WO2017057900A1 - 이차전지용 양극활물질 및 이를 포함하는 이차전지 - Google Patents

이차전지용 양극활물질 및 이를 포함하는 이차전지 Download PDF

Info

Publication number
WO2017057900A1
WO2017057900A1 PCT/KR2016/010862 KR2016010862W WO2017057900A1 WO 2017057900 A1 WO2017057900 A1 WO 2017057900A1 KR 2016010862 W KR2016010862 W KR 2016010862W WO 2017057900 A1 WO2017057900 A1 WO 2017057900A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
shell
secondary battery
core
Prior art date
Application number
PCT/KR2016/010862
Other languages
English (en)
French (fr)
Inventor
이상욱
정왕모
박병천
신주경
류지훈
박상민
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201680012341.8A priority Critical patent/CN107251282B/zh
Priority to JP2017560215A priority patent/JP6562576B2/ja
Priority to EP16852046.8A priority patent/EP3249723B1/en
Priority to US15/550,133 priority patent/US10862156B2/en
Priority to PL16852046T priority patent/PL3249723T3/pl
Publication of WO2017057900A1 publication Critical patent/WO2017057900A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a cathode active material for a secondary battery capable of exhibiting high output characteristics and a secondary battery comprising the same.
  • lithium secondary batteries having high energy density and voltage, long cycle life, and low self discharge rate have been commercialized and widely used.
  • a lithium secondary battery has a problem in that its life is rapidly decreased as charging and discharging are repeated. In particular, this problem is more serious at high temperatures. This is due to the phenomenon that the electrolyte is decomposed or the active material is deteriorated due to moisture or other effects in the battery, and the internal resistance of the battery is increased.
  • LiCoO 2 having a layered structure. LiCoO 2 is most commonly used due to its excellent lifespan characteristics and charge and discharge efficiency. However, LiCoO 2 has a low structural stability and thus is not applicable to high capacity technology of batteries.
  • LiNiO 2 LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , Li (Ni p Co q Mn r ) O 2
  • LiNiO 2 has the advantage of exhibiting battery characteristics of high discharge capacity, but the synthesis is difficult by a simple solid phase reaction, there is a problem of low thermal stability and low cycle characteristics.
  • lithium manganese oxides such as LiMnO 2 or LiMn 2 O 4 have advantages in that they are excellent in thermal safety and inexpensive, but have a small capacity and low temperature characteristics.
  • LiMn 2 O 4 but a part merchandising products to low cost, since the Mn + 3 structure modification (Jahn-Teller distortion) due to the not good life property.
  • LiFePO 4 has a low price and excellent safety, and a lot of research is being made for hybrid electric vehicles (HEV), but it is difficult to apply to other fields due to low conductivity.
  • LiCoO 2 lithium nickel manganese cobalt oxide and Li (Ni p C q Mn r ) O 2 (At this time, P, q, and r are atomic fractions of independent oxide composition elements, respectively, where 0 ⁇ p ⁇ 1, 0 ⁇ q ⁇ 1, 0 ⁇ r ⁇ 1, and 0 ⁇ p + q + r ⁇ 1.
  • This material is cheaper than LiCoO 2 and has advantages in that it can be used for high capacity and high voltage, but has a disadvantage in that the rate capability and the service life at high temperature are poor.
  • the first technical problem to be solved by the present invention is to provide a cathode active material for a secondary battery and a method for manufacturing the same that can exhibit high output characteristics by controlling the grain size.
  • a second technical problem to be solved by the present invention is to provide a secondary battery positive electrode, a lithium secondary battery, a battery module and a battery pack including the positive electrode active material.
  • a core A shell surrounding the core; And a buffer layer positioned between the core and the shell, wherein the buffer layer includes a three-dimensional network structure and voids connecting the core and the shell, wherein the three-dimensional network structure in the core, the shell, and the buffer layer are each independently a plurality of layers.
  • a cathode active material for a secondary battery including a polycrystalline lithium composite metal oxide of Formula 1 including crystal grains and having an average crystal size of 50 nm to 150 nm.
  • M1 is any one or two or more elements selected from the group consisting of Al and Mn
  • M2 is any one or two or more elements selected from the group consisting of Zr, Ti, Mg, Ta and Nb
  • M3 comprises any one or two or more elements selected from the group consisting of W, Mo and Cr, and 1.0 ⁇ a ⁇ 1.5, 0 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.5, 0.0005 ⁇ z ⁇ 0.03, 0 ⁇ w ⁇ 0.02, 0 ⁇ x + y ⁇ 0.7)
  • a nickel raw material, cobalt raw material and M1 raw material (wherein, M1 is prepared by mixing any one or two or more elements selected from the group consisting of Al and Mn) Adding an ammonium cation-containing complex forming agent and a basic compound to the metal-containing solution and coprecipitation at pH 11 to pH 13 to prepare a precursor-containing reaction solution, and the ammonium cation-containing complex forming agent and the basic solution were reacted with the precursor-containing reaction solution. Adding a compound until the pH of the reaction solution is greater than or equal to 8 and less than pH 11 to grow the precursor, and after mixing the grown precursor with a lithium raw material, first firing at 500 ° C. to 700 ° C.
  • M3 raw material in which at least one of the processes of mixing (wherein, M3 comprises any one or two or more elements selected from the group consisting of W, Mo and Cr) lithium in the lithium composite metal oxide
  • M3 comprises any one or two or more elements selected from the group consisting of W, Mo and Cr
  • a method for producing a cathode active material for a secondary battery which is further added in an amount of 0.0005 to 0.03 mole ratio with respect to the total moles of the metal elements except for the above.
  • a cathode for a secondary battery a lithium secondary battery, a battery module, and a battery pack including the cathode active material.
  • the cathode active material for a secondary battery according to the present invention may exhibit excellent output characteristics, particularly at low temperatures, by controlling grain size.
  • FIG. 1 is a schematic cross-sectional view of a cathode active material for a secondary battery according to an embodiment of the present invention.
  • Example 2 is a photograph of the precursor prepared in Example 1 observed with a field emission scanning electron microscopy (FE-SEM).
  • the size of the secondary battery by controlling the grain size Output characteristics and lifespan characteristics can be improved.
  • a cathode active material for a secondary battery includes a core; A shell surrounding the core; And a buffer layer positioned between the core and the shell, the buffer layer including a three-dimensional network structure and voids connecting the core and the shell.
  • the three-dimensional network structure in the core, shell and buffer layer each comprises a polycrystalline lithium composite metal oxide of the formula (1) comprising a plurality of crystal grains independently,
  • the grains have an average crystal size of 50 nm to 150 nm:
  • M1 includes at least one element selected from the group consisting of Al and Mn
  • M2 includes any one or two or more elements selected from the group consisting of Zr, Ti, Mg, Ta, and Nb
  • M3 includes any one or two or more elements selected from the group consisting of W, Mo, and Cr, and a, x, y, z, and w are each independent atomic fractions of oxide composition elements, 1.0 ⁇ a ⁇ 1.5, 0 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.5, 0.0005 ⁇ z ⁇ 0.03, 0 ⁇ w ⁇ 0.02, 0 ⁇ x + y ⁇ 0.7.
  • composition of the lithium composite metal oxide of Chemical Formula 1 is an average composition of the entire cathode active material particles.
  • M3 is an element corresponding to group 6 (VIB group) of the periodic table, and serves to suppress particle growth during the firing process during preparation of the active material particles.
  • VB group group 6
  • M3 may be present at a position where these elements should be present by substituting a part of Ni, Co, or M1, or may react with lithium to form lithium oxide. Accordingly, the size of the crystal grains can be controlled by controlling the content of M3 and the timing of feeding.
  • M3 may be any one or two or more elements selected from the group consisting of W, Mo, and Cr, and more specifically, may be at least one element of W and Cr.
  • Such M3 may be included in an amount corresponding to z in the lithium composite metal oxide of Chemical Formula 1, that is, 0.0005 ⁇ z ⁇ 0.03.
  • z is less than 0.0005 or more than 0.03, it is not easy to implement an active material satisfying the above-described characteristics, and as a result, an effect of improving output and life characteristics may be insignificant.
  • the particle structure may be 0.001 ⁇ z ⁇ 0.01 in consideration of the embodied particle structure and the remarkable effect of improving battery characteristics.
  • Li may be included in an amount corresponding to a, that is, 1.0 ⁇ a ⁇ 1.5. If a is less than 1.0, the capacity may be lowered. If a is more than 1.5, the particles may be sintered in the firing step, and thus the production of the active material may be difficult. Considering the remarkable effect of improving the capacity characteristics of the positive electrode active material according to the Li content control and the sinterability in the preparation of the active material, the Li may be more specifically included in a content of 1.0 ⁇ a ⁇ 1.15.
  • Co may be included in an amount corresponding to x, that is, 0 ⁇ x ⁇ 0.5. If x is 0, the capacity characteristic may be lowered, and if it is more than 0.5, there is a fear of an increase in cost. Considering the remarkable effect of improving the capacity characteristics according to the inclusion of Co, the Co may be included in more specifically 0.10 ⁇ x ⁇ 0.35.
  • M1 may be at least one selected from the group consisting of Al and Mn, and more specifically, Al or Mn.
  • M1 may be included in an amount corresponding to y, that is, 0 ⁇ y ⁇ 0.5. If y is 0, the improvement effect due to the inclusion of M1 cannot be obtained. If y is greater than 0.5, the output characteristics and capacity characteristics of the battery may be deteriorated. In consideration of the remarkable effect of improving the battery characteristics according to the inclusion of the M1 element, M1 may be included in a content of 0.1 ⁇ y ⁇ 0.3 more specifically.
  • the elements of Ni, Co, and M1 in the lithium composite metal oxide or the lithium composite metal oxide of Formula 1 may be replaced by another element, that is, M2, to improve battery characteristics by controlling distribution of metal elements in the active material. It may be partially substituted or doped.
  • M2 may be any one or two or more elements selected from the group consisting of Zr, Ti, Mg, Ta, and Nb, and more specifically, Zr or Ti.
  • the element of M2 may be included in an amount corresponding to w, that is, 0 ⁇ w ⁇ 0.02 in a range that does not lower the characteristics of the positive electrode active material.
  • the lithium composite metal oxide of the formula (1) is a polycrystalline compound containing a plurality of crystal grains, so that the high output characteristics through the control of the content and firing conditions of the M3 element contained in the lithium composite metal oxide during its manufacture
  • the crystal grain size is optimized.
  • output characteristics can be improved.
  • the average crystal size of the polycrystalline crystals is 50 nm to 150 nm, the stability of the crystal structure is further increased, and as a result, the effect of improving the output characteristics is more remarkable.
  • the output characteristics are lowered when the average crystal size is out of the above range, and in particular, when the average crystal size is less than 50 nm, there is a risk of deterioration of life characteristics due to the formation of an unstable crystal structure. ) It may cause life characteristic resistance due to occurrence.
  • the average crystal size of the primary particles may be more specifically 80nm to 120nm.
  • a polycrystal means a crystal formed by gathering two or more crystal particles.
  • the average crystal size of the crystal grains can be quantitatively analyzed for the lithium composite metal oxide particles using X-ray diffraction analysis.
  • the average crystal size of the primary particles can be quantitatively analyzed by placing the polycrystalline lithium composite metal oxide particles in a holder and analyzing a diffraction grating that emits X-rays to the particles.
  • the cathode active material for a lithium secondary battery the core containing the polycrystalline lithium composite metal oxide of Formula 1 and is located surrounding the core, the polycrystalline lithium composite metal oxide of Formula 1 A buffer layer comprising a shell, and positioned between the core and the shell surrounding the core, a void, and a three-dimensional network structure of the polycrystalline lithium composite metal oxide of Formula 1 connecting the core and the shell. It includes more.
  • a buffer layer having a three-dimensional network structure connected to the core and the shell is formed between the core and the shell in the particles having a core-shell structure, thereby manufacturing an electrode.
  • FIG. 1 is a cross-sectional view schematically showing a cathode active material for a lithium secondary battery according to an embodiment of the present invention. 1 is only an example for describing the present invention and the present invention is not limited thereto.
  • a cathode active material 10 for a secondary battery includes a core 1, a shell 2 surrounding the core, and a core between the core and the shell.
  • the core 1 includes a polycrystalline lithium composite metal oxide of the formula (1) (hereinafter referred to as 'first lithium composite metal oxide').
  • the core 1 may be made of a single particle of the first lithium composite metal oxide, or may be made of secondary particles in which primary particles of the first lithium composite metal oxide are aggregated. At this time, the primary particles may be uniform or non-uniform.
  • the shell 2 includes the polycrystalline lithium composite metal oxide (hereinafter referred to as 'second lithium composite metal oxide').
  • the second lithium composite metal oxide may be crystal-oriented particles grown radially from the center of the cathode active material to the outside.
  • the particles of the second lithium composite metal oxide forming the shell have crystal orientation in a direction in which lithium is easily inserted and detached, thereby realizing higher output characteristics than particles having no crystal orientation in the same composition. .
  • the particles of the second lithium composite metal oxide may have various shapes such as polygons, cylinders, fibers, or scales such as hexahedrons. Specifically, it may be fibrous having an aspect ratio of 1.5 or more. If the aspect ratio of the particles of the second lithium composite metal oxide constituting the shell is less than 1.5, uniform grain growth may not be achieved and electrochemical properties may be lowered. In this case, the aspect ratio refers to the ratio of the length in the minor axis direction to the length in the major axis direction of the second lithium composite metal oxide particles.
  • the shell 2 may further include a void formed between the particles of the second lithium composite metal oxide.
  • a buffer layer 3 including a void 3a and a three-dimensional network structure 3b connecting between the core and the shell is located.
  • the void (3a) is formed in the process of converting the active material particles into a hollow structure by controlling the pH of the reactants during the production of the active material, between the core (1) and the shell (2) It forms a space in the buffer function during rolling for electrode production.
  • the electrolyte is easily penetrated to the inside of the active material, thereby allowing the reaction with the core, thereby increasing the reaction area of the active material with the electrolyte.
  • Such voids 3a may be included in an amount of 30% by volume or less, more specifically, 2% by volume to 30% by volume, based on the total volume of the positive electrode active material.
  • the pore 3a When included in the above range, it can exhibit an excellent buffering effect and increase the reaction area with the electrolyte solution without lowering the mechanical strength of the active material.
  • the pore 3a may be included in an amount of 5% to 20% by volume based on the total volume of the positive electrode active material.
  • the porosity of the buffer layer may be measured by cross-sectional analysis or mercury intrusion of particles using a focused ion beam (FIB).
  • the three-dimensional network structure (3b) is formed during the production of the active material particles in the process of converting the active material particles into a hollow structure to form an inner core, is connected between the core and the shell core It serves to support the space between (1) and the shell (2). Accordingly, the three-dimensional network structure 3b includes the polycrystalline lithium composite metal oxide of Formula 1 (hereinafter referred to as a third lithium composite metal oxide) similarly to the core 1 and the shell 2.
  • At least one metal element of nickel, M1, and cobalt contained in the polycrystalline lithium composite metal oxide of Formula 1 may increase in the active material particles, or It can be distributed in decreasing concentration gradients.
  • the concentration gradient or concentration profile of the metal element in the active material is defined as the depth of the center portion at the surface of the particle, and the Y axis represents the content of the metal element at the particle surface. It means the graph which shows content.
  • a positive mean slope of the concentration profile means that the metal element is located in the center portion of the particle relatively more than the surface portion of the particle
  • a negative mean slope means that the metal element is located in the surface portion of the particle more than the center portion of the particle. It means that it is located relatively much.
  • the concentration gradient and concentration profile of the metal in the active material particles are X-ray photoelectron spectroscopy (XPS), ESCA (Electron Spectroscopy for Chemical Analysis), electron beam microanalyzer (Electron Probe) Micro Analyzer, EPMA), Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), or Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS)
  • XPS X-ray photoelectron spectroscopy
  • ESCA Electrodectron Spectroscopy for Chemical Analysis
  • electron beam microanalyzer Electro Analyzer
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometer
  • ToF-SIMS Time of Flight Secondary Ion Mass Spectrometry
  • At least one metal element of nickel, cobalt and M1 may have a concentration gradient in which the concentration of the metal is gradually changed over the active material particles.
  • the gradient of concentration gradient of can represent one or more values.
  • concentration of the metal is present in a concentration distribution that changes in stages throughout the particle.
  • concentration distribution is 0.1 atomic% to 30 atomic%, more specifically 0.1 atomic% to 1 atomic percent, based on the total atomic weight of the metal included in the active material particles, wherein the change in the metal concentration per micrometer in the particles is 20 atomic%, more specifically, it may be a difference of 1 atomic% to 10 atomic%.
  • the concentration of nickel contained in the active material may decrease while having a continuous concentration gradient from the center of the active material particles toward the surface of the particles.
  • the gradient of the concentration gradient of nickel may be constant from the center of the active material particles to the surface.
  • the concentration of M1 contained in the active material may increase while having a continuous concentration gradient from the center of the active material particles toward the surface of the particles.
  • the concentration gradient slope of M1 may be constant from the center of the active material particles to the surface.
  • M1 may be Mn.
  • the concentration of cobalt contained in the active material may increase while having a continuous concentration gradient from the center of the active material particles toward the surface of the particles.
  • the concentration gradient slope of the active material may be constant from the center of the active material particles to the surface.
  • the content of nickel included in the core may be higher than the content of nickel included in the shell, specifically, the core is a transition metal element gun included in the core
  • the nickel may be contained in an amount of 60 mol% or more and less than 100 mol% with respect to the mole, and the shell may include nickel in an amount of 30 mol% or more and less than 65 mol% with respect to the total moles of transition metal elements included in the shell. .
  • the content of manganese contained in the core may be less than the content of manganese contained in the shell.
  • the content of cobalt contained in the core may be less than the content of cobalt contained in the shell.
  • nickel, manganese, and cobalt each independently represent a continuously changing concentration gradient throughout the active material particles, the concentration of nickel from the center of the active material particles The concentration decreases with a continuous concentration gradient in the surface direction, and the cobalt and manganese concentrations may increase independently with a continuous concentration gradient from the center of the active material particles toward the surface.
  • nickel, manganese, and cobalt represent a concentration gradient that is continuously and independently changed in the core and the shell, respectively, and the concentration of the nickel is from the center of the core to the core.
  • concentrations of cobalt and manganese are each independently from the center of the core to the interface of the core and the buffer layer, and with the buffer layer It can increase with a continuous concentration gradient from the interface of the shell to the shell surface.
  • nickel, M1, and cobalt each independently represent a changing concentration gradient throughout the active material particles, and the concentration of nickel decreases with a continuous concentration gradient from the center of the active material particles to the surface direction. And, the concentrations of the cobalt and M1 can be increased each independently having a continuous concentration gradient from the center of the active material particles to the surface direction. As such, the concentration of nickel decreases toward the surface of the active material particles and the concentration of M1 and cobalt increases throughout the active material, thereby improving thermal stability while maintaining the capacity characteristics of the positive electrode active material. have.
  • the cathode active material according to an embodiment of the present invention having the structure as described above may be secondary particles in which primary particles are assembled.
  • the cathode active material may have an average particle diameter (D 50 ) of 2 ⁇ m to 20 ⁇ m, more specifically 3 ⁇ m to 15 ⁇ m. If the average particle diameter of the positive electrode active material is less than 2 ⁇ m, the stability of the polycrystalline lithium composite metal oxide particles may be lowered, and if it exceeds 20 ⁇ m, the output characteristics of the secondary battery may be lowered. In addition, the positive electrode active material according to the present invention may satisfy the average particle diameter of the secondary particles together with the grain size described above, thereby exhibiting better structural stability and improved output characteristics when the battery is applied.
  • the average particle diameter (D 50 ) of the positive electrode active material may be defined as the particle size at 50% of the particle size distribution.
  • the average particle diameter (D 50 ) of the positive electrode active material particles is, for example, electrons using a scanning electron microscopy (SEM) or a field emission scanning electron microscopy (FE-SEM). It can be measured by microscopic observation or by laser diffraction method.
  • SEM scanning electron microscopy
  • FE-SEM field emission scanning electron microscopy
  • the particles of the positive electrode active material are dispersed in a dispersion medium, and then introduced into a commercially available laser diffraction particle size measuring apparatus (for example, Microtrac MT 3000) to output ultrasonic waves of about 28 kHz to 60 W. was irradiated with, it can be used to calculate the mean particle size (D 50) of from 50% based on the particle size distribution of the measuring device.
  • a commercially available laser diffraction particle size measuring apparatus for example, Microtrac MT 3000
  • the ratio of the core radius to the radius of the positive electrode active material is greater than 0 and less than 0.4, more specifically 0.01 to 0.2, even more specifically 0.1 to 0.2, the positive electrode active material to the radius of the positive electrode active material
  • the length ratio from the center to the interface of the buffer layer and the shell may be greater than 0 and less than 0.7, more specifically 0.01 to 0.5, even more specifically 0.1 to 0.3.
  • the shell region determined according to the following equation (1) is 0.2 to 1, more specifically 0.25 to 0.7, Specifically, it may be 0.5 to 0.6.
  • Shell area (radius of anode active material-core radius-buffer layer thickness) / radius of anode active material
  • the core, the buffer layer and the shell are formed in the positive electrode active material and the concentration gradients of the metal elements are formed in the respective regions as described above, the distribution of nickel, cobalt and M1 in the active material particles is more optimized and controlled.
  • the destruction of the active material by the rolling process during electrode production and maximizing the reactivity with the electrolyte it is possible to further improve the output characteristics and life characteristics of the secondary battery.
  • the particle diameter of the core portion can be measured through particle cross-sectional analysis using a focused ion beam (fib).
  • the cathode active material according to an embodiment of the present invention may have a BET specific surface area of 0.1 m 2 / g to 1.9m 2 / g.
  • the BET specific surface area of the positive electrode active material exceeds 1.9m 2 / g and there is a risk of dispersion decreases, and increase in electrode resistance of the intra-layer active material the positive electrode active material due to the aggregation between the positive electrode active material, and a BET specific surface area of 0.1m 2 / g When less than this, there exists a possibility of the dispersibility fall of a positive electrode active material itself, and a capacity fall.
  • the specific surface area of the positive electrode active material is measured by the Brunauer-Emmett-Teller (BET) method, specifically, nitrogen gas at liquid nitrogen temperature (77K) using BELSORP-mino II manufactured by BEL Japan It can calculate from adsorption amount.
  • BET Brunauer-Emmett-Teller
  • the positive electrode active material according to an embodiment of the present invention may exhibit excellent capacity and charge and discharge characteristics by simultaneously promoting the above average particle diameter and BET specific surface area conditions. More specifically, the cathode active material may have an average particle diameter (D 50 ) of 3 ⁇ m 15 ⁇ m and BET specific surface area of 0.15m 2 / g to 1.5m 2 / g.
  • the positive electrode active material according to an embodiment of the present invention may have a tap density of 1.2 g / cc or more, or 1.2 g / cc to 2.5 g / cc.
  • the tap density of the positive electrode active material can be measured using a conventional tap density measuring device, and specifically, can be measured using a tap density tester.
  • a cathode active material according to an embodiment of the present invention having the structure and physical properties as described above, nickel raw material, cobalt raw material and M1 raw material (wherein M1 is at least one selected from the group consisting of Al and Mn)
  • M1 is at least one selected from the group consisting of Al and Mn
  • step 2 Adding an ammonium cation-containing complex forming agent and a basic compound to the precursor-containing reaction solution until the pH of the reaction solution is greater than or equal to 8 and less than pH 11 to grow the precursor (step 2), and the grown precursor After mixing with a lithium raw material and performing a first firing at 500 °C to 700 °C and a secondary firing at 700 °C to 900 °C (step 3), the gold M3 raw material during the preparation of the containing solution, and at least one of the process of mixing the grown precursor and the lithium raw material, wherein M3 is any one or two or more selected from the group consisting of W, Mo and Cr It can be produced by a manufacturing method of the (additional elements)).
  • each metal in step 1 M2 raw material may be added when mixing the raw material of the element, or M2 raw material may be added when mixing with the lithium raw material in step 2. Accordingly, according to another embodiment of the present invention, a method of manufacturing the cathode active material is provided.
  • step 1 in the manufacturing method for the production of the cathode active material preparing a precursor using a nickel raw material, cobalt raw material, M1 raw material and optionally M3 or M2 raw material to be.
  • the precursor is a coprecipitation reaction by adding an ammonium cation-containing complex forming agent and a basic compound to a metal-containing solution prepared by mixing nickel raw material, cobalt raw material, M1 raw material, and optionally M3 or M2 raw material.
  • a metal-containing solution prepared by mixing nickel raw material, cobalt raw material, M1 raw material, and optionally M3 or M2 raw material.
  • the mixing ratio of each raw material may be appropriately determined within a range to satisfy the content condition of each metal element in the final cathode active material.
  • the metal-containing solution is an organic solvent (specifically, alcohol, etc.) capable of uniformly mixing nickel raw material, cobalt raw material, M1 containing raw material and optionally M3 or M2 containing raw material with solvent, specifically water, or water, respectively. ) May be added to a mixture of water and water, or a solution containing each metal-containing raw material, specifically, an aqueous solution, may be mixed and then used.
  • organic solvent specifically, alcohol, etc.
  • metal-containing raw material acetates, nitrates, sulfates, halides, sulfides, hydroxides, oxides or oxyhydroxides and the like can be used, and are not particularly limited as long as they can be dissolved in water.
  • cobalt raw material Co (OH) 2 , CoOOH, Co (OCOCH 3 ) 2 ⁇ 4H 2 O, Co (NO 3 ) 2 ⁇ 6H 2 O or Co (SO 4 ) 2 ⁇ 7H 2 O, etc. And any one or a mixture of two or more thereof may be used.
  • Ni (OH) 2 , NiO, NiOOH, NiCO 3 ⁇ 2Ni (OH) 2 ⁇ 4H 2 O, NiC 2 O 2 ⁇ 2H 2 O, Ni (NO 3 ) 2 ⁇ 6H 2 O, NiSO 4 , NiSO 4 .6H 2 O, fatty acid nickel salts or nickel halides, and the like, and any one or a mixture of two or more thereof may be used.
  • M1 raw material acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide containing M1 element may be used.
  • M1 Mn
  • manganese oxides include manganese oxides such as Mn 2 O 3 , MnO 2 , and Mn 3 O 4 ;
  • Manganese salts such as MnCO 3 , Mn (NO 3 ) 2 , MnSO 4 , manganese acetate, manganese dicarboxylic acid, manganese citrate and fatty acid manganese; Oxy hydroxide, and manganese chloride, and the like, and any one or a mixture of two or more thereof may be used.
  • M1 is Al
  • an aluminum raw material may include AlSO 4 , AlCl, or AlNO 3 , and any one or a mixture of two or more thereof may be used.
  • M2 raw material acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide containing M2 element may be used.
  • M 2 titanium oxide may be used.
  • the M2 raw material may be used in a range to satisfy the content condition of the M2 element in the final cathode active material.
  • M3 raw material acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide containing M3 element may be used.
  • M 3 is W
  • tungsten oxide may be used.
  • the M3 raw material may be used in a range to satisfy the content condition of the M3 element in the positive electrode active material to be manufactured.
  • ammonium cation-containing complexing agent may specifically be NH 4 OH, (NH 4 ) 2 SO 4 , NH 4 NO 3 , NH 4 Cl, CH 3 COONH 4 , or NH 4 CO 3 , and the like. Species alone or mixtures of two or more may be used.
  • the ammonium cation-containing complex forming agent may be used in the form of an aqueous solution, wherein a solvent may be a mixture of water or an organic solvent (specifically, alcohol, etc.) that can be mixed with water uniformly.
  • the ammonium cation-containing complex forming agent may be added in an amount such that the molar ratio of 0.5 to 1 per mole of the metal salt solution.
  • the chelating agent reacts with the metal in a molar ratio of at least 1: 1 to form a complex, but the unreacted complex which does not react with the basic aqueous solution may be converted into an intermediate product, recovered as a chelating agent, and reused.
  • the chelating usage can be lowered than usual. As a result, the crystallinity of the positive electrode active material can be increased and stabilized.
  • the basic compound may be a hydroxide of an alkali metal or an alkaline earth metal such as NaOH, KOH, or Ca (OH) 2 , or a hydrate thereof, and one or more of these may be used.
  • the basic compound may also be used in the form of an aqueous solution, and as the solvent, a mixture of water or an organic solvent (specifically, alcohol, etc.) that can be uniformly mixed with water may be used.
  • the coprecipitation reaction may be carried out under the condition that the pH is 11 to 13. If the pH is out of the above range, there is a fear to change the size of the precursor to be prepared or cause particle splitting.
  • metal ions may be eluted on the surface of the precursor to form various oxides by side reactions. More specifically, the pH of the mixed solution may be performed at 11 to 12 conditions.
  • the ammonium cation-containing complexing agent and the basic compound may be used in a molar ratio of 1:10 to 1: 2 to satisfy the above pH range.
  • the pH value means a pH value at the temperature of the liquid 25 °C.
  • the coprecipitation reaction may be carried out at a temperature of 40 °C to 70 °C under an inert atmosphere such as nitrogen or argon.
  • the stirring process may be selectively performed to increase the reaction rate during the reaction, wherein the stirring speed may be 100 rpm to 2000 rpm.
  • the second metal including nickel, cobalt, M1 containing metal salts and optionally M2 containing metal salts at different concentrations from the metal containing solution described above.
  • the mixing ratio of the metal containing solution and the second metal containing solution is gradually changed from 100% by volume to 0% by volume to 0% by volume to 100% by volume. It can be carried out by adding a bimetallic containing solution and simultaneously reacting by adding an ammonium cation containing complex former and a basic compound.
  • nickel, cobalt, and M1 are independently from the center of the particle to the surface in one coprecipitation reaction process. It is possible to produce composite metal hydroxides having a continuously changing concentration gradient. At this time, the concentration gradient of the metal in the hydroxide and its slope can be easily controlled by the composition and the mixed feed ratio of the metal-containing solution and the second metal-containing solution. It is preferable to lengthen the reaction time and to lower the reaction rate, and to shorten the reaction time and increase the reaction rate in order to make a low density state having a low concentration of a specific metal.
  • the speed of the second metal-containing solution added to the metal-containing solution may be carried out continuously increasing in the range of 1% to 30% compared to the initial charge rate.
  • the input speed of the metal-containing solution may be 150ml / hr to 210ml / hr
  • the input speed of the second metal-containing solution may be 120ml / hr to 180ml / hr
  • the initial charge within the input speed range The input rate of the second metal-containing solution can be continuously increased within the range of 1% to 30% of the rate.
  • the reaction may be carried out at 40 °C to 70 °C.
  • the size of the precursor particles may be adjusted by adjusting the supply amount and the reaction time of the second metal-containing solution to the first metal-containing solution.
  • the precursor particles of a composite metal hydroxide are generated as a precursor and are precipitated in a reaction solution.
  • the precursor may include a compound of Formula 2 below.
  • a drying process may be optionally performed.
  • the drying process may be carried out according to a conventional drying method, specifically, may be performed for 15 hours to 30 hours by a method such as heat treatment, hot air injection in the temperature range of 100 °C to 200 °C.
  • step 2 is a step of growing the particles of the metal-containing hydroxide prepared in the step 1.
  • the particles of the transition metal-containing hydroxide may be added to the reaction solution in which the particles of the metal-containing hydroxide are added until the pH of the reaction solution becomes lower than the pH of the coprecipitation reaction. Can be grown.
  • the total mole number of nickel ions, cobalt ions and manganese ions may be 0.5M to 2.5M, or 1M to 2.2M.
  • the particle growth step of the metal-containing hydroxide in step 2 may be carried out at a pH lower than the particle generation step of the metal-containing hydroxide in step 1, specifically, lower than the pH in step 1, pH 8 or more And less than pH 11, more specifically in the range of pH 8 to pH 10.5.
  • the growth of the nickel-cobalt-manganese composite metal-containing hydroxide particles may be performed by changing the pH of the reactant at a rate of pH 1 to pH 2.5 per hour.
  • the desired particle structure can be easily formed by performing the pH change rate as described above at a lower pH than in the coprecipitation reaction.
  • ammonium cation-containing complex forming agent and the basic compound when added to the reaction solution in which the particles of the metal-containing hydroxide are formed, they may be added at the same rate, or may be added while continuously reducing the addition rate. If the feed rate is reduced, the feed rate can be reduced at a rate of 20% or more and less than 100%.
  • the precipitation rate of the transition metal hydroxide in the particle growth step is faster than that of the lithium transition metal hydroxide in the step 1 can do.
  • the density of the vicinity of the outer surface of the particles of the transition metal hydroxide serving as a precursor can be lowered to easily induce the grain growth direction in the subsequent heat treatment process.
  • step 2 may be carried out in an inert atmosphere.
  • step 2 the step of separating the particles of the grown transition metal hydroxide from the reaction solution and then washing and drying may be optionally further carried out.
  • the drying process may be carried out in accordance with a conventional drying method, specifically, may be carried out by a method such as heat treatment, hot air injection in the temperature range of 100 °C to 120 °C.
  • the positive electrode active material is prepared by mixing the particles of the metal-containing hydroxide grown in the step 2 with a lithium raw material, and optionally M3 or M2 raw material and then firing It's a step. At this time, M3 and M2 raw materials are the same as described above.
  • lithium raw material examples include lithium-containing carbonates (for example, lithium carbonate), hydrates (for example, lithium hydroxide I hydrate (LiOH ⁇ H 2 O), etc.), hydroxides (for example, lithium hydroxide, etc.), nitrates ( For example, lithium nitrate (LiNO 3 ), etc.), chlorides (for example, lithium chloride (LiCl), etc.), and the like may be used alone, or a mixture of two or more thereof may be used.
  • the amount of the lithium-containing raw material used may be determined according to the content of lithium and transition metal in the final lithium composite metal oxide, and specifically, the metal element included in the lithium and composite metal hydroxides included in the lithium raw material. (Me) and the molar ratio (molar ratio of lithium / metal element (Me)) can be used in an amount such that 1.0 or more.
  • the firing process may be carried out in a multi-stage of primary firing at 250 °C to 500 °C and secondary firing at 700 °C to 900 °C.
  • the primary firing is to increase the firing rate during the secondary firing, and then, by performing the secondary firing at a high temperature as compared with the primary firing, the physical properties including the grain size described above can be realized. More specifically, the firing process may be performed in two stages of primary firing at 400 ° C to 500 ° C and secondary firing at 750 ° C to 850 ° C.
  • the firing process may be performed in an air atmosphere or an oxygen atmosphere (for example, O 2 ), and more specifically, may be performed in an oxygen atmosphere having an oxygen partial pressure of 20% by volume or more. In addition, the firing process may be performed for 5 hours to 48 hours, or 10 hours to 20 hours under the above conditions.
  • O 2 oxygen atmosphere
  • the firing process may be performed for 5 hours to 48 hours, or 10 hours to 20 hours under the above conditions.
  • a sintering aid may optionally be further added during the firing process.
  • the sintering aid can easily grow crystals at low temperatures and minimize the heterogeneous reaction during dry mixing.
  • the sintering aid has the effect of making the rounded curved particles by dulling the corners of the lithium composite metal oxide primary particles.
  • the lithium oxide-based positive electrode active material including manganese manganese is frequently eluted from the edges of the particles, and the manganese elution reduces the characteristics of the secondary battery, particularly at high temperatures.
  • the sintering aid when used, the elution portion of manganese can be reduced by rounding the corners of the primary particles, and as a result, the stability and lifespan characteristics of the secondary battery can be improved.
  • the sintering aid is boron compounds such as boric acid, lithium tetraborate, boron oxide and ammonium borate; Cobalt compounds such as cobalt oxide (II), cobalt oxide (III), cobalt oxide (IV), and tricobalt tetraoxide; Vanadium compounds such as vanadium oxide; Lanthanum compounds such as lanthanum oxide; Zirconium compounds such as zirconium boride, calcium zirconium silicate and zirconium oxide; Yttrium compounds such as yttrium oxide; Or gallium compounds such as gallium oxide, and the like, and any one or a mixture of two or more thereof may be used.
  • boron compounds such as boric acid, lithium tetraborate, boron oxide and ammonium borate
  • Cobalt compounds such as cobalt oxide (II), cobalt oxide (III), cobalt oxide (IV), and tricobalt tetraoxide
  • Vanadium compounds such as
  • the sintering aid may be used in an amount of 0.2 to 2 parts by weight, more specifically 0.4 to 1.4 parts by weight based on the total weight of the precursor.
  • the moisture removing agent may be optionally further added during the firing process.
  • the water removing agent may include citric acid, tartaric acid, glycolic acid or maleic acid, and any one or a mixture of two or more thereof may be used.
  • the moisture remover may be used in an amount of 0.01 parts by weight to 2 parts by weight based on the total weight of the precursor.
  • the particles of the metal-containing hydroxide produced and grown through the above steps 2 and 3 have different crystals inside the particles and outside the particles formed by the subsequent growth of the particles due to differences in process conditions during the manufacturing process, that is, pH. Has the nature. Accordingly, internal crystals made at high pH shrink during the firing process as described above, and crystals made at low pH and temperature grow so that the shrinked crystals form a core and the externally grown crystals form a shell. do.
  • the formation of the core and the shell forms voids between the core and the shell, and the crystal located between the core and the shell forms a three-dimensional network structure connecting the inside and the outside of the particles.
  • the crystals outside the particles grow radially outward from the center of the particles to have crystal orientation.
  • the cathode active material prepared according to the above-described manufacturing method includes a buffer layer including pores between the core and the shell by controlling pH, concentration and rate of the reactants, thereby minimizing destruction of the active material during rolling in the electrode manufacturing process, Maximizing the reactivity with the electrolyte, and the shell forming particles have a crystal structure of an orientation that facilitates insertion and removal of lithium ions can improve the resistance and life characteristics of the secondary battery.
  • the positive electrode active material can control the distribution of the transition metal throughout the active material particles, thereby exhibiting high capacity, long life and thermal stability when the battery is applied, and can minimize performance deterioration at high voltage.
  • the positive electrode active material manufactured by the above process can exhibit high output characteristics, particularly excellent output characteristics at low temperatures, by controlling the grain size as described above.
  • the distribution of the transition metal in the cathode active material can be additionally controlled, as a result of which the thermal stability is improved, thereby minimizing performance deterioration at high voltage.
  • a cathode including the cathode active material, and a lithium secondary battery.
  • the positive electrode is formed on the positive electrode current collector and the positive electrode current collector, and includes a positive electrode active material layer containing the positive electrode active material.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • carbon, nickel, titanium on a surface of aluminum or stainless steel Surface treated with silver, silver or the like can be used.
  • the positive electrode current collector may have a thickness of typically 3 ⁇ m to 500 ⁇ m, and may form fine irregularities on the surface of the current collector to increase adhesion of the positive electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, or a nonwoven body.
  • the cathode active material layer may further include at least one of a conductive material and a binder, together with the cathode active material described above.
  • the conductive material is used to impart conductivity to the electrode.
  • the conductive material may be used without particular limitation as long as it has electronic conductivity without causing chemical change. Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives, and the like, or a mixture of two or more kinds thereof may be used.
  • the conductive material may be included in an amount of 1 wt% to 30 wt% with respect to the total weight of the positive electrode active material layer.
  • the binder serves to improve adhesion between the cathode active material particles and adhesion between the cathode active material and the current collector.
  • specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC).
  • the binder may be included in an amount of 1% by weight to 30% by weight based on the total weight of the positive electrode active material layer.
  • the positive electrode may be manufactured according to a conventional positive electrode manufacturing method except for using the positive electrode active material described above.
  • a composition for forming a positive electrode active material layer prepared by dissolving or dispersing at least one of a binder and a conductive material in a solvent, if necessary, may be prepared by drying and rolling. Can be.
  • the type and content of the cathode active material, the binder, and the conductive material are as described above.
  • the solvent may be a solvent generally used in the art, and may include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone or acetone. Water, and the like, one of these alone or a mixture of two or more thereof may be used.
  • the amount of the solvent is sufficient to dissolve or disperse the positive electrode active material, the conductive material, and the binder in consideration of the coating thickness of the slurry and the production yield, and to have a viscosity that can exhibit excellent thickness uniformity during application for the production of the positive electrode. Do.
  • the positive electrode may be prepared by casting the composition for forming the positive electrode active material layer on a separate support, and then laminating the film obtained by peeling from the support onto a positive electrode current collector.
  • an electrochemical device including the anode is provided.
  • the electrochemical device may be specifically a battery, a capacitor, or the like, and more specifically, a lithium secondary battery.
  • the lithium secondary battery specifically includes a positive electrode, a negative electrode positioned to face the positive electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the positive electrode is as described above.
  • the lithium secondary battery may further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • the negative electrode current collector may be formed on a surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper, or stainless steel. Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy and the like can be used.
  • the negative electrode current collector may have a thickness of 3 ⁇ m to 500 ⁇ m, and like the positive electrode current collector, fine concavities and convexities may be formed on the surface of the current collector to enhance the bonding force of the negative electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • the negative electrode active material layer optionally includes a binder and a conductive material together with the negative electrode active material.
  • the negative electrode active material layer is coated with a negative electrode active material, and optionally a composition for forming a negative electrode including a binder and a conductive material on a negative electrode current collector and dried, or casting the negative electrode forming composition on a separate support It may be produced by laminating a film obtained by peeling from this support onto a negative electrode current collector.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fibers, and amorphous carbon;
  • Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys;
  • Metal oxides capable of doping and undoping lithium such as SiO x (0 ⁇ x ⁇ 2), SnO 2 , vanadium oxide, lithium vanadium oxide;
  • a composite including the metallic compound and the carbonaceous material such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the anode active material.
  • the carbon material both low crystalline carbon and high crystalline carbon can be used. Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is amorphous, plate, scaly, spherical or fibrous natural graphite or artificial graphite, Kish graphite (Kish) graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch High-temperature calcined carbon such as derived cokes is typical.
  • the binder and the conductive material may be the same as described above in the positive electrode.
  • the separator is to separate the negative electrode and the positive electrode and to provide a passage for the movement of lithium ions, if it is usually used as a separator in a lithium secondary battery can be used without particular limitation, in particular to the ion movement of the electrolyte It is desirable to have a low resistance against the electrolyte and excellent electrolytic solution-moisture capability.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used.
  • a porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
  • examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. It doesn't happen.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent may be an ester solvent such as methyl acetate, ethyl acetate, ⁇ -butyrolactone or ⁇ -caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate, Carbonate solvents such as PC); Alcohol solvents such as ethyl alcohol and isopropyl alcohol; Nitriles such as R-CN (R is a C2 to C20 linear, branched or cyclic hydrocarbon group, which may include a
  • carbonate-based solvents are preferable, and cyclic carbonates having high ionic conductivity and high dielectric constant (for example, ethylene carbonate or propylene carbonate) that can improve the charge and discharge performance of a battery, and low viscosity linear carbonate compounds (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate and the like is more preferable.
  • the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of about 1: 1 to about 1: 9, so that the performance of the electrolyte may be excellent.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB (C 2 O 4 ) 2 and the like can be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1M to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, tri, etc. for the purpose of improving battery life characteristics, suppressing battery capacity reduction, and improving battery discharge capacity.
  • haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, tri, etc.
  • Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included. In this case, the additive may be included in an amount of 0.1% by weight to 5% by weight based on the total weight of the electrolyte.
  • the lithium secondary battery including the cathode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate
  • portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles ( It is useful for electric vehicle fields such as hybrid electric vehicle (HEV).
  • HEV hybrid electric vehicle
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or the battery pack is a power tool (Power Tool); Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • Power Tool Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • sodium tungstate dehydrate as a raw material of nickel sulfate, cobalt sulfate, manganese sulfate and tungsten was added to the molar ratio of the metal element contained in each compound in water.
  • the resultant nickel manganese cobalt-based composite metal hydroxide particles were mixed with lithium hydroxide as a lithium raw material and a lithium (Li): composite metal (Me) in a molar ratio of 1: 1.07, followed by oxygen atmosphere (oxygen partial pressure 20 %), The primary heat treatment at 500 °C 10 hours, and secondary heat treatment at 820 °C 10 hours to prepare a positive electrode active material.
  • sodium tungstate dehydrate as a raw material of nickel sulfate, cobalt sulfate, manganese sulfate and tungsten was added to the molar ratio of the metal element contained in each compound in water.
  • a metal salt solution of 2M concentration was prepared by mixing at a molar ratio of 60: 20: 20: 0.25.
  • the vessel containing the metal salt solution was connected to enter the reactor, and further prepared by 4M NaOH solution and 7% NH 4 OH aqueous solution was connected to each reactor.
  • the NaOH aqueous solution and the NH 4 OH aqueous solution were added to lower the pH at a rate of pH 2 per hour, thereby changing the pH to 9.5 and inducing the growth of hydroxide particles. Since the reaction was maintained for 24 hours to grow nickel manganese cobalt-based composite metal hydroxide.
  • the resulting nickel manganese cobalt-based composite metal hydroxide particles were mixed with lithium hydroxide and lithium (Li): composite metal (Me) in a molar ratio of 1: 1.07 as a lithium raw material, followed by oxygen atmosphere (oxygen partial pressure 20%). ), The first heat treatment at 500 °C for 10 hours, the second heat treatment at 820 °C for 10 hours to prepare a positive electrode active material.
  • sodium tungstate dehydrate as a raw material of nickel sulfate, cobalt sulfate, manganese sulfate and tungsten was added to the molar ratio of the metal element contained in each compound in water.
  • a metal salt solution of 2M concentration was prepared by mixing at a molar ratio of 60: 20: 20: 0.25.
  • the vessel containing the metal salt solution was connected to enter the reactor, and further prepared by 4M NaOH solution and 7% NH 4 OH aqueous solution was connected to each reactor.
  • the NaOH aqueous solution and the NH 4 OH aqueous solution were added to lower the pH at a rate of pH 2 per hour, thereby changing the pH to 9.5 and inducing the growth of hydroxide particles. Since the reaction was maintained for 24 hours to grow nickel manganese cobalt-based composite metal hydroxide.
  • the cathode active material was prepared by annealing for 10 hours at 500 ° C. for 10 hours and at 820 ° C. for 10 hours under an oxygen atmosphere (20% oxygen partial pressure).
  • nickel sulfate, cobalt sulfate, and manganese sulfate were mixed in water at a molar ratio of 60:20:20 based on the molar ratio of the metal elements included in each compound in water at a 2M concentration.
  • the metal salt solution of was prepared.
  • the vessel containing the metal salt solution was connected to enter the reactor, and prepared with 4M NaOH solution and 7% aqueous NH 4 OH solution was connected to the reactor.
  • the NaOH aqueous solution and the NH 4 OH aqueous solution were added to lower the pH at a rate of pH 2 per hour, thereby changing the pH to 9.5 and inducing the growth of hydroxide particles. Since the reaction was maintained for 24 hours to grow nickel manganese cobalt-based composite metal hydroxide.
  • the resulting nickel manganese cobalt-based composite metal hydroxide particles were mixed with lithium hydroxide and lithium (Li): composite metal (Me) in a molar ratio of 1: 1.07 as a lithium raw material, followed by oxygen atmosphere (oxygen partial pressure 20%). ), The first heat treatment at 500 °C for 10 hours, the second heat treatment at 820 °C for 10 hours to prepare a positive electrode active material.
  • nickel sulfate, cobalt sulfate, and manganese sulfate were mixed in water at a molar ratio of 80:10:10 based on the molar ratio of metal elements included in each compound in water at a concentration of 2M.
  • the vessel containing the first metal salt solution was connected to enter the reactor, and the vessel containing the second metal salt solution was connected to enter the first metal salt container.
  • 4M NaOH solution and 7% NH 4 OH aqueous solution were prepared and connected to the reactor, respectively.
  • the pH was lowered at a rate of pH 2 per hour to change the pH to 9.5, and the second metal salt solution was introduced at 150 ml / hr into the container of the first metal salt to induce the growth of hydroxide particles and to generate a concentration gradient inside the particles. It was induced to. Since the reaction was maintained for 24 hours to grow nickel manganese cobalt-based composite metal hydroxide.
  • the resultant nickel manganese cobalt-based composite metal hydroxide particles were mixed with a lithium hydroxide and lithium (Li): composite metal (Me) in a molar ratio of 1: 1.07 as a lithium raw material, followed by oxygen atmosphere (oxygen partial pressure 20%). Under, 10 hours of primary heat treatment at 500 °C, 10 hours of secondary heat treatment at 820 °C to prepare a positive electrode active material.
  • a lithium secondary battery was manufactured using the cathode active materials prepared in Examples 1 and 2, Comparative Example 1, and Reference Example, respectively.
  • the positive electrode active material, the carbon black conductive material, and the PVdF binder prepared in Examples 1 to 2, Comparative Example 1, and Reference Example were 95: 2.5: 2.5 in a weight ratio of N-methylpyrrolidone solvent.
  • the mixture was mixed at a ratio to prepare a composition for forming a positive electrode (viscosity: 5000 mPa ⁇ s), which was applied to an aluminum current collector, dried at 130 ° C., and then rolled to prepare a positive electrode.
  • a negative electrode active material a natural graphite, a carbon black conductive material, and a PVdF binder are mixed in an N-methylpyrrolidone solvent in a weight ratio of 85: 10: 5 to prepare a composition for forming a negative electrode, which is applied to a copper current collector. To prepare a negative electrode.
  • An electrode assembly was manufactured between the positive electrode and the negative electrode prepared as described above through a separator of porous polyethylene, the electrode assembly was placed in a case, and an electrolyte solution was injected into the case to prepare a lithium secondary battery.
  • the particles of the nickel manganese cobalt-based composite metal hydroxide prepared as a precursor of the positive electrode active material according to Example 1 were observed by field emission scanning electron microscopy (FE-SEM), and the results of the core and shell Semi-diameter (corresponding to the thickness of the shell) and volume were calculated respectively. The results are shown in FIG. 2 and Table 1 below.
  • Example 1 the cathode active material prepared in Example 1 was processed using ion milling, and the cross-sectional structure of the cathode active material was observed using FE-SEM. The results are shown in FIG.
  • the total particle diameter of the positive electrode active material was 4.3 ⁇ m.
  • the thickness (radius) of the core portion was 0.4 ⁇ m
  • the thickness of the worm was 0.6 ⁇ m
  • the thickness of the shell was 1.15 ⁇ m.
  • the porosity of the buffer layer in the positive electrode active material was about 10% by volume.
  • the BET specific surface area was calculated from the nitrogen gas adsorption amount under liquid nitrogen temperature (77K) using BELSORP-mino II manufactured by BEL Japan, and tap density was measured using a tap density tester.
  • the BET specific surface area of the cathode active material prepared in Example 1 was 0.92 m 2 / g, and the tap density was 1.75 g / m 3 .
  • the crystal size of the polycrystalline lithium composite metal oxide particles of Examples 1 to 2, Comparative Example 1 and Reference Example was measured by XRD crystal analysis.
  • the polycrystalline lithium composite metal oxide particles of Examples 1 to 2, Comparative Example 1 and Reference Example were put in about 5 g of the holder, respectively, and the X-rays were irradiated on the particles to analyze the diffraction grating. peak) or the half-width of three or more peaks to determine grain size and content of nickel (Ni) intercalated into the lithium site.
  • Table 2 The results are shown in Table 2 below.
  • Example 1 (W doping & farm tools ship) 2.868 14.220 101.26 4.959 106 4.769 1.1
  • Example 2 (W doping) 2.867 14.216 101.19 4.959 108 4.772 1.0 Comparative Example 1 (bare) 2.866 14.210 101.1 4.959 178 4.777 1.1 Reference example (farm tool ship) 2.867 14.212 101.14 4.958 157 4.774 0.6
  • the positive electrode active materials of Examples 1 and 2 in which the grain size of the polycrystalline lithium composite metal oxide constituting the active material by W doping, showed nearly equivalent grain sizes and nickel content inserted in the lithium site.
  • the positive electrode active materials of Comparative Example 1 and Reference Example in which the crystal grain size was not controlled, showed a large grain size of 150 nm or more, and the positive electrode active material of Reference Example was made of nickel (Ni) embedded in a lower lithium site than Example 1 Content is indicated.
  • the positive electrode active material prepared in Example 1 was subjected to component analysis using EPMA. The results are shown in FIG. 3 and Table 3.
  • the lithium secondary battery was charged / discharged 800 times under conditions of 1C / 2C at a temperature of 25 ° C. within a range of 2.8V to 4.15V driving voltage.
  • cycle capacity retention which is the ratio of the discharge capacity at the 800th cycle with respect to the resistance at room temperature (25 ° C) and low temperature (-30 ° C) and the initial capacity after 800 charge / discharge cycles at room temperature Were respectively measured and shown in Table 4 below.
  • Example 1 1.18 1.02 94.5
  • Example 2 1.23 1.11 92.8 Comparative Example 1 1.45 1.59 92.5 Reference Example 1.34 1.25 95.4
  • a buffer layer having a three-dimensional network structure and voids is formed between the core and the shell, and metal elements of nickel, manganese, and cobalt are distributed in concentration gradients throughout the active material particles, respectively, and the active material
  • the lithium secondary battery including the active material has a positive electrode active material of Comparative Example 1 that does not have a core-shell structure, no concentration gradient of metal elements is formed, and the grain size of the lithium composite metal oxide constituting the active material is not controlled.
  • the positive electrode active material according to the present invention exhibits an excellent output characteristics and life characteristics improvement effect.
  • the lithium secondary battery including the positive electrode active material of Example 1 includes a core-shell structure and a buffer layer, and the metal elements in the active material particles have a concentration gradient, but the grain size of the lithium composite metal oxide constituting the active material is distributed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 이차전지용 양극활물질 및 이를 포함하는 이차전지에 관한 것으로, 상기 양극활물질은 코어; 상기 코어를 둘러싸며 위치하는 쉘; 및 상기 코어와 쉘 사이에 위치하며, 상기 코어와 쉘을 연결하는 3차원 망목구조체 및 공극을 포함하는 완충층을 포함하고, 상기 코어, 쉘 및 완충층에서의 3차원 망목구조체는 각각 독립적으로 복수 개의 결정립을 포함하는 하기 화학식 1의 다결정 리튬 복합금속 산화물을 포함하며, 상기 결정립은 평균 결정 크기가 50nm 내지 150nm인 것이다. [화학식 1] LiaNi1-x-yCoxM1yM3zM2wO2 (상기 화학식 1에서, M1, M2, M3, a, x, y, z 및 w는 명세서 중에서 정의한 바와 같다) 상기 양극활물질은 결정립 크기의 제어로 고출력 특성, 특히 저온에서 우수한 출력 특성을 나타낼 수 있다.

Description

이차전지용 양극활물질 및 이를 포함하는 이차전지
관련출원과의 상호인용
본 출원은 2015년 9월 30일자 한국특허출원 제2015-0137918호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 고출력 특성을 나타낼 수 있는 이차전지용 양극활물질 및 이를 포함하는 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
그러나, 리튬 이차전지는 충방전을 거듭함에 따라서 수명이 급속하게 떨어지는 문제점이 있다. 특히, 고온에서는 이러한 문제가 더욱 심각하다. 이러한 이유는 전지내부의 수분이나 기타 다른 영향으로 인해 전해질이 분해 되거나 활물질이 열화되고, 또한 전지의 내부저항이 증가되어 생기는 현상 때문이다.
이에 따라 현재 활발하게 연구 개발되어 사용되고 있는 리튬 이차전지용 양극활물질은 층상구조의 LiCoO2이다. LiCoO2는 수명특성 및 충방전 효율이 우수하여 가장 많이 사용되고 있지만, 구조적 안정성이 낮아 전지의 고용량화 기술에 적용되기에는 한계가 있다.
이를 대체하기 위한 양극활물질로서, LiNiO2, LiMnO2, LiMn2O4, LiFePO4, Li(NipCoqMnr)O2 등의 다양한 리튬 전이금속 산화물이 개발되었다. 이중, LiNiO2의 경우 높은 방전용량의 전지 특성을 나타내는 장점이 있으나, 간단한 고상반응으로는 합성이 어렵고, 열적 안정성 및 사이클 특성이 낮은 문제점이 있다. 또, LiMnO2, 또는 LiMn2O4 등의 리튬 망간계 산화물은 열적안전성이 우수하고, 가격이 저렴하다는 장점이 있지만, 용량이 작고, 고온 특성이 낮은 문제점이 있다. 특히, LiMn2O4의 경우 저가격 제품에 일부 상품화가 되어 있으나, Mn3 +로 인한 구조변형(Jahn-Teller distortion) 때문에 수명특성이 좋지 않다. 또한, LiFePO4는 낮은 가격과 안전성이 우수하여 현재 하이브리드 자동차(hybrid electric vehicle, HEV)용으로 많은 연구가 이루어지고 있으나, 낮은 전도도로 인해 다른 분야에 적용은 어려운 실정이다.
이 같은 사정으로 인해, LiCoO2의 대체 양극활물질로 최근 가장 각광받고 있는 물질은 리튬 니켈망간코발트 산화물, Li(NipCqMnr)O2 (이때, 상기 p, q, r은 각각 독립적인 산화물 조성 원소들의 원자분율로서, 0<p≤1, 0<q≤1, 0<r≤1, 0<p+q+r≤1임)이다. 이 재료는 LiCoO2보다 저가격이며 고용량 및 고전압에 사용될 수 있는 장점이 있으나, 율 특성(rate capability) 및 고온에서의 수명특성이 좋지 않은 단점을 갖고 있다.
이에 따라 리튬 전이금속 산화물내 조성의 변화 또는 결정 구조의 제어를 통해 리튬 이차전지의 성능을 향상시킬 수 있는 양극 활물질의 제조방법이 절실히 요구되고 있는 실정이다.
본 발명이 해결하고자 하는 제1기술적 과제는, 결정립 크기의 제어로 고출력 특성을 나타낼 수 있는 이차전지용 양극활물질 및 이의 제조방법을 제공하는 것이다.
또, 본 발명이 해결하고자 하는 제2기술적 과제는, 상기 양극활물질을 포함하는 이차전지용 양극, 리튬 이차전지, 전지모듈 및 전지팩을 제공하는 것이다.
상기 과제를 해결하기 위하여 본 발명의 일 실시예에 따르면, 코어; 상기 코어를 둘러싸며 위치하는 쉘; 및 상기 코어와 쉘 사이에 위치하며, 상기 코어와 쉘을 연결하는 3차원 망목구조체 및 공극을 포함하는 완충층을 포함하고, 상기 코어, 쉘, 및 완충층에서의 3차원 망목구조체는 각각 독립적으로 복수 개의 결정립을 포함하는 하기 화학식 1의 다결정 리튬 복합금속 산화물을 포함하며, 상기 결정립의 평균 결정 크기가 50nm 내지 150nm인 것인 이차전지용 양극활물질이 제공된다.
[화학식 1]
LiaNi1-x-yCoxM1yM3zM2wO2
(상기 화학식 1에서, M1은 Al 및 Mn으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함하고, M2는 Zr, Ti, Mg, Ta 및 Nb로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함하며, 그리고 M3은 W, Mo 및 Cr로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함하고, 1.0≤a≤1.5, 0<x≤0.5, 0<y≤0.5, 0.0005≤z≤0.03, 0≤w≤0.02, 0<x+y≤0.7이다)
본 발명의 다른 일 실시예에 따르면, 니켈 원료물질, 코발트 원료물질 및 M1 원료물질(이때, M1은 Al 및 Mn으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함함)을 혼합하여 제조한 금속 함유 용액에, 암모늄 양이온 함유 착물 형성제 및 염기성 화합물을 첨가하여 pH 11 내지 pH 13에서 공침반응시켜, 전구체 포함 반응용액을 준비하는 단계, 상기 전구체 포함 반응용액에 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 상기 반응용액의 pH가 8 이상 pH 11 미만이 될 때까지 첨가하여 상기 전구체를 성장시키는 단계, 및 상기 성장된 전구체를 리튬 원료물질과 혼합한 후 500℃ 내지 700℃에서의 1차 소성 및 700℃ 내지 900℃에서의 2차 소성을 수행하는 단계를 포함하며, 상기 금속 함유 용액의 제조시, 및 상기 성장된 전구체와 리튬 원료물질과의 혼합시 중 적어도 어느 하나의 공정시 M3 원료물질(이때, M3은 W, Mo 및 Cr로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함함)을 최종 제조되는 리튬 복합금속 산화물에서의 리튬을 제외한 금속원소의 총 몰에 대하여 0.0005 내지 0.03몰비로 더 첨가하는, 상기한 이차전지용 양극활물질의 제조방법이 제공된다.
본 발명의 또 다른 일 실시예에 따르면, 상기한 양극활물질을 포함하는 이차전지용 양극, 리튬 이차전지, 전지모듈 및 전지팩이 제공된다.
기타 본 발명의 실시예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
본 발명에 따른 이차전지용 양극활물질은 결정립 크기의 제어로 우수한 출력 특성, 특히 저온에서 우수한 출력 특성을 나타낼 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 이차전지용 양극활물질을 개략적으로 나타낸 단면구조도이다.
도 2는 실시예 1에서 제조한 전구체를 전계 방사형 전자현미경(field emission scanning electron microscopy, FE-SEM)으로 관찰한 사진이다.
도 3은 실시예 1에서 제조한 양극활물질을 FE-SEM으로 관찰한 사진이다(관찰배율=30000배).
[부호의 설명]
1 코어
2 쉘
3 완충층
3a 공극
3b 3차원 망목구조체
10 양극활물질
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서는 코어-쉘 구조를 갖는 입자에서의 코어와 쉘 사이에 상기 코어 및 쉘과 연결된 3차원 망목 구조의 완충층이 형성된 구조의 이차전지용 양극활물질의 제조시, 결정립의 크기 제어를 통해 이차전지의 출력 특성 및 수명 특성을 향상시킬 수 있다.
즉, 본 발명의 일 실시예에 따른 이차전지용 양극활물질은, 코어; 상기 코어를 둘러싸며 위치하는 쉘; 및 상기 코어와 쉘 사이에 위치하며, 상기 코어와 쉘을 연결하는 3차원 망목구조체 및 공극을 포함하는 완충층을 포함하고,
상기 코어, 쉘 및 완충층에서의 3차원 망목구조체는 각각 독립적으로 복수 개의 결정립을 포함하는 하기 화학식 1의 다결정 리튬 복합금속 산화물을 포함하며,
상기 결정립은 평균 결정 크기가 50nm 내지 150nm 이다:
[화학식 1]
LiaNi1-x-yCoxM1yM3zM2wO2
상기 화학식 1에서, M1은 Al 및 Mn으로 이루어진 군에서 선택되는 적어도 어느 하나의 원소를 포함하고, M2는 Zr, Ti, Mg, Ta 및 Nb로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함하며, 그리고 M3은 W, Mo 및 Cr로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함하며, a, x, y, z 및 w는 산화물 조성 원소들의 각각 독립적인 원자분율로서, 1.0≤a≤1.5, 0<x≤0.5, 0<y≤0.5, 0.0005≤z≤0.03, 0≤w≤0.02, 0<x+y≤0.7이다.
상기 화학식 1의 리튬 복합금속 산화물의 조성은 양극활물질 입자 전체의 평균조성이다.
보다 구체적으로, 상기 화학식 1에 있어서, M3은 주기율표 6족(VIB족)에 해당하는 원소로서, 활물질 입자의 제조시 소성 공정 중 입자 성장을 억제하는 역할을 한다. 상기 M3은 양극활물질의 결정 구조에 있어서, Ni, Co 또는 M1의 일부를 치환하여 이들 원소가 존재해야 할 위치에 존재할 수도 있고, 또는 리튬과 반응하여 리튬 산화물을 형성할 수도 있다. 이에 따라 M3의 함량 및 투입 시기의 조절을 통해 결정립의 크기를 제어할 수 있다. 구체적으로, 상기 M3은 W, Mo 및 Cr로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소일 수 있으며, 보다 구체적으로는 W 및 Cr중 적어도 어느 하나의 원소일 수 있다.
이와 같은 상기 M3은 상기 화학식 1의 리튬 복합금속 산화물 중 z에 해당하는 함량, 즉 0.0005≤z≤0.03으로 포함될 수 있다. z가 0.0005 미만이거나 또는 0.03을 초과할 경우 전술한 특성을 충족하는 활물질의 구현이 용이하지 않고, 그 결과 출력 및 수명 특성 개선효과가 미미할 수 있다. M3 원소의 함량 제어에 따른 입자 구조 구현 및 그에 따른 전지 특성 개선효과의 현저함을 고려할 때 보다 구체적으로 0.001≤z≤0.01일 수 있다.
또, 상기 화학식 1의 리튬 복합금속 산화물에 있어서, Li은 a에 해당하는 함량, 즉 1.0≤a≤1.5으로 포함될 수 있다. a가 1.0 미만이면 용량이 저하될 우려가 있고, 1.5를 초과하면 소성 공정에서 입자가 소결되어 버려, 활물질 제조가 어려울 수 있다. Li 함량 제어에 따른 양극활물질의 용량 특성 개선 효과의 현저함 및 활물질 제조시의 소결성이 발란스를 고려할 때 상기 Li는 보다 구체적으로 1.0≤a≤1.15의 함량으로 포함될 수 있다.
또, 상기 화학식 1의 리튬 복합금속 산화물에 있어서, Co는 x에 해당하는 함량, 즉 0<x≤0.5의 함량으로 포함될 수 있다. x가 0일 경우 용량 특성이 저하될 우려가 있고, 또 0.5를 초과할 경우 비용 증가의 우려가 있다. Co 포함에 따른 용량 특성 개선 효과의 현저함을 고려할 때, 상기 Co는 보다 구체적으로 0.10≤x≤0.35의 함량으로 포함될 수 있다.
또, 상기 화학식 1의 리튬 복합금속 산화물에 있어서, M1은 Al 및 Mn으로 이루어진 군에서 선택되는 적어도 어느 하나일 수 있으며, 보다 구체적으로는 Al 또는 Mn일 수 있다. 상기 M1은 y에 해당하는 함량, 즉 0<y≤0.5의 함량으로 포함될 수 있다. y가 0이면 M1 포함에 따른 개선효과를 얻을 수 없고, 0.5를 초과하면 오히려 전지의 출력 특성 및 용량 특성이 저하될 우려가 있다. M1 원소의 포함에 따른 전지 특성 개선 효과의 현저함을 고려할 때, 상기 M1은 보다 구체적으로 0.1≤y≤0.3의 함량으로 포함될 수 있다.
또, 상기 화학식 1의 리튬 복합금속 산화물 또는 상기 리튬 복합금속 산화물에서의 Ni, Co 및 M1의 원소는, 활물질내 금속 원소의 분포 조절을 통한 전지 특성 개선을 위해, 또 다른 원소, 즉 M2에 의해 일부 치환되거나 도핑될 수도 있다. 상기 M2는 구체적으로 Zr, Ti, Mg, Ta 및 Nb로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소일 수 있으며, 보다 구체적으로는 Zr 또는 Ti일 수 있다.
상기 M2의 원소는 양극활물질의 특성을 저하시키지 않는 범위 내에서 w에 해당하는 양, 즉 0≤w≤0.02의 함량으로 포함될 수 있다.
또, 상기 화학식 1의 리튬 복합금속 산화물은 복수 개의 결정립을 포함하는 다결정 화합물로서, 그 제조시 상기 리튬 복합금속 산화물 내 포함되는 M3 원소의 함량과 소성 조건의 제어를 통해, 고출력 특성을 나타낼 수 있도록 결정 입자크기를 최적화한 것이다. 리튬 복합금속 산화물이 다결정인 경우 출력 특성을 높일 수 있다. 더 나아가 다결정을 이루는 결정들의 평균 결정 크기가 50nm 내지 150nm일 때 결정 구조의 안정성이 더욱 증가하고 그 결과 출력 특성의 개선 효과는 더욱 현저하다. 상세하게는, 상기한 평균 결정 크기 범위를 벗어날 경우 출력 특성이 저하되는 동시에, 특히 평균 결정 크기가 50nm 미만일 경우 불안정한 결정 구조 형성에 따른 수명 특성 저하의 우려가 있고, 150nm를 초과할 경우 크랙(crack) 발생 등에 의한 수명 특성 저항의 우려가 있다. 결정 크기 제어에 따른 출력 특성 개선효과의 현저함을 고려할 때, 1차 입자의 평균 결정 크기는 보다 구체적으로는 80nm 내지 120nm일 수 있다.
본 발명에 있어서, 다결정(polycrystal)이란 둘 이상의 결정 입자들이 모여서 이루어진 결정체를 의미한다. 또, 본 발명에 있어서, 결정립의 평균 결정 크기는 상기 리튬 복합금속 산화물 입자를 X-선 회절 분석을 이용하여 정량적으로 분석할 수 있다. 예를 들면, 상기 다결정 리튬 복합금속 산화물 입자를 홀더에 넣고, X-선을 상기 입자에 조사하여 나오는 회절 격자를 분석함으로써, 1차입자의 평균 결정 크기를 정량적으로 분석할 수 있다.
한편, 본 발명의 일 실시예에 따른 리튬이차전지용 양극활물질은, 상기 화학식 1의 다결정 리튬 복합금속 산화물을 포함하는 코어 및 상기 코어를 둘러싸며 위치하며, 상기 화학식 1의 다결정 리튬 복합금속 산화물을 포함하는 쉘을 포함하고, 또 상기 코어와 쉘 사이에 상기 코어를 둘러싸며 위치하며, 공극, 및 상기 코어와 쉘을 연결하는 상기 화학식 1의 다결정 리튬 복합금속 산화물의 3차원 망목구조체를 포함하는 완충층을 더 포함한다.
이와 같이, 본 발명의 일 실시예에 따른 이차전지용 양극활물질은, 코어-쉘 구조를 갖는 입자에서의 코어와 쉘 사이에 상기 코어 및 쉘과 연결된 3차원 망목 구조의 완충층이 형성됨으로써, 전극 제조시 압연공정에 의한 활물질의 파괴를 최소화하고, 전해액과의 반응성을 극대화하며, 또 쉘을 형성하는 입자가 리튬이온의 삽입 및 탈리가 용이한 배향의 결정구조를 가져 이차전지의 출력 특성 및 수명 특성을 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 리튬이차전지용 양극활물질을 개략적으로 나타낸 단면구조도이다. 도 1은 본 발명을 설명하기 위한 일 예일 뿐 본 발명이 이에 한정되는 것은 아니다.
도 1을 참조하여 설명하면, 본 발명의 일 실시예에 따른 이차전지용 양극활물질(10)은 코어(1), 상기 코어를 둘러싸는 쉘(2), 그리고 코어와 쉘 사이에 상기 코어를 둘러싸며 위치하는 완충층(3)을 포함하며, 상기 완충층(3)은 공극(3a)과 3차원 망목구조체(3b)를 포함한다.
구체적으로, 상기 양극활물질(10)에 있어서, 상기 코어(1)는 상기한 화학식 1의 다결정 리튬 복합금속 산화물(이하 '제1리튬 복합금속 산화물'이라 함)을 포함한다.
또, 상기 코어(1)는 상기한 제1리튬 복합금속 산화물의 단일 입자로 이루어질 수도 있고, 또는 상기 제1리튬 복합금속 산화물의 1차 입자들이 응집된 2차 입자로 이루어질 수도 있다. 이때 1차 입자들은 균일할 수도 있고, 불균일 할 수도 있다.
또, 상기 양극활물질(10)에 있어서, 상기 쉘(2)은 상기한 다결정의 리튬 복합금속 산화물(이하 '제2리튬 복합금속 산화물'이라 함)을 포함한다.
상기 제2리튬 복합금속 산화물은 양극활물질의 중심에서부터 외부로 방사형으로 성장된, 결정배향성 입자일 수 있다. 이와 같이, 쉘을 형성하는 제2리튬 복합금속 산화물의 입자가 리튬의 삽입 및 탈리가 원활한 방향으로의 결정배향성을 가짐으로써, 동일 조성의 결정배향성을 갖지 않는 입자에 비해 높은 출력특성을 구현할 수 있다.
구체적으로, 상기 쉘(2)에 있어서 상기 제2리튬 복합금속 산화물의 입자는 육면체 등의 다각형, 원기둥, 섬유상, 또는 인편상 등의 다양한 형상을 가질 수 있다. 구체적으로는 1.5 이상의 종횡비(aspect ratio)를 갖는 섬유상일 수 있다. 쉘을 구성하는 제2리튬 복합금속 산화물의 입자의 종횡비가 1.5 미만이면 균일한 입자 성장이 이루어지지 않아 전기화학 특성이 저하될 우려가 있다. 이때, 상기 종횡비는 제2리튬 복합금속 산화물 입자의 장축방향의 길이에 대한 단축방향의 길이의 비를 의미한다. 또, 상기 쉘(2)은 제2리튬 복합금속 산화물의 입자 사이에 형성되는 공극을 더 포함할 수도 있다.
또, 상기한 코어(1)와 쉘(2) 사이에는, 공극(3a), 및 상기 코어와 쉘 사이를 연결하는 3차원 망목구조체(3b)를 포함하는 완충층(3)이 위치한다.
상기 완충층(3)에 있어서, 공극(3a)은 활물질의 제조시 반응물의 pH를 제어함에 따라 활물질 입자가 중공형 구조로 변환되는 과정에서 형성되는 것으로, 상기 코어(1)와 쉘(2) 사이에 공간을 형성하여 전극 제조를 위한 압연시 완충작용을 한다. 또 활물질 내부로까지 전해액이 용이하게 투과되어 코어와 반응할 수 있도록 함으로써 활물질의 전해액과의 반응면적을 증가시키는 역할을 한다. 이와 같은 공극(3a)은 양극활물질 총 부피에 대하여 30부피% 이하, 보다 구체적으로는 2부피% 내지 30부피%로 포함될 수 있다. 상기 범위 내로 포함될 때, 활물질의 기계적 강도의 저하없이 우수한 완충작용 및 전해액과의 반응면적 증가 효과를 나타낼 수 있다. 상기 공극 형성에 따른 개선효과의 현저함을 고려할 때 상기 공극(3a)은 보다 구체적으로 양극활물질 총 부피에 대하여 5부피% 내지 20부피%로 포함될 수 있다. 이때 완충층의 공극율은 집속이온빔(focused ion beam, FIB)을 이용한 입자의 단면 분석 또는 수은압입법에 의해 측정할 수 있다.
또, 상기 완충층(3)에 있어서, 3차원 망목구조체(3b)는 활물질의 제조시 활물질 입자가 중공형 구조로 변환되며 내부 코어를 생성하는 과정에서 형성되는 것으로, 코어와 쉘 사이에 연결되어 코어(1)와 쉘(2) 사이의 공간을 지지하는 역할을 한다. 이에 따라 상기 3차원 망목구조체(3b)는 코어(1) 및 쉘(2)과 마찬가지로 상기한 화학식 1의 다결정 리튬 복합금속 산화물(이하 제3리튬 복합금속 산화물이라 함)을 포함한다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질에 있어서, 상기 화학식 1의 다결정 리튬 복합금속 산화물내 포함되는 니켈, M1 및 코발트 중 적어도 어느 하나의 금속원소는, 상기 활물질 입자 내에서 증가하거나 또는 감소하는 농도구배로 분포할 수 있다.
본 발명에 있어서, 활물질내 금속원소의 농도구배 또는 농도 프로파일이란 X축이 입자표면에서 중심부의 깊이를 나타내고, Y축이 금속원소의 함유량을 나타낼 때, 입자 표면에서 중심부의 깊이에 따른 금속원소의 함유량을 나타내는 그래프를 의미한다. 일례로, 농도 프로파일의 평균 기울기가 양이라는 것은 입자 중심부 구간이 입자 표면 부분 보다 해당 금속 원소가 상대적으로 많이 위치하는 것을 의미하고, 평균 기울기가 음이라는 것은 입자 중심부 구간 보다 입자 표면 부분에 금속원소가 상대적으로 많이 위치하고 있는 것을 의미한다. 본 발명에 있어서, 활물질 입자내에서의 금속의 농도구배 및 농도 프로파일은 X선 광전자 분광법(X-ray Photoelectron Spectroscopy(XPS), ESCA(Electron Spectroscopy for Chemical Analysis)라고도 함), 전자선 마이크로 애널라이저(Electron Probe Micro Analyzer, EPMA), 유도결합 플라스마-원자 방출 분광법(Inductively Coupled Plasma - Atomic Emission Spectrometer, ICP-AES), 또는 비행 시간형 2차 이온 질량분석기(Time of Flight Secondary Ion Mass Spectrometry, ToF-SIMS) 등의 방법을 이용하여 확인할 수 있으며, 구체적으로는 XPS를 이용하여 활물질내 금속원소의 프로파일을 확인하는 경우, 입자 표면에서 중심부 방향으로 활물질을 에칭(etching time)하면서, 에칭시간 별로 금속원소비(atomic ratio)를 측정하고, 이로부터 금속원소의 농도 프로파일을 확인할 수 있다.
구체적으로, 본 발명의 일 실시예에 따른 양극활물질에 있어서, 니켈, 코발트 및 M1 중 적어도 하나의 금속원소는 활물질 입자 전체에 걸쳐 금속의 농도가 점진적으로 변화하는 농도구배를 가질 수 있으며, 금속원소의 농도구배 기울기는 하나 이상의 값을 나타낼 수 있다. 이와 같이 연속적인 농도구배를 가짐으로써, 중심으로부터 표면에 이르기까지 급격한 상 경계 영역이 존재하지 않아 결정 구조가 안정화되고 열 안정성이 증가하게 된다. 또, 금속의 농도구배 기울기가 일정할 경우, 구조 안정성 개선효과가 더욱 향상될 수 있다. 또, 농도구배를 통해 활물질 입자 내에서의 각 금속의 농도를 달리함으로써, 해당 금속의 특성을 용이하게 활용하여 양극활물질의 전지성능 개선효과를 더욱 향상시킬 수 있다.
본 발명에 있어서 "금속의 농도가 점진적으로 변화하는 농도 구배를 나타낸다"란, 금속의 농도가 입자 전체에 걸쳐 단계적으로 변화하는 농도 분포로 존재한다는 것을 의미한다. 구체적으로, 상기 농도 분포는 입자 내에서 1㎛당 금속 농도의 변화가, 활물질 입자 내 포함되는 해당 금속의 총 원자량을 기준으로, 각각 0.1원자% 내지 30원자%, 보다 구체적으로는 0.1원자% 내지 20원자%, 보다 더 구체적으로는 1원자% 내지 10원자%의 차이가 있는 것일 수 있다.
보다 구체적으로는, 상기 양극활물질에 있어서, 활물질내 포함된 니켈의 농도는 활물질 입자의 중심에서부터 입자의 표면 방향으로 연속적인 농도구배를 가지면서 감소할 수 있다. 이때 상기 니켈의 농도구배 기울기는 활물질 입자의 중심에서부터 표면까지 일정할 수 있다. 이와 같이 활물질 입자 내 입자 중심에서 니켈의 농도가 고농도를 유지하고, 입자 표면측으로 갈수록 농도가 감소하는 농도 구배를 포함하는 경우, 양극활물질의 열안정성을 개선시킬 수 있다.
또, 상기 양극활물질에 있어서, 활물질내 포함된 M1의 농도는 활물질 입자의 중심에서부터 입자의 표면 방향으로 연속적인 농도구배를 가지면서 증가할 수 있다. 이때 상기 M1의 농도구배 기울기는 활물질 입자의 중심에서부터 표면까지 일정할 수 있다. 이와 같이, 활물질 입자 내에 입자 중심에서 M1, 특히 망간의 농도가 저농도를 유지하고, 입자 표면측으로 갈수록 농도가 증가하는 농도구배를 포함하는 경우, 양극활물질의 용량 감소 없이 열안정성을 개선시킬 수 있다. 보다 구체적으로 상기 M1은 Mn일 수 있다.
또, 상기 양극활물질에 있어서, 활물질내 포함된 코발트의 농도는 활물질 입자의 중심에서부터 입자의 표면 방향으로 연속적인 농도구배를 가지면서 증가할 수 있다. 이때 상기 활물질의 농도구배 기울기는 활물질 입자의 중심에서부터 표면까지 일정할 수 있다. 이와 같이 활물질 입자 내에 입자 중심에서 코발트의 농도가 저농도를 유지하고, 표면측으로 갈수록 농도가 증가하는 농도구배를 포함하는 경우, 코발트의 사용량을 감소시키면서도 양극활물질의 용량 특성을 개선시킬 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질에 있어서, 상기 코어 내에 포함되는 니켈의 함량이 쉘 내에 포함되는 니켈의 함량보다 많을 수 있으며, 구체적으로 상기 코어는 코어 내 포함되는 전이 금속원소 총 몰에 대하여 60몰% 이상 100몰% 미만의 함량으로 니켈을 포함하고, 상기 쉘은 쉘 내 포함되는 전이 금속원소 총 몰에 대하여 30몰% 이상 65몰% 미만의 함량으로 니켈을 포함할 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질에 있어서, 상기 코어 내에 포함되는 망간의 함량이 쉘 내에 포함되는 망간의 함량 보다 적을 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질에 있어서, 상기 코어 내에 포함되는 코발트의 함량이 쉘 내에 포함되는 코발트의 함량 보다 적을 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질에 있어서, 니켈, 망간 및 코발트는 활물질 입자 전체에 걸쳐 각각 독립적으로, 연속적으로 변화하는 농도구배를 나타내고, 상기 니켈의 농도는 활물질 입자의 중심에서부터 표면 방향으로 연속적인 농도구배를 가지면서 감소하고, 그리고 상기 코발트 및 망간의 농도는 각각 독립적으로 활물질 입자의 중심에서부터 표면 방향으로 연속적인 농도구배를 가지면서 증가할 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질에 있어서, 니켈, 망간 및 코발트는 코어 및 쉘 내에서 각각 독립적으로 연속적으로 변화하는 농도구배를 나타내고, 상기 니켈의 농도는 코어의 중심에서부터 코어와 완충층의 계면까지, 그리고 완충층과 쉘의 계면에서부터 쉘 표면까지 연속적인 농도구배를 가지면서 감소하고, 그리고 상기 코발트 및 망간의 농도는 각각 독립적으로 코어의 중심에서부터 코어와 완충층의 계면까지, 그리고 완충층과 쉘의 계면에서부터 쉘 표면까지 연속적인 농도구배를 가지면서 증가할 수 있다.
이와 같이, 활물질 내에 부분적으로 또는 전체에 걸쳐 양극활물질 입자의 표면측으로 갈수록 니켈의 농도는 감소하고, 망간 및 코발트의 농도는 증가하는 조합된 농도구배를 포함함으로써, 용량 특성을 유지하면서도 열안정성을 나타낼 수 있다.
또, 상기 활물질에 있어서, 니켈, M1 및 코발트는 활물질 입자 전체에 걸쳐 각각 독립적으로, 변화하는 농도구배를 나타내고, 상기 니켈의 농도는 활물질 입자의 중심에서부터 표면 방향으로 연속적인 농도구배를 가지면서 감소하고, 그리고 상기 코발트 및 M1의 농도는 각각 독립적으로 활물질 입자의 중심에서부터 표면 방향으로 연속적인 농도구배를 가지면서 증가할 수 있다. 이와 같이, 활물질 전체에 걸쳐 활물질 입자의 표면측으로 갈수록 니켈의 농도는 감소하고, M1 및 코발트의 농도는 증가하는 조합된 농도구배를 포함함으로써, 양극활물질의 용량 특성을 유지하면서도 열안정성을 개선시킬 수 있다.
상기와 같은 구조를 갖는 본 발명의 일 실시예에 따른 상기 양극활물질은, 1차 입자가 조립된 2차 입자일 수 있다.
구체적으로 상기 양극활물질은 평균 입자 직경(D50)이 2㎛ 내지 20㎛, 보다 구체적으로는 3㎛ 내지 15㎛인 것일 수 있다. 양극활물질의 평균 입자 직경이 2㎛ 미만이면 다결정 리튬 복합금속 산화물 입자의 안정성이 저하될 우려가 있고, 20㎛를 초과하면 이차전지의 출력특성이 저하될 우려가 있다. 또 본 발명에 따른 상기 양극활물질은 상기한 결정립 크기와 함께 2차 입자의 평균 입자 직경을 동시에 충족함으로써 우수한 구조 안정성과 함께 전지 적용시 보다 개선된 출력 특성을 나타낼 수 있다.
본 발명에 있어서, 상기 양극활물질의 평균 입자 직경(D50)은 입경 분포의 50% 기준에서의 입경으로 정의할 수 있다. 본 발명에 있어서 양극활물질 입자의 평균 입자 직경(D50)은 예를 들어, 주사전자 현미경(scanning electron microscopy, SEM) 또는 전계 방사형 전자 현미경(field emission scanning electron microscopy, FE-SEM) 등을 이용한 전자 현미경 관찰이나, 또는 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 레이저 회절법에 의해 측정시, 보다 구체적으로는, 양극활물질의 입자를 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28 kHz의 초음파를 출력 60W로 조사한 후, 측정 장치에 있어서의 입경 분포의 50% 기준에서의 평균 입자 직경(D50)을 산출할 수 있다.
또, 상기 양극활물질에 있어서, 양극활물질의 반지름에 대한 코어 반지름의 비가 0초과 0.4미만, 보다 구체적으로는 0.01 내지 0.2, 보다 더 구체적으로는 0.1 내지 0.2이고, 양극활물질의 반지름에 대한, 양극활물질 중심에서 완충층과 쉘의 계면까지의 길이 비가 0초과 0.7미만, 보다 구체적으로는 0.01 내지 0.5, 보다 더 구체적으로는 0.1 내지 0.3일 수 있다.
또, 상기 양극활물질에 있어서, 양극활물질의 반지름에 대한 쉘의 두께의 비를 쉘 영역이라고 할 때, 하기 수학식 1에 따라 결정되는 쉘 영역이 0.2 내지 1, 보다 구체적으로는 0.25 내지 0.7, 보다 구체적으로는 0.5 내지 0.6일 수 있다.
[수학식 1]
쉘 영역=(양극활물질의 반지름-코어 반지름-완충층 두께)/양극활물질의 반지름
상기한 바와 같은 비율로 양극활물질내 코어, 완충층 및 쉘이 형성되고, 또 각각의 영역 내에서 금속원소의 농도구배가 형성될 경우, 활물질 입자내 니켈, 코발트 및 M1의 분포가 보다 최적화되어 제어됨으로써, 전극 제조시 압연공정에 의한 활물질의 파괴를 최소화하고, 전해액과의 반응성을 극대화함으로써 이차전지의 출력 특성 및 수명 특성을 더욱 더 향상시킬 수 있다.
본 발명에 있어서, 코어부의 입경은 집속 이온빔(forced ion beam, fib)를 이용한 입자 단면 분석을 통해 측정할 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질은 BET 비표면적이 0.1m2/g 내지 1.9m2/g인 것일 수 있다. 상기 양극활물질의 BET 비표면적이 1.9m2/g를 초과하면 양극활물질간 응집으로 인한 활물질층내 양극활물질의 분산성 저하 및 전극내 저항 증가의 우려가 있고, 또 BET 비표면적이 0.1m2/g 미만일 경우, 양극활물질 자체의 분산성 저하 및 용량 저하의 우려가 있다.
본 발명에 있어서, 양극활물질의 비표면적은 BET(Brunauer-Emmett-Teller) 법에 의해 측정한 것으로서, 구체적으로는 BEL Japan 사 BELSORP-mino II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출할 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질은 상기한 평균 입자 직경 및 BET 비표면적 조건을 동시에 중촉함으로써 우수한 용량 및 충방전 특성을 나타낼 수 있다. 보다 구체적으로, 상기 양극활물질은 3㎛ 내지 15㎛의 평균 입자 직경(D50) 및 0.15m2/g 내지 1.5m2/g의 BET 비표면적을 가질 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질은 1.2g/cc 이상, 혹은 1.2g/cc 내지 2.5g/cc의 탭 밀도를 가질 수 있다. 상기한 범위의 높은 탭밀도를 가짐으로써, 고용량 특성을 나타낼 수 있다. 본 발명에 있어서, 양극활물질의 탭밀도는 통상의 탭밀도 측정기를 이용하여 측정할 수 있으며, 구체적으로는 탭밀도 시험기(tap density tester)를 이용하여 측정할 수 있다.
상기와 같은 구조 및 물성적 특성을 갖는 본 발명의 일 실시예에 따른 양극활물질은, 니켈 원료물질, 코발트 원료물질 및 M1 원료물질(이때, M1은 Al 및 Mn으로 이루어진 군에서 선택되는 적어도 어느 하나의 원소를 포함함)을 혼합하여 제조한 금속 함유 용액에, 암모늄 양이온 함유 착물 형성제 및 염기성 화합물을 첨가하여 pH 11 내지 pH 13에서 공침반응시켜, 전구체 포함 반응용액을 준비하는 단계(단계 1), 상기 전구체 포함 반응용액에 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 상기 반응용액의 pH가 8 이상 pH 11 미만이 될 때까지 첨가하여 상기 전구체를 성장시키는 단계(단계 2), 및 상기 성장된 전구체를 리튬 원료물질과 혼합한 후 500℃ 내지 700℃에서의 1차 소성 및 700℃ 내지 900℃에서의 2차 소성을 수행하는 단계(단계 3)를 포함하며, 상기 금속 함유 용액의 제조시, 및 상기 성장된 전구체와 리튬 원료물질과의 혼합시 중 적어도 어느 하나의 공정시 M3 원료물질(이때, M3은 W, Mo 및 Cr로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함함)을 더 첨가하는 제조방법에 의해 제조될 수 있다. 이때, 상기 양극활물질이 M2(이때, M2는 Zr, Ti, Mg, Ta 및 Nb로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함함)를 더 포함하는 경우, 상기 단계 1에서의 각 금속원소의 원료물질 혼합시 M2 원료물질이 첨가될 수도 있고, 또는 단계 2에서 리튬 원료물질과 혼합시 M2 원료물질이 첨가될 수도 있다. 이에 따라 본 발명의 다른 일 실시예에 따르면 상기한 양극활물질의 제조방법이 제공된다.
이하 각 단계별로 상세히 설명하면, 상기 양극활물질의 제조를 위한 제조방법에 있어서 단계 1은, 니켈 원료물질, 코발트 원료물질, M1 원료물질 및 선택적으로 M3 또는 M2 원료물질을 이용하여 전구체를 준비하는 단계이다.
구체적으로, 상기 전구체는 니켈 원료물질, 코발트 원료물질, M1 원료물질, 및 선택적으로 M3 또는 M2 원료물질을 혼합하여 제조한 금속 함유 용액에, 암모늄 양이온 함유 착물 형성제 및 염기성 화합물을 첨가하여 공침반응시킴으로써 제조될 수 있다. 이때 각 원료물질의 혼합비는 최종 제조되는 양극활물질에서의 각 금속원소의 함량 조건을 충족하도록 하는 범위 내에서 적절히 결정될 수 있다.
상기 금속 함유 용액은 각각 니켈 원료물질, 코발트 원료물질, M1 함유 원료물질 그리고 선택적으로 M3 또는 M2 함유 원료물질을 용매, 구체적으로는 물, 또는 물과 균일하게 혼합가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물에 첨가하여 제조할 수도 있고, 또는 각각의 금속 함유 원료물질을 포함하는 용액, 구체적으로는 수용액을 제조한 후 이를 혼합하여 사용할 수도 있다.
상기한 금속 함유 원료물질로는 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등이 사용될 수 있으며, 물에 용해될 수 있는 한 특별히 한정되지 않는다.
일례로 상기 코발트 원료물질로는 Co(OH)2, CoOOH, Co(OCOCH3)2ㆍ4H2O, Co(NO3)2ㆍ6H2O 또는 Co(SO4)2ㆍ7H2O 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 니켈 원료물질로는 Ni(OH)2, NiO, NiOOH, NiCO3·2Ni(OH)2·4H2O, NiC2O2·2H2O, Ni(NO3)2·6H2O, NiSO4, NiSO4·6H2O, 지방산 니켈염 또는 니켈 할로겐화물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 M1 원료물질로는 M1 원소를 포함하는 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등이 사용될 수 있다. 일례로 M1이 Mn인 경우, 망간 원료물질로는 Mn2O3, MnO2, 및 Mn3O4 등의 망간산화물; MnCO3, Mn(NO3)2, MnSO4, 아세트산 망간, 디카르복실산 망간염, 시트르산 망간 및 지방산 망간염과 같은 망간염; 옥시 수산화물, 그리고 염화 망간 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또, 상기 M1이 Al인 경우, 알루미늄 원료물질로는 AlSO4, AlCl, 또는 AlNO3 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 M2 원료물질로는 M2 원소를 포함하는 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등이 사용될 수 있다. 일례로 M2가 Ti인 경우, 산화티타늄이 사용될 수 있다. 상기 M2 원료물질은 최종 제조되는 양극활물질에서의 M2 원소의 함량 조건을 충족할 수 있도록 하는 범위로 사용될 수 있다.
또, 상기 M3 원료물질로는 M3 원소를 포함하는 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등이 사용될 수 있다. 일례로 M3이 W인 경우, 산화텅스텐이 사용될 수 있다. 상기 M3 원료물질은 최종 제조되는 양극활물질에서의 M3 원소의 함량 조건을 충족할 수 있도록 하는 범위로 사용될 수 있다.
또, 상기 암모늄 양이온 함유 착물 형성제는 구체적으로 NH4OH, (NH4)2SO4, NH4NO3, NH4Cl, CH3COONH4, 또는 NH4CO3 등일 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 또, 상기 암모늄 양이온 함유 착물 형성제는 수용액의 형태로 사용될 수도 있으며, 이때 용매로는 물, 또는 물과 균일하게 혼합가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
상기 암모늄 양이온 함유 착물 형성제는 상기 금속염 용액 1몰에 대하여 0.5 내지 1의 몰비가 되도록 하는 양으로 첨가될 수 있다. 일반적으로 킬레이팅제는 금속과 1:1 몰비 이상으로 반응하여 착제를 형성하지만, 형성된 착체 중 염기성 수용액과 반응하지 않은 미반응 착체가 중간 생성물로 변하여 킬레이팅제로 회수되어 재사용될 수 있기 때문에 본 발명에서는 통상에 비해 킬레이팅 사용량을 낮출 수 있다. 그 결과, 양극활물질의 결정성을 높이고, 안정화할 수 있다.
또, 상기 염기성 화합물은 NaOH, KOH 또는 Ca(OH)2 등과 같은 알칼리 금속 또는 알칼리 토금속의 수산화물 또는 이들의 수화물일 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 염기성 화합물 역시 수용액의 형태로 사용될 수도 있으며, 이때 용매로는 물, 또는 물과 균일하게 혼합가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
또, 상기 공침반응은, pH가 11 내지 13인 조건에서 수행될 수 있다. pH가 상기한 범위를 벗어날 경우, 제조되는 전구체의 크기를 변화시키거나 입자 쪼개짐을 유발할 우려가 있다. 또 전구체 표면에 금속 이온이 용출되어 부반응에 의해 각종 산화물을 형성할 우려가 있다. 보다 구체적으로는 혼합용액의 pH가 11 내지 12인 조건에서 수행될 수 있다.
또, 상기한 pH 범위를 충족하도록 하기 위해 상기 암모늄 양이온 함유 착물 형성제와 염기성 화합물은 1:10 내지 1:2의 몰비로 사용될 수 있다. 이때 상기 pH값은 액체의 온도 25℃에서의 pH값을 의미한다.
또, 상기 공침반응은 질소 또는 아르곤 등의 비활성 분위기하에서, 40℃ 내지 70℃의 온도에서 수행될 수 있다. 또, 상기 반응시 반응 속도를 증가시키기 위하여 교반 공정이 선택적으로 수행될 수 있으며, 이때 교반 속도는 100 rpm 내지 2000 rpm일 수 있다.
또, 최종 제조되는 양극활물질내 금속원소의 농도구배를 형성하고자 하는 경우에는, 상기한 금속 함유 용액과는 서로 다른 농도로 니켈, 코발트, M1 함유 금속염 그리고 선택적으로 M2 함유 금속염을 포함하는 제2금속 함유 용액을 준비한 후, 상기 금속 함유 용액과 상기 제2 금속 함유 용액의 혼합 비율이 100부피%:0부피% 에서 0부피%:100부피%까지 점진적으로 변화되도록 상기 제1 금속 함유 용액에 상기 제2 금속 함유 용액을 첨가하는 동시에, 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 첨가하여 반응 시킴으로써 수행될 수 있다.
이와 같이 상기 금속 함유 용액에 대한 제2 금속 함유 용액의 투입량을 연속적으로 증가시키며 반응속도 및 반응시간을 제어함으로써, 하나의 공침 반응 공정으로 니켈, 코발트 및 M1이 각각 독립적으로 입자의 중심에서부터 표면까지 연속적으로 변화하는 농도구배를 나타내는 복합금속 수산화물을 제조할 수 있다. 이때 생성되는 수산화물 내에서의 금속의 농도구배와 그 기울기는 금속 함유 용액 및 제2 금속 함유 용액의 조성과 혼합 공급 비율에 의해 용이하게 조절될 수 있으며, 특정 금속의 농도가 높은 고밀도 상태를 만들기 위해서는 반응시간을 길게 하고, 반응속도를 낮추는 것이 바람직하고, 특정 금속의 농도가 낮은 저밀도 상태를 만들기 위해서는 반응시간을 짧게 하고, 반응속도를 증가시키는 것이 바람직하다.
구체적으로, 상기 금속 함유 용액에 첨가되는 제2 금속 함유 용액의 속도는 초기 투입속도 대비 1% 내지 30%의 범위 내에서 연속적으로 증가시키며 수행될 수 있다. 구체적으로, 금속 함유 용액의 투입속도는 150ml/hr 내지 210ml/hr일 수 있고, 상기 제2 금속 함유 용액의 투입속도는 120ml/hr 내지 180ml/hr일 수 있으며, 상기 투입 속도 범위 내에서 초기 투입속도 대비 1% 내지 30%의 범위 내에서 제2금속 함유 용액의 투입속도가 연속적으로 증가될 수 있다. 이때 상기 반응은 40℃ 내지 70℃에서 수행될 수 있다. 또, 상기 제1 금속 함유 용액에 대한 제2 금속 함유 용액의 공급량 및 반응시간을 조절함으로써 전구체 입자의 크기를 조절할 수 있다.
상기와 같은 공정에 의해 전구체로서, 복합금속 수산화물의 입자가 생성되어 반응용액 중에 석출되게 된다. 구체적으로 상기 전구체는 하기 화학식 2의 화합물을 포함할 수 있다.
[화학식 2]
Ni1-x-yCoxM1yM3zM2wOH
(상기 화학식 2에서, M1, M2, M3, x, y, z 및 w는 앞서 정의한 바와 같다)
상기 반응의 결과로 침전된 전구체에 대해서는 통상의 방법에 따라 분리 후, 건조 공정이 선택적으로 수행될 수 있다.
상기 건조공정은 통상의 건조 방법에 따라 실시될 수 있으며, 구체적으로는 100℃ 내지 200℃의 온도범위에서의 가열처리, 열풍주입 등의 방법으로 15시간 내지 30시간 동안 수행될 수 있다.
다음으로, 상기 양극활물질의 제조를 위한 제조방법에 있어서, 단계 2는 상기 단계 1에서 제조한 금속 함유 수산화물의 입자를 성장시키는 공정이다.
구체적으로 상기 전이금속함유 수산화물의 입자는, 상기 금속 함유 수산화물의 입자가 생성된 반응용액에 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 상기 반응용액의 pH가 공침 반응시의 pH보다 낮아질 때까지 첨가함으로써 성장될 수 있다.
구체적으로 니켈 이온, 코발트 이온 및 망간 이온의 합계 몰수가 0.5M 내지 2.5M, 혹은 1M 내지 2.2M일 수 있다. 또, 이 같은 이온 농도가 유지되도록 전이금속 수산화물의 석출 속도에 맞추어 전이금속의 원료물질을 연속적으로 공급하는 것이 바람직하다.
또, 상기 단계 2에서의 금속 함유 수산화물의 입자 성장 단계는, 단계 1에서의 금속 함유 수산화물의 입자 생성 단계보다 낮은 pH에서 실시될 수 있으며, 구체적으로는 단계 1에서의 pH 보다 낮은, pH 8 이상이고 pH 11 미만, 보다 구체적으로는 pH 8 내지 pH 10.5의 범위에서 실시될 수 있다.
또, 상기 니켈-코발트-망간의 복합금속 함유 수산화물 입자의 성장 단계는 반응물의 pH를 시간당 pH 1 내지 pH 2.5의 속도로 변화시키며 수행될 수 있다. 이와 같이 공침 반응시에 비해 낮은 pH에서 상기와 같은 pH 변화속도로 수행됨으로써 원하는 입자 구조를 용이하게 형성할 수 있다.
또, 상기 금속 함유 수산화물의 입자가 생성된 반응용액에 대한 암모늄 양이온 함유 착물 형성제와 염기성 화합물의 투입시, 동일 속도로 투입할 수도 있고, 또는 투입 속도를 연속적으로 감소시키며 투입할 수 있다. 투입속도를 감소시키며 투입할 경우, 20% 이상 100% 미만의 속도 감소율로 투입속도를 감소시키며 투입할 수 있다.
상기와 같이 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 투입 속도와 농도, 그리고 반응온도를 제어함으로써, 입자 성장 단계에서의 전이금속 수산화물의 석출속도를 단계 1에서의 리튬 전이금속 수산화물의 석출속도 보다 빠르게 할 수 있다. 그 결과 전구체가 되는 전이금속 수산화물의 입자의 외표면 근방부의 밀도를 낮게 하여 후속의 열처리 공정시 입자 성장 방향을 용이하게 유도할 수 있다.
상기 단계 2의 공정은 비활성 분위기 하에서 실시될 수 있다.
상기 단계 2의 공정 후, 성장된 전이금속 수산화물의 입자를 반응용액으로부터 분리한 후 세정 및 건조하는 공정이 선택적으로 더 실시될 수 있다.
상기 건조공정은 통상의 건조 방법에 따라 실시될 수 있으며, 구체적으로는 100℃ 내지 120℃의 온도범위에서의 가열처리, 열풍주입 등의 방법으로 실시될 수 있다.
상기 양극활물질의 제조를 위한 제조방법에 있어서 단계 3은, 상기 단계 2에서 성장시킨 금속 함유 수산화물의 입자를 리튬 원료물질, 및 선택적으로 M3 또는 M2 원료물질과 혼합한 후 소성 처리함으로써 양극활물질을 제조하는 단계이다. 이때 M3 및 M2 원료물질은 앞서 설명한 바와 동일하다.
상기 리튬 원료물질로는 리튬 함유 탄산염(예를 들어, 탄산리튬 등), 수화물(예를 들어 수산화리튬 I수화물(LiOH·H2O) 등), 수산화물(예를 들어 수산화리튬 등), 질산염(예를 들어, 질산리튬(LiNO3) 등), 염화물(예를 들어, 염화리튬(LiCl) 등) 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 또, 상기 리튬 함유 원료물질의 사용량은 최종 제조되는 리튬 복합금속 산화물에서의 리튬과 전이금속의 함량에 따라 결정될 수 있으며, 구체적으로는 리튬 원료물질내 포함되는 리튬과 복합금속 수산화물내 포함되는 금속원소(Me)와 몰비(리튬/금속원소(Me)의 몰비)가 1.0 이상이 되도록 하는 양으로 사용될 수 있다.
또, 상기 소성 공정은 250℃ 내지 500℃에서의 1차 소성 및 700℃ 내지 900℃에서 2차 소성의 다단계로 수행될 수 있다.
상기 1차 소성은 2차 소성시 소성율을 높이기 위한 것이며, 이후 1차 소성시에 비해 고온에서 2차 소성을 수행함으로써 전술한 결정립 크기를 비롯한 물성적 특성의 구현이 가능하다. 보다 구체적으로, 상기 소성 공정은 400℃ 내지 500℃에서의 1차 소성 및 750℃ 내지 850℃에서 2차 소성의 2단계로 수행될 수 있다.
또, 상기 소성 공정은 공기 분위기 또는 산소 분위기(예를 들면, O2 등)에서 가능하며, 보다 구체적으로는 산소 분압 20부피% 이상의 산소 분위기 하에서 수행될 수 있다. 또, 상기 소성 공정은 상기한 조건에서 5시간 내지 48시간, 혹은 10시간 내지 20시간 실시될 수 있다.
또, 상기 소성 공정시 소결 보조제가 선택적으로 더 첨가될 수 있다.
소결 보조제의 첨가시 저온에서 결정을 쉽게 성장시킬 수 있고, 또 건식 혼합시 불균일 반응을 최소화할 수 있다. 또 상기 소결 보조제는 리튬 복합금속 산화물 1차 입자의 모서리 부분을 둔하게 하여 둥근 곡선 형태의 입자로 만드는 효과가 있다. 일반적으로 망간을 포함하는 리튬 산화물계 양극활물질에서는 입자의 모서리로부터 망간의 용출이 빈번히 발생하며, 이러한 망간 용출로 인해 이차전지의 특성 특히 고온시의 수명특성이 감소된다. 이에 대해 소결보조제를 사용할 경우, 1차 입자의 모서리를 둥글게 함으로써 망간의 용출 부위를 감소시킬 수 있고, 그 결과 이차전지의 안정성 및 수명특성을 향상시킬 수 있다.
구체적으로, 상기 소결보조제는, 붕산, 사붕산리튬, 산화붕소 및 붕산암모늄 등의 붕소 화합물; 산화코발트(Ⅱ), 산화코발트(Ⅲ), 산화코발트(Ⅳ) 및 사산화삼코발트 등의 코발트 화합물; 산화 바나듐 등의 바나듐 화합물; 산화 란타늄 등의 란타늄 화합물; 붕화 지르코늄, 규산칼슘 지르코늄 및 산화 지르코늄 등의 지르코늄 화합물; 산화이트륨 등의 이트륨 화합물; 또는 산화 갈륨 등의 갈륨 화합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 소결 보조제는 전구체의 총 중량 대비 0.2중량부 내지 2중량부, 보다 구체적으로는 0.4중량부 내지 1.4중량부의 양으로 사용될 수 있다.
또, 상기 소성 공정시 수분제거제가 선택적으로 더 첨가될 수도 있다. 구체적으로 상기 수분제거제로는 구연산, 주석산, 글리콜산 또는 말레인산 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 상기 수분제거제는 전구체 총 중량에 대하여 0.01중량부 내지 2중량부의 함량으로 사용될 수 있다.
상기 단계 2 및 3을 통해 생성, 성장된 금속 함유 수산화물의 입자는 그 제조 공정시의 공정 조건, 즉, pH 등의 차이로 인해 입자의 내부와 이후 입자 성장에 의해 형성된 입자 외부의 결정이 서로 다른 성질을 갖는다. 이에 따라, pH가 높을 때 만들어진 내부의 결정은 상기와 같은 소성 공정 동안에 수축하고, 낮은 pH 및 온도에서 만들어진 결정은 성장을 함으로써, 수축된 결정은 코어를 형성하고, 외부로 성장한 결정은 쉘을 형성한다. 그리고, 이 같은 코어와 쉘의 형성으로 상기 코어와 쉘 사이에 공극이 형성되는 동시에, 코어와 쉘 사이에 위치하는 결정은 상기 입자의 내부와 외부를 연결하는 3차원 망목 구조가 형성되게 된다. 또, 상기 입자 외부의 결정은 입자의 중심에서 외부로 방사형으로 성장하여 결정배향성을 갖게 된다.
상기한 제조방법에 따라 제조된 양극활물질은, 반응물의 pH, 농도 및 속도를 제어하여 코어와 쉘 사이에 공극을 포함하는 완충층을 포함함으로써, 전극 제조 공정에서의 압연시 활물질의 파괴를 최소화하고, 전해액과의 반응성을 극대화하며, 또 쉘을 형성하는 입자가 리튬이온의 삽입 및 탈리가 용이한 배향의 결정구조를 가져 이차전지의 저항 감소 및 수명 특성을 향상시킬 수 있다. 동시에 상기 양극활물질은 활물질 입자 전체에 걸쳐 전이금속의 분포가 제어됨으로써, 전지 적용시 고용량, 고수명 및 열안정성을 나타내는 동시에 고전압시 성능 열화를 최소화 할 수 있다.
또, 상기와 같은 공정에 의해 제조되는 양극활물질은, 전술한 바와 같은 결정립 크기의 제어로 고출력 특성, 특히 저온에서 우수한 출력 특성을 나타낼 수 있다. 또, 상기 양극활물질내 전이금속의 분포가 추가적으로 제어될 수 있으며, 그 결과로서 열안정성이 개선되어 고전압시 성능 열화를 최소화 할 수 있다.
이에 따라 본 발명의 또 다른 일 실시예에 따르면 상기한 양극활물질을 포함하는 양극, 및 리튬 이차전지를 제공한다.
구체적으로, 상기 양극은 양극집전체 및 상기 양극집전체 위에 형성되며, 상기한 양극 활물질을 포함하는 양극활물질층을 포함한다.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 또는 부직포체 등 다양한 형태로 사용될 수 있다.
또, 상기 양극활물질층은 앞서 설명한 양극활물질과 함께, 도전재 및 바인더 중 적어도 1종을 선택적으로 더 를 포함할 수 있다.
이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 양극활물질층 총 중량에 대하여 1중량% 내지 30중량%로 포함될 수 있다.
또, 상기 바인더는 양극활물질 입자들 간의 부착 및 양극활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극활물질층 총 중량에 대하여 1중량% 내지 30중량%로 포함될 수 있다.
상기 양극은 상기한 양극활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극활물질와 함께, 필요한 경우 바인더 및 도전재 중 적어도 1종을 용매 중에 용해 또는 분산시켜 제조한 양극활물질층 형성용 조성물을 양극집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다. 이때 상기 양극활물질, 바인더, 도전재의 종류 및 함량은 앞서 설명한 바와 같다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸설폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또, 다른 방법으로, 상기 양극은 상기 양극활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 양극을 포함하는 전기화학소자가 제공된다. 상기 전기화학소자는 구체적으로 전지, 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 상기 양극은 앞서 설명한 바와 같다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극집전체 및 상기 음극집전체 상에 위치하는 음극활물질층을 포함한다.
상기 음극집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극활물질층은 음극활물질과 함께 선택적으로 바인더 및 도전재를 포함한다. 상기 음극활물질층은 일례로서 음극집전체 상에 음극활물질, 및 선택적으로 바인더 및 도전재를 포함하는 음극 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극집전체 상에 라미네이션함으로써 제조될 수도 있다.
상기 음극활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOx(0 < x < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
또, 상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일한 것일 수 있다.
한편, 상기 리튬 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1M 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1중량% 내지 5중량%로 포함될 수 있다.
상기와 같이 본 발명에 따른 양극활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
[실시예 1: 양극활물질의 제조]
60℃로 설정된 회분식 배치(batch)형 5L 반응기에서, 니켈 설페이트, 코발트 설페이트, 망간 설페이트 및 텅스텐 함유 원료물질로서 소듐 텅스테이트 디하이드레이트(sodium tungstate dehydrate)를 물 중에서 각 화합물내 포함된 금속원소의 몰비를 기준하여 80:10:10:0.25의 몰비로 혼합하여 2M 농도의 제1 금속염 용액을 준비하고, 또 니켈 설페이트, 코발트 설페이트, 망간 설페이트 및 텅스텐 함유 원료물질로서 소듐 텅스테이트 디하이드레이트(sodium tungstate dehydrate)를 물 중에서 각 화합물내 포함된 금속원소의 몰비를 기준하여 20:50:30:0.25의 몰비로 혼합하여 2M 농도의 제2 금속염 수용액을 준비하였다. 제1금속염이 담겨있는 용기는 반응기로 들어가도록 연결하고, 제2금속염이 담겨있는 용기는 제1금속염 용기로 들어가도록 연결하였다. 추가로 4M NaOH 용액과 7% 농도의 NH4OH 수용액을 준비하여 각각 반응기에 연결하였다.
공침 반응기(용량 5L)에 탈이온수 3리터를 넣은 뒤 질소가스를 반응기에 2리터/분의 속도로 퍼징하여 물 속의 용존 산소를 제거하고 반응기 내를 비산화 분위기로 조성하였다. 이후 4M NaOH를 100ml 투입한 후, 60℃ 온도에서 1200rpm의 교반속도로 pH 12.0이 되도록 유지시켰다. 이후 상기 제1 금속염을 180ml/hr, NaOH 수용액을 180ml/hr, NH4OH 수용액을 10ml/hr의 속도로 각각 투입하여 30분간 반응시켜 제1금속염의 수산화물의 씨드를 형성하였다. 이후 상기 NaOH 수용액 및 NH4OH 수용액을 시간당 pH 2의 속도로 pH를 낮추어 투입함으로써 pH를 9.5로 변화시킴과 동시에 제2금속염을 제1금속염의 용기로 150ml/hr로 투입시켜 수산화물 입자의 성장을 유도함과 동시에 입자 내부에 농도구배가 생기도록 유도하였다. 이후 24시간 반응을 유지하여 니켈망간코발트계 복합금속 수산화물을 성장시켰다.
결과로 형성된 니켈망간코발트계 복합금속 수산화물의 입자를 리튬 원료물질로서 리튬 수산화물과, 리튬(Li):복합금속(Me)의 몰비가 1:1.07의 몰비가 되도록 혼합한 후 산소분위기(산소 분압 20%)하에서, 500℃에서 10시간 1차 열처리하고, 820℃에서 10시간 2차 열처리하여 양극활물질을 제조하였다.
[실시예 2: 양극활물질의 제조]
60℃로 설정된 회분식 배치(batch)형 5L 반응기에서, 니켈 설페이트, 코발트 설페이트, 망간 설페이트 및 텅스텐 함유 원료물질로서 소듐 텅스테이트 디하이드레이트(sodium tungstate dehydrate)를 물 중에서 각 화합물내 포함된 금속원소의 몰비를 기준하여 60:20:20:0.25의 몰비로 혼합하여 2M 농도의 금속염 용액을 준비하였다. 금속염 용액이 담겨있는 용기는 반응기로 들어가도록 연결하고, 추가로 4M NaOH 용액과 7% 농도의 NH4OH 수용액을 준비하여 각각 반응기에 연결하였다.
공침 반응기(용량 5L)에 탈이온수 3리터를 넣은 뒤 질소가스를 반응기에 2리터/분의 속도로 퍼징하여 물 속의 용존 산소를 제거하고 반응기 내를 비산화 분위기로 조성하였다. 이후 4M NaOH를 100ml 투입한 후, 60℃ 온도에서 1200rpm의 교반속도로 pH 12.0이 되도록 유지시켰다. 이후 상기 금속염 용액을 180ml/hr, NaOH 수용액을 180ml/hr, NH4OH 수용액을 10ml/hr의 속도로 각각 투입하여 30분간 반응시켜 금속염의 수산화물의 씨드를 형성하였다. 이후 상기 NaOH 수용액 및 NH4OH 수용액을 시간당 pH 2의 속도로 pH를 낮추어 투입함으로써 pH를 9.5로 변화시킴과 동시에 수산화물 입자의 성장을 유도하였다. 이후 24시간 반응을 유지하여 니켈망간코발트계 복합금속 수산화물을 성장시켰다.
결과로 형성된 니켈망간코발트계 복합금속 수산화물의 입자를 리튬 원료물질로서 리튬 수산화물과, 리튬(Li):복합금속(Me)의 몰비가 1:1.07의 몰비로 혼합한 후 산소분위기(산소 분압 20%)하에서, 500℃에서 10시간 1차 열처리하고, 820℃에서 10시간 2차 열처리하여 양극활물질을 제조하였다.
[실시예 3: 양극활물질의 제조]
60℃로 설정된 회분식 배치(batch)형 5L 반응기에서, 니켈 설페이트, 코발트 설페이트, 망간 설페이트 및 텅스텐 함유 원료물질로서 소듐 텅스테이트 디하이드레이트(sodium tungstate dehydrate)를 물 중에서 각 화합물내 포함된 금속원소의 몰비를 기준하여 60:20:20:0.25의 몰비로 혼합하여 2M 농도의 금속염 용액을 준비하였다. 금속염 용액이 담겨있는 용기는 반응기로 들어가도록 연결하고, 추가로 4M NaOH 용액과 7% 농도의 NH4OH 수용액을 준비하여 각각 반응기에 연결하였다.
공침 반응기(용량 5L)에 탈이온수 3리터를 넣은 뒤 질소가스를 반응기에 2리터/분의 속도로 퍼징하여 물 속의 용존 산소를 제거하고 반응기 내를 비산화 분위기로 조성하였다. 이후 4M NaOH를 100ml 투입한 후, 60℃ 온도에서 1200rpm의 교반속도로 pH 12.0이 되도록 유지시켰다. 이후 상기 금속염 용액을 180ml/hr, NaOH 수용액을 180ml/hr, NH4OH 수용액을 10ml/hr의 속도로 각각 투입하여 30분간 반응시켜 금속염의 수산화물의 씨드를 형성하였다. 이후 상기 NaOH 수용액 및 NH4OH 수용액을 시간당 pH 2의 속도로 pH를 낮추어 투입함으로써 pH를 9.5로 변화시킴과 동시에 수산화물 입자의 성장을 유도하였다. 이후 24시간 반응을 유지하여 니켈망간코발트계 복합금속 수산화물을 성장시켰다.
결과로 형성된 니켈망간코발트계 복합금속 수산화물의 입자를 리튬 원료물질로서 리튬 수산화물 및 마그네슘 수산화물과, 리튬(Li):복합금속(Me=리튬과 마그네슘을 제외한 금속들):Mg의 몰비가 1:1.07:0.01의 몰비로 혼합한 후 산소분위기(산소 분압 20%)하에서, 500℃에서 10시간 1차 열처리하고, 820℃에서 10시간 2차 열처리하여 양극활물질을 제조하였다.
[비교예 1: 양극활물질의 제조]
60℃로 설정된 회분식 배치(batch)형 5L 반응기에서, 니켈 설페이트, 코발트 설페이트, 및 망간 설페이트를 물 중에서 각 화합물내 포함된 금속원소의 몰비를 기준하여 60:20:20의 몰비로 혼합하여 2M 농도의 금속염 용액을 준비하였다. 상기 금속염 용액이 담겨있는 용기는 반응기로 들어가도록 연결하고, 4M NaOH 용액과 7% 농도의 NH4OH 수용액을 준비하여 각각 반응기에 연결하였다.
공침 반응기(용량 5L)에 탈이온수 3리터를 넣은 뒤 질소가스를 반응기에 2리터/분의 속도로 퍼징하여 물 속의 용존 산소를 제거하고 반응기 내를 비산화 분위기로 조성하였다. 이후 4M NaOH를 100ml 투입한 후, 60℃ 온도에서 1200rpm의 교반속도로 pH 12.0이 되도록 유지시켰다. 이후 상기 금속염 용액을 180ml/hr, NaOH 수용액을 180ml/hr, NH4OH 수용액을 10ml/hr의 속도로 각각 투입하여 30분간 반응시켜 금속염의 수산화물 씨드를 형성하였다. 이후 상기 NaOH 수용액 및 NH4OH 수용액을 시간당 pH 2의 속도로 pH를 낮추어 투입함으로써 pH를 9.5로 변화시킴과 동시에 수산화물 입자의 성장을 유도하였다. 이후 24시간 반응을 유지하여 니켈망간코발트계 복합금속 수산화물을 성장시켰다.
결과로 형성된 니켈망간코발트계 복합금속 수산화물의 입자를 리튬 원료물질로서 리튬 수산화물과, 리튬(Li):복합금속(Me)의 몰비가 1:1.07의 몰비로 혼합한 후 산소분위기(산소 분압 20%)하에서, 500℃에서 10시간 1차 열처리하고, 820℃에서 10시간 2차 열처리하여 양극활물질을 제조하였다.
[참고예: 양극활물질의 제조]
60℃로 설정된 회분식 배치(batch)형 5L 반응기에서, 니켈 설페이트, 코발트 설페이트, 망간 설페이트를 물 중에서 각 화합물내 포함된 금속원소의 몰비를 기준하여 80:10:10의 몰비로 혼합하여 2M 농도의 제1금속염 용액을 준비하고, 또 니켈 설페이트, 코발트 설페이트, 망간 설페이트를 물 중에서 각 화합물내 포함된 금속원소의 몰비를 기준하여 20:50:30의 몰비로 혼합하여 2M 농도의 제2금속염 용액을 준비하였다. 상기 제1금속염 용액이 담겨있는 용기는 반응기로 들어가도록 연결하고, 제2금속염 용액이 담겨있는 용기는 제1금속염 용기로 들어가도록 연결하였다. 추가로 4M NaOH 용액과 7% 농도의 NH4OH 수용액을 준비하여 각각 반응기에 연결하였다.
공침 반응기(용량 5L)에 탈이온수 3리터를 넣은 뒤 질소가스를 반응기에 2리터/분의 속도로 퍼징하여 물 속의 용존 산소를 제거하고 반응기 내를 비산화 분위기로 조성하였다. 이후 4M NaOH를 100ml 투입한 후, 60℃ 온도에서 1200rpm의 교반속도로 pH 12.0이 되도록 유지시켰다. 이후 상기 제1금속염 용액을 180ml/hr, NaOH 수용액을 180ml/hr, NH4OH 수용액을 10ml/hr의 속도로 각각 투입하여 30분간 반응시켜 제1금속염의 수산화물의 씨드를 형성하였다. 이후 시간당 pH 2의 속도로 pH를 낮추어 pH를 9.5로 변화시킴과 동시에 제2금속염 용액을 제1금속염의 용기로 150ml/hr로 투입시켜 수산화물 입자의 성장을 유도함과 동시에 입자 내부에 농도구배가 생기도록 유도하였다. 이후 24시간 반응을 유지하여 니켈망간코발트계 복합금속 수산화물을 성장시켰다.
결과로 형성된 니켈망간코발트계 복합금속 수산화물의 입자를 리튬 원료물질로서 리튬 수산화물과 리튬(Li):복합금속(Me)의 몰비가 1:1.07의 몰비로 혼합한 후 산소분위기(산소 분압 20%)하에서, 500℃에서 10시간 1차 열처리하고, 820℃에서 10시간 2차 열처리하여 양극활물질을 제조하였다.
[제조예: 리튬 이차전지의 제조]
상기 실시예 1~2, 비교예 1 및 참고예에서 제조한 양극활물질을 각각 이용하여 리튬 이차전지를 제조하였다.
상세하게는, 상기 실시예 1~2, 비교예 1 및 및 참고예에서 제조한 각각의 양극활물질, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 95:2.5:2.5의 비율로 혼합하여 양극 형성용 조성물(점도: 5000mPa·s)을 제조하고, 이를 알루미늄 집전체에 도포한 후, 130℃에서 건조 후, 압연하여 양극을 제조하였다.
또, 음극활물질로서 천연흑연, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 85:10:5의 비율로 혼합하여 음극 형성용 조성물을 제조하고, 이를 구리 집전체에 도포하여 음극을 제조하였다.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차 전지를 제조하였다. 이때 전해액은 에틸렌카보네이트/디메틸카보네이트/에틸메틸카보네이트(EC/EMC/DEC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다.
[실험예 1: 양극활물질의 구조 관찰]
상기 실시예 1에 따른 양극활물질의 전구체로서 제조한 니켈망간코발트계 복합금속 수산화물의 입자에 대해 전계 방사형 전자 현미경(field emission scanning electron microscopy, FE-SEM)으로 관찰하고, 그 결과로부터 코어 및 쉘의 반직경(쉘의 경우 두께에 해당함)과 부피를 각각 계산하였다. 그 결과를 도 2 및 하기 표 1에 나타내었다.
반직경(㎛) 부피(㎛3)
코어 0.94 3.5
1.085 31.3
전체 2.025 34.8
또, 상기 실시예 1에서 제조한 양극활물질에 대하여 이온 밀링(ion milling)을 이용하여 가공한 후, FE-SEM을 이용하여 양극활물질 단면 구조를 관찰하였다. 그 결과를 도 3에 나타내었다.
단면 구조를 확인한 결과, 코어 및 쉘 부 내에 3차원 망목 구조체를 포함하는 완층층의 형성을 확인할 수 있으며, 또 쉘내 입자가 입자 중심으로부터 표면방향으로 결정배향성을 나타내고 있음을 확인할 수 있다. 또, 양극활물질의 총 입경은 4.3㎛ 이었으며, 양극활물질의 반지름 2.15㎛에서, 코어부의 두께(반지름)은 0.4㎛이고, 완층충의 두께는 0.6㎛, 쉘의 두께는 1.15㎛ 이었다. 이로부터 부피비를 환산하여 공극율을 계산한 결과, 양극활물질내 완충층의 공극율은 약 10부피%이었다.
추가적으로, 상기 실시예 1에서 제조한 양극활물질에 대해 BET 비표면적 및 탭 밀도를 각각 측정하였다.
상기 BET 비표면적은 BEL Japan 사 BELSORP-mino II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출하였고, 탭밀도는 탭밀도 시험기(tap density tester)를 이용하여 측정하였다.
측정 결과 상기 실시예 1에서 제조한 양극활물질의 BET 비표면적은 0.92m2/g이고, 탭밀도는 1.75g/m3이었다.
[실험예 2: 양극활물질의 결정 크기 관찰]
실시예 1~2, 비교예 1 및 참고예의 다결정 리튬 복합금속 산화물 입자에 대해 XRD 결정 분석에 의해 입자의 결정크기를 측정하였다.
상세하게는, 상기 실시예 1~2, 비교예 1 및 참고예의 다결정 리튬 복합금속 산화물 입자를 각각 홀더에 5g 정도로 넣고 X-선을 입자에 조사하여 나오는 회절 격자를 분석한 후, 주 피크(main peak) 또는 3개 이상의 피크의 반가폭으로부터 결정립 크기 및 리튬 사이트내에 삽입된 니켈(Ni)의 함량을 구하였다. 그 결과를 하기 표 2에 나타내었다.
a-axis(Å) c-axis(Å) 단위격자 셀 부피(Å8) c/a 결정립 크기(nm) 밀도(g/cc) Ni occ. @ Li site (몰%)
실시예 1(W도핑&농도구배) 2.868 14.220 101.26 4.959 106 4.769 1.1
실시예 2(W도핑) 2.867 14.216 101.19 4.959 108 4.772 1.0
비교예 1(bare) 2.866 14.210 101.1 4.959 178 4.777 1.1
참고예(농도구배) 2.867 14.212 101.14 4.958 157 4.774 0.6
실험결과, W 도핑에 의해 활물질을 구성하는 다결정 리튬 복합금속 산화물의 결정립 크기가 제어된 실시예 1 및 2의 양극활물질은 거의 동등 수준의 결정립 크기 및 리튬 사이트내 삽인된 니켈 함량을 나타내었다. 한편, 결정립의 크기가 제어되지 않은 비교예 1 및 참고예의 양극활물질은 150nm 이상의 큰 결정립 크기를 나타내었으며, 또, 참고예의 양극활물질은 실시예 1에 비해 낮은 리튬 사이트내에 삽입된 니켈(Ni)의 함량을 나타내었다.
[실험예 3: 양극활물질 내 금속원소의 농도구배 확인]
상기 실시예 1에서 제조한 양극활물질에 대하여 EPMA를 이용하여 성분분석을 실시하였다. 그 결과를 하기 도 3 및 표 3에 나타내었다.
Scan Ni(mol%) Co(mol%) Mn(mol%)
코어 01 68 18 14
완충층 02 65 20 15
03 62 21 16
04 60 22 16
05 58 24 19
전체 60 23 17
상기 표 3에서 scan의 위치는 도 3에 나타난 바와 같다.
도 3 및 표 3에 나타난 바와 같이, 양극활물질에서도 농도값의 차이가 있기는 하나 전구체에서와 마찬가지로, 입자의 중심에서부터 표면으로 갈수록 Ni의 농도는 감소하고, Co 및 Mn의 농도는 증가하는 농도구배를 확인할 수 있다.
[실험예 4: 리튬 이차전지의 전지 특성 평가]
상기 제조예에서 제조한, 상기 실시예 1~2, 비교예 1 및 참고예에서의 양극활물질을 각각 포함하는 리튬 이차전지에 대해 하기와 같은 방법으로 전지 특성을 평가하였다.
상세하게는, 상기 리튬이차전지에 대해 25℃의 온도에서 2.8V 내지 4.15V 구동전압 범위내에서 1C/2C의 조건으로 충/방전을 800회 실시하였다.
또, 출력 특성을 평가하기 위하여 상온(25℃)에서 충방전한 전지를 SOC 50%를 기준으로 충전하여 저항을 측정하였으며, 저온(-30℃)에서는 SOC 50%를 기준으로 전류인가시 전압이 강하되는 폭을 측정하였다.
그 결과로서, 상온(25℃) 및 저온(-30℃)에서의 저항, 그리고 상온에서의 충방전 800회 실시 후의 초기용량에 대한 800 사이클째의 방전용량의 비율인 사이클 용량유지율(capacity retention)을 각각 측정하고, 하기 표 4에 나타내었다.
상온(25℃) 저항(mohm) 저온(-30℃)에서의 전압 강하(V) 상온(25℃)에서의 800회 사이클 용량유지율 (%)
실시예 1 1.18 1.02 94.5
실시예 2 1.23 1.11 92.8
비교예 1 1.45 1.59 92.5
참고예 1.34 1.25 95.4
실험결과, 본 발명에 따라 코어와 쉘 사이에 3차원 망목 구조체 및 공극을 갖는 완충층이 형성되고, 활물질 입자 전체에 걸쳐 니켈, 망간 및 코발트의 금속원소가 각각 농도구배로 분포하며, 또 활물질을 구성하는 다결정 리튬 복합금속 산화물의 결정립 크기가 제어된 실시예 1의 양극활물질을 포함하는 리튬 이차전지 및 상기 실시예 1과 비교하여 금속원소가 농도구배를 갖지 않는 것을 제외하고는 동일한 실시예 2의 양극활물질을 포함하는 리튬 이차전지는, 코어-쉘 구조를 가지지 않고, 금속원소의 농도구배가 형성되지 않으며, 또 활물질의 구성하는 리튬 복합금속 산화물의 결정립 크기가 제어되지 않은 비교예 1의 양극활물질을 포함하는 리튬 이차전지와 비교하여, 상온에서의 저항 및 저온에서의 전압 강하가 크게 감소되고 용량 유지율이 향상되었다. 이로부터 본 발명에 따른 양극활물질이 우수한 출력특성 및 수명 특성 개선 효과를 나타냄을 알 수 있다.
또, 실시예 1의 양극활물질을 포함하는 리튬 이차전지는, 코어-쉘 구조 및 완충층을 포함하고, 활물질 입자내 금속원소가 농도구배를 가지며 분포하지만, 활물질의 구성하는 리튬 복합금속 산화물의 결정립 크기가 제어되지 않은 참고예의 양극활물질을 포함하는 리튬 이차전지와 비교하여, 개선된 상온 및 저온에서의 출력특성을 나타내면서도 동등 수준의 우수한 용량 유지율, 즉 수명특성을 나타내었다.
또, 실시예 1의 양극활물질을 포함하는 리튬 이차전지는 상기 실시예 1과 비교하여 금속원소가 농도구배를 갖지 않는 것을 제외하고는 동일한 실시예 2의 양극활물질을 포함하는 리튬 이차전지와 비교하여 보다 우수한 출력특성 및 수명 특성 개선 효과를 나타내었다.

Claims (20)

  1. 코어;
    상기 코어를 둘러싸며 위치하는 쉘; 및
    상기 코어와 쉘 사이에 위치하며, 상기 코어와 쉘을 연결하는 3차원 망목구조체 및 공극을 포함하는 완충층을 포함하고,
    상기 코어, 쉘 및 완충층에서의 3차원 망목구조체는 각각 독립적으로 복수 개의 결정립을 포함하는 하기 화학식 1의 다결정 리튬 복합금속 산화물을 포함하며,
    상기 결정립은 평균 결정 크기가 50nm 내지 150nm인 것인 이차전지용 양극활물질.
    [화학식 1]
    LiaNi1 -x- yCoxM1yM3zM2wO2
    (상기 화학식 1에서, M1은 Al 및 Mn으로 이루어진 군에서 선택되는 적어도 어느 하나의 원소를 포함하고, M2는 Zr, Ti, Mg, Ta 및 Nb로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함하며, 그리고 M3은 W, Mo 및 Cr로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함하고, 1.0≤a≤1.5, 0<x≤0.5, 0<y≤0.5, 0.0005≤z≤0.03, 0≤w≤0.02, 0<x+y≤0.7이다)
  2. 제1항에 있어서,
    상기 니켈, 코발트 및 M1 중 적어도 어느 하나의 금속원소는, 상기 활물질 입자 내에서 변화하는 농도구배를 나타내는 것인 이차전지용 양극활물질.
  3. 제1항에 있어서,
    상기 코어 내에 포함되는 니켈의 함량이 쉘 내에 포함되는 니켈의 함량 보다 많은 것인 이차전지용 양극활물질.
  4. 제1항에 있어서,
    상기 코어 내에 포함되는 M1의 함량이 쉘 내에 포함되는 M1의 함량 보다 적은 것인 이차전지용 양극활물질.
  5. 제1항에 있어서,
    상기 코어 내에 포함되는 코발트의 함량이 쉘 내에 포함되는 코발트의 함량 보다 적은 것인 이차전지용 양극활물질.
  6. 제1항에 있어서,
    상기 코어 내에 포함되는 니켈의 함량이 쉘 내에 포함되는 니켈의 함량 보다 많으며,
    상기 코어는 코어 내 포함되는 전이 금속원소 총 몰에 대하여 60몰% 이상 100몰% 미만의 함량으로 니켈을 포함하고,
    상기 쉘은 쉘 내 포함되는 전이 금속원소 총 몰에 대하여 30몰% 이상 65몰% 미만의 함량으로 니켈을 포함하는 것인 이차전지용 양극활물질.
  7. 제1항에 있어서,
    상기 니켈, 코발트 및 M1은 활물질 입자 전체에 걸쳐 각각 독립적으로 변화하는 농도구배로 분포하고,
    상기 니켈은 활물질 입자의 중심에서부터 표면 방향으로 감소하는 농도구배로 분포하며, 그리고
    상기 코발트 및 M1은 각각 독립적으로 활물질 입자의 중심에서부터 표면 방향으로 증가하는 농도구배로 분포하는 것인 이차전지용 양극활물질.
  8. 제1항에 있어서,
    상기 쉘은 양극활물질의 중심에서부터 표면 방향으로 방사형으로 성장된 결정배향성의 다결정 리튬 복합금속 산화물의 입자를 포함하는 것인 이차전지용 양극활물질.
  9. 제1항에 있어서,
    상기 양극활물질의 반지름에 대한 코어 반지름의 비가 0초과 0.4미만이고, 상기 양극활물질의 반지름에 대한, 양극활물질 중심에서 완충층과 쉘의 계면까지의 길이의 비가 0초과 0.7 미만인 것인 이차전지용 양극활물질.
  10. 제1항에 있어서,
    하기 수학식 1에 따라 결정되는 양극활물질의 반지름에 대한 쉘 두께의 비인 쉘 영역이 0.2 내지 1인 것인 이차전지용 양극활물질.
    [수학식 1]
    쉘 영역=(양극활물질의 반지름-코어 반지름-완충층 두께)/양극활물질의 반지름
  11. 제1항에 있어서,
    상기 M1이 망간(Mn) 또는 알루미늄(Al)인 것인 이차전지용 양극활물질.
  12. 제1항에 있어서,
    평균 입자 직경(D50)이 2㎛ 내지 20㎛, BET 비표면적이 0.1m2/g 내지 1.9m2/g 이며, 1.2g/cc 내지 2.5 g/cc의 탭밀도를 갖는 것인 이차전지용 양극활물질.
  13. 니켈 원료물질, 코발트 원료물질 및 M1 원료물질(이때, M1은 Al 및 Mn으로 이루어진 군에서 선택되는 적어도 어느 하나의 원소를 포함함)을 혼합하여 제조한 금속 함유 용액에, 암모늄 양이온 함유 착물 형성제 및 염기성 화합물을 첨가하여 pH 11 내지 pH 13에서 공침반응시켜, 전구체 포함 반응용액을 준비하는 단계,
    상기 전구체 포함 반응용액에 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 상기 반응용액의 pH가 8 이상 pH 11 미만이 될 때까지 첨가하여 상기 전구체를 성장시키는 단계; 및
    상기 성장된 전구체를 리튬 원료물질과 혼합한 후 500℃ 내지 700℃에서의 1차 소성 및 700℃ 내지 900℃에서의 2차 소성을 수행하는 단계를 포함하며,
    상기 금속 함유 용액의 제조시, 또는 상기 성장된 전구체와 리튬 원료물질과의 혼합시에 M3 원료물질(이때, M3은 W, Mo 및 Cr로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소를 포함함)을 최종 제조되는 리튬 복합금속 산화물에서의 리튬을 제외한 금속원소의 총 몰에 대하여 0.0005 내지 0.03몰비로 더 첨가하는, 제1항에 따른 이차전지용 양극활물질의 제조방법.
  14. 제13항에 있어서,
    상기 전구체의 성장 단계는 반응물의 pH를 시간당 pH 1 내지 pH 2.5의 속도로 변화시키며 수행되는 것인 이차전지용 양극활물질의 제조방법.
  15. 제13항에 있어서,
    상기 리튬 원료물질은 리튬 원료물질내 포함되는 리튬과 상기 전구체 내 포함되는 금속원소(Me)와의 몰비(리튬/금속원소(Me)의 몰비)가 1.0 이상이 되도록 사용되는 것인 이차전지용 양극활물질의 제조방법.
  16. 제13항에 있어서,
    상기 전구체 포함 반응용액을 준비 단계시, 상기 금속 함유 용액과는 서로 다른 농도로 니켈 원료물질, 코발트 원료물질 및 M1 원료물질을 포함하는 제2 금속 함유 용액을 더 첨가하는 이차전지용 양극활물질의 제조방법.
  17. 제13항에 있어서,
    상기 1차 및 2차 소성이 각각 독립적으로 공기 또는 산소 분위기하에서 수행되는 것인 이차전지용 양극활물질의 제조방법.
  18. 제13에 있어서,
    상기 1차 및 2차 소성이 각각 독립적으로 산소 분압 20% 이하의 분위기하에서 수행되는 것인 이차전지용 양극활물질의 제조방법.
  19. 제1항에 따른 양극활물질을 포함하는 이차전지용 양극.
  20. 제19항에 따른 양극을 포함하는 리튬 이차전지.
PCT/KR2016/010862 2015-09-30 2016-09-28 이차전지용 양극활물질 및 이를 포함하는 이차전지 WO2017057900A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680012341.8A CN107251282B (zh) 2015-09-30 2016-09-28 二次电池用正极活性材料和包含其的二次电池
JP2017560215A JP6562576B2 (ja) 2015-09-30 2016-09-28 二次電池用正極活物質及びこれを含む二次電池
EP16852046.8A EP3249723B1 (en) 2015-09-30 2016-09-28 Cathode active material for secondary battery and secondary battery comprising same
US15/550,133 US10862156B2 (en) 2015-09-30 2016-09-28 Positive electrode active material for secondary battery and secondary battery including the same
PL16852046T PL3249723T3 (pl) 2015-09-30 2016-09-28 Aktywny materiał katodowy do baterii akumulatorowej i bateria akumulatorowa zawierająca go

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150137918A KR101913897B1 (ko) 2015-09-30 2015-09-30 이차전지용 양극활물질 및 이를 포함하는 이차전지
KR10-2015-0137918 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017057900A1 true WO2017057900A1 (ko) 2017-04-06

Family

ID=58427795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010862 WO2017057900A1 (ko) 2015-09-30 2016-09-28 이차전지용 양극활물질 및 이를 포함하는 이차전지

Country Status (7)

Country Link
US (1) US10862156B2 (ko)
EP (1) EP3249723B1 (ko)
JP (1) JP6562576B2 (ko)
KR (1) KR101913897B1 (ko)
CN (1) CN107251282B (ko)
PL (1) PL3249723T3 (ko)
WO (1) WO2017057900A1 (ko)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107112515B (zh) * 2014-10-28 2020-08-18 株式会社Lg 化学 锂二次电池用正极活性材料、其制备方法和包含其的锂二次电池
US10581110B2 (en) * 2015-04-30 2020-03-03 Lg Chem, Ltd. Positive electrode active material for secondary battery, method of preparing the same, and secondary battery including the positive electrode active material
KR101913906B1 (ko) 2015-06-17 2018-10-31 주식회사 엘지화학 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
KR102006207B1 (ko) 2015-11-30 2019-08-02 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
KR102128011B1 (ko) * 2017-04-10 2020-06-29 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조 방법, 이를 포함하는 이차전지용 양극 및 이차전지
KR102178876B1 (ko) 2017-10-20 2020-11-13 주식회사 엘지화학 이차전지용 양극활물질의 제조방법 및 이를 이용하는 이차전지
WO2019103461A2 (ko) * 2017-11-21 2019-05-31 주식회사 엘지화학 양극활물질 전구체, 그 제조 방법, 이를 이용해 제조된 양극 활물질, 양극 및 이차전지
KR102656223B1 (ko) * 2017-11-22 2024-04-11 주식회사 엘지에너지솔루션 리튬 이차전지용 양극활물질 및 그 제조방법
JP6426820B1 (ja) * 2017-11-30 2018-11-21 住友化学株式会社 リチウム含有遷移金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びリチウム含有遷移金属複合酸化物の製造方法
US11777075B2 (en) 2017-12-04 2023-10-03 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
KR102424398B1 (ko) 2020-09-24 2022-07-21 삼성에스디아이 주식회사 리튬 이차 전지용 양극, 그 제조 방법, 및 이를 포함한 리튬 이차 전지
US10847781B2 (en) 2017-12-04 2020-11-24 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11522189B2 (en) 2017-12-04 2022-12-06 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, preparing method thereof, and rechargeable lithium battery comprising positive electrode
KR102185126B1 (ko) * 2017-12-04 2020-12-01 삼성에스디아이 주식회사 리튬이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
US11670754B2 (en) 2017-12-04 2023-06-06 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11545662B2 (en) * 2017-12-15 2023-01-03 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, method of producing positive active material for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US11522186B2 (en) 2017-12-22 2022-12-06 Umicore Positive electrode material for rechargeable lithium ion batteries
CN111615496B (zh) * 2017-12-22 2022-10-18 尤米科尔公司 用于能够再充电锂离子蓄电池的正电极材料
WO2019132087A1 (ko) * 2017-12-29 2019-07-04 주식회사 엘 앤 에프 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2019163847A1 (ja) * 2018-02-22 2019-08-29 住友金属鉱山株式会社 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JP6550598B1 (ja) * 2018-03-23 2019-07-31 住友化学株式会社 リチウム複合金属酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
KR102398689B1 (ko) 2018-04-06 2022-05-17 주식회사 엘지에너지솔루션 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR102302038B1 (ko) 2018-05-11 2021-09-15 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR102256298B1 (ko) 2018-06-26 2021-05-26 삼성에스디아이 주식회사 리튬이차전지용 니켈계 활물질 전구체, 이의 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지
KR102288296B1 (ko) * 2018-06-28 2021-08-10 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
US11721807B2 (en) 2018-08-14 2023-08-08 Samsung Sdi Co., Ltd. Nickel-based active material precursor for lithium secondary battery, preparation method thereof, nickel-based active material for lithium secondary battery formed therefrom, and lithium secondary battery including cathode including the nickel-based active material
US11444281B2 (en) 2018-10-16 2022-09-13 Samsung Sdi Co., Ltd. Nickel-based active material precursor for lithium secondary battery, method of preparing the same, nickel-based active material for lithium secondary battery formed therefrom, and lithium secondary battery including positive electrode including nickel-based active material
KR102263998B1 (ko) * 2018-11-02 2021-06-11 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR102565910B1 (ko) 2019-01-21 2023-08-10 주식회사 엘지화학 이차전지용 양극 활물질의 제조방법
US11962003B2 (en) 2019-01-21 2024-04-16 Lg Energy Solution, Ltd. Negative electrode active material for lithium secondary battery, and negative electrode and lithium secondary battery including the same
KR102568566B1 (ko) * 2019-02-01 2023-08-22 주식회사 엘지에너지솔루션 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2020209869A1 (en) * 2019-04-12 2020-10-15 Camx Power Llc High power, extended temperature range-capable, highly abuse overcharge and discharge tolerant rechargeable battery cell and pack
US11165065B2 (en) 2019-04-12 2021-11-02 Camx Power Llc High power, extended temperature range-capable, highly abuse overcharge and discharge tolerant rechargeable battery cell and pack
US11309544B2 (en) 2019-04-12 2022-04-19 Camx Power Llc High power, extended temperature range-capable, highly abuse overcharge and discharge tolerant rechargeable battery cell and pack
JP2020202172A (ja) 2019-06-05 2020-12-17 パナソニックIpマネジメント株式会社 正極活物質、および、電池
JP2022108750A (ja) * 2019-06-05 2022-07-27 パナソニックIpマネジメント株式会社 正極活物質、および、電池
KR102144056B1 (ko) * 2019-12-24 2020-08-12 주식회사 에스엠랩 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
EP4046968A4 (en) * 2020-03-20 2023-01-04 Lg Chem, Ltd. METHOD OF PREPARING A CATHODE ACTIVE MATERIAL PRECURSOR FOR LITHIUM SECONDARY BATTERY, CATHODE ACTIVE MATERIAL PRECURSOR, CATHODE ACTIVE MATERIAL PREPARED THEREOF, CATHODE AND LITHIUM SECONDARY BATTERY
KR102606683B1 (ko) 2020-03-26 2023-11-28 주식회사 엘지화학 양극 활물질의 제조 방법
KR20220013166A (ko) * 2020-07-24 2022-02-04 주식회사 엘지화학 양극 활물질 전구체 및 이의 제조 방법
JP7476344B2 (ja) * 2020-09-24 2024-04-30 エルジー・ケム・リミテッド 高含量ニッケル含有リチウム複合遷移金属酸化物正極活物質の単粒子の固相合成方法、これにより形成された高含量ニッケル含有リチウム複合遷移金属酸化物正極活物質の単粒子及びそれを含む正極及びリチウム二次電池
CN114447328B (zh) * 2020-10-31 2024-05-14 华友新能源科技(衢州)有限公司 一种单晶外层包覆氧化物的正极材料及其制备方法
KR102624905B1 (ko) 2020-11-25 2024-01-12 (주)포스코퓨처엠 배향성 구조를 갖는 리튬전지용 양극활물질 및 이의 제조방법
KR20230026841A (ko) * 2021-08-18 2023-02-27 삼성에스디아이 주식회사 리튬이차전지용 양극 활물질, 그 제조방법, 이를 포함한 리튬이차전지용 양극 및 리튬이차전지
CN114300690A (zh) * 2021-12-31 2022-04-08 珠海冠宇动力电池有限公司 一种极片及电池
WO2024013613A1 (ja) * 2022-07-15 2024-01-18 株式会社半導体エネルギー研究所 正極活物質の作製方法
CN116914129B (zh) * 2023-09-15 2024-02-13 宁德时代新能源科技股份有限公司 正极活性材料及其制备方法、正极极片、电池和用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216374A (ja) * 2005-02-03 2006-08-17 Sony Corp 負極材料およびそれを用いた電池
JP4726896B2 (ja) * 2005-04-28 2011-07-20 日産自動車株式会社 非水電解質リチウムイオン電池用正極材料およびこれを用いた電池
KR20110083383A (ko) * 2010-01-14 2011-07-20 주식회사 에코프로 회분식 반응기(batch reactor)를 사용하여 농도구배층을 가지는 리튬 이차 전지용 양극활물질 전구체, 양극활물질을 제조하는 방법, 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질 전구체, 양극활물질
JP2013051172A (ja) * 2011-08-31 2013-03-14 Toyota Motor Corp リチウム二次電池
JP2013134871A (ja) * 2011-12-26 2013-07-08 Toyota Motor Corp 正極活物質の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030083476A (ko) 2002-04-23 2003-10-30 주식회사 엘지화학 수명 특성과 안전성이 우수한 리튬 금속 복합 산화물 및이의 제조 방법
KR100822012B1 (ko) * 2006-03-30 2008-04-14 한양대학교 산학협력단 리튬 전지용 양극 활물질, 그 제조 방법 및 그를 포함하는리튬 이차 전지
JP5999307B2 (ja) * 2012-03-07 2016-09-28 日産自動車株式会社 正極活物質、電気デバイス用正極及び電気デバイス
KR20130138073A (ko) 2012-06-08 2013-12-18 한양대학교 산학협력단 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
CN103515606B (zh) 2012-06-21 2016-09-14 中国科学院宁波材料技术与工程研究所 高能量密度锂离子电池氧化物正极材料及其制备方法
US10424787B2 (en) 2013-05-10 2019-09-24 Sumitomo Metal Mining Co., Ltd. Transition metal composite hydroxide particles and production method thereof, cathode active material for non-aqueous electrolyte rechargeable battery and production method thereof, and nonaqueous electrolyte rechargeable battery
CN103326016A (zh) * 2013-07-08 2013-09-25 吉首大学 一种多重核壳结构层状富锂锰基正极材料的制备方法
JP6524651B2 (ja) 2013-12-13 2019-06-05 日亜化学工業株式会社 非水電解液二次電池用正極活物質及びその製造方法
CN104409700B (zh) 2014-11-20 2018-07-24 深圳市贝特瑞新能源材料股份有限公司 一种镍基锂离子电池正极材料及其制备方法
WO2016204563A1 (ko) * 2015-06-17 2016-12-22 주식회사 엘지화학 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216374A (ja) * 2005-02-03 2006-08-17 Sony Corp 負極材料およびそれを用いた電池
JP4726896B2 (ja) * 2005-04-28 2011-07-20 日産自動車株式会社 非水電解質リチウムイオン電池用正極材料およびこれを用いた電池
KR20110083383A (ko) * 2010-01-14 2011-07-20 주식회사 에코프로 회분식 반응기(batch reactor)를 사용하여 농도구배층을 가지는 리튬 이차 전지용 양극활물질 전구체, 양극활물질을 제조하는 방법, 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질 전구체, 양극활물질
JP2013051172A (ja) * 2011-08-31 2013-03-14 Toyota Motor Corp リチウム二次電池
JP2013134871A (ja) * 2011-12-26 2013-07-08 Toyota Motor Corp 正極活物質の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3249723A4 *

Also Published As

Publication number Publication date
EP3249723B1 (en) 2018-12-05
CN107251282A (zh) 2017-10-13
PL3249723T3 (pl) 2019-09-30
CN107251282B (zh) 2021-03-12
KR20170038485A (ko) 2017-04-07
EP3249723A1 (en) 2017-11-29
KR101913897B1 (ko) 2018-12-28
EP3249723A4 (en) 2018-05-02
US10862156B2 (en) 2020-12-08
US20180048015A1 (en) 2018-02-15
JP6562576B2 (ja) 2019-08-21
JP2018521456A (ja) 2018-08-02

Similar Documents

Publication Publication Date Title
WO2017057900A1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
WO2016204563A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2016068594A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2017150945A1 (ko) 이차전지용 양극활물질의 전구체 및 이를 이용하여 제조된 양극활물질
WO2019221497A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019235885A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2016175597A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2019103363A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2017150949A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2019078503A1 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021080374A1 (ko) 양극 활물질 전구체의 제조 방법 및 양극 활물질 전구체
WO2018143753A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2018160023A1 (ko) 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019059654A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2017095153A1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
WO2016053056A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2017095134A1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
WO2021154021A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2020055198A1 (ko) 리튬 이차전지용 양극재의 제조 방법 및 이에 의해 제조된 리튬 이차전지용 양극재
WO2021187963A1 (ko) 리튬 이차전지용 양극 활물질 전구체의 제조 방법, 양극 활물질 전구체, 이를 이용하여 제조된 양극 활물질, 양극 및 리튬 이차전지
WO2022154603A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
WO2022139311A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
WO2022092922A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2016053053A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2021066574A1 (ko) 리튬 이차전지용 양극 활물질 및 상기 양극 활물질의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16852046

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15550133

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016852046

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017560215

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE