WO2022124774A1 - 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 - Google Patents
리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 Download PDFInfo
- Publication number
- WO2022124774A1 WO2022124774A1 PCT/KR2021/018489 KR2021018489W WO2022124774A1 WO 2022124774 A1 WO2022124774 A1 WO 2022124774A1 KR 2021018489 W KR2021018489 W KR 2021018489W WO 2022124774 A1 WO2022124774 A1 WO 2022124774A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active material
- particles
- positive electrode
- secondary battery
- positive
- Prior art date
Links
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 169
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 64
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 63
- 239000002245 particle Substances 0.000 claims abstract description 240
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 87
- 239000011163 secondary particle Substances 0.000 claims abstract description 80
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 40
- 238000000034 method Methods 0.000 claims abstract description 18
- 239000013078 crystal Substances 0.000 claims description 29
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 229910021437 lithium-transition metal oxide Inorganic materials 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 238000005096 rolling process Methods 0.000 abstract description 29
- 230000006378 damage Effects 0.000 abstract 1
- 238000007599 discharging Methods 0.000 abstract 1
- 239000002243 precursor Substances 0.000 description 31
- 239000011572 manganese Substances 0.000 description 25
- 239000011164 primary particle Substances 0.000 description 25
- -1 lithium iron phosphate compound Chemical class 0.000 description 22
- 239000002994 raw material Substances 0.000 description 20
- 239000006182 cathode active material Substances 0.000 description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 17
- 239000003792 electrolyte Substances 0.000 description 17
- 229910052748 manganese Inorganic materials 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 238000000975 co-precipitation Methods 0.000 description 14
- 229910017052 cobalt Inorganic materials 0.000 description 14
- 239000010941 cobalt Substances 0.000 description 14
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 13
- 238000010304 firing Methods 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000010410 layer Substances 0.000 description 12
- 238000002156 mixing Methods 0.000 description 12
- 239000002131 composite material Substances 0.000 description 11
- 239000011230 binding agent Substances 0.000 description 10
- 239000004020 conductor Substances 0.000 description 10
- 229910000314 transition metal oxide Inorganic materials 0.000 description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 229910052723 transition metal Inorganic materials 0.000 description 8
- 150000003624 transition metals Chemical class 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 239000003960 organic solvent Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 241000080590 Niso Species 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000010419 fine particle Substances 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 239000006183 anode active material Substances 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 238000005336 cracking Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- 229910003002 lithium salt Inorganic materials 0.000 description 5
- 159000000002 lithium salts Chemical class 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- 229910015872 LiNi0.8Co0.1Mn0.1O2 Inorganic materials 0.000 description 4
- 229910002651 NO3 Inorganic materials 0.000 description 4
- 229910017223 Ni0.8Co0.1Mn0.1(OH)2 Inorganic materials 0.000 description 4
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 description 4
- 229910021383 artificial graphite Inorganic materials 0.000 description 4
- 150000007514 bases Chemical class 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 235000019441 ethanol Nutrition 0.000 description 4
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 150000004820 halides Chemical class 0.000 description 4
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 4
- 229910021382 natural graphite Inorganic materials 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000008139 complexing agent Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000007773 negative electrode material Substances 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 239000005518 polymer electrolyte Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 235000002639 sodium chloride Nutrition 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- WKBPZYKAUNRMKP-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)pentyl]1,2,4-triazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1C(CCC)CN1C=NC=N1 WKBPZYKAUNRMKP-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- 229910013553 LiNO Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 238000003991 Rietveld refinement Methods 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000002902 bimodal effect Effects 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000003660 carbonate based solvent Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000011294 coal tar pitch Substances 0.000 description 2
- SEVNKUSLDMZOTL-UHFFFAOYSA-H cobalt(2+);manganese(2+);nickel(2+);hexahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mn+2].[Co+2].[Ni+2] SEVNKUSLDMZOTL-UHFFFAOYSA-H 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 150000005676 cyclic carbonates Chemical class 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000009831 deintercalation Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000007561 laser diffraction method Methods 0.000 description 2
- 239000011244 liquid electrolyte Substances 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 239000011301 petroleum pitch Substances 0.000 description 2
- 239000011295 pitch Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- OAVRWNUUOUXDFH-UHFFFAOYSA-H 2-hydroxypropane-1,2,3-tricarboxylate;manganese(2+) Chemical compound [Mn+2].[Mn+2].[Mn+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O OAVRWNUUOUXDFH-UHFFFAOYSA-H 0.000 description 1
- DSMUTQTWFHVVGQ-UHFFFAOYSA-N 4,5-difluoro-1,3-dioxolan-2-one Chemical compound FC1OC(=O)OC1F DSMUTQTWFHVVGQ-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000925 Cd alloy Inorganic materials 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 229910018916 CoOOH Inorganic materials 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013372 LiC 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 101100513612 Microdochium nivale MnCO gene Proteins 0.000 description 1
- ZHGDJTMNXSOQDT-UHFFFAOYSA-N NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O Chemical compound NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O ZHGDJTMNXSOQDT-UHFFFAOYSA-N 0.000 description 1
- 229910018661 Ni(OH) Inorganic materials 0.000 description 1
- 229910002640 NiOOH Inorganic materials 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- RLTFLELMPUMVEH-UHFFFAOYSA-N [Li+].[O--].[O--].[O--].[V+5] Chemical compound [Li+].[O--].[O--].[O--].[V+5] RLTFLELMPUMVEH-UHFFFAOYSA-N 0.000 description 1
- RTBHLGSMKCPLCQ-UHFFFAOYSA-N [Mn].OOO Chemical compound [Mn].OOO RTBHLGSMKCPLCQ-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 150000004862 dioxolanes Chemical class 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000011267 electrode slurry Substances 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Chemical group CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000011357 graphitized carbon fiber Substances 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- 239000006233 lamp black Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- SIAPCJWMELPYOE-UHFFFAOYSA-N lithium hydride Chemical compound [LiH] SIAPCJWMELPYOE-UHFFFAOYSA-N 0.000 description 1
- 229910000103 lithium hydride Inorganic materials 0.000 description 1
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- 229910000686 lithium vanadium oxide Inorganic materials 0.000 description 1
- ACFSQHQYDZIPRL-UHFFFAOYSA-N lithium;bis(1,1,2,2,2-pentafluoroethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C(F)(F)F ACFSQHQYDZIPRL-UHFFFAOYSA-N 0.000 description 1
- VROAXDSNYPAOBJ-UHFFFAOYSA-N lithium;oxido(oxo)nickel Chemical compound [Li+].[O-][Ni]=O VROAXDSNYPAOBJ-UHFFFAOYSA-N 0.000 description 1
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 1
- 150000002696 manganese Chemical class 0.000 description 1
- 229940071125 manganese acetate Drugs 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- 239000011564 manganese citrate Substances 0.000 description 1
- 235000014872 manganese citrate Nutrition 0.000 description 1
- 229940097206 manganese citrate Drugs 0.000 description 1
- AMWRITDGCCNYAT-UHFFFAOYSA-L manganese oxide Inorganic materials [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 1
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 1
- PPNAOCWZXJOHFK-UHFFFAOYSA-N manganese(2+);oxygen(2-) Chemical class [O-2].[Mn+2] PPNAOCWZXJOHFK-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002931 mesocarbon microbead Substances 0.000 description 1
- 239000011302 mesophase pitch Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- CXHHBNMLPJOKQD-UHFFFAOYSA-M methyl carbonate Chemical compound COC([O-])=O CXHHBNMLPJOKQD-UHFFFAOYSA-M 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- PYLWMHQQBFSUBP-UHFFFAOYSA-N monofluorobenzene Chemical compound FC1=CC=CC=C1 PYLWMHQQBFSUBP-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 150000005181 nitrobenzenes Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- YGSFNCRAZOCNDJ-UHFFFAOYSA-N propan-2-one Chemical compound CC(C)=O.CC(C)=O YGSFNCRAZOCNDJ-UHFFFAOYSA-N 0.000 description 1
- 229920001384 propylene homopolymer Polymers 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 239000001008 quinone-imine dye Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000002153 silicon-carbon composite material Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920005608 sulfonated EPDM Polymers 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- YTWOHSWDLJUCRK-UHFFFAOYSA-N thiolane 1,1-dioxide Chemical compound O=S1(=O)CCCC1.O=S1(=O)CCCC1 YTWOHSWDLJUCRK-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000002733 tin-carbon composite material Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- BDZBKCUKTQZUTL-UHFFFAOYSA-N triethyl phosphite Chemical compound CCOP(OCC)OCC BDZBKCUKTQZUTL-UHFFFAOYSA-N 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/60—Compounds characterised by their crystallite size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/50—Agglomerated particles
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
- C01P2004/82—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a cathode active material for a lithium secondary battery comprising primary large particles and a method for manufacturing the same.
- lithium secondary battery has been in the spotlight as a driving power source for a portable device because it is lightweight and has a high energy density. Accordingly, research and development efforts for improving the performance of lithium secondary batteries are being actively conducted.
- an organic electrolyte or polymer electrolyte is charged between a positive electrode and a negative electrode made of an active material capable of intercalation and deintercalation of lithium ions, and lithium ions are inserted/deintercalated from the positive electrode and the negative electrode. Electric energy is produced by a reduction reaction with
- lithium cobalt oxide (LiCoO 2 ) As a positive active material of a lithium secondary battery, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMnO 2 or LiMn 2 O 4 , etc.), lithium iron phosphate compound (LiFePO 4 ), etc. are used. .
- lithium cobalt oxide (LiCoO 2 ) has advantages of high operating voltage and excellent capacity characteristics, and is widely used, and is applied as a positive electrode active material for high voltage.
- there is a limit to mass use as a power source in fields such as electric vehicles due to an increase in the price of cobalt (Co) and unstable supply, and the need to develop a positive electrode active material that can replace it has emerged.
- 'NCM-based lithium composite transition metal oxide' nickel-cobalt-manganese-based lithium composite transition metal oxide in which a part of cobalt (Co) is substituted with nickel (Ni) and manganese (Mn) has been developed.
- the positive electrode active material may be secondary particles formed by gathering primary particles.
- the positive electrode active material may be secondary particles formed by gathering primary particles.
- the breaking of primary particles and/or secondary particles in the rolling step which is one of the electrode manufacturing processes, the movement path of electrons in the electrode is lost and the surface area where side reactions with the electrolyte can occur increases. As a result, there is a problem in that the life characteristics are inferior.
- An object of the present invention is to solve the above problems, and to provide a positive electrode active material capable of minimizing particle breakage during rolling by controlling particle size and shape.
- One aspect of the present invention provides a cathode active material according to the following embodiments.
- a positive electrode active material for a lithium secondary battery comprising a first positive electrode active material and a second positive electrode active material
- the first positive active material includes at least one single particle
- the second positive active material includes at least one secondary particle including an aggregate of primary macro particles,
- the single particle is composed of one particle having an average particle diameter (D50) of 3 to 10 ⁇ m,
- the average particle diameter (D50) of the primary large particles is 1 ⁇ m or more
- the secondary particles have an average particle diameter (D50) of 1 to 10 ⁇ m.
- the average particle diameter (D50) of the single particles may be greater than the average particle diameter (D50) of the secondary particles, and more specifically, the average particle diameter (D50) of the single particles is compared to the average particle diameter (D50) of the secondary particles It may be 1.1 to 2 times.
- a weight ratio of the first positive active material to the second positive active material may be 90:10 to 10:90.
- the particle strength of the first positive electrode active material may be greater than the particle strength of the second positive electrode active material.
- the particle strength of the first positive active material is 200 MPa or more
- the second positive active material may have a particle strength of 120 MPa or less.
- a ratio of an average particle diameter (D50) of the primary large particles to an average crystal size of the primary large particles may be 2 or more.
- the average crystal size of the primary large particles may be 190 nm or more.
- a ratio of the average particle diameter (D50) of the secondary particles to the average particle diameter (D50) of the primary large particles may be 2 to 5 times.
- the first and second positive electrode active materials may each independently include a nickel-based lithium transition metal oxide.
- the nickel-based lithium transition metal oxide is each independently Li a Ni 1-bcd Co b Mn c Q d O 2+ ⁇ (1.0 ⁇ a ⁇ 1.5, 0 ⁇ b ⁇ 0.2, 0 ⁇ c ⁇ 0.2, 0 ⁇ d ⁇ 0.1, 0 ⁇ b+c+d ⁇ 0.2, -0.1 ⁇ 1.0, Q is one or more metal elements selected from the group consisting of Al, Mg, V, Ti, and Zr).
- the present invention provides the following positive electrode for a lithium secondary battery. Specifically, it includes the above-described positive active material,
- It relates to a positive electrode for a lithium secondary battery, characterized in that the primary large particles are positioned in a space formed by the first positive electrode active material and the second positive electrode active material being in contact with each other.
- the first large particles may be located in a space formed by the first positive electrode active materials in contact with each other.
- One aspect of the present invention provides a lithium secondary battery including the above-described positive active material.
- the amount of particle breakage or fine powder generation during rolling is significantly suppressed, thereby greatly improving the lifespan characteristics.
- the amount of particle breakage or fine powder generation during rolling is significantly suppressed, thereby greatly improving the lifespan characteristics.
- 1A is a schematic diagram schematically illustrating a first positive active material and a second positive active material according to an embodiment of the present invention.
- 1B is an SEM image of a first positive active material and a second positive active material according to an embodiment of the present invention.
- FIG. 1C is a schematic diagram schematically illustrating a positive active material according to Example 1 of the present invention.
- the crystal size of the crystal grains may be quantitatively analyzed using X-ray diffraction analysis (XRD) by Cu K ⁇ X-rays (Xr ⁇ ).
- XRD X-ray diffraction analysis
- Xr ⁇ Cu K ⁇ X-rays
- the average crystal size of the crystal grains can be quantitatively analyzed by putting the prepared particles in a holder and analyzing the diffraction grating that irradiates X-rays to the particles.
- D50 may be defined as a particle size based on 50% of a particle size distribution, and may be measured using a laser diffraction method.
- the particles of the positive active material are dispersed in a dispersion medium, and then introduced into a commercially available laser diffraction particle size measuring device (eg, Microtrac MT 3000) to about 28 kHz
- a commercially available laser diffraction particle size measuring device eg, Microtrac MT 3000
- the term 'primary particles' refers to particles having no apparent grain boundaries when observed in a field of view of 5000 times to 20000 times using a scanning electron microscope.
- the primary particles may be classified into primary micro particles and primary macro particles according to an average particle diameter (D50).
- 'secondary particles' are particles formed by agglomeration of the primary particles.
- secondary particles may be classified into secondary large particles and secondary small particles according to an average particle diameter (D50).
- a 'single particle' is a particle that exists independently of the secondary particle and does not have a grain boundary in appearance.
- 'particle' when 'particle' is described, it may mean that any one or all of single particles, secondary particles, and primary particles are included.
- the cathode active material is used as a cathode active material by mixing two types of particles having different particle size distributions in order to improve energy density per volume.
- the bimodal effect causes a higher density than the value calculated arithmetically from the density values of large and small particles under the same pressure condition. do.
- a positive electrode active material including a secondary particle shape different from the conventional one.
- the first positive active material includes at least one single particle
- the second positive active material includes at least one secondary particle including an aggregate of primary macro particles,
- the single particle is composed of one particle having an average particle diameter (D50) of 3 to 10 ⁇ m,
- the average particle diameter (D50) of the primary large particles is 1 ⁇ m or more
- An average particle diameter (D50) of the secondary particles is a positive active material for a lithium secondary battery, characterized in that 1 to 10 ⁇ m.
- the positive active material may provide a nickel-based positive active material having an increased charge/discharge capacity retention rate by having the above characteristics.
- the first positive active material includes at least one single particle.
- the single particle means a particle that exists independently of the secondary particle and has no grain boundary in appearance
- the single particle in the present invention has an average particle diameter (D50) of 3 to 10 ⁇ m. It is made up of one particle.
- the second positive active material includes secondary particles in which the primary large particles are aggregated.
- the existing secondary particles tens to hundreds of primary fine particles are aggregated to form secondary particles.
- primary large particles having an average particle diameter (D50) of 1 ⁇ m or more are aggregated to constitute “secondary particles”.
- the present inventors discovered that, when mixing large secondary particles and small secondary particles of different sizes as in the prior art, cracking of secondary particles occurs during the rolling process and there is a problem in that electrochemical properties are inferior. did At this time, the existing large secondary particles and small secondary particles are secondary particles formed by aggregation of tens to hundreds of primary fine particles having an average particle diameter of several hundred nanometers, but having a large average diameter (D50). The case is referred to as "large secondary particle”, and the case where the average diameter (D50) is small is referred to as "small secondary particle”.
- the present invention by mixing the "secondary particles in which the primary large particles are aggregated" with the existing "single particles" in an appropriate ratio, cracking in the rolling process can be suppressed. This is because the particle strength of the single particles is greater than the particle strength of the secondary particles according to the present invention, so these single particles are not broken during the rolling process, and at the same time, the primary large particles are separated from the secondary particles according to the present invention during rolling. It comes from being unbreakable.
- the secondary particles according to an aspect of the present invention for example, when rolling at a high pressure to form an electrode, for example, when rolling at a pressure of 9 ton or more, the primary large particles are separated from the secondary particles.
- the separated primary macroparticle itself is not broken. Accordingly, particle breakage can be minimized and fine powder can be reduced.
- the empty space may be filled to improve rolling performance and increase energy density. As a result, life performance can be improved.
- 'primary large particles means those having an average diameter (D50) of 1 ⁇ m or more.
- the average particle diameter of the primary large particles may be 1 ⁇ m or more, 1.5 ⁇ m or more, 2 ⁇ m or more, 2.5 ⁇ m or more, 3 ⁇ m or more, or 3.5 ⁇ m or more, and 5 ⁇ m or less; It may be 4.5 ⁇ m or less, or 4 ⁇ m or less.
- the average particle diameter of the primary large particles is less than 1 ⁇ m, the agglomerated secondary particles correspond to conventional secondary small particles, and thus there may be a problem in that particles are broken during rolling.
- the 'primary large particle' may have an average particle diameter (D50)/average crystal size ratio of 3 or more. That is, compared to the primary micro particles constituting the conventional secondary particles, the primary large particles may have an average particle diameter and an average crystal size of the primary particles to grow at the same time.
- the primary large particles in the present invention mean particles having a large average crystal size as well as an average particle diameter, and having no apparent grain boundaries.
- rock salt is formed on the surface due to sintering at high temperature, which lowers resistance and is advantageous in terms of long life compared to conventional single particles with a large increase in resistance. .
- the average crystal size of the primary large particles may be quantitatively analyzed using X-ray diffraction analysis (XRD) by Cu K ⁇ X-rays.
- XRD X-ray diffraction analysis
- the average crystal size of the crystal grains can be quantitatively analyzed by putting the prepared particles in a holder and analyzing the diffraction grating that irradiates X-rays to the particles. Sampling was prepared by putting a sample in a groove in the middle of a holder for general powder, using a slide glass to make the surface even and the height equal to the edge of the holder.
- the ratio of the average particle size (D50) / average crystal size (crystal size) may be 2 or more, 2.5 or more, 3 or more, and 50 or less, 40 or less, 35 or less.
- the average crystal size of the primary large particles may be 150 nm or more, 170 nm or more, 200 nm or more, and 300 nm or less, 270 nm or less, or 250 nm or less.
- secondary particles refers to the agglomerated form of the above-described primary large particles.
- the secondary particles are different from the conventional method for obtaining single particles in the following points.
- the existing single particles single particles were formed by increasing only the primary firing temperature by using the existing precursor for secondary particles as it is.
- the secondary particles according to an aspect of the present invention use a separate precursor having a high porosity. Accordingly, large primary particles having a large particle size may be grown without increasing the firing temperature, while the average diameter of secondary particles may be relatively small compared to conventional ones.
- the secondary particles according to an aspect of the present invention have the same or similar average particle diameter (D50) as the existing secondary particles and have a large average diameter (D50) of the primary particles.
- D50 average particle diameter
- the secondary particle form in which primary large particles with increased primary particles are aggregated is provided. do.
- the secondary particles may be aggregates of 1 to 10 primary large particles. More specifically, the secondary particles may be one or more, two or more, three or more, or four or more aggregates of the primary large particles within the numerical range, and within the numerical range, the primary particles may be agglomerated. The large particles may be agglomerated into 10 or less, 9 or less, 8 or less, or 7 or less.
- the secondary particles have a large average diameter (D50) of the primary large particles while having the same or similar average particle diameter (D50) as the existing ones.
- D50 average diameter of the primary large particles
- D50 average particle diameter of the existing ones.
- the secondary particles according to an aspect of the present invention have an average diameter (D50) of 3 ⁇ m to 6 ⁇ m. More specifically, it is 3 ⁇ m or more, 3.5 ⁇ m or more, 4 ⁇ m or more, or 4.5 ⁇ m or more, and is 6 ⁇ m or less, 5.5 ⁇ m or less, or 5 ⁇ m or less.
- D50 average diameter
- the size of the particles and the average crystal size within the particles increase as the firing temperature increases.
- the secondary particles according to an aspect of the present invention by using a porous precursor, primary large particles having a large particle size can be grown without raising the calcination temperature higher than in the prior art, whereas the secondary particles are can grow relatively little compared to
- the secondary particles according to one aspect of the present invention are primary macro particles having the same or similar average diameter (D50) as the conventional secondary particles, and having larger average diameter and average crystal size than the conventional primary fine particles. consist of.
- the ratio of the average particle diameter (D50) of the secondary particles to the average particle diameter (D50) of the primary large particles may be 2 to 4 times.
- the second positive active material is meant to include the above-described secondary particles.
- the second positive electrode active material may be one in which the primary large particles fall off when the secondary particles are electrode-rolled, and the primary large particles themselves are not broken. At this time, the rolling condition may be 9 tons.
- the fine particles of 1 ⁇ m or less may be less than 10%.
- the average particle diameter (D50) of the single particles may be greater than the average particle diameter (D50) of the secondary particles.
- the average particle diameter (D50) of the single particles is compared to the average particle diameter (D50) of the secondary particles It may be 1.1 to 2 times.
- the weight ratio of the first positive active material to the second positive active material is 90: 10 to 10: 90.
- the weight ratio of the first positive active material to the second positive active material may be 80: 20 to 20: 80.
- the amount of fine powder formed during rolling is relatively larger than that of the positive active material of the present invention.
- the amount of unsold may be relatively reduced compared to when the secondary large particles are used alone, but still particles Cracking occurs and capacity retention is low.
- the secondary large particles and/or secondary small particles include nickel-based lithium transition metal oxide.
- the nickel-based lithium transition metal oxide is each independently Li a Ni 1-bcd Co b Mn c Q d O 2+ ⁇ (1.0 ⁇ a ⁇ 1.5, 0 ⁇ b ⁇ 0.2, 0 ⁇ c ⁇ 0.2, 0 ⁇ d ⁇ 0.1, 0 ⁇ b+c+d ⁇ 0.2, -0.1 ⁇ 1.0, Q is one or more metal elements selected from the group consisting of Al, Mg, V, Ti, and Zr) have.
- the positive active material according to an aspect of the present invention may be manufactured by the following method. However, the present invention is not limited thereto.
- it may be formed by preparing the first positive active material and the second positive active material, respectively, and then mixing.
- the first positive active material includes single particles, and may be prepared by a method known in the art.
- the second positive active material may be manufactured by the following method.
- the method comprising: mixing a cathode active material precursor including nickel (Ni), cobalt (Co) and manganese (Mn) and a lithium raw material and performing primary firing; and mixing the lithium raw material after the primary firing and performing secondary firing.
- secondary particles including primary particles may be manufactured.
- a method of manufacturing the positive active material will be further described step by step.
- a cathode active material precursor including nickel (Ni), cobalt (Co), and manganese (Mn) is prepared.
- the precursor for preparing the first positive active material of the opposite side may be purchased and used as a commercially available positive electrode active material precursor, or may be prepared according to a method for preparing a positive electrode active material precursor well known in the art.
- the precursor may be prepared by adding an ammonium cation-containing complexing agent and a basic compound to a transition metal solution including a nickel-containing raw material, a cobalt-containing raw material, and a manganese-containing raw material, followed by a co-precipitation reaction.
- the nickel-containing raw material may be, for example, nickel-containing acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide, specifically, Ni(OH) 2 , NiO, NiOOH, NiCO 3 ⁇ 2Ni(OH) 2 ⁇ 4H 2 O, NiC 2 O 2 ⁇ 2H 2 O, Ni(NO 3 ) 2 ⁇ 6H 2 O, NiSO 4 , NiSO 4 ⁇ 6H 2 O, fatty acid nickel salt, nickel halide or these It may be a combination, but is not limited thereto.
- the cobalt-containing raw material may be cobalt-containing acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide, and specifically, Co(OH) 2 , CoOOH, Co(OCOCH 3 ) 2 ⁇ 4H 2 O , Co(NO 3 ) 2 ⁇ 6H 2 O, CoSO 4 , Co(SO 4 ) 2 ⁇ 7H 2 O, or a combination thereof, but is not limited thereto.
- the manganese-containing raw material may be, for example, manganese-containing acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide, oxyhydroxide, or a combination thereof, specifically Mn 2 O 3 , MnO 2 , Mn 3 manganese oxides such as O 4 ; manganese salts such as MnCO 3 , Mn(NO 3 ) 2 , MnSO 4 , manganese acetate, dicarboxylic acid manganese salt, manganese citrate, fatty acid manganese salt; It may be manganese oxyhydroxide, manganese chloride, or a combination thereof, but is not limited thereto.
- the transition metal solution is prepared by mixing a nickel-containing raw material, a cobalt-containing raw material, and a manganese-containing raw material in a solvent, specifically water, or a mixed solvent of an organic solvent that can be uniformly mixed with water (eg, alcohol). It may be prepared by adding, or may be prepared by mixing an aqueous solution of a nickel-containing raw material, an aqueous solution of a cobalt-containing raw material, and a manganese-containing raw material.
- a solvent specifically water, or a mixed solvent of an organic solvent that can be uniformly mixed with water (eg, alcohol).
- the ammonium cation-containing complexing agent may be, for example, NH 4 OH, (NH 4 ) 2 SO 4 , NH 4 NO 3 , NH 4 Cl, CH 3 COONH 4 , NH 4 CO 3 or a combination thereof, However, the present invention is not limited thereto.
- the ammonium cation-containing complexing agent may be used in the form of an aqueous solution, and as the solvent, water or a mixture of water and an organic solvent that is uniformly miscible with water (specifically, alcohol, etc.) and water may be used.
- the basic compound may be a hydroxide of an alkali metal or alkaline earth metal such as NaOH, KOH or Ca(OH) 2 , a hydrate thereof, or a combination thereof.
- the basic compound may also be used in the form of an aqueous solution, and as the solvent, water or a mixture of water and an organic solvent that is uniformly miscible with water (specifically, alcohol, etc.) and water may be used.
- the basic compound is added to adjust the pH of the reaction solution, and may be added in an amount such that the pH of the metal solution is 11 to 13.
- the co-precipitation reaction may be performed at a temperature of 40° C. to 70° C. under an inert atmosphere such as nitrogen or argon.
- particles of nickel-cobalt-manganese hydroxide are generated and precipitated in the reaction solution.
- concentrations of the nickel-containing raw material, the cobalt-containing raw material, and the manganese-containing raw material By controlling the concentrations of the nickel-containing raw material, the cobalt-containing raw material, and the manganese-containing raw material, a precursor having a nickel (Ni) content of 60 mol% or more among the total metal content can be prepared.
- the precipitated nickel-cobalt-manganese hydroxide particles may be separated according to a conventional method and dried to obtain a nickel-cobalt-manganese precursor.
- the precursor may be secondary particles formed by agglomeration of primary particles.
- porous particles may be used as the positive electrode active material precursor.
- the pH concentration may be controlled to prepare the second cathode active material precursor. Specifically, it may be added in an amount such that the pH is 7 to 9.
- the lithium raw material may include lithium-containing sulfate, nitrate, acetate, carbonate, oxalate, citrate, halide, hydroxide or oxyhydroxide, and is not particularly limited as long as it is soluble in water.
- the lithium raw material is Li 2 CO 3 , LiNO 3 , LiNO 2 , LiOH, LiOH ⁇ H 2 O, LiH, LiF, LiCl, LiBr, LiI, CH 3 COOLi, Li 2 O, Li 2 SO 4 , CH 3 COOLi, or Li 3 C 6 H 5 O 7 and the like, and any one or a mixture of two or more thereof may be used.
- the primary sintering may be sintered at 800 to 1,000° C., more preferably from 830 to 1,000° C. in the case of a high-Ni NCM-based lithium composite transition metal oxide having a nickel (Ni) content of 60 mol% or more. 980 ° C. More preferably, it can be calcined at 850 to 950 ° C.
- the primary firing may be performed at 900 to 1,100° C., more preferably at 930 to 1,070° C. , more preferably at 950 to 1,050 °C.
- the primary firing may be carried out in an air or oxygen atmosphere, and may be performed for 15 to 35 hours.
- an additional secondary firing may be performed after the first firing.
- the secondary sintering may be performed at 600 to 950° C., more preferably from 650 to 950° C., in the case of a high-Ni NCM-based lithium composite transition metal oxide having a nickel (Ni) content of 60 mol% or more. It may be calcined at 930 °C, more preferably at 700 to 900 °C. In the case of a low-content nickel (Low-Ni) NCM-based lithium composite transition metal oxide having a nickel (Ni) content of less than 60 mol%, the secondary firing may be performed at 700 to 1,050° C., more preferably at 750 to 1,000° C. , more preferably at 800 to 950 °C.
- the secondary sintering may be performed under an air or oxygen atmosphere, and may be performed for 10 to 24 hours.
- a positive electrode for a lithium secondary battery and a lithium secondary battery including the positive electrode active material.
- the positive electrode includes a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector and including the positive electrode active material.
- the positive active material is the same as described above.
- the positive electrode according to an aspect of the present invention includes a first positive active material and a second positive active material on a positive electrode active material layer.
- the positive electrode is subjected to a rolling process after applying the slurry for forming the positive electrode active material on the current collector during the manufacturing process. Packing density may be increased through this rolling process.
- the primary large particles are separated from the secondary particles constituting the second positive electrode active material during the rolling process.
- the separated first large particles may be positioned in a space generated by the first positive electrode active material and the second positive electrode active material interfacing to increase the packing density of the formed positive electrode.
- the primary large particles separated through the rolling process of the electrode may be located in a space formed by the first positive electrode active materials being in contact with each other to further increase the packing density of the positive electrode.
- the primary large particles fill the empty space formed between the positive active material, and the tap density and rolling performance may be improved.
- the second positive active material is separated in the form of primary large particles, thereby minimizing particle breakage. Accordingly, it is possible to provide an anode having improved lifespan characteristics.
- the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. , nickel, titanium, silver, etc. may be used.
- the positive electrode current collector may typically have a thickness of 3 to 500 ⁇ m, and may increase the adhesion of the positive electrode active material by forming fine irregularities on the surface of the positive electrode current collector.
- it may be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a non-woven body.
- the positive active material layer may include a conductive material and a binder together with the above-described positive active material.
- the conductive material is used to impart conductivity to the electrode, and in the configured battery, it can be used without any particular limitation as long as it has electronic conductivity without causing chemical change.
- Specific examples include graphite such as natural graphite and artificial graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, and carbon fiber; metal powders or metal fibers, such as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one or a mixture of two or more thereof may be used.
- the conductive material may be included in an amount of 1 to 30 wt% based on the total weight of the positive active material layer.
- the binder serves to improve adhesion between the positive electrode active material particles and the adhesive force between the positive electrode active material and the positive electrode current collector.
- specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC) ), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof, and any one of them or a mixture of two or more thereof may be used.
- the binder may be included in an amount of 1 to 30% by weight based on the total weight of the positive electrode active material layer.
- the positive electrode may be manufactured according to a conventional positive electrode manufacturing method except for using the above positive electrode active material. Specifically, it may be prepared by applying the above-described positive electrode active material and, optionally, a composition for forming a positive electrode active material layer including a binder and a conductive material on a positive electrode current collector, followed by drying and rolling. In this case, the types and contents of the positive electrode active material, the binder, and the conductive material are as described above.
- the solvent may be a solvent generally used in the art, dimethyl sulfoxide (DMSO), isopropyl alcohol (isopropyl alcohol), N-methylpyrrolidone (NMP), acetone (acetone) or water, and the like, and any one of them or a mixture of two or more thereof may be used.
- the amount of the solvent used is enough to dissolve or disperse the positive electrode active material, the conductive material and the binder in consideration of the application thickness of the slurry and the production yield, and to have a viscosity that can exhibit excellent thickness uniformity when applied for the production of a positive electrode thereafter. do.
- the positive electrode may be manufactured by casting the composition for forming the positive electrode active material layer on a separate support, and then laminating a film obtained by peeling it from the support on the positive electrode current collector.
- an electrochemical device including the positive electrode is provided.
- the electrochemical device may specifically be a battery or a capacitor, and more specifically, may be a lithium secondary battery.
- the lithium secondary battery specifically includes a positive electrode, a negative electrode positioned to face the positive electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the positive electrode is as described above.
- the lithium secondary battery may optionally further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
- the negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
- the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless steel surface. Carbon, nickel, titanium, silver, etc. surface-treated, aluminum-cadmium alloy, etc. may be used.
- the negative electrode current collector may have a thickness of typically 3 to 500 ⁇ m, and similarly to the positive electrode current collector, fine irregularities may be formed on the surface of the current collector to strengthen the bonding force of the negative electrode active material.
- it may be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
- the anode active material layer optionally includes a binder and a conductive material together with the anode active material.
- the anode active material layer is, for example, by applying a composition for forming an anode including a cathode active material, and optionally a binder and a conductive material on an anode current collector and drying, or casting the composition for forming the anode on a separate supporter, and then , may be produced by laminating a film obtained by peeling from this support onto a negative electrode current collector.
- a compound capable of reversible intercalation and deintercalation of lithium may be used.
- Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; metal compounds capable of alloying with lithium, such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy, or Al alloy; metal oxides capable of doping and dedoping lithium, such as SiO ⁇ (0 ⁇ ⁇ ⁇ 2), SnO 2 , vanadium oxide, and lithium vanadium oxide; Alternatively, a composite including the metallic compound and a carbonaceous material such as a Si-C composite or a Sn-C composite may be used, and any one or a mixture of two or more thereof may be used.
- a metal lithium thin film may be used as the negative electrode active material.
- both low crystalline carbon and high crystalline carbon may be used.
- low crystalline carbon soft carbon and hard carbon are representative, and as high crystalline carbon, amorphous, plate-like, flaky, spherical or fibrous natural or artificial graphite, Kish graphite (Kish) graphite), pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, liquid crystal pitches (Mesophase pitches), and petroleum and coal tar pitch (petroleum or coal tar pitch) High-temperature calcined carbon such as derived cokes) is a representative example.
- binder and the conductive material may be the same as those described above for the positive electrode.
- the separator separates the negative electrode and the positive electrode and provides a passage for lithium ions to move, and as long as it is used as a separator in a lithium secondary battery, it can be used without any particular limitation, especially for the movement of ions in the electrolyte It is preferable to have a low resistance to respect and an excellent electrolyte moisture content.
- a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer and ethylene/methacrylate copolymer, or these
- a laminate structure of two or more layers of may be used.
- a conventional porous nonwoven fabric for example, a nonwoven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, etc. may be used.
- a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may optionally be used in a single-layer or multi-layer structure.
- examples of the electrolyte used in the present invention include organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel polymer electrolytes, solid inorganic electrolytes, and molten inorganic electrolytes, which can be used in the manufacture of lithium secondary batteries, and are limited to these. it is not going to be
- the electrolyte may include an organic solvent and a lithium salt.
- the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
- ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, ⁇ -caprolactone
- ether solvents such as dibutyl ether or tetrahydrofuran
- ketone solvents such as cyclohexanone
- aromatic hydrocarbon-based solvents such as benzene and fluorobenzene
- carbonate-based solvents such as dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), ethylene carbonate (EC), and propylene carbonate (PC)
- alcohol solvents such as ethyl alcohol and isopropyl alcohol
- nitriles such as R-CN (R is a C2 to C20 linear, branched or cyclic hydrocarbon group, which may include a double bond aromatic
- a carbonate-based solvent is preferable, and a cyclic carbonate (eg, ethylene carbonate or propylene carbonate, etc.) having a high dielectric constant capable of increasing the charge/discharge performance of the battery and a low-viscosity linear carbonate-based compound (eg, ethyl A mixture of methyl carbonate, dimethyl carbonate, diethyl carbonate, etc.) is more preferable.
- a cyclic carbonate and the chain carbonate are mixed in a volume ratio of about 1:1 to about 1:9, the performance of the electrolyte may be excellent.
- the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
- the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 .
- LiCl, LiI, or LiB(C 2 O 4 ) 2 , etc. may be used.
- the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has appropriate conductivity and viscosity, excellent electrolyte performance may be exhibited, and lithium ions may move effectively.
- the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, tri Ethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imida
- One or more additives such as taxdine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol or aluminum trichloride may be further included. In this case, the additive may be included in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte.
- the lithium secondary battery including the positive electrode active material according to the present invention is useful in the field of portable devices such as mobile phones, notebook computers, digital cameras, and electric vehicles such as hybrid electric vehicles (HEVs).
- portable devices such as mobile phones, notebook computers, digital cameras, and electric vehicles such as hybrid electric vehicles (HEVs).
- HEVs hybrid electric vehicles
- a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
- the battery module or battery pack is a power tool (Power Tool); electric vehicles, including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Alternatively, it may be used as a power source for any one or more medium-to-large devices in a system for power storage.
- Power Tool Power Tool
- electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs);
- PHEVs plug-in hybrid electric vehicles
- Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 precursor synthesized by the co-precipitation reaction was mixed with LiOH and Li/Me (Ni, Co, Mn) in a molar ratio of 1.05, followed by heat treatment at 900 ° C. in an oxygen atmosphere for 10 hours to form LiNi 0.8 Co 0.1 Mn 0.1 O 2
- a lithium composite transition metal oxide first positive active material was prepared.
- Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 precursor synthesized by the co-precipitation reaction was mixed with LiOH and Li/Me (Ni, Co, Mn) in a molar ratio of 1.05, followed by heat treatment at 800 ° C. in an oxygen atmosphere for 10 hours to form LiNi 0.8 Co 0.1 Mn 0.1 O 2
- a lithium composite transition metal oxide second positive active material was prepared.
- a positive active material was prepared in the same manner as in Example 1, except that the weight ratio of the first positive active material to the second positive active material was controlled to be 60:40 instead of 80:20. The results are shown in Table 1.
- Example 3 the first positive active material including single particles having an average diameter (D50) of 8 ⁇ m and the second positive active material including secondary particles having an average diameter (D50) of 3 ⁇ m were mixed at 80:20 (weight ratio). ) was mixed and used as a positive electrode active material.
- the secondary particles are secondary particles in which 10 or less primary large particles having a diameter of 1 ⁇ m or more are aggregated.
- a positive electrode active material was prepared as follows:
- Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 precursor synthesized by the co-precipitation reaction was mixed so that the LiOH and Li/Me (Ni, Co, Mn) molar ratio was 1.07, and heat-treated at 900 ° C. for 15 hours in an oxygen atmosphere to form LiNi 0.8 Co 0.1 Mn 0.1 O 2
- a lithium composite transition metal oxide first positive active material was prepared.
- Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 precursor synthesized by the co-precipitation reaction was mixed so that the LiOH and Li/Me (Ni, Co, Mn) molar ratio became 1.03, and heat-treated at 800 ° C. in an oxygen atmosphere for 8 hours to form LiNi 0.8 Co 0.1 Mn 0.1 O 2
- a lithium composite transition metal oxide second positive active material was prepared.
- a positive active material was prepared in the same manner as in Example 3, except that the weight ratio of the first positive active material and the second positive active material was controlled to 20:80 instead of 80:20. The results are shown in Table 1.
- Comparative Example 1 refers to only the first positive active material prepared in Example 1.
- Comparative Example 2 refers to only the second positive active material prepared in Example 1.
- Comparative Example 3 refers to only the first positive active material prepared in Example 3.
- Comparative Example 4 refers to only the second positive active material prepared in Example 3.
- Example 1 first cathode active material Single particles with an average particle diameter of 5 ⁇ m 200 260 80 89.9 Second cathode active material 4 One 113 210 20
- Example 2 first cathode active material Single particles with an average particle diameter of 5 ⁇ m 200 260 60 88.9 Second cathode active material 4
- One 113 210 40 Example 3 first cathode active material Single particles with an average particle diameter of 8 ⁇ m 230 280 80 90.6 Second cathode active material 3
- Example 4 first cathode active material Single particles with an average particle diameter of 8 ⁇ m 230 280 20 88.5 Second cathode active material 3
- One 115 210 80 Comparative Example 1 Single positive active material Single particles with an average particle diameter of 5 ⁇ m 200 260 100 80.3 Comparative Example 2 Single positive active material
- a method of measuring the remaining capacity of a 100-time charge/discharge battery is a method of measuring the remaining capacity of a 100-time charge/discharge battery.
- a positive electrode was manufactured using the positive electrode active material according to Examples and Comparative Examples, and capacity retention was measured in the following manner.
- a negative electrode slurry was prepared by mixing artificial graphite and natural graphite in a ratio of 5:5 as an anode active material, super C as a conductive material, and SBR/CMC as a binder in a weight ratio of 96:1:3. After being coated on the surface, dried at 130 ° C. and rolled to a porosity of 30% to prepare a negative electrode.
- An electrode assembly was prepared by interposing a separator of porous polyethylene between the positive electrode and the negative electrode prepared as described above, the electrode assembly was placed inside the case, and the electrolyte was injected into the case to prepare a lithium secondary battery.
- the prepared lithium secondary battery full cell was charged at 45°C in CC-CV mode at 0.5C until 4.2V, and discharged to 3.0V at a constant current of 1C to conduct 100 charge/discharge experiments. Life characteristics were evaluated by measuring the capacity retention rate at the time. The results are shown in Table 1.
- the strength of the particles was measured by measuring the force when the particles were broken by contacting the indenter to the positive active material particles using Shimadzu-MCT-W500 equipment and applying a force.
- the average particle diameter D50 can be defined as the particle size based on 50% of the cumulative volume distribution of particles, and in the case of single particles, it means the average particle diameter of primary particles, and in the case of secondary particles, the average of secondary particles means particle size.
- D50 was measured using a laser diffraction method. After dispersing the powder in the dispersion medium, using a commercially available laser diffraction particle size measuring device Microtrac MT 3000, irradiating 28 kHz ultrasonic waves with an output of 60 W to obtain a volume cumulative particle size distribution graph, The particle size was determined.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
구분 | size (D50) (㎛) | 1차 거대 입자 size(D50) (㎛) | 입자강도 (MPa) |
1차 거대 입자의 평균 결정 크기 (nm) | Blending 비율 | 수명 (용량 retention) | |
실시예 1 | 제1 양극활물질 | 평균 입경이 5 ㎛인 단입자 | 200 | 260 | 80 | 89.9 | |
제2 양극활물질 | 4 | 1 | 113 | 210 | 20 | ||
실시예 2 | 제1 양극활물질 | 평균 입경이 5 ㎛인 단입자 | 200 | 260 | 60 | 88.9 | |
제2 양극활물질 | 4 | 1 | 113 | 210 | 40 | ||
실시예 3 | 제1 양극활물질 | 평균 입경이 8 ㎛인 단입자 | 230 | 280 | 80 | 90.6 | |
제2 양극활물질 | 3 | 1 | 115 | 210 | 20 | ||
실시예 4 | 제1 양극활물질 | 평균 입경이 8 ㎛인 단입자 | 230 | 280 | 20 | 88.5 | |
제2 양극활물질 | 3 | 1 | 115 | 210 | 80 | ||
비교예 1 | 단일 양극 활물질 | 평균 입경이 5 ㎛인 단입자 | 200 | 260 | 100 | 80.3 | |
비교예 2 | 단일 양극 활물질 | 4 | 1 | 113 | 210 | 100 | 79.5 |
비교예 3 | 단일 양극 활물질 | 평균 입경이 8 ㎛인 단입자 | 230 | 280 | 100 | 81.2 | |
비교예 4 | 단일 양극 활물질 | 3 | 1 | 115 | 210 | 100 | 79.3 |
Claims (14)
- 제1 양극 활물질 및 제2 양극 활물질을 포함하는 리튬 이차 전지용 양극 활물질이며,상기 제1 양극 활물질은 적어도 하나의 단입자를 포함하며,상기 제2 양극 활물질은 1차 거대(macro) 입자의 응집체를 포함하는 적어도 하나의 2차 입자를 포함하며,상기 단입자는 평균 입경(D50)이 3 내지 10 ㎛인 하나의 입자로 구성되며,상기 1차 거대 입자의 평균 입경(D50)은 1 ㎛ 이상이며,상기 2차 입자의 평균 입경(D50)은 1 내지 10 ㎛인 것을 특징으로 하는 리튬 이차 전지용 양극 활물질.
- 제1항에 있어서,상기 단입자의 평균 입경(D50)은 상기 2차 입자의 평균 입경(D50)보다 큰 것을 특징으로 하는 리튬 이차 전지용 양극 활물질.
- 제2항에 있어서,상기 단입자의 평균 입경(D50)은 상기 2차 입자의 평균 입경(D50) 대비 1.1 내지 2 배인 것을 특징으로 하는 리튬 이차 전지용 양극 활물질.
- 제1항에 있어서,상기 제1 양극 활물질과 상기 제2 양극 활물질의 중량비는 90 : 10 내지 10 : 90인 것을 특징으로 하는 리튬 이차 전지용 양극 활물질.
- 제1항에 있어서,상기 제1 양극 활물질의 입자 강도가 상기 제2 양극 활물질의 입자 강도보다 큰 것을 특징으로 하는 리튬 이차 전지용 양극 활물질.
- 제5항에 있어서,상기 제1 양극 활물질의 입자 강도는 200 MPa 이상이며,상기 제2 양극 활물질의 입자 강도는 120 MPa 이하인 것을 특징으로 하는 리튬 이차 전지용 양극 활물질.
- 제1항에 있어서,상기 1차 거대 입자의 평균 입경(D50)/상기 1차 거대 입자의 평균 결정 크기(crystal size)의 비는 2 이상인 것을 특징으로 하는 리튬 이차 전지용 양극 활물질.
- 제1항에 있어서,상기 1차 거대 입자의 평균 결정 크기는 190 nm 이상인 것을 특징으로 하는 리튬 이차 전지용 양극 활물질.
- 제1항에 있어서,상기 2차 입자의 평균 입경(D50)/상기 1차 거대 입자의 평균 입경(D50)의 비는 2 내지 5배인 것을 특징으로 하는 리튬 이차 전지용 양극 활물질.
- 제1항에 있어서,상기 제1 및 제2 양극 활물질은 각각 독립적으로 니켈계 리튬 전이금속 산화물을 포함하는 것을 특징으로 하는 리튬 이차 전지용 양극 활물질.
- 제10항에 있어서,상기 니켈계 리튬 전이금속 산화물은, 각각 독립적으로 LiaNi1-b-c-dCobMncQdO2+δ (1.0≤a≤1.5, 0<b<0.2, 0<c<0.2, 0≤d≤0.1, 0<b+c+d≤0.2, -0.1≤δ≤1.0, Q은 Al, Mg, V, Ti, Zr으로 이루어진 군에서 선택된 1종 이상 금속 원소임)인 것을 특징으로 하는 양극 활물질.
- 제1항에 따른 양극 활물질을 포함하며,상기 제1 양극 활물질과 상기 제2 양극 활물질이 면접하여 형성된 공간에 상기 1차 거대 입자가 위치한 것을 특징으로 하는 리튬 이차 전지용 양극.
- 제12항에 있어서,상기 제1 양극 활물질들이 서로 면접하여 형성된 공간에 상기 1차 거대 입자가 위치한 것을 특징으로 하는 리튬 이차 전지용 양극.
- 제1항에 따른 양극 활물질을 포함하는 리튬 이차 전지.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/039,345 US20240250254A1 (en) | 2020-12-07 | 2021-12-07 | Positive Electrode Active Material for Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same |
CN202180082112.4A CN116569361A (zh) | 2020-12-07 | 2021-12-07 | 锂二次电池用正极活性材料和包含其的锂二次电池 |
EP21903820.5A EP4250398A4 (en) | 2020-12-07 | 2021-12-07 | POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY THEREOF |
JP2023534409A JP2023553058A (ja) | 2020-12-07 | 2021-12-07 | リチウム二次電池用正極活物質及びそれを含むリチウム二次電池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20200169213 | 2020-12-07 | ||
KR10-2020-0169213 | 2020-12-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022124774A1 true WO2022124774A1 (ko) | 2022-06-16 |
Family
ID=81973836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/018489 WO2022124774A1 (ko) | 2020-12-07 | 2021-12-07 | 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240250254A1 (ko) |
EP (1) | EP4250398A4 (ko) |
JP (1) | JP2023553058A (ko) |
KR (1) | KR20220080727A (ko) |
CN (1) | CN116569361A (ko) |
WO (1) | WO2022124774A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4382489A1 (en) * | 2022-12-07 | 2024-06-12 | Samsung SDI Co., Ltd. | Positive active material for rechargeable lithium batteries, preparation method thereof and rechargeable lithium batteries including the same |
EP4411863A1 (en) * | 2022-12-16 | 2024-08-07 | Samsung SDI Co., Ltd. | Positive electrode for rechargeable lithium battery, and rechargeable lithium battery comprising the same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4447158A1 (en) * | 2022-06-24 | 2024-10-16 | LG Chem, Ltd. | Cathode material for lithium secondary battery, cathode comprising same, and lithium secondary battery |
WO2024136482A1 (ko) * | 2022-12-23 | 2024-06-27 | 주식회사 엘지에너지솔루션 | 리튬 이차 전지 |
KR20240101243A (ko) * | 2022-12-23 | 2024-07-02 | 주식회사 엘지에너지솔루션 | 이차전지 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101785262B1 (ko) * | 2013-07-08 | 2017-10-16 | 삼성에스디아이 주식회사 | 양극 활물질, 그 제조방법, 이를 채용한 양극 및 리튬이차전지 |
KR20190041715A (ko) * | 2017-10-13 | 2019-04-23 | 주식회사 엘지화학 | 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 |
KR20190059249A (ko) * | 2017-11-22 | 2019-05-30 | 주식회사 엘지화학 | 리튬 이차전지용 양극활물질 및 그 제조방법 |
KR20190143088A (ko) * | 2018-06-20 | 2019-12-30 | 에스케이이노베이션 주식회사 | 리튬 이차 전지 및 이의 제조 방법 |
KR20200030287A (ko) * | 2018-09-12 | 2020-03-20 | 주식회사 엘지화학 | 이차전지용 양극재, 그 제조방법 및 이를 포함하는 리튬 이차전지 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102410662B1 (ko) * | 2018-02-01 | 2022-06-17 | 주식회사 엘지에너지솔루션 | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 |
-
2021
- 2021-12-07 KR KR1020210174140A patent/KR20220080727A/ko active Search and Examination
- 2021-12-07 CN CN202180082112.4A patent/CN116569361A/zh active Pending
- 2021-12-07 EP EP21903820.5A patent/EP4250398A4/en active Pending
- 2021-12-07 WO PCT/KR2021/018489 patent/WO2022124774A1/ko active Application Filing
- 2021-12-07 US US18/039,345 patent/US20240250254A1/en active Pending
- 2021-12-07 JP JP2023534409A patent/JP2023553058A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101785262B1 (ko) * | 2013-07-08 | 2017-10-16 | 삼성에스디아이 주식회사 | 양극 활물질, 그 제조방법, 이를 채용한 양극 및 리튬이차전지 |
KR20190041715A (ko) * | 2017-10-13 | 2019-04-23 | 주식회사 엘지화학 | 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 |
KR20190059249A (ko) * | 2017-11-22 | 2019-05-30 | 주식회사 엘지화학 | 리튬 이차전지용 양극활물질 및 그 제조방법 |
KR20190143088A (ko) * | 2018-06-20 | 2019-12-30 | 에스케이이노베이션 주식회사 | 리튬 이차 전지 및 이의 제조 방법 |
KR20200030287A (ko) * | 2018-09-12 | 2020-03-20 | 주식회사 엘지화학 | 이차전지용 양극재, 그 제조방법 및 이를 포함하는 리튬 이차전지 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4250398A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4382489A1 (en) * | 2022-12-07 | 2024-06-12 | Samsung SDI Co., Ltd. | Positive active material for rechargeable lithium batteries, preparation method thereof and rechargeable lithium batteries including the same |
EP4411863A1 (en) * | 2022-12-16 | 2024-08-07 | Samsung SDI Co., Ltd. | Positive electrode for rechargeable lithium battery, and rechargeable lithium battery comprising the same |
Also Published As
Publication number | Publication date |
---|---|
JP2023553058A (ja) | 2023-12-20 |
EP4250398A4 (en) | 2024-06-26 |
KR20220080727A (ko) | 2022-06-14 |
CN116569361A (zh) | 2023-08-08 |
US20240250254A1 (en) | 2024-07-25 |
EP4250398A1 (en) | 2023-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019235885A1 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2019221497A1 (ko) | 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2016204563A1 (ko) | 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지 | |
WO2022124774A1 (ko) | 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지 | |
WO2022103105A1 (ko) | 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지 | |
WO2021154026A1 (ko) | 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지 | |
WO2021080374A1 (ko) | 양극 활물질 전구체의 제조 방법 및 양극 활물질 전구체 | |
WO2022139311A1 (ko) | 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지 | |
WO2016053056A1 (ko) | 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2022124801A1 (ko) | 리튬 이차 전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 양극 | |
WO2017095134A1 (ko) | 이차전지용 양극활물질 및 이를 포함하는 이차전지 | |
WO2021187963A1 (ko) | 리튬 이차전지용 양극 활물질 전구체의 제조 방법, 양극 활물질 전구체, 이를 이용하여 제조된 양극 활물질, 양극 및 리튬 이차전지 | |
WO2022154603A1 (ko) | 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지 | |
WO2022114872A1 (ko) | 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지 | |
WO2022098136A1 (ko) | 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지 | |
WO2022092922A1 (ko) | 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지 | |
WO2022119313A1 (ko) | 양극 활물질 전구체, 이의 제조방법 및 양극 활물질 | |
WO2020111655A1 (ko) | 리튬 이차전지용 양극 활물질 전구체의 제조 방법 | |
WO2022169331A1 (ko) | 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지 | |
WO2023277382A1 (ko) | 리튬 이차 전지용 양극 및 이를 구비하는 리튬 이차 전지 | |
WO2022240129A1 (ko) | 양극 활물질 및 이의 제조 방법 | |
WO2022169271A1 (ko) | 양극 활물질 및 이의 제조방법 | |
WO2021241995A1 (ko) | 양극 활물질 전구체 및 양극 활물질 전구체의 제조 방법 | |
WO2022182162A1 (ko) | 양극 활물질, 이를 포함하는 양극 및 이차 전지 | |
WO2023132688A1 (ko) | 양극 활물질, 그 제조 방법, 이를 포함하는 양극 및 리튬 이차 전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21903820 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18039345 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180082112.4 Country of ref document: CN Ref document number: 2023534409 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021903820 Country of ref document: EP Effective date: 20230620 |