WO2020040044A1 - LiCB9H10の高温相を含むイオン伝導体およびその製造方法、並びに該イオン伝導体を含む全固体電池用固体電解質 - Google Patents

LiCB9H10の高温相を含むイオン伝導体およびその製造方法、並びに該イオン伝導体を含む全固体電池用固体電解質 Download PDF

Info

Publication number
WO2020040044A1
WO2020040044A1 PCT/JP2019/032094 JP2019032094W WO2020040044A1 WO 2020040044 A1 WO2020040044 A1 WO 2020040044A1 JP 2019032094 W JP2019032094 W JP 2019032094W WO 2020040044 A1 WO2020040044 A1 WO 2020040044A1
Authority
WO
WIPO (PCT)
Prior art keywords
licb
ray diffraction
solid
ion conductor
ionic
Prior art date
Application number
PCT/JP2019/032094
Other languages
English (en)
French (fr)
Inventor
野上 玄器
敬太 野口
相侖 金
慎一 折茂
Original Assignee
三菱瓦斯化学株式会社
株式会社東北テクノアーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社, 株式会社東北テクノアーチ filed Critical 三菱瓦斯化学株式会社
Priority to CA3105955A priority Critical patent/CA3105955A1/en
Priority to US17/267,185 priority patent/US20210300773A1/en
Priority to JP2020538349A priority patent/JP7360389B2/ja
Priority to BR112021000402-5A priority patent/BR112021000402A2/pt
Priority to AU2019324040A priority patent/AU2019324040A1/en
Priority to EP19852068.6A priority patent/EP3843192A4/en
Priority to KR1020217007838A priority patent/KR20210044851A/ko
Priority to CN201980054121.5A priority patent/CN112703624B/zh
Publication of WO2020040044A1 publication Critical patent/WO2020040044A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/02Boron; Borides
    • C01B35/026Higher boron hydrides, i.e. containing at least three boron atoms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B6/00Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
    • C01B6/003Hydrides containing only one metal and one or several non-metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B6/00Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
    • C01B6/06Hydrides of aluminium, gallium, indium, thallium, germanium, tin, lead, arsenic, antimony, bismuth or polonium; Monoborane; Diborane; Addition complexes thereof
    • C01B6/10Monoborane; Diborane; Addition complexes thereof
    • C01B6/13Addition complexes of monoborane or diborane, e.g. with phosphine, arsine or hydrazine
    • C01B6/15Metal borohydrides; Addition complexes thereof
    • C01B6/19Preparation from other compounds of boron
    • C01B6/21Preparation of borohydrides of alkali metals, alkaline earth metals, magnesium or beryllium; Addition complexes thereof, e.g. LiBH4.2N2H4, NaB2H7
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention includes an ion conductor and a method of manufacturing comprising the high-temperature phase of licB 9 H 10, and to a solid electrolyte for all-solid-state cell comprising the ion conductor.
  • lithium ion secondary batteries In recent years, demand for lithium ion secondary batteries has increased for applications such as portable information terminals, portable electronic devices, electric vehicles, hybrid electric vehicles, and stationary power storage systems.
  • the current lithium ion secondary battery uses a flammable organic solvent as an electrolytic solution, and requires a strong exterior so that the organic solvent does not leak.
  • the structure of the device in the case of a portable personal computer or the like, there is a restriction on the structure of the device, such as the necessity of taking a structure for the risk in the event of leakage of the electrolyte.
  • All-solid-state batteries are broadly classified into thin-film type and bulk type.
  • the electrode layer is as thin as several ⁇ m, the electrode area is small, and the energy stored per cell is small. , The cost is also high. Therefore, it is not suitable as a battery for a large power storage device or an electric vehicle which needs to store a large amount of energy.
  • the thickness of the bulk-type electrode layer can be several tens ⁇ m to 100 ⁇ m, and an all-solid-state battery having a high energy density can be manufactured.
  • Patent Documents 1 and 2 Among solid electrolytes, sulfides and complex hydrides have a high ionic conductivity and are relatively soft, so they are easy to form a solid-solid interface.
  • the conventional sulfide solid electrolyte has a property of reacting with water, and sulfide generates hydrogen sulfide, and has a problem that ionic conductivity decreases after reacting with water.
  • the complex hydride solid electrolyte tends to have a slightly lower ionic conductivity than the sulfide solid electrolyte, and it is desired to improve the ionic conductivity.
  • Patent Document 3 describes a solid electrolyte called a carborene-based electrolyte, but does not describe ionic conductivity.
  • Patent 6246816 WO2017-126416 US2016 / 0372786A1
  • An object of the present invention is to provide an ionic conductor excellent in various properties such as ionic conductivity, a method for producing the same, and a solid electrolyte for an all-solid-state battery including the ionic conductor.
  • ⁇ 2> The method for producing an ion conductor according to ⁇ 1>, wherein the mixing is performed by performing a mechanical milling process.
  • ⁇ 3> The method for producing an ion conductor according to ⁇ 2>, wherein the time for performing the mechanical milling treatment is 1 to 48 hours.
  • A (16.4 ⁇ 0.3 deg X-ray diffraction intensity) ⁇ (20 deg X-ray diffraction intensity)
  • B (17.1 ⁇ 0.5 deg X-ray diffraction intensity) ⁇ (20 deg) X-ray diffraction intensity)
  • the intensity ratio (B / A) calculated in (1) to (3) is 1.0 to 20.
  • An ionic conductor containing lithium (Li), carbon (C), boron (B), and hydrogen (H). In an X-ray diffraction measurement at 25 ° C., at least 2 ⁇ 14.9 ⁇ 0.
  • ⁇ 7> The ionic conductor according to ⁇ 6>, wherein the ionic conductor further includes LiCB 11 H 12 .
  • ⁇ 8> In Raman spectrophotometry, each having a peak at 749cm -1 ( ⁇ 5cm -1) and 763cm -1 ( ⁇ 5cm -1), ion conductor according to any one of ⁇ 7> from the ⁇ 5> It is.
  • ⁇ 9> The ionic conductor according to any one of ⁇ 5> to ⁇ 8>, wherein the ionic conductivity at 25 ° C. is 1.0 to 10 mScm ⁇ 1 .
  • a solid electrolyte for an all-solid battery including the ionic conductor according to any one of ⁇ 5> to ⁇ 9>.
  • An all-solid-state battery including the electrode according to ⁇ 11>.
  • an ion conductor excellent in various properties such as ion conductivity a method for producing the same, and a solid electrolyte for an all-solid-state battery including the ion conductor.
  • FIG. 1A shows X-ray diffraction peaks of the ionic conductor powders obtained in Examples 1 to 4 and Comparative Example 1.
  • FIG. 1B is an enlarged X-ray diffraction spectrum of a part of FIG. 1A.
  • FIG. 2 shows Raman spectra of the ionic conductors obtained in Examples 1 to 4 and Comparative Example 1.
  • FIG. 2B is an enlarged view of a part of the Raman spectrum of FIG. 1A.
  • FIG. 3 shows the measurement results of the ionic conductivity of the ionic conductors obtained in Examples 1 to 4 and Comparative Example 1.
  • FIG. 4A shows the result of measuring the voltage applied between the electrodes of the evaluation cell in Example 5.
  • FIG. 4B is an enlarged view of a part of FIG. 4A.
  • FIG. 5A shows the result of the charge / discharge test in Example 6.
  • FIG. 5B shows the result of the charge / discharge test in Example 6.
  • Ion conductor comprising lithium (Li), carbon (C), boron (B), and hydrogen (H).
  • the above embodiments preferably include the high temperature phase (high ionic conduction phase) of LiCB 9 H 10 as crystals, and more preferably include LiCB 9 H 10 and LiCB 11 H 12 .
  • Ion conductor of the present invention in Raman spectroscopy, to have the respective peak to 749cm -1 based on LiCB 9 H 10 ( ⁇ 5cm -1 ) and licB 11 H based on 12 763cm -1 ( ⁇ 5cm -1) Is preferred. Although peaks may be present in other regions, the peaks showing the respective characteristics are as described above.
  • the ionic conductor of the present invention preferably contains a high-temperature phase of LiCB 9 H 10 as crystals.
  • LiCB 9 H 10 has a high-temperature phase and a low-temperature phase due to its crystalline state.
  • a high-temperature phase at a high temperature for example, about 75 to 150 ° C.
  • ionic conductivity is high, but around room temperature (for example, 20 (About 65 ° C.), the phase becomes a low temperature phase, and the ionic conductivity decreases.
  • A (16.4 ⁇ 0.3 deg X-ray diffraction intensity) ⁇ (20 deg X-ray diffraction intensity)
  • B (17.1 ⁇ 0.5 deg X-ray diffraction intensity) ⁇ (20 deg X Line diffraction intensity) is in the range of 1.0 to 20, more preferably in the range of 1.0 to 15, and particularly preferably in the range of 1.0 to 10.
  • the phase transition temperature is lowered due to the solid solution of LiCB 11 H 12 in the high-temperature phase of LiCB 9 H 10 , and the ion transition is reduced even at around room temperature.
  • High conductivity can be maintained.
  • the ion conductor of the present invention may include components other than lithium (Li), carbon (C), boron (B), and hydrogen (H).
  • components for example, oxygen (O), nitrogen (N), sulfur (S), fluorine (F), chlorine (Cl), bromine (Br), iodine (I), silicon (Si), germanium ( Ge), phosphorus (P), alkali metals, alkaline earth metals and the like.
  • the above ionic conductor is soft and can be formed into an electrode layer and a solid electrolyte layer by cold pressing.
  • the electrode layer and the solid electrolyte layer formed as described above have excellent strength as compared with the case where a large amount of the sulfide solid electrolyte or the oxide solid electrolyte is included. Therefore, by using the ion conductor of the present invention, it is possible to produce an electrode layer and a solid electrolyte layer that have good moldability and are hard to crack (hard to crack). Further, since the ion conductor of the present invention has a low density, relatively light electrode layers and solid electrolyte layers can be manufactured. This is preferable because the weight of the whole battery can be reduced.
  • the interface resistance between the ionic conductor and the electrode layer can be reduced. Furthermore, the above-mentioned ionic conductor does not decompose even when exposed to moisture or oxygen, and does not generate dangerous toxic gases.
  • the ionic conductor of the present invention preferably has an ionic conductivity at 25 ° C. of 1.0 to 10 mScm ⁇ 1 , more preferably 2.0 to 10 mScm ⁇ 1 .
  • the present invention the ion conductor, a process for the preparation of the ionic conductor comprising licB 9 H 10 and licB 11 H 12, and licB 9 H 10 and LiCB 11 H 12, LiCB
  • the raw materials LiCB 9 H 10 and LiCB 11 H 12 those commercially available can be used. Further, the purity is preferably 95% or more, and more preferably 98% or more. By using a compound having a purity within the above range, desired crystals can be easily obtained.
  • the ionic conductivity shows a particularly high value.
  • the mixing of LiCB 9 H 10 and LiCB 11 H 12 is preferably performed in an inert gas atmosphere.
  • the inert gas for example, helium, nitrogen, argon and the like can be mentioned, but argon is preferable.
  • the concentrations of water and oxygen in the inert gas are controlled to be low, and more preferably, the concentrations of water and oxygen in the inert gas are less than 1 ppm.
  • the method of mixing is not particularly limited, but stirring and mixing in a solvent can be used.
  • Mechanical mixing can also be used, and examples thereof include a method using a raikai machine, a ball mill, a planetary ball mill, a bead mill, a self-revolving mixer, a high-speed stirring type mixing device, a tumbler mixer, and the like.
  • a planetary ball mill excellent in crushing power and mixing power is more preferable, and it is particularly preferable to perform mechanical milling treatment and mix using a planetary ball mill.
  • the mechanical mixing is preferably performed in a dry manner, but can also be performed in a solvent.
  • the solvent is not particularly limited, but includes nitrile solvents such as acetonitrile, ether solvents such as tetrahydrofuran and diethyl ether, N, N-dimethylformamide, N, N-dimethylacetamide And alcoholic solvents such as methanol and ethanol.
  • nitrile solvents such as acetonitrile
  • ether solvents such as tetrahydrofuran and diethyl ether
  • N, N-dimethylformamide N, N-dimethylacetamide
  • alcoholic solvents such as methanol and ethanol.
  • the mixing time varies depending on the method of mixing. In the case of stirring and mixing in a solvent, for example, the mixing time is 1 to 48 hours, preferably 5 to 24 hours. When a solvent is used, the mixing time can be shortened.
  • the mixing time in the mechanical mixing is, for example, 1 to 24 hours when a planetary ball mill is used, and preferably 5 to 20 hours.
  • the reaction pressure is usually in the range of 0.1 Pa to 2 MPa as an absolute pressure. Preferably it is 101 kPa to 1 MPa.
  • Ion conductor obtained by the production method of the present invention in Raman spectroscopy, 749cm -1 ( ⁇ 5cm -1) based on licB 9 H 10 and licB 11 H based on 12 763cm -1 ( ⁇ 5cm -1 ) Preferably have a peak.
  • All-solid-state battery The ion conductor of the present invention can be used as a solid electrolyte for an all-solid-state battery. Therefore, according to one embodiment of the present invention, there is provided a solid electrolyte for an all-solid-state battery including the above-described ionic conductor. Further, according to a further embodiment of the present invention, there is provided an all-solid-state battery using the above-described solid electrolyte for an all-solid-state battery.
  • an all-solid-state battery is an all-solid-state battery in which lithium ions conduct electric conduction, and in particular, is an all-solid-state lithium-ion secondary battery.
  • the all-solid-state battery has a structure in which a solid electrolyte layer is disposed between a positive electrode layer and a negative electrode layer.
  • the ionic conductor of the present invention may be contained as a solid electrolyte in any one or more of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer. When used for an electrode layer, it is preferable to use it for a positive electrode layer rather than a negative electrode layer. This is because the side reaction is less likely to occur in the positive electrode layer.
  • the ion conductor is used in combination with a known positive electrode active material or negative electrode active material for a lithium ion secondary battery.
  • a known positive electrode active material or negative electrode active material for a lithium ion secondary battery As the positive electrode layer, it is preferable to use a bulk type in which an active material and a solid electrolyte are mixed because the capacity per single cell increases.
  • the all-solid-state battery is manufactured by forming and laminating the above-described layers, but the forming method and the laminating method of each layer are not particularly limited.
  • a gas phase method in which film formation and lamination are performed by using a method, a sputtering method, a laser ablation method, or the like; a press method in which powder is formed by hot pressing or cold pressing in which temperature is not applied, and the powder is laminated.
  • the ionic conductor of the present invention is relatively soft, it is particularly preferable to form and laminate a battery by pressing to produce a battery.
  • an electrode layer containing an active material, a conductive auxiliary agent, and a binder is formed in advance, and a solution in which the solid electrolyte is dissolved in a solvent or a slurry in which the solid electrolyte is dispersed in the solvent is poured into the electrode layer.
  • a solid electrolyte can be introduced into the electrode layer.
  • ⁇ ⁇ ⁇ As an atmosphere for producing an all-solid-state battery, it is preferable to carry out the process in an inert gas in which moisture is controlled or in a dry room.
  • the dew point is controlled in the range of ⁇ 10 ° C. to ⁇ 100 ° C., more preferably in the range of ⁇ 20 ° C. to ⁇ 80 ° C., and particularly preferably in the range of ⁇ 30 ° C. to ⁇ 75 ° C. This is because the ionic conductor of the present invention has a very low hydrolysis rate, but prevents a decrease in ionic conductivity due to the formation of a hydrate.
  • the pot was attached to a planetary ball mill (P7 manufactured by Fritsch) and subjected to mechanical milling at a rotation speed of 400 rpm for 20 hours to obtain an ion conductor.
  • the obtained ionic conductor contained a high-temperature phase of LiCB 9 H 10 .
  • FIGS. 1A and 1B The obtained X-ray diffraction peak is shown in FIGS. 1A and 1B.
  • FIG. 1A also shows the X-ray diffraction peaks of the raw materials LiCB 9 H 10 and LiCB 11 H 12 for comparison.
  • LiCB 9 H 10 has a peak at 749 cm ⁇ 1
  • LiCB 11 H 12 has a peak at 763 cm ⁇ 1 .
  • the Raman shift value is derived from bonding and is hardly influenced by the crystal state.
  • Peak of 763cm -1 is the shoulder peak of 749cm -1 in Examples 1-2
  • the peak of 749cm -1 in Examples 3-4 and Comparative Example 1 is the shoulder peak of 763cm -1, in any It can also be seen that LiCB 9 H 10 and LiCB 11 H 12 exist.
  • ⁇ Ion conductivity measurement> In a glove box under an argon atmosphere, the ion conductors obtained in Examples 1 to 4 and Comparative Example 1 and the raw materials LiCB 9 H 10 and LiCB 11 H 12 were subjected to uniaxial molding (240 MPa) to a thickness of about 240 MPa. Discs of 1 mm and ⁇ 8 mm were manufactured. The temperature is raised and lowered at an interval of 10 ° C. in a temperature range from room temperature to 150 ° C. or 80 ° C., and an AC impedance measurement (HIOKI 3532-80, chemical impedance meter) is performed by a two-terminal method using a lithium electrode, and the ionic conductivity is measured. Calculated. The measurement frequency range was 4 Hz to 1 MHz, and the amplitude was 100 mV.
  • FIG. 3 shows the measurement results of each ionic conductivity.
  • Table 2 shows the ionic conductivity at room temperature (25 ° C.).
  • a phenomenon in which the ionic conductivity was suddenly lowered at a low temperature which was observed in the raw materials LiCB 9 H 10 and LiCB 11 H 12 , was not observed.
  • the difference in ionic conductivity between Comparative Example 1 and Examples 1 to 4 was large, and even in Example 4 having the lowest ionic conductivity among Examples 1 to 4, the ionic conductivity at room temperature was higher than that in Comparative Example 1. It can be seen that it has improved twice.
  • Example 5 ⁇ Dissolution / precipitation test using a lithium symmetric cell>
  • the powder of the ion conductor obtained in Example 3 was put into a powder tableting machine having a diameter of 8 mm, and pressed into a disk at a pressure of 143 MPa to obtain a disk-shaped pellet on which a solid electrolyte layer (300 ⁇ m) was laminated.
  • a lithium metal foil manufactured by Honjo Metals Co., Ltd.
  • a lithium metal foil having a thickness of 200 ⁇ m and ⁇ 8 mm was attached to both sides of the pellet, placed in a SUS304 restraint test cell for solid-state batteries (manufactured by Hosen), and sealed.
  • This pot was attached to a planetary ball mill (P7 manufactured by Frichce), and mechanical milling was performed at 400 rpm for 20 hours to obtain an S-carbon composite positive electrode active material.
  • a planetary ball mill P7 manufactured by Frichce
  • mechanical milling was performed at 400 rpm for 20 hours to obtain an S-carbon composite positive electrode active material.
  • Example 3 (Preparation of all solid state battery) The ion conductor powder obtained in Example 3 was placed in a powder tableting machine having a diameter of 10 mm and press-molded into a disk at a pressure of 143 MPa (formation of a solid electrolyte layer). Without taking out the molded product, the positive electrode layer powder prepared above was put into a tablet molding machine, and was integrally molded at a pressure of 285 MPa. Thus, a disk-shaped pellet in which the positive electrode layer (75 ⁇ m) and the solid electrolyte layer (300 ⁇ m) were laminated was obtained.
  • a metal lithium foil manufactured by Honjo Metal Co., Ltd. having a thickness of 200 ⁇ m and ⁇ 8 mm was attached to the opposite side of the positive electrode layer of the pellet to form a lithium negative electrode layer, and a SUS304 restraint test cell for solid-state batteries (manufactured by Hosen) And sealed to form an all-solid secondary battery.
  • the first discharge capacity is 1900 mAh / g
  • the second cycle has a large drop of 1300 mAh / g
  • the third and subsequent cycles are stable, and the discharge capacity at the 20th cycle is 1100 mAh / g.
  • a large expression capacity could be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明の一態様によれば、LiCB10およびLiCB1112を含むイオン伝導体の製造方法であって、LiCB10とLiCB1112とを、LiCB10/LiCB1112=1.1~20のモル比で混合する工程を含む、上記イオン伝導体の製造方法を提供することができる。本発明の別の態様によれば、リチウム(Li)と炭素(C)とホウ素(B)と水素(H)とを含むイオン伝導体であって、25℃におけるX線回折測定において、少なくとも2θ=14.9±0.3deg、16.4±0.3deg、17.1±0.5degにX線回折ピークを有し、A=(16.4±0.3degのX線回折強度)-(20degのX線回折強度)、B=(17.1±0.5degのX線回折強度)-(20degのX線回折強度)、にて算出した強度比(B/A)が1.0~20である、上記イオン伝導体を提供することができる。

Description

LiCB9H10の高温相を含むイオン伝導体およびその製造方法、並びに該イオン伝導体を含む全固体電池用固体電解質
 本発明は、LiCB10の高温相を含むイオン伝導体およびその製造方法、並びに該イオン伝導体を含む全固体電池用固体電解質に関する。
 近年、携帯情報端末、携帯電子機器、電気自動車、ハイブリッド電気自動車、更には定置型蓄電システムなどの用途において、リチウムイオン二次電池の需要が増加している。しかしながら、現状のリチウムイオン二次電池は、電解液として可燃性の有機溶媒を使用しており、有機溶媒が漏れないように強固な外装を必要とする。また、携帯型のパソコン等においては、万が一電解液が漏れ出した時のリスクに備えた構造を取る必要があるなど、機器の構造に対する制約も出ている。
 更には、自動車や飛行機等の移動体にまでその用途が広がり、定置型のリチウムイオン二次電池においては大きな容量が求められている。このような状況の下、安全性が従来よりも重視される傾向にあり、有機溶媒等の有害な物質を使用しない全固体リチウムイオン二次電池の開発に力が注がれている。
 例えば、全固体リチウムイオン二次電池における固体電解質として、酸化物、リン酸化合物、有機高分子、硫化物、錯体水素化物等を使用することが検討されている。
 全固体電池は大きくわけて薄膜型とバルク型に分類される。薄膜型については、気相成膜を利用することで界面接合が理想的に形成されるものの、電極層が数μmと薄く、電極面積も小さなものであり、1セルあたりの蓄えられるエネルギーが小さく、コストも高くなる。よって、多くのエネルギーを蓄える必要のある、大型蓄電装置や電気自動車向けの電池としては不適である。一方、バルク型の電極層の厚みは数十μm~100μmにすることができ、高いエネルギー密度を有する全固体電池が作製可能である。
 固体電解質の中で、硫化物や錯体水素化物はイオン伝導度が高く、比較的やわらかいことから固体-固体間の界面を形成しやすい特徴があり、バルク型全固体電池への適用検討が進んでいる(特許文献1および2)。
 しかしながら、従来の硫化物固体電解質は水と反応する性質を有しており、硫化物は硫化水素を発生し、水分と反応した後はイオン伝導度が低下する課題を有している。一方、錯体水素化物固体電解質は硫化物固体電解質と比較すると、イオン伝導度がやや低い傾向にあり、イオン伝導度の向上が望まれている。
 特許文献3には、カーボレン系と呼ばれる固体電解質が記載されているが、イオン伝導度については記載されていない。
特許6246816 WO2017-126416 US2016/0372786A1
 本発明は、イオン伝導性等の種々の特性に優れたイオン伝導体およびその製造方法、並びに該イオン伝導体を含む全固体電池用固体電解質を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、LiCB10とLiCB1112とを特定のモル比で混合して得られたイオン伝導体によって、上記課題を解決することができることを見出した。即ち、本発明は、以下の通りである。
<1> LiCB10およびLiCB1112を含むイオン伝導体の製造方法であって、
 LiCB10とLiCB1112とを、LiCB10/LiCB1112=1.1~20のモル比で混合する工程を含む、前記イオン伝導体の製造方法である。
<2> メカニカルミリング処理を施すことにより前記混合を行う、上記<1>に記載のイオン伝導体の製造方法である。
<3> 前記メカニカルミリング処理を施す時間が1~48時間である、上記<2>に記載のイオン伝導体の製造方法である。
<4> 得られたイオン伝導体が、25℃におけるX線回折測定において、少なくとも2θ=14.9±0.3deg、16.4±0.3deg、17.1±0.5degにX線回折ピークを有し、A=(16.4±0.3degのX線回折強度)-(20degのX線回折強度)、B=(17.1±0.5degのX線回折強度)-(20degのX線回折強度)、にて算出した強度比(B/A)が1.0~20である、上記<1>~<3>のいずれかに記載のイオン伝導体の製造方法である。
<5> リチウム(Li)と炭素(C)とホウ素(B)と水素(H)とを含むイオン伝導体であって、25℃におけるX線回折測定において、少なくとも2θ=14.9±0.3deg、16.4±0.3deg、17.1±0.5degにX線回折ピークを有し、A=(16.4±0.3degのX線回折強度)-(20degのX線回折強度)、B=(17.1±0.5degのX線回折強度)-(20degのX線回折強度)、にて算出した強度比(B/A)が1.0~20である、前記イオン伝導体である。
<6> 前記イオン伝導体がLiCB10を含む、上記<5>に記載のイオン伝導体である。
<7> 前記イオン伝導体が更にLiCB1112を含む、上記<6>に記載のイオン伝導体である。
<8> ラマン分光測定において、749cm-1(±5cm-1)および763cm-1(±5cm-1)にそれぞれピークを有する、上記<5>から<7>のいずれかに記載のイオン伝導体である。
<9> 25℃におけるイオン伝導度が1.0~10mScm-1である、上記<5>から<8>のいずれかに記載のイオン伝導体である。
<10> 上記<5>から<9>のいずれかに記載のイオン伝導体を含む全固体電池用固体電解質である。
<11> 上記<10>に記載の固体電解質と、金属リチウムとが接してなる電極である。
<12> 上記<11>に記載の電極を備える全固体電池である。
 本発明によれば、イオン伝導性等の種々の特性に優れたイオン伝導体およびその製造方法、並びに該イオン伝導体を含む全固体電池用固体電解質を提供することができる。
図1Aは、実施例1~4および比較例1で得られたイオン伝導体の粉末におけるX線回折ピークを示す。 図1Bは、図1Aの一部のX線回折スペクトルを拡大したものである。 図2は、実施例1~4および比較例1で得られたイオン伝導体のラマンスペクトルを示す。 図2Bは、図1Aの一部のラマンスペクトルを拡大したものである。 図3は、実施例1~4および比較例1で得られたイオン伝導体のイオン伝導度の測定結果を示す。 図4Aは、実施例5において評価セルの電極間にかかる電圧を測定した結果を示す。 図4Bは、図4Aの一部を拡大したものである。 図5Aは、実施例6における充放電試験の結果を示す。 図5Bは、実施例6における充放電試験の結果を示す。
 以下、本発明の実施の形態について説明する。なお、以下に説明する材料、構成等は本発明を限定するものではなく、本発明の趣旨の範囲内で種々改変することができるものである。
1.イオン伝導体
 本発明の1つの実施形態によると、リチウム(Li)と炭素(C)とホウ素(B)と水素(H)とを含むイオン伝導体が提供される。上記実施形態は、好ましくは、結晶としてLiCB10の高温相(高イオン伝導相)を含み、より好ましくは、LiCB10およびLiCB1112を含む。
 本発明のイオン伝導体は、ラマン分光測定において、LiCB10に基づく749cm-1(±5cm-1)およびLiCB1112に基づく763cm-1(±5cm-1)にそれぞれピークを有することが好ましい。その他の領域にもピークを有してもよいが、それぞれの特徴を示すピークは上記のものとなる。
 本発明のイオン伝導体は、結晶としてLiCB10の高温相を含むことが好ましい。LiCB10は、その結晶状態から高温相と低温相とを有しており、高い温度(例えば、75~150℃程度)の高温相ではイオン伝導度が高いものの、室温付近(例えば、20~65℃程度)においては低温相となってしまい、イオン伝導度が低下してしまう。
 本発明のイオン伝導体は、25℃におけるX線回折測定において、少なくとも2θ=14.9±0.3deg、16.4±0.3deg、17.1±0.5degにLiCB10の高温相に基づくX線回折ピークを有する。好ましくは、A=(16.4±0.3degのX線回折強度)-(20degのX線回折強度)、B=(17.1±0.5degのX線回折強度)-(20degのX線回折強度)、にて算出した強度比(B/A)が1.0~20の範囲であり、1.0~15の範囲がより好ましく、1.0~10の範囲が特に好ましい。強度比(B/A)が1.0~20の範囲となる場合は、LiCB10の高温相にLiCB1112が固溶することで相転移温度が低下し、室温付近においてもイオン伝導度が高い状態を維持することができる。この固溶が成り立つのは、LiCB10/LiCB1112=1.1以上のモル比の時である。好ましくはLiCB10/LiCB1112=1.1~20であり、より好ましくはLiCB10/LiCB1112=1.25~10であり、特に好ましくはLiCB10/LiCB1112=1.5~9であり、この範囲においてはイオン伝導度が高い値を示す。
 なお、本発明のイオン伝導体は、上記以外のX線回折ピークを含んでいたとしても、所望の効果が得られる。
 また、本発明のイオン伝導体は、リチウム(Li)と炭素(C)とホウ素(B)と水素(H)以外の成分を含んでいてもよい。他の成分としては、例えば、酸素(O)、窒素(N)、硫黄(S)、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)、ケイ素(Si)、ゲルマニウム(Ge)、リン(P)、アルカリ金属、アルカリ土類金属等が挙げられる。
 上記のイオン伝導体は、柔らかく、コールドプレスにて電極層および固体電解質層へと成形することができる。そして、このように成形された電極層および固体電解質層は、硫化物固体電解質や酸化物固体電解質を多く含む場合と比較して強度に優れる。従って、本発明のイオン伝導体を使用することにより、成形性がよく、割れにくい(クラックが生じにくい)電極層および固体電解質層を作製することができる。また、本発明のイオン伝導体は密度が低いため、比較的軽い電極層および固体電解質層を作製することができる。それにより電池全体の重量を軽くすることができるため、好ましい。さらに、本発明のイオン伝導体を固体電解質層において使用した場合、電極層との間の界面抵抗を低くすることができる。
 更に、上記のイオン伝導体は、水分や酸素に触れても分解することがなく、危険な毒性ガスを発生することがない。
 本発明のイオン伝導体は、25℃におけるイオン伝導度が1.0~10mScm-1であることが好ましく、2.0~10mScm-1であることがより好ましい。
2.イオン伝導体の製造方法
 本発明の別の実施形態によると、LiCB10およびLiCB1112を含むイオン伝導体の製造方法であって、LiCB10とLiCB1112とを、LiCB10/LiCB1112=1.1~20のモル比で混合する工程を含む、前記イオン伝導体の製造方法が提供される。
 原料であるLiCB10およびLiCB1112としては、通常に市販されているものを使用することができる。また、その純度は、95%以上であることが好ましく、98%以上であることがより好ましい。純度が上記範囲である化合物を使用することにより、所望の結晶が得られやすい。
 LiCB10とLiCB1112との混合比は、LiCB10/LiCB1112=1.1以上のモル比とする必要がある。好ましくはLiCB10/LiCB1112=1.1~20であり、より好ましくはLiCB10/LiCB1112=1.25~10であり、特に好ましくはLiCB10/LiCB1112=1.5~9である。上述したように、この範囲においてはイオン伝導度が特に高い値を示す。
 LiCB10とLiCB1112との混合は、不活性ガス雰囲気下で行うことが好ましい。不活性ガスとしては、例えばヘリウム、窒素、アルゴンなどを挙げることができるが、好ましくはアルゴンである。不活性ガス中の水分および酸素の濃度は低く管理されることが好ましく、より好ましくは、不活性ガス中の水分および酸素の濃度は1ppm未満である。
 混合の方法としては、特に限定されるものではないが、溶媒中での撹拌混合を用いることができる。機械混合も使用することができ、例えば、ライカイ機、ボールミル、遊星型ボールミル、ビーズミル、自公転ミキサー、高速攪拌型の混合装置、タンブラーミキサー等を使用した方法が挙げられる。これらの中でも、粉砕力および混合力に優れる遊星型ボールミルがより好ましく、遊星型ボールミルを用いてメカニカルミリング処理を施して混合することが特に好ましい。機械混合は乾式で行うことが好ましいが、溶媒下で実施することもできる。上記手法に問わず、溶媒としては特に制限されるわけではないが、アセトニトリルをはじめとしたニトリル系溶媒、テトラヒドロフランやジエチルエーテルなどのエーテル系溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、メタノールやエタノールなどのアルコール系溶媒等を挙げることができる。
 混合時間は、混合する方法によって異なるが、溶媒中での撹拌混合の場合には、例えば、1~48時間であり、5~24時間が好ましい。なお、溶媒を用いた場合には混合時間を短縮することができる。機械混合における混合時間としては、例えば遊星型ボールミルを用いた場合には、1~24時間であり、5~20時間が好ましい。
 反応圧力としては、通常は絶対圧として0.1Pa~2MPaの範囲である。好ましくは101kPa~1MPaである。
 本発明の上記製造方法によって得られたイオン伝導体は、ラマン分光測定において、LiCB10に基づく749cm-1(±5cm-1)およびLiCB1112に基づく763cm-1(±5cm-1)にそれぞれピークを有することが好ましい。また、25℃におけるX線回折測定において、少なくとも2θ=14.9±0.3deg、16.4±0.3deg、17.1±0.5degにLiCB10の高温相に基づくX線回折ピークを有し、A=(16.4±0.3degのX線回折強度)-(20degのX線回折強度)、B=(17.1±0.5degのX線回折強度)-(20degのX線回折強度)、にて算出した強度比(B/A)が1~20の範囲となることが好ましく、1.0~15の範囲となることがより好ましく、1.0~10の範囲となることが特に好ましい。
3.全固体電池
 本発明のイオン伝導体は、全固体電池用の固体電解質として使用され得る。よって、本発明の一実施形態によると、上述したイオン伝導体を含む全固体電池用固体電解質が提供される。また、本発明のさらなる実施形態によると、上述した全固体電池用固体電解質を使用した全固体電池が提供される。
 本明細書において、全固体電池とは、リチウムイオンが電気伝導を担う全固体電池であり、特に全固体リチウムイオン二次電池である。全固体電池は、正極層と負極層との間に固体電解質層が配置された構造を有する。本発明のイオン伝導体は、正極層、負極層および固体電解質層のいずれか1層以上に、固体電解質として含まれてよい。電極層に使用する場合には、負極層よりも正極層に使用することが好ましい。正極層の方が、副反応が生じにくいためである。正極層または負極層に本発明のイオン伝導体が含まれる場合、イオン伝導体と公知のリチウムイオン二次電池用正極活物質または負極活物質とを組み合わせて使用する。正極層としては、活物質と固体電解質が混じり合ったバルク型を用いると、単セルあたりの容量が大きくなることから好ましい。
 全固体電池は、上述した各層を成形して積層することによって作製されるが、各層の成形方法および積層方法については、特に限定されるものではない。例えば、固体電解質および/または電極活物質を溶媒に分散させてスラリー状としたものをドクターブレード、スピンコート等により塗布し、それを圧延することにより製膜する方法;真空蒸着法、イオンプレーティング法、スパッタリング法、レーザーアブレーション法等を用いて成膜および積層を行う気相法;ホットプレスまたは温度をかけないコールドプレスによって粉末を成形し、それを積層していくプレス法等がある。本発明のイオン伝導体は比較的柔らかいことから、プレスによって成形および積層して電池を作製することが特に好ましい。また、予め活物質、導電助剤、バインダー類が入った電極層を形成させておき、そこに固体電解質を溶媒に溶かした溶液や、溶媒に固体電解質を分散させたスラリーを流し込むこみ、その後溶媒を除去させることによって電極層内に固体電解質を入れこむこともできる。
 全固体電池を作製する雰囲気としては、水分が管理された不活性ガスもしくはドライルーム内にて実施することが好ましい。水分管理としては、露点-10℃~-100℃の範囲であり、より好ましくは露点-20℃~-80℃の範囲であり、特に好ましくは露点-30℃~-75℃の範囲である。これは、本発明のイオン伝導体の加水分解速度は極めて遅いものの、水和物を形成することによりイオン伝導度が低下することを防ぐためである。
 以下、本発明を実施例により詳細に説明するが、本発明の内容がこれにより限定されるものではない。
<イオン伝導体の調製>
(実施例1)
 アルゴン雰囲気下のグローブボックス内で、LiCB10(Katchem社製)とLiCB1112(Katchem社製)とを、LiCB10:LiCB1112=9:1のモル比になるように100mg量り取り、メノウ乳鉢にて予備混合した。次に、予備混合した原料を45mLのSUJ-2製ポットに投入し、さらにSUJ-2製ボール(φ7mm、20個)を投入して、ポットを完全に密閉した。このポットを遊星型ボールミル機(フリッチェ製P7)に取り付け、回転数400rpmで20時間、メカニカルミリング処理を施し、イオン伝導体を得た。X線回折の結果、得られたイオン伝導体はLiCB10の高温相を含んでいた。
(実施例2)
 LiCB10とLiCB1112との混合モル比をLiCB10:LiCB1112=8:2へと変更したことを除き、実施例1と同様にイオン伝導体を製造した。
(実施例3)
 LiCB10とLiCB1112との混合モル比をLiCB10:LiCB1112=7:3へと変更したことを除き、実施例1と同様にイオン伝導体を製造した。
(実施例4)
 LiCB10とLiCB1112との混合モル比をLiCB10:LiCB1112=6:4へと変更したことを除き、実施例1と同様にイオン伝導体を製造した。
(比較例1)
 LiCB10とLiCB1112との混合モル比をLiCB10:LiCB1112=5:5へと変更したことを除き、実施例1と同様にイオン伝導体を製造した。得られたイオン伝導体は、X線回折の結果より、LiCB10とLiCB1112の混相であった。
<X線回折測定>
 実施例1~4および比較例1で得られたイオン伝導体の粉末について、アルゴン雰囲気下、室温(25℃)下、リンデマンガラスキャピラリー(外径0.5mm、厚さ0.01mm)を用いて、X線回折測定(PANalytical社製X‘pert Pro、CuKα:λ=1.5405Å)を実施した。得られたX線回折ピークを図1A及び図1Bに示す。図1Aには比較のため、原料であるLiCB10およびLiCB1112のX線回折ピークも示す。
 実施例1~4では、少なくとも、2θ=14.9±0.3deg、16.4±0.3deg、17.1±0.5degにX線回折ピークが観測された。また、LiCB10の高温相のピーク位置である16.44degおよび17.07degのピーク位置の強度をそれぞれAおよびBとしたとき、強度比(B/A)を、表1にまとめた。なお、それぞれの強度は、2θ=20degの値をベースラインとみなし、A=(16.44degのX線回折強度)-(20degのX線回折強度)、B=(17.07degのX線回折強度)-(20degのX線回折強度)、にて算出した。
 実施例1~4はLiCB10の高温相のピーク位置と一致することから固溶体となっていることがわかるが、比較例1はLiCB10の低温相およびLiCB1112との混相であり、固溶領域を外れていることがわかる。
Figure JPOXMLDOC01-appb-T000001
<ラマン分光測定>
(1)試料調製
 上部に石英ガラス(Φ60mm、厚さ1mm)を光学窓として有する密閉容器を用いて測定試料の作製を行った。アルゴン雰囲気下のグローブボックスにて、試料を石英ガラスに接する状態で保液させた後、容器を密閉してグローブボックス外に取り出し、ラマン分光測定を行った。
(2)測定条件
 レーザーラマン分光光度計NRS-5100(日本分光株式会社製)を使用し、励起波長532.15nm、露光時間5秒にて測定を行った。得られたラマンスペクトルを図2に示す。
 LiCB10は749cm-1にピークを有し、LiCB1112は763cm-1にピークを有する。なお、ラマンシフト値は結合に由来するものであり、結晶状態にはほとんど左右されない。実施例1~2においては763cm-1のピークが749cm-1のショルダーピークとなり、実施例3~4および比較例1においては749cm-1のピークが763cm-1のショルダーピークとなるが、いずれにおいてもLiCB10およびLiCB1112が存在していることがわかる。
<イオン伝導度測定>
 アルゴン雰囲気下のグローブボックス内で、実施例1~4および比較例1で得られたイオン伝導体、原料であるLiCB10およびLiCB1112を一軸成型(240MPa)に供し、厚さ約1mm、φ8mmのディスクを製造した。室温から150℃もしくは80℃の温度範囲において10℃間隔で昇温・降温させ、リチウム電極を利用した二端子法による交流インピーダンス測定(HIOKI 3532-80、chemical impedance meter)を行い、イオン伝導度を算出した。測定周波数範囲は4Hz~1MHz、振幅は100mVとした。
 それぞれのイオン伝導度の測定結果を図3に示す。また、室温(25℃)におけるイオン伝導度を表2に示した。なお、実施例1~4および比較例1は、いずれも原料のLiCB10およびLiCB1112に見られる低温で急激にイオン伝導度が低下する現象が観測されなかった。しかし、比較例1と実施例1~4とはイオン伝導度の差が大きく、実施例1~4の中で最もイオン伝導度の低い実施例4でも、室温におけるイオン伝導度は比較例1より2倍向上していることがわかる。
Figure JPOXMLDOC01-appb-T000002
(実施例5)
<リチウム対称セルによる溶解・析出試験>
 実施例3で得られたイオン伝導体の粉末を直径8mmの粉末錠剤成形機に入れ、圧力143MPaにて円盤状にプレス成形し、固体電解質層(300μm)が積層された円盤状のペレットを得た。このペレットの両側に、厚さ200μm、φ8mmの金属リチウム箔(本城金属社製)を貼り付けて、SUS304製の全固体電池用拘束試験セル(宝泉製)に入れて密閉し、評価セルとした。上記の操作は全てアルゴン雰囲気下のグローブボックス内で行った。作製した評価セルについて、ポテンショスタット/ガルバノスタット(Bio-Logic製VMP3)を用い、測定温度25℃、電流密度0.2mA/cm-2にて、0.5時間ずつ極性を反転させて電流を流すことを1サイクル(1時間で1サイクル)とし、評価セルの電極間にかかる電圧を測定した。結果を図4に示す。過電圧は0.01V未満と小さくフラットであり、異常な電圧を示すこともない。100サイクル後も過電圧の増加はわずかにとどまり、良好にLiの溶解・析出が繰り返されることが示された。
(実施例6)
<充放電試験>
(正極活物質の調製)
 硫黄(S)(アルドリッチ社製、純度99.98%)、ケッチェンブラック(ライオン社製、EC600JD)およびMaxsorb(登録商標)(関西熱化学製、MSC30)を、S:ケッチェンブラック:Maxsorb(登録商標)=50:25:25の重量比になるように45mLのSUJ-2製ポットに投入した。さらにSUJ-2製ボール(φ7mm、20個)を投入して、ポットを完全に密閉した。このポットを遊星型ボールミル機(フリッチェ製P7)に取り付け、回転数400rpmで20時間メカニカルミリングを行い、S-カーボンコンポジット正極活物質を得た。
(正極層粉末の調製)
 上記で調製したS-カーボンコンポジット正極活物質:実施例3で得られたイオン伝導体=1:1(重量比)となるように、粉末をグローブボックス内で計り取り、乳鉢にて混合して正極層粉末とした。
(全固体電池の作製)
 実施例3で得られたイオン伝導体の粉末を直径10mmの粉末錠剤成形機に入れ、圧力143MPaにて円盤状にプレス成形した(固体電解質層の形成)。成形物を取り出すことなく、上記で調製した正極層粉末を錠剤成形機に入れ、圧力285MPaにて一体成型した。このようにして、正極層(75μm)および固体電解質層(300μm)が積層された円盤状のペレットを得た。このペレットの正極層の反対側に、厚さ200μm、φ8mmの金属リチウム箔(本城金属社製)を貼り付けてリチウム負極層とし、SUS304製の全固体電池用拘束試験セル(宝泉製)に入れて密閉し、全固体二次電池とした。
(充放電試験)
 上記のように作製した全固体二次電池について、ポテンショスタット/ガルバノスタット(Bio-Logic製VMP3)を用い、測定温度25℃、カットオフ電圧1.0~2.5V、0.1Cレートの定電流にて、放電から充放電試験を開始した。なお、放電容量は、試験した電池で得られた放電容量を硫黄系電極活物質1g当たりの値として表記した。また、クーロン効率=充電容量/放電容量 にて算出した。結果を図5に示した。
 初回の放電時には大きな不可逆容量が観測されたものの、2サイクル目以降は98%以上の高いクーロン効率を示した。サイクル特性としては、初回の放電容量が1900mAh/gであるのに対し、2サイクル目は1300mAh/gと落ちが大きいものの、3サイクル目以降は安定し、20サイクル目の放電容量は1100mAh/gであり、大きな発現容量を得ることができた。

Claims (12)

  1.  LiCB10およびLiCB1112を含むイオン伝導体の製造方法であって、
     LiCB10とLiCB1112とを、LiCB10/LiCB1112=1.1~20のモル比で混合する工程を含む、前記イオン伝導体の製造方法。
  2.  メカニカルミリング処理を施すことにより前記混合を行う、請求項1に記載のイオン伝導体の製造方法。
  3.  前記メカニカルミリング処理を施す時間が1~48時間である、請求項2に記載のイオン伝導体の製造方法。
  4.  得られたイオン伝導体が、25℃におけるX線回折測定において、少なくとも2θ=14.9±0.3deg、16.4±0.3deg、17.1±0.5degにX線回折ピークを有し、A=(16.4±0.3degのX線回折強度)-(20degのX線回折強度)、B=(17.1±0.5degのX線回折強度)-(20degのX線回折強度)、にて算出した強度比(B/A)が1.0~20である、請求項1~3のいずれかに記載のイオン伝導体の製造方法。
  5.  リチウム(Li)と炭素(C)とホウ素(B)と水素(H)とを含むイオン伝導体であって、25℃におけるX線回折測定において、少なくとも2θ=14.9±0.3deg、16.4±0.3deg、17.1±0.5degにX線回折ピークを有し、A=(16.4±0.3degのX線回折強度)-(20degのX線回折強度)、B=(17.1±0.5degのX線回折強度)-(20degのX線回折強度)、にて算出した強度比(B/A)が1.0~20である、前記イオン伝導体。
  6.  前記イオン伝導体がLiCB10を含む、請求項5に記載のイオン伝導体。
  7.  前記イオン伝導体が更にLiCB1112を含む、請求項6に記載のイオン伝導体。
  8.  ラマン分光測定において、749cm-1(±5cm-1)および763cm-1(±5cm-1)にそれぞれピークを有する、請求項5から7のいずれかに記載のイオン伝導体。
  9.  25℃におけるイオン伝導度が1.0~10mScm-1である、請求項5から8のいずれかに記載のイオン伝導体。
  10.  請求項5から9のいずれかに記載のイオン伝導体を含む全固体電池用固体電解質。
  11.  請求項10に記載の固体電解質と、金属リチウムとが接してなる電極。
  12.  請求項11に記載の電極を備える全固体電池。
     
PCT/JP2019/032094 2018-08-23 2019-08-16 LiCB9H10の高温相を含むイオン伝導体およびその製造方法、並びに該イオン伝導体を含む全固体電池用固体電解質 WO2020040044A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA3105955A CA3105955A1 (en) 2018-08-23 2019-08-16 Ion conductor containing high-temperature phase of licb9h10, method for manufacturing same, and solid electrolyte for all-solid-state battery containing said ion conductor
US17/267,185 US20210300773A1 (en) 2018-08-23 2019-08-16 IONIC CONDUCTOR CONTAINING HIGH-TEMPERATURE PHASE OF LiCB9H10, METHOD FOR MANUFACTURING SAME, AND SOLID ELECTROLYTE FOR ALL-SOLID-STATE BATTERY CONTAINING SAID ION CONDUCTOR
JP2020538349A JP7360389B2 (ja) 2018-08-23 2019-08-16 LiCB9H10の高温相を含むイオン伝導体およびその製造方法、並びに該イオン伝導体を含む全固体電池用固体電解質
BR112021000402-5A BR112021000402A2 (pt) 2018-08-23 2019-08-16 Método para fabricar um condutor de íons, condutor de íons, eletrólito sólido, eletrodo, e, bateria totalmente sólida.
AU2019324040A AU2019324040A1 (en) 2018-08-23 2019-08-16 Ionic conductor containing high-temperature phase of LiCB9H10, method for manufacturing same, and solid electrolyte for all-solid-state battery containing said ion conductor
EP19852068.6A EP3843192A4 (en) 2018-08-23 2019-08-16 IONIC CONDUCTOR CONTAINING A HIGH TEMPERATURE PHASE OF LICB9H10, ITS MANUFACTURING PROCESS, AND SOLID ELECTROLYTE FOR FULLY SOLID BATTERY CONTAINING IONIC CONDUCTOR
KR1020217007838A KR20210044851A (ko) 2018-08-23 2019-08-16 LiCB9H10의 고온상을 포함하는 이온 전도체 및 그의 제조 방법, 및 해당 이온 전도체를 포함하는 전고체 전지용 고체 전해질
CN201980054121.5A CN112703624B (zh) 2018-08-23 2019-08-16 包含LiCB9H10的高温相的离子导体及其制造方法、和包含该离子导体的全固体电池用固体电解质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-156211 2018-08-23
JP2018156211 2018-08-23

Publications (1)

Publication Number Publication Date
WO2020040044A1 true WO2020040044A1 (ja) 2020-02-27

Family

ID=69592748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032094 WO2020040044A1 (ja) 2018-08-23 2019-08-16 LiCB9H10の高温相を含むイオン伝導体およびその製造方法、並びに該イオン伝導体を含む全固体電池用固体電解質

Country Status (10)

Country Link
US (1) US20210300773A1 (ja)
EP (1) EP3843192A4 (ja)
JP (1) JP7360389B2 (ja)
KR (1) KR20210044851A (ja)
CN (1) CN112703624B (ja)
AU (1) AU2019324040A1 (ja)
BR (1) BR112021000402A2 (ja)
CA (1) CA3105955A1 (ja)
TW (1) TWI810350B (ja)
WO (1) WO2020040044A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163664A1 (ja) * 2021-01-28 2022-08-04 国立大学法人東北大学 カルシウム電池の電解質用組成物、カルシウム電池の電解質、及び、カルシウム電池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230083286A1 (en) * 2020-02-17 2023-03-16 Mitsubishi Gas Chemical Company, Inc. ION CONDUCTOR CONTAINING HIGH-TEMPERATURE PHASE OF LiCB9H10 AND METHOD FOR PRODUCING SAME
US11450883B2 (en) * 2020-06-30 2022-09-20 Toyota Motor Engineering & Manufacturing North America, Inc. Enhanced solid closo-borane electrolytes for batteries

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246816B2 (ja) 1980-06-02 1987-10-05 Yamato Scale Co Ltd
JP2012209104A (ja) * 2011-03-29 2012-10-25 Denso Corp 全固体電池
WO2015030053A1 (ja) * 2013-09-02 2015-03-05 三菱瓦斯化学株式会社 全固体電池および電極活物質の製造方法
US20160372786A1 (en) 2015-06-16 2016-12-22 National Institute Of Standards And Technology Ambient temperature superionic conducting salt and process for making ambient temperature superionic conducting salt
WO2017126416A1 (ja) 2016-01-18 2017-07-27 三菱瓦斯化学株式会社 イオン伝導体の製造方法
JP2018116784A (ja) * 2017-01-16 2018-07-26 株式会社日立製作所 固体電池用の正極材料、固体電池および固体電池の製造方法
WO2019078130A1 (ja) * 2017-10-19 2019-04-25 三菱瓦斯化学株式会社 全固体電池の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017091953A (ja) * 2015-11-16 2017-05-25 旭化成株式会社 リチウムイオン伝導体及びこれを用いたリチウムイオン電池
JP7022498B2 (ja) * 2016-02-05 2022-02-18 三菱瓦斯化学株式会社 イオン伝導体の経時劣化を抑制する方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246816B2 (ja) 1980-06-02 1987-10-05 Yamato Scale Co Ltd
JP2012209104A (ja) * 2011-03-29 2012-10-25 Denso Corp 全固体電池
WO2015030053A1 (ja) * 2013-09-02 2015-03-05 三菱瓦斯化学株式会社 全固体電池および電極活物質の製造方法
US20160372786A1 (en) 2015-06-16 2016-12-22 National Institute Of Standards And Technology Ambient temperature superionic conducting salt and process for making ambient temperature superionic conducting salt
WO2017126416A1 (ja) 2016-01-18 2017-07-27 三菱瓦斯化学株式会社 イオン伝導体の製造方法
JP2018116784A (ja) * 2017-01-16 2018-07-26 株式会社日立製作所 固体電池用の正極材料、固体電池および固体電池の製造方法
WO2019078130A1 (ja) * 2017-10-19 2019-04-25 三菱瓦斯化学株式会社 全固体電池の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KOJI YOSHIDA, ATSUSHI UNEMOTO, HIROYUKI OGUCHI, SHIN-ICHI ORIMO: "Complex hydride as a novel solid electrolyte and its application to an allsolid-state battery", MATERIA JAPAN, vol. 56, no. 7, 1 January 2017 (2017-01-01), pages 448 - 452, XP055791730, ISSN: 1340-2625, DOI: 10.2320/materia.56.448 *
See also references of EP3843192A4
WAN SI TANG, KOJI YOSHIDA, ALEXEI V. SOLONININ, ROMAN V. SKORYUNOV, OLGA A. BABANOVA, ALEXANDER V. SKRIPOV, MIRJANA DIMITRIEVSKA, : "Stabilizing superionic-conducting structures via mixed-anion solid solutions of monocarba-closo-borate salts", ACS ENERGY LETTERS, vol. 1, no. 4, 1 September 2016 (2016-09-01), pages 659 - 664, XP055532143, ISSN: 2380-8195, DOI: 10.1021/acsenergylett.6b00310 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163664A1 (ja) * 2021-01-28 2022-08-04 国立大学法人東北大学 カルシウム電池の電解質用組成物、カルシウム電池の電解質、及び、カルシウム電池

Also Published As

Publication number Publication date
CN112703624B (zh) 2024-02-27
KR20210044851A (ko) 2021-04-23
JPWO2020040044A1 (ja) 2021-08-10
EP3843192A4 (en) 2021-11-10
AU2019324040A1 (en) 2021-04-15
TWI810350B (zh) 2023-08-01
EP3843192A1 (en) 2021-06-30
BR112021000402A2 (pt) 2021-04-06
CA3105955A1 (en) 2020-02-27
TW202019823A (zh) 2020-06-01
CN112703624A (zh) 2021-04-23
US20210300773A1 (en) 2021-09-30
JP7360389B2 (ja) 2023-10-12

Similar Documents

Publication Publication Date Title
JP6581997B2 (ja) イオン伝導体およびその製造方法
Trevey et al. Electrochemical investigation of all-solid-state lithium batteries with a high capacity sulfur-based electrode
JP6984652B2 (ja) Li3PS4を有する固体電解質の製造方法
Zhou et al. Cathode-doped sulfide electrolyte strategy for boosting all-solid-state lithium batteries
WO2020040044A1 (ja) LiCB9H10の高温相を含むイオン伝導体およびその製造方法、並びに該イオン伝導体を含む全固体電池用固体電解質
Bai et al. New insight for solid sulfide electrolytes LSiPSI by using Si/P/S as the raw materials and I doping
Li et al. Single‐Crystal‐Layered Ni‐Rich Oxide Modified by Phosphate Coating Boosting Interfacial Stability of Li10SnP2S12‐Based All‐Solid‐State Li Batteries
JP7150818B2 (ja) Li2B12H12およびLiBH4を含むイオン伝導体およびその製造方法、並びに該イオン伝導体を含む全固体電池用固体電解質
RU2795829C2 (ru) ИОННЫЙ ПРОВОДНИК, СОДЕРЖАЩИЙ ВЫСОКОТЕМПЕРАТУРНУЮ ФАЗУ LiCB9H10, СПОСОБ ЕГО ПОЛУЧЕНИЯ И ТВЕРДЫЙ ЭЛЕКТРОЛИТ ДЛЯ ПОЛНОСТЬЮ ТВЕРДОТЕЛЬНЫХ АККУМУЛЯТОРОВ, СОДЕРЖАЩИЙ УКАЗАННЫЙ ИОННЫЙ ПРОВОДНИК
Wu et al. Strategies to regulate the interface between Li metal anode and all-solid-state electrolyte
Xiao et al. Unraveling the Enhancement of Confined Water on the Li‐Ion Transport of Solid Electrolytes
WO2021166705A1 (ja) LiCB9H10の高温相を含むイオン伝導体およびその製造方法
RU2814874C1 (ru) Ионный проводник, содержащий высокотемпературную фазу licb9h10, и способ его получения
Cheng et al. O2− substituted Li-richened Li2ZrCl6 lattice towards superionic conductivity
Zhao et al. Rationally coordinating polymer enabling effective Li-ion percolation network in composite electrolyte for solid-state Li-metal batteries
Bristi Development of Poly (vinylidene fluoride) and Poly (vinyl pyrrolidone) based Solid Polymer Electrolyte for the Next Generation of Solid-state Sodium ion Battery
Huang et al. Lithium metal anode: Past, present, and future
Kerner Ionic Liquid Based Electrolytes for High-Temperature Lithium-Ion Batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852068

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538349

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3105955

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021000402

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217007838

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019852068

Country of ref document: EP

Effective date: 20210323

ENP Entry into the national phase

Ref document number: 112021000402

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210111

ENP Entry into the national phase

Ref document number: 2019324040

Country of ref document: AU

Date of ref document: 20190816

Kind code of ref document: A