는, 탄소수 6 내지 12의 방향족 구조, 예를 들면, 아릴기이거나, 아릴렌기일 수 있다.
화학식 9의 제2 2D 블록 단위는, 예를 들면, 하기 화학식 10으로 표시될 수 있다.
[화학식 10]
Figure PCTKR2015010338-appb-I000010
화학식 10에서 X2는, 단일 결합, 산소 원자, 황 원자, -NR1-, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이며, 상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -NR2-, S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이며, W는 금속 원자 또는 준금속 원자를 포함하는 치환기 및 적어도 1개의 할로겐 원자를 포함하는 아릴기이다.
상기에서 W는, 금속 원자 또는 준금속 원자를 포함하는 치환기 및 적어도 1개의 할로겐 원자를 포함하는 탄소수 6 내지 12의 아릴기일 수 있다.
이러한 아릴기에서 상기 금속 원자 또는 준금속 원자를 포함하는 치환기는 적어도 1개 또는 1개 내지 3개 포함되어, 상기 할로겐 원자는 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상 포함될 수 있다.
상기에서 할로겐 원자는, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하로 포함될 수 있다.
화학식 10의 제 2D 블록 단위는, 예를 들면, 하기 화학식 11로 표시될 수 있다.
[화학식 11]
Figure PCTKR2015010338-appb-I000011
화학식 11에서 X2는, 단일 결합, 산소 원자, 황 원자, -NR1-, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이며, 상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -NR2-, S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이며, R1 내지 R5는 각각 독립적으로 수소, 알킬기, 할로알킬기, 할로겐 원자 및 금속 또는 준금속 원자를 포함하는 치환기이고, R1 내지 R5 중 적어도 하나는 할로겐 원자이며, R1 내지 R5 중 적어도 하나는 금속 또는 준금속 원자를 포함하는 치환기이다.
화학식 11에서 R1 내지 R5 중 적어도 1개, 1개 내지 3개 또는 1개 내지 2개는 전술한 금속 원자 또는 준금속 원자를 포함하는 치환기일 수 있다.
화학식 11에서 R1 내지 R5에는 할로겐 원자가 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상 포함될 수 있다. R1 내지 R5에 포함되는 할로겐 원자는, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하일 수 있다.
상기 기술한 내용에서 금속 또는 준금속 원자를 포함하는 치환기로는, 트리알킬실록시기, 페로세닐(ferrocenyl)기, 폴리헤드럴 올리고메릭 실세스퀴오켄(polyhedral oligomeric silsesquioxane)기 등과 같은 실세스퀴옥사닐기 또는 카보레이닐(carboranyl)기 등이 예시될 수 있지만, 이러한 치환기는, 적어도 하나의 금속 또는 준금속 원자를 포함하여, 에칭 선택성이 확보될 수 있도록 선택된다면 특별히 제한되지 않는다.
제 2 블록은 또 다른 예시에서 전기 음성도가 3 이상인 원자로서 할로겐 원자가 아닌 원자(이하, 비할로겐 원자로 호칭될 수 있다.)를 포함하는 블록일 수 있다. 상기와 같은 블록은 본 명세서에서 제 2E 블록으로 호칭될 수 있다. 제 2E 블록에 포함되는 상기 비할로겐 원자의 전기 음성도는 다른 예시에서는 3.7 이하일 수 있다.
제 2E 블록에 포함되는 상기 비할로겐 원자로는, 질소 원자 또는 산소 원자 등이 예시될 수 있지만, 이에 제한되지 않는다.
제 2E 블록은, 상기 전기 음성도가 3 이상인 비할로겐 원자와 함께 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상의 할로겐 원자, 예를 들면, 불소 원자를 포함할 수 있다. 제 2E 블록에 포함되는 불소 원자와 같은 할로겐 원자는, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하일 수 있다.
제 2E 블록은, 하기 화학식 12로 표시되는 단위(제 2E 블록 단위)를 포함할 수 있다. 상기 단위는 제 2E 블록에 주성분으로 포함될 수 있다.
[화학식 12]
Figure PCTKR2015010338-appb-I000012
화학식 12에서 B는 전기 음성도가 3 이상인 비할로겐 원자를 포함하는 치환기 및 할로겐 원자를 포함하는 방향족 구조를 가지는 1가 치환기일 수 있다.
화학식 12의 상기 방향족 구조는, 탄소수 6 내지 12의 방향족 구조, 예를 들면, 아릴기이거나, 아릴렌기일 수 있다.
화학식 12의 단위는, 다른 예시에서 하기 화학식 13으로 표시될 수 있다.
[화학식 13]
Figure PCTKR2015010338-appb-I000013
화학식 13에서 X2는, 단일 결합, 산소 원자, 황 원자, -NR1-, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이며, 상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -NR2-, S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이며, W는 전기 음성도가 3 이상인 비할로겐 원자를 포함하는 치환기 및 적어도 1개의 할로겐 원자를 포함하는 아릴기이다.
상기에서 W는, 전기 음성도가 3 이상인 비할로겐 원자를 포함하는 치환기 및 적어도 1개의 할로겐 원자를 포함하는 탄소수 6 내지 12의 아릴기일 수 있다.
이러한 아릴기에서 상기 전기 음성도가 3 이상인 비할로겐 원자를 포함하는 치환기는 적어도 1개 또는 1개 내지 3개 포함될 수 있다. 도한, 상기 할로겐 원자는 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상 포함될 수 있다. 상기에서 할로겐 원자는, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하로 포함될 수 있다.
화학식 12의 단위는, 다른 예시에서 하기 화학식 14로 표시될 수 있다.
[화학식 14]
Figure PCTKR2015010338-appb-I000014
화학식 14에서 X2는, 단일 결합, 산소 원자, 황 원자, -NR1-, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이며, 상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -NR2-, S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이며, R1 내지 R5는 각각 독립적으로 수소, 알킬기, 할로알킬기, 할로겐 원자 및 전기 음성도가 3 이상인 비할로겐 원자를 포함하는 치환기이고, R1 내지 R5 중 적어도 하나는 할로겐 원자이며, R1 내지 R5 중 적어도 하나는 전기 음성도가 3 이상인 비할로겐 원자를 포함하는 치환기이다.
화학식 14에서 R1 내지 R5 중 적어도 1개, 1개 내지 3개 또는 1개 내지 2개는 전술한 전기 음성도가 3 이상인 비할로겐 원자를 포함하는 치환기일 수 있다.
화학식 14에서 R1 내지 R5에는 할로겐 원자가 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상 포함될 수 있다. R1 내지 R5에 포함되는 할로겐 원자는, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하일 수 있다.
상기 기술한 내용에서 전기 음성도가 3 이상인 비할로겐 원자를 포함하는 치환기로는, 히드록시기, 알콕시기, 카복실기, 아미도기, 에틸렌 옥시드기, 니트릴기, 피리딘기 또는 아미노기 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
다른 예시에서 제 2 블록은, 헤테로고리 치환기를 가지는 방향족 구조를 포함할 수 있다. 이러한 제 2 블록은 본 명세서에서 제 2F 블록으로 지칭될 수 있다.
제 2F 블록은 하기 화학식 15로 표시되는 단위를 포함할 수 있다. 하기 단위는 제 2F 블록에 주성분으로 포함될 수 있다.
[화학식 15]
Figure PCTKR2015010338-appb-I000015
화학식 15에서 B는 헤테로고리 치환기로 치환된 탄소수 6 내지 12의 방향족 구조를 가지는 1가 치환기이다.
화학식 15의 방향족 구조는, 필요한 경우에 하나 이상이 할로겐 원자를 포함할 수 있다.
화학식 15의 단위는 하기 화학식 16로 표시될 수 있다.
[화학식 16]
Figure PCTKR2015010338-appb-I000016
화학식 16에서 X2는, 단일 결합, 산소 원자, 황 원자, -NR1-, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이며, 상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -NR2-, S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이며, W는 헤테로고리 치환기를 가지는 탄소수 6 내지 12의 아릴기이다.
화학식 16의 단위는 하기 화학식 17로 표시될 수 있다.
[화학식 17]
Figure PCTKR2015010338-appb-I000017
화학식 17에서 X2는, 단일 결합, 산소 원자, 황 원자, -NR1-, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이며, 상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -NR2-, S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이며, R1 내지 R5는 각각 독립적으로 수소, 알킬기, 할로알킬기, 할로겐 원자 및 헤테로고리 치환기이고, R1 내지 R5 중 적어도 하나는 헤테로고리 치환기이다.
화학식 17에서 R1 내지 R5 중 적어도 하나, 예를 들면, 1개 내지 3개 또는 1개 내지 2개는, 상기 헤테로고리 치환기이고, 나머지는 수소 원자, 알킬기 또는 할로겐 원자이거나, 수소 원자 또는 할로겐 원자이거나 또는 수소 원자일 수 있다.
전술한 헤테로고리 치환기로는, 프탈이미드 유래 치환기, 싸이오펜 유래 치환기, 싸이아졸 유래 치환기, 카바졸 유래 치환기 또는 이미다졸 유래 치환기 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
본 출원의 블록 공중합체는 전술한 제 1 블록 중에서 하나 이상을 포함하고, 또한 전술한 제 2 블록 중에서 하나 이상을 포함할 수 있다. 이러한 블록 공중합체는 2개의 블록 또는 3개의 블록을 포함하거나, 그 이상의 블록을 포함할 수 있다. 예를 들어, 상기 블록 공중합체는, 상기 제 1 블록 중에서 어느 하나와 상기 제 2 블록 중에서 어느 하나를 포함하는 디블록 공중합체일 수 있다.
상기와 같은 블록 공중합체를 제조하는 구체적인 방법은, 특별히 제한되지 않고, 예를 들면, 각 블록을 형성할 수 있는 단량체를 사용하여 공지의 블록 공중합체의 제조 방법을 적용하여 상기 블록 공중합체를 제조할 수 있다.
예를 들면, 블록 공중합체는 상기 단량체를 사용한 LRP(Living Radical Polymerization) 방식으로 제조할 있다. 예를 들면, 유기 희토류 금속 복합체를 중합 개시제로 사용하거나, 유기 알칼리 금속 화합물을 중합 개시제로 사용하여 알칼리 금속 또는 알칼리토금속의 염 등의 무기산염의 존재 하에 합성하는 음이온 중합, 유기 알칼리 금속 화합물을 중합 개시제로 사용하여 유기 알루미늄 화합물의 존재 하에 합성하는 음이온 중합 방법, 중합 제어제로서 원자 이동 라디칼 중합제를 이용하는 원자이동 라디칼 중합법(ATRP), 중합 제어제로서 원자이동 라디칼 중합제를 이용하되 전자를 발생시키는 유기 또는 무기 환원제 하에서 중합을 수행하는 ARGET(Activators Regenerated by Electron Transfer) 원자이동 라디칼 중합법(ATRP), ICAR(Initiators for continuous activator regeneration) 원자이동 라디칼 중합법(ATRP), 무기 환원제 가역 부가-개열 연쇄 이동제를 이용하는 가역 부가-개열 연쇄 이동에 의한 중합법(RAFT) 또는 유기 텔루륨 화합물을 개시제로서 이용하는 방법 등이 있으며, 이러한 방법 중에서 적절한 방법이 선택되어 적용될 수 있다.
예를 들면, 상기 블록 공중합체는, 라디칼 개시제 및 리빙 라디칼 중합 시약의 존재 하에, 상기 블록을 형성할 수 있는 단량체들을 포함하는 반응물을 리빙 라디칼 중합법으로 중합하는 것을 포함하는 방식으로 제조할 수 있다.
블록 공중합체의 제조 시에 상기 단량체를 사용하여 형성하는 블록과 함께 상기 공중합체에 포함되는 다른 블록을 형성하는 방식은 특별히 제한되지 않고, 목적하는 블록의 종류를 고려하여 적절한 단량체를 선택하여 상기 다른 블록을 형성할 수 있다.
블록공중합체의 제조 과정은, 예를 들면 상기 과정을 거쳐서 생성된 중합 생성물을 비용매 내에서 침전시키는 과정을 추가로 포함할 수 있다.
라디칼 개시제의 종류는 특별히 제한되지 않고, 중합 효율을 고려하여 적절히 선택할 수 있으며, 예를 들면, AIBN(azobisisobutyronitrile) 또는 2,2'-아조비스-2,4-디메틸발레로니트릴(2,2'-azobis-(2,4-dimethylvaleronitrile)) 등의 아조 화합물이나, BPO(benzoyl peroxide) 또는 DTBP(di-t-butyl peroxide) 등과 같은 과산화물 계열을 사용할 수 있다.
리빙 라디칼 중합 과정은, 예를 들면, 메틸렌클로라이드, 1,2-디클로로에탄, 클로로벤젠, 디클로로벤젠, 벤젠,톨루엔, 아세톤, 클로로포름, 테트라하이드로퓨란, 디옥산, 모노글라임, 디글라임, 디메틸포름아미드, 디메틸술폭사이드 또는 디메틸아세트아미드 등과 같은 용매 내에서 수행될 수 있다.
비용매로는, 예를 들면, 메탄올, 에탄올, 노르말 프로판올 또는 이소프로판올 등과 같은 알코올, 에틸렌글리콜 등의 글리콜, n-헥산, 시클로헥산, n-헵탄 또는 페트롤리움 에테르 등과 같은 에테르 계열이 사용될 수 있으나, 이에 제한되는 것은 아니다.
상기와 같은 블록 공중합체를 사용하여 전술한 트렌치에 막을 형성하는 방식은 특별히 제한되지 않고, 자기 조립 구조를 형성하기 위하여, 예를 들면, 중성 처리 표면 상에 고분자막을 형성하는 것에 적용되고 있던 공지의 방식이 적용될 수 있다. 예를 들면, 상기 블록 공중합체를 적정한 용매에 소정 농도로 분산시켜 코팅액을 제조하고, 스핀 코팅 등의 공지의 코팅 방식으로 상기 코팅액을 코팅함으로써 고분자막을 형성할 수 있다.
필요한 경우에 상기와 같이 형성된 고분자막에서 자기 조립 구조를 형성하기 위한 어닐링(annealing) 공정이 추가로 수행될 수 있다. 이러한 어닐링은 예를 들면, 상기 층을 숙성하거나 열처리하여 수행할 수 있다.
상기 숙성 또는 열처리는, 예를 들면, 블록 공중합체의 상전이온도 또는 유리전이온도를 기준으로 수행될 수 있고, 예를 들면, 상기 유리 전이 온도 또는 상전이 온도 이상의 온도에서 수행될 수 있다. 이러한 열처리가 수행되는 시간은 특별히 제한되지 않으며, 예를 들면, 약 1분 내지 72시간의 범위 내에서 수행될 수 있지만, 이는 필요에 따라서 변경될 수 있다. 또한, 고분자 박막의 열처리 온도는, 예를 들면, 100℃ 내지 250℃ 정도일 수 있으나, 이는 사용되는 블록 공중합체를 고려하여 변경될 수 있다.
상기 형성된 층은, 다른 예시에서는 상온의 비극성 용매 및/또는 극성 용매 내에서, 약 1분 내지 72 시간 동안 용매 숙성될 수도 있다.
본 출원의 패턴화 기판의 제조 방법은 또한, 상기와 같이 트렌치 내에 형성된 막의 자기 조립된 블록 공중합체에서 어느 한 블록을 선택적으로 제거하는 단계를 추가로 포함할 수 있다. 예를 들어, 블록 공중합체가 전술한 제 1 블록과 제 2 블록을 포함하는 것이라면, 상기 방법은, 블록 공중합체에서 상기 제 1 또는 제 2 블록을 선택적으로 제거하는 과정을 포함할 수 있다. 이러한 과정을 거치면, 예를 들면, 도 3에 나타난 바와 같이 선택적으로 제거되지 않은 블록(B)만이 트렌치의 내부에 존재할 수 있다. 상기 패턴화 기판의 제조 방법은 또한, 상기와 같이 블록 공중합체의 어느 하나 또는 그 이상의 블록을 선택적으로 제거한 후에 기판을 식각하는 것을 포함할 수 있다.
상기 방법에서 블록 공중합체의 어느 한 블록을 선택적으로 제거하는 방식은 특별히 제한되지 않고, 예를 들면, 고분자막에 적정한 전자기파, 예를 들면, 자외선 등을 조사하여 상대적으로 소프트한 블록을 제거하는 방식을 사용할 수 있다. 이 경우 자외선 조사 조건은 블록 공중합체의 블록의 종류에 따라서 결정되며, 예를 들면, 약 254 nm 파장의 자외선을 1분 내지 60 분 동안 조사하여 수행할 수 있다.
또한, 자외선 조사에 이어서 고분자 막을 산 등으로 처리하여 자외선에 의해 분해된 세그먼트를 추가로 제거하는 단계를 수행할 수도 있다.
또한, 선택적으로 블록이 제거된 고분자막을 마스크로 하여 기판을 에칭하는 단계는 특별히 제한되지 않고, 예를 들면, CF4/Ar 이온 등을 사용한 반응성 이온 식각 단계를 통해 수행할 수 있고, 이 과정에 이어서 산소 플라즈마 처리 등에 의해 고분자막을 기판으로부터 제거하는 단계를 또한 수행할 수 있다.
본 출원은, 패턴화 기판의 제조 방법에 대한 것이다. 상기 방법은, 예를 들면, 전자 디바이스 및 집적 회로와 같은 장치의 제조 공정 또는 다른 용도, 예컨대 집적 광학 시스템, 자기 도메인 메모리의 가이던스 및 검출 패턴, 평판 디스플레이, 액정 디스플레이(LCD), 박막 자기 헤드 또는 유기 광 방출 다이오드 등의 제조에 적용될 수 있고, 집적 회로, 비트-패턴화된 매체 및/또는 하드 드라이브와 같은 자기 저장 디바이스 등의 개별 트랙 매체(discrete track medium)의 제조에 사용하기 위해 표면 위에 패턴을 구축하는데 사용될 수 있다.
도 1은 트렌치가 형성되어 있는 기판의 예시적인 형태를 보여준다.
도 2는, 기판의 트렌치에 자기 조립된 고분자가 형성되어 있는 형태를 모식적으로 보여준다.
도 3은, 자기 조립된 블로 공중합체의 어느 한 블록을 선택적으로 제거한 후의 형태를 모시적으로 보여준다.
도 4 내지 8은, 제조예 6 내지 10의 블록 공중합체에 의해 형성된 고분자막의 SEM 사진이다.
도 9는 실시예에서 적용한 메사 구조(20)가 형성된 기판(10)의 모식도이다.
도 10은, 실시예 1에서 형성된 고분자막의 SEM 사진이다.
이하 본 출원에 따르는 실시예를 통하여 본 출원을 보다 상세히 설명하나, 본 출원의 범위가 하기 실시예에 의해 제한되는 것은 아니다.
1. NMR 측정
NMR 분석은 삼중 공명 5 mm 탐침(probe)을 가지는 Varian Unity Inova(500 MHz) 분광계를 포함하는 NMR 분광계를 사용하여 상온에서 수행하였다. NMR 측정용 용매(CDCl3)에 분석 대상 물질을 약 10 mg/ml 정도의 농도로 희석시켜 사용하였고, 화학적 이동은 ppm으로 표현하였다.
<적용 약어>
br = 넓은 신호, s = 단일선, d = 이중선, dd = 이중 이중선, t = 삼중선, dt = 이중 삼중선, q = 사중선, p = 오중선, m = 다중선.
2. GPC(Gel Permeation Chromatograph)
수평균분자량(Mn) 및 분자량 분포는 GPC(Gel permeation chromatography)를 사용하여 측정하였다. 5 mL 바이얼(vial)에 실시예 또는 비교예의 블록 공중합체 또는 거대 개시제 등의 분석 대상 물일을 넣고, 약 1 mg/mL 정도의 농도가 되도록 THF(tetrahydro furan)에 희석한다. 그 후, Calibration용 표준 시료와 분석하고자 하는 시료를 syringe filter(pore size: 0.45 ㎛)를 통해 여과시킨 후 측정하였다. 분석 프로그램은 Agilent technologies 사의 ChemStation을 사용하였으며, 시료의 elution time을 calibration curve와 비교하여 중량평균분자량(Mw) 및 수평균분자량(Mn)을 각각 구하고, 그 비율(Mw/Mn)로 분자량분포(PDI)를 계산하였다. GPC의 측정 조건은 하기와 같다.
<GPC 측정 조건>
기기: Agilent technologies 사의 1200 series
컬럼: Polymer laboratories 사의 PLgel mixed B 2개 사용
용매: THF
컬럼온도: 35℃
샘플 농도: 1mg/mL, 200L 주입
표준 시료: 폴리스티렌(Mp : 3900000, 723000, 316500, 52200, 31400, 7200, 3940, 485)
3. XRD 분석 방법
XRD 분석은 포항가속기 4C 빔라인에서 시료에 X선을 투과시켜 산란 벡터(q)에 따른 산란 강도를 측정함으로써 측정하였다. 시료로는, 특별한 전처리 없이 합성된 중합체를 정제한 후에 진공 오븐에서 하루 정도 유지함으로써 건조시킨 분말 상태의 중합체를 XRD측정용 셀에 넣어서 사용하였다. XRD 패턴 분석 시에는, 수직 크기가 0.023 mm이고, 수평 크기가 0.3 mm인 X선을 이용하였고, 검출기로는 2D marCCD를 이용하였다. 산란되어 나오는 2D 회절패턴을 이미지로 얻었다. 얻어진 회절 패턴을 최소 좌승법을 적용한 수치 분석학적인 방식으로 분석하여 산란 벡터 및 반높이 너비 등의 정보를 얻었다. 상기 분석 시에는 오리진(origin) 프로그램을 적용하였으며, XRD 회절 패턴에서 가장 최소의 강도(intensity)를 보이는 부분을 베이스라인(baseline)으로 잡아 상기에서의 강도(intensity)를 0으로 되게 한 상태에서 상기 XRD 패턴 피크의 프로파일을 가우시안 피팅(Gaussian fitting)하고, 피팅된 결과로부터 상기 산란 벡터와 반높이 너비를 구하였다. 가우시안 피팅 시에 R 제곱(R square)은 적어도 0.96 이상이 되도록 하였다.
4. 표면 에너지의 측정
표면 에너지는 물방울형 분석기(Drop Shape Analyzer, KRUSS사의 DSA100제품)를 사용하여 측정하였다. 측정하고자 하는 물질(중합체)을 플루오르벤젠(flourobenzene)에 약 2 중량%의 고형분 농도로 희석시켜 코팅액을 제조하고, 제조된 코팅액을 실리콘 웨이퍼에 약 50 nm의 두께 및 4 cm2의 코팅 면적(가로: 2cm, 세로: 2cm)으로 스핀 코팅하였다. 코팅층을 상온에서 약 1 시간 동안 건조하고, 이어서 약 160℃에서 약 1시간 동안 열적 숙성(thermal annealing)시켰다. 열적 숙성을 거친 막에 표면 장력(surface tension)이 공지되어 있는 탈이온화수를 떨어뜨리고 그 접촉각을 구하는 과정을 5회 반복하여, 얻어진 5개의 접촉각 수치의 평균치를 구하였다. 동일하게, 표면 장력이 공지되어 있는 디요오드메탄(diiodomethane)을 떨어뜨리고 그 접촉각을 구하는 과정을 5회 반복하여, 얻어진 5개의 접촉각 수치의 평균치를 구하였다. 구해진 탈이온화수와 디요오드메탄에 대한 접촉각의 평균치를 이용하여 Owens-Wendt-Rabel-Kaelble 방법에 의해 용매의 표면 장력에 관한 수치(Strom 값)를 대입하여 표면 에너지를 구하였다. 블록 공중합체의 각 블록에 대한 표면 에너지의 수치는, 상기 블록을 형성하는 단량체만으로 제조된 단독 중합체(homopolymer)에 대하여 상기 기술한 방법으로 구하였다.
5. 부피 분율의 측정
블록 공중합체의 각 블록의 부피 분율은, 각 블록의 상온에서의 밀도와 GPC에 의해 측정된 분자량을 토대로 계산하였다. 상기에서 밀도는, 부력법을 이용하여 측정하였으며, 구체적으로는 공기 중에서의 질량과 밀도를 알고 있는 용매(에탄올) 내에 분석하고자 하는 시료를 넣고, 그 질량을 통해 계산하였다.
제조예 1. 모노머(A)의 합성
하기 화학식 A의 화합물(DPM-C12)은 다음의 방식으로 합성하였다. 250 mL의 플라스크에 히드로퀴논(hydroquinone)(10.0g, 94.2 mmol) 및 1-브로모도데칸(1-Bromododecane)(23.5 g, 94.2 mmol)을 넣고, 100 mL의 아세토니트릴(acetonitrile)에 녹인 후 과량의 포타슘 카보네이트(potassium carbonate) 첨가하고, 75oC에서 약 48시간 동안 질소 조건하에서 반응시켰다. 반응 후 잔존하는 포타슘 카보네이트를 필터링하여 제거하고 반응에 사용한 아세토니트릴도 제거하였다. 여기에 DCM(dichloromethane)과 물의 혼합 용매를 첨가하여 워크업하고, 분리한 유기층을 모아서 MgSO4에 통과시켜 탈수하였다. 이어서, 컬럼 크로마토그래피에서 DCM(dichloromethane)을 사용하여 흰색 고체상의 목적물(4-도데실옥시페놀)(9.8 g, 35.2 mmol)을 약 37%의 수득률로 얻었다.
<NMR 분석 결과>
1H-NMR(CDCl3): d6.77(dd, 4H); d4.45(s, 1H); d3.89(t, 2H); d1.75(p, 2H); d1.43(p, 2H); d1.33-1.26(m, 16H); d0.88(t, 3H).
플라스크에 합성된 4-도데실옥시페놀(9.8 g, 35.2 mmol), 메타크릴산(6.0 g, 69.7 mmol), DCC(dicyclohexylcarbodiimide)(10.8 g, 52.3 mmol) 및 DMAP(p-dimethylaminopyridine)(1.7 g, 13.9 mmol)을 넣고, 120 mL의 메틸렌클로라이드를 첨가한 후, 질소 하 실온에서 24시간 동안 반응시켰다. 반응 종료 후에 반응 중에 생성된 염(urea salt)을 필터로 제거하고 잔존하는 메틸렌클로라이드도 제거하였다. 컬럼 크로마토그래피에서 헥산과 DCM(dichloromethane)을 이동상으로 사용하여 불순물을 제거하고, 다시 얻어진 생성물을 메탄올과 물의 혼합 용매(1:1 혼합)에서 재결정하여 흰색 고체상의 목적물(7.7 g, 22.2 mmol)을 63%의 수득률로 얻었다.
<NMR 분석 결과>
1H-NMR(CDCl3): d7.02(dd, 2H); d6.89(dd, 2H); d6.32(dt, 1H); d5.73(dt, 1H); d3.94(t, 2H); d2.05(dd, 3H); d1.76(p, 2H); d1.43(p, 2H); 1.34-1.27(m, 16H); d0.88(t, 3H).
[화학식 A]
Figure PCTKR2015010338-appb-I000018
화학식 A에서 R은 탄소수 12의 직쇄 알킬기이다.
제조예 2. 모노머(B)의 합성
1-브로모도데칸 대신 1-브로모옥탄을 사용한 것을 제외하고는 제조예 1에 준한 방식으로 하기 화학식 B의 화합물을 합성하였다. 상기 화합물에 대한 NMR 분석 결과를 하기에 나타내었다.
<NMR 분석 결과>
1H-NMR(CDCl3): d7.02(dd, 2H); d6.89(dd, 2H); d6.32(dt, 1H); d5.73(dt, 1H); d3.94(t, 2H); d2.05(dd, 3H); d1.76(p, 2H); d1.45(p, 2H); 1.33-1.29(m, 8H); d0.89(t, 3H).
[화학식 B]
Figure PCTKR2015010338-appb-I000019
화학식 B에서 R은 탄소수 8의 직쇄 알킬기이다.
제조예 3. 모노머(C)의 합성
1-브로모도데칸 대신 1-브로모데칸을 사용한 것을 제외하고는 제조예 1에 준한 방식으로 하기 화학식 C의 화합물을 합성하였다. 상기 화합물에 대한 NMR 분석 결과를 하기에 나타내었다.
<NMR 분석 결과>
1H-NMR(CDCl3): d7.02(dd, 2H); d6.89(dd, 2H); d6.33(dt, 1H); d5.72(dt, 1H); d3.94(t, 2H); d2.06(dd, 3H); d1.77(p, 2H); d1.45(p, 2H); 1.34-1.28(m, 12H); d0.89(t, 3H).
[화학식 C]
Figure PCTKR2015010338-appb-I000020
화학식 C에서 R은 탄소수 10의 직쇄 알킬기이다.
제조예 4. 모노머(D)의 합성
1-브로모도데칸 대신 1-브로모테트라데칸을 사용한 것을 제외하고는 제조예 1에 준한 방식으로 하기 화학식 D의 화합물을 합성하였다. 상기 화합물에 대한 NMR 분석 결과를 하기에 나타내었다.
<NMR 분석 결과>
1H-NMR(CDCl3): d7.02(dd, 2H); d6.89(dd, 2H); d6.33(dt, 1H); d5.73(dt, 1H); d3.94(t, 2H); d2.05(dd, 3H); d1.77(p, 2H); d1.45(p, 2H); 1.36-1.27(m, 20H); d0.88(t, 3H.)
[화학식 D]
Figure PCTKR2015010338-appb-I000021
화학식 D에서 R은 탄소수 14의 직쇄 알킬기이다.
제조예 5. 모노머(E)의 합성
1-브로모도데칸 대신 1-브로모헥사데칸을 사용한 것을 제외하고는 제조예 1에 준한 방식으로 하기 화학식 E의 화합물을 합성하였다. 상기 화합물에 대한 NMR 분석 결과를 하기에 나타내었다.
<NMR 분석 결과>
1H-NMR(CDCl3): d7.01(dd, 2H); d6.88(dd, 2H); d6.32(dt, 1H); d5.73(dt, 1H); d3.94(t, 2H); d2.05(dd, 3H); d1.77(p, 2H); d1.45(p, 2H); 1.36-1.26(m, 24H); d0.89(t, 3H)
[화학식 E]
Figure PCTKR2015010338-appb-I000022
화학식 E에서 R은 탄소수 16의 직쇄 알킬기이다.
제조예 6. 블록 공중합체의 합성
제조예 1의 모노머(A) 2.0 g과 RAFT(Reversible Addition?Fragmentation chain Transfer) 시약인 시아노이소프로틸디티오벤조에이트 64 mg, 라디칼 개시제인 AIBN(Azobisisobutyronitrile) 23 mg 및 벤젠 5.34 mL를 10 mL Schlenk flask에 넣고 질소 분위기 하에서 상온에서 30분 동안 교반한 후 70℃에서 4시간 동안 RAFT(Reversible Addition?Fragmentation chain Transfer) 중합 반응을 수행하였다. 중합 후 반응 용액을 추출 용매인 메탄올 250 mL 에 침전시킨 후, 감압 여과하여 건조시켜, 분홍색의 거대개시제를 제조하였다. 상기 거대 개시제의 수득률은 약 82.6 중량%였고, 수평균 분자량(Mn) 및 분자량분포(Mw/Mn)는 각각 9,000 및 1.16이었다. 거대개시제 0.3 g, 펜타플루오로스티렌 모노머 2.7174 g 및 벤젠 1.306 mL를 10 mL Schlenk flask에 넣고 질소 분위기 하에서 상온에서 30분 동안 교반한 후 115℃에서 4시간 동안 RAFT(Reversible Addition?Fragmentation chain Transfer) 중합 반응을 수행하였다. 중합 후 반응 용액을 추출 용매인 메탄올 250 mL 에 침전시킨 다음, 감압 여과하여 건조시켜 연한 분홍색의 블록공중합체를 제조하였다. 상기 블록 공중합체의 수득률은 약 18 중량%였고, 수평균분자량(Mn) 및 분자량분포(Mw/Mn)는 각각 16,300 및 1.13이었다. 상기 블록 공중합체는 제조예 1의 모노머(A)에서 유래된 제 1 블록과 상기 펜타플루오로스티렌 모노머에서 유래된 제 2 블록을 포함한다.
제조예 7. 블록 공중합체의 합성
제조예 1의 모노머(A) 대신에 제조예 2의 모노머(B)를 사용하는 것을 제외하고는 제조예 6에 준하는 방식으로 거대개시제 및 펜타플루오로스티렌을 모노머로 하여 블록 공중합체를 제조하였다. 상기 블록 공중합체는 제조예 2의 모노머(B)에서 유래된 제 1 블록과 상기 펜타플루오로스티렌 모노머에서 유래된 제 2 블록을 포함한다.
제조예 8. 블록 공중합체의 합성
제조예 1의 모노머(A) 대신에 제조예 3의 모노머(C)를 사용하는 것을 제외하고는 제조예 6에 준하는 방식으로 거대개시제 및 펜타플루오로스티렌을 모노머로 하여 블록 공중합체를 제조하였다. 상기 블록 공중합체는 제조예 3의 모노머(C)에서 유래된 제 1 블록과 상기 펜타플루오로스티렌 모노머에서 유래된 제 2 블록을 포함한다.
제조예 9. 블록 공중합체의 합성
제조예 1의 모노머(A) 대신에 제조예 4의 모노머(D)를 사용하는 것을 제외하고는 제조예 6에 준하는 방식으로 거대개시제 및 펜타플루오로스티렌을 모노머로 하여 블록 공중합체를 제조하였다. 상기 블록 공중합체는 제조예 4의 모노머(D)에서 유래된 제 1 블록과 상기 펜타플루오로스티렌 모노머에서 유래된 제 2 블록을 포함한다.
제조예 10. 블록 공중합체의 합성
제조예 1의 모노머(A) 대신에 제조예 5의 모노머(E)를 사용하는 것을 제외하고는 제조예 6에 준하는 방식으로 거대개시제 및 펜타플루오로스티렌을 모노머로 하여 블록 공중합체를 제조하였다. 상기 블록 공중합체는 제조예 5의 모노머(E)에서 유래된 제 1 블록과 상기 펜타플루오로스티렌 모노머에서 유래된 제 2 블록을 포함한다.
상기 제조예의 각 거대 개시제 및 제조된 블록 공중합체에 대한 GPC 측정 결과를 하기 표 1에 정리하여 기재하였다.
Figure PCTKR2015010338-appb-T000001
시험예 1. X선 회절 분석
상기 각 블록 공중합체의 거대 개시제에 대하여 상기 언급한 방식으로 XRD 패턴을 분석한 결과는 하기 표 2에 정리하여 기재하였다.
Figure PCTKR2015010338-appb-T000002
시험예 2. 자기 조립 특성의 평가
제조예 6 내지 10의 블록 공중합체를 톨루엔 (toluene)에 1.0 중량wt%의 고형분 농도로 희석시켜 제조한 코팅액을 실리콘 웨이퍼상에 약 50 nm의 두께로 스핀 코팅(코팅 면적: 가로×세로 = 1.5cm×1.5cm)하고, 상온에서 약 1시간 동안 건조시킨 후에 다시 약 160℃의 온도에서 약 1 시간 동안 열적 숙성(thermal annealing)하여 자기 조립된 막을 형성하였다. 형성된 막에 대하여 SEM(Scanning electron microscope) 이미지를 촬영하였다. 도 4 내지 8은, 각각 제조예 6 내지 10에 대하여 촬영한 SEM 이미지이다. 도면으로부터 확인되는 바와 같이 상기 블록 공중합체의 경우, 라인 패턴으로 자기 조립된 고분자막이 효과적으로 형성되었다.
시험예 2. 블록 공중합체의 물성 평가
제조예 6 내지 10에서 제조된 각 블록 공중합체의 특성을 상기 언급한 방식으로 평가한 결과를 하기 표 3에 정리하여 기재하였다.
Figure PCTKR2015010338-appb-T000003
실시예 1.
제조예 6의 블록 공중합체를 적용한 기판의 패턴화를 하기의 방식으로 수행하였다. 기판으로는, 실리콘 웨이퍼가 적용되었다. 상기 기판상에 공지의 증착 방식으로 SiO2의 층을 약 200 nm 정도의 두께로 형성하였다. 이어서 상기 SiO2의 층상에 BARC(Bottom Anti reflective coating)를 약 60nm 정도의 두께로 코팅하고, 다시 그 상부에 PR(photoresist)층(KrF용, positive-tone resist layer)을 약 400nm 정도의 두께로 코팅하였다. 이어서, 상기 PR층을 KrF 스텝퍼(stepper) 노광 방식으로 패턴화하였다. 이어서 RIE(Reactive Ion Eching) 방식으로 상기 패턴화된 PR층을 마스크로 하여, 그 하부의 BARC층과 SiO2층을 에칭하고, BARC층과 PR층의 잔여물을 제거함으로써 메사 구조를 형성하였다. 도 9는 상기와 같은 방식으로 형성된 것으로서, 기판(10) 및 상기 기판(10)의 표면에 형성된 메사 구조(20)를 포함하는 구조를 나타내고 있다. 상기 방식으로 형성된 메사 구조간의 간격(D)은 약 150 nm였고, 높이(H)는 약 100 nm였으며, 각 메사 구조의 폭(W)은 약 150 nm였다.
상기와 같이 형성된 메사 구조에 의한 트렌치의 내부에 중성층의 형성과 같은 별도의 처리를 수행하지 않고, 제조예 6의 블록 공중합체를 적용하여 고분자막을 형성하였다.구체적으로 블록 공중합체를 톨루엔 (toluene)에 1.5 중량%의 고형분 농도로 희석시켜 제조한 코팅액을 스핀 코팅하고, 상온에서 약 1시간 동안 건조시킨 후에 다시 약 160~250℃의 온도에서 약 1시간 동안 열적 숙성(thermal annealing)하여 자기 조립된 막을 형성하였다. 도 10은 상기 방식으로 형성된 자기 조립 구조에 대한 SEM 사진이며, 도면으로부터 자기 조립된 라멜라 구조의 직진성이 향상된 것을 확인할 수 있다.
실시예 2.
제조예 6의 블록 공중합체 대신 제조예 7의 블록 공중합체를 적용한 것을 제외하고는, 실시예 1과 동일한 자기 조립된 고분자막을 형성하였다. SEM 사진의 확인 결과 실시예 1과 같이 적절한 자기 조립 구조가 형성된 것을 확인할 수 있었다.
실시예 3.
제조예 6의 블록 공중합체 대신 제조예 8의 블록 공중합체를 적용한 것을 제외하고는, 실시예 1과 동일한 자기 조립된 고분자막을 형성하였다. SEM 사진의 확인 결과 실시예 1과 같이 적절한 자기 조립 구조가 형성된 것을 확인할 수 있었다.
실시예 4.
제조예 6의 블록 공중합체 대신 제조예 9의 블록 공중합체를 적용한 것을 제외하고는, 실시예 1과 동일한 자기 조립된 고분자막을 형성하였다. SEM 사진의 확인 결과 실시예 1과 같이 적절한 자기 조립 구조가 형성된 것을 확인할 수 있었다.
실시예 5.
제조예 6의 블록 공중합체 대신 제조예 10의 블록 공중합체를 적용한 것을 제외하고는, 실시예 1과 동일한 자기 조립된 고분자막을 형성하였다. SEM 사진의 확인 결과 실시예 1과 같이 적절한 자기 조립 구조가 형성된 것을 확인할 수 있었다.

Claims (28)

  1. 표면에 서로 간격을 두고 배치된 메사(mesa) 구조에 의해 트렌치가 형성되어 있는 기판의 상기 트렌치 내에 블록 공중합체를 포함하는 막을 형성하고, 상기 블록 공중합체의 자기 조립 구조를 유도하는 단계를 포함하며, 상기 블록 공중합체를 포함하는 막이 접촉하는 상기 트렌치 내의 표면은 중성 처리가 수행되어 있지 않은 패턴화 기판의 제조 방법.
  2. 제 1 항에 있어서, 트렌치는, 기판상에 메사 구조 형성 재료의 층, 반사 방지층 및 레지스트층을 순차 형성하는 단계; 상기 레지스트층을 패턴화하는 단계; 패턴화된 레지스트층을 마스크로 하여 상기 메사 구조 형성 재료의 층을 에칭하는 단계를 포함하는 패턴화 기판의 제조 방법.
  3. 제 2 항에 있어서, 메사 구조 형성 재료의 층의 에칭은, 반응성 이온 에칭으로 수행하는 패턴화 기판의 제조 방법.
  4. 제 1 항에 있어서, 트렌치를 형성하도록 이격 배치되어 있는 메사 구조의 간격(D)과 상기 메사 구조의 높이(H)의 비율(D/H)은 0.1 내지 10의 범위 내에 있는 패턴화 기판의 제조 방법.
  5. 제 1 항에 있어서, 트렌치를 형성하도록 이격 배치되어 있는 메사 구조간의 간격(D)과 메사 구조의 폭(W)의 비율(D/W)은 0.5 내지 10의 범위 내에 있는 패턴화 기판의 제조 방법.
  6. 제 1 항에 있어서, 블록 공중합체의 자기 조립 구조는 라멜라 구조이고, 상기 메사 구조의 간격은 약 1L 내지 20L의 범위 내이며, 상기에서 L은 상기 라멜라 구조의 피치인 패턴화 기판의 제조 방법.
  7. 제 1 항에 있어서, 블록 공중합체의 자기 조립 구조는 라멜라 구조이고, 상기 블록 공중합체를 포함하는 막의 두께는 1L 내지 10L이며, 상기에서 L은 상기 라멜라 구조의 피치인 패턴화 기판의 제조 방법.
  8. 제 1 항에 있어서, 자기 조립 구조는 수직 배향된 블록 공중합체를 포함하는 패턴화 기판의 제조 방법.
  9. 제 1 항에 있어서, 자기 조립 구조는 라멜라 구조인 패턴화 기판의 제조 방법.
  10. 제 1 항에 있어서, 블록 공중합체는 제 1 블록 및 상기 제 1 블록과는 다른 제 2 블록을 포함하고,
    상기 제 1 블록은 GIWAXS 스펙트럼의 12 nm-1 내지 16 nm-1 범위의 산란 벡터의 회절 패턴의 -90도 내지 -70도의 범위 내의 방위각에서 피크를 나타내고, 또한 70도 내지 90도의 범위 내의 방위각에서 피크를 나타내는 패턴화 기판의 제조 방법.
  11. 제 1 항에 있어서, 블록 공중합체는, 제 1 블록 및 상기 제 1 블록과는 다른 화학 구조를 가지는 제 2 블록을 포함하고,
    상기 제 1 블록은, DSC 분석에서 -80℃ 내지 200℃의 범위 내에서 용융 전이 피크 또는 등방 전이 피크를 나타내는 패턴화 기판의 제조 방법.
  12. 제 1 항에 있어서, 블록 공중합체는, 제 1 블록 및 상기 제 1 블록과는 다른 화학 구조를 가지는 제 2 블록을 포함하고,
    상기 제 1 블록은, XRD 분석 시에 0.5 nm-1 내지 10 nm-1의 산란 벡터(q) 범위 내에서 0.2 내지 0.9 nm-1의 범위 내의 반치폭을 가지는 피크를 나타내는 패턴화 기판의 제조 방법.
  13. 제 1 항에 있어서, 블록 공중합체는, 제 1 블록 및 상기 제 1 블록과는 다른 화학 구조를 가지는 제 2 블록을 포함하고,
    상기 제 1 블록은, 측쇄 사슬을 포함하며,
    상기 측쇄 사슬의 사슬 형성 원자의 수(n)와 상기 제 1 블록에 대한 XRD 분석에 의해 구해지는 산란 벡터(q)는 하기 수식 2를 만족하는 패턴화 기판의 제조 방법:
    [수식 2]
    3 nm-1 내지 5 nm-1 = nq/(2×π)
    수식 2에서 n은 상기 측쇄 사슬의 사슬 형성 원자의 수이고, q는, 상기 측쇄 사슬을 포함하는 블록에 대한 X선 회절 분석에서 피크가 관찰되는 가장 작은 산란 벡터(q)이거나, 혹은 가장 큰 피크 면적의 피크가 관찰되는 산란 벡터(q)이다.
  14. 제 1 항에 있어서, 블록 공중합체는, 제 1 블록 및 상기 제 1 블록과는 다른 화학 구조를 가지는 제 2 블록을 포함하고,
    상기 제 1 블록의 표면 에너지와 상기 제 2 블록의 표면 에너지의 차이의 절대값이 10 mN/m 이하인 패턴화 기판의 제조 방법.
  15. 제 1 항에 있어서, 제 1 블록 및 상기 제 1 블록과는 다른 화학 구조를 가지는 제 2 블록을 포함하고,
    상기 제 1 블록과 제 2 블록의 밀도의 차이의 절대값은 0.25 g/cm3 이상인 패턴화 기판의 제조 방법.
  16. 제 1 항에 있어서, 블록 공중합체는 제 1 블록과 상기 제 1 블록과는 다른 제 2 블록을 포함하고, 상기 제 1 블록의 부피 분율은 0.2 내지 0.6의 범위 내에 있으며, 상기 제 2 블록의 부피 분율은 0.4 내지 0.8의 범위 내에 있는 패턴화 기판의 제조 방법.
  17. 제 1 항에 있어서, 블록 공중합체의 제 1 블록은 사슬 형성 원자가 8개 이상인 측쇄 사슬을 포함하는 패턴화 기판의 제조 방법.
  18. 제 17 항에 있어서, 제 1 블록은 고리 구조를 포함하고, 측쇄 사슬이 상기 고리 구조에 치환되어 있는 패턴화 기판의 제조 방법.
  19. 제 18 항에 있어서, 고리 구조는, 할로겐 원자를 포함하지 않는 패턴화 기판의 제조 방법.
  20. 제 17 항에 있어서, 블록 공중합체의 제 2 블록은 3개 이상의 할로겐 원자를 포함하는 패턴화 기판의 제조 방법.
  21. 제 20 항에 있어서, 제 2 블록은 고리 구조를 포함하고, 할로겐 원자는 상기 고리 구조에 치환되어 있는 패턴화 기판의 제조 방법.
  22. 제 1 항에 있어서, 블록 공중합체는, 하기 화학식 1로 표시되는 단위를 가지는 블록을 포함하는 패턴화 기판의 제조 방법:
    [화학식 1]
    Figure PCTKR2015010338-appb-I000023
    화학식 1에서 R은 수소 또는 알킬기이고, X는 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이며, 상기에서 X1은 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, Y는 사슬 형성 원자를 가지는 사슬이 연결된 고리 구조를 포함하는 1가 치환기이다.
  23. 제 22 항에 있어서, 화학식 1의 Y는, 하기 화학식 2로 표시되는 패턴화 기판의 제조 방법:
    [화학식 2]
    Figure PCTKR2015010338-appb-I000024
    화학식 2에서 P는 아릴렌기 또는 사이클로알킬렌기이고, Q는 단일 결합, 산소 원자 또는 -NR3-이며, 상기에서 R3는, 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, Z는 P가 아릴렌기인 경우에 3개 이상의 사슬 형성 원자를 가지는 상기 사슬이고, P가 사이클로알킬렌기인 경우에는 8개 이상의 사슬 형성 원자를 가지는 상기 사슬이다.
  24. 제 23 항에 있어서, 화학식 2에서 P는 탄소수 6 내지 12의 아릴렌기인 패턴화 기판의 제조 방법.
  25. 제 1 항에 있어서, 블록 공중합체는 하기 화학식 3으로 표시되는 단위를 가지는 블록을 포함하는 패턴화 기판의 제조 방법:
    [화학식 3]
    Figure PCTKR2015010338-appb-I000025
    화학식 3에서 R은 수소 또는 탄소수 1 내지 4의 알킬기이고, X는 단일 결합, 산소 원자, -C(=O)-O- 또는 -O-C(=O)-이며, P는 아릴렌기이고, Q는 산소 원자 또는 -NR3-이며, 상기에서 R3는, 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, Z는 사슬 형성 원자가 8개 이상인 직쇄 사슬이다.
  26. 제 1 항에 있어서, 블록 공중합체는 하기 화학식 5로 표시되는 단위를 가지는 블록을 포함하는 패턴화 기판의 제조 방법:
    [화학식 5]
    Figure PCTKR2015010338-appb-I000026
    화학식 5에서 B는 하나 이상의 할로겐 원자를 포함하는 방향족 구조를 가지는 1가 치환기이다.
  27. 제 1 항에 있어서, 자기 조립 구조를 형성하고 있는 블록 공중합체의 어느 한 블록을 선택적으로 제거하는 단계를 추가로 포함하는 패턴화 기판의 제조 방법.
  28. 제 27 항에 있어서, 블록 공중합체의 어느 하나의 블록을 선택적으로 제거한 후에 기판을 식각하는 단계를 추가로 포함하는 패턴화 기판의 제조 방법.
PCT/KR2015/010338 2014-09-30 2015-09-30 패턴화 기판의 제조 방법 WO2016053014A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/515,432 US10287430B2 (en) 2014-09-30 2015-09-30 Method of manufacturing patterned substrate
EP15845720.0A EP3203496B1 (en) 2014-09-30 2015-09-30 Method for producing patterned substrate
CN201580059699.1A CN107078026B (zh) 2014-09-30 2015-09-30 图案化基底的制备方法
JP2017517282A JP6637495B2 (ja) 2014-09-30 2015-09-30 パターン化基板の製造方法

Applications Claiming Priority (26)

Application Number Priority Date Filing Date Title
KR10-2014-0131964 2014-09-30
KR20140131964 2014-09-30
KR10-2014-0175413 2014-12-08
KR10-2014-0175411 2014-12-08
KR10-2014-0175406 2014-12-08
KR10-2014-0175415 2014-12-08
KR10-2014-0175400 2014-12-08
KR1020140175411A KR101762487B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175400A KR101780097B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR10-2014-0175407 2014-12-08
KR1020140175414A KR101780100B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR10-2014-0175410 2014-12-08
KR1020140175407A KR101763010B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175415A KR101780101B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175413A KR101780099B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175410A KR101768290B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR10-2014-0175401 2014-12-08
KR10-2014-0175414 2014-12-08
KR10-2014-0175402 2014-12-08
KR1020140175406A KR101780098B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175401A KR101763008B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175412A KR101768291B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175402A KR101832025B1 (ko) 2013-12-06 2014-12-08 단량체 및 블록 공중합체
KR10-2014-0175412 2014-12-08
KR10-2015-0079468 2015-06-04
KR1020150079468A KR20160038701A (ko) 2014-09-30 2015-06-04 패턴화 기판의 제조 방법

Publications (1)

Publication Number Publication Date
WO2016053014A1 true WO2016053014A1 (ko) 2016-04-07

Family

ID=66221406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010338 WO2016053014A1 (ko) 2014-09-30 2015-09-30 패턴화 기판의 제조 방법

Country Status (5)

Country Link
US (1) US10287430B2 (ko)
EP (1) EP3203496B1 (ko)
JP (1) JP6637495B2 (ko)
CN (1) CN107078026B (ko)
WO (1) WO2016053014A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019534178A (ja) * 2016-11-30 2019-11-28 エルジー・ケム・リミテッド 積層体
JP2019534810A (ja) * 2016-11-30 2019-12-05 エルジー・ケム・リミテッド 積層体
JP2020500961A (ja) * 2016-11-30 2020-01-16 エルジー・ケム・リミテッド 高分子組成物
US11613599B2 (en) * 2017-11-07 2023-03-28 Lg Chem, Ltd. Polymer composition

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105960422B (zh) * 2013-12-06 2019-01-18 株式会社Lg化学 嵌段共聚物
EP3078690B1 (en) * 2013-12-06 2021-01-27 LG Chem, Ltd. Block copolymer
JP6496318B2 (ja) 2013-12-06 2019-04-03 エルジー・ケム・リミテッド ブロック共重合体
WO2015084131A1 (ko) 2013-12-06 2015-06-11 주식회사 엘지화학 블록 공중합체
JP6419820B2 (ja) 2013-12-06 2018-11-07 エルジー・ケム・リミテッド ブロック共重合体
WO2015084123A1 (ko) 2013-12-06 2015-06-11 주식회사 엘지화학 블록 공중합체
JP6402867B2 (ja) 2013-12-06 2018-10-10 エルジー・ケム・リミテッド ブロック共重合体
US10081698B2 (en) * 2013-12-06 2018-09-25 Lg Chem, Ltd. Block copolymer
WO2015084121A1 (ko) * 2013-12-06 2015-06-11 주식회사 엘지화학 블록 공중합체
EP3101043B1 (en) * 2013-12-06 2021-01-27 LG Chem, Ltd. Block copolymer
US10227438B2 (en) 2013-12-06 2019-03-12 Lg Chem, Ltd. Block copolymer
US10239980B2 (en) 2013-12-06 2019-03-26 Lg Chem, Ltd. Block copolymer
JP6334706B2 (ja) 2013-12-06 2018-05-30 エルジー・ケム・リミテッド ブロック共重合体
US10160822B2 (en) 2013-12-06 2018-12-25 Lg Chem, Ltd. Monomer and block copolymer
WO2016052999A1 (ko) 2014-09-30 2016-04-07 주식회사 엘지화학 블록 공중합체
WO2016052994A1 (ko) 2014-09-30 2016-04-07 주식회사 엘지화학 블록 공중합체
US10310378B2 (en) 2014-09-30 2019-06-04 Lg Chem, Ltd. Block copolymer
CN107077066B9 (zh) 2014-09-30 2021-05-14 株式会社Lg化学 制造图案化基底的方法
CN107075054B (zh) * 2014-09-30 2020-05-05 株式会社Lg化学 嵌段共聚物
EP3202798B1 (en) 2014-09-30 2022-01-12 LG Chem, Ltd. Block copolymer
EP3214102B1 (en) 2014-09-30 2022-01-05 LG Chem, Ltd. Block copolymer
CN107075028B (zh) 2014-09-30 2020-04-03 株式会社Lg化学 嵌段共聚物
US10287430B2 (en) 2014-09-30 2019-05-14 Lg Chem, Ltd. Method of manufacturing patterned substrate
JP6538159B2 (ja) * 2014-09-30 2019-07-03 エルジー・ケム・リミテッド ブロック共重合体
FR3051964B1 (fr) * 2016-05-27 2018-11-09 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de formation d’un motif de guidage fonctionnalise pour un procede de grapho-epitaxie
US10691019B2 (en) * 2016-10-07 2020-06-23 Jsr Corporation Pattern-forming method and composition
TWI805617B (zh) * 2017-09-15 2023-06-21 南韓商Lg化學股份有限公司 層壓板
KR20200034020A (ko) 2018-09-12 2020-03-31 삼성전자주식회사 전자 장치 및 그의 제어 방법
KR20210018724A (ko) 2019-08-09 2021-02-18 삼성디스플레이 주식회사 표시 패널 및 이를 포함하는 표시 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323773A (ja) * 2003-04-28 2004-11-18 Denki Kagaku Kogyo Kk ブロック共重合体及び樹脂組成物
US20080311402A1 (en) * 2007-06-12 2008-12-18 Yeon Sik Jung Orientation-controlled self-assembled nanolithography using a block copolymer
US20090306295A1 (en) * 2004-03-19 2009-12-10 University Of Tennessee Research Foundation Materials comprising polydienes and hydrophilic polymers and related methods
KR20100123920A (ko) * 2008-03-21 2010-11-25 마이크론 테크놀로지, 인크. 이온성 액체를 이용하여 블록 공중합체 필름의 자기조립에서 장거리 질서를 개선하는 방법
KR20110086834A (ko) * 2008-10-28 2011-08-01 마이크론 테크놀로지, 인크. 금속 산화물을 자기 조립된 블록 코폴리머에 선택적으로 투과시키기 위한 방법, 금속 산화물 구조체의 형성 방법, 및 이를 포함하는 반도체 구조체

Family Cites Families (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE576615A (ko) 1958-03-13
US3976672A (en) 1974-12-26 1976-08-24 Uniroyal Inc. (Hydrocarbylphenylsulfonyl)alkyltrimethylstannanes
WO1989003401A1 (en) 1987-10-08 1989-04-20 Idemitsu Kosan Company Limited Styrenic polymer and process for its production
JPH01260360A (ja) 1988-04-12 1989-10-17 Nippon Oil & Fats Co Ltd 逆相クロマトグラフィー用充填剤
US5115056A (en) 1989-06-20 1992-05-19 Ciba-Geigy Corporation Fluorine and/or silicone containing poly(alkylene-oxide)-block copolymers and contact lenses thereof
EP0511407B1 (en) 1990-11-21 1996-05-29 Idemitsu Kosan Company Limited Styrenic copolymer and production thereof
US5234604A (en) 1991-02-26 1993-08-10 Betz Laboratories, Inc. Water soluble block copolymers and methods of use therof
JP3121116B2 (ja) 1992-05-21 2000-12-25 出光興産株式会社 スチレン系ブロック共重合体及びその製造方法
JPH0665333A (ja) 1992-08-21 1994-03-08 Shin Etsu Chem Co Ltd 単分散性共重合体及びその製造方法
US5728431A (en) 1996-09-20 1998-03-17 Texas A&M University System Process for forming self-assembled polymer layers on a metal surface
US5783614A (en) 1997-02-21 1998-07-21 Copytele, Inc. Polymeric-coated dielectric particles and formulation and method for preparing same
JP3392687B2 (ja) 1997-02-21 2003-03-31 信越化学工業株式会社 ブロック−グラフト共重合体およびこれを用いて作製した高分子固体電解質
JP3396390B2 (ja) 1997-03-04 2003-04-14 信越化学工業株式会社 ブロック−グラフト共重合体およびこれを用いて作製した自己架橋型高分子固体電解質並びにその製造方法
JP3569612B2 (ja) 1997-07-25 2004-09-22 信越化学工業株式会社 ブロック−グラフト共重合体およびこれを用いて作製した自己架橋型高分子固体電解質ならびにその製造方法
CA2265345A1 (en) 1998-03-25 1999-09-25 The Lubrizol Corporation Vinyl aromatic-(vinyl aromatic-co-acrylic) block copolymers prepared by stabilized free radical polymerization
JP4132265B2 (ja) 1998-08-04 2008-08-13 株式会社クラレ ブロック共重合体およびその成形品
DE69942703D1 (de) 1998-12-30 2010-10-07 Lubrizol Advanced Mat Inc Verzweigte blockcopolymere für die behandlung der oberfläche des keratins
CA2352155A1 (en) 1998-12-31 2000-07-13 Ciba Specialty Chemicals Holding Inc. Pigment composition containing atrp polymers
JP4288440B2 (ja) 1999-01-29 2009-07-01 信越化学工業株式会社 架橋型高分子固体電解質の製造方法
JP4458213B2 (ja) 1999-01-29 2010-04-28 信越化学工業株式会社 架橋型高分子固体電解質の製造方法
JP2000300682A (ja) 1999-04-23 2000-10-31 Hisamitsu Pharmaceut Co Inc イオントフォレーシス用デバイス
JP2012036078A (ja) 1999-06-07 2012-02-23 Toshiba Corp パターン形成方法
US6314225B1 (en) 1999-11-23 2001-11-06 Corning Incorporated Halogen and perhalo-organo substituted N-phenyl (or biphenyl) maleimide
JP2001294617A (ja) 2000-04-12 2001-10-23 Shin Etsu Chem Co Ltd プロトン導電性高分子電解質
FR2809829B1 (fr) 2000-06-05 2002-07-26 Rhodia Chimie Sa Nouvelle composition photosensible pour la fabrication de photoresist
JP4625901B2 (ja) 2000-11-08 2011-02-02 独立行政法人産業技術総合研究所 シンジオタクチック芳香族ビニル系ブロック共重合体およびその製造方法
KR100425243B1 (ko) 2001-11-14 2004-03-30 주식회사 엘지화학 선형의 블록 공중합체의 제조방법
US20030143343A1 (en) 2001-12-19 2003-07-31 Fuji Photo Film Co., Ltd. Wall-structured body and process for manufacturing the same
US8362151B2 (en) 2002-05-31 2013-01-29 Elsicon, Inc. Hybrid polymer materials for liquid crystal alignment layers
JP2004026688A (ja) 2002-06-24 2004-01-29 Asahi Glass Co Ltd ポリフルオロアルキル基含有重合性化合物およびその重合体
AU2003242731A1 (en) 2002-07-01 2004-01-19 Merck Patent Gmbh Polymerizable, luminescent compounds and mixtures, luminescent polymer materials and their use
ATE426639T1 (de) 2002-07-03 2009-04-15 Procter & Gamble Strahlungshartbare elastomere materialien mit geringer spannungsrelaxation
US7750059B2 (en) 2002-12-04 2010-07-06 Hewlett-Packard Development Company, L.P. Polymer solution for nanoimprint lithography to reduce imprint temperature and pressure
JP4300902B2 (ja) 2003-06-23 2009-07-22 コニカミノルタホールディングス株式会社 ブロック共重合体、有機エレクトロルミネッセンス素子、表示装置、照明装置及び光源
JP2005097442A (ja) 2003-09-25 2005-04-14 Ube Ind Ltd パターン表面とその製造方法
JP4453814B2 (ja) 2003-11-12 2010-04-21 Jsr株式会社 重合性化合物および混合物ならびに液晶表示素子の製造方法
US7341788B2 (en) 2005-03-11 2008-03-11 International Business Machines Corporation Materials having predefined morphologies and methods of formation thereof
JP2007070453A (ja) 2005-09-06 2007-03-22 Nippon Soda Co Ltd ブロック共重合体の製造方法
JP5014605B2 (ja) 2005-09-14 2012-08-29 ライオン株式会社 易洗浄性皮膜形成用組成物
EP1950799B1 (en) 2005-11-14 2012-04-18 Tokyo Institute Of Technology Method for production of nano-porous substrate
US7538159B2 (en) 2005-12-16 2009-05-26 Bridgestone Corporation Nanoparticles with controlled architecture and method thereof
US20070166648A1 (en) * 2006-01-17 2007-07-19 International Business Machines Corporation Integrated lithography and etch for dual damascene structures
JP2007246600A (ja) 2006-03-14 2007-09-27 Shin Etsu Chem Co Ltd 自己組織化高分子膜材料、自己組織化パターン、及びパターン形成方法
JP5457027B2 (ja) 2006-05-16 2014-04-02 日本曹達株式会社 ブロックコポリマー
JP5340530B2 (ja) 2006-09-01 2013-11-13 リンテック株式会社 ミクロ相分離構造物の製造方法
WO2008051214A1 (en) 2006-10-23 2008-05-02 John Samuel Batchelder Apparatus and method for measuring surface energies
KR100810682B1 (ko) 2006-11-08 2008-03-07 제일모직주식회사 전도성 고분자 중합체, 전도성 고분자 공중합체 조성물,전도성 고분자 공중합체 조성물막, 및 이를 이용한 유기광전 소자
US7964107B2 (en) 2007-02-08 2011-06-21 Micron Technology, Inc. Methods using block copolymer self-assembly for sub-lithographic patterning
JP5546719B2 (ja) 2007-03-28 2014-07-09 日東電工株式会社 ミクロ相分離構造を有する高分子体の製造方法ならびにミクロ相分離構造を有する高分子体
US8168213B2 (en) 2007-05-15 2012-05-01 Boston Scientific Scimed, Inc. Medical devices having coating with improved adhesion
JP5332052B2 (ja) 2007-06-01 2013-11-06 シャープ株式会社 レジスト除去方法、半導体製造方法、及びレジスト除去装置
US8714088B2 (en) 2007-06-21 2014-05-06 Fujifilm Corporation Lithographic printing plate precursor and lithographic printing method
WO2009008252A1 (ja) 2007-07-06 2009-01-15 Maruzen Petrochemical Co., Ltd. Aba型トリブロック共重合体及びその製造方法
KR101291223B1 (ko) 2007-08-09 2013-07-31 한국과학기술원 블록 공중합체를 이용한 미세 패턴 형성 방법
JP4403238B2 (ja) 2007-09-03 2010-01-27 国立大学法人東京工業大学 ミクロ相分離構造膜、及びその製造方法
JP5081560B2 (ja) 2007-09-28 2012-11-28 富士フイルム株式会社 ポジ型レジスト組成物およびこれを用いたパターン形成方法
CN101215362B (zh) 2008-01-08 2010-08-25 厦门大学 一种具有低表面能的硅丙三嵌段共聚物及其制备方法
JP2009203439A (ja) 2008-02-29 2009-09-10 Mitsubishi Electric Corp ブロック共重合体、ブロック共重合体組成物及びそれを含有する絶縁シート
KR100935863B1 (ko) 2008-07-02 2010-01-07 연세대학교 산학협력단 용매 어닐링과 디웨팅을 이용한 블록공중합체의 나노구조의패턴화방법
US8211737B2 (en) * 2008-09-19 2012-07-03 The University Of Massachusetts Method of producing nanopatterned articles, and articles produced thereby
US8518837B2 (en) 2008-09-25 2013-08-27 The University Of Massachusetts Method of producing nanopatterned articles using surface-reconstructed block copolymer films
US8658258B2 (en) 2008-10-21 2014-02-25 Aculon, Inc. Plasma treatment of substrates prior to the formation a self-assembled monolayer
JP2010116466A (ja) 2008-11-12 2010-05-27 Nippon Oil Corp ミクロ相分離構造膜、ナノ多孔質膜、およびそれらの製造方法
JP2010115832A (ja) 2008-11-12 2010-05-27 Panasonic Corp ブロックコポリマーの自己組織化促進方法及びそれを用いたブロックコポリマーの自己組織化パターン形成方法
JP2010145158A (ja) 2008-12-17 2010-07-01 Dainippon Printing Co Ltd ミクロ相分離構造の確認方法
EP2199854B1 (en) 2008-12-19 2015-12-16 Obducat AB Hybrid polymer mold for nano-imprinting and method for making the same
KR101212672B1 (ko) 2008-12-26 2012-12-14 제일모직주식회사 전도성 고분자, 전도성 고분자 조성물, 전도성 고분자 유기막 및 이를 포함하는 유기발광소자
JP5399098B2 (ja) 2009-03-02 2014-01-29 東ソー株式会社 ブロック共重合体及びその製造方法
CN101492520A (zh) 2009-03-04 2009-07-29 中国科学院上海有机化学研究所 含有全氟环丁基芳基醚嵌段的两嵌段聚合物、制备方法及用途
JP5170456B2 (ja) 2009-04-16 2013-03-27 信越化学工業株式会社 レジスト材料及びパターン形成方法
KR101101767B1 (ko) 2009-05-07 2012-01-05 한국과학기술원 코일―빗형 블록 공중합체 및 이를 이용한 나노 구조체의 제조방법
JP5679253B2 (ja) 2009-05-26 2015-03-04 国立大学法人東京工業大学 自立性高分子薄膜
KR20110018678A (ko) 2009-08-18 2011-02-24 연세대학교 산학협력단 기능성 말단기를 가진 폴리스티렌을 이용한 실린더 나노구조체의 수직배향 조절법
EP2330136B1 (en) 2009-12-07 2013-08-28 Borealis AG Process for the preparation of an unsupported, solid metallocene catalyst system and its use in polymerization of olefins
KR101305052B1 (ko) 2010-02-25 2013-09-11 이화여자대학교 산학협력단 자기 조립 이중블록 공중합체와 졸-겔 공정을 이용한 산화아연 나노링 구조체의 제조방법
KR101238827B1 (ko) 2010-03-12 2013-03-04 한국과학기술원 열안전성이 우수한 코어쉘 구조의 나노 입자 블록공중합체 복합체의 제조 방법 및 이에 의하여 제조된 열안전성이 우수한 코어쉘 구조의 나노 입자 블록공중합체 복합체
KR20110112501A (ko) 2010-04-07 2011-10-13 한국과학기술원 높은 종횡비를 가지는 나노구조물 제조용 블록공중합체 및 그 제조방법
JP5505371B2 (ja) 2010-06-01 2014-05-28 信越化学工業株式会社 高分子化合物、化学増幅ポジ型レジスト材料、及びパターン形成方法
JP5598970B2 (ja) 2010-06-18 2014-10-01 凸版印刷株式会社 微細構造体の製造方法、複合体
KR101290057B1 (ko) 2010-07-19 2013-07-26 주식회사 엘지화학 코팅성과 재코팅성이 우수한 열경화성 보호막 조성물
US8541162B2 (en) 2010-09-01 2013-09-24 E I Du Pont De Nemours And Company High resolution, solvent resistant, thin elastomeric printing plates
JP2012093699A (ja) 2010-09-30 2012-05-17 Canon Inc エレクトロクロミック素子
JP5254381B2 (ja) 2011-02-23 2013-08-07 株式会社東芝 パターン形成方法
CN102172491B (zh) 2011-03-09 2014-09-03 无锡市恒创嘉业纳米材料科技有限公司 一种含氟表面活性剂及其制备方法
CN103562245B (zh) 2011-04-22 2015-11-25 Lg化学株式会社 新的二嵌段共聚物、其制备方法以及使用其形成纳米图案的方法
TW201323461A (zh) 2011-09-06 2013-06-16 Univ Cornell 嵌段共聚物及利用彼等之蝕印圖案化
WO2013040483A1 (en) 2011-09-15 2013-03-21 Wisconsin Alumni Research Foundation Directed assembly of block copolymer films between a chemically patterned surface and a second surface
US8691925B2 (en) 2011-09-23 2014-04-08 Az Electronic Materials (Luxembourg) S.A.R.L. Compositions of neutral layer for directed self assembly block copolymers and processes thereof
JP5795221B2 (ja) 2011-09-26 2015-10-14 株式会社東芝 パターン形成方法
EP2781550B1 (en) 2011-11-09 2019-10-16 JSR Corporation Directed self-assembling composition for pattern formation, and pattern-forming method
JP6019524B2 (ja) 2011-12-09 2016-11-02 国立大学法人九州大学 生体適合性材料、医療用具及び生体適合性材料の製造方法
CN104114594B (zh) 2012-02-10 2017-05-24 纳幕尔杜邦公司 高‑x两嵌段共聚物的制备、纯化和用途
US8697810B2 (en) 2012-02-10 2014-04-15 Rohm And Haas Electronic Materials Llc Block copolymer and methods relating thereto
US20130209755A1 (en) 2012-02-15 2013-08-15 Phillip Dene Hustad Self-assembled structures, method of manufacture thereof and articles comprising the same
JP6118573B2 (ja) 2012-03-14 2017-04-19 東京応化工業株式会社 下地剤、ブロックコポリマーを含む層のパターン形成方法
JP2013219334A (ja) 2012-03-16 2013-10-24 Jx Nippon Oil & Energy Corp フィルム状モールドを用いた基板の製造方法及び製造装置
KR101891761B1 (ko) 2012-04-06 2018-08-24 주식회사 동진쎄미켐 가이드 패턴 형성용 포토레지스트 조성물 및 이를 이용한 미세패턴 형성방법
EP2839341B1 (en) 2012-04-16 2020-01-15 Brewer Science, Inc. Method for directed self-assembly
JP5710546B2 (ja) 2012-04-27 2015-04-30 信越化学工業株式会社 パターン形成方法
US9250528B2 (en) * 2012-04-27 2016-02-02 Asml Netherlands B.V. Methods and compositions for providing spaced lithography features on a substrate by self-assembly of block copolymers
US9127113B2 (en) 2012-05-16 2015-09-08 Rohm And Haas Electronic Materials Llc Polystyrene-polyacrylate block copolymers, methods of manufacture thereof and articles comprising the same
JP2014012807A (ja) 2012-06-05 2014-01-23 Asahi Kasei E-Materials Corp パターン形成用樹脂組成物及びパターン形成方法
KR101529646B1 (ko) 2012-09-10 2015-06-17 주식회사 엘지화학 실리콘 옥사이드의 나노 패턴 형성 방법, 금속 나노 패턴의 형성 방법 및 이를 이용한 정보저장용 자기 기록 매체
JP5887244B2 (ja) 2012-09-28 2016-03-16 富士フイルム株式会社 パターン形成用自己組織化組成物、それを用いたブロックコポリマーの自己組織化によるパターン形成方法、及び自己組織化パターン、並びに電子デバイスの製造方法
US9223214B2 (en) 2012-11-19 2015-12-29 The Texas A&M University System Self-assembled structures, method of manufacture thereof and articles comprising the same
US20140142252A1 (en) * 2012-11-19 2014-05-22 Sangho Cho Self-assembled structures, method of manufacture thereof and articles comprising the same
CN102967918B (zh) 2012-12-05 2014-12-31 河海大学常州校区 新型太阳能聚光碟片
WO2014090178A1 (en) 2012-12-13 2014-06-19 Toray Advanced Materials Research Laboratories (China) Co., Ltd. Multi-block copolymer and polymer electrolyte
WO2014124795A1 (en) * 2013-02-14 2014-08-21 Asml Netherlands B.V. Methods for providing spaced lithography features on a substrate by self-assembly of block copolymers
JP6027912B2 (ja) 2013-02-22 2016-11-16 東京応化工業株式会社 相分離構造を含む構造体の製造方法、及びパターン形成方法、並びにトップコート材料
JP6107216B2 (ja) 2013-02-22 2017-04-05 キヤノンマーケティングジャパン株式会社 コンピュータ、薬剤分包装置、およびその制御方法とプログラム。
JP2015000896A (ja) 2013-06-14 2015-01-05 富士フイルム株式会社 組成物ならびにそれを用いたミクロ相分離構造膜およびその製造方法
EP2883891A4 (en) 2013-06-28 2016-06-01 Lg Chemical Ltd TERNARY ELASTOMER COPOLYMER WITH A DIEN AND METHOD FOR THE PRODUCTION THEREOF
US9109067B2 (en) 2013-09-24 2015-08-18 Xerox Corporation Blanket materials for indirect printing method with varying surface energies via amphiphilic block copolymers
EP3101043B1 (en) 2013-12-06 2021-01-27 LG Chem, Ltd. Block copolymer
JP6334706B2 (ja) 2013-12-06 2018-05-30 エルジー・ケム・リミテッド ブロック共重合体
US10081698B2 (en) 2013-12-06 2018-09-25 Lg Chem, Ltd. Block copolymer
EP3078690B1 (en) 2013-12-06 2021-01-27 LG Chem, Ltd. Block copolymer
JP6496318B2 (ja) 2013-12-06 2019-04-03 エルジー・ケム・リミテッド ブロック共重合体
WO2015084131A1 (ko) 2013-12-06 2015-06-11 주식회사 엘지화학 블록 공중합체
WO2015084123A1 (ko) 2013-12-06 2015-06-11 주식회사 엘지화학 블록 공중합체
US10239980B2 (en) 2013-12-06 2019-03-26 Lg Chem, Ltd. Block copolymer
TWI596125B (zh) 2013-12-06 2017-08-21 Lg化學股份有限公司 嵌段共聚物
US10160822B2 (en) 2013-12-06 2018-12-25 Lg Chem, Ltd. Monomer and block copolymer
JP6419820B2 (ja) 2013-12-06 2018-11-07 エルジー・ケム・リミテッド ブロック共重合体
CN105960422B (zh) 2013-12-06 2019-01-18 株式会社Lg化学 嵌段共聚物
WO2015084121A1 (ko) 2013-12-06 2015-06-11 주식회사 엘지화학 블록 공중합체
US10227438B2 (en) 2013-12-06 2019-03-12 Lg Chem, Ltd. Block copolymer
FR3014888B1 (fr) 2013-12-13 2017-05-26 Arkema France Procede permettant la creation de structures nanometriques par l'auto-assemblage de copolymeres a blocs
KR20150114633A (ko) 2014-04-01 2015-10-13 에스케이하이닉스 주식회사 반도체 장치
JP6538157B2 (ja) 2014-09-30 2019-07-03 エルジー・ケム・リミテッド ブロック共重合体
CN107075028B (zh) 2014-09-30 2020-04-03 株式会社Lg化学 嵌段共聚物
JP6538159B2 (ja) 2014-09-30 2019-07-03 エルジー・ケム・リミテッド ブロック共重合体
WO2016052994A1 (ko) 2014-09-30 2016-04-07 주식회사 엘지화학 블록 공중합체
US10287430B2 (en) 2014-09-30 2019-05-14 Lg Chem, Ltd. Method of manufacturing patterned substrate
EP3202798B1 (en) 2014-09-30 2022-01-12 LG Chem, Ltd. Block copolymer
EP3214102B1 (en) 2014-09-30 2022-01-05 LG Chem, Ltd. Block copolymer
KR20160038701A (ko) 2014-09-30 2016-04-07 주식회사 엘지화학 패턴화 기판의 제조 방법
US10310378B2 (en) 2014-09-30 2019-06-04 Lg Chem, Ltd. Block copolymer
WO2016052999A1 (ko) 2014-09-30 2016-04-07 주식회사 엘지화학 블록 공중합체
CN107077066B9 (zh) 2014-09-30 2021-05-14 株式会社Lg化学 制造图案化基底的方法
CN107075054B (zh) 2014-09-30 2020-05-05 株式会社Lg化学 嵌段共聚物
KR101946776B1 (ko) 2015-06-04 2019-02-13 주식회사 엘지화학 중성층 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323773A (ja) * 2003-04-28 2004-11-18 Denki Kagaku Kogyo Kk ブロック共重合体及び樹脂組成物
US20090306295A1 (en) * 2004-03-19 2009-12-10 University Of Tennessee Research Foundation Materials comprising polydienes and hydrophilic polymers and related methods
US20080311402A1 (en) * 2007-06-12 2008-12-18 Yeon Sik Jung Orientation-controlled self-assembled nanolithography using a block copolymer
KR20100123920A (ko) * 2008-03-21 2010-11-25 마이크론 테크놀로지, 인크. 이온성 액체를 이용하여 블록 공중합체 필름의 자기조립에서 장거리 질서를 개선하는 방법
KR20110086834A (ko) * 2008-10-28 2011-08-01 마이크론 테크놀로지, 인크. 금속 산화물을 자기 조립된 블록 코폴리머에 선택적으로 투과시키기 위한 방법, 금속 산화물 구조체의 형성 방법, 및 이를 포함하는 반도체 구조체

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3203496A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019534178A (ja) * 2016-11-30 2019-11-28 エルジー・ケム・リミテッド 積層体
JP2019534810A (ja) * 2016-11-30 2019-12-05 エルジー・ケム・リミテッド 積層体
JP2020500961A (ja) * 2016-11-30 2020-01-16 エルジー・ケム・リミテッド 高分子組成物
US10934426B2 (en) 2016-11-30 2021-03-02 Lg Chem, Ltd. Method for producing a polymer film by using a polymer composition
US11174360B2 (en) 2016-11-30 2021-11-16 Lg Chem, Ltd. Laminate for patterned substrates
US11299596B2 (en) 2016-11-30 2022-04-12 Lg Chem, Ltd. Laminate
US11732098B2 (en) 2016-11-30 2023-08-22 Lg Chem, Ltd. Laminate for patterned substrates
US11613599B2 (en) * 2017-11-07 2023-03-28 Lg Chem, Ltd. Polymer composition

Also Published As

Publication number Publication date
US20170219922A1 (en) 2017-08-03
CN107078026A (zh) 2017-08-18
EP3203496A1 (en) 2017-08-09
US10287430B2 (en) 2019-05-14
JP2017537458A (ja) 2017-12-14
EP3203496B1 (en) 2021-12-29
EP3203496A4 (en) 2018-05-30
CN107078026B (zh) 2020-03-27
JP6637495B2 (ja) 2020-01-29

Similar Documents

Publication Publication Date Title
WO2016053014A1 (ko) 패턴화 기판의 제조 방법
WO2016053007A1 (ko) 패턴화 기판의 제조 방법
WO2015084122A1 (ko) 블록 공중합체
WO2015084125A1 (ko) 블록 공중합체
WO2015084120A1 (ko) 단량체 및 블록 공중합체
WO2015084124A1 (ko) 블록 공중합체
WO2015084121A1 (ko) 블록 공중합체
WO2016053011A9 (ko) 블록 공중합체
WO2016053009A9 (ko) 블록 공중합체
WO2016053010A9 (ko) 블록 공중합체
WO2015084123A1 (ko) 블록 공중합체
WO2015084126A1 (ko) 블록 공중합체
WO2015084129A1 (ko) 블록 공중합체
WO2015084127A1 (ko) 블록 공중합체
WO2015084133A1 (ko) 블록 공중합체
WO2015084131A1 (ko) 블록 공중합체
WO2015084132A1 (ko) 블록 공중합체
WO2016053001A1 (ko) 블록 공중합체
WO2015084130A1 (ko) 블록 공중합체
WO2018101743A2 (ko) 적층체
WO2018101741A1 (ko) 적층체
WO2016052999A1 (ko) 블록 공중합체
WO2017057813A1 (ko) 바인더 수지 및 이를 포함하는 감광성 수지 조성물
WO2013100409A1 (ko) 하드마스크 조성물용 모노머, 상기 모노머를 포함하는 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
WO2018164352A1 (ko) 패턴화 기판의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845720

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15515432

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017517282

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015845720

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015845720

Country of ref document: EP