WO2015012649A1 - 다결정 리튬 망간 산화물 입자, 이의 제조방법 및 이를 포함하는 양극 활물질 - Google Patents

다결정 리튬 망간 산화물 입자, 이의 제조방법 및 이를 포함하는 양극 활물질 Download PDF

Info

Publication number
WO2015012649A1
WO2015012649A1 PCT/KR2014/006841 KR2014006841W WO2015012649A1 WO 2015012649 A1 WO2015012649 A1 WO 2015012649A1 KR 2014006841 W KR2014006841 W KR 2014006841W WO 2015012649 A1 WO2015012649 A1 WO 2015012649A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide particles
manganese oxide
lithium manganese
polycrystalline
polycrystalline lithium
Prior art date
Application number
PCT/KR2014/006841
Other languages
English (en)
French (fr)
Inventor
곽익순
조승범
채화석
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2015528424A priority Critical patent/JP6048711B2/ja
Priority to EP14814672.3A priority patent/EP2868630B1/en
Priority to CN201480001950.4A priority patent/CN104507864B/zh
Priority to US14/514,788 priority patent/US9905850B2/en
Publication of WO2015012649A1 publication Critical patent/WO2015012649A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/12Borates
    • C01B35/128Borates containing plural metal or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1207Permanganates ([MnO]4-) or manganates ([MnO4]2-)
    • C01G45/1214Permanganates ([MnO]4-) or manganates ([MnO4]2-) containing alkali metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to polycrystalline lithium manganese oxide particles, a method of manufacturing the same and a cathode active material for a lithium secondary battery comprising the same.
  • Lithium cobalt oxide (LiCoO 2 ) is mainly used as a cathode active material of such a lithium secondary battery.
  • lithium manganese oxides such as LiMnO 2 having a layered crystal structure and LiMn 2 O 4 having a spinel crystal structure, and lithium nickel oxide (LiNiO) The use of 2 ) is also under consideration.
  • lithium manganese oxide such as LiMn 2 O 4 has the advantage of excellent thermal safety and low price, but has a problem of small capacity, poor cycle characteristics, poor temperature characteristics.
  • Li ions are located on the tetrahedron (8a), Mn ions (Mn 3+ / Mn 4+ ) are octahedral (16d), and O 2- ions are octahedral (16c) Located. These ions form a cubic closed-packing array.
  • the tetrahedral site of 8a shares a face with the octahedral site of 16c, which has a vacancy around it, forming a three-dimensional channel, providing a passage for Li + ions to move easily.
  • the biggest problem with LiMn 2 O 4 is that the capacity decreases as the cycle progresses. This is due to a structural change called Jahn-Teller distortion, that is, cubic to tetragonal phase transition due to the oxidation number change of Mn ions at the end of discharge (near 3V). Moreover, the cause of capacity
  • capacitance reduction is a phenomenon which elutes into the electrolyte solution of manganese, etc. are mentioned.
  • LiMn 2 O 4 is added in an amount of 1.01 to 1.1 times the amount of Li to prevent conversion of Li and Mn metal ions.
  • many studies have been conducted, such as the substitution of transition metals or divalent and trivalent cations at Mn sites.
  • the first technical problem to be solved by the present invention is to solve the problems of Jahn-Teller distortion and dissolution of Mn 2+ polycrystalline lithium manganese which can improve the life characteristics and charge and discharge capacity characteristics of the secondary battery It is to provide oxide particles.
  • the second technical problem to be solved by the present invention is not only can exhibit the secondary battery characteristics superior to the lithium manganese oxide prepared by the wet method using a dry method of low manufacturing cost, crystals are easily grown at low temperature, non-uniform during dry mixing It is to provide a method for producing the polycrystalline lithium manganese oxide particles that can minimize the reaction.
  • a third technical problem to be solved by the present invention is to provide a cathode active material and a cathode including the polycrystalline lithium manganese oxide particles.
  • the fourth technical problem to be solved by the present invention is to provide a lithium secondary battery including the positive electrode.
  • the present invention provides a polycrystalline lithium manganese oxide particles represented by the following formula (1):
  • M is Na or two or more kinds of mixed elements including Na, and 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.2, 0 ⁇ f ⁇ 0.2 and 0 ⁇ z ⁇ 0.2.
  • the present invention comprising the steps of: (i) obtaining a precursor mixture comprising a polycrystalline manganese precursor, a lithium precursor and a sintering aid; And (ii) provides a method for producing a polycrystalline lithium manganese oxide particles represented by the formula (1) comprising the step of firing the precursor mixture obtained in step (i).
  • the present invention provides a cathode active material comprising the polycrystalline lithium manganese oxide particles.
  • the present invention provides a positive electrode including the positive electrode active material.
  • the present invention provides a lithium secondary battery including the positive electrode.
  • the life characteristics and charge and discharge of the secondary battery Capacity characteristics can be improved.
  • the manufacturing method according to an embodiment of the present invention by using a dry method in which a small amount of a sintering aid is added and a low manufacturing cost, it is possible to easily grow crystals of polycrystalline lithium manganese oxide particles even at low temperatures, non-uniform during dry mixing By minimizing the reaction, a secondary battery having excellent battery characteristics can be provided.
  • Figure 1 shows a cross-sectional SEM photograph of the polycrystalline lithium manganese oxide particles prepared in Example 1 of the present invention.
  • Figure 2 shows a cross-sectional SEM picture of the lithium manganese oxide particles prepared in Comparative Example 4.
  • Example 3 is an X-ray diffraction analysis of the polycrystalline lithium manganese oxide particles prepared in Example 1 of the present invention.
  • Polycrystalline lithium manganese oxide particles according to an embodiment of the present invention can be represented by the compound of formula 1:
  • M is Na or two or more kinds of mixed elements including Na, and 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.2, 0 ⁇ f ⁇ 0.2 and 0 ⁇ z ⁇ 0.2.
  • z when z is not 0 in Formula 1, it may exist due to oxygen deficiency.
  • spinel-structured LiMn 2 O 4 is a structural feature with a lithium migration path, which allows for rapid diffusion of lithium ions and high capacity, but electrolyte instability at high voltage range, and Mn 3+ of the eye under severe discharge. Problems such as Jahn-Teller distortion and dissolution of manganese ions (Mn 2+ ) during discharge.
  • LiMn 2 O 4 has a relatively large amount of Mn 3+ in comparison with Mn 4+ in the case of lacking lithium ions in the lattice or in severe discharge conditions. This results in the reversibility of the structure, eventually resulting from a cubic to tetragonal phase transition due to the oxidation-change of Mn ions due to the distortion of the structure and subsequent unstable increase in Mn 3+ . Leads to.
  • the elution of manganese ions is transformed into Mn 2+ and Mn 4+ through the homogeneous exchange of Mn 3+ on the surface of the electrode, and the amount of the active material is decreased by dissolving Mn 2+ in an acidic electrolyte.
  • Precipitates as a metal in the hindered movement of lithium ions, resulting in capacity fading can reduce the life characteristics of the secondary battery.
  • LiMn 2 O 4 An important factor for determining the spinel-based LiMn 2 O 4 as a cathode active material is the size, shape, structure and chemical composition of LiMn 2 O 4 particles.
  • the polycrystalline lithium manganese oxide particles represented by the formula (1) has a round curved edge because the edge (edge portion) of the lithium manganese oxide is dull than the edge of the general lithium manganese oxide as shown in FIG.
  • polycrystal is 152 nm to 300 nm, preferably 155 nm to 250 nm, most preferably 150 nm to 210 nm It means a crystal composed of two or more crystal particles having an average crystal size of.
  • the crystal particles forming the polycrystal may mean primary particles.
  • the polycrystal may refer to a form of secondary particles in which the primary particles are aggregated, and may be polycrystals of spherical or pseudo-spherical shape.
  • the average particle diameter (D 50 ) of the secondary particles in which the primary particles are aggregated is preferably 5 ⁇ m to 20 ⁇ m.
  • the average particle diameter of the secondary particles is less than 5 ⁇ m, the stability of the polycrystalline lithium manganese oxide particles may decrease, and when the average particle diameter exceeds 20 ⁇ m, the output characteristics of the secondary battery may decrease.
  • the average particle diameter (D 50 ) of the particles can be defined as the particle size at 50% of the particle size distribution.
  • the average particle diameter (D 50 ) of the particles according to an embodiment of the present invention can be measured using, for example, a laser diffraction method.
  • the laser diffraction method can measure the particle diameter of several mm from the submicron region, and high reproducibility and high resolution can be obtained.
  • a method for measuring the average particle diameter (D 50 ) of polycrystalline lithium manganese oxide particles is, for example, after dispersing the polycrystalline lithium manganese oxide particles in a solution, commercially available laser diffraction particle size measuring apparatus (eg For example, after the ultrasonic wave of about 28 kHz is irradiated with an output of 60 W and introduced into the Microtrac MT 3000, the average particle diameter D 50 at the 50% reference of the particle size distribution in the measuring device can be calculated.
  • the polycrystalline lithium manganese oxide particles can be analyzed quantitatively by the average crystal size of the primary particles using X-ray diffraction analysis.
  • the average crystal size of the primary particles can be quantitatively analyzed by placing the polycrystalline lithium manganese oxide particles in a holder and analyzing a diffraction grating that is irradiated with X-rays to the particles.
  • polycrystalline lithium manganese oxide particles according to an embodiment of the present invention, a part of the manganese sites in the spinel-based lithium manganese oxide is replaced with Al and M (wherein M is Na or two or more mixed elements including Na). Form.
  • the range of f which is a content of M which may be substituted in part of the manganese sites, is 0 ⁇ f ⁇ 0.2, and preferably 0.001 ⁇ f ⁇ 0.03.
  • the mixed element may further include any one selected from the group consisting of B, Co, V, La, Ti, Ni, Zr, Y and Ga or two or more of these mixed elements. , More preferably Na, or a mixed element of Na and B.
  • the element of M is an Na element, it has the advantage of having a fast diffusion rate and a small ion radius in the presence of Na 1+ ions, and thus may contribute to stabilizing the crystal structure at low temperatures.
  • the amount of Na in the polycrystalline lithium manganese oxide particles may be in the amount of 700 ppm to 3000 ppm, preferably 700 ppm to 1400 ppm.
  • the amount of the Na element is less than 700 ppm, it may be difficult to solve the problem of structural collapse and elution of Mn 2+ due to Yaan-Teller warping, which is the desired effect of the present invention, and when it exceeds 3000 ppm, polycrystalline lithium It is not preferable because the degree of aggregation and fusion of manganese oxide particles becomes strong and fine powder may occur during grinding.
  • the (311), (400) and (440) plane may be a structure in which the (111) plane is grown. have.
  • I (111) / I (111) peak intensity ratio is 100% in the X-ray diffraction analysis measurement
  • I (311) / I (111) is 40% or more.
  • I (400) / I (111) may be at least 40%, I (440) / I (111) may be at least 20%.
  • the polycrystalline lithium manganese oxide particles preferably have a Full Width at Half-Maximum (FWHM) of 0.31 or less in X-ray diffraction.
  • FWHM Full Width at Half-Maximum
  • the half width (FWHM) is a numerical value of a peak width at a position 1/2 of the peak intensity (311) obtained by X-ray diffraction of the polycrystalline lithium manganese oxide particles.
  • the unit of the half width (FWHM) can be expressed in degrees (°), which is a unit of 2 ⁇ , and the higher the crystallinity of the polycrystalline lithium manganese oxide particles, the smaller the value of the half width.
  • the BET specific surface area of the polycrystalline lithium manganese oxide particles according to an embodiment of the present invention is preferably 0.5 m 2 / g or less. When the BET specific surface area exceeds 0.5 m 2 / g, output characteristics of the secondary battery may be degraded.
  • the specific surface area of the polycrystalline lithium manganese oxide particles may be measured by the Brunauer-Emmett-Teller (BET) method.
  • BET Brunauer-Emmett-Teller
  • it can be measured by BET 6-point method by nitrogen gas adsorption distribution method using a porosimetry analyzer (Bell Japan Inc, Belsorp-II mini).
  • the present invention also provides a method for producing the polycrystalline lithium manganese oxide particles.
  • step (i) obtaining a precursor mixture comprising a polycrystalline manganese precursor, a lithium precursor and a sintering aid; And (ii) provides a method for producing a polycrystalline lithium manganese oxide particles represented by the formula (1) comprising the step of firing the precursor mixture obtained in step (i).
  • polycrystalline lithium manganese oxide particles having better performance than those produced by the wet method can be easily manufactured by using a dry method having a low manufacturing cost, and in particular, by adding a sintering aid, Crystals can be easily grown and minimize heterogeneous reactions in dry mixing.
  • the sintering aid that can be used according to an embodiment of the present invention is an additive for crystal growth, and is not particularly limited as long as it is a material capable of promoting crystal growth of polycrystalline lithium manganese oxide particles.
  • the sintering aid has an effect of making the edges (edges) of the polycrystalline lithium manganese oxide particles dull to form round curved particles.
  • manganese elution may occur from the edges of the particles, and due to the manganese elution, characteristics of the secondary battery, particularly life characteristics at high temperatures may be reduced.
  • the manufacturing method according to an embodiment of the present invention by making the rounded edges of the polycrystalline lithium manganese oxide particles, the elution portion of the manganese can be reduced, and as a result, the stability and life characteristics of the secondary battery Can be improved.
  • Sintering aids usable in accordance with one embodiment of the invention may include one or a mixture of two or more containing sodium compounds.
  • the mixture may be any one selected from the group consisting of boron compounds, cobalt compounds, vanadium compounds, lanthanum compounds, zirconium compounds, yttrium compounds, and gallium compounds together with sodium compounds, or a mixture of two or more thereof.
  • the sintering aid preferably uses a sodium compound or a mixture of a sodium compound and a boron compound.
  • the sodium compound may be sodium carbonate, sodium silicate, sodium hydroxide or a mixture of two or more thereof.
  • the boron compound may be any one selected from the group consisting of boric acid, lithium tetraborate, boron oxide and ammonium borate or a mixture of two or more thereof.
  • the cobalt compound may be any one selected from the group consisting of cobalt oxide (II), cobalt oxide (III), cobalt oxide (IV), and tricobalt tetraoxide, or a mixture of two or more thereof.
  • vanadium compound the lanthanum compound, the yttrium compound or the gallium compound
  • vanadium oxide, lanthanum oxide, yttrium oxide or gallium oxide compound may be used, respectively.
  • the zirconium compound may be any one selected from the group consisting of zirconium boride, calcium zirconium silicate and zirconium oxide, or a mixture of two or more thereof.
  • the sintering aid may be used in an amount of 0.2 to 2 parts by weight, preferably 0.4 to 1.4 parts by weight based on the total weight of the polycrystalline manganese precursor.
  • amount of the sintering aid is less than 0.2 parts by weight, it may be difficult to solve the problem of structural collapse and elution of Mn 2+ due to Yaan-Teller warping, which is the desired effect of the present invention. It is not preferable because the degree of aggregation and fusion of lithium manganese oxide particles becomes strong and fine powder may occur during grinding.
  • the average particle diameter (D 50 ) of the polycrystalline manganese precursor may have an important effect on the structural stability of the polycrystalline lithium manganese oxide particles and the performance characteristics of the secondary battery.
  • the polycrystalline manganese precursor usable in accordance with one embodiment of the present invention is a polycrystal in the form of secondary particles formed by agglomeration of two or more primary particles having an average crystal size of 100 nm to 300 nm, more preferably 100 nm to 200 nm ( polycrystal) form.
  • polycrystalline may be the same as the definition in the polycrystalline lithium manganese oxide.
  • the average particle diameter (D 50 ) of the secondary particles as the manganese precursor of the polycrystal is preferably 9 ⁇ m to 25 ⁇ m, preferably 9 ⁇ m to 15 ⁇ m. Since the polycrystalline manganese precursor having an average particle diameter in the above range has a large particle diameter, the tap density is large, and the BET specific surface area may be decreased, thereby decreasing the reactivity with the electrolyte, thereby improving life characteristics of the secondary battery.
  • the manganese precursor according to an embodiment of the present invention may be present in a state in which a fine and low crystallinity of the aluminum compound is uniformly mixed with the manganese precursor, 0.01 wt% of Al in the manganese precursor To 10% by weight, preferably 0.05% to 5% by weight.
  • the polycrystalline manganese precursor including Al may include (Mn (1-y) Al y ) 3 O 4 (0 ⁇ y ⁇ 0.2).
  • the polycrystalline manganese precursor including Al is any one selected from the group consisting of MnCO 3 , Mn 3 O 4, MnSO 4 and Mn 2 O 3 or a mixture of two or more thereof together with the aluminum compound by coprecipitation.
  • the polycrystalline manganese precursor including Al is any one selected from the group consisting of MnCO 3 , Mn 3 O 4, MnSO 4 and Mn 2 O 3 or a mixture of two or more thereof together with the aluminum compound by coprecipitation.
  • two or more primary particles can be obtained in the form of aggregated secondary particles.
  • distilled water and aqueous ammonia solution may be added to the coprecipitation reactor, and air may be supplied into the reactor and stirred.
  • manganese aluminum containing any one selected from the group consisting of MnCO 3 , Mn 3 O 4, MnSO 4 and Mn 2 O 3, and a mixture of two or more thereof and an aluminum compound (eg, AlSO 4 ) in an appropriate molar ratio.
  • Polycrystalline manganese compound (Mn (1-y)) containing Al, an aqueous ammonia solution as a complexing agent, and an aqueous alkali solution as a pH adjusting agent are continuously added to the reactor, followed by mixing, and then N 2 is introduced into the reactor .
  • Al y ) 3 O 4 (0 ⁇ y ⁇ 0.2) may be prepared.
  • the aluminum compound may preferably include any one selected from the group consisting of AlSO 4 , AlCl and AlNO 3 or a mixture of two or more thereof, but is not limited thereto.
  • the firing may be performed at a temperature of 700 °C to 1000 °C, for example, for about 2 hours to 12 hours.
  • the lithium precursor may be any one selected from the group consisting of lithium chloride (LiCl), lithium carbonate (Li 2 CO 3 ), lithium hydroxide (LiOH), lithium phosphate (Li 3 PO 4), and lithium nitrate (LiNO 3 ). It may be a mixture of species or more.
  • the present invention provides a cathode active material comprising the polycrystalline lithium manganese oxide particles.
  • the present invention provides a cathode including the cathode active material.
  • the positive electrode can be prepared by conventional methods known in the art.
  • a positive electrode may be prepared by mixing and stirring a solvent, a binder, a conductive agent, and a dispersant in a positive electrode active material, if necessary, and then applying the coating (coating) to a current collector of a metal material, compressing it, and drying the same. have.
  • the current collector of the metal material is a metal having high conductivity, and any metal can be used as long as the slurry of the positive electrode active material is a metal that can be easily adhered.
  • Non-limiting examples of the positive electrode current collector include a foil made of aluminum, nickel, or a combination thereof.
  • the solvent for forming the positive electrode includes an organic solvent such as NMP (N-methyl pyrrolidone), DMF (dimethyl formamide), acetone, dimethyl acetamide or water, and these solvents alone or in combination of two or more. Can be mixed and used. The amount of the solvent used is sufficient to dissolve and disperse the positive electrode active material, the binder, and the conductive agent in consideration of the coating thickness of the slurry and the production yield.
  • NMP N-methyl pyrrolidone
  • DMF dimethyl formamide
  • acetone dimethyl acetamide or water
  • the binder may be polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (polyvinylidenefluoride), polyacrylonitrile, polymethylmethacrylate, Polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), Sulfonated EPDM, styrene butadiene rubber (SBR), fluorine rubber, poly acrylic acid and polymers in which hydrogen thereof is replaced with Li, Na or Ca, or the like, or Various kinds of binder polymers such as various copolymers can be used.
  • PVDF-co-HFP polyvinylidene fluoride-hexafluoropropylene copolymer
  • the conductive agent is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive agent include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, farnes black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the dispersant may be an aqueous dispersant or an organic dispersant such as N-methyl-2-pyrrolidone.
  • the present invention provides a secondary battery including a separator interposed between the positive electrode, the negative electrode, the positive electrode and the negative electrode.
  • a carbon material lithium metal, silicon, tin, or the like, in which lithium ions may be occluded and released, may be used.
  • a carbon material may be used, and as the carbon material, both low crystalline carbon and high crystalline carbon may be used.
  • Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is natural graphite, Kish graphite, pyrolytic carbon, liquid crystal pitch carbon fiber.
  • High temperature calcined carbon such as (mesophase pitch based carbon fiber), meso-carbon microbeads, Mesophase pitches and petroleum or coal tar pitch derived cokes.
  • the negative electrode current collector is generally made to a thickness of 3 ⁇ m to 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy, and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the binder and the conductive agent used in the negative electrode can be used as can be commonly used in the art as the positive electrode.
  • the negative electrode may prepare a negative electrode by mixing and stirring the negative electrode active material and the additives to prepare a negative electrode active material slurry, and then applying the same to a current collector and compressing the negative electrode.
  • porous polymer films conventionally used as separators for example, polyolefins such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer, etc.
  • the porous polymer film made of the polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used. It is not.
  • the lithium salt which can be included as an electrolyte used in the present invention can be used without limitation, those which are commonly used in a lithium secondary battery electrolyte, such as the lithium salt, the anion is F -, Cl -, Br -, I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 - may be any one
  • Examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. no.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can.
  • the lithium secondary battery according to the present invention may not only be used in a battery cell used as a power source for a small device, but also preferably used as a unit battery in a medium-large battery module including a plurality of battery cells.
  • Preferred examples of the medium-to-large device include, but are not limited to, electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and electric power storage systems.
  • having an average particle size of the 10 ⁇ m (Mn 0.95 Al 0.05) 3 O 4 is in manufacture by being secondary particles with the two or more primary particles aggregated by a coprecipitation method was co-precipitated manganese precursor of MnSO 4 with AlSO 4 It may be in the form of, containing about 2.1% by weight of Al.
  • MnSO 4 and AlSO 4 were mixed with (98: 2), and MnSO 4 ⁇ 7H 2 O including AlSO 4 having a concentration of 2M was prepared using distilled water after N 2 purging.
  • the prepared MnSO 4 ⁇ 7H 2 O was introduced into a continuous stirring tank reactor (CSTR, manufacturer: EMS Tech, product name: CSTR-L0) at a rate of 250 mL / h.
  • CSTR continuous stirring tank reactor
  • aqueous sodium hydroxide solution as an alkalizing agent was introduced at a rate of 230-250 mL / h through the sodium hydroxide aqueous solution supply portion of the reactor, and 25% ammonia solution was introduced at a rate of 30 mL / h through the ammonia solution supply portion of the reactor,
  • the pH meter and the controller were used to maintain the pH at 10.5.
  • the temperature of the reactor was 40 °C, the residence time (RT) was adjusted to 10 hours, and stirred at a speed of 1200rpm to precipitate (coprecipitation) with Mn 3 O 4 containing Al.
  • reaction solution was filtered through a filter, purified with distilled water, and then dried to prepare an (Mn 0.95 Al 0.05 ) 3 O 4 including Al.
  • Li (1.09) Mn 1.81 Al 0.1 O 4 was obtained in the same manner as in Example 1, except that Na 2 CO 3 was not added as the sintering aid.
  • Li (1.09) Mn 1.9 Na 0.01 O 4 was prepared in the same manner as in Example 1, except that single crystal Mn 3 O 4 was used instead of polycrystalline (Mn 0.995 Al 0.005 ) 3 O 4 as a manganese precursor. Got it.
  • the Li (1.09) Mn 1.9 Na 0.01 O 4 had a particle diameter of 10 ⁇ m in the form of primary particles.
  • the polycrystalline lithium manganese oxide particles prepared in Example 1 were used as the positive electrode active material.
  • a positive electrode mixture slurry was prepared.
  • the positive electrode mixture slurry was applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of about 20 ⁇ m, dried to prepare a positive electrode, and then subjected to roll press to prepare a positive electrode.
  • Al aluminum
  • a negative electrode active material slurry 96.3% by weight of carbon powder as a negative electrode active material, 1.0% by weight of super-p as a conductive material, and 1.5% by weight and 1.2% by weight of styrene butadiene rubber (SBR) and carboxymethylcellulose (CMC) as a binder were added to NMP as a solvent.
  • SBR styrene butadiene rubber
  • CMC carboxymethylcellulose
  • LiPF 6 was added to a nonaqueous electrolyte solvent prepared by mixing ethylene carbonate and diethyl carbonate in a volume ratio of 30:70 as an electrolyte to prepare a 1 M LiPF 6 nonaqueous electrolyte.
  • the positive electrode and the negative electrode thus prepared were interposed with a mixed separator of polyethylene and polypropylene, followed by fabrication of a polymer battery in a conventional manner, followed by pouring the prepared non-aqueous electrolyte to complete the production of a lithium secondary battery.
  • a lithium secondary battery was manufactured in the same manner as in Example 3, except that the polycrystalline lithium manganese oxide particles prepared in Example 2 were used as positive electrode active materials, respectively.
  • a lithium secondary battery was manufactured in the same manner as in Example 3, except that the lithium manganese oxide particles prepared in Comparative Examples 1 to 4 were used as positive electrode active materials, respectively.
  • the polycrystalline lithium manganese oxide particles in the form of a round curved shape of the particles, the polycrystalline lithium manganese oxide particles in the form of a round curved shape of the particles could get
  • the lithium manganese oxide particles of Comparative Example 4 using a single crystal Mn 3 O 4 has a rounded edge (edge) due to the use of a sintering aid, as shown in Figure 2, it can be seen that the shape and size of the particles are non-uniform. .
  • the primary particles are in the form of primary particles rather than aggregated to form secondary particles.
  • the lithium secondary batteries prepared in Examples 3 and 4 and Comparative Examples 5 to 8 were charged with a constant current (CC) of 2C under constant current / constant voltage (CC / CV) conditions, followed by constant voltage (CV). ), And the first charge was performed until the charge current became 0.17 mAh. Thereafter, the sample was left for 20 minutes, and then discharged to a constant current of 0.1 C until 10 mV, and the discharge capacity of the first cycle was measured. Subsequently, the charge and discharge were repeated for each battery to measure the capacity, which is shown in Table 2 below.
  • the addition of the sintering aid may affect the structural stability and performance characteristics of the polycrystalline lithium manganese oxide particles, and in particular, the initial capacity may be improved by increasing the crystal size of the polycrystalline lithium manganese oxide particles. can do.
  • the addition of the sintering aid promotes the crystal growth of the polycrystalline lithium manganese oxide particles and also rounds the edges of the particles without angular portions, thereby reducing the elution portion of the manganese, thereby improving the life characteristics and capacity characteristics.
  • the sintering aid promotes the crystal growth of the polycrystalline lithium manganese oxide particles and also rounds the edges of the particles without angular portions, thereby reducing the elution portion of the manganese, thereby improving the life characteristics and capacity characteristics.
  • the secondary batteries of Examples 3 and 4 using the manganese precursor having an average particle diameter of 10 ⁇ m were significantly superior to the comparative example 7 using the manganese precursor having an average particle diameter of 5 ⁇ m. can confirm.
  • the specific surface area of the manganese precursor is large, the specific surface area decreases, and thus the reactivity with the electrolyte decreases. Accordingly, it can be predicted that the life characteristics and initial capacity characteristics according to the C-rate of the battery may be improved.
  • the crystal size of the particles was measured by XRD crystal analysis.
  • the polycrystalline lithium manganese oxide particles of Examples 1 and 2, and Comparative Examples 1 to 3, each about 5g in the holder can be obtained by analyzing the diffraction grating emitted by irradiating the X-ray particles.
  • the method can be obtained from the main peak or the half width of three or more peaks, which corresponds to the average crystal size of the primary particles of the polycrystalline lithium manganese oxide particles.
  • the average crystal size of the primary particles of the polycrystalline lithium manganese oxide according to the results are shown in Table 3 below.
  • the average crystal size of the primary particles of the polycrystalline lithium manganese oxide particles to which Na 2 CO 3 was added as a sintering aid was about 198 nm or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 하기 화학식 1로 표시되는 다결정 리튬 망간 산화물 입자 및 이의 제조방법을 제공한다: <화학식 1> Li(1+x)Mn(2-x-y-f)AlyM(f)O(4-z) 상기 식에서, M은 Na, 또는 Na를 포함하는 2종 이상의 혼합 원소이고, 0≤x≤0.2, 0<y≤0.2, 0<f≤0.2 및 0≤z≤0.2이다. 본 발명의 일 실시예에 따르면, 상기 다결정 리튬 망간 산화물 입자를 구조적으로 안정화시켜 야안-텔러 뒤틀림(Jahn-Teller distortion)과 Mn2+의 용출의 문제를 해결함으로써, 이차전지의 수명 특성 및 충방전 용량 특성을 향상시킬 수 있다.

Description

다결정 리튬 망간 산화물 입자, 이의 제조방법 및 이를 포함하는 양극 활물질
본 발명은 다결정 리튬 망간 산화물 입자, 이의 제조방법 및 이를 포함하는 리튬 이차전지용 양극 활물질에 관한 것이다.
환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석 연료를 사용하는 차량을 대체할 수 있는 전기 자동차, 하이브리드 전기자동차에 대한 연구가 진행되고 있다.
이러한 전기자동차, 하이브리드 전기자동차 등의 동력원으로, 높은 에너지 밀도를 갖는 리튬 이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화 단계에 있다.
이러한 리튬 이차전지의 양극 활물질로는 주로 리튬 코발트 산화물(LiCoO2)이 사용되고 있고, 그 외에 층상 결정구조의 LiMnO2, 스피넬 결정구조의 LiMn2O4 등의 리튬 망간 산화물과, 리튬 니켈 산화물(LiNiO2)의 사용도 고려되고 있다.
이중, LiMn2O4 등의 리튬 망간 산화물은 열적 안전성이 우수하고 가격이 저렴하다는 장점이 있지만, 용량이 작고, 사이클 특성이 나쁘며, 고온 특성이 열악하다는 문제점이 있다.
LiMn2O4의 구조를 보면, Li 이온들이 사면체(8a) 자리에 있고 Mn이온(Mn3+/Mn4+)들이 팔면체(16d) 자리에, 그리고 O2- 이온들이 팔면체(16c) 자리에 위치한다. 이들 이온들은 입방조밀쌓임(cubic closed-packing) 배열을 형성한다. 8a의 사면체 자리는 주위에 빈자리를 갖는 16c의 팔면체 자리와 면을 공유하여 3차원적인 채널을 형성하여 Li+ 이온들이 쉽게 이동할 수 있는 통로를 제공한다.
특히, LiMn2O4의 가장 큰 문제점은 사이클이 진행됨에 따라 용량이 감소한다는 것이다. 이는 야안-텔러 뒤틀림(Jahn-Teller distortion)이라고 불리는 구조변화, 즉, 방전말기(3V 근방)에 Mn 이온의 산화수 변화로 인한 입방형(cubic)에서 정사각형(tetragonal)으로의 상전이 때문이다. 또한, 용량감소 원인은 망간의 전해액으로의 용출 현상 등을 들 수 있다.
이러한 문제점들을 해결하기 위해 양론비인 LiMn2O4에 Li과 Mn 금속 이온과의 자리바꿈을 방지하기 위해 Li을 1.01∼1.1배 과량으로 첨가하는 방법과 Mn 이온의 산화수를 조절하거나 입방형에서 정사각형으로의 상전이를 막기 위해 Mn 자리에 전이금속이나 2가와 3가 양이온을 치환하는 방법 등 많은 연구들이 진행되어 왔다.
그러나, 이러한 방법들은 용량감소를 양론비인 LiMn2O4에 비해 줄일 수 있었으나, 야안-텔러 뒤틀림(Jahn-Teller distortion)과 Mn2+의 용출 문제를 해결하지는 못하였다.
[선행기술문헌]
[특허문헌]
대한민국 공개특허 10-2011-0076905
본 발명이 해결하고자 하는 제1 기술적 과제는 야안-텔러 뒤틀림(Jahn-Teller distortion)과 Mn2+의 용출의 문제를 해결함으로써 이차전지의 수명 특성 및 충방전 용량 특성을 향상시킬 수 있는 다결정 리튬 망간 산화물 입자를 제공하는 것이다.
본 발명이 해결하고자 하는 제2 기술적 과제는 제조비용이 저렴한 건식법을 이용하여 습식법으로 제조된 리튬 망간 산화물 보다 우수한 이차전지 특성을 나타낼 수 있을 뿐만 아니라, 저온에서 결정이 쉽게 성장되고, 건식 혼합시 불균일 반응을 최소화 할 수 있는 상기 다결정 리튬 망간 산화물 입자의 제조방법을 제공하는 것이다.
본 발명이 해결하고자 하는 제3 기술적 과제는 상기 다결정 리튬 망간 산화물 입자를 포함하는 양극 활물질 및 양극을 제공하는 것이다.
본 발명이 해결하고자 하는 제4 기술적 과제는 상기 양극을 포함하는 리튬 이차전지를 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 하기 화학식 1로 표시되는 다결정 리튬 망간 산화물 입자를 제공한다:
<화학식 1>
Li(1+x)Mn(2-x-y-f)AlyM(f)O(4-z)
상기 식에서, M은 Na, 또는 Na를 포함하는 2종 이상의 혼합 원소이고, 0≤x≤0.2, 0<y≤0.2, 0<f≤0.2 및 0≤z≤0.2이다.
또한, 본 발명은 하나의 일 실시예에 따라, (i) 다결정 망간 전구체, 리튬 전구체 및 소결 보조제를 포함하는 전구체 혼합물을 얻는 단계; 및 (ii) 상기 단계 (i)에서 얻은 전구체 혼합물을 소성하는 단계를 포함하는 상기 화학식 1로 표시되는 다결정 리튬 망간 산화물 입자의 제조방법을 제공한다.
또한, 본 발명은 상기 다결정 리튬 망간 산화물 입자를 포함하는 양극 활물질을 제공한다.
아울러, 본 발명은 상기 양극 활물질을 포함하는 양극을 제공한다.
나아가, 본 발명은 상기 양극을 포함하는 리튬 이차전지를 제공한다.
본 발명의 일 실시예에 따르면, 상기 다결정 리튬 망간 산화물 입자를 구조적으로 안정화시켜 야안-텔러 뒤틀림(Jahn-Teller distortion)과 Mn2+의 용출의 문제를 해결함으로써, 이차전지의 수명 특성 및 충방전 용량 특성을 향상시킬 수 있다.
또한, 본 발명의 실시예에 따른 제조방법에 따르면, 소결 보조제를 소량 첨가하고 제조비용이 저렴한 건식법을 이용하여, 저온에서도 다결정 리튬 망간 산화물 입자의 결정을 용이하게 성장 시킬 수 있고, 건식 혼합시 불균일 반응을 최소화시킴으로써, 우수한 전지 특성을 갖는 이차전지를 제공할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 실시예 1에서 제조된 다결정 리튬 망간 산화물 입자의 단면 SEM 사진을 나타낸 것이다.
도 2는 비교예 4에서 제조된 리튬 망간 산화물 입자의 단면 SEM 사진을 나타낸 것이다.
도 3은 본 발명의 실시예 1에서 제조된 다결정 리튬 망간 산화물 입자의 X-선 회절분석 측정 결과이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 실시예에 따른 다결정 리튬 망간 산화물 입자는 하기 화학식 1의 화합물로 나타낼 수 있다:
<화학식 1>
Li(1+x)Mn(2-x-y-f)AlyM(f)O(4-z)
상기 식에서, M은 Na, 또는 Na를 포함하는 2종 이상의 혼합 원소이고, 0≤x≤0.2, 0<y≤0.2, 0<f≤0.2 및 0≤z≤0.2이다.
이때, 상기 화학식 1에서 z가 0이 아닌 경우, 산소 결핍(vacancy)으로 존재할 수 있다. 본 발명에서는 바람직하게는 산소 결핍이 없는 것이 안정적인 층상 구조 형성에 유리하므로, z=0인 경우가 좋다.
일반적으로, 스피넬 구조의 LiMn2O4는 리튬 이동경로를 가지는 구조적 특성으로 리튬이온의 빠른 확산이 가능하다는 점과 고용량을 가지나, 높은 전압구간에서의 전해질 불안정성, 심한 방전 시 Mn3+의 야안-텔러 뒤틀림(Jahn-Teller distortion) 및 방전시 망간이온(Mn2+)의 용출 등과 같은 문제점을 지니고 있다.
구체적으로 살펴보면, LiMn2O4는 격자 내에 리튬이온이 부족하거나 격렬한 방전 조건에서는 Mn4+에 비해 Mn3+가 상대적으로 많아진다. 이로 인해, 구조의 뒤틀림이 발생하고 불안정한 Mn3+의 증가로 계속되는 충방전 과정에서 Mn 이온의 산화수 변화로 인한 입방형(cubic)에서 정사각형(tetragonal)으로의 상전이로 인해, 결국에는 구조의 가역성 감소로 이어진다.
또한, 망간이온의 용출은 전극 표면에서 불안정한 Mn3+가 동종간 주고 받기 반응을 통해서 Mn2+와 Mn4+로 변하며, 생성된 Mn2+가 산성 전해질에 녹아서 활물질의 양이 감소하게 되고 음극에서 금속으로 석출되어 리튬이온의 이동을 방해하면서, 결과적으로 용량감소(capacity fading)를 초래하므로 이차전지의 수명 특성을 단축시킬 수 있다.
상기 스피넬계의 LiMn2O4이 양극 활물질로서의 특성을 결정하는 중요한 요소로 LiMn2O4 입자의 크기, 모양, 구조 및 화학조성 등을 들 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 다결정 리튬 망간 산화물 입자는 도 1과 같이 리튬 망간 산화물의 엣지(모서리 부분)가 일반적인 리튬 망간 산화물의 엣지보다 둔하여 둥근 곡선 형태의 엣지를 갖는 입자를 갖고, 구조적으로 안정하여 야안-텔러 뒤틀림(Jahn-Teller distortion)과 Mn2+의 용출을 최소화할 수 있음으로써, 이차전지의 수명 특성 및 충방전 용량 특성을 향상시킬 수 있다.
본 발명의 일 실시예에 따른 상기 다결정 리튬 망간 산화물 입자에 있어서, 「다결정(polycrystal)」이란, 152 nm 내지 300 nm, 바람직하게는 155 nm 내지 250 nm, 가장 바람직하게는 150 nm 내지 210 nm 범위의 평균 결정 크기를 갖는 둘 이상의 결정 입자들이 모여서 이루어진 결정체를 의미한다.
또한, 본 명세서에서는 상기 다결정체를 이루는 결정 입자들은 일차 입자를 의미할 수 있다. 상기 다결정체는 이러한 일차 입자가 응집된 이차 입자의 형태를 의미할 수 있으며, 구형 또는 유사 구형의 폴리크리스탈일 수 있다.
본 발명의 일 실시예에 따른 상기 다결정 리튬 망간 산화물 입자에 있어서, 일차 입자가 응집된 이차 입자의 평균 입경(D50)은 5 ㎛ 내지 20 ㎛인 것이 바람직하다. 상기 이차 입자의 평균 입경이 5 ㎛ 미만인 경우에는, 다결정 리튬 망간 산화물 입자의 안정성이 저하될 수 있고, 평균 입경이 20 ㎛를 초과하는 경우에는 이차전지의 출력 특성이 저하될 수 있다.
본 발명에 있어서, 입자의 평균 입경(D50)은 입경 분포의 50% 기준에서의 입경으로 정의할 수 있다. 본 발명의 일 실시예에 따른 상기 입자의 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다.
본 발명의 일 실시예에 따른, 다결정 리튬 망간 산화물 입자의 평균 입경(D50)의 측정 방법은 예를 들면, 다결정 리튬 망간 산화물 입자를 용액에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28 kHz의 초음파를 출력 60 W로 조사한 후, 측정 장치에 있어서의 입경 분포의 50% 기준에서의 평균 입경(D50)을 산출할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 다결정 리튬 망간 산화물 입자를 X-선 회절 분석을 이용하여 일차 입자의 평균 결정 크기를 정량적으로 분석할 수 있다. 예를 들면, 상기 다결정 리튬 망간 산화물 입자를 홀더에 넣고, X-선을 상기 입자에 조사하여 나오는 회절 격자를 분석함으로써, 일차 입자의 평균 결정 크기를 정량적으로 분석할 수 있다.
본 발명의 일 실시예에 따른 다결정 리튬 망간 산화물 입자는 스피넬계 리튬 망간 산화물에서의 망간 자리의 일부를 Al과 M(이때, M은 Na, 또는 Na를 포함하는 2종 이상의 혼합 원소임)으로 치환된 형태이다.
상기 화학식 1에 있어서, 망간 자리의 일부에 치환될 수 있는 M의 함유량인 f의 범위는 0<f≤0.2이고, 0.001≤f≤0.03이 바람직하다. 또한, 상기 화학식 1에 있어서, 상기 혼합 원소에는 B, Co, V, La, Ti, Ni, Zr, Y 및 Ga로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합 원소를 더 포함할 수 있으며, 더욱 바람직하게는 Na, 또는 Na 및 B의 혼합 원소일 수 있다. 상기 M의 원소가 Na 원소인 경우, Na1+ 이온 현태로 확산 속도가 빠르고, 이온 반경이 작은 이점으로 가지고 있어서, 낮은 온도에서도 결정성장이 잘 일어나서 결정 구조를 안정화 시키는데 기여할 수 있다.
이때, f가 0인 경우, 본 발명의 목적하는 효과인 야안-텔러 뒤틀림으로 인한 구조 붕괴 및 Mn2+의 용출의 문제를 해결하는데 어려움이 있을 수 있고, 0.2를 초과하는 경우 다결정 리튬 망간 산화물 입자의 응집 및 융착 정도가 강해지며, 분쇄시에 미분이 발생할 수 있기 때문에 바람직하지 않다.
본 발명의 일 실시예에 따르면, 상기 다결정 리튬 망간 산화물 입자 중 Na의 원소의 양은 700 ppm 내지 3000 ppm, 바람직하게는 700 ppm 내지 1400 ppm의 양일 수 있다. 상기 Na 원소의 양이 700 ppm 미만인 경우 본 발명의 목적하는 효과인 야안-텔러 뒤틀림으로 인한 구조 붕괴 및 Mn2+의 용출의 문제를 해결하는데 어려움이 있을 수 있고, 3000 ppm을 초과하는 경우 다결정 리튬 망간 산화물 입자의 응집 및 융착 정도가 강해지며, 분쇄시에 미분이 발생할 수 있기 때문에 바람직하지 않다.
본 발명에 따른 다결정 리튬 망간 산화물 입자의 X-선 회절 분석(X-ray diffraction)에 있어서, 특히, (111) 면에 대하여, (311), (400) 및 (440)면이 성장한 구조일 수 있다.
구체적으로 살펴보면, X-선 회절 분석 측정시 I(111)/I(111) 피크 강도비를 100%로 하였을 때, 바람직하게는 I(311)/I(111)이 40% 이상이고. I(400)/I(111)이 40 % 이상이며, I(440)/I(111)이 20 % 이상일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 다결정 리튬 망간 산화물 입자는 X-선 회절에서 (311) 피크의 반가폭 (Full Width at Half-Maximum; FWHM)이 0.3도 이하인 것이 바람직하다.
본 발명에 있어서, 상기 반가폭(FWHM)은 상기 다결정 리튬 망간 산화물 입자의 X-선 회절에서 얻은 (311) 피크 세기의 1/2 위치에서의 피크 폭을 수치화한 것이다.
상기 반가폭(FWHM)의 단위는 2θ의 단위인 도(°)로 나타낼 수 있으며, 결정성이 높은 다결정 리튬 망간 산화물 입자 일수록 반가폭의 수치가 작다.
또한, 본 발명의 일 실시예에 따른 다결정 리튬 망간 산화물 입자의 BET 비표면적은 0.5 m2/g 이하인 것이 바람직하다. BET 비표면적이 0.5 m2/g를 초과하는 경우, 이차전지의 출력 특성이 저하될 수 있다.
본 발명의 일 실시예에 따르면, 상기 다결정 리튬 망간 산화물 입자의 비표면적은 BET(Brunauer-Emmett-Teller; BET)법으로 측정할 수 있다. 예를 들어, 기공분포 측정기(Porosimetry analyzer; Bell Japan Inc, Belsorp-II mini)를 사용하여 질소 가스 흡착 유통법에 의해 BET 6 점법으로 측정할 수 있다.
또한, 본 발명은 상기 다결정 리튬 망간 산화물 입자의 제조방법을 제공한다.
본 발명의 하나의 실시예에 따르면, (i) 다결정 망간 전구체, 리튬 전구체 및 소결 보조제를 포함하는 전구체 혼합물을 얻는 단계; 및 (ii) 상기 단계 (i)에서 얻은 전구체 혼합물을 소성하는 단계를 포함하는 상기 화학식 1로 표시되는 다결정 리튬 망간 산화물 입자의 제조방법을 제공한다.
본 발명의 일 실시예에 따르면, 제조비용이 저렴한 건식법을 이용하여 습식법에 의해 제조된 것보다 우수한 성능을 갖는 다결정 리튬 망간 산화물 입자를 용이하게 제조할 수 있으며, 특히, 소결 보조제를 첨가함으로써 저온에서 결정을 쉽게 성장시킬 수 있고, 건식 혼합시 불균일 반응을 최소화할 수 있다.
본 발명의 일 실시예에 따라 사용 가능한 상기 소결 보조제는 결정 성장용 첨가제로서, 다결정 리튬 망간 산화물 입자의 결정 성장을 촉진시킬 수 있는 물질이라면 특별히 제한되는 것은 아니다.
상기 소결 보조제는 다결정 리튬 망간 산화물 입자의 엣지(모서리 부분)를 둔하게 하여 둥근 곡선 형태의 입자로 만드는 효과가 있다. 상기 다결정 리튬 망간 산화물 입자에서는 입자의 엣지로부터 망간 용출이 발생할 수 있으며, 이러한 망간 용출로 인해 이차전지의 특성, 특히 고온시의 수명 특성이 감소될 수 있다.
이에, 본 발명의 일 실시예에 따른 제조방법에 따르면, 다결정 리튬 망간 산화물 입자의 엣지를 둥글게 한 입자로 만듦으로써, 망간의 용출 부위를 감소시킬 수 있고, 그 결과 이차전지의 안정성 및 수명 특성을 향상시킬 수 있다.
본 발명의 일 실시예에 따라 사용 가능한 소결 보조제는 나트륨 화합물을 포함하는 하나 또는 2종 이상의 혼합물을 포함할 수 있다. 상기 혼합물은 나트륨 화합물과 함께 붕소 화합물, 코발트 화합물, 바나듐 화합물, 란타늄 화합물, 지르코늄 화합물, 이트륨 화합물 및 갈륨 화합물로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있다.
상기 소결 보조제는 바람직하게는 나트륨 화합물, 또는 나트륨 화합물과 붕소 화합물의 혼합물을 사용하는 것이 좋다.
상기 나트륨 화합물은 탄산 나트륨, 규산 나트륨, 수산화 나트륨 또는 이들의 2종 이상의 혼합물을 사용할 수 있다.
상기 붕소 화합물은 붕산, 사붕산리튬, 산화붕소 및 붕산암모늄으로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있다.
상기 코발트 화합물은 산화코발트(Ⅱ), 산화코발트(Ⅲ), 산화코발트(Ⅳ) 및 사산화삼코발트로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있다.
상기 바나듐 화합물, 란타늄 화합물, 이트륨 화합물 또는 갈륨 화합물은 각각 산화 바나듐, 산화 란타늄, 산화 이트륨 또는 산화 갈륨 화합물을 사용할 수 있다.
상기 지르코늄 화합물은 붕화 지르코늄, 규산칼슘 지르코늄 및 산화 지르코늄으로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있다.
상기 소결 보조제는 다결정 망간 전구체의 총 중량 대비 0.2 중량부 내지 2 중량부, 바람직하게는 0.4 중량부 내지 1.4 중량부의 양으로 사용할 수 있다. 상기 소결 보조제의 양이 0.2 중량부 미만인 경우 본 발명의 목적하는 효과인 야안-텔러 뒤틀림으로 인한 구조 붕괴 및 Mn2+의 용출의 문제를 해결하는데 어려움이 있을 수 있고, 2 중량부를 초과하는 경우 다결정 리튬 망간 산화물 입자의 응집 및 융착 정도가 강해지며, 분쇄시에 미분이 발생할 수 있기 때문에 바람직하지 않다.
또한, 본 발명의 일 실시예에 따르면, 상기 다결정 망간 전구체의 평균 입경(D50)이 다결정 리튬 망간 산화물 입자의 구조적 안정성 및 이차전지의 성능 특성에 중요한 영향을 끼질 수 있다.
본 발명의 일 실시예에 따라 사용 가능한 다결정 망간 전구체는 100 nm 내지 300 nm, 더욱 바람직하게는 100 nm 내지 200 nm의 평균 결정 크기를 갖는 둘 이상의 일차 입자가 응집되어 형성된 이차 입자의 형태인 다결정(polycrystal) 형태일 수 있다. 상기 다결정 망간 전구체에 있어서, 「다결정」이란, 상기 다결정 리튬 망간 산화물에서의 정의와 동일할 수 있다.
상기 다결정의 망간 전구체인 이차 입자의 평균 입경(D50)은 9 ㎛ 내지 25 ㎛, 바람직하게는 9 ㎛ 내지 15 ㎛ 인 것이 바람직하다. 상기 범위의 평균 입경을 갖는 다결정 망간 전구체는 입경이 크기 때문에 탭밀도가 크고, BET 비표면적이 작아질 수 있어 전해액과의 반응성이 떨어지기 때문에 이차전지의 수명 특성이 향상될 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 망간 전구체는 미세하고 결정성이 낮은 알루미늄 화합물이 망간 전구체와 균일하게 혼합된 상태로 존재할 수 있으며, 망간 전구체 내에 Al을 망간 전구체 총 중량에 대해 0.01 중량% 내지 10 중량%, 바람직하게는 0.05 중량% 내지 5 중량%의 양으로 포함할 수 있다. 상기 Al이 포함된 다결정 망간 전구체는 (Mn(1-y)Aly)3O4 (0<y≤0.2)를 포함할 수 있다.
구체적으로 살펴보면, Al을 포함하는 다결정 망간 전구체는 MnCO3, Mn3O4, MnSO4및 Mn2O3로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 공침법에 의해 알루미늄 화합물과 함께 공침시켜 형성됨으로써, 둘 이상의 일차 입자가 응집된 이차 입자의 형태로 얻을 수 있다.
예를 들어, 공침 반응기에 증류수와 암모니아 수용액을 넣은 후 공기를 상기 반응기내로 공급하여 교반할 수 있다. 그 다음, MnCO3, Mn3O4, MnSO4및 Mn2O3로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물 및 알루미늄 화합물(예 : AlSO4)을 적정 몰 비율로 포함하는 망간 알루미늄 화합물 수용액, 착화제인 암모니아 수용액, 및 pH 조절제로서 알칼리 수용액을 상기 반응기내로 연속적으로 투입한 후 혼합한 다음, 상기 반응기 내로 N2를 투입하여 Al을 함유하는 다결정 망간 화합물 (Mn(1-y)Aly)3O4 (0<y≤0.2)을 제조할 수 있다.
상기 알루미늄 화합물은 바람직하게는 AlSO4, AlCl 및 AlNO3로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 들 수 있으나, 이에 제한되는 것은 아니다.
상기 다결정 리튬 망간 산화물 입자의 제조방법에 있어서, 상기 소성은 700 ℃ 내지 1000 ℃의 온도에서 예를 들어, 약 2 시간 내지 12 시간 동안 수행될 수 있다.
상기 리튬 전구체는 염화리튬(LiCl), 탄산리튬(Li2CO3), 수산화리튬(LiOH), 인산리튬(Li3PO4) 및 질산리튬(LiNO3)으로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
또한, 본 발명은 상기 다결정 리튬 망간 산화물 입자를 포함하는 양극 활물질을 제공한다.
또한, 본 발명은 상기 양극 활물질을 포함하는 양극을 제공한다.
상기 양극은 당 분야에 알려져 있는 통상적인 방법으로 제조할 수 있다. 예를 들면, 양극 활물질에 용매, 필요에 따라 바인더, 도전제, 분산제를 혼합 및 교반하여 슬러리를 제조한 후 이를 금속 재료의 집전체에 도포(코팅)하고 압축한 뒤 건조하여 양극을 제조할 수 있다.
금속 재료의 집전체는 전도성이 높은 금속으로, 상기 양극 활물질의 슬러리가 용이하게 접착할 수 있는 금속으로 전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용할 수 있다. 양극 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
상기 양극을 형성하기 위한 용매로는 NMP(N-메틸 피롤리돈), DMF(디메틸 포름아미드), 아세톤, 디메틸 아세트아미드 등의 유기 용매 또는 물 등이 있으며, 이들 용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다. 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 바인더, 도전제를 용해 및 분산시킬 수 있는 정도이면 충분하다.
상기 바인더로는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 고분자, 또는 다양한 공중합체 등의 다양한 종류의 바인더 고분자가 사용될 수 있다.
상기 도전제는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 분산제는 수계 분산제 또는 N-메틸-2-피롤리돈 등의 유기 분산제를 사용할 수 있다.
또한, 본 발명은 상기 양극, 음극, 상기 양극과 음극 사이에 개재된 세퍼레이터를 포함하는 이차전지를 제공한다.
본 발명의 일 실시예에 따른 상기 음극에 사용되는 음극 활물질로는 통상적으로 리튬 이온이 흡장 및 방출될 수 있는 탄소재, 리튬 금속, 규소 또는 주석 등을 사용할 수 있다. 바람직하게는 탄소재를 사용할 수 있는데, 탄소재로는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
또한, 음극 집전체는 일반적으로 3 ㎛ 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
음극에 사용되는 바인더 및 도전제는 양극과 마찬가지로 당 분야에 통상적으로 사용될 수 있는 것을 사용할 수 있다. 음극은 음극 활물질 및 상기 첨가제들을 혼합 및 교반하여 음극 활물질 슬러리를 제조한 후, 이를 집전체에 도포하고 압축하여 음극을 제조할 수 있다.
또한, 세퍼레이터로는 종래에 세퍼레이터로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에서 사용되는 전해질로서 포함될 수 있는 리튬염은 리튬 이차전지용 전해질에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-,(SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택된 어느 하나일 수 있다.
본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치 (pouch)형 또는 코인 (coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
상기 중대형 디바이스의 바람직한 예로는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템 등을 들 수 있지만, 이들 만으로 한정되는 것은 아니다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
이하 실시예 및 실험예를 들어 더욱 설명하나, 본 발명이 이들 실시예 및 실험예에 의해 제한되는 것은 아니다.
<다결정 리튬 망간 산화물 입자의 제조>
실시예 1
Li2CO3 37.50g, 10 ㎛의 평균 입경을 갖는 (Mn0.95Al0.05)3O4 141.88g, 소결 보조제로서 Na2CO3 0.62g(0.01mol)을 믹서기 (Waring blender)에 넣고, 상기 믹서의 중심부 rpm이 18000 rpm으로, 1분간 혼합하였다. 상기 혼합된 분말을 500cc의 알루미나 도가니에 넣고 약 800℃에서 4시간 동안 대기(Air) 분위기에서 소성을 수행하였다. 소성 후 얻은 케이크(cake)를 유발한 후 400 메쉬 체(sieve)를 이용하여 분급을 실시하여 Li(1.09)Mn1.80Al0.1Na0.01O4를 얻었다. 상기 Li(1.09)Mn1.80Al0.1Na0.01O4는 200 nm의 결정 크기를 갖는 둘 이상의 결정 입자(일자 입자)들이 모여서 이루어진 이차 입자로서, 상기 이차 입자의 평균 입경은 1.05㎛였다.
또한, 상기 10 ㎛의 평균 입경을 갖는 (Mn0.95Al0.05)3O4 는 MnSO4의 망간 전구체를 AlSO4와 함께 공침시킨 후, 공침법에 의해 제조됨으로써 둘 이상의 일차 입자가 응집된 이차 입자의 형태일 수 있으며, Al이 약 2.1 중량% 정도로 함유되어 있다.는
구체적으로, MnSO4 및 AlSO4를 (98:2)로 혼합한 후, N2 퍼징을 거친 증류수를 이용하여 농도가 2M인 AlSO4를 포함하는 MnSO4ㆍ7H2O을 제조하였다. 제조된 MnSO4ㆍ7H2O를 연속교반탱크 반응기(CSTR, 제조사: EMS Tech, 제품명: CSTR-L0)에 250mL/h의 속도로 투입하였다.
알칼리화제로서 40% 수산화나트륨 수용액을 반응기의 수산화나트륨 수용액 공급부를 통하여 230~250mL/h의 속도로 투입하고, 25% 암모니아 용액을 상기 반응기의 암모니아 용액 공급부를 통하여 30mL/h의 속도로 투입하면서, pH 미터와 제어부를 통해 pH 10.5로 유지되도록 하였다. 반응기의 온도는 40℃로 하고, 체류시간(RT)은 10시간으로 조절하였으며, 1200rpm의 속도로 교반하여 Al을 포함하는 Mn3O4 로 침전(공침)시켰다.
상기 얻어진 반응 용액을 필터를 통해 여과하고 증류수로 정제한 후 건조하 는 추가 공정을 거쳐, Al을 포함하는 (Mn0.95Al0.05)3O4 를 제조하였다.
실시예 2
Na2CO3의 양을 0.62g(0.01mol) 대신 1.24g(0.02mol)을 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 수행하여, Li(1.09)Mn1.80Al0.1Na0.01O4를 얻었다.
비교예 1
소결 보조제로 Na2CO3을 첨가하지 않을 것을 제외하고, 상기 실시예 1과 동일한 방법으로 수행하여, Li(1.09)Mn1.81Al0.1O4를 얻었다.
비교예 2
10 ㎛의 평균 입경을 갖는 (Mn0.995Al0.005)3O4 대신 5 ㎛의 평균 입경을 갖는 (Mn0.995Al0.005)3O4를 사용하고, 소결 보조제로 Na2CO3을 첨가하지 않을 것을 제외하고, 상기 실시예 1과 동일한 방법으로 수행하여, Li(1.09)Mn1.81Al0.1O4를 얻었다.
비교예 3
10 ㎛의 평균 입경을 갖는 (Mn0.995Al0.005)3O4 대신 5 ㎛의 평균 입경을 갖는 (Mn0.995Al0.005)3O4를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 수행하여, Li(1.09)Mn1.80Al0.1Na0.01O4를 얻었다.
비교예 4
망간 전구체로 다결정 (Mn0.995Al0.005)3O4를 사용하는 대신 단결정 Mn3O4를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 수행하여, Li(1.09)Mn1.9Na0.01O4 를 얻었다.
상기 Li(1.09)Mn1.9Na0.01O4 는 일차 입자의 형태로 입경이 10㎛ 였다.
<리튬 이차전지의 제조>
실시예 3
양극 제조
상기 실시예 1에서 제조된 다결정 리튬 망간 산화물 입자를 양극 활물질로 사용하였다.
상기 양극 활물질 94 중량%, 도전제로 카본 블랙(carbon black) 3 중량%, 바인더로 폴리비닐리덴 플루오라이드(PVdF) 3 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
음극 제조
음극 활물질로 탄소 분말 96.3 중량%, 도전재로 super-p 1.0 중량% 및 바인더로 스티렌 부타디엔 고무(SBR) 및 카르복시메틸셀룰로오스(CMC)를 1.5 중량%와 1.2 중량%를 혼합하여 용매인 NMP에 첨가하여 음극 활물질 슬러리를 제조하였다. 상기 음극 활물질 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
비수성 전해액 제조
한편, 전해질로서 에틸렌카보네이트 및 디에틸카보네이트를 30:70의 부피비로 혼합하여 제조된 비수전해액 용매에 LiPF6를 첨가하여 1M의 LiPF6 비수성 전해액을 제조하였다.
리튬 이차전지 제조
이와 같이 제조된 양극과 음극을 폴리에틸렌과 폴리프로필렌의 혼합 세퍼레이터를 개재시킨 후 통상적인 방법으로 폴리머형 전지 제작 후, 제조된 상기 비수성 전해액을 주액하여 리튬 이차전지의 제조를 완성하였다.
실시예 4
상기 실시예 2에서 제조된 다결정 리튬 망간 산화물 입자를 각각 양극 활물질로 사용한 것을 제외하고, 실시예 3과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 5 내지 8
상기 비교예 1 내지 4에서 제조된 리튬 망간 산화물 입자를 각각 양극 활물질로 사용한 것을 제외하고, 실시예 3과 동일한 방법으로 리튬 이차전지를 제조하였다.
실험예 1 : SEM 현미경 사진
상기 실시예 1에서 제조된 다결정 리튬 망간 산화물 입자 및 비교예 4에서 제조된 리튬 망간 산화물 입자에 대해 각각 SEM 현미경 사진을 확인하였고, 그 결과를 각각 도 1 및 도 2에 나타내었다.
도 1에서 알 수 있는 바와 같이, 다결정 리튬 망간 산화물 입자 제조시, 소결 보조제를 사용하고, 특정 크기의 다결정성 망간 전구체를 사용함으로써 다결정 리튬 망간 산화물 입자의 형태가 둥근 곡선 형태의 엣지를 갖는 입자를 얻을 수 있었다.
한편, 단결정 Mn3O4를 사용한 비교예 4의 리튬 망간 산화물 입자는 도 2에 나타낸 바와 같이, 소결 보조제 사용으로 인해 둥근 엣지(모서리)를 가지나, 입자의 형태 및 크기가 불균일함을 알 수 있다. 또한, 상기 비교예 4는 상기 실시예 1과 달리 일차입자가 응집되어 이차입자를 이루는 형태가 아닌 일차입자의 형태임을 확인할 수 있다.
실험예 2 : X-선 회절분석
실시예 1과 2, 및 비교예 1 내지 3에서 제조된 다결정 리튬 망간 산화물 입자에 대해 X-선 회절분석(D4 Endeavor, Bruker) 을 수행하였다. 그 결과를 하기 표 1 및 도 3에 나타내었다.
표 1
  (111)/(111) (311)/(111) (400)/(111) (440)/(111)
실시예 1 100.0 49.9 48.2 29.7
실시예 2 100.0 48.8 46.1 29.9
비교예 1 100.0 34.4 14.7 15.0
비교예 2 100.0 32.1 14.0 14.5
비교예 3 100.0 48.1 46.2 29.1
상기 표 1 및 도 3에서 알 수 있는 바와 같이, 실시예 1과 2에서 제조된 다결정 리튬 망간 산화물 입자의 경우, X-선 회절(X-ray diffraction)에 있어서, 비교예 1에 비해 특히, (111) 면에 대하여, (311), (400) 및 (440)면이 성장한 구조임을 확인할 수 있다.
구체적으로 살펴보면, X-선 회절에 있어서, 실시예 1과 2에서는 I(111)/I(111) 피크 강도비를 100%로 하였을 때, I(311)/I(111)이 47% 이상이고. I(400)/I(111)이 46 % 이상이며, I(440)/I(111)이 29 % 이상이었다.
이에 반해, 비교예 1 및 2의 경우 I(111)/I(111) 피크 강도비를 100%로 하였을 때, I(311)/I(111)이 약 32 % 내지 35%, I(400)/I(111)이 약 14 % 내지 14.7 %, I(440)/I(111)이 약 14 % 내지 15 % 정도로, 실시예 1 과 2에 비해 결정성이 20 % 내지 60% 까지 낮아짐을 확인 할 수 있다. 특히 실시예 1과 2는 비교예 1에 비해 I(400)/I(111)의 피크 강도가 3배 이상 현저히 증가함을 확인할 수 있다.
또한, 비교예 3의 경우, I(111)/I(111) 피크 강도비를 100%로 하였을 때, I(311)/I(111)이 약 48.1 %, I(400)/I(111)이 약 46.2 %, I(440)/I(111)이 약 29.1 % 정도로, 비교예 1과 2에 비해 결정성이 향상되었지만, 실시예 1 과 2에 비해 결정성이 낮아짐을 확인 할 수 있다.
실험예 3 : 전기화학 실험
실시예 3과 4, 및 비교예 5 내지 8에서 제조된 리튬 이차전지를 정전류/정전압(CC/CV) 조건에서 (전지용량 3.4mAh)를 2C의 정전류(CC)로 충전하고, 이후 정전압(CV)으로 충전하여 충전전류가 0.17mAh가 될 때까지 1회째의 충전을 행하였다. 이후 20분간 방치한 다음 0.1C의 정전류로 10mV가 될 때까지 방전하여 1 사이클째의 방전 용량을 측정하였다. 계속하여, 각 전지에 대하여 상기 충전 및 방전을 반복 실시하여 용량을 측정하였고, 이를 하기 표 2에 나타내었다.
표 2
구분 실시예 3 실시예 4 비교예 5 비교예 6 비교예 7 비교예 8
충전 용량[mAh/g] 108.42 107.20 105.72 85.4 106.90 105.1
방전 용량[mAh/g] 106.71 105.61 103.30 84.4 104.8 103.2
1st 효율[%] 98.42 98.52 97.71 98.8 98.0 98.2
C-rate[2.0C/0.1C] 98.91 98.52 98.06 99.4 98.9 97.12
상기 표 2에서 확인할 수 있는 바와 같이, 소결 보조제를 첨가한 실시예 3과 4의 경우, 소결 보조제를 첨가하지 않은 비교예 5와 6에 비해 충방전 용량 특성 및 효율 특성이 매우 우수함을 확인 할 수 있다.
이와 같이 소결 보조제의 첨가 유무에 따라 다결정 리튬 망간 산화물 입자의 구조적 안정성 및 성능 특성에 영향을 줄 수 있으며, 특히, 다결정 리튬 망간 산화물 입자의 결정 크기가 향상됨으로써 초기 용량값이 향상될 수 있음을 확인 할 수 있다.
즉, 소결 보조제의 첨가에 따라 다결정 리튬 망간 산화물 입자의 결정 성장을 촉진시키고, 또한 입자의 엣지를 모난 부분 없이 둥글게 만듦으로써 망간의 용출 부위가 감소되어 수명 특성 및 용량 특성을 향상 시킬 수 있음을 예측할 수 있다.
그러나, 소결 보조제를 첨가하더라도, 평균 입경이 5 ㎛인 망간 전구체를 사용한 비교예 7에 비해 평균 입경이 10 ㎛인 망간 전구체를 사용한 실시예 3과 4의 이차전지의 경우, 충방전 효율이 현저히 우수함을 확인할 수 있다.
이 경우, 망간 전구체의 입경이 크기 때문에 비표면적이 작아져 전해액과의 반응성이 떨어지기 때문에 전지의 C-rate에 따른 수명 특성 및 초기 용량 특성이 향상될 수 있음을 예측할 수 있다.
실험예 3 : 결정 크기 측정
실시예 1과 2, 및 비교예 1 내지 3의 다결정 리튬 망간 산화물 입자에 대해 XRD 결정 분석에 의해 입자의 결정 크기를 측정하였다.
구체적으로 살펴보면, 실시예 1과 2, 및 비교예 1 내지 3의 다결정 리튬 망간 산화물 입자를 각각 홀더에 5g 정도로 넣고 X-선을 입자에 조사하여 나오는 회절 격자를 분석하여 구할 수 있다.
구하는 방법은 주 피크(main peak) 또는 3개 이상의 피크의 반가폭으로부터 구할 수 있으며, 이는 다결정 리튬 망간 산화물 입자의 일차 입자의 평균 결정 크기에 해당된다고 볼 수 있다. 이 결과에 따른 다결정 리튬 망간 산화물의 일차 입자의 평균 결정 크기를 하기 표 3에 나타내었다.
표 3
구분 실시예 1 실시예 2 비교예 1 비교예 2 비교예 3
결정크기(nm) 200 198 120 115 130
상기 표 3에서 확인 할 수 있는 바와 같이, 소결 보조제로 Na2CO3를 첨가한 다결정 리튬 망간 산화물 입자의 일차 입자의 평균 결정 크기는 약 198 nm 이상의 크기였다.
이에 반해, 소결 보조제로 Na2CO3를 첨가하지 않은 비교예 1과 2의 경우, 평균 결정 크기가 115 nm 내지 120 nm로 실시예 1과 2에 비해 약 30 % 내지 60% 정도 결정 크기가 작아짐을 확인할 수 있다.
한편, 소결 보조제를 첨가하더라도 평균 입경이 작은 망간 전구체를 사용한 비교예 3의 경우, 평균 결정 크기가 130nm로 50% 이상 정도 결정 크기가 작아짐을 확인할 수 있다.
본 발명의 일 실시예에 따른 상기 다결정 리튬 망간 산화물 입자를 리튬 이차전지에 적용하는 경우, 야안-텔러 뒤틀림(Jahn-Teller distortion)과 Mn2+의 용출의 문제를 해결함으로써, 이차전지의 수명 특성 및 충방전 용량 특성을 향상시킬 수 있다.

Claims (30)

  1. 하기 화학식 1로 표시되는 다결정 리튬 망간 산화물 입자:
    <화학식 1>
    Li(1+x)Mn(2-x-y-f)AlyM(f)O(4-z)
    상기 식에서, M은 Na, 또는 Na를 포함하는 2종 이상의 혼합 원소이고, 0≤x≤0.2, 0<y≤0.2, 0<f≤0.2 및 0≤z≤0.2이다.
  2. 제 1 항에 있어서,
    상기 화학식 1에 있어서, f의 범위는 0.001≤f≤0.03인 것을 특징으로 하는 다결정 리튬 망간 산화물 입자.
  3. 제 1 항에 있어서,
    상기 화학식 1에 있어서, 상기 혼합 원소는 B, Co, V, La, Ti, Ni, Zr, Y 및 Ga로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합 원소를 포함하는 것을 특징으로 하는 다결정 리튬 망간 산화물 입자.
  4. 제 3 항에 있어서,
    상기 화학식 1에 있어서, M은 Na, 또는 Na 및 B의 혼합 원소인 것을 특징으로 하는 다결정 리튬 망간 산화물 입자.
  5. 제 1 항에 있어서,
    상기 다결정 리튬 망간 산화물 입자는 152 nm 내지 300 nm 범위의 평균 결정 크기를 갖는 둘 이상의 일차 입자가 응집된 이차 입자의 형태인 것을 특징으로 하는 다결정 리튬 망간 산화물 입자.
  6. 제 5 항에 있어서,
    상기 이차 입자의 평균 입경(D50)은 5 ㎛ 내지 20 ㎛ 범위인 것을 특징으로 하는 다결정 리튬 망간 산화물 입자.
  7. 제 1 항에 있어서,
    상기 다결정 리튬 망간 산화물 입자 중 Na의 원소의 양은 700 ppm 내지 3000 ppm인 것을 특징으로 하는 다결정 리튬 망간 산화물 입자.
  8. 제 1 항에 있어서,
    상기 리튬 망간 산화물 입자는 X-선 회절 분석(X-ray diffraction) 측정시 I(111)/I(111) 피크 강도비를 100%로 정의할 경우, I(311)/I(111)이 40% 이상인 것을 특징으로 하는 다결정 리튬 망간 산화물 입자.
  9. 제 1 항에 있어서,
    상기 리튬 망간 산화물 입자는 X-선 회절 분석(X-ray diffraction) 측정시 I(111)/I(111) 피크 강도비를 100%로 정의할 경우, I(400)/I(111)이 40% 이상이고, I(440)/I(111)이 20% 이상인 것을 특징으로 하는 다결정 리튬 망간 산화물 입자.
  10. 제 1 항에 있어서,
    상기 리튬 망간 산화물 입자는 X-선 회절 분석(X-ray diffraction) 측정시 (311) 피크의 반가폭 (Full Width at Half-Maximum; FWHM)이 0.3도 이하인 것을 특징으로 하는 다결정 리튬 망간 산화물 입자.
  11. 제 1 항에 있어서.
    상기 리튬 망간 산화물 입자의 비표면적(BET)은 0.5 ㎡/g 이하인 것을 특징으로 하는 다결정 리튬 망간 산화물 입자.
  12. (i) 다결정 망간 전구체, 리튬 전구체 및 소결 보조제를 포함하는 전구체 혼합물을 얻는 단계; 및
    (ii) 상기 단계 (i)에서 얻은 전구체 혼합물을 소성하는 단계
    를 포함하는 하기 화학식 1로 표시되는 다결정 리튬 망간 산화물 입자의 제조방법:
    <화학식 1>
    Li(1+x)Mn(2-x-y-f)AlyM(f)O(4-z)
    상기 식에서, M은 Na, 또는 Na를 포함하는 2종 이상의 혼합 원소이고, 0≤x≤0.2, 0<y≤0.2, 0<f≤0.2 및 0≤z≤0.2이다.
  13. 제 12 항에 있어서,
    상기 다결정 망간 전구체는 100 nm 내지 300 nm 범위의 평균 결정 크기를 갖는 둘 이상의 일차 입자가 응집되어 형성된 이차 입자의 형태인 것을 특징으로 하는 다결정 리튬 망간 산화물 입자의 제조방법.
  14. 제 13 항에 있어서,
    상기 이차 입자의 평균 입경(D50)은 9 ㎛ 내지 25 ㎛인 것을 특징으로 하는 다결정 리튬 망간 산화물 입자의 제조방법.
  15. 제 14 항에 있어서,
    상기 이차 입자의 평균 입경(D50)은 9 ㎛ 내지 15 ㎛ 인 것을 특징으로 하는 다결정 리튬 망간 산화물 입자의 제조방법.
  16. 제 12 항에 있어서,
    상기 다결정 망간 전구체는 Al을 0.01 중량% 내지 10 중량%로 포함하는 것을 특징으로 하는 다결정 리튬 망간 산화물 입자의 제조방법.
  17. 제 16 항에 있어서,
    상기 다결정 망간 전구체는 (Mn(1-y)Aly)3O4 (0<y≤0.2)을 포함하는 것을 특징으로 하는 다결정 리튬 망간 산화물 입자의 제조방법.
  18. 제 17 항에 있어서,
    상기 다결정 망간 전구체는 MnCO3, Mn3O4, MnSO4및 Mn2O3로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 알루미늄 화합물과 함께 공침시켜 형성된 것임을 특징으로 다결정 리튬 망간 산화물 입자의 제조방법.
  19. 제 18 항에 있어서,
    상기 알루미늄 화합물은 AlSO4, AlCl 및 AlNO3로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 다결정 리튬 망간 산화물 입자의 제조방법.
  20. 제 12 항에 있어서,
    상기 소결 보조제는 나트륨 화합물을 포함하는 것을 특징으로 하는 다결정 리튬 망간 산화물 입자의 제조방법.
  21. 제 20 항에 있어서,
    상기 소결 보조제는 붕소 화합물, 코발트 화합물, 바나듐 화합물, 란타늄 화합물, 지르코늄 화합물, 이트륨 화합물 및 갈륨 화합물로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 더 포함하는 것을 특징으로 하는 다결정 리튬 망간 산화물 입자의 제조방법.
  22. 제 21 항에 있어서,
    상기 소결 보조제는 나트륨 화합물, 또는 나트륨 화합물과 붕소 화합물의 혼합물인 것을 특징으로 하는 다결정 리튬 망간 산화물 입자의 제조방법.
  23. 제 20 항에 있어서,
    상기 나트륨 화합물은 탄산 나트륨, 규산 나트륨, 수산화 나트륨 또는 이들의 2종 이상의 혼합물인 것을 특징으로 하는 다결정 리튬 망간 산화물 입자의 제조방법.
  24. 제 22 항에 있어서,
    상기 붕소 화합물은 붕산, 사붕산리튬, 산화붕소 및 붕산암모늄으로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 다결정 리튬 망간 산화물 입자의 제조방법.
  25. 제 12 항에 있어서,
    상기 소결 보조제는 다결정 망간 전구체의 총 중량 대비 0.2 중량부 내지 2 중량부의 양으로 사용되는 것을 특징으로 하는 다결정 리튬 망간 산화물 입자의 제조방법.
  26. 제 12 항에 있어서,
    상기 소성은 700 ℃ 내지 1000 ℃의 온도에서 수행되는 것을 특징으로 하는 다결정 리튬 망간 산화물 입자의 제조방법.
  27. 제 12 항에 있어서,
    상기 리튬 전구체는 염화리튬(LiCl), 탄산리튬(Li2CO3), 수산화리튬(LiOH), 인산리튬(Li3PO4) 및 질산리튬(LiNO3)으로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 다결정 리튬 망간 산화물 입자의 제조방법.
  28. 제 1 항의 다결정 리튬 망간 산화물 입자를 포함하는 양극 활물질.
  29. 제 28 항의 양극 활물질을 포함하는 양극.
  30. 제 29 항의 양극을 포함하는 리튬 이차전지.
PCT/KR2014/006841 2013-07-26 2014-07-25 다결정 리튬 망간 산화물 입자, 이의 제조방법 및 이를 포함하는 양극 활물질 WO2015012649A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015528424A JP6048711B2 (ja) 2013-07-26 2014-07-25 多結晶リチウムマンガン酸化物粒子、その製造方法及びこれを含む正極活物質、正極、およびリチウム二次電池
EP14814672.3A EP2868630B1 (en) 2013-07-26 2014-07-25 Polycrystalline lithium manganese oxide particles, method for preparing same, and anode active material containing polycrystalline lithium manganese oxide particles
CN201480001950.4A CN104507864B (zh) 2013-07-26 2014-07-25 多晶锂锰氧化物粒子及其制备方法、以及包含它的正极活性物质
US14/514,788 US9905850B2 (en) 2013-07-26 2014-10-15 Polycrystalline lithium manganese oxide particles, preparation method thereof, and cathode active material including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130089071 2013-07-26
KR10-2013-0089071 2013-07-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/514,788 Continuation US9905850B2 (en) 2013-07-26 2014-10-15 Polycrystalline lithium manganese oxide particles, preparation method thereof, and cathode active material including the same

Publications (1)

Publication Number Publication Date
WO2015012649A1 true WO2015012649A1 (ko) 2015-01-29

Family

ID=52393585

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/KR2014/006841 WO2015012649A1 (ko) 2013-07-26 2014-07-25 다결정 리튬 망간 산화물 입자, 이의 제조방법 및 이를 포함하는 양극 활물질
PCT/KR2014/006843 WO2015012650A1 (ko) 2013-07-26 2014-07-25 양극 활물질 및 이의 제조방법
PCT/KR2014/006839 WO2015012648A1 (ko) 2013-07-26 2014-07-25 다결정 리튬 망간 산화물 입자, 이의 제조방법 및 이를 포함하는 양극 활물질
PCT/KR2014/006844 WO2015012651A1 (ko) 2013-07-26 2014-07-25 양극 활물질 및 이의 제조방법

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/KR2014/006843 WO2015012650A1 (ko) 2013-07-26 2014-07-25 양극 활물질 및 이의 제조방법
PCT/KR2014/006839 WO2015012648A1 (ko) 2013-07-26 2014-07-25 다결정 리튬 망간 산화물 입자, 이의 제조방법 및 이를 포함하는 양극 활물질
PCT/KR2014/006844 WO2015012651A1 (ko) 2013-07-26 2014-07-25 양극 활물질 및 이의 제조방법

Country Status (7)

Country Link
US (2) US10236499B2 (ko)
EP (4) EP2918545B1 (ko)
JP (4) JP6066534B2 (ko)
KR (4) KR20150013076A (ko)
CN (4) CN104507864B (ko)
TW (4) TWI543429B (ko)
WO (4) WO2015012649A1 (ko)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016200106B8 (en) * 2007-04-12 2016-12-01 Neil Stevenson Building safety device, operating by means of clamping or by engaging the rear of the brick
KR20160093817A (ko) * 2015-01-30 2016-08-09 주식회사 엘 앤 에프 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR102004457B1 (ko) * 2015-11-30 2019-07-29 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
WO2017095134A1 (ko) * 2015-11-30 2017-06-08 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
KR102066266B1 (ko) 2016-03-31 2020-01-14 주식회사 엘지화학 리튬 코발트 산화물을 포함하는 코어 및 붕소와 불소를 포함하는 코팅층을 포함하는 양극 활물질 입자 및 이의 제조 방법
US20190312274A1 (en) * 2016-06-30 2019-10-10 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material and nonaqueous electrolyte secondary battery
US10527464B2 (en) 2016-08-18 2020-01-07 Ford Global Technologies, Llc Rotatable sensor cover
USD838231S1 (en) 2016-08-18 2019-01-15 Ford Motor Company Sensor cover
USD838230S1 (en) 2016-08-18 2019-01-15 Ford Motor Company Sensor cover
KR101919531B1 (ko) * 2016-12-22 2018-11-16 주식회사 포스코 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR101866105B1 (ko) * 2016-12-30 2018-06-08 울산과학기술원 표면처리된 활물질 및 이의 표면처리 방법
KR101887919B1 (ko) 2017-05-16 2018-08-13 국방과학연구소 전기 구동식 회전 시스템의 중력토크 계측 및 보상방법
CN107342410A (zh) * 2017-07-05 2017-11-10 中南大学 一种铝硼改性锰酸锂正极材料及其制备方法
JP7228771B2 (ja) * 2017-07-27 2023-02-27 パナソニックIpマネジメント株式会社 正極活物質、および、電池
KR20200033354A (ko) * 2017-08-22 2020-03-27 에이일이삼 시스템즈, 엘엘씨 안전성 및 사이클링 안정성을 향상시키기 위한 캐소드 물질 상의 사붕산리튬 유리 코팅
WO2019059653A1 (ko) * 2017-09-19 2019-03-28 주식회사 엘지화학 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
PL3567661T3 (pl) 2017-09-19 2021-09-27 Lg Chem, Ltd. Materiał czynny katody dla akumulatora i zawierający go akumulator litowy
WO2019088807A2 (ko) * 2017-11-06 2019-05-09 주식회사 엘지화학 리튬 이차전지
KR102264736B1 (ko) * 2017-11-06 2021-06-15 주식회사 엘지에너지솔루션 스피넬 구조의 리튬 망간계 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2019088805A2 (ko) * 2017-11-06 2019-05-09 주식회사 엘지화학 스피넬 구조의 리튬 망간계 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
KR102656223B1 (ko) 2017-11-22 2024-04-11 주식회사 엘지에너지솔루션 리튬 이차전지용 양극활물질 및 그 제조방법
KR102698846B1 (ko) 2017-11-22 2024-08-26 주식회사 엘지에너지솔루션 리튬 이차전지용 양극활물질 및 그 제조방법
KR102010929B1 (ko) 2017-12-26 2019-08-16 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
JP7336725B2 (ja) * 2018-02-28 2023-09-01 パナソニックIpマネジメント株式会社 非水電解質二次電池
CN108493443A (zh) * 2018-03-09 2018-09-04 无锡晶石新型能源股份有限公司 一种基于锰锂制备锂离子电池正极材料的工艺
CN108630923A (zh) * 2018-04-28 2018-10-09 南开大学 梯度钠离子掺杂的镍钴铝酸锂正极材料、制备方法和锂电池
CN110790315A (zh) * 2019-02-22 2020-02-14 重庆大学 一种锂离子电池正极Li4Mn5O12纳米颗粒的制备方法
US11575116B2 (en) 2019-03-22 2023-02-07 Lg Energy Solution, Ltd. Positive electrode active material particle for sulfide-based all-solid-state batteries
EP3896761A4 (en) * 2019-03-22 2022-03-09 Lg Energy Solution, Ltd. CATHODIC ACTIVE MATERIAL PARTICLES FOR ALL SOLID SULFIDE BATTERY
CN112436134B (zh) * 2019-04-28 2022-03-08 宁德时代新能源科技股份有限公司 正极活性材料及其制备方法、正极极片、锂离子二次电池和电动汽车
KR102076526B1 (ko) * 2019-04-30 2020-02-12 주식회사 엘 앤 에프 이차전지용 양극 활물질의 제조를 위한 신규 전구체 입자 및 이를 포함하는 신규 전구체 분말
KR102644802B1 (ko) * 2019-08-08 2024-03-08 주식회사 엘지에너지솔루션 이차전지용 양극 활물질의 제조방법
WO2021075940A1 (ko) * 2019-10-18 2021-04-22 주식회사 에코프로비엠 리튬 이차전지 양극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
CN111446444B (zh) * 2020-03-03 2021-06-15 北京当升材料科技股份有限公司 一种富锂锰基材料及其制备方法和应用
CN111403710B (zh) * 2020-03-26 2021-11-02 长沙理工大学 一种三氟化铝包覆的三元掺杂锰酸锂正极材料及其制备方法
KR102618005B1 (ko) * 2020-08-18 2023-12-27 주식회사 엘지화학 양극 활물질의 제조 방법
JP7314191B2 (ja) * 2021-03-22 2023-07-25 プライムプラネットエナジー&ソリューションズ株式会社 リチウムイオン二次電池
CN113089095A (zh) * 2021-03-22 2021-07-09 安徽博石高科新材料股份有限公司 一种单晶锰酸锂材料的制备方法
CN113078308B (zh) * 2021-06-04 2021-08-24 蜂巢能源科技有限公司 一种无钴无镍正极材料、其制备方法以及电池
WO2023015489A1 (zh) * 2021-08-11 2023-02-16 宁德新能源科技有限公司 一种电化学装置及电子装置
KR102663027B1 (ko) * 2021-12-23 2024-05-08 주식회사 지엘비이 리튬이차전지용 양극소재로서의 고용량 스피넬 리튬망간산화물 및 그 제조방법
CN114477297A (zh) * 2021-12-30 2022-05-13 贵州梅岭电源有限公司 一种锰酸锂正极材料前驱体四氧化三锰的制备方法
WO2024113250A1 (zh) * 2022-11-30 2024-06-06 宁德时代新能源科技股份有限公司 锂锰镍复合氧化物及其制备方法、极片、电池、用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176441A (ja) * 1997-12-15 1999-07-02 Hitachi Ltd リチウム2次電池
JP2000133266A (ja) * 1998-10-28 2000-05-12 Mitsubishi Materials Corp リチウム二次電池用正極活物質とその製造方法
KR20020092936A (ko) * 2000-11-16 2002-12-12 히다치 맥셀 가부시키가이샤 리튬 함유 복합 산화물 및 이것을 이용한 비수 2차 전지,및 그 제조 방법
KR20090103133A (ko) * 2008-03-27 2009-10-01 엘에스엠트론 주식회사 리튬 2차 전지용 양극 활물질과 그 제조방법 및 이를포함하는 리튬 2차 전지
KR20110076905A (ko) 2008-10-01 2011-07-06 도다 고교 가부시끼가이샤 비수 전해액 이차 전지용 망간산리튬 입자 분말 및 그의 제조 방법, 및 비수 전해액 이차 전지
KR20110111058A (ko) * 2010-04-02 2011-10-10 주식회사 이엔드디 결정성의 망간복합산화물, 리튬이차전지용 리튬망간복합산화물 및 그 제조방법

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0630064B1 (en) 1993-04-28 1998-07-15 Fuji Photo Film Co., Ltd. Nonaqueous electrolyte-secondary battery
JPH09265984A (ja) 1996-03-28 1997-10-07 Matsushita Electric Ind Co Ltd 非水電解液二次電池
US5783328A (en) 1996-07-12 1998-07-21 Duracell, Inc. Method of treating lithium manganese oxide spinel
US5928812A (en) * 1996-11-18 1999-07-27 Ultralife Batteries, Inc. High performance lithium ion polymer cells and batteries
KR100261120B1 (ko) 1997-08-26 2000-07-01 김순택 리튬망간산화물미세분말,그제조방법및그것을화학물질로하는양극을채용한리튬이온이차전지
KR100277796B1 (ko) 1998-02-10 2001-02-01 김순택 리튬 이차 전지용 양극 활물질 및 그 제조 방법
JP3691279B2 (ja) * 1998-02-10 2005-09-07 三星エスディアイ株式会社 リチウム二次電池用正極活物質、その製造方法、及びリチウム二次電池
JP2000100433A (ja) 1998-09-25 2000-04-07 Toyota Central Res & Dev Lab Inc 酸化ニッケル被覆リチウムマンガン複合酸化物粉末とその製造方法
JP2000215891A (ja) * 1999-01-26 2000-08-04 Mitsui Mining & Smelting Co Ltd Li二次電池正極材料の製造方法
US6165647A (en) 1999-04-09 2000-12-26 Matsushita Electric Industrial Co., Ltd. Secondary battery comprising a polymerizable material in its electrolyte solution
US6303250B1 (en) 1999-04-09 2001-10-16 Matsushita Electric Industrial Co., Ltd. Secondary battery including an electrolytic solution with an organic additive
JP2000331682A (ja) 1999-05-21 2000-11-30 Mitsui Mining & Smelting Co Ltd リチウム二次電池用正極材料及びこれを用いた電池
KR100309773B1 (ko) 1999-06-17 2001-11-01 김순택 리튬 이차 전지용 양극 활물질 및 그의 제조 방법
US6248477B1 (en) * 1999-09-29 2001-06-19 Kerr-Mcgee Chemical Llc Cathode intercalation compositions, production methods and rechargeable lithium batteries containing the same
US6730435B1 (en) 1999-10-26 2004-05-04 Sumitomo Chemical Company, Limited Active material for non-aqueous secondary battery, and non-aqueous secondary battery using the same
JP4872150B2 (ja) 1999-10-26 2012-02-08 住友化学株式会社 非水二次電池用活物質およびこれを用いた非水二次電池
JP4524821B2 (ja) 1999-10-27 2010-08-18 堺化学工業株式会社 リチウムマンガン複合酸化物粒子状組成物とその製造方法及び二次電池
US6350543B2 (en) 1999-12-29 2002-02-26 Kimberly-Clark Worldwide, Inc. Manganese-rich quaternary metal oxide materials as cathodes for lithium-ion and lithium-ion polymer batteries
KR100326460B1 (ko) 2000-02-10 2002-02-28 김순택 리튬 이차 전지용 양극 활물질 및 그의 제조 방법
KR100490613B1 (ko) 2000-03-13 2005-05-17 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 그 제조방법
US6737195B2 (en) 2000-03-13 2004-05-18 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and method of preparing same
JP2002083631A (ja) 2000-09-07 2002-03-22 Japan Storage Battery Co Ltd 有機電解液二次電池
KR100696619B1 (ko) * 2000-09-25 2007-03-19 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 그 제조 방법
US6753111B2 (en) 2000-09-25 2004-06-22 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium batteries and method for preparing same
US7138209B2 (en) 2000-10-09 2006-11-21 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and method of preparing same
KR100739620B1 (ko) * 2001-05-15 2007-07-16 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 그의 제조 방법
JP2002151070A (ja) * 2000-11-06 2002-05-24 Japan Storage Battery Co Ltd 非水電解質二次電池
US6706446B2 (en) 2000-12-26 2004-03-16 Shin-Kobe Electric Machinery Co., Ltd. Non-aqueous electrolytic solution secondary battery
US20020119372A1 (en) 2001-02-28 2002-08-29 Meijie Zhang Use of lithium borate in non-aqueous rechargeable lithium batteries
KR100413816B1 (ko) 2001-10-16 2004-01-03 학교법인 한양학원 리튬 2차 전지용 전극 활물질, 그의 제조방법, 및 그를포함하는 리튬 2차 전지
KR100399642B1 (ko) * 2001-10-24 2003-09-29 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 그 제조방법
US7011907B2 (en) 2001-11-27 2006-03-14 Nec Corporation Secondary battery cathode active material, secondary battery cathode and secondary battery using the same
JP4254267B2 (ja) 2002-02-21 2009-04-15 東ソー株式会社 リチウムマンガン複合酸化物顆粒二次粒子及びその製造方法並びにその用途
AU2003211395A1 (en) 2002-02-21 2003-09-09 Tosoh Corporation Lithium manganese composite oxide granular secondary particle, method for production thereof and use thereof
US20040013941A1 (en) 2002-05-20 2004-01-22 Nichia Corporation Positive electrode active material for a nonaqueous electrolyte secondary battery
KR100520951B1 (ko) 2002-10-21 2005-10-17 엘지전자 주식회사 팬 어셈블리를 구비한 제빙기에서 팬 제어방법
KR100515620B1 (ko) 2003-04-30 2005-09-20 학교법인 한양학원 리튬 2차 전지의 양극 활성물질용 리튬 복합 산화물의제조방법
KR100565990B1 (ko) 2003-11-24 2006-03-30 전자부품연구원 리튬 2차전지용 양극 활물질, 그 제조 방법 및 그를포함하는 리튬 2차전지
CN100486002C (zh) * 2004-11-08 2009-05-06 深圳市比克电池有限公司 锂离子电池正极材料及其制备方法
JP4839633B2 (ja) 2005-02-28 2011-12-21 パナソニック株式会社 非水電解質二次電池および非水電解質二次電池用正極活物質の製造方法
KR100822013B1 (ko) 2005-04-15 2008-04-14 주식회사 에너세라믹 불소화합물코팅 리튬이차전지 양극 활물질 및 그 제조방법
JP5294225B2 (ja) * 2006-04-21 2013-09-18 独立行政法人産業技術総合研究所 リチウム二次電池電極用酸化物の単結晶粒子及びその製造方法、ならびにそれを用いたリチウム二次電池
KR101109893B1 (ko) * 2006-12-27 2012-01-31 산요덴키가부시키가이샤 비수전해질 이차 전지 및 그의 제조 방법
JP4489841B2 (ja) 2007-10-23 2010-06-23 三井金属鉱業株式会社 スピネル型リチウム遷移金属酸化物
JP5229472B2 (ja) 2007-11-12 2013-07-03 戸田工業株式会社 非水電解液二次電池用マンガン酸リチウム粒子粉末及びその製造方法、並びに非水電解液二次電池
EP2214233B1 (en) 2007-11-12 2019-01-16 Toda Kogyo Corp. Lithium manganate particle powder for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
KR101492304B1 (ko) 2007-12-28 2015-02-11 도다 고교 가부시끼가이샤 비수전해액 이차 전지용 망간산리튬 및 그의 제조 방법, 및 비수전해액 이차 전지
CA2720600C (en) 2008-04-07 2017-09-12 Jay Whitacre Sodium ion based aqueous electrolyte electrochemical secondary energy storage device
JP2009277597A (ja) 2008-05-16 2009-11-26 Panasonic Corp 非水電解質二次電池
DE102008029804A1 (de) 2008-06-24 2010-07-08 Süd-Chemie AG Mischoxid enthaltend einen Lithium-Mangan-Spinell und Verfahren zu dessen Herstellung
JP5028355B2 (ja) 2008-08-01 2012-09-19 株式会社オティックス 可変動弁機構
CA2736985A1 (en) * 2008-09-18 2010-03-25 Toda Kogyo Corporation Process for producing lithium manganate particles and non-aqueous electrolyte secondary battery
JP2010135285A (ja) * 2008-10-31 2010-06-17 Sanyo Electric Co Ltd リチウム二次電池用正極活物質及びその製造方法
KR101363443B1 (ko) 2009-06-17 2014-02-14 히다치 막셀 가부시키가이샤 전기 화학 소자용 전극 및 그것을 사용한 전기 화학 소자
JP2011014373A (ja) 2009-07-02 2011-01-20 Hitachi Powdered Metals Co Ltd 導電性材料及びこれを用いたLiイオン二次電池用正極材料
KR20110044936A (ko) * 2009-10-25 2011-05-03 주식회사 휘닉스소재 리튬 이온 전지용 리튬 망간 복합 산화물의 제조 방법, 그 제조 방법에 의하여 제조된 리튬 이온 전지용 리튬 망간 복합 산화물, 및 이를 포함하는 리튬 이온 이차 전지
DE102010006076A1 (de) * 2010-01-28 2011-08-18 Süd-Chemie AG, 80333 Elektrode für eine Sekundärlithiumionenbatterie
KR101520903B1 (ko) * 2010-03-29 2015-05-18 주식회사 포스코이에스엠 리튬 이온 이차 전지용 리튬 망간 복합 산화물의 제조 방법, 그 제조 방법에 의하여 제조된 리튬 이온 이차 전지용 리튬 망간 복합 산화물, 및 이를 포함하는 리튬 이온 이차 전지
JP5549321B2 (ja) 2010-03-31 2014-07-16 日亜化学工業株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP5634828B2 (ja) * 2010-10-29 2014-12-03 日揮触媒化成株式会社 スピネル型リチウム・マンガン系複合酸化物粒子の製造方法ならびに用途
KR101272042B1 (ko) * 2010-11-08 2013-06-07 주식회사 포스코이에스엠 리튬 망간 복합 산화물 및 이의 제조 방법
JP2012116746A (ja) * 2010-11-10 2012-06-21 Jgc Catalysts & Chemicals Ltd スピネル型リチウム・マンガン複合酸化物
US8465556B2 (en) * 2010-12-01 2013-06-18 Sisom Thin Films Llc Method of forming a solid state cathode for high energy density secondary batteries
KR101264333B1 (ko) 2011-01-12 2013-05-14 삼성에스디아이 주식회사 양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
EP2684245A4 (en) * 2011-03-09 2014-09-03 Aquion Energy Inc ENERGY STORAGE DEVICE WITH METAL-FREE AQUEOUS ELECTROLYTE
CN102983353B (zh) * 2011-09-02 2015-09-16 中国科学院物理研究所 一种锂二次电池及其制备方法
KR20130050161A (ko) 2011-11-07 2013-05-15 삼성에스디아이 주식회사 전극활물질, 그 제조방법 및 이를 채용한 전극 및 리튬전지
JP5872279B2 (ja) * 2011-12-21 2016-03-01 日揮触媒化成株式会社 スピネル型リチウム・マンガン複合酸化物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176441A (ja) * 1997-12-15 1999-07-02 Hitachi Ltd リチウム2次電池
JP2000133266A (ja) * 1998-10-28 2000-05-12 Mitsubishi Materials Corp リチウム二次電池用正極活物質とその製造方法
KR20020092936A (ko) * 2000-11-16 2002-12-12 히다치 맥셀 가부시키가이샤 리튬 함유 복합 산화물 및 이것을 이용한 비수 2차 전지,및 그 제조 방법
KR20090103133A (ko) * 2008-03-27 2009-10-01 엘에스엠트론 주식회사 리튬 2차 전지용 양극 활물질과 그 제조방법 및 이를포함하는 리튬 2차 전지
KR20110076905A (ko) 2008-10-01 2011-07-06 도다 고교 가부시끼가이샤 비수 전해액 이차 전지용 망간산리튬 입자 분말 및 그의 제조 방법, 및 비수 전해액 이차 전지
KR20110111058A (ko) * 2010-04-02 2011-10-10 주식회사 이엔드디 결정성의 망간복합산화물, 리튬이차전지용 리튬망간복합산화물 및 그 제조방법

Also Published As

Publication number Publication date
EP2865647A1 (en) 2015-04-29
TWI565658B (zh) 2017-01-11
CN104507865B (zh) 2016-11-30
KR20150013078A (ko) 2015-02-04
EP2995589A4 (en) 2016-05-18
CN104507864B (zh) 2016-12-07
US10236499B2 (en) 2019-03-19
TW201526370A (zh) 2015-07-01
EP2868630B1 (en) 2018-04-25
JP6072916B2 (ja) 2017-02-01
CN104507865A (zh) 2015-04-08
EP2995589A1 (en) 2016-03-16
CN104507866B (zh) 2017-02-22
TW201527221A (zh) 2015-07-16
US9905840B2 (en) 2018-02-27
KR20150013077A (ko) 2015-02-04
CN104507864A (zh) 2015-04-08
JP6048711B2 (ja) 2016-12-21
JP2015530966A (ja) 2015-10-29
CN104507866A (zh) 2015-04-08
US20150357627A1 (en) 2015-12-10
EP2918545A4 (en) 2015-12-30
JP2015527719A (ja) 2015-09-17
CN104903238A (zh) 2015-09-09
EP2918545B1 (en) 2016-11-23
TW201524909A (zh) 2015-07-01
KR20150013076A (ko) 2015-02-04
WO2015012648A1 (ko) 2015-01-29
EP2868630A1 (en) 2015-05-06
EP2868630A4 (en) 2015-10-28
JP2016509567A (ja) 2016-03-31
KR101517732B1 (ko) 2015-05-15
JP6137647B2 (ja) 2017-05-31
KR101517733B1 (ko) 2015-05-04
CN104903238B (zh) 2017-04-26
TWI543429B (zh) 2016-07-21
JP2015529958A (ja) 2015-10-08
EP2918545A1 (en) 2015-09-16
EP2995589B1 (en) 2017-04-12
WO2015012651A1 (ko) 2015-01-29
US20150037678A1 (en) 2015-02-05
EP2865647A4 (en) 2015-05-27
TWI564249B (zh) 2017-01-01
TW201522232A (zh) 2015-06-16
KR20150013075A (ko) 2015-02-04
EP2865647B1 (en) 2016-10-19
TWI615358B (zh) 2018-02-21
WO2015012650A1 (ko) 2015-01-29
JP6066534B2 (ja) 2017-01-25

Similar Documents

Publication Publication Date Title
WO2015012649A1 (ko) 다결정 리튬 망간 산화물 입자, 이의 제조방법 및 이를 포함하는 양극 활물질
WO2017057900A1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
WO2020106024A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2019221497A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2017150945A1 (ko) 이차전지용 양극활물질의 전구체 및 이를 이용하여 제조된 양극활물질
WO2018101808A1 (ko) 리튬이차전지용 니켈계 활물질 전구체, 그 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지
WO2015030402A1 (ko) 리튬 전이금속 복합 입자, 이의 제조방법, 및 이를 포함하는 양극 활물질
WO2012011760A2 (ko) 리튬 이차전지 양극활물질 전구체의 제조방법, 이에 의하여 제조된 리튬 이차전지 양극활물질 전구체, 및. 상기 양극활물질 전구체를 이용한 리튬 이차전지 양극활물질용 리튬금속복합산화물의 제조방법, 이에 의하여 제조된 리튬 이차전지 양극활물질용 리튬금속복합산화물.
WO2018160023A1 (ko) 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2016148441A1 (ko) 리튬 금속 산화물 및 이를 포함하는 리튬 이차전지용 음극 활물질, 및 이의 제조방법
WO2019004602A1 (ko) 리튬 이차전지용 양극 활물질 전구체의 제조 방법
WO2022080710A1 (ko) 양극 활물질용 복합 전이금속 전구체 및 그로부터 제조된 이차전지용 양극 활물질
WO2022124801A1 (ko) 리튬 이차 전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 양극
WO2019103461A2 (ko) 양극활물질 전구체, 그 제조 방법, 이를 이용해 제조된 양극 활물질, 양극 및 이차전지
WO2018052210A1 (ko) 리튬이차전지용 산화코발트, 그 제조방법, 이로부터 형성된 리튬이차전지용 리튬코발트산화물 및 이를 포함한 양극을 구비한 리튬이차전지
WO2016089176A1 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2019194609A1 (ko) 리튬 이차전지용 양극 활물질의 제조방법, 리튬 이차전지용 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021060911A1 (ko) 이차전지용 양극 활물질 전구체, 그 제조방법 및 양극 활물질의 제조방법
WO2019078626A1 (ko) 이차전지용 양극활물질의 제조방법 및 이를 이용하는 이차전지
WO2020145638A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조방법에 의해 제조된 양극 활물질
WO2022092488A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2022169331A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2021154024A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020180060A1 (ko) 리튬 이차전지용 양극 활물질 전구체의 제조 방법 및 상기 제조 방법에 의해 제조된 양극 활물질 전구체
WO2016137287A1 (ko) 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2014814672

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015528424

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14814672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE