WO2015030053A1 - 全固体電池および電極活物質の製造方法 - Google Patents

全固体電池および電極活物質の製造方法 Download PDF

Info

Publication number
WO2015030053A1
WO2015030053A1 PCT/JP2014/072439 JP2014072439W WO2015030053A1 WO 2015030053 A1 WO2015030053 A1 WO 2015030053A1 JP 2014072439 W JP2014072439 W JP 2014072439W WO 2015030053 A1 WO2015030053 A1 WO 2015030053A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
sulfur
active material
electrode active
solid electrolyte
Prior art date
Application number
PCT/JP2014/072439
Other languages
English (en)
French (fr)
Inventor
野上 玄器
貢 谷口
勝 田沢
篤 宇根本
元彰 松尾
慎一 折茂
Original Assignee
三菱瓦斯化学株式会社
株式会社東北テクノアーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社, 株式会社東北テクノアーチ filed Critical 三菱瓦斯化学株式会社
Priority to BR112016004291-3A priority Critical patent/BR112016004291B1/pt
Priority to US14/913,166 priority patent/US10147937B2/en
Priority to KR1020167008010A priority patent/KR102245868B1/ko
Priority to PL14841219T priority patent/PL3043412T3/pl
Priority to EP14841219.0A priority patent/EP3043412B1/en
Priority to CA2921210A priority patent/CA2921210C/en
Priority to CN201480047855.8A priority patent/CN105580185B/zh
Priority to RU2016103788A priority patent/RU2672556C2/ru
Priority to JP2015534259A priority patent/JP6868959B2/ja
Publication of WO2015030053A1 publication Critical patent/WO2015030053A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1399Processes of manufacture of electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/604Polymers containing aliphatic main chain polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an all solid state battery, and more particularly to an all solid state battery in which lithium ions are responsible for electrical conduction.
  • the present invention also relates to a method for producing an electrode active material.
  • lithium ion secondary batteries In recent years, demand for lithium ion secondary batteries has increased in applications such as portable information terminals, portable electronic devices, electric vehicles, hybrid electric vehicles, and stationary power storage systems.
  • the current lithium ion secondary battery uses a flammable organic solvent as an electrolyte, and requires a strong exterior so that the organic solvent does not leak.
  • the structure of the device such as the need to take a structure in preparation for the risk that the electrolyte should leak.
  • oxides, phosphate compounds, organic polymers, sulfides and the like have been studied.
  • oxides and phosphoric acid compounds have low resistance to oxidation and reduction, and it is difficult to stably exist in lithium ion secondary batteries.
  • materials, such as metallic lithium, low crystalline carbon, and graphite are used as a negative electrode, it also has the fault that a solid electrolyte and a negative electrode will react (patent document 1).
  • oxides and phosphate compounds have the property that their particles are hard. Therefore, in order to form a solid electrolyte layer using these materials, it is generally necessary to sinter at a high temperature of 600 ° C. or more, which is troublesome. Furthermore, when an oxide or a phosphoric acid compound is used as the material for the solid electrolyte layer, there is a disadvantage that the interfacial resistance with the electrode active material is increased.
  • the organic polymer has a drawback that the lithium ion conductivity at room temperature is low and the conductivity rapidly decreases as the temperature decreases.
  • sulfides have high lithium ion conductivity of 1.0 ⁇ 10 ⁇ 3 S / cm or more (Patent Document 2) and 0.2 ⁇ 10 ⁇ 3 S / cm or more (Patent Document 3) at room temperature. It has been known. Furthermore, since the particles are soft, it is possible to produce a solid electrolyte layer by a cold press and to easily bring the contact interface into a good state. However, when materials containing Ge or Si are used as the sulfide solid electrolyte material (Patent Document 2 and Patent Document 4), these materials have a problem that they are easily reduced.
  • Patent Document 5 a method of providing a film on the surface of the negative electrode active material
  • Patent Documents 6 to 10 a method of devising the composition of the solid electrolyte
  • Patent Documents 6 to 10 a method of devising the composition of the solid electrolyte
  • Patent Document 10 a solid electrolyte containing P 2 S 5 is used, but even when such a sulfide solid electrolyte is used, there remains a concern about the reaction with the negative electrode active material (non-patent). Reference 1).
  • the stability of the negative electrode is easily changed by a small amount of impurities in the solid electrolyte layer, and its control is not easy. For this reason, a solid electrolyte that has high lithium ion conductivity, does not adversely affect the stability of the electrode active material, and can form a good interface with an adjacent material is desired.
  • Non-patent Document 2 the high temperature phase of LiBH 4 has a high lithium ion conductivity
  • Patent Document 11 an ion conductor containing a complex hydride such as LiBH 4 is also referred to as a complex hydride solid electrolyte.
  • the solid electrolyte containing LiBH 4 has a drawback of reducing an oxide, for example, LiCoO 2, which is a commonly used positive electrode active material.
  • a charge / discharge cycle at 120 ° C. can be achieved by coating about 10 nm of Li 3 PO 4 on a 100 nm LiCoO 2 layer formed by pulsed laser deposition (PLD; Pulse Laser Deposition). It has been reported that this is possible (Non-Patent Document 4).
  • PLD Pulse Laser Deposition
  • Patent Document 12 Although a method for avoiding reduction by complex hydride by using a specific positive electrode active material has been found, usable positive electrode active materials are extremely limited (for example, polycyclic aroma having a polyacene skeleton structure). Group hydrocarbons, perovskite-type fluorides, etc.) (Patent Document 12). Moreover, these positive electrode active materials are not the oxide type positive electrode active materials generally used for the lithium ion secondary battery currently marketed, and there is no track record regarding long-term stability. Patent Document 12 also states that an oxide-type positive electrode active material coated with a specific ion conductor or carbon is difficult to reduce, but the data shown in the examples shows the reducing action during charging. It does not necessarily describe the effect when charging and discharging are repeated.
  • Non-Patent Document 4 shows that reduction of LiCoO 2 by LiBH 4 occurs during charging. 1 clearly shows that the battery resistance increases with repeated charge and discharge cycles. From this, it can be said that there is a demand for an effective means that not only suppresses the reduction of the positive electrode active material by the complex hydride in the short term but also suppresses the increase in battery resistance even after repeated charge and discharge.
  • Electrodes There are also the following issues regarding electrode materials. That is, the mainstream of currently used lithium ion secondary batteries uses rare resources called rare metals such as cobalt and nickel as electrode materials, and there is a demand for electrode materials that are more easily available and inexpensive.
  • the sulfur-based electrode active material does not contain lithium, unlike LiCoO 2 which is a general positive electrode active material of a lithium ion secondary battery. Therefore, in order to operate as a battery, it is common to use an active material containing lithium for the negative electrode (for example, lithium alloy such as metallic lithium or Li—In alloy). However, since metallic lithium is extremely reactive and dangerous, it is not easy to react a large amount of sulfur-based electrode active material with metallic lithium. Even when a Li—In alloy is used, the alloy must be made using metallic lithium, and eventually metallic lithium must be used.
  • lithium alloy such as metallic lithium or Li—In alloy
  • a negative electrode active material used in a general lithium ion secondary battery is a carbon-based material, and does not contain lithium.
  • Si-containing materials have been proposed as negative electrode active materials that can realize higher capacity batteries, which also do not contain lithium.
  • lithium-free material as a negative electrode active material and a sulfur-based electrode active material as a positive electrode active material
  • lithium is previously inserted into either the positive electrode or the negative electrode (ie, , Lithium doping) (Patent Documents 14 to 16).
  • Lithium doping is performed in, for example, lithium ion capacitors (Patent Documents 17 and 18).
  • a lithium doping method for reducing irreversible capacity has also been disclosed for a lithium ion secondary battery (Patent Document 19).
  • These methods are electric field doping methods in which lithium is electrochemically doped.
  • the electrode needs to be replaced or a structure for doping must be put in the battery cell.
  • the method using an electrolytic solution is not suitable as a doping method for an electrode of an all-solid battery.
  • Patent Documents 20 to 23 Also disclosed is a method of reacting an active material with metallic lithium before producing an electrode.
  • this method requires the use of highly reactive metallic lithium, and is not suitable for mass production in terms of maintaining the quality suitable for doping and safety. It is.
  • Patent Document 24 As a technique not using metallic lithium, a method of doping lithium into a silicon-silicon oxide composite using lithium hydride or lithium aluminum hydride is disclosed (Patent Document 24). However, this method is also intended to compensate for the irreversible capacity, and it is described that the presence of unreacted lithium hydride or lithium aluminum hydride adversely affects the characteristics of the battery. Therefore, a lithium doping method that can be more safely and easily doped and that can be applied to all-solid-state batteries is also desired.
  • JP 2000-223156 A International Publication No. 2011/118801 JP 2012-43646 A JP 2006-277997 A JP 2011-150942 A Japanese Patent No. 3149524 Japanese Patent No. 3163374 Japanese Patent No. 3343934 Japanese Patent No. 4165536 JP 2003-68361 A Japanese Patent No. 5187703 JP 2012-209106 A JP 2012-209104 A International Publication No. 2010/44437 JP 2012-150934 A JP 2008-147015 A JP 2011-249517 A JP 2011-249507 A Japanese Patent No. 4779985 JP 2012-204306 A JP 2012-204310 A JP 2012-209195 A JP 2012-38686 A JP 2011-222153 A
  • An object of the first aspect of the present invention is to provide an all solid state battery having high ion conductivity and excellent stability.
  • Another object of the second aspect of the present invention is to provide a safe and simple method for doping lithium in doping a sulfur-based electrode active material with lithium.
  • the first aspect of the present invention is as follows, for example.
  • a positive electrode layer, a negative electrode layer, and a solid electrolyte layer having lithium ion conductivity disposed between the positive electrode layer and the negative electrode layer The positive electrode layer includes a positive electrode active material and a complex hydride solid electrolyte, and the positive electrode active material is a sulfur-based electrode active material,
  • the solid electrolyte layer is an all-solid battery including a complex hydride solid electrolyte.
  • the inorganic sulfur compound is selected from the group consisting of S, S-carbon composite, TiS 2 , TiS 3 , TiS 4 , NiS, FeS 2 and MoS 2 .
  • the complex hydride solid electrolyte is a mixture of LiBH 4 or LiBH 4 and an alkali metal compound represented by the following formula (1); MX (1)
  • M represents an alkali metal atom selected from the group consisting of lithium atom, rubidium atom and cesium atom, X represents a halogen atom or an NH 2 group.
  • the all solid state battery according to any one of [1] to [3].
  • the negative electrode layer includes a negative electrode active material selected from the group consisting of Li, carbon, and Si.
  • the second aspect of the present invention is as follows, for example.
  • a sulfur-based electrode active material doped with lithium including a step of doping lithium into the sulfur-based electrode active material by mixing a sulfur-based electrode active material and a material containing a lithium-containing complex hydride.
  • Production method [9] The step of doping the sulfur-based electrode active material with lithium is performed by mixing the sulfur-based electrode active material and the material containing the lithium-containing complex hydride, and then performing a heat treatment on [8].
  • a method for producing a lithium-based electrode active material doped with lithium [10] The method for producing a sulfur-based electrode active material doped with lithium according to [9], wherein the heat treatment is performed at a temperature of 60 ° C. to 200 ° C.
  • the sulfur-based electrode active material is selected from the group consisting of sulfur-modified polyacrylonitrile, disulfide compounds, TiS 2 , TiS 3 , TiS 4 , NiS, NiS 2 , CuS, FeS 2 and MoS 3 [8].
  • the material containing the lithium-containing complex hydride is LiBH 4 or a mixture of LiBH 4 and an alkali metal compound represented by the following formula (1); MX (1)
  • M represents an alkali metal atom selected from the group consisting of lithium atom, rubidium atom and cesium atom, X represents a halogen atom or an NH 2 group.
  • M represents an alkali metal atom selected from the group consisting of lithium atom, rubidium atom and cesium atom
  • X represents a halogen atom or an NH 2 group.
  • the method for producing a sulfur-based electrode active material doped with lithium according to any one of [12].
  • the lithium-doped sulfur-based electrode active material according to [13] having diffraction peaks at ⁇ 1.2 deg, 27.3 ⁇ 1.2 deg, 35.4 ⁇ 1.5 deg, and 42.2 ⁇ 2.0 deg Manufacturing method.
  • An electrode comprising a sulfur-based electrode active material doped with lithium produced by the method according to any one of [8] to [14].
  • a method of producing an electrode comprising: heat-treating a current collector carrying the mixture, and doping the sulfur-based electrode active material with lithium.
  • [16-3] The method for producing an electrode according to any one of [16] to [16-2], wherein the mixing of the sulfur-based electrode active material and the material containing the lithium-containing complex hydride is performed by a dry method.
  • the sulfur-based electrode active material is selected from the group consisting of sulfur-modified polyacrylonitrile, disulfide compounds, TiS 2 , TiS 3 , TiS 4 , NiS, NiS 2 , CuS, FeS 2 and MoS 3 [ [16] to [16-3].
  • [16-5] The method for producing an electrode according to any one of [16] to [16-4], wherein the material containing the lithium-containing complex hydride is a solid electrolyte having lithium ion conductivity.
  • the material containing the lithium-containing complex hydride is LiBH 4 or a mixture of LiBH 4 and an alkali metal compound represented by the following formula (1); MX (1)
  • M represents an alkali metal atom selected from the group consisting of lithium atom, rubidium atom and cesium atom, X represents a halogen atom or an NH 2 group.
  • M represents an alkali metal atom selected from the group consisting of lithium atom, rubidium atom and cesium atom
  • X represents a halogen atom or an NH 2 group.
  • a lithium ion secondary battery comprising the electrode according to [15] or [17].
  • the first aspect of the present invention it is possible to provide an all solid state battery having high ion conductivity and excellent stability.
  • it is a manufacturing method of the sulfur type electrode active material doped with lithium, Comprising: The method which can dope lithium safely and simply can be provided.
  • the method according to the second aspect of the present invention can also be applied to an all-solid battery.
  • Sectional drawing of the all-solid-state battery which concerns on the 1st aspect of this invention The SEM photograph which shows the cross section of the positive electrode layer in the all-solid-state battery produced in Example A1. The figure which shows transition of the discharge capacity of the all-solid-state battery produced in Example A1. The figure which shows transition of the discharge capacity of the all-solid-state battery produced in Example A6. The figure which shows transition of the discharge capacity of the all-solid-state battery produced in Example A7. The figure which shows transition of the discharge capacity of the all-solid-state battery produced in Example A8. The figure which shows transition of the discharge capacity of the all-solid-state battery produced in Example A9. The figure which shows transition of the discharge capacity of the all-solid-state battery produced in Example A10.
  • Example B3 The figure which shows the X-ray-diffraction measurement result of the powder obtained in Example B3.
  • FIG. 1 is a cross-sectional view of an all solid state battery according to the first embodiment of the present invention.
  • the all solid state battery 10 is, for example, an all solid state lithium ion secondary battery, and can be used in various devices such as a mobile phone, a personal computer, and an automobile.
  • the all solid state battery 10 has a structure in which a solid electrolyte layer 2 is disposed between a positive electrode layer 1 and a negative electrode layer 3.
  • the positive electrode layer 1 includes a positive electrode active material and a complex hydride solid electrolyte
  • the positive electrode active material is a sulfur-based electrode active material.
  • the solid electrolyte layer 2 includes a complex hydride solid electrolyte.
  • the positive electrode layer 1 includes a sulfur-based electrode active material as a positive electrode active material and a complex hydride solid electrolyte.
  • the positive electrode layer 1 may further contain a conductive additive, a binder, and the like as necessary.
  • any material that can release lithium ions during charging and occlude lithium ions during discharging can be used.
  • Particles or thin films of organic sulfur compounds or inorganic sulfur compounds can be used, both of which charge and discharge using a sulfur redox reaction.
  • the organic sulfur compound include disulfide compounds, sulfur-modified polyacrylonitrile, sulfur-modified polyisoprene, rubeanic acid (dithiooxamide), and polysulfide carbon typified by the compounds described in WO2010-044437.
  • disulfide compounds, sulfur-modified polyacrylonitrile, and rubeanic acid are preferable, and sulfur-modified polyacrylonitrile is particularly preferable.
  • the disulfide compound those having a dithiobiurea derivative, a thiourea group, a thioisocyanate, or a thioamide group are more preferable.
  • Sulfur-modified polyacrylonitrile is a modified polyacrylonitrile containing sulfur atoms obtained by mixing sulfur powder and polyacrylonitrile and heating them under an inert gas or under reduced pressure.
  • the presumed structure is described in Chem. Mater. As shown in 2011, 23, 5024-5028, polyacrylonitrile is closed to become polycyclic, and at least a part of S is bonded to C.
  • the compounds described in this document in the Raman spectrum there is a strong peak signal in the vicinity of 1330 cm -1 and 1560 cm -1, further, 307cm -1, 379cm -1, 472cm -1, there is a peak around 929 cm -1 To do.
  • Sulfur as a raw material is not particularly limited, and any of ⁇ sulfur, ⁇ sulfur, and ⁇ sulfur having an S 8 structure can be used.
  • the particle size of sulfur if it is too large, the mixing property will be poor, and if it is too small, it will be difficult to handle as nanoparticles, so it is preferably in the range of 1 to 300 ⁇ m when observed with an electron microscope. More preferably, it is 10 to 200 ⁇ m.
  • the polyacrylonitrile is not particularly limited, but the weight average molecular weight is preferably in the range of 10,000 to 300,000.
  • the particle size of polyacrylonitrile is preferably in the range of 0.1 to 100 ⁇ m, particularly preferably 1 to 50 ⁇ m.
  • the mixing method of sulfur and polyacrylonitrile is not particularly limited, but examples include a method using a lykai machine, a ball mill, a planetary ball mill, a bead mill, a self-revolving mixer, a high-speed stirring mixer, a tumbler mixer, and the like. It is done. However, if a method that gives large energy during mixing, such as mixing using a planetary ball mill, not only mixing but also reaction may proceed simultaneously. Therefore, it is preferable to use a likai machine or a tumbler mixer that can be mixed mildly. When done on a small scale, manual mortar mixing is preferred. Mixing is preferably carried out dry, but can also be carried out in a solvent. When using a solvent, it is preferable to use a solvent having a boiling point of 210 ° C. or lower so that sulfur and polyacrylonitrile are volatilized and removed before reacting.
  • the heating after mixing can be performed under reduced pressure or under an inert gas.
  • When carried out under reduced pressure it is preferably carried out in the range of 10 Pa to 70 kPa.
  • When carried out under an inert gas it is preferably carried out in the range of 0.1 kPa to 1 MPa, more preferably in the range of 1 kPa to 150 kPa.
  • Examples of the inert gas include helium, nitrogen, and argon.
  • when heating under inert gas it is preferable to distribute
  • When heating under reduced pressure it is preferable to replace the reactor with an inert gas before heating. This is because if oxygen remains, an oxidation reaction that is a side reaction proceeds. However, this is not the case when the degree of vacuum is high and oxygen can be almost removed from the system.
  • the heating temperature is preferably in the range of 200 to 500 ° C, more preferably in the range of 250 to 450 ° C. When the temperature is higher than this, volatilization of sulfur becomes active, so that more sulfur is required for the raw material. If the temperature is low, the reaction proceeds slowly and is not efficient.
  • the heating time is not particularly limited. For example, the above-described temperature may be maintained for 1 to 12 hours. If the heating temperature is low, it takes time to obtain sulfur-modified polyacrylonitrile, and if the heating temperature is high, sulfur-modified polyacrylonitrile can be obtained in a short time. The temperature and time can be adjusted according to the equipment and scale used.
  • Inorganic sulfur compounds are preferred because of their excellent stability.
  • sulfur (S), S-carbon composite, TiS 2 , TiS 3 , TiS 4 , NiS, NiS 2 , CuS, FeS 2 , Li 2 S examples thereof include MoS 2 and MoS 3 .
  • S, S-carbon composite, TiS 2 , TiS 3 , TiS 4 , FeS 2 and MoS 2 are preferable, and S-carbon composite, TiS 2 and FeS 2 are more preferable.
  • the S-carbon composite is a state in which a sulfur powder and a carbon material are included and are combined by subjecting them to heat treatment or mechanical mixing. More specifically, the state in which sulfur is distributed on the surface and pores of the carbon material, the state in which sulfur and the carbon material are uniformly dispersed at the nano level, and they are aggregated into particles, fine sulfur powder
  • the carbon material is distributed on the surface or in the inside, or a state in which a plurality of these states are combined.
  • Sulfur as a raw material is not particularly limited, and any of ⁇ sulfur, ⁇ sulfur, and ⁇ sulfur having an S 8 structure can be used.
  • the sulfur particle size is preferably in the range of 1 to 300 ⁇ m, more preferably in the range of 1 to 200 ⁇ m, because if the particle size is too large, the mixing properties will be poor, and if it is too small, the nanoparticles will become difficult to handle. is there.
  • the carbon material is not particularly limited, and examples thereof include carbon black, acetylene black, ketjen black, Maxsorb (registered trademark), carbon fiber, and graphene. It is also possible to use these in combination.
  • Maxsorb (registered trademark) and Ketjen Black are used in combination, the plateau area in charge and discharge is expanded and the capacity of charge and discharge is maintained even after repeated cycles. It is more preferable because the rate becomes high.
  • a large amount of sulfur is preferable because an active material having a large charge / discharge capacity per unit weight can be obtained. If the amount of the carbon material is too small, the electronic conductivity is lowered and the operation as a battery becomes difficult, so the ratio of sulfur to the carbon material is important. In most preparation methods, the ratio of the raw material sulfur to the carbon material coincides with the ratio of sulfur to the carbon material in the product S-carbon composite.
  • the preparation method is not particularly limited, and examples thereof include a method in which sulfur and a carbon material are mixed and then heated to a temperature higher than the melting point of sulfur, a method using mechanochemical, a high-speed air-flow impact method, and the like.
  • the method using mechanochemical is a method in which mechanical energy is applied to a plurality of different materials to cause strong crushing, mixing and reaction.
  • a ball mill, a bead mill, or a planetary ball mill can be used, and a solvent can be used.
  • the high-speed air-flow impact method is a method suitable for preparing a larger amount, for example, using a jet mill.
  • the positive electrode layer 1 is a bulk type containing both a sulfur-based electrode active material and a complex hydride solid electrolyte. By reducing the thickness of the positive electrode layer to 1 to 10 ⁇ m, the battery can be operated even if the positive electrode layer does not contain a solid electrolyte, but the amount of active material contained per cell is reduced. Therefore, it is not preferable as a configuration of a battery intended to ensure capacity.
  • the complex hydride solid electrolyte the same one as described in “2.
  • Solid electrolyte layer” below can be used.
  • the positive electrode layer 1 and the solid electrolyte layer 2 preferably contain the same complex hydride solid electrolyte. This is because, when layers containing solid electrolytes having different compositions are in contact with each other, diffusion of constituent elements of the solid electrolyte is likely to occur between the layers, which may reduce lithium ion conductivity.
  • the positive electrode utilization factor ratio of discharge capacity to theoretical capacity
  • the interface resistance is increased. It was found that an all-solid-state battery having a low value can be obtained.
  • the sulfur-based electrode active material is softer than an oxide-based electrode active material that is generally used in lithium ion secondary batteries. Therefore, when forming a positive electrode layer, it is thought that a sulfur type electrode active material collapses with a solid electrolyte, a favorable interface is formed between a positive electrode active material and a solid electrolyte, and leads to the above effects.
  • the positive electrode layer 1 is preferably produced by pressing the material of the positive electrode layer while applying a pressure of 50 to 800 MPa, preferably 114 to 500 MPa. That is, by pressing at a pressure in the above range, a layer having few voids between particles and good adhesion can be obtained.
  • the ratio of the positive electrode active material and the solid electrolyte in the positive electrode layer 1 should be higher if the shape of the positive electrode can be maintained and the necessary ionic conductivity can be secured.
  • the weight ratio of positive electrode active material: solid electrolyte is preferably in the range of 9: 1 to 1: 9, more preferably 8: 2 to 2: 8.
  • the conductive aid used for the positive electrode layer 1 is not particularly limited as long as it has desired conductivity, and examples thereof include a conductive aid made of a carbon material. Specific examples include carbon black, acetylene black, ketjen black, and carbon fiber.
  • the content of the conductive additive in the positive electrode layer 1 is preferably smaller as long as desired electronic conductivity can be secured.
  • the content of the conductive auxiliary with respect to the positive electrode layer forming material is, for example, 0.1% by mass to 40% by mass, and preferably 3% by mass to 30% by mass.
  • any binder generally used for the positive electrode layer of a lithium ion secondary battery can be used.
  • polysiloxane polyalkylene glycol, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), ethylene-vinyl alcohol copolymer (EVOH) and the like can be used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • EVOH ethylene-vinyl alcohol copolymer
  • a thickener such as carboxymethylcellulose (CMC) can also be used.
  • the thickness of the positive electrode layer 1 is not particularly limited as long as it functions as a positive electrode layer, but is preferably 1 ⁇ m to 1000 ⁇ m, and more preferably 10 ⁇ m to 200 ⁇ m.
  • the solid electrolyte layer 2 is a layer having lithium ion conductivity disposed between the positive electrode layer 1 and the negative electrode layer 3, and includes a complex hydride solid electrolyte.
  • the complex hydride solid electrolyte is not particularly limited as long as it is a material containing a complex hydride having lithium ion conductivity.
  • the complex hydride solid electrolyte is LiBH 4 or a mixture of LiBH 4 and an alkali metal compound represented by the following formula (1): MX (1)
  • M represents an alkali metal atom selected from the group consisting of lithium atom, rubidium atom and cesium atom
  • X represents a halogen atom or an NH 2 group.
  • the halogen atom as X in the formula (1) may be an iodine atom, a bromine atom, a fluorine atom, a chlorine atom or the like.
  • X is preferably an iodine atom, a bromine atom or an NH 2 group, and more preferably an iodine atom or an NH 2 group.
  • the alkali metal compound includes lithium halide (eg, LiI, LiBr, LiF or LiCl), rubidium halide (eg, RbI, RbBr, RbF or RbCl), cesium halide (eg, CsI, CsBr, CsF or CsCl) or lithium amide (LiNH 2 ) is preferable, and LiI, RbI, CsI, or LiNH 2 is more preferable.
  • An alkali metal compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a preferred combination includes a combination of LiI and RbI.
  • LiBH 4 and the alkali metal compound known compounds can be used respectively. Further, the purity of these compounds is preferably 80% or more, and more preferably 90% or more. This is because a compound having a purity within the above range has high performance as a solid electrolyte.
  • the molar ratio of LiBH 4 to the alkali metal compound is preferably 1: 1 to 20: 1, and more preferably 2: 1 to 7: 1.
  • the molar ratio within the above range, a sufficient amount of LiBH 4 in the solid electrolyte can be secured, and high ionic conductivity can be obtained.
  • the amount of LiBH 4 is too large, the transition temperature of the high-temperature phase (high ion conduction phase) is difficult to decrease, and sufficient ion conductivity cannot be obtained at a temperature lower than the transition temperature (115 ° C.) of the high-temperature phase of LiBH 4. There is a tendency.
  • the mixing ratio is not particularly limited.
  • the molar ratio between LiI and the other alkali metal compound is preferably 1: 1 to 20: 1. More preferably, the ratio is 1 to 20: 1.
  • the diffraction peaks in these five regions correspond to the diffraction peaks of the high temperature phase of LiBH 4 . Even below the transition temperature of the high temperature phase of LiBH 4, the solid electrolyte having a diffraction peak in the five regions as described above tends to exhibit high ionic conductivity even below the transition temperature.
  • the method for preparing the complex hydride solid electrolyte is not particularly limited, but it is preferably prepared by mechanical milling or melt mixing described in Japanese Patent No. 5187703.
  • the solid electrolyte layer 2 may contain materials other than those described above as necessary.
  • the thickness of the solid electrolyte layer 2 is preferably thinner. Specifically, it is preferably in the range of 0.05 to 1000 ⁇ m, more preferably in the range of 0.1 ⁇ m to 200 ⁇ m.
  • Negative electrode layer 3 is a layer containing at least a negative electrode active material, and may contain a solid electrolyte, a conductive additive, a binder or the like, if necessary.
  • the negative electrode active material for example, a metal active material and a carbon active material can be used.
  • the metal active material include Li, In, Al, Si, Sn, and alloys of these metals.
  • examples of the carbon active material include mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), hard carbon, and soft carbon.
  • MCMB mesocarbon microbeads
  • HOPG highly oriented graphite
  • hard carbon hard carbon
  • soft carbon soft carbon
  • metal lithium foil As a negative electrode, it is preferable to heat-process an all-solid-state battery beforehand (for example, at 120 degreeC for about 2 hours). By heating, the adhesion between the solid electrolyte layer and the metal lithium is improved, and charging / discharging can be performed more stably.
  • the solid electrolyte used for the negative electrode layer 3 is not particularly limited as long as it has lithium ion conductivity and is stable with the negative electrode active material.
  • a complex hydride solid electrolyte may be used. it can. Since the complex hydride solid electrolyte is relatively soft, a good interface can be formed with a negative electrode active material such as graphite.
  • the negative electrode layer 3 is preferably a bulk type containing both the negative electrode active material and the solid electrolyte.
  • the complex hydride solid electrolyte contained in the negative electrode layer 3 those described in the solid electrolyte layer 2 can be used.
  • the negative electrode layer 3 and the solid electrolyte layer 2 preferably contain the same complex hydride solid electrolyte. This is because, when layers containing solid electrolytes having different compositions are in contact with each other, diffusion of constituent elements of the solid electrolyte is likely to occur between the layers, which may reduce lithium ion conductivity.
  • the ratio of the negative electrode active material to the solid electrolyte is preferably higher as long as the shape of the negative electrode can be maintained and the necessary ion conductivity can be ensured.
  • the weight ratio of negative electrode active material: solid electrolyte is preferably in the range of 9: 1 to 1: 9, more preferably 8: 2 to 2: 8.
  • the same conductive additive as the positive electrode layer 1 can be used.
  • the content of the conductive auxiliary with respect to the negative electrode layer forming material is, for example, 0.1% by mass to 20% by mass, and preferably 3% by mass to 15% by mass.
  • any binder generally used for the negative electrode layer of a lithium secondary battery can be used.
  • examples thereof include polysiloxane, polyalkylene glycol, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), and polyacrylic acid.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • SBR styrene-butadiene rubber
  • a thickener such as carboxymethylcellulose (CMC) can also be used.
  • the thickness of the negative electrode layer 3 is not limited as long as it functions as a negative electrode layer, but is preferably 0.05 ⁇ m to 1000 ⁇ m, and more preferably 0.1 ⁇ m to 200 ⁇ m.
  • each layer described above is formed and laminated to produce an all-solid battery, but the formation method and lamination method of each layer are not particularly limited.
  • a method in which a solid electrolyte or electrode active material is dispersed in a solvent to form a slurry, and is applied by a doctor blade, spin coating, etc., and rolled to form a film a vacuum deposition method, an ion plating method,
  • a vapor phase method in which a film is formed and laminated using a sputtering method, a laser ablation method, etc .
  • a press method in which powder is formed by hot pressing or cold pressing without applying temperature, and then laminated.
  • the complex hydride solid electrolyte is soft, it is particularly preferable to form a battery by pressing and laminating each layer to produce a battery.
  • a pressing method there are a hot press that is heated and a cold press that is not heated.
  • the complex hydride is more preferably formed by a cold press because it has sufficient formability without being heated.
  • the layers are preferably integrally formed by pressing, and the pressure at that time is preferably 50 to 800 MPa, more preferably 114 to 500 MPa. By pressing at a pressure in the above range, a layer having few voids between particles and good adhesion can be obtained, which is preferable from the viewpoint of ion conductivity. Increasing the pressure more than necessary is not practical because it is necessary to use a pressure device or a molded container made of an expensive material and the useful life thereof is shortened.
  • the step of doping lithium may be performed during the production of the sulfur-based electrode active material, may be performed during the production of the electrode, or may be performed during the production of the battery. .
  • the step of doping lithium may be performed during the production of the sulfur-based electrode active material, may be performed during the production of the electrode, or may be performed during the production of the battery.
  • a method for producing a lithium-doped sulfur-based electrode active material includes a sulfur-based electrode active material and a material containing a lithium-containing complex hydride.
  • a step of doping the sulfur-based electrode active material with lithium by mixing is included.
  • “doping” or “doping” is a phenomenon expressed in various terms such as intercalation, insertion, occlusion, loading, etc., and “lithium doping” or “doping lithium”. Means that a lithium sulfur compound is formed as a result of the above phenomenon.
  • the embodiment of the present invention it is possible to dope lithium easily without using an electrochemical technique, and it is not necessary to use metallic lithium, so that safety is high. There is also an advantage that lithium is uniformly doped with respect to the sulfur-based electrode active material. Moreover, according to the embodiment of the present invention, it is possible to dope all the amount of lithium necessary for the electrode reaction. Furthermore, since the material containing the lithium-containing complex hydride that is the doping agent is a lithium ion conductor, the adverse effect on the battery due to the remaining excessive doping agent is extremely small.
  • the method of the present invention can be used, for example, in an electrode active material of a lithium ion secondary battery using a non-aqueous electrolyte or an electrode active material of an all solid lithium ion secondary battery.
  • the lithium-doped sulfur-based electrode active material is preferably used as a positive electrode, it can be combined with an active material having a higher electrode potential than the sulfur-based electrode active material (for example, FePO 4 , FeF 3 , VF 3, etc.) It can also be used as an active material.
  • Sulfur-based electrode active material As the sulfur-based electrode active material, any sulfur compound that can release lithium ions during charging and occlude lithium ions during discharging can be used.
  • An organic sulfur compound or an inorganic sulfur compound can be used, and these may be subjected to a treatment such as carbon coating or composite formation with carbon in order to impart electronic conductivity.
  • organic sulfur compounds examples include disulfide compounds, sulfur-modified polyacrylonitrile, sulfur-modified polyisoprene, and polysulfide carbon typified by the compounds described in International Publication No. 2010-044437.
  • disulfide compounds and sulfur-modified polyacrylonitrile are preferable, and as disulfide compounds, those having a dithiobiurea derivative and a thiourea group, thioisocyanate, or thioamide group are more preferable.
  • Sulfur-modified polyacrylonitrile is a modified polyacrylonitrile containing sulfur atoms obtained by mixing sulfur powder and polyacrylonitrile and heating them under an inert gas or under reduced pressure.
  • the presumed structure is described in Chem. Mater. As shown in 2011, 23, 5024-5028, polyacrylonitrile is closed to become polycyclic, and at least a part of S is bonded to C.
  • the compounds described in this document in the Raman spectrum there is a strong peak signal in the vicinity of 1330 cm -1 and 1560 cm -1, further, 307cm -1, 379cm -1, 472cm -1, there is a peak around 929 cm -1 To do.
  • Sulfur as a raw material is not particularly limited, and any of ⁇ sulfur, ⁇ sulfur, and ⁇ sulfur having an S 8 structure can be used.
  • the particle size of sulfur if it is too large, the mixing property will be poor, and if it is too small, it will be difficult to handle as nanoparticles, so it is preferably in the range of 1 to 300 ⁇ m when observed with an electron microscope. More preferably, it is 10 to 200 ⁇ m.
  • the polyacrylonitrile is not particularly limited, but the weight average molecular weight is preferably in the range of 10,000 to 300,000.
  • the particle size of polyacrylonitrile is preferably in the range of 0.1 to 100 ⁇ m, particularly preferably 1 to 50 ⁇ m.
  • the mixing method of sulfur and polyacrylonitrile is not particularly limited, but examples include a method using a lykai machine, a ball mill, a planetary ball mill, a bead mill, a self-revolving mixer, a high-speed stirring mixer, a tumbler mixer, and the like. It is done. However, if a method that gives large energy during mixing, such as mixing using a planetary ball mill, not only mixing but also reaction may proceed simultaneously. Therefore, it is preferable to use a likai machine or a tumbler mixer that can be mixed mildly. When done on a small scale, manual mortar mixing is preferred. Mixing is preferably carried out dry, but can also be carried out in a solvent. When using a solvent, it is preferable to use a solvent having a boiling point of 210 ° C. or lower so that sulfur and polyacrylonitrile are volatilized and removed before reacting.
  • the heating after mixing can be performed under reduced pressure or under an inert gas.
  • When carried out under reduced pressure it is preferably carried out in the range of 10 Pa to 70 kPa.
  • When carried out under an inert gas it is preferably carried out in the range of 0.1 kPa to 1 MPa, more preferably in the range of 1 kPa to 150 kPa.
  • Examples of the inert gas include helium, nitrogen, and argon.
  • when heating under inert gas it is preferable to distribute
  • When heating under reduced pressure it is preferable to replace the reactor with an inert gas before heating. This is because if oxygen remains, an oxidation reaction that is a side reaction proceeds. However, this is not the case when the degree of vacuum is high and oxygen can be almost removed from the system.
  • the heating temperature is preferably in the range of 200 to 500 ° C, more preferably in the range of 250 to 450 ° C. When the temperature is higher than this, volatilization of sulfur becomes active, so that more sulfur is required for the raw material. If the temperature is low, the reaction proceeds slowly and is not efficient.
  • the heating time is not particularly limited. For example, the above-described temperature may be maintained for 1 to 12 hours. If the heating temperature is low, it takes time to obtain sulfur-modified polyacrylonitrile, and if the heating temperature is high, sulfur-modified polyacrylonitrile can be obtained in a short time. The temperature and time can be adjusted according to the equipment and scale used.
  • Inorganic sulfur compounds are preferable because they are excellent in stability, and specific examples include TiS 2 , TiS 3 , TiS 4 , NiS, NiS 2 , CuS, FeS 2 , and MoS 3 . Among them, TiS 2, TiS 3, TiS 4, NiS, NiS 2, FeS 2, and MoS 3 are preferred, TiS 2 is more preferable.
  • the lithium-containing complex hydride is not particularly limited as long as the sulfur-based electrode active material can be doped with lithium, but LiBH 4, LiAlH 4 , LiH, LiNH 2 , LiNiH 3 or a compound containing lithium prepared using these. Preferably there is.
  • the material containing a lithium-containing complex hydride is preferably a solid electrolyte having lithium ion conductivity. This is because when a battery is manufactured using a lithium-doped sulfur-based electrode active material, even if an unreacted and remaining doping agent is present in the electrode, it functions as a solid electrolyte, resulting in a large battery resistance.
  • the material containing a lithium-containing complex hydride is LiBH 4 or a mixture of LiBH 4 and an alkali metal compound represented by the following formula (1): MX (1)
  • M represents an alkali metal atom selected from the group consisting of lithium atom, rubidium atom and cesium atom
  • X represents a halogen atom or an NH 2 group.
  • the halogen atom as X in the formula (1) may be an iodine atom, a bromine atom, a fluorine atom, a chlorine atom or the like.
  • X is preferably an iodine atom, a bromine atom or an NH 2 group, and more preferably an iodine atom or an NH 2 group.
  • the alkali metal compound includes lithium halide (eg, LiI, LiBr, LiF or LiCl), rubidium halide (eg, RbI, RbBr, RbF or RbCl), cesium halide (eg, CsI, CsBr, CsF or CsCl) or lithium amide (LiNH 2 ) is preferable, and LiI, RbI, CsI, or LiNH 2 is more preferable.
  • An alkali metal compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a preferred combination includes a combination of LiI and RbI.
  • LiBH 4 and the alkali metal compound known compounds can be used respectively. Further, the purity of these compounds is preferably 80% or more, and more preferably 90% or more. This is because a compound having a purity within the above range has high performance as a solid electrolyte.
  • the molar ratio of LiBH 4 to the alkali metal compound is preferably 1: 1 to 20: 1, and more preferably 2: 1 to 7: 1.
  • the molar ratio within the above range, a sufficient amount of LiBH 4 can be ensured, and high ion conductivity can be obtained.
  • the amount of LiBH 4 is too large, the transition temperature of the high-temperature phase (high ion conduction phase) is difficult to decrease, and sufficient ion conductivity cannot be obtained at a temperature lower than the transition temperature (115 ° C.) of the high-temperature phase of LiBH 4. There is a tendency.
  • the mixing ratio is not particularly limited.
  • the molar ratio between LiI and the other alkali metal compound is preferably 1: 1 to 20: 1. More preferably, the ratio is 1 to 20: 1. This is because such a mixture ratio preferably acts as a solid electrolyte when the material remains after lithium doping.
  • the diffraction peaks in these five regions correspond to the diffraction peaks of the high temperature phase of LiBH 4 . Even when the temperature is lower than the transition temperature of the high temperature phase of LiBH 4, the material having the diffraction peak in the five regions as described above tends to exhibit high ionic conductivity even when the temperature is lower than the transition temperature.
  • the manufacturing method of the material containing lithium-containing complex hydride is not particularly limited, it is preferably manufactured by mechanical milling, melt mixing described in Japanese Patent No. 5187703, or the like.
  • a sulfur-based electrode active material and a material containing a lithium-containing complex hydride are mixed.
  • the mixing is preferably performed in an inert gas atmosphere such as argon or helium.
  • the mixing method is not particularly limited, and examples thereof include a method using a reika machine, a ball mill, a planetary ball mill, a bead mill, a self-revolving mixer, a high-speed stirring type mixing device, a tumbler mixer, and the like.
  • a method that gives a large energy during mixing such as mixing using a planetary ball mill, not only mixing but also lithium doping and side reactions may proceed simultaneously. Therefore, when it is not desired to advance the lithium doping reaction at the time of mixing, such as when lithium doping is performed at the time of electrode preparation or battery manufacturing described later, it is preferable to use a lykai machine or tumbler mixer that can be mixed mildly. When done on a small scale, manual mortar mixing is preferred. The mixing is preferably carried out dry, but it can also be carried out in a solvent having reduction resistance.
  • an aprotic non-aqueous solvent is preferable, and more specific examples include ether solvents such as tetrahydrofuran and diethyl ether, N, N-dimethylformamide, N, N-dimethylacetamide and the like. it can.
  • the material containing the lithium-containing complex hydride is a solid electrolyte, unlike the case of using alkyl lithium or metal lithium as a doping agent, there is almost no adverse effect on the electrode reaction even if it is excessive. Therefore, there is no need to worry about the mixing ratio so much.
  • the “amount of lithium to be doped” means a theoretical amount of lithium that can be introduced into the sulfur-based electrode active material, but may be made smaller depending on the purpose.
  • Lithium doping treatment Depending on the mixing method, the sulfur-based electrode active material is doped with lithium during mixing. However, the lithium doping treatment is preferably performed by heating for the purpose of performing in a short time. In that case, a lithium dope process is performed by heat-processing, after mixing a sulfur type electrode active material and the material containing lithium containing complex hydride.
  • the temperature of the heat treatment varies depending on the combination of the sulfur-based electrode active material and the material containing a lithium-containing complex hydride, but is, for example, in the range of 60 to 200 ° C., more preferably 80 to 150 ° C.
  • the fact that the above temperature range is preferable is also suggested by the fact that hydrogen is generated from around 100 ° C. in the results of thermal desorption mass spectrometry in a mixture of TiS 2 and LiBH 4 (FIG. 5). .
  • the lithium dope treatment time is preferably 1 to 40 hours, more preferably 2 to 30 hours. If the time is shorter than this, lithium doping may not proceed sufficiently. If the reaction time is longer than necessary, the productivity decreases, and if the reaction is performed at a high temperature for a long time, side reactions may occur.
  • the purification treatment can be performed.
  • a solvent in which the material containing the lithium-containing complex hydride used is dissolved for example, an ether type solvent such as tetrahydrofuran or diethyl ether, an aprotic such as N, N-dimethylformamide or N, N-dimethylacetamide.
  • ether type solvent such as tetrahydrofuran or diethyl ether
  • aprotic such as N, N-dimethylformamide or N, N-dimethylacetamide.
  • Non-aqueous solvents can be used.
  • this purification step is not always necessary, and in particular, when a lithium-doped sulfur-based electrode active material is used in an all-solid lithium ion secondary battery, the purification step is omitted to simplify the process. And the battery performance is hardly deteriorated.
  • Electrode The lithium-doped sulfur-based electrode active material obtained by the method described above can be used effectively in an electrode of a lithium ion secondary battery. Therefore, according to one embodiment of the present invention, an electrode including a sulfur-based electrode active material doped with lithium manufactured by the above method is provided.
  • the structure and manufacturing method of the electrode are the same as those of an electrode in a normal lithium ion secondary battery. That is, it can be manufactured by mixing a lithium-doped sulfur-based electrode active material with another electrode material and combining it with a current collector.
  • the term “other electrode material” used herein means another material that can be used as an electrode material such as a binder and a conductive additive, and the details are as described below.
  • lithium-doped sulfur-based electrode active material can be used instead of lithium doping at the time of producing the electrode. That is, according to one embodiment of the present invention, Mixing a sulfur-based electrode active material and a material containing a lithium-containing complex hydride; Carrying the mixture obtained in the above step on a current collector; By heating the current collector carrying the mixture, a method for producing an electrode is provided which includes a step of doping lithium into a sulfur-based electrode active material. Furthermore, according to one embodiment of the present invention, an electrode that can be manufactured by the above method is provided.
  • lithium doping is performed at the time of electrode preparation, the same effect as that obtained when a sulfur-based electrode active material previously doped with lithium is used can be obtained.
  • the details of the material mixing method, heating temperature, and materials used are as described in “1. Production of sulfur-based electrode active material doped with lithium”.
  • step of mixing a sulfur-based electrode active material and a material containing a lithium-containing complex hydride other electrode materials as described below may be included. Therefore, the “mixture” in “the step of supporting the mixture obtained in the above step on the current collector” may also include other electrode materials.
  • the sulfur-based electrode active material, the material containing a lithium-containing complex hydride, and other electrode materials are also collectively referred to as “electrode material”.
  • the current collector that can be used is not particularly limited, and materials conventionally used as current collectors for lithium ion secondary batteries, such as thin plates and meshes of aluminum, stainless steel, copper, nickel, or alloys thereof, can be used. Can be used. Moreover, a carbon nonwoven fabric, a carbon woven fabric, etc. can be used as a collector.
  • the electrode material may contain a binder.
  • a binder Any binder that is generally used for electrodes of lithium ion secondary batteries can be used.
  • polysiloxane, polyalkylene glycol, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), ethylene-vinyl alcohol copolymer (EVOH) and the like can be used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • EVOH ethylene-vinyl alcohol copolymer
  • a thickener such as carboxymethylcellulose (CMC) can also be used.
  • an electron conductive conductive polymer or an ion conductive conductive polymer may be used as the binder.
  • the electron conductive conductive polymer include polyacetylene.
  • the binder since the binder also exhibits the function of the conductive assistant particles, it is not necessary to add the conductive assistant.
  • the content of the binder is not particularly limited, but is 0.1 to 10% by mass based on the sum of the masses of the sulfur-based electrode active material, the lithium-containing complex hydride, the conductive auxiliary agent, and the binder. Is more preferable, and 0.1 to 4% by mass is more preferable. If the amount of the binder becomes excessive, the ratio of the active material in the electrode will decrease, and the energy density will decrease, so it is necessary to make the minimum amount that can sufficiently maintain the molding strength of the electrode preferable. Note that since the lithium-containing complex hydride and the sulfur-based electrode active material have a considerable function as a binder, it is also possible to produce an electrode without using a binder.
  • the electrode material may contain a conductive additive.
  • a conductive support agent which consists of carbon materials can be mentioned. Specific examples include carbon black, acetylene black, ketjen black, and carbon fiber.
  • sulfur-based electrode active materials have high electron conductivity such as TiS 2 , and when using these, it is not necessary to use a conductive aid.
  • the content of the conductive auxiliary agent varies depending on the relationship between the electronic conductivity and the weight density of the sulfur-based electrode active material to be used.
  • the conductive auxiliary agent is 1 to 100 parts by weight per 100 parts by weight of the sulfur-based electrode active material. It is 200 parts by weight, more preferably in the range of 10 to 100 parts by weight.
  • the electrode can be produced by a commonly used method. For example, it can be produced by applying an electrode material on a current collector and removing the solvent in the paint applied on the current collector.
  • Examples of the solvent used when applying the electrode material on the current collector include ether solvents such as tetrahydrofuran and diethyl ether, and aprotic such as N-methyl-2-pyrrolidone and N, N-dimethylformamide.
  • ether solvents such as tetrahydrofuran and diethyl ether
  • aprotic such as N-methyl-2-pyrrolidone and N, N-dimethylformamide.
  • Non-aqueous solvents can be used.
  • the coating method is not particularly limited, and a method usually employed when producing an electrode can be used. Examples thereof include a slit die coating method and a doctor blade method.
  • the method for removing the solvent in the paint applied on the current collector is not particularly limited, and the current collector applied with the paint may be dried in an atmosphere of 80 to 150 ° C., for example.
  • the time required for electrode manufacture by performing lithium dope and solvent removal simultaneously Can be shortened.
  • the electrode thus produced may be pressed by, for example, a roll press device or the like as necessary.
  • the linear pressure of the roll press can be, for example, 10 to 50 kgf / cm.
  • the thickness of the electrode is not particularly limited as long as it functions as an electrode, but is preferably 1 ⁇ m to 1000 ⁇ m, and more preferably 10 ⁇ m to 200 ⁇ m.
  • Lithium ion secondary battery The electrode produced as described above can be used in a lithium ion secondary battery. That is, according to one embodiment of the present invention, a lithium ion secondary battery including the electrode described above is provided.
  • a lithium ion secondary battery can be manufactured by a known method.
  • the electrode of the present invention can be used in both the positive electrode layer and the negative electrode layer, but it is preferable that one electrode is the electrode described in the present invention and the other electrode is an electrode not containing lithium.
  • a known carbon-based material such as graphite, a silicon-based material, or an alloy-based material such as Cu—Sn or Co—Sn may be used as the negative electrode active material. preferable.
  • Examples of the electrolytic solution include aprotic high dielectric constant solvents such as ethylene carbonate, propylene carbonate, butylene carbonate, and ⁇ -butyrolactone; dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl propyl carbonate, dipropyl carbonate, diethyl ether, tetrahydrofuran, Non-protons such as 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,3-dioxolane, sulfolane, methylsulfolane, acetonitrile, propionitrile, anisole, methyl acetate and other acetic acid esters or propionic acid esters Basic low-viscosity solvents can be used.
  • aprotic high dielectric constant solvents such as ethylene carbonate, propylene carbonate, butylene carbonate, and ⁇ -butyrolactone
  • dimethyl carbonate ethyl methyl carbonate, die
  • a solution in which a lithium salt such as lithium perchlorate, LiPF 6 , LiBF 4 , LiCF 3 SO 3 or the like is dissolved at a concentration of about 0.5 mol / l to 1.7 mol / l can be used. Furthermore, what is necessary is just to assemble a lithium ion secondary battery in accordance with a conventional method using another well-known battery component.
  • the present invention is also applicable to all solid state batteries. That is, according to one embodiment of the present invention, the lithium ion secondary battery is an all-solid battery.
  • the all solid state battery has a structure in which a solid electrolyte layer is disposed between a positive electrode layer and a negative electrode layer.
  • the method of the present invention which does not use metallic lithium is particularly useful.
  • an active material that does not contain lithium such as an indium foil, a carbon-based electrode active material, and a Si-based electrode active material, can be used for the negative electrode.
  • an active material that does not contain lithium such as an indium foil, a carbon-based electrode active material, and a Si-based electrode active material.
  • each member constituting the all-solid-state battery will be described taking as an example the case where the present invention is used for the positive electrode layer. However, it is not limited to this aspect.
  • (1) Positive Electrode Layer The configuration and production method of the positive electrode layer are as described in the item “2. Electrode” above. However, when the positive electrode layer, the solid electrolyte layer, and the negative electrode layer are integrally molded in “(4) Method for producing an all-solid battery” described later, the current collector may be disposed after these are integrally molded. .
  • the thickness of the positive electrode layer is not particularly limited as long as it functions as the positive electrode layer, but is preferably 1 ⁇ m to 1000 ⁇ m, and more preferably 10 ⁇ m to 200 ⁇ m.
  • the solid electrolyte layer is a layer having lithium ion conductivity disposed between the positive electrode layer and the negative electrode layer, and is formed from a solid electrolyte having lithium ion conductivity.
  • a complex hydride solid electrolyte, an oxide-based material, a sulfide-based material, a polymer-based material, Li 3 N, or the like can be used.
  • Li 3 PO 4 —Li 4 SiO 4 and Li 3 BO 4 —Li 4 SiO 4 which are oxide glasses; La 0.5 Li 0.5 TiO 3 which is a perovskite oxide; NASICON type Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 and Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 which are oxides; Li 14 Zn which is a LISICON type oxide ( GeO 4 ) 4 , Li 3 PO 4 and Li 4 SiO 4 ; Li 7 La 3 Zr 2 O 12 , Li 5 La 3 Ta 2 O 12 and Li 5 La 3 Nb 2 O 12 which are garnet-type oxides; sulfide glass or sulfide glass ceramics, Li 2 S-P 2 S 5, 80Li 2 S-20P 2 S 5, 70Li 2 S-27P 2 S 5 -3P 2 5 and Li 2 S-SiS 2; thio -LISICON type material in which Li 3.25 Ge 0.25 P 0.75 S 4 , Li 4 SiS 4, Li
  • polymer-based materials such as polyethylene oxide, polyacrylonitrile, poly (cyanoethoxyvinyl) derivative (CPVA), and the like.
  • CPVA poly (cyanoethoxyvinyl) derivative
  • a complex hydride solid electrolyte is preferable because the interface state with the positive electrode layer described above becomes favorable.
  • the complex hydride solid electrolyte the same materials as those described above as the material containing the lithium-containing complex hydride can be used.
  • the solid electrolyte layer may contain materials other than those described above as necessary.
  • the thickness of the solid electrolyte layer is preferably thinner. Specifically, it is preferably in the range of 0.05 ⁇ m to 1000 ⁇ m, and more preferably in the range of 0.1 ⁇ m to 200 ⁇ m.
  • Negative electrode layer is a layer containing at least a negative electrode active material, and may contain a solid electrolyte, a conductive additive, a binder, and the like as necessary.
  • the negative electrode active material for example, a metal active material and a carbon active material can be used.
  • the metal active material include In, Al, Si, Sn, and alloys of these metals.
  • the carbon active material include mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), hard carbon, and soft carbon.
  • MCMB mesocarbon microbeads
  • HOPG highly oriented graphite
  • hard carbon hard carbon
  • soft carbon soft carbon
  • the solid electrolyte used for the negative electrode layer is not particularly limited as long as it has lithium ion conductivity and is stable with the negative electrode active material.
  • a complex hydride solid electrolyte can be used.
  • the complex hydride solid electrolyte is relatively soft, it can form a favorable interface with a negative electrode active material such as graphite and is preferable because it is stable against reduction.
  • the negative electrode layer is preferably a bulk type containing both the negative electrode active material and the solid electrolyte.
  • the complex hydride solid electrolyte contained in the negative electrode layer the same materials as those described above as the material containing the lithium-containing complex hydride can be used.
  • the same complex hydride solid electrolyte is preferably contained in the negative electrode layer and the solid electrolyte layer.
  • the solid electrolytes may react with each other and the diffusion of solid electrolyte constituent elements between the layers is likely to occur, which may reduce lithium ion conductivity. Because.
  • the ratio of the negative electrode active material to the solid electrolyte is preferably higher as long as the shape of the negative electrode can be maintained and the necessary ion conductivity can be ensured.
  • the weight ratio of negative electrode active material: solid electrolyte is preferably in the range of 9: 1 to 1: 9, more preferably 8: 2 to 2: 8.
  • the conductive aid used for the negative electrode layer the same conductive aid as that for the positive electrode layer can be used.
  • the ratio of the conductive additive to the total mass of the negative electrode layer forming material is, for example, 0.1% by mass to 20% by mass, and preferably 3% by mass to 15% by mass.
  • the negative electrode layer forming material here includes a negative electrode active material, and optionally a solid electrolyte, a conductive additive, a binder, and the like.
  • any binder generally used for the negative electrode layer of a lithium ion secondary battery can be used.
  • examples thereof include polysiloxane, polyalkylene glycol, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), and polyacrylic acid.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • SBR styrene-butadiene rubber
  • a thickener such as carboxymethylcellulose (CMC) can also be used.
  • the thickness of the negative electrode layer is not limited as long as it functions as a negative electrode layer, but is preferably 0.05 ⁇ m to 1000 ⁇ m, and more preferably 0.1 ⁇ m to 200 ⁇ m.
  • a pressing method there are a hot press that is heated and a cold press that is not heated.
  • An appropriate method may be selected depending on the combination of the solid electrolyte and the active material.
  • the layers are preferably integrally formed by pressing, and the pressure at that time is preferably 50 to 800 MPa, more preferably 114 to 500 MPa.
  • an electrode is produced similarly to the case where lithium dope is performed at the time of electrode production, heat treatment is not performed at that time, and heat treatment is performed after the battery is configured.
  • the temperature of the heat treatment is the same as when lithium-doped electrode active material is lithium-doped in advance or when lithium is doped during electrode production. Even when lithium doping is performed at the time of battery production, the same effect as that obtained when a sulfur-based electrode active material doped with lithium in advance is produced.
  • Example A EXAMPLES
  • LiBH 4 manufactured by Sigma-Aldrich, purity 90%
  • LiBH 4 was weighed and ground in an agate mortar to obtain a complex hydride solid electrolyte (LiBH 4 ).
  • Positive electrode active material TiS 2 manufactured by Sigma-Aldrich, purity 99.9%
  • powder of complex hydride solid electrolyte (LiBH 4 ) 2: 3 (weight ratio) was weighed in a glove box and mortar It mixed and it was set as the positive electrode layer powder.
  • the powder of the complex hydride solid electrolyte prepared above was put into a powder tablet molding machine having a diameter of 8 mm, and press-molded into a disk shape at a pressure of 143 MPa (formation of complex hydride solid electrolyte layer). Without removing the molded product, the positive electrode layer powder prepared above was put into a tablet molding machine and integrally molded at a pressure of 285 MPa. In this manner, a disk-shaped pellet in which the positive electrode layer (75 ⁇ m) and the complex hydride solid electrolyte layer (300 ⁇ m) were laminated was obtained.
  • a lithium metal foil (made by Honjo Metal Co., Ltd.) with a thickness of 200 ⁇ m and ⁇ 8 mm is pasted on the opposite side of the positive electrode layer of this pellet to form a Li negative electrode layer, put into a battery test cell made of SUS304, and an all-solid secondary battery did.
  • Example A2 Preparation of the complex hydride solid electrolyte and the positive electrode layer powder was carried out in the same manner as in Example A1.
  • the powder of the complex hydride solid electrolyte was put into a powder tablet molding machine having a diameter of 8 mm, and press-molded into a disk shape at a pressure of 143 MPa. Without taking out the molded product, the positive electrode layer powder was put and integrally molded at a pressure of 285 MPa. In this manner, a disk-shaped pellet in which the positive electrode layer (75 ⁇ m) and the complex hydride solid electrolyte layer (300 ⁇ m) were laminated was obtained.
  • An indium foil having a thickness of 250 ⁇ m and ⁇ 8 mm is attached to the pellet, and a metal lithium foil having a thickness of 200 ⁇ m and ⁇ 8 mm is further attached to form a negative electrode layer for forming a Li—In alloy.
  • An all-solid secondary battery was made.
  • Example A3> (Preparation of positive electrode active material)
  • TiS 2 manufactured by Sigma-Aldrich, purity 99.9%
  • sulfur manufactured by Aldrich, purity 99.98%
  • S 1: It measured so that it might become 2 molar ratio, and it mixed in the agate mortar.
  • the mixed starting materials were put into a 45 mL SUJ-2 pot, and SUJ-2 balls ( ⁇ 7 mm, 20 pieces) were further put into the pot to completely seal the pot.
  • This pot was attached to a planetary ball mill (P7 made by Frichche), and mechanical milling was performed at a rotation speed of 400 rpm for 10 hours to obtain a positive electrode active material (TiS 4 ).
  • An all-solid battery was produced in the same manner as in Example A1, except that the positive electrode layer powder was used.
  • the charge / discharge test was performed in the same manner as in Example A1, except that the charge / discharge test was performed under conditions of a cutoff voltage of 1.9 to 3.0 V and a 0.05 C rate.
  • Example A4> Preparation of complex hydride solid electrolyte
  • LiBH 4 manufactured by Aldrich, purity 90%
  • LiI manufactured by Aldrich, purity 99.999%
  • This pot was attached to a planetary ball mill (P7 made by Fritche), and mechanical milling was performed at a rotational speed of 400 rpm for 5 hours to obtain a complex hydride solid electrolyte (3LiBH 4 -LiI).
  • An all-solid battery was produced in the same manner as in Example A1, except that the solid electrolyte and positive electrode layer powder prepared above were used.
  • Example A5> (Charge / discharge test) A charge / discharge test was conducted in the same manner as in Example A4, except that the all solid state battery after the test in Example A4 was used and the test temperature was 120 ° C.
  • S sulfur
  • ketjen black manufactured by Lion, EC600JD
  • Maxsorb registered trademark
  • An all-solid battery was produced in the same manner as in Example A1, except that the positive electrode layer powder prepared above was used.
  • S sulfur
  • polyacrylonitrile manufactured by Sigma-Aldrich, weight average molecular weight 150,000
  • the mixture was mixed in an agate mortar. 2 g of milky white mixture was placed on a quartz boat and stored in a tubular electric furnace (alumina tube: outer diameter 42 mm, inner diameter 35 mm, length 600 mm, heater heating length: 250 mm). Argon gas was flowed at a flow rate of 50 mL / min.
  • sulfur-modified polyacrylonitrile (sulfur-modified PAN) was subjected to CHNS analysis (FLASH EA1112 manufactured by Thermo), carbon was 41.6 wt%, nitrogen was 15.6 wt%, sulfur was 40.8 wt%, and hydrogen was 1 wt%. The composition was less than%.
  • S sulfur
  • Ni nickel
  • Ni Ni fine powder NIE10PB manufactured by High Purity Chemical Co., Ltd.
  • An all-solid battery was produced in the same manner as in Example A1, except that the positive electrode layer powder prepared above was used.
  • S sulfur
  • Fe Fe fine powder FEE12PB manufactured by High Purity Chemical Co., Ltd.
  • An all-solid battery was produced in the same manner as in Example A1, except that the positive electrode layer powder prepared above was used.
  • An all-solid battery was produced in the same manner as in Example A1, except that the positive electrode layer powder prepared above was used.
  • FIGS. 3A to 3F The transitions of the discharge capacities of the batteries produced in Examples A1 and A6 to A10 are shown in FIGS. 3A to 3F, respectively (FIG. 3A: Example A1, FIG. 3B: Example A6, FIG. 3C: Example A7, FIG. 3D). : Example A8, FIG. 3E: Example A9, FIG. 3F: Example A10).
  • FIG. 4A the charging / discharging curve of 1, 2, and 45th cycle is shown to FIG. 4A.
  • FIG. 4B shows charge / discharge curves of the second, third and 45th cycles for Example A6.
  • FIG. 4C shows the charge / discharge curves of the second, third and twentieth cycles for Example A7.
  • Table 2 below shows the battery resistance, coulomb efficiency, and discharge capacity in the second and twentieth cycles of the batteries manufactured in Examples A1 to A10.
  • the charge / discharge capacity was calculated as the charge / discharge capacity obtained with the tested battery as a value per 1 g of the positive electrode active material. However, about Example A6, A8, and A9, it computed as charging / discharging capacity per 1g of sulfur.
  • the battery resistance was calculated from the IR drop after 1 second of charging suspension.
  • Coulomb efficiency was calculated from charge capacity / discharge capacity. “No discharge capacity is obtained” means that the discharge capacity per 1 g of the active material is less than 5 mAh.
  • a complex hydride having high lithium ion conductivity can be used as a solid electrolyte without concern about reduction of the positive electrode active material by the complex hydride. Moreover, as a result of forming a good interface between the positive electrode active material and the solid electrolyte, the interface resistance is lowered, and the lithium ion conductivity of the entire battery can be improved.
  • Example B Hereinafter, although the 2nd aspect of the present invention is explained in detail by an example, the contents of the present invention are not limited by this.
  • Lithium dope The mixture obtained in (1) was heat-treated at 120 ° C. for 2 hours in an argon atmosphere to perform lithium dope.
  • the a-axis and c-axis lattice constants of the powder obtained in (3) above were determined using analysis program software (HighScore Plus, manufactured by PANalytical) (space group P-3m1 (164)). As a result, the a-axis was 0.3436 nm and the c-axis was 0.6190 nm. These were applied to the graph showing the relationship between the lithium content and the a and c-axis lattice constants in the previous report (Solid State Comm. 40 (1981) 245-248) (FIG. 7). From the lithium content read from FIG. 7, it was found that the composition formula of the powder obtained in the above (3) was Li 0.80 TiS 2 . The lithium content in the composition formula is shown by averaging the value derived from the a-axis lattice constant and the value derived from the c-axis lattice constant.
  • Example B2 Lithium doping treatment was performed in the same manner as in Example B1, except that the lithium doping treatment time was 20 hours. The result of the X-ray diffraction measurement is shown in FIG. 6B. It was determined the lithium content in the same manner as in Example B1, the composition formula of the obtained powder was found to be Li 0.95 TiS 2.
  • This pot was attached to a planetary ball mill (P7 manufactured by Fritche), and mechanical milling was performed at a rotational speed of 400 rpm for 5 hours to obtain a material (3LiBH 4 -LiI) containing a lithium-containing complex hydride.
  • LiBH 4 , Aldrich, purity 90% 3: 1 (weight ratio)
  • the lithium doping treatment was performed in the same manner as in Example B1. It was determined the lithium content in the same manner as in Example B1, the composition formula of the obtained powder was found to be Li 0.05 TiS 2.
  • Example B5 The lithium doping treatment was performed in the same manner as in Example B4 except that the lithium doping treatment time was 20 hours. It was determined the lithium content in the same manner as in Example B1, the composition formula of the obtained powder was found to be Li 0.51 TiS 2.
  • LiBH 4 , Aldrich, purity 90% 4: 1 (weight ratio)
  • the lithium doping treatment was performed in the same manner as in Example B1. It was determined the lithium content in the same manner as in Example B1, the composition formula of the obtained powder was found to be Li 0.35 TiS 2. Although the ratio of LiBH 4 was smaller in Example B6 than in Example B4, the lithium doping amount was larger in Example B6 than in Example B4. Since the production lots of LiBH 4 used in the reaction were different, it was likely that the LiBH 4 particle size was slightly different between Example B4 and Example B6. That is, it is speculated that the reaction rate may vary depending on the particle size of LiBH 4 .
  • Example B7> The raw material ratio was TiS 2 (Sigma Aldrich, purity 99.9%): Lithium-containing complex hydride (LiBH 4 , Aldrich, purity 90%) 5: 1 (weight ratio)
  • LiBH 4 , Aldrich, purity 90% 5: 1 (weight ratio)
  • the lithium doping treatment was performed in the same manner as in Example B2. It was determined the lithium content in the same manner as in Example B1, the composition formula of the obtained powder was found to be Li 0.02 TiS 2.
  • the complex hydride solid electrolyte (LiBH 4 ) powder was put into a tablet molding machine and press-molded again at a pressure of 28 MPa (formation of a solid electrolyte layer).
  • An indium foil having a thickness of 100 ⁇ m and ⁇ 8 mm was attached to the surface of the solid electrolyte layer opposite to the positive electrode layer, and was integrally molded at a pressure of 285 MPa.
  • a disk-shaped pellet was obtained in which a positive electrode layer (75 ⁇ m), a complex hydride solid electrolyte layer 500 ⁇ m, and a negative electrode layer 70 ⁇ m (In indium foil spread to ⁇ 9 mm) were sequentially laminated.
  • Lithium doping conditions of Examples B1 to B7; a-axis and c-axis lattice constants determined from X-ray diffraction; lithium insertion amount determined from each of a-axis and c-axis lattice constants using FIG. 7; and the above lithium insertion amount are summarized in Table 1 below.
  • reference B1 the a-axis and c-axis lattice constants of TiS 2 not containing lithium are shown
  • the reference B2 the values of a-axis and c-axis lattice constants of LiTiS 2 containing lithium from the beginning are also shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 1つの実施形態によると、 正極層と、負極層と、前記正極層と前記負極層との間に配置されたリチウムイオン伝導性を有する固体電解質層とを具備し、 前記正極層は正極活物質および錯体水素化物固体電解質を含み、前記正極活物質は硫黄系電極活物質であり、 前記固体電解質層は、錯体水素化物固体電解質を含む 全固体電池が提供される。

Description

全固体電池および電極活物質の製造方法
 本発明は全固体電池に関し、特に、リチウムイオンが電気伝導を担う全固体電池に関する。また、本発明は、電極活物質の製造方法にも関する。
 近年、携帯情報端末、携帯電子機器、電気自動車、ハイブリッド電気自動車、更には定置型蓄電システムなどの用途において、リチウムイオン二次電池の需要が増加している。しかしながら、現状のリチウムイオン二次電池は、電解液として可燃性の有機溶媒を使用しており、有機溶媒が漏れないように強固な外装を必要とする。また、携帯型のパソコン等においては、万が一電解液が漏れ出した時のリスクに備えた構造を取る必要があるなど、機器の構造に対する制約も出ている。
 更には、自動車や飛行機等の移動体にまでその用途が広がり、定置型のリチウムイオン二次電池においては大きな容量が求められている。また、近年急速に普及しているスマートフォンに関しても高いエネルギー密度が求められている。このような状況の下、安全性が従来よりも重視される傾向にあり、有機溶媒等の有害な物質を使用しない全固体リチウムイオン二次電池の開発に力が注がれている。
 全固体リチウムイオン二次電池における固体電解質として、酸化物、リン酸化合物、有機高分子、硫化物等を使用することが検討されている。しかしながら、酸化物およびリン酸化合物は、酸化還元に対する耐性が弱く、リチウムイオン二次電池において安定に存在することが難しい。また負極として金属リチウムや低結晶性カーボン、黒鉛等の材料を用いた場合に、固体電解質と負極とが反応してしまうという欠点も有する(特許文献1)。
 さらに、酸化物やリン酸化合物は、その粒子が堅いという特性を有する。従って、これらの材料を使用して固体電解質層を形成するには、一般的に600℃以上の高い温度での焼結を必要とし、手間がかかる。更には、固体電解質層の材料として酸化物やリン酸化合物を使用した場合、電極活物質との間の界面抵抗が大きくなってしまうという欠点も有する。有機高分子については、室温におけるリチウムイオン伝導性が低く、温度が下がると急激に伝導性が低くなるという欠点を有する。
 一方、硫化物は、室温で1.0×10-3S/cm以上(特許文献2)および0.2×10-3S/cm以上(特許文献3)という高いリチウムイオン伝導性を有することが知られている。さらに、粒子がやわらかいことから、コールドプレスにて固体電解質層を作製することが可能であり、且つ接触界面を容易に良好な状態とすることができる。しかしながら、硫化物固体電解質材料としてGeやSiを含む材料を使用した場合(特許文献2および特許文献4)、これらの材料は還元されやすいという問題を有する。また、単セルにおいて高電圧を確保できるリチウム金属やカーボン系電極活物質に代表される電極電位が0V付近(Li電極基準)の負極活物質を用いて電池を構成すると(特許文献4)、硫化物固体電解質の還元反応が生じてしまうという問題もある。
 上記のような問題を防ぐために、負極活物質の表面に皮膜を設ける方法(特許文献5)、固体電解質の組成を工夫する方法(特許文献6~10)等が提案されている。特に、特許文献10ではPを含む固体電解質が使用されているが、このような硫化物固体電解質を使用した場合であっても、負極活物質との反応に対する懸念は残る(非特許文献1)。また、負極の安定性は、固体電解質層中の微量不純物によって変わりやすく、その制御は容易ではない。このようなことから、リチウムイオン伝導性が高く、電極活物質の安定性に悪影響を及ぼさず、且つ隣接する物質との間に良好な界面を形成することができる固体電解質が切望されている。
 新しいリチウムイオン伝導性固体電解質に関しては、2007年にLiBHの高温相が高いリチウムイオン伝導性を有することが報告され(非特許文献2)、2009年にはLiBHにLiIを加えることによってできる固溶体が、室温においても高温相を保つことができることが報告された(非特許文献3および特許文献11;以下、例えばLiBH等の錯体水素化物を含むイオン伝導体を錯体水素化物固体電解質とも称する)。この錯体水素化物固体電解質を用いて電池を構成することが検討されており、特に負極に金属リチウムを使用する場合において効果を発揮することが開示されている(特許文献12および特許文献13)。
 しかし、LiBHを含む固体電解質は、一般的に使用される正極活物質である酸化物、例えばLiCoOを還元してしまうという欠点を有している。これを防ぐ手法としては、パルスレーザー堆積法(PLD;Pulse Laser Deposition)にて製膜した100nmのLiCoO層上にLiPOを約10nmコートすることによって、120℃での充放電サイクルが可能なことが報告されている(非特許文献4)。しかしながら、これは、バルク型ではなく気相成膜を用いて製造された薄膜電池であるため、一つのセル当たりの容量をバルク型ほど確保できず、生産性も良くないという欠点を有する。
 特定の正極活物質を用いることによって、錯体水素化物による還元を回避する方法も見出されているが、使用可能な正極活物質が極めて限定される(例えば、ポリアセン系骨格構造を有する多環芳香族炭化水素、ペロブスカイト型フッ化物等)(特許文献12)。また、これらの正極活物質は、現在市販されているリチウムイオン二次電池に一般的に使用されている酸化物型正極活物質ではなく、長期安定性に関する実績もない。特許文献12には、酸化物型正極活物質に特定のイオン伝導体や炭素をコートしたものが還元されにくいことも述べられているが、実施例で示しているデータは充電時の還元作用を示しているのに留まり、必ずしも充放電を繰り返した時の効果を述べてはいない。
 なお、非特許文献4においては、LiBHによるLiCoOの還元は充電中に生じることが示されおり、非特許文献4のFig.1には充放電サイクルを重ねることで、電池抵抗が増大していくことが明確に示されている。このことから、錯体水素化物による正極活物質の還元を短期的に抑えるだけではなく、充放電を繰り返した後においても電池抵抗の増大を抑制できる有効な手段が求められていると言える。
 一方、硫黄を活物質として用いると、現在リチウムイオン電池に一般的に使用されている正極活物質であるLiCoO(Li電極基準で4.2V)と比べて、作動電圧は1.5~2.0V(Li電極基準)と低いものの、理論容量は10倍以上と極めて高い。このことから、種々の硫黄化合物を用いた高容量な電池の作製を目指した開発が進んでいる。しかしながら、電解液系で硫黄系電極活物質を用いると、ポリスルフィドが電解液に溶解してしまうため、充放電を繰り返すとクーロン効率(放電容量/充電容量)が低下するという問題がある(非特許文献5)。この課題を解決するために、全固体電池を用いるという手法が考えられ、全固体電池への硫黄系電極活物質の適用が期待されている。
 電極材料に関しては、以下のような課題もある。すなわち、現在使用されているリチウムイオン二次電池の主流は、電極材料として、コバルト、ニッケルなどのレアメタルと呼ばれる希少資源を用いるものであり、より入手しやすく安価な電極材料が要望されている。
 安価で豊富に存在している材料として、硫黄がある。硫黄を電極活物質として用いると、現在リチウムイオン二次電池に一般的に使用されている正極活物質であるLiCoO(リチウム電極基準で4.2V)と比べて、作動電圧は1.5~2.5V(リチウム電極基準)と低いものの、理論容量は10倍以上と極めて高い。このことから、種々の硫黄化合物を電極活物質として使用して高容量な電池を作製することが試みられている。
 硫黄系電極活物質は、リチウムイオン二次電池の一般的な正極活物質であるLiCoOとは異なり、リチウムを含んでいない。よって、電池として稼動させるためには、負極にリチウムを含有する活物質(例えば、金属リチウムやLi-In合金等のリチウム合金)を用いるのが一般的である。しかしながら、金属リチウムは極めて反応性が高くて危険であることから、大量の硫黄系電極活物質を金属リチウムと反応させることは容易なことではない。Li-In合金を使用する場合にも、金属リチウムを用いて合金を作製しなくてはならず、結局は金属リチウムを使用せざるを得ない。
 現在、一般的なリチウムイオン二次電池で使用されている負極活物質は、カーボン系の材料であり、これはリチウムを含んでいない。また、より高容量な電池を実現し得る負極活物質として、Si含有材料が提案されており、これもリチウムを含んでいない。このようなリチウムを含まない材料を負極活物質として使用し、硫黄系電極活物質を正極活物質として使用して電池を構成する場合には、正極か負極のどちらかに予めリチウムを挿入(すなわち、リチウムドープ)しておくことが必要である(特許文献14~16)。
 リチウムドープは、例えば、リチウムイオンキャパシタにおいて実施されている(特許文献17および18)。また、リチウムイオン二次電池に関しても、不可逆容量を低減することを目的としたリチウムドープ方法が開示されている(特許文献19)。これらの手法は、電気化学的にリチウムをドープする電界ドープ法であるが、電極の入れ替えを必要とするか、あるいは電池セル内にドープのための構造物を入れなければならないという問題がある。また、電解液を使用する方法は、全固体電池の電極に対するドープ方法としては不向きである。
 電極を作製する前に、予め活物質と金属リチウムとを反応させる手法も開示されている(特許文献20~23)。しかし、この方法では、反応性が極めて高い金属リチウムを使用しなければならず、金属リチウムをドープに適した品質に保つという点でも、安全性の点でも、大量に製造するには不向きな手法である。
 また、これらはいずれも不可逆容量分の補填を目的としたものであり、活物質にリチウムが入り得る理論容量相当をドープするには不向きである。何故なら、過剰となったリチウムが金属リチウムとして残ることにより、デンドライトが発生し得るためである。さらに、多くの金属リチウムがドープされることで、元々金属リチウムが存在した部分に空隙が生じる可能性も大きい。電解液を用いた電池の場合には、生じた空隙を電解液が埋めることでリチウムイオン伝導性を確保できるが、固体電解質を用いた電池の場合には、空隙の増加はリチウムイオン伝導性の低下を引き起こす。
 金属リチウムを用いない手法として、水素化リチウムや水素化リチウムアルミニウムを用いて、珪素-珪素酸化物系複合体へリチウムをドープする方法が開示されている(特許文献24)。しかし、この方法も不可逆容量分の補填を目的としたものであると共に、未反応の水素化リチウムまたは水素化リチウムアルミニウムの存在は、電池の特性に好ましくない影響を与えることが記載されている。
 そこで、より安全で簡便にドープすることが可能であり、更には全固体電池にも適用可能なリチウムドープ方法が切望されている。
特開2000-223156号公報 国際公開第2011/118801号 特開2012-43646号公報 特開2006-277997号公報 特開2011-150942号公報 特許第3149524号公報 特許第3163741号公報 特許第3343934号公報 特許第4165536号公報 特開2003-68361号公報 特許第5187703号公報 特開2012-209106号公報 特開2012-209104号公報 国際公開第2010/44437号 特開2012-150934号公報 特開2008-147015号公報 特開2011-249517号公報 特開2011-249507号公報 特許第4779985号公報 特開2012-204306号公報 特開2012-204310号公報 特開2012-209195号公報 特開2012-38686号公報 特開2011-222153号公報
SEIテクニカルレビュー、2005年9月、第167号、p.54-60 Applied PhysiCS Letters(2007) 91、p.224103 JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2009)、131、p.894-895 Journal of Power Sources(2013)、226、p.61-64 Electrochemistry Communicatios,31,pp.71-75(2013)
 本発明の第1態様は、イオン伝導性が高く、且つ安定性に優れた全固体電池を提供することを目的とする。また、本発明の第2態様は、硫黄系電極活物質にリチウムをドープするにあたり、安全且つ簡便にリチウムをドープできる方法を提供することを目的とする。
 本発明の第1態様は、例えば以下の通りである。
[1] 正極層と、負極層と、前記正極層と前記負極層との間に配置されたリチウムイオン伝導性を有する固体電解質層とを具備し、
 前記正極層は正極活物質および錯体水素化物固体電解質を含み、前記正極活物質は硫黄系電極活物質であり、
 前記固体電解質層は、錯体水素化物固体電解質を含む
全固体電池。
[1-2]前記正極層に含まれる錯体水素化物固体電解質と、前記固体電解質層に含まれる錯体水素化物固体電解質とが同一である[1]に記載の全固体電池。
[2] 前記硫黄系電極活物質は、無機硫黄化合物または硫黄変性ポリアクリロニトリルである[1]または[1-2]に記載の全固体電池。
[3] 前記無機硫黄化合物は、S、S-カーボンコンポジット、TiS、TiS、TiS4、NiS、FeSおよびMoSからなる群より選択される[2]に記載の全固体電池。
[4] 前記錯体水素化物固体電解質は、LiBHまたはLiBHと下記式(1)で表されるアルカリ金属化合物との混合物である;
    MX     (1)
[式(1)中、Mは、リチウム原子、ルビジウム原子およびセシウム原子からなる群より選択されるアルカリ金属原子を表し、Xは、ハロゲン原子またはNH基を表す。]
[1]~[3]のいずれかに記載の全固体電池。
[4-1] 前記錯体水素化物固体電解質は、115℃未満でのX線回折(CuKα:λ=1.5405Å)において、少なくとも、2θ=24.0±1.0deg、25.6±1.2deg、27.3±1.2deg、35.4±1.5degおよび42.2±2.0degに回折ピークを有する、[4]に記載の全固体電池。
[5] 前記アルカリ金属化合物は、ハロゲン化ルビジウム、ハロゲン化リチウム、ハロゲン化セシウムおよびリチウムアミドからなる群より選択される[4]または[4-1]に記載の全固体電池。
[5-1] 前記負極層は、Li、カーボンおよびSiからなる群より選択される負極活物質を含む[1]~[5]のいずれかに記載の全固体電池。
[5-2] 前記負極層は、前記固体電解質層に含まれる錯体水素化物固体電解質と同一の固体電解質を含む[1]~[5-1]のいずれかに記載の全固体電池。
[6] 前記正極層は、プレスによって形成される[1]~[5-2]のいずれかに記載の全固体電池。
[7] 前記プレスは、114~500MPaの圧力を前記正極層の材料に加えることによって行われる[6]に記載の全固体電池。
 本発明の第2態様は、例えば以下の通りである。
[8] 硫黄系電極活物質とリチウム含有錯体水素化物を含む材料とを混合することにより、前記硫黄系電極活物質にリチウムをドープする工程を含む、リチウムがドープされた硫黄系電極活物質の製造方法。
[9] 前記硫黄系電極活物質にリチウムをドープする工程は、前記硫黄系電極活物質と前記リチウム含有錯体水素化物を含む材料とを混合した後、加熱処理することにより行われる[8]に記載のリチウムがドープされた硫黄系電極活物質の製造方法。
[10] 前記加熱処理は60℃~200℃の温度で行われる、[9]に記載のリチウムがドープされた硫黄系電極活物質の製造方法。
[10-1] 前記硫黄系電極活物質と前記リチウム含有錯体水素化物を含む材料との混合は、不活性ガス雰囲気化で行われる[8]~[10]のいずれかに記載のリチウムがドープされた硫黄系電極活物質の製造方法。
[10-2] 前記硫黄系電極活物質と前記リチウム含有錯体水素化物を含む材料との混合は、乾式で行われる[8]~[10-1]のいずれかに記載のリチウムがドープされた硫黄系電極活物質の製造方法。
[11] 前記硫黄系電極活物質が、硫黄変性ポリアクリロニトリル、ジスルフィド化合物、TiS、TiS、TiS4、NiS、NiS、CuS、FeSおよびMoSからなる群より選択される[8]~[10-2]のいずれかに記載のリチウムがドープされた硫黄系電極活物質の製造方法。
[12] 前記リチウム含有錯体水素化物を含む材料は、リチウムイオン伝導性を有する固体電解質である[8]~[11]のいずれかに記載のリチウムがドープされた硫黄系電極活物質の製造方法。
[13] 前記リチウム含有錯体水素化物を含む材料は、LiBHまたはLiBHと下記式(1)で表されるアルカリ金属化合物との混合物である;
    MX     (1)
[式(1)中、Mは、リチウム原子、ルビジウム原子およびセシウム原子からなる群より選択されるアルカリ金属原子を表し、Xは、ハロゲン原子またはNH基を表す。]
[8]~[12]のいずれかに記載のリチウムがドープされた硫黄系電極活物質の製造方法。
[13-1] 前記リチウム含有錯体水素化物を含む材料は、115℃未満でのX線回折(CuKα:λ=1.5405Å)において、少なくとも、2θ=24.0±1.0deg、25.6±1.2deg、27.3±1.2deg、35.4±1.5degおよび42.2±2.0degに回折ピークを有する、[13]に記載のリチウムがドープされた硫黄系電極活物質の製造方法。
[14] 前記アルカリ金属化合物は、ハロゲン化ルビジウム、ハロゲン化リチウム、ハロゲン化セシウムおよびリチウムアミドからなる群より選択される[13]または[13-1]に記載のリチウムがドープされた硫黄系電極活物質の製造方法。
[15] [8]~[14]のいずれかに記載の方法により製造されたリチウムがドープされた硫黄系電極活物質を含む電極。
[16] 硫黄系電極活物質とリチウム含有錯体水素化物を含む材料とを混合する工程と、
 前記工程で得られた混合物を集電体に担持させる工程と、
 前記混合物を担持させた集電体を加熱処理することにより、前記硫黄系電極活物質にリチウムをドープする工程と
を含む電極の製造方法。
[16-1] 前記加熱処理は60℃~200℃の温度で行われる、[16]に記載の電極の製造方法。
[16-2] 前記硫黄系電極活物質と前記リチウム含有錯体水素化物を含む材料との混合は、不活性ガス雰囲気化で行われる[16]または[16-1]に記載の電極の製造方法。
[16-3] 前記硫黄系電極活物質と前記リチウム含有錯体水素化物を含む材料との混合は、乾式で行われる[16]~[16-2]のいずれかに記載の電極の製造方法。
[16-4] 前記硫黄系電極活物質が、硫黄変性ポリアクリロニトリル、ジスルフィド化合物、TiS、TiS、TiS4、NiS、NiS、CuS、FeSおよびMoSからなる群より選択される[16]~[16-3]のいずれかに記載の電極の製造方法。
[16-5] 前記リチウム含有錯体水素化物を含む材料は、リチウムイオン伝導性を有する固体電解質である[16]~[16-4]のいずれかに記載の電極の製造方法。
[16-6] 前記リチウム含有錯体水素化物を含む材料は、LiBHまたはLiBHと下記式(1)で表されるアルカリ金属化合物との混合物である;
    MX     (1)
[式(1)中、Mは、リチウム原子、ルビジウム原子およびセシウム原子からなる群より選択されるアルカリ金属原子を表し、Xは、ハロゲン原子またはNH基を表す。]
[16]~[16-5]のいずれかに記載の電極の製造方法。
[16-7] 前記リチウム含有錯体水素化物を含む材料は、115℃未満でのX線回折(CuKα:λ=1.5405Å)において、少なくとも、2θ=24.0±1.0deg、25.6±1.2deg、27.3±1.2deg、35.4±1.5degおよび42.2±2.0degに回折ピークを有する、[16-6]に記載の電極の製造方法。
[16-8] 前記アルカリ金属化合物は、ハロゲン化ルビジウム、ハロゲン化リチウム、ハロゲン化セシウムおよびリチウムアミドからなる群より選択される[16-6]に記載の電極の製造方法。
[17] [16]~[16-8]のいずれかに記載の方法により製造された電極。
[18] [15]または[17]に記載の電極を備えるリチウムイオン二次電池。
[19] 全固体電池である[18]に記載のリチウムイオン二次電池。
[20] 一方の電極が[15]または[17]に記載の電極であり、他方の電極がリチウムを含まない電極である[18]または[19]に記載のリチウムイオン二次電池。
[21] 負極層と、前記正極層と前記負極層との間に配置されたリチウムイオン伝導性を有する固体電解質層とを具備し、
 前記正極層は、[15]または[17]に記載の電極であり、
 前記固体電解質層は、錯体水素化物固体電解質を含む
全固体電池。
 本発明の第1態様によれば、イオン伝導性が高く、且つ安定性に優れた全固体電池を提供することができる。また、本発明の第2態様によれば、リチウムがドープされた硫黄系電極活物質の製造方法であって、安全且つ簡便にリチウムをドープできる方法を提供することができる。また、本発明の第2態様に係る方法は、全固体電池にも適用可能である。
本発明の第1態様に係る全固体電池の断面図。 実施例A1で作製した全固体電池における正極層の断面を示すSEM写真。 実施例A1で作製した全固体電池の放電容量の推移を示す図。 実施例A6で作製した全固体電池の放電容量の推移を示す図。 実施例A7で作製した全固体電池の放電容量の推移を示す図。 実施例A8で作製した全固体電池の放電容量の推移を示す図。 実施例A9で作製した全固体電池の放電容量の推移を示す図。 実施例A10で作製した全固体電池の放電容量の推移を示す図。 実施例A1で作製した全固体電池について、1、2および45サイクル目の充放電曲線を示す図。 実施例A6で作製した全固体電池について、2、3および45サイクル目の充放電曲線を示す図。 実施例A7で作製した全固体電池について、2、3および20サイクル目の充放電曲線を示す図。 TiSとLiBHとの混合物の昇温脱離質量分析の結果を示す図。 実施例B1で得られた粉末のX線回折測定結果を示す図。 実施例B2で得られた粉末のX線回折測定結果を示す図。 実施例B3で得られた粉末のX線回折測定結果を示す図。 リチウム含有量とaおよびc軸格子定数との関係を示す図。 実施例B4で作製した全固体電池の放電容量の推移を示す図。 実施例B4で作製した全固体電池について、1、2および20サイクル目の充放電曲線を示す図。
 以下、本発明の実施の形態について、図面を参照して説明する。なお、各図において、同様または類似した機能を発揮する構成要素には同一の参照符号を付し、重複する説明は省略する。また、以下に説明する材料、構成等は本発明を限定するものではなく、本発明の趣旨の範囲内で種々改変することができるものである。
〔第1態様〕
 図1は、本発明の第1態様に係る全固体電池の断面図である。
 全固体電池10は、例えば、全固体リチウムイオン二次電池であり、携帯電話、パソコン、自動車等をはじめとする各種機器において使用することができる。全固体電池10は、正極層1と負極層3との間に固体電解質層2が配置された構造を有する。本発明においては、正極層1は正極活物質および錯体水素化物固体電解質を含み、正極活物質は硫黄系電極活物質である。また、固体電解質層2は錯体水素化物固体電解質を含む。このような構成とすることにより、電池を動作させた際の電池抵抗の増加を抑えることができる。この効果は、充放電サイクルを繰り返した場合にも得られるため、イオン伝導性の高い錯体水素化物固体電解質を使用しつつ、長期間にわたって安定に動作する全固体電池を提供することができる。
 上述したように、錯体水素化物を固体電解質として使用した場合、正極活物質の還元が懸念される。このような状況下で上記のような効果を得られる理由は定かではないが、正極活物質と錯体水素化物固体電解質とが反応したとしても、電池抵抗の増加や電池容量の低下につながりにくい状態にあると考えられる。その結果、錯体水素化物固体電解質と正極活物質とが接触していても、錯体水素化物による正極活物質の還元を懸念することなく、リチウムイオン伝導性の高い錯体水素化物を固体電解質として使用することができる。そして、上記のように電池抵抗の増加が抑制される結果、充放電サイクルを繰り返しても長期間にわたって安定に動作する全固体電池を提供することができると推定される。
 以下、各部材について詳細に説明する。
 1.正極層
 正極層1は、正極活物質としての硫黄系電極活物質と錯体水素化物固体電解質とを含む。正極層1は、必要に応じて、導電助剤、結着材等をさらに含有していてもよい。
 硫黄系電極活物質としては、充電時にリチウムイオンを放出し、放電時にリチウムイオンを吸蔵することができる物質であれば使用することができる。有機硫黄化合物または無機硫黄化合物の粒子または薄膜を使用することができ、いずれも硫黄の酸化還元反応を利用して充放電を行うものである。
 有機硫黄化合物としては、ジスルフィド化合物、WO2010-044437に記載の化合物に代表される硫黄変性ポリアクリロニトリル、硫黄変性ポリイソプレン、ルベアン酸(ジチオオキサミド)、ポリ硫化カーボン等があげられる。その中でも、ジスルフィド化合物および硫黄変性ポリアクリロニトリル、およびルベアン酸が好ましく、特に好ましくは硫黄変性ポリアクリロニトリルである。ジスルフィド化合物としては、ジチオビウレア誘導体、チオウレア基、チオイソシアネート、またはチオアミド基を有するものがより好ましい。
 硫黄変性ポリアクリロニトリルとは、硫黄粉末とポリアクリロニトリルとを混合し、不活性ガス下もしくは減圧下で加熱することによって得られる、硫黄原子を含む変性されたポリアクリロニトリルである。その推定構造は、例えばChem. Mater. 2011,23,5024-5028に示されているように、ポリアクリロニトリルが閉環して多環状になると共に、Sの少なくとも一部はCと結合している構造である。この文献に記載されている化合物はラマンスペクトルにおいて、1330cm-1と1560cm-1付近に強いピークシグナルがあり、更に、307cm-1、379cm-1、472cm-1、929cm-1付近にピークが存在する。
 ここで、硫黄変性ポリアクリロニトリルの調製方法について説明する。
 原料となる硫黄は特に限定されるわけではないが、S構造を有するα硫黄、β硫黄、γ硫黄のいずれも使用することができる。硫黄の粒子サイズとしては、大きすぎると混合性が悪くなり、小さすぎるとナノ粒子となって取り扱いが困難となることから、電子顕微鏡で観察した際に1~300μmの範囲であることが好ましく、より好ましくは10~200μmである。
 ポリアクリロニトリルとしては特に限定されるわけではないが、重量平均分子量が10,000~300,000の範囲であることが好ましい。ポリアクリロニトリルの粒子サイズとしては0.1~100μmの範囲であることが好ましく、特に好ましくは1~50μmである。
 硫黄とポリアクリロニトリルの混合方法としては、特に限定されるものではないが、ライカイ機、ボールミル、遊星型ボールミル、ビーズミル、自公転ミキサー、高速攪拌型の混合装置、タンブラーミキサー等を使用した方法が挙げられる。ただし、遊星型ボールミルを用いた混合に代表されるような、混合時に大きなエネルギーが与えられる手法を用いると、混合のみならず反応も同時に進行する可能性がある。従って、マイルドに混合できるライカイ機やタンブラーミキサーを使用することが好ましい。小さな規模で行う時には、手作業による乳鉢混合が好ましい。混合は乾式で行うことが好ましいが、溶媒下で実施することもできる。溶媒を用いる場合には、硫黄とポリアクリロニトリルが反応する前に揮発して除去されるよう、沸点が210℃以下である溶媒を用いることが好ましい。
 原料としての硫黄粉末とポリアクリロニトリルの混合比は特に限定されるわけではないが、重量比で硫黄:ポリアクリロニトリル=0.3:1~10:1の範囲内であることが好ましく、1:1~5:1であることがより好ましい。
 混合後の加熱は、減圧下もしくは不活性ガス下にて行うことができる。減圧下で行う場合は、10Pa~70kPaの範囲で行うことが好ましい。不活性ガス下にて行う場合は、0.1kPa~1MPaの範囲で行うことが好ましく、より好ましくは1kPa~150kPaの範囲である。不活性ガスの種類としては、例えば、ヘリウム、窒素、アルゴンを挙げることができる。なお、不活性ガス下で加熱を行う場合には、不活性ガスを流通させることが好ましい。発生する硫化水素ガスを除去することにより、反応がよく進行するためである。減圧下で加熱を行う場合には、加熱する前に反応器を不活性ガスで置換することが好ましい。酸素が残存していると、副反応である酸化反応が進行してしまうためである。ただし、真空度が高く、系内から酸素をほとんど除去できる場合には、この限りではない。
 加熱温度としては、200~500℃の範囲であることが好ましく、より好ましくは250~450℃の範囲である。これよりも温度が高いと硫黄の揮発が活発となることから、原料により多くの硫黄が必要となる。温度が低いと反応の進行が遅くなり、効率的ではない。
 加熱時間としては、特に限定されるわけではないが、例えば、1~12時間、上述した温度を維持すればよい。加熱温度が低ければ硫黄変性ポリアクリロニトリルを得るのに時間がかかり、加熱温度が高ければ短い時間で硫黄変性ポリアクリロニトリルを得ることができる。使用する装置や規模に合わせて、温度と時間を調整することができる。
 無機硫黄化合物は安定性に優れることから好ましく、具体的には、硫黄(S)、S-カーボンコンポジット、TiS、TiS、TiS4、NiS、NiS、CuS、FeS、LiS、MoS、MoS等を挙げることができる。その中でも、S、S-カーボンコンポジット、TiS、TiS、TiS4、FeSおよびMoSが好ましく、S-カーボンコンポジット、TiSおよびFeSがより好ましい。
 S-カーボンコンポジットとは、硫黄粉末と炭素材料とを含み、これらを加熱処理または機械的混合に供することによって複合化した状態のものである。より詳しくは、炭素材料の表面や細孔内に硫黄が分布している状態、硫黄と炭素材料がナノレベルで均一に分散し、それらが凝集して粒子となっている状態、細かな硫黄粉末の表面や内部に炭素材料が分布している状態、または、これらの状態が複数組み合わさった状態のものである。
 ここで、S-カーボンコンポジットの調製方法について説明する。
 原料となる硫黄は特に限定されるわけではないが、S構造を有するα硫黄、β硫黄、γ硫黄のいずれも使用することができる。硫黄の粒子サイズとしては、大きすぎると混合性が悪くなり、小さすぎるとナノ粒子となって取り扱いが困難となることから、1~300μmの範囲であることが好ましく、より好ましくは10~200μmである。
 炭素材料は特に限定されるものではないが、例えばカーボンブラック、アセチレンブラック、ケッチェンブラック、Maxsorb(登録商標)、カーボンファイバー、グラフェン等を挙げることができる。また、これらを組み合わせて使用することも可能であり、Maxsorb(登録商標)とケッチェンブラックを組み合わせて使用した場合には、充放電におけるプラトー領域が広がり、サイクルを重ねても充放電の容量維持率が高くなることから、より好ましい。
 硫黄と炭素材料の比率は、重量比で硫黄:炭素材料=0.1:1~10:1の範囲内であることが好ましく、0.5:1~3:1であることがより好ましい。硫黄の量が多ければ、単位重量当たりの充放電容量が大きな活物質を得られることから好ましい。炭素材料が少なすぎると電子導電性が低下し、電池としての動作が困難となることから、硫黄と炭素材料の比率は重要である。なお、ほとんどの調製方法の場合、原料の硫黄と炭素材料の比率が、生成物であるS-カーボンコンポジットにおける硫黄と炭素材料の比率と一致する。
 調製方法も特に限定されず、硫黄と炭素材料を混合した後に、硫黄の融点以上にして加熱処理する方法、メカノケミカルを用いた方法、高速気流中衝撃法等がある。
 メカノケミカルを用いた方法は、複数の異なる材料に機械的エネルギーを加えて、強力な粉砕、混合および反応を引き起こす方法である。例えば、ボールミル、ビーズミル、遊星型ボールミルを用いて行い、溶媒を用いることも可能である。高速気流中衝撃法は、より大量に調製したい場合に適した方法であり、例えばジェットミルを用いて行う。これらの手法のように粉砕能力が高く、粒子を非常に細かく粉砕できる手法を用いた場合には、硫黄と炭素材料がナノレベルで均一に分布する。それが凝集して粒子を形成することにより得られたS-カーボンコンポジットを活物質として用いると、充放電の容量維持率が向上することから、より好ましい。
 また、Na等のチオ硫酸塩から硫黄を発生させて、炭素材料の内部空間に硫黄を挿入する方法が開示されているが(特開2012-204332)、このような方法を用いて調製されたS-カーボンコンポジットも使用することができる。
 正極層1は、硫黄系電極活物質と錯体水素化物固体電解質とを共に含むバルク型である。正極層を1~10μmの厚さに薄膜化することにより、正極層に固体電解質を含まなくとも電池を稼動させることができるが、1セルあたりに含まれる活物質の量が少なくなる。そのため、容量を確保することを目的とした電池の構成としては好ましくない。
 錯体水素化物固体電解質としては、以下の「2.固体電解質層」において説明するものと同様のものを使用することができる。特に、正極層1と固体電解質層2に、同一の錯体水素化物固体電解質が含まれることが好ましい。異なる組成の固体電解質を含む層が接すると、各層の間で固体電解質の構成元素の拡散が生じる可能性が高く、それによってリチウムイオン伝導性が低下することがあるためである。
 本発明者らが試験を重ねたところ、硫黄系電極活物質を固体電解質と共に用いてバルク型の正極層を形成する場合に、正極利用率(理論容量に対する放電容量の割合)が高く、界面抵抗の低い全固体電池を得られることがわかった。硫黄系電極活物質は、リチウムイオン二次電池において一般的に使用される酸化物系電極活物質と比較して柔らかい。そのため、正極層を形成する際に、硫黄系電極活物質が固体電解質と共につぶれて、正極活物質と固体電解質との間で良好な界面が形成され、上記のような効果につながると考えられる。特に、正極層1は、上記正極層の材料に50~800MPa、好ましくは114~500MPaの圧力を加えてプレスすることにより作製されることが、上記効果の観点から好ましい。すなわち、上記範囲の圧力でプレスを行うことにより、粒子間の空隙が少なく、密着性が良好な層を得ることができる。
 正極層1における正極活物質と固体電解質との割合は、正極の形状が維持でき、かつ、必要なイオン伝導性が確保できる範囲内であれば正極活物質の割合が高い方がよい。例えば、重量比で正極活物質:固体電解質=9:1~1:9の範囲内であることが好ましく、8:2~2:8であることがより好ましい。
 正極層1に用いられる導電助剤としては、所望の導電性を有するものであれば特に限定されるものではないが、例えば炭素材料からなる導電助剤を挙げることができる。具体的には、カーボンブラック、アセチレンブラック、ケッチェンブラックおよびカーボンファイバー等を挙げることができる。
 正極層1における導電助剤の含有量は、所望の電子伝導性を確保できる範囲であれば、より少ないことが好ましい。正極層形成材料に対する導電助剤の含有量は、例えば0.1質量%~40質量%であり、3質量%~30質量%であることが好ましい。
 正極層1に用いられる結着剤としては、一般的にリチウムイオン二次電池の正極層に用いられているものであれば使用することが可能である。例えば、ポリシロキサン、ポリアルキレングリコール、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、エチレン-ビニルアルコール共重合体(EVOH)等を使用することができる。必要に応じて、カルボキシメチルセルロース(CMC)等の増粘剤も使用することができる。
 正極層1の厚さは、正極層として機能する限り特に限定されないが、1μm~1000μmであることが好ましく、10μm~200μmであることがより好ましい。
 2.固体電解質層
 固体電解質層2は、正極層1と負極層3との間に配置されるリチウムイオン伝導性を有する層であり、錯体水素化物固体電解質を含む。
 錯体水素化物固体電解質は、リチウムイオン伝導性を有する錯体水素化物を含む材料であれば、特に限定されない。例えば、錯体水素化物固体電解質は、LiBHまたはLiBHと下記式(1)で表されるアルカリ金属化合物との混合物である:
    MX     (1)
[式(1)中、Mは、リチウム原子、ルビジウム原子およびセシウム原子からなる群より選択されるアルカリ金属原子を表し、Xは、ハロゲン原子またはNH基を表す。]。
 上記式(1)におけるXとしてのハロゲン原子は、ヨウ素原子、臭素原子、フッ素原子、塩素原子等であってよい。Xは、ヨウ素原子、臭素原子またはNH基であることが好ましく、ヨウ素原子またはNH基であることがより好ましい。
 具体的には、アルカリ金属化合物は、ハロゲン化リチウム(例えば、LiI、LiBr、LiFまたはLiCl)、ハロゲン化ルビジウム(例えば、RbI、RbBr、RbFまたはRbCl)、ハロゲン化セシウム(例えば、CsI、CsBr、CsFまたはCsCl)、あるいはリチウムアミド(LiNH)であることが好ましく、LiI、RbI、CsIまたはLiNHであることがより好ましい。アルカリ金属化合物は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。好ましい組合せとしては、LiIとRbIとの組合せが挙げられる。
 LiBHおよびアルカリ金属化合物としては、各々公知の化合物を使用することができる。また、これら化合物の純度は、80%以上であることが好ましく、90%以上であることがより好ましい。純度が上記範囲である化合物は、固体電解質としての性能が高いためである。
 LiBHとアルカリ金属化合物とのモル比は、1:1~20:1であることが好ましく、2:1~7:1であることがより好ましい。モル比を上記範囲とすることにより、固体電解質中のLiBHの量を十分に確保することができ、高いイオン伝導性を得ることができる。一方、LiBHの量が多すぎると、高温相(高イオン伝導相)の転移温度が低下しにくく、LiBHの高温相の転移温度(115℃)未満において十分なイオン伝導性を得られない傾向にある。
 2種以上のアルカリ金属化合物を併用する場合、その混合比は特に限定されない。例えば、LiIと他のアルカリ金属化合物(好ましくはRbIまたはCsI)とを併用する場合においては、LiIと他のアルカリ金属化合物とのモル比=1:1~20:1であることが好ましく、5:1~20:1であることがより好ましい。モル比を上記範囲とすることにより、固体電解質中のLiIの量を十分に確保することができ、熱安定性が良好な固体電解質層を得ることができる。一方、LiIの量が多すぎると、他のアルカリ金属化合物の添加効果が十分に得られず、その結果として十分なイオン伝導性を得られない傾向にある。
 錯体水素化物固体電解質は、115℃未満でのX線回折(CuKα:λ=1.5405Å)において、少なくとも、2θ=24.0±1.0deg、25.6±1.2deg、27.3±1.2deg、35.4±1.5degおよび42.2±2.0degに回折ピークを有することが好ましい。少なくとも2θ=23.7±0.7deg、25.2±0.8deg、26.9±0.8deg、35.0±1.0degおよび41.3±1.0degに回折ピークを有することがより好ましく、少なくとも2θ=23.6±0.5deg、24.9±0.5deg、26.7±0.5deg、34.6±0.5degおよび40.9±0.5degに回折ピークを有することがさらに好ましい。また、少なくとも2θ=23.6±0.3deg、24.9±0.3deg、26.7±0.3deg、34.6±0.3degおよび40.9±0.3degに回折ピークを有することが特に好ましい。これら5領域の回折ピークは、LiBHの高温相の回折ピークに相当するものである。LiBHの高温相の転移温度未満においてもこのように5領域に回折ピークを有する固体電解質は、上記転移温度未満においても高いイオン伝導性を示す傾向にある。
 錯体水素化物固体電解質の調製方法は特に限定されないが、メカニカルミリングや特許第5187703号公報に記載の溶融混合等によって調製することが好ましい。固体電解質層2は、必要に応じて、上記以外の材料を含んでいてもよい。例えば、結着材を用いてシート状とした固体電解質層2を使用することも可能である。
 固体電解質層2の厚みは薄い方が好ましい。具体的には、0.05~1000μmの範囲であることが好ましく、0.1μm~200μmの範囲であることがより好ましい。
 3.負極層
 負極層3は、少なくとも負極活物質を含有する層であり、必要に応じて、固体電解質、導電助剤、結着材等を含有していてもよい。
 負極活物質としては、例えば金属活物質およびカーボン活物質を使用することができる。上記金属活物質としては、例えばLi、In、Al、Si、Snおよびこれら金属の合金等を挙げることができる。一方、上記カーボン活物質としては、例えばメソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)、ハードカーボン、ソフトカーボン等を挙げることができる。中でも、電池のエネルギー密度が向上して動作電圧が高まるため、負極としての電極電位がより低くなる活物質を用いることが好ましい。そのような負極活物質としては、Li、In-Li合金、カーボン活物質およびSiが挙げられる。なお、金属リチウム箔を負極として使用する場合には、予め全固体電池を熱処理することが好ましい(例えば、120℃で2時間程度)。加熱することにより、固体電解質層と金属リチウムの密着性がよくなり、充放電をより安定して行うことができる。
 負極層3に用いられる固体電解質としては、リチウムイオン伝導性を有し、且つ負極活物質との間で安定なものであれば特に限定されないが、例えば、錯体水素化物固体電解質を使用することができる。錯体水素化物固体電解質は比較的柔らかいため、グラファイト等の負極活物質との間で良好な界面を形成できる。負極層3は、負極活物質と固体電解質とを共に含むバルク型であることが好ましい。負極層3に含まれる錯体水素化物固体電解質としては、上記固体電解質層2で説明したものを使用することができる。特に、負極層3と固体電解質層2に、同一の錯体水素化物固体電解質が含まれることが好ましい。異なる組成の固体電解質を含む層が接すると、各層の間で固体電解質の構成元素の拡散が生じる可能性が高く、それによってリチウムイオン伝導性が低下することがあるためである。
 負極活物質と固体電解質との割合は、負極の形状が維持でき、かつ、必要なイオン伝導性が確保できる範囲内であれば負極活物質の割合が高い方がよい。例えば、重量比で負極活物質:固体電解質=9:1~1:9の範囲内であることが好ましく、8:2~2:8であることがより好ましい。
 負極層3に用いられる導電助剤としては、正極層1における導電助剤と同様のものを使用することができる。負極層形成材料に対する導電助剤の含有量は、例えば0.1質量%~20質量%であり、3質量%~15質量%であることが好ましい。
 負極層3に用いられる結着剤としては、一般的にリチウム二次電池の負極層に用いられているものであれば使用することが可能である。例えば、ポリシロキサン、ポリアルキレングリコール、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリアクリル酸等が挙げられる。必要に応じて、カルボキシメチルセルロース(CMC)等の増粘剤も使用することができる。
 負極層3の厚さは、負極層として機能する限り限定されないが、0.05μm~1000μmであることが好ましく、0.1μm~200μmであることがより好ましい。
 (全固体電池の製造方法)
 続いて、上述した全固体電池の製造方法について説明する。
 上述した各層を形成して積層し、全固体電池を製造するが、各層の形成方法および積層方法については、特に限定されるものではない。例えば、固体電解質や電極活物質を溶媒に分散させてスラリー状としたものをドクターブレード、スピンコート等により塗布し、それを圧延することにより製膜する方法;真空蒸着法、イオンプレーティング法、スパッタリング法、レーザーアブレーション法等を用いて成膜および積層を行う気相法;ホットプレスまたは温度をかけないコールドプレスによって粉末を成形し、それを積層していくプレス法等がある。錯体水素化物固体電解質はやわらかいことから、各層をプレスによって成形および積層して電池を作製することが特に好ましい。プレス方法としては、加温して行うホットプレスと加温しないコールドプレスとがあるが、錯体水素化物は加温しなくても十分に成形性がよいため、コールドプレスで行うことがより好ましい。プレスにて各層を一体成型することが好ましく、その際の圧力は、50~800MPaであることが好ましく、114~500MPaであることがより好ましい。上記範囲の圧力でプレスを行うことにより、粒子間の空隙が少なく、密着性が良好な層を得ることができるため、イオン導電性の観点から好ましい。必要以上に圧力を高くすることは、高価な材質の加圧装置や成形容器を使用する必要が生じると共に、それらの耐用寿命が短くなることから実用的ではない。
〔第2態様〕
 以下に記載する方法において、リチウムをドープする工程は、硫黄系電極活物質の製造中に行われてもよく、電極の作製中に行われてもよく、電池の作製中に行われてもよい。以下、各態様について詳細に説明する。
 1.リチウムがドープされた硫黄系電極活物質の製造
 本発明の実施形態に係るリチウムがドープされた硫黄系電極活物質の製造方法は、硫黄系電極活物質とリチウム含有錯体水素化物を含む材料とを混合することにより、硫黄系電極活物質にリチウムをドープする工程を含む。本明細書において、「ドープ」または「ドープする」とは、インターカレーション、挿入、吸蔵、担持等の種々の用語で表現される現象であり、「リチウムドープ」または「リチウムをドープする」とは、上記現象の結果としてリチウム硫黄化合物が形成されることを意味する。
 本発明の実施形態によると、電気化学的手法を用いることなく簡便にリチウムをドープすることが可能であり、金属リチウムを使用する必要がないため安全性が高い。硫黄系電極活物質に対して均一にリチウムがドープされるという利点も有する。また、本発明の実施形態によると、電極反応に必要な全ての量のリチウムをドープすることが可能である。更には、ドーピング剤であるリチウム含有錯体水素化物を含む材料がリチウムイオン伝導体であることから、過剰なドーピング剤が残留することによる電池への悪影響が極めて少ない。
 本発明の方法は、例えば、非水電解液を用いたリチウムイオン二次電池の電極活物質や全固体リチウムイオン二次電池の電極活物質において使用することができる。リチウムドープした硫黄系電極活物質は、正極として使用することが好ましいが、硫黄系電極活物質より電極電位の高い活物質(例えば、FePO、FeF、VF等)と組み合わせることで、負極活物質として使用することも可能である。
 以下、各材料について詳細に説明する。
 (1)硫黄系電極活物質
 硫黄系電極活物質としては、充電時にリチウムイオンを放出し、放電時にリチウムイオンを吸蔵することができる硫黄化合物であれば使用することができる。有機硫黄化合物または無機硫黄化合物を使用することができ、これらは電子伝導性を付与するために、炭素被覆や炭素とのコンポジット化などの処理が施されているものでもよい。
 有機硫黄化合物としては、ジスルフィド化合物、国際公開第2010-044437号に記載の化合物に代表される硫黄変性ポリアクリロニトリル、硫黄変性ポリイソプレン、ポリ硫化カーボン等があげられる。その中でも、ジスルフィド化合物および硫黄変性ポリアクリロニトリルが好ましく、ジスルフィド化合物としては、ジチオビウレア誘導体、およびチオウレア基、チオイソシアネート、またはチオアミド基を有するものがより好ましい。
 硫黄変性ポリアクリロニトリルとは、硫黄粉末とポリアクリロニトリルとを混合し、不活性ガス下もしくは減圧下で加熱することによって得られる、硫黄原子を含む変性されたポリアクリロニトリルである。その推定構造は、例えばChem. Mater. 2011,23,5024-5028に示されているように、ポリアクリロニトリルが閉環して多環状になると共に、Sの少なくとも一部はCと結合している構造である。この文献に記載されている化合物はラマンスペクトルにおいて、1330cm-1と1560cm-1付近に強いピークシグナルがあり、更に、307cm-1、379cm-1、472cm-1、929cm-1付近にピークが存在する。
 ここで、硫黄変性ポリアクリロニトリルの調製方法について説明する。
 原料となる硫黄は特に限定されるわけではないが、S構造を有するα硫黄、β硫黄、γ硫黄のいずれも使用することができる。硫黄の粒子サイズとしては、大きすぎると混合性が悪くなり、小さすぎるとナノ粒子となって取り扱いが困難となることから、電子顕微鏡で観察した際に1~300μmの範囲であることが好ましく、より好ましくは10~200μmである。
 ポリアクリロニトリルとしては特に限定されるわけではないが、重量平均分子量が10,000~300,000の範囲であることが好ましい。ポリアクリロニトリルの粒子サイズとしては0.1~100μmの範囲であることが好ましく、特に好ましくは1~50μmである。
 硫黄とポリアクリロニトリルの混合方法としては、特に限定されるものではないが、ライカイ機、ボールミル、遊星型ボールミル、ビーズミル、自公転ミキサー、高速攪拌型の混合装置、タンブラーミキサー等を使用した方法が挙げられる。ただし、遊星型ボールミルを用いた混合に代表されるような、混合時に大きなエネルギーが与えられる手法を用いると、混合のみならず反応も同時に進行する可能性がある。従って、マイルドに混合できるライカイ機やタンブラーミキサーを使用することが好ましい。小さな規模で行う時には、手作業による乳鉢混合が好ましい。混合は乾式で行うことが好ましいが、溶媒下で実施することもできる。溶媒を用いる場合には、硫黄とポリアクリロニトリルが反応する前に揮発して除去されるよう、沸点が210℃以下である溶媒を用いることが好ましい。
 原料としての硫黄粉末とポリアクリロニトリルの混合比は特に限定されるわけではないが、重量比で硫黄:ポリアクリロニトリル=0.3:1~10:1の範囲内であることが好ましく、1:1~5:1であることがより好ましい。
 混合後の加熱は、減圧下もしくは不活性ガス下にて行うことができる。減圧下で行う場合は、10Pa~70kPaの範囲で行うことが好ましい。不活性ガス下にて行う場合は、0.1kPa~1MPaの範囲で行うことが好ましく、より好ましくは1kPa~150kPaの範囲である。不活性ガスの種類としては、例えば、ヘリウム、窒素、アルゴンを挙げることができる。なお、不活性ガス下で加熱を行う場合には、不活性ガスを流通させることが好ましい。発生する硫化水素ガスを除去することにより、反応がよく進行するためである。減圧下で加熱を行う場合には、加熱する前に反応器を不活性ガスで置換することが好ましい。酸素が残存していると、副反応である酸化反応が進行してしまうためである。ただし、真空度が高く、系内から酸素をほとんど除去できる場合には、この限りではない。
 加熱温度としては、200~500℃の範囲であることが好ましく、より好ましくは250~450℃の範囲である。これよりも温度が高いと硫黄の揮発が活発となることから、原料により多くの硫黄が必要となる。温度が低いと反応の進行が遅くなり、効率的ではない。
 加熱時間としては、特に限定されるわけではないが、例えば、1~12時間、上述した温度を維持すればよい。加熱温度が低ければ硫黄変性ポリアクリロニトリルを得るのに時間がかかり、加熱温度が高ければ短い時間で硫黄変性ポリアクリロニトリルを得ることができる。使用する装置や規模に合わせて、温度と時間を調整することができる。
 無機硫黄化合物は安定性に優れることから好ましく、具体的には、TiS、TiS、TiS4、NiS、NiS、CuS、FeS、MoS等を挙げることができる。その中でも、TiS、TiS、TiS4、NiS、NiS、FeS、およびMoSが好ましく、TiSがより好ましい。
 (2)リチウム含有錯体水素化物を含む材料(以下、ドーピング剤とも称する)
 リチウム含有錯体水素化物は、硫黄系電極活物質にリチウムをドープできる限り特に限定されないが、LiBH4、LiAlH、LiH、LiNH、LiNiHまたはこれらを用いて調製されるリチウムを含んだ化合物であることが好ましい。特に、リチウム含有錯体水素化物を含む材料は、リチウムイオン伝導性を有する固体電解質であることが好ましい。何故なら、リチウムドープした硫黄系電極活物質を用いて電池を作製した際に、未反応で残留したドーピング剤が電極中に存在しても、これが固体電解質として機能するため、大きな電池抵抗を生じることがないからである。例えば、リチウム含有錯体水素化物を含む材料は、LiBHまたはLiBHと下記式(1)で表されるアルカリ金属化合物との混合物である:
    MX     (1)
[式(1)中、Mは、リチウム原子、ルビジウム原子およびセシウム原子からなる群より選択されるアルカリ金属原子を表し、Xは、ハロゲン原子またはNH基を表す。]。
 上記式(1)におけるXとしてのハロゲン原子は、ヨウ素原子、臭素原子、フッ素原子、塩素原子等であってよい。Xは、ヨウ素原子、臭素原子またはNH基であることが好ましく、ヨウ素原子またはNH基であることがより好ましい。
 具体的には、アルカリ金属化合物は、ハロゲン化リチウム(例えば、LiI、LiBr、LiFまたはLiCl)、ハロゲン化ルビジウム(例えば、RbI、RbBr、RbFまたはRbCl)、ハロゲン化セシウム(例えば、CsI、CsBr、CsFまたはCsCl)、あるいはリチウムアミド(LiNH)であることが好ましく、LiI、RbI、CsIまたはLiNHであることがより好ましい。アルカリ金属化合物は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。好ましい組合せとしては、LiIとRbIとの組合せが挙げられる。
 LiBHおよびアルカリ金属化合物としては、各々公知の化合物を使用することができる。また、これら化合物の純度は、80%以上であることが好ましく、90%以上であることがより好ましい。純度が上記範囲である化合物は、固体電解質としての性能が高いためである。
 LiBHとアルカリ金属化合物とのモル比は、1:1~20:1であることが好ましく、2:1~7:1であることがより好ましい。モル比を上記範囲とすることにより、LiBHの量を十分に確保することができ、高いイオン伝導性を得ることができる。一方、LiBHの量が多すぎると、高温相(高イオン伝導相)の転移温度が低下しにくく、LiBHの高温相の転移温度(115℃)未満において十分なイオン伝導性を得られない傾向にある。
 2種以上のアルカリ金属化合物を併用する場合、その混合比は特に限定されない。例えば、LiIと他のアルカリ金属化合物(好ましくはRbIまたはCsI)とを併用する場合においては、LiIと他のアルカリ金属化合物とのモル比=1:1~20:1であることが好ましく、5:1~20:1であることがより好ましい。このような混合比とすることにより、リチウムドープ後に材料が残存した場合に、固体電解質として好ましく作用するためである。
 リチウム含有錯体水素化物を含む材料は、115℃未満でのX線回折(CuKα:λ=1.5405Å)において、少なくとも、2θ=24.0±1.0deg、25.6±1.2deg、27.3±1.2deg、35.4±1.5degおよび42.2±2.0degに回折ピークを有することが好ましい。少なくとも2θ=23.7±0.7deg、25.2±0.8deg、26.9±0.8deg、35.0±1.0degおよび41.3±1.0degに回折ピークを有することがより好ましく、少なくとも2θ=23.6±0.5deg、24.9±0.5deg、26.7±0.5deg、34.6±0.5degおよび40.9±0.5degに回折ピークを有することがさらに好ましい。また、少なくとも2θ=23.6±0.3deg、24.9±0.3deg、26.7±0.3deg、34.6±0.3degおよび40.9±0.3degに回折ピークを有することが特に好ましい。これら5領域の回折ピークは、LiBHの高温相の回折ピークに相当するものである。LiBHの高温相の転移温度未満においてもこのように5領域に回折ピークを有する材料は、上記転移温度未満においても高いイオン伝導性を示す傾向にある。
 リチウム含有錯体水素化物を含む材料の製造方法は特に限定されないが、メカニカルミリングや特許第5187703号公報に記載の溶融混合等によって製造することが好ましい。
 続いて、リチウムがドープされた硫黄系電極活物質の製造方法の各工程について説明する。
 1-1.混合方法
 まず、硫黄系電極活物質とリチウム含有錯体水素化物を含む材料とを混合する。混合は、アルゴンやヘリウム等の不活性ガス雰囲気下で行うことが好ましい。混合の方法としては、特に限定されるものではないが、ライカイ機、ボールミル、遊星型ボールミル、ビーズミル、自公転ミキサー、高速攪拌型の混合装置、タンブラーミキサー等を使用した方法が挙げられる。ただし、遊星型ボールミルを用いた混合に代表されるような、混合時に大きなエネルギーが与えられる手法を用いると、混合のみならずリチウムドープや副反応も同時に進行する可能性がある。従って、後述する電極作製時または電池作製時にリチウムドープを行う場合のように、混合時にリチウムドープ反応を進行させたくない場合には、マイルドに混合できるライカイ機やタンブラーミキサーを使用することが好ましい。小さな規模で行う時には、手作業による乳鉢混合が好ましい。混合は乾式で行うことが好ましいが、耐還元性を有する溶媒下で実施することもできる。溶媒を用いる場合には、非プロトン性の非水溶媒が好ましく、より具体的にはテトラヒドロフランやジエチルエーテルなどのエーテル系溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等を挙げることができる。
 硫黄系電極活物質とリチウム含有錯体水素化物を含む材料の混合比は特に限定されるものではないが、硫黄系電極活物質にドープするリチウム量を十分に確保するという観点では、モル比で、(リチウム含有錯体水素化物のリチウム量)/(ドープするリチウム量)=1~50の範囲であることが好ましく、より好ましくは2~20の範囲であり、特に好ましくは2~10の範囲である。上述したように、リチウム含有錯体水素化物を含む材料が固体電解質である場合には、ドーピング剤としてアルキルリチウムや金属リチウムを用いた場合と異なり、過剰に入っていても電極反応に対する悪影響はほとんどないため、混合比をそれほど気にする必要はない。ただし、ドーピング剤を取り除くことなく電極とする場合には、ドーピング剤の比率を多くしすぎると活物質の割合が低下することにより、電極密度あたりの充放電容量が減少するため、適切な混合比を選択することが好ましい。なお、「ドープするリチウム量」は、硫黄系電極活物質に導入可能なリチウムの理論量を意味するが、目的次第では、より少量とすることも可能である。
 1-2.リチウムドープ処理
 混合方法によっては、混合中に硫黄系電極活物質にリチウムがドープされる。しかし、リチウムドープ処理は、短時間で行うことを目的に、加熱して行うことが好ましい。その場合、リチウムドープ処理は、硫黄系電極活物質とリチウム含有錯体水素化物を含む材料とを混合した後、加熱処理することにより行われる。
 加熱処理の温度は、硫黄系電極活物質とリチウム含有錯体水素化物を含む材料との組み合わせにより異なるが、例えば、60~200℃の範囲であり、より好ましくは80~150℃である。上記のような温度範囲が好ましいことは、TiSとLiBHとの混合物における昇温脱離質量分析の結果において、100℃付近より水素が発生していることからも示唆される(図5)。図5では、質量数=2で、水素の放出を検出している。破線の丸で囲んだ100℃付近から、ノイズレベル以上に強度が上がり始めることがわかる。上記範囲よりも高い温度では、副生成物の発生や材料の分解が生じやすい。一方、上記範囲よりも低い温度では、反応が遅くなることが懸念される。
 リチウムドープ処理時間は、好ましくは1~40時間であり、より好ましくは2~30時間である。これよりも時間が短いと、リチウムドープが十分に進行しない場合がある。反応時間が必要以上に長い場合には生産性が低下し、また、高い温度で長い時間処理した場合には、副反応が生じることが懸念される。
 1-3.精製処理
 リチウムドープ処理を行った後に、精製処理を行うことが可能である。精製には、用いたリチウム含有錯体水素化物を含む材料が溶解する溶媒、例えば、テトラヒドロフランやジエチルエーテルなどのエーテル系溶媒、N,N-ジメチルホルムアミドやN,N-ジメチルアセトアミドなどの非プロトン性の非水溶媒を用いることができる。ただし、この精製工程は必ずしも必要なものではなく、特にリチウムドープした硫黄系電極活物質を全固体リチウムイオン二次電池で使用する場合には、この精製工程を省くことで工程の簡略化を行うことができ、かつ、電池としての性能をほとんど劣化させることが無い。
 2.電極
 上述した方法で得られるリチウムドープされた硫黄系電極活物質は、リチウムイオン二次電池の電極において有効に使用できる。従って、本発明の1つの実施形態によると、上記方法により製造されたリチウムがドープされた硫黄系電極活物質を含む電極が提供される。この場合、電極の構造および製造方法は、通常のリチウムイオン二次電池における電極と同様である。すなわち、リチウムドープされた硫黄系電極活物質を他の電極材料と混合し、それを集電体と組み合わせることにより製造することができる。ここでいう「他の電極材料」とは、結着剤、導電助剤等の電極材料として使用され得る他の材料を意味し、詳細は以下で説明する通りである。
 また、リチウムドープ済みの硫黄系電極活物質を使用するのではなく、電極の作製時にリチウムドープを行うことも可能である。すなわち、本発明の1つの実施形態によると、
 硫黄系電極活物質とリチウム含有錯体水素化物を含む材料とを混合する工程と、
 上記工程で得られた混合物を集電体に担持させる工程と、
 上記混合物を担持させた集電体を加熱処理することにより、硫黄系電極活物質にリチウムをドープする工程と
を含む電極の製造方法
が提供される。
 さらに、本発明の1つの実施形態によると、上記方法により製造され得る電極が提供される。
 電極作製時にリチウムドープを行う場合であっても、予めリチウムがドープされた硫黄系電極活物質を使用した場合と同様の上記効果が得られる。また、電極作製時に、例えばホットプレスにより加熱してリチウムドープを行うことは、緻密で良好な電極が形成されると共に、製造時間の短縮も行えることから、好ましい。
 各々の場合について、材料の混合方法、加熱温度、使用する材料の詳細は、上記「1.リチウムがドープされた硫黄系電極活物質の製造」において述べた通りである。また、上記「硫黄系電極活物質とリチウム含有錯体水素化物を含む材料とを混合する工程」においては、以下に記載するようなその他の電極材料が含まれていてもよい。従って、「上記工程で得られた混合物を集電体に担持させる工程」における「混合物」も、その他の電極材料を含み得る。以下、硫黄系電極活物質、リチウム含有錯体水素化物を含む材料およびその他の電極材料を合わせて「電極材料」とも称する。
 使用できる集電体としては、特に限定はなく、従来からリチウムイオン二次電池用の集電体として使用されている材料、例えば、アルミ、ステンレス、銅、ニッケルまたはそれらの合金の薄板やメッシュを用いることができる。また、カーボン不織布、カーボン織布なども集電体として使用できる。
 電極材料には、結着剤が含まれていてもよい。結着剤としては、一般的にリチウムイオン二次電池の電極に用いられているものであれば使用することが可能である。例えば、ポリシロキサン、ポリアルキレングリコール、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、エチレン-ビニルアルコール共重合体(EVOH)等を使用することができる。
 必要に応じて、カルボキシメチルセルロース(CMC)等の増粘剤も使用することができる。
 また、結着剤として、電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン等が挙げられる。この場合は、結着剤が導電助剤粒子の機能も発揮するので導電助剤を添加しなくてもよい。
 結着剤の含有量は特に限定されないが、硫黄系電極活物質、リチウム含有錯体水素化物、導電助剤および結着剤の質量の和を基準にして、0.1~10質量%であることが好ましく、0.1~4質量%であることがより好ましい。結着剤の量が過剰になると、電極中の活物質の割合が低下して、エネルギー密度が低下することになることから、電極の成型強度を十分に保持できる最低限の量とすることが好ましい。なお、リチウム含有錯体水素化物および硫黄系電極活物質は、結着剤としての機能を少なからず有していることから、結着剤を使用しないで電極を作製することも可能である。
 電極材料には、導電助剤が含まれていてもよい。導電助剤としては、所望の導電性を有するものであれば特に限定されるものではないが、例えば炭素材料からなる導電助剤を挙げることができる。具体的には、カーボンブラック、アセチレンブラック、ケッチェンブラックおよびカーボンファイバー等を挙げることができる。なお、硫黄系電極活物質の中には、TiSのように電子伝導性が高いものもあり、これらを使用する際には導電助剤を使用しなくてもかまわない。
 導電助剤の含有量は、用いる硫黄系電極活物質の電子伝導性や重量密度との関係により異なるが、多くの場合は硫黄系電極活物質100重量部に対して、導電助剤を1~200重量部、より好ましくは10~100重量部の範囲である。
 電極は、通常用いられる方法により作製できる。例えば、電極材料を集電体上に塗布し、集電体上に塗布された塗料中の溶媒を除去することにより製造することができる。
 電極材料を集電体上に塗布する際に使用する溶媒としては、例えば、テトラヒドロフランやジエチルエーテルなどのエーテル系溶媒、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミドなどの非プロトン性の非水溶媒を用いることができる。
 塗布方法としては、特に制限はなく、通常電極を作製する場合に採用される方法を用いることができる。例えば、スリットダイコート法、ドクターブレード法が挙げられる。
 集電体上に塗布された塗料中の溶媒を除去する方法は特に限定されず、塗料が塗布された集電体を、例えば80~150℃の雰囲気下で乾燥させればよい。なお、リチウムドープを電極製造中に行う場合には、リチウムドープ時の加熱処理温度と溶媒除去温度の温度帯が同一であることから、リチウムドープと溶媒除去を同時に行うことで電極製造に要する時間を短縮することが可能である。
 そして、このようにして作製された電極を、必要に応じて、例えばロールプレス装置等によりプレス処理すればよい。ロールプレスの線圧は例えば、10~50kgf/cmとすることができる。
 なお、溶媒を用いずに、電極材料の混合粉末をプレスで成型する方法、混合粉末を集電体にのせた後で振動を与える方法や電極材料をヘラ等で押し込むなどして集電体の多孔部分へ充填する方法にて電極を作製することも可能である。
 電極の厚さは、電極として機能する限り特に限定されないが、1μm~1000μmであることが好ましく、10μm~200μmであることがより好ましい。
 3.リチウムイオン二次電池
 上記のように作製した電極は、リチウムイオン二次電池において使用することができる。すなわち、本発明の1つの実施形態によると、上記で説明した電極を備えるリチウムイオン二次電池が提供される。
 リチウムイオン二次電池は、公知の手法により製造することができる。本発明の電極は、正極層および負極層のいずれにおいても使用することができるが、一方の電極が本発明に記載の電極であり、他方の電極がリチウムを含まない電極であることが好ましい。例えば、本発明の電極を正極層として使用する場合、負極活物質としては、公知の黒鉛などの炭素系材料、シリコン系材料、Cu-SnやCo-Snなどの合金系材料を使用することが好ましい。
 電解液としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン等の非プロトン性高誘電率溶媒;ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、ジプロピルカーボネート、ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,3-ジオキソラン、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル、アニソール、メチルアセテート等の酢酸エステル類あるいはプロピオン酸エステル類等の非プロトン性低粘度溶媒を用いることができる。電解質としては、過塩素酸リチウム、LiPF、LiBF、LiCFSOなどのリチウム塩を0.5mol/l~1.7mol/l程度の濃度で溶解させた溶液を使用することができる。さらにその他の公知の電池構成要素を使用して、常法に従って、リチウムイオン二次電池を組立てればよい。
 本発明は、全固体電池にも適用可能である。すなわち、本発明の1つの実施形態によれば、上記リチウムイオン二次電池は全固体電池である。以下、全固体電池について説明する。
 全固体電池は、正極層と負極層との間に固体電解質層が配置された構造を有する。全固体リチウムイオン二次電池においては、多くの固体電解質が金属リチウムと反応してしまうという問題があるため、金属リチウムを使用しない本発明の方法が特に有用である。リチウムをドープした硫黄系電極活物質を正極に使用した場合、インジウム箔、炭素系電極活物質、Si系電極活物質などのリチウムを含んでいない活物質を負極に使用することができるため、上記固体電解質の分解の問題および背景技術で述べた問題を解決することができる。
 以下、全固体電池を構成する各部材について、正極層に本発明を使用した場合を例にとって説明する。しかし、この態様に限定されるものではない。
 (1)正極層
 正極層の構成および作製方法については、上記「2.電極」の項目で説明した通りである。ただし、後述する「(4)全固体電池の作製方法」において、正極層、固体電解質層および負極層を一体成型する場合には、これらを一体成型した後で集電体を配置することもできる。
 正極層の厚さは、正極層として機能する限り特に限定されないが、1μm~1000μmであることが好ましく、10μm~200μmであることがより好ましい。
 (2)固体電解質層
 固体電解質層は、正極層と負極層との間に配置されるリチウムイオン伝導性を有する層であり、リチウムイオン伝導性を有する固体電解質から形成される。固体電解質としては、錯体水素化物固体電解質、酸化物系材料、硫化物系材料、高分子系材料、LiN等を用いることができる。より具体的には、酸化物ガラスであるLiPO-LiSiOおよびLiBO-LiSiO;ペロブスカイト型酸化物であるLa0.5Li0.5TiO;NASICON型酸化物であるLi1.3Al0.3Ti1.7(POおよびLi1.5Al0.5Ge1.5(PO;LISICON型酸化物であるLi14Zn(GeO、LiPOおよびLiSiO;ガーネット型酸化物であるLiLaZr12、LiLaTa12およびLiLaNb12;硫化物ガラスまたは硫化物ガラスセラミックである、LiS-P、80LiS-20P、70LiS-27P-3PおよびLiS-SiS;thio-LISICON型材料であるLi3.25Ge0.250.75、LiSiS、LiGeSおよびLiPS;高いリチウムイオン伝導性を示すLi10GeP12;LiPOを一部分窒化したLIPONと称される材料(例えばその組成としてはLi3.3PO3.80.22およびLi2.9PO3.30.46);ポリマー系材料であるポリエチレンオキシド、ポリアクリロニトリル、ポリ(シアノエトキシビニル)誘導体(CNPVA)等が挙げられる。中でも、上述の正極層との間の界面状態が良好となることから、錯体水素化物固体電解質が好ましい。錯体水素化物固体電解質としては、上記でリチウム含有錯体水素化物を含む材料として述べたものと同様の材料を使用することができる。
 固体電解質層は、必要に応じて、上記以外の材料を含んでいてもよい。例えば、結着材を用いてシート状とした固体電解質層を使用することも可能である。
 固体電解質層の厚みは薄い方が好ましい。具体的には、0.05μm~1000μmの範囲であることが好ましく、0.1μm~200μmの範囲であることがより好ましい。
 (3)負極層
 負極層は、少なくとも負極活物質を含有する層であり、必要に応じて、固体電解質、導電助剤、結着材等を含有していてもよい。
 負極活物質としては、例えば、金属活物質およびカーボン活物質等を使用することができる。上記金属活物質としては、例えばIn、Al、Si、Snおよびこれら金属の合金等を挙げることができる。また、上記カーボン活物質としては、例えばメソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)、ハードカーボン、ソフトカーボン等を挙げることができる。中でも、電池のエネルギー密度が向上して動作電圧が高まるため、負極としての電極電位がより低くなる活物質を用いることが好ましい。そのような負極活物質としては、カーボン活物質およびSiが挙げられる。
 負極層に用いられる固体電解質としては、リチウムイオン伝導性を有し、且つ負極活物質との間で安定なものであれば特に限定されないが、例えば、錯体水素化物固体電解質を使用することができる。錯体水素化物固体電解質は比較的柔らかいため、グラファイト等の負極活物質との間で良好な界面を形成できると共に、還元に対して安定であることから好ましい。負極層は、負極活物質と固体電解質とを共に含むバルク型であることが好ましい。負極層に含まれる錯体水素化物固体電解質としては、上記でリチウム含有錯体水素化物を含む材料として述べたものと同様の材料を使用することができる。特に、負極層と固体電解質層に、同一の錯体水素化物固体電解質が含まれることが好ましい。異なる組成の固体電解質を含む層が接すると、固体電解質同士が反応することや、各層の間で固体電解質構成元素の拡散が生じる可能性が高く、それによってリチウムイオン伝導性が低下することがあるためである。
 負極活物質と固体電解質との割合は、負極の形状が維持でき、かつ、必要なイオン伝導性が確保できる範囲内であれば負極活物質の割合が高い方がよい。例えば、重量比で負極活物質:固体電解質=9:1~1:9の範囲内であることが好ましく、8:2~2:8であることがより好ましい。
 負極層に用いられる導電助剤としては、正極層における導電助剤と同様のものを使用することができる。負極層形成材料の合計質量に対する導電助剤の割合は、例えば0.1質量%~20質量%であり、3質量%~15質量%であることが好ましい。ここでいう負極層形成材料には、負極活物質、ならびに任意に固体電解質、導電助剤および結着材等が含まれる。
 負極層に用いられる結着剤としては、一般的にリチウムイオン二次電池の負極層に用いられているものであれば使用することが可能である。例えば、ポリシロキサン、ポリアルキレングリコール、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリアクリル酸等が挙げられる。必要に応じて、カルボキシメチルセルロース(CMC)等の増粘剤も使用することができる。
 負極層の厚さは、負極層として機能する限り限定されないが、0.05μm~1000μmであることが好ましく、0.1μm~200μmであることがより好ましい。
 (4)全固体電池の作製方法
 上述した各層を作製して積層し、全固体電池を製造するが、各層の作製方法および積層方法については、特に限定されるものではない。例えば、固体電解質や電極活物質を溶媒に分散させてスラリー状としたものをドクターブレード、スピンコート等により塗布し、それを圧延することにより製膜する方法;真空蒸着法、イオンプレーティング法、スパッタリング法、レーザーアブレーション法等を用いて成膜および積層を行う気相法;ホットプレスまたは温度をかけないコールドプレスによって粉末を成形し、それを積層していくプレス法等がある。比較的やわらかい錯体水素化物固体電解質や硫化物固体電解質を用いる場合には、各層をプレスによって成形および積層して電池を作製することが特に好ましい。プレス方法としては、加温して行うホットプレスと加温しないコールドプレスとがあるが、固体電解質と活物質の組み合わせによって適切な方を選べばよい。プレスにて各層を一体成型することが好ましく、その際の圧力は、50~800MPaであることが好ましく、114~500MPaであることがより好ましい。上記範囲の圧力でプレスを行うことにより、粒子間の空隙が少なく、密着性が良好な層を得ることができるため、イオン導電性の観点から好ましい。必要以上に圧力を高くすることは、高価な材質の加圧装置や成形容器を使用する必要が生じると共に、それらの耐用寿命が短くなることから実用的ではない。
 硫黄系電極活物質へのリチウムドープは、電池を構成してから行うことも可能である。この場合、電極作製時にリチウムドープを行う場合と同様に電極を作製するが、その時点では加熱処理を行わず、電池を構成した後で加熱処理を行う。加熱処理の温度は、硫黄系電極活物質に予めリチウムドープする場合や電極作製時にリチウムドープを行う場合と同様である。電池作製時にリチウムドープを行う場合であっても、予めリチウムがドープされた硫黄系電極活物質を製造する場合と同様の上記効果が得られる。
[実施例A]
 以下、本発明の第1態様を実施例により詳細に説明するが、本発明の内容がこれにより限定されるものではない。
 <実施例A1>
 (錯体水素化物固体電解質の調製)
 アルゴン雰囲気下のグローブボックス内で、LiBH(シグマ・アルドリッチ社製、純度90%)を計り取り、メノウ乳鉢にて粉砕し、錯体水素化物固体電解質(LiBH)を得た。
 (正極層粉末の調製)
 正極活物質TiS(シグマ・アルドリッチ社製、純度99.9%):錯体水素化物固体電解質(LiBH)=2:3(重量比)とした粉末をグローブボックス内で計り取り、乳鉢にて混合して正極層粉末とした。
 (全固体電池の作製)
 上記で調製した錯体水素化物固体電解質の粉末を直径8mmの粉末錠剤成形機に入れ、圧力143MPaにて円盤状にプレス成形した(錯体水素化物固体電解質層の形成)。成形物を取り出すことなく、上記で調製した正極層粉末を錠剤成形機に入れ、圧力285MPaにて一体成型した。このようにして、正極層(75μm)および錯体水素化物固体電解質層(300μm)が積層された円盤状のペレットを得た。このペレットの正極層の反対側に、厚さ200μm、φ8mmの金属リチウム箔(本城金属社製)を貼り付けてLi負極層とし、SUS304製の電池試験セルに入れて全固体二次電池とした。
 (SEM観察)
 上記のように作製した全固体電池の正極層と固体電解質層からなるペレットを、FIB装置(日立ハイテク製FB2200)を用いて薄膜とし、FE-SEM(日立ハイテク製SU9000)にて正極層の断面観察を行った。その断面の様子を図2に示す。図2において、黒く見える部分が錯体水素化物固体電解質(LiBH)であり、白く見える部分が正極活物質(TiS)である。図2を見ると、錯体水素化物固体電解質(LiBH)と正極活物質(TiS)とが互いにつぶれて、両者の間で良好な界面が形成されていることが分かる。これは、上述したように、LiBHとTiSとが共に柔らかいことに起因する。
 (充放電試験)
 上記のように作製した全固体電池について、ポテンショスタット/ガルバノスタット(Bio-Logic製VMP3)を用い、試験温度120℃、カットオフ電圧1.6~2.7V、0.1Cレートの条件の下で定電流にて放電から充放電を行い、充放電容量を求めた。なお、充電後と放電後にはそれぞれ3分間の休止を設けた。
 <実施例A2>
 錯体水素化物固体電解質および正極層粉末の調製は、実施例A1と同様に行った。
 (全固体電池の作製)
 錯体水素化物固体電解質の粉末を直径8mmの粉末錠剤成形機に入れ、圧力143MPaにて円盤状にプレス成形した。成形物を取り出すことなく、正極層粉末を入れ、圧力285MPaにて一体成型した。このようにして、正極層(75μm)および錯体水素化物固体電解質層(300μm)が積層された円盤状のペレットを得た。このペレットに、厚さ250μm、φ8mmのインジウム箔を貼り付け、更に、厚さ200μm、φ8mmの金属リチウム箔を貼り付けて、Li-In合金を形成させる負極層とし、SUS304製の電池試験セルに入れて全固体二次電池とした。
 (充放電試験)
 上記のように作製した全固体電解質電池を、120℃に加温し、2時間程静置させることによってLi-In合金を形成させた。これによって起電力が生じた。その後、試験温度120℃、カットオフ電圧1.15~2.25V(Li基準で1.77~2.87V)、0.1Cレートの条件の下で定電流にて放電から充放電を行い、充放電容量を求めた。
 <実施例A3>
 (正極活物質の調製)
 アルゴン雰囲気下のグローブボックス内で、TiS(シグマ・アルドリッチ社製、純度99.9%)と硫黄(S)(アルドリッチ社製、純度99.98%)とを、TiS:S=1:2のモル比になるように計り取り、メノウ乳鉢にて混合した。次に、混合した出発原料を45mLのSUJ-2製ポットに投入し、さらにSUJ-2製ボール(φ7mm、20個)を投入して、ポットを完全に密閉した。このポットを遊星型ボールミル機(フリッチェ製P7)に取り付け、回転数400rpmで10時間メカニカルミリングを行い、正極活物質(TiS)を得た。
 (正極層粉末の調製)
 正極層の材料を、上記で調製したTiS:錯体水素化物固体電解質(LiBH):カーボンブラック(アルドリッチ社製、純度99.9%)=40:60:6(重量比)となるようにグローブボックス内で計り取り、乳鉢にて混合して正極層粉末とした。
 (全固体電池の作製)
 上記の正極層粉末を用いた以外は、実施例A1と同様に全固体電池を作製した。充放電試験については、カットオフ電圧1.9~3.0V、0.05Cレートの条件下で行ったことを除き、実施例A1と同様に行った。
 <実施例A4>
 (錯体水素化物固体電解質の調製)
 アルゴン雰囲気下のグローブボックス内で、LiBH(アルドリッチ社製、純度90%)とLiI(アルドリッチ社製、純度99.999%)とを、LiBH:LiI=3:1のモル比になるようにメノウ乳鉢にて混合した。次に、混合した出発原料を45mLのSUJ-2製ポットに投入し、さらにSUJ-2製ボール(φ7mm、20個)を投入して、ポットを完全に密閉した。このポットを遊星型ボールミル機(フリッチェ製P7)に取り付け、回転数400rpmで5時間メカニカルミリングを行い、錯体水素化物固体電解質(3LiBH-LiI)を得た。
 (正極層粉末の調製)
 正極活物質TiS(シグマ・アルドリッチ社製、純度99.9%):錯体水素化物固体電解質(3LiBH-LiI)=2:3(重量比)となるように、粉末をグローブボックス内で計り取り、乳鉢にて混合して正極層粉末とした。
 (全固体電池の作製)
 上記で調製した固体電解質および正極層粉末を用いた以外は、実施例A1と同様に全固体電池を作製した。
 (充放電試験)
 上記のように作製した全固体電池を120℃で2時間熱処理することにより、固体電解質層と金属リチウム箔の密着処理を行った。その後、ポテンショスタット/ガルバノスタット(Bio-Logic製VMP3)を用い、試験温度60℃、カットオフ電圧1.75~2.85V、0.1Cレートの条件の下で定電流にて放電から充放電を行い、充放電容量を求めた。なお、充電後と放電後にはそれぞれ3分間の休止を設けた。
 <実施例A5>
 (充放電試験)
 実施例A4の試験後の全固体電池を用い、試験温度を120℃とした以外は、実施例A4と同様に充放電試験を行った。
 <実施例A6>
 (正極活物質の調製)
 硫黄(S)(アルドリッチ社製、純度99.98%)、ケッチェンブラック(ライオン社製、EC600JD)およびMaxsorb(登録商標)(関西熱化学製、MSC30)を、S:ケッチェンブラック:Maxsorb(登録商標)=50:25:25の重量比になるように45mLのSUJ-2製ポットに投入した。さらにSUJ-2製ボール(φ7mm、20個)を投入して、ポットを完全に密閉した。このポットを遊星型ボールミル機(フリッチェ製P7)に取り付け、回転数400rpmで20時間メカニカルミリングを行い、S-カーボンコンポジット正極活物質を得た。
 (正極層粉末の調製)
 上記で調製したS-カーボンコンポジット正極活物質:錯体水素化物固体電解質(LiBH)=1:1(重量比)となるように、粉末をグローブボックス内で計り取り、乳鉢にて混合して正極層粉末とした。
 (全固体電池の作製)
 上記で調製した正極層粉末を用いた以外は、実施例A1と同様に全固体電池を作製した。
 (充放電試験)
 上記のように作製した全固体電池について、ポテンショスタット/ガルバノスタット(Bio-Logic製VMP3)を用い、試験温度120℃、放電カットオフ容量789mAh/g(硫黄あたり)もしくは放電カットオフ電圧1.0V、充電カットオフ電圧2.5V、0.05Cレートの条件の下で定電流にて放電から充放電を行い、充放電容量を求めた。
 <実施例A7>
 (正極活物質の調製)
 硫黄(S)(シグマ・アルドリッチ社製、粉末、純度99.98%)とポリアクリロニトリル(シグマ・アルドリッチ社製、重量平均分子量150,000)とを、S:ポリアクリロニトリル=3:1の重量比になるようにメノウ乳鉢にて混合した。乳白色の混合物2gを石英製のボートに乗せ、管状型電気炉(アルミナ管:外径42mm、内径35mm、長さ600mm、ヒーター加熱長:250mm)に収納した。アルゴンガスを50mL/分の流量で流し、内部が十分にアルゴンガスで置換された後、400℃/時で450℃まで昇温した。そのまま8時間450℃を保ち、その後自然冷却して、黒色の硫黄変性ポリアクリロニトリルを0.7g得た。得られた硫黄変性ポリアクリロニトリル(硫黄変性PAN)についてCHNS分析(Thermo製 FLASH EA1112)を行ったところ、炭素41.6重量%、窒素15.6重量%、硫黄40.8重量%、水素1重量%未満の組成であった。
 (正極層粉末の調製)
 上記で調製した硫黄変性ポリアクリロニトリル:錯体水素化物固体電解質(LiBH):カーボンブラック(シグマ・アルドリッチ社製)=16:76:8(重量比)となるように、粉末をグローブボックス内で計り取り、乳鉢にて混合して正極層粉末とした。
 (全固体電池の作製)
 上記で調製した正極層粉末を用いた以外は、実施例A1と同様に全固体電池を作製した。
 (充放電試験)
 上記で作製した全固体電池を用い、カットオフ電圧1.0~3.0Vとした以外は実施例A1と同様に充放電試験を行った。
<実施例A8>
 (正極活物質の調製)
 硫黄(S)(アルドリッチ社製、純度99.98%)およびニッケル(Ni)(高純度化学社製Ni微粉末NIE10PB)を、S:Ni=1:1のモル比になるように45mLのジルコニア製ポットに投入した。さらにジルコニア製ボール(φ5mm、62g)を投入して、ポットを完全に密閉した。このポットを遊星型ボールミル機(フリッチェ製P7)に取り付け、回転数370rpmで24時間メカニカルミリングを行い、NiSを得た。
 (正極層粉末の調製)
 上記で調製したNiS:錯体水素化物固体電解質(LiBH):カーボンブラック(シグマ・アルドリッチ社製)=60:40:6(重量比)となるように、粉末をグローブボックス内で計り取り、乳鉢にて混合して正極層粉末とした。
 (全固体電池の作製)
 上記で調製した正極層粉末を用いた以外は、実施例A1と同様に全固体電池を作製した。
 (充放電試験)
 上記のように作製した全固体電池について、ポテンショスタット/ガルバノスタット(Bio-Logic製VMP3)を用い、試験温度120℃、放電カットオフ電圧1.0V、充電カットオフ電圧3.0V、0.1Cレートの条件の下で定電流にて放電から充放電を行い、充放電容量を求めた。
<実施例A9>
 (正極活物質の調製)
 硫黄(S)(アルドリッチ社製、純度99.98%)および鉄(Fe)(高純度化学社製Fe微粉末FEE12PB)を、S:Fe=2:1のモル比になるように45mLのジルコニア製ポットに投入した。さらにジルコニア製ボール(φ5mm、62g)を投入して、ポットを完全に密閉した。このポットを遊星型ボールミル機(フリッチェ製P7)に取り付け、回転数370rpmで24時間メカニカルミリングを行い、FeSを得た。
 (正極層粉末の調製)
 上記で調製したFeS:錯体水素化物固体電解質(LiBH):カーボンブラック(シグマ・アルドリッチ社製)=60:40:6(重量比)となるように、粉末をグローブボックス内で計り取り、乳鉢にて混合して正極層粉末とした。
 (全固体電池の作製)
 上記で調製した正極層粉末を用いた以外は、実施例A1と同様に全固体電池を作製した。
 (充放電試験)
 上記のように作製した全固体電池について、実施例A8と同様に充放電試験を行った。
<実施例A10>
 (正極層粉末の調製)
 MoS(シグマ・アルドリッチ社製、純度99%):錯体水素化物固体電解質(LiBH)=60:40(重量比)となるように、粉末をグローブボックス内で計り取り、乳鉢にて混合して正極層粉末とした。
 (全固体電池の作製)
 上記で調製した正極層粉末を用いた以外は、実施例A1と同様に全固体電池を作製した。
 (充放電試験)
 上記のように作製した全固体電池について、充電カットオフ電圧を2.1Vとしたことを除き、実施例A8と同様に充放電試験を行った。
 <比較例A1>
(正極層粉末の調製)
 正極活物質LiCoO(日本化学工業製日本化学工業製セルシードC-5H):錯体水素化物固体電解質(LiBH):カーボンブラック(アルドリッチ社製、純度99.9%)=40:60:6(重量比)とした粉末をグローブボックス内で計り取り、乳鉢にて混合して正極層粉末とした。
 上記の正極層粉末を用い、カットオフ電圧を3.2~4.2Vとした以外は、実施例A1と同様に全固体電池を作製した。充放電試験については、充電より試験を開始した以外は、実施例A1と同様に行った。
 <比較例A2>
(正極層粉末の調製)
 正極活物質LiFePO(SLFP-ES01):錯体水素化物固体電解質(LiBH):カーボンブラック(アルドリッチ社製、純度99.9%)=40:60:6(重量比)とした粉末をグローブボックス内で計り取り、乳鉢にて混合して正極層粉末とした。
 上記の正極層粉末を用い、カットオフ電圧を2.5~3.8Vとした以外は、実施例A1と同様に全固体電池を作製した。充放電試験については、充電より試験を開始した以外は、実施例A1と同様に行った。
 上記実施例A1~A10および比較例A1、A2の電池構成を、以下の表1にまとめる。
Figure JPOXMLDOC01-appb-T000001
 
 実施例A1およびA6~A10で作製した電池の放電容量の推移を、図3A~図3Fにそれぞれ示す(図3A:実施例A1、図3B:実施例A6、図3C:実施例A7、図3D:実施例A8、図3E:実施例A9、図3F:実施例A10)。また、実施例A1について、1、2および45サイクル目の充放電曲線を図4Aに示す。実施例A6について、2、3および45サイクル目の充放電曲線を図4Bに示す。実施例A7について、2、3および20サイクル目の充放電曲線を図4Cに示す。さらに、実施例A1~A10で作製した電池について、2サイクル目および20サイクル目における電池抵抗、クーロン効率および放電容量を、以下の表2に示す。なお、充放電容量は、試験した電池で得られた充放電容量を正極活物質1g当たりの値として算出した。ただし、実施例A6、A8およびA9については、硫黄1g当たりの充放電容量として算出した。電池抵抗は、充電休止1秒後のIRドロップより算出した。クーロン効率は、充電容量/放電容量より算出した。なお、「放電容量得られず」とは、活物質1g当たりの放電容量が5mAh未満であることを示す。
Figure JPOXMLDOC01-appb-T000002
 
 比較例A1およびA2については、放電容量が得られず、電池として機能しなかった。上記試験結果より、本発明の実施形態に係る全固体電池は、充放電サイクルを繰り返しても電池抵抗が増大しにくく、それに伴い放電容量も低下しにくいことが分かる。従って、本発明の実施形態に係る全固体電池は、長期にわたって安定に動作可能であると言える。また、本発明の実施形態に係る全固体電池は、充放電サイクルを繰り返した後であってもクーロン効率が低下しにくいという利点も有することが分かった。
 さらに、上述したように、本発明の実施形態によると、錯体水素化物による正極活物質の還元を懸念することなくリチウムイオン伝導性の高い錯体水素化物を固体電解質として使用することができる。また、正極活物質と固体電解質との間で良好な界面が形成される結果、界面抵抗が低くなり、電池全体のリチウムイオン伝導性を向上させることもできる。
[実施例B]
 以下、本発明の第2態様を実施例により詳細に説明するが、本発明の内容がこれにより限定されるものではない。
 <実施例B1>
 (1)硫黄系電極活物質とリチウム含有錯体水素化物の混合
 硫黄系電極活物質TiS(シグマ・アルドリッチ社製、純度99.9%):リチウム含有錯体水素化物(LiBH、アルドリッチ社製、純度90%)=2:3(重量比)とした粉末をグローブボックス内で計り取り、乳鉢にて混合した。
 (2)昇温脱離質量分析
 上記で得られた粉末について、アルゴン気流下、5℃/分の昇温速度で、昇温脱離質量分析(検出器:キャノンアネルバ社製M-200QA)を行った。その結果を図5に示す。これにより、リチウムドープが100℃付近より開始されることがわかる。
 (3)リチウムドープ
 (1)で得られた混合物をアルゴン雰囲気下、120℃で2時間加熱処理して、リチウムドープを行った。
 (4)X線回折測定
 (3)で得られた粉末について、室温においてX線回折測定(PANalytical社製X‘Pert Pro、CuKα:λ=1.5405Å)を実施した。その結果を図6Aに示す。なお、図6A~6Cには、LiBHの低温相のX線回折スペクトル、TiSのX線回折スペクトル、および(1)にて得られた混合物のX線回折スペクトルについても示す。図6Aより、リチウムがドープされたことによって、TiSのピークがシフトしていることがわかる。
 また、上記(3)で得られた粉末について、解析プログラムソフト(PANalytical社製HighScore Plus)を使用して、a軸およびc軸格子定数を求めた(空間群P-3m1(164))。その結果、a軸は0.3436nm、c軸は0.6190nmであった。これらを、既報(Solid State Comm.40(1981)245-248)のリチウム含有量とaおよびc軸格子定数との関係を示す図に当てはめた(図7)。図7から読み取られるリチウム含有量から、上記(3)で得られた粉末の組成式は、Li0.80TiSであることが分かった。なお、組成式におけるリチウム含量は、a軸格子定数に由来する値とc軸格子定数に由来する値を平均して示している。
 <実施例B2>
 リチウムドープ処理の時間を20時間とした以外は、実施例B1と同様にリチウムドープ処理を行った。X線回折測定の結果を、図6Bに示す。実施例B1と同様にリチウム含有量を求めたところ、得られた粉末の組成式は、Li0.95TiSであることが分かった。
 <実施例B3>
 (1)リチウム含有錯体水素化物を含む材料の調製
 アルゴン雰囲気下のグローブボックス内で、LiBH(アルドリッチ社製、純度90%)とLiI(アルドリッチ社製、純度99.999%)とを、LiBH:LiI=3:1のモル比になるようにメノウ乳鉢にて混合した。次に、混合した出発原料を45mLのSUJ-2製ポットに投入し、さらにSUJ-2製ボール(φ7mm、20個)を投入して、ポットを完全に密閉した。このポットを遊星型ボールミル機(フリッチェ製P7)に取り付け、回転数400rpmで5時間メカニカルミリングを行い、リチウム含有錯体水素化物を含む材料(3LiBH-LiI)を得た。
 (2)リチウムドープおよびX線回折測定
 LiBHの代わりに3LiBH-LiIを用いた以外は、実施例B1と同様に混合およびリチウムドープを行った。X線回折測定も実施例B1と同様に行い、その結果を図6Cに示す。また、a軸およびc軸格子定数についても実施例B1と同様に求め、図7を用いてリチウム含有量を導いたところ、組成式はLi0.66TiSであることが分かった。
 <実施例B4>
 原料の比率を、TiS(シグマ・アルドリッチ社製、純度99.9%):リチウム含有錯体水素化物(LiBH、アルドリッチ社製、純度90%)=3:1(重量比)とした以外は、実施例B1と同様にリチウムドープ処理を行った。実施例B1と同様にリチウム含有量を求めたところ、得られた粉末の組成式は、Li0.05TiSであることが分かった。
 <実施例B5>
 リチウムドープ処理の時間を20時間とした以外は、実施例B4と同様にリチウムドープ処理を行った。実施例B1と同様にリチウム含有量を求めたところ、得られた粉末の組成式は、Li0.51TiSであることが分かった。
 <実施例B6>
 原料の比率を、TiS(シグマ・アルドリッチ社製、純度99.9%):リチウム含有錯体水素化物(LiBH、アルドリッチ社製、純度90%)=4:1(重量比)とした以外は、実施例B1と同様にリチウムドープ処理を行った。実施例B1と同様にリチウム含有量を求めたところ、得られた粉末の組成式は、Li0.35TiSであることが分かった。LiBHの割合は実施例B6の方が実施例B4よりも少ないにも関わらず、リチウムドープ量は実施例B6の方が実施例B4よりも多い結果であった。反応に用いたLiBHの製造ロットが異なっていたため、実施例B4と実施例B6との間でLiBHの粒子径が若干異なっていたことが影響した可能性がある。すなわち、LiBHの粒子径によって、反応速度に違いが生じ得ると推測される。
 <実施例B7>
 原料の比率を、TiS(シグマ・アルドリッチ社製、純度99.9%):リチウム含有錯体水素化物(LiBH、アルドリッチ社製、純度90%)=5:1(重量比)とした以外は、実施例B2と同様にリチウムドープ処理を行った。実施例B1と同様にリチウム含有量を求めたところ、得られた粉末の組成式は、Li0.02TiSであることが分かった。
 <実施例B8>
 (1)リチウムドープ前全固体電池の作製
 硫黄系電極活物質TiS(シグマ・アルドリッチ社製、純度99.9%):リチウム含有錯体水素化物(LiBH)=2:3(重量比)とした粉末をグローブボックス内で計り取り、乳鉢にて混合した。これを直径10mmの粉末錠剤成形機に入れ、圧力28MPaにて円盤状にプレス成形した(正極層の形成)。成形物を取り出すことなく、続けて錯体水素化物固体電解質(LiBH)粉末を錠剤成形機に入れ、再び圧力28MPaにてプレス成形した(固体電解質層の形成)。固体電解質層の正極層と反対側の面に、厚さ100μm、φ8mmのインジウム箔を貼り付け、圧力285MPaにて一体成型した。このようにして、正極層(75μm)、錯体水素化物固体電解質層500μmおよび負極層70μm(Inインジウム箔はφ9mmに広がっていた)が順次積層された円盤状のペレットを得た。これをSUS304製の電池試験セルに入れてリチウムドープ前の全固体電池(正極・負極のどちらにも、充放電に必要なリチウム量を確保していない状態)を作製した。
 (2)リチウムドープ処理
 上記リチウムドープ前の全固体電池を120℃2時間で熱処理して、リチウムドープを行った。この操作によって、硫黄系電極活物質にリチウムがドープされ、充放電が可能となった。
 (3)充放電試験
 上記のように作製した全固体電池について、ポテンショスタット/ガルバノスタット(Bio-Logic製VMP3)を用い、測定温度120℃、カットオフ電圧1.15~2.25V、0.1Cレートの定電流にて、充電から充放電試験を開始した。20サイクル目までの放電容量の推移を図8に、1、2、20サイクル目の充放電曲線を図9に示す。なお、放電容量は、試験した電池で得られた放電容量を硫黄系電極活物質1g当たりの値として表記した。1サイクル目の放電時のクーロン量からリチウムドープ後の硫黄系電極活物質の組成を求めたところ、Li0.84TiSであった(TiS 1g当たりの理論容量を239mAhとした)。
 実施例B1~B7のリチウムドープ条件;X線回折から求めたa軸およびc軸格子定数;図7を用いてa軸およびc軸格子定数のそれぞれから求めたリチウム挿入量;ならびに上記リチウム挿入量の平均値を、以下の表1にまとめた。
 また、参考B1としてリチウムを含まないTiSのa軸およびc軸格子定数を、参考B2として初めからリチウムを含むLiTiSのa軸およびc軸格子定数の値も記載した。
Figure JPOXMLDOC01-appb-T000003
 
 上記表3より、実施例の硫黄系電極活物質には、電極反応に十分なリチウムがドープされたことが分かる。
 1…正極層、2…固体電解質層、3…負極層、10…全固体電池。

Claims (15)

  1.  正極層と、負極層と、前記正極層と前記負極層との間に配置されたリチウムイオン伝導性を有する固体電解質層とを具備し、
     前記正極層は正極活物質および錯体水素化物固体電解質を含み、前記正極活物質は硫黄系電極活物質であり、
     前記固体電解質層は、錯体水素化物固体電解質を含む
    全固体電池。
  2.  前記硫黄系電極活物質は、無機硫黄化合物または硫黄変性ポリアクリロニトリルである請求項1に記載の全固体電池。
  3.  前記無機硫黄化合物は、S、S-カーボンコンポジット、TiS、TiS、TiS4、NiS、FeSおよびMoSからなる群より選択される請求項2に記載の全固体電池。
  4.  前記錯体水素化物固体電解質は、LiBHまたはLiBHと下記式(1)で表されるアルカリ金属化合物との混合物である;
        MX     (1)
    [式(1)中、Mは、リチウム原子、ルビジウム原子およびセシウム原子からなる群より選択されるアルカリ金属原子を表し、Xは、ハロゲン原子またはNH基を表す。]
    請求項1~3のいずれか1項に記載の全固体電池。
  5.  前記アルカリ金属化合物は、ハロゲン化ルビジウム、ハロゲン化リチウム、ハロゲン化セシウムおよびリチウムアミドからなる群より選択される請求項4に記載の全固体電池。
  6.  前記正極層は、プレスによって形成される請求項1~5のいずれか1項に記載の全固体電池。
  7.  硫黄系電極活物質とリチウム含有錯体水素化物を含む材料とを混合することにより、前記硫黄系電極活物質にリチウムをドープする工程を含む、リチウムがドープされた硫黄系電極活物質の製造方法。
  8.  前記硫黄系電極活物質にリチウムをドープする工程は、前記硫黄系電極活物質と前記リチウム含有錯体水素化物を含む材料とを混合した後、60℃~200℃で加熱処理することにより行われる請求項7に記載のリチウムがドープされた硫黄系電極活物質の製造方法。
  9.  前記硫黄系電極活物質が、硫黄変性ポリアクリロニトリル、ジスルフィド化合物、TiS、TiS、TiS4、NiS、NiS、CuS、FeSおよびMoSからなる群より選択される請求項7または8に記載のリチウムがドープされた硫黄系電極活物質の製造方法。
  10.  前記リチウム含有錯体水素化物を含む材料は、LiBHまたはLiBHと下記式(1)で表されるアルカリ金属化合物との混合物である;
        MX     (1)
    [式(1)中、Mは、リチウム原子、ルビジウム原子およびセシウム原子からなる群より選択されるアルカリ金属原子を表し、Xは、ハロゲン原子またはNH基を表す。]
    請求項7~9のいずれか1項に記載のリチウムがドープされた硫黄系電極活物質の製造方法。
  11.  前記アルカリ金属化合物は、ハロゲン化ルビジウム、ハロゲン化リチウム、ハロゲン化セシウムおよびリチウムアミドからなる群より選択される請求項10に記載のリチウムがドープされた硫黄系電極活物質の製造方法。
  12.  請求項7~11のいずれか1項に記載の方法により製造されたリチウムがドープされた硫黄系電極活物質を含む電極。
  13.  硫黄系電極活物質とリチウム含有錯体水素化物を含む材料とを混合する工程と、
     前記工程で得られた混合物を集電体に担持させる工程と、
     前記混合物を担持させた集電体を加熱処理することにより、前記硫黄系電極活物質にリチウムをドープする工程と
    を含む電極の製造方法。
  14.  請求項13に記載の方法により製造された電極。
  15.  請求項12または14に記載の電極を備える全固体電池。
PCT/JP2014/072439 2013-09-02 2014-08-27 全固体電池および電極活物質の製造方法 WO2015030053A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BR112016004291-3A BR112016004291B1 (pt) 2013-09-02 2014-08-27 Bateria de estado sólido
US14/913,166 US10147937B2 (en) 2013-09-02 2014-08-27 Solid-state battery and method for manufacturing electrode active material
KR1020167008010A KR102245868B1 (ko) 2013-09-02 2014-08-27 전고체 전지 및 전극 활물질의 제조 방법
PL14841219T PL3043412T3 (pl) 2013-09-02 2014-08-27 Bateria z elektrolitem stałym i sposób wytwarzania materiału aktywnego elektrody
EP14841219.0A EP3043412B1 (en) 2013-09-02 2014-08-27 Solid-state battery and method for manufacturing electrode active material
CA2921210A CA2921210C (en) 2013-09-02 2014-08-27 Solid-state battery with a sulfur-polyacrylonitrile, s-carbon composite, or nis as a positive electrode active material
CN201480047855.8A CN105580185B (zh) 2013-09-02 2014-08-27 全固体电池和电极活性物质的制造方法
RU2016103788A RU2672556C2 (ru) 2013-09-02 2014-08-27 Батарея с твёрдым электролитом и способ получения активного материала электрода
JP2015534259A JP6868959B2 (ja) 2013-09-02 2014-08-27 全固体電池および電極活物質の製造方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013181579 2013-09-02
JP2013-181579 2013-09-02
JP2013191048 2013-09-13
JP2013-191048 2013-09-13
JP2014-067826 2014-03-28
JP2014067826 2014-03-28
JP2014067825 2014-03-28
JP2014-067825 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015030053A1 true WO2015030053A1 (ja) 2015-03-05

Family

ID=52586603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072439 WO2015030053A1 (ja) 2013-09-02 2014-08-27 全固体電池および電極活物質の製造方法

Country Status (12)

Country Link
US (1) US10147937B2 (ja)
EP (1) EP3043412B1 (ja)
JP (2) JP6868959B2 (ja)
KR (1) KR102245868B1 (ja)
CN (1) CN105580185B (ja)
BR (1) BR112016004291B1 (ja)
CA (1) CA2921210C (ja)
HU (1) HUE050631T2 (ja)
PL (1) PL3043412T3 (ja)
RU (1) RU2672556C2 (ja)
TW (1) TWI654787B (ja)
WO (1) WO2015030053A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016177980A (ja) * 2015-03-20 2016-10-06 コニカミノルタ株式会社 電池用正極材料及び全固体リチウムイオン電池
WO2016164737A1 (en) 2015-04-08 2016-10-13 Solid Power, Inc. Binder and slurry compositions and solid state batteries made therewith
WO2017126416A1 (ja) 2016-01-18 2017-07-27 三菱瓦斯化学株式会社 イオン伝導体の製造方法
WO2017163458A1 (ja) * 2016-03-25 2017-09-28 株式会社日立製作所 固体電解質およびその製造方法並びに全固体電池
JP2017188301A (ja) * 2016-04-05 2017-10-12 三菱瓦斯化学株式会社 電極活物質ならびにそれを含む電極層および全固体電池
KR20180037899A (ko) * 2016-10-05 2018-04-13 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
JP2018085290A (ja) * 2016-11-25 2018-05-31 住友ゴム工業株式会社 硫黄系活物質、電極およびリチウムイオン二次電池の製造方法
JP2018085291A (ja) * 2016-11-25 2018-05-31 住友ゴム工業株式会社 硫黄系活物質、電極およびリチウムイオン二次電池の製造方法
JP2019040752A (ja) * 2017-08-25 2019-03-14 株式会社サムスン日本研究所 全固体型二次電池
WO2019078130A1 (ja) 2017-10-19 2019-04-25 三菱瓦斯化学株式会社 全固体電池の製造方法
WO2019181703A1 (ja) * 2018-03-23 2019-09-26 株式会社Adeka 内部短絡による熱暴走の抑制方法
WO2020040044A1 (ja) * 2018-08-23 2020-02-27 三菱瓦斯化学株式会社 LiCB9H10の高温相を含むイオン伝導体およびその製造方法、並びに該イオン伝導体を含む全固体電池用固体電解質
WO2020105735A1 (ja) 2018-11-23 2020-05-28 Attaccato合同会社 非水電解質電池用の電極及び非水電解質電池
WO2020184340A1 (ja) 2019-03-12 2020-09-17 三菱瓦斯化学株式会社 全固体電池の製造方法
JP2020191183A (ja) * 2019-05-20 2020-11-26 トヨタ自動車株式会社 硫化物全固体電池の製造方法
WO2021075440A1 (ja) 2019-10-15 2021-04-22 Attaccato合同会社 非水電解質蓄電デバイス用の電極並びに非水電解質蓄電デバイス及びその製造方法
WO2022254962A1 (ja) * 2021-06-02 2022-12-08 住友ゴム工業株式会社 硫黄系活物質、電極およびリチウムイオン二次電池並びに製造方法

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9362546B1 (en) 2013-01-07 2016-06-07 Quantumscape Corporation Thin film lithium conducting powder material deposition from flux
US10290895B2 (en) 2013-10-07 2019-05-14 Quantumscape Corporation Garnet materials for Li secondary batteries and methods of making and using garnet materials
KR102585092B1 (ko) 2015-04-16 2023-10-05 퀀텀스케이프 배터리, 인코포레이티드 고체 전해질 제조를 위한 리튬 함유 가넷 세터 플레이트
US10103408B2 (en) 2015-08-28 2018-10-16 Cornell University Solid-state three-dimensional battery assembly
US10580592B2 (en) * 2015-09-28 2020-03-03 Jsr Corporation Method for manufacturing electrode material, cell, and capacitor; and device for manufacturing electrode material
US9966630B2 (en) 2016-01-27 2018-05-08 Quantumscape Corporation Annealed garnet electrolyte separators
WO2017197406A1 (en) 2016-05-13 2017-11-16 Quantumscape Corporation Solid electrolyte separator bonding agent
WO2018027200A1 (en) 2016-08-05 2018-02-08 Quantumscape Corporation Translucent and transparent separators
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US11916200B2 (en) 2016-10-21 2024-02-27 Quantumscape Battery, Inc. Lithium-stuffed garnet electrolytes with a reduced surface defect density and methods of making and using the same
WO2018075972A1 (en) * 2016-10-21 2018-04-26 Quantumscape Corporation Electrolyte separators including lithium borohydride and composite electrolyte separators of lithium-stuffed garnet and lithium borohydride
US10446873B2 (en) * 2016-12-30 2019-10-15 Intel Corporation Solid-state battery
DE102017201233A1 (de) * 2017-01-26 2018-07-26 Robert Bosch Gmbh Verfahren zur Herstellung eines Elektrodenlaminats für eine Festkörperbatterie
JP7065323B2 (ja) * 2017-02-09 2022-05-12 パナソニックIpマネジメント株式会社 全固体電池およびその製造方法
CN106898750B (zh) * 2017-03-28 2020-12-04 苏州大学 基于富硫过渡金属硫化物的金属-硫电池及其制备方法
KR102359583B1 (ko) * 2017-05-08 2022-02-07 현대자동차주식회사 고체전해질 및 이를 포함하는 전고체 전지의 제조방법
US10347937B2 (en) 2017-06-23 2019-07-09 Quantumscape Corporation Lithium-stuffed garnet electrolytes with secondary phase inclusions
EP3642899B1 (en) 2017-06-23 2024-02-21 QuantumScape Battery, Inc. Lithium-stuffed garnet electrolytes with secondary phase inclusions
US20210122545A1 (en) * 2017-07-12 2021-04-29 Hewlett-Packard Development Company, L.P. Treatment composition for packaging liner
US11600850B2 (en) 2017-11-06 2023-03-07 Quantumscape Battery, Inc. Lithium-stuffed garnet thin films and pellets having an oxyfluorinated and/or fluorinated surface and methods of making and using the thin films and pellets
WO2019126499A1 (en) * 2017-12-20 2019-06-27 Cornell University Titanium disulfide-sulfur composites
JP2019175838A (ja) * 2018-03-29 2019-10-10 トヨタ自動車株式会社 負極及び硫化物固体電池
CN109449414A (zh) * 2018-11-01 2019-03-08 江西中汽瑞华新能源科技有限公司 一种锂离子电池正极复合材料以及含该材料的全固态电池
CN111146441B (zh) 2018-11-06 2021-05-04 Sk新技术株式会社 用于锂二次电池的正极活性材料及其制造方法
CN109638240A (zh) * 2018-11-27 2019-04-16 华中科技大学 一种全固态锂硫电池及其制作方法
CN109585913B (zh) * 2018-11-29 2021-08-24 东南大学 硼氢化锂与二硫化钼复合体系固态电解质材料及其制备方法和应用
US11309585B2 (en) 2019-04-19 2022-04-19 International Business Machines Corporation Molten ion conductive salt/silicon interface for decreased interfacial resistance
US11205800B2 (en) 2019-04-19 2021-12-21 International Business Machines Corporation Polymer and molten ion conductive salt and silicon interface for decreased interfacial resistance
CN110061285A (zh) * 2019-04-24 2019-07-26 上海理工大学 一种全固态锂电池及其制备方法
CN110380117B (zh) * 2019-07-04 2020-12-08 光鼎铷业(广州)集团有限公司 一种铷掺杂的聚合物固态电解质膜的制备方法
TWI735017B (zh) * 2019-08-05 2021-08-01 輝能科技股份有限公司 活性材料球複合層
TWI725589B (zh) * 2019-10-25 2021-04-21 輝能科技股份有限公司 氧化物固態電解質的原相回收方法、鋰電池製造方法及其綠色環保電池
CN113036073B (zh) * 2019-12-09 2022-07-19 中国科学院上海硅酸盐研究所 用于固态锂硫电池的一种复合正极及其制备方法
CN111092260B (zh) * 2019-12-10 2021-03-05 浙江工业大学 一种类固态电池制备方法
JP7265680B6 (ja) * 2020-04-14 2024-02-15 サン-ゴバン セラミックス アンド プラスティクス,インコーポレイティド 電解質材料および形成方法
CN111977681B (zh) * 2020-08-08 2023-10-10 天目湖先进储能技术研究院有限公司 硫化物固态电解质材料及其原料的气相合成方法及应用
CN111952661B (zh) * 2020-08-14 2022-02-25 横店集团东磁股份有限公司 一种固态锂离子电池及其制备方法
CN112158868B (zh) * 2020-09-29 2021-09-17 四川大学 一种纳米氧化物/锂硼氢氨化物高电导率固体电解质材料及其制备方法
CN114361579B (zh) * 2021-12-30 2022-09-13 北京科技大学 一种低成本高效制备硫化物固态电解质的方法

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223156A (ja) 1999-01-28 2000-08-11 Sony Corp 固体電解質電池
JP3149524B2 (ja) 1992-05-07 2001-03-26 松下電器産業株式会社 非晶質リチウムイオン導電性固体電解質およびその製造方法
JP3163741B2 (ja) 1992-05-08 2001-05-08 松下電器産業株式会社 非晶質リチウムイオン導電性固体電解質およびその製造方法
JP3343934B2 (ja) 1992-05-07 2002-11-11 松下電器産業株式会社 非晶質リチウムイオン伝導性固体電解質並びにその合成法
JP2003068361A (ja) 2001-08-23 2003-03-07 Japan Storage Battery Co Ltd 全固体リチウム二次電池
JP2006277997A (ja) 2005-03-28 2006-10-12 Idemitsu Kosan Co Ltd 高性能全固体リチウム電池
JP2008147015A (ja) 2006-12-11 2008-06-26 Honda Motor Co Ltd 電池用電極、非水溶液系電池、および非水溶液系電池の製造方法
JP4165536B2 (ja) 2005-06-28 2008-10-15 住友電気工業株式会社 リチウム二次電池負極部材およびその製造方法
WO2009139382A1 (ja) * 2008-05-13 2009-11-19 国立大学法人東北大学 固体電解質、その製造方法、および固体電解質を備える二次電池
WO2010044437A1 (ja) 2008-10-17 2010-04-22 独立行政法人産業技術総合研究所 硫黄変性ポリアクリロニトリル、その製造方法、及びその用途
JP2011150942A (ja) 2010-01-22 2011-08-04 Toyota Motor Corp 負極活物質及びその製造方法、並びに全固体リチウム二次電池及びその製造方法
JP4779985B2 (ja) 2007-02-07 2011-09-28 トヨタ自動車株式会社 予備ドープ前リチウムイオン電池、およびリチウムイオン電池の製造方法
WO2011118801A1 (ja) 2010-03-26 2011-09-29 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP2011222153A (ja) 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池
JP2011249507A (ja) 2010-05-26 2011-12-08 Aisin Seiki Co Ltd 高性能キャパシタおよび高性能キャパシタ用負極材料のドープ方法
JP2011249517A (ja) 2010-05-26 2011-12-08 Aisin Seiki Co Ltd リチウムイオンキャパシタ用負極材料、そのドープ方法およびリチウムイオンキャパシタ
JP2012038686A (ja) 2010-08-11 2012-02-23 Kri Inc リチウムのプリドープ方法、電極の製造方法及びこれら方法を用いた蓄電デバイス
JP2012043646A (ja) 2010-08-19 2012-03-01 Idemitsu Kosan Co Ltd 硫化物系固体電解質及びその製造方法、並びにリチウムイオン電池
JP2012150934A (ja) 2011-01-18 2012-08-09 Toyota Industries Corp 硫黄系正極活物質とその製造方法及びリチウムイオン二次電池用正極
JP2012204310A (ja) 2011-03-28 2012-10-22 Kri Inc リチウムのプリドープ方法、電極の製造方法及びこれら方法を用いた蓄電デバイス
JP2012204306A (ja) 2011-03-28 2012-10-22 Kri Inc リチウムのプリドープ方法及びこの方法を用いた電極、蓄電デバイス
JP2012204332A (ja) 2011-03-28 2012-10-22 Tokyo Univ Of Agriculture & Technology リチウム硫黄電池用正極材料、リチウム硫黄電池、並びに、複合体及びその製造方法
JP2012209195A (ja) 2011-03-30 2012-10-25 Tdk Corp 活物質の製造方法、電極及びリチウムイオン二次電池
JP2012209104A (ja) 2011-03-29 2012-10-25 Denso Corp 全固体電池
JP2012209106A (ja) 2011-03-29 2012-10-25 Denso Corp 全固体電池
JP2014120432A (ja) * 2012-12-19 2014-06-30 Nagase Chemtex Corp 正極合材及び全固体型リチウム硫黄電池
JP2014160572A (ja) * 2013-02-20 2014-09-04 Nagase Chemtex Corp 正極合材及び全固体型リチウム硫黄電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523179A (en) * 1994-11-23 1996-06-04 Polyplus Battery Company Rechargeable positive electrode
TWM352659U (en) 2008-02-05 2009-03-11 Oplus Design Internat Co Ltd Thermostat device
JP2010095390A (ja) * 2008-09-16 2010-04-30 Tokyo Institute Of Technology メソポーラス炭素複合材料およびこれを用いた二次電池
JP5810479B2 (ja) 2009-05-26 2015-11-11 日産自動車株式会社 リチウムイオン二次電池用の電極構造、リチウムイオン二次電池およびリチウムイオン二次電池用の電極の製造方法
EP2605316B8 (en) 2010-08-11 2019-01-23 KRI, Inc. Method for lithium predoping, method for producing electrodes, and electric energy storage device using these methods
JP3163741U (ja) 2010-08-19 2010-10-28 株式会社大京 集合住宅の間取り構造
JP5865268B2 (ja) 2011-01-27 2016-02-17 出光興産株式会社 アルカリ金属硫化物と導電剤の複合材料
US20120251871A1 (en) * 2011-03-29 2012-10-04 Tohoku University All-solid-state battery
JP5652344B2 (ja) * 2011-06-27 2015-01-14 日本ゼオン株式会社 全固体二次電池
WO2013069083A1 (ja) * 2011-11-07 2013-05-16 トヨタ自動車株式会社 全固体電池
JP6077740B2 (ja) 2011-12-02 2017-02-08 出光興産株式会社 固体電解質
JP5720589B2 (ja) * 2012-01-26 2015-05-20 トヨタ自動車株式会社 全固体電池

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3149524B2 (ja) 1992-05-07 2001-03-26 松下電器産業株式会社 非晶質リチウムイオン導電性固体電解質およびその製造方法
JP3343934B2 (ja) 1992-05-07 2002-11-11 松下電器産業株式会社 非晶質リチウムイオン伝導性固体電解質並びにその合成法
JP3163741B2 (ja) 1992-05-08 2001-05-08 松下電器産業株式会社 非晶質リチウムイオン導電性固体電解質およびその製造方法
JP2000223156A (ja) 1999-01-28 2000-08-11 Sony Corp 固体電解質電池
JP2003068361A (ja) 2001-08-23 2003-03-07 Japan Storage Battery Co Ltd 全固体リチウム二次電池
JP2006277997A (ja) 2005-03-28 2006-10-12 Idemitsu Kosan Co Ltd 高性能全固体リチウム電池
JP4165536B2 (ja) 2005-06-28 2008-10-15 住友電気工業株式会社 リチウム二次電池負極部材およびその製造方法
JP2008147015A (ja) 2006-12-11 2008-06-26 Honda Motor Co Ltd 電池用電極、非水溶液系電池、および非水溶液系電池の製造方法
JP4779985B2 (ja) 2007-02-07 2011-09-28 トヨタ自動車株式会社 予備ドープ前リチウムイオン電池、およびリチウムイオン電池の製造方法
WO2009139382A1 (ja) * 2008-05-13 2009-11-19 国立大学法人東北大学 固体電解質、その製造方法、および固体電解質を備える二次電池
JP5187703B2 (ja) 2008-05-13 2013-04-24 国立大学法人東北大学 固体電解質、その製造方法、および固体電解質を備える二次電池
WO2010044437A1 (ja) 2008-10-17 2010-04-22 独立行政法人産業技術総合研究所 硫黄変性ポリアクリロニトリル、その製造方法、及びその用途
JP2011150942A (ja) 2010-01-22 2011-08-04 Toyota Motor Corp 負極活物質及びその製造方法、並びに全固体リチウム二次電池及びその製造方法
WO2011118801A1 (ja) 2010-03-26 2011-09-29 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP2011222153A (ja) 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池
JP2011249507A (ja) 2010-05-26 2011-12-08 Aisin Seiki Co Ltd 高性能キャパシタおよび高性能キャパシタ用負極材料のドープ方法
JP2011249517A (ja) 2010-05-26 2011-12-08 Aisin Seiki Co Ltd リチウムイオンキャパシタ用負極材料、そのドープ方法およびリチウムイオンキャパシタ
JP2012038686A (ja) 2010-08-11 2012-02-23 Kri Inc リチウムのプリドープ方法、電極の製造方法及びこれら方法を用いた蓄電デバイス
JP2012043646A (ja) 2010-08-19 2012-03-01 Idemitsu Kosan Co Ltd 硫化物系固体電解質及びその製造方法、並びにリチウムイオン電池
JP2012150934A (ja) 2011-01-18 2012-08-09 Toyota Industries Corp 硫黄系正極活物質とその製造方法及びリチウムイオン二次電池用正極
JP2012204310A (ja) 2011-03-28 2012-10-22 Kri Inc リチウムのプリドープ方法、電極の製造方法及びこれら方法を用いた蓄電デバイス
JP2012204306A (ja) 2011-03-28 2012-10-22 Kri Inc リチウムのプリドープ方法及びこの方法を用いた電極、蓄電デバイス
JP2012204332A (ja) 2011-03-28 2012-10-22 Tokyo Univ Of Agriculture & Technology リチウム硫黄電池用正極材料、リチウム硫黄電池、並びに、複合体及びその製造方法
JP2012209104A (ja) 2011-03-29 2012-10-25 Denso Corp 全固体電池
JP2012209106A (ja) 2011-03-29 2012-10-25 Denso Corp 全固体電池
JP2012209195A (ja) 2011-03-30 2012-10-25 Tdk Corp 活物質の製造方法、電極及びリチウムイオン二次電池
JP2014120432A (ja) * 2012-12-19 2014-06-30 Nagase Chemtex Corp 正極合材及び全固体型リチウム硫黄電池
JP2014160572A (ja) * 2013-02-20 2014-09-04 Nagase Chemtex Corp 正極合材及び全固体型リチウム硫黄電池

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
APPLIED PHYSICS LETTERS, vol. 91, 2007, pages 224103
CHEM. MATER., vol. 23, 2011, pages 5024 - 5028
ELECTROCHEMISTRY COMMUNICATIONS, vol. 31, 2013, pages 71 - 75
JOURNAL OF POWER SOURCES 'K20'1 3, vol. 226, pages 61 - 64
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 131, 2009, pages 894 - 895
KUNIAKI TAKAHASHI ET AL.: "Suisokabutsu-kei Kotai Denkaishitsu o Mochiita Zen Kotai Denchi: TiS2 Seikyoku no Kento", ABSTRACTS OF THE JAPAN INSTITUTE OF METALS, vol. 150 TH, 2012, pages 373, XP008182836 *
S BINDS, CHEM. MATER., vol. 23, 2011, pages 5024 - 5028
See also references of EP3043412A4
SEI TECHNICAL REVIEW, vol. 167, September 2005 (2005-09-01), pages 54 - 60
SOLID STATE COMM., vol. 40, 1981, pages 245 - 248

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016177980A (ja) * 2015-03-20 2016-10-06 コニカミノルタ株式会社 電池用正極材料及び全固体リチウムイオン電池
EP3292579A4 (en) * 2015-04-08 2018-12-05 Solid Power Inc. Binder and slurry compositions and solid state batteries made therewith
WO2016164737A1 (en) 2015-04-08 2016-10-13 Solid Power, Inc. Binder and slurry compositions and solid state batteries made therewith
CN107534135A (zh) * 2015-04-08 2018-01-02 索利得动力公司 粘合剂和浆料组合物以及由粘合剂和浆料组合物制作的固态电池
US11133521B2 (en) 2015-04-08 2021-09-28 Solid Power, Inc. Binder and slurry compositions and solid state batteries made therewith
WO2017126416A1 (ja) 2016-01-18 2017-07-27 三菱瓦斯化学株式会社 イオン伝導体の製造方法
US10825574B2 (en) 2016-01-18 2020-11-03 Mitsubishi Gas Chemical Company, Inc. Method for manufacturing ionic conductor
WO2017163458A1 (ja) * 2016-03-25 2017-09-28 株式会社日立製作所 固体電解質およびその製造方法並びに全固体電池
JP2017188301A (ja) * 2016-04-05 2017-10-12 三菱瓦斯化学株式会社 電極活物質ならびにそれを含む電極層および全固体電池
KR102006726B1 (ko) * 2016-10-05 2019-08-02 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
KR20180037899A (ko) * 2016-10-05 2018-04-13 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
JP2018085291A (ja) * 2016-11-25 2018-05-31 住友ゴム工業株式会社 硫黄系活物質、電極およびリチウムイオン二次電池の製造方法
JP2018085290A (ja) * 2016-11-25 2018-05-31 住友ゴム工業株式会社 硫黄系活物質、電極およびリチウムイオン二次電池の製造方法
JP2019040752A (ja) * 2017-08-25 2019-03-14 株式会社サムスン日本研究所 全固体型二次電池
JP7164939B2 (ja) 2017-08-25 2022-11-02 株式会社サムスン日本研究所 全固体型二次電池
WO2019078130A1 (ja) 2017-10-19 2019-04-25 三菱瓦斯化学株式会社 全固体電池の製造方法
WO2019181703A1 (ja) * 2018-03-23 2019-09-26 株式会社Adeka 内部短絡による熱暴走の抑制方法
WO2020040044A1 (ja) * 2018-08-23 2020-02-27 三菱瓦斯化学株式会社 LiCB9H10の高温相を含むイオン伝導体およびその製造方法、並びに該イオン伝導体を含む全固体電池用固体電解質
JP7360389B2 (ja) 2018-08-23 2023-10-12 三菱瓦斯化学株式会社 LiCB9H10の高温相を含むイオン伝導体およびその製造方法、並びに該イオン伝導体を含む全固体電池用固体電解質
CN112703624A (zh) * 2018-08-23 2021-04-23 三菱瓦斯化学株式会社 包含LiCB9H10的高温相的离子导体及其制造方法、和包含该离子导体的全固体电池用固体电解质
JPWO2020040044A1 (ja) * 2018-08-23 2021-08-10 三菱瓦斯化学株式会社 LiCB9H10の高温相を含むイオン伝導体およびその製造方法、並びに該イオン伝導体を含む全固体電池用固体電解質
CN112703624B (zh) * 2018-08-23 2024-02-27 三菱瓦斯化学株式会社 包含LiCB9H10的高温相的离子导体及其制造方法、和包含该离子导体的全固体电池用固体电解质
US11955637B2 (en) 2018-11-23 2024-04-09 Attaccato Limited Liability Company Electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
KR20210090191A (ko) 2018-11-23 2021-07-19 아탁카토 고도가이샤 비수 전해질 전지용의 전극 및 비수 전해질 전지
WO2020105735A1 (ja) 2018-11-23 2020-05-28 Attaccato合同会社 非水電解質電池用の電極及び非水電解質電池
WO2020184340A1 (ja) 2019-03-12 2020-09-17 三菱瓦斯化学株式会社 全固体電池の製造方法
JP7211262B2 (ja) 2019-05-20 2023-01-24 トヨタ自動車株式会社 硫化物全固体電池の製造方法
JP2020191183A (ja) * 2019-05-20 2020-11-26 トヨタ自動車株式会社 硫化物全固体電池の製造方法
KR20220085788A (ko) 2019-10-15 2022-06-22 아탁카토 고도가이샤 비수 전해질 축전 디바이스용의 전극, 및 비수 전해질 축전 디바이스 및 그 제조 방법
WO2021075440A1 (ja) 2019-10-15 2021-04-22 Attaccato合同会社 非水電解質蓄電デバイス用の電極並びに非水電解質蓄電デバイス及びその製造方法
WO2022254962A1 (ja) * 2021-06-02 2022-12-08 住友ゴム工業株式会社 硫黄系活物質、電極およびリチウムイオン二次電池並びに製造方法

Also Published As

Publication number Publication date
TWI654787B (zh) 2019-03-21
CN105580185A (zh) 2016-05-11
KR102245868B1 (ko) 2021-04-28
US10147937B2 (en) 2018-12-04
EP3043412B1 (en) 2020-04-29
US20160204466A1 (en) 2016-07-14
EP3043412A4 (en) 2017-03-29
PL3043412T3 (pl) 2021-02-08
RU2016103788A (ru) 2017-10-09
CA2921210C (en) 2021-08-17
KR20160048894A (ko) 2016-05-04
JP2020064864A (ja) 2020-04-23
BR112016004291A2 (pt) 2017-06-06
CN105580185B (zh) 2018-12-04
EP3043412A1 (en) 2016-07-13
JPWO2015030053A1 (ja) 2017-03-02
JP6868959B2 (ja) 2021-05-12
TW201530846A (zh) 2015-08-01
BR112016004291B1 (pt) 2021-08-24
HUE050631T2 (hu) 2020-12-28
RU2672556C2 (ru) 2018-11-16
CA2921210A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
JP6868959B2 (ja) 全固体電池および電極活物質の製造方法
JP6246816B2 (ja) 全固体電池
TWI496333B (zh) 膨脹石墨於鋰/硫電池中之用途
JP6431707B2 (ja) 全固体電池用電極層および全固体電池
US9577246B2 (en) Negative electrode active material, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
TWI705605B (zh) 負極活性物質、混合負極活性物質材料、非水電解質二次電池用負極、鋰離子二次電池、負極活性物質的製造方法、以及鋰離子二次電池的製造方法
WO2015182116A1 (ja) ナノシリコン材料とその製造方法及び二次電池の負極
JP2023015403A (ja) 非水電解質二次電池
JP2016004708A (ja) リチウムイオン二次電池用正極活物質およびその製造方法、ならびにそれを用いたリチウムイオン二次電池
JP2017188301A (ja) 電極活物質ならびにそれを含む電極層および全固体電池
JP5858297B2 (ja) 負極活物質及び蓄電装置
US10608245B2 (en) Molybdenum-based electrode materials for rechargeable calcium batteries
EP4117054A1 (en) Positive electrode material and battery
US20200381733A1 (en) Titanium-based positive electrode materials for rechargeable calcium batteries and cell comprising the same
JP7457671B2 (ja) 負極活物質及びその製造方法
EP3150554A1 (en) Silicon material and secondary cell negative electrode
JP2015090738A (ja) 負極活物質及び蓄電装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480047855.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841219

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534259

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2921210

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14913166

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016004291

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2014841219

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014841219

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167008010

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201602147

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2016103788

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016004291

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160226