WO2024013613A1 - 正極活物質の作製方法 - Google Patents

正極活物質の作製方法 Download PDF

Info

Publication number
WO2024013613A1
WO2024013613A1 PCT/IB2023/056941 IB2023056941W WO2024013613A1 WO 2024013613 A1 WO2024013613 A1 WO 2024013613A1 IB 2023056941 W IB2023056941 W IB 2023056941W WO 2024013613 A1 WO2024013613 A1 WO 2024013613A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
secondary battery
battery
Prior art date
Application number
PCT/IB2023/056941
Other languages
English (en)
French (fr)
Inventor
吉谷友輔
宮入典子
平原誉士
石谷哲二
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Publication of WO2024013613A1 publication Critical patent/WO2024013613A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • One aspect of the present invention relates to a product, a method, or a manufacturing method. Alternatively, the invention relates to a process, machine, manufacture, or composition of matter.
  • One embodiment of the present invention relates to a power storage device including a secondary battery, a semiconductor device, a display device, a light emitting device, a lighting device, an electronic device, or a manufacturing method thereof.
  • electronic devices refer to devices in general that have power storage devices, and electro-optical devices that have power storage devices, information terminal devices that have power storage devices, and the like are all electronic devices.
  • lithium ion secondary batteries lithium ion capacitors, air batteries, and various power storage devices have been actively developed.
  • lithium ion secondary batteries with high output and high energy density are used in mobile information terminals such as mobile phones, smartphones, and notebook computers, portable music players, digital cameras, medical equipment, and hybrid vehicles (HVs).
  • HVs hybrid vehicles
  • EVs electric vehicles
  • PSVs plug-in hybrid vehicles
  • Patent Document 1 discloses a positive electrode active material for a lithium ion secondary battery containing aluminum.
  • An object of one embodiment of the present invention is to provide a positive electrode active material that does not easily deteriorate.
  • the present invention aims to provide a novel positive electrode active material.
  • one of the challenges is to provide a secondary battery with high safety or reliability.
  • one of the challenges is to provide a secondary battery that does not easily deteriorate.
  • one of the challenges is to provide a long-life secondary battery.
  • one of the challenges is to provide a new secondary battery.
  • the configuration disclosed in this specification is a method for producing a positive electrode active material, in which an aqueous solution containing a water-soluble salt of a water-soluble salt of nickel, a water-soluble salt of cobalt, and a water-soluble salt of manganese is placed in a reaction tank; A solution was supplied and mixed inside the reaction tank to precipitate a compound containing at least nickel, cobalt, and manganese, and the compound, a metal compound (a compound containing aluminum or magnesium), and a lithium compound were mixed. After the first mixture is heated at a first heating temperature and crushed or crushed, the first mixture is further heated at a second heating temperature and crushed or crushed, and the lithium compound is mixed. This is a method for producing a positive electrode active material in which the obtained second mixture is heated at a third heating temperature.
  • the first heating temperature is preferably lower than the second heating temperature. It is preferable that the third heating temperature is lower than the second heating temperature. It is preferable that the first heating temperature is lower than the third heating temperature.
  • the range of the first heating temperature is from 400°C to 750°C.
  • the second heating temperature and the third heating temperature are in a range higher than 750°C and lower than 1050°C.
  • the aluminum or magnesium concentration inside the particles of the positive electrode active material can be approximately reduced by adjusting the timing of adding aluminum or magnesium. be substantially the same.
  • the particle size of the positive electrode active material is increased by mixing it with lithium hydroxide and heating it in multiple batches.
  • the crystallite size of the positive electrode active material calculated from the XRD pattern is 150 nm or more.
  • the crystallite size calculated from the half width of the XRD diffraction pattern is preferably 150 nm or more, more preferably 180 nm or more, and even more preferably 200 nm or more.
  • the crystallite size calculated from the XRD diffraction pattern is preferably 1000 nm or less, more preferably 800 nm or less.
  • a primary particle is constituted by a plurality of crystallites, and when observed by SEM, the smallest unit of particle surrounded by grain boundaries is called a primary particle. Therefore, primary particles include single crystals and polycrystals.
  • a crystallite refers to the largest collection that can be considered a single crystal, and the crystallite size is calculated from an XRD pattern. Agglomerated primary particles are sometimes called secondary particles.
  • Bruker D8 ADVANCE is used, CuK ⁇ is used as the X-ray source, 2 ⁇ is 15° or more and 90° or less, increment 0.005, and the diffraction pattern obtained using LYNXEYE XE-T as the detector and cobalt.
  • ICSD coll. code. 172909 can be used.
  • DIFFRAC. crystal structure analysis software.
  • TOPAS ver. 6 can be used for analysis, and for example, the following settings can be made.
  • Emission Profile CuKa5.
  • LVol-IB which is the crystallite size calculated by the above method, as the crystallite size.
  • the XRD pattern used to calculate the crystallite size may be obtained with only the positive electrode active material, or with the positive electrode containing a current collector, binder, conductive material, etc. in addition to the positive electrode active material. You may. However, in the state of the positive electrode, the positive electrode active material may be oriented due to the influence of pressure during the manufacturing process. If the positive electrode active material is strongly oriented, the crystallite size may not be accurately calculated. Therefore, it is more preferable to obtain the sample by a method that reduces the orientation, such as by peeling off the positive electrode active material layer from the positive electrode, removing some binder, etc. in the positive electrode active material layer using a solvent, etc., and then filling the sample holder.
  • a positive electrode active material or a composite oxide that can be used in a lithium ion secondary battery and has excellent charge/discharge rate characteristics.
  • a highly safe or reliable secondary battery can be provided.
  • a positive electrode active material a composite oxide, a power storage device, or a manufacturing method thereof can be provided.
  • FIG. 1A shows a cross-sectional SEM photograph of a positive electrode active material layer showing one embodiment of the present invention
  • FIG. 1B is a graph of the Al concentration of EDX at each point (4 locations in total) in the depth direction of FIG. 1A
  • FIG. 2 is a diagram illustrating a method for manufacturing a positive electrode active material showing one embodiment of the present invention
  • 3A, FIG. 3B, FIG. 3C, and FIG. 3D are schematic cross-sectional views of the positive electrode.
  • FIG. 4A is an exploded perspective view of a coin-type secondary battery
  • FIG. 4B is a perspective view of the coin-type secondary battery
  • FIG. 4C is a cross-sectional perspective view thereof.
  • FIG. 5A shows an example of a cylindrical secondary battery.
  • FIG. 5A shows an example of a cylindrical secondary battery.
  • FIG. 5B shows an example of a cylindrical secondary battery.
  • FIG. 5C shows an example of a plurality of cylindrical secondary batteries.
  • FIG. 5D shows an example of a power storage system including a plurality of cylindrical secondary batteries.
  • 6A and 6B are diagrams illustrating an example of a secondary battery
  • FIG. 6C is a diagram illustrating the inside of the secondary battery.
  • 7A to 7C are diagrams illustrating examples of secondary batteries.
  • 8A and 8B are diagrams showing the appearance of the secondary battery.
  • 9A to 9C are diagrams illustrating a method for manufacturing a secondary battery.
  • FIG. 10A is a perspective view of a battery pack showing one embodiment of the present invention
  • FIG. 10B is a block diagram of the battery pack
  • FIG. 10A is a perspective view of a battery pack showing one embodiment of the present invention
  • FIG. 10B is a block diagram of the battery pack
  • FIG. 10C is a block diagram of a vehicle having the battery pack.
  • FIGS. 11A to 11D are diagrams illustrating an example of a transportation vehicle.
  • FIG. 11E is a diagram illustrating an example of an artificial satellite.
  • FIG. 12A is a diagram showing an electric bicycle
  • FIG. 12B is a diagram showing a secondary battery of the electric bicycle
  • FIG. 12C is a diagram explaining a scooter.
  • 13A to 13E are diagrams illustrating an example of an electronic device.
  • FIG. 14A shows a cross-sectional SEM photograph of a positive electrode active material layer showing one embodiment of the present invention
  • FIG. 14B is a graph of the Mg concentration of EDX at each point (total 5 locations) in the depth direction of FIG. 14A.
  • FIG. 14A shows a cross-sectional SEM photograph of a positive electrode active material layer showing one embodiment of the present invention
  • FIG. 14B is a graph of the Mg concentration of EDX at each point (total 5 locations
  • FIG. 15 is a diagram illustrating a method for producing a positive electrode active material showing a comparative example.
  • FIG. 16A shows a cross-sectional SEM photograph of a positive electrode active material layer showing a comparative example
  • FIG. 16B is a graph of the Al concentration of EDX at each point (total 5 locations) in the depth direction of FIG. 16A.
  • FIGS. 17A and 17B are graphs illustrating cycle characteristics of one embodiment of the present invention and a comparative example.
  • FIG. 18A shows a cross-sectional SEM photograph of a positive electrode active material layer showing a comparative example
  • FIG. 18B is a graph of the Mg concentration of EDX at each point (4 locations in total) in the depth direction of FIG. 18A.
  • FIGS. 19A and 19B are graphs illustrating cycle characteristics of one embodiment of the present invention and a comparative example.
  • FIGS. 20A and 20B are graphs illustrating cycle characteristics of one embodiment of the present invention and a comparative example.
  • FIG. 21 is an example of a schematic cross-sectional view of a Taylor reactor.
  • particles is not limited to only spherical shapes (circular cross-sectional shapes), but also includes individual particles whose cross-sectional shapes are elliptical, rectangular, trapezoidal, pyramidal, square with rounded corners, and asymmetrical. Further, individual particles may have an amorphous shape.
  • homogeneity refers to a state in which a certain element (for example, A) is distributed with similar characteristics in a specific region in a solid that is composed of a plurality of elements (for example, A, B, and C). Note that it is sufficient that the concentrations of the elements in the specific regions are substantially the same. For example, it is sufficient if the difference in the detected amount of a certain element (for example, the count number in STEM-EDX) between specific regions is within 10%.
  • Specific areas include, for example, the surface layer, the surface, protrusions, recesses, and the inside.
  • the characteristics of individual particles of the positive electrode active material in the following embodiments and the like, not all particles necessarily have the characteristics. For example, if 50% or more, preferably 70% or more, more preferably 90% or more of three or more randomly selected positive electrode active material particles have the characteristic, it is sufficient to have the positive electrode active material and the same. It can be said that this has the effect of improving the characteristics of the secondary battery.
  • the state of the materials of the secondary battery before deterioration is called the initial product or initial state
  • the state after deterioration (the state when the secondary battery has a discharge capacity of less than 97% of its rated capacity) is called the initial product or initial state.
  • FIG. 1A shows a cross-sectional SEM photograph of the positive electrode active material layer formed on the current collector
  • FIG. 1B is a graph of the Al concentration of EDX at each point (4 locations in total) in the depth direction in FIG. 1A. .
  • the particles of the positive electrode active material are prepared by mixing nickel hydroxide obtained by a coprecipitation method, aluminum hydroxide, and lithium hydroxide using an aqueous solution serving as a nickel source, a cobalt source, and a manganese source. After that, the mixture is mixed with lithium hydroxide and subjected to a second heat treatment.
  • the aluminum concentration (atomic number concentration) from the surface of the particles of the positive electrode active material to a depth of 1000 nm or more is within a substantially constant concentration range (0.58% or more and 0.74% or less) or You can see that it exists beyond that. Further, the aluminum concentration (atomic number concentration) was also contained within the particles of the positive electrode active material at 0.1% or more.
  • the concentration distribution of the additive element and the transition metal M in the particles of the positive electrode active material can be determined by, for example, exposing a cross section of the positive electrode active material using FIB (Focused Ion Beam) or the like, and then measuring the cross section using energy dispersive X-ray spectroscopy (EDX). This can be evaluated by analysis using dispersive X-ray spectroscopy, EPMA (electron probe microanalysis), or the like.
  • FIB Fluorused Ion Beam
  • EDX energy dispersive X-ray spectroscopy
  • EDX surface analysis measuring while scanning the area and evaluating the area two-dimensionally. Also, measuring while scanning linearly and evaluating the distribution of atomic concentration within the positive electrode active material is called line analysis. Furthermore, data on a linear region extracted from the EDX surface analysis is sometimes called line analysis. Also, measuring a certain area without scanning it is called point analysis.
  • the concentration of the additive element and the transition metal M at each location of the positive electrode active material can be quantitatively analyzed. Further, the concentration distribution and maximum value of the added element can be analyzed by EDX-ray analysis. In addition, analysis performed after cutting the sample into thin sections, such as STEM-EDX, analyzes the concentration distribution in the depth direction from the surface of the positive electrode active material toward the center in a specific region, without being affected by the distribution in the depth direction. possible and more suitable.
  • the concentrations of each additive element in the surface layer portion and inside the material are substantially the same.
  • the aluminum concentration in the surface layer portion is substantially the same as the aluminum concentration in the interior.
  • the difference between the positive electrode active material of one embodiment of the present invention and the comparative example is considered to be due to the difference in the manufacturing process of the particles of the positive electrode active material.
  • the surface layer portion of a positive electrode active material refers to, for example, a region within 200 nm from the surface toward the inside. Cracks and/or surfaces caused by cracks may also be referred to as surfaces. Surface layer portion is synonymous with near surface, near surface region, or shell.
  • Interior is synonymous with interior region or core.
  • the surface of the positive electrode active material refers to the surface of the composite oxide including the surface layer portion and the inside. Therefore, the positive electrode active material does not contain chemically adsorbed carbonates, hydroxyl groups, etc. after fabrication. It also does not include electrolytes, binders, conductive materials, or compounds derived from these that adhere to the positive electrode active material.
  • the surface of the positive electrode active material in a cross-sectional STEM (scanning transmission electron microscope) image, etc. is the boundary between the region where the combined electron beam image is observed and the region where it is not observed, and is a metal element whose atomic number is larger than lithium. This is the outermost region where bright spots originating from the atomic nucleus are observed.
  • the surface in a cross-sectional STEM image or the like may be determined in conjunction with the results of analysis with higher spatial resolution, such as electron energy loss spectroscopy (EELS).
  • EELS electron energy loss spectroscopy
  • transition metal M sources that is, a nickel source (Ni source), a cobalt source (Co source), and a manganese source (Mn source) are prepared. It is preferable that the mixing ratio of nickel, cobalt, and manganese be such that the product has a layered rock salt type crystal structure.
  • a positive electrode active material containing a large amount of nickel as the transition metal M is preferable because the raw material may be cheaper and the charge/discharge capacity per weight may be increased compared to a case where the material contains a large amount of cobalt.
  • nickel preferably accounts for more than 25 atom %, more preferably 60 atom % or more, and even more preferably 80 atom % or more.
  • the content of nickel in the transition metal M is 95 atomic % or less.
  • a secondary battery containing cobalt as the transition metal M in the positive electrode active material is preferable because it has a high average discharge voltage and cobalt contributes to stabilizing the layered rock salt structure, making it a highly reliable secondary battery.
  • the price of cobalt is higher than that of nickel and manganese, so if the proportion of cobalt is too high, the cost of manufacturing a secondary battery may increase. Therefore, for example, cobalt in the transition metal M is preferably 2.5 atomic % or more and 34 atomic % or less.
  • transition metal M does not necessarily need to contain cobalt.
  • a positive electrode active material containing manganese as the transition metal M is preferable because heat resistance and chemical stability are improved. However, if the proportion of manganese is too high, the discharge voltage and discharge capacity tend to decrease. Therefore, for example, the content of manganese among the transition metals M is preferably 2.5 atomic % or more and 34 atomic % or less.
  • transition metal M does not necessarily have to include manganese.
  • the transition metal M source is prepared as an aqueous solution of a transition metal M-containing compound.
  • an aqueous solution of nickel salt can be used.
  • nickel salt for example, nickel sulfate, nickel chloride, nickel nitrate, or hydrates thereof can be used.
  • organic acid salts of nickel such as nickel acetate, or hydrates thereof can also be used.
  • an aqueous solution of nickel alkoxide or an organic nickel complex can be used as the nickel source.
  • an organic acid salt refers to a compound of an organic acid such as acetic acid, citric acid, oxalic acid, formic acid, butyric acid, and a metal.
  • an aqueous solution of cobalt salt can be used as the cobalt source.
  • cobalt salt for example, cobalt sulfate, cobalt chloride, cobalt nitrate, or hydrates thereof can be used.
  • organic acid salts of cobalt such as cobalt acetate, or hydrates thereof can also be used.
  • an aqueous solution of a cobalt alkoxide or an organic cobalt complex can be used as the cobalt source.
  • an aqueous solution of manganese salt can be used as the manganese source.
  • the manganese salt for example, manganese sulfate, manganese chloride, manganese nitrate, or an aqueous solution of a hydrate thereof can be used.
  • organic acid salts of manganese such as manganese acetate, or hydrates thereof can also be used.
  • an aqueous solution of manganese alkoxide or an organic manganese complex can be used as the manganese source.
  • an aqueous solution in which nickel sulfate, cobalt sulfate, and manganese sulfate are dissolved in pure water is prepared as a transition metal M source.
  • the aqueous solution exhibits acidity.
  • a chelating agent may be prepared.
  • Chelating agents include, for example, glycine, oxine, 1-nitroso-2-naphthol, 2-mercaptobenzothiazole, or EDTA (ethylenediaminetetraacetic acid).
  • you may use multiple types selected from glycine, oxine, 1-nitroso-2-naphthol, and 2-mercaptobenzothiazole. At least one of these is dissolved in pure water and used as a chelate aqueous solution.
  • Chelating agents are complexing agents that create chelate compounds and are preferred over common complexing agents.
  • a complexing agent may be used instead of a chelating agent, and aqueous ammonia can be used as the complexing agent.
  • a chelate aqueous solution because it can suppress unnecessary generation of crystal nuclei and promote growth. When the generation of unnecessary nuclei is suppressed, the generation of fine particles is suppressed, so that a composite hydroxide 98 with a good particle size distribution can be obtained.
  • ammonia is used in an alkaline solution, ammonia salts may be produced.
  • an aqueous chelate solution the acid-base reaction can be delayed, and the reaction proceeds gradually, making it possible to obtain nearly spherical secondary particles.
  • Glycine has the effect of keeping the pH value constant at a pH of 9 or more and 10 or less, and by using a glycine aqueous solution as the chelate aqueous solution, the pH of the reaction tank when obtaining the above composite hydroxide 98 can be adjusted. This is preferable because it is easier to control.
  • the glycine concentration is preferably 0.05 mol/L or more and 0.3 mol/L or less, preferably 0.07 mol/L or more and 0.32 mol/L or less.
  • Step S114 Next, in step S114 in FIG. 2, a transition metal M source and a chelating agent are mixed to prepare an acid solution.
  • an alkaline solution is prepared.
  • an aqueous solution containing sodium hydroxide, potassium hydroxide, lithium hydroxide or ammonia can be used.
  • This aqueous solution is preferably prepared using pure water. Alternatively, it may be an aqueous solution in which multiple types selected from sodium hydroxide, potassium hydroxide, lithium hydroxide, or ammonia are dissolved in pure water.
  • the pure water preferably used for the transition metal M source and alkaline solution is water with a specific resistance of 1 M ⁇ cm or more, more preferably water with a specific resistance of 10 M ⁇ cm or more, and even more preferably 15 M ⁇ cm or more. water. Water that satisfies the specific resistance has high purity and contains very few impurities.
  • Step S122 Further, as shown in step S122 in FIG. 2, it is preferable to prepare water in the reaction tank.
  • This water may be an aqueous solution of a chelating agent, but is more preferably pure water. By using pure water, nucleation is promoted and a composite hydroxide with a small particle size can be produced.
  • the water prepared in this reaction tank can be called a filling liquid or adjustment liquid for the reaction tank.
  • the description in step S113 can be taken into consideration.
  • step S131 in FIG. 2 the acid solution and the alkaline solution are mixed and reacted.
  • the reaction can be referred to as a coprecipitation reaction, a neutralization reaction, or an acid-base reaction.
  • the pH of the reaction system is preferably set to 9.0 or more and 13.0 or less.
  • an alkaline solution when placed in a reaction tank and an acid solution is added to the reaction tank, it is preferable to maintain the pH of the aqueous solution in the reaction tank within the range of the above conditions.
  • the feeding rate of the acid solution is preferably 0.1 mL/min or less, as this makes it easier to control the pH conditions.
  • the tank storing the acid solution is equipped with a pump, and by using the pump, the acid solution can be added to the reaction tank through the pipe.
  • the amount of acid solution added that is, the amount of liquid fed can be controlled by the pump.
  • the alkaline solution is added so as to keep the pH of the aqueous solution in the reaction tank constant.
  • the reaction tank has a reaction container and the like.
  • the stirring means includes a stirrer or stirring blades. Two or more stirring blades and six or less stirring blades can be provided. For example, when four stirring blades are provided, they are preferably arranged in a cross shape when viewed from above.
  • the rotation speed of the stirring means is preferably 800 rpm or more and 1200 rpm or less.
  • a baffle plate may be provided in the reaction tank to change the stirring direction and flow rate. By providing a baffle plate, mixing efficiency is improved and more uniform composite hydroxide particles can be synthesized.
  • the temperature of the reaction tank it is preferable to adjust the temperature of the reaction tank to 50°C or more and 90°C or less. Addition of the alkaline or acid solution is preferably started after the reaction vessel has reached the relevant temperature.
  • the inert atmosphere in this case can be nitrogen or argon.
  • nitrogen gas is preferably introduced at a flow rate of 0.5 L/min or more and 2 L/min.
  • a reflux condenser allows nitrogen gas to be vented from the reactor and water vapor to be returned to the reactor.
  • Step S132> In order to recover the composite hydroxide 98, it is preferable to perform filtration as shown in step S132 in FIG.
  • the filtration is preferably suction filtration.
  • the reaction product precipitated in the reaction tank may be washed with pure water and then filtered using an organic solvent (for example, acetone).
  • the filtered composite hydroxide 98 is preferably dried. For example, it is dried under vacuum at a temperature of 60° C. or more and 200° C. or less for 0.5 hours or more and 20 hours or less. For example, it can be dried for 12 hours.
  • composite hydroxide 98 containing transition metal M can be obtained.
  • the composite hydroxide 98 refers to hydroxides of multiple types of metals.
  • the composite hydroxide 98 can be said to be a precursor of a positive electrode active material. Preparation of the precursor of the positive electrode active material is not limited to the coprecipitation method using a reaction tank, but may also be performed using Taylor vortex flow.
  • FIG. 21 is an example of a schematic cross-sectional view of the Taylor reactor 80.
  • a Taylor reactor 80 that includes an outer cylinder 82 and an inner cylinder 81 that rotates within the outer cylinder, and generates a Taylor vortex within a gap space formed between the outer cylinder 82 and the inner cylinder 81.
  • a plurality of types of fluids are allowed to flow in from one of the inflow holes 84a, 84b, and 84c, and the inner cylinder 81 is rotated using the motor 83, different types of fluids are mixed by Taylor vortex flow. It will be done.
  • chemical reactions of different types of fluids also occur simultaneously.
  • Each supply line connected to the inflow hole for supplying fluid is provided with an intake control valve to control the flow of the fluid to be supplied. Further, a metering pump is provided on a supply line connected to the inflow hole for supplying fluid, and feeds the liquid from the material supply tank.
  • the line for acquiring the reactant is provided with a withdrawal control valve for controlling the amount of the reactant withdrawn, and the line passing through the withdrawal control valve is provided with a pH meter.
  • the Taylor reactor 80 can provide a method for continuously preparing a mixture by mixing a plurality of fluids by controlling the temperature and pressure, and can efficiently obtain reactants with good uniformity.
  • a lithium source is prepared.
  • the step of adding a lithium source is performed multiple times, so in step S141, an amount smaller than the final amount of lithium is prepared.
  • the number of lithium atoms can be 0.5 or more and 0.9 or less (atomic ratio), and 0.7 (atomic ratio). is more preferable.
  • lithium hydroxide lithium carbonate, or lithium nitrate
  • a material with a low melting point among lithium compounds such as lithium hydroxide (melting point: 462°C). Since cation mixing occurs more easily in a positive electrode active material containing a high proportion of nickel than in lithium cobalt oxide or the like, heating in step S43 and the like needs to be performed at a low temperature. Therefore, it is preferable to use a material with a low melting point.
  • the particle size of the lithium source is smaller because the reaction tends to proceed better.
  • a lithium source made into fine particles using a fluidized bed jet mill can be used.
  • the particle size here refers to the median diameter.
  • the median diameter refers to D50 assuming that the particle size distribution is symmetrical.
  • D50 refers to the particle diameter when the cumulative distribution of secondary particles is 50%, which is calculated from a particle size distribution analyzer (SALD-2200 manufactured by Shimadzu Corporation) using a laser diffraction/scattering method.
  • SALD-2200 particle size distribution analyzer
  • Measurement of particle size is not limited to laser diffraction particle size distribution measurement, and the major axis of a particle cross section may be measured by analysis using SEM or TEM (Transmission Electron Microscope).
  • SEM Transmission Electron Microscope
  • an integrated particle amount curve is created, and the particle diameter when the integrated amount accounts for 50% is defined as D50. be able to.
  • a metal source is prepared.
  • An aluminum source or a magnesium source is prepared as the metal source.
  • aluminum hydroxide, aluminum sulfate, aluminum chloride, and aluminum nitrate can be used.
  • the amount of aluminum atoms to be added is within the range of 0.005 or more and 0.05 or less (atomic ratio), for example, when the sum of nickel, cobalt, and manganese atoms is 1.
  • magnesium carbonate, magnesium hydroxide, magnesium oxide, magnesium fluoride, magnesium nitrate, magnesium acetate, magnesium sulfate, or magnesium sulfide can be used.
  • the amount of magnesium to be added is, for example, in the range of 0.005 or more and 0.05 or less, where the sum of nickel, cobalt, and manganese atoms is 1.
  • step S142 in FIG. 2 the composite hydroxide 98, lithium source, and metal source are mixed.
  • Mixing can be done dry or wet.
  • a ball mill, bead mill, or kneader can be used for mixing.
  • zirconia balls it is preferable to use zirconia balls as the media, for example.
  • the peripheral speed is preferably 100 mm/sec to 2000 mm/sec in order to suppress contamination from media or materials.
  • the composite hydroxide 98 and the lithium compound may be pulverized at the same time as they are mixed.
  • Step S143 Next, the mixture of the composite hydroxide 98 and the lithium source is heated. To distinguish from other heating steps, in FIG. 2, step S143 may be referred to as first heating, step S153 as second heating, and step S155 as third heating.
  • An electric furnace or a rotary kiln can be used as a firing device for performing this heating.
  • the crucible, sheath, setter, and container used during heating are preferably made of materials that do not easily release impurities.
  • an aluminum oxide crucible with a purity of 99.9% may be used.
  • the temperature of the heating in step S143 is preferably 400°C or more and 750°C or less, more preferably 650°C or more and 750°C or less. Further, the heating time in step S143 is preferably 1 hour or more and 30 hours or less, more preferably 2 hours or more and 20 hours or less.
  • the heating atmosphere is preferably an oxygen-containing atmosphere or an oxygen-containing atmosphere that is so-called dry air and contains little water (for example, a dew point of -50°C or lower, more preferably a dew point of -80°C or lower).
  • step S144 it is preferable to include a crushing step after heating. Disintegration can be carried out, for example, in a mortar. Furthermore, it may be classified using a sieve. By including the crushing step, the particle size and/or shape of the positive electrode active material 101 can be made more uniform. Through the above steps, composite oxide 99 is obtained.
  • step S151 a lithium source is prepared.
  • the final amount of lithium is prepared. For example, if the sum of the numbers of atoms of nickel, cobalt, and manganese is set to 1 in step S141, and the number of atoms of lithium is set to 0.7 (atomic ratio), then in step S151, for example, 0.31 (atomic ratio) It is preferable to prepare Here, the final amount of lithium atoms is set to 1.01 when the sum of the numbers of atoms of nickel, cobalt, and manganese is 1, but one embodiment of the present invention is not limited to this.
  • the final amount of lithium is preferably 0.95 or more and 1.25 or less, and more preferably 1.00 or more and 1.05 or less (atomic ratio). preferable.
  • the description in step S141 can be referred to.
  • FIG. 2 describes a method in which the lithium source is added twice in step S141 and step S151 and heated in each step, one embodiment of the present invention is not limited to this.
  • the lithium source may be added in three or more portions and heated each time it is added.
  • Step S152> the composite oxide 99 obtained in step S144 and the above lithium source are mixed.
  • the description in step S142 can be considered.
  • Step S153 the mixture of the composite oxide 99 and the lithium source is heated.
  • the heating in step S153 is preferably at a sufficiently high temperature in order to increase the crystallite size of the positive electrode active material 101, but the temperature range may vary depending on the composition of the transition metal M.
  • the heating temperature in step S153 is preferably 750°C or higher, more preferably 800°C or higher, and even more preferably 850°C or higher.
  • the temperature is preferably 950°C or lower, more preferably 920°C or lower, and even more preferably 900°C or lower.
  • the temperature is preferably 900°C or higher, more preferably 950°C or higher, and even more preferably about 970°C.
  • the same disadvantages as mentioned above may occur, so 1020°C or less is preferable, and 990°C or less is more preferable.
  • the description in step S143 can be referred to.
  • step S154 it is preferable to include a crushing step after heating.
  • the description in step S144 can be considered.
  • Step S155> Furthermore, it is more preferable to perform heating in step S155. By performing the heating, residues such as lithium sources can be reduced.
  • the temperature of the heating in step S155 is preferably 400°C or more and 900°C or less, more preferably 750°C or more and 850°C or less.
  • the heating time in step S152 is preferably 1 hour or more and 30 hours or less, more preferably 2 hours or more and 20 hours or less.
  • the heating in step S155 may not be performed.
  • the description in step S143 can be referred to.
  • step S156 it is preferable to include a crushing step after heating. Regarding the crushing, the description in step S144 can be considered.
  • FIG. 2 describes a method in which the lithium source is mixed in step S152 and then heated twice in step S153 and step S155, one embodiment of the present invention is not limited to this. Heating may be performed three or more times.
  • the positive electrode active material 101 can be manufactured.
  • the mixing ratio of metals contained in the positive electrode active material 101 is determined by X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MS), or energy dispersive X-ray spectroscopy (TEM-EDX). It can be measured by analysis.
  • XPS X-ray photoelectron spectroscopy
  • ICP-MS inductively coupled plasma mass spectrometry
  • TEM-EDX energy dispersive X-ray spectroscopy
  • the obtained positive electrode active material 101 has a crystallite size of 150 nm or more calculated from an XRD pattern. In order to synthesize lithium nickel-manganese-cobalt oxide with a large crystallite size, it is effective to perform the steps of adding a lithium source and heating multiple times.
  • XRD device Bruker AXS, D8 ADVANCE
  • X-ray source CuK ⁇ 1- ray output: 40KV, 40mA
  • Divergence angle Div. Slit
  • 0.5° Detector LynxEye Scan method: 2 ⁇ / ⁇ continuous scan Measurement range (2 ⁇ ): 15° or more and 90° or less Step width (2 ⁇ ): 0.01°
  • Step width 2 ⁇ : 0.01°
  • Setting Counting time 1 second/step Sample table rotation: 15 rpm
  • the sample to be measured is a powder, it can be set by placing it in a glass sample holder or by sprinkling the sample on a greased silicone non-reflective plate.
  • the positive electrode can be attached to the substrate with double-sided tape, and the positive electrode active material layer can be set according to the measurement surface required by the apparatus.
  • the crystallite size can be calculated by analyzing the obtained XRD diffraction pattern using crystal structure analysis software (for example, TOPAS ver. 6, which is one of the software manufactured by Bruker).
  • crystal structure analysis software for example, TOPAS ver. 6, which is one of the software manufactured by Bruker.
  • a secondary battery includes at least an exterior body, a current collector, an active material (a positive electrode active material or a negative electrode active material), a conductive material, and a binder. It also contains an electrolytic solution containing lithium salt and the like. In the case of a secondary battery using an electrolytic solution, a positive electrode, a negative electrode, and a separator are provided between the positive electrode and the negative electrode.
  • FIG. 3A shows an example of a schematic cross-sectional view of the positive electrode.
  • the current collector 400 is a metal foil, and a positive electrode is formed by applying slurry onto the metal foil and drying it. After drying, further pressing may be performed.
  • the positive electrode has an active material layer formed on a current collector 400.
  • the slurry is a material liquid used to form an active material layer on the current collector 400, and contains at least an active material, a binder, and a solvent, and preferably further contains a conductive material.
  • the slurry is sometimes called an electrode slurry or an active material slurry, and when forming a positive electrode active material layer, a positive electrode slurry is used, and when forming a negative electrode active material layer, it is sometimes called a negative electrode slurry.
  • the conductive material is also called a conductivity imparting agent or a conductive material, and a carbon material is used.
  • a conductive material By attaching a conductive material between the plurality of active materials, the plurality of active materials are electrically connected to each other, thereby increasing conductivity.
  • adheresion does not only mean that the active material and the conductive material are in close physical contact with each other, but also when a covalent bond occurs or when they bond due to van der Waals forces, the surface of the active material
  • the concept includes cases where a conductive material covers a part of the active material, cases where the conductive material fits into the unevenness of the surface of the active material, cases where the active material is electrically connected even if they are not in contact with each other.
  • Carbon black is a typical carbon material used as a conductive material.
  • FIG. 3A acetylene black 403 is illustrated as a conductive material. Further, FIG. 3A shows an example in which a second active material 402 having a smaller particle size than the positive electrode active material 101 described in Embodiment 1 is mixed. A high-density positive electrode can be obtained by mixing particles of different sizes. Note that the positive electrode active material 101 described in Embodiment 1 corresponds to the active material 401 in FIG. 3A.
  • a binder (resin) is mixed in to fix the active material and a current collector 400 such as a metal foil as a positive electrode of a secondary battery.
  • a binder is also called a binding material.
  • the binder is a polymeric material, and when a large amount of the binder is included, the proportion of the active material in the positive electrode decreases, and the discharge capacity of the secondary battery decreases. Therefore, the amount of binder mixed is kept to a minimum.
  • regions not filled with the active material 401, the second active material 402, and the acetylene black 403 indicate voids or binder.
  • the boundary between the inside and the surface layer of the active material 401 is shown by a solid line. Note that the surface layer portion of the active material 401 is thin. Further, the active material 401 in FIG. 3A shows an example having a spherical shape, and corresponds to the positive electrode active material 101. The surface layer portion and the interior portion contain aluminum at substantially the same concentration, which increases the storage capacity of the lithium ion secondary battery and improves the cycle characteristics.
  • FIG. 3A shows an example in which the active material 401 is spherical
  • the active material 401 is not particularly limited and may have various shapes.
  • the cross-sectional shape of the active material 401 may be an ellipse, a rectangle, a trapezoid, a pyramid, a square with rounded corners, or an asymmetric shape.
  • FIG. 3B shows an example different from FIG. 3A. Furthermore, the active material 401 in FIG. 3B shows an example of an irregular shape.
  • graphene 404 is used as a carbon material used as a conductive material.
  • graphene Since graphene has amazing electrical, mechanical, and chemical properties, it is a carbon material that is expected to be applied in various fields such as field effect transistors and solar cells using graphene.
  • graphene includes multilayer graphene and multigraphene.
  • graphene refers to something that contains carbon, has a shape such as a flat plate or a sheet, and has a two-dimensional structure formed of a six-membered carbon ring. The two-dimensional structure formed by the six-membered carbon ring is sometimes called a carbon sheet.
  • the graphene compound includes graphene oxide, multilayer graphene oxide, multilayer graphene oxide, reduced graphene oxide, reduced multilayer graphene oxide, reduced multilayer graphene oxide, graphene quantum dots, and the like.
  • the graphene compound may have a functional group.
  • it is preferable that the graphene or graphene compound has a bent shape.
  • graphene or a graphene compound may be rounded, and rounded graphene is sometimes called carbon nanofiber.
  • graphene oxide refers to one that contains carbon and oxygen, has a sheet-like shape, and has a functional group, particularly an epoxy group, a carboxy group, or a hydroxy group.
  • reduced graphene oxide refers to one that contains carbon and oxygen, has a sheet-like shape, and has a two-dimensional structure formed of a six-membered carbon ring.
  • a single sheet of reduced graphene oxide can function, but a plurality of sheets may be stacked.
  • the reduced graphene oxide preferably has a portion in which the carbon concentration is greater than 80 atomic % and the oxygen concentration is 2 atomic % or more and 15 atomic % or less. With such carbon and oxygen concentrations, even a small amount can function as a highly conductive material. Further, it is preferable that the reduced graphene oxide has an intensity ratio G/D of G band and D band in the Raman spectrum of 1 or more. Reduced graphene oxide having such an intensity ratio can function as a highly conductive material even in a small amount.
  • Graphene compounds may have excellent electrical properties such as high conductivity, and excellent physical properties such as high flexibility and high mechanical strength. Further, the graphene compound has a sheet-like shape. Graphene compounds may have curved surfaces, allowing surface contact with low contact resistance. Further, even if it is thin, it may have very high conductivity, and a conductive path can be efficiently formed within the active material layer with a small amount. Therefore, by using a graphene compound as a conductive material, the contact area between the active material and the conductive material can be increased.
  • the graphene compound preferably covers 80% or more of the area of the active material. Note that it is preferable that the graphene compound clings to at least a portion of the active material particles.
  • the graphene compound overlaps at least a portion of the active material particles. Further, it is preferable that the shape of the graphene compound matches at least a portion of the shape of the active material particles.
  • the shape of the active material particles refers to, for example, the unevenness of a single active material particle or the unevenness formed by a plurality of active material particles. Further, it is preferable that the graphene compound surrounds at least a portion of the active material particles. Further, the graphene compound may have holes.
  • a positive electrode active material layer including an active material 401, graphene 404, and acetylene black 403 is formed on a current collector 400.
  • the graphene 404 is formed so as to partially cover the plurality of granular active materials 401 or to stick to the surface of the plurality of granular active materials 401, so that they are in surface contact with each other. Note that it is preferable that the graphene 404 wrap around at least a portion of the active material 401. Further, it is preferable that the graphene 404 overlaps at least a portion of the active material 401. Further, it is preferable that the shape of the graphene 404 corresponds to at least a portion of the shape of the active material 401.
  • the shape of the active material refers to, for example, the unevenness of a single active material particle or the unevenness formed by a plurality of active material particles. Further, it is preferable that the graphene 404 surrounds at least a portion of the active material 401. Further, the graphene 404 may have holes.
  • the weight of the carbon black to be mixed is 1.5 times or more and 20 times or less, preferably 2 times or more and 9.5 times or less of the weight of graphene. It is preferable to do so.
  • the dispersion stability of the acetylene black 403 is excellent during slurry preparation, and agglomerated portions are less likely to occur.
  • the mixture of graphene 404 and acetylene black 403 is within the above range, it is possible to achieve a higher electrode density than a positive electrode using only acetylene black 403 as a conductive material.
  • the capacity per unit weight can be increased.
  • the density of the positive electrode active material layer measured by weight can be higher than 3.5 g/cc.
  • the electrode density is lower than that of a positive electrode that uses only graphene as the conductive material, by mixing the first carbon material (graphene) and the second carbon material (acetylene black) within the above range, rapid charging is possible. can be accommodated. Further, when the positive electrode active material 101 described in Embodiment 1 is used for the positive electrode and the mixture of graphene 404 and acetylene black 403 is within the above range, the secondary battery becomes more stable and can support even more rapid charging. This is preferable as a synergistic effect can be expected.
  • Embodiment 1 By using the positive electrode active material 101 described in Embodiment 1 as a positive electrode and setting the mixing ratio of acetylene black and graphene to an optimal range, an appropriate gap necessary for high electrode density and ion conduction can be created. This makes it possible to achieve both, and it is possible to obtain a secondary battery for use in vehicles that has high energy density and good output characteristics.
  • this configuration is also effective in mobile information terminals, and by using the positive electrode active material 101 described in Embodiment 1 for the positive electrode and setting the mixing ratio of acetylene black and graphene to an optimal range, a secondary battery can be used. It can also be made smaller and have a higher capacity. Furthermore, by setting the mixing ratio of acetylene black and graphene within the optimal range, it is possible to quickly charge mobile information terminals.
  • regions not filled with the active material 401, graphene 404, and acetylene black 403 indicate voids or binder. Voids are necessary for the electrolyte to penetrate, but if there are too many, the electrode density will decrease, and if there are too few, the electrolyte will not penetrate, and if they remain as voids even after forming a secondary battery, the efficiency will decrease. Resulting in.
  • FIG. 3C illustrates an example of a positive electrode using carbon nanotubes 405 as an example of fibrous carbon instead of graphene.
  • FIG. 3C shows an example different from FIG. 3B.
  • carbon nanotubes 405 are used, agglomeration of carbon black such as acetylene black 403 can be prevented and dispersibility can be improved.
  • regions not filled with the active material 401, carbon nanotubes 405, and acetylene black 403 indicate voids or binder.
  • FIG. 3D is illustrated as an example of another positive electrode.
  • FIG. 3C shows an example in which carbon nanotubes 405 are used in addition to graphene 404.
  • carbon nanotubes 405 are used in addition to graphene 404.
  • regions not filled with the active material 401, carbon nanotubes 405, graphene 404, and acetylene black 403 indicate voids or binder.
  • a secondary battery can be produced by filling the container with electrolyte.
  • the binder it is preferable to use rubber materials such as styrene-butadiene rubber (SBR), styrene-isoprene-styrene rubber, acrylonitrile-butadiene rubber, butadiene rubber, and ethylene-propylene-diene copolymer.
  • SBR styrene-butadiene rubber
  • fluororubber can be used as the binder.
  • the binder it is preferable to use, for example, a water-soluble polymer.
  • a water-soluble polymer for example, polysaccharides can be used.
  • polysaccharide cellulose derivatives such as carboxymethyl cellulose (CMC), methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, regenerated cellulose, or starch can be used. Further, it is more preferable to use these water-soluble polymers in combination with the above-mentioned rubber material.
  • polystyrene polymethyl acrylate, polymethyl methacrylate (polymethyl methacrylate, PMMA), sodium polyacrylate, polyvinyl alcohol (PVA), polyethylene oxide (PEO), polypropylene oxide, polyimide, polyvinyl chloride
  • PVA polyvinyl alcohol
  • PEO polyethylene oxide
  • PEO polypropylene oxide
  • polyimide polyvinyl chloride
  • materials such as polytetrafluoroethylene, polyethylene, polypropylene, polyisobutylene, polyethylene terephthalate, nylon, polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), ethylene propylene diene polymer, polyvinyl acetate, nitrocellulose, etc.
  • the binder may be used in combination of two or more of the above binders.
  • a material with particularly excellent viscosity adjusting effect may be used in combination with other materials.
  • rubber materials have excellent adhesive strength or elasticity, it may be difficult to adjust the viscosity when mixed with a solvent. In such cases, for example, it is preferable to mix with a material that is particularly effective in controlling viscosity.
  • a material having a particularly excellent viscosity adjusting effect for example, a water-soluble polymer may be used.
  • the above-mentioned polysaccharides such as carboxymethyl cellulose (CMC), methyl cellulose, ethyl cellulose, hydroxypropyl cellulose and diacetyl cellulose, cellulose derivatives such as regenerated cellulose, or starch are used. be able to.
  • cellulose derivatives such as carboxymethylcellulose is increased by converting them into salts such as sodium salts or ammonium salts of carboxymethylcellulose, making it easier to exhibit the effect as a viscosity modifier.
  • the increased solubility can also improve the dispersibility with the active material or other components when preparing an electrode slurry.
  • cellulose and cellulose derivatives used as binders for electrodes include salts thereof.
  • the viscosity is stabilized, and the active material or other materials used as a binder, such as styrene-butadiene rubber, can be stably dispersed in the aqueous solution. Furthermore, since it has a functional group, it is expected that it will be easily adsorbed stably on the surface of the active material.
  • many cellulose derivatives such as carboxymethylcellulose have functional groups such as hydroxyl groups or carboxyl groups, and because they have functional groups, polymers interact with each other and exist widely covering the surface of the active material. There is expected.
  • a passive film is a film with no electrical conductivity or a film with extremely low electrical conductivity.
  • a passive film is formed on the surface of an active material, at the battery reaction potential, Decomposition of electrolytes can be suppressed. Further, it is more desirable that the passive film suppresses electrical conductivity and can conduct lithium ions.
  • a semi-solid battery can also be manufactured using the positive electrode active material 101 described in Embodiment 1.
  • a semi-solid battery refers to a battery having a semi-solid material in at least one of an electrolyte layer, a positive electrode, and a negative electrode.
  • Semi-solid here does not mean that the proportion of solid material is 50%.
  • Semi-solid means that it has the properties of a solid such as small volume change, but also has some properties similar to a liquid such as flexibility. As long as these properties are satisfied, a single material or a plurality of materials may be used. For example, a porous solid material may be infiltrated with a liquid material.
  • a polymer electrolyte secondary battery refers to a secondary battery having a polymer in an electrolyte layer between a positive electrode and a negative electrode.
  • Polymer electrolyte secondary batteries include dry (or intrinsic) polymer electrolyte batteries and polymer gel electrolyte batteries. Further, a polymer electrolyte secondary battery may also be called a semi-solid battery.
  • the semi-solid battery becomes a secondary battery with a large charge/discharge capacity. Further, a semi-solid battery with high charge/discharge voltage can be obtained. Alternatively, a semi-solid battery with high safety or reliability can be realized.
  • This embodiment mode can be freely combined with other embodiment modes.
  • FIG. 4A is an exploded perspective view of a coin-shaped (single-layer flat type) secondary battery
  • FIG. 4B is an external view
  • FIG. 4C is a cross-sectional view thereof.
  • Coin-shaped secondary batteries are mainly used in small electronic devices.
  • FIG. 4A is a schematic diagram so that the overlapping (vertical relationship and positional relationship) of members can be seen. Therefore, FIGS. 4A and 4B are not completely corresponding diagrams.
  • a positive electrode 304, a separator 310, a negative electrode 307, a spacer 322, and a washer 312 are stacked. These are sealed with a negative electrode can 302 and a positive electrode can 301 with a gasket. Note that in FIG. 4A, a gasket for sealing is not shown.
  • the spacer 322 and the washer 312 are used to protect the inside or fix the position inside the can when the positive electrode can 301 and the negative electrode can 302 are crimped together.
  • the spacer 322 and washer 312 are made of stainless steel or an insulating material.
  • a positive electrode 304 has a laminated structure in which a positive electrode active material layer 306 is formed on a positive electrode current collector 305 .
  • FIG. 4B is a perspective view of the completed coin-shaped secondary battery.
  • a positive electrode can 301 that also serves as a positive electrode terminal and a negative electrode can 302 that also serves as a negative electrode terminal are insulated and sealed with a gasket 303 made of polypropylene or the like.
  • the positive electrode 304 is formed by a positive electrode current collector 305 and a positive electrode active material layer 306 provided in contact with the positive electrode current collector 305 .
  • the negative electrode 307 is formed of a negative electrode current collector 308 and a negative electrode active material layer 309 provided in contact with the negative electrode current collector 308. Further, the negative electrode 307 is not limited to a laminated structure, and lithium metal foil or lithium-aluminum alloy foil may be used.
  • the positive electrode 304 and the negative electrode 307 used in the coin-shaped secondary battery 300 may each have an active material layer formed only on one side.
  • the positive electrode can 301 and the negative electrode can 302 metals such as nickel, aluminum, titanium, etc., which are corrosion resistant to electrolyte, or alloys thereof, or alloys of these and other metals (for example, stainless steel, etc.) can be used. can. Further, in order to prevent corrosion due to electrolyte and the like, it is preferable to coat with nickel, aluminum, or the like.
  • the positive electrode can 301 is electrically connected to the positive electrode 304
  • the negative electrode can 302 is electrically connected to the negative electrode 307.
  • negative electrode 307, positive electrode 304, and separator 310 are immersed in an electrolytic solution, and the positive electrode 304, separator 310, negative electrode 307, and negative electrode can 302 are stacked in this order with the positive electrode can 301 facing down, as shown in FIG. 301 and a negative electrode can 302 are crimped together via a gasket 303 to produce a coin-shaped secondary battery 300.
  • the cylindrical secondary battery 616 has a positive electrode cap (battery lid) 601 on the top surface and a battery can (exterior can) 602 on the side and bottom surfaces. These positive electrode cap 601 and battery can (exterior can) 602 are insulated by a gasket (insulating packing) 610.
  • FIG. 5B is a diagram schematically showing a cross section of a cylindrical secondary battery.
  • the cylindrical secondary battery shown in FIG. 5B has a positive electrode cap (battery lid) 601 on the top surface and a battery can (exterior can) 602 on the side and bottom surfaces.
  • These positive electrode caps and the battery can (exterior can) 602 are insulated by a gasket (insulating packing) 610.
  • a battery element is provided inside the hollow cylindrical battery can 602, in which a band-shaped positive electrode 604 and a negative electrode 606 are wound with a separator 605 in between.
  • the battery element is wound around a central axis.
  • the battery can 602 has one end closed and the other end open.
  • metals such as nickel, aluminum, titanium, etc., which are corrosion resistant to electrolyte, alloys thereof, and alloys of these and other metals (for example, stainless steel, etc.) can be used. .
  • a battery element in which a positive electrode, a negative electrode, and a separator are wound is sandwiched between a pair of opposing insulating plates 608 and 609. Further, a non-aqueous electrolyte (not shown) is injected into the inside of the battery can 602 in which the battery element is provided.
  • a non-aqueous electrolyte one similar to that of a coin-type secondary battery can be used.
  • the positive electrode and negative electrode used in a cylindrical storage battery are wound, it is preferable to form an active material on both sides of the current collector.
  • a positive electrode terminal (positive electrode current collector lead) 603 is connected to the positive electrode 604, and a negative electrode terminal (negative electrode current collector lead) 607 is connected to the negative electrode 606.
  • Both the positive electrode terminal 603 and the negative electrode terminal 607 can be made of a metal material such as aluminum.
  • the positive terminal 603 and the negative terminal 607 are resistance welded to the safety valve mechanism 613 and the bottom of the battery can 602, respectively.
  • the safety valve mechanism 613 is electrically connected to the positive electrode cap 601 via a PTC (Positive Temperature Coefficient) element 611. The safety valve mechanism 613 disconnects the electrical connection between the positive electrode cap 601 and the positive electrode 604 when the increase in the internal pressure of the battery exceeds a predetermined threshold value.
  • the PTC element 611 is a heat-sensitive resistance element whose resistance increases when the temperature rises, and the increase in resistance limits the amount of current to prevent abnormal heat generation.
  • Barium titanate (BaTiO 3 )-based semiconductor ceramics or the like can be used for the PTC element.
  • FIG. 5C shows an example of the power storage system 615.
  • Power storage system 615 includes a plurality of secondary batteries 616.
  • the positive electrode of each secondary battery contacts a conductor 624 separated by an insulator 625 and is electrically connected.
  • the conductor 624 is electrically connected to the control circuit 620 via the wiring 623.
  • the negative electrode of each secondary battery is electrically connected to the control circuit 620 via a wiring 626.
  • As the control circuit 620 a charging/discharging control circuit that performs charging and discharging, or a protection circuit that prevents overcharging and/or overdischarging can be applied.
  • FIG. 5D shows an example of the power storage system 615.
  • the power storage system 615 includes a plurality of secondary batteries 616, and the plurality of secondary batteries 616 are sandwiched between a conductive plate 628 and a conductive plate 614.
  • the plurality of secondary batteries 616 are electrically connected to a conductive plate 628 and a conductive plate 614 by wiring 627.
  • the plurality of secondary batteries 616 may be connected in parallel, connected in series, or connected in parallel and then further connected in series.
  • the set may be further connected in series.
  • a temperature control device may be provided between the plurality of secondary batteries 616.
  • the secondary battery 616 When the secondary battery 616 is overheated, it can be cooled by the temperature control device, and when the secondary battery 616 is too cold, it can be heated by the temperature control device. Therefore, the performance of power storage system 615 is less affected by outside temperature.
  • the power storage system 615 is electrically connected to the control circuit 620 via wiring 621 and wiring 622.
  • the wiring 621 is electrically connected to the positive electrodes of the plurality of secondary batteries 616 via the conductive plate 628
  • the wiring 622 is electrically connected to the negative electrodes of the plurality of secondary batteries 616 via the conductive plate 614.
  • a secondary battery 913 shown in FIG. 6A includes a wound body 950 in which a terminal 951 and a terminal 952 are provided inside a housing 930.
  • the wound body 950 is immersed in the electrolyte inside the housing 930.
  • the terminal 952 is in contact with the housing 930, and the terminal 951 is not in contact with the housing 930 by using an insulating material or the like.
  • the housing 930 is shown separated in FIG. 6A for convenience, in reality, the wound body 950 is covered by the housing 930, and the terminals 951 and 952 extend outside the housing 930. There is.
  • a metal material for example, aluminum
  • a resin material can be used as the housing 930.
  • the housing 930 shown in FIG. 6A may be formed of a plurality of materials.
  • a housing 930a and a housing 930b are bonded together, and a wound body 950 is provided in an area surrounded by the housing 930a and the housing 930b.
  • an insulating material such as organic resin can be used.
  • a material such as an organic resin on the surface where the antenna is formed shielding of the electric field by the secondary battery 913 can be suppressed.
  • an antenna may be provided inside the housing 930a.
  • a metal material can be used as the housing 930b.
  • the wound body 950 includes a negative electrode 931, a positive electrode 932, and a separator 933.
  • the wound body 950 is a wound body in which a negative electrode 931 and a positive electrode 932 are stacked on top of each other with a separator 933 in between, and the laminated sheet is wound. Note that a plurality of layers of the negative electrode 931, the positive electrode 932, and the separator 933 may be stacked.
  • a secondary battery 913 having a wound body 950a as shown in FIG. 7 may be used.
  • a wound body 950a shown in FIG. 7A includes a negative electrode 931, a positive electrode 932, and a separator 933.
  • the negative electrode 931 has a negative electrode active material layer 931a.
  • the positive electrode 932 has a positive electrode active material layer 932a.
  • the separator 933 has a width wider than the negative electrode active material layer 931a and the positive electrode active material layer 932a, and is wound so as to overlap with the negative electrode active material layer 931a and the positive electrode active material layer 932a. Further, from the viewpoint of safety, it is preferable that the width of the negative electrode active material layer 931a is wider than that of the positive electrode active material layer 932a. Further, the wound body 950a having such a shape is preferable because it has good safety and productivity.
  • the negative electrode 931 is electrically connected to the terminal 951 by ultrasonic bonding, welding, or crimping.
  • Terminal 951 is electrically connected to terminal 911a.
  • the positive electrode 932 is electrically connected to the terminal 952 by ultrasonic bonding, welding, or crimping.
  • Terminal 952 is electrically connected to terminal 911b.
  • the housing 930 covers the wound body 950a and the electrolytic solution, forming a secondary battery 913. It is preferable that the housing 930 is provided with a safety valve, an overcurrent protection element, and the like.
  • the safety valve is a valve that opens the inside of the casing 930 at a predetermined internal pressure in order to prevent the battery from exploding.
  • the secondary battery 913 may have a plurality of wound bodies 950a. By using a plurality of wound bodies 950a, the secondary battery 913 can have a larger discharge capacity.
  • the description of the secondary battery 913 shown in FIGS. 6A to 6C can be referred to.
  • FIGS. 8A and 8B an example of an external view of an example of a laminated secondary battery is shown in FIGS. 8A and 8B.
  • 8A and 8B have a positive electrode 503, a negative electrode 506, a separator 507, an exterior body 509, a positive lead electrode 510, and a negative lead electrode 511.
  • FIG. 9A shows an external view of the positive electrode 503 and the negative electrode 506.
  • the positive electrode 503 has a positive electrode current collector 501 , and the positive electrode active material layer 502 is formed on the surface of the positive electrode current collector 501 . Further, the positive electrode 503 has a region (hereinafter referred to as a tab region) where the positive electrode current collector 501 is partially exposed.
  • the negative electrode 506 has a negative electrode current collector 504 , and the negative electrode active material layer 505 is formed on the surface of the negative electrode current collector 504 . Further, the negative electrode 506 has a region where the negative electrode current collector 504 is partially exposed, that is, a tab region. Note that the area or shape of the tab regions of the positive electrode and the negative electrode is not limited to the example shown in FIG. 9A.
  • FIG. 9B shows a stacked negative electrode 506, separator 507, and positive electrode 503.
  • an example is shown in which five sets of negative electrodes and four sets of positive electrodes are used. It can also be called a laminate consisting of a negative electrode, a separator, and a positive electrode.
  • the tab regions of the positive electrodes 503 are joined together, and the positive lead electrode 510 is joined to the tab region of the outermost positive electrode. For example, ultrasonic welding or the like may be used for joining.
  • the tab regions of the negative electrodes 506 are bonded to each other, and the negative lead electrode 511 is bonded to the tab region of the outermost negative electrode.
  • a negative electrode 506, a separator 507, and a positive electrode 503 are placed on the exterior body 509.
  • the exterior body 509 is bent at the portion indicated by the broken line. After that, the outer peripheral portion of the exterior body 509 is joined. For example, thermocompression bonding or the like may be used for joining. At this time, a region (hereinafter referred to as an inlet) that is not joined is provided in a part (or one side) of the exterior body 509 so that the electrolyte can be introduced later.
  • an inlet a region (hereinafter referred to as an inlet) that is not joined is provided in a part (or one side) of the exterior body 509 so that the electrolyte can be introduced later.
  • the electrolytic solution is introduced into the interior of the exterior body 509 through an inlet provided in the exterior body 509 .
  • the electrolytic solution is preferably introduced under a reduced pressure atmosphere or an inert atmosphere. Finally, connect the inlet. In this way, a laminate type secondary battery 500 can be manufactured.
  • This embodiment mode can be freely combined with other embodiment modes.
  • a secondary battery can typically be applied to an automobile.
  • automobiles include next-generation clean energy vehicles such as hybrid vehicles (HV), electric vehicles (EV), and plug-in hybrid vehicles (PHEV or PHV).
  • a secondary battery can be applied.
  • Vehicles are not limited to automobiles.
  • vehicles include trains, monorails, ships, submersibles (deep sea exploration vehicles, unmanned submarines), flying vehicles (helicopters, unmanned aerial vehicles (drones), airplanes, rockets, artificial satellites), electric bicycles, electric motorcycles, etc.
  • the secondary battery of one embodiment of the present invention can be applied to these vehicles.
  • the electric vehicle is installed with first batteries 1301a and 1301b as main secondary batteries for driving, and a second battery 1311 that supplies power to an inverter 1312 that starts a motor 1304.
  • the second battery 1311 is also called a cranking battery (also called a starter battery).
  • the second battery 1311 only needs to have a high output, and a large capacity is not required, and the capacity of the second battery 1311 is smaller than that of the first batteries 1301a and 1301b.
  • the internal structure of the first battery 1301a may be a wound type shown in FIG. 6C or FIG. 7A, or a stacked type shown in FIG. 8A or FIG. 8B.
  • first batteries 1301a and 1301b are connected in parallel, but three or more may be connected in parallel. Furthermore, if the first battery 1301a can store sufficient power, the first battery 1301b may not be necessary.
  • a battery pack that includes a plurality of secondary batteries, a large amount of electric power can be extracted.
  • a plurality of secondary batteries may be connected in parallel, may be connected in series, or may be connected in parallel and then further connected in series.
  • a plurality of secondary batteries is also called an assembled battery.
  • the first battery 1301a has a service plug or circuit breaker that can cut off high voltage without using tools. provided.
  • the electric power of the first batteries 1301a and 1301b is mainly used to rotate the motor 1304, but it is also used to power 42V-based in-vehicle components (electric power steering 1307, heater 1308, defogger 1309, etc.) via a DCDC circuit 1306. ). Even when the rear motor 1317 is provided on the rear wheel, the first battery 1301a is used to rotate the rear motor 1317.
  • the second battery 1311 supplies power to 14V vehicle components (audio 1313, power window 1314, lamps 1315, etc.) via the DCDC circuit 1310.
  • FIG. 10A shows an example in which nine square secondary batteries 1300 are used as one battery pack 1415. Further, nine prismatic secondary batteries 1300 are connected in series, one electrode is fixed by a fixing part 1413 made of an insulator, and the other electrode is fixed by a fixing part 1414 made of an insulator.
  • this embodiment shows an example in which the battery is fixed using the fixing parts 1413 and 1414, it may also be configured to be housed in a battery housing box (also referred to as a housing). Since it is assumed that the vehicle is subjected to vibrations or shaking from the outside (road surface, etc.), it is preferable to fix the plurality of secondary batteries using fixing parts 1413, 1414, a battery housing box, or the like.
  • one electrode is electrically connected to the control circuit section 1320 by a wiring 1421.
  • the other electrode is electrically connected to the control circuit section 1320 by a wiring 1422.
  • FIG. 10B An example of a block diagram of the battery pack 1415 shown in FIG. 10A is shown in FIG. 10B.
  • the control circuit section 1320 includes a switch section 1324 including at least a switch for preventing overcharging and a switch for preventing overdischarge, a control circuit 1322 for controlling the switch section 1324, and a voltage measuring section for the first battery 1301a. has.
  • the control circuit section 1320 has an upper limit voltage and a lower limit voltage set for the secondary battery to be used, and limits the upper limit of the current from the outside or the upper limit of the output current to the outside.
  • the range of the secondary battery's lower limit voltage to upper limit voltage is within the recommended voltage range, and when it is outside that range, the switch section 1324 is activated and functions as a protection circuit.
  • control circuit section 1320 can also be called a protection circuit because it controls the switch section 1324 to prevent overdischarge and/or overcharge. For example, when the control circuit 1322 detects a voltage that is likely to cause overcharging, the switch section 1324 is turned off to cut off the current. Furthermore, a PTC element may be provided in the charging/discharging path to provide a function of cutting off the current in response to a rise in temperature. Further, the control circuit section 1320 has an external terminal 1325 (+IN) and an external terminal 1326 (-IN).
  • the switch portion 1324 can be configured by combining n-channel transistors or p-channel transistors.
  • the switch section 1324 is not limited to a switch having an Si transistor using single crystal silicon, but includes, for example, Ge (germanium), SiGe (silicon germanium), GaAs (gallium arsenide), GaAlAs (gallium aluminum arsenide), InP (phosphide).
  • the switch portion 1324 may be formed using a power transistor including indium (indium), SiC (silicon carbide), ZnSe (zinc selenide), GaN (gallium nitride), GaOx (gallium oxide; x is a real number greater than 0), or the like.
  • the first batteries 1301a and 1301b mainly supply power to 42V system (high voltage system) in-vehicle equipment, and the second battery 1311 supplies power to 14V system (low voltage system) in-vehicle equipment.
  • the second battery 1311 a lead-acid battery is often used because it is advantageous in terms of cost.
  • the second battery 1311 may be a lead-acid battery, an all-solid-state battery, or an electric double layer capacitor.
  • regenerated energy due to the rotation of the tire 1316 is sent to the motor 1304 via the gear 1305 and charged to the second battery 1311 from the motor controller 1303 or the battery controller 1302 via the control circuit section 1321.
  • the first battery 1301a is charged from the battery controller 1302 via the control circuit section 1320.
  • the first battery 1301b is charged from the battery controller 1302 via the control circuit unit 1320. In order to efficiently charge the regenerated energy, it is desirable that the first batteries 1301a and 1301b can be rapidly charged.
  • the battery controller 1302 can set the charging voltage, charging current, etc. of the first batteries 1301a and 1301b.
  • the battery controller 1302 can set charging conditions according to the charging characteristics of the secondary battery to be used and perform rapid charging.
  • the outlet of the charger or the connection cable of the charger is electrically connected to the battery controller 1302.
  • Power supplied from an external charger charges the first batteries 1301a and 1301b via the battery controller 1302.
  • a control circuit is provided and the function of the battery controller 1302 is not used in some cases, but in order to prevent overcharging, the first batteries 1301a and 1301b are charged via the control circuit section 1320. It is preferable.
  • the connecting cable or the connecting cable of the charger is provided with a control circuit.
  • the control circuit section 1320 is sometimes called an ECU (Electronic Control Unit).
  • the ECU is connected to a CAN (Controller Area Network) provided in the electric vehicle.
  • CAN is one of the serial communication standards used as an in-vehicle LAN.
  • the ECU includes a microcomputer. Further, the ECU uses a CPU or a GPU.
  • External chargers installed at charging stations and the like include 100V outlet-200V outlet, or 3-phase 200V and 50kW. It is also possible to charge the battery by receiving power from an external charging facility using a non-contact power supply method or the like.
  • the capacity decrease is suppressed even when the electrode layer is made thicker and the loading amount is increased, and the synergistic effect of maintaining high capacity has resulted in a secondary battery with significantly improved electrical characteristics.
  • It is particularly effective for secondary batteries used in vehicles, and provides a vehicle with a long cruising range, specifically a cruising range of 500 km or more on one charge, without increasing the weight ratio of the secondary battery to the total vehicle weight. be able to.
  • the capacity of the secondary battery can be increased by using the positive electrode active material 101 described in Embodiment 1. Further, by using the positive electrode active material 101 described in Embodiment 1 for the positive electrode, a highly reliable secondary battery for a vehicle can be provided.
  • next-generation clean energy such as a hybrid vehicle (HV), electric vehicle (EV), or plug-in hybrid vehicle (PHV) can be used.
  • HV hybrid vehicle
  • EV electric vehicle
  • PSV plug-in hybrid vehicle
  • a car can be realized.
  • secondary batteries in agricultural machinery, motorized bicycles including electric assist bicycles, motorcycles, electric wheelchairs, electric carts, ships, submarines, aircraft, rockets, artificial satellites, space probes, planetary probes, or spacecraft. It can also be installed.
  • the secondary battery of one embodiment of the present invention can be a high capacity secondary battery. Therefore, the secondary battery of one embodiment of the present invention is suitable for reduction in size and weight, and can be suitably used for transportation vehicles.
  • a car 2001 shown in FIG. 11A is an electric car that uses an electric motor as a power source for driving. Alternatively, it is a hybrid vehicle that can appropriately select and use an electric motor and an engine as a power source for driving.
  • a secondary battery is mounted on a vehicle, the example of the secondary battery shown in Embodiment 5 is installed at one or multiple locations.
  • An automobile 2001 shown in FIG. 11A includes a battery pack 2200, and the battery pack includes a secondary battery module to which a plurality of secondary batteries are connected. Furthermore, it is preferable to include a charging control device electrically connected to the secondary battery module.
  • the automobile 2001 can be charged by receiving power from an external charging facility using a plug-in method, a non-contact power supply method, or the like to a secondary battery of the automobile 2001.
  • a predetermined charging method or connector standard such as CHAdeMO (registered trademark) or combo may be used as appropriate.
  • the charging equipment may be a charging station provided at a commercial facility or may be a home power source.
  • plug-in technology it is possible to charge the power storage device mounted on the vehicle 2001 by supplying power from the outside. Charging can be performed by converting AC power into DC power via a conversion device such as an ACDC converter.
  • a power receiving device can be mounted on a vehicle and electrical power can be supplied from a ground power transmitting device in a non-contact manner for charging.
  • this non-contact power supply method by incorporating a power transmission device into the road or outside wall, charging can be performed not only while the vehicle is stopped but also while the vehicle is running. Further, electric power may be transmitted and received between two vehicles using this contactless power supply method.
  • a solar cell may be provided on the exterior of the vehicle, and the secondary battery may be charged when the vehicle is stopped or traveling.
  • an electromagnetic induction method or a magnetic resonance method can be used.
  • FIG. 11B shows a large transport vehicle 2002 with an electrically controlled motor as an example of a transport vehicle.
  • the secondary battery module of the transportation vehicle 2002 has a maximum voltage of 170V, for example, in which four secondary batteries with a nominal voltage of 3.0V or more and 5.0V or less are connected in series, and 48 cells are connected in series. Except for the difference in the number of secondary batteries constituting the secondary battery module of the battery pack 2201, it has the same functions as those in FIG. 11A, so a description thereof will be omitted.
  • FIG. 11C shows, by way of example, a large transport vehicle 2003 with an electrically controlled motor.
  • the secondary battery module of the transportation vehicle 2003 has a maximum voltage of 600 V, for example, by connecting in series one hundred or more secondary batteries with a nominal voltage of 3.0 V or more and 5.0 V or less. Therefore, a secondary battery with small variations in characteristics is required.
  • a secondary battery in which the positive electrode active material 101 described in Embodiment 1 is used as a positive electrode a secondary battery having excellent battery characteristics can be manufactured, and mass production can be achieved at low cost from the viewpoint of yield. It is possible.
  • it since it has the same functions as those in FIG. 13A except for the difference in the number of secondary batteries constituting the secondary battery module of the battery pack 2202, a description thereof will be omitted.
  • FIG. 11D shows an example aircraft 2004 with an engine that burns fuel. Since the aircraft 2004 shown in FIG. 11D has wheels for takeoff and landing, it can be said to be part of a transportation vehicle, and a secondary battery module is configured by connecting a plurality of secondary batteries, and the aircraft 2004 is connected to a secondary battery module and charged.
  • the battery pack 2203 includes a control device.
  • the secondary battery module of the aircraft 2004 has a maximum voltage of 32V, for example, by connecting eight 4V secondary batteries in series. Except for the difference in the number of secondary batteries constituting the secondary battery module of the battery pack 2203, etc., it has the same functions as those in FIG. 11A, so a description thereof will be omitted.
  • FIG. 11E shows an artificial satellite 2005 equipped with a secondary battery 2204 as an example. Since the artificial satellite 2005 is used in outer space, it is desired that there be no failure due to ignition, and it is preferable to include the secondary battery 2204, which is an aspect of the present invention and has excellent safety. Furthermore, it is more preferable that the secondary battery 2204 is mounted inside the artificial satellite 2005 while being covered with a heat insulating member.
  • This embodiment mode can be freely combined with other embodiment modes.
  • FIG. 12A is an example of an electric bicycle using the power storage device of one embodiment of the present invention.
  • the power storage device of one embodiment of the present invention can be applied to an electric bicycle 8700 illustrated in FIG. 12A.
  • a power storage device according to one embodiment of the present invention includes, for example, a plurality of storage batteries and a protection circuit.
  • Electric bicycle 8700 includes a power storage device 8702.
  • the power storage device 8702 can supply electricity to a motor that assists the driver. Further, the power storage device 8702 is portable, and FIG. 12B shows a state in which it is removed from the bicycle. Further, the power storage device 8702 has a plurality of built-in storage batteries 8701 included in the power storage device of one embodiment of the present invention, and can display the remaining battery level and the like on a display portion 8703.
  • Power storage device 8702 also includes a control circuit 8704 that can control charging or detect abnormality of a secondary battery, an example of which is shown in Embodiment 6. The control circuit 8704 is electrically connected to the positive and negative electrodes of the storage battery 8701.
  • the positive electrode active material 101 obtained in Embodiment 1 with a secondary battery using the positive electrode as the positive electrode, a synergistic effect regarding safety can be obtained.
  • the secondary battery and control circuit 8704 using the positive electrode active material 101 obtained in Embodiment 1 as a positive electrode are highly safe and can greatly contribute to eliminating accidents such as fires caused by secondary batteries.
  • FIG. 12C is an example of a two-wheeled vehicle using the power storage device of one embodiment of the present invention.
  • a scooter 8600 shown in FIG. 12C includes a power storage device 8602, a side mirror 8601, and a direction indicator light 8603.
  • the power storage device 8602 can supply electricity to the direction indicator light 8603.
  • the power storage device 8602 that houses a plurality of secondary batteries using the positive electrode active material 101 obtained in Embodiment 1 as a positive electrode can have a high capacity and can contribute to miniaturization.
  • the scooter 8600 shown in FIG. 12C can store a power storage device 8602 in an under-seat storage 8604.
  • the power storage device 8602 can be stored in the under-seat storage 8604 even if the under-seat storage 8604 is small.
  • This embodiment mode can be freely combined with other embodiment modes.
  • a secondary battery which is one embodiment of the present invention, is mounted in an electronic device
  • electronic devices incorporating secondary batteries include television devices (also called televisions or television receivers), computer monitors, digital cameras, digital video cameras, digital photo frames, mobile phones (mobile phones, Examples include mobile phone devices (also referred to as mobile phone devices), portable game machines, personal digital assistants, audio playback devices, and large game machines such as pachinko machines.
  • portable information terminals include notebook personal computers, tablet terminals, electronic book terminals, and mobile phones.
  • FIG. 13A shows an example of a mobile phone.
  • the mobile phone 2100 includes a display section 2102 built into a housing 2101, as well as operation buttons 2103, an external connection port 2104, a speaker 2105, a microphone 2106, and the like.
  • the mobile phone 2100 includes a secondary battery 2107.
  • a secondary battery 2107 in which the positive electrode active material 101 described in Embodiment 1 is used as a positive electrode, a high capacity can be achieved, and a configuration can be realized that can accommodate space saving due to downsizing of the housing. I can do it.
  • the mobile phone 2100 can run various applications such as mobile telephony, e-mail, text viewing and creation, music playback, Internet communication, computer games, and so on.
  • the operation button 2103 can have various functions such as turning on and off the power, turning on and off wireless communication, executing and canceling silent mode, and executing and canceling power saving mode.
  • the functions of the operation buttons 2103 can be freely set using the operating system built into the mobile phone 2100.
  • the mobile phone 2100 is capable of performing short-range wireless communication according to communication standards. For example, by communicating with a headset capable of wireless communication, it is also possible to make hands-free calls.
  • the mobile phone 2100 is equipped with an external connection port 2104, and can directly exchange data with other information terminals via a connector. Charging can also be performed via the external connection port 2104. Note that the charging operation may be performed by wireless power supply without using the external connection port 2104.
  • the mobile phone 2100 has a sensor.
  • a human body sensor such as a fingerprint sensor, a pulse sensor, a body temperature sensor, a touch sensor, a pressure sensor, an acceleration sensor, or the like.
  • FIG. 13B is an unmanned aircraft 2300 with multiple rotors 2302.
  • Unmanned aerial vehicle 2300 is sometimes called a drone.
  • Unmanned aircraft 2300 includes a secondary battery 2301, which is one embodiment of the present invention, a camera 2303, and an antenna (not shown).
  • Unmanned aerial vehicle 2300 can be remotely controlled via an antenna.
  • a secondary battery using the positive electrode active material 101 obtained in Embodiment 1 as a positive electrode has a high energy density and is highly safe, so it can be used safely for a long time and is suitable for use in the unmanned aerial vehicle 2300. It is suitable as a secondary battery to be mounted.
  • FIG. 13C shows an example of a robot.
  • the robot 6400 shown in FIG. 13C includes a secondary battery 6409, an illuminance sensor 6401, a microphone 6402, an upper camera 6403, a speaker 6404, a display portion 6405, a lower camera 6406, an obstacle sensor 6407, a movement mechanism 6408, a calculation device, and the like.
  • the microphone 6402 has a function of detecting the user's speaking voice, environmental sounds, and the like. Furthermore, the speaker 6404 has a function of emitting sound.
  • the robot 6400 can communicate with a user using a microphone 6402 and a speaker 6404.
  • the display unit 6405 has a function of displaying various information.
  • the robot 6400 can display information desired by the user on the display section 6405.
  • the display unit 6405 may include a touch panel. Further, the display unit 6405 may be a removable information terminal, and by installing it at a fixed position on the robot 6400, charging and data exchange are possible.
  • the upper camera 6403 and the lower camera 6406 have a function of capturing images around the robot 6400. Further, the obstacle sensor 6407 can detect the presence or absence of an obstacle in the direction of movement of the robot 6400 when the robot 6400 moves forward using the moving mechanism 6408.
  • the robot 6400 uses an upper camera 6403, a lower camera 6406, and an obstacle sensor 6407 to recognize the surrounding environment and can move safely.
  • the robot 6400 includes a secondary battery 6409 according to one embodiment of the present invention and a semiconductor device or an electronic component in its internal area.
  • a secondary battery using the cathode active material 101 obtained in Embodiment 1 as a cathode has high energy density and is highly safe, so it can be used safely for a long time and can be mounted on the robot 6400. It is suitable as the secondary battery 6409.
  • FIG. 13D shows an example of a portable electric fan.
  • the portable electric fan 6200 includes a secondary battery 6209 according to one embodiment of the present invention, an operation button 6205, a fan 6202, an external connection port 6204, and the like in a housing 6201.
  • the secondary battery 6209 is charged via the external connection port 6204.
  • the fan 6202 is rotated by operating a motor using electric power supplied from the secondary battery 6209.
  • the secondary battery 6209 is an example of a cylindrical secondary battery, the shape is not particularly limited.
  • a secondary battery using the positive electrode active material 101 obtained in Embodiment 1 as a positive electrode has a high energy density, a stable crystal structure, and is highly reliable. It is suitable as the battery 6209.
  • FIG. 13E shows an example of a cleaning robot.
  • the cleaning robot 6300 includes a display portion 6302 placed on the top surface of a housing 6301, a plurality of cameras 6303 placed on the side, a brush 6304, an operation button 6305, a secondary battery 6306, various sensors, and the like.
  • the cleaning robot 6300 is equipped with tires, a suction port, and the like.
  • the cleaning robot 6300 is self-propelled, detects dirt 6310, and can suck the dirt from a suction port provided on the bottom surface.
  • the cleaning robot 6300 can analyze the image taken by the camera 6303 and determine the presence or absence of obstacles such as walls, furniture, or steps. Furthermore, if an object such as wiring that is likely to become entangled with the brush 6304 is detected through image analysis, the rotation of the brush 6304 can be stopped.
  • the cleaning robot 6300 includes a secondary battery 6306 according to one embodiment of the present invention and a semiconductor device or an electronic component in its internal area.
  • a secondary battery using the positive electrode active material 101 obtained in Embodiment 1 as a positive electrode has a high energy density, a stable crystal structure, and is highly reliable, making it suitable for use as a secondary battery mounted on the cleaning robot 6300. 6306 is suitable.
  • This embodiment mode can be freely combined with other embodiment modes.
  • FIG. 14A shows a cross-sectional SEM photograph of the positive electrode active material layer formed on the current collector
  • FIG. 14B is a graph of the Mg concentration of EDX at each point (total of 5 locations) in the depth direction in FIG. 14A. .
  • the particles of the positive electrode active material are prepared by mixing nickel hydroxide obtained by a coprecipitation method, magnesium carbonate, and lithium hydroxide using an aqueous solution serving as a nickel source, a cobalt source, and a manganese source. It is produced by performing a heat treatment, and then mixing it with lithium hydroxide once again and performing a second heat treatment.
  • the magnesium concentration exists at a substantially constant value from the surface of the particles of the positive electrode active material to a depth of 1000 nm or more.
  • the concentration of each additive element in the surface layer portion is approximately the same as in the interior.
  • the magnesium concentration in the surface layer portion is approximately the same as the magnesium concentration in the interior.
  • Steps S111, S113, S114, S121, S122, S131, S132, S133, and S141 in FIG. 2 are the same as in Embodiment 1, so the details will be omitted here.
  • a magnesium source is prepared.
  • a magnesium source magnesium carbonate, magnesium hydroxide, magnesium oxide, magnesium fluoride, magnesium nitrate, magnesium acetate, magnesium sulfate, or magnesium sulfide can be used.
  • the amount of magnesium to be added is, for example, in the range of 0.005 or more and 0.05 or less, where the sum of nickel, cobalt, and manganese atoms is 1.
  • step S142 in FIG. 2 the composite hydroxide 98, lithium source, and magnesium source are mixed.
  • Mixing can be done dry or wet.
  • a ball mill, bead mill, or kneader can be used for mixing.
  • zirconia balls it is preferable to use zirconia balls as the media, for example.
  • the peripheral speed is preferably 100 mm/sec to 2000 mm/sec in order to suppress contamination from media or materials.
  • the cobalt compound and the lithium compound may be crushed.
  • Step S143 Next, the mixture of the composite hydroxide 98 and the lithium source is heated. To distinguish from other heating steps, in FIG. 2, step S143 may be referred to as first heating, step S153 as second heating, and step S155 as third heating.
  • An electric furnace or a rotary kiln can be used as a firing device for performing this heating.
  • the crucible, sheath, setter, and container used during heating are preferably made of materials that do not easily release impurities.
  • an aluminum oxide crucible with a purity of 99.9% may be used.
  • the temperature of the heating in step S143 is preferably 400°C or more and 750°C or less, more preferably 650°C or more and 750°C or less. Further, the heating time in step S143 is preferably 1 hour or more and 30 hours or less, more preferably 2 hours or more and 20 hours or less.
  • the heating atmosphere is preferably an oxygen-containing atmosphere or an oxygen-containing atmosphere that is so-called dry air and contains little water (for example, a dew point of -50°C or lower, more preferably a dew point of -80°C or lower).
  • step S144 it is preferable to include a crushing step after heating. Disintegration can be carried out, for example, in a mortar. Furthermore, it may be classified using a sieve. By including the crushing step, the particle size and/or shape of the positive electrode active material 101 can be made more uniform. Through the above steps, composite oxide 99 is obtained.
  • step S151 a lithium source is prepared.
  • the final amount of lithium is prepared. For example, if the sum of the numbers of atoms of nickel, cobalt, and manganese is set to 1 in step S141, and lithium is set to 0.7 (atomic ratio), for example, 0.31 (atomic ratio) is prepared in step S151. It is preferable.
  • the final amount of lithium is set to 1.01 when the sum of the numbers of atoms of nickel, cobalt, and manganese is 1; however, one embodiment of the present invention is not limited to this.
  • the final amount of lithium is preferably 0.95 or more and 1.25 or less, and more preferably 1.00 or more and 1.05 or less.
  • the description in step S141 can be referred to.
  • FIG. 2 describes a method in which the lithium source is added twice in step S141 and step S151 and heated in each step, one embodiment of the present invention is not limited to this.
  • the lithium source may be added in three or more portions and heated each time.
  • Step S152> the composite oxide 99 obtained in step S144 and the above lithium source are mixed.
  • the description in step S142 can be considered.
  • Step S153 the mixture of the composite oxide 99 and the lithium source is heated.
  • the heating in step S153 is preferably at a sufficiently high temperature in order to increase the crystallite size of the positive electrode active material 101, but the temperature range may vary depending on the composition of the transition metal M.
  • the temperature is preferably 750°C or higher, more preferably 800°C or higher, and even more preferably 850°C or higher.
  • the temperature is preferably 950°C or lower, more preferably 920°C or lower, and even more preferably 900°C or lower.
  • the temperature is preferably 900°C or higher, more preferably 950°C or higher, and even more preferably about 970°C.
  • the same disadvantages as mentioned above may occur, so 1020°C or less is preferable, and 990°C or less is more preferable.
  • the description in step S143 can be referred to.
  • step S154 it is preferable to include a crushing step after heating.
  • the description in step S144 can be considered.
  • Step S155> Furthermore, it is more preferable to perform heating in step S155. By performing the heating, residues such as lithium sources can be reduced.
  • the temperature of the heating in step S155 is preferably 400°C or more and 900°C or less, more preferably 750°C or more and 850°C or less.
  • the heating time in step S152 is preferably 1 hour or more and 30 hours or less, more preferably 2 hours or more and 20 hours or less.
  • the heating in step S155 may not be performed.
  • the description in step S143 can be referred to.
  • step S156 it is preferable to include a crushing step after heating. Regarding the crushing, the description in step S144 can be considered.
  • FIG. 2 describes a method in which the lithium source is mixed in step S152 and then heated twice in step S153 and step S155, one embodiment of the present invention is not limited to this. Heating may be performed three or more times.
  • the positive electrode active material 101 can be manufactured.
  • the mixing ratio of metals contained in the positive electrode active material 101 is determined by X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MS), or energy dispersive X-ray spectroscopy (TEM-EDX). It can be measured by analysis.
  • XPS X-ray photoelectron spectroscopy
  • ICP-MS inductively coupled plasma mass spectrometry
  • TEM-EDX energy dispersive X-ray spectroscopy
  • the obtained positive electrode active material 101 has a crystallite size of 150 nm or more calculated from an XRD pattern. In order to synthesize lithium nickel-manganese-cobalt oxide with a large crystallite size, it is effective to perform the steps of adding a lithium source and heating multiple times.
  • Example 1 a positive electrode active material 101 containing aluminum and having a large crystallite size was prepared, and its characteristics were evaluated.
  • step S111 in FIG. 2 nickel (II) sulfate was prepared as a nickel source, cobalt (II) sulfate as a cobalt source, and manganese (II) sulfate as a manganese source.
  • a 5 mol/L aqueous sodium hydroxide solution was used as the alkaline solution.
  • the filling liquid was sometimes referred to as the adjustment liquid.
  • the charging liquid and the adjustment liquid refer to water or an aqueous solution before the reaction, that is, water or an aqueous solution in an initial state.
  • step S131 a coprecipitation reaction was performed (step S131).
  • the acid solution was mixed into the loading solution at 0.10 mL/min while stirring at 1000 rpm.
  • the pH of the charging solution was maintained at 11.0 by appropriately adding an alkaline solution. Further, the temperature of the filling liquid was maintained at 50°C.
  • a baffle plate was installed in the reaction tank to change the stirring direction and flow rate. OptiMax (manufactured by Mettler Toledo) was used for these coprecipitation reactions.
  • step S132 The precipitate generated in the above coprecipitation reaction was filtered with pure water and acetone (step S132), and dried in a vacuum drying oven at 200° C. for 10 hours (step S133) to obtain composite hydroxide 98.
  • step S141 lithium hydroxide was prepared as a lithium source.
  • the lithium hydroxide was pulverized using a fluidized bed jet mill.
  • step S134 aluminum hydroxide was prepared as a metal source.
  • the aluminum hydroxide was ground using a ball mill.
  • step S142 the composite hydroxide 98 obtained above, a lithium source, and an aluminum source were mixed.
  • the mixing ratio of lithium was such that when the sum of the numbers of atoms of nickel, cobalt, and manganese was 1, the number of atoms of lithium was 0.7 (atomic ratio).
  • the mixing ratio of aluminum was 0.01 (atomic ratio) when the sum of the numbers of atoms of nickel, cobalt, and manganese was 1.
  • step S143 the mixture of the composite hydroxide, lithium source, and aluminum source was heated.
  • An aluminum oxide crucible was used for heating, and the mixture was heated at 700° C. for 10 hours in an oxygen atmosphere in a muffle furnace.
  • the flow rate of oxygen was 5 L/min, and the temperature increase was 200° C./hour. Thereafter, it was cooled to room temperature and crushed (step S144) to obtain composite oxide 99.
  • step S151 lithium hydroxide similar to that in step S141 was prepared.
  • step S152 the composite oxide 99 obtained above and a lithium source were mixed.
  • the mixing ratio was such that when the sum of the numbers of nickel, cobalt, and manganese atoms was 1, the number of lithium atoms was 0.31 (atomic ratio). That is, the total number of lithium atoms mixed in step S142 and step S152 was set to 1.01 (atomic ratio), where the sum of the numbers of nickel, cobalt, and manganese atoms is 1.
  • step S153 the mixture of composite oxide 99 and lithium source was heated.
  • the same procedure as step S143 was carried out (heating treatment for 10 hours) except that the heating temperature was 900°C. Thereafter, it was allowed to cool to room temperature and crushed (step S154).
  • step S155 the mixture of composite oxide 99 and lithium source was further heated.
  • the same procedure as step S143 was carried out (heating treatment for 10 hours) except that the heating temperature was 800°C. Thereafter, it was allowed to cool to room temperature and crushed (step S156), thereby obtaining the positive electrode active material 101. This was designated as sample 1.
  • the material coated on a current collector (thickness: 20 ⁇ m) was used.
  • N-methyl-2-pyrrolidone (NMP) was used as a solvent.
  • Lithium metal was used as the counter electrode.
  • LiPF 6 lithium hexafluorophosphate
  • DEC diethyl carbonate
  • Polypropylene with a thickness of 25 ⁇ m was used for the separator.
  • the positive electrode can and the negative electrode can were made of stainless steel (SUS).
  • the process for obtaining sample ref1 is a process that does not include step S134 for adding aluminum, and the positive electrode active material is obtained by the same manufacturing process as in FIG. 2 except for that process.
  • the positive electrode active material of sample ref2 is obtained by changing the mixing timing of sample 1 and aluminum, and after mixing the Al source before the third heat treatment in step S155 in the flow shown in FIG. Obtained through a manufacturing process.
  • FIG. 1A A cross-sectional SEM image of sample 1 is shown in FIG. 1A, and a cross-sectional SEM image of sample ref2 is shown in FIG. 16A.
  • FIG. 16A In the SEM image of sample ref2, deposits are observed, indicating that excessive aluminum is present on the particle surface.
  • sample 1 shows no deposits on the particle surface compared to sample ref2.
  • EDX point analysis was performed on the locations (4 locations) shown in FIG. 1A, and the measured aluminum concentrations are shown in FIG. 1B.
  • the aluminum becomes substantially the same from the surface to the inside of the particle.
  • EDX point analysis was performed on the locations (5 locations) shown in FIG. 16A, and the measured aluminum concentrations are shown in FIG. 16B.
  • the aluminum concentration decreased greatly from the surface layer toward the inside of the particle.
  • inside the particles there are locations below the lower detection limit.
  • the EDX measurement device used was an energy dispersive X-ray analyzer Ultim Max 170 manufactured by Oxford Instruments, the accelerating voltage was 3 kV to 30 kV, and a Si drift detector was used to detect X-rays.
  • the detection depth is from several nm to several ⁇ m depending on the accelerating voltage, the energy resolution is from 130 eV to 140 eV, and the lower limit of detection for each element is about 1 atomic%.
  • Half cells were assembled using the positive electrode active materials of Sample 1, Sample ref1, and Sample ref2, and the charge/discharge rate characteristics were evaluated. The performance of the positive electrode alone was evaluated by evaluating the cycle characteristics of a half cell.
  • FIGS. 17A and 17B are graphs showing cycle characteristics with the horizontal axis representing the number of cycles.
  • the vertical axis of FIG. 17A shows the discharge capacity of 0.5 C measured at 25° C.
  • the vertical axis of FIG. 17B shows the retention rate of a similar discharge capacity measured at 25° C.
  • Sample 1 is shown by the solid line in FIGS. 17A and 17B. In both cases, charging was performed at CC/CV (0.5C, 4.5V, 0.01C cut), and discharging was performed at CC (0.5C, 2.5V cut). The rest time was 10 minutes.
  • Example 2 a positive electrode active material 101 containing magnesium and having a large crystallite size was prepared, and its characteristics were evaluated.
  • step S111 in FIG. 2 nickel (II) sulfate was prepared as a nickel source, cobalt (II) sulfate as a cobalt source, and manganese (II) sulfate as a manganese source.
  • a 5 mol/L aqueous sodium hydroxide solution was used as the alkaline solution.
  • the filling liquid was sometimes referred to as the adjustment liquid.
  • the charging liquid and the adjustment liquid refer to water or an aqueous solution before the reaction, that is, water or an aqueous solution in an initial state.
  • the acid solution was mixed into the loading solution at 0.10 mL/min while stirring at 1000 rpm.
  • the pH of the charging solution was maintained at 11.0 by appropriately adding an alkaline solution. Further, the temperature of the filling liquid was maintained at 50°C.
  • a baffle plate was installed in the reaction tank to change the stirring direction and flow rate. OptiMax (manufactured by Mettler Toledo) was used for these coprecipitation reactions.
  • the precipitate produced in the above coprecipitation reaction was filtered with pure water and acetone, and dried in a vacuum drying oven at 200° C. for 12 hours to obtain composite hydroxide 98.
  • step S141 lithium hydroxide was prepared as a lithium source.
  • the lithium hydroxide was pulverized using a fluidized bed jet mill.
  • step S134 magnesium carbonate was prepared as a metal source.
  • the magnesium carbonate was ground using a ball mill.
  • step S142 the composite hydroxide 98 obtained above, a lithium source, and a magnesium source were mixed.
  • the mixing ratio of lithium was 0.7 (atomic ratio) when the sum of the numbers of atoms of nickel, cobalt, and manganese was 1.
  • the mixing ratio of magnesium was 0.01 (atomic ratio) when the sum of the numbers of atoms of nickel, cobalt, and manganese was 1.
  • step S143 the mixture of the composite hydroxide, lithium source, and magnesium source was heated.
  • An aluminum oxide crucible was used for heating, and the mixture was heated at 700° C. for 10 hours in an oxygen atmosphere in a muffle furnace.
  • the flow rate of oxygen was 5 L/min, and the temperature increase was 200° C./hour. Thereafter, it was cooled to room temperature and crushed (step S144) to obtain composite oxide 99.
  • step S151 lithium hydroxide similar to that in step S141 was prepared.
  • step S152 the composite oxide 99 obtained above and a lithium source were mixed.
  • the mixing ratio was 0.31 (atomic ratio) for lithium when the sum of the atomic numbers of nickel, cobalt, and manganese was 1.
  • the total amount of lithium mixed in step S142 and step S152 was set to 1.01 (atomic ratio), where the sum of the numbers of atoms of nickel, cobalt, and manganese was set to 1.
  • step S153 the mixture of composite oxide 99 and lithium source was heated.
  • the same procedure as step S143 was carried out (heating treatment for 10 hours) except that the heating temperature was 900°C. Thereafter, it was allowed to cool to room temperature and crushed (step S154).
  • step S155 the mixture of composite oxide 99 and lithium source was further heated.
  • the same procedure as step S143 was carried out (heating treatment for 10 hours) except that the heating temperature was 800°C. Thereafter, it was allowed to cool to room temperature and crushed (step S156), thereby obtaining the positive electrode active material 101. This was designated as sample 2.
  • the material coated on a current collector (thickness: 20 ⁇ m) was used.
  • NMP was used as a solvent.
  • Lithium metal was used as the counter electrode.
  • LiPF 6 lithium hexafluorophosphate
  • DEC diethyl carbonate
  • Polypropylene with a thickness of 25 ⁇ m was used for the separator.
  • the positive electrode can and the negative electrode can were made of stainless steel (SUS).
  • the obtained XRD pattern is DIFFRAC. Background removal and K ⁇ 2 removal were performed using EVA (XRD data analysis software manufactured by Bruker). As a result, signals originating from the conductive aid, the binder, the closed container, etc. are also removed.
  • EVA XRD data analysis software manufactured by Bruker
  • the lattice constant was calculated using TOPAS (manufactured by Bruker). At this time, only the lattice constants were fitted without optimizing the atomic positions. GOF (goodness of fit), estimated crystallite size, and lattice constants of each of the a-axis and c-axis (unit: angstrom) were calculated.
  • Sample 2 had a crystallite size of 292.9 nm, an a-axis lattice constant of 2.8767, and a c-axis lattice constant of 14.2096.
  • sample ref1 using the positive electrode active material produced by the method shown in the flow of FIG. 15 had a crystallite size of 300.90 nm, an a-axis lattice constant of 2.8777, and a c-axis lattice constant of 14.2095.
  • the process for obtaining sample ref1 is a process that does not include step S134 for adding magnesium, and the positive electrode active material is obtained by the same manufacturing process as in FIG. 2 except for that process.
  • the same steps as in FIG. 2 are denoted by the same reference numerals.
  • sample ref3 had a crystallite size of 230.7 nm, an a-axis lattice constant of 2.878, and a c-axis lattice constant of 14.2155.
  • the positive electrode active material of sample ref3 is obtained by changing the mixing timing of sample 2 and magnesium, and in the flow shown in FIG. It was obtained in a production process in which the material was subjected to the fourth heat treatment and then crushed.
  • FIG. 14A A cross-sectional SEM image of sample 2 is shown in FIG. 14A, and a cross-sectional SEM image of sample ref3 is shown in FIG. 18A.
  • FIG. 18A In the SEM image of sample ref3, deposits are observed, indicating that excessive magnesium is present on the particle surface.
  • sample 2 shows no deposits on the particle surface compared to sample ref1.
  • EDX point analysis was performed on the locations (5 locations) shown in FIG. 14A, and the measured magnesium concentration is shown in FIG. 14B.
  • the magnesium concentration became almost uniform from the surface layer to the inside of the particle.
  • EDX point analysis was performed on the locations (four locations) shown in FIG. 18A, and the measured magnesium concentration is shown in FIG. 18B.
  • the magnesium concentration decreased from the surface layer toward the inside of the particle.
  • Half cells were assembled using the positive electrode active materials of Sample 2, Sample ref3, and Sample ref1, and the charge/discharge rate characteristics were evaluated. The performance of the positive electrode alone was evaluated by evaluating the cycle characteristics of a half cell.
  • FIGS. 19A and 19B are graphs showing cycle characteristics with the horizontal axis representing the number of cycles.
  • the vertical axis of FIG. 19A shows the discharge capacity of 0.5 C measured at 25° C.
  • the vertical axis of FIG. 19B shows the retention rate of a similar discharge capacity measured at 25° C.
  • charging was performed at CC/CV (0.5C, 4.5V, 0.01C cut), and discharging was performed at CC (0.5C, 2.5V cut). The rest time was 10 minutes.
  • Example 3 a positive electrode active material 101 containing aluminum and magnesium and having a large crystallite size was prepared, and its characteristics were evaluated.
  • step S111 in FIG. 2 nickel (II) sulfate was prepared as a nickel source, cobalt (II) sulfate as a cobalt source, and manganese (II) sulfate as a manganese source.
  • a 5 mol/L aqueous sodium hydroxide solution was used as the alkaline solution.
  • the filling liquid was sometimes referred to as the adjustment liquid.
  • the charging liquid and the adjustment liquid refer to water or an aqueous solution before the reaction, that is, water or an aqueous solution in an initial state.
  • the acid solution was mixed into the loading solution at 0.10 mL/min while stirring at 1000 rpm.
  • the pH of the charging solution was maintained at 11.0 by appropriately adding an alkaline solution. Further, the temperature of the filling liquid was maintained at 50°C.
  • a baffle plate was installed in the reaction tank to change the stirring direction and flow rate. OptiMax (manufactured by Mettler Toledo) was used for these coprecipitation reactions.
  • the precipitate produced in the above coprecipitation reaction was filtered with pure water and acetone, and dried in a vacuum drying oven at 200° C. for 12 hours to obtain composite hydroxide 98.
  • step S141 lithium hydroxide was prepared as a lithium source.
  • the lithium hydroxide was pulverized using a fluidized bed jet mill.
  • step S134 magnesium carbonate and aluminum hydroxide were prepared as metal sources.
  • the magnesium carbonate and aluminum hydroxide were ground using a ball mill.
  • step S142 the composite hydroxide 98 obtained above, a lithium source, a magnesium source, and an aluminum source were mixed.
  • the mixing ratio of lithium was 0.7 (atomic ratio) when the sum of the numbers of atoms of nickel, cobalt, and manganese was 1.
  • the mixing ratio of magnesium was 0.005 (atomic ratio) when the sum of the numbers of atoms of nickel, cobalt, and manganese was 1.
  • the mixing ratio of aluminum was 0.005 (atomic ratio) when the sum of the atomic numbers of nickel, cobalt, and manganese was 1.
  • step S143 the mixture of the composite hydroxide, lithium source, magnesium source, and aluminum source was heated.
  • An aluminum oxide crucible was used for heating, and the mixture was heated at 700° C. for 10 hours in an oxygen atmosphere in a muffle furnace.
  • the flow rate of oxygen was 5 L/min, and the temperature increase was 200° C./hour. Thereafter, it was cooled to room temperature and crushed (step S144) to obtain composite oxide 99.
  • step S151 lithium hydroxide similar to that in step S141 was prepared.
  • step S152 the composite oxide 99 obtained above and a lithium source were mixed.
  • the mixing ratio was 0.31 (atomic ratio) for lithium when the sum of the atomic numbers of nickel, cobalt, and manganese was 1.
  • the total amount of lithium mixed in step S142 and step S152 was set to 1.01 (atomic ratio), where the sum of the numbers of atoms of nickel, cobalt, and manganese was set to 1.
  • step S153 the mixture of composite oxide 99 and lithium source was heated.
  • the same procedure as step S143 was carried out (heating treatment for 10 hours) except that the heating temperature was 900°C. Thereafter, it was allowed to cool to room temperature and crushed (step S154).
  • step S155 the mixture of composite oxide 99 and lithium source was further heated.
  • the same procedure as step S143 was carried out (heating treatment for 10 hours) except that the heating temperature was 800°C. Thereafter, it was allowed to cool to room temperature and crushed (step S156), thereby obtaining the positive electrode active material 101. This was designated as sample 3.
  • the material coated on a current collector (thickness: 20 ⁇ m) was used.
  • NMP was used as a solvent.
  • Lithium metal was used as the counter electrode.
  • LiPF 6 lithium hexafluorophosphate
  • DEC diethyl carbonate
  • Polypropylene with a thickness of 25 ⁇ m was used for the separator.
  • the positive electrode can and the negative electrode can were made of stainless steel (SUS).
  • Half cells were assembled using the positive electrode active materials of Sample 3 and Sample ref1, and the charge/discharge rate characteristics were evaluated. The performance of the positive electrode alone was evaluated by evaluating the cycle characteristics of a half cell.
  • FIG. 20A and 20B are graphs showing cycle characteristics with the horizontal axis representing the number of cycles.
  • the vertical axis of FIG. 20A shows the discharge capacity of 0.5 C measured at 25° C.
  • the vertical axis of FIG. 20B shows the retention rate of a similar discharge capacity measured at 25° C.
  • charging was performed at CC/CV (0.5C, 4.5V, 0.01C cut), and discharging was performed at CC (0.5C, 2.5V cut). The rest time was 10 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明の一態様は、劣化が少ない正極活物質を提供する。 共沈法を用いてニッケル、コバルト、及びマンガンを含むニッケル化合物を得た後、リチウム化合 物とアルミニウム化合物(またはマグネシウム化合物)とニッケル化合物を混合した混合物を第1 の加熱温度で加熱し、混合物を粉砕または解砕した後、さらにリチウム化合物を混合し、第1の温 度より高い温度である第2の加熱温度で加熱し、粉砕または解砕後に第3の加熱処理を行って正極 活物質を作製する。

Description

正極活物質の作製方法
本発明の一態様は、物、方法、又は、製造方法に関する。または、本発明は、プロセス、マシン、マニュファクチャ、又は、組成物(コンポジション・オブ・マター)に関する。本発明の一態様は、二次電池を含む蓄電装置、半導体装置、表示装置、発光装置、照明装置、電子機器またはそれらの製造方法に関する。
なお、本明細書中において電子機器とは、蓄電装置を有する装置全般を指し、蓄電装置を有する電気光学装置、蓄電装置を有する情報端末装置などは全て電子機器である。
近年、リチウムイオン二次電池、リチウムイオンキャパシタ、空気電池、種々の蓄電装置の開発が盛んに行われている。特に高出力、高エネルギー密度であるリチウムイオン二次電池は、携帯電話、スマートフォン、もしくはノート型コンピュータで代表される携帯情報端末、携帯音楽プレーヤ、デジタルカメラ、医療機器、又は、ハイブリッド車(HV)、電気自動車(EV)、もしくはプラグインハイブリッド車(PHV)で代表される次世代クリーンエネルギー自動車、半導体産業の発展と併せて急速にその需要が拡大し、繰り返し充電可能なエネルギーの供給源として現代の情報化社会に不可欠なものとなっている。
特許文献1には、アルミニウムを有するリチウムイオン二次電池用正極活物質が開示されている。
WO2022/038449
本発明の一態様は、劣化しにくい正極活物質を提供することを課題とする。または、新規な正極活物質を提供することを課題とする。または、安全性または信頼性の高い二次電池を提供することを課題の一とする。または、劣化しにくい二次電池を提供することを課題の一とする。または、長寿命の二次電池を提供することを課題の一とする。または、新規な二次電池を提供することを課題の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。
本明細書で開示する構成は、正極活物質を作製する方法であり、反応槽にニッケルの水溶性塩、コバルトの水溶性塩、及びマンガンの水溶性塩の水溶性塩を含む水溶液と、アルカリ溶液と、を供給し、反応槽の内部で混合して少なくともニッケル、コバルト、マンガン、を含む化合物を析出させ、化合物と、金属化合物(アルミニウムまたはマグネシウムを含む化合物)と、リチウム化合物とを混合した第1の混合物を第1の加熱温度で加熱し、解砕または粉砕した後、さらに第2の加熱温度で加熱し、解砕または粉砕した第1の混合物と、リチウム化合物と、を混合して得られた第2の混合物を第3の加熱温度で加熱する正極活物質の作製方法である。
上記構成において、第1の加熱温度は、第2の加熱温度より低いことが好ましい。第3の加熱温度は、第2の加熱温度より低いことが好ましい。第1の加熱温度は、第3の加熱温度より低いことが好ましい。
具体的には、第1の加熱温度の範囲は400℃以上750℃以下の範囲である。第2の加熱温度及び第3の加熱温度は、750℃より高く1050℃以下の範囲である。
上記作製方法により、共沈法により前駆体(ニッケル水酸化物)を形成した後、アルミニウムまたはマグネシウムを添加するタイミングを工夫することで正極活物質の粒子内部におけるアルミニウムの濃度またはマグネシウムの濃度をほぼ実質的に同一にする。
また、複数回に分けて水酸化リチウムと混合して加熱を行うことで正極活物質の粒径を大きくする。XRDパターンから算出される正極活物質の結晶子サイズは、150nm以上である。具体的には、XRDの回折パターンの半値幅から算出される結晶子サイズが、150nm以上であることが好ましく、180nm以上であることがより好ましく、200nm以上であることがさらに好ましい。また、XRDの回折パターンから算出される結晶子サイズは1000nm以下であることが好ましく、800nm以下であることがより好ましい。複数の結晶子によって一次粒子が構成され、SEMで観察した際、粒界によって囲まれた最も小さな単位の粒子を一次粒子と呼ぶ。従って一次粒子には単結晶及び多結晶が含まれる。結晶子とは、単結晶とみなせる最大の集まりを指し、結晶子サイズはXRDパターンから算出される。一次粒子が凝集したものを二次粒子と呼ぶ場合がある。
結晶子サイズの算出には、たとえばBruker D8 ADVANCEを用い、X線源としてCuKα、2θは15°以上90°以下、increment 0.005、検出器をLYNXEYE XE−Tとして取得した回折パターンと、コバルト酸リチウムの文献値としてICSD coll.code.172909を用いることができる。結晶構造解析ソフトウェアとしてDIFFRAC.TOPAS ver.6を用いて解析を行うことができ、たとえば以下のように設定することができる。
Emission Profile:CuKa5.lam
Background:Chebychev polynomial、5次
Instrument
 Primary radius:280mm
 Secondary radius:280mm
 Linear PSD
  2Th angular range:2.9
  FDS angle:0.3
Full Axial Convolution
 Filament length:12mm
 Sample length:15mm
 Receiving Slit length:12mm
 Primary Sollers:2.5
 Secondary Sollers:2.5
Corrections
 Specimen displacement:Refine
 LP Factor:0
 上記の手法で算出された結晶子サイズであるLVol−IBの値を結晶子サイズとして採用することが好ましい。
なお、結晶子サイズを算出する際のXRDパターンは、正極活物質のみの状態で取得してもよいし、正極活物質に加えて集電体、バインダおよび導電材等を含む正極の状態で取得してもよい。ただし正極の状態では、作製工程における加圧等の影響で正極活物質が配向している可能性がある。正極活物質の配向が強いと結晶子サイズが正確に算出できない恐れがある。そのため、たとえば正極から正極活物質層を剥がしとり、溶媒等を用いて正極活物質層中のバインダ等をある程度取り除いてから試料ホルダに充填するなど、配向を減じる方法で取得することがより好ましい。
本発明の一態様により、リチウムイオン二次電池に用いることができ、充放電レート特性に優れた正極活物質または複合酸化物を提供することができる。または、安全性又は信頼性の高い二次電池を提供することができる。
また本発明の一態様により、正極活物質、複合酸化物、蓄電装置、又はそれらの作製方法を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
図1Aは本発明の一態様を示す正極活物質層の断面SEM写真を示しており、図1Bは図1Aの深さ方向における各点(合計4箇所)におけるEDXのAl濃度のグラフである。
図2は本発明の一態様を示す正極活物質の作製方法を説明する図である。
図3A、図3B、図3C及び図3Dは正極の断面模式図である。
図4Aはコイン型二次電池の分解斜視図であり、図4Bはコイン型二次電池の斜視図であり、図4Cはその断面斜視図である。
図5Aは、円筒型の二次電池の例を示す。図5Bは、円筒型の二次電池の例を示す。図5Cは、複数の円筒型の二次電池の例を示す。図5Dは、複数の円筒型の二次電池を有する蓄電システムの例を示す。
図6A及び図6Bは、二次電池の例を説明する図であり、図6Cは、二次電池の内部の様子を示す図である。
図7A乃至図7Cは、二次電池の例を説明する図である。
図8A及び図8Bは、二次電池の外観を示す図である。
図9A乃至図9Cは、二次電池の作製方法を説明する図である。
図10Aは、本発明の一態様を示す電池パックの斜視図であり、図10Bは、電池パックのブロック図であり、図10Cは、電池パックを有する車両のブロック図である。
図11A乃至図11Dは、輸送用車両の一例を説明する図である。図11Eは、人工衛星の一例を説明する図である。
図12Aは、電動自転車を示す図であり、図12Bは、電動自転車の二次電池を示す図であり、図12Cは、スクータを説明する図である。
図13A乃至図13Eは、電子機器の一例を説明する図である。
図14Aは本発明の一態様を示す正極活物質層の断面SEM写真を示しており、図14Bは図14Aの深さ方向における各点(合計5箇所)におけるEDXのMg濃度のグラフである。
図15は比較例を示す正極活物質の作製方法を説明する図である。
図16Aは比較例を示す正極活物質層の断面SEM写真を示しており、図16Bは図16Aの深さ方向における各点(合計5箇所)におけるEDXのAl濃度のグラフである。
図17A及び図17Bは本発明の一態様及び比較例のサイクル特性を説明するグラフである。
図18Aは比較例を示す正極活物質層の断面SEM写真を示しており、図18Bは図18Aの深さ方向における各点(合計4箇所)におけるEDXのMg濃度のグラフである。
図19A及び図19Bは本発明の一態様及び比較例のサイクル特性を説明するグラフである。
図20A及び図20Bは本発明の一態様及び比較例のサイクル特性を説明するグラフである。
図21はテイラー反応器の断面模式図の一例である。
以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
なお本明細書等において、粒子とは球形(断面形状が円)のみを指すことに限定されず、個々の粒子の断面形状が楕円形、長方形、台形、錐形、角が丸まった四角形、非対称の形状などが挙げられ、さらに個々の粒子は不定形であってもよい。
また均質とは、複数の元素(例えばA,B,C)からなる固体において、ある元素(例えばA)が特定の領域に同様の特徴を有して分布する状態をいう。なお特定の領域同士の元素の濃度が実質的に同一であればよい。たとえば特定領域同士のある元素の検出量(たとえばSTEM−EDXにおけるカウント数)の差が10%以内であればよい。特定の領域としてはたとえば表層部、表面、凸部、凹部、内部などが挙げられる。
また、以下の実施の形態等で正極活物質の個別の粒子の特徴について述べる場合、必ずしも全ての粒子がその特徴を有していなくてもよい。たとえばランダムに3個以上選択した正極活物質の粒子のうち50%以上、好ましくは70%以上、より好ましくは90%以上がその特徴を有していれば、十分に正極活物質およびそれを有する二次電池の特性を向上させる効果があるということができる。
また二次電池が有する材料の劣化前の状態を、初期品、または初期状態と呼称し、劣化後の状態(二次電池の定格容量の97%未満の放電容量を有する場合の状態)を、使用中品または使用中の状態、あるいは使用済み品または使用済み状態と呼称する場合がある。
(実施の形態1)
本実施の形態では、図1A、図1B、及び図2を用いて、本発明の一態様の正極活物質について説明する。
図1Aは集電体上に形成された正極活物質層の断面SEM写真を示しており、図1Bは図1Aの深さ方向における各点(合計4箇所)におけるEDXのAl濃度のグラフである。
正極活物質の粒子は、ニッケル源、コバルト源、及びマンガン源となる水溶液を用い、共沈法で得られたニッケル水酸化物と、水酸化アルミニウムと、水酸化リチウムとを混合して第1の加熱処理を行い、その後、さらにもう一度、水酸化リチウムと混合して第2の加熱処理を行って作製している。
また、図1Bに示すように、正極活物質の粒子の表面から1000nm以上の深さまでアルミニウム濃度(原子数濃度)が、ほぼ一定の濃度範囲(0.58%以上0.74%以下)内またはそれ以上で存在していることがわかる。また、正極活物質の粒子内部においてもアルミニウム濃度(原子数濃度)が、0.1%以上含まれていた。
≪EDX≫
正極活物質の粒子における添加元素および遷移金属Mの濃度分布は、たとえば、FIB(Focused Ion Beam)等により正極活物質の断面を露出させ、その断面をエネルギー分散型X線分光法(EDX:Energy Dispersive X−ray Spectroscopy)、EPMA(電子プローブ微小分析)等を用いて分析することで評価できる。
EDX測定のうち、領域内を走査しながら測定し、領域内を2次元に評価することをEDX面分析と呼ぶ。また線状に走査しながら測定し、原子濃度について正極活物質内の分布を評価することを線分析と呼ぶ。さらにEDXの面分析から、線状の領域のデータを抽出したものを線分析と呼ぶ場合もある。またある領域について走査せずに測定することを点分析と呼ぶ。
EDX面分析(例えば元素マッピング)により、正極活物質の各箇所における、添加元素および遷移金属Mの濃度を定量的に分析することができる。また、EDX線分析により、添加元素の濃度分布および最大値を分析することができる。またSTEM−EDXのようにサンプルを薄片化してから行う分析は、奥行き方向の分布の影響を受けずに、特定の領域における正極活物質の表面から中心に向かった深さ方向の濃度分布を分析でき、より好適である。
本発明の一態様の正極活物質についてEDX面分析またはEDX点分析したとき、表層部及び内部の各添加元素の濃度が、ほぼ実質的に同一であることが好ましい。
たとえば添加元素としてアルミニウムを有する正極活物質についてEDX面分析またはEDX点分析したとき、表層部のアルミニウム濃度が、内部のアルミニウム濃度とほぼ実質的に同一であることが好ましい。
一方、比較として、異なるプロセスで水酸化アルミニウムを混合して作製した粒子においては、粒子表面から1000nm以上の深さに渡ってアルミニウム濃度が低下しており、表面の濃度が一番高い濃度勾配をもつ結果となっている。この比較例の断面SEM写真および深さ方向におけるAl濃度のグラフは図16A及び図16Bに示している。
本発明の一態様の正極活物質と比較例との違いは、正極活物質の粒子の作製プロセスの違いが影響していると考えられる。
本明細書等において、正極活物質の表層部とは、例えば、表面から内部に向かって200nm以内の領域をいう。ひびおよび/またはクラックにより生じた面も表面といってよい。表層部は、表面近傍、表面近傍領域またはシェルと同義である。
また正極活物質の表層部より深い領域を、内部と呼ぶ。内部は、内部領域またはコアと同義である。
また正極活物質の表面とは、上記表層部および内部を含む複合酸化物の表面をいうこととする。そのため正極活物質は、作製後に化学吸着した炭酸塩、ヒドロキシ基等は含まないとする。また正極活物質に付着した電解質、バインダ、導電材、またはこれら由来の化合物も含まないとする。また断面STEM(走査型透過電子顕微鏡)像等における正極活物質の表面とは、電子線の結合像が観察される領域と、観察されない領域の境界であって、リチウムより原子番号の大きな金属元素の原子核に由来する輝点が確認される領域の最も外側とする。断面STEM像等における表面は、より空間分解能の高い分析、たとえば電子エネルギー損失分光法(Electron Energy Loss Spectroscopy,EELS)等の分析結果と併せて判断してもよい。
以下に図1Aに示す正極活物質の粒子の作製プロセスを図2を用いて説明する。
<ステップS111>
図2のステップS111として、まず遷移金属M源、すなわちニッケル源(Ni源)、コバルト源(Co源)およびマンガン源(Mn源)を用意する。これらは生成物が層状岩塩型の結晶構造をとりうる範囲のニッケル、コバルト、マンガンの混合比とすることが好ましい。
特に遷移金属Mとしてニッケルを多く含む正極活物質は、コバルトが多い場合と比較して原料が安価になる場合があり、また重量あたりの充放電容量が増加する場合があり好ましい。たとえば遷移金属Mのうちニッケルは、25原子%を超えることが好ましく、60原子%以上がより好ましく、80原子%以上がさらに好ましい。しかしニッケルの占める割合が高すぎると、化学安定性および耐熱性が下がるおそれがある。そのため遷移金属Mのうちニッケルは95原子%以下であることが好ましい。
正極活物質の遷移金属Mとしてコバルトを有する二次電池は、平均放電電圧が高く、またコバルトが層状岩塩型の構造を安定化に寄与するため信頼性の高い二次電池とすることができ好ましい。しかしコバルトの価格は、ニッケルおよびマンガンよりも高いため、コバルトの占める割合が高すぎると、二次電池製造のコストが増大するおそれがある。そのため、たとえば遷移金属Mのうちコバルトは、2.5原子%以上34原子%以下であることが好ましい。
なお遷移金属Mとして、必ずしもコバルトを含まなくてもよい。
遷移金属Mとしてマンガンを有する正極活物質は、耐熱性および化学安定性が向上するため好ましい。しかしマンガンの占める割合が高すぎると、放電電圧および放電容量が低下する傾向がある。そのため、例えば遷移金属Mのうちマンガンは、2.5原子%以上34原子%以下であることが好ましい。
なお遷移金属Mとして、必ずしもマンガンを含まなくてもよい。
遷移金属M源は遷移金属Mを含む化合物の水溶液として用意する。ニッケル源としては、ニッケル塩の水溶液を用いることができる。ニッケル塩としては、たとえば硫酸ニッケル、塩化ニッケル、硝酸ニッケル、またはこれらの水和物を用いることができる。また酢酸ニッケルをはじめとするニッケルの有機酸塩、またはこれらの水和物を用いることもできる。またニッケル源としてニッケルアルコキシドまたは有機ニッケル錯体の水溶液を用いることができる。なお本明細書等において、有機酸塩とは、酢酸、クエン酸、シュウ酸、ギ酸、酪酸等の有機酸と金属の化合物をいうこととする。
同様にコバルト源としては、コバルト塩の水溶液を用いることができる。コバルト塩としては、たとえば硫酸コバルト、塩化コバルト、硝酸コバルト、またはこれらの水和物を用いることができる。また酢酸コバルトをはじめとするコバルトの有機酸塩、またはこれらの水和物を用いることもできる。またコバルト源としてコバルトアルコキシド、有機コバルト錯体の水溶液を用いることができる。
同様にマンガン源としては、マンガン塩の水溶液を用いることができる。マンガン塩としては、たとえば硫酸マンガン、塩化マンガン、硝酸マンガン、またはこれらの水和物の水溶液を用いることができる。また酢酸マンガンをはじめとするマンガンの有機酸塩、またはこれらの水和物を用いることもできる。またマンガン源としてマンガンアルコキシド、または有機マンガン錯体の水溶液を用いることができる。
本実施の形態では、遷移金属M源として、硫酸ニッケル、硫酸コバルトおよび硫酸マンガンを純水に溶解させた水溶液を用意することとする。このときニッケル、コバルトおよびマンガンの原子数比は、Ni:Co:Mn=8:1:1またはこの近傍とする。該水溶液は酸性を示す。
<ステップS113>
また図2のステップS113に示すように、キレート剤を用意してもよい。キレート剤として、たとえばグリシン、オキシン、1−ニトロソ−2−ナフトール2−メルカプトベンゾチアゾール、またはEDTA(エチレンジアミン四酢酸)が挙げられる。なお、グリシン、オキシン、1−ニトロソ−2−ナフトールまたは2−メルカプトベンゾチアゾールから選ばれた複数種を用いてもよい。これらのうち少なくとも一つを純水に溶解させキレート水溶液として用いる。キレート剤は、キレート化合物を作る錯化剤であり、一般的な錯化剤より好ましい。勿論キレート剤でなく錯化剤を用いてもよく、錯化剤としてアンモニア水を用いることができる。キレート水溶液を用いることで結晶の核の不要な発生を抑え、成長を促すことができ好ましい。不要な核の発生が抑制されると微粒子の生成が抑制されるため、粒度分布が良好な複合水酸化物98を得ることができる。また、アンモニアをアルカリ溶液に用いる場合、アンモニア塩が生じる場合がある。またキレート水溶液を用いることで、酸塩基反応を遅らせることができ、徐々に反応が進むことで球状に近い二次粒子を得ることができる。グリシンは9以上10以下及びその付近のpHにて、当該pH値を一定に保つ作用があり、キレート水溶液としてグリシン水溶液を用いることで、上記複合水酸化物98を得る際の反応槽のpHが制御しやすくなり好ましい。遷移金属及びグリシンを有する水溶液において、グリシン濃度は、0.05mol/L以上0.3mol/L以下、好ましくは0.07mol/L以上0.32mol/L以下がよい。
<ステップS114>
次に図2のステップS114として、遷移金属M源とキレート剤を混合し、酸溶液を作製する。
<ステップS121>
次に図2のステップS121として、アルカリ溶液を用意する。アルカリ溶液としては、たとえば水酸化ナトリウム、水酸化カリウム、水酸化リチウム、またはアンモニアを有する水溶液を用いることができる。この水溶液は純水を用いて作製することが好ましい。また水酸化ナトリウム、水酸化カリウム、水酸化リチウム、またはアンモニアから選ばれた複数種を純水に溶解させた水溶液でもよい。
上記遷移金属M源およびアルカリ溶液に用いると好ましい純水とは、比抵抗が1MΩ・cm以上の水、より好ましくは比抵抗が10MΩ・cm以上の水、さらに好ましくは比抵抗が15MΩ・cm以上の水である。当該比抵抗を満たす水は純度が高く、含有される不純物が非常に少ない。
<ステップS122>
また図2のステップS122に示すように、水を反応槽に用意することが好ましい。この水は、キレート剤の水溶液であってもよいが、純水であることがより好ましい。純水を用いることで核形成が促進され、小粒径の複合水酸化物を作製することができる。この反応槽に用意した水は、反応槽の張り込み液または調整液ということができる。キレート水溶液とする場合、ステップS113の記載を参酌することができる。
<ステップS131>
次に図2のステップS131として、酸溶液とアルカリ溶液を混合し、反応させる。該反応は、共沈反応、中和反応または酸塩基反応ということができる。
ステップS131の共沈反応中は、反応系のpHを9.0以上13.0以下となるようにすることが好ましい。
たとえばアルカリ溶液を反応槽に入れ酸溶液を反応槽へ添加する場合、反応槽の水溶液のpHを上記条件の範囲に維持するとよい。また酸溶液を反応槽に入れておき、アルカリ溶液を添加する場合も、同様である。酸溶液の送液速度は、0.1mL/分以下とするとpH条件を制御しやすく好ましい。酸溶液を貯留するタンクにはポンプが設けられ、当該ポンプを使用することにより、管を通して反応槽へ酸溶液を添加することができる。ポンプにより、酸溶液の添加量、つまり送液量を制御することができる。
また、アルカリ溶液は、反応槽の水溶液のpHを一定に保つように添加する。反応槽は反応容器等を有する。
反応槽では攪拌手段を用いて水溶液を攪拌しておくとよい。攪拌手段はスターラーまたは攪拌翼等を有する。攪拌翼は2枚以上6枚以下設けることができ、たとえば4枚の攪拌翼とする場合、上方からみて十字状に配置するとよい。攪拌手段の回転数は、800rpm以上1200rpm以下とするとよい。また反応槽にバッフル板を設け、攪拌の方向および流速を変化させてもよい。バッフル板を設けることで混合効率が向上し、より均一な複合水酸化物の粒子を合成することができる。
反応槽の温度は50℃以上90℃以下となるように調整することが好ましい。アルカリ溶液または酸溶液の添加は反応槽が当該温度になったのちに開始するとよい。
また反応槽内は不活性雰囲気とするとよい。この場合の不活性雰囲気には窒素またはアルゴンを用いることができる。窒素雰囲気とする場合、窒素ガスを0.5L/分以上2L/分の流量で導入するとよい。
また反応槽には還流冷却器を配置するとよい。還流冷却器により、窒素ガスを反応槽から放出させることができ、水蒸気は反応槽に戻すことができる。
上記の共沈反応により、遷移金属Mを有する複合水酸化物98が沈殿する。
<ステップS132>
複合水酸化物98を回収するために、図2のステップS132に示すように濾過を行うことが好ましい。濾過は吸引濾過が好ましい。濾過の際、反応槽に沈殿した反応生成物を純水で洗浄した後に、有機溶媒(例えばアセトン等)を用いて濾過してもよい。
<ステップS133>
図2のステップS133に示すように、濾過後の複合水酸化物98は乾燥させるとよい。たとえば60℃以上200℃以下の真空下にて、0.5時間以上20時間以下で乾燥させる。たとえば12時間乾燥させることができる。
このようにして、遷移金属Mを有する複合水酸化物98を得ることができる。本明細書等において複合水酸化物98とは、複数種の金属の水酸化物をいうこととする。複合水酸化物98は、正極活物質の前駆体ということができる。正極活物質の前駆体の作製は、反応槽を用いた共沈法に限定されず、テイラー渦流を利用して行ってもよい。
図21はテイラー反応器80の断面模式図の一例である。例えば、チップトン社製(TVF−1Type)を用いることができる。外筒82と、外筒内で回転する内筒81とを備え、外筒82と内筒81との間に形成された隙間空間内でテイラー渦を発生させるテイラー反応器80がある。隙間空間に流体を満たし、複数種の流体をそれぞれ流入孔84a、84b、84cのいずれか一から流入させ、モータ83を用いて内筒81を回転させると、テイラー渦流によって異種の流体の混合が行われる。また、混合とともに、異種の流体の化学反応も同時に行われる。混合または化学反応を良好なものとするためには、温度を適正に設定することが好ましい。また、得られた反応物は、引出口85から取得できる。
流体を供給するための流入孔に繋がる供給ラインには、それぞれ引入制御バルブが設けられ、供給する流体の流れを制御する。また、流体を供給するための流入孔に繋がる供給ラインには、計量ポンプが設けられ、材料供給タンクから液体を送りこむ。
また、反応物を取得するためのラインには、反応物の引き出し量を制御するための引出制御バルブが設けられており、引出制御バルブを通過したラインにはpHメータが設けられる。
テイラー反応器80は、温度と圧力を制御して、複数の流体を混合させる連続的な混合物の作製方法を提供することができ、均一性よく、効率的に反応物を得ることができる。
<ステップS141>
次に図2のステップS141として、リチウム源を用意する。本正極活物質の粒子の作製プロセスでは、リチウム源を加えるための工程を複数回行うため、ステップS141では最終的なリチウム量よりも少ない量を用意する。たとえばニッケル、コバルトおよびマンガンの原子の和を1としたとき、リチウムの原子を0.5以上0.9以下(原子数比)とすることができ、0.7(原子数比)とすることがより好ましい。
リチウム源としてはたとえば水酸化リチウム、炭酸リチウム、または硝酸リチウムを用いることができる。特に水酸化リチウム(融点462°C)などリチウム化合物のなかでは融点の低い材料を用いると好ましい。ニッケルの割合が高い正極活物質は、コバルト酸リチウム等と比較してカチオンミキシングが生じやすいため、ステップS43などの加熱を低温で行う必要がある。そのため融点の低い材料を用いることが好ましい。
またリチウム源の粒径が小さい方が、反応が良好に進みやすく好ましい。たとえば流動層式ジェットミルを用いて微粒子化したリチウム源を用いることができる。ここでいう粒径とは、メディアン径をいうこととする。メディアン径は粒度分布が左右対称である場合として、D50を指すものとする。D50はレーザー回折・散乱法を用いた粒度分布計(島津社製SALD−2200)から算出された二次粒子の累積分布50%時の粒子径を指している。粒子の大きさの測定は、レーザー回折式粒度分布測定に限定されず、SEMまたはTEM(Transmission Electron Microscope、透過電子顕微鏡)などの分析によって、粒子断面の長径を測定してもよい。なお、SEMまたはTEMなどの分析からD50を測定する方法として例えば、20個以上の粒子を測定し、積算粒子量曲線を作成し、その積算量が50%を占めるときの粒子径をD50とすることができる。
<ステップS134>
図2のステップS134として、金属源を用意する。金属源としてはアルミニウム源またはマグネシウム源を用意する。アルミニウム源としては、水酸化アルミニウム、硫酸アルミニウム、塩化アルミニウム、及び硝酸アルミニウムを用いることができる。添加するアルミニウムの原子の量は、たとえばニッケル、コバルトおよびマンガンの原子の和を1としたとき、0.005以上0.05以下(原子数比)の範囲内とする。マグネシウム源としては、炭酸マグネシウム、水酸化マグネシウム、酸化マグネシウム、フッ化マグネシウム、硝酸マグネシウム、酢酸マグネシウム、硫酸マグネシウム、または硫化マグネシウムを用いることができる。添加するマグネシウムの量は、たとえばニッケル、コバルトおよびマンガンの原子の和を1としたとき、0.005以上0.05以下の範囲内とする。
<ステップS142>
次に図2のステップS142として、複合水酸化物98とリチウム源と金属源を混合する。混合は乾式または湿式で行うことができる。混合には例えばボールミル、ビーズミル又は混練機等を用いることができる。ボールミルを用いる場合は、例えばメディアとしてジルコニアボールを用いることが好ましい。また、ボールミル、またはビーズミル等を用いる場合、メディアまたは材料からのコンタミネーションを抑制するために、周速を100mm/秒以上2000mm/秒以下とすることが好ましい。混合と同時に複合水酸化物98及びリチウム化合物は粉砕されることがある。
<ステップS143>
次に複合水酸化物98とリチウム源の混合物に加熱を行う。他の加熱工程との区別のために、図2ではステップS143を第1の加熱、ステップS153を第2の加熱、ステップS155を第3の加熱という場合がある。
これらの加熱を行う焼成装置としては、電気炉、またはロータリーキルン炉を用いることができる。加熱の際に用いる、るつぼ、サヤ、セッター、容器は不純物を放出しにくい材質であると好ましい。たとえば純度が99.9%の酸化アルミニウムのるつぼを用いるとよい。また、これらの容器に蓋をした状態で加熱することが好ましい。
ステップS143の加熱は、温度は400℃以上750℃以下が好ましく、650℃以上750℃以下がより好ましい。また、ステップS143の加熱の時間は、1時間以上30時間以下が好ましく、2時間以上20時間以下がより好ましい。
加熱雰囲気は、酸素を有する雰囲気、又はいわゆる乾燥空気であって水が少ない酸素含有雰囲気(例えば露点が−50℃以下、より好ましくは露点が−80℃以下)で行うことが好ましい。
またステップS144として、加熱の後に解砕工程を有することが好ましい。解砕はたとえば乳鉢で行うことができる。さらに、ふるいを用いて分級してもよい。解砕工程を有することで、正極活物質101の粒径および/または形状をより均一化することができる。以上の工程により、複合酸化物99を得る。
<ステップS151>
次にステップS151として、リチウム源を用意する。このときステップS141と合わせて最終的なリチウム量となる量を用意する。たとえばステップS141においてニッケル、コバルトおよびマンガンの原子数の和を1としたとき、リチウムの原子数を0.7(原子数比)とした場合は、ステップS151ではたとえば0.31(原子数比)を用意することが好ましい。ここではニッケル、コバルトおよびマンガンの原子数の和を1としたときの最終的なリチウム原子の量を1.01としたが、本発明の一態様はこれに限らない。ニッケル、コバルトおよびマンガンの原子数の和を1としたときの最終的なリチウム量は0.95以上1.25以下が好ましく、1.00以上1.05以下(原子数比)であるとより好ましい。用意する量以外は、ステップS141の記載を参酌することができる。
なお図2ではリチウム源をステップS141とステップS151の2回に分けて加え、それぞれ加熱する方法について説明するが、本発明の一態様はこれに限らない。リチウム源を3回以上に分けて添加し、添加する毎に加熱してもよい。
<ステップS152>
次にステップS144で得た複合酸化物99と、上記のリチウム源とを混合する。混合はステップS142の記載を参酌することができる。
<ステップS153>
次に複合酸化物99とリチウム源の混合物に加熱を行う。ステップS153の加熱は正極活物質101の結晶子サイズを大きくするため、十分に高い温度であることが好ましいが、その範囲は遷移金属Mの組成により異なる場合がある。
ステップS153の加熱温度は、遷移金属Mのうちニッケルの占める割合が高い、たとえば70%以上である場合は、たとえば750℃以上が好ましく、800℃以上がより好ましく、850℃以上であるとさらに好ましい。一方で加熱温度が高すぎるとニッケル等の遷移金属Mが2価に還元される等の恐れがある。そのため、たとえば950℃以下が好ましく、920℃以下がより好ましく、900℃以下がさらに好ましい。
遷移金属Mのうちニッケルの占める割合が40%以上60%以下の場合は、たとえば900℃以上が好ましく、950℃以上がより好ましく、970℃程度がより好ましい。一方で高すぎると上記と同様のデメリットが生じる恐れがあり、1020℃以下が好ましく、990℃以下がより好ましい。加熱のその他の条件は、ステップS143の記載を参酌することができる。
またステップS154として、加熱の後に解砕工程を有することが好ましい。解砕はステップS144の記載を参酌することができる。
<ステップS155>
さらに、ステップS155の加熱を行うことがより好ましい。該加熱を行うことで、リチウム源などの残渣を減少させることができる。ステップS155の加熱は、温度は400℃以上900℃以下が好ましく、750℃以上850℃以下がより好ましい。また、ステップS152の加熱の時間は、1時間以上30時間以下が好ましく、2時間以上20時間以下がより好ましい。ただしステップS155の加熱は行わなくてもよい。加熱のその他の条件は、ステップS143の記載を参酌することができる。
またステップS156として、加熱の後に解砕工程を有することが好ましい。解砕はステップS144の記載を参酌することができる。
また図2ではステップS152でリチウム源を混合した後、ステップS153とステップS155の2回加熱をする方法について説明するが、本発明の一態様はこれに限らない。3回以上の加熱を行ってもよい。
以上の工程により、正極活物質101を作製することができる。
なお、正極活物質101に含まれる金属の混合比は、X線光電子分光法(XPS)、誘導結合プラズマ質量分析法(ICP−MS)、又はエネルギー分散型 X線分光法(TEM−EDX)による分析により測定することができる。
また、得られる正極活物質101は、XRDパターンから算出される正極活物質の結晶子サイズが150nm以上であることが好ましい。結晶子サイズの大きなニッケル−マンガン−コバルト酸リチウムを合成するためには、リチウム源を加え加熱する工程を複数回行うことが有効である。
≪XRD≫
結晶子サイズを算出する際のXRD測定の装置および条件は特に限定されない。たとえば下記のような装置および条件で測定することができる。
XRD装置 :Bruker AXS社製、D8 ADVANCE
X線源 :CuKα
出力 :40KV、40mA
発散角 :Div.Slit、0.5°
検出器 :LynxEye
スキャン方式 :2θ/θ連続スキャン
測定範囲(2θ) :15°以上90°以下
ステップ幅(2θ) :0.01°設定
計数時間 :1秒間/ステップ
試料台回転 :15rpm
測定サンプルが粉末の場合は、ガラスのサンプルフォルダーに入れる、またはグリースを塗ったシリコン無反射板にサンプルを振りかける、等の手法でセッティングすることができる。測定サンプルが正極の場合は、正極を基板に両面テープで貼り付け、正極活物質層を装置の要求する測定面に合わせてセッティングすることができる。
得られたXRD回折パターンを結晶構造解析ソフトウェア(たとえばBruker社製のソフトウェアの一つであるTOPAS ver.6等)を用いて解析することで、結晶子サイズを算出することができる。
(実施の形態2)
実施の形態1で説明した正極活物質101を用いて二次電池を作製するため、作製する正極の例を以下に示す。二次電池は、外装体、集電体、活物質(正極活物質、或いは負極活物質)、導電材、及びバインダを少なくとも有している。また、リチウム塩などを溶解させた電解液を有している。電解液を用いる二次電池の場合、正極と、負極と、正極と負極の間にセパレータとを設ける。
まず、正極について説明する。図3Aは正極の断面の模式図の一例を示している。
集電体400は金属箔であり、金属箔上にスラリーを塗布して乾燥させることによって正極を形成する。乾燥後、さらにプレス処理をする場合もある。正極は、集電体400上に活物質層を形成したものである。
スラリーとは、集電体400上に活物質層を形成するために用いる材料液であり、少なくとも活物質とバインダと溶媒を含有し、好ましくはさらに導電材を混合させたものを指している。スラリーは電極用スラリーまたは活物質スラリーと呼ばれることもあり、正極活物質層を形成する場合には正極用スラリーを用い、負極活物質層を形成する場合には負極用スラリーと呼ばれることもある。
導電材は、導電付与剤、導電材とも呼ばれ、炭素材料が用いられる。複数の活物質の間に導電材を付着させることで複数の活物質同士が電気的に接続され、導電性が高まる。なお、「付着」とは、活物質と導電材が物理的に密着していることのみを指しているのではなく、共有結合が生じる場合、ファンデルワールス力により結合する場合、活物質の表面の一部を導電材が覆う場合、活物質の表面凹凸に導電材がはまりこむ場合、互いに接していなくとも電気的に接続される場合などを含む概念とする。
導電材として用いられる炭素材料として代表的なものにカーボンブラック(ファーネスブラック、アセチレンブラックをはじめとする粒子状炭素、黒鉛など)がある。
図3Aでは、導電材としてアセチレンブラック403を図示している。また、図3Aでは、実施の形態1で説明した正極活物質101よりも粒径の小さい第2の活物質402を混合している例を示している。大きさの異なる粒子を混合することで高密度の正極を得ることができる。なお、実施の形態1で説明した正極活物質101は、図3Aの活物質401に相当する。
二次電池の正極として、金属箔などの集電体400と、活物質と、を固着させるために、バインダー(樹脂)を混合している。バインダは結着材とも呼ばれる。バインダは高分子材料であり、バインダを多く含ませると正極における活物質の割合が低下して、二次電池の放電容量が小さくなる。そこでバインダの量は最小限に混合させている。図3Aにおいて、活物質401、第2の活物質402、アセチレンブラック403で埋まっていない領域は、空隙またはバインダを指している。
また、図3Aでは活物質401の内部と表層部の境界を実線で示している。なお、活物質401の表層部は薄い。また、図3Aの活物質401は形状が球状の例を示しており、正極活物質101に相当する。表層部と内部はほぼ実質的に同一濃度にアルミニウムを含んでおり、リチウムイオン二次電池の保持容量を増大させ、サイクル特性を向上させることができる。
なお、図3Aでは活物質401を球形として図示した例を示しているが、特に限定されず、色々な形状であってもよい。活物質401の断面形状は楕円形、長方形、台形、錐形、角が丸まった四角形、非対称の形状であってもよい。
図3Bは、図3Aと異なる例を示している。また、図3Bの活物質401は形状が不規則な形状の例を示している。
また、図3Bの正極では、導電材として用いられる炭素材料として、グラフェン404を用いている。
グラフェンは電気的、機械的または化学的に驚異的な特性を有することから、グラフェンを利用した電界効果トランジスタまたは太陽電池等様々な分野の応用が期待される炭素材料である。
本明細書等においてグラフェンは多層グラフェン、マルチグラフェンを含む。別言すると、グラフェンとは、炭素を有し、平板状、シート状等の形状を有し、炭素6員環で形成された二次元的構造を有するものをいう。該炭素6員環で形成された二次元的構造は炭素シートと呼ぶ場合がある。またグラフェン化合物とは、酸化グラフェン、多層酸化グラフェン、マルチ酸化グラフェン、還元された酸化グラフェン、還元された多層酸化グラフェン、還元されたマルチ酸化グラフェン、グラフェン量子ドット等を含む。別言すると、グラフェン化合物は官能基を有してもよい。またグラフェン又はグラフェン化合物は屈曲した形状を有することが好ましい。またグラフェン又はグラフェン化合物は丸まっていてもよく、丸まったグラフェンをカーボンナノファイバーと呼ぶことがある。
本明細書等において酸化グラフェンとは、炭素と、酸素を有し、シート状の形状を有し、官能基、特にエポキシ基、カルボキシ基またはヒドロキシ基を有するものをいう。
本明細書等において還元された酸化グラフェンとは、炭素と、酸素を有し、シート状の形状を有し、炭素6員環で形成された二次元的構造を有するものをいう。還元された酸化グラフェンは1枚でも機能するが、複数枚が積層されていてもよい。還元された酸化グラフェンは、炭素の濃度が80atomic%より大きく、酸素の濃度が2atomic%以上15atomic%以下である部分を有することが好ましい。このような炭素濃度および酸素濃度とすることで、少量でも導電性の高い導電材として機能することができる。また還元された酸化グラフェンは、ラマンスペクトルにおけるGバンドとDバンドの強度比G/Dが1以上であることが好ましい。このような強度比である還元された酸化グラフェンは、少量でも導電性の高い導電材として機能することができる。
グラフェン化合物は、高い導電性を有するという優れた電気特性と、高い柔軟性および高い機械的強度を有するという優れた物理特性と、を有する場合がある。また、グラフェン化合物はシート状の形状を有する。グラフェン化合物は、湾曲面を有する場合があり、接触抵抗の低い面接触を可能とする。また、薄くても導電性が非常に高い場合があり、少ない量で効率よく活物質層内で導電パスを形成することができる。そのため、グラフェン化合物を導電材として用いることにより、活物質と導電材との接触面積を増大させることができる。グラフェン化合物は活物質の80%以上の面積を覆っているとよい。なお、グラフェン化合物が活物質粒子の少なくとも一部にまとわりついていると好ましい。また、グラフェン化合物が活物質粒子の少なくとも一部の上に重なっていると好ましい。また、グラフェン化合物の形状が活物質粒子の形状の少なくとも一部に一致していると好ましい。該活物質粒子の形状とは、たとえば、単一の活物質粒子が有する凹凸、または複数の活物質粒子によって形成される凹凸をいう。また、グラフェン化合物が活物質粒子の少なくとも一部を囲んでいることが好ましい。また、グラフェン化合物は穴が空いていてもよい。
図3Bは集電体400上に活物質401、グラフェン404、アセチレンブラック403を有する正極活物質層を形成している。グラフェン404は、複数の粒状の活物質401を一部覆うように、あるいは複数の粒状の活物質401の表面上に張り付くように形成されているため、互いに面接触している。なお、グラフェン404が活物質401の少なくとも一部にまとわりついていると好ましい。また、グラフェン404が活物質401の少なくとも一部の上に重なっていると好ましい。また、グラフェン404の形状が活物質401の形状の少なくとも一部に一致していると好ましい。該活物質の形状とは、たとえば、単一の活物質粒子が有する凹凸、または複数の活物質粒子によって形成される凹凸をいう。また、グラフェン404が活物質401の少なくとも一部を囲んでいることが好ましい。また、グラフェン404は穴が空いていてもよい。
なお、グラフェン404、アセチレンブラック403を混合し、電極スラリーを得る工程において、混合するカーボンブラックの重量はグラフェンの1.5倍以上20倍以下、好ましくは2倍以上9.5倍以下の重量とすることが好ましい。
また、グラフェン404とアセチレンブラック403の混合を上記範囲とすると、スラリー調製時に、アセチレンブラック403の分散安定性に優れ、凝集部が生じにくい。また、グラフェン404とアセチレンブラック403の混合を上記範囲とすると、アセチレンブラック403のみを導電材に用いる正極よりも高い電極密度とすることができる。電極密度を高くすることで、単位重量当たりの容量を大きくすることができる。具体的には、重量測定による正極活物質層の密度は、3.5g/ccより高くすることができる。また、実施の形態1で説明した101を正極に用い、且つ、グラフェン404とアセチレンブラック403の混合を上記範囲とすると、二次電池がより高容量となることについて相乗効果が期待でき好ましい。
また、グラフェンのみを導電材に用いる正極に比べると電極密度は低いが、第1の炭素材料(グラフェン)と第2の炭素材料(アセチレンブラック)の混合を上記範囲とすることで、急速充電に対応することができる。また、実施の形態1で説明した正極活物質101を正極に用い、且つ、グラフェン404とアセチレンブラック403の混合を上記範囲とすると、二次電池がより安定性を増し、さらなる急速充電に対応できることについて相乗効果が期待でき好ましい。
これらのことは、車載用の二次電池として有効である。
二次電池の数を増やして車両の重量が増加すると、移動させるエネルギーが増加するため、航続距離も短くなる。高密度の二次電池を用いることで同じ重量の二次電池を搭載する車両の総重量をほとんど変えることなく航続距離を維持できる。
また、車両の二次電池が高容量になると充電する電力が必要とされるため、短時間で充電を終了させることが望ましい。また、車両のブレーキをかけた時に一時的に発電させて、それを充電する、いわゆる回生充電において高レート充電条件での充電が行われるため、良好なレート特性が車両用二次電池に求められている。
実施の形態1で説明した正極活物質101を正極に用い、且つ、アセチレンブラックとグラフェンの混合比を最適範囲とすることで、電極の高密度化とイオン電導に必要な適切な隙間を作り出すことの両立が可能となり、高エネルギー密度かつ良好な出力特性をもつ車載用の二次電池を得ることができる。
また、携帯情報端末においても本構成は有効であり、実施の形態1で説明した正極活物質101を正極に用い、且つ、アセチレンブラックとグラフェンの混合比を最適範囲とすることで二次電池を小型化し、高容量とすることもできる。また、アセチレンブラックとグラフェンの混合比を最適範囲とすることで携帯情報端末の急速充電も可能である。
なお、図3Bにおいて、活物質401、グラフェン404、アセチレンブラック403で埋まっていない領域は、空隙またはバインダを指している。空隙は電解液の浸み込みに必要であるが、多すぎると電極密度が低下し、少なすぎると電解液が浸み込まず、二次電池とした後も空隙として残ってしまうと効率が低下してしまう。
実施の形態1で説明した正極活物質101を正極に用い、且つ、アセチレンブラックとグラフェンの混合比を最適範囲とすることで電極の高密度化とイオン電導に必要な適切な隙間を作り出すことの両立が可能となり、高エネルギー密度かつ良好な出力特性をもつ二次電池を得ることができる。
図3Cでは、グラフェンに代えて繊維状炭素の例としてカーボンナノチューブ405を用いる正極の例を図示している。図3Cは、図3Bと異なる例を示している。カーボンナノチューブ405を用いるとアセチレンブラック403などのカーボンブラックの凝集を防ぎ、分散性を高めることができる。
なお、図3Cにおいて、活物質401、カーボンナノチューブ405、アセチレンブラック403で埋まっていない領域は、空隙またはバインダを指している。
また、他の正極の例として、図3Dを図示している。図3Cでは、グラフェン404に加えてカーボンナノチューブ405を用いる例を示している。グラフェン404及びカーボンナノチューブ405の両方を用いると、アセチレンブラック403などのカーボンブラックの凝集を防ぎ、分散性をより高めることができる。
なお、図3Dにおいて、活物質401、カーボンナノチューブ405、グラフェン404、アセチレンブラック403で埋まっていない領域は、空隙またはバインダを指している。
図3A、図3B、図3C及び図3Dのいずれか一の正極を用い、正極上にセパレータを重ね、セパレータ上に負極を重ねた積層体を収容する容器(外装体、金属缶など)などに入れ、容器に電解液を充填させることで二次電池を作製することができる。
なおバインダとしては、例えば、スチレン−ブタジエンゴム(SBR)、スチレン−イソプレン−スチレンゴム、アクリロニトリル−ブタジエンゴム、ブタジエンゴム、エチレン−プロピレン−ジエン共重合体などのゴム材料を用いることが好ましい。またバインダとして、フッ素ゴムを用いることができる。
また、バインダとしては、例えば水溶性の高分子を用いることが好ましい。水溶性の高分子としては、例えば多糖類などを用いることができる。多糖類としては、カルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ジアセチルセルロース、再生セルロースなどのセルロース誘導体、または澱粉などを用いることができる。また、これらの水溶性の高分子を、前述のゴム材料と併用して用いると、さらに好ましい。
または、バインダとしては、ポリスチレン、ポリアクリル酸メチル、ポリメタクリル酸メチル(ポリメチルメタクリレート、PMMA)、ポリアクリル酸ナトリウム、ポリビニルアルコール(PVA)、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド、ポリイミド、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリエチレンテレフタレート、ナイロン、ポリフッ化ビニリデン(PVDF)、ポリアクリロニトリル(PAN)、エチレンプロピレンジエンポリマー、ポリ酢酸ビニル、ニトロセルロース等の材料を用いることが好ましい。
バインダは上記のうち複数を組み合わせて使用してもよい。
例えば粘度調整効果の特に優れた材料と、他の材料とを組み合わせて使用してもよい。例えばゴム材料等は接着力または弾性力に優れる反面、溶媒に混合した場合に粘度調整が難しい場合がある。このような場合には例えば、粘度調整効果の特に優れた材料と混合することが好ましい。粘度調整効果の特に優れた材料としては、例えば水溶性高分子を用いるとよい。また、粘度調整効果に特に優れた水溶性高分子としては、前述の多糖類、例えばカルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロースおよびジアセチルセルロース、再生セルロースなどのセルロース誘導体または、澱粉を用いることができる。
なお、カルボキシメチルセルロースなどのセルロース誘導体は、例えばカルボキシメチルセルロースのナトリウム塩またはアンモニウム塩などの塩とすることにより溶解度が上がり、粘度調整剤としての効果を発揮しやすくなる。溶解度が高くなることにより電極のスラリーを作製する際に活物質または他の構成要素との分散性を高めることもできる。本明細書においては、電極のバインダとして使用するセルロースおよびセルロース誘導体としては、それらの塩も含むものとする。
水溶性高分子は水に溶解することにより粘度を安定化させ、また活物質、またはバインダとして組み合わせる他の材料、例えばスチレンブタジエンゴムなどを、水溶液中に安定して分散させることができる。また、官能基を有するために活物質表面に安定に吸着しやすいことが期待される。また、例えばカルボキシメチルセルロースなどのセルロース誘導体は、例えば水酸基またはカルボキシル基などの官能基を有する材料が多く、官能基を有するために高分子同士が相互作用し、活物質表面を広く覆って存在することが期待される。
活物質表面を覆う、または表面に接するバインダが膜を形成する場合には、不動態膜としての役割を果たして電解質の分解を抑える効果も期待される。ここで、不動態膜とは、電気の伝導性のない膜、または電気伝導性の極めて低い膜であり、例えば活物質の表面に不動態膜が形成された場合には、電池反応電位において、電解質の分解を抑制することができる。また、不動態膜は、電気の伝導性を抑えるとともに、リチウムイオンは伝導できるとさらに望ましい。
また、上記構成は、電解液を用いる二次電池の例を示したが特に限定されない。
例えば、実施の形態1で説明した正極活物質101を用いて半固体電池を作製することもできる。
本明細書等において半固体電池とは、電解質層、正極、負極の少なくとも一に、半固体材料を有する電池をいう。ここでいう半固体とは、固体材料の比が50%であることは意味しない。半固体とは、体積変化が小さいといった固体の性質を有しつつも、柔軟性を有する等の液体に近い性質も一部持ち合わせることを意味する。これらの性質を満たせば、単一の材料でも、複数の材料であってもよい。たとえば液体の材料を、多孔質の固体材料に浸潤させた物であってもよい。
また本明細書等において、ポリマー電解質二次電池とは、正極と負極の間の電解質層にポリマーを有する二次電池をいう。ポリマー電解質二次電池は、ドライ(または真性)ポリマー電解質電池、およびポリマーゲル電解質電池を含む。またポリマー電解質二次電池を半固体電池と呼んでもよい。
実施の形態1で説明した正極活物質101を用いて半固体電池を作製した場合、半固体電池は、充放電容量の大きい二次電池となる。また、充放電電圧の高い半固体電池とすることができる。または、安全性または信頼性の高い半固体電池を実現することができる。
本実施の形態は他の実施の形態と自由に組み合わせることができる。
(実施の形態3)
本実施の形態では、先の実施の形態で説明した作製方法によって作製された正極を有する二次電池に関し、形状の例を説明する。
[コイン型二次電池]
コイン型の二次電池の一例について説明する。図4Aはコイン型(単層偏平型)の二次電池の分解斜視図であり、図4Bは、外観図であり、図4Cは、その断面図である。コイン型の二次電池は主に小型の電子機器に用いられる。
なお、図4Aでは、わかりやすくするために部材の重なり(上下関係、及び位置関係)がわかるように模式図としている。従って図4Aと図4Bは完全に一致する対応図とはしていない。
図4Aでは、正極304、セパレータ310、負極307、スペーサ322、ワッシャー312を重ねている。これらを負極缶302と正極缶301とガスケットで封止している。なお、図4Aにおいて、封止のためのガスケットは図示していない。スペーサ322、ワッシャー312は、正極缶301と負極缶302を圧着する際に、内部を保護または缶内の位置を固定するために用いられている。スペーサ322、ワッシャー312はステンレスまたは絶縁材料を用いる。
正極集電体305上に正極活物質層306が形成された積層構造を正極304としている。
図4Bは、完成したコイン型の二次電池の斜視図である。
コイン型の二次電池300は、正極端子を兼ねた正極缶301と負極端子を兼ねた負極缶302とが、ポリプロピレン等で形成されたガスケット303で絶縁シールされている。正極304は、正極集電体305と、これと接するように設けられた正極活物質層306により形成される。また、負極307は、負極集電体308と、これに接するように設けられた負極活物質層309により形成される。また、負極307は、積層構造に限定されず、リチウム金属箔またはリチウムとアルミニウムの合金箔を用いてもよい。
なお、コイン型の二次電池300に用いる正極304及び負極307は、それぞれ活物質層は片面のみに形成すればよい。
正極缶301、負極缶302には、電解液に対して耐食性のあるニッケル、アルミニウム、チタン等の金属、若しくはこれらの合金又はこれらと他の金属との合金(例えばステンレス鋼等)を用いることができる。また、電解液などによる腐食を防ぐため、ニッケルまたはアルミニウム等を被覆することが好ましい。正極缶301は正極304と、負極缶302は負極307とそれぞれ電気的に接続する。
これら負極307、正極304及びセパレータ310を電解液に浸し、図4Cに示すように、正極缶301を下にして正極304、セパレータ310、負極307、負極缶302をこの順で積層し、正極缶301と負極缶302とをガスケット303を介して圧着してコイン形の二次電池300を製造する。
上記の構成を有することで、安全性に優れたコイン型の二次電池300とすることができる。
[円筒型二次電池]
円筒型の二次電池の例について図5Aを参照して説明する。円筒型の二次電池616は、図5Aに示すように、上面に正極キャップ(電池蓋)601を有し、側面及び底面に電池缶(外装缶)602を有している。これら正極キャップ601と電池缶(外装缶)602とは、ガスケット(絶縁パッキン)610によって絶縁されている。
図5Bは、円筒型の二次電池の断面を模式的に示した図である。図5Bに示す円筒型の二次電池は、上面に正極キャップ(電池蓋)601を有し、側面及び底面に電池缶(外装缶)602を有している。これら正極キャップと電池缶(外装缶)602とは、ガスケット(絶縁パッキン)610によって絶縁されている。
中空円柱状の電池缶602の内側には、帯状の正極604と負極606とがセパレータ605を間に挟んで捲回された電池素子が設けられている。図示しないが、電池素子は中心軸を中心に捲回されている。電池缶602は、一端が閉じられ、他端が開いている。電池缶602には、電解液に対して耐腐食性のあるニッケル、アルミニウム、チタン等の金属、又はこれらの合金、これらと他の金属との合金(例えば、ステンレス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケル及びアルミニウム等を電池缶602に被覆することが好ましい。電池缶602の内側において、正極、負極及びセパレータが捲回された電池素子は、対向する一対の絶縁板608、609により挟まれている。また、電池素子が設けられた電池缶602の内部は、非水電解液(図示せず)が注入されている。非水電解液は、コイン型の二次電池と同様のものを用いることができる。
円筒型の蓄電池に用いる正極及び負極は捲回するため、集電体の両面に活物質を形成することが好ましい。
実施の形態1で得られる正極活物質101を正極604に用いることで、信頼性に優れた円筒型の二次電池616とすることができる。
正極604には正極端子(正極集電リード)603が接続され、負極606には負極端子(負極集電リード)607が接続される。正極端子603及び負極端子607は、ともにアルミニウムなどの金属材料を用いることができる。正極端子603は安全弁機構613に、負極端子607は電池缶602の底にそれぞれ抵抗溶接される。安全弁機構613は、PTC(Positive Temperature Coefficient)素子611を介して正極キャップ601と電気的に接続されている。安全弁機構613は電池の内圧の上昇が所定の閾値を超えた場合に、正極キャップ601と正極604との電気的な接続を切断するものである。また、PTC素子611は温度が上昇した場合に抵抗が増大する熱感抵抗素子であり、抵抗の増大により電流量を制限して異常発熱を防止するものである。PTC素子には、チタン酸バリウム(BaTiO)系半導体セラミックス等を用いることができる。
図5Cは蓄電システム615の一例を示す。蓄電システム615は複数の二次電池616を有する。それぞれの二次電池の正極は、絶縁体625で分離された導電体624に接触し、電気的に接続されている。導電体624は配線623を介して、制御回路620に電気的に接続されている。また、それぞれの二次電池の負極は、配線626を介して制御回路620に電気的に接続されている。制御回路620として、充放電などを行う充放電制御回路、または過充電もしくは/及び過放電を防止する保護回路を適用することができる。
図5Dは、蓄電システム615の一例を示す。蓄電システム615は複数の二次電池616を有し、複数の二次電池616は、導電板628及び導電板614の間に挟まれている。複数の二次電池616は、配線627により導電板628及び導電板614と電気的に接続される。複数の二次電池616は、並列接続されていてもよいし、直列接続されていてもよいし、並列に接続された後さらに直列に接続されていてもよい。複数の二次電池616を有する蓄電システム615を構成することで、大きな電力を取り出すことができる。
複数の二次電池616を、並列に接続させた後、その集合をさらに直列に接続させてもよい。
また、複数の二次電池616の間に温度制御装置を有していてもよい。二次電池616が過熱されたときは、温度制御装置により冷却し、二次電池616が冷えすぎているときは温度制御装置により加熱することができる。そのため蓄電システム615の性能が外気温に影響されにくくなる。
また、図5Dにおいて、蓄電システム615は制御回路620に配線621及び配線622を介して電気的に接続されている。配線621は導電板628を介して複数の二次電池616の正極に、配線622は導電板614を介して複数の二次電池616の負極に、それぞれ電気的に接続される。
[二次電池の他の構造例]
二次電池の構造例について図6及び図7を用いて説明する。
図6Aに示す二次電池913は、筐体930の内部に端子951と端子952が設けられた捲回体950を有する。捲回体950は、筐体930の内部で電解液中に浸される。端子952は、筐体930に接し、端子951は、絶縁材などを用いることにより筐体930に接していない。なお、図6Aでは、便宜のため、筐体930を分離して図示しているが、実際は、捲回体950が筐体930に覆われ、端子951及び端子952が筐体930の外に延在している。筐体930としては、金属材料(例えばアルミニウムなど)又は樹脂材料を用いることができる。
なお、図6Bに示すように、図6Aに示す筐体930を複数の材料によって形成してもよい。例えば、図6Bに示す二次電池913は、筐体930aと筐体930bが貼り合わされており、筐体930a及び筐体930bで囲まれた領域に捲回体950が設けられている。
筐体930aとしては、有機樹脂など、絶縁材料を用いることができる。特に、アンテナが形成される面に有機樹脂などの材料を用いることにより、二次電池913による電界の遮蔽を抑制できる。なお、筐体930aによる電界の遮蔽が小さければ、筐体930aの内部にアンテナを設けてもよい。筐体930bとしては、例えば金属材料を用いることができる。
さらに、捲回体950の構造について図6Cに示す。捲回体950は、負極931と、正極932と、セパレータ933と、を有する。捲回体950は、セパレータ933を挟んで負極931と、正極932が重なり合って積層され、該積層シートを捲回させた捲回体である。なお、負極931と、正極932と、セパレータ933と、の積層を、さらに複数重ねてもよい。
また、図7に示すような捲回体950aを有する二次電池913としてもよい。図7Aに示す捲回体950aは、負極931と、正極932と、セパレータ933と、を有する。負極931は負極活物質層931aを有する。正極932は正極活物質層932aを有する。
実施の形態1で得られる正極活物質101を正極932に用いることで、信頼性に優れた二次電池913とすることができる。
セパレータ933は、負極活物質層931a及び正極活物質層932aよりも広い幅を有し、負極活物質層931a及び正極活物質層932aと重畳するように捲回されている。また正極活物質層932aよりも負極活物質層931aの幅が広いことが安全性の点で好ましい。またこのような形状の捲回体950aは安全性及び生産性がよく好ましい。
図7Bに示すように、負極931は、超音波接合、溶接、または圧着により端子951と電気的に接続される。端子951は端子911aと電気的に接続される。また正極932は、超音波接合、溶接、または圧着により端子952と電気的に接続される。端子952は端子911bと電気的に接続される。
図7Cに示すように、筐体930により捲回体950a及び電解液が覆われ、二次電池913となる。筐体930には安全弁、過電流保護素子等を設けることが好ましい。安全弁は、電池破裂を防止するため、筐体930の内部が所定の内圧で開放する弁である。
図7Bに示すように二次電池913は複数の捲回体950aを有していてもよい。複数の捲回体950aを用いることで、より放電容量の大きい二次電池913とすることができる。図7A及び図7Bに示す二次電池913の他の要素は、図6A乃至図6Cに示す二次電池913の記載を参酌することができる。
<ラミネート型二次電池>
次に、ラミネート型の二次電池の例について、外観図の一例を図8A及び図8Bに示す。図8A及び図8Bは、正極503、負極506、セパレータ507、外装体509、正極リード電極510、及び負極リード電極511を有する。
図9Aは正極503及び負極506の外観図を示す。正極503は正極集電体501を有し、正極活物質層502は正極集電体501の表面に形成されている。また、正極503は正極集電体501が一部露出する領域(以下、タブ領域という)を有する。負極506は負極集電体504を有し、負極活物質層505は負極集電体504の表面に形成されている。また、負極506は負極集電体504が一部露出する領域、すなわちタブ領域を有する。なお、正極及び負極が有するタブ領域の面積または形状は、図9Aに示す例に限られない。
<ラミネート型二次電池の作製方法>
図8Aに外観図を示すラミネート型二次電池の作製方法の一例について、図9B及び図9Cを用いて説明する。
まず、負極506、セパレータ507及び正極503を積層する。図9Bに積層された負極506、セパレータ507及び正極503を示す。ここでは負極を5組、正極を4組使用する例を示す。負極とセパレータと正極からなる積層体とも呼べる。次に、正極503のタブ領域同士の接合と、最表面の正極のタブ領域への正極リード電極510の接合を行う。接合には、例えば超音波溶接等を用いればよい。同様に、負極506のタブ領域同士の接合と、最表面の負極のタブ領域への負極リード電極511の接合を行う。
次に、外装体509上に、負極506、セパレータ507及び正極503を配置する。
次に、図9Cに示すように、外装体509を破線で示した部分で折り曲げる。その後、外装体509の外周部を接合する。接合には例えば熱圧着等を用いればよい。この時、後に電解液を入れることができるように、外装体509の一部(または一辺)に接合されない領域(以下、導入口という)を設ける。
次に、外装体509に設けられた導入口から、電解液を外装体509の内側へ導入する。電解液の導入は、減圧雰囲気下、或いは不活性雰囲気下で行うことが好ましい。そして最後に、導入口を接合する。このようにして、ラミネート型の二次電池500を作製することができる。
実施の形態1で得られる正極活物質101を正極503に用いることで、信頼性に優れた二次電池500とすることができる。
本実施の形態は他の実施の形態と自由に組み合わせることができる。
(実施の形態4)
本実施の形態では、本発明の一態様の二次電池を有する車両の例を示す。
車両として、代表的には自動車に二次電池を適用することができる。自動車としては、ハイブリッド車(HV)、電気自動車(EV)、又はプラグインハイブリッド車(PHEVまたはPHVともいう)等の次世代クリーンエネルギー自動車を挙げることができ、自動車に搭載する電源の一つとして二次電池を適用することができる。車両は自動車に限定されない。例えば、車両としては、電車、モノレール、船、潜水艇(深海探査艇、無人潜水艇)、飛行体(ヘリコプター、無人航空機(ドローン)、飛行機、ロケット、人工衛星)、電動自転車、電動バイクなども挙げることができ、これらの車両に本発明の一態様の二次電池を適用することができる。
電気自動車には、メインの駆動用の二次電池として第1のバッテリ1301a、1301bと、モータ1304を始動させるインバータ1312に電力を供給する第2のバッテリ1311が設置されている。第2のバッテリ1311はクランキングバッテリー(スターターバッテリーとも呼ばれる)とも呼ばれる。第2のバッテリ1311は高出力できればよく、大容量はそれほど必要とされず、第2のバッテリ1311の容量は第1のバッテリ1301a、1301bと比較して小さい。
第1のバッテリ1301aの内部構造は、図6Cまたは図7Aに示した捲回型であってもよいし、図8Aまたは図8Bに示した積層型であってもよい。
本実施の形態では、第1のバッテリ1301a、1301bを2つ並列に接続させている例を示しているが3つ以上並列に接続させてもよい。また、第1のバッテリ1301aで十分な電力を貯蔵できるのであれば、第1のバッテリ1301bはなくてもよい。複数の二次電池を有する電池パックを構成することで、大きな電力を取り出すことができる。複数の二次電池は、並列接続されていてもよいし、直列接続されていてもよいし、並列に接続された後、さらに直列に接続されていてもよい。複数の二次電池を組電池とも呼ぶ。
また、車載用の二次電池において、複数の二次電池からの電力を遮断するため、工具を使わずに高電圧を遮断できるサービスプラグまたはサーキットブレーカを有しており、第1のバッテリ1301aに設けられる。
また、第1のバッテリ1301a、1301bの電力は、主にモータ1304を回転させることに使用されるが、DCDC回路1306を介して42V系の車載部品(電動パワーステアリング1307、ヒーター1308、デフォッガ1309など)に電力を供給する。後輪にリアモータ1317を有している場合にも、第1のバッテリ1301aがリアモータ1317を回転させることに使用される。
また、第2のバッテリ1311は、DCDC回路1310を介して14V系の車載部品(オーディオ1313、パワーウィンドウ1314、ランプ類1315など)に電力を供給する。
次に、第1のバッテリ1301aについて、図10Aを用いて説明する。
図10Aでは9個の角型二次電池1300を一つの電池パック1415としている例を示している。また、9個の角型二次電池1300を直列接続し、一方の電極を絶縁体からなる固定部1413で固定し、もう一方の電極を絶縁体からなる固定部1414で固定している。本実施の形態では固定部1413、1414で固定する例を示しているが電池収容ボックス(筐体とも呼ぶ)に収納させる構成としてもよい。車両は外部(路面など)から振動または揺れが加えられることを想定されているため、固定部1413、1414や、電池収容ボックスなどで複数の二次電池を固定することが好ましい。また、一方の電極は配線1421によって制御回路部1320に電気的に接続されている。またもう一方の電極は配線1422によって制御回路部1320に電気的に接続されている。
次に、図10Aに示す電池パック1415のブロック図の一例を図10Bに示す。
制御回路部1320は、少なくとも過充電を防止するスイッチと、過放電を防止するスイッチを含むスイッチ部1324と、スイッチ部1324を制御する制御回路1322と、第1のバッテリ1301aの電圧測定部と、を有する。制御回路部1320は、使用する二次電池の上限電圧と下限電圧が設定されており、外部からの電流上限、または外部への出力電流の上限などを制限している。二次電池の下限電圧以上上限電圧以下の範囲内は、使用が推奨されている電圧範囲内であり、その範囲外となるとスイッチ部1324が作動し、保護回路として機能する。また、制御回路部1320は、スイッチ部1324を制御して過放電および/または過充電を防止するため、保護回路とも呼べる。例えば、過充電となりそうな電圧を制御回路1322で検知した場合にスイッチ部1324のスイッチをオフ状態とすることで電流を遮断する。さらに充放電経路中にPTC素子を設けて温度の上昇に応じて電流を遮断する機能を設けてもよい。また、制御回路部1320は、外部端子1325(+IN)と、外部端子1326(−IN)とを有している。
スイッチ部1324は、nチャネル型のトランジスタまたはpチャネル型のトランジスタを組み合わせて構成することができる。スイッチ部1324は、単結晶シリコンを用いるSiトランジスタを有するスイッチに限定されず、例えば、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)、InP(リン化インジウム)、SiC(シリコンカーバイド)、ZnSe(セレン化亜鉛)、GaN(窒化ガリウム)、GaOx(酸化ガリウム;xは0より大きい実数)などを有するパワートランジスタでスイッチ部1324を形成してもよい。
第1のバッテリ1301a、1301bは、主に42V系(高電圧系)の車載機器に電力を供給し、第2のバッテリ1311は14V系(低電圧系)の車載機器に電力を供給する。第2のバッテリ1311は鉛蓄電池がコスト上有利のため採用されることが多い。
本実施の形態では、第1のバッテリ1301aと第2のバッテリ1311の両方にリチウムイオン電池を用いる一例を示す。第2のバッテリ1311は、鉛蓄電池、全固体電池、または電気二重層キャパシタを用いてもよい。
また、タイヤ1316の回転による回生エネルギーは、ギア1305を介してモータ1304に送られ、モータコントローラ1303、またはバッテリーコントローラ1302から制御回路部1321を介して第2のバッテリ1311に充電される。またはバッテリーコントローラ1302から制御回路部1320を介して第1のバッテリ1301aに充電される。またはバッテリーコントローラ1302から制御回路部1320を介して第1のバッテリ1301bに充電される。回生エネルギーを効率よく充電するためには、第1のバッテリ1301a、1301bが急速充電可能であることが望ましい。
バッテリーコントローラ1302は第1のバッテリ1301a、1301bの充電電圧及び充電電流などを設定することができる。バッテリーコントローラ1302は、用いる二次電池の充電特性に合わせて充電条件を設定し、急速充電することができる。
また、図示していないが、外部の充電器と接続させる場合、充電器のコンセントまたは充電器の接続ケーブルは、バッテリーコントローラ1302に電気的に接続される。外部の充電器から供給された電力はバッテリーコントローラ1302を介して第1のバッテリ1301a、1301bに充電する。また、充電器によっては、制御回路が設けられており、バッテリーコントローラ1302の機能を用いない場合もあるが、過充電を防ぐため制御回路部1320を介して第1のバッテリ1301a、1301bを充電することが好ましい。また、接続ケーブルまたは充電器の接続ケーブルに制御回路を備えている場合もある。制御回路部1320は、ECU(Electronic Control Unit)と呼ばれることもある。ECUは、電動車両に設けられたCAN(Controller Area Network)に接続される。CANは、車内LANとして用いられるシリアル通信規格の一つである。また、ECUは、マイクロコンピュータを含む。また、ECUは、CPUまたはGPUを用いる。
充電スタンドなどに設置されている外部の充電器は、100Vコンセント−200Vコンセント、または3相200V且つ50kWなどがある。また、非接触給電方式等により外部の充電設備から電力供給を受けて、充電することもできる。
急速充電を行う場合、短時間での充電を行うためには、高電圧での充電に耐えうる二次電池が望まれている。
また、導電材としてグラフェンを用い、電極層を厚くして担持量を高くしても容量低下を抑え、高容量を維持することが相乗効果として大幅に電気特性が向上された二次電池を実現できる。特に車両に用いる二次電池に有効であり、車両全重量に対する二次電池の重量の割合を増加させることなく、航続距離が長い、具体的には一充電走行距離が500km以上の車両を提供することができる。
特に上述した本実施の形態の二次電池は、実施の形態1で説明した正極活物質101を用いることで二次電池の容量を増加させることができる。また、実施の形態1で説明した正極活物質101を正極に用いることで信頼性に優れた車両用の二次電池を提供することができる。
次に、本発明の一態様である二次電池を車両、代表的には輸送用車両に実装する例について説明する。
図5D、図7C、図10Aのいずれか一に示した二次電池を車両に搭載すると、ハイブリッド車(HV)、電気自動車(EV)、又はプラグインハイブリッド車(PHV)等の次世代クリーンエネルギー自動車を実現できる。また、農業機械、電動アシスト自転車を含む原動機付自転車、自動二輪車、電動車椅子、電動カート、船舶、潜水艦、航空機、ロケット、人工衛星、宇宙探査機、惑星探査機、または宇宙船に二次電池を搭載することもできる。本発明の一態様の二次電池は高容量の二次電池とすることができる。そのため本発明の一態様の二次電池は、小型化、軽量化に適しており、輸送用車両に好適に用いることができる。
図11A乃至図11Dにおいて、本発明の一態様を用いた輸送用車両を例示する。図11Aに示す自動車2001は、走行のための動力源として電気モータを用いる電気自動車である。または、走行のための動力源として電気モータとエンジンを適宜選択して用いることが可能なハイブリッド自動車である。二次電池を車両に搭載する場合、実施の形態5で示した二次電池の一例を一箇所または複数個所に設置する。図11Aに示す自動車2001は、電池パック2200を有し、電池パックは、複数の二次電池を接続させた二次電池モジュールを有する。さらに二次電池モジュールに電気的に接続する充電制御装置を有すると好ましい。
また、自動車2001は、自動車2001が有する二次電池にプラグイン方式または非接触給電方式等により外部の充電設備から電力供給を受けて、充電することができる。充電に際しては、充電方法またはコネクタの規格等はCHAdeMO(登録商標)またはコンボ等の所定の方式で適宜行えばよい。充電設備は、商用施設に設けられた充電ステーションでもよく、また家庭の電源であってもよい。例えば、プラグイン技術によって、外部からの電力供給により自動車2001に搭載された蓄電装置を充電することができる。充電は、ACDCコンバータ等の変換装置を介して、交流電力を直流電力に変換して行うことができる。
また、図示しないが、受電装置を車両に搭載し、地上の送電装置から電力を非接触で供給して充電することもできる。この非接触給電方式の場合には、道路または外壁に送電装置を組み込むことで、停車中に限らず走行中に充電を行うこともできる。また、この非接触給電の方式を利用して、2台の車両どうしで電力の送受電を行ってもよい。さらに、車両の外装部に太陽電池を設け、停車時または走行時に二次電池の充電を行ってもよい。このような非接触での電力の供給には、電磁誘導方式または磁界共鳴方式を用いることができる。
図11Bは、輸送用車両の一例として電気により制御するモータを有した大型の輸送車2002を示している。輸送車2002の二次電池モジュールは、例えば公称電圧3.0V以上5.0V以下の二次電池を4個セルユニットとし、48セルを直列に接続した170Vの最大電圧とする。電池パック2201の二次電池モジュールを構成する二次電池の数などが違う以外は、図11Aと同様な機能を備えているので説明は省略する。
図11Cは、一例として電気により制御するモータを有した大型の輸送車両2003を示している。輸送車両2003の二次電池モジュールは、例えば公称電圧3.0V以上5.0V以下の二次電池を百個以上直列に接続した600Vの最大電圧とする。従って、特性バラツキの小さい二次電池が求められる。実施の形態1で説明した正極活物質101を正極に用いた二次電池を用いることで、優れた電池特性を有する二次電池を製造することができ、歩留まりの観点から低コストで大量生産が可能である。また、電池パック2202の二次電池モジュールを構成する二次電池の数などが違う以外は、図13Aと同様な機能を備えているので説明は省略する。
図11Dは、一例として燃料を燃焼するエンジンを有した航空機2004を示している。図11Dに示す航空機2004は、離着陸用の車輪を有しているため、輸送車両の一部とも言え、複数の二次電池を接続させて二次電池モジュールを構成し、二次電池モジュールと充電制御装置とを含む電池パック2203を有している。
航空機2004の二次電池モジュールは、例えば4Vの二次電池を8個直列に接続した32Vの最大電圧とする。電池パック2203の二次電池モジュールを構成する二次電池の数などが異なる以外は、図11Aと同様な機能を備えているので説明は省略する。
図11Eは、一例として二次電池2204を備えた人工衛星2005を示している。人工衛星2005は宇宙空間で使用されるため、発火による故障のないことが望まれ、安全性に優れた本発明の一態様である二次電池2204を備えることが好ましい。また、人工衛星2005の内部において、保温部材に覆われた状態で二次電池2204が搭載されることがさらに好ましい。
本実施の形態は他の実施の形態と自由に組み合わせることができる。
(実施の形態5)
本実施の形態では、二次電池を車両に搭載する一例として、二輪車、自転車に本発明の一態様であるリチウムイオン電池を搭載する例を示す。
図12Aは、本発明の一態様の蓄電装置を用いた電動自転車の一例である。図12Aに示す電動自転車8700に、本発明の一態様の蓄電装置を適用することができる。本発明の一態様の蓄電装置は例えば、複数の蓄電池と、保護回路と、を有する。
電動自転車8700は、蓄電装置8702を備える。蓄電装置8702は、運転者をアシストするモータに電気を供給することができる。また、蓄電装置8702は、持ち運びができ、図12Bに自転車から取り外した状態を示している。また、蓄電装置8702は、本発明の一態様の蓄電装置が有する蓄電池8701が複数内蔵されており、そのバッテリ残量などを表示部8703で表示できるようにしている。また蓄電装置8702は、実施の形態6に一例を示した二次電池の充電制御または異常検知が可能な制御回路8704を有する。制御回路8704は、蓄電池8701の正極及び負極と電気的に接続されている。また、実施の形態1で得られる正極活物質101を正極に用いた二次電池と組み合わせることで、安全性についての相乗効果が得られる。実施の形態1で得られる正極活物質101を正極に用いた二次電池及び制御回路8704は、安全性が高く二次電池による火災等の事故撲滅に大きく寄与することができる。
図12Cは、本発明の一態様の蓄電装置を用いた二輪車の一例である。図12Cに示すスクータ8600は、蓄電装置8602、サイドミラー8601、方向指示灯8603を備える。蓄電装置8602は、方向指示灯8603に電気を供給することができる。また、実施の形態1で得られる正極活物質101を正極に用いた二次電池を複数収納された蓄電装置8602は高容量とすることができ、小型化に寄与することができる。
また、図12Cに示すスクータ8600は、座席下収納8604に、蓄電装置8602を収納することができる。蓄電装置8602は、座席下収納8604が小型であっても、座席下収納8604に収納することができる。
本実施の形態は他の実施の形態と自由に組み合わせることができる。
(実施の形態6)
本実施の形態では、本発明の一態様である二次電池を電子機器に実装する例について説明する。二次電池を実装する電子機器として、例えば、テレビジョン装置(テレビ、又はテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。携帯情報端末としてはノート型パーソナルコンピュータ、タブレット型端末、電子書籍端末、携帯電話機などがある。
図13Aは、携帯電話機の一例を示している。携帯電話機2100は、筐体2101に組み込まれた表示部2102の他、操作ボタン2103、外部接続ポート2104、スピーカ2105、マイク2106などを備えている。なお、携帯電話機2100は、二次電池2107を有している。実施の形態1で説明した正極活物質101を正極に用いた二次電池2107を備えることで高容量とすることができ、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
携帯電話機2100は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。
操作ボタン2103は、時刻設定のほか、電源のオン、オフ動作、無線通信のオン、オフ動作、マナーモードの実行及び解除、省電力モードの実行及び解除など、様々な機能を持たせることができる。例えば、携帯電話機2100に組み込まれたオペレーティングシステムにより、操作ボタン2103の機能を自由に設定することもできる。
また、携帯電話機2100は、通信規格された近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。
また、携帯電話機2100は、外部接続ポート2104を備え、他の情報端末とコネクタを介して直接データのやりとりを行うことができる。また外部接続ポート2104を介して充電を行うこともできる。なお、充電動作は外部接続ポート2104を介さずに無線給電により行ってもよい。
また、携帯電話機2100は、センサを有することが好ましい。センサとしては、例えば、指紋センサ、脈拍センサ、体温センサ等の人体センサ、タッチセンサ、加圧センサ、または加速度センサ等が搭載されることが好ましい。
図13Bは、複数のローター2302を有する無人航空機2300である。無人航空機2300はドローンと呼ばれることもある。無人航空機2300は、本発明の一態様である二次電池2301と、カメラ2303と、アンテナ(図示しない)を有する。無人航空機2300はアンテナを介して遠隔操作することができる。実施の形態1で得られる正極活物質101を正極に用いた二次電池は高エネルギー密度であり、安全性が高いため、長期間に渡って長時間の安全な使用ができ、無人航空機2300に搭載する二次電池として好適である。
図13Cは、ロボットの一例を示している。図13Cに示すロボット6400は、二次電池6409、照度センサ6401、マイクロフォン6402、上部カメラ6403、スピーカ6404、表示部6405、下部カメラ6406及び障害物センサ6407、移動機構6408、演算装置等を備える。
マイクロフォン6402は、使用者の話し声及び環境音等を検知する機能を有する。また、スピーカ6404は、音声を発する機能を有する。ロボット6400は、マイクロフォン6402及びスピーカ6404を用いて、使用者とコミュニケーションをとることが可能である。
表示部6405は、種々の情報の表示を行う機能を有する。ロボット6400は、使用者の望みの情報を表示部6405に表示することが可能である。表示部6405は、タッチパネルを搭載していてもよい。また、表示部6405は取り外しのできる情報端末であっても良く、ロボット6400の定位置に設置することで、充電及びデータの受け渡しを可能とする。
上部カメラ6403及び下部カメラ6406は、ロボット6400の周囲を撮像する機能を有する。また、障害物センサ6407は、移動機構6408を用いてロボット6400が前進する際の進行方向における障害物の有無を察知することができる。ロボット6400は、上部カメラ6403、下部カメラ6406及び障害物センサ6407を用いて、周囲の環境を認識し、安全に移動することが可能である。
ロボット6400は、その内部領域に本発明の一態様に係る二次電池6409と、半導体装置または電子部品を備える。実施の形態1で得られる正極活物質101を正極に用いた二次電池は高エネルギー密度であり、安全性が高いため、長期間に渡って長時間の安全な使用ができ、ロボット6400に搭載する二次電池6409として好適である。
図13Dは、携帯用扇風機の一例を示している。携帯用扇風機6200は、筐体6201に本発明の一態様に係る二次電池6209、操作ボタン6205、ファン6202、外部接続ポート6204などを有する。二次電池6209は、外部接続ポート6204を介して充電が行われる。なお、二次電池6209から供給された電力によりモータを動作させてファン6202を回転させている。二次電池6209は、円筒型の二次電池の例を示しているが特に形状は限定されない。実施の形態1で得られる正極活物質101を正極に用いた二次電池は高エネルギー密度であり、安定な結晶構造を有しており、信頼性が高く、携帯用扇風機6200に搭載する二次電池6209として好適である。
図13Eは、掃除ロボットの一例を示している。掃除ロボット6300は、筐体6301上面に配置された表示部6302、側面に配置された複数のカメラ6303、ブラシ6304、操作ボタン6305、二次電池6306、各種センサなどを有する。図示されていないが、掃除ロボット6300には、タイヤ、吸い込み口等が備えられている。掃除ロボット6300は自走し、ゴミ6310を検知し、下面に設けられた吸い込み口からゴミを吸引することができる。
掃除ロボット6300は、カメラ6303が撮影した画像を解析し、壁、家具または段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシ6304に絡まりそうな物体を検知した場合は、ブラシ6304の回転を止めることができる。掃除ロボット6300は、その内部領域に本発明の一態様に係る二次電池6306と、半導体装置または電子部品を備える。実施の形態1で得られる正極活物質101を正極に用いた二次電池は高エネルギー密度であり、安定な結晶構造を有しており、信頼性が高く、掃除ロボット6300に搭載する二次電池6306として好適である。
本実施の形態は他の実施の形態と自由に組み合わせることができる。
(実施の形態7)
本実施の形態では、図14A、図14B、及び図2を用いて、本発明の一態様の正極活物質について説明する。
図14Aは集電体上に形成された正極活物質層の断面SEM写真を示しており、図14Bは図14Aの深さ方向における各点(合計5箇所)におけるEDXのMg濃度のグラフである。
正極活物質の粒子は、ニッケル源、コバルト源、及びマンガン源となる水溶液を用い、共沈法で得られたニッケル水酸化物と、炭酸マグネシウムと、水酸化リチウムとを混合して第1の加熱処理を行い、その後、さらにもう一度、水酸化リチウムと混合して第2の加熱処理を行って作製している。
また、図14Bに示すように、正極活物質の粒子の表面から1000nm以上の深さまでマグネシウム濃度がほぼ一定の値で存在していることがわかる。
本発明の一態様の正極活物質についてEDX面分析またはEDX点分析したとき、表層部の各添加元素の濃度が、内部とほぼ同じことが好ましい。
たとえば添加元素としてマグネシウムを有する正極活物質についてEDX面分析またはEDX点分析したとき、表層部のマグネシウム濃度が、内部のマグネシウム濃度とほぼ同じことが好ましい。
一方、比較として、異なるプロセスで炭酸マグネシウムを混合して作製した粒子においては、粒子表面から1000nm以上の深さに渡ってマグネシウム濃度が低下しており、表面の濃度が一番高い濃度勾配をもつ結果となっている。その比較例は図18A及び図18Bに示している。
これらの違いは、正極活物質の粒子の作製プロセスの違いが影響していると考えられる。
以下に図14Aに示す正極活物質の粒子の作製プロセスを図2を用いて説明する。
図2のステップS111、S113、S114、S121、S122、S131、S132、S133、及びS141は、実施の形態1と同一であるため、ここでは詳細は省略することとする。
<ステップS134>
図2のステップS134として、マグネシウム源を用意する。マグネシウム源としては、炭酸マグネシウム、水酸化マグネシウム、酸化マグネシウム、フッ化マグネシウム、硝酸マグネシウム、酢酸マグネシウム、硫酸マグネシウム、または硫化マグネシウムを用いることができる。添加するマグネシウムの量は、たとえばニッケル、コバルトおよびマンガンの原子の和を1としたとき、0.005以上0.05以下の範囲内とする。
<ステップS142>
次に図2のステップS142として、複合水酸化物98とリチウム源とマグネシウム源を混合する。混合は乾式または湿式で行うことができる。混合には例えばボールミル、ビーズミル又は混練機等を用いることができる。ボールミルを用いる場合は、例えばメディアとしてジルコニアボールを用いることが好ましい。また、ボールミル、またはビーズミル等を用いる場合、メディアまたは材料からのコンタミネーションを抑制するために、周速を100mm/秒以上2000mm/秒以下とすることが好ましい。混合と同時にコバルト化合物及びリチウム化合物は粉砕されることがある。
<ステップS143>
次に複合水酸化物98とリチウム源の混合物に加熱を行う。他の加熱工程との区別のために、図2ではステップS143を第1の加熱、ステップS153を第2の加熱、ステップS155を第3の加熱という場合がある。
これらの加熱を行う焼成装置としては、電気炉、またはロータリーキルン炉を用いることができる。加熱の際に用いる、るつぼ、サヤ、セッター、容器は不純物を放出しにくい材質であると好ましい。たとえば純度が99.9%の酸化アルミニウムのるつぼを用いるとよい。また、これらの容器に蓋をした状態で加熱することが好ましい。
ステップS143の加熱は、温度は400℃以上750℃以下が好ましく、650℃以上750℃以下がより好ましい。また、ステップS143の加熱の時間は、1時間以上30時間以下が好ましく、2時間以上20時間以下がより好ましい。
加熱雰囲気は、酸素を有する雰囲気、又はいわゆる乾燥空気であって水が少ない酸素含有雰囲気(例えば露点が−50℃以下、より好ましくは露点が−80℃以下)で行うことが好ましい。
またステップS144として、加熱の後に解砕工程を有することが好ましい。解砕はたとえば乳鉢で行うことができる。さらに、ふるいを用いて分級してもよい。解砕工程を有することで、正極活物質101の粒径および/または形状をより均一化することができる。以上の工程により、複合酸化物99を得る。
<ステップS151>
次にステップS151として、リチウム源を用意する。このときステップS141と合わせて最終的なリチウム量となる量を用意する。たとえばステップS141においてニッケル、コバルトおよびマンガンの原子数の和を1としたとき、リチウムを0.7(原子数比)とした場合は、ステップS151ではたとえば0.31(原子数比)を用意することが好ましい。ここではニッケル、コバルトおよびマンガンの原子数の和を1としたときの最終的なリチウム量を1.01としたが、本発明の一態様はこれに限らない。ニッケル、コバルトおよびマンガンの原子数の和を1としたときの最終的なリチウム量は0.95以上1.25以下が好ましく、1.00以上1.05以下であるとより好ましい。用意する量以外は、ステップS141の記載を参酌することができる。
なお図2ではリチウム源をステップS141とステップS151の2回に分けて加え、それぞれ加熱する方法について説明するが、本発明の一態様はこれに限らない。リチウム源を3回以上に分けて加え、それぞれ加熱してもよい。
<ステップS152>
次にステップS144で得た複合酸化物99と、上記のリチウム源とを混合する。混合はステップS142の記載を参酌することができる。
<ステップS153>
次に複合酸化物99とリチウム源の混合物に加熱を行う。ステップS153の加熱は正極活物質101の結晶子サイズを大きくするため、十分に高い温度であることが好ましいが、その範囲は遷移金属Mの組成により異なる場合がある。
遷移金属Mのうちニッケルの占める割合が高い、たとえば70%以上である場合は、たとえば750℃以上が好ましく、800℃以上がより好ましく、850℃以上であるとさらに好ましい。一方で高すぎるとニッケル等の遷移金属Mが2価に還元される等の恐れがある。そのため、たとえば950℃以下が好ましく、920℃以下がより好ましく、900℃以下がさらに好ましい。
遷移金属Mのうちニッケルの占める割合が40%以上60%以下の場合は、たとえば900℃以上が好ましく、950℃以上がより好ましく、970℃程度がより好ましい。一方で高すぎると上記と同様のデメリットが生じる恐れがあり、1020℃以下が好ましく、990℃以下がより好ましい。加熱のその他の条件は、ステップS143の記載を参酌することができる。
またステップS154として、加熱の後に解砕工程を有することが好ましい。解砕はステップS144の記載を参酌することができる。
<ステップS155>
さらに、ステップS155の加熱を行うことがより好ましい。該加熱を行うことで、リチウム源などの残渣を減少させることができる。ステップS155の加熱は、温度は400℃以上900℃以下が好ましく、750℃以上850℃以下がより好ましい。また、ステップS152の加熱の時間は、1時間以上30時間以下が好ましく、2時間以上20時間以下がより好ましい。ただしステップS155の加熱は行わなくてもよい。加熱のその他の条件は、ステップS143の記載を参酌することができる。
またステップS156として、加熱の後に解砕工程を有することが好ましい。解砕はステップS144の記載を参酌することができる。
また図2ではステップS152でリチウム源を混合した後、ステップS153とステップS155の2回加熱をする方法について説明するが、本発明の一態様はこれに限らない。3回以上の加熱を行ってもよい。
以上の工程により、正極活物質101を作製することができる。
なお、正極活物質101に含まれる金属の混合比は、X線光電子分光法(XPS)、誘導結合プラズマ質量分析法(ICP−MS)、又はエネルギー分散型 X線分光法(TEM−EDX)による分析により測定することができる。
また、得られる正極活物質101は、XRDパターンから算出される正極活物質の結晶子サイズが150nm以上であることが好ましい。結晶子サイズの大きなニッケル−マンガン−コバルト酸リチウムを合成するためには、リチウム源を加え加熱する工程を複数回行うことが有効である。
(実施例1)本実施例では、アルミニウムを含み、且つ、結晶子サイズの大きな正極活物質101を作製し、その特性を評価した。
<正極活物質の作製>
図2に示す作製方法を参照しながら本実施例で作製したサンプル1について説明する。
図2のステップS111において、ニッケル源として硫酸ニッケル(II)、コバルト源として硫酸コバルト(II)、マンガン源として硫酸マンガン(II)を用意した。ステップS113においてキレート剤としてグリシンを用意した。これらの遷移金属M源を2mol/LかつNi:Co:Mn=8:1:1(原子数比)となるよう秤量し、グリシンを0.2mol/Lとなるよう秤量し、これらに純水を加えて溶解させ(ステップS114)、酸溶液を作製した。
アルカリ溶液として5mol/Lの水酸化ナトリウム水溶液を用いた。
張り込み液として純水を用いた。張り込み液には窒素をバブリングし、窒素流量は1L/分とした。なおここでの純水のように反応槽にはじめから入れられた水または水溶液を張り込み液と記すことがある。張り込み液は、調整液と記す場合がある。張り込み液及び調整液は、反応前の水または水溶液、つまり初期状態の水または水溶液を指す。
続いて、共沈反応を行った(ステップS131)。0.10mL/分で酸溶液を張り込み液に混合しながら、1000rpmで攪拌した。アルカリ溶液を適宜添加し、張り込み液をpH11.0に維持した。また張り込み液の温度を50℃に維持した。また反応槽にバッフル板を設け、攪拌の方向および流速を変化させた。これらの共沈反応には、OptiMax(メトラー・トレド社製)を用いた。
上記の共沈反応で生成した沈殿物を純水とアセトンで濾過(ステップS132)し、真空乾燥炉で200℃、10時間乾燥し(ステップS133)、複合水酸化物98を得た。
ステップS141において、リチウム源として水酸化リチウムを用意した。該水酸化リチウムは流動層式ジェットミルを用いて粉砕したものとした。
ステップS134において、金属源として水酸化アルミニウムを用意した。該水酸化アルミニウムはボールミルを用いて粉砕したものとした。
ステップS142において、上記で得られた複合水酸化物98と、リチウム源と、アルミニウム源と、を混合した。なお、リチウムの混合比はニッケル、コバルトおよびマンガンの原子数の和を1としたときリチウムの原子数を0.7(原子数比)とした。また、アルミニウムの混合比はニッケル、コバルトおよびマンガンの原子数の和を1としたときアルミニウムを0.01(原子数比)とした。
ステップS143において、複合水酸化物とリチウム源とアルミニウム源の混合物を加熱した。加熱には酸化アルミニウムのるつぼを用いて、700℃で10時間、酸素雰囲気でマッフル炉にて加熱した。酸素の流量は5L/分、昇温は200℃/時間とした。その後室温まで冷却し、解砕し(ステップS144)、複合酸化物99を得た。
ステップS151において、ステップS141と同様の水酸化リチウムを用意した。ステップS152において、上記で得られた複合酸化物99と、リチウム源とを混合した。混合比はニッケル、コバルトおよびマンガンの原子数の和を1としたときリチウムの原子数を0.31(原子数比)とした。つまりステップS142およびステップS152で混合したリチウムの原子数の合計を、ニッケル、コバルトおよびマンガンの原子数の和を1としたとき1.01(原子数比)とした。
ステップS153において、複合酸化物99とリチウム源の混合物を加熱した。加熱温度を900℃とした他はステップS143と同様(加熱処理10時間)に行った。その後室温まで放冷し、解砕した(ステップS154)。
ステップS155において、さらに複合酸化物99とリチウム源の混合物を加熱した。加熱温度を800℃とした他はステップS143と同様(加熱処理10時間)に行った。その後室温まで放冷し、解砕し(ステップS156)、正極活物質101を得た。これをサンプル1とした。
[二次電池の作製]
次に、上記で作製したサンプル1を用いて、CR2032タイプ(直径20mm高さ3.2mm)のコイン型の二次電池を作製した。
正極には、上記で作製した正極活物質と、アセチレンブラック(AB)と、ポリフッ化ビニリデン(PVDF)を、正極活物質:AB:PVDF=95:3:2(重量比)で混合したスラリーを集電体(厚さ20μm)に塗工したものを用いた。溶媒としてN−メチル−2−ピロリドン(NMP)を用いた。
対極にはリチウム金属を用いた。
電解液が有する電解質には、1mol/Lの六フッ化リン酸リチウム(LiPF)を用い、電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)がEC:DEC=3:7(体積比)、ビニレンカーボネート(VC)が2wt%で混合されたものを用いた。
セパレータには厚さ25μmのポリプロピレンを用いた。
正極缶及び負極缶は、ステンレス(SUS)で形成されているものを用いた。サンプルref1を得るためのプロセスは、アルミニウムを添加するためのステップS134を有していないプロセスであり、それ以外は図2と同じ作製工程で得た正極活物質である。
サンプルref2の正極活物質は、サンプル1とアルミニウムの混合するタイミングを変えたものであり、図15に示すフローにおいてステップS155での3回目の加熱処理の前にAl源を混合した後、解砕する製造プロセスで得られた。
<断面SEM−EDX>
サンプル1の断面SEM像を図1Aに示し、サンプルref2の断面SEM像を図16Aに示す。サンプルref2のSEM像では、付着物が観察され、粒子表面に過剰なアルミニウムが存在していることがわかる。一方、サンプル1は、サンプルref2に比べ、粒子表面の付着物が見られない。
また、図1Aで示した箇所(4箇所)についてEDX点分析を行い、測定されたアルミニウム濃度を図1Bに示す。図1Bでは、粒子の表層部から内部に向かってアルミニウムがほぼ実質的に同一となった。また、図16Aで示した箇所(5箇所)についてEDX点分析を行い、測定されたアルミニウム濃度を図16Bに示す。図16Bでは、粒子の表層部から内部に向かってアルミニウム濃度が大きく減少していた。また、粒子の内部において、検出下限以下の箇所が存在している。EDX測定装置はOxford Instruments社製エネルギー分散型X線分析装置Ultim Max 170を用い、加速電圧は3kVから30kVとし、X線の検出にはSiドリフト検出器を用いた。EDXの元素分析において、検出深さは加速電圧に応じて数nmから数μmであり、エネルギー分解能は130eVから140eVであり、各元素の検出下限は約1atomic%である。
<ハーフセルサイクル特性>
サンプル1、サンプルref1、及びサンプルref2の正極活物質を用いて、ハーフセルを組み立てて充放電レート特性を評価した。ハーフセルに対するサイクル特性評価により正極単体の性能を評価した。
図17A及び図17Bは、横軸をサイクル数とするサイクル特性を示すグラフである。図17Aの縦軸は、25℃で測定した0.5Cの放電容量、図17Bの縦軸は、25℃で測定した同様の放電容量の維持率を示す。サンプル1は図17A及び図17B中の実線で示している。いずれも充電をCC/CV(0.5C,4.5V,0.01C cut)、放電をCC(0.5C,2.5V cut)とした。休止時間は10分間とした。
図2に示すステップS142でアルミニウムを混合するサンプル1のサイクル特性は、他のサンプルに比べて、放電容量及び維持率が優れている結果となった。
(実施例2)本実施例では、マグネシウムを含み、且つ、結晶子サイズの大きな正極活物質101を作製し、その特性を評価した。
<正極活物質の作製>
図2に示す作製方法を参照しながら本実施例で作製したサンプル2について説明する。
図2のステップS111において、ニッケル源として硫酸ニッケル(II)、コバルト源として硫酸コバルト(II)、マンガン源として硫酸マンガン(II)を用意した。ステップS113においてキレート剤としてグリシンを用意した。これらの遷移金属M源を2mol/LかつNi:Co:Mn=8:1:1(原子数比)となるよう秤量し、グリシンを0.2mol/Lとなるよう秤量し、これらに純水を加えて溶解させ(ステップS14)、酸溶液を作製した。
アルカリ溶液として5mol/Lの水酸化ナトリウム水溶液を用いた。
張り込み液として純水を用いた。張り込み液には窒素をバブリングし、窒素流量は1L/分とした。なおここでの純水のように反応槽にはじめから入れられた水または水溶液を張り込み液と記すことがある。張り込み液は、調整液と記す場合がある。張り込み液及び調整液は、反応前の水または水溶液、つまり初期状態の水または水溶液を指す。
0.10mL/分で酸溶液を張り込み液に混合しながら、1000rpmで攪拌した。アルカリ溶液を適宜添加し、張り込み液をpH11.0に維持した。また張り込み液の温度を50℃に維持した。また反応槽にバッフル板を設け、攪拌の方向および流速を変化させた。これらの共沈反応には、OptiMax(メトラー・トレド社製)を用いた。
上記の共沈反応で生成した沈殿物を純水とアセトンで濾過し、真空乾燥炉で200℃、12時間乾燥し、複合水酸化物98を得た。
ステップS141において、リチウム源として水酸化リチウムを用意した。該水酸化リチウムは流動層式ジェットミルを用いて粉砕したものとした。
ステップS134において、金属源として炭酸マグネシウムを用意した。該炭酸マグネシウムはボールミルを用いて粉砕したものとした。
ステップS142において、上記で得られた複合水酸化物98と、リチウム源と、マグネシウム源と、を混合した。なお、リチウムの混合比はニッケル、コバルトおよびマンガンの原子数の和を1としたときリチウムを0.7(原子数比)とした。また、マグネシウムの混合比はニッケル、コバルトおよびマンガンの原子数の和を1としたときマグネシウムを0.01(原子数比)とした。
ステップS143において、複合水酸化物とリチウム源とマグネシウム源の混合物を加熱した。加熱には酸化アルミニウムのるつぼを用いて、700℃で10時間、酸素雰囲気でマッフル炉にて加熱した。酸素の流量は5L/分、昇温は200℃/時間とした。その後、室温まで冷却し、解砕し(ステップS144)、複合酸化物99を得た。
ステップS151において、ステップS141と同様の水酸化リチウムを用意した。ステップS152において、上記で得られた複合酸化物99と、リチウム源とを混合した。混合比はニッケル、コバルトおよびマンガンの原子数の和を1としたときリチウムを0.31(原子数比)とした。つまりステップS142およびステップS152で混合したリチウムの合計を、ニッケル、コバルトおよびマンガンの原子数の和を1としたとき1.01(原子数比)とした。
ステップS153において、複合酸化物99とリチウム源の混合物を加熱した。加熱温度を900℃とした他はステップS143と同様(加熱処理10時間)に行った。その後室温まで放冷し、解砕した(ステップS154)。
ステップS155において、さらに複合酸化物99とリチウム源の混合物を加熱した。加熱温度を800℃とした他はステップS143と同様(加熱処理10時間)に行った。その後室温まで放冷し、解砕し(ステップS156)、正極活物質101を得た。これをサンプル2とした。
[二次電池の作製]
次に、上記で作製したサンプル2を用いて、CR2032タイプ(直径20mm高さ3.2mm)のコイン型の二次電池を作製した。
正極には、上記で作製した正極活物質と、アセチレンブラック(AB)と、ポリフッ化ビニリデン(PVDF)を、正極活物質:AB:PVDF=95:3:2(重量比)で混合したスラリーを集電体(厚さ20μm)に塗工したものを用いた。溶媒としてNMPを用いた。
対極にはリチウム金属を用いた。
電解液が有する電解質には、1mol/Lの六フッ化リン酸リチウム(LiPF)を用い、電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)がEC:DEC=3:7(体積比)、ビニレンカーボネート(VC)が2wt%で混合されたものを用いた。
セパレータには厚さ25μmのポリプロピレンを用いた。
正極缶及び負極缶には、ステンレス(SUS)で形成されているものを用いた。
[充電前のXRDから格子定数を算出]
サンプル2を用いた充電前の正極について、CuKα1線による粉末XRD分析を行った。XRDは大気中で測定し、電極は平坦性を保つためにガラス板に張り付けた。XRD装置は粉末サンプル用のセッティングとしたが、サンプルの高さは装置の要求する測定面に合わせた。
得られたXRDパターンは、DIFFRAC.EVA(Bruker社製XRDデータ解析ソフト)を用いて、バックグラウンド除去とKα2除去を行った。これにより、導電助剤およびバインダ、および密閉容器等に由来するシグナルも除去されている。
その後、DIFFRAC.TOPAS(Bruker社製)を用いて格子定数を算出した。このとき原子位置等の最適化は行わず、格子定数のみをフィッティングした。GOF(goodness of fit)、推定される結晶子サイズ、a軸およびc軸のそれぞれの格子定数(単位はオングストローム)を算出した。
サンプル2は、結晶子サイズ292.9nm、a軸の格子定数2.8767、c軸の格子定数14.2096となった。
一方、図15のフローに示す方法で作製した正極活物質を用いたサンプルref1は、結晶子サイズ300.90nm、a軸の格子定数2.8777、c軸の格子定数14.2095となった。サンプルref1を得るためのプロセスは、マグネシウムを添加するためのステップS134を有していないプロセスであり、それ以外は図2と同じ作製工程で得た正極活物質である。図15において、図2と同じステップには同じ符号を示す。
また、サンプルref3は結晶子サイズ230.7nm、a軸の格子定数2.878、c軸の格子定数14.2155となった。サンプルref3の正極活物質は、サンプル2とマグネシウムの混合するタイミングを変えたものであり、図15に示すフローにおいてステップS155での3回目の加熱処理の後にマグネシウム源を混合し、800℃2時間の4回目の加熱処理を行った後、解砕する製造プロセスで得られた。
また、比較例として、図15のフローに示す複合酸化物99をサンプルref1とした場合、結晶子サイズ118.8nm、a軸の格子定数2.8705、c軸の格子定数14.2036となった。複合酸化物99は加熱処理を1回しか行っていないため、結晶子サイズが他のサンプルよりも小さい。
<断面SEM−EDX>
サンプル2の断面SEM像を図14Aに示し、サンプルref3の断面SEM像を図18Aに示す。サンプルref3のSEM像では、付着物が観察され、粒子表面に過剰なマグネシウムが存在していることがわかる。一方、サンプル2は、サンプルref1に比べ、粒子表面の付着物が見られない。
また、図14Aで示した箇所(5箇所)についてEDX点分析を行い、測定されたマグネシウム濃度を図14Bに示す。図14Bでは、粒子の表層部から内部に向かってマグネシウム濃度がほぼ均一となった。また、図18Aで示した箇所(4箇所)についてEDX点分析を行い、測定されたマグネシウム濃度を図18Bに示す。図18Bでは、粒子の表層部から内部に向かってマグネシウム濃度が減少していた。
<ハーフセルサイクル特性>
サンプル2、サンプルref3、及びサンプルref1の正極活物質を用いて、ハーフセルを組み立てて充放電レート特性を評価した。ハーフセルに対するサイクル特性評価により正極単体の性能を評価した。
図19A及び図19Bは、横軸をサイクル数とするサイクル特性を示すグラフである。図19Aの縦軸は、25℃で測定した0.5Cの放電容量、図19Bの縦軸は、25℃で測定した同様の放電容量の維持率を示す。いずれも充電をCC/CV(0.5C,4.5V,0.01C cut)、放電をCC(0.5C,2.5V cut)とした。休止時間は10分間とした。
図2に示すステップS142でマグネシウムを混合するサンプル2のサイクル特性は、他のサンプル(ref3、ref1)に比べて、放電容量及び維持率が優れている結果となった。
(実施例3)本実施例では、アルミニウム及びマグネシウムを含み、且つ、結晶子サイズの大きな正極活物質101を作製し、その特性を評価した。
<正極活物質の作製>
図2に示す作製方法を参照しながら本実施例で作製したサンプル3について説明する。
図2のステップS111において、ニッケル源として硫酸ニッケル(II)、コバルト源として硫酸コバルト(II)、マンガン源として硫酸マンガン(II)を用意した。ステップS113においてキレート剤としてグリシンを用意した。これらの遷移金属M源を2mol/LかつNi:Co:Mn=8:1:1(原子数比)となるよう秤量し、グリシンを0.2mol/Lとなるよう秤量し、これらに純水を加えて溶解させ(ステップS14)、酸溶液を作製した。
アルカリ溶液として5mol/Lの水酸化ナトリウム水溶液を用いた。
張り込み液として純水を用いた。張り込み液には窒素をバブリングし、窒素流量は1L/分とした。なおここでの純水のように反応槽にはじめから入れられた水または水溶液を張り込み液と記すことがある。張り込み液は、調整液と記す場合がある。張り込み液及び調整液は、反応前の水または水溶液、つまり初期状態の水または水溶液を指す。
0.10mL/分で酸溶液を張り込み液に混合しながら、1000rpmで攪拌した。アルカリ溶液を適宜添加し、張り込み液をpH11.0に維持した。また張り込み液の温度を50℃に維持した。また反応槽にバッフル板を設け、攪拌の方向および流速を変化させた。これらの共沈反応には、OptiMax(メトラー・トレド社製)を用いた。
上記の共沈反応で生成した沈殿物を純水とアセトンで濾過し、真空乾燥炉で200℃、12時間乾燥し、複合水酸化物98を得た。
ステップS141において、リチウム源として水酸化リチウムを用意した。該水酸化リチウムは流動層式ジェットミルを用いて粉砕したものとした。
ステップS134において、金属源として炭酸マグネシウム及び水酸化アルミニウムを用意した。該炭酸マグネシウム及び水酸化アルミニウムはボールミルを用いて粉砕したものとした。
ステップS142において、上記で得られた複合水酸化物98と、リチウム源と、マグネシウム源と、アルミニウム源とを混合した。なお、リチウムの混合比はニッケル、コバルトおよびマンガンの原子数の和を1としたときリチウムを0.7(原子数比)とした。また、マグネシウムの混合比はニッケル、コバルトおよびマンガンの原子数の和を1としたときマグネシウムを0.005(原子数比)とした。また、アルミニウムの混合比はニッケル、コバルトおよびマンガンの原子数の和を1としたときアルミニウムを0.005(原子数比)とした。
ステップS143において、複合水酸化物とリチウム源とマグネシウム源とアルミニウム源の混合物を加熱した。加熱には酸化アルミニウムのるつぼを用いて、700℃で10時間、酸素雰囲気でマッフル炉にて加熱した。酸素の流量は5L/分、昇温は200℃/時間とした。その後、室温まで冷却し、解砕し(ステップS144)、複合酸化物99を得た。
ステップS151において、ステップS141と同様の水酸化リチウムを用意した。ステップS152において、上記で得られた複合酸化物99と、リチウム源とを混合した。混合比はニッケル、コバルトおよびマンガンの原子数の和を1としたときリチウムを0.31(原子数比)とした。つまりステップS142およびステップS152で混合したリチウムの合計を、ニッケル、コバルトおよびマンガンの原子数の和を1としたとき1.01(原子数比)とした。
ステップS153において、複合酸化物99とリチウム源の混合物を加熱した。加熱温度を900℃とした他はステップS143と同様(加熱処理10時間)に行った。その後室温まで放冷し、解砕した(ステップS154)。
ステップS155において、さらに複合酸化物99とリチウム源の混合物を加熱した。加熱温度を800℃とした他はステップS143と同様(加熱処理10時間)に行った。その後室温まで放冷し、解砕し(ステップS156)、正極活物質101を得た。これをサンプル3とした。
[二次電池の作製]
次に、上記で作製したサンプル3を用いて、CR2032タイプ(直径20mm高さ3.2mm)のコイン型の二次電池を作製した。
正極には、上記で作製した正極活物質と、アセチレンブラック(AB)と、ポリフッ化ビニリデン(PVDF)を、正極活物質:AB:PVDF=95:3:2(重量比)で混合したスラリーを集電体(厚さ20μm)に塗工したものを用いた。溶媒としてNMPを用いた。
対極にはリチウム金属を用いた。
電解液が有する電解質には、1mol/Lの六フッ化リン酸リチウム(LiPF)を用い、電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)がEC:DEC=3:7(体積比)、ビニレンカーボネート(VC)が2wt%で混合されたものを用いた。
セパレータには厚さ25μmのポリプロピレンを用いた。
正極缶及び負極缶には、ステンレス(SUS)で形成されているものを用いた。
<ハーフセルサイクル特性>
サンプル3、及びサンプルref1の正極活物質を用いて、ハーフセルを組み立てて充放電レート特性を評価した。ハーフセルに対するサイクル特性評価により正極単体の性能を評価した。
図20A及び図20Bは、横軸をサイクル数とするサイクル特性を示すグラフである。図20Aの縦軸は、25℃で測定した0.5Cの放電容量、図20Bの縦軸は、25℃で測定した同様の放電容量の維持率を示す。いずれも充電をCC/CV(0.5C,4.5V,0.01C cut)、放電をCC(0.5C,2.5V cut)とした。休止時間は10分間とした。
図2に示すステップS142でマグネシウム及びアルミニウムを混合するサンプル3のサイクル特性は、他のサンプル(ref1)に比べて、放電容量及び維持率が優れている結果となった。なお、比較例は、図15のフローに示す複合酸化物99をサンプルref1としている。
80:テイラー反応器、81:内筒、82:外筒、83:モータ、84a:流入孔、84b:流入孔、84c:流入孔、85:引出口、98:複合水酸化物、99:複合酸化物、101:正極活物質、300:二次電池、301:正極缶、302:負極缶、303:ガスケット、304:正極、305:正極集電体、306:正極活物質層、307:負極、308:負極集電体、309:負極活物質層、310:セパレータ、312:ワッシャー、322:スペーサ、400:集電体、401:活物質、402:第2の活物質、403:アセチレンブラック、404:グラフェン、405:カーボンナノチューブ、500:二次電池、501:正極集電体、502:正極活物質層、503:正極、504:負極集電体、505:負極活物質層、506:負極、507:セパレータ、509:外装体、510:正極リード電極、511:負極リード電極、601:正極キャップ、602:電池缶、603:正極端子、604:正極、605:セパレータ、606:負極、607:負極端子、608:絶縁板、609:絶縁板、611:PTC素子、613:安全弁機構、614:導電板、615:蓄電システム、616:二次電池、620:制御回路、621:配線、622:配線、623:配線、624:導電体、625:絶縁体、626:配線、627:配線、628:導電板、911a:端子、911b:端子、913:二次電池、930a:筐体、930b:筐体、930:筐体、931a:負極活物質層、931:負極、932a:正極活物質層、932:正極、933:セパレータ、950a:捲回体、950:捲回体、951:端子、952:端子、1300:角型二次電池、1301a:第1のバッテリ、1301b:第1のバッテリ、1302:バッテリーコントローラ、1303:モータコントローラ、1304:モータ、1305:ギア、1306:DCDC回路、1307:電動パワーステアリング、1308:ヒーター、1309:デフォッガ、1310:DCDC回路、1311:第2のバッテリ、1312:インバータ、1313:オーディオ、1314:パワーウィンドウ、1315:ランプ類、1316:タイヤ、1317:リアモータ、1320:制御回路部、1321:制御回路部、1322:制御回路、1324:スイッチ部、1413:固定部、1414:固定部、1415:電池パック、1421:配線、1422:配線、2001:自動車、2002:輸送車、2003:輸送車両、2004:航空機、2005:人工衛星、2100:携帯電話機、2101:筐体、2102:表示部、2103:操作ボタン、2104:外部接続ポート、2105:スピーカ、2106:マイク、2107:二次電池、2200:電池パック、2201:電池パック、2202:電池パック、2203:電池パック、2204:二次電池、2300:無人航空機、2301:二次電池、2302:ローター、2303:カメラ、6200:携帯用扇風機、6201:筐体、6202:ファン、6204:外部接続ポート、6205:操作ボタン、6209:二次電池、6300:掃除ロボット、6301:筐体、6302:表示部、6303:カメラ、6304:ブラシ、6305:操作ボタン、6306:二次電池、6310:ゴミ、6400:ロボット、6401:照度センサ、6402:マイクロフォン、6403:上部カメラ、6404:スピーカ、6405:表示部、6406:下部カメラ、6407:障害物センサ、6408:移動機構、6409:二次電池、8600:スクータ、8601:サイドミラー、8602:蓄電装置、8603:方向指示灯、8604:座席下収納、8700:電動自転車、8701:蓄電池、8702:蓄電装置、8703:表示部、8704:制御回路

Claims (9)

  1.  正極活物質の作製方法であり、
     反応槽にニッケルの水溶性塩、コバルトの水溶性塩、及びマンガンの水溶性塩の水溶性塩を含む水溶液と、アルカリ溶液と、を供給し、前記反応槽の内部で混合して少なくともニッケル、コバルト、マンガン、を含む化合物を析出させ、
     前記化合物と、金属化合物と、リチウム化合物とを混合した第1の混合物を第1の加熱温度で加熱し、解砕または粉砕した後、
     さらに第2の加熱温度で加熱し、
     前記解砕または粉砕した第1の混合物と、リチウム化合物と、を混合して得られた第2の混合物を第3の加熱温度で加熱する正極活物質の作製方法。
  2.  請求項1において、前記第1の加熱温度は、前記第2の加熱温度より低い正極活物質の作製方法。
  3.  請求項1において、前記第3の加熱温度は、前記第2の加熱温度より低い正極活物質の作製方法。
  4.  請求項1において、前記第1の加熱温度は、前記第3の加熱温度より低い正極活物質の作製方法。
  5.  請求項1において、前記金属化合物は水酸化アルミニウムまたは炭酸マグネシウムである正極活物質の作製方法。
  6.  請求項1において、前記第1の加熱温度は400℃以上750℃以下の範囲である正極活物質の作製方法。
  7.  請求項1において、前記第2の加熱温度及び前記第3の加熱温度は、750℃より高く1050℃以下の範囲である正極活物質の作製方法。
  8.  請求項1において、前記金属化合物は水酸化アルミニウムである正極活物質の作製方法。
  9.  請求項1において、前記金属化合物は炭酸マグネシウムある正極活物質の作製方法。
PCT/IB2023/056941 2022-07-15 2023-07-05 正極活物質の作製方法 WO2024013613A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022114231 2022-07-15
JP2022-114231 2022-07-15
JP2022-117423 2022-07-22
JP2022117423 2022-07-22
JP2023077008 2023-05-09
JP2023-077008 2023-05-09

Publications (1)

Publication Number Publication Date
WO2024013613A1 true WO2024013613A1 (ja) 2024-01-18

Family

ID=89536107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/056941 WO2024013613A1 (ja) 2022-07-15 2023-07-05 正極活物質の作製方法

Country Status (1)

Country Link
WO (1) WO2024013613A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108161A (ja) * 2014-12-02 2016-06-20 Csエナジーマテリアルズ株式会社 ニッケルリチウム金属複合酸化物の製造方法及び該製造方法により得られるニッケルリチウム金属複合酸化物とこれからなる正極活物質
WO2016148096A1 (ja) * 2015-03-13 2016-09-22 三井金属鉱業株式会社 層構造を有するリチウム金属複合酸化物の製造方法
JP2018521456A (ja) * 2015-09-30 2018-08-02 エルジー・ケム・リミテッド 二次電池用正極活物質及びこれを含む二次電池
JP2020136264A (ja) * 2019-02-20 2020-08-31 日亜化学工業株式会社 非水電解質二次電池用正極活物質及びその製造方法
JP2022045353A (ja) * 2020-09-08 2022-03-18 株式会社半導体エネルギー研究所 二次電池の作製方法、および二次電池
US20220223831A1 (en) * 2021-01-08 2022-07-14 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and manufacturing method of positive electrode active material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108161A (ja) * 2014-12-02 2016-06-20 Csエナジーマテリアルズ株式会社 ニッケルリチウム金属複合酸化物の製造方法及び該製造方法により得られるニッケルリチウム金属複合酸化物とこれからなる正極活物質
WO2016148096A1 (ja) * 2015-03-13 2016-09-22 三井金属鉱業株式会社 層構造を有するリチウム金属複合酸化物の製造方法
JP2018521456A (ja) * 2015-09-30 2018-08-02 エルジー・ケム・リミテッド 二次電池用正極活物質及びこれを含む二次電池
JP2020136264A (ja) * 2019-02-20 2020-08-31 日亜化学工業株式会社 非水電解質二次電池用正極活物質及びその製造方法
JP2022045353A (ja) * 2020-09-08 2022-03-18 株式会社半導体エネルギー研究所 二次電池の作製方法、および二次電池
US20220223831A1 (en) * 2021-01-08 2022-07-14 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and manufacturing method of positive electrode active material

Similar Documents

Publication Publication Date Title
JP7337113B2 (ja) リチウムイオン二次電池
JP7092752B2 (ja) 正極活物質粒子の作製方法
JP2022188111A (ja) 蓄電装置用負極
JP2022120836A (ja) 正極活物質の作製方法、二次電池および車両
WO2023180868A1 (ja) リチウムイオン電池
WO2024013613A1 (ja) 正極活物質の作製方法
JP2022107520A (ja) 正極活物質の作製方法及び二次電池
WO2023248047A1 (ja) 正極活物質およびその作製方法および二次電池
US20230402602A1 (en) Positive electrode active material and secondary battery
WO2024003662A1 (ja) 二次電池、および正極活物質の作製方法
WO2023203424A1 (ja) 正極活物質および二次電池
WO2023218315A1 (ja) 二次電池及びその作製方法、及び車両
WO2023002288A1 (ja) 正極活物質の作製方法
WO2023119056A1 (ja) 前駆体の製造方法、及び正極活物質の製造方法
WO2023079399A1 (ja) 二次電池
WO2024052785A1 (ja) 電池、電子機器、及び車両
WO2024013609A1 (ja) 正極活物質の製造方法、及び正極活物質
CN117199333A (zh) 正极活性物质及二次电池
WO2023248053A1 (ja) 二次電池、正極活物質及び正極活物質の製造方法
WO2022172123A1 (ja) 正極活物質の作製方法及び二次電池、及び車両
WO2024150084A1 (ja) 二次電池、二次電池の製造方法、正極活物質及び正極活物質の製造方法
WO2023242670A1 (ja) リチウムイオン二次電池
WO2022038454A1 (ja) 正極活物質の作製方法
WO2023057852A1 (ja) 二次電池
WO2024095112A1 (ja) 正極、二次電池、電子機器、蓄電システムおよび車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839128

Country of ref document: EP

Kind code of ref document: A1