KR101763008B1 - 블록 공중합체 - Google Patents

블록 공중합체 Download PDF

Info

Publication number
KR101763008B1
KR101763008B1 KR1020140175401A KR20140175401A KR101763008B1 KR 101763008 B1 KR101763008 B1 KR 101763008B1 KR 1020140175401 A KR1020140175401 A KR 1020140175401A KR 20140175401 A KR20140175401 A KR 20140175401A KR 101763008 B1 KR101763008 B1 KR 101763008B1
Authority
KR
South Korea
Prior art keywords
block
block copolymer
group
chain
formula
Prior art date
Application number
KR1020140175401A
Other languages
English (en)
Other versions
KR20150067065A (ko
Inventor
이제권
김정근
박노진
윤성수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2016536842A priority Critical patent/JP6521974B2/ja
Priority to EP14868586.0A priority patent/EP3078694B1/en
Priority to US15/101,827 priority patent/US10202480B2/en
Priority to CN201480072805.5A priority patent/CN105899559B/zh
Priority to PCT/KR2014/012024 priority patent/WO2015084121A1/ko
Publication of KR20150067065A publication Critical patent/KR20150067065A/ko
Priority to EP15845720.0A priority patent/EP3203496B1/en
Priority to US15/514,929 priority patent/US10370529B2/en
Priority to PCT/KR2015/010335 priority patent/WO2016053011A1/ko
Priority to CN201580059713.8A priority patent/CN107077066B9/zh
Priority to JP2017517282A priority patent/JP6637495B2/ja
Priority to TW104132162A priority patent/TWI563007B/zh
Priority to CN201580060099.7A priority patent/CN107075052B/zh
Priority to JP2017517277A priority patent/JP6538158B2/ja
Priority to US15/515,818 priority patent/US10281820B2/en
Priority to JP2017517288A priority patent/JP6538159B2/ja
Priority to US15/514,939 priority patent/US10310378B2/en
Priority to TW104132197A priority patent/TWI577703B/zh
Priority to EP15847536.8A priority patent/EP3225641B1/en
Priority to PCT/KR2015/010332 priority patent/WO2016053009A1/ko
Priority to EP15845665.7A priority patent/EP3214102B1/en
Priority to CN201580060150.4A priority patent/CN107075055B/zh
Priority to US15/515,812 priority patent/US10377894B2/en
Priority to CN201580060097.8A priority patent/CN107075054B/zh
Priority to EP15847598.8A priority patent/EP3202802B1/en
Priority to JP2017517270A priority patent/JP6538157B2/ja
Priority to TW104132150A priority patent/TWI591086B/zh
Priority to JP2017517268A priority patent/JP6633062B2/ja
Priority to US15/515,432 priority patent/US10287430B2/en
Priority to TW104132166A priority patent/TWI583710B/zh
Priority to EP15847157.3A priority patent/EP3202800B1/en
Priority to JP2017517261A priority patent/JP6532941B2/ja
Priority to TW104132194A priority patent/TWI609029B/zh
Priority to PCT/KR2015/010334 priority patent/WO2016053010A1/ko
Priority to PCT/KR2015/010327 priority patent/WO2016053005A1/ko
Priority to CN201580059546.7A priority patent/CN107075050B/zh
Priority to EP15846126.9A priority patent/EP3203497B1/en
Priority to US15/515,821 priority patent/US10703897B2/en
Priority to CN201580059699.1A priority patent/CN107078026B/zh
Priority to TW104132169A priority patent/TWI609408B/zh
Priority to PCT/KR2015/010338 priority patent/WO2016053014A1/ko
Priority to PCT/KR2015/010330 priority patent/WO2016053007A1/ko
Application granted granted Critical
Publication of KR101763008B1 publication Critical patent/KR101763008B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/80Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
    • C07C217/82Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring
    • C07C217/84Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the oxygen atom of at least one of the etherified hydroxy groups being further bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C35/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C35/48Halogenated derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/215Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring having unsaturation outside the six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/225Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/48Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/16Halogens
    • C08F12/20Fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/22Oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/26Nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/32Monomers containing only one unsaturated aliphatic radical containing two or more rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/12Monomers containing a branched unsaturated aliphatic radical or a ring substituted by an alkyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/16Halogens
    • C08F212/20Fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/22Oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/26Nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/32Monomers containing only one unsaturated aliphatic radical containing two or more rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/301Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one oxygen in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/14Chemical modification with acids, their salts or anhydrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D153/00Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/162Coating on a rotating support, e.g. using a whirler or a spinner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00388Etch mask forming
    • B81C1/00428Etch mask forming processes not provided for in groups B81C1/00396 - B81C1/0042
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00523Etching material
    • B81C1/00531Dry etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0147Film patterning
    • B81C2201/0149Forming nanoscale microstructures using auto-arranging or self-assembling material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers

Abstract

본 출원은, 블록 공중합체 및 그 용도가 제공될 수 있다. 본 출원의 블록 공중합체는, 우수한 자기 조립 특성 내지는 상분리 특성을 가지며, 요구되는 다양한 기능도 자유롭게 부여될 수 있다.

Description

블록 공중합체{MONOMER AND BLOCK COPOLYMER}
본 출원은, 블록 공중합체에 관한 것이다.
블록 공중합체는 서로 다른 화학적 구조를 가지는 고분자 블록들이 공유 결합을 통해 연결되어 있는 분자 구조를 가지고 있다. 블록 공중합체는 상분리에 의해 스피어(sphere), 실린더(cylinder) 또는 라멜라(lamella) 등과 같은 주기적으로 배열된 구조를 형성할 수 있다. 블록 공중합체의 자기 조립 현상에 의해 형성된 구조의 도메인의 크기는 광범위하게 조절될 수 있으며, 다양한 형태의 구조의 제작이 가능하여 고밀도 자기저장매체, 나노선 제작, 양자점 또는 금속점 등과 같은 다양한 차세대 나노 소자나 자기 기록 매체 또는 리소그라피 등에 의한 패턴 형성 등에 응용될 수 있다.
본 출원은, 블록 공중합체 및 그 용도를 제공한다.
본 명세서에서 용어 알킬기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬기를 의미할 수 있다. 상기 알킬기는 직쇄형, 분지형 또는 고리형 알킬기일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 명세서에서 용어 알콕시기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알콕시기를 의미할 수 있다. 상기 알콕시기는 직쇄형, 분지형 또는 고리형 알콕시기일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 명세서에서 용어 알케닐기 또는 알키닐기는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알케닐기 또는 알키닐기를 의미할 수 있다. 상기 알케닐기 또는 알키닐기는 직쇄형, 분지형 또는 고리형일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 명세서에서 용어 알킬렌기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기를 의미할 수 있다. 상기 알킬렌기는 직쇄형, 분지형 또는 고리형 알킬렌기일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 명세서에서 용어 알케닐렌기 또는 알키닐렌기는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알케닐렌기 또는 알키닐렌기를 의미할 수 있다. 상기 알케닐렌기 또는 알키닐렌기는 직쇄형, 분지형 또는 고리형일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 명세서에서 용어 아릴기 또는 아릴렌기는, 특별히 달리 규정하지 않는 한, 하나의 벤젠 고리 구조, 2개 이상의 벤젠 고리가 하나 또는 2개의 탄소 원자를 공유하면서 연결되어 있거나, 또는 임의의 링커에 의해 연결되어 있는 구조를 포함하는 화합물 또는 그 유도체로부터 유래하는 1가 또는 2가 잔기를 의미할 수 있다. 상기 아릴기 또는 아릴렌기는, 특별히 달리 규정하지 않는 한, 예를 들면, 탄소수 6 내지 30, 탄소수 6 내지 25, 탄소수 6 내지 21, 탄소수 6 내지 18 또는 탄소수 6 내지 13의 아릴기일 수 있다.
본 출원에서 용어 방향족 구조는 상기 아릴기 또는 아릴렌기를 의미할 수 있다.
본 명세서에서 용어 지환족 고리 구조는, 특별히 달리 규정하지 않는 한, 방향족 고리 구조가 아닌 고리형 탄화수소 구조를 의미한다. 상기 지환족 고리 구조는, 특별히 달리 규정하지 않는 한, 예를 들면, 탄소수 3 내지 30, 탄소수 3 내지 25, 탄소수 3 내지 21, 탄소수 3 내지 18 또는 탄소수 3 내지 13의 지환족 고리 구조일 수 있다.
본 출원에서 용어 단일 결합은 해당 부위에 별도의 원자가 존재하지 않는 경우를 의미할 수 있다. 예를 들어, A-B-C로 표시된 구조에서 B가 단일 결합인 경우에 B로 표시되는 부위에 별도의 원자가 존재하지 않고, A와 C가 직접 연결되어 A-C로 표시되는 구조를 형성하는 것을 의미할 수 있다.
본 출원에서 알킬기, 알케닐기, 알키닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, 알콕시기, 아릴기, 아릴렌기, 사슬 또는 방향족 구조 등에 임의로 치환되어 있을 수 있는 치환기로는, 히드록시기, 할로겐 원자, 카복실기, 글리시딜기, 아크릴로일기, 메타크릴로일기, 아크릴로일기옥시, 메타크릴로일기옥시기, 티올기, 알킬기, 알케닐기, 알키닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, 알콕시기 또는 아릴기 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
본 출원의 하나의 측면에서는, 블록 공중합체를 형성할 수 있는 신규한 구조의 단량체로서, 하기 화학식 1로 표시되는 단량체가 제공될 수 있다.
하기 화학식 1로 표시되는 블록 공중합체 형성용 단량체:
[화학식 1]
Figure 112014119422907-pat00001
화학식 1에서 R은 수소 또는 알킬기이고, X는 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이며, 상기에서 X1은 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, Y는 8개 이상의 사슬 형성 원자를 가지는 사슬이 연결된 고리 구조를 포함하는 1가 치환기이다.
화학식 1에서 X는 다른 예시에서 단일 결합, 산소 원자, 카보닐기, -C(=O)-O- 또는 -O-C(=O)-이거나, -C(=O)-O-일 수 있지만, 이에 제한되는 것은 아니다.
화학식 1에서 Y의 1가 치환기는, 적어도 8개의 사슬 형성 원자로 형성되는 사슬 구조를 포함한다.
본 출원에서 용어 사슬 형성 원자는, 소정 사슬의 직쇄 구조를 형성하는 원자를 의미한다. 상기 사슬은 직쇄형이거나, 분지형일 수 있으나, 사슬 형성 원자의 수는 가장 긴 직쇄를 형성하고 있는 원자의 수만으로 계산되며, 상기 사슬 형성 원자에 결합되어 있는 다른 원자(예를 들면, 사슬 형성 원자가 탄소 원자인 경우에 그 탄소 원자에 결합하고 있는 수소 원자 등)는 계산되지 않는다. 또한, 분지형 사슬인 경우에 상기 사슬 형성 원자의 수는 가장 긴 사슬을 형성하고 있는 사슬 형성 원자의 수로 계산될 수 있다. 예를 들어, 상기 사슬이 n-펜틸기인 경우에 사슬 형성 원자는 모두 탄소로서 그 수는 5이고, 상기 사슬이 2-메틸펜틸기인 경우에도 사슬 형성 원자는 모두 탄소로서 그 수는 5이다. 상기 사슬 형성 원자로는, 탄소, 산소, 황 또는 질소 등이 예시될 수 있고, 적절한 사슬 형성 원자는 탄소, 산소 또는 질소이거나, 탄소 또는 산소일 수 있다. 상기 사슬 형성 원자의 수는 8 이상, 9 이상, 10 이상, 11 이상 또는 12 이상일 수 있다. 상기 사슬 형성 원자의 수는, 또한 30 이하, 25 이하, 20 이하 또는 16 이하일 수 있다.
화학식 1의 화합물은 상기 사슬의 존재로 인하여 후술하는 블록 공중합체를 형성하였을 때에 그 블록 공중합체가 우수한 자기 조립 특성을 나타내도록 할 수 있다.
하나의 예시에서 상기 사슬은, 직쇄 알킬기와 같은 직쇄 탄화수소 사슬일 수 있다. 이러한 경우에 알킬기는, 탄소수 8 이상, 탄소수 8 내지 30, 탄소수 8 내지 25, 탄소수 8 내지 20 또는 탄소수 8 내지 16의 알킬기일 수 있다. 상기 알킬기의 탄소 원자 중 하나 이상은 임의로 산소 원자로 치환되어 있을 수 있고, 상기 알킬기의 적어도 하나의 수소 원자는 임의적으로 다른 치환기에 의해 치환되어 있을 수 있다.
화학식 1에서 Y는 고리 구조를 포함하고, 상기 사슬은 상기 고리 구조에 연결되어 있을 수 있다. 이러한 고리 구조에 의해 상기 단량체에 의해 형성되는 블록 공중합체의 자기 조립 특성 등이 보다 향상될 수 있다. 고리 구조는 방향족 구조이거나, 지환족 구조일 수 있다.
상기 사슬은 상기 고리 구조에 직접 연결되어 있거나, 혹은 링커를 매개로 연결되어 있을 수 있다. 상기 링커로는, 산소 원자, 황 원자, -NR1-, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-가 시될 수 있고, 상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기일 수 있으며, X1은 단일 결합, 산소 원자, 황 원자, -NR2-, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기일 수 있고, 상기에서 R2는, 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기일 수 있다. 적절한 링커로는 산소 원자 또는 질소 원자가 예시될 수 있다. 상기 사슬은, 예를 들면, 산소 원자 또는 질소 원자를 매개로 방향족 구조에 연결되어 있을 수 있다. 이러한 경우에 상기 링커는 산소 원자이거나, -NR1-(상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기)일 수 있다.
화학식 1의 Y는, 일 예시에서 하기 화학식 2로 표시될 수 있다.
[화학식 2]
Figure 112014119422907-pat00002
화학식 2에서 P는 아릴렌기이고, Q는 단일 결합, 산소 원자 또는 -NR3-이며, 상기에서 R3는, 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, Z는 8개 이상의 사슬 형성 원자를 가지는 상기 사슬이다. 화학식 1의 Y가 상기 화학식 2의 치환기인 경우에 상기 화학식 2의 P가 화학식 1의 X에 직접 연결되어 있을 수 있다.
화학식 2에서 P의 적절한 예시로는, 탄소수 6 내지 12의 아릴렌기, 예를 들면, 페닐렌기를 예시할 수 있지만, 이에 제한되는 것은 아니다.
화학식 2에서 Q는 적절한 예시로는, 산소 원자 또는 -NR1-(상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기) 등을 들 수 있다.
화학식 1의 단량체의 적절한 예시로는, 상기 화학식 1에서 R은 수소 또는 알킬기, 예를 들면, 수소 또는 탄소수 1 내지 4의 알킬기이고, X는 -C(=O)-O-이며, Y는 상기 화학식 2에서 P는 탄소수 6 내지 12의 아릴렌기 또는 페닐렌이고, Q는 산소 원자이며, Z는 사슬 형성 원자가 8개 이상인 전술한 사슬인 화합물을 들 수 있다.
따라서, 화학식 1의 적절한 예시의 단량체로는 하기 화학식 3의 단량체를 들 있다.
[화학식 3]
Figure 112014119422907-pat00003
화학식 3에서 R은 수소 또는 탄소수 1 내지 4의 알킬기이고, X는 -C(=O)-O-이며, P는 탄소수 6 내지 12의 아릴렌기이고, Q는 산소 원자이며, Z는 사슬 형성 원자가 8개 이상인 상기 사슬이다.
본 출원의 다른 측면은, 상기 단량체를 중합시켜서 블록을 형성하는 단계를 포함하는 블록 공중합체의 제조 방법에 대한 것이다.
본 출원에서 블록 공중합체를 제조하는 구체적인 방법은, 전술한 단량체를 사용하여 블록 공중합체의 적어도 하나의 블록을 형성하는 단계를 포함하는 한 특별히 제한되지 않는다.
예를 들면, 블록 공중합체는 상기 단량체를 사용한 LRP(Living Radical Polymerization) 방식으로 제조할 있다. 예를 들면, 유기 희토류 금속 복합체를 중합 개시제로 사용하거나, 유기 알칼리 금속 화합물을 중합 개시제로 사용하여 알칼리 금속 또는 알칼리토금속의 염 등의 무기산염의 존재 하에 합성하는 음이온 중합, 유기 알칼리 금속 화합물을 중합 개시제로 사용하여 유기 알루미늄 화합물의 존재 하에 합성하는 음이온 중합 방법, 중합 제어제로서 원자 이동 라디칼 중합제를 이용하는 원자이동 라디칼 중합법(ATRP), 중합 제어제로서 원자이동 라디칼 중합제를 이용하되 전자를 발생시키는 유기 또는 무기 환원제 하에서 중합을 수행하는 ARGET(Activators Regenerated by Electron Transfer) 원자이동 라디칼 중합법(ATRP), ICAR(Initiators for continuous activator regeneration) 원자이동 라디칼 중합법(ATRP), 무기 환원제 가역 부가-개열 연쇄 이동제를 이용하는 가역 부가-개열 연쇄 이동에 의한 중합법(RAFT) 또는 유기 텔루륨 화합물을 개시제로서 이용하는 방법 등이 있으며, 이러한 방법 중에서 적절한 방법이 선택되어 적용될 수 있다.
예를 들면, 상기 블록 공중합체는, 라디칼 개시제 및 리빙 라디칼 중합 시약의 존재 하에, 상기 블록을 형성할 수 있는 단량체들을 포함하는 반응물을 리빙 라디칼 중합법으로 중합하는 것을 포함하는 방식으로 제조할 수 있다.
블록 공중합체의 제조 시에 상기 단량체를 사용하여 형성하는 블록과 함께 상기 공중합체에 포함되는 다른 블록을 형성하는 방식은 특별히 제한되지 않고, 목적하는 블록의 종류를 고려하여 적절한 단량체를 선택하여 상기 다른 블록을 형성할 수 있다.
블록공중합체의 제조 과정은, 예를 들면 상기 과정을 거쳐서 생성된 중합 생성물을 비용매 내에서 침전시키는 과정을 추가로 포함할 수 있다.
라디칼 개시제의 종류는 특별히 제한되지 않고, 중합 효율을 고려하여 적절히 선택할 수 있으며, 예를 들면, AIBN(azobisisobutyronitrile) 또는 2,2'-아조비스-2,4-디메틸발레로니트릴(2,2'-azobis-(2,4-dimethylvaleronitrile)) 등의 아조 화합물이나, BPO(benzoyl peroxide) 또는 DTBP(di-t-butyl peroxide) 등과 같은 과산화물 계열을 사용할 수 있다.
리빙 라디칼 중합 과정은, 예를 들면, 메틸렌클로라이드, 1,2-디클로로에탄, 클로로벤젠, 디클로로벤젠, 벤젠,톨루엔, 아세톤, 클로로포름, 테트라하이드로퓨란, 디옥산, 모노글라임, 디글라임, 디메틸포름아미드, 디메틸술폭사이드 또는 디메틸아세트아미드 등과 같은 용매 내에서 수행될 수 있다.
비용매로는, 예를 들면, 메탄올, 에탄올, 노르말 프로판올 또는 이소프로판올 등과 같은 알코올, 에틸렌글리콜 등의 글리콜, n-헥산, 시클로헥산, n-헵탄 또는 페트롤리움 에테르 등과 같은 에테르 계열이 사용될 수 있으나, 이에 제한되는 것은 아니다.
본 출원의 다른 측면에서는, 상기 단량체를 통해 형성된 블록(이하, 제 1 블록으로 호칭될 수 있다.)을 포함하는 블록 공중합체가 제공될 수 있다.
상기 블록은 예를 들면, 하기 화학식 4로 표시될 수 있다.
[화학식 4]
Figure 112014119422907-pat00004
화학식 4에서 R, X 및 Y는 각각 화학식 1에서의 R, X 및 Y에 대한 사항이 동일하게 적용될 수 있다.
따라서, 화학식 4에서 R은 수소 또는 탄소수 1 내지 4의 알킬기이고, X는 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이며, 상기에서 X1은 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, Y는 8개 이상의 사슬 형성 원자를 가지는 사슬이 연결된 고리 구조를 포함하는 1가 치환기일 수 있으며, 상기 각 치환기의 구체적인 종류도 전술한 내용이 동일하게 적용될 수 있다.
하나의 예시에서 상기 제 1 블록은, 상기 화학식 4에서 R이 수소 또는 알킬기, 예를 들면, 수소 또는 탄소수 1 내지 4의 알킬기이고, X는 -C(=O)-O-이고, Y는 상기 화학식 2의 치환기인 블록일 수 있다. 이러한 블록은, 본 명세서에서 제 1A 블록으로 지칭될 수 있지만, 이에 제한되는 것은 아니다. 이러한 블록은 예를 들면 하기 화학식 5로 나타날 수 있다.
[화학식 5]
Figure 112014119422907-pat00005
화학식 5에서 R은 수소 또는 탄소수 1 내지 4의 알킬기이고, X는 단일 결합, 산소 원자, -C(=O)-O- 또는 -O-C(=O)-이며, P는 아릴렌기이고, Q는 산소 원자 또는 -NR3-이며, 상기에서 R3는, 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, Z는 사슬 형성 원자가 8개 이상인 직쇄 사슬이다. 다른 예시에서 화학식 5의 Q는 산소 원자일 수 있다.
다른 예시에서 제 1 블록은 하기 화학식 6으로 표시될 수 있다. 이러한 제 1 블록은, 본 명세서에서 제 1B 블록으로 호칭될 수 있다.
[화학식 6]
Figure 112014119422907-pat00006
화학식 6에서 R1 및 R2는 각각 독립적으로 수소 또는 탄소수 1 내지 4의 알킬기이고, X는 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이며, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, T는 단일 결합 또는 아릴렌기이고, Q는 단일 결합 또는 카보닐기이며, Y는 사슬 형성 원자가 8개 이상인 사슬이다.
제 1B 블록인 상기 화학식 6에서 X는 단일 결합, 산소 원자, 카보닐기, -C(=O)-O- 또는 -O-C(=O)-일 수 있다.
제 1B 블록에 포함되는 상기 Y의 사슬의 구체적인 예로는, 화학식 1에서 기술한 내용이 유사하게 적용될 수 있다.
다른 예시에서 상기 제 1 블록은 상기 화학식 4 내지 6 중 어느 하나의 화학식에서 사슬 형성 원자가 8개 이상인 사슬의 적어도 하나의 사슬 형성 원자가 전기 음성도가 3 이상인 블록일 수 있다. 상기 원자의 전기 음성도는 다른 예시에서는 3.7 이하일 수 있다. 본 명세서에서 이러한 블록은 제 1C 블록으로 호칭될 수 있다. 상기에서 전기 음성도가 3 이상인 원자로는, 질소 원자 또는 산소 원자가 예시될 수 있지만, 이에 제한되는 것은 아니다.
블록 공중합체에 상기 제 1A, 1B 또는 1C 블록과 같은 제 1 블록과 함께 포함될 수 있는 다른 블록(이하, 제 2 블록으로 지칭할 수 있다.)의 종류는 특별히 제한되지 않는다.
예를 들면, 상기 제 2 블록은, 폴리비닐피롤리돈 블록, 폴리락트산(polylactic acid) 블록, 폴리비닐피리딘 블록, 폴리스티렌 또는 폴리트리메틸실릴스티렌(poly trimethylsilylstyrene) 등과 같은 폴리스티렌(polystyrene) 블록, 폴리에틸렌옥시드(polyethylene oxide)와 같은 폴리알킬렌옥시드 블록, 폴리부타디엔(poly butadiene) 블록, 폴리이소프렌(poly isoprene) 블록 또는 폴리에틸렌(poly ethylene) 등의 폴리올레핀 블록이 예시될 수 있다. 이러한 블록은 본 명세서에서 제 2A 블록으로 지칭될 수 있다.
하나의 예시에서 상기 제 1A, 1B 또는 1C 블록과 같은 제 1 블록과 함께 포함될 수 있는 제 2 블록으로는 하나 이상의 할로겐 원자를 포함하는 방향족 구조를 가지는 블록일 수 있다.
이러한 제 2 블록은, 예를 들면, 하기 화학식 7로 표시되는 블록일 수 있다. 이러한 블록은, 본 명세서에서 제 2B 블록으로 지칭될 수 있다.
[화학식 7]
Figure 112014119422907-pat00007
화학식 7에서 B는 하나 이상의 할로겐 원자를 포함하는 방향족 구조를 가지는 1가 치환기이다.
이러한 제 2 블록은, 전술한 제 1 블록과 우수한 상호 작용을 나타내어 블록 공중합체가 우수한 자기 조립 특성 등을 나타내도록 할 수 있다.
화학식 7에서 방향족 구조는, 예를 들면, 탄소수 6 내지 18 또는 탄소수 6 내지 12의 방향족 구조일 수 있다.
또한, 화학식 7에 포함되는 할로겐 원자로는, 불소 원자 또는 염소 원자 등이 예시될 수 있고, 적절하게는 불소 원자가 사용될 수 있지만, 이에 제한되는 것은 아니다.
하나의 예시에서 화학식 7의 B는 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상의 할로겐 원자로 치환된 탄소수 6 내지 12의 방향족 구조를 가지는 1가 치환기일 수 있다. 상기에서 할로겐 원자의 개수의 상한은 특별히 제한되지 않고, 예를 들면, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하의 할로겐 원자가 존재할 수 있다.
예를 들어, 제 2B 블록인 화학식 7은 하기 화학식 8로 표시될 수 있다.
[화학식 8]
Figure 112014119422907-pat00008
화학식 8에서 X2는, 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이고, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, W는 적어도 1개의 할로겐 원자를 포함하는 아릴기이다. 상기에서 W는 적어도 1개의 할로겐 원자로 치환된 아릴기, 예를 들면, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상의 할로렌 원자로 치환된 탄소수 6 내지 12의 아릴기일 수 있다.
제 2B 블록은, 예를 들면, 하기 화학식 9로 표시될 수 있다.
[화학식 9]
Figure 112014119422907-pat00009
화학식 9에서 X2는, 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이고, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, R1 내지 R5는 각각 독립적으로 수소, 알킬기, 할로알킬기 또는 할로겐 원자이고, R1 내지 R5가 포함하는 할로겐 원자의 수는 1개 이상이다.
화학식 9에서 X2는, 다른 예시에서 단일 결합, 산소 원자, 알킬렌기, -C(=O)-O- 또는 -O-C(=O)-일 수 있다.
화학식 9에서 R1 내지 R5는 각각 독립적으로 수소, 알킬기, 할로알킬기 또는 할로겐 원자이되, R1 내지 R5는 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상의 할로겐 원자, 예를 들면, 불소 원자를 포함할 수 있다. R1 내지 R5에 포함되는 할로겐 원자, 예를 들면, 불소 원자는, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하일 수 있다.
하나의 예시에서 상기 제 2 블록은, 하기 화학식 10으로 표시되는 블록일 수 있다. 이러한 블록은, 본 명세서에서 제 2C 블록으로 지칭될 수 있다.
[화학식 10]
Figure 112014119422907-pat00010
화학식 10에서 T 및 K는 각각 독립적으로 산소 원자 또는 단일 결합이고, U는 알킬렌기이다.
일 예시에서 상기 제 2C 블록은, 상기 화학식 10에서 U는 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기인 블록일 수 있다.
상기 제 2C 블록은, 상기 화학식 10의 T 및 K 중에서 어느 하나가 단일 결합이고, 다른 하나가 산소 원자인 블록일 수 있다. 이러한 블록에서 상기 U는 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기인 블록일 수 있다.
상기 제 2C 블록은, 상기 화학식 10의 T 및 K가 모두 산소 원자인 블록일 수 있다. 이러한 블록에서 상기 U는 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기인 블록일 수 있다.
제 2 블록은 또 다른 예시에서 금속 원자 또는 준금속 원자를 하나 이상 포함하는 블록일 수 있다. 이러한 블록은 본 명세서에서 제 2D 블록으로 지칭될 수 있다. 이러한 블록은, 예를 들어, 블록 공중합체를 사용하여 형성한 자기 조립된 막에 대하여 에칭 공정이 진행되는 경우에, 에칭 선택성을 개선할 수 있다.
제 2D 블록에 포함되는 금속 또는 준금속 원자로는, 규소 원자, 철 원자 또는 붕소 원자 등이 예시될 수 있지만, 블록 공중합체에 포함되는 다른 원자와의 차이에 의해 적절한 에칭 선택성을 보일 수 있는 것이라면 특별히 제한되지 않는다.
제 2D 블록은, 상기 금속 또는 준금속 원자와 함께 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상의 할로겐 원자, 예를 들면, 불소 원자를 포함할 수 있다. 제 2D 블록에 포함되는 불소 원자와 같은 할로겐 원자는, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하일 수 있다.
제 2D 블록은, 하기 화학식 11로 표시될 수 있다.
[화학식 11]
Figure 112014119422907-pat00011
화학식 11에서 B는 금속 원자 또는 준금속 원자를 포함하는 치환기 및 할로겐 원자를 포함하는 방향족 구조를 가지는 1가 치환기일 수 있다.
화학식 11의 상기 방향족 구조는, 탄소수 6 내지 12의 방향족 구조, 예를 들면, 아릴기이거나, 아릴렌기일 수 있다.
화학식 11의 제2 2D 블록은, 예를 들면, 하기 화학식 12로 표시될 수 있다.
[화학식 12]
Figure 112014119422907-pat00012
화학식 12에서 X2는, 단일 결합, 산소 원자, 황 원자, -NR1-, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이고, 상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -NR2-, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이며, W는 금속 원자 또는 준금속 원자를 포함하는 치환기 및 적어도 1개의 할로겐 원자를 포함하는 아릴기이다.
상기에서 W는, 금속 원자 또는 준금속 원자를 포함하는 치환기 및 적어도 1개의 할로겐 원자를 포함하는 탄소수 6 내지 12의 아릴기일 수 있다.
이러한 아릴기에서 상기 금속 원자 또는 준금속 원자를 포함하는 치환기는 적어도 1개 또는 1개 내지 3개 포함되어, 상기 할로겐 원자는 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상 포함될 수 있다.
상기에서 할로겐 원자는, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하로 포함될 수 있다.
화학식 12의 제 2D 블록은, 예를 들면, 하기 화학식 13으로 표시될 수 있다.
[화학식 13]
Figure 112014119422907-pat00013
화학식 13에서 X2는, 단일 결합, 산소 원자, 황 원자, -NR1-, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이고, 상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -NR2-, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이며, R1 내지 R5는 각각 독립적으로 수소, 알킬기, 할로알킬기, 할로겐 원자 및 금속 또는 준금속 원자를 포함하는 치환기이고, R1 내지 R5 중 적어도 하나는 할로겐 원자이며, R1 내지 R5 중 적어도 하나는 금속 또는 준금속 원자를 포함하는 치환기이다.
화학식 13에서 R1 내지 R5 중 적어도 1개, 1개 내지 3개 또는 1개 내지 2개는 전술한 금속 원자 또는 준금속 원자를 포함하는 치환기일 수 있다.
화학식 13에서 R1 내지 R5에는 할로겐 원자가 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상 포함될 수 있다. R1 내지 R5에 포함되는 할로겐 원자는, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하일 수 있다.
상기 기술한 내용에서 금속 또는 준금속 원자를 포함하는 치환기로는, 트리알킬실록시기, 페로세닐(ferrocenyl)기, 폴리헤드럴 올리고메릭 실세스퀴오켄(polyhedral oligomeric silsesquioxane)기 등과 같은 실세스퀴옥사닐기 또는 카보레이닐(carboranyl)기 등이 예시될 수 있지만, 이러한 치환기는, 적어도 하나의 금속 또는 준금속 원자를 포함하여, 에칭 선택성이 확보될 수 있도록 선택된다면 특별히 제한되지 않는다.
제 2 블록은 또 다른 예시에서 전기 음성도가 3 이상인 원자로서 할로겐 원자가 아닌 원자(이하, 비할로겐 원자로 호칭될 수 있다.)를 포함하는 블록일 수 있다. 상기와 같은 블록은 본 명세서에서 제 2E 블록으로 호칭될 수 있다. 제 2E 블록에 포함되는 상기 비할로겐 원자의 전기 음성도는 다른 예시에서는 3.7 이하일 수 있다.
제 2E 블록에 포함되는 상기 비할로겐 원자로는, 질소 원자 또는 산소 원자 등이 예시될 수 있지만, 이에 제한되지 않는다.
제 2E 블록은, 상기 전기 음성도가 3 이상인 비할로겐 원자와 함께 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상의 할로겐 원자, 예를 들면, 불소 원자를 포함할 수 있다. 제 2E 블록에 포함되는 불소 원자와 같은 할로겐 원자는, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하일 수 있다.
제 2E 블록은, 하기 화학식 14로 표시될 수 있다.
[화학식 14]
Figure 112014119422907-pat00014
화학식 14에서 B는 전기 음성도가 3 이상인 비할로겐 원자를 포함하는 치환기 및 할로겐 원자를 포함하는 방향족 구조를 가지는 1가 치환기일 수 있다.
화학식 14의 상기 방향족 구조는, 탄소수 6 내지 12의 방향족 구조, 예를 들면, 아릴기이거나, 아릴렌기일 수 있다.
화학식 14의 블록은, 다른 예시에서 하기 화학식 15로 표시될 수 있다.
[화학식 15]
Figure 112014119422907-pat00015
화학식 15에서 X2는, 단일 결합, 산소 원자, 황 원자, -NR1-, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이고, 상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -NR2-, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이며, W는 전기 음성도가 3 이상인 비할로겐 원자를 포함하는 치환기 및 적어도 1개의 할로겐 원자를 포함하는 아릴기이다.
상기에서 W는, 전기 음성도가 3 이상인 비할로겐 원자를 포함하는 치환기 및 적어도 1개의 할로겐 원자를 포함하는 탄소수 6 내지 12의 아릴기일 수 있다.
이러한 아릴기에서 상기 전기 음성도가 3 이상인 비할로겐 원자를 포함하는 치환기는 적어도 1개 또는 1개 내지 3개 포함될 수 있다. 도한, 상기 할로겐 원자는 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상 포함될 수 있다. 상기에서 할로겐 원자는, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하로 포함될 수 있다.
화학식 15의 블록은, 다른 예시에서 하기 화학식 16으로 표시될 수 있다.
[화학식 16]
Figure 112014119422907-pat00016
화학식 16에서 X2는, 단일 결합, 산소 원자, 황 원자, -NR1-, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이고, 상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -NR2-, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이며, R1 내지 R5는 각각 독립적으로 수소, 알킬기, 할로알킬기, 할로겐 원자 및 전기 음성도가 3 이상인 비할로겐 원자를 포함하는 치환기이고, R1 내지 R5 중 적어도 하나는 할로겐 원자이며, R1 내지 R5 중 적어도 하나는 전기 음성도가 3 이상인 비할로겐 원자를 포함하는 치환기이다.
화학식 16에서 R1 내지 R5 중 적어도 1개, 1개 내지 3개 또는 1개 내지 2개는 전술한 전기 음성도가 3 이상인 비할로겐 원자를 포함하는 치환기일 수 있다.
화학식 16에서 R1 내지 R5에는 할로겐 원자가 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상 포함될 수 있다. R1 내지 R5에 포함되는 할로겐 원자는, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하일 수 있다.
상기 기술한 내용에서 전기 음성도가 3 이상인 비할로겐 원자를 포함하는 치환기로는, 히드록시기, 알콕시기, 카복실기, 아미도기, 에틸렌 옥시드기, 니트릴기, 피리딘기 또는 아미노기 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
다른 예시에서 제 2 블록은, 헤테로고리 치환기를 가지는 방향족 구조를 포함할 수 있다. 이러한 제 2 블록은 본 명세서에서 제 2F 블록으로 지칭될 수 있다.
제 2F 블록은 하기 화학식 17로 표시될 수 있다.
[화학식 17]
Figure 112014119422907-pat00017
화학식 17에서 B는 헤테로고리 치환기로 치환된 탄소수 6 내지 12의 방향족 구조를 가지는 1가 치환기이다.
화학식 17의 방향족 구조는, 필요한 경우에 하나 이상이 할로겐 원자를 포함할 수 있다.
화학식 17의 단위는 하기 화학식 18로 표시될 수 있다.
[화학식 18]
Figure 112014119422907-pat00018
화학식 18에서 X2는, 단일 결합, 산소 원자, 황 원자, -NR1-, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이고, 상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -NR2-, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이며, W는 헤테로고리 치환기를 가지는 탄소수 6 내지 12의 아릴기이다.
화학식 18의 단위는 하기 화학식 19로 표시될 수 있다.
[화학식 19]
Figure 112014119422907-pat00019
화학식 19에서 X2는, 단일 결합, 산소 원자, 황 원자, -NR1-, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이고, 상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -NR2-, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이며, R1 내지 R5는 각각 독립적으로 수소, 알킬기, 할로알킬기, 할로겐 원자 및 헤테로고리 치환기이고, R1 내지 R5 중 적어도 하나는 헤테로고리 치환기이다.
화학식 19에서 R1 내지 R5 중 적어도 하나, 예를 들면, 1개 내지 3개 또는 1개 내지 2개는, 상기 헤테로고리 치환기이고, 나머지는 수소 원자, 알킬기 또는 할로겐 원자이거나, 수소 원자 또는 할로겐 원자이거나 또는 수소 원자일 수 있다.
전술한 헤테로고리 치환기로는, 프탈이미드 유래 치환기, 싸이오펜 유래 치환기, 싸이아졸 유래 치환기, 카바졸 유래 치환기 또는 이미다졸 유래 치환기 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
본 출원의 블록 공중합체는 전술한 제 1 블록 중에서 하나 이상을 포함하고, 또한 전술한 제 2 블록 중에서 하나 이상을 포함할 수 있다. 이러한 블록 공중합체는 2개의 블록 또는 3개의 블록을 포함하거나, 그 이상의 블록을 포함할 수 있다. 예를 들어, 상기 블록 공중합체는, 상기 제 1 블록 중에서 어느 하나와 상기 제 2 블록 중에서 어느 하나를 포함하는 디블록 공중합체일 수 있다.
상기와 같은 블록 공중합체는, 기본적으로 우수한 상분리 내지는 자기 조립 특성을 나타낼 수 있다. 또한, 각 블록의 선택 및 조합과 하기 기술된 파라미터 중 하나 이상을 만족하도록 함으로써 상기 상분리 내지는 자기 조립 특성이 보다 개선되도록 할 수 있다.
블록 공중합체는 공유 결합으로 연결된 2개 또는 그 이상의 고분자 사슬을 포함하기 때문에 상분리가 일어나게 된다. 본 출원의 블록 공중합체는 우수한 상분리 특성을 나타내고, 필요에 따라서 미세상분리(microphase seperation)에 의한 나노 스케일의 구조를 형성할 수 있다. 나노 구조의 형태 및 크기는 블록 공중합체의 크기(분자량 등)나, 블록간의 상대적 비율 등에 의해 조절될 수 있다. 상분리에 의해 형성되는 구조로는, 구형, 실린더, 자이로이드(gyroid), 라멜라 및 반전 구조 등이 예시될 수 있고, 이러한 구조를 형성하는 블록 공중합체의 능력을 자기 조립성으로 호칭할 수 있다. 본 발명자들은, 전술한 다양한 구조의 블록 공중합체 중에서 하기에서 기술하는 각종 파라미터 중에서 적어도 하나를 만족하는 공중합체는, 각 블록 공중합체가 기본적으로 보유하고 있는 자기 조립성이 크게 향상되는 점을 확인하였다. 본 출원의 블록 공중합체는 후술하는 파라미터 중에서 어느 하나만을 충족할 수도 있고, 2개 이상의 파라미터를 동시에 충족할 수도 있다. 특히, 적절한 파라미터의 충족을 통해 블록 공중합체가 수직 배향성을 나타내도록 할 수 있음을 밝혀내었다. 본 출원에서 용어 수직 배향은, 블록 공중합체의 배향성을 나타내는 것이고, 블록 공중합체에 의해 형성되는 나노 구조체의 배향이 기판 방향과 수직한 배향을 의미할 수 있다. 블록 공중합체의 자기 조립된 구조를 다양한 기판 위에 수평 혹은 수직으로 조절하는 기술은 블록 공중합체의 실제적 응용에서 매우 큰 비중을 차지한다. 통상적으로 블록 공중합체의 막에서 나노 구조체의 배향은 블록 공중합체를 형성하고 있는 블록 중에서 어느 블록이 표면 혹은 공기 중에 노출되는 가에 의해 결정된다. 일반적으로 다수의 기판이 극성이고, 공기는 비극성이기 때문에 블록 공중합체의 블록 중에서 더 큰 극성을 가지는 블록이 기판에 웨팅(wetting)하고, 더 작은 극성을 가지는 블록이 공기와의 계면에서 웨팅(wetting)하게 된다. 따라서, 블록 공중합체의 서로 다른 특성을 가지는 블록이 동시에 기판측에 웨팅하도록 하기 위하여 다양한 기술이 제안되어 있으며, 가장 대표적인 기술은 중성 표면 제작을 적용한 배향의 조절이다. 그렇지만, 본 출원의 하나의 측면에서는, 하기의 파라미터를 적절하게 조절하게 되면, 블록 공중합체가 중성 표면 처리 등을 포함한 수직 배향을 달성하기 위한 것으로 알려진 공지의 처리가 수행되지 않은 기판에 대해서도 수직 배향이 가능하다. 또한, 본 출원의 추가적인 측면에서는 상기와 같은 수직 배향을 열적 숙성(thermal annealing)에 의해서 넓은 영역에 단 시간 내에 유도할 수도 있다.
본 출원의 하나의 측면의 블록 공중합체는, 소수성 표면상에서 스침각 입사 소각 산란(GISAXS, Grazing Incidence Small Angle X ray Scattering)의 인플레인상(in plane) 회절 패턴을 나타내는 막을 형성할 수 있다. 상기 블록 공중합체는, 친수성 표면상에서 스침각 입사 소각 산란(GISAXS, Grazing Incidence Small Angle X ray Scattering)에서 인플레인상 회절 패턴을 나타내는 막을 형성할 수 있다.
본 출원에서 GISAXS에서 인플레인상의 회절 패턴을 나타낸다는 것은 GISAXS 분석 시에 GISAXS 회절 패턴에서 X좌표에 수직한 피크를 나타낸다는 것을 의미할 수 있다. 이러한 피크는, 블록 공중합체의 수직 배향성에 의해 확인된다. 따라서, 인플레인상 회절 패턴을 나타내는 블록 공중합체는 수직 배향성을 가진다. 추가적인 예시에서 상기 GISAXS 회절 패턴의 X좌표에서 확인되는 피크은, 적어도 2개 이상일 수 있고, 복수의 피크가 존재하는 경우에 그 피크의 산란 벡터(q값)들은 정수비를 가지면서 확인될 수 있고, 이러한 경우에 블록 공중합체의 상분리 효율은 보다 향상될 수 있다.
본 출원에서 용어 수직은, 오차를 감안한 표현이고, 예를 들면, ±10도, ±8도, ±6도, ±4도 또는 ±2도 이내의 오차를 포함하는 의미일 수 있다.
친수성과 소수성의 표면 상에서 모두 인플레인상의 회절 패턴을 나타내는 막을 형성할 수 있는 블록 공중합체는 수직 배향을 유도하기 위하여 별도의 처리를 수행하지 않은 다양한 표면상에서 수직 배향 특성을 나타낼 수 있다. 본 출원에서 용어 소수성 표면은, 순수(purified water)에 대한 젖음각이 5도 내지 20도의 범위 내에 있는 표면을 의미한다. 소수성 표면의 예로는, 산소 플라즈마, 황산 또는 피라나 용액으로 처리된 실리콘의 표면이 예시될 수 있지만, 이에 제한되는 것은 아니다. 본 출원에서 용어 친수성 표면은, 순수(purified water)에 대한 상온 젖음각이 50도 내지 70도의 범위 내에 있는 표면을 의미한다. 친수성 표면으로는, 산소 플라즈마로 처리한 PDMS(polydimethylsiolxane)의 표면, HMDS(hexamethyldisilazane) 처리한 실리콘의 표면 또는 불산(Hydrogen fluoride, HF) 처리한 실리콘의 표면 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
특별히 달리 규정하지 않는 한, 본 출원에서 젖음각 등과 같이 온도에 의해 변할 수 있는 물성은 상온에서 측정한 수치이다. 용어 상온은, 가온되거나, 감온되지 않은 자연 그대로의 온도이고, 약 10℃ 내지 30℃, 약 25℃ 또는 약 23℃의 온도를 의미할 수 있다.
친수성 또는 소수성 표면상에 형성되어 스침각 입사 소각 산란(GISAXS)상에서 인플레인상 회절 패턴을 나타내는 막은 열적 숙성(thermal annealing)을 거친 막일 수 있다. 스침각 입사 소각 산란(GISAXS)를 측정하기 위한 막은, 예를 들면, 상기 블록 공중합체를 약 0.7 중량%의 농도로 용매(예를 들면, 플루오르벤젠(flourobenzene)에 희석하여 제조한 코팅액을 약 25 nm의 두께 및 2.25 cm2의 코팅 면적(가로: 1.5 cm, 세로: 1.5 cm)으로 해당 친수성 또는 소수성 표면에 코팅하고, 이러한 코팅막을 열적 숙성시켜서 형성할 수 있다. 열적 숙성은, 예를 들면, 상기 막을 약 160℃의 온도에서 약 1 시간 동안 유지하여 수행할 수 있다. 스침각 입사 소각 산란(GISAXS)은 상기와 같이 형성된 막에 약 0.12 내지 0.23도의 범위 내의 입사각에서 X선을 입사시켜서 측정할 수 있다. 공지의 측정 기기(예를 들면, 2D marCCD)로 막으로부터 산란되어 나오는 회절 패턴을 얻을 수 있다. 상기 회절 패턴을 통해 인플레인상의 회절 패턴의 존재 여부를 확인하는 방식은 공지이다.
스침각 입사 소각 산란(GISAXS)에서 전술한 피크를 나타내는 블록 공중합체는 우수한 자기 조립 특성을 나타낼 수 있고, 그러한 특성이 목적에 따라 효과적으로 조절될 수 있다.
본 출원의 블록 공중합체는, XRD 분석(X선 회절 분석, X-ray Diffraction analysis) 시에 소정 범위의 산란 벡터(q) 내에서 적어도 하나의 피크를 나타낼 수 있다.
예를 들면, 상기 블록 공중합체는, X선 회절 분석에서 0.5 nm-1 내지 10 nm-1의 산란 벡터(q) 범위 내에서 적어도 하나의 피크를 나타낼 수 있다. 상기 피크가 나타나는 산란 벡터(q)은 다른 예시에서 0.7 nm-1 이상, 0.9 nm-1 이상, 1.1 nm-1 이상, 1.3 nm-1 이상 또는 1.5 nm-1 이상일 수 있다. 상기 피크가 나타나는 산란 벡터(q)은 다른 예시에서 9 nm-1 이하, 8 nm-1 이하, 7 nm-1 이하, 6 nm-1 이하, 5 nm-1 이하, 4 nm-1 이하, 3.5 nm-1 이하 또는 3 nm-1 이하일 수 있다.
상기 산란 벡터(q)의 범위 내에서 확인되는 피크의 반높이 너비(Full width at half maximum, FWHM)는, 0.2 내지 0.9 nm-1의 범위 내일 수 있다. 상기 반높이 너비는 다른 예시에서 0.25 nm-1 이상, 0.3 nm-1 이상 또는 0.4 nm-1 이상일 수 있다. 상기 반높이 너비는 다른 예시에서 0.85 nm-1 이하, 0.8 nm-1 이하 또는 0.75 nm-1 이하일 수 있다.
본 출원에서 용어 반높이 너비는, 최대 피크의 강도의 1/2의 강도를 나타내는 위치에서의 피크의 너비(산란 벡터(q)의 차이)를 의미할 수 있다.
XRD 분석에서의 상기 산란 벡터(q) 및 반높이 너비는, 후술하는 XRD 분석에 의해 얻어진 결과를 최소 좌승법을 적용한 수치 분석학적인 방식으로 구한 수치이다. 상기 방식에서는 XRD 회절 패턴에서 가장 최소의 강도(intensity)를 보이는 부분을 베이스라인(baseline)으로 잡아 상기에서의 강도(intensity)를 0으로 되게 한 상태에서 상기 XRD 패턴 피크의 프로파일을 가우시안 피팅(Gaussian fitting)한 후, 피팅된 결과로부터 상기 산란 벡터와 반높이 너비를 구할 수 있다. 상기 가우시안 피팅 시에 R 제곱(R square)은 적어도 0.9 이상, 0.92 이상, 0.94 이상 또는 0.96 이상이다. XRD 분석으로부터 상기와 같은 정보를 얻을 수 있는 방식은 공지이며, 예를 들면, 오리진(origin) 등의 수치 해석 프로그램을 적용할 수 있다.
상기 산란 벡터(q)의 범위 내에서 상기 반높이 너비의 피크를 나타내는 블록 공중합체는, 자기 조립에 적합한 결정성 부위를 포함할 수 있다. 상기 기술한 산란 벡터(q)의 범위 내에서 확인되는 블록 공중합체는 우수한 자기 조립 특성을 나타낼 수 있다.
XRD 분석은 블록 공중합체 시료에 X선을 투과시킨 후에 산란 벡터에 따른 산란 강도를 측정하여 수행할 수 있다. XRD 분석은 블록 공중합체에 대하여 특별한 전 처리 없이 수행할 수 있으며, 예를 들면, 블록 공중합체를 적절한 조건에서 건조한 후에 X선에 투과시켜 수행할 수 있다. X선으로는 수직 크기가 0.023 mm이고, 수평 크기가 0.3 mm인 X선을 적용할 수 있다. 측정 기기(예를 들면, 2D marCCD)를 사용하여 시료에서 산란되어 나오는 2D 회절 패턴을 이미지로 얻고, 얻어진 회절 패턴을 전술한 방식으로 피팅(fitting)하여 산란 벡터 및 반높이 너비 등을 구할 수 있다.
후술하는 바와 같이 블록 공중합체의 적어도 하나의 블록이 상기 사슬을 포함하는 경우에, 상기 상기 사슬의 사슬 형성 원자의 수(n)는, 상기 X선 회절 분석에 의해 구해지는 산란 벡터(q)와 하기 수식 1을 만족할 수 있다.
[수식 1]
3 nm-1 내지 5 nm-1 = nq/(2×π)
수식 1에서 n은 상기 사슬 형성 원자의 수이고, q는, 상기 블록 공중합체에 대한 X선 회절 분석에서 피크가 관찰되는 가장 작은 산란 벡터(q)이거나, 혹은 가장 큰 피크 면적의 피크가 관찰되는 산란 벡터(q)이다. 또한, 수식 1에서 π는 원주율을 의미한다.
상기에서 수식 1에 도입되는 산란 벡터 등은 전술한 X선 회절 분석 방식에서 언급한 바와 같은 방식에 따라 구한 수치이다.
수식 1에서 도입되는 산란 벡터(q)는, 예를 들면, 0.5 nm-1 내지 10 nm-1의 범위 내의 산란 벡터(q)일 수 있다. 상기 수식 1에 도입되는 산란 벡터(q)는 다른 예시에서 0.7 nm-1 이상, 0.9 nm-1 이상, 1.1 nm-1 이상, 1.3 nm-1 이상 또는 1.5 nm-1 이상일 수 있다. 상기 수식 1에 도입되는 산란 벡터(q)는 다른 예시에서 9 nm-1 이하, 8 nm-1 이하, 7 nm-1 이하, 6 nm-1 이하, 5 nm-1 이하, 4 nm-1 이하, 3.5 nm-1 이하 또는 3 nm-1 이하일 수 있다.
수식 1은, 블록 공중합체가 자기 조립되어 상분리 구조를 형성하였을 경우에 상기 상기 사슬이 포함되어 있는 블록간의 간격(D)과 상기 상기 사슬의 사슬 형성 원자의 수의 관계를 나타내며, 상기 사슬을 가지는 블록 공중합체에서 상기 상기 사슬의 사슬 형성 원자의 수가 상기 수식 1을 만족하는 경우에 상기 상기 사슬이 나타내는 결정성이 증대되고, 그에 따라 블록 공중합체의 상분리 특성 내지는 수직 배향성이 크게 향상될 수 있다. 상기 수식 1에 따른 nq/(2吝)는, 다른 예시에서 4.5 nm-1 이하일 수도 있다. 상기에서 상기 사슬이 포함되어 있는 블록간의 간격(D, 단위: nm)은, 수식 D=2×π/q로 계산될 수 있고, 상기에서 D는 상기 블록간의 간격(D, 단위: nm)이고, π 및 q는 수식 1에서 정의된 바와 같다.
본 출원의 하나의 측면에서는, 블록 공중합체의 제 1 블록의 표면 에너지와 상기 제 2 블록의 표면 에너지의 차이의 절대값이 10 mN/m 이하, 9 mN/m 이하, 8 mN/m 이하, 7.5 mN/m 이하 또는 7 mN/m 이하일 수 있다. 상기 표면 에너지의 차이의 절대값은 1.5 mN/m, 2 mN/m 또는 2.5 mN/m 이상일 수 있다. 이러한 범위의 표면 에너지의 차이의 절대값을 가지는 제 1 블록과 제 2 블록이 공유 결합에 의해 연결된 구조는, 적절한 비상용성으로 인한 상분리에 의해 효과적인 미세상분리(microphase seperation)를 유도할 수 있다. 상기에서 제 1 블록은, 예를 들면, 전술한 상기 사슬을 가지는 블록일 수 있다.
표면 에너지는 물방울형 분석기(Drop Shape Analyzer, KRUSS사의 DSA100제품)를 사용하여 측정할 수 있다. 구체적으로 표면 에너지는 측정하고자 하는 대상 시료(블록 공중합체 또는 단독 중합체)를 플루오르벤젠(flourobenzene)에 약 2 중량%의 고형분 농도로 희석시킨 코팅액을 기판에 약 50nm의 두께와 4 cm2의 코팅 면적(가로: 2cm, 세로: 2cm)으로 상온에서 약 1 시간 정도 건조시킨 후에 160°C에서 약 1시간 동안 열적 숙성(thermal annealing)시킨 막에 대하여 측정할 수 있다. 열적 숙성을 거친 상기 막에 표면 장력(surface tension)이 공지되어 있는 탈이온화수를 떨어뜨리고 그 접촉각을 구하는 과정을 5회 반복하여, 얻어진 5개의 접촉각 수치의 평균치를 구하고, 동일하게, 표면 장력이 공지되어 있는 디요오드메탄(diiodomethane)을 떨어뜨리고 그 접촉각을 구하는 과정을 5회 반복하여, 얻어진 5개의 접촉각 수치의 평균치를 구한다. 그 후, 구해진 탈이온화수와 디요오드메탄에 대한 접촉각의 평균치를 이용하여 Owens-Wendt-Rabel-Kaelble 방법에 의해 용매의 표면 장력에 관한 수치(Strom 값)를 대입하여 표면 에너지를 구할 수 있다. 블록 공중합체의 각 블록에 대한 표면 에너지의 수치는, 상기 블록을 형성하는 단량체만으로 제조된 단독 중합체(homopolymer)에 대하여 상기 기술한 방법으로 구할 수 있다.
블록 공중합체가 전술한 상기 사슬을 포함하는 경우에 상기 상기 사슬이 포함되어 있는 블록은 다른 블록에 비하여 높은 표면 에너지를 가질 수 있다. 예를 들어, 블록 공중합체의 제 1 블록이 상기 사슬을 포함한다면, 제 1 블록은 제 2 블록에 비하여 높은 표면 에너지를 가질 수 있다. 이러한 경우에 제 1 블록의 표면 에너지는, 약 20 mN/m 내지 40 mN/m의 범위 내에 있을 수 있다. 상기 제 1 블록의 표면 에너지는, 22 mN/m 이상, 24 mN/m 이상, 26 mN/m 이상 또는 28 mN/m 이상일 수 있다. 상기 제 1 블록의 표면 에너지는, 38 mN/m 이하, 36 mN/m 이하, 34 mN/m 이하 또는 32 mN/m 이하일 수 있다. 이러한 제 1 블록이 포함되고, 제 2 블록과 상기와 같은 표면 에너지의 차이를 나타내는 블록 공중합체은, 우수한 자기 조립 특성을 나타낼 수 있다.
블록 공중합체에서 제 1 블록과 제 2 블록의 밀도의 차이의 절대값은 0.25 g/cm3 이상, 0.3 g/cm3 이상, 0.35 g/cm3 이상, 0.4 g/cm3 이상 또는 0.45 g/cm3 이상일 수 있다. 상기 밀도의 차이의 절대값은 0.9 g/cm3 이상, 0.8 g/cm3 이하, 0.7 g/cm3 이하, 0.65 g/cm3 이하 또는 0.6 g/cm3 이하일 수 있다. 이러한 범위의 밀도차의 절대값을 가지는 제 1 블록과 제 2 블록이 공유 결합에 의해 연결된 구조는, 적절한 비상용성으로 인한 상분리에 의해 효과적인 미세상분리(microphase seperation)를 유도할 수 있다.
상기 블록 공중합체의 각 블록의 밀도는 공지의 부력법을 이용하여 측정할 수 있으며, 예를 들면, 에탄올과 같이 공기 중에서의 질량과 밀도를 알고 있는 용매 내에서의 블록 공중합체의 질량을 분석하여 밀도를 측정할 수 있다.
블록 공중합체가 전술한 상기 사슬을 포함하는 경우에 상기 상기 사슬이 포함되어 있는 블록은 다른 블록에 비하여 낮은 밀도를 가질 수 있다. 예를 들어, 블록 공중합체의 제 1 블록이 상기 사슬을 포함한다면, 제 1 블록은 제 2 블록에 비하여 낮은 밀도를 가질 수 있다. 이러한 경우에 제 1 블록의 밀도는, 약 0.9 g/cm3 내지 1.5 g/cm3 정도의 범위 내에 있을 수 있다. 상기 제 1 블록의 밀도는, 0.95 g/cm3 이상일 수 있다. 상기 제 1 블록의 밀도는, 1.4 g/cm3 이하, 1.3 g/cm3 이하, 1.2 g/cm3 이하, 1.1 g/cm3 이하 또는 1.05 g/cm3 이하일 수 있다. 이러한 제 1 블록이 포함되고, 제 2 블록과 상기와 같은 밀도차이를 나타내는 블록 공중합체은, 우수한 자기 조립 특성을 나타낼 수 있다. 상기 언급된 표면 에너지와 밀도는, 상온에서 측정한 수치일 수 있다.
블록 공중합체는, 부피 분율이 0.4 내지 0.8의 범위 내에 있는 블록과, 부피 분율이 0.2 내지 0.6의 범위 내에 있는 블록을 포함할 수 있다. 블록 공중합체가 상기 사슬을 포함하는 경우, 상기 상기 사슬을 가지는 블록의 부피 분율이 0.4 내지 0.8의 범위 내에 있을 수 있다. 예를 들어, 상기 사슬이 제 1 블록에 포함되는 경우에 제 1 블록의 부피 분율이 0.4 내지 0.8의 범위 내이고, 제 2 블록의 부피 분율이 0.2 내지 0.6의 범위 내에 있을 수 있다. 제 1 블록과 제 2 블록의 부피 분율의 합은 1일 수 있다. 상기와 같은 부피 분율로 각 블록을 포함하는 블록 공중합체는 우수한 자기 조립 특성을 나타낼 수 있다. 블록 공중합체의 각 블록의 부피 분율은 각 블록의 밀도와 GPC(Gel Permeation Chromatogrph)에 의해 측정되는 분자량을 토대로 구할 수 있다.
블록 공중합체의 수평균분자량(Mn (Number Average Molecular Weight))은, 예를 들면, 3,000 내지 300,000의 범위 내에 있을 수 있다. 본 명세서에서 용어 수평균분자량은, GPC(Gel Permeation Chromatograph)를 사용하여 측정한 표준 폴리스티렌에 대한 환산 수치이고, 본 명세서에서 용어 분자량은 특별히 달리 규정하지 않는 한 수평균분자량을 의미한다. 분자량(Mn)은 다른 예시에서는, 예를 들면, 3000 이상, 5000 이상, 7000 이상, 9000 이상, 11000 이상, 13000 이상 또는 15000 이상일 수 있다. 분자량(Mn)은 또 다른 예시에서 250000 이하, 200000 이하, 180000 이하, 160000이하, 140000이하, 120000이하, 100000이하, 90000이하, 80000이하, 70000이하, 60000이하, 50000이하, 40000이하, 30000 이하 또는 25000 이하 정도일 수 있다. 블록 공중합체는, 1.01 내지 1.60의 범위 내의 분산도(polydispersity, Mw/Mn)를 가질 수 있다. 분산도는 다른 예시에서 약 1.1 이상, 약 1.2 이상, 약 1.3 이상 또는 약 1.4 이상일 수 있다.
이러한 범위에서 블록 공중합체는 적절한 자기 조립 특성을 나타낼 수 있다. 블록 공중합체의 수평균 분자량 등은 목적하는 자기 조립 구조 등을 감안하여 조절될 수 있다.
블록 공중합체가 상기 제 1 및 제 2 블록을 적어도 포함할 경우에 상기 블록 공중합체 내에서 제 1 블록, 예를 들면, 전술한 상기 사슬을 포함하는 블록의 비율은 10몰% 내지 90몰%의 범위 내에 있을 수 있다.
본 출원은 또한 상기 블록 공중합체를 포함하는 고분자 막에 대한 것이다. 상기 고분자 막은 다양한 용도에 사용될 수 있으며, 예를 들면, 다양한 전자 또는 전자 소자, 상기 패턴의 형성 공정 또는 자기 저장 기록 매체, 플래쉬 메모리 등의 기록 매체 또는 바이오 센서 등에 사용될 수 있다.
하나의 예시에서 상기 고분자 막에서 상기 블록 공중합체는, 자기 조립을 통해 스피어(sphere), 실린더(cylinder), 자이로이드(gyroid) 또는 라멜라(lamellar) 등을 포함하는 주기적 구조를 구현하고 있을 수 있다.
예를 들면, 블록 공중합체에서 제 1 또는 제 2 블록 또는 그와 공유 결합된 다른 블록의 세그먼트 내에서 다른 세그먼트가 라멜라 형태 또는 실린더 형태 등과 같은 규칙적인 구조를 형성하고 있을 수 있다.
본 출원의 상기 고분자막은 전술한 인플레인상 회절 패턴, 즉 GISAXS 분석 시에 GISAXS 회절 패턴에서 X좌표에 수직한 피크를 나타낼 수 있다. 추가적인 예시에서 상기 GISAXS 회절 패턴의 X좌표에서 확인되는 피크은, 적어도 2개 이상일 수 있고, 복수의 피크가 존재하는 경우에 그 피크의 산란 벡터(q값)들은 정수비를 가지면서 확인될 수 있다.
본 출원은 또한 상기 블록 공중합체를 사용하여 고분자 막을 형성하는 방법에 대한 것이다. 상기 방법은 상기 블록 공중합체를 포함하는 고분자막을 자기 조립된 상태로 기판상에 형성하는 것을 포함할 수 있다. 예를 들면, 상기 방법은 상기 블록 공중합체 또는 그를 적정한 용매에 희석한 코팅액의 층을 도포 등에 의해 기판 상에 형성하고, 필요하다면, 상기 층을 숙성하거나 열처리하는 과정을 포함할 수 있다.
상기 숙성 또는 열처리는, 예를 들면, 블록 공중합체의 상전이온도 또는 유리전이온도를 기준으로 수행될 수 있고, 예를 들면, 상기 유리 전이 온도 또는 상전이 온도 이상의 온도에서 수행될 수 있다. 이러한 열처리가 수행되는 시간은 특별히 제한되지 않으며, 예를 들면, 약 1분 내지 72시간의 범위 내에서 수행될 수 있지만, 이는 필요에 따라서 변경될 수 있다. 또한, 고분자 박막의 열처리 온도는, 예를 들면, 100℃ 내지 250℃ 정도일 수 있으나, 이는 사용되는 블록 공중합체를 고려하여 변경될 수 있다.
상기 형성된 층은, 다른 예시에서는 상온의 비극성 용매 및/또는 극성 용매 내에서, 약 1분 내지 72 시간 동안 용매 숙성될 수도 있다.
본 출원은 또한 패턴 형성 방법에 대한 것이다. 상기 방법은, 예를 들면, 기판 및 상기 기판의 표면에 형성되어 있고, 자기 조립된 상기 블록 공중합체를 포함하는 고분자막을 가지는 적층체에서 상기 블록 공중합체의 제 1 또는 제 2 블록을 선택적으로 제거하는 과정을 포함할 수 있다. 상기 방법은 상기 기판에 패턴을 형성하는 방법일 수 있다. 예를 들면 상기 방법은, 상기 블록 공중합체를 포함하는 고분자 막을 기판에 형성하고, 상기 막 내에 존재하는 블록 공중합체의 어느 하나 또는 그 이상의 블록을 선택적으로 제거한 후에 기판을 식각하는 것을 포함할 수 있다. 이러한 방식으로, 예를 들면, 나노 스케일의 미세 패턴의 형성이 가능하다. 또한, 고분자 막 내의 블록 공중합체의 형태에 따라서 상기 방식을 통하여 나노 로드 또는 나노 홀 등과 같은 다양한 형태의 패턴을 형성할 수 있다. 필요하다면, 패턴 형성을 위해서 상기 블록 공중합체와 다른 공중합체 혹은 단독 중합체 등이 혼합될 수 있다. 이러한 방식에 적용되는 상기 기판의 종류는 특별히 제한되지 않고, 필요에 따라서 선택될 수 있으며, 예를 들면, 산화 규소 등이 적용될 수 있다.
예를 들면, 상기 방식은 높은 종횡비를 나타내는 산화 규소의 나노 스케일의 패턴을 형성할 수 있다. 예를 들면, 산화 규소 상에 상기 고분자막을 형성하고, 상기 고분자막 내의 블록 공중합체가 소정 구조를 형성하고 있는 상태에서 블록 공중합체의 어느 한 블록을 선택적으로 제거한 후에 산화 규소를 다양한 방식, 예를 들면, 반응성 이온 식각 등으로 에칭하여 나노로드 또는 나노 홀의 패턴 등을 포함한 다양한 형태를 구현할 수 있다. 또한, 이러한 방법을 통하여 종횡비가 큰 나노 패턴의 구현이 가능할 수 있다.
예를 들면, 상기 패턴은, 수십 나노미터의 스케일에서 구현될 수 있으며, 이러한 패턴은, 예를 들면, 차세대 정보전자용 자기 기록 매체 등을 포함한 다양한 용도에 활용될 수 있다.
예를 들면, 상기 방식에 의하면 약 3nm 내지 40 nm의 폭을 가지는 나노 구조물, 예를 들면, 나노 선들이 약 6 nm 내지 80 nm의 간격을 두고 배치되어 있는 패턴을 형성할 수 있다. 다른 예시에서는 약 3 nm 내지 40 nm의 너비, 예를 들면 직경을 가지는 나노 홀들이 약 6 nm 내지 80 nm의 간격을 형성하면 배치되어 있는 구조의 구현도 가능하다.
또한, 상기 구조에서 나노 선이나 나노 홀들이 큰 종횡비(aspect ratio)를 가지도록 할 수 있다.
상기 방법에서 블록 공중합체의 어느 한 블록을 선택적으로 제거하는 방식은 특별히 제한되지 않고, 예를 들면, 고분자막에 적정한 전자기파, 예를 들면, 자외선 등을 조사하여 상대적으로 소프트한 블록을 제거하는 방식을 사용할 수 있다. 이 경우 자외선 조사 조건은 블록 공중합체의 블록의 종류에 따라서 결정되며, 예를 들면, 약 254 nm 파장의 자외선을 1분 내지 60 분 동안 조사하여 수행할 수 있다.
또한, 자외선 조사에 이어서 고분자 막을 산 등으로 처리하여 자외선에 의해 분해된 세그먼트를 추가로 제거하는 단계를 수행할 수도 있다.
또한, 선택적으로 블록이 제거된 고분자막을 마스크로 하여 기판을 에칭하는 단계는 특별히 제한되지 않고, 예를 들면, CF4/Ar 이온 등을 사용한 반응성 이온 식각 단계를 통해 수행할 수 있고, 이 과정에 이어서 산소 플라즈마 처리 등에 의해 고분자막을 기판으로부터 제거하는 단계를 또한 수행할 수 있다.
본 출원은, 블록 공중합체 및 그 용도가 제공될 수 있다. 본 출원의 블록 공중합체는, 우수한 자기 조립 특성 내지는 상분리 특성을 가지며, 요구되는 다양한 기능도 자유롭게 부여될 수 있다.
도 1 내지 20은 고분자막의 SEM 또는 AFM 사진 또는 GISAXS 결과를 보여주는 도면이다.
이하 실시예 및 비교예를 통하여 본 출원을 보다 상세히 설명하나, 본 출원의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
1. NMR 측정
NMR 분석은 삼중 공명 5 mm 탐침(probe)을 가지는 Varian Unity Inova(500 MHz) 분광계를 포함하는 NMR 분광계를 사용하여 상온에서 수행하였다. NMR 측정용 용매(CDCl3)에 분석 대상 물질을 약 10 mg/ml 정도의 농도로 희석시켜 사용하였고, 화학적 이동은 ppm으로 표현하였다.
<적용 약어>
br = 넓은 신호, s = 단일선, d = 이중선, dd = 이중 이중선, t = 삼중선, dt = 이중 삼중선, q = 사중선, p = 오중선, m = 다중선.
2. GPC( Gel Permeation Chromatograph )
수평균분자량(Mn) 및 분자량 분포는 GPC(Gel permeation chromatography)를 사용하여 측정하였다. 5 mL 바이얼(vial)에 실시예 또는 비교예의 블록 공중합체 또는 거대 개시제 등의 분석 대상 물일을 넣고, 약 1 mg/mL 정도의 농도가 되도록 THF(tetrahydro furan)에 희석한다. 그 후, Calibration용 표준 시료와 분석하고자 하는 시료를 syringe filter(pore size: 0.45 ㎛)를 통해 여과시킨 후 측정하였다. 분석 프로그램은 Agilent technologies 사의 ChemStation을 사용하였으며, 시료의 elution time을 calibration curve와 비교하여 중량평균분자량(Mw) 및 수평균분자량(Mn)을 각각 구하고, 그 비율(Mw/Mn)로 분자량분포(PDI)를 계산하였다. GPC의 측정 조건은 하기와 같다.
<GPC 측정 조건>
기기 : Agilent technologies 사의 1200 series
컬럼 : Polymer laboratories 사의 PLgel mixed B 2개 사용
용매 : THF
컬럼온도 : 35℃
샘플 농도 : 1mg/mL, 200L 주입
표준 시료 : 폴리스티렌(Mp : 3900000, 723000, 316500, 52200, 31400, 7200, 3940, 485)
제조예 1.
하기 화학식 A의 화합물(DPM-C12)은 다음의 방식으로 합성하였다. 250 mL 플라스크에 히드로퀴논(hydroquinone)(10.0g, 94.2 mmol) 및 1-브로모도데칸(1-Bromododecane)(23.5 g, 94.2 mmol)을 넣고, 100 mL의 아세토니트릴(acetonitrile)에 녹인 후 과량의 포타슘 카보네이트(potassium carbonate)를 첨가하고, 75℃에서 약 48시간 동안 질소 조건하에서 반응시켰다. 반응 후 잔존하는 포타슘 카보네이트 및 반응에 사용한 아세토니트릴도 제거하였다. DCM(dichloromethane)과 물의 혼합 용매를 첨가하여 워크업(work up)하고, 분리된 유기층을 MgSO4로 탈수하였다. 이어서, CC(Column Chromatography)에서 DCM(dichloromethane)으로 정제하여 흰색 고체상의 중간체를 약 37%의 수득률로 얻었다.
<중간체에 대한 NMR 분석 결과>
1H-NMR(CDCl3): d6.77(dd, 4H); d4.45(s, 1H); d3.89(t, 2H); d1.75(p, 2H); d1.43(p, 2H); d1.33-1.26(m, 16H); d0.88(t, 3H).
플라스크에 합성된 중간체(9.8 g, 35.2 mmol), 메타크릴산(6.0 g, 69.7 mmol), DCC(dicyclohexylcarbodiimide)(10.8 g, 52.3 mmol) 및 DMAP(p-dimethylaminopyridine)(1.7 g, 13.9 mmol)을 넣고, 120 mL의 메틸렌클로라이드를 첨가한 후, 상온의 질소 분위기에서 24시간 동안 반응시켰다. 반응 후에 반응 중에 생성된 염(urea salt)을 필터로 제거하고 잔존하는 메틸렌클로라이드도 제거하였다. CC(Column Chromatography)에서 헥산과 DCM(dichloromethane)을 이동상으로 하여 불순물을 제거하고, 얻어진 생성물을 메탄올과 물의 혼합 용매(1:1 중량 비율로 혼합)에서 재결정시켜 흰색 고체상의 목적물(DPM-C12)(7.7 g, 22.2 mmol)을 63%의 수득률로 얻었다.
< DPM - C12 NMR 분석 결과>
1H-NMR(CDCl3): d7.02(dd, 2H); d6.89(dd, 2H); d6.32(dt, 1H); d5.73(dt, 1H); d3.94(t, 2H); d2.05(dd, 3H); d1.76(p, 2H); d1.43(p, 2H); 1.34-1.27(m, 16H); d0.88(t, 3H).
[화학식 A]
Figure 112017034608812-pat00052
화학식 A에서 R은 탄소수 12의 직쇄상 알킬기이다.
제조예 2.
1-브로모도데칸 대신 1-브로모옥탄을 사용한 것을 제외하고는 제조예 1에 준한 방식으로 반응을 진행시켜서, 하기 화학식 B의 화합물(DPM-C8)을 합성하였다. 상기 화합물에 대한 NMR 분석 결과는 하기와 같다.< DPM - C8 NMR 분석 결과>
1H-NMR(CDCl3): d7.02(dd, 2H); d6.89(dd, 2H); d6.32(dt, 1H); d5.73(dt, 1H); d3.94(t, 2H); d2.05(dd, 3H); d1.76(p, 2H); d1.45(p, 2H); 1.33-1.29(m, 8H); d0.89(t, 3H).
[화학식 B]
Figure 112017034608812-pat00053
화학식 B에서 R은 탄소수 8의 직쇄상 알킬기이다.
제조예 3.
1-브로모도데칸 대신 1-브로모데칸을 사용한 것을 제외하고는 제조예 1에 준한 방식으로 반응을 진행시켜서, 하기 화학식 C의 화합물(DPM-C10)을 합성하였다. 상기 화합물에 대한 NMR 분석 결과는 하기와 같다.
< DPM - C10 NMR 분석 결과>
1H-NMR(CDCl3): d7.02(dd, 2H); d6.89(dd, 2H); d6.33(dt, 1H); d5.72(dt, 1H); d3.94(t, 2H); d2.06(dd, 3H); d1.77(p, 2H); d1.45(p, 2H); 1.34-1.28(m, 12H); d0.89(t, 3H).
[화학식 C]
Figure 112017034608812-pat00054
화학식 C에서 R은 탄소수 10의 직쇄상 알킬기이다.
제조예 4.
1-브로모도데칸 대신 1-브로모테트라데칸을 사용한 것을 제외하고는 제조예 1에 준한 방식으로 반응을 진행시켜서, 하기 화학식 D의 화합물(DPM-C14)을 합성하였다. 상기 화합물에 대한 NMR 분석 결과는 하기와 같다.
< DPM - C14 NMR 분석 결과>
1H-NMR(CDCl3): d7.02(dd, 2H); d6.89(dd, 2H); d6.33(dt, 1H); d5.73(dt, 1H); d3.94(t, 2H); d2.05(dd, 3H); d1.77(p, 2H); d1.45(p, 2H); 1.36-1.27(m, 20H); d0.88(t, 3H.)
[화학식 D]
Figure 112017034608812-pat00055
화학식 D에서 R은 탄소수 14의 직쇄상 알킬기이다.
제조예 5.
1-브로모도데칸 대신 1-브로모헥사데칸을 사용한 것을 제외하고는 제조예 1에 준한 방식으로 반응을 진행시켜서, 하기 화학식 E의 화합물(DPM-C16)을 합성하였다. 상기 화합물에 대한 NMR 분석 결과는 하기와 같다.
< DPM C16 NMR 분석 결과>
1H-NMR(CDCl3): d7.01(dd, 2H); d6.88(dd, 2H); d6.32(dt, 1H); d5.73(dt, 1H); d3.94(t, 2H); d2.05(dd, 3H); d1.77(p, 2H); d1.45(p, 2H); 1.36-1.26(m, 24H); d0.89(t, 3H)
[화학식 E]
Figure 112017034608812-pat00056
화학식 E에서 R은 탄소수 16의 직쇄상 알킬기이다.
제조예 6.
화학식 F의 화합물(DPM-N2)을 다음의 방식으로 합성하였다. 500 mL 플라스크에 Pd/C(palladium on carbon)(1.13g, 1.06mmol) 및 2-프로판올 200 mL를 첨가하고, 물 20 mL에 용해시킨 암모늄 포메이트(ammonium formate)(6.68g, 106.0mmol)를 추가하고, 1분 동안 상온에서 반응시켜 Pd/C를 활성화시켰다. 이어서 4-아미노 페놀(4-amino phenol)(1.15g, 10.6mmol)과 라우르산 무수물(lauric aldehyde)(1.95g, 10.6mmol)을 추가하고, 상온에서 약 1시간 동안 질소 조건하에서 교반하여 반응시켰다. 반응 후 Pd/C를 제거하고, 반응에 사용한 2-프로판올을 제거한 후, 물과 메틸렌클로라이드로 추출하여 미반응물을 제거하였다. 유기층을 채취하여 MgSO4로 탈수 후 용매를 제거한다. 조생성물(crude product)을 컬럼 크로마토그래피에서 정제(이동상: hexane/ethyl acetate)하여 무색의 고체상의 중간체(1.98, 7.1mmolg)을 얻었다(수득률: 67 중량%).
<중간체 NMR 분석 결과>
1H-NMR(DMSO-d): d6.69(dd, 2H); d6.53(dd, 2H); d3.05(t, 2H); d1.59(p, 2H); d1.40-1.26(m, 16H); d0.88(t, 3H).
플라스크에 합성된 중간체(1.98g, 7.1mmol), 메타크릴산(0.92g, 10.7mmol), DCC(dicyclohexylcarbodiimide)(2.21g, 10.7mmol) 및 DMAP(p-dimethylaminopyridine)(0.35g, 2.8mmol)을 넣고, 100mL의 메틸렌클로라이드를 첨가한 후, 질소 하 실온에서 24시간 동안 반응시켰다. 반응 종료 후에 반응 중에 생성된 염(urea salt) 및 잔존 메틸렌클로라이드도 제거하였다. 컬럼 크로마토그래피에서 헥산과 DCM(dichloromethane)을 이동상으로 사용하여 불순물을 제거하고, 다시 얻어진 생성물을 메탄올과 물의 혼합 용매(메탄올: 물 = 3:1 (중량 비율))에서 재결정시켜 백색 고체상의 목적물(DPM-N2)(1.94g, 5.6mmol)을 79 중량%의 수득률로 얻었다.
< DPM - N2 NMR 분석 결과>
1H-NMR(CDCl3): d6.92(dd, 2H); d6.58(dd, 2H); d6.31(dt, 1H); d5.70(dt, 1H); d3.60(s, 1H); d3.08(t, 2H); d2.05(dd, 3H); d1.61(p, 2H); d1.30-1.27(m, 16H); d0.88(t, 3H).
[화학식 F]
Figure 112017034608812-pat00057
화학식 F에서 R은 탄소수 12의 직쇄상 알킬기이다.
제조예 7
1-브로모도데칸 대신 1-브로모부탄을 사용한 것을 제외하고는 제조예 1에 준한 방식으로 반응을 진행시켜서 화학식 G의 화합물(DPM-C4)을 합성하였다. 합성된 화합물에 대한 NMR 분석 결과는 하기와 같다.
< DPM - C4 NMR 분석 결과>
1H-NMR(CDCl3): d7.02(dd, 2H); d6.89(dd, 2H); d6.33(dt, 1H); d5.73(dt, 1H); d3.95(t, 2H); d2.06(dd, 3H); d1.76(p, 2H); d1.49(p, 2H); d0.98(t, 3H).
[화학식 G]
Figure 112017034608812-pat00058
화학식 G에서 R은 탄소수 4의 직쇄상 알킬기이다.
실시예 1.
제조예 1의 화합물(DPM-C12) 2.0 g 및 RAFT(Reversible Addition-Fragmentation chain Transfer) 시약(cyanoisopropyl dithiobenzoate) 64 mg, AIBN(Azobisisobutyronitrile) 23 mg 및 벤젠 5.34 mL를 10 mL 플라스트(Schlenk flask)에 넣고 질소 분위기 하 상온에서 30분 동안 교반한 후, 70℃에서 4시간 동안 RAFT(Reversible Addition-Fragmentation chain Transfer) 중합 반응을 수행하였다. 중합 후 반응 용액을 추출 용매인 메탄올 250 mL에 침전시킨 후, 감압 여과 후 건조시켜, 분홍색의 거대 개시제를 제조하였다. 거대 개시제의 수득률은 약 82.6%였고, 수평균 분자량(Mn) 및 분자량분포(Mw/Mn)는 각각 9,000 및 1.16이었다.
거대개시제 0.3 g, 펜타플루오로스티렌 2.7174 g 및 벤젠 1.306 mL를 10 mL 플라스크(Schlenk flask)에 넣고 질소 분위기 하에서 상온에서 30분 동안 교반한 후, 115℃에서 4시간 동안 RAFT(Reversible Addition-Fragmentation chain Transfer) 중합 반응을 수행하였다. 중합 후 반응 용액을 추출 용매인 메탄올 250 mL 에 침전시킨 다음, 감압 여과하여 건조시켜 연한 분홍색의 블록 공중합체를 제조하였다. 블록 공중합체의 수득률은 약 18%였고, 수평균분자량(Mn) 및 분자량분포(Mw/Mn)는 각각 16,300 및 1.13이었다. 상기 블록 공중합체는 제조예 1의 화합물(DPM-C12) 유래의 제 1 블록과 상기 펜타플루오로스티렌 유래의 제 2 블록을 포함한다.
실시예 2.
제조예 1의 화합물(DPM-C12) 대신에 제조예 2의 화합물(DPM-C8)을 사용하는 것을 제외하고는 실시예 1에 준하는 방식으로 거대개시제 및 펜타플루오로스티렌을 사용하여 블록 공중합체를 제조하였다. 상기 블록 공중합체는 제조예 2의 화합물(DPM-C8)에서 유래된 제 1 블록과 펜타플루오로스티렌 모노머에서 유래된 제 2 블록을 포함한다.
실시예 3.
제조예 1의 화합물(DPM-C12) 대신에 제조예 3의 화합물(DPM-C10)을 사용하는 것을 제외하고는 실시예 1에 준하는 방식으로 거대개시제 및 펜타플루오로스티렌을 사용하여 블록 공중합체를 제조하였다. 상기 블록 공중합체는 제조예 3의 화합물(DPM-C10)에서 유래된 제 1 블록과 펜타플루오로스티렌 모노머에서 유래된 제 2 블록을 포함한다.
실시예 4.
제조예 1의 화합물(DPM-C12) 대신에 제조예 4의 화합물(DPM-C14)을 사용하는 것을 제외하고는 실시예 1에 준하는 방식으로 거대개시제 및 펜타플루오로스티렌을 사용하여 블록 공중합체를 제조하였다. 상기 블록 공중합체는 제조예 4의 화합물(DPM-C14)에서 유래된 제 1 블록과 펜타플루오로스티렌 모노머에서 유래된 제 2 블록을 포함한다.
실시예 5.
제조예 1의 화합물(DPM-C12) 대신에 제조예 5의 화합물(DPM-C16)을 사용하는 것을 제외하고는 실시예 1에 준하는 방식으로 거대개시제 및 펜타플루오로스티렌을 사용하여 블록 공중합체를 제조하였다. 상기 블록 공중합체는 제조예 5의 화합물(DPM-C16)에서 유래된 제 1 블록과 펜타플루오로스티렌 모노머에서 유래된 제 2 블록을 포함한다.
실시예 6.
단량체의 합성
3-히드록시-1,2,4,5-테트라플루오로스티렌을 다음의 방식으로 합성하였다. 펜타플루오로스티렌(Pentafluorostyrene)(25 g, 129 mmol)을 400 mL의 tert-부탄올과 포타슘히드록시드(potassium hydroxide)(37.5 g, 161 mmol)의 혼합 용액에 첨가하고, 2시간 동안 반응(reflux reaction)시켰다. 상온으로 반응물을 식힌 후에 물 1200 mL를 첨가하고, 반응에 사용된 잔존 부탄올을 휘발시켰다. 부가물들은 디에틸 에테르(300 mL)로 3회 추출하고, 수용액층은 10 중량%의 염산 용액으로 pH가 약 3 정도가 되도록 산성화시켜서 목적물을 침전시키고, 다시 디에틸에테르(300 mL)로 3회 추출하여 유기층을 채취하였다. 유기층을 MgSO4로 탈수하고, 용매를 제거하였다. 조생성물(Crude product)을 컬럼 크로마토그래피에서 헥산과 DCM(dichloromethane)을 이동상으로 하여 정제하여 하여 무색 액체상의 3-히드록시-1,2,4,5-테트라플루오로스티렌(11.4 g)을 수득하였다. 상기에 대한 NMR 분석 결과는 하기와 같다.
< NMR 분석 결과>
1H-NMR(DMSO-d): δ11.7 (s, 1H); δ6.60(dd, 1H); δ5.89(d, 1H); δ5.62(d, 1H)
블록 공중합체의 합성
AIBN(Azobisisobutyronitrile), RAFT(Reversible Addition-Fragmentation chain Transfer) 시약(2-cyano-2-propyl dodecyl trithiocarbonate) 및 제조예 1의 화합물(DPM-C12)을 벤젠에 50:1:0.2의 중량 비율(DPM-C12:RAFT 시약: AIBN)로 용해시키고(농도: 70 중량%), 질소 분위기하 70℃에서 4 시간 동안 반응시켜서 거대 개시제(수평균분자량: 14000, 분자량 분포: 1.2)를 합성하였다. 합성된 거대 개시제, 3-히드록시-1,2,4,5-테트라플루오로스티렌(TFS-OH) 및 AIBN을 1:200:0.5(거대 개시제:TFS-OH:AIBN)의 중량 비율로 벤젠에 용해시키고(농도: 30 중량%), 질소 분위기 하의 70℃에서 6시간 동안 반응시켜서 블록 공중합체를 제조하였다(수평균분자량: 35000, 분자량 분포: 1.2). 상기 블록 공중합체는 제조예 1의 화합물 유래의 제 1 블록과 3-히드록시-1,2,4,5-테트라플루오로스티렌 유래의 제 2 블록을 포함한다.
실시예 7.
단량체의 합성
하기 화학식 H의 화합물을 다음의 방식으로 합성하였다. 프탈이미드(Phthalimide)(10.0 g, 54 mmol) 및 클로로메틸스티렌(chloromethyl styrene)(8.2 g, 54 mmol)을 50 mL의 DMF(dimethylformamide)에 투입하고, 질소 조건 하 55℃에서 18시간 동안 반응시켰다. 반응 후 반응물에 에틸 아세테이트(ethyl acetate) 100 mL와 증류수 100 mL를 추가한 후에 유기층을 추출하고, 유기층은 다시 한번 브라인(brine) 용액으로 세척하였다. 모아진 유기층을 MgSO4로 처리하여 물을 제거하고, 용매를 최종적으로 제거한 후에 펜탄(pentane)에서 재결정시켜 목적물인 백색 고체상 화합물(11.1 g)을 수득하였다. 상기 화합물에 대한 NMR 분석 결과는 하기와 같다.
< NMR 분석 결과>
1H-NMR(CDCl3): δ7.84 (dd, 2H); δ7.70 (dd, 2H); δ7.40-7.34(m, 4H); δ6.67 (dd, 1H); δ5.71(d, 1H); δ5.22 (d, 1H); δ4.83 (s, 2H)
[화학식 H]
Figure 112014119422907-pat00027

블록 공중합체의 합성
AIBN(Azobisisobutyronitrile), RAFT(Reversible Addition?ragmentation chain Transfer) 시약(2-cyano-2-propyl dodecyl trithiocarbonate) 및 제조예 1의 화합물(DPM-C12)을 벤젠에 50:1:0.2의 중량 비율(DPM-C12:RAFT 시약: AIBN)로 용해시키고(농도: 70 중량%), 질소 분위기하 70℃에서 4 시간 동안 반응시켜서 거대 개시제(수평균분자량: 14000, 분자량 분포:1.2)를 합성하였다. 합성된 거대 개시제, 상기 화학식 H의 화합물(TFS-PhIM) 및 AIBN을 1:200:0.5(거대 개시제: TFS-PhIM:AIBN)의 중량 비율로 벤젠에 용해시키고(농도: 30 중량%), 질소 분위기 하 70℃에서 6시간 동안 반응시켜서 블록 공중합체를 제조하였다(수평균분자량: 35000, 분자량 분포: 1.2). 상기 블록 공중합체는 제조예 1의 화합물 유래의 제 1 블록과 화학식 H 화합물 유래의 제 2 블록을 포함한다.
실시예 8.
제조예 1의 화합물(DPM-C12) 0.8662 g, RAFT(Reversible Addition Fragmentation chain Transfer) 시약이 양 말단에 결합된 거대개시제(Macro-PEO)(poly(ethylene glycol)-4-cyano-4-(phenylcarbonothioylthio)pentanoate, 중량평균분자량(MW) 10,000, sigma aldrich사제) 0.5 g, AIBN(azobisisobutyronitrile) 4.1 mg 및 아니솔(Anisole) 3.9 mL를 10 mL 플라스크(Schlenk flask)에 넣고 질소분위기 하에서 상온에서 30분 동안 교반한 후 70℃의 실리콘 오일 용기에서 12시간 동안 RAFT(Reversible Addition-Fragmentation chain Transfer) 중합반응을 수행하였다. 중합 후 반응용액을 추출용매인 메탄올 250 mL에 침전시킨 후, 감압 여과하여 건조시켜, 연한 분홍색의 새로운 블록 공중합체를 제조하였다(수득률: 30.5%, 수평균 분자량(Mn): 34300, 분자량분포(Mw/Mn): 1.60). 상기 블록 공중합체는 제조예 1 화합물 유래의 제 1 블록과 폴리에틸렌옥시드 블록(제 2 블록)을 포함한다.
실시예 9.
제조예 1의 화합물(DPM-C12) 2.0 g, RAFT(Reversible Addition-Fragmentation chain Transfer) 시약(cyanoisopropyl dithiobenzoate) 25.5 mg, AIBN(azobisisobutyronitrile) 9.4 mg 및 벤젠 5.34 mL를 10 mL 플라스크(Schlenk flask)에 넣고 질소분위기 하에서 상온에서 30분 동안 교반한 후 70℃ 실리콘 오일 용기에서 4시간 동안 RAFT(Reversible Addition-Fragmentation chain Transfer) 중합반응을 수행하였다. 중합 후 반응용액을 추출용매인 메탄올 250 mL에 침전시킨 후, 감압 여과하여 건조시켜, RAFT(Reversible Addition-Fragmentation chain Transfer) 시약이 중합체 양 말단에 결합된 분홍색의 거대 개시제를 제조하였다. 거대 개시제의 수득률, 수평균 분자량(Mn) 및 분자량분포(Mw/Mn)는 각각 81.6 중량%, 15400 및 1.16이었다. 스티렌 1.177 g과 상기 거대개시제 0.3 g 및 벤젠 0.449 mL를 10 mL 플라스크(Schlenk flask)에 넣고 질소분위기 하에서 상온에서 30분 동안 교반한 후 115℃의 실리콘 오일 용기에서 4시간 동안 RAFT(Reversible Addition-Fragmentation chain Transfer) 중합반응을 수행하였다. 중합 후 반응용액을 추출용매인 메탄올 250 mL에 침전시킨 후, 감압 여과하여 건조시켜, 연한 분홍색의 새로운 블록 공중합체을 제조하였다. 블록 공중합체의 수득률, 수평균 분자량(Mn) 및 분자량분포(Mw/Mn)는 각각 39.3 중량%, 31800 및 1.25였다. 상기 블록 공중합체는 제조예 1 화합물 유래의 제 1 블록과 폴리스티렌 블록(제 2 블록)을 포함한다.
실시예 10
실시예 9에서 합성된 거대 개시제 0.33 g, 4-트리메틸실릴스티렌(4-trimethylsilylstyrene) 1.889 g, AIBN(azobisisobutyronitrile) 2.3 mg 및 벤젠 6.484 mL를 10 mL 플라스크(Schlenk flask)에 넣고 질소분위기 하에서 상온에서 30분 동안 교반한 후 70℃의 실리콘 오일 용기에서 24시간 동안 RAFT(Reversible Addition-Fragmentation chain Transfer) 중합 반응을 수행하였다. 중합 후 반응용액을 추출용매인 메탄올 250 mL에 침전시킨 후, 감압 여과하여 건조시켜, 연한 분홍색의 새로운 블록 공중합체를 제조하였다. 블록 공중합체의 수득률, 수평균 분자량(Mn) 및 분자량분포(Mw/Mn)는 각각 44.2 중량%, 29600 및 1.35였다. 상기 블록 공중합체는 제조예 1 화합물 유래의 제 1 블록과 폴리(4-트리메틸실릴스티렌) 블록(제 2 블록)을 포함한다.
실시예 11.
단량체의 합성
하기 화학식 I의 화합물을 다음의 방식으로 합성하였다. 펜타플루오로스티렌(Pentafluorostyrene)(25 g, 129 mmol)을 400 mL의 tert-부탄올과 포타슘히드록시드(potassium hydroxide)(37.5 g, 161 mmol)의 혼합 용액에 첨가하고, 2시간 동안 반응(reflux reaction)시켰다. 상온으로 반응물을 식힌 후에 물 1200 mL를 첨가하고, 반응에 사용된 잔존 부탄올을 휘발시켰다. 부가물들은 디에틸 에테르(300 mL)로 3회 추출하고, 수용액층은 10 중량%의 염산 용액으로 pH가 약 3 정도가 되도록 산성화시켜서 목적물을 침전시키고, 다시 디에틸에테르(300 mL)로 3회 추출하여 목적물이 포함되어 있는 유기층을 채취하였다. 유기층을 MgSO4로 탈수하고, 용매를 제거하였다. 조생성물(Crude product)을 컬럼 크로마토그래피에서 헥산과 DCM(dichloromethane)을 이동상으로 하여 정제하여 하여 무색 액체상의 중간체(3-히드록시-1,2,4,5-테트라플루오로스티렌)(11.4 g)을 수득하였다. 상기에 대한 NMR 분석 결과는 하기와 같다.
< NMR 분석 결과>
1H-NMR(DMSO-d): δ11.7 (s, 1H); δ6.60(dd, 1H); δ5.89(d, 1H); δ5.62(d, 1H)
상기 중간체(11.4 g, 59 mmol)를 DCM(dichloromethane)(250 mL)에 녹인 용액에 이미다졸(imidazole)(8.0 g, 118 mmol), DMAP(p-dimethylaminopyridine)(0.29 g, 2.4 mmol)과 tert-부틸클로로디메틸실란(17.8 g, 118 mmol)을 가해준다. 24 시간 동안 상온에서 교반하여 반응시킨 후에 100 mL의 brine을 넣어주어 반응을 종료시킨 후, DCM으로 추가적인 추출을 수행한다. 모아진 DCM의 유기층은 MgSO4로 탈수하고, 용매를 제거하여 조생성물(crude product)을 얻었다. 컬럼 크로마토그래피에서 헥산과 DCM을 이동상으로 하여 정제하여 무색의 목적물(10.5 g)을 액체상으로 수득하였다. 얻어진 목적물의 NMR 결과는 하기와 같다.
< NMR 분석 결과>
1H-NMR(CDCl3): d6.62(dd, 1H); d6.01(d, 1H); d5.59(d, 1H); d1.02(t, 9H), d0.23(t, 6H)
[화학식 I]
Figure 112014119422907-pat00028

블록 공중합체의 합성
AIBN(Azobisisobutyronitrile), RAFT(Reversible Addition-Fragmentation chain Transfer) 시약(2-cyano-2-propyl dodecyl trithiocarbonate) 및 제조예 1의 화합물(DPM-C12)을 벤젠에 50:1:0.2의 중량 비율(DPM-C12:RAFT 시약: AIBN)로 용해시키고(농도: 70 중량%), 질소 분위기하 70℃에서 4 시간 동안 반응시켜서 거대 개시제(수평균분자량: 14000, 분자량 분포:1.2)를 합성하였다. 합성된 거대 개시제, 상기 화학식 I의 화합물(TFS-S) 및 AIBN(Azobisisobutyronitrile)을 1:200:0.5(거대 개시제:TFS-S:AIBN)의 중량 비율로 벤젠에 용해시키고(농도: 30 중량%), 질소 분위기 하의 70℃에서 6시간 동안 반응시켜서 블록 공중합체를 제조하였다(수평균분자량: 35000, 분자량 분포: 1.2). 상기 블록 공중합체는 제조예 1 화합물 유래의 제 1 블록과 상기 화학식 I 유래의 제 2 블록을 포함한다.
실시예 12.
AIBN(Azobisisobutyronitrile), RAFT 시약(2-cyano-2-propyl dodecyl trithiocarbonate) 및 제조예 6에서 제조된 화합물(DPM-N1)을 26:1:0.5의 중량 비율(DPM-N1:RAFT 시약:AIBN)로 벤젠에 용해시키고(농도: 70 중량%), 질소 분위기 하 70℃에서 4 시간 반응시켜 거대 개시제(수평균분자량: 9700, 분자량 분포: 1.2)를 합성하였다. 거대 개시제, 펜타플루오로스티렌(PFS) 및 AIBN을 1:600:0.5의 중량 비율(거대 개시제:PFS:AIBN)로 벤젠에 녹이고(농도: 30 중량%), 질소 분위기에서 115℃로 6시간 반응을 시켜서 블록 공중합체(수평균분자량: 17300, 분자량 분포: 1.2)를 합성하였다.
상기 블록 공중합체는 제조예 6의 화합물 유래의 제 1 블록과 펜타플루오로스티렌 유래의 제 2 블록을 포함한다.
비교예 1.
제조예 1의 화합물(DPM-C12) 대신에 제조예 7의 화합물(DPM-C4)을 사용하는 것을 제외하고는 실시예 1에 준하는 방식으로 거대개시제 및 펜타플루오로스티렌을 사용하여 블록 공중합체를 제조하였다. 상기 블록 공중합체는 제조예 7의 화합물(DPM-C4)에서 유래된 제 1 블록과 펜타플루오로스티렌에서 유래된 제 2 블록을 포함한다.
비교예 2.
제조예 1의 화합물(DPM-C12) 대신 4-?메톡시페닐 메타크릴레이트를 사용하는 것을 제외하고는 실시예 1에 준하는 방식으로 거대개시제 및 펜타플루오로스티렌을 모노머로 하여 블록 공중합체를 제조하였다. 상기 블록 공중합체는 상기 4-메톡시페닐 메타크릴레이트에서 유래된 제 1 블록과 상기 펜타플루오로스티렌에서 유래된 제 2 블록을 포함한다.
비교예 3.
제조예 1의 화합물(DPM-C12) 대신 도데실 메타크릴레이트를 사용하는 것을 제외하고는 실시예 1에 준하는 방식으로 거대개시제 및 펜타플루오로스티렌을 모노머로 하여 블록 공중합체를 제조하였다. 상기 블록 공중합체는 상기 도데실 메타크릴레이트에서 유래된 제 1 블록과 상기 펜타플루오로스티렌에서 유래된 제 2 블록을 포함한다.
시험예 1.
실시예 1 내지 12 및 비교예 1 내지 3에서 합성된 블록 공중합체를 사용하여 자기 조립된 고분자막을 형성하고, 그 결과를 확인하였다. 구체적으로 각 공중합체를 용매에 약 1.0 중량%의 농도로 용해시키고, 실리콘 웨이퍼상에 3000 rpm의 속도로 60초 동안 스핀코팅하였다. 그 후, 용매 숙성(solvent annealing) 또는 열적 숙성(thermal annealing)시켜 자기 조립시켰다. 각 블록 공중합체에 대하여 적용된 용매 및 숙성 방식 등은 하기 표 1에 정리하였다. 그 후, 각 고분자막에 대하여 SEM(scanning electron microscope: SEM) 또는 AFM(Atomic force microscopy) 사진을 촬영하여 자기 조립 효율을 평가하였다. 도 1 내지 12는 각각 실시예 1 내지 12에 대한 결과이고, 도 13 내지 15는 각각 비교예 1 내지 3에 대한 결과이다.

코팅액 숙성(annealing)
사용용매 블록공중합체농도 숙성방식 숙성조건
실시예1 톨루엔 1.0 중량% 열숙성 160℃, 1시간
실시예2 톨루엔 1.0 중량% 열숙성 160℃, 1시간
실시예3 톨루엔 1.0 중량% 열숙성 160℃, 1시간
실시예4 톨루엔 1.0 중량% 열숙성 160℃, 1시간
실시예5 톨루엔 1.0 중량% 열숙성 160℃, 1시간
실시예6 톨루엔 1.0 중량% 용매숙성 2 시간
실시예7 다이옥신 1.0 중량% 용매숙성 1 시간
실시예8 톨루엔 1.0 중량% 용매숙성 2시간
실시예9 톨루엔 1.0 중량% 열숙성 160℃, 1시간
실시예10 톨루엔 1.0 중량% 용매숙성 2시간
실시예11 톨루엔 1.0 중량% 열숙성 160℃, 1시간
실시예12 톨루엔 1.0 중량% 열숙성 160℃, 1시간
비교예1 톨루엔 1.0 중량% 열숙성 160℃, 1시간
비교예2 톨루엔 1.0 중량% 열숙성 160℃, 1시간
비교예3 톨루엔 1.0 중량% 열숙성 160℃, 1시간
실시예12 용매 숙성시 적용 용매: THF(tetrahydrofuran) 및 물의 혼합 용매(THF:물=4:6의 중량 비율)
실시예 13 용매 숙성 시 적용 용매: 클로로포름
실시예 14 용매 숙성시 적용 용매: THF(tetrahydrofuran) 및 물의 혼합 용매(THF:물=4:6의 중량 비율)
실시예16 용매 숙성 시 적용 용매: 사이클로헥산
시험예 2.
시험예 1로부터 실시예에서 제조된 블록 공중합체는 기본적으로 우수한 자기 조립성을 나타내는 것을 확인할 수 있다. 실시예 중에서 실시예 1에서 제조된 블록 공중합체에 대하여 추가로 GISAXS(Grazing Incidence Small Angle X ray Scattering) 특성을 평가하였다. 상기 특성은, 포항가속기 3C 빔라인을 이용하여 측정하였다. 실시예 1의 블록 공중합체를 플로로벤젠(fluorobezene)에 0.7 중량%의 고형분 농도로 희석시켜 제조한 코팅액을 친수성 표면 또는 소수성 표면을 가지는 기재에 약 5 nm의 두께로 스핀 코팅(코팅 면적: 가로 길이=1.5cm, 세로 길이=1.5cm)하고, 상온에서 약 1시간 동안 건조시킨 후에 다시 약 160?의 온도에서 약 1 시간 동안 열적 숙성(thermal annealing)하여 막을 형성하였다. 형성된 막에 막의 임계각과 기재의 임계각 사이의 각도에 해당하는 약 0.12도 내지 0.23도의 범위 내의 입사각으로 X선을 입사시킨 후에 2D marCCD로 막에서 산란되어 나오는 X선 회절 패턴을 얻었다. 이 때 막으로부터 검출기까지의 거리는 약 2m 내지 3m의 범위 내에서 막에 형성된 자기 조립 패턴이 잘 관찰되는 범위로 선택하였다. 상기에서 친수성 표면을 가지는 기재로는, 순수에 대한 상온 젖음각이 약 5도인 기재를 사용하였고, 소수성 표면을 가지는 기재로는, 순수에 대한 상온 젖음각이 약 60도인 기재를 사용하였다. 순수에 대한 상온 젖음각이 5도인 표면에 대하여 상기 기재된 방식으로 GISAXS(Grazing Incidence Small Angle X ray Scattering)를 측정한 결과는 도 16에 나타내었고, 소수성 표면으로서 순수에 대한 상온 젖음각이 60도인 표면에 대하여 측정한 GISAXS(Grazing Incidence Small Angle X ray Scattering)의 결과를 도 17에 나타내었다. 도면으로부터 어느 경우이던지 인플레이상의 회절 패턴이 확인되고, 이로부터 실시예 1의 블록 공중합체는 수직 배향성을 나타내는 것을 확인할 수 있다.
추가로, 실시예 1과 같은 방식으로 블록 공중합체를 제조하되, 단량체와 거대 개시제의 몰비의 조절을 통해 다른 부피 분율을 가지는 블록 공중합체를 제조하였다.
제조된 블록 공중합체의 부피 분율은 하기와 같다.
제1블록의 부피 분획 제2블록의 부피 분획
샘플1 0.7 0.3
샘플2 0.59 0.41
샘플3 0.48 0.52
상기에서 블록 공중합체의 각 블록의 부피 분율은, 각 블록의 상온에서의 밀도와 GPC(Gel Permeation chromatograph)에 의해 측정된 분자량을 토대로 계산하였다. 상기에서 밀도는, 부력법을 이용하여 측정하였으며, 구체적으로는 공기 중에서의 질량과 밀도를 알고 있는 용매(에탄올) 내에서의 질량을 통해 계산하였고, GPC는 전술한 방식에 따라 계산하였다. 상기 각 샘플에 대하여 상기 언급한 방식으로 GISAXS를 측정한 결과를 도 18 내지 20에 나타내었다. 도 18 내지 20은 각각 샘플 1 내지 3에 대한 결과이고, 도면으로부터 GISAXS상에 인플레인 회절 패턴이 확인되는 것을 알 수 있고, 이로부터 수직 배향성을 가질 것을 예측할 수 있다.
시험예 3.
시험예 1로부터 실시예에서 제조된 블록 공중합체는 기본적으로 우수한 자기 조립성을 나타내는 것을 확인할 수 있다. 실시예 중에서 특히 적절한 결과를 확인한 실시예 1 내지 5 및 비교예 1 및 3의 결과에 대하여 표면 에너지 및 밀도 등을 평가하였다.
표면 에너지는, 물방울형 분석기(Drop Shape Analyzer, KRUSS사의 DSA100제품)를 사용하여 표면 에너지를 측정하였다. 표면 에너지를 측정하고자 하는 물질을 플루오르벤젠(flourobenzene)에 약 2 중량%의 고형분 농도로 희석시킨 코팅액을 실리콘 웨이퍼에 약 50 nm의 두께로 스핀 코팅(코팅 면적: 가로 길이=2cm, 세로 길이=2cm)하고, 상온에서 약 1시간 동안 건조시킨 후에 다시 약 160°C에서 약 1시간 동안 열적 숙성(thermal annealing)을 하여 막을 형성하고, 형성된 막에 대하여 표면 에너지를 측정하였다. 표면 에너지는 표면 장력(Surface tension)이 공지되어 있는 액체인 탈이온화수(H2O) 및 디요오드메탄(diiodomethane)를 각각 5회씩 떨어뜨려서 접촉각을 구하고, 그 평균값을 계산하여 그로부터 계산하였다. 상기 평균값의 접촉각을 적용하여 Owens-Wendt-Rabel-Kaelble 방법에 의해 용매의 표면 장력에 관한 수치(Strom 값)를 대입하여 표면 에너지를 구할 수 있다. 하기 표에서 각 블록의 표면에너지는 그 블록을 형성하는 단량체만을 중합시켜 얻어진 단독 중합체에 대하여 상기 방식으로 측정한 표면 에너지이다.
밀도의 측정 방식은 상기 시험예에서 기술한 바와 같다.
상기와 같은 측정 결과를 하기 표에 정리하여 기재하였다.

실시예 비교예
1 2 3 4 5 1 2

1
블록
SE 30.83 31.46 27.38 26.924 27.79 37.37 48.95
DE 1 1.04 1.02 0.99 1.00 1.11 1.19
VF 0.66 0.57 0.60 0.61 0.61 0.73 0.69

1
블록
SE 24.4 24.4 24.4 24.4 24.4 24.4 24.4
DE 1.57 1.57 1.57 1.57 1.57 1.57 1.57
VF 0.34 0.43 0.40 0.39 0.39 0.27 0.31
SE 차이 6.43 7.06 2.98 2.524 3.39 12.98 24.55
DE 차이 0.57 0.53 0.55 0.58 0.57 0.46 0.38
SE: 표면 에너지(단위: mN/m)
De: 밀도(단위: g/cm3)
SE 차이: 제1블록의 표면 에너지와 제 2 블록의 표면 에너지의 차이의 절대값
De 차이:제1블록의 밀도와 제 2 블록의 밀도의 차이의 절대값
상기 표의 결과로부터 적절한 자기 조립 특성이 구현되는 경우(실시예 1 내지 5)에는 표면 에너지의 차이 등이 특정한 경향을 보이는 것을 확인할 수 있다. 구체적으로 실시예 1 내지 5의 블록 공중합체의 경우, 제 1 블록과 제 2 블록의 표면 에너지의 차이의 절대값이 2.5 mN/m 내지 7 mN/m의 범위 내에 있으나, 비교예의 경우 상기 범위를 벗어난 표면 에너지 차이의 절대값을 나타내었다. 또한, 제 1 블록이 제 2 블록에 비하여 높은 표면에너지를 나타내었고, 그 범위는 약 20 mN/m 내지 35 mN/m의 범주 내였다. 또한, 실시예 1 내지 5의 블록 공중합체는, 제 1 블록의 밀도와 제 2 블록의 밀도의 차이의 절대값이 0.3 g/cm3 이상이였다.
시험예 4.
자기 조립 특성 시험 등에서 우수한 결과를 확인한 실시예 1 내지 5 및 비교예 1 및 2의 결과에 대하여 XRD 패턴을 분석한 결과는 하기 표 4에 정리하여 기재하였다.

실시예 비교예
1 2 3 4 5 1 2
산란벡터(q값)(단위: nm-1) 1.96 2.41 2.15 1.83 1.72 4.42 3.18
반높이 너비(단위: nm-1) 0.57 0.72 0.63 0.45 0.53 0.97 1.06
XRD 패턴은, 포항가속기 4C 빔라인에서 시료에 X-선을 투과시켜 산란 벡터(q)에 따른 산란 강도를 측정하여 구하였다. 시료로는 측정 대상인 블록 공중합체를 특별한 전 처리 없이 정제하여 불순물을 제거하여 얻어진 분말 상태의 블록 공중합체를 XRD측정용 셀에 넣어 적용하였다. XRD 패턴 분석 시에는, 수직 크기가 0.023 mm이고, 수평 크기가 0.3 mm인 X선을 이용하였고, 검출기로는 2D marCCD를 이용하였다. 산란되어 나오는 2D 회절패턴을 이미지로 얻은 후에 얻어진 회절 패턴을 silver behenate를 이용하여 산란 벡터(q)로 캘리브레이션(calibration)하고, 원형 평균(circular average)하여 산란 벡터(q)에 대한 산란강도로 플롯(plot)하였다. 산란 벡터(q)에 따른 산란 강도를 플롯(plot)하여 피크의 위치와 반높이 너비(FWHM)를 피크 피팅(peak fitting)을 통하여 구하였다. 상기 결과로부터 우수한 자기 조립성을 나타내는 블록 공중합체의 경우, 그렇지 않은 비교예와 비교하여 특이한 XRD 패턴을 보이는 것을 확인할 수 있다. 구체적으로 실시예의 블록 공중합체의 경우, XRD 패턴에서 0.5 nm-1 내지 10 nm-1의 산란 벡터(q) 내에서 반높이 너비가 0.2 nm-1 내지 1.5 nm-1의 범위 내에 있는 피크가 확인되지만, 비교예에서는 이러한 피크가 확인되지 않았다.

Claims (24)

  1. 하기 화학식 4로 표시되는 블록을 포함하는 블록 공중합체:
    [화학식 4]
    Figure 112017034608812-pat00029

    화학식 4에서 R은 수소 또는 탄소수 1 내지 4의 알킬기이고, X는 산소 원자, 황 원자, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이며, 상기에서 X1은 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, Y는 사슬이 연결된 고리 구조를 포함하는 1가 치환기이며, 상기 고리 구조는 방향족 구조 또는 지환족 구조이고, 상기 사슬의 사슬 형성 원자의 수는 10 이상이다.
  2. 제 1 항에 있어서, X는 산소 원자, -C(=O)-O- 또는 -O-C(=O)-인 블록 공중합체.
  3. 제 1 항에 있어서, X는 -C(=O)-O-인 블록 공중합체.
  4. 제 1 항에 있어서, 사슬의 사슬 형성 원자의 수는 11 이상인 블록 공중합체.
  5. 제 1 항에 있어서, 사슬 형성 원자는 탄소, 산소, 질소 또는 황인 블록 공중합체.
  6. 제 1 항에 있어서, 사슬 형성 원자는 탄소 또는 산소인 블록 공중합체.
  7. 제 1 항에 있어서, 사슬은 탄화수소 사슬인 블록 공중합체.
  8. 삭제
  9. 제 1 항에 있어서, Y의 사슬은 링커를 통해 고리 구조에 연결되어 있는 블록 공중합체.
  10. 제 9 항에 있어서, 링커는, 산소 원자, 황 원자 또는 -S(-O)2-인 블록 공중합체.
  11. 제 1 항에 있어서, Y는 하기 화학식 2로 표시되는 블록 공중합체:
    [화학식 2]
    Figure 112017034608812-pat00030

    화학식 2에서 P는 아릴렌기이고, Q는 단일 결합, 산소 원자 또는 -NR3-이며, 상기에서 R3는, 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, Z는 10개 이상의 사슬 형성 원자를 가지는 사슬이다.
  12. 하기 화학식 5로 표시되는 블록을 포함하는 블록 공중합체:
    [화학식 5]
    Figure 112014119422907-pat00031

    화학식 5에서 R은 수소 또는 탄소수 1 내지 4의 알킬기이고, X는 -C(=O)-O-이며, P는 탄소수 6 내지 12의 아릴렌기이고, Q는 산소 원자이며, Z는 사슬 형성 원자가 8개 이상인 사슬이다.
  13. 제 1 항 또는 제 12 항에 있어서, X선 회절 분석에서 반높이 너비가 0.2 nm-1 내지 1.5 nm-1의 범위 내에 있는 피크를 나타내고, 상기 피크를 나타내는 상기 X선 회절 분석에서의 q값이 0.5 nm-1 내지 10 nm-1의 범위 내인 블록 공중합체.
  14. 제 1 항 또는 제 12 항에 있어서, 순수에 대한 상온 젖음각이 5도 내지 20도의 범위 내인 표면상에서 스침각 입사 소각 산란(GISAXS) 회절 패턴에서 X좌표에 수직한 피크를 나타내는 막을 형성하는 블록 공중합체.
  15. 제 1 항 또는 제 12 항에 있어서, 순수에 대한 상온 젖음각이 50도 내지 70도의 범위 내인 표면상에서 스침각 입사 소각 산란(GISAXS) 회절 패턴에서 X좌표에 수직한 피크를 나타내는 막을 형성하는 블록 공중합체.
  16. 제 1 항 또는 제 12 항에 있어서, 사슬의 사슬 형성 원자의 수(n)는 하기 수식 1을 만족하는 블록 공중합체:
    [수식 1]
    3 nm-1 내지 5 nm-1 = nq/(2×π)
    수식 1에서 n은 상기 사슬 형성 원자의 수이고, q는, 상기 블록 공중합체에 대한 X선 회절 분석에서 피크가 관찰되는 가장 작은 산란 벡터(q)이거나, 혹은 가장 큰 피크 면적의 피크가 관찰되는 산란 벡터(q)이다.
  17. 제 1 항 또는 제 12 항에 있어서, 화학식 4 또는 5로 표시되는 블록의 부피 분율이 0.4 내지 0.8의 범위 내에 있는 블록 공중합체.
  18. 삭제
  19. 제 1 항 또는 제 12 항에 있어서, 화학식 4 또는 5로 표시되는 블록의 표면 에너지가 20 내지 35 mN/m의 범위 내에 있는 블록 공중합체.
  20. 제 1 항 또는 제 12 항에 있어서, 화학식 4 또는 5로 표시되는 블록과의 밀도 차이의 절대값이 0.3 g/cm3 이상인 제 2 블록을 추가로 포함하는 블록 공중합체.
  21. 자기 조립된 제 1 항 또는 제 12 항의 블록 공중합체를 포함하는 고분자막.
  22. 제 21 항에 있어서, 스침각 입사 소각 산란(GISAXS) 회절 패턴에서 X좌표에 수직한 피크를 나타내는 고분자막.
  23. 자기 조립된 제 1 항 또는 제 12 항의 블록 공중합체를 포함하는 고분자막을 기판상에 형성하는 것을 포함하는 고분자막의 형성 방법.
  24. 기판 및 상기 기판상에 형성되어 있고, 자기 조립된 제 1 항 또는 제 12 항의 블록 공중합체를 포함하는 고분자막을 가지는 적층체에서 상기 블록 공중합체의 화학식 4 또는 5로 표시되는 블록 또는 그와는 다른 블록을 선택적으로 제거하는 과정을 포함하는 패턴 형성 방법.
KR1020140175401A 2013-12-06 2014-12-08 블록 공중합체 KR101763008B1 (ko)

Priority Applications (41)

Application Number Priority Date Filing Date Title
JP2016536842A JP6521974B2 (ja) 2013-12-06 2014-12-08 ブロック共重合体
EP14868586.0A EP3078694B1 (en) 2013-12-06 2014-12-08 Block copolymer
US15/101,827 US10202480B2 (en) 2013-12-06 2014-12-08 Block copolymer
CN201480072805.5A CN105899559B (zh) 2013-12-06 2014-12-08 嵌段共聚物
PCT/KR2014/012024 WO2015084121A1 (ko) 2013-12-06 2014-12-08 블록 공중합체
CN201580060150.4A CN107075055B (zh) 2014-09-30 2015-09-30 嵌段共聚物
JP2017517270A JP6538157B2 (ja) 2014-09-30 2015-09-30 ブロック共重合体
PCT/KR2015/010335 WO2016053011A1 (ko) 2014-09-30 2015-09-30 블록 공중합체
CN201580059713.8A CN107077066B9 (zh) 2014-09-30 2015-09-30 制造图案化基底的方法
JP2017517282A JP6637495B2 (ja) 2014-09-30 2015-09-30 パターン化基板の製造方法
TW104132162A TWI563007B (en) 2014-09-30 2015-09-30 Block copolymer
CN201580060099.7A CN107075052B (zh) 2014-09-30 2015-09-30 嵌段共聚物
JP2017517277A JP6538158B2 (ja) 2014-09-30 2015-09-30 ブロック共重合体
US15/515,818 US10281820B2 (en) 2014-09-30 2015-09-30 Block copolymer
JP2017517288A JP6538159B2 (ja) 2014-09-30 2015-09-30 ブロック共重合体
US15/514,939 US10310378B2 (en) 2014-09-30 2015-09-30 Block copolymer
TW104132197A TWI577703B (zh) 2014-09-30 2015-09-30 製造圖案化基材之方法
EP15847536.8A EP3225641B1 (en) 2014-09-30 2015-09-30 Block copolymer
PCT/KR2015/010332 WO2016053009A1 (ko) 2014-09-30 2015-09-30 블록 공중합체
EP15845665.7A EP3214102B1 (en) 2014-09-30 2015-09-30 Block copolymer
EP15845720.0A EP3203496B1 (en) 2014-09-30 2015-09-30 Method for producing patterned substrate
US15/515,812 US10377894B2 (en) 2014-09-30 2015-09-30 Block copolymer
CN201580060097.8A CN107075054B (zh) 2014-09-30 2015-09-30 嵌段共聚物
EP15847598.8A EP3202802B1 (en) 2014-09-30 2015-09-30 Block copolymer
US15/514,929 US10370529B2 (en) 2014-09-30 2015-09-30 Method of manufacturing patterned substrate
TW104132150A TWI591086B (zh) 2014-09-30 2015-09-30 嵌段共聚物
JP2017517268A JP6633062B2 (ja) 2014-09-30 2015-09-30 パターン化基板の製造方法
US15/515,432 US10287430B2 (en) 2014-09-30 2015-09-30 Method of manufacturing patterned substrate
TW104132166A TWI583710B (zh) 2014-09-30 2015-09-30 嵌段共聚物
EP15847157.3A EP3202800B1 (en) 2014-09-30 2015-09-30 Block copolymer
JP2017517261A JP6532941B2 (ja) 2014-09-30 2015-09-30 ブロック共重合体
TW104132194A TWI609029B (zh) 2014-09-30 2015-09-30 嵌段共聚物
PCT/KR2015/010334 WO2016053010A1 (ko) 2014-09-30 2015-09-30 블록 공중합체
PCT/KR2015/010327 WO2016053005A1 (ko) 2014-09-30 2015-09-30 블록 공중합체
CN201580059546.7A CN107075050B (zh) 2014-09-30 2015-09-30 嵌段共聚物
EP15846126.9A EP3203497B1 (en) 2014-09-30 2015-09-30 Method for producing patterned substrate
US15/515,821 US10703897B2 (en) 2014-09-30 2015-09-30 Block copolymer
CN201580059699.1A CN107078026B (zh) 2014-09-30 2015-09-30 图案化基底的制备方法
TW104132169A TWI609408B (zh) 2014-09-30 2015-09-30 圖案化基板之製法
PCT/KR2015/010338 WO2016053014A1 (ko) 2014-09-30 2015-09-30 패턴화 기판의 제조 방법
PCT/KR2015/010330 WO2016053007A1 (ko) 2014-09-30 2015-09-30 패턴화 기판의 제조 방법

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR1020130151866 2013-12-06
KR20130151866 2013-12-06
KR20130151865 2013-12-06
KR1020130151865 2013-12-06
KR1020130151867 2013-12-06
KR20130151867 2013-12-06
KR20130159994 2013-12-20
KR1020130159994 2013-12-20
KR1020140131964 2014-09-30
KR20140131964 2014-09-30

Publications (2)

Publication Number Publication Date
KR20150067065A KR20150067065A (ko) 2015-06-17
KR101763008B1 true KR101763008B1 (ko) 2017-08-14

Family

ID=53514851

Family Applications (15)

Application Number Title Priority Date Filing Date
KR1020140175403A KR101768288B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175406A KR101780098B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175404A KR101763009B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175407A KR101763010B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175405A KR101770882B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175415A KR101780101B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175401A KR101763008B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175414A KR101780100B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175412A KR101768291B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175408A KR101768289B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175402A KR101832025B1 (ko) 2013-12-06 2014-12-08 단량체 및 블록 공중합체
KR1020140175410A KR101768290B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175400A KR101780097B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175411A KR101762487B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175413A KR101780099B1 (ko) 2013-12-06 2014-12-08 블록 공중합체

Family Applications Before (6)

Application Number Title Priority Date Filing Date
KR1020140175403A KR101768288B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175406A KR101780098B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175404A KR101763009B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175407A KR101763010B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175405A KR101770882B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175415A KR101780101B1 (ko) 2013-12-06 2014-12-08 블록 공중합체

Family Applications After (8)

Application Number Title Priority Date Filing Date
KR1020140175414A KR101780100B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175412A KR101768291B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175408A KR101768289B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175402A KR101832025B1 (ko) 2013-12-06 2014-12-08 단량체 및 블록 공중합체
KR1020140175410A KR101768290B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175400A KR101780097B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175411A KR101762487B1 (ko) 2013-12-06 2014-12-08 블록 공중합체
KR1020140175413A KR101780099B1 (ko) 2013-12-06 2014-12-08 블록 공중합체

Country Status (2)

Country Link
KR (15) KR101768288B1 (ko)
TW (14) TWI597300B (ko)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6521974B2 (ja) 2013-12-06 2019-05-29 エルジー・ケム・リミテッド ブロック共重合体
JP6496318B2 (ja) 2013-12-06 2019-04-03 エルジー・ケム・リミテッド ブロック共重合体
KR101768288B1 (ko) * 2013-12-06 2017-08-17 주식회사 엘지화학 블록 공중합체
CN105899556B (zh) 2013-12-06 2019-04-19 株式会社Lg化学 嵌段共聚物
EP3078693B1 (en) 2013-12-06 2021-01-27 LG Chem, Ltd. Block copolymer
JP6432847B2 (ja) 2013-12-06 2018-12-05 エルジー・ケム・リミテッド ブロック共重合体
WO2015084123A1 (ko) 2013-12-06 2015-06-11 주식회사 엘지화학 블록 공중합체
WO2015084128A1 (ko) 2013-12-06 2015-06-11 주식회사 엘지화학 블록 공중합체
EP3078654B1 (en) 2013-12-06 2021-07-07 LG Chem, Ltd. Monomer and block copolymer
JP6334706B2 (ja) 2013-12-06 2018-05-30 エルジー・ケム・リミテッド ブロック共重合体
JP6361893B2 (ja) 2013-12-06 2018-07-25 エルジー・ケム・リミテッド ブロック共重合体
EP3078689B1 (en) 2013-12-06 2020-12-02 LG Chem, Ltd. Block copolymer
US10227438B2 (en) 2013-12-06 2019-03-12 Lg Chem, Ltd. Block copolymer
CN105960422B (zh) 2013-12-06 2019-01-18 株式会社Lg化学 嵌段共聚物
EP3078686B1 (en) 2013-12-06 2018-10-31 LG Chem, Ltd. Block copolymer
CN107075053B (zh) 2014-09-30 2019-05-21 株式会社Lg化学 嵌段共聚物
WO2016053001A1 (ko) 2014-09-30 2016-04-07 주식회사 엘지화학 블록 공중합체
US10377894B2 (en) 2014-09-30 2019-08-13 Lg Chem, Ltd. Block copolymer
WO2016053000A1 (ko) 2014-09-30 2016-04-07 주식회사 엘지화학 블록 공중합체
EP3214102B1 (en) 2014-09-30 2022-01-05 LG Chem, Ltd. Block copolymer
CN107075051B (zh) 2014-09-30 2019-09-03 株式会社Lg化学 嵌段共聚物
WO2016053009A1 (ko) 2014-09-30 2016-04-07 주식회사 엘지화학 블록 공중합체
US10310378B2 (en) 2014-09-30 2019-06-04 Lg Chem, Ltd. Block copolymer
US10370529B2 (en) 2014-09-30 2019-08-06 Lg Chem, Ltd. Method of manufacturing patterned substrate
JP6637495B2 (ja) 2014-09-30 2020-01-29 エルジー・ケム・リミテッド パターン化基板の製造方法
KR102096274B1 (ko) * 2016-11-30 2020-04-02 주식회사 엘지화학 블록 공중합체
US11299596B2 (en) 2016-11-30 2022-04-12 Lg Chem, Ltd. Laminate
JP7078211B2 (ja) * 2016-11-30 2022-05-31 エルジー・ケム・リミテッド 高分子組成物
KR102183698B1 (ko) 2016-11-30 2020-11-26 주식회사 엘지화학 고분자막의 제조 방법
KR101946775B1 (ko) * 2016-11-30 2019-02-12 주식회사 엘지화학 블록 공중합체
KR102096272B1 (ko) * 2016-11-30 2020-04-02 주식회사 엘지화학 블록 공중합체
KR102261687B1 (ko) 2016-11-30 2021-06-08 주식회사 엘지화학 적층체
KR102096271B1 (ko) * 2016-11-30 2020-05-27 주식회사 엘지화학 블록 공중합체
WO2019013602A1 (ko) 2017-07-14 2019-01-17 주식회사 엘지화학 중성층 조성물
KR102096270B1 (ko) * 2017-07-14 2020-04-02 주식회사 엘지화학 중성층 조성물
KR102096276B1 (ko) 2017-07-14 2020-04-03 주식회사 엘지화학 중성층 조성물
KR102277770B1 (ko) * 2017-07-14 2021-07-15 주식회사 엘지화학 블록 공중합체 막의 평탄화 방법 및 패턴 형성 방법
TWI805617B (zh) 2017-09-15 2023-06-21 南韓商Lg化學股份有限公司 層壓板
KR102146538B1 (ko) * 2017-11-07 2020-08-20 주식회사 엘지화학 고분자 조성물
KR102436923B1 (ko) * 2018-01-26 2022-08-26 주식회사 엘지화학 광 감응기를 포함하는 블록 공중합체
KR102550419B1 (ko) 2018-08-16 2023-07-04 주식회사 엘지화학 블록 공중합체
KR102484626B1 (ko) * 2018-08-16 2023-01-04 주식회사 엘지화학 기판의 제조 방법
KR102484629B1 (ko) * 2018-08-16 2023-01-04 주식회사 엘지화학 중성층 조성물
KR102498631B1 (ko) * 2018-08-16 2023-02-10 주식회사 엘지화학 패턴화 기판의 제조 방법
KR102522249B1 (ko) * 2018-08-16 2023-04-17 주식회사 엘지화학 패턴화 기판의 제조 방법
KR102484630B1 (ko) * 2018-08-16 2023-01-04 주식회사 엘지화학 패턴화 기판의 제조 방법
KR102484628B1 (ko) * 2018-08-16 2023-01-04 주식회사 엘지화학 중성층 조성물
KR102484627B1 (ko) * 2018-08-16 2023-01-04 주식회사 엘지화학 피닝층 조성물
KR102522182B1 (ko) * 2018-08-31 2023-04-14 주식회사 엘지화학 패턴화 기판의 제조 방법
KR102534530B1 (ko) * 2018-08-31 2023-05-19 주식회사 엘지화학 패턴화 기판의 제조 방법
KR20210103167A (ko) 2020-02-13 2021-08-23 삼성전자주식회사 반도체 패키지

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3121116B2 (ja) * 1992-05-21 2000-12-25 出光興産株式会社 スチレン系ブロック共重合体及びその製造方法
KR100622353B1 (ko) * 1998-12-30 2006-09-11 노베온, 인코포레이티드 각질을 처리하기 위한 분지형/블록형 공중합체

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728431A (en) * 1996-09-20 1998-03-17 Texas A&M University System Process for forming self-assembled polymer layers on a metal surface
JP4625901B2 (ja) * 2000-11-08 2011-02-02 独立行政法人産業技術総合研究所 シンジオタクチック芳香族ビニル系ブロック共重合体およびその製造方法
JP4453814B2 (ja) * 2003-11-12 2010-04-21 Jsr株式会社 重合性化合物および混合物ならびに液晶表示素子の製造方法
JP2010115832A (ja) * 2008-11-12 2010-05-27 Panasonic Corp ブロックコポリマーの自己組織化促進方法及びそれを用いたブロックコポリマーの自己組織化パターン形成方法
CN101492520A (zh) * 2009-03-04 2009-07-29 中国科学院上海有机化学研究所 含有全氟环丁基芳基醚嵌段的两嵌段聚合物、制备方法及用途
JP5505371B2 (ja) * 2010-06-01 2014-05-28 信越化学工業株式会社 高分子化合物、化学増幅ポジ型レジスト材料、及びパターン形成方法
JP2014531615A (ja) * 2011-09-06 2014-11-27 コーネル ユニバーシティー ブロックコポリマー及び該ブロックコポリマーを用いたリソグラフィーパターニング
KR101768288B1 (ko) * 2013-12-06 2017-08-17 주식회사 엘지화학 블록 공중합체

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3121116B2 (ja) * 1992-05-21 2000-12-25 出光興産株式会社 スチレン系ブロック共重合体及びその製造方法
KR100622353B1 (ko) * 1998-12-30 2006-09-11 노베온, 인코포레이티드 각질을 처리하기 위한 분지형/블록형 공중합체

Also Published As

Publication number Publication date
KR20150067066A (ko) 2015-06-17
TWI596152B (zh) 2017-08-21
TWI596124B (zh) 2017-08-21
TWI586691B (zh) 2017-06-11
KR20150066488A (ko) 2015-06-16
TW201536824A (zh) 2015-10-01
KR101780097B1 (ko) 2017-09-19
TW201538548A (zh) 2015-10-16
KR20150067073A (ko) 2015-06-17
KR20150067074A (ko) 2015-06-17
KR20150067071A (ko) 2015-06-17
KR101768291B1 (ko) 2017-08-17
TW201536823A (zh) 2015-10-01
KR101780100B1 (ko) 2017-09-19
KR20150067064A (ko) 2015-06-17
KR101780098B1 (ko) 2017-09-19
KR20150066487A (ko) 2015-06-16
KR20150067065A (ko) 2015-06-17
TW201536822A (zh) 2015-10-01
KR20150067067A (ko) 2015-06-17
KR101762487B1 (ko) 2017-07-27
TWI598368B (zh) 2017-09-11
TWI596128B (zh) 2017-08-21
TWI591085B (zh) 2017-07-11
KR20150067069A (ko) 2015-06-17
KR20150066486A (ko) 2015-06-16
KR20150066489A (ko) 2015-06-16
TW201602214A (zh) 2016-01-16
KR101832025B1 (ko) 2018-02-23
TWI596125B (zh) 2017-08-21
TW201538552A (zh) 2015-10-16
KR101763010B1 (ko) 2017-08-03
TWI532780B (zh) 2016-05-11
TW201538551A (zh) 2015-10-16
KR101768289B1 (ko) 2017-08-30
KR101768288B1 (ko) 2017-08-17
KR101780099B1 (ko) 2017-09-19
TW201538549A (zh) 2015-10-16
KR101763009B1 (ko) 2017-08-03
TW201536818A (zh) 2015-10-01
TWI557173B (zh) 2016-11-11
KR20150067070A (ko) 2015-06-17
TW201538550A (zh) 2015-10-16
KR20150067072A (ko) 2015-06-17
TW201534651A (zh) 2015-09-16
KR101768290B1 (ko) 2017-08-18
TWI596126B (zh) 2017-08-21
TW201538546A (zh) 2015-10-16
TW201534652A (zh) 2015-09-16
TWI596119B (zh) 2017-08-21
TW201538547A (zh) 2015-10-16
KR20150067068A (ko) 2015-06-17
TWI586692B (zh) 2017-06-11
KR101780101B1 (ko) 2017-09-19
KR101770882B1 (ko) 2017-08-24
TWI597300B (zh) 2017-09-01
TWI596127B (zh) 2017-08-21

Similar Documents

Publication Publication Date Title
KR101763008B1 (ko) 블록 공중합체
KR101880212B1 (ko) 블록 공중합체
JP6496318B2 (ja) ブロック共重合体
JP6521974B2 (ja) ブロック共重合体
JP6483694B2 (ja) 単量体およびブロック共重合体
JP6347356B2 (ja) ブロック共重合体
JP6521975B2 (ja) ブロック共重合体
JP6483695B2 (ja) ブロック共重合体
KR101804007B1 (ko) 블록 공중합체

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right