WO2022038454A1 - 正極活物質の作製方法 - Google Patents

正極活物質の作製方法 Download PDF

Info

Publication number
WO2022038454A1
WO2022038454A1 PCT/IB2021/057244 IB2021057244W WO2022038454A1 WO 2022038454 A1 WO2022038454 A1 WO 2022038454A1 IB 2021057244 W IB2021057244 W IB 2021057244W WO 2022038454 A1 WO2022038454 A1 WO 2022038454A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous solution
positive electrode
electrode active
active material
mixture
Prior art date
Application number
PCT/IB2021/057244
Other languages
English (en)
French (fr)
Inventor
山崎舜平
掛端哲弥
石谷哲二
門馬洋平
吉谷友輔
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to CN202180050208.2A priority Critical patent/CN115956063A/zh
Priority to JP2022543812A priority patent/JPWO2022038454A1/ja
Priority to KR1020237005521A priority patent/KR20230053601A/ko
Priority to US18/040,286 priority patent/US20230286825A1/en
Publication of WO2022038454A1 publication Critical patent/WO2022038454A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for manufacturing a secondary battery. Or, it relates to a portable information terminal having a secondary battery, a vehicle, or the like.
  • the uniform state of the present invention relates to a product, a method, or a manufacturing method.
  • the invention relates to a process, machine, manufacture, or composition (composition of matter).
  • One aspect of the present invention relates to a semiconductor device, a display device, a light emitting device, a power storage device, a lighting device, an electronic device, or a method for manufacturing the same.
  • One aspect of the present invention particularly relates to a method for producing a positive electrode active material or a positive electrode active material.
  • one aspect of the present invention particularly relates to a method for manufacturing a secondary battery or a secondary battery.
  • the semiconductor device refers to all devices that can function by utilizing the semiconductor characteristics
  • the electro-optical device, the semiconductor circuit, and the electronic device are all semiconductor devices.
  • the electronic device refers to all devices having a positive electrode active material, a secondary battery, or a power storage device, and refers to an electro-optical device having a positive electrode active material, a secondary battery, or a power storage device, and a power storage device. All the information terminal devices and the like possessed are electronic devices.
  • a power storage device refers to an element and a device having a power storage function in general.
  • a power storage device also referred to as a secondary battery
  • a lithium ion secondary battery such as a lithium ion secondary battery, a lithium ion capacitor, an electric double layer capacitor, and the like.
  • Lithium-ion secondary batteries which have particularly high output and high energy density, are portable information terminals such as mobile phones, smartphones, or notebook computers, portable music players, digital cameras, medical devices, or hybrid vehicles (HVs), and electric vehicles.
  • HVs hybrid vehicles
  • EVs electric vehicles
  • PSVs plug-in hybrid vehicles
  • Patent Document 1 and Patent Document 2 improvement of the positive electrode active material is being studied in order to improve the cycle characteristics and increase the capacity of the lithium ion secondary battery.
  • the positive electrode active material is a high-cost material among lithium-ion secondary batteries, there is a high demand for higher performance (for example, higher capacity, improved cycle characteristics, improved reliability or safety). In particular, as one of the high performance, there is a problem of increasing the purity of the positive electrode active material in order to realize high capacity.
  • one aspect of the present invention is to provide a method for producing a highly purified positive electrode active material.
  • Another object of the present invention is to provide a method for producing a positive electrode active material whose crystal structure does not easily collapse even after repeated charging and discharging.
  • one of the problems is to provide a method for producing a positive electrode active material having excellent charge / discharge cycle characteristics.
  • one of the problems is to provide a method for producing a positive electrode active material having a large charge / discharge capacity.
  • one of the challenges is to provide a secondary battery with high reliability or safety.
  • one aspect of the present invention is to provide a novel substance, active material particles, a secondary battery, a power storage device, or a method for producing them. Further, one aspect of the present invention is to provide a method for manufacturing a secondary battery having one or a plurality of characteristics selected from high purity, high performance, and high reliability, or a secondary battery. Is one of the issues.
  • One aspect of the present invention is a method for producing a positive electrode active material having lithium and a transition metal, wherein a hydroxide having a transition metal is produced by using at least an aqueous solution having the transition metal and a basic aqueous solution.
  • a material having a purity of 99.99% or higher is prepared as the lithium compound
  • the heating in the fourth step is a dew point.
  • one aspect of the present invention is a method for producing a positive electrode active substance having lithium, nickel, cobalt, and manganese, in which an aqueous solution having nickel, an aqueous solution having cobalt, and an aqueous solution having manganese are mixed.
  • a first step of preparing a hydroxide having nickel, cobalt, and manganese a second step of preparing a lithium compound, a lithium compound, and hydroxylation using at least a mixed solution and a basic aqueous solution.
  • a second step comprising a third step of mixing with the compound to form a mixture and a fourth step of heating the mixture to form a composite oxide having lithium, nickel, cobalt, and manganese.
  • a material having a purity of 99.99% or higher is prepared as the lithium compound, and the heating in the fourth step is performed in an oxygen-containing atmosphere having a dew point of ⁇ 50 ° C. or lower. Is.
  • one aspect of the present invention is a method for producing a positive electrode active substance having lithium, nickel, cobalt, manganese, and aluminum, which is an aqueous solution having nickel, an aqueous solution having cobalt, and an aqueous solution having manganese.
  • a material having a purity of 99.99% or more is prepared as the lithium compound, and the heating in the fourth step contains oxygen having a dew point of ⁇ 50 ° C. or lower.
  • This is a method for producing a positive electrode active material, which is performed in an atmosphere.
  • one aspect of the present invention is a method for producing a positive electrode active substance having lithium, nickel, cobalt, manganese, and aluminum, which has an aqueous solution having nickel, an aqueous solution having cobalt, and manganese.
  • a material having a purity of 99.99% or more is prepared as the lithium compound, and a material having a purity of 99.9% or more is prepared as the aluminum source.
  • the heating in the fourth step is a method for producing a positive electrode active material, which is carried out in an oxygen-containing atmosphere having a dew point of ⁇ 50 ° C. or lower.
  • one aspect of the present invention is a method for producing a positive electrode active material containing lithium, nickel, cobalt, manganese, aluminum, magnesium, and fluorine, which comprises an aqueous solution containing nickel and cobalt.
  • a positive electrode active material containing lithium, nickel, cobalt, manganese, aluminum, magnesium, and fluorine
  • an aqueous solution containing nickel and cobalt containing nickel and cobalt.
  • the first step of preparing a hydroxide having nickel, cobalt, and manganese, and preparing a lithium compound and an aluminum source is a method for producing a positive electrode active material containing lithium, nickel, cobalt, manganese, aluminum, magnesium, and fluorine, which comprises an aqueous solution containing nickel and cobalt.
  • a material having a purity of 99.99% or more is prepared as a lithium compound, and a material having a purity of 99.9% or more is prepared as an aluminum source.
  • a material having a purity of 99% or more is prepared as the magnesium source, and a material having a purity of 99% or more is prepared as the fluorine source, and the heating in the fourth step and the seventh step is performed.
  • This is a method for producing a positive electrode active material, which is carried out in an oxygen-containing atmosphere having a dew point of ⁇ 50 ° C. or lower.
  • a method for producing a positive electrode active material whose crystal structure does not easily collapse even after repeated charging and discharging it is possible to provide a method for producing a positive electrode active material having excellent charge / discharge cycle characteristics.
  • a method for producing a positive electrode active material having a large charge / discharge capacity it is possible to provide a secondary battery having high reliability or safety.
  • a novel substance, active material particles, a secondary battery, a power storage device, or a method for producing them it is possible to provide a novel substance, active material particles, a secondary battery, a power storage device, or a method for producing them. Further, according to one aspect of the present invention, there is provided a method for manufacturing a secondary battery having one or more characteristics selected from high purity, high performance, and high reliability, or a secondary battery. Can be done.
  • FIG. 1 is a diagram illustrating an example of a method for producing a positive electrode active material according to one aspect of the present invention.
  • FIG. 2 is a diagram illustrating an example of a method for producing a positive electrode active material according to one aspect of the present invention.
  • 3A to 3E are diagrams illustrating an example of a method for producing a positive electrode active material according to one aspect of the present invention.
  • FIG. 4 is a diagram illustrating an example of a method for producing a positive electrode active material according to one aspect of the present invention.
  • FIG. 5 is a diagram illustrating an example of a method for producing a positive electrode active material according to one aspect of the present invention.
  • FIG. 6 illustrates an example of a method for producing a positive electrode active material according to one aspect of the present invention.
  • FIG. 1 is a diagram illustrating an example of a method for producing a positive electrode active material according to one aspect of the present invention.
  • FIG. 2 is a diagram illustrating an example of a method for producing a
  • FIG. 7 illustrates an example of a method for producing a positive electrode active material according to one aspect of the present invention.
  • FIG. 8 illustrates an example of a method for producing a positive electrode active material according to one aspect of the present invention.
  • FIG. 9 illustrates an example of a method for producing a positive electrode active material according to one aspect of the present invention.
  • FIG. 10 illustrates an example of a method for producing a positive electrode active material according to one aspect of the present invention.
  • FIG. 11 illustrates an example of a method for producing a positive electrode active material according to one aspect of the present invention.
  • FIG. 12 illustrates an example of a method for producing a positive electrode active material according to one aspect of the present invention.
  • 13A and 13B are cross-sectional views of the positive electrode active material.
  • FIG. 14A, 14B, and 14C are diagrams illustrating the concentration distribution in the positive electrode active material.
  • FIG. 15 is a cross-sectional view illustrating an example of a positive electrode of a secondary battery.
  • 16A is an exploded perspective view of the coin-type secondary battery
  • FIG. 16B is a perspective view of the coin-type secondary battery
  • FIG. 16C is a cross-sectional perspective view thereof.
  • 17A is an example of a cylindrical secondary battery
  • FIG. 17B is an example of a cylindrical secondary battery
  • FIG. 17C is an example of a plurality of cylindrical secondary batteries
  • FIG. 17D is an example of a plurality of cylindrical secondary batteries.
  • 18A and 18B are diagrams illustrating an example of a secondary battery
  • FIG. 18C is a diagram showing the inside of the secondary battery.
  • 19A to 19C are diagrams illustrating an example of a secondary battery.
  • 20A and 20B are views showing the appearance of the secondary battery.
  • 21A to 21C are diagrams illustrating a method for manufacturing a secondary battery.
  • 22A to 22C are views showing a configuration example of the battery pack.
  • 23A and 23B are diagrams illustrating an example of a secondary battery.
  • 24A to 24C are diagrams illustrating an example of a secondary battery.
  • 25A and 25B are diagrams illustrating an example of a secondary battery.
  • 26A is a perspective view of a battery pack showing an aspect of the present invention, FIG.
  • FIG. 26B is a block diagram of the battery pack
  • FIG. 26C is a block diagram of a vehicle having a motor
  • 27A to 27D are diagrams illustrating an example of a transportation vehicle.
  • 28A and 28B are diagrams illustrating a power storage device according to an aspect of the present invention.
  • 29A is a diagram showing an electric bicycle
  • FIG. 29B is a diagram showing a secondary battery of the electric bicycle
  • FIG. 29C is a diagram illustrating an electric motorcycle.
  • 30A to 30D are diagrams illustrating an example of an electronic device.
  • 31A shows an example of a wearable device
  • FIG. 31B shows a perspective view of the wristwatch-type device
  • FIG. 31C shows a side view of the wristwatch-type device
  • FIG. 31D shows an example of a wireless earphone.
  • the secondary battery has, for example, a positive electrode and a negative electrode.
  • a positive electrode active material As a material constituting the positive electrode, there is a positive electrode active material.
  • the positive electrode active material is, for example, a substance that undergoes a reaction that contributes to the charge / discharge capacity.
  • the positive electrode active material may contain a substance that does not contribute to the charge / discharge capacity as a part thereof.
  • the positive electrode active material of one aspect of the present invention may be expressed as a positive electrode material, a positive electrode material for a secondary battery, a composite oxide, or the like. Further, in the present specification and the like, it is preferable that the positive electrode active material of one aspect of the present invention has a compound. Further, in the present specification and the like, it is preferable that the positive electrode active material of one aspect of the present invention has a composition. Further, in the present specification and the like, it is preferable that the positive electrode active material of one aspect of the present invention has a complex.
  • segregation refers to a phenomenon in which a certain element (for example, B) is spatially unevenly distributed in a solid composed of a plurality of elements (for example, A, B, C).
  • the crack is not limited to the one generated in the process of producing the positive electrode active material, but includes the one generated by the subsequent pressurization and charging / discharging.
  • the surface created by cracks (which may be called cracks) can also be called the surface.
  • the surface layer portion of particles such as an active material is, for example, a region within 50 nm, more preferably within 35 nm, still more preferably within 20 nm, and most preferably within 10 nm from the surface toward the inside.
  • the region may be referred to as near the surface.
  • the area deeper than the surface layer is called the inside.
  • defects include point defects, dislocations, stacking defects that are two-dimensional defects, and voids that are three-dimensional defects.
  • the particle is not limited to a spherical shape (the cross-sectional shape is a circle), and the cross-sectional shape of each particle is an elliptical shape, a rectangular shape, a trapezoidal shape, a conical shape, a quadrangle with rounded corners, or an asymmetrical shape.
  • the shape and the like may be mentioned, and the individual particles may be irregular.
  • the Miller index is used for the notation of the crystal plane and the direction.
  • Individual planes indicating crystal planes are represented by (). Crystallographically, the notation of the crystal plane, direction, and space group is crystallographically, but due to the restrictions of the application notation in the present specification, etc., instead of adding a bar above the number, the number is preceded by the number. It may be expressed with a- (minus sign).
  • the layered rock salt type crystal structure of the composite oxide containing lithium and the transition metal has a rock salt type ion arrangement in which cations and anions are alternately arranged, and the transition metal and the like.
  • the layered rock salt crystal structure may have defects such as cation or anion defects. Strictly speaking, the layered rock salt crystal structure may have a distorted lattice of rock salt crystals.
  • the rock salt type crystal structure means a structure in which cations and anions are alternately arranged.
  • the rock salt type crystal structure there may be a cation or anion deficiency.
  • the theoretical capacity of the positive electrode active material means the amount of electricity when all the lithium that can be inserted and removed from the positive electrode active material is desorbed.
  • the theoretical capacity of LiCoO 2 is 274 mAh / g
  • the theoretical capacity of LiNiO 2 is 274 mAh / g
  • the theoretical capacity of LiMn 2 O 4 is 148 mAh / g.
  • the charging depth when all the insertable and detachable lithium contained in the positive electrode active material is inserted is 0, and when all the inserted and detachable lithium contained in the positive electrode active material is desorbed.
  • the charging depth is 1.
  • a lithium metal is used as a counter electrode
  • the secondary battery of one aspect of the present invention may be shown. Is not limited to this.
  • Other materials such as graphite and lithium titanate may be used for the negative electrode.
  • the properties of the positive electrode and positive electrode active materials according to one aspect of the present invention such as the crystal structure not easily collapsing even after repeated charging and discharging and good cycle characteristics, are not affected by the material of the negative electrode.
  • the secondary battery of one aspect of the present invention there is a case where a secondary battery using a lithium metal as a counter electrode is charged / discharged at a relatively high voltage such as a charging voltage of 4.6 V, but at a lower voltage. It may be charged and discharged.
  • a relatively high voltage such as a charging voltage of 4.6 V
  • particles gather and solidify after heating to be fixed. It is presumed that the bonds between the particles are due to ionic bonds or van der Waals forces, but regardless of the heating temperature, crystal state, element distribution state, etc., if the particles are simply gathered and solidified, they are fixed. And.
  • the kiln means a device for heating an object to be processed.
  • a kiln it may be called a furnace, a kiln, a heating device, or the like.
  • the secondary battery having the property of high purity means a battery having a high purity of at least one or a plurality of materials selected from a positive electrode, a negative electrode, a separator, and an electrolyte. ..
  • the highly purified positive electrode active material means a material having a high purity of the material contained in the positive electrode active material.
  • Li 2 CO 3 and Co 3 O 4 are 3N (99.9%) or more, preferably 4N (99%), respectively. .99%) or more, more preferably 4N5 (99.995%) or more, still more preferably 5N (99.999%) or more.
  • LiF and MgF 2 are each 2N (99%) or more, preferably 3N (preferably 3N). 99.9%) or more, more preferably 4N (99.99%) or more.
  • Ni (OH) 2 and Al (OH) 3 are 3N (99.9%) or more, preferably 4N (99.99%) or more, more preferably 4N5 (99.995%) or more, respectively, and further. It is preferably 5N (99.999%) or more.
  • additional element X the details of the element that can be added (additional element X) will be described later.
  • the positive electrode active material may be represented as a composite oxide (LiMO 2 ) having lithium, a transition metal M, and oxygen.
  • the transition metal M it is preferable to use a metal capable of forming a layered rock salt type composite oxide belonging to the space group R-3m together with lithium. The details of the transition metal M will be described later.
  • the lithium composite oxide having Ni, Co, and Mn is a layered rock salt type composite oxide belonging to the space group R-3m together with lithium, and has a charging depth of 0 (discharge). In the state), it has a region having a crystal structure of the space group R-3m. Further, when the charging depth is larger than 0 and 1 or less, it may have a layered structure belonging to the space group C2 / m, and the R-3m phase and the C2 / m phase may be phase-separated from each other.
  • crystal refers to the crystal structure immediately after the crystal formation step, and thus basically refers to the R-3m phase, but partially or partially in the C2 / m phase or. Even if other crystal phases are included, they are referred to as R-3m phase crystals in the present specification.
  • a transition metal M source 801 is prepared.
  • the transition metal M for example, at least one of manganese, cobalt, and nickel can be used.
  • the transition metal M when only cobalt is used, when only nickel is used, when two types of cobalt and manganese are used, when two types of cobalt and nickel are used, or when three types of cobalt, manganese, and nickel are used. May be used.
  • the transition metal M source 801 is prepared as an aqueous solution containing the transition metal M.
  • the transition metal M source 801 as the aqueous solution containing cobalt, an aqueous solution of cobalt sulfate or an aqueous solution of cobalt nitrate can be used, and as the aqueous solution containing nickel, an aqueous solution of nickel sulfate or an aqueous solution of nickel nitrate can be used.
  • the aqueous solution containing manganese an aqueous solution of manganese sulfate, an aqueous solution of manganese nitrate, or the like can be used.
  • the transition metal M source 801 used in the synthesis it is preferable to use a high-purity material as the transition metal M source 801 used in the synthesis.
  • the purity of the solute material when preparing the aqueous solution is 2N (99%) or more, preferably 3N (99.9%) or more, more preferably.
  • Impurities of 4N (99.99%) or more preferably water having a specific resistance of 1 M ⁇ ⁇ cm or more, more preferably a specific resistance of 10 M ⁇ ⁇ cm or more, still more preferably a specific resistance of 15 M ⁇ ⁇ cm or more. It is desirable to use less pure water.
  • the capacity of the secondary battery can be increased and / or the reliability of the secondary battery can be increased.
  • transition metal M sources 801 when a plurality of transition metal M sources 801 are used, for example, when a cobalt source, a manganese source, and a nickel source are used, it is preferable to set the mixing ratio within a range in which a layered rock salt type crystal structure can be obtained.
  • step S31 the above transition metal M source 801 is mixed to obtain the mixture 811 of step S32.
  • step S33 the aqueous solution A812 is prepared as step S33, and the aqueous solution B813 is prepared as step S34.
  • an aqueous solution having at least one of chelating agents such as glycine, oxine, 1-nitroso-2-naphthol or 2-mercaptobenzothiazole, or an aqueous solution of ammonia, or a mixture of a plurality of them is used. be able to.
  • any one or a plurality of mixed solutions of sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, or lithium hydroxide aqueous solution can be used.
  • step S35 the mixture 811, the aqueous solution A812, and the aqueous solution B813 of the above step S32 are mixed.
  • step S35 As a method of mixing in step S35, a mixing method in which the mixture 811 and the aqueous solution B813 in step S32 are added dropwise to the aqueous solution A812 placed in the reaction vessel can be used. It is desirable that the mixture 811 of step S32 is added dropwise at a constant rate, and the aqueous solution B813 is appropriately added dropwise in order to keep the pH of the mixed solution in the reaction vessel within a predetermined range.
  • step S35 it is desirable that the solution in the reaction vessel is stirred with a stirring blade or a stirrer, and the solution in the reaction vessel, the mixture 811 in step S32, the aqueous solution A812, and the aqueous solution B813 are dissolved oxygen by N2 bubbling. It is desirable to remove.
  • the pH in the reaction vessel is preferably 9 or more and 11 or less, more preferably 10.0 or more and 10.5 or less.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • step S35 a mixing method in which the aqueous solution A812 and the aqueous solution B813 are added dropwise to the mixture 811 of step S32 placed in the reaction vessel can be used. It is preferable to adjust the dropping rates of the aqueous solution A812 and the aqueous solution B813 in order to keep the solute ion concentration and the hydroxyl group concentration of the aqueous solution A812 in the reaction vessel within a predetermined range.
  • step S35 it is desirable that the solution in the reaction vessel is stirred with a stirring blade or a stirrer, and the solution in the reaction vessel, the mixture 811 in step S32, the aqueous solution A812, and the aqueous solution B813 are dissolved oxygen by N2 bubbling. It is desirable to remove.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • step S35 a case where the aqueous solution A812 is not used as the mixing method in step S35 will be described.
  • a fixed amount of the aqueous solution B813 is added dropwise to the mixture 811 of step S32 placed in the reaction vessel.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • step S35 a case where pure water is used in addition to the mixture 811, the aqueous solution A812, and the aqueous solution B813 in step S32 will be described.
  • the mixture 811 and the aqueous solution A812 of step S32 are added dropwise to the pure water contained in the reaction vessel at a constant rate, and the aqueous solution B813 is appropriately added dropwise in order to keep the pH of the mixed solution in the reaction vessel within a predetermined range. can do.
  • step S35 it is desirable that the solution in the reaction vessel is stirred with a stirring blade or a stirrer, and the solution in the reaction vessel, the mixture 811 in step S32, the aqueous solution A812, and the aqueous solution B813 are dissolved oxygen by N2 bubbling. It is desirable to remove.
  • the pH in the reaction vessel is preferably 9 or more and 11 or less, more preferably 10.0 or more and 10.5 or less.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • the solution containing the hydroxide having the transition metal M formed by the mixing in step S35 is filtered as step S36 and then washed with water.
  • the water used for cleaning is preferably pure water having a specific resistance of 1 M ⁇ ⁇ cm or more, more preferably a specific resistance of 10 M ⁇ ⁇ cm or more, and further preferably a specific resistance of 15 M ⁇ ⁇ cm or more and having few impurities.
  • impurities contained in the hydroxide having the transition metal M can be removed. Thereby, a hydroxide having a high-purity transition metal M can be obtained as a precursor of the positive electrode active material 100.
  • step S37 the hydroxide having the transition metal M after washing is dried, recovered, crushed and sieved as necessary, and then the mixture 821 of step S41 is obtained.
  • the mixture 821 is also referred to as a precursor of the positive electrode active material 100.
  • the precursor preferably has high crystallinity, and more preferably has single crystal grains. That is, the precursor is preferably a single crystal.
  • crystallinity evaluation examples include a TEM (transmission electron microscope) image, a STEM (scanning transmission electron microscope) image, a HAADF-STEM (high-angle scattering annular dark-field scanning transmission electron microscope) image, and an ABF-STEM (circular bright-field scanning). It can be judged from the scanning electron microscope) image and the like. Further, as the evaluation of crystallinity, X-ray diffraction (XRD), electron diffraction, neutron diffraction and the like can also be used as judgment materials.
  • XRD X-ray diffraction
  • step S42 the lithium compound 822 is prepared, and as step S51, the mixture 821 of step S41 and the lithium compound 822 are mixed. After mixing, the mixture is collected in step S52, crushed and sieved as necessary, and then the mixture 831 of step S53 is obtained. Mixing can be done dry or wet.
  • a mixer such as a rotation / revolution mixer, a ball mill, a bead mill, or the like can be used.
  • the rotation speed may be 2000 rpm and the 1.5-minute process may be repeated three times.
  • the peripheral speed is preferably 100 mm / s or more and 2000 mm / s or less in order to suppress contamination from media or materials.
  • the peripheral speed may be 838 mm / s (rotation speed 400 rpm, ball mill diameter 40 mm).
  • the mixture 821 and the lithium compound 822 can be uniformly mixed by sufficiently mixing in step S51.
  • lithium compound 822 for example, lithium hydroxide, lithium carbonate, lithium nitrate, lithium fluoride and the like can be used.
  • Lithium compound 822 is sometimes referred to as a lithium source.
  • the lithium compound 822 used in the synthesis it is preferable to use a high-purity material.
  • the purity of the material is 4N (99.99%) or more, preferably 4N5UP (99.995%) or more, and more preferably 5N (99.999%) or more.
  • step S54 the mixture 831 of step S53 is heated.
  • the heating temperature is preferably a temperature near the melting point of the mixture 821 and the lithium compound 822, preferably 700 ° C. or higher and lower than 1100 ° C., more preferably 800 ° C. or higher and 1000 ° C. or lower, and 800 ° C. or higher and 950 ° C. or lower. Is even more preferable.
  • the heating time can be, for example, 1 hour or more and 100 hours or less, and preferably 2 hours or more and 20 hours or less.
  • the heating is preferably performed in an oxygen-containing atmosphere (for example, a dew point of ⁇ 50 ° C. or lower, more preferably a dew point of ⁇ 80 ° C. or lower) in which water such as oxygen or dry air is low.
  • heating is performed in an atmosphere with a dew point of ⁇ 93 ° C.
  • the heating is performed in an atmosphere where the impurity concentrations of CH 4 , CO, CO 2 and H 2 are 5 ppb (parts per parts) or less, respectively, because impurities that can be mixed in the material can be suppressed.
  • the temperature rise is 200 ° C./h and the flow rate in the dry atmosphere is 10 L / min.
  • the heated material can then be cooled to room temperature.
  • the temperature lowering time from the specified temperature to room temperature is 10 hours or more and 50 hours or less.
  • cooling to room temperature in step S54 is not essential.
  • the crucible used for heating in step S54 is preferably made of a material that does not contain impurities.
  • an alumina crucible having a purity of 99.9% is used.
  • the mortar when recovering the material after heating in step S54, it is suitable because impurities are not mixed in the material when it is moved from the crucible to the mortar and then recovered. Further, the mortar is also suitable as a material that does not contain impurities. Specifically, it is preferable to use an alumina mortar having a purity of 90 wt% or more, preferably 99 wt% or more.
  • step S55 the material fired above is recovered, and after crushing, the positive electrode active material 100 of step S56 is obtained. If necessary, sieving may be carried out after crushing. By the above steps, the positive electrode active material 100 according to one aspect of the present invention can be produced.
  • the positive electrode active material 100 has high crystallinity, and when the crystallinity of the mixture 821 of step S41 is high, the crystallinity of the positive electrode active material 100 is also high.
  • the crystal planes of lithium in and out can be aligned. More crystal faces of lithium in and out can be exposed to the electrolyte, improving battery characteristics.
  • the positive electrode active material 100 has high crystallinity, and further, it is durable when the positive electrode active material 100 has single crystal grains, and it is possible to provide an active material that is not easily deteriorated even after repeated charging and discharging.
  • the positive electrode active material 100 may be represented as a composite oxide (LiMO 2 ) having lithium, a transition metal M, and oxygen.
  • the positive electrode active material 100 is a composite oxide (NCM: nickel-cobalt-lithium manganate) having Ni, Co, and Mn.
  • NCM NCM
  • NCM has a layered rock salt structure and is preferable because it has a small expansion and contraction due to the inflow and outflow of lithium during charging and discharging.
  • a positive electrode active material is produced in a step in which a high-purity material is used as a raw material used in the synthesis and the amount of impurities mixed is small in the synthesis.
  • the positive electrode active material obtained by such a method for producing a positive electrode active material is a material having a low impurity concentration, in other words, a highly purified material.
  • the positive electrode active material obtained by such a method for producing a positive electrode active material is a material having high crystallinity.
  • the positive electrode active material obtained by the method for producing a positive electrode active material according to one aspect of the present invention can increase the capacity of the secondary battery and / or enhance the reliability of the secondary battery.
  • FIGS. 2 and 3A to 3E an example of a method for producing a positive electrode active material according to one aspect of the present invention will be described with reference to FIGS. 2 and 3A to 3E.
  • a transition metal M source 801 is prepared.
  • the transition metal M for example, at least one of manganese, cobalt, and nickel can be used.
  • the transition metal M when only cobalt is used, when only nickel is used, when two types of cobalt and manganese are used, when two types of cobalt and nickel are used, or when three types of cobalt, manganese, and nickel are used. May be used.
  • the transition metal M source 801 is prepared as an aqueous solution containing the transition metal M.
  • the transition metal M source 801 as the aqueous solution containing cobalt, an aqueous solution of cobalt sulfate or an aqueous solution of cobalt nitrate can be used, and as the aqueous solution containing nickel, an aqueous solution of nickel sulfate or an aqueous solution of nickel nitrate can be used.
  • the aqueous solution containing manganese an aqueous solution of manganese sulfate, an aqueous solution of manganese nitrate, or the like can be used.
  • the transition metal M source 801 used in the synthesis it is preferable to use a high-purity material as the transition metal M source 801 used in the synthesis.
  • the purity of the solute material when preparing the aqueous solution is 2N (99%) or more, preferably 3N (99.9%) or more, more preferably.
  • Impurities of 4N (99.99%) or more preferably water having a specific resistance of 1 M ⁇ ⁇ cm or more, more preferably a specific resistance of 10 M ⁇ ⁇ cm or more, still more preferably a specific resistance of 15 M ⁇ ⁇ cm or more. It is desirable to use less pure water.
  • the capacity of the secondary battery can be increased and / or the reliability of the secondary battery can be increased.
  • transition metal M sources 801 when a plurality of transition metal M sources 801 are used, for example, when a cobalt source, a manganese source, and a nickel source are used, it is preferable to set the mixing ratio within a range in which a layered rock salt type crystal structure can be obtained.
  • step S31 the above transition metal M source 801 is mixed to obtain the mixture 811 of step S32.
  • step S33 the aqueous solution A812 is prepared as step S33, and the aqueous solution B813 is prepared as step S34.
  • an aqueous solution having at least one of chelating agents such as glycine, oxine, 1-nitroso-2-naphthol or 2-mercaptobenzothiazole, or an aqueous solution of ammonia, or a mixture of a plurality of them is used. be able to.
  • any one or a plurality of mixed solutions of sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, or lithium hydroxide aqueous solution can be used.
  • step S35 the mixture 811, the aqueous solution A812, and the aqueous solution B813 of the above step S32 are mixed.
  • step S35 As a method of mixing in step S35, a mixing method in which the mixture 811 and the aqueous solution B813 in step S32 are added dropwise to the aqueous solution A812 placed in the reaction vessel can be used. It is desirable that the mixture 811 of step S32 is added dropwise at a constant rate, and the aqueous solution B813 is appropriately added dropwise in order to keep the pH of the mixed solution in the reaction vessel within a predetermined range.
  • step S35 it is desirable that the solution in the reaction vessel is stirred with a stirring blade or a stirrer, and the solution in the reaction vessel, the mixture 811 in step S32, the aqueous solution A812, and the aqueous solution B813 are dissolved oxygen by N2 bubbling. It is desirable to remove.
  • the pH in the reaction vessel is preferably 9 or more and 11 or less, more preferably 10.0 or more and 10.5 or less.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • step S35 a mixing method in which the aqueous solution A812 and the aqueous solution B813 are added dropwise to the mixture 811 of step S32 placed in the reaction vessel can be used. It is preferable to adjust the dropping rates of the aqueous solution A812 and the aqueous solution B813 in order to keep the solute ion concentration and the hydroxyl group concentration of the aqueous solution A812 in the reaction vessel within a predetermined range.
  • step S35 it is desirable that the solution in the reaction vessel is stirred with a stirring blade or a stirrer, and the solution in the reaction vessel, the mixture 811 in step S32, the aqueous solution A812, and the aqueous solution B813 are dissolved oxygen by N2 bubbling. It is desirable to remove.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • step S35 a case where the aqueous solution A812 is not used as the mixing method in step S35 will be described.
  • a fixed amount of the aqueous solution B813 is added dropwise to the mixture 811 of step S32 placed in the reaction vessel.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • step S35 a case where pure water is used in addition to the mixture 811, the aqueous solution A812, and the aqueous solution B813 in step S32 will be described.
  • the mixture 811 and the aqueous solution A812 of step S32 are added dropwise to the pure water contained in the reaction vessel at a constant rate, and the aqueous solution B813 is appropriately added dropwise in order to keep the pH of the mixed solution in the reaction vessel within a predetermined range. can do.
  • step S35 it is desirable that the solution in the reaction vessel is stirred with a stirring blade or a stirrer, and the solution in the reaction vessel, the mixture 811 in step S32, the aqueous solution A812, and the aqueous solution B813 are dissolved oxygen by N2 bubbling. It is desirable to remove.
  • the pH in the reaction vessel is preferably 9 or more and 11 or less, more preferably 10.0 or more and 10.5 or less.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • the solution containing the hydroxide having the transition metal M formed by the mixing in step S35 is filtered as step S36 and then washed with water.
  • the water used for cleaning is preferably pure water having a specific resistance of 1 M ⁇ ⁇ cm or more, more preferably a specific resistance of 10 M ⁇ ⁇ cm or more, and further preferably a specific resistance of 15 M ⁇ ⁇ cm or more and having few impurities.
  • impurities contained in the hydroxide having the transition metal M can be removed. Thereby, a hydroxide having a high-purity transition metal M can be obtained as a precursor of the positive electrode active material 100.
  • step S37 the hydroxide having the transition metal M after washing is dried, recovered, crushed or sieved as necessary, and then the mixture 821 of step S41 is obtained.
  • the mixture 821 is also referred to as a precursor of the positive electrode active material 100.
  • the precursor preferably has high crystallinity, and more preferably has single crystal grains. That is, the precursor is preferably a single crystal.
  • step S42 the lithium compound 822 is prepared, and as step S51, the mixture 821 of step S41 and the lithium compound 822 are mixed. After mixing, the mixture is collected in step S52, crushed and sieved as necessary, and then the mixture 831 of step S53 is obtained. Mixing can be done dry or wet.
  • a mixer such as a rotation / revolution mixer, a ball mill, a bead mill, or the like can be used.
  • the rotation speed may be 2000 rpm and the 1.5-minute process may be repeated three times.
  • the peripheral speed is preferably 100 mm / s or more and 2000 mm / s or less in order to suppress contamination from media or materials.
  • the peripheral speed may be 838 mm / s (rotation speed 400 rpm, ball mill diameter 40 mm).
  • the mixture 821 and the lithium compound 822 can be uniformly mixed by sufficiently mixing in step S51.
  • lithium compound 822 for example, lithium hydroxide, lithium carbonate, lithium nitrate, lithium fluoride and the like can be used.
  • Lithium compound 822 is sometimes referred to as a lithium source.
  • the lithium compound 822 used in the synthesis it is preferable to use a high-purity material.
  • the purity of the material is 4N (99.99%) or more, preferably 4N5UP (99.995%) or more, and more preferably 5N (99.999%) or more.
  • step S54 the mixture 831 of step S53 is heated.
  • the heating temperature is preferably a temperature near the melting point of the mixture 821 and the lithium compound 822, preferably 700 ° C. or higher and lower than 1100 ° C., more preferably 800 ° C. or higher and 1000 ° C. or lower, and 800 ° C. or higher and 950 ° C. or lower. Is even more preferable.
  • the heating time can be, for example, 1 hour or more and 100 hours or less, and preferably 2 hours or more and 20 hours or less.
  • the heating is preferably performed in an oxygen-containing atmosphere (for example, a dew point of ⁇ 50 ° C. or lower, more preferably a dew point of ⁇ 80 ° C. or lower) in which water such as oxygen or dry air is low.
  • heating is performed in an atmosphere with a dew point of ⁇ 93 ° C.
  • the heating is performed in an atmosphere where the impurity concentrations of CH 4 , CO, CO 2 and H 2 are 5 ppb (parts per parts) or less, respectively, because impurities that can be mixed in the material can be suppressed.
  • the temperature rise is 200 ° C./h and the flow rate in the dry atmosphere is 10 L / min.
  • the heated material can then be cooled to room temperature.
  • the temperature lowering time from the specified temperature to room temperature is 10 hours or more and 50 hours or less.
  • cooling to room temperature in step S54 is not essential.
  • the crucible used for heating in step S54 is preferably made of a material that does not contain impurities.
  • an alumina crucible having a purity of 99.9% is used.
  • step S54 when recovering the material that has been heated in step S54, it is suitable because impurities are not mixed in the material when it is moved from the crucible to the mortar and then recovered. Further, the mortar is also suitable as a material that does not contain impurities. Specifically, it is preferable to use an alumina mortar having a purity of 90 wt% or more, preferably 99 wt% or more. The same conditions as in step S54 can be applied to the heating steps described later other than step S54.
  • step S62 the additive element X source 833 is prepared.
  • the additive element X possessed by the source 833 includes nickel, cobalt, magnesium, calcium, chlorine, fluorine, aluminum, manganese, titanium, zirconium, yttrium, vanadium, iron, chromium, niobium, lantern, hafnium, zinc, and silicon. , Sulfur, phosphorus, boron, and one or more selected from arsenic can be used. Further, as the additive element X, bromine and beryllium may be used in addition to the above elements. However, since bromine and beryllium are elements that are toxic to living organisms, it is preferable to use the above-mentioned additive element X.
  • any one or more can be used from an aqueous solution containing the additive element X, an alkoxide containing the additive element X, or a solid compound containing the additive element X.
  • a solid compound containing one or more additive elements X is prepared, crushed, and mixed as shown as S62a or S62b in FIGS. 3A and 3B. (Mixture 833a or Mixture 833b) may be used as the additive element X source 833 in step S62.
  • a solid compound containing one or more additive elements X it may be mixed after crushing, may be crushed after mixing, or may be crushed after mixing, or without crushing, the additive element X source 833 in step S62. It may be used as.
  • the purity of the material is 2N (99%) or more, preferably 3N (99.9%) or more, and more preferably 4N (99.99%) or more.
  • a solvent As the solvent, a ketone such as acetone, an alcohol such as ethanol and isopropanol, ether, dioxane, acetonitrile, N-methyl-2-pyrrolidone (NMP) and the like can be used. It is more preferable to use an aprotic solvent that does not easily react with lithium. In this embodiment, dehydrated acetone having a purity of 99.5% or more is used.
  • step S71 in FIG. 2 the mixture 832 of step S61 and the additive element X source 833 of step S62 are mixed. After mixing, it is collected in step S72, crushed and sieved as necessary, and then the mixture 841 of step S73 is obtained.
  • Mixing can be done dry or wet.
  • a mixer such as a rotation / revolution mixer, a ball mill, a bead mill, or the like can be used.
  • the rotation speed may be 2000 rpm and the 1.5-minute process may be repeated three times.
  • the peripheral speed is preferably 100 mm / s or more and 2000 mm / s or less in order to suppress contamination from media or materials.
  • the peripheral speed may be 838 mm / s (rotation speed 400 rpm, ball mill diameter 40 mm).
  • step S74 the mixture 841 of step S73 is heated.
  • the heating temperature of step S74 is preferably 500 ° C. or higher and 1100 ° C. or lower, more preferably 500 ° C. or higher and 1000 ° C. or lower, further preferably 500 ° C. or higher and 950 ° C. or lower, and further preferably 500 ° C. or higher and 900 ° C. or lower.
  • heating by a roller hers kiln may be performed.
  • the mixture 841 may be treated using a heat-resistant container having a lid.
  • the heating time can be, for example, 1 hour or more and 100 hours or less, and preferably 2 hours or more and 20 hours or less.
  • the heating is preferably performed in an oxygen-containing atmosphere (for example, a dew point of ⁇ 50 ° C. or lower, more preferably a dew point of ⁇ 80 ° C. or lower) in which water such as oxygen or dry air is low.
  • heating is performed in an atmosphere with a dew point of ⁇ 93 ° C.
  • the heating is performed in an atmosphere where the impurity concentrations of CH 4 , CO, CO 2 and H 2 are 5 ppb (parts per parts) or less, respectively, because impurities that can be mixed in the material can be suppressed.
  • the temperature rise is 200 ° C./h and the flow rate in the dry atmosphere is 10 L / min.
  • the heated material can then be cooled to room temperature.
  • the temperature lowering time from the specified temperature to room temperature is 10 hours or more and 50 hours or less.
  • cooling to room temperature in step S74 is not essential.
  • step S75 the material fired above is recovered, crushed and sieved as necessary, and then the mixture 842 of step S81 is obtained.
  • the mixture 842 obtained in step S81 can be used as the positive electrode active material 100. Further, the mixture 842 obtained in step S81 can also be subjected to the steps after step S81 shown in FIG. 3C.
  • step S82 the additive element X source 843 is prepared.
  • the additive element X added in step S82 the additive element X described above can be selected and used.
  • the additive element X source 843 in step S82 any one or more can be used from the aqueous solution containing the additive element X, the alkoxide containing the additive element X, and the solid compound containing the additive element X.
  • a solid compound containing one or more additive elements X is prepared, crushed, and mixed as shown as S82a or S82b in FIGS. 3D and 3E. (Mixture 843a or Mixture 843b) may be used as the additive element X source 843 in step S82.
  • a solid compound containing one or more additive elements X it may be mixed after crushing, crushed after mixing, or as the additive element X source 843 in step S82 without crushing. You may use it.
  • the purity of the material is 2N (99%) or more, preferably 3N (99.9%) or more, and more preferably 4N (99.99%) or more.
  • step S91 of FIG. 3C the mixture 842 of step S81 and the additive element X source 843 of step S82 are mixed. After mixing, the mixture is collected in step S92, crushed and sieved as necessary, and then the mixture 851 of step S93 is obtained. Mixing can be done dry or wet.
  • a mixer such as a rotation / revolution mixer, a ball mill, a bead mill, or the like can be used.
  • the rotation speed may be 2000 rpm and the 1.5-minute process may be repeated three times.
  • the peripheral speed is preferably 100 mm / s or more and 2000 mm / s or less in order to suppress contamination from media or materials.
  • the peripheral speed may be 838 mm / s (rotation speed 400 rpm, ball mill diameter 40 mm).
  • a ball mill using a zirconia ball having a diameter of 1 mm is used for mixing at 150 rpm for 1 hour in a dry manner.
  • the mixing is performed in a dry room having a dew point of ⁇ 100 ° C. to ⁇ 10 ° C.
  • step S94 the mixture 851 of step S93 is heated.
  • the heating temperature in step S94 is preferably 500 ° C. or higher and 1130 ° C. or lower, more preferably 500 ° C. or higher and 1000 ° C. or lower, further preferably 500 ° C. or higher and 950 ° C. or lower, and further preferably 500 ° C. or higher and 900 ° C. or lower.
  • the heating time can be, for example, 1 hour or more and 100 hours or less, and preferably 2 hours or more and 20 hours or less.
  • the heating is preferably performed in an oxygen-containing atmosphere (for example, a dew point of ⁇ 50 ° C. or lower, more preferably a dew point of ⁇ 80 ° C. or lower) in which water such as oxygen or dry air is low.
  • heating is performed in an atmosphere with a dew point of ⁇ 93 ° C.
  • the heating is performed in an atmosphere where the impurity concentrations of CH 4 , CO, CO 2 and H 2 are 5 ppb (parts per parts) or less, respectively, because impurities that can be mixed in the material can be suppressed.
  • the temperature rise is 200 ° C./h and the flow rate in the dry atmosphere is 10 L / min.
  • the heated material can then be cooled to room temperature.
  • the temperature lowering time from the specified temperature to room temperature is 10 hours or more and 50 hours or less.
  • cooling to room temperature in step S94 is not essential. If there is no problem in performing the subsequent steps, cooling may be performed at a temperature higher than room temperature.
  • step S95 the material fired above is recovered, crushed, and then the positive electrode active material 100 of step S101 is obtained. If necessary, sieving may be carried out after crushing. By the above steps, the positive electrode active material 100 according to one aspect of the present invention can be produced.
  • the positive electrode active material 100 has high crystallinity, and when the crystallinity of the mixture 821 of step S41 is high, the crystallinity of the positive electrode active material 100 is also high.
  • the positive electrode active material 100 has high crystallinity and the positive electrode active material 100 has single crystal grains, the crystal planes of lithium in and out can be aligned. If more crystal planes in and out of lithium can be exposed to the electrolyte, the battery characteristics will improve. Further, the positive electrode active material 100 has high crystallinity, and further, it is durable when the positive electrode active material 100 has single crystal grains, and it is possible to provide an active material that is not easily deteriorated even after repeated charging and discharging.
  • the positive electrode active material 100 may be represented as a composite oxide (LiMO 2 ) having lithium, a transition metal M, and oxygen.
  • the positive electrode active material 100 is a composite oxide having Ni, Co, Mn, and Al (called NCMA). Become.
  • the concentration of aluminum is preferably 0.1 at% or more and 2 at% or less.
  • the step of introducing the transition metal M and the plurality of steps of introducing the additive element X are separated from each other to form a profile in the depth direction of each element concentration. May be able to change.
  • the concentration of the additive element X can be increased in the surface layer portion as compared with the inside of the particles.
  • the number of atoms of the transition metal M can be used, and the ratio of the number of atoms of the additive element X to the reference can be made higher in the surface layer portion than in the inner layer portion.
  • the region where the aluminum concentration is 0.1 at% or more and 2 at% or less may be either the surface layer portion or the inside of the particles.
  • a positive electrode active material is produced in a step in which a high-purity material is used as the transition metal M source used in the synthesis and the amount of impurities mixed is small in the synthesis. Further, the impurity concentration is low by using a production method in which the transition metal M source and the contamination of impurities at the time of synthesis are thoroughly eliminated, and the desired additive element X is controlled and introduced into the positive electrode active material. It is possible to obtain a positive electrode active material in which the region and the region in which the additive element is introduced are controlled. Further, the positive electrode active material shown in the present embodiment is a material having high crystallinity. Further, the positive electrode active material obtained by the method for producing a positive electrode active material according to one aspect of the present invention can increase the capacity of the secondary battery and / or enhance the reliability of the secondary battery.
  • step S21a, step S21b, and step 21c of FIG. 4 the transition metal M source is prepared.
  • a case where three types of transition metal M sources, a nickel source 803, a cobalt source 804, and a manganese source 805, are used as the transition metal M source will be described.
  • aqueous solution containing nickel of the nickel source 803 a nickel sulfate aqueous solution, a nickel nitrate aqueous solution, or the like can be used.
  • cobalt-containing aqueous solution of the cobalt source 804 a cobalt sulfate aqueous solution, a cobalt nitrate aqueous solution, or the like can be used.
  • manganese-containing aqueous solution of the manganese source 805 a manganese sulfate aqueous solution, a manganese nitrate aqueous solution, or the like can be used.
  • the nickel source 803, the cobalt source 804, and the manganese source 805 used in the synthesis it is preferable to use a high-purity material as the nickel source 803, the cobalt source 804, and the manganese source 805 used in the synthesis.
  • the purity of the solute material when preparing the aqueous solution is 2N (99%) or more, preferably 3N (preferably 3N). 99.9%) or more, more preferably 4N (99.99%) or more
  • the specific resistance is preferably 1 M ⁇ ⁇ cm or more, more preferably the specific resistance is 10 M ⁇ ⁇ cm or more, still more preferably the ratio. It is desirable that the pure water has a resistivity of 15 M ⁇ ⁇ cm or more and few impurities.
  • transition metal M sources 801 when a plurality of transition metal M sources 801 are used, for example, when a cobalt source, a manganese source, and a nickel source are used, it is preferable to set the mixing ratio within a range in which a layered rock salt type crystal structure can be obtained.
  • step S31 the nickel source 803, the cobalt source 804, and the manganese source 805 are mixed to obtain the mixture 811 of step S32.
  • step S33 the aqueous solution A812 is prepared as step S33, and the aqueous solution B813 is prepared as step S34.
  • an aqueous solution having at least one of chelating agents such as glycine, oxine, 1-nitroso-2-naphthol or 2-mercaptobenzothiazole, or an aqueous solution of ammonia, or a mixture of a plurality of them is used. be able to.
  • any one or a plurality of mixed solutions of sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, or lithium hydroxide aqueous solution can be used.
  • step S35 the mixture 811, the aqueous solution A812, and the aqueous solution B813 of the above step S32 are mixed.
  • step S35 As a method of mixing in step S35, a mixing method in which the mixture 811 and the aqueous solution B813 in step S32 are added dropwise to the aqueous solution A812 placed in the reaction vessel can be used. It is desirable that the mixture 811 of step S32 is added dropwise at a constant rate, and the aqueous solution B813 is appropriately added dropwise in order to keep the pH of the mixed solution in the reaction vessel within a predetermined range.
  • step S35 it is desirable that the solution in the reaction vessel is stirred with a stirring blade or a stirrer, and the solution in the reaction vessel, the mixture 811 in step S32, the aqueous solution A812, and the aqueous solution B813 are dissolved oxygen by N2 bubbling. It is desirable to remove.
  • the pH in the reaction vessel is preferably 9 or more and 11 or less, more preferably 10.0 or more and 10.5 or less.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • step S35 a mixing method in which the aqueous solution A812 and the aqueous solution B813 are added dropwise to the mixture 811 of step S32 placed in the reaction vessel can be used. It is preferable to adjust the dropping rates of the aqueous solution A812 and the aqueous solution B813 in order to keep the solute ion concentration and the hydroxyl group concentration of the aqueous solution A812 in the reaction vessel within a predetermined range.
  • step S35 it is desirable that the solution in the reaction vessel is stirred with a stirring blade or a stirrer, and the solution in the reaction vessel, the mixture 811 in step S32, the aqueous solution A812, and the aqueous solution B813 are dissolved oxygen by N2 bubbling. It is desirable to remove.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • step S35 a case where the aqueous solution A812 is not used as the mixing method in step S35 will be described.
  • a fixed amount of the aqueous solution B813 is added dropwise to the mixture 811 of step S32 placed in the reaction vessel.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • step S35 a case where pure water is used in addition to the mixture 811, the aqueous solution A812, and the aqueous solution B813 in step S32 will be described.
  • the mixture 811 and the aqueous solution A812 of step S32 are added dropwise to the pure water contained in the reaction vessel at a constant rate, and the aqueous solution B813 is appropriately added dropwise in order to keep the pH of the mixed solution in the reaction vessel within a predetermined range. can do.
  • step S35 it is desirable that the solution in the reaction vessel is stirred with a stirring blade or a stirrer, and the solution in the reaction vessel, the mixture 811 in step S32, the aqueous solution A812, and the aqueous solution B813 are dissolved oxygen by N2 bubbling. It is desirable to remove.
  • the pH in the reaction vessel is preferably 9 or more and 11 or less, more preferably 10.0 or more and 10.5 or less.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • the solution containing the hydroxide having nickel, cobalt, and manganese formed by the mixing in step S35 is filtered as step S36 and then washed with water.
  • the water used for cleaning is preferably pure water having a specific resistance of 1 M ⁇ ⁇ cm or more, more preferably a specific resistance of 10 M ⁇ ⁇ cm or more, and further preferably a specific resistance of 15 M ⁇ ⁇ cm or more and having few impurities.
  • impurities contained in the hydroxide having nickel, cobalt, and manganese can be removed. Thereby, a high-purity hydroxide having nickel, cobalt, and manganese can be obtained as a precursor of the positive electrode active material 100.
  • step S37 the washed hydroxide having nickel, cobalt, and manganese is dried, recovered, crushed and sieved as necessary, and then the mixture 821 of step S41 is obtained. ..
  • the mixture 821 is also referred to as a precursor of the positive electrode active material 100.
  • the precursor preferably has high crystallinity, and more preferably has single crystal grains. That is, the precursor is preferably a single crystal.
  • step S42 the lithium compound 822 is prepared, and as step S51, the mixture 821 of step S41 and the lithium compound 822 are mixed. After mixing, the mixture is collected in step S52, crushed and sieved as necessary, and then the mixture 831 of step S53 is obtained. Mixing can be done dry or wet.
  • a mixer such as a rotation / revolution mixer, a ball mill, a bead mill, or the like can be used.
  • the rotation speed may be 2000 rpm and the 1.5-minute process may be repeated three times.
  • the peripheral speed is preferably 100 mm / s or more and 2000 mm / s or less in order to suppress contamination from media or materials.
  • the peripheral speed may be 838 mm / s (rotation speed 400 rpm, ball mill diameter 40 mm).
  • the mixture 821 and the lithium compound 822 can be uniformly mixed by sufficiently mixing in step S51.
  • lithium compound 822 for example, lithium hydroxide, lithium carbonate, lithium nitrate, lithium fluoride and the like can be used.
  • Lithium compound 822 is sometimes referred to as a lithium source.
  • the lithium compound 822 used in the synthesis it is preferable to use a high-purity material.
  • the purity of the material is 4N (99.99%) or more, preferably 4N5UP (99.995%) or more, and more preferably 5N (99.999%) or more.
  • step S54 the mixture 831 of step S53 is heated.
  • the heating temperature is preferably 700 ° C. or higher and lower than 1100 ° C., more preferably 800 ° C. or higher and 1000 ° C. or lower, and 800 ° C. or higher and 950 ° C. or lower. More preferred.
  • the heating time can be, for example, 1 hour or more and 100 hours or less, and preferably 2 hours or more and 20 hours or less.
  • the heating is preferably performed in an oxygen-containing atmosphere (for example, a dew point of ⁇ 50 ° C. or lower, more preferably a dew point of ⁇ 80 ° C. or lower) in which water such as oxygen or dry air is low.
  • heating is performed in an atmosphere with a dew point of ⁇ 93 ° C.
  • the heating is performed in an atmosphere where the impurity concentrations of CH 4 , CO, CO 2 and H 2 are 5 ppb (parts per parts) or less, respectively, because impurities that can be mixed in the material can be suppressed.
  • the temperature rise is 200 ° C./h and the flow rate in the dry atmosphere is 10 L / min.
  • the heated material can then be cooled to room temperature.
  • the temperature lowering time from the specified temperature to room temperature is 10 hours or more and 50 hours or less.
  • cooling to room temperature in step S54 is not essential.
  • the crucible used for heating in step S54 is preferably made of a material that does not contain impurities.
  • an alumina crucible having a purity of 99.9% is used.
  • step S54 when recovering the material that has been heated in step S54, it is suitable because impurities are not mixed in the material when it is moved from the crucible to the mortar and then recovered. Further, the mortar is also suitable as a material that does not contain impurities. Specifically, it is preferable to use an alumina mortar having a purity of 90 wt% or more, preferably 99 wt% or more. The same conditions as in step S54 can be applied to the heating steps described later other than step S54.
  • step S55 the material fired above is recovered, crushed and sieved as necessary, and then the mixture 832 of step S61 is obtained.
  • a magnesium source 834 and a fluorine source 835 are prepared as the additive element X source. Subsequently, in step S65, the magnesium source 834 and the fluorine source 835 are crushed and mixed to obtain the mixture 836 of step S66.
  • magnesium source 834 for example, magnesium fluoride, magnesium oxide, magnesium hydroxide, magnesium carbonate and the like can be used.
  • Examples of the fluorine source 835 include lithium fluoride (LiF), magnesium fluoride (MgF 2 ), aluminum fluoride (AlF 3 ), titanium fluoride (TiF 4 ), cobalt fluoride (CoF 2 , CoF 3 ), and fluorine.
  • the fluorine source is not limited to solid, for example, fluorine (F 2 ), carbon fluoride, sulfur fluoride, oxygen fluoride (OF 2 , O 2 F 2 , O 3 F 2 , O 4 F 2 , O 2 F). Etc. may be used to mix the mixture in the atmosphere in the heating step described later. Further, a plurality of fluorine sources may be mixed and used. Among them, lithium fluoride is preferable because it has a relatively low melting point of 848 ° C. and is easily melted in the annealing step described later.
  • lithium fluoride LiF is prepared as a fluorine source
  • magnesium fluoride MgF 2 is prepared as a fluorine source and a magnesium source.
  • LiF: MgF 2 65:35 (molar ratio)
  • the effect of lowering the melting point is highest.
  • the amount of lithium fluoride increases, there is a concern that the amount of lithium becomes excessive and the cycle characteristics deteriorate.
  • the term "neighborhood" means a value larger than 0.9 times and smaller than 1.1 times the value.
  • a solvent is prepared.
  • a ketone such as acetone, an alcohol such as ethanol and isopropanol, ether, dioxane, acetonitrile, N-methyl-2-pyrrolidone (NMP) and the like can be used. It is more preferable to use an aprotic solvent that does not easily react with lithium. In this embodiment, dehydrated acetone having a purity of 99.5% or more is used.
  • the purity of the material is 4N (99.99%) or more, preferably 4N5UP (99.995%) or more, and more preferably 5N (99.999%) or more.
  • step S71 the mixture 832 of step S61 and the mixture 836 of step S66 are mixed. After mixing, it is collected in step S72, crushed and sieved as necessary, and then the mixture 841 of step S73 is obtained.
  • Mixing can be done dry or wet.
  • a mixer such as a rotation / revolution mixer, a ball mill, a bead mill, or the like can be used.
  • the rotation speed may be 2000 rpm and the 1.5-minute process may be repeated three times.
  • a ball mill it is preferable to use, for example, zirconia balls as a medium.
  • the peripheral speed is preferably 100 mm / s or more and 2000 mm / s or less in order to suppress contamination from media or materials.
  • the peripheral speed may be 838 mm / s (rotation speed 400 rpm, ball mill diameter 40 mm).
  • step S74 the mixture 841 of step S73 is heated.
  • the heating temperature of step S74 is preferably 500 ° C. or higher and 1100 ° C. or lower, more preferably 500 ° C. or higher and 1000 ° C. or lower, further preferably 500 ° C. or higher and 950 ° C. or lower, and further preferably 500 ° C. or higher and 900 ° C. or lower.
  • heating by a roller hers kiln may be performed.
  • the mixture 841 may be treated using a heat-resistant container having a lid.
  • the heating time can be, for example, 1 hour or more and 100 hours or less, and preferably 2 hours or more and 20 hours or less.
  • the heating is preferably performed in an oxygen-containing atmosphere (for example, a dew point of ⁇ 50 ° C. or lower, more preferably a dew point of ⁇ 80 ° C. or lower) in which water such as oxygen or dry air is low.
  • heating is performed in an atmosphere with a dew point of ⁇ 93 ° C.
  • the heating is performed in an atmosphere where the impurity concentrations of CH 4 , CO, CO 2 and H 2 are 5 ppb (parts per parts) or less, respectively, because impurities that can be mixed in the material can be suppressed.
  • the temperature rise is 200 ° C./h and the flow rate in the dry atmosphere is 10 L / min.
  • the heated material can then be cooled to room temperature.
  • the temperature lowering time from the specified temperature to room temperature is 10 hours or more and 50 hours or less.
  • cooling to room temperature in step S74 is not essential.
  • step S75 the material fired above is recovered, crushed and sieved as necessary, and then the mixture 842 of step S81 is obtained. Since lithium fluoride LiF was prepared as a fluorine source, magnesium fluoride MgF 2 was prepared as a fluorine source and a magnesium source, and the container (pot) was covered, an appropriate amount of fluorine was introduced into the mixture 842. Fluorine from LiF and MgF 2 may migrate to the surface layer of the mixture 842. The fluorine-containing region on the surface of the mixture 842 functions as a barrier membrane. Due to such fluorine, the surface of the mixture 842 is smooth and has less unevenness. Heating after mixing with fluorine leads to the promotion of single crystal formation of the mixture 842.
  • the mixture 842 obtained in step S81 can be used as the positive electrode active material 100. Further, the mixture 842 obtained in step S81 can also be subjected to the steps after step S81 shown in FIG.
  • step S83 and step S84 a nickel source 845 and an aluminum source 846 are prepared as the additive element X source.
  • steps S85 and S86 the nickel source 845 and the aluminum source 846 are crushed, respectively, and mixed in step S87 to obtain the mixture 847 of step S88.
  • Nickel oxide, nickel hydroxide, etc. can be used as the nickel source.
  • aluminum oxide aluminum oxide, aluminum hydroxide, etc. can be used as the aluminum source.
  • the purity of the material is 4N (99.99%) or more, preferably 4N5UP (99.995%) or more, and more preferably 5N (99.999%) or more.
  • step S91 the mixture 842 of step S81 and the mixture 847 of step S88 are mixed.
  • the mixture is collected in step S92, crushed and sieved as necessary, and then the mixture 851 of step S93 is obtained.
  • Mixing can be done dry or wet.
  • a mixer such as a rotation / revolution mixer, a ball mill, a bead mill, or the like can be used.
  • the rotation / revolution mixer Awatori Rentaro manufactured by Shinky Co., Ltd. is used as the rotation / revolution mixer, for example, the rotation speed may be 2000 rpm and the 1.5-minute process may be repeated three times.
  • a ball mill it is preferable to use, for example, zirconia balls as a medium.
  • the peripheral speed is preferably 100 mm / s or more and 2000 mm / s or less in order to suppress contamination from media or materials.
  • the peripheral speed may be 838 mm / s (rotation speed 400 rpm, ball mill diameter 40 mm).
  • a ball mill using a zirconia ball having a diameter of 1 mm is used for mixing at 150 rpm for 1 hour in a dry manner.
  • the mixing is performed in a dry room having a dew point of ⁇ 100 ° C. to ⁇ 10 ° C.
  • step S94 the mixture 851 of step S93 is heated.
  • the heating temperature in step S94 is preferably 500 ° C. or higher and 1130 ° C. or lower, more preferably 500 ° C. or higher and 1000 ° C. or lower, further preferably 500 ° C. or higher and 950 ° C. or lower, and further preferably 500 ° C. or higher and 900 ° C. or lower.
  • the heating time can be, for example, 1 hour or more and 100 hours or less, and preferably 2 hours or more and 20 hours or less.
  • the heating is preferably performed in an oxygen-containing atmosphere (for example, a dew point of ⁇ 50 ° C. or lower, more preferably a dew point of ⁇ 80 ° C. or lower) in which water such as oxygen or dry air is low.
  • heating is performed in an atmosphere with a dew point of ⁇ 93 ° C.
  • the heating is performed in an atmosphere where the impurity concentrations of CH 4 , CO, CO 2 and H 2 are 5 ppb (parts per parts) or less, respectively, because impurities that can be mixed in the material can be suppressed.
  • the temperature rise is 200 ° C./h and the flow rate in the dry atmosphere is 10 L / min.
  • the heated material can then be cooled to room temperature.
  • the temperature lowering time from the specified temperature to room temperature is 10 hours or more and 50 hours or less.
  • cooling to room temperature in step S94 is not essential.
  • step S95 the material fired above is recovered, crushed, and then the positive electrode active material 100 of step S101 is obtained. If necessary, sieving may be carried out after crushing. By the above steps, the positive electrode active material 100 according to one aspect of the present invention can be produced.
  • the positive electrode active material 100 has high crystallinity, and when the crystallinity of the mixture 821 of step S41 is high, the crystallinity of the positive electrode active material 100 is also high.
  • the positive electrode active material 100 has high crystallinity and the positive electrode active material 100 has single crystal grains, the crystal planes of lithium in and out can be aligned. If more crystal planes in and out of lithium can be exposed to the electrolyte, the battery characteristics will improve. Further, the positive electrode active material 100 has high crystallinity, and further, it is durable when the positive electrode active material 100 has single crystal grains, and it is possible to provide an active material that is not easily deteriorated even after repeated charging and discharging.
  • the positive electrode active material 100 has fluorine, it is preferable that the surface is smooth and there are few irregularities.
  • a cross section obtained by observing a cross section cut toward the center of the positive electrode active material 100 with a scanning transmission electron microscope (STEM) when the particle surface roughness information is quantified from the measurement data, at least a part of the particles is preferably less than 3 nm. Is preferably a surface roughness of less than 1 nm.
  • Nickel and aluminum may move to the surface layer portion of the positive electrode active material 100.
  • the region having nickel or the region having aluminum on the surface layer portion of the positive electrode active material 100 functions as a barrier membrane.
  • the positive electrode active material 100 is a lithium composite oxide containing at least nickel, cobalt, and manganese, and further contains aluminum and nickel.
  • aluminum and nickel are elements added in a small amount.
  • the concentration of aluminum is 0.1 at% or more and 2 at% or less. It is preferable to have it.
  • the profile of each element concentration in the depth direction can be changed.
  • the concentration of the additive element X can be increased in the surface layer portion as compared with the inside of the particles.
  • the ratio of the number of atoms of the additive element X to the reference can be made higher in the surface layer portion than in the inside.
  • the region where the aluminum concentration is 0.1 at% or more and 2 at% or less may be either the surface layer portion or the inside of the particles.
  • a positive electrode active material is produced in a step in which a high-purity material is used as the transition metal M source used in the synthesis and the amount of impurities mixed is small in the synthesis. Further, the impurity concentration is low by using a production method in which the transition metal M source and the contamination of impurities at the time of synthesis are thoroughly eliminated, and the desired additive element X is controlled and introduced into the positive electrode active material. It is possible to obtain a positive electrode active material in which the region and the region into which the additive element X is introduced are controlled. Further, the positive electrode active material shown in the present embodiment is a material having high crystallinity. In addition, the positive electrode active material obtained by the method for producing a positive electrode active material according to one aspect of the present invention can increase the capacity of the secondary battery and / or enhance the reliability of the secondary battery.
  • the transition metal M source 801 is prepared as step S21 in FIG. 6, and the additive element X source 802 is prepared as step S22.
  • the transition metal M for example, at least one of manganese, cobalt, and nickel can be used.
  • the transition metal M when only cobalt is used, when only nickel is used, when two types of cobalt and manganese are used, when two types of cobalt and nickel are used, or when three types of cobalt, manganese, and nickel are used. May be used.
  • the transition metal M source 801 is prepared as an aqueous solution containing the transition metal M.
  • the transition metal M source 801 as the aqueous solution containing cobalt, an aqueous solution of cobalt sulfate or an aqueous solution of cobalt nitrate can be used, and as the aqueous solution containing nickel, an aqueous solution of nickel sulfate or an aqueous solution of nickel nitrate can be used.
  • the aqueous solution containing manganese an aqueous solution of manganese sulfate, an aqueous solution of manganese nitrate, or the like can be used.
  • the transition metal M source 801 used in the synthesis it is preferable to use a high-purity material as the transition metal M source 801 used in the synthesis.
  • the purity of the solute material when preparing the aqueous solution is 2N (99%) or more, preferably 3N (99.9%) or more, more preferably.
  • Impurities of 4N (99.99%) or more preferably water having a specific resistance of 1 M ⁇ ⁇ cm or more, more preferably a specific resistance of 10 M ⁇ ⁇ cm or more, still more preferably a specific resistance of 15 M ⁇ ⁇ cm or more. It is desirable to use less pure water.
  • the capacity of the secondary battery can be increased and / or the reliability of the secondary battery can be increased.
  • Additive elements X include nickel, cobalt, magnesium, calcium, chlorine, fluorine, bromine, aluminum, manganese, titanium, zirconium, yttrium, vanadium, iron, chromium, niobium, lantern, hafnium, zinc, silicon, sulfur, phosphorus, One or more selected from boron and arsenic can be used.
  • the additive element X source 802 any one or more can be used from an aqueous solution containing the additive element X, an alkoxide containing the additive element X, or a solid compound containing the additive element X.
  • the additive element X source 802 in step S22 is preferably prepared as an aqueous solution containing the additive element X.
  • the purity of the material is 2N (99%) or more, preferably 3N (99.9%) or more, and more preferably 4N (99.99%) or more.
  • step S31 the transition metal M source 801 and the additive element X source 802 are mixed to obtain the mixture 811 of step S32.
  • step S33 the aqueous solution A812 is prepared as step S33, and the aqueous solution B813 is prepared as step S34.
  • an aqueous solution having at least one of chelating agents such as glycine, oxine, 1-nitroso-2-naphthol or 2-mercaptobenzothiazole, or an aqueous solution of ammonia, or a mixture of a plurality of them is used. be able to.
  • any one or a plurality of mixed solutions of sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, or lithium hydroxide aqueous solution can be used.
  • step S35 the mixture 811, the aqueous solution A812, and the aqueous solution B813 of the above step S32 are mixed.
  • step S35 As a method of mixing in step S35, a mixing method in which the mixture 811 and the aqueous solution B813 in step S32 are added dropwise to the aqueous solution A812 placed in the reaction vessel can be used. It is desirable that the mixture 811 of step S32 is added dropwise at a constant rate, and the aqueous solution B813 is appropriately added dropwise in order to keep the pH of the mixed solution in the reaction vessel within a predetermined range.
  • step S35 it is desirable that the solution in the reaction vessel is stirred with a stirring blade or a stirrer, and the solution in the reaction vessel, the mixture 811 in step S32, the aqueous solution A812, and the aqueous solution B813 are dissolved oxygen by N2 bubbling. It is desirable to remove.
  • the pH in the reaction vessel is preferably 9 or more and 11 or less, more preferably 10.0 or more and 10.5 or less.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • step S35 a mixing method in which the aqueous solution A812 and the aqueous solution B813 are added dropwise to the mixture 811 of step S32 placed in the reaction vessel can be used. It is preferable to adjust the dropping rates of the aqueous solution A812 and the aqueous solution B813 in order to keep the solute ion concentration and the hydroxyl group concentration of the aqueous solution A812 in the reaction vessel within a predetermined range.
  • step S35 it is desirable that the solution in the reaction vessel is stirred with a stirring blade or a stirrer, and the solution in the reaction vessel, the mixture 811 in step S32, the aqueous solution A812, and the aqueous solution B813 are dissolved oxygen by N2 bubbling. It is desirable to remove.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • step S35 a case where the aqueous solution A812 is not used as the mixing method in step S35 will be described.
  • a fixed amount of the aqueous solution B813 is added dropwise to the mixture 811 of step S32 placed in the reaction vessel.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • step S35 a case where pure water is used in addition to the mixture 811, the aqueous solution A812, and the aqueous solution B813 in step S32 will be described.
  • the mixture 811 and the aqueous solution A812 of step S32 are added dropwise to the pure water contained in the reaction vessel at a constant rate, and the aqueous solution B813 is appropriately added dropwise in order to keep the pH of the mixed solution in the reaction vessel within a predetermined range. can do.
  • step S35 it is desirable that the solution in the reaction vessel is stirred with a stirring blade or a stirrer, and the solution in the reaction vessel, the mixture 811 in step S32, the aqueous solution A812, and the aqueous solution B813 are dissolved oxygen by N2 bubbling. It is desirable to remove.
  • the pH of the solution in the reaction vessel is preferably 9 or more and 11 or less, more preferably 10.0 or more and 10.5 or less.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • the solution containing the hydroxide having the transition metal M formed by the mixing in step S35 is filtered as step S36 and then washed with water.
  • the water used for cleaning is preferably pure water having a specific resistance of 1 M ⁇ ⁇ cm or more, more preferably a specific resistance of 10 M ⁇ ⁇ cm or more, and further preferably a specific resistance of 15 M ⁇ ⁇ cm or more and having few impurities.
  • impurities contained in the hydroxide having the transition metal M can be removed. Thereby, a hydroxide having a high-purity transition metal M can be obtained as a precursor of the positive electrode active material 100.
  • step S36 the hydroxide having the transition metal M and the additive element X after washing is dried, recovered, crushed and sieved as necessary, and then the mixture 821 of step S41 is added. obtain.
  • the mixture 821 is also referred to as a precursor of the positive electrode active material 100.
  • the precursor preferably has high crystallinity, and more preferably has single crystal grains. That is, the precursor is preferably a single crystal.
  • step S42 the lithium compound 822 is prepared, and as step S51, the mixture 821 of step S41 and the lithium compound 822 are mixed. After mixing, the mixture is collected in step S52, crushed and sieved as necessary, and then the mixture 831 of step S53 is obtained. Mixing can be done dry or wet.
  • a mixer such as a rotation / revolution mixer, a ball mill, a bead mill, or the like can be used.
  • the rotation speed may be 2000 rpm and the 1.5-minute process may be repeated three times.
  • the peripheral speed is preferably 100 mm / s or more and 2000 mm / s or less in order to suppress contamination from media or materials.
  • the peripheral speed may be 838 mm / s (rotation speed 400 rpm, ball mill diameter 40 mm).
  • the mixture 821 and the lithium compound 822 can be uniformly mixed by sufficiently mixing in step S51.
  • lithium compound 822 for example, lithium hydroxide, lithium carbonate, lithium nitrate, lithium fluoride and the like can be used.
  • Lithium compound 822 is sometimes referred to as a lithium source.
  • step S54 the mixture 831 of step S53 is heated.
  • the heating temperature is preferably a temperature near the melting point of the mixture 821 and the lithium compound 822, preferably 700 ° C. or higher and lower than 1100 ° C., more preferably 800 ° C. or higher and 1000 ° C. or lower, and 800 ° C. or higher and 950 ° C. or lower. Is even more preferable.
  • it is advisable to cover the container (crucible) containing the mixture 831. It is possible to prevent unnecessary evaporation of the raw material gas.
  • the heating time can be, for example, 1 hour or more and 100 hours or less, and preferably 2 hours or more and 20 hours or less.
  • the heating is preferably performed in an oxygen-containing atmosphere (for example, a dew point of ⁇ 50 ° C. or lower, more preferably a dew point of ⁇ 80 ° C. or lower) in which water such as oxygen or dry air is low.
  • heating is performed in an atmosphere with a dew point of ⁇ 93 ° C.
  • the heating is performed in an atmosphere where the impurity concentrations of CH 4 , CO, CO 2 and H 2 are 5 ppb (parts per parts) or less, respectively, because impurities that can be mixed in the material can be suppressed.
  • the temperature rise is 200 ° C./h and the flow rate in the dry atmosphere is 10 L / min.
  • the heated material can then be cooled to room temperature.
  • the temperature lowering time from the specified temperature to room temperature is 10 hours or more and 50 hours or less.
  • cooling to room temperature in step S54 is not essential.
  • the crucible used for heating in step S54 is preferably made of a material that does not contain impurities.
  • an alumina crucible having a purity of 99.9% is used.
  • the mortar when recovering the material that has been heated in step S54, it is suitable because impurities are not mixed in the material when it is moved from the crucible to the mortar and then recovered. Further, the mortar is also suitable as a material that does not contain impurities. Specifically, it is preferable to use an alumina mortar having a purity of 90 wt% or more, preferably 99 wt% or more.
  • step S55 the material fired above is recovered, and after crushing, the positive electrode active material 100 of step S56 is obtained. If necessary, sieving may be carried out after crushing. By the above steps, the positive electrode active material 100 according to one aspect of the present invention can be produced.
  • the positive electrode active material 100 has high crystallinity, and when the crystallinity of the mixture 821 of step S41 is high, the crystallinity of the positive electrode active material 100 is also high.
  • the positive electrode active material 100 has high crystallinity and the positive electrode active material 100 has single crystal grains, the crystal planes of lithium in and out can be aligned. More crystal faces of lithium in and out can be exposed to the electrolyte, improving battery characteristics.
  • the positive electrode active material 100 has high crystallinity, and further, it is durable when the positive electrode active material 100 has single crystal grains, and it is possible to provide an active material that is not easily deteriorated even after repeated charging and discharging.
  • the positive electrode active material 100 may be represented as a composite oxide (LiMO 2 ) having lithium, a transition metal M, and oxygen.
  • the positive electrode active material 100 is a composite oxide (NCMA) having Ni, Co, Mn, and Al.
  • the concentration of aluminum is preferably 0.1 at% or more and 2 at% or less.
  • the concentration of the additive element X can be increased in the surface layer portion as compared with the inside of the particles. Further, based on the number of atoms of the transition metal M, the ratio of the number of atoms of the additive element X to the reference can be made higher in the surface layer portion than in the inside.
  • the region where the aluminum concentration is 0.1 at% or more and 2 at% or less may be either the surface layer portion or the inside of the particles.
  • a positive electrode active material is produced in a step in which a high-purity material is used as the transition metal M source used in the synthesis and the amount of impurities mixed is small in the synthesis. Further, the impurity concentration is low by using a production method in which the transition metal M source and the contamination of impurities at the time of synthesis are thoroughly eliminated, and the desired additive element X is controlled and introduced into the positive electrode active material. It is possible to obtain a positive electrode active material in which the region and the region into which the additive element X is introduced are controlled. Further, the positive electrode active material shown in the present embodiment is a material having high crystallinity. In addition, the positive electrode active material obtained by the method for producing a positive electrode active material according to one aspect of the present invention can increase the capacity of the secondary battery and / or enhance the reliability of the secondary battery.
  • a transition metal M source 801 is prepared.
  • the transition metal M for example, at least one of manganese, cobalt, and nickel can be used.
  • the transition metal M when only cobalt is used, when only nickel is used, when two types of cobalt and manganese are used, when two types of cobalt and nickel are used, or when three types of cobalt, manganese, and nickel are used. May be used.
  • the transition metal M source is prepared as an aqueous solution containing the transition metal M.
  • the transition metal M source 801 as the aqueous solution containing cobalt, an aqueous solution of cobalt sulfate or an aqueous solution of cobalt nitrate can be used, and as the aqueous solution containing nickel, an aqueous solution of nickel sulfate or an aqueous solution of nickel nitrate can be used.
  • the aqueous solution containing manganese an aqueous solution of manganese sulfate, an aqueous solution of manganese nitrate, or the like can be used.
  • the transition metal M source 801 used in the synthesis it is preferable to use a high-purity material as the transition metal M source 801 used in the synthesis.
  • the purity of the solute material when preparing the aqueous solution is 2N (99%) or more, preferably 3N (99.9%) or more, more preferably.
  • Impurities of 4N (99.99%) or more preferably water having a specific resistance of 1 M ⁇ ⁇ cm or more, more preferably a specific resistance of 10 M ⁇ ⁇ cm or more, still more preferably a specific resistance of 15 M ⁇ ⁇ cm or more. It is desirable to use less pure water.
  • the capacity of the secondary battery can be increased and / or the reliability of the secondary battery can be increased.
  • transition metal M sources 801 when a plurality of transition metal M sources 801 are used, for example, when a cobalt source, a manganese source, and a nickel source are used, it is preferable to set the mixing ratio within a range in which a layered rock salt type crystal structure can be obtained.
  • step S31 the above transition metal M source 801 is mixed to obtain the mixture 811 of step S32.
  • step S33 the aqueous solution A812 is prepared as step S33, and the aqueous solution B813 is prepared as step S34.
  • an aqueous solution having at least one of chelating agents such as glycine, oxine, 1-nitroso-2-naphthol or 2-mercaptobenzothiazole, or an aqueous solution of ammonia, or a mixture of a plurality of them is used. be able to.
  • any one or a plurality of mixed solutions of sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, or lithium hydroxide aqueous solution can be used.
  • step S35 the mixture 811, the aqueous solution A812, and the aqueous solution B813 of the above step S32 are mixed.
  • step S35 As a method of mixing in step S35, a mixing method in which the mixture 811 and the aqueous solution B813 in step S32 are added dropwise to the aqueous solution A812 placed in the reaction vessel can be used. It is desirable that the mixture 811 of step S32 is added dropwise at a constant rate, and the aqueous solution B813 is appropriately added dropwise in order to keep the pH of the mixed solution in the reaction vessel within a predetermined range.
  • step S35 it is desirable that the solution in the reaction vessel is stirred with a stirring blade or a stirrer, and the solution in the reaction vessel, the mixture 811 in step S32, the aqueous solution A812, and the aqueous solution B813 are dissolved oxygen by N2 bubbling. It is desirable to remove.
  • the pH in the reaction vessel is preferably 9 or more and 11 or less, more preferably 10.0 or more and 10.5 or less.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • step S35 a mixing method in which the aqueous solution A812 and the aqueous solution B813 are added dropwise to the mixture 811 of step S32 placed in the reaction vessel can be used. It is preferable to adjust the dropping rates of the aqueous solution A812 and the aqueous solution B813 in order to keep the solute ion concentration and the hydroxyl group concentration of the aqueous solution A812 in the reaction vessel within a predetermined range.
  • step S35 it is desirable that the solution in the reaction vessel is stirred with a stirring blade or a stirrer, and the solution in the reaction vessel, the mixture 811 in step S32, the aqueous solution A812, and the aqueous solution B813 are dissolved oxygen by N2 bubbling. It is desirable to remove.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • step S35 a case where the aqueous solution A812 is not used as the mixing method in step S35 will be described.
  • a fixed amount of the aqueous solution B813 is added dropwise to the mixture 811 of step S32 placed in the reaction vessel.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • step S35 a case where pure water is used in addition to the mixture 811, the aqueous solution A812, and the aqueous solution B813 in step S32 will be described.
  • the mixture 811 and the aqueous solution A812 of step S32 are added dropwise to the pure water contained in the reaction vessel at a constant rate, and the aqueous solution B813 is appropriately added dropwise in order to keep the pH of the mixed solution in the reaction vessel within a predetermined range. can do.
  • step S35 it is desirable that the solution in the reaction vessel is stirred with a stirring blade or a stirrer, and the solution in the reaction vessel, the mixture 811 in step S32, the aqueous solution A812, and the aqueous solution B813 are dissolved oxygen by N2 bubbling. It is desirable to remove.
  • the pH in the reaction vessel is preferably 9 or more and 11 or less, more preferably 10.0 or more and 10.5 or less.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • the solution containing the hydroxide having the transition metal M formed by the mixing in step S35 is filtered as step S36 and then washed with water.
  • the water used for cleaning is preferably pure water having a specific resistance of 1 M ⁇ ⁇ cm or more, more preferably a specific resistance of 10 M ⁇ ⁇ cm or more, and further preferably a specific resistance of 15 M ⁇ ⁇ cm or more and having few impurities.
  • impurities contained in the hydroxide having the transition metal M can be removed. Thereby, a hydroxide having a high-purity transition metal M can be obtained as a precursor of the positive electrode active material 100.
  • step S36 the hydroxide having the transition metal M after washing is dried, recovered, crushed and sieved as necessary, and then the mixture 821 of step S41 is obtained.
  • the mixture 821 is also referred to as a precursor of the positive electrode active material 100.
  • the precursor preferably has high crystallinity, and more preferably has single crystal grains. That is, the precursor is preferably a single crystal.
  • step S42 the lithium compound 822 is prepared as step S42, and the additive element X source 823 is prepared as step S43.
  • step S51 the mixture 821 of step S41, the lithium compound 822, and the additive element X source 823 are mixed.
  • step S52 the mixture is collected in step S52, crushed and sieved as necessary, and then the mixture 831 of step S53 is obtained.
  • Mixing can be done dry or wet.
  • a mixer such as a rotation / revolution mixer, a ball mill, a bead mill, or the like can be used.
  • the rotation / revolution mixer Awatori Rentaro manufactured by Shinky Co., Ltd.
  • the rotation speed may be 2000 rpm and the 1.5-minute process may be repeated three times.
  • a ball mill it is preferable to use, for example, zirconia balls as a medium.
  • the peripheral speed is preferably 100 mm / s or more and 2000 mm / s or less in order to suppress contamination from media or materials.
  • the peripheral speed may be 838 mm / s (rotation speed 400 rpm, ball mill diameter 40 mm).
  • the mixture 821 and the lithium compound 822 can be uniformly mixed by sufficiently mixing in step S51.
  • lithium compound 822 for example, lithium hydroxide, lithium carbonate, lithium nitrate, lithium fluoride and the like can be used.
  • Lithium compound 822 is sometimes referred to as a lithium source.
  • the lithium compound 822 used in the synthesis it is preferable to use a high-purity material.
  • the purity of the material is 4N (99.99%) or more, preferably 4N5UP (99.995%) or more, and more preferably 5N (99.999%) or more.
  • Additive elements X include nickel, cobalt, magnesium, calcium, chlorine, fluorine, aluminum, manganese, titanium, zirconium, yttrium, vanadium, iron, chromium, niobium, lanthanum, hafnium, zinc, silicon, sulfur, phosphorus, boron, And one or more selected from arsenic can be used. Further, as the additive element X, bromine and beryllium may be used in addition to the above elements. However, since bromine and beryllium are elements that are toxic to living organisms, it is preferable to use the above-mentioned additive element X.
  • any one or more can be used from an aqueous solution containing the additive element X, an alkoxide containing the additive element X, or a solid compound containing the additive element X.
  • the purity of the material is 2N (99%) or more, preferably 3N (99.9%) or more, and more preferably 4N (99.99%) or more.
  • step S54 the mixture 831 of step S53 is heated.
  • the heating temperature is preferably a temperature near the melting point of the mixture 821 and the lithium compound 822, preferably 700 ° C. or higher and lower than 1100 ° C., more preferably 800 ° C. or higher and 1000 ° C. or lower, and 800 ° C. or higher and 950 ° C. The following is more preferable.
  • the heating time can be, for example, 1 hour or more and 100 hours or less, and preferably 2 hours or more and 20 hours or less.
  • the heating is preferably performed in an oxygen-containing atmosphere (for example, a dew point of ⁇ 50 ° C. or lower, more preferably a dew point of ⁇ 80 ° C. or lower) in which water such as oxygen or dry air is low.
  • heating is performed in an atmosphere with a dew point of ⁇ 93 ° C.
  • the heating is performed in an atmosphere where the impurity concentrations of CH 4 , CO, CO 2 and H 2 are 5 ppb (parts per parts) or less, respectively, because impurities that can be mixed in the material can be suppressed.
  • the temperature rise is 200 ° C./h and the flow rate in the dry atmosphere is 10 L / min.
  • the heated material can then be cooled to room temperature.
  • the temperature lowering time from the specified temperature to room temperature is 10 hours or more and 50 hours or less.
  • cooling to room temperature in step S54 is not essential.
  • the crucible used for heating in step S54 is preferably made of a material that does not contain impurities.
  • an alumina crucible having a purity of 99.9% is used.
  • the mortar when recovering the material that has been heated in step S54, it is suitable because impurities are not mixed in the material when it is moved from the crucible to the mortar and then recovered. Further, the mortar is also suitable as a material that does not contain impurities. Specifically, it is preferable to use an alumina mortar having a purity of 90 wt% or more, preferably 99 wt% or more.
  • step S55 the material fired above is recovered, and after crushing, the positive electrode active material 100 of step S56 is obtained. If necessary, sieving may be carried out after crushing. By the above steps, the positive electrode active material 100 according to one aspect of the present invention can be produced.
  • the positive electrode active material 100 has high crystallinity, and when the crystallinity of the mixture 821 of step S41 is high, the crystallinity of the positive electrode active material 100 is also high.
  • the positive electrode active material 100 has high crystallinity and the positive electrode active material 100 has single crystal grains, the crystal planes of lithium in and out can be aligned. If more crystal planes in and out of lithium can be exposed to the electrolyte, the battery characteristics will improve. Further, the positive electrode active material 100 has high crystallinity, and further, it is durable when the positive electrode active material 100 has single crystal grains, and it is possible to provide an active material that is not easily deteriorated even after repeated charging and discharging.
  • the positive electrode active material 100 may be represented as a composite oxide (LiMO 2 ) having lithium, a transition metal M, and oxygen.
  • the positive electrode active material 100 is a composite oxide (NCMA) having Ni, Co, Mn, and Al.
  • the concentration of aluminum is preferably 0.1 at% or more and 2 at% or less.
  • the concentration of the additive element X can be increased in the surface layer portion as compared with the inside of the particles. Further, based on the number of atoms of the transition metal M, the ratio of the number of atoms of the additive element X to the reference can be made higher in the surface layer portion than in the inside.
  • the region where the aluminum concentration is 0.1 at% or more and 2 at% or less may be either the surface layer portion or the inside of the particles.
  • a positive electrode active material is produced in a step in which a high-purity material is used as the transition metal M source used in the synthesis and the amount of impurities mixed is small in the synthesis. Further, the impurity concentration is low by using a production method in which the transition metal M source and the contamination of impurities at the time of synthesis are thoroughly eliminated, and the desired additive element X is controlled and introduced into the positive electrode active material. It is possible to obtain a positive electrode active material in which the region and the region into which the additive element X is introduced are controlled. Further, the positive electrode active material shown in the present embodiment is a material having high crystallinity. In addition, the positive electrode active material obtained by the method for producing a positive electrode active material according to one aspect of the present invention can increase the capacity of the secondary battery and / or enhance the reliability of the secondary battery.
  • a transition metal M source 801 is prepared.
  • the transition metal M for example, at least one of manganese, cobalt, and nickel can be used.
  • the transition metal M when only cobalt is used, when only nickel is used, when two types of cobalt and manganese are used, when two types of cobalt and nickel are used, or when three types of cobalt, manganese, and nickel are used. May be used.
  • the transition metal M source 801 is prepared as an aqueous solution containing the transition metal M.
  • the transition metal M source 801 as the aqueous solution containing cobalt, an aqueous solution of cobalt sulfate or an aqueous solution of cobalt nitrate can be used, and as the aqueous solution containing nickel, an aqueous solution of nickel sulfate or an aqueous solution of nickel nitrate can be used.
  • the aqueous solution containing manganese an aqueous solution of manganese sulfate, an aqueous solution of manganese nitrate, or the like can be used.
  • the transition metal M source 801 used in the synthesis it is preferable to use a high-purity material as the transition metal M source 801 used in the synthesis.
  • the purity of the solute material when preparing the aqueous solution is 2N (99%) or more, preferably 3N (99.9%) or more, more preferably.
  • Impurities of 4N (99.99%) or more preferably water having a specific resistance of 1 M ⁇ ⁇ cm or more, more preferably a specific resistance of 10 M ⁇ ⁇ cm or more, still more preferably a specific resistance of 15 M ⁇ ⁇ cm or more. It is desirable to use less pure water.
  • the capacity of the secondary battery can be increased and / or the reliability of the secondary battery can be increased.
  • transition metal M sources 801 when a plurality of transition metal M sources 801 are used, for example, when a cobalt source, a manganese source, and a nickel source are used, it is preferable to set the mixing ratio within a range in which a layered rock salt type crystal structure can be obtained.
  • step S31 the above transition metal M source 801 is mixed to obtain the mixture 811 of step S32.
  • step S33 the aqueous solution A812 is prepared as step S33, and the aqueous solution B813 is prepared as step S34.
  • an aqueous solution having at least one of chelating agents such as glycine, oxine, 1-nitroso-2-naphthol or 2-mercaptobenzothiazole, or an aqueous solution of ammonia, or a mixture of a plurality of them is used. be able to.
  • any one or a plurality of mixed solutions of sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, or lithium hydroxide aqueous solution can be used.
  • step S35 the mixture 811, the aqueous solution A812, and the aqueous solution B813 of the above step S32 are mixed.
  • step S35 As a method of mixing in step S35, a mixing method in which the mixture 811 and the aqueous solution B813 in step S32 are added dropwise to the aqueous solution A812 placed in the reaction vessel can be used. It is desirable that the mixture 811 of step S32 is added dropwise at a constant rate, and the aqueous solution B813 is appropriately added dropwise in order to keep the pH of the mixed solution in the reaction vessel within a predetermined range.
  • step S35 it is desirable that the solution in the reaction vessel is stirred with a stirring blade or a stirrer, and the solution in the reaction vessel, the mixture 811 in step S32, the aqueous solution A812, and the aqueous solution B813 are dissolved oxygen by N2 bubbling. It is desirable to remove.
  • the pH in the reaction vessel is preferably 9 or more and 11 or less, more preferably 10.0 or more and 10.5 or less.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • step S35 a mixing method in which the aqueous solution A812 and the aqueous solution B813 are added dropwise to the mixture 811 of step S32 placed in the reaction vessel can be used. It is preferable to adjust the dropping rates of the aqueous solution A812 and the aqueous solution B813 in order to keep the solute ion concentration and the hydroxyl group concentration of the aqueous solution A812 in the reaction vessel within a predetermined range.
  • step S35 it is desirable that the solution in the reaction vessel is stirred with a stirring blade or a stirrer, and the solution in the reaction vessel, the mixture 811 in step S32, the aqueous solution A812, and the aqueous solution B813 are dissolved oxygen by N2 bubbling. It is desirable to remove.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • step S35 a case where the aqueous solution A812 is not used as the mixing method in step S35 will be described.
  • a fixed amount of the aqueous solution B813 is added dropwise to the mixture 811 of step S32 placed in the reaction vessel.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • step S35 a case where pure water is used in addition to the mixture 811, the aqueous solution A812, and the aqueous solution B813 in step S32 will be described.
  • the mixture 811 and the aqueous solution A812 of step S32 are added dropwise to the pure water contained in the reaction vessel at a constant rate, and the aqueous solution B813 is appropriately added dropwise in order to keep the pH of the mixed solution in the reaction vessel within a predetermined range. can do.
  • step S35 it is desirable that the solution in the reaction vessel is stirred with a stirring blade or a stirrer, and the solution in the reaction vessel, the mixture 811 in step S32, the aqueous solution A812, and the aqueous solution B813 are dissolved oxygen by N2 bubbling. It is desirable to remove.
  • the pH in the reaction vessel is preferably 9 or more and 11 or less, more preferably 10.0 or more and 10.5 or less.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • the solution containing the hydroxide having the transition metal M formed by the mixing in step S35 is filtered as step S36 and then washed with water.
  • the water used for cleaning is preferably pure water having a specific resistance of 1 M ⁇ ⁇ cm or more, more preferably a specific resistance of 10 M ⁇ ⁇ cm or more, and further preferably a specific resistance of 15 M ⁇ ⁇ cm or more and having few impurities.
  • impurities contained in the hydroxide having the transition metal M can be removed. Thereby, a hydroxide having a high-purity transition metal M can be obtained as a precursor of the positive electrode active material 100.
  • step S36 the hydroxide having the transition metal M after washing is dried, recovered, crushed and sieved as necessary, and then the mixture 821 of step S41 is obtained.
  • the mixture 821 is also referred to as a precursor of the positive electrode active material 100.
  • the precursor preferably has high crystallinity, and more preferably has single crystal grains. That is, the precursor is preferably a single crystal.
  • step S42 the lithium compound 822 is prepared, and as step S51, the mixture 821 of step S41 and the lithium compound 822 are mixed. After mixing, the mixture is collected in step S52, crushed and sieved as necessary, and then the mixture 831 of step S53 is obtained. Mixing can be done dry or wet.
  • a mixer such as a rotation / revolution mixer, a ball mill, a bead mill, or the like can be used.
  • the rotation speed may be 2000 rpm and the 1.5-minute process may be repeated three times.
  • the peripheral speed is preferably 100 mm / s or more and 2000 mm / s or less in order to suppress contamination from media or materials.
  • the peripheral speed may be 838 mm / s (rotation speed 400 rpm, ball mill diameter 40 mm).
  • the mixture 821 and the lithium compound 822 can be uniformly mixed by sufficiently mixing in step S51.
  • lithium compound 822 for example, lithium hydroxide, lithium carbonate, lithium nitrate, lithium fluoride and the like can be used.
  • Lithium compound 822 is sometimes referred to as a lithium source.
  • the lithium compound 822 used in the synthesis it is preferable to use a high-purity material.
  • the purity of the material is 4N (99.99%) or more, preferably 4N5UP (99.995%) or more, and more preferably 5N (99.999%) or more.
  • step S54 the mixture 831 of step S53 is heated.
  • the heating temperature is preferably a temperature near the melting point of the mixture 821 and the lithium compound 822, preferably 700 ° C. or higher and lower than 1100 ° C., more preferably 800 ° C. or higher and 1000 ° C. or lower, and 800 ° C. or higher and 950 ° C. or lower. Is even more preferable.
  • the heating time can be, for example, 1 hour or more and 100 hours or less, and preferably 2 hours or more and 20 hours or less.
  • the heating is preferably performed in an oxygen-containing atmosphere (for example, a dew point of ⁇ 50 ° C. or lower, more preferably a dew point of ⁇ 80 ° C. or lower) in which water such as oxygen or dry air is low.
  • heating is performed in an atmosphere with a dew point of ⁇ 93 ° C.
  • the heating is performed in an atmosphere where the impurity concentrations of CH 4 , CO, CO 2 and H 2 are 5 ppb (parts per parts) or less, respectively, because impurities that can be mixed in the material can be suppressed.
  • the temperature rise is 200 ° C./h and the flow rate in the dry atmosphere is 10 L / min.
  • the heated material can then be cooled to room temperature.
  • the temperature lowering time from the specified temperature to room temperature is 10 hours or more and 50 hours or less.
  • cooling to room temperature in step S54 is not essential.
  • the crucible used for heating in step S54 is preferably made of a material that does not contain impurities.
  • an alumina crucible having a purity of 99.9% is used.
  • the mortar when recovering the material that has been heated in step S54, it is suitable because impurities are not mixed in the material when it is moved from the crucible to the mortar and then recovered. Further, the mortar is also suitable as a material that does not contain impurities. Specifically, it is preferable to use an alumina mortar having a purity of 90 wt% or more, preferably 99 wt% or more.
  • step S55 the material fired above is recovered, crushed, and then the mixture 832 of step S61 is obtained.
  • step S62 the additive element X source 833 is prepared.
  • the additive element X possessed by the source 833 includes nickel, cobalt, magnesium, calcium, chlorine, fluorine, aluminum, manganese, titanium, zirconium, yttrium, vanadium, iron, chromium, niobium, lantern, hafnium, zinc, and silicon. , Sulfur, phosphorus, boron, and one or more selected from arsenic can be used. Further, as the additive element X, bromine and beryllium may be used in addition to the above elements. However, since bromine and beryllium are elements that are toxic to living organisms, it is preferable to use the above-mentioned additive element X.
  • any one or more can be used from the aqueous solution containing the additive element X, the alkoxide containing the additive element X, and the solid compound containing the additive element X.
  • a solid compound containing one or more additive elements X is prepared, crushed, and mixed as shown as S62a or S62b in FIGS. 3A and 3B. (Mixture 843a or Mixture 843b) may be used as the additive element X source 833 in step S62.
  • a solid compound containing one or more additive elements X it may be mixed after crushing, may be crushed after mixing, or may be crushed after mixing, or without crushing, the additive element X source 833 in step S62. It may be used as.
  • the purity of the material is 2N (99%) or more, preferably 3N (99.9%) or more, and more preferably 4N (99.99%) or more.
  • step S71 the mixture 832 of step S61 and the additive element X source 833 of step S62 are mixed. After mixing, it is collected in step S72, crushed and sieved as necessary, and then the mixture 841 of step S73 is obtained. Mixing can be done dry or wet.
  • a mixer such as a rotation / revolution mixer, a ball mill, a bead mill, or the like can be used.
  • the rotation speed may be 2000 rpm and the 1.5-minute process may be repeated three times.
  • the peripheral speed is preferably 100 mm / s or more and 2000 mm / s or less in order to suppress contamination from media or materials.
  • the peripheral speed may be 838 mm / s (rotation speed 400 rpm, ball mill diameter 40 mm).
  • step S74 the mixture 841 of step S73 is heated.
  • the heating temperature of step S74 is preferably 500 ° C. or higher and 1100 ° C. or lower, more preferably 500 ° C. or higher and 1000 ° C. or lower, further preferably 500 ° C. or higher and 950 ° C. or lower, and further preferably 500 ° C. or higher and 900 ° C. or lower.
  • heating by a roller hers kiln may be performed.
  • the mixture 841 may be treated using a heat-resistant container having a lid.
  • the heating time can be, for example, 1 hour or more and 100 hours or less, and preferably 2 hours or more and 20 hours or less.
  • the heating is preferably performed in an oxygen-containing atmosphere (for example, a dew point of ⁇ 50 ° C. or lower, more preferably a dew point of ⁇ 80 ° C. or lower) in which water such as oxygen or dry air is low.
  • heating is performed in an atmosphere with a dew point of ⁇ 93 ° C.
  • the heating is performed in an atmosphere where the impurity concentrations of CH 4 , CO, CO 2 and H 2 are 5 ppb (parts per parts) or less, respectively, because impurities that can be mixed in the material can be suppressed.
  • the temperature rise is 200 ° C./h and the flow rate in the dry atmosphere is 10 L / min.
  • the heated material can then be cooled to room temperature.
  • the temperature lowering time from the specified temperature to room temperature is 10 hours or more and 50 hours or less.
  • cooling to room temperature in step S74 is not essential.
  • step S75 the material fired above is recovered, crushed, and then the positive electrode active material 100 of step S76 is obtained. If necessary, sieving may be carried out after crushing. By the above steps, the positive electrode active material 100 according to one aspect of the present invention can be produced.
  • the positive electrode active material 100 has high crystallinity, and when the crystallinity of the mixture 821 of step S41 is high, the crystallinity of the positive electrode active material 100 is also high.
  • the positive electrode active material 100 has high crystallinity and the positive electrode active material 100 has single crystal grains, the crystal planes of lithium in and out can be aligned. If more crystal planes in and out of lithium can be exposed to the electrolyte, the battery characteristics will improve. Further, the positive electrode active material 100 has high crystallinity, and further, it is durable when the positive electrode active material 100 has single crystal grains, and it is possible to provide an active material that is not easily deteriorated even after repeated charging and discharging.
  • the positive electrode active material 100 may be represented as a composite oxide (LiMO 2 ) having lithium, a transition metal M, and oxygen.
  • the positive electrode active material 100 is a composite oxide (NCMA) having Ni, Co, Mn, and Al.
  • the concentration of aluminum is preferably 0.1 at% or more and 2 at% or less.
  • the concentration of the additive element X can be increased in the surface layer portion as compared with the inside of the particles. Further, based on the number of atoms of the transition metal M, the ratio of the number of atoms of the additive element X to the reference can be made higher in the surface layer portion than in the inside.
  • the region where the aluminum concentration is 0.1 at% or more and 2 at% or less may be either the surface layer portion or the inside of the particles.
  • a positive electrode active material is produced in a step in which a high-purity material is used as the transition metal M source used in the synthesis and the amount of impurities mixed is small in the synthesis. Further, the impurity concentration is low by using a production method in which the transition metal M source and the contamination of impurities at the time of synthesis are thoroughly eliminated, and the desired additive element X is controlled and introduced into the positive electrode active material. It is possible to obtain a positive electrode active material in which the region and the region into which the additive element X is introduced are controlled. Further, the positive electrode active material shown in the present embodiment is a material having high crystallinity. In addition, the positive electrode active material obtained by the method for producing a positive electrode active material according to one aspect of the present invention can increase the capacity of the secondary battery and / or enhance the reliability of the secondary battery.
  • the transition metal M source 801 is prepared as step S21 in FIG. 9, and the additive element X source 802 is prepared as step S22.
  • the transition metal M for example, at least one of manganese, cobalt, and nickel can be used.
  • the transition metal M when only cobalt is used, when only nickel is used, when two types of cobalt and manganese are used, when two types of cobalt and nickel are used, or when three types of cobalt, manganese, and nickel are used. May be used.
  • the transition metal M source 801 is prepared as an aqueous solution containing the transition metal M.
  • the transition metal M source 801 as the aqueous solution containing cobalt, an aqueous solution of cobalt sulfate or an aqueous solution of cobalt nitrate can be used, and as the aqueous solution containing nickel, an aqueous solution of nickel sulfate or an aqueous solution of nickel nitrate can be used.
  • the aqueous solution containing manganese an aqueous solution of manganese sulfate, an aqueous solution of manganese nitrate, or the like can be used.
  • the transition metal M source 801 used in the synthesis it is preferable to use a high-purity material as the transition metal M source 801 used in the synthesis.
  • the purity of the solute material when preparing the aqueous solution is 2N (99%) or more, preferably 3N (99.9%) or more, more preferably.
  • Impurities of 4N (99.99%) or more preferably water having a specific resistance of 1 M ⁇ ⁇ cm or more, more preferably a specific resistance of 10 M ⁇ ⁇ cm or more, still more preferably a specific resistance of 15 M ⁇ ⁇ cm or more. It is desirable to use less pure water.
  • the capacity of the secondary battery can be increased and / or the reliability of the secondary battery can be increased.
  • Additive elements X include nickel, cobalt, magnesium, calcium, chlorine, fluorine, aluminum, manganese, titanium, zirconium, yttrium, vanadium, iron, chromium, niobium, lanthanum, hafnium, zinc, silicon, sulfur, phosphorus, boron, And one or more selected from arsenic can be used. Further, as the additive element, bromine and beryllium may be used in addition to the above elements. However, since bromine and beryllium are elements that are toxic to living organisms, it is preferable to use the above-mentioned additive element X.
  • any one or more can be used from an aqueous solution containing the additive element X, an alkoxide containing the additive element X, or a solid compound containing the additive element X.
  • the additive element X source 802 in step S22 is preferably prepared as an aqueous solution containing the additive element X.
  • the purity of the material is 2N (99%) or more, preferably 3N (99.9%) or more, and more preferably 4N (99.99%) or more.
  • step S31 the transition metal M source 801 and the additive element X source 802 are mixed to obtain the mixture 811 of step S32.
  • step S33 the aqueous solution A812 is prepared as step S33, and the aqueous solution B813 is prepared as step S34.
  • an aqueous solution having at least one of chelating agents such as glycine, oxine, 1-nitroso-2-naphthol or 2-mercaptobenzothiazole, or an aqueous solution of ammonia, or a mixture of a plurality of them is used. be able to.
  • any one or a plurality of mixed solutions of sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, or lithium hydroxide aqueous solution can be used.
  • step S35 the mixture 811, the aqueous solution A812, and the aqueous solution B813 of the above step S32 are mixed.
  • step S35 As a method of mixing in step S35, a mixing method in which the mixture 811 and the aqueous solution B813 in step S32 are added dropwise to the aqueous solution A812 placed in the reaction vessel can be used. It is desirable that the mixture 811 of step S32 is added dropwise at a constant rate, and the aqueous solution B813 is appropriately added dropwise in order to keep the pH of the mixed solution in the reaction vessel within a predetermined range.
  • step S35 it is desirable that the solution in the reaction vessel is stirred with a stirring blade or a stirrer, and the solution in the reaction vessel, the mixture 811 in step S32, the aqueous solution A812, and the aqueous solution B813 are dissolved oxygen by N2 bubbling. It is desirable to remove.
  • the pH in the reaction vessel is preferably 9 or more and 11 or less, more preferably 10.0 or more and 10.5 or less.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • step S35 a mixing method in which the aqueous solution A812 and the aqueous solution B813 are added dropwise to the mixture 811 of step S32 placed in the reaction vessel can be used. It is preferable to adjust the dropping rates of the aqueous solution A812 and the aqueous solution B813 in order to keep the solute ion concentration and the hydroxyl group concentration of the aqueous solution A812 in the reaction vessel within a predetermined range.
  • step S35 it is desirable that the solution in the reaction vessel is stirred with a stirring blade or a stirrer, and the solution in the reaction vessel, the mixture 811 in step S32, the aqueous solution A812, and the aqueous solution B813 are dissolved oxygen by N2 bubbling. It is desirable to remove.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • step S35 a case where the aqueous solution A812 is not used as the mixing method in step S35 will be described.
  • a fixed amount of the aqueous solution B813 is added dropwise to the mixture 811 of step S32 placed in the reaction vessel.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • step S35 a case where pure water is used in addition to the mixture 811, the aqueous solution A812, and the aqueous solution B813 in step S32 will be described.
  • the mixture 811 and the aqueous solution A812 of step S32 are added dropwise to the pure water contained in the reaction vessel at a constant rate, and the aqueous solution B813 is appropriately added dropwise in order to keep the pH of the mixed solution in the reaction vessel within a predetermined range. can do.
  • step S35 it is desirable that the solution in the reaction vessel is stirred with a stirring blade or a stirrer, and the solution in the reaction vessel, the mixture 811 in step S32, the aqueous solution A812, and the aqueous solution B813 are dissolved oxygen by N2 bubbling. It is desirable to remove.
  • the pH in the reaction vessel is preferably 9 or more and 11 or less, more preferably 10.0 or more and 10.5 or less.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • the solution containing the hydroxide having the transition metal M formed by the mixing in step S35 is filtered as step S36 and then washed with water.
  • the water used for cleaning is preferably pure water having a specific resistance of 1 M ⁇ ⁇ cm or more, more preferably a specific resistance of 10 M ⁇ ⁇ cm or more, and further preferably a specific resistance of 15 M ⁇ ⁇ cm or more and having few impurities.
  • impurities contained in the hydroxide having the transition metal M can be removed. Thereby, a hydroxide having a high-purity transition metal M can be obtained as a precursor of the positive electrode active material 100.
  • step S36 the hydroxide having the transition metal M and the additive element X after washing is dried, recovered, crushed and sieved as necessary, and then the mixture 821 of step S41 is added. obtain.
  • the mixture 821 is also referred to as a precursor of the positive electrode active material 100.
  • the precursor preferably has high crystallinity, and more preferably has single crystal grains. That is, the precursor is preferably a single crystal.
  • step S42 the lithium compound 822 is prepared as step S42, and the additive element X source 823 is prepared as step S43.
  • step S51 the mixture 821 of step S41, the lithium compound 822, and the additive element X source 823 are mixed.
  • step S52 the mixture is collected in step S52, crushed and sieved as necessary, and then the mixture 831 of step S53 is obtained.
  • Mixing can be done dry or wet.
  • a mixer such as a rotation / revolution mixer, a ball mill, a bead mill, or the like can be used.
  • the rotation / revolution mixer Awatori Rentaro manufactured by Shinky Co., Ltd.
  • the rotation speed may be 2000 rpm and the 1.5-minute process may be repeated three times.
  • a ball mill it is preferable to use, for example, zirconia balls as a medium.
  • the peripheral speed is preferably 100 mm / s or more and 2000 mm / s or less in order to suppress contamination from media or materials.
  • the peripheral speed may be 838 mm / s (rotation speed 400 rpm, ball mill diameter 40 mm).
  • the mixture 821 and the lithium compound 822 can be uniformly mixed by sufficiently mixing in step S51.
  • lithium compound 822 for example, lithium hydroxide, lithium carbonate, lithium nitrate, lithium fluoride and the like can be used.
  • Lithium compound 822 is sometimes referred to as a lithium source.
  • the lithium compound 822 used in the synthesis it is preferable to use a high-purity material.
  • the purity of the material is 4N (99.99%) or more, preferably 4N5UP (99.995%) or more, and more preferably 5N (99.999%) or more.
  • Additive elements X include nickel, cobalt, magnesium, calcium, chlorine, fluorine, aluminum, manganese, titanium, zirconium, yttrium, vanadium, iron, chromium, niobium, lanthanum, hafnium, zinc, silicon, sulfur, phosphorus, boron, And one or more selected from arsenic can be used. Further, as the additive element X, bromine and beryllium may be used in addition to the above elements. However, since bromine and beryllium are elements that are toxic to living organisms, it is preferable to use the above-mentioned additive element X.
  • any one or more can be used from an aqueous solution containing the additive element X, an alkoxide containing the additive element X, or a solid compound containing the additive element X.
  • the purity of the material is 2N (99%) or more, preferably 3N (99.9%) or more, and more preferably 4N (99.99%) or more.
  • step S54 the mixture 831 of step S53 is heated.
  • the heating is preferably performed at 700 ° C. or higher and lower than 1100 ° C., more preferably 800 ° C. or higher and 1000 ° C. or lower, and further preferably 800 ° C. or higher and 950 ° C. or lower.
  • the heating time can be, for example, 1 hour or more and 100 hours or less, and preferably 2 hours or more and 20 hours or less.
  • the heating is preferably performed in an oxygen-containing atmosphere (for example, a dew point of ⁇ 50 ° C. or lower, more preferably a dew point of ⁇ 80 ° C. or lower) in which water such as oxygen or dry air is low.
  • heating is performed in an atmosphere with a dew point of ⁇ 93 ° C.
  • the heating is performed in an atmosphere where the impurity concentrations of CH 4 , CO, CO 2 and H 2 are 5 ppb (parts per parts) or less, respectively, because impurities that can be mixed in the material can be suppressed.
  • the temperature rise is 200 ° C./h and the flow rate in the dry atmosphere is 10 L / min.
  • the heated material can then be cooled to room temperature.
  • the temperature lowering time from the specified temperature to room temperature is 10 hours or more and 50 hours or less.
  • cooling to room temperature in step S54 is not essential.
  • the crucible used for heating in step S54 is preferably made of a material that does not contain impurities.
  • an alumina crucible having a purity of 99.9% is used.
  • the mortar when recovering the material that has been heated in step S54, it is suitable because impurities are not mixed in the material when it is moved from the crucible to the mortar and then recovered. Further, the mortar is also suitable as a material that does not contain impurities. Specifically, it is preferable to use an alumina mortar having a purity of 90 wt% or more, preferably 99 wt% or more.
  • step S55 the material fired above is recovered, and after crushing, the positive electrode active material 100 of step S56 is obtained. If necessary, sieving may be carried out after crushing. By the above steps, the positive electrode active material 100 according to one aspect of the present invention can be produced.
  • the positive electrode active material 100 has high crystallinity, and when the crystallinity of the mixture 821 of step S41 is high, the crystallinity of the positive electrode active material 100 is also high.
  • the positive electrode active material 100 has high crystallinity and the positive electrode active material 100 has single crystal grains, the crystal planes of lithium in and out can be aligned. If more crystal planes in and out of lithium can be exposed to the electrolyte, the battery characteristics will improve. Further, the positive electrode active material 100 has high crystallinity, and further, it is durable when the positive electrode active material 100 has single crystal grains, and it is possible to provide an active material that is not easily deteriorated even after repeated charging and discharging.
  • the positive electrode active material 100 may be represented as a composite oxide (LiMO 2 ) having lithium, a transition metal M, and oxygen.
  • the positive electrode active material 100 is a composite oxide (NCMA) having Ni, Co, Mn, and Al.
  • the concentration of aluminum is preferably 0.1 at% or more and 2 at% or less.
  • the concentration of the additive element X can be increased in the surface layer portion as compared with the inside of the particles. Further, based on the number of atoms of the transition metal M, the ratio of the number of atoms of the additive element X to the reference can be made higher in the surface layer portion than in the inside.
  • the region where the aluminum concentration is 0.1 at% or more and 2 at% or less may be either the surface layer portion or the inside of the particles.
  • a positive electrode active material is produced in a step in which a high-purity material is used as the transition metal M source used in the synthesis and the amount of impurities mixed is small in the synthesis. Further, the impurity concentration is low by using a production method in which the transition metal M source and the contamination of impurities at the time of synthesis are thoroughly eliminated, and the desired additive element X is controlled and introduced into the positive electrode active material. It is possible to obtain a positive electrode active material in which the region and the region into which the additive element X is introduced are controlled. Further, the positive electrode active material shown in the present embodiment is a material having high crystallinity. In addition, the positive electrode active material obtained by the method for producing a positive electrode active material according to one aspect of the present invention can increase the capacity of the secondary battery and / or enhance the reliability of the secondary battery.
  • a transition metal M source 801 is prepared.
  • the transition metal M for example, at least one of manganese, cobalt, and nickel can be used.
  • the transition metal M when only cobalt is used, when only nickel is used, when two types of cobalt and manganese are used, when two types of cobalt and nickel are used, or when three types of cobalt, manganese, and nickel are used. May be used.
  • the transition metal M source 801 is prepared as an aqueous solution containing the transition metal M.
  • the transition metal M source 801 as the aqueous solution containing cobalt, an aqueous solution of cobalt sulfate or an aqueous solution of cobalt nitrate can be used, and as the aqueous solution containing nickel, an aqueous solution of nickel sulfate or an aqueous solution of nickel nitrate can be used.
  • the aqueous solution containing manganese an aqueous solution of manganese sulfate, an aqueous solution of manganese nitrate, or the like can be used.
  • the transition metal M source 801 used in the synthesis it is preferable to use a high-purity material as the transition metal M source 801 used in the synthesis.
  • the purity of the solute material when preparing the aqueous solution is 2N (99%) or more, preferably 3N (99.9%) or more, more preferably.
  • Impurities of 4N (99.99%) or more preferably water having a specific resistance of 1 M ⁇ ⁇ cm or more, more preferably a specific resistance of 10 M ⁇ ⁇ cm or more, still more preferably a specific resistance of 15 M ⁇ ⁇ cm or more. It is desirable to use less pure water.
  • the capacity of the secondary battery can be increased and / or the reliability of the secondary battery can be increased.
  • transition metal M sources 801 when a plurality of transition metal M sources 801 are used, for example, when a cobalt source, a manganese source, and a nickel source are used, it is preferable to set the mixing ratio within a range in which a layered rock salt type crystal structure can be obtained.
  • step S31 the above transition metal M source is mixed to obtain the mixture 811 of step S32.
  • step S33 the aqueous solution A812 is prepared as step S33, and the aqueous solution B813 is prepared as step S34.
  • an aqueous solution having at least one of chelating agents such as glycine, oxine, 1-nitroso-2-naphthol or 2-mercaptobenzothiazole, or an aqueous solution of ammonia, or a mixture of a plurality of them is used. be able to.
  • any one or a plurality of mixed solutions of sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, or lithium hydroxide aqueous solution can be used.
  • step S35 the mixture 811, the aqueous solution A812, and the aqueous solution B813 of the above step S32 are mixed.
  • step S35 As a method of mixing in step S35, a mixing method in which the mixture 811 and the aqueous solution B813 in step S32 are added dropwise to the aqueous solution A812 placed in the reaction vessel can be used. It is desirable that the mixture 811 of step S32 is added dropwise at a constant rate, and the aqueous solution B813 is appropriately added dropwise in order to keep the pH of the mixed solution in the reaction vessel within a predetermined range.
  • step S35 it is desirable that the solution in the reaction vessel is stirred with a stirring blade or a stirrer, and the solution in the reaction vessel, the mixture 811 in step S32, the aqueous solution A812, and the aqueous solution B813 are dissolved oxygen by N2 bubbling. It is desirable to remove.
  • the pH in the reaction vessel is preferably 9 or more and 11 or less, more preferably 10.0 or more and 10.5 or less.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • step S35 a mixing method in which the aqueous solution A812 and the aqueous solution B813 are added dropwise to the mixture 811 of step S32 placed in the reaction vessel can be used. It is preferable to adjust the dropping rates of the aqueous solution A812 and the aqueous solution B813 in order to keep the solute ion concentration and the hydroxyl group concentration of the aqueous solution A812 in the reaction vessel within a predetermined range.
  • step S35 it is desirable that the solution in the reaction vessel is stirred with a stirring blade or a stirrer, and the solution in the reaction vessel, the mixture 811 in step S32, the aqueous solution A812, and the aqueous solution B813 are dissolved oxygen by N2 bubbling. It is desirable to remove.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • step S35 a case where the aqueous solution A812 is not used as the mixing method in step S35 will be described.
  • a fixed amount of the aqueous solution B813 is added dropwise to the mixture 811 of step S32 placed in the reaction vessel.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • step S35 a case where pure water is used in addition to the mixture 811, the aqueous solution A812, and the aqueous solution B813 in step S32 will be described.
  • the mixture 811 and the aqueous solution A812 of step S32 are added dropwise to the pure water contained in the reaction vessel at a constant rate, and the aqueous solution B813 is appropriately added dropwise in order to keep the pH of the mixed solution in the reaction vessel within a predetermined range. can do.
  • step S35 it is desirable that the solution in the reaction vessel is stirred with a stirring blade or a stirrer, and the solution in the reaction vessel, the mixture 811 in step S32, the aqueous solution A812, and the aqueous solution B813 are dissolved oxygen by N2 bubbling. It is desirable to remove.
  • the pH in the reaction vessel is preferably 9 or more and 11 or less, more preferably 10.0 or more and 10.5 or less.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • the solution containing the hydroxide having the transition metal M formed by the mixing in step S35 is filtered as step S36 and then washed with water.
  • the water used for cleaning is preferably pure water having a specific resistance of 1 M ⁇ ⁇ cm or more, more preferably a specific resistance of 10 M ⁇ ⁇ cm or more, and further preferably a specific resistance of 15 M ⁇ ⁇ cm or more and having few impurities.
  • impurities contained in the hydroxide having the transition metal M can be removed. Thereby, a hydroxide having a high-purity transition metal M can be obtained as a precursor of the positive electrode active material 100.
  • step S36 the hydroxide having the transition metal M after washing is dried, recovered, crushed and sieved as necessary, and then the mixture 821 of step S41 is obtained.
  • the mixture 821 is also referred to as a precursor of the positive electrode active material 100.
  • the precursor preferably has high crystallinity, and more preferably has single crystal grains. That is, the precursor is preferably a single crystal.
  • step S42 the lithium compound 822 is prepared as step S42, and the additive element X source 823 is prepared as step S43.
  • step S51 the mixture 821 of step S41, the lithium compound 822, and the additive element X source 823 are mixed.
  • step S52 the mixture is collected in step S52, crushed and sieved as necessary, and then the mixture 831 of step S53 is obtained.
  • Mixing can be done dry or wet.
  • a mixer such as a rotation / revolution mixer, a ball mill, a bead mill, or the like can be used.
  • the rotation / revolution mixer Awatori Rentaro manufactured by Shinky Co., Ltd.
  • the rotation speed may be 2000 rpm and the 1.5-minute process may be repeated three times.
  • a ball mill it is preferable to use, for example, zirconia balls as a medium.
  • the peripheral speed is preferably 100 mm / s or more and 2000 mm / s or less in order to suppress contamination from media or materials.
  • the peripheral speed may be 838 mm / s (rotation speed 400 rpm, ball mill diameter 40 mm).
  • the mixture 821 and the lithium compound 822 can be uniformly mixed by sufficiently mixing in step S51.
  • lithium compound 822 for example, lithium hydroxide, lithium carbonate, lithium nitrate, lithium fluoride and the like can be used.
  • Lithium compound 822 is sometimes referred to as a lithium source.
  • the lithium compound 822 used in the synthesis it is preferable to use a high-purity material.
  • the purity of the material is 4N (99.99%) or more, preferably 4N5UP (99.995%) or more, and more preferably 5N (99.999%) or more.
  • Additive elements X include nickel, cobalt, magnesium, calcium, chlorine, fluorine, aluminum, manganese, titanium, zirconium, yttrium, vanadium, iron, chromium, niobium, lanthanum, hafnium, zinc, silicon, sulfur, phosphorus, boron, etc. And one or more selected from arsenic can be used. Further, as the additive element X, bromine and beryllium may be used in addition to the above elements. However, since bromine and beryllium are elements that are toxic to living organisms, it is preferable to use the above-mentioned additive element X.
  • any one or more can be used from an aqueous solution containing the additive element X, an alkoxide containing the additive element X, or a solid compound containing the additive element X.
  • the purity of the material is 2N (99%) or more, preferably 3N (99.9%) or more, and more preferably 4N (99.99%) or more.
  • step S54 the mixture 831 of step S53 is heated.
  • the heating temperature is preferably a temperature near the melting point of the mixture 821 and the lithium compound 822, preferably 700 ° C. or higher and lower than 1100 ° C., more preferably 800 ° C. or higher and 1000 ° C. or lower, and 800 ° C. or higher and 950 ° C. or lower. Is even more preferable.
  • the heating time can be, for example, 1 hour or more and 100 hours or less, and preferably 2 hours or more and 20 hours or less.
  • the heating is preferably performed in an oxygen-containing atmosphere (for example, a dew point of ⁇ 50 ° C. or lower, more preferably a dew point of ⁇ 80 ° C. or lower) in which water such as oxygen or dry air is low.
  • heating is performed in an atmosphere with a dew point of ⁇ 93 ° C.
  • the heating is performed in an atmosphere where the impurity concentrations of CH 4 , CO, CO 2 and H 2 are 5 ppb (parts per parts) or less, respectively, because impurities that can be mixed in the material can be suppressed.
  • the temperature rise is 200 ° C./h and the flow rate in the dry atmosphere is 10 L / min.
  • the heated material can then be cooled to room temperature.
  • the temperature lowering time from the specified temperature to room temperature is 10 hours or more and 50 hours or less.
  • cooling to room temperature in step S54 is not essential.
  • the crucible used for heating in step S54 is preferably made of a material that does not contain impurities.
  • an alumina crucible having a purity of 99.9% is used.
  • the mortar when recovering the material that has been heated in step S54, it is suitable because impurities are not mixed in the material when it is moved from the crucible to the mortar and then recovered. Further, the mortar is also suitable as a material that does not contain impurities. Specifically, it is preferable to use an alumina mortar having a purity of 90 wt% or more, preferably 99 wt% or more.
  • step S55 the material fired above is recovered, crushed, and then the mixture 832 of step S61 is obtained. If necessary, sieving may be carried out after crushing.
  • step S62 the additive element X source 833 is prepared.
  • the additive element X possessed by the source 833 includes nickel, cobalt, magnesium, calcium, chlorine, fluorine, aluminum, manganese, titanium, zirconium, yttrium, vanadium, iron, chromium, niobium, lantern, hafnium, zinc, and silicon. , Sulfur, phosphorus, boron, and one or more selected from arsenic can be used. Further, as the additive element X, bromine and beryllium may be used in addition to the above elements. However, since bromine and beryllium are elements that are toxic to living organisms, it is preferable to use the above-mentioned additive element X.
  • any one or more can be used from the aqueous solution containing the additive element X, the alkoxide containing the additive element X, and the solid compound containing the additive element X.
  • a solid compound containing one or more additive elements X is prepared, crushed, and mixed as shown as S62a or S62b in FIGS. 3A and 3B. (Mixture 843a or Mixture 843b) may be used as the additive element X source 833 in step S62.
  • a solid compound containing one or more additive elements X it may be mixed after crushing, may be crushed after mixing, or may be crushed after mixing, or without crushing, the additive element X source 833 in step S62. It may be used as.
  • the purity of the material is 2N (99%) or more, preferably 3N (99.9%) or more, and more preferably 4N (99.99%) or more.
  • step S71 the mixture 832 of step S61 and the additive element X source 833 of step S62 are mixed. After mixing, it is collected in step S72, crushed and sieved as necessary, and then the mixture 841 of step S73 is obtained. Mixing can be done dry or wet.
  • a mixer such as a rotation / revolution mixer, a ball mill, a bead mill, or the like can be used.
  • the rotation speed may be 2000 rpm and the 1.5-minute process may be repeated three times.
  • the peripheral speed is preferably 100 mm / s or more and 2000 mm / s or less in order to suppress contamination from media or materials.
  • the peripheral speed may be 838 mm / s (rotation speed 400 rpm, ball mill diameter 40 mm).
  • step S74 the mixture 841 of step S73 is heated.
  • the heating temperature of step S74 is preferably 500 ° C. or higher and 1100 ° C. or lower, more preferably 500 ° C. or higher and 1000 ° C. or lower, further preferably 500 ° C. or higher and 950 ° C. or lower, and further preferably 500 ° C. or higher and 900 ° C. or lower.
  • heating by a roller hers kiln may be performed.
  • the mixture 841 may be treated using a heat-resistant container having a lid.
  • the heating time can be, for example, 1 hour or more and 100 hours or less, and preferably 2 hours or more and 20 hours or less.
  • the heating is preferably performed in an oxygen-containing atmosphere (for example, a dew point of ⁇ 50 ° C. or lower, more preferably a dew point of ⁇ 80 ° C. or lower) in which water such as oxygen or dry air is low.
  • heating is performed in an atmosphere with a dew point of ⁇ 93 ° C.
  • the heating is performed in an atmosphere where the impurity concentrations of CH 4 , CO, CO 2 and H 2 are 5 ppb (parts per parts) or less, respectively, because impurities that can be mixed in the material can be suppressed.
  • the temperature rise is 200 ° C./h and the flow rate in the dry atmosphere is 10 L / min.
  • the heated material can then be cooled to room temperature.
  • the temperature lowering time from the specified temperature to room temperature is 10 hours or more and 50 hours or less.
  • cooling to room temperature in step S74 is not essential.
  • step S75 the material fired above is recovered, crushed, and then the positive electrode active material 100 of step S76 is obtained. If necessary, sieving may be carried out after crushing. By the above steps, the positive electrode active material 100 according to one aspect of the present invention can be produced.
  • the positive electrode active material 100 has high crystallinity, and when the crystallinity of the mixture 821 of step S41 is high, the crystallinity of the positive electrode active material 100 is also high.
  • the positive electrode active material 100 has high crystallinity and the positive electrode active material 100 has single crystal grains, the crystal planes of lithium in and out can be aligned. If more crystal planes in and out of lithium can be exposed to the electrolyte, the battery characteristics will improve. Further, the positive electrode active material 100 has high crystallinity, and further, it is durable when the positive electrode active material 100 has single crystal grains, and it is possible to provide an active material that is not easily deteriorated even after repeated charging and discharging.
  • the positive electrode active material 100 may be represented as a composite oxide (LiMO 2 ) having lithium, a transition metal M, and oxygen.
  • the positive electrode active material 100 is a composite oxide (NCMA) having Ni, Co, Mn, and Al.
  • the concentration of aluminum is preferably 0.1 at% or more and 2 at% or less.
  • the concentration of the additive element X can be increased in the surface layer portion as compared with the inside of the particles. Further, based on the number of atoms of the transition metal M, the ratio of the number of atoms of the additive element X to the reference can be made higher in the surface layer portion than in the inside.
  • the region where the aluminum concentration is 0.1 at% or more and 2 at% or less may be either the surface layer portion or the inside of the particles.
  • a positive electrode active material is produced in a step in which a high-purity material is used as the transition metal M source used in the synthesis and the amount of impurities mixed is small in the synthesis. Further, the impurity concentration is low by using a production method in which the transition metal M source and the contamination of impurities at the time of synthesis are thoroughly eliminated, and the desired additive element X is controlled and introduced into the positive electrode active material. It is possible to obtain a positive electrode active material in which the region and the region into which the additive element X is introduced are controlled. Further, the positive electrode active material shown in the present embodiment is a material having high crystallinity. In addition, the positive electrode active material obtained by the method for producing a positive electrode active material according to one aspect of the present invention can increase the capacity of the secondary battery and / or enhance the reliability of the secondary battery.
  • the transition metal M source 801 is prepared as step S21 in FIG. 11, and the additive element X source 802 is prepared as step S22.
  • the transition metal M for example, at least one of manganese, cobalt, and nickel can be used.
  • the transition metal M when only cobalt is used, when only nickel is used, when two types of cobalt and manganese are used, when two types of cobalt and nickel are used, or when three types of cobalt, manganese, and nickel are used. May be used.
  • the transition metal M source 801 is prepared as an aqueous solution containing the transition metal M.
  • the transition metal M source 801 as the aqueous solution containing cobalt, an aqueous solution of cobalt sulfate or an aqueous solution of cobalt nitrate can be used, and as the aqueous solution containing nickel, an aqueous solution of nickel sulfate or an aqueous solution of nickel nitrate can be used.
  • the aqueous solution containing manganese an aqueous solution of manganese sulfate, an aqueous solution of manganese nitrate, or the like can be used.
  • the transition metal M source 801 used in the synthesis it is preferable to use a high-purity material as the transition metal M source 801 used in the synthesis.
  • the purity of the solute material when preparing the aqueous solution is 2N (99%) or more, preferably 3N (99.9%) or more, more preferably.
  • Impurities of 4N (99.99%) or more preferably water having a specific resistance of 1 M ⁇ ⁇ cm or more, more preferably a specific resistance of 10 M ⁇ ⁇ cm or more, still more preferably a specific resistance of 15 M ⁇ ⁇ cm or more. It is desirable to use less pure water.
  • the capacity of the secondary battery can be increased and / or the reliability of the secondary battery can be increased.
  • Additive elements X include nickel, cobalt, magnesium, calcium, chlorine, fluorine, aluminum, manganese, titanium, zirconium, yttrium, vanadium, iron, chromium, niobium, lanthanum, hafnium, zinc, silicon, sulfur, phosphorus, boron, etc. And one or more selected from arsenic can be used. Further, as the additive element X, bromine and beryllium may be used in addition to the above elements. However, since bromine and beryllium are elements that are toxic to living organisms, it is preferable to use the above-mentioned additive element X.
  • any one or more can be used from an aqueous solution containing the additive element X, an alkoxide containing the additive element X, or a solid compound containing the additive element X.
  • the additive element X source 802 in step S22 is preferably prepared as an aqueous solution containing the additive element X.
  • the purity of the material is 2N (99%) or more, preferably 3N (99.9%) or more, and more preferably 4N (99.99%) or more.
  • step S31 the transition metal M source 801 and the additive element X source 802 are mixed to obtain the mixture 811 of step S32.
  • step S33 the aqueous solution A812 is prepared as step S33, and the aqueous solution B813 is prepared as step S34.
  • an aqueous solution having at least one of chelating agents such as glycine, oxine, 1-nitroso-2-naphthol or 2-mercaptobenzothiazole, or an aqueous solution of ammonia, or a mixture of a plurality of them is used. be able to.
  • any one or a plurality of mixed solutions of sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, or lithium hydroxide aqueous solution can be used.
  • step S35 the mixture 811, the aqueous solution A812, and the aqueous solution B813 of the above step S32 are mixed.
  • step S35 As a method of mixing in step S35, a mixing method in which the mixture 811 and the aqueous solution B813 in step S32 are added dropwise to the aqueous solution A812 placed in the reaction vessel can be used. It is desirable that the mixture 811 of step S32 is added dropwise at a constant rate, and the aqueous solution B813 is appropriately added dropwise in order to keep the pH of the mixed solution in the reaction vessel within a predetermined range.
  • step S35 it is desirable that the solution in the reaction vessel is stirred with a stirring blade or a stirrer, and the solution in the reaction vessel, the mixture 811 in step S32, the aqueous solution A812, and the aqueous solution B813 are dissolved oxygen by N2 bubbling. It is desirable to remove.
  • the pH in the reaction vessel is preferably 9 or more and 11 or less, more preferably 10.0 or more and 10.5 or less.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • step S35 a mixing method in which the aqueous solution A812 and the aqueous solution B813 are added dropwise to the mixture 811 of step S32 placed in the reaction vessel can be used. It is preferable to adjust the dropping rates of the aqueous solution A812 and the aqueous solution B813 in order to keep the solute ion concentration and the hydroxyl group concentration of the aqueous solution A812 in the reaction vessel within a predetermined range.
  • step S35 it is desirable that the solution in the reaction vessel is stirred with a stirring blade or a stirrer, and the solution in the reaction vessel, the mixture 811 in step S32, the aqueous solution A812, and the aqueous solution B813 are dissolved oxygen by N2 bubbling. It is desirable to remove.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • step S35 a case where the aqueous solution A812 is not used as the mixing method in step S35 will be described.
  • a fixed amount of the aqueous solution B813 is added dropwise to the mixture 811 of step S32 placed in the reaction vessel.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • step S35 a case where pure water is used in addition to the mixture 811, the aqueous solution A812, and the aqueous solution B813 in step S32 will be described.
  • the mixture 811 and the aqueous solution A812 of step S32 are added dropwise to the pure water contained in the reaction vessel at a constant rate, and the aqueous solution B813 is appropriately added dropwise in order to keep the pH of the mixed solution in the reaction vessel within a predetermined range. can do.
  • step S35 it is desirable that the solution in the reaction vessel is stirred with a stirring blade or a stirrer, and the solution in the reaction vessel, the mixture 811 in step S32, the aqueous solution A812, and the aqueous solution B813 are dissolved oxygen by N2 bubbling. It is desirable to remove.
  • the pH in the reaction vessel is preferably 9 or more and 11 or less, more preferably 10.0 or more and 10.5 or less.
  • the temperature of the solution in the reaction vessel is preferably 40 ° C. or higher and 80 ° C. or lower, more preferably 50 ° C. or higher and 70 ° C. or lower.
  • the solution containing the hydroxide having the transition metal M formed by the mixing in step S35 is filtered as step S36 and then washed with water.
  • the water used for cleaning is preferably pure water having a specific resistance of 1 M ⁇ ⁇ cm or more, more preferably a specific resistance of 10 M ⁇ ⁇ cm or more, and further preferably a specific resistance of 15 M ⁇ ⁇ cm or more and having few impurities.
  • impurities contained in the hydroxide having the transition metal M can be removed. Thereby, a hydroxide having a high-purity transition metal M can be obtained as a precursor of the positive electrode active material 100.
  • step S36 the hydroxide having the transition metal M after washing is dried, recovered, crushed and sieved as necessary, and then the mixture 821 of step S41 is obtained.
  • the mixture 821 is also referred to as a precursor of the positive electrode active material 100.
  • the precursor preferably has high crystallinity, and more preferably has single crystal grains. That is, the precursor is preferably a single crystal.
  • step S42 the lithium compound 822 is prepared as step S42, and the additive element X source 823 is prepared as step S43.
  • step S51 the mixture 821 of step S41, the lithium compound 822, and the additive element X source 823 are mixed.
  • step S52 the mixture is collected in step S52, crushed and sieved as necessary, and then the mixture 831 of step S53 is obtained.
  • Mixing can be done dry or wet.
  • a mixer such as a rotation / revolution mixer, a ball mill, a bead mill, or the like can be used.
  • the rotation / revolution mixer Awatori Rentaro manufactured by Shinky Co., Ltd.
  • the rotation speed may be 2000 rpm and the 1.5-minute process may be repeated three times.
  • a ball mill it is preferable to use, for example, zirconia balls as a medium.
  • the peripheral speed is preferably 100 mm / s or more and 2000 mm / s or less in order to suppress contamination from media or materials.
  • the peripheral speed may be 838 mm / s (rotation speed 400 rpm, ball mill diameter 40 mm).
  • the mixture 821 and the lithium compound 822 can be uniformly mixed by sufficiently mixing in step S51.
  • lithium compound 822 for example, lithium hydroxide, lithium carbonate, lithium nitrate, lithium fluoride and the like can be used.
  • Lithium compound 822 is sometimes referred to as a lithium source.
  • the lithium compound 822 used in the synthesis it is preferable to use a high-purity material.
  • the purity of the material is 4N (99.99%) or more, preferably 4N5UP (99.995%) or more, and more preferably 5N (99.999%) or more.
  • Additive elements X include nickel, cobalt, magnesium, calcium, chlorine, fluorine, aluminum, manganese, titanium, zirconium, yttrium, vanadium, iron, chromium, niobium, lanthanum, hafnium, zinc, silicon, sulfur, phosphorus, boron, etc. And one or more selected from arsenic can be used. Further, as the additive element X, bromine and beryllium may be used in addition to the above elements. However, since bromine and beryllium are elements that are toxic to living organisms, it is preferable to use the above-mentioned additive element X.
  • any one or more can be used from an aqueous solution containing the additive element X, an alkoxide containing the additive element X, or a solid compound containing the additive element X.
  • the purity of the material is 2N (99%) or more, preferably 3N (99.9%) or more, and more preferably 4N (99.99%) or more.
  • step S54 the mixture 831 of step S53 is heated.
  • the heating temperature is preferably a temperature near the melting point of the mixture 821 and the lithium compound 822, preferably 700 ° C. or higher and lower than 1100 ° C., more preferably 800 ° C. or higher and 1000 ° C. or lower, and 800 ° C. or higher and 950 ° C. or lower. Is even more preferable.
  • it is advisable to cover the container (crucible) containing the mixture 831. It is possible to prevent unnecessary evaporation of the raw material gas.
  • the heating time can be, for example, 1 hour or more and 100 hours or less, and preferably 2 hours or more and 20 hours or less.
  • the heating is preferably performed in an oxygen-containing atmosphere (for example, a dew point of ⁇ 50 ° C. or lower, more preferably a dew point of ⁇ 80 ° C. or lower) in which water such as oxygen or dry air is low.
  • heating is performed in an atmosphere with a dew point of ⁇ 93 ° C.
  • the heating is performed in an atmosphere where the impurity concentrations of CH 4 , CO, CO 2 and H 2 are 5 ppb (parts per parts) or less, respectively, because impurities that can be mixed in the material can be suppressed.
  • the temperature rise is 200 ° C./h and the flow rate in the dry atmosphere is 10 L / min.
  • the heated material can then be cooled to room temperature.
  • the temperature lowering time from the specified temperature to room temperature is 10 hours or more and 50 hours or less.
  • cooling to room temperature in step S54 is not essential.
  • the crucible used for heating in step S54 is preferably made of a material that does not contain impurities.
  • an alumina crucible having a purity of 99.9% is used.
  • the mortar when recovering the material that has been heated in step S54, it is suitable because impurities are not mixed in the material when it is moved from the crucible to the mortar and then recovered. Further, the mortar is also suitable as a material that does not contain impurities. Specifically, it is preferable to use an alumina mortar having a purity of 90 wt% or more, preferably 99 wt% or more.
  • step S55 the material fired above is recovered, crushed and sieved as necessary, and then the mixture 832 of step S61 is obtained.
  • step S62 the additive element X source 833 is prepared.
  • Additive element X source 833 includes nickel, cobalt, magnesium, calcium, chlorine, fluorine, aluminum, manganese, titanium, zirconium, yttrium, vanadium, iron, chromium, niobium, lanthanum, hafnium, zinc, silicon, sulfur, phosphorus, etc.
  • One or more selected from boron and arsenic can be used.
  • bromine and beryllium may be used in addition to the above elements. However, since bromine and beryllium are elements that are toxic to living organisms, it is preferable to use the above-mentioned additive element X source.
  • any one or more can be used from the aqueous solution containing the additive element X, the alkoxide containing the additive element X, and the solid compound containing the additive element X.
  • a solid compound containing one or more additive elements X is prepared, crushed, and mixed as shown as S62a or S62b in FIGS. 3A and 3B. (Mixture 843a or Mixture 843b) may be used as the additive element X source 833 in step S62.
  • a solid compound containing one or more additive elements X it may be mixed after crushing, may be crushed after mixing, or may be crushed after mixing, or without crushing, the additive element X source 833 in step S62. It may be used as.
  • the purity of the material is 2N (99%) or more, preferably 3N (99.9%) or more, and more preferably 4N (99.99%) or more.
  • step S71 the mixture 832 of step S61 and the additive element X source 833 of step S62 are mixed. After mixing, it is collected in step S72, crushed and sieved as necessary, and then the mixture 841 of step S73 is obtained. Mixing can be done dry or wet.
  • a mixer such as a rotation / revolution mixer, a ball mill, a bead mill, or the like can be used.
  • the rotation speed may be 2000 rpm and the 1.5-minute process may be repeated three times.
  • the peripheral speed is preferably 100 mm / s or more and 2000 mm / s or less in order to suppress contamination from media or materials.
  • the peripheral speed may be 838 mm / s (rotation speed 400 rpm, ball mill diameter 40 mm).
  • step S74 the mixture 841 of step S73 is heated.
  • the heating temperature of step S74 is preferably 500 ° C. or higher and 1100 ° C. or lower, more preferably 500 ° C. or higher and 1000 ° C. or lower, further preferably 500 ° C. or higher and 950 ° C. or lower, and further preferably 500 ° C. or higher and 900 ° C. or lower.
  • heating by a roller hers kiln may be performed.
  • the mixture 841 may be treated using a heat-resistant container having a lid.
  • the heating time can be, for example, 1 hour or more and 100 hours or less, and preferably 2 hours or more and 20 hours or less.
  • the heating is preferably performed in an oxygen-containing atmosphere (for example, a dew point of ⁇ 50 ° C. or lower, more preferably a dew point of ⁇ 80 ° C. or lower) in which water such as oxygen or dry air is low.
  • heating is performed in an atmosphere with a dew point of ⁇ 93 ° C.
  • the heating is performed in an atmosphere where the impurity concentrations of CH 4 , CO, CO 2 and H 2 are 5 ppb (parts per parts) or less, respectively, because impurities that can be mixed in the material can be suppressed.
  • the temperature rise is 200 ° C./h and the flow rate in the dry atmosphere is 10 L / min.
  • the heated material can then be cooled to room temperature.
  • the temperature lowering time from the specified temperature to room temperature is 10 hours or more and 50 hours or less.
  • cooling to room temperature in step S74 is not essential.
  • step S75 the material fired above is recovered, crushed, and then the positive electrode active material 100 of step S76 is obtained. If necessary, sieving may be carried out after crushing. By the above steps, the positive electrode active material 100 according to one aspect of the present invention can be produced.
  • the positive electrode active material 100 has high crystallinity, and when the crystallinity of the mixture 821 of step S41 is high, the crystallinity of the positive electrode active material 100 is also high.
  • the positive electrode active material 100 has high crystallinity and the positive electrode active material 100 has single crystal grains, the crystal planes of lithium in and out can be aligned. If more crystal planes in and out of lithium can be exposed to the electrolyte, the battery characteristics will improve. Further, the positive electrode active material 100 has high crystallinity, and further, it is durable when the positive electrode active material 100 has single crystal grains, and it is possible to provide an active material that is not easily deteriorated even after repeated charging and discharging.
  • the positive electrode active material 100 may be represented as a composite oxide (LiMO 2 ) having lithium, a transition metal M, and oxygen.
  • the positive electrode active material 100 is a composite oxide (NCMA) having Ni, Co, Mn, and Al.
  • the concentration of aluminum is preferably 0.1 at% or more and 2 at% or less.
  • the concentration of the additive element X can be increased in the surface layer portion as compared with the inside of the particles. Further, based on the number of atoms of the transition metal M, the ratio of the number of atoms of the additive element X to the reference can be made higher in the surface layer portion than in the inside.
  • the region where the aluminum concentration is 0.1 at% or more and 2 at% or less may be either the surface layer portion or the inside of the particles.
  • a positive electrode active material is produced in a step in which a high-purity material is used as the transition metal M source used in the synthesis and the amount of impurities mixed is small in the synthesis. Further, the impurity concentration is low by using a production method in which the transition metal M source and the contamination of impurities at the time of synthesis are thoroughly eliminated, and the desired additive element X is controlled and introduced into the positive electrode active material. It is possible to obtain a positive electrode active material in which the region and the region into which the additive element X is introduced are controlled. Further, the positive electrode active material shown in the present embodiment is a material having high crystallinity. In addition, the positive electrode active material obtained by the method for producing a positive electrode active material according to one aspect of the present invention can increase the capacity of the secondary battery and / or enhance the reliability of the secondary battery.
  • FIG. 12 shows step S150, which is a lithium desorption step of reducing or removing lithium from the positive electrode active material 100 obtained through the step shown in any one of the first to ninth embodiments.
  • the step S150 is not particularly limited as long as it is a method for desorbing and reducing lithium from the positive electrode active material 100, and lithium can be desorbed by performing a charging reaction or a chemical reaction using a solution.
  • Step S150 can be said to be a step of providing a locally deteriorated portion by approximately halving the amount of lithium from the obtained positive electrode active material 100.
  • the amount of lithium desorbed from the positive electrode active material 100 is 5% or more and 95% or less, preferably 30% or more and 70% or less, and more preferably 40% or more and 60% or less.
  • the additive element X1 source is prepared as step S120 in FIG.
  • Sources of additive element X1 include nickel, cobalt, magnesium, calcium, chlorine, fluorine, aluminum, manganese, titanium, zirconium, yttrium, vanadium, iron, chromium, niobium, lanthanum, hafnium, zinc, silicon, sulfur, phosphorus, and boron.
  • arsenic can be used.
  • bromine and beryllium may be used in addition to the above elements. However, since bromine and beryllium are elements that are toxic to living organisms, it is preferable to use the above-mentioned additive element X1 source.
  • any one or more of magnesium, fluorine, and calcium can be preferably used, and since the amount of lithium is approximately halved in step S150, as the additive element X1 source for supplementing lithium. It is preferable to use a compound with lithium, for example, lithium fluoride or magnesium fluoride.
  • Step S131 includes a step of mixing the positive electrode active material from which lithium has been desorbed and the X1 source. After mixing, the mixture is collected in step S132, crushed and sieved as necessary, and then the mixture 907 of step S133 is obtained. Mixing can be done dry or wet.
  • a mixer such as a rotation / revolution mixer, a ball mill, a bead mill, or the like can be used.
  • the rotation speed may be 2000 rpm and the 1.5-minute process may be repeated three times.
  • a ball mill it is preferable to use, for example, zirconia balls as a medium.
  • the mixture 907 recovered in step S132 is heated.
  • the heating temperature is preferably a temperature near the melting point between the positive electrode active material from which lithium has been desorbed and the X1 source, preferably 700 ° C. or higher and lower than 1100 ° C., and more preferably 800 ° C. or higher and 1000 ° C. or lower. More preferably, it is 800 ° C. or higher and 950 ° C. or lower.
  • the heating time can be, for example, 1 hour or more and 100 hours or less, and preferably 2 hours or more and 20 hours or less.
  • the heating is preferably performed in an oxygen-containing atmosphere (for example, a dew point of ⁇ 50 ° C. or lower, more preferably a dew point of ⁇ 80 ° C. or lower) in which water such as oxygen or dry air is low.
  • heating is performed in an atmosphere with a dew point of ⁇ 93 ° C.
  • the heating is performed in an atmosphere where the impurity concentrations of CH 4 , CO, CO 2 and H 2 are 5 ppb (parts per parts) or less, respectively, because impurities that can be mixed in the material can be suppressed.
  • the temperature rise is 200 ° C./h and the flow rate in the dry atmosphere is 10 L / min.
  • the heated material can then be cooled to room temperature.
  • the temperature lowering time from the specified temperature to room temperature is 10 hours or more and 50 hours or less.
  • cooling to room temperature in step S134 is not essential.
  • the crucible used for heating in step S134 is preferably made of a material that does not contain impurities.
  • an alumina crucible having a purity of 99.9% is used.
  • the mortar when recovering the material that has been heated in step S134, it is suitable because impurities are not mixed in the material when it is moved from the crucible to the mortar and then recovered. Further, the mortar is also suitable as a material that does not contain impurities. Specifically, it is preferable to use an alumina mortar having a purity of 90 wt% or more, preferably 99 wt% or more.
  • step S135 the material fired above is recovered, crushed and sieved as necessary, and then the mixture 908 of step S136 is obtained.
  • the additive element X2 source is prepared.
  • Sources of additive element X2 include nickel, cobalt, magnesium, calcium, chlorine, fluorine, aluminum, manganese, titanium, zirconium, yttrium, vanadium, iron, chromium, niobium, lanthanum, hafnium, zinc, silicon, sulfur, phosphorus, and boron. , And one or more selected from arsenic can be used.
  • bromine and beryllium may be used in addition to the above elements. However, since bromine and beryllium are elements that are toxic to living organisms, it is preferable to use the above-mentioned additive element X2 source.
  • any one or a plurality selected from nickel, titanium, boron, zirconium, and aluminum can be preferably used.
  • Step S151 includes a step of mixing the mixture 908 and the X2 source. After mixing, the mixture is collected in step S152, crushed and sieved as necessary, and then the mixture 909 of step S153 is obtained. Mixing can be done dry or wet.
  • a mixer such as a rotation / revolution mixer, a ball mill, a bead mill, or the like can be used.
  • the rotation speed may be 2000 rpm and the 1.5-minute process may be repeated three times.
  • a ball mill it is preferable to use, for example, zirconia balls as a medium.
  • the mixture 909 is heated.
  • the heating temperature is preferably 700 ° C. or higher and lower than 1100 ° C., more preferably 800 ° C. or higher and 1000 ° C. or lower, and further preferably 800 ° C. or higher and 950 ° C. or lower.
  • the heating time can be, for example, 1 hour or more and 100 hours or less, and preferably 2 hours or more and 20 hours or less.
  • the heating is preferably performed in an oxygen-containing atmosphere (for example, a dew point of ⁇ 50 ° C. or lower, more preferably a dew point of ⁇ 80 ° C. or lower) in which water such as oxygen or dry air is low.
  • heating is performed in an atmosphere with a dew point of ⁇ 93 ° C.
  • the heating is performed in an atmosphere where the impurity concentrations of CH 4 , CO, CO 2 and H 2 are 5 ppb (parts per parts) or less, respectively, because impurities that can be mixed in the material can be suppressed.
  • the temperature rise is 200 ° C./h and the flow rate in the dry atmosphere is 10 L / min.
  • the heated material can then be cooled to room temperature.
  • the temperature lowering time from the specified temperature to room temperature is 10 hours or more and 50 hours or less.
  • cooling to room temperature in step S154 is not essential.
  • the crucible used for heating in step S154 is preferably made of a material that does not contain impurities.
  • an alumina crucible having a purity of 99.9% is used.
  • the mortar when recovering the material that has been heated in step S154, it is suitable because impurities are not mixed in the material when it is moved from the crucible to the mortar and then recovered. Further, the mortar is also suitable as a material that does not contain impurities. Specifically, it is preferable to use an alumina mortar having a purity of 90 wt% or more, preferably 99 wt% or more.
  • step S155 the material fired above is recovered, and after crushing, the positive electrode active material 106 of step S176 is obtained. If necessary, sieving may be carried out after crushing.
  • the positive electrode active material 106 can be produced by repeatedly adding a metal oxide, specifically aluminum or nickel, to the positive electrode active material 100.
  • the amount of lithium is approximately halved from the positive electrode active material 100, and then the additive element X1 source and the additive element X2 source are added. Therefore, lithium is extracted from the positive electrode active material 100.
  • the additive element X1 or the additive element X2 can be selectively introduced into the locally deteriorated portion. The additive element X1 or the additive element X2 is likely to be introduced into the particles.
  • the positive electrode active material obtained by the method for producing a positive electrode active material according to one aspect of the present invention can increase the capacity of the secondary battery and / or enhance the reliability of the secondary battery.
  • FIG. 13A shows a cross-sectional view of the positive electrode active material 100.
  • the positive electrode active material 100 has a plurality of primary particles 101. At least a part of the plurality of primary particles 101 is fixed to form secondary particles 102. There are also primary particles 101 that do not become secondary particles. An enlarged view of the secondary particles 102 is shown in FIG. 13B.
  • the positive electrode active material 100 may have a void 105.
  • the shapes of the primary particles 101 and the secondary particles 102 shown in FIGS. 13A and 13B are examples, and are not limited thereto.
  • the primary particle is the smallest unit recognized as a solid having a clear boundary in a microscope image such as an SEM image, a TEM image, and an STEM image.
  • the secondary particles are particles in which a plurality of primary particles are sintered, fixed or aggregated.
  • the bonding force acting between the plurality of primary particles does not matter. It may be a covalent bond, an ionic bond, a hydrophobic interaction, a van der Waals force, or any other intramolecular interaction, or a plurality of binding forces may be working.
  • the term "particles" includes primary particles and secondary particles.
  • the positive electrode active material 100 has lithium, a transition metal M, oxygen, and an additive element X.
  • the positive electrode active material 100 is obtained by adding a plurality of additive elements X to the composite oxide represented by LiMO 2 .
  • the transition metal M contained in the positive electrode active material 100 it is preferable to use a metal capable of forming a layered rock salt type composite oxide belonging to the space group R-3m together with lithium.
  • a metal capable of forming a layered rock salt type composite oxide belonging to the space group R-3m together with lithium For example, at least one of manganese, cobalt and nickel can be used. That is, as the transition metal of the positive electrode active material 100, only cobalt may be used, only nickel may be used, two kinds of cobalt and manganese, two kinds of cobalt and nickel may be used, and cobalt may be used. , Manganese, and nickel may be used.
  • the positive electrode active material 100 is lithium cobalt oxide, lithium nickel oxide, lithium cobalt oxide in which a part of cobalt is substituted with manganese, lithium cobalt oxide in which a part of cobalt is substituted with nickel, and nickel-manganese-lithium cobalt oxide. It can have a composite oxide containing lithium and a transition metal M, such as.
  • cobalt when used as the transition metal M contained in the positive electrode active material 100 in an amount of 75 atomic% or more, preferably 90 atomic% or more, more preferably 95 atomic% or more, it is relatively easy to synthesize, easy to handle, and has excellent cycle characteristics. There are many advantages such as.
  • the raw material becomes cheaper than the case where the amount of cobalt is large.
  • the charge / discharge capacity per weight may increase, which is preferable.
  • the transition metal M has a part of nickel together with cobalt, the displacement of the layered structure composed of the octahedron of cobalt and oxygen may be suppressed. Therefore, the crystal structure may become more stable especially in a charged state at a high temperature, which is preferable.
  • nickel easily diffuses into the inside of lithium cobalt oxide, and it is considered that nickel may be present at the cobalt site during discharge but may be cation-mixed and located at the lithium site during charging.
  • Nickel present in the lithium site during charging functions as a pillar supporting the layered structure consisting of cobalt and oxygen octahedrons, and is thought to contribute to the stabilization of the crystal structure.
  • the transition metal M does not necessarily have to contain manganese. Also, it does not necessarily have to contain nickel. Further, it does not necessarily have to contain cobalt.
  • additive element X it is preferable to use at least one of magnesium, fluorine, aluminum, titanium, zirconium, yttrium, vanadium, iron, chromium, niobium, lanthanum, hafnium, zinc, silicon, sulfur, phosphorus, boron and arsenic. ..
  • the positive electrode active material 100 can improve the continuous charge resistance by adding phosphorus, and can be a highly safe secondary battery, which is preferable.
  • manganese, titanium, vanadium, and chromium are materials that are stable and easily obtained tetravalent, they may be used as the transition metal M of the positive electrode active material 100 to enhance the contribution to structural stability. be.
  • the positive electrode active material 100 includes lithium cobalt oxide to which magnesium and fluorine are added, lithium nickel cobalt oxide to which magnesium and fluorine are added, cobalt-lithium cobalt oxide to which magnesium and fluorine are added, and nickel cobalt-lithium aluminum oxide. It can have nickel cobalt-lithium cobalt oxide with magnesium and fluorine added, nickel manganese-lithium cobalt oxide with magnesium and fluorine added, and the like.
  • the concentration of magnesium in lithium cobalt oxide is preferably 0.1 at% or more and 2 at% or less.
  • the additive element X instead of the additive element X, it may be referred to as a mixture, a part of a raw material, an impurity or the like.
  • the additive element X in the positive electrode active material 100 is added at a concentration that does not significantly change the crystallinity of the composite oxide represented by LiMO 2 .
  • the amount is preferably such that the Jahn-Teller effect and the like are not exhibited.
  • the additive element X does not necessarily have to contain magnesium, fluorine, aluminum, titanium, zirconium, yttrium, vanadium, iron, chromium, niobium, lanthanum, hafnium, zinc, silicon, sulfur, phosphorus, boron, and arsenic.
  • At least one of the additive elements X in the positive electrode active material 100 has a concentration gradient.
  • the primary particle 101 has a surface layer portion 11a and an internal 11b, and the surface layer portion 11a has a higher concentration of the additive element X than the internal 11b.
  • concentration of the additive element X in the primary particles 101 is shown by gradation.
  • a deep gradation, that is, close to black means that the concentration of the additive element X is high
  • a light gradation, that is, close to white means that the concentration of the additive element X is low.
  • the concentration of the additive element X at the interface 103 between the primary particles and the vicinity of the interface 103 is higher than that inside 11b of the primary particles 101.
  • the vicinity of the interface 103 means a region from the interface 103 to about 10 nm.
  • FIG. 14A shows an example of the concentration distribution of the additive element X between the alternate long and short dash lines AB of the positive electrode active material 100 shown in FIG. 13B.
  • the horizontal axis shows the distance between the alternate long and short dash lines AB in FIG. 13B
  • the vertical axis shows the concentration of the additive element X.
  • the interface 103 and the vicinity of the interface 103 have a region where the concentration of the additive element X is high.
  • the shape of the concentration distribution of the additive element X is not limited to the shape shown in FIG. 14A.
  • the peak position of the concentration differs depending on the additive element X.
  • examples of the additive element X preferably having a concentration gradient increasing from the inside 11b toward the surface include magnesium, fluorine and titanium.
  • some of the other additive elements X have a peak concentration in the positive electrode active material 100 in a region closer to the inner 11b than the additive element X distributed as shown in FIG. 14B. ..
  • the additive element X having such a preferable distribution include aluminum.
  • the concentration peak may be present in the surface layer portion or may be deeper than the surface layer portion. For example, it is preferable to have a concentration peak in a region of 5 nm or more and 30 nm or less from the surface.
  • a part of the additive element X for example magnesium, preferably has a concentration gradient that increases from the inside 11b toward the surface as shown in FIG. 14B, but in addition to this, it is thinly distributed throughout the primary particles 101. It is preferable to have.
  • the magnesium concentration of the surface layer portion 11a measured by XPS or the like is higher than the average magnesium concentration of the entire particles measured by ICP-MS or the like.
  • the positive electrode active material 100 of one aspect of the present invention has one or more metals selected from elements other than cobalt, for example, nickel, aluminum, manganese, iron and chromium, in the surface layer portion of the primary particles 101 of the metal. It is preferable that the concentration is higher than the average of the whole particles. For example, it is preferable that the concentration of an element other than cobalt in the surface layer portion 11a measured by XPS or the like is higher than the concentration of the element in the average of all the particles measured by ICP-MS or the like.
  • the surface layer of the particle is in a state where the bond is broken, and lithium is released from the surface during charging, so the lithium concentration tends to be lower than that of the inside 11b. Therefore, it is a part where the crystal structure is liable to collapse because it tends to be unstable. If the concentration of the additive element X in the surface layer portion 11a is high, the change in the crystal structure can be suppressed more effectively. Further, when the concentration of the additive element X in the surface layer portion 11a is high, it can be expected that the corrosion resistance to hydrofluoric acid generated by the decomposition of the electrolytic solution is improved.
  • the surface layer portion 11a of the positive electrode active material 100 preferably has a higher concentration of the additive element X than the inner portion 11b and has a composition different from that of the inner portion 11b. Further, it is preferable that the composition has a stable crystal structure at room temperature (25 ° C.). Therefore, the surface layer portion 11a may have a crystal structure different from that of the internal 11b. For example, at least a part of the surface layer portion 11a of the positive electrode active material 100 according to one aspect of the present invention may have a rock salt type crystal structure. When the surface layer portion 11a and the internal 11b have different crystal structures, it is preferable that the crystal orientations of the surface layer portion 11a and the internal 11b are substantially the same.
  • the surface layer portion 11a has only the additive elements X and oxygen, for example, only MgO, or only the structure in which MgO and CoO (II) are solid-dissolved, it becomes difficult to insert and remove lithium. Therefore, the surface layer portion 11a needs to have at least the transition metal M, also lithium in the discharged state, and have a path for inserting and removing lithium. Further, it is preferable that the concentration of the transition metal M is higher than that of each additive element X.
  • the positive electrode active material 100 is not limited to this. It may have an additive element X having no concentration gradient.
  • the transition metal M particularly cobalt and nickel, is uniformly dissolved in the entire positive electrode active material 100.
  • a part of the transition metal M contained in the positive electrode active material 100 may have a concentration gradient that becomes thicker from the inside 11b toward the surface.
  • the additive element X has the above-mentioned distribution, the deterioration of the positive electrode active material 100 can be reduced even after charging and discharging. That is, deterioration of the secondary battery can be suppressed. In addition, it can be a highly safe secondary battery.
  • the transition metal M such as cobalt and manganese elutes from the positive electrode active material of the secondary battery into the electrolytic solution, oxygen is desorbed, and the crystal structure becomes unstable. A side reaction such as “becomes” may occur, and the deterioration of the positive electrode active material may progress. Deterioration of the positive electrode active material may lead to deterioration such as a decrease in the capacity of the secondary battery.
  • the positive electrode active material undergoes chemical and structural changes such as the transition metal M of the positive electrode active material being eluted into the electrolytic solution, oxygen being desorbed, and the crystal structure becoming unstable. May be referred to as deterioration of the positive electrode active material.
  • a decrease in the capacity of the secondary battery may be referred to as deterioration of the secondary battery.
  • the metal eluted from the positive electrode active material may be reduced and deposited at the negative electrode, which may interfere with the electrode reaction of the negative electrode. Deposition of metal on the negative electrode may lead to deterioration such as capacity reduction.
  • the crystal lattice of the positive electrode active material expands and contracts due to the insertion and desorption of lithium due to charging and discharging, and the volume change and distortion of the crystal lattice may occur.
  • the volume change and distortion of the crystal lattice cause the positive electrode active material to crack, and deterioration such as a decrease in capacity may progress. Further, the cracking of the positive electrode active material may start from the interface 103 between the primary particles.
  • Oxygen may be desorbed from the positive electrode active material by the insertion and desorption of lithium during charging and discharging.
  • the positive electrode active material 100 having an additive element X or a compound (for example, an oxide of the additive element X) on the surface layer portion 11a or the interface 103, which is chemically and structurally more stable than the lithium composite oxide represented by LiMO 2 . And.
  • the positive electrode active material 100 is chemically and structurally stable, and structural changes, volume changes, and distortions due to charging and discharging can be suppressed. That is, the crystal structure of the positive electrode active material 100 becomes more stable, and it is possible to suppress the transformation of the crystal structure even after repeated charging and discharging.
  • cracking of the positive electrode active material 100 can be suppressed. That is, deterioration such as capacity reduction can be suppressed, which is preferable.
  • the crystal structure becomes unstable and easily deteriorates.
  • the positive electrode active material 100 which is one aspect of the present invention, the crystal structure can be made more stable, so that deterioration such as capacity reduction can be suppressed, which is particularly preferable.
  • the positive electrode active material 100 which is one aspect of the present invention, has a stable crystal structure, it is possible to suppress the elution of the transition metal M from the positive electrode active material. That is, deterioration such as capacity reduction can be suppressed, which is preferable.
  • the positive electrode active material 100 which is one aspect of the present invention
  • the compound of the additive element X is contained on the surface of the primary particles 101 after the cracking. That is, the side reaction can be suppressed even in the positive electrode active material 100 after cracking, and the deterioration of the positive electrode active material 100 can be reduced. That is, deterioration of the secondary battery can be suppressed.
  • the positive electrode active material 100 having the primary particles 101 and the secondary particles 102 preferably has an average particle diameter (D50: also referred to as a median diameter) of 1 ⁇ m or more and 100 ⁇ m or less as measured by a particle size distribution meter of a laser diffraction / scattering method. It is more preferably 40 ⁇ m or less, and further preferably 5 ⁇ m or more and 30 ⁇ m or less. Alternatively, it is preferably 1 ⁇ m or more and 40 ⁇ m or less. Alternatively, it is preferably 1 ⁇ m or more and 30 ⁇ m or less. Alternatively, it is preferably 2 ⁇ m or more and 100 ⁇ m or less. Alternatively, it is preferably 2 ⁇ m or more and 30 ⁇ m or less. Alternatively, it is preferably 5 ⁇ m or more and 100 ⁇ m or less. Alternatively, it is preferably 5 ⁇ m or more and 40 ⁇ m or less.
  • D50 average particle diameter
  • the positive electrode active material 100 having two or more different particle sizes may be mixed and used.
  • the positive electrode active material 100 in which a plurality of peaks occur when the particle size distribution is measured by the laser diffraction / scattering method may be used.
  • the mixing ratio is set so that the powder packing density becomes large, the capacity per volume of the secondary battery can be improved, which is preferable.
  • the size of the primary particles 101 in the positive electrode active material 100 can be obtained from, for example, the half width of the XRD pattern of the positive electrode active material 100.
  • the primary particles 101 are preferably 50 nm or more and 200 nm or less.
  • XPS X-ray photoelectron spectroscopy
  • the atomic number of the additive element X is preferably 1.6 times or more and 6.0 times or less the atomic number of the transition metal M, and is 1.8 times or more and 4 times. Less than 0.0 times is more preferable.
  • the additive element X is magnesium and the transition metal M is cobalt
  • the number of atoms of magnesium is preferably 1.6 times or more and 6.0 times or less the number of atoms of cobalt, and 1.8 times or more and less than 4.0 times. More preferred.
  • the number of atoms of the halogen such as fluorine is preferably 0.2 times or more and 6.0 times or less, and more preferably 1.2 times or more and 4.0 times or less the number of atoms of the transition metal M.
  • monochromatic aluminum can be used as the X-ray source.
  • the output can be, for example, a 1486.6 eV.
  • the take-out angle may be, for example, 45 °. Under such measurement conditions, it is possible to analyze a region from the surface to a depth of 2 nm or more and 8 nm or less (usually about 5 nm) as described above.
  • the peak showing the binding energy between fluorine and other elements is preferably 682 eV or more and less than 685 eV, and more preferably about 684.3 eV. .. This is a value different from both the binding energy of lithium fluoride, 685 eV, and the binding energy of magnesium fluoride, 686 eV. That is, when the positive electrode active material 100 of one aspect of the present invention has fluorine, it is preferably a bond other than lithium fluoride and magnesium fluoride.
  • the peak showing the binding energy between magnesium and other elements is preferably 1302 eV or more and less than 1304 eV, and more preferably about 1303 eV. This is a value different from 1305 eV, which is the binding energy of magnesium fluoride, and is close to the binding energy of magnesium oxide. That is, when the positive electrode active material 100 of one aspect of the present invention has magnesium, it is preferably a bond other than magnesium fluoride.
  • Additive elements X such as magnesium, aluminum and titanium, which are preferably present in large amounts on the surface layer portion 11a, have concentrations measured by XPS or the like such as ICP-MS (inductively coupled plasma mass spectrometry) or GD-MS (glow discharge). It is preferably higher than the concentration measured by mass spectrometry) or the like.
  • the concentration of the surface layer portion 11a is higher than the concentration of the internal 11b.
  • the magnesium concentration is preferably attenuated to 60% or less of the peak at a depth of 1 nm from the peak top. Further, it is preferable that the attenuation is 30% or less of the peak at a depth of 2 nm from the peak top. Processing can be performed by, for example, a FIB (focused ion beam) device.
  • the number of atoms in magnesium is preferably 0.4 times or more and 1.5 times or less the number of atoms in cobalt.
  • the ratio Mg / Co of the number of atoms of magnesium as analyzed by ICP-MS is preferably 0.001 or more and 0.06 or less.
  • the nickel contained in the transition metal M is not unevenly distributed on the surface layer portion 11a and is distributed throughout the positive electrode active material 100.
  • ⁇ EPMA ⁇ EPMA Electro Probe Microanalysis
  • the concentration of each element may differ from the measurement results using other analytical methods.
  • the concentration of the additive element X present in the surface layer portion may be lower than the result of XPS.
  • the concentration of the additive element X present in the surface layer portion may be higher than the value of the blending of the raw materials in the result of ICP-MS or in the process of producing the positive electrode active material.
  • the cross section of the positive electrode active material 100 of one aspect of the present invention is subjected to EPMA surface analysis, it is preferable to have a concentration gradient in which the concentration of the additive element X increases from the inside toward the surface. More specifically, as shown in FIG. 14B, magnesium, fluorine and titanium preferably have a concentration gradient that increases from the inside toward the surface. Further, as shown in FIG. 14C, it is preferable that aluminum has a concentration peak in a region deeper than the concentration peak of the above element. The peak of the aluminum concentration may be present in the surface layer portion or may be deeper than the surface layer portion.
  • the surface of the positive electrode active material does not contain carbonic acid, hydroxy groups, etc. chemically adsorbed after the production of the positive electrode active material. Further, it does not contain an electrolytic solution, a binder, a conductive agent, or a compound derived from these, which adheres to the surface of the positive electrode active material. Therefore, when quantifying the elements contained in the positive electrode active material, corrections may be made to exclude carbon, hydrogen, excess oxygen, excess fluorine, etc. that can be detected by surface analysis such as XPS and EPMA. For example, in XPS, the types of bonds can be separated by analysis, and corrections may be made to exclude CF bonds derived from the binder.
  • the samples such as the positive electrode active material and the positive electrode active material layer are washed, etc. May be done.
  • lithium may dissolve in the solvent used for cleaning, but even in that case, the transition metal M and the additive element X are difficult to dissolve, so that the atomic number ratio of the transition metal M and the additive element X is adjusted. It has no effect.
  • the primary particles 101 contained in the positive electrode active material 100 preferably have a smooth surface and few irregularities.
  • the fact that the surface is smooth and has few irregularities is one factor indicating that the distribution of the additive element X in the surface layer portion 11a is good.
  • the fact that the surface of the primary particles 101 is smooth and has few irregularities can be determined from, for example, a cross-sectional SEM image or a cross-sectional TEM image of the positive electrode active material 100.
  • the smoothness of the surface can be quantified from the cross-sectional SEM image of the positive electrode active material 100 as shown below.
  • the positive electrode active material 100 is processed by FIB or the like to expose the cross section. At this time, it is preferable to cover the positive electrode active material 100 with a protective film, a protective agent, or the like.
  • a protective film, a protective agent, or the like is photographed.
  • interface extraction is performed with image processing software. Further, the interface line between the protective film or the like and the positive electrode active material 100 is selected by an automatic selection tool or the like, and the data is extracted by spreadsheet software or the like.
  • this surface roughness is the surface roughness of the positive electrode active material at least at 400 nm around the outer periphery of the particles.
  • the roughness (RMS) which is an index of roughness, is less than 3 nm, preferably less than 1 nm, and more preferably less than 0.5 nm, which is a root mean square surface. Roughness (RMS) is preferred.
  • the image processing software that performs noise processing, interface extraction, etc. is not particularly limited.
  • the secondary battery has at least an exterior body, a current collector, an active material (positive electrode active material or a negative electrode active material), a conductive agent, and a binder. It also has an electrolytic solution in which a lithium salt or the like is dissolved. In the case of a secondary battery using an electrolytic solution, a positive electrode, a negative electrode, and a separator are provided between the positive electrode and the negative electrode.
  • the positive electrode has a positive electrode active material layer and a positive electrode current collector.
  • the positive electrode active material layer preferably has the positive electrode active material shown in the first to eleventh embodiments, and may further have a binder, a conductive agent, and the like.
  • FIG. 15 shows an example of a schematic view of a cross section of a positive electrode.
  • the current collector 550 is a metal foil, and a positive electrode is formed by applying a slurry on the metal foil and drying it. After drying, further pressing may be added.
  • the positive electrode has an active material layer formed on the current collector 550.
  • the slurry is a material liquid used to form an active material layer on the current collector 550, and refers to a material liquid containing at least an active material, a binder, and a solvent, preferably further mixed with a conductive agent.
  • the slurry may be referred to as an electrode slurry or an active material slurry, a positive electrode slurry may be used when forming a positive electrode active material layer, and a negative electrode slurry may be used when forming a negative electrode active material layer.
  • the conductive agent is also called a conductive imparting agent or a conductive auxiliary agent, and a carbon material is used.
  • a conductive agent By adhering a conductive agent between a plurality of active materials, the plurality of active materials are electrically connected to each other, and the conductivity is enhanced.
  • adheresion does not only mean that the active material and the conductive agent are physically in close contact with each other, but also when a covalent bond occurs, when the active material is bonded by van der Waals force, the surface of the active material.
  • the concept includes the case where a part of the above is covered with a conductive agent, the case where the conductive agent gets stuck in the surface unevenness of the active material, and the case where the conductive agent is electrically connected even if they are not in contact with each other.
  • Carbon black is a typical carbon material used as a conductive agent.
  • FIG. 15 illustrates acetylene black 555, graphene and graphene compound 554 and carbon nanotube 555 as conductive agents.
  • the positive electrode active material 100 shown in the first to tenth embodiments corresponds to the active material 561 in FIG.
  • binder As the positive electrode of the secondary battery, a binder (resin) is mixed in order to fix the current collector 550 such as metal foil and the active material. Binders are also called binders.
  • the binder is a polymer material, and if a large amount of binder is contained, the ratio of the active material in the positive electrode decreases, and the discharge capacity of the secondary battery becomes small. Therefore, the amount of binder is mixed to the minimum.
  • Graphene is a carbon material that is expected to be applied in various fields such as field effect transistors and solar cells using graphene because it has amazing properties electrically, mechanically, or chemically.
  • the graphene compound includes multi-layer graphene, multi-graphene, graphene oxide, multi-layer graphene oxide, multi-graphene oxide, reduced graphene oxide, reduced multi-layer graphene oxide, reduced multi-graphene oxide and the like.
  • the graphene compound has carbon, has a flat plate shape, a sheet shape, or the like, and has a two-dimensional structure formed by a carbon 6-membered ring. Further, it is preferable to have a bent shape. It may be called a carbon sheet. It is preferable to have a functional group.
  • the graphene compound may also be curled up into carbon nanofibers.
  • Graphene and graphene compounds may have excellent electrical properties such as high conductivity and excellent physical properties such as high flexibility and high mechanical strength.
  • graphene and graphene compounds have a sheet-like shape.
  • Graphene and graphene compounds may have curved surfaces, allowing surface contact with low contact resistance. Further, even if it is thin, the conductivity may be very high, and a conductive path can be efficiently formed in the active material layer with a small amount. Therefore, by using graphene and a graphene compound as a conductive agent, the contact area between the active material and the conductive agent can be increased. It is preferable that graphene and the graphene compound are superimposed on at least a part of the secondary particles 102 in the positive electrode active material 100.
  • the shapes of graphene and the graphene compound match at least a part of the shape of the secondary particles 102.
  • the shape of the secondary particles 102 means, for example, the unevenness of a single secondary particle 102 or the unevenness formed by a plurality of secondary particles 102.
  • the graphene compound surrounds at least a part of the secondary particles 102. Further, the graphene compound may have holes.
  • the region not filled with the active material 561, graphene and graphene compound 554, acetylene black 555 and carbon nanotube 555 refers to voids or binders.
  • the voids are necessary for the penetration of the electrolytic solution, but if it is too large, the electrode density will decrease, and if it is too small, the electrolytic solution will not penetrate, and if it remains as a void even after the secondary battery, the energy density will increase. It will drop.
  • the positive electrode active material 100 shown in the first to eleventh embodiments As the positive electrode, a secondary battery having a high energy density and good output characteristics can be obtained.
  • a separator is stacked on the positive electrode, and the container is placed in a container (exterior body, metal can, etc.) for accommodating a laminate in which the negative electrode is stacked on the separator, and the container is filled with an electrolytic solution to perform secondary operation. Batteries can be made.
  • the above configuration shows an example of a secondary battery using an electrolytic solution, but is not particularly limited.
  • a semi-solid battery or an all-solid-state battery can be manufactured by using the positive electrode active material 100 shown in the first to eleventh embodiments.
  • the semi-solid battery means a battery having a semi-solid material in at least one of an electrolyte layer, a positive electrode and a negative electrode.
  • the term semi-solid here does not mean that the ratio of solid materials is 50%.
  • Semi-solid means that it has solid properties such as small volume change, but also has some properties close to liquid such as flexibility. As long as these properties are satisfied, it may be a single material or a plurality of materials. For example, a liquid material may be infiltrated into a porous solid material.
  • the polymer electrolyte secondary battery means a secondary battery having a polymer in the electrolyte layer between the positive electrode and the negative electrode.
  • Polymer electrolyte secondary batteries include dry (or intrinsic) polymer electrolyte batteries, and polymer gel electrolyte batteries. Further, the polymer electrolyte secondary battery may be referred to as a semi-solid state battery.
  • the semi-solid battery is a secondary battery having a large charge / discharge capacity. Further, a semi-solid state battery having a high charge / discharge voltage can be used. Alternatively, a semi-solid state battery with high safety or reliability can be realized.
  • the positive electrode active material described in any one of the first to eleventh embodiments may be mixed with another positive electrode active material.
  • positive electrode active materials include, for example, an olivine-type crystal structure, a layered rock salt-type crystal structure, or a composite oxide having a spinel-type crystal structure.
  • examples thereof include compounds such as LiFePO 4 , LiFeO 2 , LiNiO 2 , LiMn 2 O 4 , V 2 O 5 , Cr 2 O 5 , and MnO 2 .
  • lithium nickelate LiNiO 2 or LiNi 1-x M x O 2 (0 ⁇ x ⁇ 1) is added to a lithium-containing material having a spinel-type crystal structure containing manganese such as LiMn 2 O 4 as another positive electrode active material.
  • LiMn 2 O 4 LiMn 2 O 4
  • M Co, Al, etc.
  • a lithium manganese composite oxide that can be represented by the composition formula Lia Mn b Mc Od can be used.
  • the element M a metal element selected from other than lithium and manganese, silicon, and phosphorus are preferably used, and nickel is more preferable.
  • the lithium manganese composite oxide refers to an oxide containing at least lithium and manganese, and includes chromium, cobalt, aluminum, nickel, iron, magnesium, molybdenum, zinc, indium, gallium, copper, titanium, niobium, and silicon. And at least one element selected from the group consisting of phosphorus and the like may be contained.
  • ⁇ Binder> As the binder, for example, it is preferable to use a rubber material such as styrene-butadiene rubber (SBR), styrene-isoprene-styrene rubber, acrylonitrile-butadiene rubber, butadiene rubber, and ethylene-propylene-diene copolymer. Further, fluororubber can be used as the binder.
  • SBR styrene-butadiene rubber
  • fluororubber can be used as the binder.
  • the binder it is preferable to use, for example, a water-soluble polymer.
  • a water-soluble polymer for example, a polysaccharide or the like can be used.
  • cellulose derivatives such as carboxymethyl cellulose (CMC), methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, regenerated cellulose, starch and the like can be used. Further, it is more preferable to use these water-soluble polymers in combination with the above-mentioned rubber material.
  • the binder includes polystyrene, methyl polyacrylate, methyl polymethacrylate (polymethylmethacrylate, PMMA), sodium polyacrylate, polyvinyl alcohol (PVA), polyethylene oxide (PEO), polypropylene oxide, polyimide, and polyvinylidene chloride.
  • PVA polyvinyl alcohol
  • PEO polyethylene oxide
  • PAN polyacrylonitrile
  • ethylenepropylene diene polymer polyvinyl acetate, nitrocellulose and the like are preferably used. ..
  • the binder may be used in combination of a plurality of the above.
  • a material having a particularly excellent viscosity adjusting effect may be used in combination with another material.
  • a rubber material or the like has excellent adhesive strength and elastic strength, but it may be difficult to adjust the viscosity when mixed with a solvent. In such a case, for example, it is preferable to mix with a material having a particularly excellent viscosity adjusting effect.
  • a material having a particularly excellent viscosity adjusting effect for example, a water-soluble polymer may be used.
  • the above-mentioned polysaccharides such as carboxymethyl cellulose (CMC), methyl cellulose, ethyl cellulose, hydroxypropyl cellulose and diacetyl cellulose, cellulose derivatives such as regenerated cellulose, or starch are used. be able to.
  • the solubility of the cellulose derivative such as carboxymethyl cellulose is increased by using a salt such as a sodium salt or an ammonium salt of carboxymethyl cellulose, and the effect as a viscosity adjusting agent is easily exhibited.
  • the high solubility can also enhance the dispersibility with the active material and other components when preparing the electrode slurry.
  • the cellulose and the cellulose derivative used as the binder of the electrode include salts thereof.
  • the water-soluble polymer stabilizes its viscosity by dissolving it in water, and can stably disperse an active substance or another material to be combined as a binder, such as styrene-butadiene rubber, in an aqueous solution. Further, since it has a functional group, it is expected that it can be easily stably adsorbed on the surface of the active material. In addition, many cellulose derivatives such as carboxymethyl cellulose have a functional group such as a hydroxyl group or a carboxyl group, and since they have a functional group, the polymers interact with each other and exist widely covering the surface of the active material. There is expected.
  • the immobile membrane is a membrane having no electrical conductivity or a membrane having extremely low electrical conductivity.
  • the battery reaction potential is changed. Decomposition of the electrolytic solution can be suppressed.
  • the passivation membrane suppresses the conductivity of electricity and can conduct lithium ions.
  • a material having high conductivity such as a metal such as stainless steel, gold, platinum, aluminum, and titanium, and an alloy thereof can be used. Further, it is preferable that the material used for the positive electrode current collector does not elute at the potential of the positive electrode. Further, an aluminum alloy to which an element for improving heat resistance such as silicon, titanium, neodymium, scandium, and molybdenum is added can be used. Further, it may be formed of a metal element that reacts with silicon to form silicide.
  • Metallic elements that react with silicon to form silicide include zirconium, titanium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, cobalt, nickel and the like.
  • a foil-like shape, a plate-like shape, a sheet-like shape, a net-like shape, a punching metal-like shape, an expanded metal-like shape, or the like can be appropriately used. It is preferable to use a current collector having a thickness of 5 ⁇ m or more and 30 ⁇ m or less.
  • the negative electrode has a negative electrode active material layer and a negative electrode current collector. Further, the negative electrode active material layer may have a negative electrode active material, and may further have a conductive agent and a binder.
  • Niobium electrode active material for example, an alloy-based material or a carbon-based material, a mixture thereof, or the like can be used.
  • an element capable of performing a charge / discharge reaction by an alloying / dealloying reaction with lithium can be used.
  • a material containing at least one of silicon, tin, gallium, aluminum, germanium, lead, antimony, bismuth, silver, zinc, cadmium, indium and the like can be used.
  • Such elements have a larger capacity than carbon, and silicon in particular has a high theoretical capacity of 4200 mAh / g. Therefore, it is preferable to use silicon as the negative electrode active material. Further, a compound having these elements may be used.
  • an element capable of performing a charge / discharge reaction by an alloying / dealloying reaction with lithium, a compound having the element, and the like may be referred to as an alloy-based material.
  • SiO refers to, for example, silicon monoxide.
  • SiO can also be expressed as SiO x .
  • x preferably has a value of 1 or a value close to 1.
  • x is preferably 0.2 or more and 1.5 or less, and preferably 0.3 or more and 1.2 or less.
  • carbon-based material graphite, easily graphitizable carbon (soft carbon), non-graphitizable carbon (hard carbon), carbon nanotubes, graphene, carbon black, etc. may be used.
  • Examples of graphite include artificial graphite and natural graphite.
  • Examples of the artificial graphite include mesocarbon microbeads (MCMB), coke-based artificial graphite, pitch-based artificial graphite and the like.
  • MCMB mesocarbon microbeads
  • the artificial graphite spheroidal graphite having a spherical shape can be used.
  • MCMB may have a spherical shape, which is preferable.
  • MCMB is relatively easy to reduce its surface area and may be preferable.
  • Examples of natural graphite include scaly graphite and spheroidized natural graphite.
  • Graphite exhibits a potential as low as lithium metal when lithium ions are inserted into graphite (during the formation of a lithium-graphite intercalation compound) (0.05V or more and 0.3V or less vs. Li / Li + ).
  • the lithium ion secondary battery using graphite can exhibit a high operating voltage.
  • graphite is preferable because it has advantages such as relatively high capacity per unit volume, relatively small volume expansion, low cost, and high safety as compared with lithium metal.
  • titanium dioxide TIM 2
  • lithium titanium oxide Li 4 Ti 5 O 12
  • lithium-graphite interlayer compound Li x C 6
  • niobium pentoxide Nb 2 O 5
  • Oxides such as tungsten (WO 2 ) and molybdenum oxide (MoO 2 ) can be used.
  • Li 2.6 Co 0.4 N 3 shows a large charge / discharge capacity (900 mAh / g, 1890 mAh / cm 3 ) and is preferable.
  • lithium ions are contained in the negative electrode active material, so that it can be combined with materials such as V 2 O 5 and Cr 3 O 8 which do not contain lithium ions as the positive electrode active material, which is preferable. .. Even when a material containing lithium ions is used as the positive electrode active material, a double nitride of lithium and a transition metal can be used as the negative electrode active material by desorbing the lithium ions contained in the positive electrode active material in advance.
  • a material that causes a conversion reaction can also be used as a negative electrode active material.
  • a transition metal oxide that does not form an alloy with lithium such as cobalt oxide (CoO), nickel oxide (NiO), and iron oxide (FeO) may be used as the negative electrode active material.
  • oxides such as Fe 2 O 3 , CuO, Cu 2 O, RuO 2 , Cr 2 O 3 and sulfides such as CoS 0.89 , NiS and CuS, Zn 3 N 2 , Cu 3 N, Ge 3 N 4 , and other nitrides, NiP 2 , FeP 2 , CoP 3 , and other phosphodies, and FeF 3 , BiF 3 , and other fluorides.
  • the same material as the conductive agent and binder that the positive electrode active material layer can have can be used.
  • the negative electrode current collector preferably uses a material that does not alloy with carrier ions such as lithium.
  • a separator is placed between the positive electrode and the negative electrode.
  • the separator include fibers having cellulose such as paper, non-woven fabrics, glass fibers, ceramics, nylon (polyamide), vinylon (polyvinyl alcohol-based fibers), polyesters, acrylics, polyolefins, synthetic fibers using polyurethane and the like. It is possible to use the one formed by. It is preferable that the separator is processed into a bag shape and arranged so as to wrap either the positive electrode or the negative electrode.
  • the separator may have a multi-layer structure.
  • an organic material film such as polypropylene or polyethylene can be coated with a ceramic material, a fluorine material, a polyamide material, or a mixture thereof.
  • the ceramic material for example, aluminum oxide particles, silicon oxide particles and the like can be used.
  • the fluorine-based material for example, PVDF, polytetrafluoroethylene and the like can be used.
  • the polyamide-based material for example, nylon, aramid (meth-based aramid, para-based aramid) and the like can be used.
  • the oxidation resistance is improved by coating with a ceramic material, deterioration of the separator during high voltage charging / discharging can be suppressed and the reliability of the secondary battery can be improved. Further, when a fluorine-based material is coated, the separator and the electrode are easily brought into close contact with each other, and the output characteristics can be improved. Coating a polyamide-based material, particularly aramid, improves heat resistance and thus can improve the safety of the secondary battery.
  • a mixed material of aluminum oxide and aramid may be coated on both sides of a polypropylene film.
  • the surface of the polypropylene film in contact with the positive electrode may be coated with a mixed material of aluminum oxide and aramid, and the surface in contact with the negative electrode may be coated with a fluorine-based material.
  • the safety of the secondary battery can be maintained even if the thickness of the entire separator is thin, so that the capacity per volume of the secondary battery can be increased.
  • the electrolytic solution has a solvent and an electrolyte.
  • the solvent of the electrolytic solution is preferably an aprotonic organic solvent, for example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, chloroethylene carbonate, vinylene carbonate, ⁇ -butylolactone, ⁇ -valerolactone, dimethyl carbonate.
  • DMC diethyl carbonate
  • DEC diethyl carbonate
  • EMC ethylmethyl carbonate
  • methyl formate methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, 1,3-dioxane, 1,4 -Use one of dioxane, dimethoxyethane (DME), dimethyl sulfoxide, diethyl ether, methyl diglyme, acetonitrile, benzonitrile, tetrahydrofuran, sulfolane, sulton, etc., or two or more of these in any combination and ratio. be able to.
  • Ionic liquids normally temperature molten salt
  • Ionic liquids consist of cations and anions, including organic cations and anions.
  • Examples of the organic cation used in the electrolytic solution include aliphatic onium cations such as quaternary ammonium cations, tertiary sulfonium cations, and quaternary phosphonium cations, and aromatic cations such as imidazolium cations and pyridinium cations.
  • anions used in the electrolytic solution monovalent amide anions, monovalent methide anions, fluorosulfonic acid anions, perfluoroalkyl sulfonic acid anions, tetrafluoroborate anions, perfluoroalkyl borate anions, and hexafluorophosphate anions. , Or perfluoroalkyl phosphate anion and the like.
  • Examples of the electrolyte to be dissolved in the above solvent include LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiAlCl 4 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 .
  • One type of lithium salt such as SO 2 ) (CF 3 SO 2 ), LiN (C 2 F 5 SO 2 ) 2 , lithium bis (oxalate) borate (Li (C 2 O 4 ) 2 , LiBOB), or among these Two or more of these can be used in any combination and ratio.
  • the electrolytic solution used in the power storage device it is preferable to use a highly purified electrolytic solution having a small content of granular dust or elements other than the constituent elements of the electrolytic solution (hereinafter, also simply referred to as "impurities").
  • the weight ratio of impurities to the electrolytic solution is preferably 1% or less, preferably 0.1% or less, and more preferably 0.01% or less.
  • the electrolytic solution includes vinylene carbonate, propane sultone (PS), tert-butylbenzene (TBB), fluoroethylene carbonate (FEC), lithium bis (oxalate) borate (LiBOB), and dinitrile compounds such as succinonitrile and adiponitrile.
  • Additives may be added.
  • the concentration of the additive may be, for example, 0.1 wt% or more and 5 wt% or less with respect to the entire solvent.
  • a polymer gel electrolyte obtained by swelling the polymer with an electrolytic solution may be used.
  • the secondary battery can be made thinner and lighter.
  • silicone gel silicone gel, acrylic gel, acrylonitrile gel, polyethylene oxide gel, polypropylene oxide gel, fluoropolymer gel and the like can be used.
  • polymers having a polyalkylene oxide structure such as polyethylene oxide (PEO), PVDF, and polyacrylonitrile, and copolymers containing them can be used.
  • PVDF-HFP which is a copolymer of PVDF and hexafluoropropylene (HFP)
  • the polymer to be formed may have a porous shape.
  • a solid electrolyte having an inorganic material such as a sulfide type or an oxide type, or a solid electrolyte having a polymer material such as PEO (polyethylene oxide) type can be used.
  • PEO polyethylene oxide
  • the positive electrode active material 100 obtained in the first to eleventh embodiments can be applied to an all-solid-state battery.
  • an all-solid-state battery having high safety and good characteristics can be obtained.
  • a metal material such as aluminum or a resin material can be used.
  • a film-like exterior body can also be used.
  • a metal thin film having excellent flexibility such as aluminum, stainless steel, copper, and nickel is provided on a film made of a material such as polyethylene, polypropylene, polycarbonate, ionomer, and polyamide, and an exterior is further formed on the metal thin film.
  • a film having a three-layer structure provided with an insulating synthetic resin film such as a polyamide resin or a polyester resin can be used as the outer surface of the body.
  • FIG. 16A is an exploded perspective view of a coin-type (single-layer flat type) secondary battery
  • FIG. 16B is an external view
  • FIG. 16C is a cross-sectional view thereof.
  • Coin-type secondary batteries are mainly used for small electronic devices.
  • the coin type battery includes a button type battery.
  • FIG. 16A is a schematic diagram so that the overlap (vertical relationship and positional relationship) of the members can be understood for easy understanding. Therefore, FIGS. 16A and 16B do not have a completely matching correspondence diagram.
  • the positive electrode 304, the separator 310, the negative electrode 307, the spacer 322, and the washer 312 are overlapped. These are sealed with a negative electrode can 302 and a positive electrode can 301.
  • the gasket for sealing is not shown.
  • the spacer 322 and the washer 312 are used to protect the inside or fix the position inside the can when crimping the positive electrode can 301 and the negative electrode can 302. Stainless steel or an insulating material is used for the spacer 322 and the washer 312.
  • the positive electrode 304 is a laminated structure in which the positive electrode active material layer 306 is formed on the positive electrode current collector 305.
  • the separator 310 and the ring-shaped insulator 313 are arranged so as to cover the side surface and the upper surface of the positive electrode 304, respectively.
  • the separator 310 has a wider plane area than the positive electrode 304.
  • FIG. 16B is a perspective view of the completed coin-shaped secondary battery.
  • the positive electrode can 301 that also serves as the positive electrode terminal and the negative electrode can 302 that also serves as the negative electrode terminal are insulated and sealed with a gasket 303 that is made of polypropylene or the like.
  • the positive electrode 304 is formed by a positive electrode current collector 305 and a positive electrode active material layer 306 provided in contact with the positive electrode current collector 305.
  • the negative electrode 307 is formed by a negative electrode current collector 308 and a negative electrode active material layer 309 provided in contact with the negative electrode current collector 308.
  • the negative electrode 307 is not limited to the laminated structure, and a lithium metal foil or an alloy foil of lithium and aluminum may be used.
  • the positive electrode 304 and the negative electrode 307 used in the coin-type secondary battery 300 may each have an active material layer formed on only one side.
  • the positive electrode can 301 and the negative electrode can 302 a metal such as nickel, aluminum, titanium, etc., which is corrosion resistant to the electrolytic solution, or an alloy thereof, and an alloy between these and other metals (for example, stainless steel, etc.) shall be used. Can be done. Further, in order to prevent corrosion due to an electrolytic solution or the like, it is preferable to coat with nickel, aluminum or the like.
  • the positive electrode can 301 is electrically connected to the positive electrode 304
  • the negative electrode can 302 is electrically connected to the negative electrode 307.
  • the negative electrode 307, the positive electrode 304, and the separator 310 are immersed in an electrolytic solution, and as shown in FIG. 16C, the positive electrode 304, the separator 310, the negative electrode 307, and the negative electrode can 302 are laminated in this order with the positive electrode can 301 facing down, and the positive electrode can A coin-shaped secondary battery 300 is manufactured by crimping the 301 and the negative electrode can 302 via the gasket 303.
  • the separator 310 may not be required.
  • the cylindrical secondary battery 616 has a positive electrode cap (battery lid) 601 on the upper surface and a battery can (exterior can) 602 on the side surface and the bottom surface.
  • the positive electrode cap 601 and the battery can (exterior can) 602 are insulated by a gasket (insulating packing) 610.
  • FIG. 17B is a diagram schematically showing a cross section of a cylindrical secondary battery.
  • the cylindrical secondary battery shown in FIG. 17B has a positive electrode cap (battery lid) 601 on the upper surface and a battery can (exterior can) 602 on the side surface and the bottom surface.
  • These positive electrode caps and the battery can (exterior can) 602 are insulated by a gasket (insulating packing) 610.
  • a battery element in which a strip-shaped positive electrode 604 and a negative electrode 606 are wound with a separator 605 sandwiched between them is provided inside the hollow cylindrical battery can 602.
  • the battery element is wound around a central axis.
  • One end of the battery can 602 is closed and the other end is open.
  • a metal such as nickel, aluminum, titanium, etc., which is corrosion resistant to the electrolytic solution, or an alloy thereof, and an alloy between these and other metals (for example, stainless steel, etc.) may be used. can.
  • the battery element in which the positive electrode, the negative electrode, and the separator are wound is sandwiched between a pair of insulating plates 608 and 609 facing each other. Further, a non-aqueous electrolytic solution (not shown) is injected into the inside of the battery can 602 provided with the battery element.
  • the non-aqueous electrolyte solution the same one as that of a coin-type secondary battery can be used.
  • the secondary battery 616 in which the height of the cylinder is larger than the diameter of the cylinder is shown, but the present invention is not limited to this.
  • a secondary battery in which the diameter of the cylinder is larger than the height of the cylinder may be used. With such a configuration, for example, the size of the secondary battery can be reduced.
  • a cylindrical secondary battery 616 having a high capacity, a high charge / discharge capacity, and excellent cycle characteristics can be obtained. can do.
  • a positive electrode terminal (positive electrode current collecting lead) 603 is connected to the positive electrode 604, and a negative electrode terminal (negative electrode current collecting lead) 607 is connected to the negative electrode 606.
  • a metal material such as aluminum can be used for both the positive electrode terminal 603 and the negative electrode terminal 607.
  • the positive electrode terminal 603 is resistance welded to the safety valve mechanism 613, and the negative electrode terminal 607 is resistance welded to the bottom of the battery can 602.
  • the safety valve mechanism 613 is electrically connected to the positive electrode cap 601 via a PTC element (Positive Temperature Coefficient) 611. The safety valve mechanism 613 disconnects the electrical connection between the positive electrode cap 601 and the positive electrode 604 when the increase in the internal pressure of the battery exceeds a predetermined threshold value.
  • the PTC element 611 is a heat-sensitive resistance element whose resistance increases when the temperature rises, and the amount of current is limited by the increase in resistance to prevent abnormal heat generation.
  • Barium titanate (BaTIO 3 ) -based semiconductor ceramics or the like can be used as the PTC element.
  • FIG. 17C shows an example of the power storage system 615.
  • the power storage system 615 has a plurality of secondary batteries 616.
  • the positive electrode of each secondary battery is in contact with the conductor 624 separated by the insulator 625 and is electrically connected.
  • the conductor 624 is electrically connected to the control circuit 620 via the wiring 623.
  • the negative electrode of each secondary battery is electrically connected to the control circuit 620 via the wiring 626.
  • As the control circuit 620 a protection circuit or the like for preventing overcharging or overdischarging can be applied.
  • FIG. 17D shows an example of the power storage system 615.
  • the power storage system 615 has a plurality of secondary batteries 616, and the plurality of secondary batteries 616 are sandwiched between the conductive plate 628 and the conductive plate 614.
  • the plurality of secondary batteries 616 are electrically connected to the conductive plate 628 and the conductive plate 614 by wiring 627.
  • the plurality of secondary batteries 616 may be connected in parallel, may be connected in series, or may be connected in parallel and then further connected in series.
  • a plurality of secondary batteries 616 may be connected in parallel and then connected in series.
  • a temperature control device may be provided between the plurality of secondary batteries 616.
  • the secondary battery 616 When the secondary battery 616 is overheated, it can be cooled by the temperature control device, and when the secondary battery 616 is too cold, it can be heated by the temperature control device. Therefore, the performance of the power storage system 615 is less likely to be affected by the outside air temperature.
  • the power storage system 615 is electrically connected to the control circuit 620 via the wiring 621 and the wiring 622.
  • the wiring 621 is electrically connected to the positive electrode of the plurality of secondary batteries 616 via the conductive plate 628
  • the wiring 622 is electrically connected to the negative electrode of the plurality of secondary batteries 616 via the conductive plate 614.
  • the secondary battery 913 shown in FIG. 18A has a winding body 950 provided with terminals 951 and terminals 952 inside the housing 930.
  • the winding body 950 is immersed in the electrolytic solution inside the housing 930.
  • the terminal 952 is in contact with the housing 930, and the terminal 951 is not in contact with the housing 930 by using an insulating material or the like.
  • the housing 930 is shown separately for convenience, but in reality, the winding body 950 is covered with the housing 930, and the terminals 951 and 952 extend outside the housing 930. It exists.
  • a metal material for example, aluminum or the like
  • a resin material can be used as the housing 930.
  • the housing 930 shown in FIG. 18A may be formed of a plurality of materials.
  • the housing 930a and the housing 930b are bonded to each other, and the winding body 950 is provided in the region surrounded by the housing 930a and the housing 930b.
  • an insulating material such as an organic resin can be used.
  • a material such as an organic resin on the surface on which the antenna is formed it is possible to suppress the shielding of the electric field by the secondary battery 913. If the electric field shielding by the housing 930a is small, an antenna may be provided inside the housing 930a.
  • a metal material can be used as the housing 930b.
  • the wound body 950 has a negative electrode 931, a positive electrode 932, and a separator 933.
  • the wound body 950 is a wound body in which the negative electrode 931 and the positive electrode 932 are overlapped and laminated with the separator 933 interposed therebetween, and the laminated sheet is wound.
  • a plurality of layers of the negative electrode 931, the positive electrode 932, and the separator 933 may be further laminated.
  • a secondary battery 913 having a winding body 950a as shown in FIGS. 19A to 19C may be used.
  • the winding body 950a shown in FIG. 19A has a negative electrode 931, a positive electrode 932, and a separator 933.
  • the negative electrode 931 has a negative electrode active material layer 931a.
  • the positive electrode 932 has a positive electrode active material layer 932a.
  • a secondary battery 913 having a high capacity, a high charge / discharge capacity, and excellent cycle characteristics can be obtained. can.
  • the separator 933 has a wider width than the negative electrode active material layer 931a and the positive electrode active material layer 932a, and is wound so as to overlap the negative electrode active material layer 931a and the positive electrode active material layer 932a. Further, it is preferable that the width of the negative electrode active material layer 931a is wider than that of the positive electrode active material layer 932a from the viewpoint of safety. Further, the wound body 950a having such a shape is preferable in terms of safety and productivity.
  • the negative electrode 931 is electrically connected to the terminal 951.
  • the terminal 951 is electrically connected to the terminal 911a.
  • the positive electrode 932 is electrically connected to the terminal 952.
  • the terminal 952 is electrically connected to the terminal 911b.
  • the winding body 950a and the electrolytic solution are covered with the housing 930 to form the secondary battery 913.
  • the housing 930 is provided with a safety valve, an overcurrent protection element, or the like.
  • the safety valve is a valve that opens the inside of the housing 930 at a predetermined internal pressure in order to prevent the battery from exploding.
  • the secondary battery 913 may have a plurality of winding bodies 950a. By using a plurality of winding bodies 950a, it is possible to obtain a secondary battery 913 having a larger charge / discharge capacity.
  • Other elements of the secondary battery 913 shown in FIGS. 19A and 19B can take into account the description of the secondary battery 913 shown in FIGS. 18A-18C.
  • FIGS. 20A and 20B an example of an external view of a laminated secondary battery is shown in FIGS. 20A and 20B.
  • 20A and 20B have a positive electrode 503, a negative electrode 506, a separator 507, an exterior body 509, a positive electrode lead electrode 510, and a negative electrode lead electrode 511.
  • FIG. 21A shows an external view of the positive electrode 503 and the negative electrode 506.
  • the positive electrode 503 has a positive electrode current collector 501, and the positive electrode active material layer 502 is formed on the surface of the positive electrode current collector 501. Further, the positive electrode 503 has a region (hereinafter referred to as a tab region) in which the positive electrode current collector 501 is partially exposed.
  • the negative electrode 506 has a negative electrode current collector 504, and the negative electrode active material layer 505 is formed on the surface of the negative electrode current collector 504. Further, the negative electrode 506 has a region where the negative electrode current collector 504 is partially exposed, that is, a tab region.
  • the area and shape of the tab region of the positive electrode and the negative electrode are not limited to the example shown in FIG. 21A.
  • the negative electrode 506, the separator 507, and the positive electrode 503 are laminated.
  • 21B shows the negative electrode 506, the separator 507, and the positive electrode 503 laminated.
  • an example in which 5 sets of negative electrodes and 4 sets of positive electrodes are used is shown. It can also be called a laminate consisting of a negative electrode, a separator, and a positive electrode.
  • the tab regions of the positive electrode 503 are bonded to each other, and the positive electrode lead electrode 510 is bonded to the tab region of the positive electrode on the outermost surface.
  • ultrasonic welding may be used.
  • the tab regions of the negative electrode 506 are bonded to each other, and the negative electrode lead electrode 511 is bonded to the tab region of the negative electrode on the outermost surface.
  • the negative electrode 506, the separator 507, and the positive electrode 503 are arranged on the exterior body 509.
  • the exterior body 509 is bent at the portion shown by the broken line. After that, the outer peripheral portion of the exterior body 509 is joined. For example, thermocompression bonding may be used for joining. At this time, a region (hereinafter referred to as an introduction port) that is not joined to a part (or one side) of the exterior body 509 is provided so that the electrolytic solution can be put in later.
  • an introduction port a region that is not joined to a part (or one side) of the exterior body 509 is provided so that the electrolytic solution can be put in later.
  • the electrolytic solution (not shown) is introduced into the inside of the exterior body 509 from the introduction port provided in the exterior body 509.
  • the electrolytic solution is preferably introduced under a reduced pressure atmosphere or an inert atmosphere.
  • the inlet is joined. In this way, the laminated type secondary battery 500 can be manufactured.
  • the secondary battery 500 has a high capacity, a high charge / discharge capacity, and excellent cycle characteristics. Can be.
  • Example of battery pack An example of a secondary battery pack according to an aspect of the present invention capable of wireless charging using an antenna will be described with reference to FIGS. 22A to 22C.
  • FIG. 21A is a diagram showing the appearance of the secondary battery pack 531 and is a thin rectangular parallelepiped shape (also referred to as a thick flat plate shape).
  • FIG. 22B is a diagram illustrating the configuration of the secondary battery pack 531.
  • the secondary battery pack 531 has a circuit board 540 and a secondary battery 513.
  • a label 529 is affixed to the secondary battery 513.
  • the circuit board 540 is fixed by the seal 515.
  • the secondary battery pack 531 has an antenna 517.
  • the inside of the secondary battery 513 may have a structure having a wound body or a structure having a laminated body.
  • the secondary battery pack 531 has a control circuit 590 on the circuit board 540, for example, as shown in FIG. 22B. Further, the circuit board 540 is electrically connected to the terminal 514. Further, the circuit board 540 is electrically connected to the antenna 517, one 551 of the positive electrode lead and the negative electrode lead of the secondary battery 513, and the other 552 of the positive electrode lead and the negative electrode lead.
  • a circuit system 590a provided on the circuit board 540 and a circuit system 590b electrically connected to the circuit board 540 via the terminal 514 may be provided.
  • the antenna 517 is not limited to a coil shape, and may be, for example, a linear shape or a plate shape. Further, antennas such as a planar antenna, an open surface antenna, a traveling wave antenna, an EH antenna, a magnetic field antenna, and a dielectric antenna may be used. Alternatively, the antenna 517 may be a flat conductor. This flat plate-shaped conductor can function as one of the conductors for electric field coupling. That is, the antenna 517 may function as one of the two conductors of the capacitor. This makes it possible to exchange electric power not only with an electromagnetic field and a magnetic field but also with an electric field.
  • the secondary battery pack 531 has a layer 519 between the antenna 517 and the secondary battery 513.
  • the layer 519 has a function of being able to shield the electromagnetic field generated by the secondary battery 513, for example.
  • a magnetic material can be used as the layer 519.
  • the secondary battery 400 of one aspect of the present invention has a positive electrode 410, a solid electrolyte layer 420, and a negative electrode 430.
  • the positive electrode 410 has a positive electrode current collector 413 and a positive electrode active material layer 414.
  • the positive electrode active material layer 414 has a positive electrode active material 411 and a solid electrolyte 421.
  • the positive electrode active material 411 the positive electrode active material 100 shown in the first to eleventh embodiments is used. Further, the positive electrode active material layer 414 may have a conductive agent and a binder.
  • the solid electrolyte layer 420 has a solid electrolyte 421.
  • the solid electrolyte layer 420 is located between the positive electrode 410 and the negative electrode 430, and is a region having neither the positive electrode active material 411 nor the negative electrode active material 431.
  • the negative electrode 430 has a negative electrode current collector 433 and a negative electrode active material layer 434.
  • the negative electrode active material layer 434 has a negative electrode active material 431 and a solid electrolyte 421. Further, the negative electrode active material layer 434 may have a conductive agent and a binder.
  • metallic lithium is used as the negative electrode active material 431, it is not necessary to make particles, so that the negative electrode 430 having no solid electrolyte 421 can be used as shown in FIG. 23B. It is preferable to use metallic lithium for the negative electrode 430 because the energy density of the secondary battery 400 can be improved.
  • solid electrolyte 421 of the solid electrolyte layer 420 for example, a sulfide-based solid electrolyte, an oxide-based solid electrolyte, a halide-based solid electrolyte, or the like can be used.
  • Sulfide-based solid electrolytes include thiolysicon-based (Li 10 GeP 2 S 12 , Li 3.25 Ge 0.25 P 0.75 S 4 , etc.) and sulfide glass (70Li 2 S / 30P 2 S 5 , 30Li 2 ).
  • Sulfide crystallized glass (Li 7 ) P 3 S 11 , Li 3.25 P 0.95 S 4 etc.) are included.
  • the sulfide-based solid electrolyte has advantages such as having a material having high conductivity, being able to be synthesized at a low temperature, and being relatively soft so that the conductive path can be easily maintained even after charging and discharging.
  • a material having a perovskite-type crystal structure La 2 / 3-x Li 3x TIO 3 , etc.
  • a material having a NASICON-type crystal structure Li 1-Y Al Y Ti 2-Y (PO 4 )) ) 3 etc.
  • Material with garnet type crystal structure Li 7 La 3 Zr 2 O 12 etc.
  • Material with LISION type crystal structure Li 14 ZnGe 4 O 16 etc.
  • LLZO Li 7 La 3 Zr 2 O etc.
  • Oxide glass Li 3 PO 4 -Li 4 SiO 4 , 50Li 4 SiO 4 ⁇ 50Li 3 BO 3 , etc.
  • Oxide crystallized glass Li 1.07 Al 0.69 Ti 1.46 (PO 4 ) ) 3 , Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 etc.
  • Oxide-based solid electrolytes have the advantage of being stable in the atmosphere.
  • the halide-based solid electrolyte includes LiAlCl 4 , Li 3 InBr 6 , LiF, LiCl, LiBr, LiI and the like. Further, a composite material in which the pores of porous aluminum oxide or porous silica are filled with these halide-based solid electrolytes can also be used as the solid electrolyte.
  • Li 1 + x Al x Ti 2-x (PO 4 ) 3 (0 [x [1) (hereinafter referred to as LATP) having a NASICON type crystal structure is a secondary battery 400 of one aspect of the present invention, which is aluminum and titanium. Since the positive electrode active material used in the above contains an element that may be contained, a synergistic effect can be expected for improving the cycle characteristics, which is preferable. In addition, productivity can be expected to improve by reducing the number of processes.
  • the NASICON type crystal structure is a compound represented by M 2 (XO 4 ) 3 (M: transition metal, X: S, P, As, Mo, W, etc.), and is MO 6
  • M transition metal
  • X S, P, As, Mo, W, etc.
  • MO 6 An octahedron and an XO4 tetrahedron share a vertex and have a three-dimensionally arranged structure.
  • FIG. 24 is an example of a cell for evaluating the material of an all-solid-state battery.
  • FIG. 24A is a schematic cross-sectional view of the evaluation cell, which has a lower member 761, an upper member 762, and a fixing screw or a wing nut 764 for fixing them, and is used for an electrode by rotating a pressing screw 763.
  • the plate 753 is pressed to fix the evaluation material.
  • An insulator 766 is provided between the lower member 761 made of a stainless steel material and the upper member 762. Further, an O-ring 765 for sealing is provided between the upper member 762 and the holding screw 763.
  • FIG. 24B is an enlarged perspective view of the periphery of the evaluation material.
  • FIG. 24C As an evaluation material, an example of laminating a positive electrode 750a, a solid electrolyte layer 750b, and a negative electrode 750c is shown, and a cross-sectional view is shown in FIG. 24C.
  • the same reference numerals are used for the same parts in FIGS. 24A to 24C.
  • the electrode plate 751 and the lower member 761 electrically connected to the positive electrode 750a correspond to the positive electrode terminals. It can be said that the electrode plate 753 and the upper member 762 electrically connected to the negative electrode 750c correspond to the negative electrode terminals.
  • the electrical resistance and the like can be measured while pressing the evaluation material through the electrode plate 751 and the electrode plate 753.
  • a package having excellent airtightness for the exterior body of the secondary battery according to one aspect of the present invention For example, a ceramic package or a resin package can be used. Further, when sealing the exterior body, it is preferable to shut off the outside air and perform it in a closed atmosphere, for example, in a glove box.
  • FIG. 25A shows a perspective view of a secondary battery of one aspect of the present invention having an exterior body and shape different from those of FIG. 24.
  • the secondary battery of FIG. 25A has external electrodes 771 and 772, and is sealed with an exterior body having a plurality of package members.
  • FIG. 25B shows an example of a cross section cut by a broken line in FIG. 25A.
  • the laminate having a positive electrode 750a, a solid electrolyte layer 750b, and a negative electrode 750c includes a package member 770a having an electrode layer 773a provided on a flat plate, a frame-shaped package member 770b, and a package member 770c having an electrode layer 773b provided on a flat plate. It has a sealed structure surrounded by. Insulating materials such as resin materials and ceramics can be used for the package members 770a, 770b and 770c.
  • the external electrode 771 is electrically connected to the positive electrode 750a via the electrode layer 773a and functions as a positive electrode terminal. Further, the external electrode 772 is electrically connected to the negative electrode 750c via the electrode layer 773b and functions as a negative electrode terminal.
  • an all-solid-state secondary battery having a high energy density and good output characteristics can be realized.
  • FIG. 17D which is a cylindrical secondary battery.
  • FIG. 26C shows an example of application to an electric vehicle (EV).
  • EV electric vehicle
  • the electric vehicle is equipped with a first battery 1301a and 1301b as a main drive secondary battery and a second battery 1311 that supplies electric power to the inverter 1312 that starts the motor 1304.
  • the second battery 1311 is also called a cranking battery (also called a starter battery).
  • the second battery 1311 only needs to have a high output, and a large capacity is not required so much, and the capacity of the second battery 1311 is smaller than that of the first batteries 1301a and 1301b.
  • the internal structure of the first battery 1301a may be the winding type shown in FIG. 18A or FIG. 19C, or the laminated type shown in FIG. 20A or FIG. 20B. Further, as the first battery 1301a, an all-solid-state battery may be used. By using an all-solid-state battery for the first battery 1301a, a high capacity can be obtained, safety can be improved, and the size and weight can be reduced.
  • first batteries 1301a and 1301b are connected in parallel, but three or more batteries may be connected in parallel. Further, if the first battery 1301a can store sufficient electric power, the first battery 1301b may not be present.
  • the plurality of secondary batteries may be connected in parallel, may be connected in series, or may be connected in parallel and then further connected in series. Multiple secondary batteries are also called assembled batteries.
  • a service plug or a circuit breaker capable of cutting off a high voltage without using a tool is provided, and the first battery 1301a has. It will be provided.
  • the electric power of the first batteries 1301a and 1301b is mainly used to rotate the motor 1304, but 42V in-vehicle parts (electric power steering 1307, heater 1308, defogger 1309, etc.) via the DCDC circuit 1306. Power to. Even if the rear wheel has a rear motor 1317, the first battery 1301a is used to rotate the rear motor 1317.
  • the second battery 1311 supplies electric power to 14V in-vehicle parts (audio 1313, power window 1314, lamps 1315, etc.) via the DCDC circuit 1310.
  • first battery 1301a will be described with reference to FIG. 26A.
  • FIG. 26A shows an example in which nine square secondary batteries 1300 are used as one battery pack 1415. Further, nine square secondary batteries 1300 are connected in series, one electrode is fixed by a fixing portion 1413 made of an insulator, and the other electrode is fixed by a fixing portion 1414 made of an insulator.
  • a fixing portion 1413 made of an insulator In the present embodiment, an example of fixing with the fixing portions 1413 and 1414 is shown, but the configuration may be such that the battery is stored in a battery storage box (also referred to as a housing). Since it is assumed that the vehicle is subjected to vibration or shaking from the outside (road surface or the like), it is preferable to fix a plurality of secondary batteries with fixing portions 1413, 1414, a battery accommodating box, or the like. Further, one of the electrodes is electrically connected to the control circuit unit 1320 by the wiring 1421. The other electrode is electrically connected to the control circuit unit 1320 by wiring 1422.
  • control circuit unit 1320 may use a memory circuit including a transistor using an oxide semiconductor.
  • a charge control circuit or a battery control system having a memory circuit including a transistor using an oxide semiconductor may be referred to as a BTOS (Battery operating system or Battery oxide semiconductor).
  • In-M-Zn oxide (element M is aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lantern, cerium, neodym, etc.
  • Metal oxides such as hafnium, tantalum, tungsten, or one or more selected from gallium
  • the In-M-Zn oxide that can be applied as an oxide is preferably CAAC-OS (C-Axis Aligned Crystal Oxide Semiconductor) or CAC-OS (Cloud-Aligned Compound Semiconductor).
  • CAAC-OS is an oxide semiconductor having a plurality of crystal regions, the plurality of crystal regions having the c-axis oriented in a specific direction.
  • the specific direction is the thickness direction of the CAAC-OS film, the normal direction of the surface to be formed of the CAAC-OS film, or the normal direction of the surface of the CAAC-OS film.
  • the crystal region is a region having periodicity in the atomic arrangement. When the atomic arrangement is regarded as a lattice arrangement, the crystal region is also a region in which the lattice arrangement is aligned.
  • the CAAC-OS has a region in which a plurality of crystal regions are connected in the ab plane direction, and the region may have distortion.
  • the strain refers to a region in which a plurality of crystal regions are connected in which the orientation of the lattice arrangement changes between a region in which the lattice arrangement is aligned and a region in which another grid arrangement is aligned. That is, CAAC-OS is an oxide semiconductor that is c-axis oriented and not clearly oriented in the ab plane direction.
  • CAC-OS is, for example, a composition of a material in which elements constituting a metal oxide are unevenly distributed in a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size close thereto.
  • the metal oxide one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size in the vicinity thereof.
  • the mixed state is also called a mosaic shape or a patch shape.
  • the CAC-OS has a structure in which the material is separated into a first region and a second region to form a mosaic, and the first region is distributed in the film (hereinafter, also referred to as a cloud shape). It is said.). That is, the CAC-OS is a composite metal oxide having a structure in which the first region and the second region are mixed.
  • the atomic number ratios of In, Ga, and Zn to the metal elements constituting CAC-OS in the In-Ga-Zn oxide are expressed as [In], [Ga], and [Zn], respectively.
  • the first region is a region where [In] is larger than [In] in the composition of the CAC-OS film.
  • the second region is a region in which [Ga] is larger than [Ga] in the composition of the CAC-OS film.
  • the first region is a region in which [In] is larger than [In] in the second region and [Ga] is smaller than [Ga] in the second region.
  • the second region is a region in which [Ga] is larger than [Ga] in the first region and [In] is smaller than [In] in the first region.
  • the first region is a region in which indium oxide, indium zinc oxide, or the like is the main component.
  • the second region is a region containing gallium oxide, gallium zinc oxide, or the like as a main component. That is, the first region can be rephrased as a region containing In as a main component. Further, the second region can be rephrased as a region containing Ga as a main component.
  • a region containing In as a main component (No. 1) by EDX mapping acquired by using energy dispersive X-ray spectroscopy (EDX: Energy Dispersive X-ray spectroscopy). It can be confirmed that the region (1 region) and the region containing Ga as a main component (second region) have a structure in which they are unevenly distributed and mixed.
  • EDX Energy Dispersive X-ray spectroscopy
  • the conductivity caused by the first region and the insulating property caused by the second region act in a complementary manner to switch the switching function (On / Off function).
  • the CAC-OS has a conductive function in a part of the material and an insulating function in a part of the material, and has a function as a semiconductor in the whole material. By separating the conductive function and the insulating function, both functions can be maximized. Therefore, by using CAC-OS for the transistor, high on -current (Ion), high field effect mobility ( ⁇ ), and good switching operation can be realized.
  • Oxide semiconductors have various structures, and each has different characteristics.
  • the oxide semiconductor of one aspect of the present invention has two or more of amorphous oxide semiconductor, polycrystalline oxide semiconductor, a-like OS, CAC-OS, nc-OS, and CAAC-OS. You may.
  • the control circuit unit 1320 may be formed by using a unipolar transistor.
  • a transistor using an oxide semiconductor as a semiconductor layer has an operating ambient temperature wider than that of single crystal Si and is -40 ° C or higher and 150 ° C or lower, and its characteristic change is smaller than that of single crystal even when a secondary battery is heated.
  • the off-current of a transistor using an oxide semiconductor is below the lower limit of measurement regardless of the temperature even at 150 ° C., but the off-current characteristics of a single crystal Si transistor are highly temperature-dependent.
  • the off-current of the single crystal Si transistor increases, and the current on / off ratio does not become sufficiently large.
  • the control circuit unit 1320 can improve the safety. Further, by combining the positive electrode active material 100 shown in the first to eleventh embodiments with the secondary battery using the positive electrode, a synergistic effect on safety can be obtained.
  • the control circuit unit 1320 using a memory circuit including a transistor using an oxide semiconductor can also function as an automatic control device for a secondary battery against the cause of instability such as a micro short circuit.
  • Functions to eliminate the cause of instability of the secondary battery include prevention of overcharge, prevention of overcurrent, overheat control during charging, cell balance in the assembled battery, prevention of overdischarge, fuel gauge, and temperature. Examples include automatic control of charging voltage and current amount, charging current amount control according to the degree of deterioration, detection of abnormal behavior of micro short circuit, abnormality prediction related to micro short circuit, and the like, and the control circuit unit 1320 has at least one of these functions.
  • the automatic control device for the secondary battery can be miniaturized.
  • the micro short circuit refers to a minute short circuit inside the secondary battery, and does not mean that the positive electrode and the negative electrode of the secondary battery are short-circuited and cannot be charged or discharged. It refers to the phenomenon that a short-circuit current flows slightly in the part. Since a large voltage change occurs in a relatively short time and even in a small place, the abnormal voltage value may affect the subsequent estimation.
  • microshorts due to multiple charging and discharging, the uneven distribution of the positive electrode active material causes local current concentration in a part of the positive electrode and a part of the negative electrode, resulting in a separator. It is said that a micro-short circuit occurs due to the occurrence of a part where it does not function or the generation of a side reaction product due to a side reaction.
  • control circuit unit 1320 detects the terminal voltage of the secondary battery and manages the charge / discharge state of the secondary battery. For example, in order to prevent overcharging, both the output transistor of the charging circuit and the cutoff switch can be turned off almost at the same time.
  • FIG. 26B An example of the block diagram of the battery pack 1415 shown in FIG. 26A is shown in FIG. 26B.
  • the control circuit unit 1320 includes at least a switch for preventing overcharging, a switch unit 1324 including a switch for preventing overdischarging, a control circuit 1322 for controlling the switch unit 1324, and a voltage measuring unit for the first battery 1301a.
  • the control circuit unit 1320 sets the upper limit voltage and the lower limit voltage of the secondary battery to be used, and limits the upper limit of the current from the outside and the upper limit of the output current to the outside.
  • the range of the lower limit voltage or more and the upper limit voltage or less of the secondary battery is within the voltage range recommended for use, and if it is out of the range, the switch unit 1324 operates and functions as a protection circuit.
  • control circuit unit 1320 can also be called a protection circuit because it controls the switch unit 1324 to prevent over-discharging and over-charging. For example, when the control circuit 1322 detects a voltage that is likely to cause overcharging, the switch of the switch unit 1324 is turned off to cut off the current. Further, a PTC element may be provided in the charge / discharge path to provide a function of cutting off the current in response to an increase in temperature. Further, the control circuit unit 1320 has an external terminal (+ IN) 1325 and an external terminal ( ⁇ IN) 1326.
  • the switch unit 1324 can be configured by combining an n-channel type transistor and a p-channel type transistor.
  • the switch unit 1324 is not limited to a switch having a Si transistor using single crystal silicon, and is, for example, Ge (germanium), SiGe (silicon germanium), GaAs (gallium arsenide), GaAlAs (gallium aluminum arsenide), InP (phosphorization).
  • the switch unit 1324 may be formed by a power transistor having (indium), SiC (silicon carbide), ZnSe (zinc selenium), GaN (gallium arsenide), GaO x (gallium oxide; x is a real number larger than 0) and the like. ..
  • the storage element using the OS transistor can be freely arranged by stacking it on a circuit using a Si transistor or the like, integration can be easily performed.
  • the OS transistor can be manufactured by using the same manufacturing apparatus as the Si transistor, it can be manufactured at low cost. That is, a control circuit unit 1320 using an OS transistor can be stacked on the switch unit 1324 and integrated into one chip. Since the occupied volume of the control circuit unit 1320 can be reduced, the size can be reduced.
  • the first batteries 1301a and 1301b mainly supply electric power to 42V system (high voltage system) in-vehicle devices, and the second battery 1311 supplies electric power to 14V system (low voltage system) in-vehicle devices.
  • the second battery 1311 may use a lead storage battery, an all-solid-state battery, or an electric double layer capacitor.
  • the all-solid-state battery of the fifth embodiment may be used.
  • the regenerative energy due to the rotation of the tire 1316 is sent to the motor 1304 via the gear 1305, and is charged from the motor controller 1303 and the battery controller 1302 to the second battery 1311 via the control circuit unit 1321.
  • the first battery 1301a is charged from the battery controller 1302 via the control circuit unit 1320.
  • the first battery 1301b is charged from the battery controller 1302 via the control circuit unit 1320. In order to efficiently charge the regenerative energy, it is desirable that the first batteries 1301a and 1301b can be quickly charged.
  • the battery controller 1302 can set the charging voltage, charging current, and the like of the first batteries 1301a and 1301b.
  • the battery controller 1302 can set charging conditions according to the charging characteristics of the secondary battery to be used and quickly charge the battery.
  • the outlet of the charger or the connection cable of the charger is electrically connected to the battery controller 1302.
  • the electric power supplied from the external charger charges the first batteries 1301a and 1301b via the battery controller 1302.
  • a control circuit may be provided and the function of the battery controller 1302 may not be used, but the first batteries 1301a and 1301b are charged via the control circuit unit 1320 in order to prevent overcharging. Is preferable.
  • the connection cable or the connection cable of the charger is provided with a control circuit.
  • the control circuit unit 1320 may be referred to as an ECU (Electronic Control Unit).
  • the ECU is connected to a CAN (Control Area Area Network) provided in the electric vehicle.
  • CAN is one of the serial communication standards used as an in-vehicle LAN.
  • the ECU also includes a microcomputer. Further, the ECU uses a CPU or a GPU.
  • External chargers installed in charging stands and the like include 100V outlets, 200V outlets, three-phase 200V and 50kW. It is also possible to charge by receiving power supply from an external charging facility by a non-contact power supply method or the like.
  • the secondary battery of the present embodiment described above uses the positive electrode active material 100 shown in the first to eleventh embodiments. Furthermore, using graphene as a conductive agent, even if the electrode layer is thickened to increase the loading amount, the capacity decrease is suppressed and maintaining high capacity realizes a secondary battery with significantly improved electrical characteristics as a synergistic effect. can. It is particularly effective for a secondary battery used in a vehicle, and provides a vehicle having a long cruising range, specifically, a vehicle having a charge mileage of 500 km or more, without increasing the ratio of the weight of the secondary battery to the total weight of the vehicle. be able to.
  • the operating voltage of the secondary battery can be increased by using the positive electrode active material 100 described in any one of the first to eleventh embodiments.
  • the usable capacity can be increased.
  • the positive electrode active material 100 described in the first to eleventh embodiments as the positive electrode, it is possible to provide a secondary battery for a vehicle having excellent cycle characteristics.
  • the secondary battery shown in any one of FIGS. 17D, 19C, and 26A is mounted on the vehicle, the next generation such as a hybrid vehicle (HV), an electric vehicle (EV), or a plug-in hybrid vehicle (PHV) is installed.
  • HV hybrid vehicle
  • EV electric vehicle
  • PWD plug-in hybrid vehicle
  • a clean energy vehicle can be realized.
  • Secondary batteries can also be mounted on transport vehicles such as planetary explorers and spacecraft.
  • the secondary battery of one aspect of the present invention can be a high-capacity secondary battery. Therefore, the secondary battery of one aspect of the present invention is suitable for miniaturization and weight reduction, and can be suitably used for a transportation vehicle.
  • the automobile 2001 shown in FIG. 27A is an electric vehicle that uses an electric motor as a power source for traveling. Alternatively, it is a hybrid vehicle in which an electric motor and an engine can be appropriately selected and used as a power source for traveling.
  • an example of the secondary battery shown in the fourth embodiment is installed at one place or a plurality of places.
  • the automobile 2001 shown in FIG. 27A has a battery pack 2200, and the battery pack has a secondary battery module to which a plurality of secondary batteries are connected. Further, it is preferable to have a charge control device that is electrically connected to the secondary battery module.
  • the automobile 2001 can charge the secondary battery of the automobile 2001 by receiving electric power from an external charging facility by a plug-in method, a non-contact power supply method, or the like.
  • the charging method, the standard of the connector, and the like may be appropriately performed by a predetermined method such as CHAdeMO (registered trademark) or a combo.
  • the secondary battery may be a charging station provided in a commercial facility or a household power source.
  • the plug-in technology can charge the power storage device mounted on the automobile 2001 by supplying electric power from the outside. Charging can be performed by converting AC power into DC power via a conversion device such as an ACDC converter.
  • a power receiving device on the vehicle and supply power from a ground power transmission device in a non-contact manner to charge the vehicle.
  • this non-contact power supply system by incorporating a power transmission device on the road or the outer wall, charging can be performed not only while the vehicle is stopped but also while the vehicle is running.
  • the non-contact power feeding method may be used to transmit and receive electric power between two vehicles.
  • a solar cell may be provided on the exterior portion of the vehicle to charge the secondary battery when the vehicle is stopped and when the vehicle is running.
  • An electromagnetic induction method or a magnetic field resonance method can be used for such non-contact power supply.
  • FIG. 27B shows a large transport vehicle 2002 having a motor controlled by electricity as an example of a transport vehicle.
  • the secondary battery module of the transport vehicle 2002 has, for example, a secondary battery having a nominal voltage of 3.0 V or more and 5.0 V or less as a four-cell unit, and has a maximum voltage of 170 V in which 48 cells are connected in series. Since it has the same functions as those in FIG. 27A except that the number of secondary batteries constituting the secondary battery module of the battery pack 2201 is different, the description thereof will be omitted.
  • FIG. 27C shows, as an example, a large transport vehicle 2003 having a motor controlled by electricity.
  • the secondary battery module of the transport vehicle 2003 has, for example, a maximum voltage of 600 V in which 100 or more secondary batteries having a nominal voltage of 3.0 V or more and 5.0 V or less are connected in series.
  • a secondary battery using the positive electrode active material 100 described in the first to eleventh embodiments it is possible to manufacture a secondary battery having good rate characteristics and charge / discharge cycle characteristics, and a transport vehicle. It can contribute to high performance and long life of 2003. Further, since it has the same functions as those in FIG. 26A except that the number of secondary batteries constituting the secondary battery module of the battery pack 2202 is different, the description thereof will be omitted.
  • FIG. 27D shows, as an example, an aircraft 2004 having an engine that burns fuel. Since the aircraft 2004 shown in FIG. 27D has wheels for takeoff and landing, it can be said to be a part of a transportation vehicle, and a plurality of secondary batteries are connected to form a secondary battery module, which is charged with the secondary battery module. It has a battery pack 2203 including a control device.
  • the secondary battery module of the aircraft 2004 has a maximum voltage of 32V in which eight 4V secondary batteries are connected in series, for example. Since it has the same functions as those in FIG. 27A except that the number of secondary batteries constituting the secondary battery module of the battery pack 2203 is different, the description thereof will be omitted.
  • the house shown in FIG. 28A has a power storage device 2612 having a secondary battery, which is one aspect of the present invention, and a solar panel 2610.
  • the power storage device 2612 is electrically connected to the solar panel 2610 via wiring 2611 and the like. Further, the power storage device 2612 and the ground-mounted charging device 2604 may be electrically connected.
  • the electric power obtained by the solar panel 2610 can be charged to the power storage device 2612. Further, the electric power stored in the power storage device 2612 can be charged to the secondary battery of the vehicle 2603 via the charging device 2604.
  • the power storage device 2612 is preferably installed in the underfloor space. By installing it in the underfloor space, the space above the floor can be effectively used. Alternatively, the power storage device 2612 may be installed on the floor.
  • the electric power stored in the power storage device 2612 can also supply electric power to other electronic devices in the house. Therefore, even when the power cannot be supplied from the commercial power supply due to a power failure or the like, the electronic device can be used by using the power storage device 2612 according to one aspect of the present invention as an uninterruptible power supply.
  • FIG. 28B shows an example of the power storage device 700 according to one aspect of the present invention.
  • the power storage device 791 according to one aspect of the present invention is installed in the underfloor space portion 796 of the building 799.
  • the power storage device 791 may be provided with the control circuit described in the fifteenth embodiment, and the power storage device 791 uses a secondary battery using the positive electrode active material 100 shown in the first to eleventh embodiments as the positive electrode. By using it, it is possible to obtain a power storage device 791 having a long life.
  • a control device 790 is installed in the power storage device 791, and the control device 790 is connected to a distribution board 703, a power storage controller 705 (also referred to as a control device), a display 706, and a router 709 by wiring. It is electrically connected.
  • Electric power is sent from the commercial power supply 701 to the distribution board 703 via the drop line mounting portion 710. Further, electric power is transmitted to the distribution board 703 from the power storage device 791 and the commercial power supply 701, and the distribution board 703 transfers the transmitted electric power to a general load via an outlet (not shown). It supplies 707 and the power storage system load 708.
  • the general load 707 is, for example, an electric device such as a television and a personal computer
  • the storage system load 708 is, for example, an electric device such as a microwave oven, a refrigerator, and an air conditioner.
  • the power storage controller 705 has a measurement unit 711, a prediction unit 712, and a planning unit 713.
  • the measuring unit 711 has a function of measuring the amount of electric power consumed by the general load 707 and the power storage system load 708 during one day (for example, from 0:00 to 24:00). Further, the measuring unit 711 may have a function of measuring the electric power of the power storage device 791 and the electric power supplied from the commercial power source 701.
  • the prediction unit 712 is based on the amount of electric power consumed by the general load 707 and the power storage system load 708 during the next day, and the demand consumed by the general load 707 and the power storage system load 708 during the next day. It has a function to predict the amount of electric power.
  • the planning unit 713 has a function of making a charge / discharge plan of the power storage device 791 based on the power demand amount predicted by the prediction unit 712.
  • the amount of electric power consumed by the general load 707 and the power storage system load 708 measured by the measuring unit 711 can be confirmed by the display 706. It can also be confirmed in an electric device such as a television and a personal computer via a router 709. Further, it can be confirmed by a portable electronic terminal such as a smartphone and a tablet via the router 709. Further, the amount of power demand for each time zone (or every hour) predicted by the prediction unit 712 can be confirmed by the display 706, the electric device, and the portable electronic terminal.
  • FIG. 29A is an example of an electric bicycle using the power storage device of one aspect of the present invention.
  • One aspect of the power storage device of the present invention can be applied to the electric bicycle 8700 shown in FIG. 29A.
  • the power storage device of one aspect of the present invention includes, for example, a plurality of storage batteries and a protection circuit.
  • the electric bicycle 8700 is equipped with a power storage device 8702.
  • the power storage device 8702 can supply electricity to a motor that assists the driver. Further, the power storage device 8702 is portable, and FIG. 29B shows a state in which the power storage device 8702 is removed from the bicycle. Further, the power storage device 8702 contains a plurality of storage batteries 8701 included in the power storage device of one aspect of the present invention, and the remaining battery level and the like can be displayed on the display unit 8703. Further, the power storage device 8702 has a control circuit 8704 capable of detecting an abnormality. The control circuit 8704 is electrically connected to the positive electrode and the negative electrode of the storage battery 8701.
  • control circuit 8704 may be provided with the small solid secondary batteries shown in FIGS. 25A and 25B.
  • the small solid-state secondary battery shown in FIGS. 25A and 25B in the control circuit 8704, power can be supplied to hold the data of the memory circuit of the control circuit 8704 for a long time.
  • the positive electrode active material 100 shown in the first to eleventh embodiments with the secondary battery using the positive electrode, a synergistic effect on safety can be obtained.
  • the secondary battery and the control circuit 8704 using the positive electrode active material 100 shown in the first to eleventh embodiments as the positive electrode can greatly contribute to the eradication of accidents such as fires caused by the secondary battery.
  • FIG. 29C is an example of a two-wheeled vehicle using the power storage device of one aspect of the present invention.
  • the scooter 8600 shown in FIG. 29C includes a power storage device 8602, a side mirror 8601, and a turn signal 8603.
  • the power storage device 8602 can supply electricity to the turn signal 8603.
  • the power storage device 8602 containing a plurality of secondary batteries using the positive electrode active material 100 shown in the first to eleventh embodiments as the positive electrode can have a high capacity, which can contribute to miniaturization. can.
  • the scooter 8600 shown in FIG. 29C can store the power storage device 8602 in the storage under the seat 8604.
  • the power storage device 8602 can be stored in the under-seat storage 8604 even if the under-seat storage 8604 is small.
  • Electronic devices that mount secondary batteries include, for example, television devices (also referred to as televisions or television receivers), monitors for computers, digital cameras, digital video cameras, digital photo frames, mobile phones (mobile phones, mobile phones, etc.).
  • television devices also referred to as televisions or television receivers
  • monitors for computers digital cameras, digital video cameras, digital photo frames, mobile phones (mobile phones, mobile phones, etc.).
  • mobile phone device a portable game machine
  • mobile information terminal a sound reproduction device
  • a large game machine such as a pachinko machine
  • Examples of mobile information terminals include notebook personal computers, tablet terminals, electronic book terminals, and mobile phones.
  • FIG. 30A shows an example of a mobile phone.
  • the mobile phone 2100 includes an operation button 2103, an external connection port 2104, a speaker 2105, a microphone 2106, and the like, in addition to the display unit 2102 incorporated in the housing 2101.
  • the mobile phone 2100 has a secondary battery 2107.
  • the secondary battery 2107 By providing the secondary battery 2107 using the positive electrode active material 100 shown in the first to eleventh embodiments as the positive electrode, the capacity can be increased and the space can be saved due to the miniaturization of the housing.
  • the configuration can be realized.
  • the mobile phone 2100 can execute various applications such as mobile phones, e-mails, text viewing and creation, music playback, Internet communication, and computer games.
  • the operation button 2103 can have various functions such as power on / off operation, wireless communication on / off operation, manner mode execution / cancellation, and power saving mode execution / cancellation. ..
  • the function of the operation button 2103 can be freely set by the operating system incorporated in the mobile phone 2100.
  • the mobile phone 2100 can execute short-range wireless communication with communication standards. For example, by communicating with a headset capable of wireless communication, it is possible to make a hands-free call.
  • the mobile phone 2100 is provided with an external connection port 2104, and data can be directly exchanged with another information terminal via a connector. It can also be charged via the external connection port 2104. The charging operation may be performed by wireless power supply without going through the external connection port 2104.
  • the mobile phone 2100 has a sensor.
  • a human body sensor such as a fingerprint sensor, a pulse sensor, or a body temperature sensor, a touch sensor, a pressure sensor, an acceleration sensor, or the like is preferably mounted.
  • FIG. 30B is an unmanned aerial vehicle 2300 having a plurality of rotors 2302.
  • the unmanned aerial vehicle 2300 is sometimes called a drone.
  • the unmanned aerial vehicle 2300 has a secondary battery 2301, a camera 2303, and an antenna (not shown), which is one aspect of the present invention.
  • the unmanned aerial vehicle 2300 can be remotely controlled via an antenna.
  • the secondary battery using the positive electrode active material 100 shown in the first to eleventh embodiments has a high energy density and high safety, so that it can be used safely for a long period of time. , Suitable as a secondary battery to be mounted on an unmanned aircraft 2300.
  • FIG. 30C shows an example of a robot.
  • the robot 6400 shown in FIG. 30C includes a secondary battery 6409, an illuminance sensor 6401, a microphone 6402, an upper camera 6403, a speaker 6404, a display unit 6405, a lower camera 6406 and an obstacle sensor 6407, a moving mechanism 6408, an arithmetic unit, and the like.
  • the microphone 6402 has a function of detecting the user's voice, environmental sound, and the like. Further, the speaker 6404 has a function of emitting sound. The robot 6400 can communicate with the user by using the microphone 6402 and the speaker 6404.
  • the display unit 6405 has a function of displaying various information.
  • the robot 6400 can display the information desired by the user on the display unit 6405.
  • the display unit 6405 may be equipped with a touch panel. Further, the display unit 6405 may be a removable information terminal, and by installing it at a fixed position of the robot 6400, it is possible to charge and transfer data.
  • the upper camera 6403 and the lower camera 6406 have a function of photographing the surroundings of the robot 6400. Further, the obstacle sensor 6407 can detect the presence / absence of an obstacle in the traveling direction when the robot 6400 moves forward by using the moving mechanism 6408. The robot 6400 can recognize the surrounding environment and move safely by using the upper camera 6403, the lower camera 6406 and the obstacle sensor 6407.
  • the robot 6400 includes a secondary battery 6409 according to one aspect of the present invention and a semiconductor device or an electronic component in its internal region.
  • the secondary battery using the positive electrode active material 100 shown in the first to eleventh embodiments has a high energy density and high safety, so that it can be used safely for a long period of time.
  • FIG. 30D shows an example of a cleaning robot.
  • the cleaning robot 6300 has a display unit 6302 arranged on the upper surface of the housing 6301, a plurality of cameras 6303 arranged on the side surface, a brush 6304, an operation button 6305, a secondary battery 6306, various sensors, and the like.
  • the cleaning robot 6300 is provided with tires, suction ports, and the like.
  • the cleaning robot 6300 is self-propelled, can detect dust 6310, and can suck dust from a suction port provided on the lower surface.
  • the cleaning robot 6300 can analyze the image taken by the camera 6303 and determine the presence or absence of an obstacle such as a wall, furniture, or a step. Further, when an object that is likely to be entangled with the brush 6304 such as wiring is detected by image analysis, the rotation of the brush 6304 can be stopped.
  • the cleaning robot 6300 includes a secondary battery 6306 according to an aspect of the present invention and a semiconductor device or an electronic component in the internal region thereof.
  • the secondary battery using the positive electrode active material 100 shown in the first to eleventh embodiments has a high energy density and high safety, so that it can be used safely for a long period of time. , Suitable as a secondary battery 6306 mounted on the cleaning robot 6300.
  • FIG. 31A shows an example of a wearable device.
  • Wearable devices use a secondary battery as a power source.
  • a wearable device that can perform not only wired charging but also wireless charging with the connector part to be connected exposed is available. It is desired.
  • the secondary battery according to one aspect of the present invention can be mounted on the spectacle-type device 4000 as shown in FIG. 31A.
  • the spectacle-type device 4000 has a frame 4000a and a display unit 4000b.
  • By mounting the secondary battery on the temple portion of the curved frame 4000a it is possible to obtain a spectacle-type device 4000 that is lightweight, has a good weight balance, and has a long continuous use time.
  • the secondary battery using the positive electrode active material 100 shown in the first to eleventh embodiments has a high energy density, and can realize a configuration capable of saving space due to the miniaturization of the housing. can.
  • a secondary battery which is one aspect of the present invention, can be mounted on the headset type device 4001.
  • the headset-type device 4001 has at least a microphone unit 4001a, a flexible pipe 4001b, and an earphone unit 4001c.
  • a secondary battery can be provided in the flexible pipe 4001b or in the earphone portion 4001c.
  • the secondary battery using the positive electrode active material 100 shown in the first to eleventh embodiments has a high energy density, and can realize a configuration capable of saving space due to the miniaturization of the housing. can.
  • the secondary battery which is one aspect of the present invention can be mounted on the device 4002 which can be directly attached to the body.
  • the secondary battery 4002b can be provided in the thin housing 4002a of the device 4002.
  • the secondary battery using the positive electrode active material 100 shown in the first to eleventh embodiments has a high energy density, and can realize a configuration capable of saving space due to the miniaturization of the housing. can.
  • the secondary battery which is one aspect of the present invention can be mounted on the device 4003 which can be attached to clothes.
  • the secondary battery 4003b can be provided in the thin housing 4003a of the device 4003.
  • the secondary battery using the positive electrode active material 100 shown in the first to eleventh embodiments has a high energy density, and can realize a configuration capable of saving space due to the miniaturization of the housing. can.
  • the secondary battery which is one aspect of the present invention can be mounted on the belt type device 4006.
  • the belt-type device 4006 has a belt portion 4006a and a wireless power supply receiving portion 4006b, and a secondary battery can be mounted in the internal region of the belt portion 4006a.
  • the secondary battery using the positive electrode active material 100 shown in the first to eleventh embodiments has a high energy density, and can realize a configuration capable of saving space due to the miniaturization of the housing. can.
  • a secondary battery which is one aspect of the present invention, can be mounted on the wristwatch type device 4005.
  • the wristwatch-type device 4005 has a display unit 4005a and a belt unit 4005b, and a secondary battery can be provided on the display unit 4005a or the belt unit 4005b.
  • the secondary battery using the positive electrode active material 100 shown in any one of the first to eleventh embodiments has a high energy density, and has a configuration capable of saving space due to the miniaturization of the housing. It can be realized.
  • the display unit 4005a can display not only the time but also various information such as incoming mail and telephone calls.
  • the wristwatch-type device 4005 is a wearable device that is directly wrapped around the wrist, it may be equipped with a sensor that measures the user's pulse, blood pressure, and the like. It is possible to manage the health by accumulating data on the amount of exercise and health of the user.
  • FIG. 31B shows a perspective view of the wristwatch-type device 4005 removed from the arm.
  • FIG. 31C shows a state in which the secondary battery 913 is built in the internal region.
  • the secondary battery 913 is the secondary battery shown in the fourth embodiment.
  • the secondary battery 913 is provided at a position overlapping with the display unit 4005a, can have a high density and a high capacity, is compact, and is lightweight.
  • the wristwatch type device 4005 Since the wristwatch type device 4005 is required to be compact and lightweight, high energy can be obtained by using the positive electrode active material 100 shown in the first to eleventh embodiments as the positive electrode of the secondary battery 913.
  • a secondary battery 913 having a high density and a small size can be used.
  • FIG. 31D shows an example of a wireless earphone.
  • a wireless earphone having a pair of main bodies 4100a and a main body 4100b is shown, but it does not necessarily have to be a pair.
  • the main bodies 4100a and 4100b have a driver unit 4101, an antenna 4102, and a secondary battery 4103. It may have a display unit 4104. Further, it is preferable to have a board on which a circuit such as a wireless IC is mounted, a charging terminal, or the like. It may also have a microphone.
  • Case 4110 has a secondary battery 4111. Further, it is preferable to have a board on which circuits such as a wireless IC and a charge control IC are mounted, and a charging terminal. Further, it may have a display unit, a button, and the like.
  • the main bodies 4100a and 4100b can wirelessly communicate with other electronic devices such as smartphones. As a result, sound data and the like sent from other electronic devices can be reproduced by the main bodies 4100a and 4100b. Further, if the main bodies 4100a and 4100b have a microphone, the sound acquired by the microphone can be sent to another electronic device, and the sound data processed by the electronic device can be sent to the main bodies 4100a and 4100b again for reproduction. This makes it possible to use it as a translator, for example.
  • the secondary battery 4103 of the main body 4100a can be charged from the secondary battery 4111 of the case 4110.
  • the coin-type secondary battery, the cylindrical secondary battery, and the like of the above-described embodiment can be used.
  • the secondary battery using the positive electrode active material 100 shown in the first to eleventh embodiments has a high energy density, and by using the secondary battery 4103 and the secondary battery 4111, the wireless earphone can be downsized. It is possible to realize a configuration that can cope with the space saving that accompanies this.
  • This embodiment can be implemented in combination with other embodiments as appropriate.
  • 11a surface layer part, 11b: inside, 100: positive electrode active material, 101: primary particles, 102: secondary particles, 103: interface, 105: voids, 550: current collector, 535: acetylene black, 554: graphene compound, 555: Carbon nanotube, 561: Active material, 801: Transition metal M source, 802: Additive element X source, 803: Nickel source, 804: Cobalt source, 805: Manganese source, 81: Mixture, 812: Aqueous solution A, 813: Aqueous B, 821: Mixture, 822: Lithium compound, 823: Additive element X source, 831: Mixture, 832: Mixture, 833: Additive element X source, 833a: Mixture, 833b: Mixture, 834: Magnesium source, 835: Fluorine Source, 836: Mixture, 841: Mixture, 842: Mixture, 843: Additive Element X Source, 843a

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

高純度化された正極活物質の作製方法を提供する。または、充放電を繰り返しても結晶構造が崩れにくい正極活物質の作製方法を提供する。 リチウムと、遷移金属と、を有する正極活物質の作製方法であって、遷移金属を有する水溶液と塩基性水溶液を用いて、遷移金属を有する水酸化物を作製する第1のステップと、リチウム化合物を準備する第2のステップと、リチウム化合物と、水酸化物と、混合し、混合物を形成する第3のステップと、混合物を加熱し、リチウム、及び遷移金属を有する複合酸化物を形成する第4のステップと、を有し、第2のステップにおいて、リチウム化合物としては、99.99%以上の純度の材料を、準備し、第4のステップにおいて、露点が-50℃以下の酸素含有雰囲気中で加熱する。

Description

正極活物質の作製方法
 正極活物質の作製方法に関する。または、二次電池の作製方法に関する。または、二次電池を有する携帯情報端末、車両等に関する。
 本発明の一様態は、物、方法、又は、製造方法に関する。または、本発明は、プロセス、マシン、マニュファクチャ、又は、組成物(コンポジション・オブ・マター)に関する。本発明の一態様は、半導体装置、表示装置、発光装置、蓄電装置、照明装置、電子機器、またはそれらの製造方法に関する。なお、本発明の一態様は、特に正極活物質の作製方法、または正極活物質に関する。または、本発明の一態様は、特に二次電池の作製方法、または二次電池に関する。
 なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指し、電気光学装置、半導体回路および電子機器は全て半導体装置である。
 なお、本明細書中において電子機器とは、正極活物質、二次電池、または蓄電装置を有する装置全般を指し、正極活物質、二次電池、または蓄電装置を有する電気光学装置、蓄電装置を有する情報端末装置などは全て電子機器である。
 なお、本明細書中において、蓄電装置とは、蓄電機能を有する素子及び装置全般を指すものである。例えば、リチウムイオン二次電池などの蓄電装置(二次電池ともいう)、リチウムイオンキャパシタ、及び電気二重層キャパシタなどを含む。
 近年、リチウムイオン二次電池、リチウムイオンキャパシタ、空気電池等、種々の蓄電装置の開発が盛んに行われている。特に高出力、高エネルギー密度であるリチウムイオン二次電池は、携帯電話、スマートフォン、もしくはノート型コンピュータ等の携帯情報端末、携帯音楽プレーヤ、デジタルカメラ、医療機器、又は、ハイブリッド車(HV)、電気自動車(EV)、もしくはプラグインハイブリッド車(PHV)等の次世代クリーンエネルギー自動車など、半導体産業の発展と併せて急速にその需要が拡大し、繰り返し充電可能なエネルギーの供給源として現代の情報化社会に不可欠なものとなっている。
 そのため、リチウムイオン二次電池のサイクル特性の向上および高容量化のために、正極活物質の改良が検討されている(特許文献1および特許文献2)。
特開2012−018914号公報 特開2016−076454号公報
 正極活物質はリチウムイオン二次電池の中でもコストの高い材料であるため、高性能化(例えば、高容量化、サイクル特性の改善、信頼性または安全性の向上)の要求も高い。特に、高性能化の一つとして、高容量化を実現するために、正極活物質の純度を高めたいといった課題がある。
 そこで、本発明の一態様は、高純度化された正極活物質の作製方法を提供することを課題の一とする。または、充放電を繰り返しても結晶構造が崩れにくい正極活物質の作製方法を提供することを課題の一とする。または、充放電サイクル特性に優れた正極活物質の作製方法を提供することを課題の一とする。または、充放電容量が大きい正極活物質の作製方法を提供することを課題の一とする。または、信頼性または安全性の高い二次電池を提供することを課題の一とする。
 また、本発明の一態様は、新規な物質、活物質粒子、二次電池、蓄電装置、又はそれらの作製方法を提供することを課題の一とする。また、本発明の一態様は、高純度化、高性能化、及び高信頼性の中から選ばれるいずれか一または複数の特性を有する二次電池の作製方法、または二次電池を提供することを課題の一とする。
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。
 本発明の一態様は、リチウムと、遷移金属と、を有する正極活物質の作製方法であって、遷移金属を有する水溶液と塩基性水溶液を少なくとも用いて、遷移金属を有する水酸化物を作製する第1のステップと、リチウム化合物を準備する第2のステップと、リチウム化合物と、水酸化物と、混合し、混合物を形成する第3のステップと、混合物を加熱し、リチウム、及び遷移金属を有する複合酸化物を形成する第4のステップと、を有し、第2のステップにおいて、リチウム化合物としては、99.99%以上の純度の材料を準備し、第4のステップにおける加熱は、露点が−50℃以下の酸素含有雰囲気中で行われる、正極活物質の作製方法である。
 または、本発明の一態様は、リチウムと、ニッケルと、コバルトと、マンガンと、を有する正極活物質の作製方法であって、ニッケルを有する水溶液、コバルトを有する水溶液、およびマンガンを有する水溶液を混合した混合溶液、ならびに塩基性水溶液を少なくとも用いて、ニッケル、コバルト、およびマンガンを有する水酸化物を作製する第1のステップと、リチウム化合物を準備する第2のステップと、リチウム化合物と、水酸化物と、混合し、混合物を形成する第3のステップと、混合物を加熱し、リチウム、ニッケル、コバルト、およびマンガンを有する複合酸化物を形成する第4のステップと、を有し、第2のステップにおいて、リチウム化合物としては、99.99%以上の純度の材料を準備し、第4のステップにおける加熱は、露点が−50℃以下の酸素含有雰囲気中で行われる、正極活物質の作製方法である。
 または、本発明の一態様は、リチウムと、ニッケルと、コバルトと、マンガンと、アルミニウムと、を有する正極活物質の作製方法であって、ニッケルを有する水溶液、コバルトを有する水溶液、マンガンを有する水溶液、およびアルミニウムを有する水溶液を混合した混合溶液、ならびに塩基性水溶液を少なくとも用いて、ニッケル、コバルト、マンガン、およびアルミニウムを有する水酸化物を作製する第1のステップと、リチウム化合物を準備する第2のステップと、リチウム化合物と、水酸化物と、混合し、混合物を形成する第3のステップと、混合物を加熱し、リチウム、ニッケル、コバルト、マンガン、およびアルミニウムを有する複合酸化物を形成する第4のステップと、を有し、第2のステップにおいて、リチウム化合物としては、99.99%以上の純度の材料を準備し、第4のステップにおける加熱は、露点が−50℃以下の酸素含有雰囲気中で行われる、正極活物質の作製方法である。
 または、本発明の一態様は、リチウムと、ニッケルと、コバルトと、マンガンと、アルミニウムと、を有する正極活物質の作製方法であって、ニッケルを有する水溶液、コバルトを有する水溶液、およびマンガンを有する水溶液を混合した混合溶液、ならびに塩基性水溶液を少なくとも用いて、ニッケル、コバルト、およびマンガンを有する水酸化物を作製する第1のステップと、リチウム化合物およびアルミニウム源を準備する第2のステップと、リチウム化合物と、アルミニウム源と、水酸化物と、を混合し、混合物を形成する第3のステップと、混合物を加熱し、リチウム、ニッケル、コバルト、マンガンおよびアルミニウムを有する複合酸化物を形成する第4のステップと、を有し、第2のステップにおいて、リチウム化合物としては、99.99%以上の純度の材料を、アルミニウム源としては、99.9%以上の純度の材料を、それぞれ準備し、第4のステップにおける加熱は、露点が−50℃以下の酸素含有雰囲気中で行われる、正極活物質の作製方法である。
 または、本発明の一態様は、リチウムと、ニッケルと、コバルトと、マンガンと、アルミニウムと、マグネシウムと、フッ素と、を有する正極活物質の作製方法であって、ニッケルを有する水溶液、コバルトを有する水溶液、およびマンガンを有する水溶液を混合した混合溶液、ならびに塩基性水溶液を少なくとも用いて、ニッケル、コバルト、およびマンガンを有する水酸化物を作製する第1のステップと、リチウム化合物およびアルミニウム源を準備する第2のステップと、リチウム化合物と、アルミニウム源と、水酸化物と、を混合し、第1の混合物を形成する第3のステップと、第1の混合物を加熱し、リチウム、ニッケル、コバルト、マンガンおよびアルミニウムを有する第1の複合酸化物を形成する第4のステップと、マグネシウム源およびフッ素源を準備する第5のステップと、第1の複合酸化物と、マグネシウム源と、フッ素源と、を混合し、第2の混合物を形成する第6のステップと、第2の混合物を加熱し、リチウム、ニッケル、コバルト、マンガン、アルミニウム、マグネシウム、およびフッ素を有する第2の複合酸化物を形成する第7のステップを有し、第2のステップにおいて、リチウム化合物としては、99.99%以上の純度の材料を、アルミニウム源としては、99.9%以上の純度の材料を、それぞれ準備し、第5のステップにおいて、マグネシウム源としては、99%以上の純度の材料を、フッ素源としては、99%以上の純度の材料を、それぞれ準備し、第4のステップおよび第7のステップにおける加熱は、露点が−50℃以下の酸素含有雰囲気中で行われる、正極活物質の作製方法である。
 本発明の一態様により、高純度化された正極活物質の作製方法を提供することができる。または、充放電を繰り返しても結晶構造が崩れにくい正極活物質の作製方法を提供することができる。または、充放電サイクル特性に優れた正極活物質の作製方法を提供することができる。または、充放電容量が大きい正極活物質の作製方法を提供することができる。または、信頼性または安全性の高い二次電池を提供することができる。
 また、本発明の一態様により、新規な物質、活物質粒子、二次電池、蓄電装置、又はそれらの作製方法を提供することができる。また、本発明の一態様により、高純度化、高性能化、及び高信頼性の中から選ばれるいずれか一または複数の特性を有する二次電池の作製方法、または二次電池を提供することができる。
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
図1は、本発明の一態様の正極活物質の作製方法の一例を説明する図である。
図2は、本発明の一態様の正極活物質の作製方法の一例を説明する図である。
図3A乃至図3Eは、本発明の一態様の正極活物質の作製方法の一例を説明する図である。
図4は、本発明の一態様の正極活物質の作製方法の一例を説明する図である。
図5は、本発明の一態様の正極活物質の作製方法の一例を説明する図である。
図6は、本発明の一態様の正極活物質の作製方法の一例を説明するである。
図7は、本発明の一態様の正極活物質の作製方法の一例を説明するである。
図8は、本発明の一態様の正極活物質の作製方法の一例を説明するである。
図9は、本発明の一態様の正極活物質の作製方法の一例を説明するである。
図10は、本発明の一態様の正極活物質の作製方法の一例を説明するである。
図11は、本発明の一態様の正極活物質の作製方法の一例を説明するである。
図12は、本発明の一態様の正極活物質の作製方法の一例を説明するである。
図13Aおよび図13Bは正極活物質の断面図である。
図14A、図14B、図14Cは正極活物質内の濃度分布を説明する図である。
図15は二次電池の正極の例を説明する断面図である。
図16Aはコイン型二次電池の分解斜視図であり、図16Bはコイン型二次電池の斜視図であり、図16Cはその断面斜視図である。
図17Aは、円筒型の二次電池の例であり、図17Bは、円筒型の二次電池の例であり、図17Cは、複数の円筒型の二次電池の例であり、図17Dは、複数の円筒型の二次電池を有する蓄電システムの例である。
図18A及び図18Bは二次電池の例を説明する図であり、図18Cは二次電池の内部の様子を示す図である。
図19A乃至図19Cは二次電池の例を説明する図である。
図20A及び図20Bは二次電池の外観を示す図である。
図21A乃至図21Cは二次電池の作製方法を説明する図である。
図22A乃至図22Cは、電池パックの構成例を示す図である。
図23A及び図23Bは二次電池の例を説明する図である。
図24A乃至図24Cは二次電池の例を説明する図である。
図25A及び図25Bは二次電池の例を説明する図である。
図26Aは本発明の一態様を示す電池パックの斜視図であり、図26Bは電池パックのブロック図であり、図26Cはモータを有する車両のブロック図である。
図27A乃至図27Dは、輸送用車両の一例を説明する図である。
図28A及び図28Bは、本発明の一態様に係る蓄電装置を説明する図である。
図29Aは電動自転車を示す図であり、図29Bは電動自転車の二次電池を示す図であり、図29Cは電動バイクを説明する図である。
図30A乃至図30Dは、電子機器の一例を説明する図である。
図31Aは、ウェアラブルデバイスの例を示し、図31Bは、腕時計型デバイスの斜視図を示し、図31Cは、腕時計型デバイスの側面を示し、図31Dは、ワイヤレスイヤホンの例を示す。
 以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
 二次電池は例えば正極および負極を有する。正極を構成する材料として、正極活物質がある。正極活物質は例えば、充放電の容量に寄与する反応を行う物質である。なお、正極活物質は、その一部に、充放電の容量に寄与しない物質を含んでもよい。
 本明細書等において、本発明の一態様の正極活物質は、正極材料、あるいは二次電池用正極材、複合酸化物、等と表現される場合がある。また本明細書等において、本発明の一態様の正極活物質は、化合物を有することが好ましい。また本明細書等において、本発明の一態様の正極活物質は、組成物を有することが好ましい。また本明細書等において、本発明の一態様の正極活物質は、複合体を有することが好ましい。
 本明細書等において、偏析とは、複数の元素(例えばA,B,C)からなる固体において、ある元素(例えばB)が空間的に不均一に分布する現象をいう。
 また本明細書においてクラックとは、正極活物質の作製工程で生じたものに限らず、その後の加圧および充放電等により生じたものを含むとする。クラック(ひびといってもよい)により生じた面も表面といってよい。
 本明細書等において、活物質等の粒子の表層部とは例えば、表面から内部に向かって50nm以内、より好ましくは35nm以内、さらに好ましくは20nm以内、最も好ましくは10nm以内の領域である。当該領域を表面近傍と呼ぶことがある。また表層部より深い領域を、内部という。
 また本明細書等において単に欠陥という場合、結晶の欠陥または格子欠陥をいう。欠陥は点欠陥、転位、二次元的な欠陥である積層欠陥、三次元的な欠陥であるボイドを含む。
 また本明細書等において粒子とは球形(断面形状が円)のみを指すことに限定されず、個々の粒子の断面形状が楕円形、長方形、台形、錐形、角が丸まった四角形、非対称の形状などが挙げられ、さらに個々の粒子は不定形であってもよい。
 また、本明細書等において結晶面および方向の表記にはミラー指数を用いる。結晶面を示す個別面は( )で表す。結晶面、方向および空間群の表記は、結晶学上、数字に上付きのバーを付すが、本明細書等では出願表記の制約上、数字の上にバーを付す代わりに、数字の前に−(マイナス符号)を付して表現する場合がある。
 また、本明細書等において、リチウムと遷移金属を含む複合酸化物が有する層状岩塩型の結晶構造とは、陽イオンと陰イオンが交互に配列する岩塩型のイオン配列を有し、遷移金属とリチウムが規則配列して二次元平面を形成するため、リチウムの二次元的拡散が可能である結晶構造をいう。なお、層状岩塩型結晶構造において、陽イオンまたは陰イオンの欠損等の欠陥があってもよい。また、層状岩塩型結晶構造は、厳密に言えば、岩塩型結晶の格子が歪んだ構造となっている場合がある。
 また、本明細書等において、岩塩型の結晶構造とは、陽イオンと陰イオンが交互に配列している構造をいう。なお、岩塩型結晶構造において、陽イオンまたは陰イオンの欠損があってもよい。
 また、本明細書等において、正極活物質の理論容量とは、正極活物質が有する挿入脱離可能なリチウムが全て脱離した場合の電気量をいう。例えば、LiCoOの理論容量は274mAh/g、LiNiOの理論容量は274mAh/g、LiMnの理論容量は148mAh/gである。
 また、本明細書等において、正極活物質が有する挿入脱離可能なリチウムが全て挿入されているときの充電深度を0、正極活物質が有する挿入脱離可能なリチウムが全て脱離したときの充電深度を1ということとする。
 また、本明細書等において、本発明の一態様の正極および正極活物質を用いた二次電池として、対極にリチウム金属を用いる例を示す場合があるが、本発明の一態様の二次電池はこれに限らない。負極に他の材料、例えば黒鉛、チタン酸リチウム等を用いてもよい。充放電を繰り返しても結晶構造が崩れにくく、良好なサイクル特性を得られる等の、本発明の一態様の正極および正極活物質の性質は、負極の材料に影響されない。また本発明の一態様の二次電池について、対極にリチウム金属を用いた二次電池で、充電電圧4.6Vといった比較的高い電圧で充放電する例を示す場合があるが、より低い電圧で充放電をしてもよい。より低い電圧で充放電する場合は本明細書等で示すよりもさらにサイクル特性がよくなることが見込まれる。
 また、本明細書等において、加熱を経て粒子同士が集まって固まることを固着するということとする。この粒子同士の結合はイオン結合またはファンデルワールス力によると推定されるが、加熱の温度、結晶の状態、元素の分布状態等を問わず、単に粒子同士が集まって固まっていれば固着ということとする。
 また、本明細書等において、キルンとは、被処理物を加熱する装置をいう。例えばキルンに代えて炉、窯、加熱装置等といってもよい。
 また、本明細書等において、高純度化の特性を有する二次電池とは、少なくとも正極、負極、セパレータ、及び電解質の中から選ばれたいずれか一又は複数の材料の純度が高いものをいう。また、高純度化された正極活物質とは、正極活物質に含まれる材料の純度が高いものをいう。例えば、本発明の一態様の正極活物質の材料に用いることができる材料の純度としては、LiCO及びCoが、それぞれ3N(99.9%)以上、好ましくは4N(99.99%)以上、より好ましくは4N5(99.995%)以上、さらに好ましくは5N(99.999%)以上である。
 また、本発明の一態様の正極活物質に添加可能な元素(添加元素X)として用いることができる材料の純度としては、LiF及びMgFが、それぞれ2N(99%)以上、好ましくは3N(99.9%)以上、より好ましくは4N(99.99%)以上である。また、Ni(OH)、及びAl(OH)が、それぞれ3N(99.9%)以上、好ましくは4N(99.99%)以上、より好ましくは4N5(99.995%)以上、さらに好ましくは5N(99.999%)以上である。なお、添加可能な元素(添加元素X)の詳細については、後述する。
 なお、正極活物質は、リチウム、遷移金属M、及び酸素を有する複合酸化物(LiMO)として、表す場合がある。遷移金属Mとしてはリチウムとともに空間群R−3mに属する層状岩塩型の複合酸化物を形成しうる金属を用いことが好ましい。遷移金属Mの詳細については、後述する。
 なおNi、Co、及びMnを有するリチウム複合酸化物(NCM:ニッケル−コバルト−マンガン酸リチウム)は、リチウムとともに空間群R−3mに属する層状岩塩型の複合酸化物であり、充電深度0(放電状態)において、空間群R−3mの結晶構造を有する領域を有する。また充電深度0より大きく1以下のときは、空間群C2/mに帰属される層状構造を有する場合があり、R−3m相とC2/m相がそれぞれ相分離している場合がある。本実施の形態で結晶と呼んでいるのは結晶形成工程直後の結晶構造を指しているため、R−3m相を基本的には指しているが、一部または部分的にC2/m相またはその他の結晶相が含まれていても本明細書では、R−3m相の結晶と呼ぶ。
(実施の形態1)
 本実施の形態では、図1を用いて本発明の一態様の正極活物質の作製方法の例について説明する。
 図1のステップS21として、遷移金属M源801を用意する。
 遷移金属Mとしては、例えば、マンガン、コバルト、ニッケルのうち少なくとも一を用いることができる。例えば、遷移金属Mとしては、コバルトのみを用いる場合、ニッケルのみを用いる場合、コバルトとマンガンの2種を用いる場合、コバルトとニッケルの2種を用いる場合、または、コバルト、マンガン、ニッケルの3種を用いる場合がある。遷移金属M源801は遷移金属Mを含む水溶液として用意する。
 遷移金属M源801として、コバルトを含む水溶液としては、硫酸コバルト水溶液または硝酸コバルト水溶液、などを用いることができ、ニッケルを含む水溶液としては、硫酸ニッケル水溶液または硝酸ニッケル水溶液、などを用いることができ、マンガンを含む水溶液としては、硫酸マンガン水溶液または硝酸マンガン水溶液、などを用いることができる。
 なお、合成の際に用いる遷移金属M源801としては、高純度の材料を用いると好ましい。具体的には、遷移金属Mを含む水溶液を用いる場合、水溶液を作成する際の、溶質材料の純度としては、2N(99%)以上、好ましくは3N(99.9%)以上、さらに好ましくは4N(99.99%)以上であり、水としては、好ましくは比抵抗が1MΩ・cm以上、より好ましくは比抵抗が10MΩ・cm以上、さらに好ましくは比抵抗が15MΩ・cm以上の、不純物が少ない純水であることが望ましい。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 また、複数の遷移金属M源801を用いる場合であって、たとえばコバルト源、マンガン源、及びニッケル源を用いるとき、層状岩塩型の結晶構造をとりうる範囲の混合比とすることが好ましい。
 次に、ステップS31として、上記の遷移金属M源801を混合し、ステップS32の混合物811を得る。
 次に、ステップS33として水溶液A812、ステップS34として水溶液B813を用意する。
 水溶液A812として、グリシン、オキシン、1−ニトロソ−2−ナフトールもしくは2−メルカプトベンゾチアゾールなどのキレート剤のうち、少なくとも一を有する水溶液、またはアンモニア水、のいずれか一、または複数の混合液を用いることができる。
 水溶液B813として、水酸化ナトリウム水溶液、水酸化カリウム水溶液、または水酸化リチウム水溶液、のいずれか一、または複数の混合液を用いることができる。
 次に、ステップS35として、上記のステップS32の混合物811、水溶液A812、水溶液B813を混合する。
 ステップS35の混合の方法として、反応容器にいれた水溶液A812に対して、ステップS32の混合物811および水溶液B813を滴下する、という混合方法を用いることができる。ステップS32の混合物811を一定の速度で滴下するとともに、反応容器内の混合溶液のpHを所定の範囲に保つために、水溶液B813を適宜滴下することが望ましい。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、水溶液A812、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内のpHとして、好ましくは9以上11以下、より好ましくは10.0以上10.5以下にするとよい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 または、ステップS35の混合の方法として、反応容器に入れたステップS32の混合物811に対して、水溶液A812および水溶液B813を滴下する、という混合方法を用いることができる。反応容器内の、水溶液A812の溶質イオン濃度、および水酸基濃度を所定の範囲に保つために、水溶液A812および水溶液B813の滴下速度を調整することが好ましい。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、水溶液A812、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 または、ステップS35の混合の方法として、水溶液A812を用いない場合を説明する。反応容器に入れたステップS32の混合物811に対して、水溶液B813を一定量滴下して加える。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 または、ステップS35の混合の方法として、ステップS32の混合物811、水溶液A812、および水溶液B813、に加えて、純水を用いる場合を説明する。反応容器に入れた純水に対して、ステップS32の混合物811および水溶液A812を一定の速度で滴下するとともに、反応容器内の混合溶液のpHを所定の範囲に保つために、水溶液B813を適宜滴下することができる。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、水溶液A812、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内のpHとして、好ましくは9以上11以下、より好ましくは10.0以上10.5以下にするとよい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 次に、ステップS35の混合によって形成された、遷移金属Mを有する水酸化物を含む溶液を、ステップS36として、ろ過した後に水で洗浄する。洗浄に用いる水は、好ましくは比抵抗が1MΩ・cm以上、より好ましくは比抵抗が10MΩ・cm以上、さらに好ましくは比抵抗が15MΩ・cm以上の、不純物が少ない純水であることが望ましい。不純物が少ない純水を洗浄に用いることで、遷移金属Mを有する水酸化物に含まれる不純物を除去することができる。これにより、高純度の遷移金属Mを有する水酸化物を、正極活物質100の前駆体として得ることができる。
 次に、ステップS37において、洗浄後の遷移金属Mを有する水酸化物を、乾燥し、回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS41の混合物821を得る。混合物821は正極活物質100の前駆体とも呼ぶ。前駆体は結晶性が高いことが好ましく、単結晶粒を有すると更に好ましい。すなわち前駆体は単結晶であることが好ましい。
 結晶性の評価としては、例えば、TEM(透過電子顕微鏡)像、STEM(走査透過電子顕微鏡)像、HAADF−STEM(高角散乱環状暗視野走査透過電子顕微鏡)像、ABF−STEM(環状明視野走査透過電子顕微鏡)像等から判断することができる。また結晶性の評価としては、X線回折(XRD)、電子線回折、中性子線回折等も判断の材料にすることができる。
 次に、ステップS42として、リチウム化合物822を用意し、ステップS51として、ステップS41の混合物821と、リチウム化合物822と、を混合する。混合後に、ステップS52にて回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS53の混合物831を得る。混合は乾式または湿式で行うことができる。混合には例えば、自転公転ミキサー等のミキサー、ボールミル、及びビーズミル等を用いることができる。自転公転ミキサーとして、(株)シンキー製の自転公転方式ミキサーあわとり練太郎を用いる場合、例えば回転数を2000rpmとして、1.5分の処理を3回繰り返すとよい。ボールミルを用いる場合は、例えばメディアとしてジルコニアボールを用いることが好ましい。また、ボールミル、またはビーズミル等を用いる場合、メディアまたは材料からのコンタミネーションを抑制するために、周速を、100mm/s以上2000mm/s以下とすることが好ましい。例えば、周速838mm/s(回転数400rpm、ボールミルの直径40mm)として実施するとよい。
 ステップS51にて十分に混合することで、混合物821と、リチウム化合物822とが均質に混ざることができ好ましい。
 リチウム化合物822としては、例えば、水酸化リチウム、炭酸リチウム、硝酸リチウム、フッ化リチウムなどを用いることができる。リチウム化合物822はリチウム源と呼ぶことがある。
 なお、合成の際に用いるリチウム化合物822としては、高純度の材料を用いると好ましい。具体的には、当該材料の純度としては、4N(99.99%)以上、好ましくは4N5UP(99.995%)以上、さらに好ましくは5N(99.999%)以上である。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 次に、ステップS54として、ステップS53の混合物831を加熱する。加熱温度は混合物821とリチウム化合物822との融解点近傍の温度が好ましく、700℃以上1100℃未満で行うことが好ましく、800℃以上1000℃以下で行うことがより好ましく、800℃以上950℃以下がさらに好ましい。
 加熱時間は例えば1時間以上100時間以下とすることができ、2時間以上20時間以下とすることが好ましい。加熱は、酸素もしくは乾燥空気等の水が少ない酸素含有雰囲気(例えば露点が−50℃以下、より好ましくは露点が−80℃以下)で行うことが好ましい。なお、本実施の形態においては、露点−93℃の雰囲気にて、加熱を行うこととする。また、加熱は、CH、CO、CO、及びHの不純物濃度が、それぞれ5ppb(parts per billion)以下の雰囲気で行うと、材料中に混入しうる不純物が抑制できるため好適である。
 また、例えば、850℃で10時間加熱する場合、昇温は200℃/h、乾燥雰囲気の流量は10L/minとすることが好ましい。その後、加熱した材料を室温まで冷却することができる。例えば規定温度から室温までの降温時間を10時間以上50時間以下とすることが好ましい。ただし、ステップS54における室温までの冷却は必須ではない。
 なお、ステップS54の加熱の際に用いる、るつぼは不純物が混入しない材質であると好適である。本実施の形態においては、純度が99.9%のアルミナのるつぼを用いることとする。
 また、ステップS54の加熱が終わった材料を回収する際に、るつぼから乳鉢へ移動させたのち、回収すると材料に不純物が混入しないため好適である。また、当該乳鉢についても、不純物が混入しない材質である好適である。具体的には、純度が90wt%以上、好ましくは純度が99wt%以上のアルミナの乳鉢を用いると好適である。
 次に、ステップS55において上記で焼成した材料を回収し、解砕した後にステップS56の正極活物質100を得る。必要に応じて解砕した後にふるいを実施してもよい。以上の工程により、本発明の一態様の正極活物質100を作製することができる。
 正極活物質100は結晶性が高い方が好ましく、ステップS41の混合物821の結晶性が高い場合、正極活物質100の結晶性も高くなる。正極活物質100の結晶性が高く、さらには正極活物質100が単結晶粒を有すると、リチウムの出入りの結晶面を揃えることができる。リチウムの出入りの結晶面をより多く電解質に露出させることができ、電池特性が向上する。また正極活物質100の結晶性が高く、さらには正極活物質100が単結晶粒を有すると丈夫であり、充放電を繰り返しても劣化しづらい活物質を提供できる。
 なお、正極活物質100は、リチウム、遷移金属M、及び酸素を有する複合酸化物(LiMO)として、表す場合がある。ただし、本発明の一態様の正極活物質は、LiMOで表されるリチウム複合酸化物の結晶構造を有すればよく、その組成が厳密にLi:M:O=1:1:2に限定されるものではない。たとえば遷移金属Mとしてコバルト、マンガン、ニッケルの3種を用いる場合、正極活物質100はNi、Co、及びMnを有する複合酸化物(NCM:ニッケル−コバルト−マンガン酸リチウム)となる。NCMにおいて、Ni:Co:Mnの比率はNi:Co:Mn=1:1:1及びその近傍、9:0.5:0.5及びその近傍、8:1:1及びその近傍、6:2:2及びその近傍又は5:2:3及びその近傍のいずれでもよい。NCMは層状岩塩構造を有し、充放電時のリチウムの出入りに伴う膨張及び収縮が小さく好ましい。
 以上のように、本発明の一態様においては、合成の際に用いる原料に高純度の材料を用い、且つ合成時において、不純物の混入が少ない工程にて正極活物質が作製される。このような正極活物質の作製方法によって得られた正極活物質は、不純物濃度が低い、別言すると、高純度化された材料である。また、このような正極活物質の作製方法によって得られた正極活物質は、高い結晶性を有する材料である。また、本発明の一態様の正極活物質の作製方法によって得られた正極活物質は、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
(実施の形態2)
 本実施の形態では、図2および図3A乃至図3Eを用いて本発明の一態様の正極活物質の作製方法の例について説明する。
 図2のステップS21として、遷移金属M源801を用意する。
 遷移金属Mとしては、例えば、マンガン、コバルト、ニッケルのうち少なくとも一を用いることができる。例えば、遷移金属Mとしては、コバルトのみを用いる場合、ニッケルのみを用いる場合、コバルトとマンガンの2種を用いる場合、コバルトとニッケルの2種を用いる場合、または、コバルト、マンガン、ニッケルの3種を用いる場合がある。遷移金属M源801は遷移金属Mを含む水溶液として用意する。
 遷移金属M源801として、コバルトを含む水溶液としては、硫酸コバルト水溶液または硝酸コバルト水溶液、などを用いることができ、ニッケルを含む水溶液としては、硫酸ニッケル水溶液または硝酸ニッケル水溶液、などを用いることができ、マンガンを含む水溶液としては、硫酸マンガン水溶液または硝酸マンガン水溶液、などを用いることができる。
 なお、合成の際に用いる遷移金属M源801としては、高純度の材料を用いると好ましい。具体的には、遷移金属Mを含む水溶液を用いる場合、水溶液を作成する際の、溶質材料の純度としては、2N(99%)以上、好ましくは3N(99.9%)以上、さらに好ましくは4N(99.99%)以上であり、水としては、好ましくは比抵抗が1MΩ・cm以上、より好ましくは比抵抗が10MΩ・cm以上、さらに好ましくは比抵抗が15MΩ・cm以上の、不純物が少ない純水であることが望ましい。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 また、複数の遷移金属M源801を用いる場合であって、たとえばコバルト源、マンガン源、及びニッケル源を用いるとき、層状岩塩型の結晶構造をとりうる範囲の混合比とすることが好ましい。
 次に、ステップS31として、上記の遷移金属M源801を混合し、ステップS32の混合物811を得る。
 次に、ステップS33として水溶液A812、ステップS34として水溶液B813を用意する。
 水溶液A812として、グリシン、オキシン、1−ニトロソ−2−ナフトールもしくは2−メルカプトベンゾチアゾールなどのキレート剤のうち、少なくとも一を有する水溶液、またはアンモニア水、のいずれか一、または複数の混合液を用いることができる。
 水溶液B813として、水酸化ナトリウム水溶液、水酸化カリウム水溶液、または水酸化リチウム水溶液、のいずれか一、または複数の混合液を用いることができる。
 次に、ステップS35として、上記のステップS32の混合物811、水溶液A812、水溶液B813を混合する。
 ステップS35の混合の方法として、反応容器にいれた水溶液A812に対して、ステップS32の混合物811および水溶液B813を滴下する、という混合方法を用いることができる。ステップS32の混合物811を一定の速度で滴下するとともに、反応容器内の混合溶液のpHを所定の範囲に保つために、水溶液B813を適宜滴下することが望ましい。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、水溶液A812、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内のpHとして、好ましくは9以上11以下、より好ましくは10.0以上10.5以下にするとよい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 または、ステップS35の混合の方法として、反応容器に入れたステップS32の混合物811に対して、水溶液A812および水溶液B813を滴下する、という混合方法を用いることができる。反応容器内の、水溶液A812の溶質イオン濃度、および水酸基濃度を所定の範囲に保つために、水溶液A812および水溶液B813の滴下速度を調整することが好ましい。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、水溶液A812、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 または、ステップS35の混合の方法として、水溶液A812を用いない場合を説明する。反応容器に入れたステップS32の混合物811に対して、水溶液B813を一定量滴下して加える。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 または、ステップS35の混合の方法として、ステップS32の混合物811、水溶液A812、および水溶液B813、に加えて、純水を用いる場合を説明する。反応容器に入れた純水に対して、ステップS32の混合物811および水溶液A812を一定の速度で滴下するとともに、反応容器内の混合溶液のpHを所定の範囲に保つために、水溶液B813を適宜滴下することができる。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、水溶液A812、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内のpHとして、好ましくは9以上11以下、より好ましくは10.0以上10.5以下にするとよい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 次に、ステップS35の混合によって形成された、遷移金属Mを有する水酸化物を含む溶液を、ステップS36として、ろ過した後に水で洗浄する。洗浄に用いる水は、好ましくは比抵抗が1MΩ・cm以上、より好ましくは比抵抗が10MΩ・cm以上、さらに好ましくは比抵抗が15MΩ・cm以上の、不純物が少ない純水であることが望ましい。不純物が少ない純水を洗浄に用いることで、遷移金属Mを有する水酸化物に含まれる不純物を除去することができる。これにより、高純度の遷移金属Mを有する水酸化物を、正極活物質100の前駆体として得ることができる。
 次に、ステップS37において、洗浄後の遷移金属Mを有する水酸化物を、乾燥し、回収し、必要に応じて解砕、又はふるいを実施した後に、ステップS41の混合物821を得る。混合物821は正極活物質100の前駆体とも呼ぶ。前駆体は結晶性が高いことが好ましく、単結晶粒を有するとさらに好ましい。すなわち前駆体は単結晶であることが好ましい。
 次に、ステップS42として、リチウム化合物822を用意し、ステップS51として、ステップS41の混合物821と、リチウム化合物822と、を混合する。混合後に、ステップS52にて回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS53の混合物831を得る。混合は乾式または湿式で行うことができる。混合には例えば自転公転ミキサー等のミキサー、ボールミル、及びビーズミル等を用いることができる。自転公転ミキサーとして、(株)シンキー製の自転公転方式ミキサーあわとり練太郎を用いる場合、例えば回転数を2000rpmとして、1.5分の処理を3回繰り返すとよい。ボールミルを用いる場合は、例えばメディアとしてジルコニアボールを用いることが好ましい。また、ボールミル、またはビーズミル等を用いる場合、メディアまたは材料からのコンタミネーションを抑制するために、周速を、100mm/s以上2000mm/s以下とすることが好ましい。例えば、周速838mm/s(回転数400rpm、ボールミルの直径40mm)として実施するとよい。
 ステップS51にて十分に混合することで、混合物821と、リチウム化合物822とが均質に混ざることができ好ましい。
 リチウム化合物822としては、例えば、水酸化リチウム、炭酸リチウム、硝酸リチウム、フッ化リチウムなどを用いることができる。リチウム化合物822はリチウム源と呼ぶことがある。
 なお、合成の際に用いるリチウム化合物822としては、高純度の材料を用いると好ましい。具体的には、当該材料の純度としては、4N(99.99%)以上、好ましくは4N5UP(99.995%)以上、さらに好ましくは5N(99.999%)以上である。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 次に、ステップS54として、ステップS53の混合物831を加熱する。加熱温度は混合物821とリチウム化合物822との融解点近傍の温度が好ましく、700℃以上1100℃未満で行うことが好ましく、800℃以上1000℃以下で行うことがより好ましく、800℃以上950℃以下がさらに好ましい。
 加熱時間は例えば1時間以上100時間以下とすることができ、2時間以上20時間以下とすることが好ましい。加熱は、酸素もしくは乾燥空気等の水が少ない酸素含有雰囲気(例えば露点が−50℃以下、より好ましくは露点が−80℃以下)で行うことが好ましい。なお、本実施の形態においては、露点−93℃の雰囲気にて、加熱を行うこととする。また、加熱は、CH、CO、CO、及びHの不純物濃度が、それぞれ5ppb(parts per billion)以下の雰囲気で行うと、材料中に混入しうる不純物が抑制できるため好適である。
 また、例えば、850℃で10時間加熱する場合、昇温は200℃/h、乾燥雰囲気の流量は10L/minとすることが好ましい。その後、加熱した材料を室温まで冷却することができる。例えば規定温度から室温までの降温時間を10時間以上50時間以下とすることが好ましい。ただし、ステップS54における室温までの冷却は必須ではない。
 なお、ステップS54の加熱の際に用いる、るつぼは不純物が混入しない材質であると好適である。本実施の形態においては、純度が99.9%のアルミナのるつぼを用いることとする。
 また、ステップS54にて加熱が終わった材料を回収する際に、るつぼから乳鉢へ移動させたのち、回収すると材料に不純物が混入しないため好適である。また、当該乳鉢についても、不純物が混入しない材質である好適である。具体的には、純度が90wt%以上、好ましくは純度が99wt%以上のアルミナの乳鉢を用いると好適である。なお、ステップS54以外の後述の加熱の工程においても、ステップS54と同等の条件を適用できる。
 次に、ステップS62において、添加元素X源833を用意する。
 添加元素X源833が有する添加元素Xとしては、ニッケル、コバルト、マグネシウム、カルシウム、塩素、フッ素、アルミニウム、マンガン、チタン、ジルコニウム、イットリウム、バナジウム、鉄、クロム、ニオブ、ランタン、ハフニウム、亜鉛、ケイ素、硫黄、リン、ホウ素、及びヒ素の中から選ばれる一または複数を用いることができる。また、添加元素Xとしては、上記の元素に加え、臭素、及びベリリウムを用いてもよい。ただし、臭素、及びベリリウムについては、生物に対し毒性を有する元素であるため、上述の添加元素Xを用いる方が好適である。
 図2のステップS62の添加元素X源833は、添加元素Xを含む水溶液、添加元素Xを含むアルコキシド、または添加元素Xを含む固体化合物の中から、任意の一以上を用いることができる。例えば図2のステップS62の添加元素X源833として、図3Aおよび図3Bに、S62a、またはS62bとして示すように、一以上の添加元素Xを含む固体化合物を用意し、解砕、混合したもの(混合物833a、または混合物833b)を、ステップS62の添加元素X源833として用いてもよい。一以上の添加元素Xを含む固体化合物を用いる場合、解砕後に混合してもよく、もしくは、混合後に解砕してもよく、または、解砕せずに、ステップS62の添加元素X源833として用いてもよい。
 なお、合成の際に用いる添加元素X源としては、高純度の材料を用いると好ましい。具体的には、当該材料の純度としては、2N(99%)以上、好ましくは3N(99.9%)以上、さらに好ましくは4N(99.99%)以上である。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 混合および解砕工程を湿式で行う場合は、溶媒を準備する。溶媒としてはアセトン等のケトン、エタノールおよびイソプロパノール等のアルコール、エーテル、ジオキサン、アセトニトリル、N−メチル−2−ピロリドン(NMP)等を用いることができる。リチウムと反応が起こりにくい、非プロトン性溶媒を用いることがより好ましい。本実施の形態では、純度が99.5%以上の脱水アセトンを用いることとする。
 次に、図2のステップS71として、ステップS61の混合物832と、ステップS62の添加元素X源833と、を混合する。混合後に、ステップS72にて回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS73の混合物841を得る。混合は乾式または湿式で行うことができる。混合には例えば自転公転ミキサー等のミキサー、ボールミル、及びビーズミル等を用いることができる。自転公転ミキサーとして、(株)シンキー製の自転公転方式ミキサーあわとり練太郎を用いる場合、例えば回転数を2000rpmとして、1.5分の処理を3回繰り返すとよい。ボールミルを用いる場合は、例えばメディアとしてジルコニアボールを用いることが好ましい。また、ボールミル、またはビーズミル等を用いる場合、メディアまたは材料からのコンタミネーションを抑制するために、周速を、100mm/s以上2000mm/s以下とすることが好ましい。例えば、周速838mm/s(回転数400rpm、ボールミルの直径40mm)として実施するとよい。
 次に、ステップS74として、ステップS73の混合物841を加熱する。加熱時、混合物841を入れた容器(るつぼ)には蓋をするとよい。原料の不必要な蒸発を防ぐことができる。ステップS74の加熱の温度としては、500℃以上1100℃以下が好ましく、500℃以上1000℃以下がより好ましく、500℃以上950℃以下がさらに好ましく、500℃以上900℃以下がさらに好ましい。
 また、ステップS74の加熱において、ローラーハースキルンによる加熱をおこなってもよい。ローラーハースキルンにて加熱処理をする際、蓋を有する耐熱容器を用いて、混合物841を処理しても良い。
 加熱時間は例えば1時間以上100時間以下とすることができ、2時間以上20時間以下とすることが好ましい。加熱は、酸素もしくは乾燥空気等の水が少ない酸素含有雰囲気(例えば露点が−50℃以下、より好ましくは露点が−80℃以下)で行うことが好ましい。なお、本実施の形態においては、露点−93℃の雰囲気にて、加熱を行うこととする。また、加熱は、CH、CO、CO、及びHの不純物濃度が、それぞれ5ppb(parts per billion)以下の雰囲気で行うと、材料中に混入しうる不純物が抑制できるため好適である。
 また、例えば、850℃で10時間加熱する場合、昇温は200℃/h、乾燥雰囲気の流量は10L/minとすることが好ましい。その後、加熱した材料を室温まで冷却することができる。例えば規定温度から室温までの降温時間を10時間以上50時間以下とすることが好ましい。ただし、ステップS74における室温までの冷却は必須ではない。
 次に、ステップS75において上記で焼成した材料を回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS81の混合物842を得る。ステップS81で得られた混合物842を、正極活物質100として用いることができる。また、ステップS81で得られた混合物842を、図3Cに示すステップS81以降の工程に供することもできる。
 次に、図3Cに示すステップS81以降の工程を説明する。ステップS82において、添加元素X源843を用意する。
 ステップS82で加える添加元素Xとしては、先に記載の添加元素Xの中から選択して用いることができる。ステップS82の添加元素X源843は、添加元素Xを含む水溶液、添加元素Xを含むアルコキシド、または添加元素Xを含む固体化合物の中から、任意の一以上を用いることができる。例えば図3CのステップS82の添加元素X源843として、図3Dおよび図3Eに、S82a、またはS82bとして示すように、一以上の添加元素Xを含む固体化合物を用意し、解砕、混合したもの(混合物843a、または混合物843b)を、ステップS82の添加元素X源843として用いてもよい。一以上の添加元素Xを含む固体化合物を用いる場合、解砕後に混合してもよく、もしくは、混合後に解砕してもよく、または、解砕せずにステップS82の添加元素X源843として用いてもよい。
 なお、合成の際に用いる添加元素X源としては、高純度の材料を用いると好ましい。具体的には、当該材料の純度としては、2N(99%)以上、好ましくは3N(99.9%)以上、さらに好ましくは4N(99.99%)以上である。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 次に、図3CのステップS91して、ステップS81の混合物842と、ステップS82の添加元素X源843と、を混合する。混合後に、ステップS92にて回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS93の混合物851を得る。混合は乾式または湿式で行うことができる。混合には例えば自転公転ミキサー等のミキサー、ボールミル、及びビーズミル等を用いることができる。自転公転ミキサーとして、(株)シンキー製の自転公転方式ミキサーあわとり練太郎を用いる場合、例えば回転数を2000rpmとして、1.5分の処理を3回繰り返すとよい。ボールミルを用いる場合は、例えばメディアとしてジルコニアボールを用いることが好ましい。また、ボールミル、またはビーズミル等を用いる場合、メディアまたは材料からのコンタミネーションを抑制するために、周速を、100mm/s以上2000mm/s以下とすることが好ましい。例えば、周速838mm/s(回転数400rpm、ボールミルの直径40mm)として実施するとよい。
 本実施の形態では、直径1mmのジルコニアボールを用いたボールミルで、150rpm、1時間、乾式で混合することとする。また該混合は、露点が−100℃乃至−10℃のドライルームで行うこととする。
 次に、ステップS94として、ステップS93の混合物851を加熱する。ステップS94の加熱の温度としては、500℃以上1130℃以下が好ましく、500℃以上1000℃以下がより好ましく、500℃以上950℃以下がさらに好ましく、500℃以上900℃以下がさらに好ましい。
 加熱時間は例えば1時間以上100時間以下とすることができ、2時間以上20時間以下とすることが好ましい。加熱は、酸素もしくは乾燥空気等の水が少ない酸素含有雰囲気(例えば露点が−50℃以下、より好ましくは露点が−80℃以下)で行うことが好ましい。なお、本実施の形態においては、露点−93℃の雰囲気にて、加熱を行うこととする。また、加熱は、CH、CO、CO、及びHの不純物濃度が、それぞれ5ppb(parts per billion)以下の雰囲気で行うと、材料中に混入しうる不純物が抑制できるため好適である。
 また、例えば、850℃で10時間加熱する場合、昇温は200℃/h、乾燥雰囲気の流量は10L/minとすることが好ましい。その後、加熱した材料を室温まで冷却することができる。例えば規定温度から室温までの降温時間を10時間以上50時間以下とすることが好ましい。
 ただし、ステップS94における室温までの冷却は必須ではない。その後の工程を行うのに問題がなければ、冷却は室温より高い温度までとしてもよい。
 次に、ステップS95において上記で焼成した材料を回収し、解砕した後にステップS101の正極活物質100を得る。必要に応じて解砕した後にふるいを実施してもよい。以上の工程により、本発明の一態様の正極活物質100を作製することができる。
 正極活物質100は結晶性が高い方が好ましく、ステップS41の混合物821の結晶性が高い場合、正極活物質100の結晶性も高くなる。正極活物質100の結晶性が高く、さらには正極活物質100が単結晶粒を有すると、リチウムの出入りの結晶面を揃えることができる。リチウムの出入りの結晶面をより多く電解質に露出させることができると、電池特性が向上する。また正極活物質100の結晶性が高く、さらには正極活物質100が単結晶粒を有すると丈夫であり、充放電を繰り返しても劣化しづらい活物質を提供できる。
 なお、正極活物質100は、リチウム、遷移金属M、及び酸素を有する複合酸化物(LiMO)として、表す場合がある。ただし、本発明の一態様の正極活物質は、LiMOで表されるリチウム複合酸化物の結晶構造を有すればよく、その組成が厳密にLi:M:O=1:1:2に限定されるものではない。たとえば遷移金属Mとしてコバルト、マンガン、ニッケルの3種を用い、添加元素Xとしてアルミニウムを用いた場合、正極活物質100はNi、Co、Mn、及びAlを有する複合酸化物(NCMAと呼ぶ)となる。NCMAとしては、Ni:Co:Mnの比率がNi:Co:Mn=1:1:1及びその近傍、9:0.5:0.5及びその近傍、8:1:1及びその近傍、6:2:2及びその近傍又は5:2:3及びその近傍のいずれかのNCMに対し、Alを添加すればよい。例えば、Ni:Co:Mn=8:1:1及びその近傍のとき、アルミニウムの濃度が0.1at%以上2at%以下であると好ましい。
 図2、及び図3A乃至図3Eに示すように、遷移金属Mを導入する工程と、添加元素Xを導入する複数の工程とを、互いに分けることにより、それぞれの元素濃度の深さ方向のプロファイルを変えることができる場合がある。例えば、粒子の内部に比べて表層部で添加元素Xの濃度を高めることができる。また、遷移金属Mの原子数をとし、該基準に対する添加元素Xの原子数の比を、内部よりも表層部において、より高くすることができる。NCMAにおいてアルミニウムの濃度が0.1at%以上2at%以下となる領域は粒子の表層部又は内部のどちらでもよい。
 また、本発明の一態様においては、合成の際に用いる遷移金属M源に高純度の材料を用い、且つ合成時において、不純物の混入が少ない工程にて正極活物質が作製される。また、遷移金属M源と、合成時における不純物の混入を徹底的に排除し、且つ所望の添加元素Xを制御して、正極活物質内に導入する作製方法とすることで、不純物濃度が低い領域と、添加元素が導入された領域と、が制御された正極活物質を得ることができる。また、本実施の形態に示す正極活物質は、高い結晶性を有する材料である。また、本発明の一態様の正極活物質の作製方法によって得られた正極活物質は、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
(実施の形態3)
 本実施の形態では、図4および図5を用いて本発明の一態様の正極活物質の作製方法の例について説明する。
 図4のステップS21a、ステップS21b、ステップ21cにおいて、遷移金属M源を用意する。本実施の形態では、遷移金属M源としてニッケル源803、コバルト源804、およびマンガン源805の、3種の遷移金属M源を用いる場合を説明する。
 ニッケル源803のニッケルを含む水溶液としては、硫酸ニッケル水溶液または硝酸ニッケル水溶液、などを用いることができる。コバルト源804のコバルトを含む水溶液としては、硫酸コバルト水溶液または硝酸コバルト水溶液、などを用いることができる。マンガン源805のマンガンを含む水溶液としては、硫酸マンガン水溶液または硝酸マンガン水溶液、などを用いることができる。
 なお、合成の際に用いるニッケル源803、コバルト源804、及びマンガン源805としては、高純度の材料を用いると好ましい。具体的には、ニッケル源803、コバルト源804、及びマンガン源805をそれぞれ含む水溶液を用いる場合、水溶液を作成する際の、溶質材料の純度としては、2N(99%)以上、好ましくは3N(99.9%)以上、さらに好ましくは4N(99.99%)以上であり、水としては、好ましくは比抵抗が1MΩ・cm以上、より好ましくは比抵抗が10MΩ・cm以上、さらに好ましくは比抵抗が15MΩ・cm以上の、不純物が少ない純水であることが望ましい。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 また、複数の遷移金属M源801を用いる場合であって、たとえばコバルト源、マンガン源、及びニッケル源を用いるとき、層状岩塩型の結晶構造をとりうる範囲の混合比とすることが好ましい。
 次に、ステップS31として、上記のニッケル源803、コバルト源804、およびマンガン源805を混合し、ステップS32の混合物811を得る。
 次に、ステップS33として水溶液A812、ステップS34として水溶液B813を用意する。
 水溶液A812として、グリシン、オキシン、1−ニトロソ−2−ナフトールもしくは2−メルカプトベンゾチアゾールなどのキレート剤のうち、少なくとも一を有する水溶液、またはアンモニア水、のいずれか一、または複数の混合液を用いることができる。
 水溶液B813として、水酸化ナトリウム水溶液、水酸化カリウム水溶液、または水酸化リチウム水溶液、のいずれか一、または複数の混合液を用いることができる。
 次に、ステップS35として、上記のステップS32の混合物811、水溶液A812、水溶液B813を混合する。
 ステップS35の混合の方法として、反応容器にいれた水溶液A812に対して、ステップS32の混合物811および水溶液B813を滴下する、という混合方法を用いることができる。ステップS32の混合物811を一定の速度で滴下するとともに、反応容器内の混合溶液のpHを所定の範囲に保つために、水溶液B813を適宜滴下することが望ましい。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、水溶液A812、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内のpHとして、好ましくは9以上11以下、より好ましくは10.0以上10.5以下にするとよい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 または、ステップS35の混合の方法として、反応容器に入れたステップS32の混合物811に対して、水溶液A812および水溶液B813を滴下する、という混合方法を用いることができる。反応容器内の、水溶液A812の溶質イオン濃度、および水酸基濃度を所定の範囲に保つために、水溶液A812および水溶液B813の滴下速度を調整することが好ましい。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、水溶液A812、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 または、ステップS35の混合の方法として、水溶液A812を用いない場合を説明する。反応容器に入れたステップS32の混合物811に対して、水溶液B813を一定量滴下して加える。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 または、ステップS35の混合の方法として、ステップS32の混合物811、水溶液A812、および水溶液B813、に加えて、純水を用いる場合を説明する。反応容器に入れた純水に対して、ステップS32の混合物811および水溶液A812を一定の速度で滴下するとともに、反応容器内の混合溶液のpHを所定の範囲に保つために、水溶液B813を適宜滴下することができる。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、水溶液A812、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内のpHとして、好ましくは9以上11以下、より好ましくは10.0以上10.5以下にするとよい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 次に、ステップS35の混合によって形成された、ニッケル、コバルト、及びマンガンを有する水酸化物を含む溶液を、ステップS36として、ろ過した後に水で洗浄する。洗浄に用いる水は、好ましくは比抵抗が1MΩ・cm以上、より好ましくは比抵抗が10MΩ・cm以上、さらに好ましくは比抵抗が15MΩ・cm以上の、不純物が少ない純水であることが望ましい。不純物が少ない純水を洗浄に用いることで、ニッケル、コバルト、及びマンガンを有する水酸化物に含まれる不純物を除去することができる。これにより、ニッケル、コバルト、及びマンガンを有する高純度な水酸化物を、正極活物質100の前駆体として得ることができる。
 次に、ステップS37において、洗浄後のニッケル、コバルト、及びマンガンを有する水酸化物を、乾燥し、回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS41の混合物821を得る。混合物821は正極活物質100の前駆体とも呼ぶ。前駆体は結晶性が高いことが好ましく、単結晶粒を有すると更に好ましい。すなわち前駆体は単結晶であることが好ましい。
 次に、ステップS42として、リチウム化合物822を用意し、ステップS51として、ステップS41の混合物821と、リチウム化合物822と、を混合する。混合後に、ステップS52にて回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS53の混合物831を得る。混合は乾式または湿式で行うことができる。混合には例えば自転公転ミキサー等のミキサー、ボールミル、及びビーズミル等を用いることができる。自転公転ミキサーとして、(株)シンキー製の自転公転方式ミキサーあわとり練太郎を用いる場合、例えば回転数を2000rpmとして、1.5分の処理を3回繰り返すとよい。ボールミルを用いる場合は、例えばメディアとしてジルコニアボールを用いることが好ましい。また、ボールミル、またはビーズミル等を用いる場合、メディアまたは材料からのコンタミネーションを抑制するために、周速を、100mm/s以上2000mm/s以下とすることが好ましい。例えば、周速838mm/s(回転数400rpm、ボールミルの直径40mm)として実施するとよい。
 ステップS51にて十分に混合することで、混合物821と、リチウム化合物822とが均質に混ざることができ好ましい。
 リチウム化合物822としては、例えば、水酸化リチウム、炭酸リチウム、硝酸リチウム、フッ化リチウムなどを用いることができる。リチウム化合物822はリチウム源と呼ぶことがある。
 なお、合成の際に用いるリチウム化合物822としては、高純度の材料を用いると好ましい。具体的には、当該材料の純度としては、4N(99.99%)以上、好ましくは4N5UP(99.995%)以上、さらに好ましくは5N(99.999%)以上である。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 次に、ステップS54として、ステップS53の混合物831を加熱する。加熱温度は混合物821とリチウム化合物822との融解点近傍の温度が好ましく700℃以上1100℃未満で行うことが好ましく、800℃以上1000℃以下で行うことがより好ましく、800℃以上950℃以下がさらに好ましい。
 加熱時間は例えば1時間以上100時間以下とすることができ、2時間以上20時間以下とすることが好ましい。加熱は、酸素もしくは乾燥空気等の水が少ない酸素含有雰囲気(例えば露点が−50℃以下、より好ましくは露点が−80℃以下)で行うことが好ましい。なお、本実施の形態においては、露点−93℃の雰囲気にて、加熱を行うこととする。また、加熱は、CH、CO、CO、及びHの不純物濃度が、それぞれ5ppb(parts per billion)以下の雰囲気で行うと、材料中に混入しうる不純物が抑制できるため好適である。
 また、例えば、850℃で10時間加熱する場合、昇温は200℃/h、乾燥雰囲気の流量は10L/minとすることが好ましい。その後、加熱した材料を室温まで冷却することができる。例えば規定温度から室温までの降温時間を10時間以上50時間以下とすることが好ましい。ただし、ステップS54における室温までの冷却は必須ではない。
 なお、ステップS54の加熱の際に用いる、るつぼは不純物が混入しない材質であると好適である。本実施の形態においては、純度が99.9%のアルミナのるつぼを用いることとする。
 また、ステップS54にて加熱が終わった材料を回収する際に、るつぼから乳鉢へ移動させたのち、回収すると材料に不純物が混入しないため好適である。また、当該乳鉢についても、不純物が混入しない材質である好適である。具体的には、純度が90wt%以上、好ましくは純度が99wt%以上のアルミナの乳鉢を用いると好適である。なお、ステップS54以外の後述の加熱の工程においても、ステップS54と同等の条件を適用できる。
 次に、ステップS55において上記で焼成した材料を回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS61の混合物832を得る。
 次に、ステップS63およびステップS64において、添加元素X源としてマグネシウム源834およびフッ素源835を用意する。続いて、ステップS65として、マグネシウム源834およびフッ素源835を、解砕および混合し、ステップS66の混合物836を得る。
 マグネシウム源834として、例えばフッ化マグネシウム、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム等を用いることができる。
 フッ素源835として、例えばフッ化リチウム(LiF)、フッ化マグネシウム(MgF)、フッ化アルミニウム(AlF)、フッ化チタン(TiF)、フッ化コバルト(CoF、CoF)、フッ化ニッケル(NiF)、フッ化ジルコニウム(ZrF)、フッ化バナジウム(VF)、フッ化マンガン、フッ化鉄、フッ化クロム、フッ化ニオブ、フッ化亜鉛(ZnF)、フッ化カルシウム(CaF)フッ化ナトリウム(NaF)、フッ化カリウム(KF)、フッ化バリウム(BaF)、フッ化セリウム(CeF)、フッ化ランタン(LaF)六フッ化アルミニウムナトリウム(NaAlF)等を用いることができる。またフッ素源は固体に限られず、例えばフッ素(F)、フッ化炭素、フッ化硫黄、フッ化酸素(OF、O、O、O、OF)等を用い、後述する加熱工程において雰囲気中に混合してもよい。また複数のフッ素源を混合して用いてもよい。なかでも、フッ化リチウムは融点が848℃と比較的低く、後述するアニール工程で溶融しやすいため好ましい。
 本実施の形態では、フッ素源としてフッ化リチウムLiFを用意し、フッ素源およびマグネシウム源としてフッ化マグネシウムMgFを用意することとする。フッ化リチウムLiFとフッ化マグネシウムMgFは、LiF:MgF=65:35(モル比)程度で混合すると融点を下げる効果が最も高くなる。一方、フッ化リチウムが多くなると、リチウムが過剰になりすぎサイクル特性が悪化する懸念がある。そのため、フッ化リチウムLiFとフッ化マグネシウムMgFのモル比は、LiF:MgF=x:1(0≦x≦1.9)であることが好ましく、LiF:MgF=x:1(0.1≦x≦0.5)がより好ましく、LiF:MgF=x:1(x=0.33近傍)がさらに好ましい。なお本明細書等において近傍とは、その値の0.9倍より大きく1.1倍より小さい値とする。
 また、ステップS65の解砕および混合工程を湿式で行う場合は、溶媒を用意する。溶媒としてはアセトン等のケトン、エタノールおよびイソプロパノール等のアルコール、エーテル、ジオキサン、アセトニトリル、N−メチル−2−ピロリドン(NMP)等を用いることができる。リチウムと反応が起こりにくい、非プロトン性溶媒を用いることがより好ましい。本実施の形態では、純度が99.5%以上の脱水アセトンを用いることとする。
 なお、合成の際に用いるマグネシウム源およびフッ素源としては、高純度の材料を用いると好ましい。具体的には、当該材料の純度としては、4N(99.99%)以上、好ましくは4N5UP(99.995%)以上、さらに好ましくは5N(99.999%)以上である。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 次に、ステップS71して、ステップS61の混合物832と、ステップS66の混合物836と、を混合する。混合後に、ステップS72にて回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS73の混合物841を得る。混合は乾式または湿式で行うことができる。混合には例えば自転公転ミキサー等のミキサー、ボールミル、及びビーズミル等を用いることができる。自転公転ミキサーとして、(株)シンキー製の自転公転方式ミキサーあわとり練太郎を用いる場合、例えば回転数を2000rpmとして、1.5分の処理を3回繰り返すとよい。ボールミルを用いる場合は、例えばメディアとしてジルコニアボールを用いることが好ましい。また、ボールミル、またはビーズミル等を用いる場合、メディアまたは材料からのコンタミネーションを抑制するために、周速を、100mm/s以上2000mm/s以下とすることが好ましい。例えば、周速838mm/s(回転数400rpm、ボールミルの直径40mm)として実施するとよい。
 次に、ステップS74として、ステップS73の混合物841を加熱する。加熱時、混合物841を入れた容器(るつぼ)には蓋をするとよい。原料ガスの不必要な蒸発を防ぐことができる。ステップS74の加熱の温度としては、500℃以上1100℃以下が好ましく、500℃以上1000℃以下がより好ましく、500℃以上950℃以下がさらに好ましく、500℃以上900℃以下がさらに好ましい。
 また、ステップS74の加熱において、ローラーハースキルンによる加熱をおこなってもよい。ローラーハースキルンにて加熱処理をする際、蓋を有する耐熱容器を用いて、混合物841を処理しても良い。
 加熱時間は例えば1時間以上100時間以下とすることができ、2時間以上20時間以下とすることが好ましい。加熱は、酸素もしくは乾燥空気等の水が少ない酸素含有雰囲気(例えば露点が−50℃以下、より好ましくは露点が−80℃以下)で行うことが好ましい。なお、本実施の形態においては、露点−93℃の雰囲気にて、加熱を行うこととする。また、加熱は、CH、CO、CO、及びHの不純物濃度が、それぞれ5ppb(parts per billion)以下の雰囲気で行うと、材料中に混入しうる不純物が抑制できるため好適である。
 また、例えば、850℃で10時間加熱する場合、昇温は200℃/h、乾燥雰囲気の流量は10L/minとすることが好ましい。その後、加熱した材料を室温まで冷却することができる。例えば規定温度から室温までの降温時間を10時間以上50時間以下とすることが好ましい。ただし、ステップS74における室温までの冷却は必須ではない。
 次に、ステップS75において上記で焼成した材料を回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS81の混合物842を得る。フッ素源としてフッ化リチウムLiFを用意し、フッ素源およびマグネシウム源としてフッ化マグネシウムMgFを用意し、容器(るつぼ)に蓋をしたため、混合物842に適切な量のフッ素が導入される。LiF及びMgFのフッ素は、混合物842の表層部へ移動してくることがある。混合物842の表層部にあるフッ素を有する領域はバリア膜として機能する。このようなフッ素により、混合物842の表面はなめらかで凹凸が少なくなる。フッ素を混合した後の加熱は、混合物842の単結晶化が促されることにつながる。
 ステップS81で得られた混合物842を、正極活物質100として用いることができる。また、ステップS81で得られた混合物842を、図5に示すステップS81以降の工程に供することもできる。
 次に、図5に示すステップS81以降の工程を説明する。ステップS83およびステップS84において、添加元素X源として、ニッケル源845およびアルミニウム源846を用意する。ステップS85およびステップS86にて、ニッケル源845およびアルミニウム源846をそれぞれ解砕し、ステップS87で混合し、ステップS88の混合物847を得る。
 ニッケル源としては、酸化ニッケル、水酸化ニッケル等を用いることができる。
 アルミニウム源としては、酸化アルミニウム、水酸化アルミニウム、等を用いることができる。
 なお、合成の際に用いるニッケル源およびアルミニウム源としては、高純度の材料を用いると好ましい。具体的には、当該材料の純度としては、4N(99.99%)以上、好ましくは4N5UP(99.995%)以上、さらに好ましくは5N(99.999%)以上である。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 次に、ステップS91して、ステップS81の混合物842と、ステップS88の混合物847と、を混合する。混合後に、ステップS92にて回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS93の混合物851を得る。混合は乾式または湿式で行うことができる。混合には例えば自転公転ミキサー等のミキサー、ボールミル、及びビーズミル等を用いることができる。自転公転ミキサーとして、(株)シンキー製の自転公転方式ミキサーあわとり練太郎を用いる場合、例えば回転数を2000rpmとして、1.5分の処理を3回繰り返すとよい。ボールミルを用いる場合は、例えばメディアとしてジルコニアボールを用いることが好ましい。また、ボールミル、またはビーズミル等を用いる場合、メディアまたは材料からのコンタミネーションを抑制するために、周速を、100mm/s以上2000mm/s以下とすることが好ましい。例えば、周速838mm/s(回転数400rpm、ボールミルの直径40mm)として実施するとよい。
 本実施の形態では、直径1mmのジルコニアボールを用いたボールミルで、150rpm、1時間、乾式で混合することとする。また該混合は、露点が−100℃乃至−10℃のドライルームで行うこととする。
 次に、ステップS94として、ステップS93の混合物851を加熱する。ステップS94の加熱の温度としては、500℃以上1130℃以下が好ましく、500℃以上1000℃以下がより好ましく、500℃以上950℃以下がさらに好ましく、500℃以上900℃以下がさらに好ましい。
 加熱時間は例えば1時間以上100時間以下とすることができ、2時間以上20時間以下とすることが好ましい。加熱は、酸素もしくは乾燥空気等の水が少ない酸素含有雰囲気(例えば露点が−50℃以下、より好ましくは露点が−80℃以下)で行うことが好ましい。なお、本実施の形態においては、露点−93℃の雰囲気にて、加熱を行うこととする。また、加熱は、CH、CO、CO、及びHの不純物濃度が、それぞれ5ppb(parts per billion)以下の雰囲気で行うと、材料中に混入しうる不純物が抑制できるため好適である。
 また、例えば、850℃で10時間加熱する場合、昇温は200℃/h、乾燥雰囲気の流量は10L/minとすることが好ましい。その後、加熱した材料を室温まで冷却することができる。例えば規定温度から室温までの降温時間を10時間以上50時間以下とすることが好ましい。ただし、ステップS94における室温までの冷却は必須ではない。
 次に、ステップS95において上記で焼成した材料を回収し、解砕した後にステップS101の正極活物質100を得る。必要に応じて解砕した後にふるいを実施してもよい。以上の工程により、本発明の一態様の正極活物質100を作製することができる。
 正極活物質100は結晶性が高い方が好ましく、ステップS41の混合物821の結晶性が高い場合、正極活物質100の結晶性も高くなる。正極活物質100の結晶性が高く、さらには正極活物質100が単結晶粒を有すると、リチウムの出入りの結晶面を揃えることができる。リチウムの出入りの結晶面をより多く電解質に露出させることができると、電池特性が向上する。また正極活物質100の結晶性が高く、さらには正極活物質100が単結晶粒を有すると丈夫であり、充放電を繰り返しても劣化しづらい活物質を提供できる。
 正極活物質100はフッ素を有するため、表面がなめらかであり凹凸が少なく好ましい。正極活物質100の中心に向かって切断した断面を走査透過型電子顕微鏡(STEM)で観察した断面において、粒子表面凹凸情報を測定データより数値化したとき、少なくとも粒子の一部が3nm未満、好ましくは1nm未満の表面粗さであるとよい。ニッケル及びアルミニウムは正極活物質100の表層部へ移動してくることがある。正極活物質100の表層部にあるニッケルを有する領域、又はアルミニウムを有する領域はバリア膜として機能する。
 なお、正極活物質100は、ニッケル、コバルト、マンガンを少なくなくとも有するリチウム複合酸化物であり、アルミニウム及びニッケルをさらに有する。当該リチウム複合酸化物において、少なくともNi:Co:Mnの比率はNi:Co:Mn=1:1:1及びその近傍、9:0.5:0.5及びその近傍、8:1:1及びその近傍、6:2:2及びその近傍又は5:2:3及びその近傍のいずれでもよい。当該リチウム複合酸化物において、アルミニウム及びニッケルは少量添加された元素であり、たとえばNi:Mn:Co=8:1:1及びその近傍のとき、アルミニウムの濃度が0.1at%以上2at%以下であると好ましい。
 図4および図5に示すように、遷移金属Mを導入する工程と、添加元素Xを導入する複数の工程と、を分けることにより、それぞれの元素濃度の深さ方向のプロファイルを変えることができる場合がある。例えば、粒子の内部に比べて表層部で添加元素Xの濃度を高めることができる。また、遷移金属Mの原子数を基準とし、該基準に対する添加元素Xの原子数の比を、内部よりも表層部において、より高くすることができる。上記リチウム複合酸化物においてアルミニウムの濃度が0.1at%以上2at%以下となる領域は粒子の表層部又は内部のどちらでもよい。
 また、本発明の一態様においては、合成の際に用いる遷移金属M源に高純度の材料を用い、且つ合成時において、不純物の混入が少ない工程にて正極活物質が作製される。また、遷移金属M源と、合成時における不純物の混入を徹底的に排除し、且つ所望の添加元素Xを制御して、正極活物質内に導入する作製方法とすることで、不純物濃度が低い領域と、添加元素Xが導入された領域と、が制御された正極活物質を得ることができる。また、本実施の形態に示す正極活物質は、高い結晶性を有する材料である。また、本発明の一態様の正極活物質の作製方法によって得られた正極活物質は、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
(実施の形態4)
 本実施の形態では、図6を用いて本発明の一態様の正極活物質の作製方法の例について説明する。
 図6のステップS21として遷移金属M源801、ステップS22として添加元素X源802を用意する。
 遷移金属Mとしては、例えば、マンガン、コバルト、ニッケルのうち少なくとも一を用いることができる。例えば、遷移金属Mとしては、コバルトのみを用いる場合、ニッケルのみを用いる場合、コバルトとマンガンの2種を用いる場合、コバルトとニッケルの2種を用いる場合、または、コバルト、マンガン、ニッケルの3種を用いる場合がある。遷移金属M源801は遷移金属Mを含む水溶液として用意する。
 遷移金属M源801として、コバルトを含む水溶液としては、硫酸コバルト水溶液または硝酸コバルト水溶液、などを用いることができ、ニッケルを含む水溶液としては、硫酸ニッケル水溶液または硝酸ニッケル水溶液、などを用いることができ、マンガンを含む水溶液としては、硫酸マンガン水溶液または硝酸マンガン水溶液、などを用いることができる。
 なお、合成の際に用いる遷移金属M源801としては、高純度の材料を用いると好ましい。具体的には、遷移金属Mを含む水溶液を用いる場合、水溶液を作成する際の、溶質材料の純度としては、2N(99%)以上、好ましくは3N(99.9%)以上、さらに好ましくは4N(99.99%)以上であり、水としては、好ましくは比抵抗が1MΩ・cm以上、より好ましくは比抵抗が10MΩ・cm以上、さらに好ましくは比抵抗が15MΩ・cm以上の、不純物が少ない純水であることが望ましい。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 添加元素Xとしては、ニッケル、コバルト、マグネシウム、カルシウム、塩素、フッ素、臭素、アルミニウム、マンガン、チタン、ジルコニウム、イットリウム、バナジウム、鉄、クロム、ニオブ、ランタン、ハフニウム、亜鉛、ケイ素、硫黄、リン、ホウ素、及びヒ素の中から選ばれる一または複数を用いることができる。添加元素X源802としては、添加元素Xを含む水溶液、添加元素Xを含むアルコキシド、または添加元素Xを含む固体化合物の中から、任意の一以上を用いることができる。ステップS22の添加元素X源802は、添加元素Xを含む水溶液として用意することが好ましい。
 なお、合成の際に用いる添加元素X源802としては、高純度の材料を用いると好ましい。具体的には、当該材料の純度としては、2N(99%)以上、好ましくは3N(99.9%)以上、さらに好ましくは4N(99.99%)以上である。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 次に、ステップS31として、上記の遷移金属M源801、および添加元素X源802を混合し、ステップS32の混合物811を得る。
 次に、ステップS33として水溶液A812、ステップS34として水溶液B813を用意する。
 水溶液A812として、グリシン、オキシン、1−ニトロソ−2−ナフトールもしくは2−メルカプトベンゾチアゾールなどのキレート剤のうち、少なくとも一を有する水溶液、またはアンモニア水、のいずれか一、または複数の混合液を用いることができる。
 水溶液B813として、水酸化ナトリウム水溶液、水酸化カリウム水溶液、または水酸化リチウム水溶液、のいずれか一、または複数の混合液を用いることができる。
 次に、ステップS35として、上記のステップS32の混合物811、水溶液A812、水溶液B813を混合する。
 ステップS35の混合の方法として、反応容器にいれた水溶液A812に対して、ステップS32の混合物811および水溶液B813を滴下する、という混合方法を用いることができる。ステップS32の混合物811を一定の速度で滴下するとともに、反応容器内の混合溶液のpHを所定の範囲に保つために、水溶液B813を適宜滴下することが望ましい。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、水溶液A812、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内のpHとして、好ましくは9以上11以下、より好ましくは10.0以上10.5以下にするとよい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 または、ステップS35の混合の方法として、反応容器に入れたステップS32の混合物811に対して、水溶液A812および水溶液B813を滴下する、という混合方法を用いることができる。反応容器内の、水溶液A812の溶質イオン濃度、および水酸基濃度を所定の範囲に保つために、水溶液A812および水溶液B813の滴下速度を調整することが好ましい。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、水溶液A812、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 または、ステップS35の混合の方法として、水溶液A812を用いない場合を説明する。反応容器に入れたステップS32の混合物811に対して、水溶液B813を一定量滴下して加える。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 または、ステップS35の混合の方法として、ステップS32の混合物811、水溶液A812、および水溶液B813、に加えて、純水を用いる場合を説明する。反応容器に入れた純水に対して、ステップS32の混合物811および水溶液A812を一定の速度で滴下するとともに、反応容器内の混合溶液のpHを所定の範囲に保つために、水溶液B813を適宜滴下することができる。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、水溶液A812、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内の溶液pHとして、好ましくは9以上11以下、より好ましくは10.0以上10.5以下にするとよい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 次に、ステップS35の混合によって形成された、遷移金属Mを有する水酸化物を含む溶液を、ステップS36として、ろ過した後に水で洗浄する。洗浄に用いる水は、好ましくは比抵抗が1MΩ・cm以上、より好ましくは比抵抗が10MΩ・cm以上、さらに好ましくは比抵抗が15MΩ・cm以上の、不純物が少ない純水であることが望ましい。不純物が少ない純水を洗浄に用いることで、遷移金属Mを有する水酸化物に含まれる不純物を除去することができる。これにより、高純度の遷移金属Mを有する水酸化物を、正極活物質100の前駆体として得ることができる。
 次に、ステップS36において、洗浄後の遷移金属Mおよび添加元素Xを有する水酸化物を、乾燥し、回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS41の混合物821を得る。混合物821は正極活物質100の前駆体とも呼ぶ。前駆体は結晶性が高いことが好ましく、単結晶粒を有すると更に好ましい。すなわち前駆体は単結晶であることが好ましい。
 次に、ステップS42として、リチウム化合物822を用意し、ステップS51として、ステップS41の混合物821と、リチウム化合物822と、を混合する。混合後に、ステップS52にて回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS53の混合物831を得る。混合は乾式または湿式で行うことができる。混合には例えば自転公転ミキサー等のミキサー、ボールミル、及びビーズミル等を用いることができる。自転公転ミキサーとして、(株)シンキー製の自転公転方式ミキサーあわとり練太郎を用いる場合、例えば回転数を2000rpmとして、1.5分の処理を3回繰り返すとよい。ボールミルを用いる場合は、例えばメディアとしてジルコニアボールを用いることが好ましい。また、ボールミル、またはビーズミル等を用いる場合、メディアまたは材料からのコンタミネーションを抑制するために、周速を、100mm/s以上2000mm/s以下とすることが好ましい。例えば、周速838mm/s(回転数400rpm、ボールミルの直径40mm)として実施するとよい。
 ステップS51にて十分に混合することで、混合物821と、リチウム化合物822とが均質に混ざることができ好ましい。
 リチウム化合物822としては、例えば、水酸化リチウム、炭酸リチウム、硝酸リチウム、フッ化リチウムなどを用いることができる。リチウム化合物822はリチウム源と呼ぶことがある。
 次に、ステップS54として、ステップS53の混合物831を加熱する。加熱温度は混合物821とリチウム化合物822との融解点近傍の温度が好ましく、700℃以上1100℃未満で行うことが好ましく、800℃以上1000℃以下で行うことがより好ましく、800℃以上950℃以下がさらに好ましい。加熱時、混合物831を入れた容器(るつぼ)には蓋をするとよい。原料ガスの不必要な蒸発を防ぐことができる。
 加熱時間は例えば1時間以上100時間以下とすることができ、2時間以上20時間以下とすることが好ましい。加熱は、酸素もしくは乾燥空気等の水が少ない酸素含有雰囲気(例えば露点が−50℃以下、より好ましくは露点が−80℃以下)で行うことが好ましい。なお、本実施の形態においては、露点−93℃の雰囲気にて、加熱を行うこととする。また、加熱は、CH、CO、CO、及びHの不純物濃度が、それぞれ5ppb(parts per billion)以下の雰囲気で行うと、材料中に混入しうる不純物が抑制できるため好適である。
 また、例えば、850℃で10時間加熱する場合、昇温は200℃/h、乾燥雰囲気の流量は10L/minとすることが好ましい。その後、加熱した材料を室温まで冷却することができる。例えば規定温度から室温までの降温時間を10時間以上50時間以下とすることが好ましい。ただし、ステップS54における室温までの冷却は必須ではない。
 なお、ステップS54の加熱の際に用いる、るつぼは不純物が混入しない材質であると好適である。本実施の形態においては、純度が99.9%のアルミナのるつぼを用いることとする。
 また、ステップS54にて加熱が終わった材料を回収する際に、るつぼから乳鉢へ移動させたのち、回収すると材料に不純物が混入しないため好適である。また、当該乳鉢についても、不純物が混入しない材質である好適である。具体的には、純度が90wt%以上、好ましくは純度が99wt%以上のアルミナの乳鉢を用いると好適である。
 次に、ステップS55において上記で焼成した材料を回収し、解砕した後にステップS56の正極活物質100を得る。必要に応じて解砕した後にふるいを実施してもよい。以上の工程により、本発明の一態様の正極活物質100を作製することができる。
 本実施の形態は、加熱工程が少ないため、量産性が高く好ましい。正極活物質100は結晶性が高い方が好ましく、ステップS41の混合物821の結晶性が高い場合、正極活物質100の結晶性も高くなる。正極活物質100の結晶性が高く、さらには正極活物質100が単結晶粒を有すると、リチウムの出入りの結晶面を揃えることができる。リチウムの出入りの結晶面をより多く電解質に露出させることができ、電池特性が向上する。また正極活物質100の結晶性が高く、さらには正極活物質100が単結晶粒を有すると丈夫であり、充放電を繰り返しても劣化しづらい活物質を提供できる。
 なお、正極活物質100は、リチウム、遷移金属M、及び酸素を有する複合酸化物(LiMO)として、表す場合がある。ただし、本発明の一態様の正極活物質は、LiMOで表されるリチウム複合酸化物の結晶構造を有すればよく、その組成が厳密にLi:M:O=1:1:2に限定されるものではない。たとえば遷移金属Mとしてコバルト、マンガン、ニッケルの3種を用い、添加元素Xとしてアルミニウムを用いた場合、正極活物質100はNi、Co、Mn、及びAlを有する複合酸化物(NCMA)となる。NCMAとしては、Ni:Co:Mnの比率がNi:Co:Mn=1:1:1及びその近傍、9:0.5:0.5及びその近傍、8:1:1及びその近傍、6:2:2及びその近傍又は5:2:3及びその近傍のいずれかのNCMに対し、Alを添加すればよい。例えば、Ni:Co:Mn=8:1:1及びその近傍のとき、アルミニウムの濃度が0.1at%以上2at%以下であると好ましい。
 図6に示すように、遷移金属Mと、添加元素Xと、を導入する工程を分けることにより、それぞれの元素濃度の深さ方向のプロファイルを変えることができる場合がある。例えば、粒子の内部に比べて表層部で添加元素Xの濃度を高めることができる。また、遷移金属Mの原子数を基準とし、該基準に対する添加元素Xの原子数の比を、内部よりも表層部において、より高くすることができる。NCMAにおいてアルミニウムの濃度が0.1at%以上2at%以下となる領域は粒子の表層部又は内部のどちらでもよい。
 また、本発明の一態様においては、合成の際に用いる遷移金属M源に高純度の材料を用い、且つ合成時において、不純物の混入が少ない工程にて正極活物質が作製される。また、遷移金属M源と、合成時における不純物の混入を徹底的に排除し、且つ所望の添加元素Xを制御して、正極活物質内に導入する作製方法とすることで、不純物濃度が低い領域と、添加元素Xが導入された領域と、が制御された正極活物質を得ることができる。また、本実施の形態に示す正極活物質は、高い結晶性を有する材料である。また、本発明の一態様の正極活物質の作製方法によって得られた正極活物質は、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
(実施の形態5)
 本実施の形態では、図7を用いて本発明の一態様の正極活物質の作製方法の例について説明する。
 図7のステップS21として、遷移金属M源801を用意する。
 遷移金属Mとしては、例えば、マンガン、コバルト、ニッケルのうち少なくとも一を用いることができる。例えば、遷移金属Mとしては、コバルトのみを用いる場合、ニッケルのみを用いる場合、コバルトとマンガンの2種を用いる場合、コバルトとニッケルの2種を用いる場合、または、コバルト、マンガン、ニッケルの3種を用いる場合がある。遷移金属M源は遷移金属Mを含む水溶液として用意する。
 遷移金属M源801として、コバルトを含む水溶液としては、硫酸コバルト水溶液または硝酸コバルト水溶液、などを用いることができ、ニッケルを含む水溶液としては、硫酸ニッケル水溶液または硝酸ニッケル水溶液、などを用いることができ、マンガンを含む水溶液としては、硫酸マンガン水溶液または硝酸マンガン水溶液、などを用いることができる。
 なお、合成の際に用いる遷移金属M源801としては、高純度の材料を用いると好ましい。具体的には、遷移金属Mを含む水溶液を用いる場合、水溶液を作成する際の、溶質材料の純度としては、2N(99%)以上、好ましくは3N(99.9%)以上、さらに好ましくは4N(99.99%)以上であり、水としては、好ましくは比抵抗が1MΩ・cm以上、より好ましくは比抵抗が10MΩ・cm以上、さらに好ましくは比抵抗が15MΩ・cm以上の、不純物が少ない純水であることが望ましい。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 また、複数の遷移金属M源801を用いる場合であって、たとえばコバルト源、マンガン源、及びニッケル源を用いるとき、層状岩塩型の結晶構造をとりうる範囲の混合比とすることが好ましい。
 次に、ステップS31として、上記の遷移金属M源801を混合し、ステップS32の混合物811を得る。
 次に、ステップS33として水溶液A812、ステップS34として水溶液B813を用意する。
 水溶液A812として、グリシン、オキシン、1−ニトロソ−2−ナフトールもしくは2−メルカプトベンゾチアゾールなどのキレート剤のうち、少なくとも一を有する水溶液、またはアンモニア水、のいずれか一、または複数の混合液を用いることができる。
 水溶液B813として、水酸化ナトリウム水溶液、水酸化カリウム水溶液、または水酸化リチウム水溶液、のいずれか一、または複数の混合液を用いることができる。
 次に、ステップS35として、上記のステップS32の混合物811、水溶液A812、水溶液B813を混合する。
 ステップS35の混合の方法として、反応容器にいれた水溶液A812に対して、ステップS32の混合物811および水溶液B813を滴下する、という混合方法を用いることができる。ステップS32の混合物811を一定の速度で滴下するとともに、反応容器内の混合溶液のpHを所定の範囲に保つために、水溶液B813を適宜滴下することが望ましい。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、水溶液A812、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内のpHとして、好ましくは9以上11以下、より好ましくは10.0以上10.5以下にするとよい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 または、ステップS35の混合の方法として、反応容器に入れたステップS32の混合物811に対して、水溶液A812および水溶液B813を滴下する、という混合方法を用いることができる。反応容器内の、水溶液A812の溶質イオン濃度、および水酸基濃度を所定の範囲に保つために、水溶液A812および水溶液B813の滴下速度を調整することが好ましい。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、水溶液A812、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 または、ステップS35の混合の方法として、水溶液A812を用いない場合を説明する。反応容器に入れたステップS32の混合物811に対して、水溶液B813を一定量滴下して加える。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 または、ステップS35の混合の方法として、ステップS32の混合物811、水溶液A812、および水溶液B813、に加えて、純水を用いる場合を説明する。反応容器に入れた純水に対して、ステップS32の混合物811および水溶液A812を一定の速度で滴下するとともに、反応容器内の混合溶液のpHを所定の範囲に保つために、水溶液B813を適宜滴下することができる。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、水溶液A812、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内のpHとして、好ましくは9以上11以下、より好ましくは10.0以上10.5以下にするとよい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 次に、ステップS35の混合によって形成された、遷移金属Mを有する水酸化物を含む溶液を、ステップS36として、ろ過した後に水で洗浄する。洗浄に用いる水は、好ましくは比抵抗が1MΩ・cm以上、より好ましくは比抵抗が10MΩ・cm以上、さらに好ましくは比抵抗が15MΩ・cm以上の、不純物が少ない純水であることが望ましい。不純物が少ない純水を洗浄に用いることで、遷移金属Mを有する水酸化物に含まれる不純物を除去することができる。これにより、高純度の遷移金属Mを有する水酸化物を、正極活物質100の前駆体として得ることができる。
 次に、ステップS36において、洗浄後の遷移金属Mを有する水酸化物を、乾燥し、回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS41の混合物821を得る。混合物821は正極活物質100の前駆体とも呼ぶ。前駆体は結晶性が高いことが好ましく、単結晶粒を有すると更に好ましい。すなわち前駆体は単結晶であることが好ましい。
 次に、ステップS42としてリチウム化合物822を用意し、ステップS43として添加元素X源823を用意する。ステップS51として、ステップS41の混合物821と、リチウム化合物822と、添加元素X源823と、を混合する。混合後に、ステップS52にて回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS53の混合物831を得る。混合は乾式または湿式で行うことができる。混合には例えば自転公転ミキサー等のミキサー、ボールミル、及びビーズミル等を用いることができる。自転公転ミキサーとして、(株)シンキー製の自転公転方式ミキサーあわとり練太郎を用いる場合、例えば回転数を2000rpmとして、1.5分の処理を3回繰り返すとよい。ボールミルを用いる場合は、例えばメディアとしてジルコニアボールを用いることが好ましい。また、ボールミル、またはビーズミル等を用いる場合、メディアまたは材料からのコンタミネーションを抑制するために、周速を、100mm/s以上2000mm/s以下とすることが好ましい。例えば、周速838mm/s(回転数400rpm、ボールミルの直径40mm)として実施するとよい。
 ステップS51にて十分に混合することで、混合物821と、リチウム化合物822とが均質に混ざることができ好ましい。
 リチウム化合物822としては、例えば、水酸化リチウム、炭酸リチウム、硝酸リチウム、フッ化リチウムなどを用いることができる。リチウム化合物822はリチウム源と呼ぶことがある。
 なお、合成の際に用いるリチウム化合物822としては、高純度の材料を用いると好ましい。具体的には、当該材料の純度としては、4N(99.99%)以上、好ましくは4N5UP(99.995%)以上、さらに好ましくは5N(99.999%)以上である。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 添加元素Xとしては、ニッケル、コバルト、マグネシウム、カルシウム、塩素、フッ素、アルミニウム、マンガン、チタン、ジルコニウム、イットリウム、バナジウム、鉄、クロム、ニオブ、ランタン、ハフニウム、亜鉛、ケイ素、硫黄、リン、ホウ素、及びヒ素の中から選ばれる一または複数を用いることができる。また、添加元素Xとしては、上記の元素に加え、臭素、及びベリリウムを用いてもよい。ただし、臭素、及びベリリウムについては、生物に対し毒性を有する元素であるため、上述の添加元素Xを用いる方が好適である。
 ステップS43の添加元素X源823は、添加元素Xを含む水溶液、添加元素Xを含むアルコキシド、または添加元素Xを含む固体化合物の中から、任意の一以上を用いることができる。
 なお、合成の際に用いる添加元素X源としては、高純度の材料を用いると好ましい。具体的には、当該材料の純度としては、2N(99%)以上、好ましくは3N(99.9%)以上、さらに好ましくは4N(99.99%)以上である。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 次に、ステップS54として、ステップS53の混合物831を加熱する。加熱温度は混合物821、及びリチウム化合物822等の融解点近傍の温度が好ましく、700℃以上1100℃未満で行うことが好ましく、800℃以上1000℃以下で行うことがより好ましく、800℃以上950℃以下がさらに好ましい。
 加熱時間は例えば1時間以上100時間以下とすることができ、2時間以上20時間以下とすることが好ましい。加熱は、酸素もしくは乾燥空気等の水が少ない酸素含有雰囲気(例えば露点が−50℃以下、より好ましくは露点が−80℃以下)で行うことが好ましい。なお、本実施の形態においては、露点−93℃の雰囲気にて、加熱を行うこととする。また、加熱は、CH、CO、CO、及びHの不純物濃度が、それぞれ5ppb(parts per billion)以下の雰囲気で行うと、材料中に混入しうる不純物が抑制できるため好適である。
 また、例えば、850℃で10時間加熱する場合、昇温は200℃/h、乾燥雰囲気の流量は10L/minとすることが好ましい。その後、加熱した材料を室温まで冷却することができる。例えば規定温度から室温までの降温時間を10時間以上50時間以下とすることが好ましい。ただし、ステップS54における室温までの冷却は必須ではない。
 なお、ステップS54の加熱の際に用いる、るつぼは不純物が混入しない材質であると好適である。本実施の形態においては、純度が99.9%のアルミナのるつぼを用いることとする。
 また、ステップS54にて加熱が終わった材料を回収する際に、るつぼから乳鉢へ移動させたのち、回収すると材料に不純物が混入しないため好適である。また、当該乳鉢についても、不純物が混入しない材質である好適である。具体的には、純度が90wt%以上、好ましくは純度が99wt%以上のアルミナの乳鉢を用いると好適である。
 次に、ステップS55において上記で焼成した材料を回収し、解砕した後にステップS56の正極活物質100を得る。必要に応じて解砕した後にふるいを実施してもよい。以上の工程により、本発明の一態様の正極活物質100を作製することができる。
 正極活物質100は結晶性が高い方が好ましく、ステップS41の混合物821の結晶性が高い場合、正極活物質100の結晶性も高くなる。正極活物質100の結晶性が高く、さらには正極活物質100が単結晶粒を有すると、リチウムの出入りの結晶面を揃えることができる。リチウムの出入りの結晶面をより多く電解質に露出させることができると、電池特性が向上する。また正極活物質100の結晶性が高く、さらには正極活物質100が単結晶粒を有すると丈夫であり、充放電を繰り返しても劣化しづらい活物質を提供できる。
 なお、正極活物質100は、リチウム、遷移金属M、及び酸素を有する複合酸化物(LiMO)として、表す場合がある。ただし、本発明の一態様の正極活物質は、LiMOで表されるリチウム複合酸化物の結晶構造を有すればよく、その組成が厳密にLi:M:O=1:1:2に限定されるものではない。たとえば遷移金属Mとしてコバルト、マンガン、ニッケルの3種を用い、添加元素Xとしてアルミニウムを用いた場合、正極活物質100はNi、Co、Mn、及びAlを有する複合酸化物(NCMA)となる。NCMAとしては、Ni:Co:Mnの比率がNi:Co:Mn=1:1:1及びその近傍、9:0.5:0.5及びその近傍、8:1:1及びその近傍、6:2:2及びその近傍又は5:2:3及びその近傍のいずれかのNCMに対し、Alを添加すればよい。例えば、Ni:Co:Mn=8:1:1及びその近傍のとき、アルミニウムの濃度が0.1at%以上2at%以下であると好ましい。
 図7に示すように、遷移金属Mと、添加元素Xと、を導入する工程を分けることにより、それぞれの元素濃度の深さ方向のプロファイルを変えることができる場合がある。例えば、粒子の内部に比べて表層部で添加元素Xの濃度を高めることができる。また、遷移金属Mの原子数を基準とし、該基準に対する添加元素Xの原子数の比を、内部よりも表層部において、より高くすることができる。NCMAにおいてアルミニウムの濃度が0.1at%以上2at%以下となる領域は粒子の表層部又は内部のどちらでもよい。
 また、本発明の一態様においては、合成の際に用いる遷移金属M源に高純度の材料を用い、且つ合成時において、不純物の混入が少ない工程にて正極活物質が作製される。また、遷移金属M源と、合成時における不純物の混入を徹底的に排除し、且つ所望の添加元素Xを制御して、正極活物質内に導入する作製方法とすることで、不純物濃度が低い領域と、添加元素Xが導入された領域と、が制御された正極活物質を得ることができる。また、本実施の形態に示す正極活物質は、高い結晶性を有する材料である。また、本発明の一態様の正極活物質の作製方法によって得られた正極活物質は、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
(実施の形態6)
 本実施の形態では、図8を用いて本発明の一態様の正極活物質の作製方法の例について説明する。
 図8のステップS21として、遷移金属M源801を用意する。
 遷移金属Mとしては、例えば、マンガン、コバルト、ニッケルのうち少なくとも一を用いることができる。例えば、遷移金属Mとしては、コバルトのみを用いる場合、ニッケルのみを用いる場合、コバルトとマンガンの2種を用いる場合、コバルトとニッケルの2種を用いる場合、または、コバルト、マンガン、ニッケルの3種を用いる場合がある。遷移金属M源801は遷移金属Mを含む水溶液として用意する。
 遷移金属M源801として、コバルトを含む水溶液としては、硫酸コバルト水溶液または硝酸コバルト水溶液、などを用いることができ、ニッケルを含む水溶液としては、硫酸ニッケル水溶液または硝酸ニッケル水溶液、などを用いることができ、マンガンを含む水溶液としては、硫酸マンガン水溶液または硝酸マンガン水溶液、などを用いることができる。
 なお、合成の際に用いる遷移金属M源801としては、高純度の材料を用いると好ましい。具体的には、遷移金属Mを含む水溶液を用いる場合、水溶液を作成する際の、溶質材料の純度としては、2N(99%)以上、好ましくは3N(99.9%)以上、さらに好ましくは4N(99.99%)以上であり、水としては、好ましくは比抵抗が1MΩ・cm以上、より好ましくは比抵抗が10MΩ・cm以上、さらに好ましくは比抵抗が15MΩ・cm以上の、不純物が少ない純水であることが望ましい。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 また、複数の遷移金属M源801を用いる場合であって、たとえばコバルト源、マンガン源、及びニッケル源を用いるとき、層状岩塩型の結晶構造をとりうる範囲の混合比とすることが好ましい。
 次に、ステップS31として、上記の遷移金属M源801を混合し、ステップS32の混合物811を得る。
 次に、ステップS33として水溶液A812、ステップS34として水溶液B813を用意する。
 水溶液A812として、グリシン、オキシン、1−ニトロソ−2−ナフトールもしくは2−メルカプトベンゾチアゾールなどのキレート剤のうち、少なくとも一を有する水溶液、またはアンモニア水、のいずれか一、または複数の混合液を用いることができる。
 水溶液B813として、水酸化ナトリウム水溶液、水酸化カリウム水溶液、または水酸化リチウム水溶液、のいずれか一、または複数の混合液を用いることができる。
 次に、ステップS35として、上記のステップS32の混合物811、水溶液A812、水溶液B813を混合する。
 ステップS35の混合の方法として、反応容器にいれた水溶液A812に対して、ステップS32の混合物811および水溶液B813を滴下する、という混合方法を用いることができる。ステップS32の混合物811を一定の速度で滴下するとともに、反応容器内の混合溶液のpHを所定の範囲に保つために、水溶液B813を適宜滴下することが望ましい。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、水溶液A812、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内のpHとして、好ましくは9以上11以下、より好ましくは10.0以上10.5以下にするとよい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 または、ステップS35の混合の方法として、反応容器に入れたステップS32の混合物811に対して、水溶液A812および水溶液B813を滴下する、という混合方法を用いることができる。反応容器内の、水溶液A812の溶質イオン濃度、および水酸基濃度を所定の範囲に保つために、水溶液A812および水溶液B813の滴下速度を調整することが好ましい。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、水溶液A812、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 または、ステップS35の混合の方法として、水溶液A812を用いない場合を説明する。反応容器に入れたステップS32の混合物811に対して、水溶液B813を一定量滴下して加える。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 または、ステップS35の混合の方法として、ステップS32の混合物811、水溶液A812、および水溶液B813、に加えて、純水を用いる場合を説明する。反応容器に入れた純水に対して、ステップS32の混合物811および水溶液A812を一定の速度で滴下するとともに、反応容器内の混合溶液のpHを所定の範囲に保つために、水溶液B813を適宜滴下することができる。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、水溶液A812、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内のpHとして、好ましくは9以上11以下、より好ましくは10.0以上10.5以下にするとよい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 次に、ステップS35の混合によって形成された、遷移金属Mを有する水酸化物を含む溶液を、ステップS36として、ろ過した後に水で洗浄する。洗浄に用いる水は、好ましくは比抵抗が1MΩ・cm以上、より好ましくは比抵抗が10MΩ・cm以上、さらに好ましくは比抵抗が15MΩ・cm以上の、不純物が少ない純水であることが望ましい。不純物が少ない純水を洗浄に用いることで、遷移金属Mを有する水酸化物に含まれる不純物を除去することができる。これにより、高純度の遷移金属Mを有する水酸化物を、正極活物質100の前駆体として得ることができる。
 次に、ステップS36において、洗浄後の遷移金属Mを有する水酸化物を、乾燥し、回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS41の混合物821を得る。混合物821は正極活物質100の前駆体とも呼ぶ。前駆体は結晶性が高いことが好ましく、単結晶粒を有すると更に好ましい。すなわち前駆体は単結晶であることが好ましい。
 次に、ステップS42として、リチウム化合物822を用意し、ステップS51として、ステップS41の混合物821と、リチウム化合物822と、を混合する。混合後に、ステップS52にて回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS53の混合物831を得る。混合は乾式または湿式で行うことができる。混合には例えば自転公転ミキサー等のミキサー、ボールミル、及びビーズミル等を用いることができる。自転公転ミキサーとして、(株)シンキー製の自転公転方式ミキサーあわとり練太郎を用いる場合、例えば回転数を2000rpmとして、1.5分の処理を3回繰り返すとよい。ボールミルを用いる場合は、例えばメディアとしてジルコニアボールを用いることが好ましい。また、ボールミル、またはビーズミル等を用いる場合、メディアまたは材料からのコンタミネーションを抑制するために、周速を、100mm/s以上2000mm/s以下とすることが好ましい。例えば、周速838mm/s(回転数400rpm、ボールミルの直径40mm)として実施するとよい。
 ステップS51にて十分に混合することで、混合物821と、リチウム化合物822とが均質に混ざることができ好ましい。
 リチウム化合物822としては、例えば、水酸化リチウム、炭酸リチウム、硝酸リチウム、フッ化リチウムなどを用いることができる。リチウム化合物822はリチウム源と呼ぶことがある。
 なお、合成の際に用いるリチウム化合物822としては、高純度の材料を用いると好ましい。具体的には、当該材料の純度としては、4N(99.99%)以上、好ましくは4N5UP(99.995%)以上、さらに好ましくは5N(99.999%)以上である。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 次に、ステップS54として、ステップS53の混合物831を加熱する。加熱温度は混合物821とリチウム化合物822との融解点近傍の温度が好ましく、700℃以上1100℃未満で行うことが好ましく、800℃以上1000℃以下で行うことがより好ましく、800℃以上950℃以下がさらに好ましい。
 加熱時間は例えば1時間以上100時間以下とすることができ、2時間以上20時間以下とすることが好ましい。加熱は、酸素もしくは乾燥空気等の水が少ない酸素含有雰囲気(例えば露点が−50℃以下、より好ましくは露点が−80℃以下)で行うことが好ましい。なお、本実施の形態においては、露点−93℃の雰囲気にて、加熱を行うこととする。また、加熱は、CH、CO、CO、及びHの不純物濃度が、それぞれ5ppb(parts per billion)以下の雰囲気で行うと、材料中に混入しうる不純物が抑制できるため好適である。
 また、例えば、850℃で10時間加熱する場合、昇温は200℃/h、乾燥雰囲気の流量は10L/minとすることが好ましい。その後、加熱した材料を室温まで冷却することができる。例えば規定温度から室温までの降温時間を10時間以上50時間以下とすることが好ましい。ただし、ステップS54における室温までの冷却は必須ではない。
 なお、ステップS54の加熱の際に用いる、るつぼは不純物が混入しない材質であると好適である。本実施の形態においては、純度が99.9%のアルミナのるつぼを用いることとする。
 また、ステップS54にて加熱が終わった材料を回収する際に、るつぼから乳鉢へ移動させたのち、回収すると材料に不純物が混入しないため好適である。また、当該乳鉢についても、不純物が混入しない材質である好適である。具体的には、純度が90wt%以上、好ましくは純度が99wt%以上のアルミナの乳鉢を用いると好適である。
 次に、ステップS55において上記で焼成した材料を回収し、解砕した後にステップS61の混合物832を得る。
 次に、ステップS62において、添加元素X源833を用意する。
 添加元素X源833が有する添加元素Xとしては、ニッケル、コバルト、マグネシウム、カルシウム、塩素、フッ素、アルミニウム、マンガン、チタン、ジルコニウム、イットリウム、バナジウム、鉄、クロム、ニオブ、ランタン、ハフニウム、亜鉛、ケイ素、硫黄、リン、ホウ素、及びヒ素の中から選ばれる一または複数を用いることができる。また、添加元素Xとしては、上記の元素に加え、臭素、及びベリリウムを用いてもよい。ただし、臭素、及びベリリウムについては、生物に対し毒性を有する元素であるため、上述の添加元素Xを用いる方が好適である。
 図8のステップS62の添加元素X源833は、添加元素Xを含む水溶液、添加元素Xを含むアルコキシド、または添加元素Xを含む固体化合物の中から、任意の一以上を用いることができる。例えば図8のステップS62の添加元素X源833として、図3Aおよび図3Bに、S62a、またはS62bとして示すように、一以上の添加元素Xを含む固体化合物を用意し、解砕、混合したもの(混合物843a、または混合物843b)を、ステップS62の添加元素X源833として用いてもよい。一以上の添加元素Xを含む固体化合物を用いる場合、解砕後に混合してもよく、もしくは、混合後に解砕してもよく、または、解砕せずに、ステップS62の添加元素X源833として用いてもよい。
 なお、合成の際に用いる添加元素X源としては、高純度の材料を用いると好ましい。具体的には、当該材料の純度としては、2N(99%)以上、好ましくは3N(99.9%)以上、さらに好ましくは4N(99.99%)以上である。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 次に、ステップS71して、ステップS61の混合物832と、ステップS62の添加元素X源833と、を混合する。混合後に、ステップS72にて回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS73の混合物841を得る。混合は乾式または湿式で行うことができる。混合には例えば自転公転ミキサー等のミキサー、ボールミル、及びビーズミル等を用いることができる。自転公転ミキサーとして、(株)シンキー製の自転公転方式ミキサーあわとり練太郎を用いる場合、例えば回転数を2000rpmとして、1.5分の処理を3回繰り返すとよい。ボールミルを用いる場合は、例えばメディアとしてジルコニアボールを用いることが好ましい。また、ボールミル、またはビーズミル等を用いる場合、メディアまたは材料からのコンタミネーションを抑制するために、周速を、100mm/s以上2000mm/s以下とすることが好ましい。例えば、周速838mm/s(回転数400rpm、ボールミルの直径40mm)として実施するとよい。
 次に、ステップS74として、ステップS73の混合物841を加熱する。加熱時、混合物841を入れた容器(るつぼ)には蓋をするとよい。原料ガスの不必要な蒸発を防ぐことができる。ステップS74の加熱の温度としては、500℃以上1100℃以下が好ましく、500℃以上1000℃以下がより好ましく、500℃以上950℃以下がさらに好ましく、500℃以上900℃以下がさらに好ましい。
 また、ステップS74の加熱において、ローラーハースキルンによる加熱をおこなってもよい。ローラーハースキルンにて加熱処理をする際、蓋を有する耐熱容器を用いて、混合物841を処理しても良い。
 加熱時間は例えば1時間以上100時間以下とすることができ、2時間以上20時間以下とすることが好ましい。加熱は、酸素もしくは乾燥空気等の水が少ない酸素含有雰囲気(例えば露点が−50℃以下、より好ましくは露点が−80℃以下)で行うことが好ましい。なお、本実施の形態においては、露点−93℃の雰囲気にて、加熱を行うこととする。また、加熱は、CH、CO、CO、及びHの不純物濃度が、それぞれ5ppb(parts per billion)以下の雰囲気で行うと、材料中に混入しうる不純物が抑制できるため好適である。
 また、例えば、850℃で10時間加熱する場合、昇温は200℃/h、乾燥雰囲気の流量は10L/minとすることが好ましい。その後、加熱した材料を室温まで冷却することができる。例えば規定温度から室温までの降温時間を10時間以上50時間以下とすることが好ましい。ただし、ステップS74における室温までの冷却は必須ではない。
 次に、ステップS75において上記で焼成した材料を回収し、解砕した後にステップS76の正極活物質100を得る。必要に応じて解砕した後にふるいを実施してもよい。以上の工程により、本発明の一態様の正極活物質100を作製することができる。
 正極活物質100は結晶性が高い方が好ましく、ステップS41の混合物821の結晶性が高い場合、正極活物質100の結晶性も高くなる。正極活物質100の結晶性が高く、さらには正極活物質100が単結晶粒を有すると、リチウムの出入りの結晶面を揃えることができる。リチウムの出入りの結晶面をより多く電解質に露出させることができると、電池特性が向上する。また正極活物質100の結晶性が高く、さらには正極活物質100が単結晶粒を有すると丈夫であり、充放電を繰り返しても劣化しづらい活物質を提供できる。
 なお、正極活物質100は、リチウム、遷移金属M、及び酸素を有する複合酸化物(LiMO)として、表す場合がある。ただし、本発明の一態様の正極活物質は、LiMOで表されるリチウム複合酸化物の結晶構造を有すればよく、その組成が厳密にLi:M:O=1:1:2に限定されるものではない。たとえば遷移金属Mとしてコバルト、マンガン、ニッケルの3種を用い、添加元素Xとしてアルミニウムを用いた場合、正極活物質100はNi、Co、Mn、及びAlを有する複合酸化物(NCMA)となる。NCMAとしては、Ni:Co:Mnの比率がNi:Co:Mn=1:1:1及びその近傍、9:0.5:0.5及びその近傍、8:1:1及びその近傍、6:2:2及びその近傍又は5:2:3及びその近傍のいずれかのNCMに対し、Alを添加すればよい。例えば、Ni:Co:Mn=8:1:1及びその近傍のとき、アルミニウムの濃度が0.1at%以上2at%以下であると好ましい。
 図8に示すように、遷移金属Mと、添加元素Xと、を導入する工程を分けることにより、それぞれの元素濃度の深さ方向のプロファイルを変えることができる場合がある。例えば、粒子の内部に比べて表層部で添加元素Xの濃度を高めることができる。また、遷移金属Mの原子数を基準とし、該基準に対する添加元素Xの原子数の比を、内部よりも表層部において、より高くすることができる。NCMAにおいてアルミニウムの濃度が0.1at%以上2at%以下となる領域は粒子の表層部又は内部のどちらでもよい。
 また、本発明の一態様においては、合成の際に用いる遷移金属M源に高純度の材料を用い、且つ合成時において、不純物の混入が少ない工程にて正極活物質が作製される。また、遷移金属M源と、合成時における不純物の混入を徹底的に排除し、且つ所望の添加元素Xを制御して、正極活物質内に導入する作製方法とすることで、不純物濃度が低い領域と、添加元素Xが導入された領域と、が制御された正極活物質を得ることができる。また、本実施の形態に示す正極活物質は、高い結晶性を有する材料である。また、本発明の一態様の正極活物質の作製方法によって得られた正極活物質は、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
(実施の形態7)
 本実施の形態では、図9を用いて本発明の一態様の正極活物質の作製方法の例について説明する。
 図9のステップS21として遷移金属M源801、ステップS22として添加元素X源802を用意する。
 遷移金属Mとしては、例えば、マンガン、コバルト、ニッケルのうち少なくとも一を用いることができる。例えば、遷移金属Mとしては、コバルトのみを用いる場合、ニッケルのみを用いる場合、コバルトとマンガンの2種を用いる場合、コバルトとニッケルの2種を用いる場合、または、コバルト、マンガン、ニッケルの3種を用いる場合がある。遷移金属M源801は遷移金属Mを含む水溶液として用意する。
 遷移金属M源801として、コバルトを含む水溶液としては、硫酸コバルト水溶液または硝酸コバルト水溶液、などを用いることができ、ニッケルを含む水溶液としては、硫酸ニッケル水溶液または硝酸ニッケル水溶液、などを用いることができ、マンガンを含む水溶液としては、硫酸マンガン水溶液または硝酸マンガン水溶液、などを用いることができる。
 なお、合成の際に用いる遷移金属M源801としては、高純度の材料を用いると好ましい。具体的には、遷移金属Mを含む水溶液を用いる場合、水溶液を作成する際の、溶質材料の純度としては、2N(99%)以上、好ましくは3N(99.9%)以上、さらに好ましくは4N(99.99%)以上であり、水としては、好ましくは比抵抗が1MΩ・cm以上、より好ましくは比抵抗が10MΩ・cm以上、さらに好ましくは比抵抗が15MΩ・cm以上の、不純物が少ない純水であることが望ましい。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 添加元素Xとしては、ニッケル、コバルト、マグネシウム、カルシウム、塩素、フッ素、アルミニウム、マンガン、チタン、ジルコニウム、イットリウム、バナジウム、鉄、クロム、ニオブ、ランタン、ハフニウム、亜鉛、ケイ素、硫黄、リン、ホウ素、及びヒ素の中から選ばれる一または複数を用いることができる。また、添加元素としては、上記の元素に加え、臭素、及びベリリウムを用いてもよい。ただし、臭素、及びベリリウムについては、生物に対し毒性を有する元素であるため、上述の添加元素Xを用いる方が好適である。
 添加元素X源802としては、添加元素Xを含む水溶液、添加元素Xを含むアルコキシド、または添加元素Xを含む固体化合物の中から、任意の一以上を用いることができる。ステップS22の添加元素X源802は、添加元素Xを含む水溶液として用意することが好ましい。
 なお、合成の際に用いる添加元素X源802としては、高純度の材料を用いると好ましい。具体的には、当該材料の純度としては、2N(99%)以上、好ましくは3N(99.9%)以上、さらに好ましくは4N(99.99%)以上である。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 次に、ステップS31として、上記の遷移金属M源801、および添加元素X源802を混合し、ステップS32の混合物811を得る。
 次に、ステップS33として水溶液A812、ステップS34として水溶液B813を用意する。
 水溶液A812として、グリシン、オキシン、1−ニトロソ−2−ナフトールもしくは2−メルカプトベンゾチアゾールなどのキレート剤のうち、少なくとも一を有する水溶液、またはアンモニア水、のいずれか一、または複数の混合液を用いることができる。
 水溶液B813として、水酸化ナトリウム水溶液、水酸化カリウム水溶液、または水酸化リチウム水溶液、のいずれか一、または複数の混合液を用いることができる。
 次に、ステップS35として、上記のステップS32の混合物811、水溶液A812、水溶液B813を混合する。
 ステップS35の混合の方法として、反応容器にいれた水溶液A812に対して、ステップS32の混合物811および水溶液B813を滴下する、という混合方法を用いることができる。ステップS32の混合物811を一定の速度で滴下するとともに、反応容器内の混合溶液のpHを所定の範囲に保つために、水溶液B813を適宜滴下することが望ましい。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、水溶液A812、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内のpHとして、好ましくは9以上11以下、より好ましくは10.0以上10.5以下にするとよい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 または、ステップS35の混合の方法として、反応容器に入れたステップS32の混合物811に対して、水溶液A812および水溶液B813を滴下する、という混合方法を用いることができる。反応容器内の、水溶液A812の溶質イオン濃度、および水酸基濃度を所定の範囲に保つために、水溶液A812および水溶液B813の滴下速度を調整することが好ましい。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、水溶液A812、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 または、ステップS35の混合の方法として、水溶液A812を用いない場合を説明する。反応容器に入れたステップS32の混合物811に対して、水溶液B813を一定量滴下して加える。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 または、ステップS35の混合の方法として、ステップS32の混合物811、水溶液A812、および水溶液B813、に加えて、純水を用いる場合を説明する。反応容器に入れた純水に対して、ステップS32の混合物811および水溶液A812を一定の速度で滴下するとともに、反応容器内の混合溶液のpHを所定の範囲に保つために、水溶液B813を適宜滴下することができる。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、水溶液A812、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内のpHとして、好ましくは9以上11以下、より好ましくは10.0以上10.5以下にするとよい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 次に、ステップS35の混合によって形成された、遷移金属Mを有する水酸化物を含む溶液を、ステップS36として、ろ過した後に水で洗浄する。洗浄に用いる水は、好ましくは比抵抗が1MΩ・cm以上、より好ましくは比抵抗が10MΩ・cm以上、さらに好ましくは比抵抗が15MΩ・cm以上の、不純物が少ない純水であることが望ましい。不純物が少ない純水を洗浄に用いることで、遷移金属Mを有する水酸化物に含まれる不純物を除去することができる。これにより、高純度の遷移金属Mを有する水酸化物を、正極活物質100の前駆体として得ることができる。
 次に、ステップS36において、洗浄後の遷移金属Mおよび添加元素Xを有する水酸化物を、乾燥し、回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS41の混合物821を得る。混合物821は正極活物質100の前駆体とも呼ぶ。前駆体は結晶性が高いことが好ましく、単結晶粒を有すると更に好ましい。すなわち前駆体は単結晶であることが好ましい。
 次に、ステップS42としてリチウム化合物822を用意し、ステップS43として添加元素X源823を用意する。ステップS51として、ステップS41の混合物821と、リチウム化合物822と、添加元素X源823と、を混合する。混合後に、ステップS52にて回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS53の混合物831を得る。混合は乾式または湿式で行うことができる。混合には例えば自転公転ミキサー等のミキサー、ボールミル、及びビーズミル等を用いることができる。自転公転ミキサーとして、(株)シンキー製の自転公転方式ミキサーあわとり練太郎を用いる場合、例えば回転数を2000rpmとして、1.5分の処理を3回繰り返すとよい。ボールミルを用いる場合は、例えばメディアとしてジルコニアボールを用いることが好ましい。また、ボールミル、またはビーズミル等を用いる場合、メディアまたは材料からのコンタミネーションを抑制するために、周速を、100mm/s以上2000mm/s以下とすることが好ましい。例えば、周速838mm/s(回転数400rpm、ボールミルの直径40mm)として実施するとよい。
 ステップS51にて十分に混合することで、混合物821と、リチウム化合物822とが均質に混ざることができ好ましい。
 リチウム化合物822としては、例えば、水酸化リチウム、炭酸リチウム、硝酸リチウム、フッ化リチウムなどを用いることができる。リチウム化合物822はリチウム源と呼ぶことがある。
 なお、合成の際に用いるリチウム化合物822としては、高純度の材料を用いると好ましい。具体的には、当該材料の純度としては、4N(99.99%)以上、好ましくは4N5UP(99.995%)以上、さらに好ましくは5N(99.999%)以上である。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 添加元素Xとしては、ニッケル、コバルト、マグネシウム、カルシウム、塩素、フッ素、アルミニウム、マンガン、チタン、ジルコニウム、イットリウム、バナジウム、鉄、クロム、ニオブ、ランタン、ハフニウム、亜鉛、ケイ素、硫黄、リン、ホウ素、及びヒ素の中から選ばれる一または複数を用いることができる。また、添加元素Xとしては、上記の元素に加え、臭素、及びベリリウムを用いてもよい。ただし、臭素、及びベリリウムについては、生物に対し毒性を有する元素であるため、上述の添加元素Xを用いる方が好適である。
 ステップS43の添加元素X源823は、添加元素Xを含む水溶液、添加元素Xを含むアルコキシド、または添加元素Xを含む固体化合物の中から、任意の一以上を用いることができる。
 なお、合成の際に用いる添加元素X源としては、高純度の材料を用いると好ましい。具体的には、当該材料の純度としては、2N(99%)以上、好ましくは3N(99.9%)以上、さらに好ましくは4N(99.99%)以上である。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 次に、ステップS54として、ステップS53の混合物831を加熱する。加熱時、混合物831を入れた容器(るつぼ)には蓋をするとよい。原料ガスの不必要な蒸発を防ぐことができる。加熱は700℃以上1100℃未満で行うことが好ましく、800℃以上1000℃以下で行うことがより好ましく、800℃以上950℃以下がさらに好ましい。
 加熱時間は例えば1時間以上100時間以下とすることができ、2時間以上20時間以下とすることが好ましい。加熱は、酸素もしくは乾燥空気等の水が少ない酸素含有雰囲気(例えば露点が−50℃以下、より好ましくは露点が−80℃以下)で行うことが好ましい。なお、本実施の形態においては、露点−93℃の雰囲気にて、加熱を行うこととする。また、加熱は、CH、CO、CO、及びHの不純物濃度が、それぞれ5ppb(parts per billion)以下の雰囲気で行うと、材料中に混入しうる不純物が抑制できるため好適である。
 また、例えば、850℃で10時間加熱する場合、昇温は200℃/h、乾燥雰囲気の流量は10L/minとすることが好ましい。その後、加熱した材料を室温まで冷却することができる。例えば規定温度から室温までの降温時間を10時間以上50時間以下とすることが好ましい。ただし、ステップS54における室温までの冷却は必須ではない。
 なお、ステップS54の加熱の際に用いる、るつぼは不純物が混入しない材質であると好適である。本実施の形態においては、純度が99.9%のアルミナのるつぼを用いることとする。
 また、ステップS54にて加熱が終わった材料を回収する際に、るつぼから乳鉢へ移動させたのち、回収すると材料に不純物が混入しないため好適である。また、当該乳鉢についても、不純物が混入しない材質である好適である。具体的には、純度が90wt%以上、好ましくは純度が99wt%以上のアルミナの乳鉢を用いると好適である。
 次に、ステップS55において上記で焼成した材料を回収し、解砕した後にステップS56の正極活物質100を得る。必要に応じて解砕した後にふるいを実施してもよい。以上の工程により、本発明の一態様の正極活物質100を作製することができる。
 正極活物質100は結晶性が高い方が好ましく、ステップS41の混合物821の結晶性が高い場合、正極活物質100の結晶性も高くなる。正極活物質100の結晶性が高く、さらには正極活物質100が単結晶粒を有すると、リチウムの出入りの結晶面を揃えることができる。リチウムの出入りの結晶面をより多く電解質に露出させることができると、電池特性が向上する。また正極活物質100の結晶性が高く、さらには正極活物質100が単結晶粒を有すると丈夫であり、充放電を繰り返しても劣化しづらい活物質を提供できる。
 なお、正極活物質100は、リチウム、遷移金属M、及び酸素を有する複合酸化物(LiMO)として、表す場合がある。ただし、本発明の一態様の正極活物質は、LiMOで表されるリチウム複合酸化物の結晶構造を有すればよく、その組成が厳密にLi:M:O=1:1:2に限定されるものではない。たとえば遷移金属Mとしてコバルト、マンガン、ニッケルの3種を用い、添加元素Xとしてアルミニウムを用いた場合、正極活物質100はNi、Co、Mn、及びAlを有する複合酸化物(NCMA)となる。NCMAとしては、Ni:Co:Mnの比率がNi:Co:Mn=1:1:1及びその近傍、9:0.5:0.5及びその近傍、8:1:1及びその近傍、6:2:2及びその近傍又は5:2:3及びその近傍のいずれかのNCMに対し、Alを添加すればよい。例えば、Ni:Co:Mn=8:1:1及びその近傍のとき、アルミニウムの濃度が0.1at%以上2at%以下であると好ましい。
 図9に示すように、遷移金属Mを導入する工程と、添加元素Xを導入する複数の工程と、を分けることにより、それぞれの元素濃度の深さ方向のプロファイルを変えることができる場合がある。例えば、粒子の内部に比べて表層部で添加元素Xの濃度を高めることができる。また、遷移金属Mの原子数を基準とし、該基準に対する添加元素Xの原子数の比を、内部よりも表層部において、より高くすることができる。NCMAにおいてアルミニウムの濃度が0.1at%以上2at%以下となる領域は粒子の表層部又は内部のどちらでもよい。
 また、本発明の一態様においては、合成の際に用いる遷移金属M源に高純度の材料を用い、且つ合成時において、不純物の混入が少ない工程にて正極活物質が作製される。また、遷移金属M源と、合成時における不純物の混入を徹底的に排除し、且つ所望の添加元素Xを制御して、正極活物質内に導入する作製方法とすることで、不純物濃度が低い領域と、添加元素Xが導入された領域と、が制御された正極活物質を得ることができる。また、本実施の形態に示す正極活物質は、高い結晶性を有する材料である。また、本発明の一態様の正極活物質の作製方法によって得られた正極活物質は、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
(実施の形態8)
 本実施の形態では、図10を用いて本発明の一態様の正極活物質の作製方法の例について説明する。
 図10のステップS21として、遷移金属M源801を用意する。
 遷移金属Mとしては、例えば、マンガン、コバルト、ニッケルのうち少なくとも一を用いることができる。例えば、遷移金属Mとしては、コバルトのみを用いる場合、ニッケルのみを用いる場合、コバルトとマンガンの2種を用いる場合、コバルトとニッケルの2種を用いる場合、または、コバルト、マンガン、ニッケルの3種を用いる場合がある。遷移金属M源801は遷移金属Mを含む水溶液として用意する。
 遷移金属M源801として、コバルトを含む水溶液としては、硫酸コバルト水溶液または硝酸コバルト水溶液、などを用いることができ、ニッケルを含む水溶液としては、硫酸ニッケル水溶液または硝酸ニッケル水溶液、などを用いることができ、マンガンを含む水溶液としては、硫酸マンガン水溶液または硝酸マンガン水溶液、などを用いることができる。
 なお、合成の際に用いる遷移金属M源801としては、高純度の材料を用いると好ましい。具体的には、遷移金属Mを含む水溶液を用いる場合、水溶液を作成する際の、溶質材料の純度としては、2N(99%)以上、好ましくは3N(99.9%)以上、さらに好ましくは4N(99.99%)以上であり、水としては、好ましくは比抵抗が1MΩ・cm以上、より好ましくは比抵抗が10MΩ・cm以上、さらに好ましくは比抵抗が15MΩ・cm以上の、不純物が少ない純水であることが望ましい。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 また、複数の遷移金属M源801を用いる場合であって、たとえばコバルト源、マンガン源、及びニッケル源を用いるとき、層状岩塩型の結晶構造をとりうる範囲の混合比とすることが好ましい。
 次に、ステップS31として、上記の遷移金属M源を混合し、ステップS32の混合物811を得る。
 次に、ステップS33として水溶液A812、ステップS34として水溶液B813を用意する。
 水溶液A812として、グリシン、オキシン、1−ニトロソ−2−ナフトールもしくは2−メルカプトベンゾチアゾールなどのキレート剤のうち、少なくとも一を有する水溶液、またはアンモニア水、のいずれか一、または複数の混合液を用いることができる。
 水溶液B813として、水酸化ナトリウム水溶液、水酸化カリウム水溶液、または水酸化リチウム水溶液、のいずれか一、または複数の混合液を用いることができる。
 次に、ステップS35として、上記のステップS32の混合物811、水溶液A812、水溶液B813を混合する。
 ステップS35の混合の方法として、反応容器にいれた水溶液A812に対して、ステップS32の混合物811および水溶液B813を滴下する、という混合方法を用いることができる。ステップS32の混合物811を一定の速度で滴下するとともに、反応容器内の混合溶液のpHを所定の範囲に保つために、水溶液B813を適宜滴下することが望ましい。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、水溶液A812、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内のpHとして、好ましくは9以上11以下、より好ましくは10.0以上10.5以下にするとよい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 または、ステップS35の混合の方法として、反応容器に入れたステップS32の混合物811に対して、水溶液A812および水溶液B813を滴下する、という混合方法を用いることができる。反応容器内の、水溶液A812の溶質イオン濃度、および水酸基濃度を所定の範囲に保つために、水溶液A812および水溶液B813の滴下速度を調整することが好ましい。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、水溶液A812、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 または、ステップS35の混合の方法として、水溶液A812を用いない場合を説明する。反応容器に入れたステップS32の混合物811に対して、水溶液B813を一定量滴下して加える。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 または、ステップS35の混合の方法として、ステップS32の混合物811、水溶液A812、および水溶液B813、に加えて、純水を用いる場合を説明する。反応容器に入れた純水に対して、ステップS32の混合物811および水溶液A812を一定の速度で滴下するとともに、反応容器内の混合溶液のpHを所定の範囲に保つために、水溶液B813を適宜滴下することができる。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、水溶液A812、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内のpHとして、好ましくは9以上11以下、より好ましくは10.0以上10.5以下にするとよい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 次に、ステップS35の混合によって形成された、遷移金属Mを有する水酸化物を含む溶液を、ステップS36として、ろ過した後に水で洗浄する。洗浄に用いる水は、好ましくは比抵抗が1MΩ・cm以上、より好ましくは比抵抗が10MΩ・cm以上、さらに好ましくは比抵抗が15MΩ・cm以上の、不純物が少ない純水であることが望ましい。不純物が少ない純水を洗浄に用いることで、遷移金属Mを有する水酸化物に含まれる不純物を除去することができる。これにより、高純度の遷移金属Mを有する水酸化物を、正極活物質100の前駆体として得ることができる。
 次に、ステップS36において、洗浄後の遷移金属Mを有する水酸化物を、乾燥し、回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS41の混合物821を得る。混合物821は正極活物質100の前駆体とも呼ぶ。前駆体は結晶性が高いことが好ましく、単結晶粒を有すると更に好ましい。すなわち前駆体は単結晶であることが好ましい。
 次に、ステップS42としてリチウム化合物822を用意し、ステップS43として添加元素X源823を用意する。ステップS51として、ステップS41の混合物821と、リチウム化合物822と、添加元素X源823と、を混合する。混合後に、ステップS52にて回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS53の混合物831を得る。混合は乾式または湿式で行うことができる。混合には例えば自転公転ミキサー等のミキサー、ボールミル、及びビーズミル等を用いることができる。自転公転ミキサーとして、(株)シンキー製の自転公転方式ミキサーあわとり練太郎を用いる場合、例えば回転数を2000rpmとして、1.5分の処理を3回繰り返すとよい。ボールミルを用いる場合は、例えばメディアとしてジルコニアボールを用いることが好ましい。また、ボールミル、またはビーズミル等を用いる場合、メディアまたは材料からのコンタミネーションを抑制するために、周速を、100mm/s以上2000mm/s以下とすることが好ましい。例えば、周速838mm/s(回転数400rpm、ボールミルの直径40mm)として実施するとよい。
 ステップS51にて十分に混合することで、混合物821と、リチウム化合物822とが均質に混ざることができ好ましい。
 リチウム化合物822としては、例えば、水酸化リチウム、炭酸リチウム、硝酸リチウム、フッ化リチウムなどを用いることができる。リチウム化合物822はリチウム源と呼ぶことがある。
 なお、合成の際に用いるリチウム化合物822としては、高純度の材料を用いると好ましい。具体的には、当該材料の純度としては、4N(99.99%)以上、好ましくは4N5UP(99.995%)以上、さらに好ましくは5N(99.999%)以上である。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 添加元素Xとしては、ニッケル、コバルト、マグネシウム、カルシウム、塩素、フッ素、アルミニウム、マンガン、チタン、ジルコニウム、イットリウム、バナジウム、鉄、クロム、ニオブ、ランタン、ハフニウム、亜鉛、ケイ素、硫黄、リン、ホウ素、及びヒ素の中から選ばれる一または複数を用いることができる。また、添加元素Xとしては、上記の元素に加え、臭素、及びベリリウムを用いてもよい。ただし、臭素、及びベリリウムについては、生物に対し毒性を有する元素であるため、上述の添加元素Xを用いる方が好適である。
 ステップS43の添加元素X源823は、添加元素Xを含む水溶液、添加元素Xを含むアルコキシド、または添加元素Xを含む固体化合物の中から、任意の一以上を用いることができる。
 なお、合成の際に用いる添加元素X源としては、高純度の材料を用いると好ましい。具体的には、当該材料の純度としては、2N(99%)以上、好ましくは3N(99.9%)以上、さらに好ましくは4N(99.99%)以上である。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 次に、ステップS54として、ステップS53の混合物831を加熱する。加熱温度は混合物821とリチウム化合物822との融解点近傍の温度が好ましく、700℃以上1100℃未満で行うことが好ましく、800℃以上1000℃以下で行うことがより好ましく、800℃以上950℃以下がさらに好ましい。
 加熱時間は例えば1時間以上100時間以下とすることができ、2時間以上20時間以下とすることが好ましい。加熱は、酸素もしくは乾燥空気等の水が少ない酸素含有雰囲気(例えば露点が−50℃以下、より好ましくは露点が−80℃以下)で行うことが好ましい。なお、本実施の形態においては、露点−93℃の雰囲気にて、加熱を行うこととする。また、加熱は、CH、CO、CO、及びHの不純物濃度が、それぞれ5ppb(parts per billion)以下の雰囲気で行うと、材料中に混入しうる不純物が抑制できるため好適である。
 また、例えば、850℃で10時間加熱する場合、昇温は200℃/h、乾燥雰囲気の流量は10L/minとすることが好ましい。その後、加熱した材料を室温まで冷却することができる。例えば規定温度から室温までの降温時間を10時間以上50時間以下とすることが好ましい。ただし、ステップS54における室温までの冷却は必須ではない。
 なお、ステップS54の加熱の際に用いる、るつぼは不純物が混入しない材質であると好適である。本実施の形態においては、純度が99.9%のアルミナのるつぼを用いることとする。
 また、ステップS54にて加熱が終わった材料を回収する際に、るつぼから乳鉢へ移動させたのち、回収すると材料に不純物が混入しないため好適である。また、当該乳鉢についても、不純物が混入しない材質である好適である。具体的には、純度が90wt%以上、好ましくは純度が99wt%以上のアルミナの乳鉢を用いると好適である。
 次に、ステップS55において上記で焼成した材料を回収し、解砕した後にステップS61の混合物832を得る。必要に応じて解砕した後にふるいを実施してもよい。
 次に、ステップS62において、添加元素X源833を用意する。
 添加元素X源833が有する添加元素Xとしては、ニッケル、コバルト、マグネシウム、カルシウム、塩素、フッ素、アルミニウム、マンガン、チタン、ジルコニウム、イットリウム、バナジウム、鉄、クロム、ニオブ、ランタン、ハフニウム、亜鉛、ケイ素、硫黄、リン、ホウ素、及びヒ素の中から選ばれる一または複数を用いることができる。また、添加元素Xとしては、上記の元素に加え、臭素、及びベリリウムを用いてもよい。ただし、臭素、及びベリリウムについては、生物に対し毒性を有する元素であるため、上述の添加元素Xを用いる方が好適である。
 図10のステップS62の添加元素X源833は、添加元素Xを含む水溶液、添加元素Xを含むアルコキシド、または添加元素Xを含む固体化合物の中から、任意の一以上を用いることができる。例えば図10のステップS62の添加元素X源833として、図3Aおよび図3Bに、S62a、またはS62bとして示すように、一以上の添加元素Xを含む固体化合物を用意し、解砕、混合したもの(混合物843a、または混合物843b)を、ステップS62の添加元素X源833として用いてもよい。一以上の添加元素Xを含む固体化合物を用いる場合、解砕後に混合してもよく、もしくは、混合後に解砕してもよく、または、解砕せずに、ステップS62の添加元素X源833として用いてもよい。
 なお、合成の際に用いる添加元素X源としては、高純度の材料を用いると好ましい。具体的には、当該材料の純度としては、2N(99%)以上、好ましくは3N(99.9%)以上、さらに好ましくは4N(99.99%)以上である。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 次に、ステップS71して、ステップS61の混合物832と、ステップS62の添加元素X源833と、を混合する。混合後に、ステップS72にて回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS73の混合物841を得る。混合は乾式または湿式で行うことができる。混合には例えば自転公転ミキサー等のミキサー、ボールミル、及びビーズミル等を用いることができる。自転公転ミキサーとして、(株)シンキー製の自転公転方式ミキサーあわとり練太郎を用いる場合、例えば回転数を2000rpmとして、1.5分の処理を3回繰り返すとよい。ボールミルを用いる場合は、例えばメディアとしてジルコニアボールを用いることが好ましい。また、ボールミル、またはビーズミル等を用いる場合、メディアまたは材料からのコンタミネーションを抑制するために、周速を、100mm/s以上2000mm/s以下とすることが好ましい。例えば、周速838mm/s(回転数400rpm、ボールミルの直径40mm)として実施するとよい。
 次に、ステップS74として、ステップS73の混合物841を加熱する。加熱時、混合物841を入れた容器(るつぼ)には蓋をするとよい。原料ガスの不必要な蒸発を防ぐことができる。ステップS74の加熱の温度としては、500℃以上1100℃以下が好ましく、500℃以上1000℃以下がより好ましく、500℃以上950℃以下がさらに好ましく、500℃以上900℃以下がさらに好ましい。
 また、ステップS74の加熱において、ローラーハースキルンによる加熱をおこなってもよい。ローラーハースキルンにて加熱処理をする際、蓋を有する耐熱容器を用いて、混合物841を処理しても良い。
 加熱時間は例えば1時間以上100時間以下とすることができ、2時間以上20時間以下とすることが好ましい。加熱は、酸素もしくは乾燥空気等の水が少ない酸素含有雰囲気(例えば露点が−50℃以下、より好ましくは露点が−80℃以下)で行うことが好ましい。なお、本実施の形態においては、露点−93℃の雰囲気にて、加熱を行うこととする。また、加熱は、CH、CO、CO、及びHの不純物濃度が、それぞれ5ppb(parts per billion)以下の雰囲気で行うと、材料中に混入しうる不純物が抑制できるため好適である。
 また、例えば、850℃で10時間加熱する場合、昇温は200℃/h、乾燥雰囲気の流量は10L/minとすることが好ましい。その後、加熱した材料を室温まで冷却することができる。例えば規定温度から室温までの降温時間を10時間以上50時間以下とすることが好ましい。ただし、ステップS74における室温までの冷却は必須ではない。
 次に、ステップS75において上記で焼成した材料を回収し、解砕した後にステップS76の正極活物質100を得る。必要に応じて解砕した後にふるいを実施してもよい。以上の工程により、本発明の一態様の正極活物質100を作製することができる。
 正極活物質100は結晶性が高い方が好ましく、ステップS41の混合物821の結晶性が高い場合、正極活物質100の結晶性も高くなる。正極活物質100の結晶性が高く、さらには正極活物質100が単結晶粒を有すると、リチウムの出入りの結晶面を揃えることができる。リチウムの出入りの結晶面をより多く電解質に露出させることができると、電池特性が向上する。また正極活物質100の結晶性が高く、さらには正極活物質100が単結晶粒を有すると丈夫であり、充放電を繰り返しても劣化しづらい活物質を提供できる。
 なお、正極活物質100は、リチウム、遷移金属M、及び酸素を有する複合酸化物(LiMO)として、表す場合がある。ただし、本発明の一態様の正極活物質は、LiMOで表されるリチウム複合酸化物の結晶構造を有すればよく、その組成が厳密にLi:M:O=1:1:2に限定されるものではない。たとえば遷移金属Mとしてコバルト、マンガン、ニッケルの3種を用い、添加元素Xとしてアルミニウムを用いた場合、正極活物質100はNi、Co、Mn、及びAlを有する複合酸化物(NCMA)となる。NCMAとしては、Ni:Co:Mnの比率がNi:Co:Mn=1:1:1及びその近傍、9:0.5:0.5及びその近傍、8:1:1及びその近傍、6:2:2及びその近傍又は5:2:3及びその近傍のいずれかのNCMに対し、Alを添加すればよい。例えば、Ni:Co:Mn=8:1:1及びその近傍のとき、アルミニウムの濃度が0.1at%以上2at%以下であると好ましい。
 図10に示すように、遷移金属Mを導入する工程と、添加元素Xを導入する複数の工程と、を分けることにより、それぞれの元素濃度の深さ方向のプロファイルを変えることができる場合がある。例えば、粒子の内部に比べて表層部で添加元素Xの濃度を高めることができる。また、遷移金属Mの原子数を基準とし、該基準に対する添加元素Xの原子数の比を、内部よりも表層部において、より高くすることができる。NCMAにおいてアルミニウムの濃度が0.1at%以上2at%以下となる領域は粒子の表層部又は内部のどちらでもよい。
 また、本発明の一態様においては、合成の際に用いる遷移金属M源に高純度の材料を用い、且つ合成時において、不純物の混入が少ない工程にて正極活物質が作製される。また、遷移金属M源と、合成時における不純物の混入を徹底的に排除し、且つ所望の添加元素Xを制御して、正極活物質内に導入する作製方法とすることで、不純物濃度が低い領域と、添加元素Xが導入された領域と、が制御された正極活物質を得ることができる。また、本実施の形態に示す正極活物質は、高い結晶性を有する材料である。また、本発明の一態様の正極活物質の作製方法によって得られた正極活物質は、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
(実施の形態9)
 本実施の形態では、図11を用いて本発明の一態様の正極活物質の作製方法の例について説明する。
 図11のステップS21として遷移金属M源801、ステップS22として添加元素X源802を用意する。
 遷移金属Mとしては、例えば、マンガン、コバルト、ニッケルのうち少なくとも一を用いることができる。例えば、遷移金属Mとしては、コバルトのみを用いる場合、ニッケルのみを用いる場合、コバルトとマンガンの2種を用いる場合、コバルトとニッケルの2種を用いる場合、または、コバルト、マンガン、ニッケルの3種を用いる場合がある。遷移金属M源801は遷移金属Mを含む水溶液として用意する。
 遷移金属M源801として、コバルトを含む水溶液としては、硫酸コバルト水溶液または硝酸コバルト水溶液、などを用いることができ、ニッケルを含む水溶液としては、硫酸ニッケル水溶液または硝酸ニッケル水溶液、などを用いることができ、マンガンを含む水溶液としては、硫酸マンガン水溶液または硝酸マンガン水溶液、などを用いることができる。
 なお、合成の際に用いる遷移金属M源801としては、高純度の材料を用いると好ましい。具体的には、遷移金属Mを含む水溶液を用いる場合、水溶液を作成する際の、溶質材料の純度としては、2N(99%)以上、好ましくは3N(99.9%)以上、さらに好ましくは4N(99.99%)以上であり、水としては、好ましくは比抵抗が1MΩ・cm以上、より好ましくは比抵抗が10MΩ・cm以上、さらに好ましくは比抵抗が15MΩ・cm以上の、不純物が少ない純水であることが望ましい。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 添加元素Xとしては、ニッケル、コバルト、マグネシウム、カルシウム、塩素、フッ素、アルミニウム、マンガン、チタン、ジルコニウム、イットリウム、バナジウム、鉄、クロム、ニオブ、ランタン、ハフニウム、亜鉛、ケイ素、硫黄、リン、ホウ素、及びヒ素の中から選ばれる一または複数を用いることができる。また、添加元素Xとしては、上記の元素に加え、臭素、及びベリリウムを用いてもよい。ただし、臭素、及びベリリウムについては、生物に対し毒性を有する元素であるため、上述の添加元素Xを用いる方が好適である。
 添加元素X源802としては、添加元素Xを含む水溶液、添加元素Xを含むアルコキシド、または添加元素Xを含む固体化合物の中から、任意の一以上を用いることができる。ステップS22の添加元素X源802は、添加元素Xを含む水溶液として用意することが好ましい。
 なお、合成の際に用いる添加元素X源802としては、高純度の材料を用いると好ましい。具体的には、当該材料の純度としては、2N(99%)以上、好ましくは3N(99.9%)以上、さらに好ましくは4N(99.99%)以上である。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 次に、ステップS31として、上記の遷移金属M源801、および添加元素X源802を混合し、ステップS32の混合物811を得る。
 次に、ステップS33として水溶液A812、ステップS34として水溶液B813を用意する。
 水溶液A812として、グリシン、オキシン、1−ニトロソ−2−ナフトールもしくは2−メルカプトベンゾチアゾールなどのキレート剤のうち、少なくとも一を有する水溶液、またはアンモニア水、のいずれか一、または複数の混合液を用いることができる。
 水溶液B813として、水酸化ナトリウム水溶液、水酸化カリウム水溶液、または水酸化リチウム水溶液、のいずれか一、または複数の混合液を用いることができる。
 次に、ステップS35として、上記のステップS32の混合物811、水溶液A812、水溶液B813を混合する。
 ステップS35の混合の方法として、反応容器にいれた水溶液A812に対して、ステップS32の混合物811および水溶液B813を滴下する、という混合方法を用いることができる。ステップS32の混合物811を一定の速度で滴下するとともに、反応容器内の混合溶液のpHを所定の範囲に保つために、水溶液B813を適宜滴下することが望ましい。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、水溶液A812、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内のpHとして、好ましくは9以上11以下、より好ましくは10.0以上10.5以下にするとよい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 または、ステップS35の混合の方法として、反応容器に入れたステップS32の混合物811に対して、水溶液A812および水溶液B813を滴下する、という混合方法を用いることができる。反応容器内の、水溶液A812の溶質イオン濃度、および水酸基濃度を所定の範囲に保つために、水溶液A812および水溶液B813の滴下速度を調整することが好ましい。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、水溶液A812、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 または、ステップS35の混合の方法として、水溶液A812を用いない場合を説明する。反応容器に入れたステップS32の混合物811に対して、水溶液B813を一定量滴下して加える。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 または、ステップS35の混合の方法として、ステップS32の混合物811、水溶液A812、および水溶液B813、に加えて、純水を用いる場合を説明する。反応容器に入れた純水に対して、ステップS32の混合物811および水溶液A812を一定の速度で滴下するとともに、反応容器内の混合溶液のpHを所定の範囲に保つために、水溶液B813を適宜滴下することができる。ステップS35の混合において、反応容器内の溶液は撹拌翼またはスターラーで撹拌をおこなうことが望ましく、反応容器内の溶液、ステップS32の混合物811、水溶液A812、および水溶液B813は、Nバブリングによって溶存酸素を除去することが望ましい。ステップS35の混合において、反応容器内のpHとして、好ましくは9以上11以下、より好ましくは10.0以上10.5以下にするとよい。ステップS35の混合において、反応容器内の溶液の温度として、好ましくは40℃以上80℃以下、より好ましくは50℃以上70℃以下とするとよい。
 次に、ステップS35の混合によって形成された、遷移金属Mを有する水酸化物を含む溶液を、ステップS36として、ろ過した後に水で洗浄する。洗浄に用いる水は、好ましくは比抵抗が1MΩ・cm以上、より好ましくは比抵抗が10MΩ・cm以上、さらに好ましくは比抵抗が15MΩ・cm以上の、不純物が少ない純水であることが望ましい。不純物が少ない純水を洗浄に用いることで、遷移金属Mを有する水酸化物に含まれる不純物を除去することができる。これにより、高純度の遷移金属Mを有する水酸化物を、正極活物質100の前駆体として得ることができる。
 次に、ステップS36において、洗浄後の遷移金属Mを有する水酸化物を、乾燥し、回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS41の混合物821を得る。混合物821は正極活物質100の前駆体とも呼ぶ。前駆体は結晶性が高いことが好ましく、単結晶粒を有すると更に好ましい。すなわち前駆体は単結晶であることが好ましい。
 次に、ステップS42としてリチウム化合物822を用意し、ステップS43として添加元素X源823を用意する。ステップS51として、ステップS41の混合物821と、リチウム化合物822と、添加元素X源823と、を混合する。混合後に、ステップS52にて回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS53の混合物831を得る。混合は乾式または湿式で行うことができる。混合には例えば自転公転ミキサー等のミキサー、ボールミル、及びビーズミル等を用いることができる。自転公転ミキサーとして、(株)シンキー製の自転公転方式ミキサーあわとり練太郎を用いる場合、例えば回転数を2000rpmとして、1.5分の処理を3回繰り返すとよい。ボールミルを用いる場合は、例えばメディアとしてジルコニアボールを用いることが好ましい。また、ボールミル、またはビーズミル等を用いる場合、メディアまたは材料からのコンタミネーションを抑制するために、周速を、100mm/s以上2000mm/s以下とすることが好ましい。例えば、周速838mm/s(回転数400rpm、ボールミルの直径40mm)として実施するとよい。
 ステップS51にて十分に混合することで、混合物821と、リチウム化合物822とが均質に混ざることができ好ましい。
 リチウム化合物822としては、例えば、水酸化リチウム、炭酸リチウム、硝酸リチウム、フッ化リチウムなどを用いることができる。リチウム化合物822はリチウム源と呼ぶことがある。
 なお、合成の際に用いるリチウム化合物822としては、高純度の材料を用いると好ましい。具体的には、当該材料の純度としては、4N(99.99%)以上、好ましくは4N5UP(99.995%)以上、さらに好ましくは5N(99.999%)以上である。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 添加元素Xとしては、ニッケル、コバルト、マグネシウム、カルシウム、塩素、フッ素、アルミニウム、マンガン、チタン、ジルコニウム、イットリウム、バナジウム、鉄、クロム、ニオブ、ランタン、ハフニウム、亜鉛、ケイ素、硫黄、リン、ホウ素、及びヒ素の中から選ばれる一または複数を用いることができる。また、添加元素Xとしては、上記の元素に加え、臭素、及びベリリウムを用いてもよい。ただし、臭素、及びベリリウムについては、生物に対し毒性を有する元素であるため、上述の添加元素Xを用いる方が好適である。
 ステップS43の添加元素X源823は、添加元素Xを含む水溶液、添加元素Xを含むアルコキシド、または添加元素Xを含む固体化合物の中から、任意の一以上を用いることができる。
 なお、合成の際に用いる添加元素X源としては、高純度の材料を用いると好ましい。具体的には、当該材料の純度としては、2N(99%)以上、好ましくは3N(99.9%)以上、さらに好ましくは4N(99.99%)以上である。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 次に、ステップS54として、ステップS53の混合物831を加熱する。加熱温度は混合物821及びリチウム化合物822等の融解点近傍の温度が好ましく、700℃以上1100℃未満で行うことが好ましく、800℃以上1000℃以下で行うことがより好ましく、800℃以上950℃以下がさらに好ましい。加熱時、混合物831を入れた容器(るつぼ)には蓋をするとよい。原料ガスの不必要な蒸発を防ぐことができる。
 加熱時間は例えば1時間以上100時間以下とすることができ、2時間以上20時間以下とすることが好ましい。加熱は、酸素もしくは乾燥空気等の水が少ない酸素含有雰囲気(例えば露点が−50℃以下、より好ましくは露点が−80℃以下)で行うことが好ましい。なお、本実施の形態においては、露点−93℃の雰囲気にて、加熱を行うこととする。また、加熱は、CH、CO、CO、及びHの不純物濃度が、それぞれ5ppb(parts per billion)以下の雰囲気で行うと、材料中に混入しうる不純物が抑制できるため好適である。
 また、例えば、850℃で10時間加熱する場合、昇温は200℃/h、乾燥雰囲気の流量は10L/minとすることが好ましい。その後、加熱した材料を室温まで冷却することができる。例えば規定温度から室温までの降温時間を10時間以上50時間以下とすることが好ましい。ただし、ステップS54における室温までの冷却は必須ではない。
 なお、ステップS54の加熱の際に用いる、るつぼは不純物が混入しない材質であると好適である。本実施の形態においては、純度が99.9%のアルミナのるつぼを用いることとする。
 また、ステップS54にて加熱が終わった材料を回収する際に、るつぼから乳鉢へ移動させたのち、回収すると材料に不純物が混入しないため好適である。また、当該乳鉢についても、不純物が混入しない材質である好適である。具体的には、純度が90wt%以上、好ましくは純度が99wt%以上のアルミナの乳鉢を用いると好適である。
 次に、ステップS55において上記で焼成した材料を回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS61の混合物832を得る。
 次に、ステップS62において、添加元素X源833を用意する。
 添加元素X源833としては、ニッケル、コバルト、マグネシウム、カルシウム、塩素、フッ素、アルミニウム、マンガン、チタン、ジルコニウム、イットリウム、バナジウム、鉄、クロム、ニオブ、ランタン、ハフニウム、亜鉛、ケイ素、硫黄、リン、ホウ素、及びヒ素の中から選ばれる一または複数を用いることができる。また、添加元素X源としては、上記の元素に加え、臭素、及びベリリウムを用いてもよい。ただし、臭素、及びベリリウムについては、生物に対し毒性を有する元素であるため、上述の添加元素X源を用いる方が好適である。
 図11のステップS62の添加元素X源833は、添加元素Xを含む水溶液、添加元素Xを含むアルコキシド、または添加元素Xを含む固体化合物の中から、任意の一以上を用いることができる。例えば図11のステップS62の添加元素X源833として、図3Aおよび図3Bに、S62a、またはS62bとして示すように、一以上の添加元素Xを含む固体化合物を用意し、解砕、混合したもの(混合物843a、または混合物843b)を、ステップS62の添加元素X源833として用いてもよい。一以上の添加元素Xを含む固体化合物を用いる場合、解砕後に混合してもよく、もしくは、混合後に解砕してもよく、または、解砕せずに、ステップS62の添加元素X源833として用いてもよい。
 なお、合成の際に用いる添加元素X源としては、高純度の材料を用いると好ましい。具体的には、当該材料の純度としては、2N(99%)以上、好ましくは3N(99.9%)以上、さらに好ましくは4N(99.99%)以上である。高純度の材料を用いることで、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
 次に、ステップS71して、ステップS61の混合物832と、ステップS62の添加元素X源833と、を混合する。混合後に、ステップS72にて回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS73の混合物841を得る。混合は乾式または湿式で行うことができる。混合には例えば自転公転ミキサー等のミキサー、ボールミル、及びビーズミル等を用いることができる。自転公転ミキサーとして、(株)シンキー製の自転公転方式ミキサーあわとり練太郎を用いる場合、例えば回転数を2000rpmとして、1.5分の処理を3回繰り返すとよい。ボールミルを用いる場合は、例えばメディアとしてジルコニアボールを用いることが好ましい。また、ボールミル、またはビーズミル等を用いる場合、メディアまたは材料からのコンタミネーションを抑制するために、周速を、100mm/s以上2000mm/s以下とすることが好ましい。例えば、周速838mm/s(回転数400rpm、ボールミルの直径40mm)として実施するとよい。
 次に、ステップS74として、ステップS73の混合物841を加熱する。加熱時、混合物841を入れた容器(るつぼ)には蓋をするとよい。原料ガスの不必要な蒸発を防ぐことができる。ステップS74の加熱の温度としては、500℃以上1100℃以下が好ましく、500℃以上1000℃以下がより好ましく、500℃以上950℃以下がさらに好ましく、500℃以上900℃以下がさらに好ましい。
 また、ステップS74の加熱において、ローラーハースキルンによる加熱をおこなってもよい。ローラーハースキルンにて加熱処理をする際、蓋を有する耐熱容器を用いて、混合物841を処理しても良い。
 加熱時間は例えば1時間以上100時間以下とすることができ、2時間以上20時間以下とすることが好ましい。加熱は、酸素もしくは乾燥空気等の水が少ない酸素含有雰囲気(例えば露点が−50℃以下、より好ましくは露点が−80℃以下)で行うことが好ましい。なお、本実施の形態においては、露点−93℃の雰囲気にて、加熱を行うこととする。また、加熱は、CH、CO、CO、及びHの不純物濃度が、それぞれ5ppb(parts per billion)以下の雰囲気で行うと、材料中に混入しうる不純物が抑制できるため好適である。
 また、例えば、850℃で10時間加熱する場合、昇温は200℃/h、乾燥雰囲気の流量は10L/minとすることが好ましい。その後、加熱した材料を室温まで冷却することができる。例えば規定温度から室温までの降温時間を10時間以上50時間以下とすることが好ましい。ただし、ステップS74における室温までの冷却は必須ではない。
 次に、ステップS75において上記で焼成した材料を回収し、解砕した後にステップS76の正極活物質100を得る。必要に応じて解砕した後にふるいを実施してもよい。以上の工程により、本発明の一態様の正極活物質100を作製することができる。
 正極活物質100は結晶性が高い方が好ましく、ステップS41の混合物821の結晶性が高い場合、正極活物質100の結晶性も高くなる。正極活物質100の結晶性が高く、さらには正極活物質100が単結晶粒を有すると、リチウムの出入りの結晶面を揃えることができる。リチウムの出入りの結晶面をより多く電解質に露出させることができると、電池特性が向上する。また正極活物質100の結晶性が高く、さらには正極活物質100が単結晶粒を有すると丈夫であり、充放電を繰り返しても劣化しづらい活物質を提供できる。
 なお、正極活物質100は、リチウム、遷移金属M、及び酸素を有する複合酸化物(LiMO)として、表す場合がある。ただし、本発明の一態様の正極活物質は、LiMOで表されるリチウム複合酸化物の結晶構造を有すればよく、その組成が厳密にLi:M:O=1:1:2に限定されるものではない。たとえば遷移金属Mとしてコバルト、マンガン、ニッケルの3種を用い、添加元素Xとしてアルミニウムを用いた場合、正極活物質100はNi、Co、Mn、及びAlを有する複合酸化物(NCMA)となる。NCMAとしては、Ni:Co:Mnの比率がNi:Co:Mn=1:1:1及びその近傍、9:0.5:0.5及びその近傍、8:1:1及びその近傍、6:2:2及びその近傍又は5:2:3及びその近傍のいずれかのNCMに対し、Alを添加すればよい。例えば、Ni:Co:Mn=8:1:1及びその近傍のとき、アルミニウムの濃度が0.1at%以上2at%以下であると好ましい。
 図11に示すように、遷移金属Mを導入する工程と、添加元素Xを導入する複数の工程と、を分けることにより、それぞれの元素濃度の深さ方向のプロファイルを変えることができる場合がある。例えば、粒子の内部に比べて表層部で添加元素Xの濃度を高めることができる。また、遷移金属Mの原子数を基準とし、該基準に対する添加元素Xの原子数の比を、内部よりも表層部において、より高くすることができる。NCMAにおいてアルミニウムの濃度が0.1at%以上2at%以下となる領域は粒子の表層部又は内部のどちらでもよい。
 また、本発明の一態様においては、合成の際に用いる遷移金属M源に高純度の材料を用い、且つ合成時において、不純物の混入が少ない工程にて正極活物質が作製される。また、遷移金属M源と、合成時における不純物の混入を徹底的に排除し、且つ所望の添加元素Xを制御して、正極活物質内に導入する作製方法とすることで、不純物濃度が低い領域と、添加元素Xが導入された領域と、が制御された正極活物質を得ることができる。また、本実施の形態に示す正極活物質は、高い結晶性を有する材料である。また、本発明の一態様の正極活物質の作製方法によって得られた正極活物質は、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
(実施の形態10)
 本実施の形態では、図12を用いて本発明の一態様の正極活物質の作製方法の例について説明する。
 図12は、実施の形態1乃至実施の形態9のいずれか一で示されたステップを経て得られた正極活物質100に対して、リチウムを低減または除去するリチウム脱離工程であるステップS150を行う作製方法の例である。ステップS150としては、正極活物質100からリチウムを脱離させ、低減する方法であれば特に限定されず、充電反応又は溶液を用いた化学反応を行うことでリチウムを脱離させることができる。ステップS150は、得られた正極活物質100からリチウム量をおおよそ半減させることによって局部的に劣化させた部分を設ける工程とも言える。なお、本実施の形態においては、正極活物質100からリチウム量をおおよそ半減させる構成について例示するが、これに限定されない。正極活物質100から脱離させるリチウム量としては、5%以上95%以下、好ましくは30%以上70%以下、さらに好ましくは40%以上60%以下である。
 図12のステップS120として添加元素X1源を用意する。添加元素X1源としては、ニッケル、コバルト、マグネシウム、カルシウム、塩素、フッ素、アルミニウム、マンガン、チタン、ジルコニウム、イットリウム、バナジウム、鉄、クロム、ニオブ、ランタン、ハフニウム、亜鉛、ケイ素、硫黄、リン、ホウ素、及びヒ素の中から選ばれる一または複数を用いることができる。また、添加元素X1源としては、上記の元素に加え、臭素、及びベリリウムを用いてもよい。ただし、臭素、及びベリリウムについては、生物に対し毒性を有する元素であるため、上述の添加元素X1源を用いる方が好適である。
 添加元素X1としては、マグネシウム、フッ素、及びカルシウムいずれか一または複数を好適に用いることができ、ステップS150にてリチウム量をおおよそ半減させているため、リチウムを補充するために添加元素X1源としては、リチウムとの化合物、例えば、フッ化リチウム、フッ化マグネシウムを用いることが好ましい。
 ステップS131として、リチウムが脱離した正極活物質と、X1源とを混合する工程を有する。混合後に、ステップS132にて回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS133の混合物907を得る。混合は乾式または湿式で行うことができる。混合には例えば自転公転ミキサー等のミキサー、ボールミル、及びビーズミル等を用いることができる。自転公転ミキサーとして、(株)シンキー製の自転公転方式ミキサーあわとり練太郎を用いる場合、例えば回転数を2000rpmとして、1.5分の処理を3回繰り返すとよい。ボールミルを用いる場合は、例えばメディアとしてジルコニアボールを用いることが好ましい。
 次に、ステップS134として、ステップS132で回収された混合物907を加熱する。加熱温度はリチウムが脱離した正極活物質と、X1源との融解点近傍の温度が好ましく、700℃以上1100℃未満で行うことが好ましく、800℃以上1000℃以下で行うことがより好ましく、800℃以上950℃以下がさらに好ましい。
 加熱時間は例えば1時間以上100時間以下とすることができ、2時間以上20時間以下とすることが好ましい。加熱は、酸素もしくは乾燥空気等の水が少ない酸素含有雰囲気(例えば露点が−50℃以下、より好ましくは露点が−80℃以下)で行うことが好ましい。なお、本実施の形態においては、露点−93℃の雰囲気にて、加熱を行うこととする。また、加熱は、CH、CO、CO、及びHの不純物濃度が、それぞれ5ppb(parts per billion)以下の雰囲気で行うと、材料中に混入しうる不純物が抑制できるため好適である。
 また、例えば、850℃で10時間加熱する場合、昇温は200℃/h、乾燥雰囲気の流量は10L/minとすることが好ましい。その後、加熱した材料を室温まで冷却することができる。例えば規定温度から室温までの降温時間を10時間以上50時間以下とすることが好ましい。ただし、ステップS134における室温までの冷却は必須ではない。
 なお、ステップS134の加熱の際に用いる、るつぼは不純物が混入しない材質であると好適である。本実施の形態においては、純度が99.9%のアルミナのるつぼを用いることとする。
 また、ステップS134にて加熱が終わった材料を回収する際に、るつぼから乳鉢へ移動させたのち、回収すると材料に不純物が混入しないため好適である。また、当該乳鉢についても、不純物が混入しない材質である好適である。具体的には、純度が90wt%以上、好ましくは純度が99wt%以上のアルミナの乳鉢を用いると好適である。
 次に、ステップS135において上記で焼成した材料を回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS136の混合物908を得る。
 そして、ステップS140として、添加元素X2源を準備する。添加元素X2源としては、ニッケル、コバルト、マグネシウム、カルシウム、塩素、フッ素、アルミニウム、マンガン、チタン、ジルコニウム、イットリウム、バナジウム、鉄、クロム、ニオブ、ランタン、ハフニウム、亜鉛、ケイ素、硫黄、リン、ホウ素、及びヒ素の中から選ばれる一または複数を用いることができる。また、添加元素X2源としては、上記の元素に加え、臭素、及びベリリウムを用いてもよい。ただし、臭素、及びベリリウムについては、生物に対し毒性を有する元素であるため、上述の添加元素X2源を用いる方が好適である。
 添加元素X2としては、ニッケル、チタン、ホウ素、ジルコニウム、及びアルミニウムの中から選ばれるいずれか一または複数を好適に用いることができる。
 ステップS151として、混合物908と、X2源とを混合する工程を有する。混合後に、ステップS152にて回収し、必要に応じて解砕、及びふるいを実施した後に、ステップS153の混合物909を得る。混合は乾式または湿式で行うことができる。混合には例えば自転公転ミキサー等のミキサー、ボールミル、及びビーズミル等を用いることができる。自転公転ミキサーとして、(株)シンキー製の自転公転方式ミキサーあわとり練太郎を用いる場合、例えば回転数を2000rpmとして、1.5分の処理を3回繰り返すとよい。ボールミルを用いる場合は、例えばメディアとしてジルコニアボールを用いることが好ましい。
 次に、ステップS154として、混合物909を加熱する。加熱温度は700℃以上1100℃未満で行うことが好ましく、800℃以上1000℃以下で行うことがより好ましく、800℃以上950℃以下がさらに好ましい。
 加熱時間は例えば1時間以上100時間以下とすることができ、2時間以上20時間以下とすることが好ましい。加熱は、酸素もしくは乾燥空気等の水が少ない酸素含有雰囲気(例えば露点が−50℃以下、より好ましくは露点が−80℃以下)で行うことが好ましい。なお、本実施の形態においては、露点−93℃の雰囲気にて、加熱を行うこととする。また、加熱は、CH、CO、CO、及びHの不純物濃度が、それぞれ5ppb(parts per billion)以下の雰囲気で行うと、材料中に混入しうる不純物が抑制できるため好適である。
 また、例えば、850℃で10時間加熱する場合、昇温は200℃/h、乾燥雰囲気の流量は10L/minとすることが好ましい。その後、加熱した材料を室温まで冷却することができる。例えば規定温度から室温までの降温時間を10時間以上50時間以下とすることが好ましい。ただし、ステップS154における室温までの冷却は必須ではない。
 なお、ステップS154の加熱の際に用いる、るつぼは不純物が混入しない材質であると好適である。本実施の形態においては、純度が99.9%のアルミナのるつぼを用いることとする。
 また、ステップS154にて加熱が終わった材料を回収する際に、るつぼから乳鉢へ移動させたのち、回収すると材料に不純物が混入しないため好適である。また、当該乳鉢についても、不純物が混入しない材質である好適である。具体的には、純度が90wt%以上、好ましくは純度が99wt%以上のアルミナの乳鉢を用いると好適である。
 次に、ステップS155において上記で焼成した材料を回収し、解砕した後にステップS176の正極活物質106を得る。必要に応じて解砕した後にふるいを実施してもよい。
 ステップS176として、正極活物質100に繰り返し金属酸化物、具体的にはアルミニウムまたはニッケルを添加させた正極活物質106を作製することができる。なお、ステップS150にて、正極活物質100からリチウム量をおおよそ半減させたのち、添加元素X1源、及び添加元素X2源を添加する工程を有するため、正極活物質100から、リチウムが引き抜かれ、局部的に劣化させた部分に選択的に添加元素X1又は添加元素X2を導入できる。添加元素X1又は添加元素X2が粒子内部まで導入されやすい。
 本発明の一態様の正極活物質の作製方法によって得られた正極活物質は、二次電池の容量を高めること、および/または二次電池の信頼性を高めることができる。
(実施の形態11)
 本実施の形態では、図13A乃至図14Cを用いて本発明の一態様の正極活物質について説明する。
 図13Aに正極活物質100の断面図を示す。正極活物質100は、複数の一次粒子101を有する。複数の一次粒子101の少なくとも一部は固着して二次粒子102を形成する。二次粒子とならない一次粒子101も存在する。二次粒子102の拡大図を図13Bに示す。正極活物質100は、空隙105を有していてもよい。なお図13Aおよび図13Bに示した一次粒子101および二次粒子102の形状は一例であり、これに限らない。
 本明細書等において一次粒子とは、SEM像、TEM像、STEM像等の顕微鏡像において明確な境界を持った固体と認められる最小単位である。また二次粒子とは、複数の一次粒子が焼結、固着または凝集した粒子である。このとき複数の一次粒子の間に働く結合力は問わない。共有結合、イオン結合、疎水性相互作用、ファンデルワールス力、その他の分子間相互作用のいずれであってもよいし、複数の結合力が働いていてもよい。また単に粒子という場合、一次粒子と二次粒子を含む。
<含有元素>
 正極活物質100は、リチウムと、遷移金属Mと、酸素と、添加元素Xと、を有する。
 正極活物質100はLiMOで表される複合酸化物に複数の添加元素Xが添加されたものといってもよい。ただし本発明の一態様の正極活物質はLiMOで表されるリチウム複合酸化物の結晶構造を有すればよく、その組成が厳密にLi:M:O=1:1:2に限定されるものではない。
 正極活物質100が有する遷移金属Mとしては、リチウムとともに空間群R−3mに属する層状岩塩型の複合酸化物を形成しうる金属を用いことが好ましい。たとえばマンガン、コバルト、ニッケルのうち少なくとも一を用いることができる。つまり正極活物質100が有する遷移金属としてコバルトのみを用いてもよいし、ニッケルのみを用いてもよいし、コバルトとマンガンの2種、またはコバルトとニッケルの2種を用いてもよいし、コバルト、マンガン、ニッケルの3種を用いてもよい。つまり正極活物質100は、コバルト酸リチウム、ニッケル酸リチウム、コバルトの一部がマンガンで置換されたコバルト酸リチウム、コバルトの一部がニッケルで置換されたコバルト酸リチウム、ニッケル−マンガン−コバルト酸リチウム等の、リチウムと遷移金属Mを含む複合酸化物を有することができる。
 特に正極活物質100が有する遷移金属Mとしてコバルトを75原子%以上、好ましくは90原子%以上、さらに好ましくは95原子%以上用いると、合成が比較的容易で取り扱いやすく、優れたサイクル特性を有するなど利点が多い。
 一方、正極活物質100が有する遷移金属Mとしてニッケルを33原子%以上、好ましくは60原子%以上、さらに好ましくは80原子%以上用いると、コバルトが多い場合と比較して原料が安価になる場合があり、また重量あたりの充放電容量が増加する場合があり好ましい。
 さらに遷移金属Mとしてコバルトと共に一部ニッケルを有すると、コバルトと酸素の八面体からなる層状構造のずれを抑制する場合がある。そのため特に高温での充電状態において結晶構造がより安定になる場合があり好ましい。これは、ニッケルがコバルト酸リチウム中の内部まで拡散しやすく、また放電時はコバルトサイトに存在しつつも充電時はカチオンミキシングしてリチウムサイトに位置しうると考えられるためである。充電時にリチウムサイトに存在するニッケルは、コバルトと酸素の八面体からなる層状構造を支える柱として機能し、結晶構造の安定化に寄与すると考えられる。
 なお遷移金属Mとして、必ずしもマンガンを含まなくてもよい。また必ずしもニッケルを含まなくてもよい。また必ずしもコバルトを含まなくてもよい。
 添加元素Xとしては、マグネシウム、フッ素、アルミニウム、チタン、ジルコニウム、イットリウム、バナジウム、鉄、クロム、ニオブ、ランタン、ハフニウム、亜鉛、ケイ素、硫黄、リン、ホウ素、ヒ素のうち少なくとも一を用いることが好ましい。
 特に、正極活物質100はリンを加えることで連続充電耐性を向上させることができ、安全性の高い二次電池とすることができ好ましい。
 また、マンガン、チタン、バナジウム、及びクロムは安定して4価を取りやすい材料であるため、正極活物質100の遷移金属Mに用いることで、構造安定性への寄与を高めることができる場合がある。
 これらの添加元素Xが、後述するように正極活物質100が有する結晶構造をより安定化させる場合がある。つまり正極活物質100は、マグネシウムおよびフッ素が添加されたコバルト酸リチウム、マグネシウムおよびフッ素が添加されたニッケルコバルト酸リチウム、マグネシウムおよびフッ素が添加されたコバルト−アルミニウム酸リチウム、ニッケルコバルト−アルミニウム酸リチウム、マグネシウムおよびフッ素が添加されたニッケルコバルト−アルミニウム酸リチウム、マグネシウムおよびフッ素が添加されたニッケルマンガン−コバルト酸リチウム、等を有することができる。コバルト酸リチウムにおいてマグネシウムの濃度は0.1at%以上2at%以下であると好ましい。なお本明細書等において添加元素Xの代わりに混合物、原料の一部、不純物などといってもよい。
 また正極活物質100中の添加元素Xは、LiMOで表される複合酸化物の結晶性を大きく変えることのない濃度で添加されることが好ましい。例えばヤーン・テラー効果等を発現しない程度の量であることが好ましい。
 なお添加元素Xとして、必ずしもマグネシウム、フッ素、アルミニウム、チタン、ジルコニウム、イットリウム、バナジウム、鉄、クロム、ニオブ、ランタン、ハフニウム、亜鉛、ケイ素、硫黄、リン、ホウ素、ヒ素を含まなくてもよい。
<元素の分布>
 正極活物質100中の添加元素Xのうち少なくとも一は濃度勾配を有することが好ましい。
 たとえば一次粒子101が表層部11aと内部11bを有し、表層部11aは内部11bよりも添加元素Xの濃度が高いことが好ましい。図13Aおよび図13Bでは、一次粒子101中の添加元素Xの濃度をグラデーションで示した。グラデーションが濃い、つまり黒に近いことは、添加元素Xの濃度が濃いことを意味し、薄い、つまり白に近いことは、添加元素Xの濃度が低いことを意味する。
 また一次粒子同士の界面103および界面103近傍における添加元素Xの濃度は、一次粒子101の内部11bよりも高いことが好ましい。本明細書等において界面103近傍とは、界面103から10nm程度までの領域をいうこととする。
 図13Bに示す正極活物質100の一点鎖線A−B間の、添加元素Xの濃度分布の一例を図14Aに示す。図14Aにおいて、横軸は図13Bにおける一点鎖線A−B間の距離を示し、縦軸は添加元素Xの濃度を示す。
 一次粒子101と比較して、界面103及び界面103の近傍は添加元素Xの濃度が高い領域を有する。なお、添加元素Xの濃度分布の形状は、図14Aに示した形状に限られない。
 さらに添加元素Xを複数有する場合、添加元素Xによって濃度のピーク位置が異なっていることが好ましい。
 たとえば図14Bに示すように、内部11bから表面に向かって高くなる濃度勾配を有することが好ましい添加元素Xとしてたとえばマグネシウム、フッ素およびチタンが挙げられる。
 また他の一部の添加元素Xは、図14Cに示すように、図14Bのように分布する添加元素Xよりも内部11bに近い領域に正極活物質100中の濃度のピークがあることが好ましい。このような分布が好ましい添加元素Xとしてたとえばアルミニウムが挙げられる。濃度のピークは表層部に存在してもよいし、表層部より深くてもよい。たとえば表面から5nm以上30nm以下の領域に濃度のピークを有することが好ましい。
 また添加元素Xの一部、たとえばマグネシウムは、図14Bに示すように内部11bから表面に向かって高くなる濃度勾配を有することが好ましいが、これに加えて一次粒子101の全体に薄く分布していることが好ましい。例えば、XPS等で測定される表層部11aのマグネシウム濃度が、ICP−MS等で測定される粒子全体の平均のマグネシウム濃度よりも高いことが好ましい。
 また、本発明の一態様の正極活物質100がコバルト以外の元素、例えばニッケル、アルミニウム、マンガン、鉄およびクロムから選ばれる一以上の金属を有する場合において、該金属の一次粒子101の表層部における濃度が、粒子全体の平均よりも高いことが好ましい。例えば、XPS等で測定される表層部11aのコバルト以外の元素の濃度が、ICP−MS等で測定される粒子全体の平均における該元素の濃度よりも高いことが好ましい。
 粒子表層部は、結晶内部と異なり結合が切断された状態である上に、充電時には表面からリチウムが抜けていくので内部11bよりもリチウム濃度が低くなりやすい部分である。そのため、不安定になりやすく結晶構造が崩れやすい部分である。表層部11aの添加元素Xの濃度が高ければ、結晶構造の変化をより効果的に抑制することができる。また表層部11aの添加元素Xの濃度が高いと、電解液が分解して生じたフッ酸に対する耐食性が向上することも期待できる。
 このように本発明の一態様の正極活物質100の表層部11aは内部11bよりも、添加元素Xの濃度が高い、内部11bと異なる組成であることが好ましい。またその組成として室温(25℃)で安定な結晶構造をとることが好ましい。そのため、表層部11aは内部11bと異なる結晶構造を有していてもよい。例えば、本発明の一態様の正極活物質100の表層部11aの少なくとも一部が、岩塩型の結晶構造を有していてもよい。また表層部11aと内部11bが異なる結晶構造を有する場合、表層部11aと内部11bの結晶の配向が概略一致していることが好ましい。
 ただし表層部11aが添加元素Xと酸素のみ、たとえばMgOのみ、またはMgOとCoO(II)が固溶した構造のみでは、リチウムの挿入脱離が難しくなってしまう。そのため表層部11aは少なくとも遷移金属Mを有し、放電状態においてはリチウムも有し、リチウムの挿入脱離の経路を有している必要がある。また、それぞれの添加元素Xよりも遷移金属Mの濃度が高いことが好ましい。
 なお本発明の一態様の正極活物質100はこれに限らない。濃度勾配を有さない添加元素Xを有していてもよい。
 なお遷移金属M、特にコバルトおよびニッケルは正極活物質100の全体に均一に固溶していることが好ましい。
 なお正極活物質100が有する遷移金属Mの一部、たとえばマンガンが内部11bから表面に向かって濃くなる濃度勾配を有していてもよい。
 添加元素Xが上述の分布であることで、充放電を経ても正極活物質100の劣化を低減できる。つまり、二次電池の劣化を抑制できる。また、安全性の高い二次電池とすることができる。
 一般的に、二次電池が充放電を繰り返すにつれ、二次電池が有する正極活物質からコバルトやマンガン等の遷移金属Mが電解液に溶出する、酸素が脱離する、結晶構造が不安定になる、といった副反応が生じ、正極活物質の劣化が進む場合がある。正極活物質が劣化することで、二次電池の容量が低下する等の劣化が進む場合がある。なお、本明細書等において、正極活物質の遷移金属Mが電解液に溶出する、酸素が脱離する、結晶構造が不安定になる等、正極活物質が化学的、構造的に変化することを正極活物質の劣化と呼ぶ場合がある。本明細書等において、二次電池の容量が低下することを二次電池の劣化と呼ぶ場合がある。
 正極活物質から溶出した金属は、負極で還元されて析出し、負極の電極反応を妨げる場合がある。負極に金属が析出することで、容量低下などの劣化が進む場合がある。
 充放電に伴うリチウムの挿入、脱離によって、正極活物質の結晶格子が膨張、収縮し、結晶格子の体積変化及びゆがみが生じる場合ある。結晶格子の体積変化及びゆがみは、正極活物質が割れる原因となり、容量低下などの劣化が進む場合がある。また、正極活物質の割れは、一次粒子同士の界面103が起点となる場合がある。
 二次電池内部が高温になり、正極活物質から酸素が脱離すると、二次電池の安全性が損なわれる可能性が考えられる。また、酸素の脱離により、正極活物質の結晶構造が変化し、容量低下などの劣化が進む場合がある。なお、充放電に伴うリチウムの挿入、脱離によっても正極活物質から酸素が脱離する場合がある。
 そこで、LiMOで表されるリチウム複合酸化物よりも化学的、構造的に安定な、添加元素Xまたは化合物(たとえば添加元素Xの酸化物)を表層部11aまたは界面103に有する正極活物質100とする。これにより正極活物質100が化学的、構造的に安定し、充放電による構造変化、体積変化及びゆがみを抑制できる。つまり、正極活物質100の結晶構造がより安定となり、充放電を繰り返しても結晶構造が変態することを抑制できる。また、正極活物質100の割れを抑制できる。つまり、容量低下などの劣化を抑制でき、好ましい。充電電圧が高く、充電時に正極に存在するリチウムの量がより少なくなる場合、結晶構造が不安定になり、劣化しやすくなる。本発明の一態様である正極活物質100を用いることで結晶構造をより安定にすることが出来るため、容量低下などの劣化を抑制でき、特に好ましい。
 本発明の一態様である正極活物質100は、結晶構造が安定であることから、正極活物質から遷移金属Mが溶出するのを抑制できる。つまり、容量低下などの劣化を抑制でき、好ましい。
 また、本発明の一態様である正極活物質100が一次粒子101同士の界面103に沿って割れた場合、割れた後の一次粒子101の表面に添加元素Xの化合物を有する。つまり、割れた後の正極活物質100においても副反応を抑制でき、正極活物質100の劣化を低減できる。つまり、二次電池の劣化を抑制できる。
<分析方法>
≪粒径≫
 本発明の一態様の正極活物質100の粒径は、大きすぎるとリチウムの拡散が難しくなる、集電体に塗工したときに活物質層の表面が粗くなりすぎる、等の問題がある。一方、小さすぎると、集電体への塗工時に活物質層を担持しにくくなる、電解液との反応が過剰に進む等の問題点も生じる。
 そのため、一次粒子101および二次粒子102を有する正極活物質100は、レーザ回折・散乱法の粒度分布計による平均粒子径(D50:メディアン径ともいう。)が、1μm以上100μm以下が好ましく、2μm以上40μm以下であることがより好ましく、5μm以上30μm以下がさらに好ましい。または1μm以上40μm以下が好ましい。または1μm以上30μm以下が好ましい。または2μm以上100μm以下が好ましい。または2μm以上30μm以下が好ましい。または5μm以上100μm以下が好ましい。または5μm以上40μm以下が好ましい。
 また、2つ以上の異なる粒径を有する正極活物質100を混合して用いてもよい。換言すれば、レーザ回折・散乱法により粒度分布を測定したとき複数のピークが生じる正極活物質100を用いてもよい。このとき、粉体パッキング密度が大きくなるような混合比とすると、二次電池の体積あたりの容量を向上させることができ好ましい。
 正極活物質100中の一次粒子101の大きさは、たとえば正極活物質100のXRDパターンの半値幅から求めることができる。一次粒子101は50nm以上200nm以下が好ましい。
≪XPS≫
 X線光電子分光(XPS)では、表面から2nm以上8nm以下(通常5nm程度)の深さまでの領域の分析が可能であるため、表層部11aの約半分の領域について、各元素の濃度を定量的に分析することができる。また、ナロースキャン分析をすれば元素の結合状態を分析することができる。なおXPSの定量精度は多くの場合±1原子%程度、検出下限は元素にもよるが約1原子%である。
 本発明の一態様の正極活物質100についてXPS分析をしたとき、添加元素Xの原子数は遷移金属Mの原子数の1.6倍以上6.0倍以下が好ましく、1.8倍以上4.0倍未満がより好ましい。添加元素Xがマグネシウム、遷移金属Mがコバルトである場合は、マグネシウムの原子数はコバルトの原子数の1.6倍以上6.0倍以下が好ましく、1.8倍以上4.0倍未満がより好ましい。またフッ素等のハロゲンの原子数は、遷移金属Mの原子数の0.2倍以上6.0倍以下が好ましく、1.2倍以上4.0倍以下がより好ましい。
 XPS分析を行う場合には例えば、X線源として単色化アルミニウムを用いることができる。出力はたとえば1486.6eVとすることができる。また、取出角は例えば45°とすればよい。このような測定条件であると上述のように表面から2nm以上8nm以下(通常5nm程度)の深さまでの領域の分析が可能である。
 また、本発明の一態様の正極活物質100についてXPS分析したとき、フッ素と他の元素の結合エネルギーを示すピークは682eV以上685eV未満であることが好ましく、684.3eV程度であることがさらに好ましい。これは、フッ化リチウムの結合エネルギーである685eV、およびフッ化マグネシウムの結合エネルギーである686eVのいずれとも異なる値である。つまり、本発明の一態様の正極活物質100がフッ素を有する場合、フッ化リチウムおよびフッ化マグネシウム以外の結合であることが好ましい。
 さらに、本発明の一態様の正極活物質100についてXPS分析したとき、マグネシウムと他の元素の結合エネルギーを示すピークは、1302eV以上1304eV未満であることが好ましく、1303eV程度であることがさらに好ましい。これは、フッ化マグネシウムの結合エネルギーである1305eVと異なる値であり、酸化マグネシウムの結合エネルギーに近い値である。つまり、本発明の一態様の正極活物質100がマグネシウムを有する場合、フッ化マグネシウム以外の結合であることが好ましい。
 表層部11aに多く存在することが好ましい添加元素X、たとえばマグネシウム、アルミニウムおよびチタン等は、XPS等で測定される濃度が、ICP−MS(誘導結合プラズマ質量分析)、あるいはGD−MS(グロー放電質量分析法)等で測定される濃度よりも高いことが好ましい。
 マグネシウム、アルミニウムおよびチタン等は、加工によりその断面を露出させ、断面をTEM−EDXを用いて分析する場合に、表層部11aの濃度が、内部11bの濃度に比べて高いことが好ましい。たとえば、TEM−EDX分析において、マグネシウムの濃度はピークトップから深さ1nmの点でピークの60%以下に減衰することが好ましい。またピークトップから深さ2nmの点でピークの30%以下に減衰することが好ましい。加工は例えばFIB(収束イオンビーム)装置により行うことができる。
 XPS(X線光電子分光)の分析において、マグネシウムの原子数はコバルトの原子数の0.4倍以上1.5倍以下であることが好ましい。一方ICP−MSの分析によるマグネシウムの原子数の比Mg/Coは0.001以上0.06以下であることが好ましい。
 一方、遷移金属Mに含まれるニッケルは表層部11aに偏在せず、正極活物質100全体に分布していることが好ましい。
≪EPMA≫
 EPMA(電子プローブ微小分析)は元素の定量が可能である。面分析ならば各元素の分布を分析することができる。
 EPMAでは表面から約1μm程度の深さまでの領域を分析する。そのため、各元素の濃度は他の分析法を用いた測定結果と異なる場合がある。たとえば正極活物質100の表面分析を行ったとき、表層部に存在する添加元素Xの濃度が、XPSの結果より低くなる場合がある。また表層部に存在する添加元素Xの濃度が、ICP−MSの結果または正極活物質の作製の過程における原料の配合の値より高くなる場合がある。
 本発明の一態様の正極活物質100の断面についてEPMA面分析をしたとき、添加元素Xの濃度が内部から表面に向かって高くなる濃度勾配を有することが好ましい。より詳細には、図14Bに示すようにマグネシウム、フッ素、チタンは内部から表面に向かって高くなる濃度勾配を有することが好ましい。また図14Cに示すようにアルミニウムは上記元素の濃度のピークよりも深い領域に濃度のピークを有することが好ましい。アルミニウム濃度のピークは表層部に存在してもよいし、表層部より深くてもよい。
 なお本発明の一態様の正極活物質の表面には、正極活物質作製後に化学吸着した炭酸、ヒドロキシ基等は含まないとする。また正極活物質の表面に付着した電解液、バインダ、導電剤、またはこれら由来の化合物も含まないとする。そのため正極活物質が有する元素を定量するときは、XPSおよびEPMAをはじめとする表面分析で検出されうる炭素、水素、過剰な酸素、過剰なフッ素等を除外する補正をしてもよい。例えば、XPSでは結合の種類を解析で分離することが可能であり、バインダ由来のC−F結合を除外する補正をおこなってもよい。
 さらに各種分析に供する前に、正極活物質の表面に付着した電解液、バインダ、導電剤、またはこれら由来の化合物を除くために、正極活物質および正極活物質層等の試料に対して洗浄等を行ってもよい。このとき洗浄に用いる溶媒等にリチウムが溶け出す場合があるが、たとえその場合であっても、遷移金属Mおよび添加元素Xは溶け出しにくいため、遷移金属Mおよび添加元素Xの原子数比に影響があるものではない。
≪表面粗さと比表面積≫
 本発明の一態様の正極活物質100が有する一次粒子101は、表面がなめらかで凹凸が少ないことが好ましい。表面がなめらかで凹凸が少ないことは、表層部11aにおける添加元素Xの分布が良好であることを示す一つの要素である。
 一次粒子101の表面がなめらかで凹凸が少ないことは、たとえば正極活物質100の断面SEM像または断面TEM像等から判断することができる。
 たとえば以下のように、正極活物質100の断面SEM像から表面のなめらかさを数値化することができる。
 まず正極活物質100をFIB等により加工して断面を露出させる。このとき保護膜、保護剤等で正極活物質100を覆うことが好ましい。次に保護膜等と正極活物質100との界面のSEM像を撮影する。該SEM像に画像処理ソフトでノイズ処理を行う。たとえばガウスぼかし(σ=2)を行った後、二値化を行う。さらに画像処理ソフトで界面抽出を行う。さらに自動選択ツール等で保護膜等と正極活物質100との界面ラインを選択し、データを表計算ソフト等に抽出する。表計算ソフト等の機能を用いて、回帰曲線(二次回帰)から補正を行い、傾き補正後データからラフネス算出用パラメータを求め、標準偏差を算出した二乗平均平方根表面粗さ(RMS)を求めた。また、この表面粗さは、正極活物質は少なくとも粒子外周の400nmにおける表面粗さである。
 本実施の形態の正極活物質100が有する一次粒子101の表面においては、ラフネスの指標である粗さ(RMS)は3nm未満、好ましくは1nm未満、さらに好ましくは0.5nm未満の二乗平均平方根表面粗さ(RMS)であることが好ましい。
 なおノイズ処理、界面抽出等を行う画像処理ソフトについては特に限定されない。
 本実施の形態に記載する内容は他の実施の形態に記載する内容と組み合わせて用いることができる。
(実施の形態12)
 本実施の形態では、本発明の一態様の正極活物質を含むリチウムイオン二次電池について説明する。二次電池は、外装体、集電体、活物質(正極活物質、或いは負極活物質)、導電剤、及びバインダを少なくとも有している。また、リチウム塩などを溶解させた電解液を有している。電解液を用いる二次電池の場合、正極と、負極と、正極と負極の間にセパレータとを設ける。
[正極]
 正極は、正極活物質層および正極集電体を有する。正極活物質層は実施の形態1乃至実施の形態11で示した正極活物質を有することが好ましく、さらにバインダ、導電剤等を有していてもよい。
 図15は正極の断面の模式図の一例を示している。
 集電体550は金属箔であり、金属箔上にスラリーを塗布して乾燥させることによって正極を形成する。乾燥後、さらにプレスを加える場合もある。正極は、集電体550上に活物質層を形成したものである。
 スラリーとは、集電体550上に活物質層を形成するために用いる材料液であり、少なくとも活物質とバインダと溶媒を含有し、好ましくはさらに導電剤を混合させたものを指している。スラリーは電極用スラリーまたは活物質スラリーと呼ばれることもあり、正極活物質層を形成する場合には正極用スラリーを用い、負極活物質層を形成する場合には負極用スラリーと呼ばれることもある。
 導電剤は、導電付与剤、導電助剤とも呼ばれ、炭素材料が用いられる。複数の活物質の間に導電剤を付着させることで複数の活物質同士が電気的に接続され、導電性が高まる。なお、「付着」とは、活物質と導電剤が物理的に密着していることのみを指しているのではなく、共有結合が生じる場合、ファンデルワールス力により結合する場合、活物質の表面の一部を導電剤が覆う場合、活物質の表面凹凸に導電剤がはまりこむ場合、互いに接していなくとも電気的に接続される場合などを含む概念とする。
 導電剤として用いられる炭素材料として代表的なものにカーボンブラック(ファーネスブラック、アセチレンブラック、黒鉛など)がある。
 図15では、導電剤としてアセチレンブラック553、グラフェンおよびグラフェン化合物554およびカーボンナノチューブ555を図示している。なお、実施の形態1乃至実施の形態10で示した正極活物質100は、図15の活物質561に相当する。
 二次電池の正極として、金属箔などの集電体550と、活物質と、を固着させるために、バインダ(樹脂)を混合している。バインダは結着剤とも呼ばれる。バインダは高分子材料であり、バインダを多く含ませると正極における活物質の割合が低下して、二次電池の放電容量が小さくなる。そこでバインダの量は最小限に混合させている。
 グラフェンは電気的、機械的または化学的に驚異的な特性を有することから、グラフェンを利用した電界効果トランジスタおよび太陽電池等様々な分野の応用が期待される炭素材料である。
 本明細書等においてグラフェン化合物とは、多層グラフェン、マルチグラフェン、酸化グラフェン、多層酸化グラフェン、マルチ酸化グラフェン、還元された酸化グラフェン、還元された多層酸化グラフェン、還元されたマルチ酸化グラフェン等を含む。グラフェン化合物とは、炭素を有し、平板状、シート状等の形状を有し、炭素6員環で形成された二次元的構造を有するものをいう。また屈曲した形状を有することが好ましい。炭素シートといってもよい。官能基を有することが好ましい。またグラフェン化合物は丸まってカーボンナノファイバーのようになっていてもよい。
 グラフェンおよびグラフェン化合物は、高い導電性を有するという優れた電気特性と、高い柔軟性および高い機械的強度を有するという優れた物理特性と、を有する場合がある。また、グラフェンおよびグラフェン化合物はシート状の形状を有する。グラフェンおよびグラフェン化合物は、湾曲面を有する場合があり、接触抵抗の低い面接触を可能とする。また、薄くても導電性が非常に高い場合があり、少ない量で効率よく活物質層内で導電パスを形成することができる。そのため、グラフェンおよびグラフェン化合物を導電剤として用いることにより、活物質と導電剤との接触面積を増大させることができる。なお、グラフェンおよびグラフェン化合物が、正極活物質100中の二次粒子102の少なくとも一部の上に重なっていると好ましい。または、グラフェンおよびグラフェン化合物の形状が二次粒子102の形状の少なくとも一部に一致していると好ましい。該二次粒子102の形状とは、たとえば、単一の二次粒子102が有する凹凸、または複数の二次粒子102によって形成される凹凸をいう。また、グラフェン化合物が二次粒子102の少なくとも一部を囲んでいることが好ましい。また、グラフェン化合物は穴が空いていてもよい。
 なお、図15において、活物質561、グラフェンおよびグラフェン化合物554、アセチレンブラック553およびカーボンナノチューブ555で埋まっていない領域は、空隙またはバインダを指している。空隙は電解液の浸み込みに必要であるが、多すぎると電極密度が低下し、少なすぎると電解液が浸み込まず、二次電池とした後も空隙として残ってしまうとエネルギー密度が低下してしまう。
 なお導電剤として必ずしもアセチレンブラック553、グラフェンおよびグラフェン化合物554およびカーボンナノチューブ555の全てを有していなくてもよい。少なくとも一種の導電剤を有すればよい。
 実施の形態1乃至実施の形態11で示した正極活物質100を正極に用いることで高エネルギー密度かつ良好な出力特性をもつ二次電池を得ることができる。
 図15の正極を用い、正極上にセパレータを重ね、セパレータ上に負極を重ねた積層体を収容する容器(外装体、金属缶など)などに入れ、容器に電解液を充填させることで二次電池を作製することができる。
 また、上記構成は、電解液を用いる二次電池の例を示したが特に限定されない。
 例えば、実施の形態1乃至実施の形態11で示した正極活物質100を用いて半固体電池または全固体電池を作製することもできる。
 本明細書等において半固体電池とは、電解質層、正極、負極の少なくとも一に、半固体材料を有する電池をいう。ここでいう半固体とは、固体材料の比が50%であることは意味しない。半固体とは、体積変化が小さいといった固体の性質を有しつつも、柔軟性を有する等の液体に近い性質も一部持ち合わせることを意味する。これらの性質を満たせば、単一の材料でも、複数の材料であってもよい。たとえば液体の材料を、多孔質の固体材料に浸潤させた物であってもよい。
 また本明細書等において、ポリマー電解質二次電池とは、正極と負極の間の電解質層にポリマーを有する二次電池をいう。ポリマー電解質二次電池は、ドライ(または真性)ポリマー電解質電池、およびポリマーゲル電解質電池を含む。またポリマー電解質二次電池を半固体電池と呼んでもよい。
 実施の形態1乃至実施の形態11で示した正極活物質100を用いて半固体電池を作製した場合、半固体電池は、充放電容量の大きい二次電池となる。また、充放電電圧の高い半固体電池とすることができる。または、安全性または信頼性の高い半固体電池を実現することができる。
 また実施の形態1乃至実施の形態11のいずれか一で説明した正極活物質と、他の正極活物質を混合して用いてもよい。
 他の正極活物質としてはたとえばオリビン型の結晶構造、層状岩塩型の結晶構造、またはスピネル型の結晶構造を有する複合酸化物等がある。例えば、LiFePO、LiFeO、LiNiO、LiMn、V、Cr、MnO等の化合物があげられる。
 また、他の正極活物質としてLiMn等のマンガンを含むスピネル型の結晶構造を有するリチウム含有材料に、ニッケル酸リチウム(LiNiOまたはLiNi1−x(0<x<1)(M=Co、Al等))を混合すると好ましい。該構成とすることによって、二次電池の特性を向上させることができる。
 また、他の正極活物質として、組成式LiMnで表すことができるリチウムマンガン複合酸化物を用いることができる。ここで、元素Mは、リチウム、マンガン以外から選ばれた金属元素、またはシリコン、リンを用いることが好ましく、ニッケルであることがさらに好ましい。また、リチウムマンガン複合酸化物の粒子全体を測定する場合、放電時に0<a/(b+c)<2、かつc>0、かつ0.26≦(b+c)/d<0.5を満たすことが好ましい。なお、リチウムマンガン複合酸化物の粒子全体の金属、シリコン、リン等の組成は、例えばICP−MS(誘導結合プラズマ質量分析計)を用いて測定することができる。またリチウムマンガン複合酸化物の粒子全体の酸素の組成は、例えばEDX(エネルギー分散型X線分析法)を用いて測定することが可能である。また、ICPMS分析と併用して、融解ガス分析、XAFS(X線吸収微細構造)分析の価数評価を用いることで求めることができる。なお、リチウムマンガン複合酸化物とは、少なくともリチウムとマンガンとを含む酸化物をいい、クロム、コバルト、アルミニウム、ニッケル、鉄、マグネシウム、モリブデン、亜鉛、インジウム、ガリウム、銅、チタン、ニオブ、シリコン、およびリンなどからなる群から選ばれる少なくとも一種の元素を含んでいてもよい。
<バインダ>
 バインダとしては、例えば、スチレン−ブタジエンゴム(SBR)、スチレン−イソプレン−スチレンゴム、アクリロニトリル−ブタジエンゴム、ブタジエンゴム、エチレン−プロピレン−ジエン共重合体などのゴム材料を用いることが好ましい。またバインダとして、フッ素ゴムを用いることができる。
 また、バインダとしては、例えば水溶性の高分子を用いることが好ましい。水溶性の高分子としては、例えば多糖類などを用いることができる。多糖類としては、カルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ジアセチルセルロース、再生セルロースなどのセルロース誘導体、および澱粉などを用いることができる。また、これらの水溶性の高分子を、前述のゴム材料と併用して用いると、さらに好ましい。
 または、バインダとしては、ポリスチレン、ポリアクリル酸メチル、ポリメタクリル酸メチル(ポリメチルメタクリレート、PMMA)、ポリアクリル酸ナトリウム、ポリビニルアルコール(PVA)、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド、ポリイミド、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリエチレンテレフタレート、ナイロン、ポリフッ化ビニリデン(PVDF)、ポリアクリロニトリル(PAN)、エチレンプロピレンジエンポリマー、ポリ酢酸ビニル、ニトロセルロース等の材料を用いることが好ましい。
 バインダは上記のうち複数を組み合わせて使用してもよい。
 例えば粘度調整効果の特に優れた材料と、他の材料とを組み合わせて使用してもよい。例えばゴム材料等は接着力および弾性力に優れる反面、溶媒に混合した場合に粘度調整が難しい場合がある。このような場合には例えば、粘度調整効果の特に優れた材料と混合することが好ましい。粘度調整効果の特に優れた材料としては、例えば水溶性高分子を用いるとよい。また、粘度調整効果に特に優れた水溶性高分子としては、前述の多糖類、例えばカルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロースおよびジアセチルセルロース、再生セルロースなどのセルロース誘導体、または澱粉を用いることができる。
 なお、カルボキシメチルセルロースなどのセルロース誘導体は、例えばカルボキシメチルセルロースのナトリウム塩またはアンモニウム塩などの塩とすることにより溶解度が上がり、粘度調整剤としての効果を発揮しやすくなる。溶解度が高くなることにより電極のスラリーを作製する際に活物質および他の構成要素との分散性を高めることもできる。本明細書においては、電極のバインダとして使用するセルロースおよびセルロース誘導体としては、それらの塩も含むものとする。
 水溶性高分子は水に溶解することにより粘度を安定化させ、また活物質、またはバインダとして組み合わせる他の材料、例えばスチレンブタジエンゴムなどを、水溶液中に安定して分散させることができる。また、官能基を有するために活物質表面に安定に吸着しやすいことが期待される。また、例えばカルボキシメチルセルロースなどのセルロース誘導体は、例えば水酸基またはカルボキシル基などの官能基を有する材料が多く、官能基を有するために高分子同士が相互作用し、活物質表面を広く覆って存在することが期待される。
 活物質表面を覆う、または表面に接するバインダが膜を形成する場合には、不動態膜としての役割を果たして電解液の分解を抑える効果も期待される。ここで、不動態膜とは、電気の伝導性のない膜、または電気伝導性の極めて低い膜であり、例えば活物質の表面に不動態膜が形成された場合には、電池反応電位において、電解液の分解を抑制することができる。また、不動態膜は、電気の伝導性を抑えるとともに、リチウムイオンは伝導できるとさらに望ましい。
<正極集電体>
 集電体としては、ステンレス、金、白金、アルミニウム、チタン等の金属、及びこれらの合金など、導電性が高い材料をもちいることができる。また正極集電体に用いる材料は、正極の電位で溶出しないことが好ましい。また、シリコン、チタン、ネオジム、スカンジウム、モリブデンなどの耐熱性を向上させる元素が添加されたアルミニウム合金を用いることができる。また、シリコンと反応してシリサイドを形成する金属元素で形成してもよい。シリコンと反応してシリサイドを形成する金属元素としては、ジルコニウム、チタン、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、コバルト、ニッケル等がある。集電体は、箔状、板状、シート状、網状、パンチングメタル状、エキスパンドメタル状等の形状を適宜用いることができる。集電体は、厚みが5μm以上30μm以下のものを用いるとよい。
[負極]
 負極は、負極活物質層および負極集電体を有する。また、負極活物質層は負極活物質を有し、さらに導電剤およびバインダを有していてもよい。
<負極活物質>
 負極活物質としては、例えば合金系材料または炭素系材料、およびこれらの混合物等を用いることができる。
 負極活物質として、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素を用いることができる。例えば、シリコン、スズ、ガリウム、アルミニウム、ゲルマニウム、鉛、アンチモン、ビスマス、銀、亜鉛、カドミウム、インジウム等のうち少なくとも一つを含む材料を用いることができる。このような元素は炭素と比べて容量が大きく、特にシリコンは理論容量が4200mAh/gと高い。このため、負極活物質にシリコンを用いることが好ましい。また、これらの元素を有する化合物を用いてもよい。例えば、SiO、MgSi、MgGe、SnO、SnO、MgSn、SnS、VSn、FeSn、CoSn、NiSn、CuSn、AgSn、AgSb、NiMnSb、CeSb、LaSn、LaCoSn、CoSb、InSb、SbSn等がある。ここで、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素、および該元素を有する化合物等を合金系材料と呼ぶ場合がある。
 本明細書等において、SiOは例えば一酸化シリコンを指す。あるいはSiOは、SiOと表すこともできる。ここでxは1または1近傍の値を有することが好ましい。例えばxは、0.2以上1.5以下が好ましく、0.3以上1.2以下が好ましい。
 炭素系材料としては、黒鉛、易黒鉛化性炭素(ソフトカーボン)、難黒鉛化性炭素(ハードカーボン)、カーボンナノチューブ、グラフェン、カーボンブラック等を用いればよい。
 黒鉛としては、人造黒鉛、および天然黒鉛等が挙げられる。人造黒鉛としては例えば、メソカーボンマイクロビーズ(MCMB)、コークス系人造黒鉛、ピッチ系人造黒鉛等が挙げられる。ここで人造黒鉛として、球状の形状を有する球状黒鉛を用いることができる。例えば、MCMBは球状の形状を有する場合があり、好ましい。また、MCMBはその表面積を小さくすることが比較的容易であり、好ましい場合がある。天然黒鉛としては例えば、鱗片状黒鉛、球状化天然黒鉛等が挙げられる。
 黒鉛はリチウムイオンが黒鉛に挿入されたとき(リチウム−黒鉛層間化合物の生成時)にリチウム金属と同程度に低い電位を示す(0.05V以上0.3V以下 vs.Li/Li)。これにより、黒鉛を用いたリチウムイオン二次電池は高い作動電圧を示すことができる。さらに、黒鉛は、単位体積当たりの容量が比較的高い、体積膨張が比較的小さい、安価である、リチウム金属に比べて安全性が高い等の利点を有するため、好ましい。
 また、負極活物質として、二酸化チタン(TiO)、リチウムチタン酸化物(LiTi12)、リチウム−黒鉛層間化合物(Li)、五酸化ニオブ(Nb)、酸化タングステン(WO)、酸化モリブデン(MoO)等の酸化物を用いることができる。
 また、負極活物質として、リチウムと遷移金属の複窒化物である、LiN型構造をもつLi3−xN(M=Co、Ni、Cu)を用いることができる。例えば、Li2.6Co0.4は大きな充放電容量(900mAh/g、1890mAh/cm)を示し好ましい。
 リチウムと遷移金属の複窒化物を用いると、負極活物質中にリチウムイオンを含むため、正極活物質としてリチウムイオンを含まないV、Cr等の材料と組み合わせることができ好ましい。なお、正極活物質にリチウムイオンを含む材料を用いる場合でも、あらかじめ正極活物質に含まれるリチウムイオンを脱離させることで、負極活物質としてリチウムと遷移金属の複窒化物を用いることができる。
 また、コンバージョン反応が生じる材料を負極活物質として用いることもできる。例えば、酸化コバルト(CoO)、酸化ニッケル(NiO)、酸化鉄(FeO)等の、リチウムとの合金を作らない遷移金属酸化物を負極活物質に用いてもよい。コンバージョン反応が生じる材料としては、さらに、Fe、CuO、CuO、RuO、Cr等の酸化物、CoS0.89、NiS、CuS等の硫化物、Zn、CuN、Ge等の窒化物、NiP、FeP、CoP等のリン化物、FeF、BiF等のフッ化物でも起こる。
 負極活物質層が有することのできる導電剤およびバインダとしては、正極活物質層が有することのできる導電剤およびバインダと同様の材料を用いることができる。
<負極集電体>
 負極集電体には、正極集電体と同様の材料に加え、銅なども用いることができる。なお負極集電体は、リチウム等のキャリアイオンと合金化しない材料を用いることが好ましい。
[セパレータ]
 正極と負極の間にセパレータを配置する。セパレータとしては、例えば、紙をはじめとするセルロースを有する繊維、不織布、ガラス繊維、セラミックス、或いはナイロン(ポリアミド)、ビニロン(ポリビニルアルコール系繊維)、ポリエステル、アクリル、ポリオレフィン、ポリウレタンを用いた合成繊維等で形成されたものを用いることができる。セパレータは袋状に加工し、正極または負極のいずれか一方を包むように配置することが好ましい。
 セパレータは多層構造であってもよい。例えばポリプロピレン、ポリエチレン等の有機材料フィルムに、セラミック系材料、フッ素系材料、ポリアミド系材料、またはこれらを混合したもの等をコートすることができる。セラミック系材料としては、例えば酸化アルミニウム粒子、酸化シリコン粒子等を用いることができる。フッ素系材料としては、例えばPVDF、ポリテトラフルオロエチレン等を用いることができる。ポリアミド系材料としては、例えばナイロン、アラミド(メタ系アラミド、パラ系アラミド)等を用いることができる。
 セラミック系材料をコートすると耐酸化性が向上するため、高電圧充放電の際のセパレータの劣化を抑制し、二次電池の信頼性を向上させることができる。またフッ素系材料をコートするとセパレータと電極が密着しやすくなり、出力特性を向上させることができる。ポリアミド系材料、特にアラミドをコートすると、耐熱性が向上するため、二次電池の安全性を向上させることができる。
 例えばポリプロピレンのフィルムの両面に酸化アルミニウムとアラミドの混合材料をコートしてもよい。また、ポリプロピレンのフィルムの、正極と接する面に酸化アルミニウムとアラミドの混合材料をコートし、負極と接する面にフッ素系材料をコートしてもよい。
 多層構造のセパレータを用いると、セパレータ全体の厚さが薄くても二次電池の安全性を保つことができるため、二次電池の体積あたりの容量を大きくすることができる。
[電解液]
 電解液は、溶媒と電解質を有する。電解液の溶媒としては、非プロトン性有機溶媒が好ましく、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ギ酸メチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、1,3−ジオキサン、1,4−ジオキサン、ジメトキシエタン(DME)、ジメチルスルホキシド、ジエチルエーテル、メチルジグライム、アセトニトリル、ベンゾニトリル、テトラヒドロフラン、スルホラン、スルトン等の1種、又はこれらのうちの2種以上を任意の組み合わせおよび比率で用いることができる。
 また、電解液の溶媒として、難燃性および難揮発性であるイオン液体(常温溶融塩)を一つ又は複数用いることで、蓄電装置の内部短絡または、過充電等によって内部温度が上昇しても、蓄電装置の破裂および発火などを防ぐことができる。イオン液体は、カチオンとアニオンからなり、有機カチオンとアニオンとを含む。電解液に用いる有機カチオンとして、四級アンモニウムカチオン、三級スルホニウムカチオン、および四級ホスホニウムカチオン等の脂肪族オニウムカチオン、イミダゾリウムカチオンおよびピリジニウムカチオン等の芳香族カチオンが挙げられる。また、電解液に用いるアニオンとして、1価のアミド系アニオン、1価のメチド系アニオン、フルオロスルホン酸アニオン、パーフルオロアルキルスルホン酸アニオン、テトラフルオロボレートアニオン、パーフルオロアルキルボレートアニオン、ヘキサフルオロホスフェートアニオン、またはパーフルオロアルキルホスフェートアニオン等が挙げられる。
 また、上記の溶媒に溶解させる電解質としては、例えばLiPF、LiClO、LiAsF、LiBF、LiAlCl、LiSCN、LiBr、LiI、LiSO、Li10Cl10、Li12Cl12、LiCFSO、LiCSO、LiC(CFSO、LiC(CSO、LiN(CFSO、LiN(CSO)(CFSO)、LiN(CSO、リチウムビス(オキサレート)ボレート(Li(C、LiBOB)等のリチウム塩を一種、又はこれらのうちの二種以上を任意の組み合わせおよび比率で用いることができる。
 蓄電装置に用いる電解液は、粒状のごみまたは電解液の構成元素以外の元素(以下、単に「不純物」ともいう。)の含有量が少ない高純度化された電解液を用いることが好ましい。具体的には、電解液に対する不純物の重量比を1%以下、好ましくは0.1%以下、より好ましくは0.01%以下とすることが好ましい。
 また、電解液にビニレンカーボネート、プロパンスルトン(PS)、tert−ブチルベンゼン(TBB)、フルオロエチレンカーボネート(FEC)、リチウムビス(オキサレート)ボレート(LiBOB)、またスクシノニトリル、アジポニトリル等のジニトリル化合物などの添加剤を添加してもよい。添加剤の濃度は、例えば溶媒全体に対して0.1wt%以上5wt%以下とすればよい。
 また、ポリマーを電解液で膨潤させたポリマーゲル電解質を用いてもよい。
 ポリマーゲル電解質を用いることで、漏液性等に対する安全性が高まる。また、二次電池の薄型化および軽量化が可能である。
 ゲル化されるポリマーとして、シリコーンゲル、アクリルゲル、アクリロニトリルゲル、ポリエチレンオキサイド系ゲル、ポリプロピレンオキサイド系ゲル、フッ素系ポリマーのゲル等を用いることができる。例えばポリエチレンオキシド(PEO)などのポリアルキレンオキシド構造を有するポリマー、PVDF、およびポリアクリロニトリル、およびそれらを含む共重合体等を用いることができる。例えばPVDFとヘキサフルオロプロピレン(HFP)の共重合体であるPVDF−HFPを用いることができる。また、形成されるポリマーは、多孔質形状を有してもよい。
 また、電解液の代わりに、硫化物系または酸化物系等の無機物材料を有する固体電解質、またはPEO(ポリエチレンオキシド)系等の高分子材料を有する固体電解質を用いることができる。固体電解質を用いる場合には、セパレータまたはスペーサの設置が不要となる。また、電池全体を固体化できるため、漏液のおそれがなくなり安全性が飛躍的に向上する。
 よって、実施の形態1乃至実施の形態11で得られる正極活物質100は全固体電池にも応用が可能である。全固体電池に該正極スラリーまたは電極を応用することによって、安全性が高く、特性が良好な全固体電池を得ることができる。
[外装体]
 二次電池が有する外装体としては、例えばアルミニウムなどの金属材料または樹脂材料を用いることができる。また、フィルム状の外装体を用いることもできる。フィルムとしては、例えばポリエチレン、ポリプロピレン、ポリカーボネート、アイオノマー、ポリアミド等の材料からなる膜上に、アルミニウム、ステンレス、銅、ニッケル等の可撓性に優れた金属薄膜を設け、さらに該金属薄膜上に外装体の外面としてポリアミド系樹脂、ポリエステル系樹脂等の絶縁性合成樹脂膜を設けた三層構造のフィルムを用いることができる。
 本実施の形態に記載する内容は、他の実施の形態に記載する内容と組み合わせることができる。
(実施の形態13)
 本実施の形態では、先の実施の形態で説明した作製方法によって作製された正極または負極を有する二次電池の複数種類の形状の例について説明する。
[コイン型二次電池]
 コイン型の二次電池の一例について説明する。図16Aはコイン型(単層偏平型)の二次電池の分解斜視図であり、図16Bは、外観図であり、図16Cは、その断面図である。コイン型の二次電池は主に小型の電子機器に用いられる。本明細書等において、コイン型電池は、ボタン型電池を含む。
 図16Aでは、わかりやすくするために部材の重なり(上下関係、及び位置関係)がわかるように模式図としている。従って図16Aと図16Bは完全に一致する対応図とはしていない。
 図16Aでは、正極304、セパレータ310、負極307、スペーサ322、ワッシャー312を重ねている。これらを負極缶302と正極缶301で封止している。なお、図16Aにおいて、封止のためのガスケットは図示していない。スペーサ322、ワッシャー312は、正極缶301と負極缶302を圧着する際に、内部を保護または缶内の位置を固定するために用いられている。スペーサ322、ワッシャー312はステンレスまたは絶縁材料を用いる。
 正極集電体305上に正極活物質層306が形成された積層構造を正極304としている。
 正極と負極の短絡を防ぐため、セパレータ310と、リング状絶縁体313を正極304の側面及び上面を覆うようにそれぞれ配置する。セパレータ310は、正極304よりも広い平面面積を有している。
 図16Bは、完成したコイン型の二次電池の斜視図である。
 コイン型の二次電池300は、正極端子を兼ねた正極缶301と負極端子を兼ねた負極缶302とが、ポリプロピレン等で形成されたガスケット303で絶縁シールされている。正極304は、正極集電体305と、これと接するように設けられた正極活物質層306により形成される。また、負極307は、負極集電体308と、これに接するように設けられた負極活物質層309により形成される。また、負極307は、積層構造に限定されず、リチウム金属箔またはリチウムとアルミニウムの合金箔を用いてもよい。
 なお、コイン型の二次電池300に用いる正極304および負極307は、それぞれ活物質層は片面のみに形成すればよい。
 正極缶301、負極缶302には、電解液に対して耐食性のあるニッケル、アルミニウム、チタン等の金属、又はこれらの合金、およびこれらと他の金属との合金(例えばステンレス鋼等)を用いることができる。また、電解液などによる腐食を防ぐため、ニッケルおよびアルミニウム等を被覆することが好ましい。正極缶301は正極304と、負極缶302は負極307とそれぞれ電気的に接続する。
 これら負極307、正極304およびセパレータ310を電解液に浸し、図16Cに示すように、正極缶301を下にして正極304、セパレータ310、負極307、負極缶302をこの順で積層し、正極缶301と負極缶302とをガスケット303を介して圧着してコイン形の二次電池300を製造する。
 二次電池とすることで、高容量、且つ、充放電容量が高く、且つ、サイクル特性に優れたコイン型の二次電池300とすることができる。なお、負極307、正極304の間に二次電池とする場合にはセパレータ310を不要とすることもできる。
[円筒型二次電池]
 円筒型の二次電池の例について図17Aを参照して説明する。円筒型の二次電池616は、図17Aに示すように、上面に正極キャップ(電池蓋)601を有し、側面及び底面に電池缶(外装缶)602を有している。これら正極キャップ601と電池缶(外装缶)602とは、ガスケット(絶縁パッキン)610によって絶縁されている。
 図17Bは、円筒型の二次電池の断面を模式的に示した図である。図17Bに示す円筒型の二次電池は、上面に正極キャップ(電池蓋)601を有し、側面および底面に電池缶(外装缶)602を有している。これら正極キャップと電池缶(外装缶)602とは、ガスケット(絶縁パッキン)610によって絶縁されている。
 中空円柱状の電池缶602の内側には、帯状の正極604と負極606とがセパレータ605を間に挟んで捲回された電池素子が設けられている。図示しないが、電池素子は中心軸を中心に捲回されている。電池缶602は、一端が閉じられ、他端が開いている。電池缶602には、電解液に対して耐腐食性のあるニッケル、アルミニウム、チタン等の金属、又はこれらの合金、およびこれらと他の金属との合金(例えば、ステンレス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケルおよびアルミニウム等を電池缶602に被覆することが好ましい。電池缶602の内側において、正極、負極およびセパレータが捲回された電池素子は、対向する一対の絶縁板608、609により挟まれている。また、電池素子が設けられた電池缶602の内部は、非水電解液(図示せず)が注入されている。非水電解液は、コイン型の二次電池と同様のものを用いることができる。
 円筒型の蓄電池に用いる正極および負極は捲回するため、集電体の両面に活物質を形成することが好ましい。なお図17A乃至図17Dでは円筒の直径よりも円筒の高さの方が大きい二次電池616を図示したが、これに限らない。円筒の直径が、円筒の高さよりも大きい二次電池としてもよい。このような構成により、たとえば二次電池の小型化を図ることができる。
 実施の形態1乃至実施の形態11で得られる正極活物質100を正極604に用いることで、高容量、且つ、充放電容量が高く、且つ、サイクル特性に優れた円筒型の二次電池616とすることができる。
 正極604には正極端子(正極集電リード)603が接続され、負極606には負極端子(負極集電リード)607が接続される。正極端子603および負極端子607は、ともにアルミニウムなどの金属材料を用いることができる。正極端子603は安全弁機構613に、負極端子607は電池缶602の底にそれぞれ抵抗溶接される。安全弁機構613は、PTC素子(Positive Temperature Coefficient)611を介して正極キャップ601と電気的に接続されている。安全弁機構613は電池の内圧の上昇が所定の閾値を超えた場合に、正極キャップ601と正極604との電気的な接続を切断するものである。また、PTC素子611は温度が上昇した場合に抵抗が増大する熱感抵抗素子であり、抵抗の増大により電流量を制限して異常発熱を防止するものである。PTC素子には、チタン酸バリウム(BaTiO)系半導体セラミックス等を用いることができる。
 図17Cは蓄電システム615の一例を示す。蓄電システム615は複数の二次電池616を有する。それぞれの二次電池の正極は、絶縁体625で分離された導電体624に接触し、電気的に接続されている。導電体624は配線623を介して、制御回路620に電気的に接続されている。また、それぞれの二次電池の負極は、配線626を介して制御回路620に電気的に接続されている。制御回路620として、過充電または過放電を防止する保護回路等を適用することができる。
 図17Dは、蓄電システム615の一例を示す。蓄電システム615は複数の二次電池616を有し、複数の二次電池616は、導電板628及び導電板614の間に挟まれている。複数の二次電池616は、配線627により導電板628及び導電板614と電気的に接続される。複数の二次電池616は、並列接続されていてもよいし、直列接続されていてもよいし、並列に接続された後さらに直列に接続されていてもよい。複数の二次電池616を有する蓄電システム615を構成することで、大きな電力を取り出すことができる。
 複数の二次電池616が、並列に接続された後、さらに直列に接続されてもよい。
 複数の二次電池616の間に温度制御装置を有していてもよい。二次電池616が過熱されたときは、温度制御装置により冷却し、二次電池616が冷えすぎているときは温度制御装置により加熱することができる。そのため蓄電システム615の性能が外気温に影響されにくくなる。
 また、図17Dにおいて、蓄電システム615は制御回路620に配線621及び配線622を介して電気的に接続されている。配線621は導電板628を介して複数の二次電池616の正極に、配線622は導電板614を介して複数の二次電池616の負極に、それぞれ電気的に接続される。
[二次電池の他の構造例]
 二次電池の構造例について図18及び図19を用いて説明する。
 図18Aに示す二次電池913は、筐体930の内部に端子951と端子952が設けられた捲回体950を有する。捲回体950は、筐体930の内部で電解液中に浸される。端子952は、筐体930に接し、端子951は、絶縁材などを用いることにより筐体930に接していない。なお、図18Aでは、便宜のため、筐体930を分離して図示しているが、実際は、捲回体950が筐体930に覆われ、端子951及び端子952が筐体930の外に延在している。筐体930としては、金属材料(例えばアルミニウムなど)又は樹脂材料を用いることができる。
 なお、図18Bに示すように、図18Aに示す筐体930を複数の材料によって形成してもよい。例えば、図18Bに示す二次電池913は、筐体930aと筐体930bが貼り合わされており、筐体930a及び筐体930bで囲まれた領域に捲回体950が設けられている。
 筐体930aとしては、有機樹脂など、絶縁材料を用いることができる。特に、アンテナが形成される面に有機樹脂などの材料を用いることにより、二次電池913による電界の遮蔽を抑制できる。なお、筐体930aによる電界の遮蔽が小さければ、筐体930aの内部にアンテナを設けてもよい。筐体930bとしては、例えば金属材料を用いることができる。
 さらに、捲回体950の構造について図18Cに示す。捲回体950は、負極931と、正極932と、セパレータ933と、を有する。捲回体950は、セパレータ933を挟んで負極931と、正極932が重なり合って積層され、該積層シートを捲回させた捲回体である。なお、負極931と、正極932と、セパレータ933と、の積層を、さらに複数重ねてもよい。
 また、図19A乃至図19Cに示すような捲回体950aを有する二次電池913としてもよい。図19Aに示す捲回体950aは、負極931と、正極932と、セパレータ933と、を有する。負極931は負極活物質層931aを有する。正極932は正極活物質層932aを有する。
 実施の形態1乃至実施の形態11で得られる正極活物質100を正極932に用いることで、高容量、且つ、充放電容量が高く、且つ、サイクル特性に優れた二次電池913とすることができる。
 セパレータ933は、負極活物質層931aおよび正極活物質層932aよりも広い幅を有し、負極活物質層931aおよび正極活物質層932aと重畳するように捲回されている。また正極活物質層932aよりも負極活物質層931aの幅が広いことが安全性の点で好ましい。またこのような形状の捲回体950aは安全性および生産性がよく好ましい。
 図19Bに示すように、負極931は端子951と電気的に接続される。端子951は端子911aと電気的に接続される。また正極932は端子952と電気的に接続される。端子952は端子911bと電気的に接続される。
 図19Cに示すように、筐体930により捲回体950aおよび電解液が覆われ、二次電池913となる。筐体930には安全弁、過電流保護素子等を設けることが好ましい。安全弁は、電池破裂を防止するため、筐体930の内部が所定の内圧で開放する弁である。
 図19Bに示すように二次電池913は複数の捲回体950aを有していてもよい。複数の捲回体950aを用いることで、より充放電容量の大きい二次電池913とすることができる。図19Aおよび図19Bに示す二次電池913の他の要素は、図18A乃至図18Cに示す二次電池913の記載を参酌することができる。
<ラミネート型二次電池>
 次に、ラミネート型の二次電池の例について、外観図の一例を図20A及び図20Bに示す。図20A及び図20Bは、正極503、負極506、セパレータ507、外装体509、正極リード電極510及び負極リード電極511を有する。
 図21Aは正極503及び負極506の外観図を示す。正極503は正極集電体501を有し、正極活物質層502は正極集電体501の表面に形成されている。また、正極503は正極集電体501が一部露出する領域(以下、タブ領域という)を有する。負極506は負極集電体504を有し、負極活物質層505は負極集電体504の表面に形成されている。また、負極506は負極集電体504が一部露出する領域、すなわちタブ領域を有する。正極及び負極が有するタブ領域の面積および形状は、図21Aに示す例に限られない。
<ラミネート型二次電池の作製方法>
 ここで、図20Aに外観図を示すラミネート型二次電池の作製方法の一例について、図21B及び図21Cを用いて説明する。
 まず、負極506、セパレータ507及び正極503を積層する。図21Bに積層された負極506、セパレータ507及び正極503を示す。ここでは負極を5組、正極を4組使用する例を示す。負極とセパレータと正極からなる積層体とも呼べる。次に、正極503のタブ領域同士の接合と、最表面の正極のタブ領域への正極リード電極510の接合を行う。接合には、例えば超音波溶接等を用いればよい。同様に、負極506のタブ領域同士の接合と、最表面の負極のタブ領域への負極リード電極511の接合を行う。
 次に外装体509上に、負極506、セパレータ507及び正極503を配置する。
 次に、図21Cに示すように、外装体509を破線で示した部分で折り曲げる。その後、外装体509の外周部を接合する。接合には例えば熱圧着等を用いればよい。この時、後に電解液を入れることができるように、外装体509の一部(または一辺)に接合されない領域(以下、導入口という)を設ける。
 次に、外装体509に設けられた導入口から、電解液(図示しない。)を外装体509の内側へ導入する。電解液の導入は、減圧雰囲気下、或いは不活性雰囲気下で行うことが好ましい。そして最後に、導入口を接合する。このようにして、ラミネート型の二次電池500を作製することができる。
 実施の形態1乃至実施の形態11のいずれか一に示した正極活物質100を正極503に用いることで、高容量、且つ、充放電容量が高く、且つ、サイクル特性に優れた二次電池500とすることができる。
[電池パックの例]
 アンテナを用いて無線充電が可能な本発明の一態様の二次電池パックの例について、図22A乃至図22Cを用いて説明する。
 図21Aは、二次電池パック531の外観を示す図であり、厚さの薄い直方体形状(厚さのある平板形状とも呼べる)である。図22Bは二次電池パック531の構成を説明する図である。二次電池パック531は、回路基板540と、二次電池513と、を有する。二次電池513には、ラベル529が貼られている。回路基板540は、シール515により固定されている。また、二次電池パック531は、アンテナ517を有する。
 二次電池513の内部は、捲回体を有する構造にしてもよいし、積層体を有する構造にしてもよい。
 二次電池パック531において例えば、図22Bに示すように、回路基板540上に、制御回路590を有する。また、回路基板540は、端子514と電気的に接続されている。また回路基板540は、アンテナ517、二次電池513の正極リード及び負極リードの一方551、正極リード及び負極リードの他方552と電気的に接続される。
 あるいは、図22Cに示すように、回路基板540上に設けられる回路システム590aと、端子514を介して回路基板540に電気的に接続される回路システム590bと、を有してもよい。
 なお、アンテナ517はコイル状に限定されず、例えば線状、板状であってもよい。また、平面アンテナ、開口面アンテナ、進行波アンテナ、EHアンテナ、磁界アンテナ、誘電体アンテナ等のアンテナを用いてもよい。又は、アンテナ517は、平板状の導体でもよい。この平板状の導体は、電界結合用の導体の一つとして機能することができる。つまり、コンデンサの有する2つの導体のうちの一つの導体として、アンテナ517を機能させてもよい。これにより、電磁界、磁界だけでなく、電界で電力のやり取りを行うこともできる。
 二次電池パック531は、アンテナ517と、二次電池513との間に層519を有する。層519は、例えば二次電池513による電磁界を遮蔽することができる機能を有する。層519としては、例えば磁性体を用いることができる。
 本実施の形態の内容は他の実施の形態の内容と自由に組み合わせることができる。
(実施の形態14)
 本実施の形態では、実施の形態1乃至実施の形態11で示した正極活物質100を用いて全固体電池を作製する例を示す。
 図23Aに示すように、本発明の一態様の二次電池400は、正極410、固体電解質層420および負極430を有する。
 正極410は正極集電体413および正極活物質層414を有する。正極活物質層414は正極活物質411および固体電解質421を有する。正極活物質411には、実施の形態1乃至実施の形態11で示した正極活物質100を用いている。また正極活物質層414は、導電剤およびバインダを有していてもよい。
 固体電解質層420は固体電解質421を有する。固体電解質層420は、正極410と負極430の間に位置し、正極活物質411および負極活物質431のいずれも有さない領域である。
 負極430は負極集電体433および負極活物質層434を有する。負極活物質層434は負極活物質431および固体電解質421を有する。また負極活物質層434は、導電剤およびバインダを有していてもよい。なお、負極活物質431として金属リチウムを用いる場合は粒子にする必要がないため、図23Bのように、固体電解質421を有さない負極430とすることができる。負極430に金属リチウムを用いると、二次電池400のエネルギー密度を向上させることができ好ましい。
 固体電解質層420が有する固体電解質421としては、例えば硫化物系固体電解質、酸化物系固体電解質、ハロゲン化物系固体電解質等を用いることができる。
 硫化物系固体電解質には、チオリシコン系(Li10GeP12、Li3.25Ge0.250.75等)、硫化物ガラス(70LiS・30P、30LiS・26B・44LiI、63LiS・36SiS・1LiPO、57LiS・38SiS・5LiSiO、50LiS・50GeS等)、硫化物結晶化ガラス(Li11、Li3.250.95等)が含まれる。硫化物系固体電解質は、高い伝導度を有する材料がある、低い温度で合成可能、また比較的やわらかいため充放電を経ても導電経路が保たれやすい等の利点がある。
 酸化物系固体電解質には、ペロブスカイト型結晶構造を有する材料(La2/3−xLi3xTiO等)、NASICON型結晶構造を有する材料(Li1−YAlTi2−Y(PO等)、ガーネット型結晶構造を有する材料(LiLaZr12等)、LISICON型結晶構造を有する材料(Li14ZnGe16等)、LLZO(LiLaZr12)、酸化物ガラス(LiPO−LiSiO、50LiSiO・50LiBO等)、酸化物結晶化ガラス(Li1.07Al0.69Ti1.46(PO、Li1.5Al0.5Ge1.5(PO等)が含まれる。酸化物系固体電解質は、大気中で安定であるといった利点がある。
 ハロゲン化物系固体電解質には、LiAlCl、LiInBr、LiF、LiCl、LiBr、LiI等が含まれる。また、これらハロゲン化物系固体電解質を、ポーラス酸化アルミニウムまたはポーラスシリカの細孔に充填したコンポジット材料も固体電解質として用いることができる。
 また、異なる固体電解質を混合して用いてもよい。
 中でも、NASICON型結晶構造を有するLi1+xAlTi2−x(PO(0〔x〔1)(以下、LATP)は、アルミニウムとチタンという、本発明の一態様の二次電池400に用いる正極活物質が有してもよい元素を含むため、サイクル特性の向上について相乗効果が期待でき好ましい。また、工程の削減による生産性の向上も期待できる。なお本明細書等において、NASICON型結晶構造とは、M(XO(M:遷移金属、X:S、P、As、Mo、W等)で表される化合物であり、MO八面体とXO四面体が頂点を共有して3次元的に配列した構造を有するものをいう。
〔外装体と二次電池の形状〕
 本発明の一態様の二次電池400の外装体には、様々な材料および形状のものを用いることができるが、正極、固体電解質層および負極を加圧する機能を有することが好ましい。
 例えば図24は、全固体電池の材料を評価するセルの一例である。
 図24Aは評価セルの断面模式図であり、評価セルは、下部部材761と、上部部材762と、それらを固定する固定ねじまたは蝶ナット764を有し、押さえ込みねじ763を回転させることで電極用プレート753を押して評価材料を固定している。ステンレス材料で構成された下部部材761と、上部部材762との間には絶縁体766が設けられている。また上部部材762と、押さえ込みねじ763の間には密閉するためのOリング765が設けられている。
 評価材料は、電極用プレート751に載せられ、周りを絶縁管752で囲み、上方から電極用プレート753で押されている状態となっている。この評価材料周辺を拡大した斜視図が図24Bである。
 評価材料としては、正極750a、固体電解質層750b、負極750cの積層の例を示しており、断面図を図24Cに示す。なお、図24A乃至図24Cにおいて同じ箇所には同じ符号を用いる。
 正極750aと電気的に接続される電極用プレート751および下部部材761は、正極端子に相当するということができる。負極750cと電気的に接続される電極用プレート753および上部部材762は、負極端子に相当するということができる。電極用プレート751および電極用プレート753を介して評価材料に押圧をかけながら電気抵抗などを測定することができる。
 また、本発明の一態様の二次電池の外装体には、気密性に優れたパッケージを使用することが好ましい。例えばセラミックパッケージまたは樹脂パッケージを用いることができる。また、外装体を封止する際には、外気を遮断し、密閉した雰囲気下、例えばグローブボックス内で行うことが好ましい。
 図25Aに、図24と異なる外装体および形状を有する本発明の一態様の二次電池の斜視図を示す。図25Aの二次電池は、外部電極771、772を有し、複数のパッケージ部材を有する外装体で封止されている。
 図25A中の一点破線で切断した断面の一例を図25Bに示す。正極750a、固体電解質層750bおよび負極750cを有する積層体は、平板に電極層773aが設けられたパッケージ部材770aと、枠状のパッケージ部材770bと、平板に電極層773bが設けられたパッケージ部材770cと、で囲まれて封止された構造となっている。パッケージ部材770a、770b、770cには、絶縁材料、例えば樹脂材料およびセラミックを用いることができる。
 外部電極771は、電極層773aを介して電気的に正極750aと電気的に接続され、正極端子として機能する。また、外部電極772は、電極層773bを介して電気的に負極750cと電気的に接続され、負極端子として機能する。
 実施の形態1乃至実施の形態11のいずれか一に示した正極活物質100を用いることで、高エネルギー密度かつ良好な出力特性をもつ全固体二次電池を実現することができる。
 本実施の形態の内容は、他の実施の形態の内容と適宜組み合わせることができる。
(実施の形態15)
 本実施の形態では、円筒型の二次電池である図17Dとは異なる例である。図26Cを用いて電気自動車(EV)に適用する例を示す。
 電気自動車には、メインの駆動用の二次電池として第1のバッテリ1301a、1301bと、モータ1304を始動させるインバータ1312に電力を供給する第2のバッテリ1311が設置されている。第2のバッテリ1311はクランキングバッテリー(スターターバッテリーとも呼ばれる)とも呼ばれる。第2のバッテリ1311は高出力できればよく、大容量はそれほど必要とされず、第2のバッテリ1311の容量は第1のバッテリ1301a、1301bと比較して小さい。
 第1のバッテリ1301aの内部構造は、図18Aまたは図19Cに示した捲回型であってもよいし、図20Aまたは図20Bに示した積層型であってもよい。また、第1のバッテリ1301aは、全固体電池を用いてもよい。第1のバッテリ1301aに全固体電池を用いることで高容量とすることができ、安全性が向上し、小型化、軽量化することができる。
 本実施の形態では、第1のバッテリ1301a、1301bを2つ並列に接続させている例を示しているが3つ以上並列に接続させてもよい。また、第1のバッテリ1301aで十分な電力を貯蔵できるのであれば、第1のバッテリ1301bはなくてもよい。複数の二次電池を有する電池パックを構成することで、大きな電力を取り出すことができる。複数の二次電池は、並列接続されていてもよいし、直列接続されていてもよいし、並列に接続された後、さらに直列に接続されていてもよい。複数の二次電池を組電池とも呼ぶ。
 また、車載用の二次電池において、複数の二次電池からの電力を遮断するため、工具を使わずに高電圧を遮断できるサービスプラグまたはサーキットブレーカを有しており、第1のバッテリ1301aに設けられる。
 また、第1のバッテリ1301a、1301bの電力は、主にモータ1304を回転させることに使用されるが、DCDC回路1306を介して42V系の車載部品(電動パワステ1307、ヒーター1308、デフォッガ1309など)に電力を供給する。後輪にリアモータ1317を有している場合にも、第1のバッテリ1301aがリアモータ1317を回転させることに使用される。
 また、第2のバッテリ1311は、DCDC回路1310を介して14V系の車載部品(オーディオ1313、パワーウィンドウ1314、ランプ類1315など)に電力を供給する。
 また、第1のバッテリ1301aについて、図26Aを用いて説明する。
 図26Aでは9個の角型二次電池1300を一つの電池パック1415としている例を示している。また、9個の角型二次電池1300を直列接続し、一方の電極を絶縁体からなる固定部1413で固定し、もう一方の電極を絶縁体からなる固定部1414で固定している。本実施の形態では固定部1413、1414で固定する例を示しているが電池収容ボックス(筐体とも呼ぶ)に収納させる構成としてもよい。車両は外部(路面など)から振動または揺れが加えられることを想定されているため、固定部1413、1414および電池収容ボックスなどで複数の二次電池を固定することが好ましい。また、一方の電極は配線1421によって制御回路部1320に電気的に接続されている。またもう一方の電極は配線1422によって制御回路部1320に電気的に接続されている。
 また、制御回路部1320は、酸化物半導体を用いたトランジスタを含むメモリ回路を用いてもよい。酸化物半導体を用いたトランジスタを含むメモリ回路を有する充電制御回路、又は電池制御システムを、BTOS(Battery operating system、又はBattery oxide semiconductor)と呼称する場合がある。
 酸化物半導体として機能する金属酸化物を用いることが好ましい。例えば、酸化物として、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、又はマグネシウムから選ばれた一種、又は複数種)等の金属酸化物を用いるとよい。特に、酸化物として適用できるIn−M−Zn酸化物は、CAAC−OS(C−Axis Aligned Crystal Oxide Semiconductor)、CAC−OS(Cloud−Aligned Composite Oxide Semiconductor)であることが好ましい。また、酸化物として、In−Ga酸化物、In−Zn酸化物を用いてもよい。CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、またはCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。また、CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つまたは複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
 さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう。)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
 ここで、In−Ga−Zn酸化物におけるCAC−OSを構成する金属元素に対するIn、Ga、およびZnの原子数比のそれぞれを、[In]、[Ga]、および[Zn]と表記する。例えば、In−Ga−Zn酸化物におけるCAC−OSにおいて、第1の領域は、[In]が、CAC−OS膜の組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC−OS膜の組成における[Ga]よりも大きい領域である。または、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
 具体的には、上記第1の領域は、インジウム酸化物、インジウム亜鉛酸化物などが主成分である領域である。また、上記第2の領域は、ガリウム酸化物、ガリウム亜鉛酸化物などが主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
 なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
 例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
 CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、および良好なスイッチング動作を実現することができる。
 酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
 また、高温環境下で使用可能であるため、制御回路部1320は酸化物半導体を用いるトランジスタを用いることが好ましい。プロセスを簡略なものとするため、制御回路部1320は単極性のトランジスタを用いて形成してもよい。半導体層に酸化物半導体を用いるトランジスタは、動作周囲温度が単結晶Siよりも広く−40℃以上150℃以下であり、二次電池が加熱しても特性変化が単結晶に比べて小さい。酸化物半導体を用いるトランジスタのオフ電流は、150℃であっても温度によらず測定下限以下であるが、単結晶Siトランジスタのオフ電流特性は、温度依存性が大きい。例えば、150℃では、単結晶Siトランジスタはオフ電流が上昇し、電流オン/オフ比が十分に大きくならない。制御回路部1320は、安全性を向上することができる。また、実施の形態1乃至実施の形態11で示した正極活物質100を正極に用いた二次電池と組み合わせることで安全性についての相乗効果が得られる。
 酸化物半導体を用いたトランジスタを含むメモリ回路を用いた制御回路部1320は、マイクロショート等の不安定性の原因に対し、二次電池の自動制御装置として機能させることもできる。二次電池の不安定性の原因を解消する機能としては、過充電の防止、過電流の防止、充電時過熱制御、組電池でのセルバランス、過放電の防止、残量計、温度に応じた充電電圧及び電流量自動制御、劣化度に応じた充電電流量制御、マイクロショート異常挙動検知、マイクロショートに関する異常予測などが挙げられ、そのうちの少なくとも一つの機能を制御回路部1320が有する。また、二次電池の自動制御装置の超小型化が可能である。
 また、マイクロショートとは、二次電池の内部の微小な短絡のことを指しており、二次電池の正極と負極が短絡して充放電不可能の状態になるというほどではなく、微小な短絡部でわずかに短絡電流が流れてしまう現象を指している。比較的短時間、且つ、わずかな箇所であっても大きな電圧変化が生じるため、その異常な電圧値がその後の推定に影響を与える恐れがある。
 マイクロショートの原因の一つは、充放電が複数回行われることによって、正極活物質の不均一な分布により、正極の一部と負極の一部で局所的な電流の集中が生じ、セパレータの一部が機能しなくなる箇所が発生、または副反応による副反応物の発生によりミクロな短絡が生じていると言われている。
 また、マイクロショートの検知だけでなく、制御回路部1320は、二次電池の端子電圧を検知し、二次電池の充放電状態を管理するとも言える。例えば、過充電を防ぐために充電回路の出力トランジスタと遮断用スイッチの両方をほぼ同時にオフ状態とすることができる。
 また、図26Aに示す電池パック1415のブロック図の一例を図26Bに示す。
 制御回路部1320は、少なくとも過充電を防止するスイッチと、過放電を防止するスイッチを含むスイッチ部1324と、スイッチ部1324を制御する制御回路1322と、第1のバッテリ1301aの電圧測定部と、を有する。制御回路部1320は、使用する二次電池の上限電圧と下限電圧が設定されており、外部からの電流上限、および外部への出力電流の上限などを制限している。二次電池の下限電圧以上上限電圧以下の範囲内は、使用が推奨されている電圧範囲内であり、その範囲外となるとスイッチ部1324が作動し、保護回路として機能する。また、制御回路部1320は、スイッチ部1324を制御して過放電および過充電を防止するため、保護回路とも呼べる。例えば、過充電となりそうな電圧を制御回路1322で検知した場合にスイッチ部1324のスイッチをオフ状態とすることで電流を遮断する。さらに充放電経路中にPTC素子を設けて温度の上昇に応じて電流を遮断する機能を設けてもよい。また、制御回路部1320は、外部端子(+IN)1325と、外部端子(−IN)1326とを有している。
 スイッチ部1324は、nチャネル型のトランジスタおよびpチャネル型のトランジスタを組み合わせて構成することができる。スイッチ部1324は、単結晶シリコンを用いるSiトランジスタを有するスイッチに限定されず、例えば、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)、InP(リン化インジウム)、SiC(シリコンカーバイド)、ZnSe(セレン化亜鉛)、GaN(窒化ガリウム)、GaO(酸化ガリウム;xは0より大きい実数)などを有するパワートランジスタでスイッチ部1324を形成してもよい。また、OSトランジスタを用いた記憶素子は、Siトランジスタを用いた回路上などに積層することで自由に配置可能であるため、集積化を容易に行うことができる。またOSトランジスタは、Siトランジスタと同様の製造装置を用いて作製することが可能であるため、低コストで作製可能である。即ち、スイッチ部1324上にOSトランジスタを用いた制御回路部1320を積層し、集積化することで1チップとすることもできる。制御回路部1320の占有体積を小さくすることができるため、小型化が可能となる。
 第1のバッテリ1301a、1301bは、主に42V系(高電圧系)の車載機器に電力を供給し、第2のバッテリ1311は14V系(低電圧系)の車載機器に電力を供給する。
 本実施の形態では、第1のバッテリ1301aと第2のバッテリ1311の両方にリチウムイオン二次電池を用いる一例を示す。第2のバッテリ1311は鉛蓄電池、全固体電池、または電気二重層キャパシタを用いてもよい。例えば、実施の形態5の全固体電池を用いてもよい。第2のバッテリ1311に実施の形態5の全固体電池を用いることで高容量とすることができ、小型化、軽量化することができる。
 また、タイヤ1316の回転による回生エネルギーは、ギア1305を介してモータ1304に送られ、モータコントローラ1303およびバッテリーコントローラ1302から制御回路部1321を介して第2のバッテリ1311に充電される。またはバッテリーコントローラ1302から制御回路部1320を介して第1のバッテリ1301aに充電される。またはバッテリーコントローラ1302から制御回路部1320を介して第1のバッテリ1301bに充電される。回生エネルギーを効率よく充電するためには、第1のバッテリ1301a、1301bが急速充電可能であることが望ましい。
 バッテリーコントローラ1302は第1のバッテリ1301a、1301bの充電電圧及び充電電流などを設定することができる。バッテリーコントローラ1302は、用いる二次電池の充電特性に合わせて充電条件を設定し、急速充電することができる。
 また、図示していないが、外部の充電器と接続させる場合、充電器のコンセントまたは充電器の接続ケーブルは、バッテリーコントローラ1302に電気的に接続される。外部の充電器から供給された電力はバッテリーコントローラ1302を介して第1のバッテリ1301a、1301bに充電する。また、充電器によっては、制御回路が設けられており、バッテリーコントローラ1302の機能を用いない場合もあるが、過充電を防ぐため制御回路部1320を介して第1のバッテリ1301a、1301bを充電することが好ましい。また、接続ケーブルまたは充電器の接続ケーブルに制御回路を備えている場合もある。制御回路部1320は、ECU(Electronic Control Unit)と呼ばれることもある。ECUは、電動車両に設けられたCAN(Controller Area Network)に接続される。CANは、車内LANとして用いられるシリアル通信規格の一つである。また、ECUは、マイクロコンピュータを含む。また、ECUは、CPUまたはGPUを用いる。
 充電スタンドなどに設置されている外部の充電器は、100Vコンセント、200Vコンセント、3相200V且つ50kWなどがある。また、非接触給電方式等により外部の充電設備から電力供給を受けて、充電することもできる。
 急速充電を行う場合、短時間での充電を行うためには、高電圧での充電に耐えうる二次電池が望まれている。
 また、上述した本実施の形態の二次電池は、実施の形態1乃至実施の形態11で示した正極活物質100を用いている。さらに、導電剤としてグラフェンを用い、電極層を厚くして担持量を高くしても容量低下を抑え、高容量を維持することが相乗効果として大幅に電気特性が向上された二次電池を実現できる。特に車両に用いる二次電池に有効であり、車両全重量に対する二次電池の重量の割合を増加させることなく、航続距離が長い、具体的には一充電走行距離が500km以上の車両を提供することができる。
 特に上述した本実施の形態の二次電池は、実施の形態1乃至実施の形態11のいずれか一で説明した正極活物質100を用いることで二次電池の動作電圧を高くすることができ、充電電圧の増加に伴い、使用できる容量を増加させることができる。また、実施の形態1乃至実施の形態11で説明した正極活物質100を正極に用いることでサイクル特性に優れた車両用の二次電池を提供することができる。
 次に、本発明の一態様である二次電池を車両、代表的には輸送用車両に実装する例について説明する。
 また、図17D、図19C、図26Aのいずれか一に示した二次電池を車両に搭載すると、ハイブリッド車(HV)、電気自動車(EV)、又はプラグインハイブリッド車(PHV)等の次世代クリーンエネルギー自動車を実現できる。また、農業機械、電動アシスト自転車を含む原動機付自転車、自動二輪車、電動車椅子、電動カート、小型又は大型船舶、潜水艦、固定翼機および回転翼機等の航空機、ロケット、人工衛星、宇宙探査機、惑星探査機、宇宙船などの輸送用車両に二次電池を搭載することもできる。本発明の一態様の二次電池は高容量の二次電池とすることができる。そのため本発明の一態様の二次電池は、小型化、軽量化に適しており、輸送用車両に好適に用いることができる。
 図27A乃至図27Dにおいて、本発明の一態様を用いた輸送用車両を例示する。図27Aに示す自動車2001は、走行のための動力源として電気モータを用いる電気自動車である。または、走行のための動力源として電気モータとエンジンを適宜選択して用いることが可能なハイブリッド自動車である。二次電池を車両に搭載する場合、実施の形態4で示した二次電池の一例を一箇所または複数個所に設置する。図27Aに示す自動車2001は、電池パック2200を有し、電池パックは、複数の二次電池を接続させた二次電池モジュールを有する。さらに二次電池モジュールに電気的に接続する充電制御装置を有すると好ましい。
 また、自動車2001は、自動車2001が有する二次電池にプラグイン方式および非接触給電方式等により外部の充電設備から電力供給を受けて、充電することができる。充電に際しては、充電方法およびコネクタの規格等はCHAdeMO(登録商標)またはコンボ等の所定の方式で適宜行えばよい。二次電池は、商用施設に設けられた充電ステーションでもよく、また家庭の電源であってもよい。例えば、プラグイン技術によって、外部からの電力供給により自動車2001に搭載された蓄電装置を充電することができる。充電は、ACDCコンバータ等の変換装置を介して、交流電力を直流電力に変換して行うことができる。
 また、図示しないが、受電装置を車両に搭載し、地上の送電装置から電力を非接触で供給して充電することもできる。この非接触給電方式の場合には、道路または外壁に送電装置を組み込むことで、停車中に限らず走行中に充電を行うこともできる。また、この非接触給電の方式を利用して、2台の車両どうしで電力の送受電を行ってもよい。さらに、車両の外装部に太陽電池を設け、停車時および走行時に二次電池の充電を行ってもよい。このような非接触での電力の供給には、電磁誘導方式または磁界共鳴方式を用いることができる。
 図27Bは、輸送用車両の一例として電気により制御するモータを有した大型の輸送車2002を示している。輸送車2002の二次電池モジュールは、例えば公称電圧3.0V以上5.0V以下の二次電池を4個セルユニットとし、48セルを直列に接続した170Vの最大電圧とする。電池パック2201の二次電池モジュールを構成する二次電池の数などが違う以外は、図27Aと同様な機能を備えているので説明は省略する。
 図27Cは、一例として電気により制御するモータを有した大型の輸送車両2003を示している。輸送車両2003の二次電池モジュールは、例えば公称電圧3.0V以上5.0V以下の二次電池を百個以上直列に接続した600Vの最大電圧とする。実施の形態1乃至実施の形態11で説明した正極活物質100を正極用いた二次電池を用いることで、レート特性および充放電サイクル特性の良好な二次電池を製造することができ、輸送車両2003の高性能化および長寿命化に寄与することができる。また、電池パック2202の二次電池モジュールを構成する二次電池の数などが違う以外は、図26Aと同様な機能を備えているので説明は省略する。
 図27Dは、一例として燃料を燃焼するエンジンを有した航空機2004を示している。図27Dに示す航空機2004は、離着陸用の車輪を有しているため、輸送車両の一部とも言え、複数の二次電池を接続させて二次電池モジュールを構成し、二次電池モジュールと充電制御装置とを含む電池パック2203を有している。
 航空機2004の二次電池モジュールは、例えば4Vの二次電池を8個直列に接続した32Vの最大電圧とする。電池パック2203の二次電池モジュールを構成する二次電池の数などが違う以外は、図27Aと同様な機能を備えているので説明は省略する。
 本実施の形態の内容は、他の実施の形態の内容と適宜組み合わせることができる。
(実施の形態16)
 本実施の形態では、本発明の一態様である二次電池を建築物に実装する例について図28Aおよび図28Bを用いて説明する。
 図28Aに示す住宅は、本発明の一態様である二次電池を有する蓄電装置2612と、ソーラーパネル2610を有する。蓄電装置2612は、ソーラーパネル2610と配線2611等を介して電気的に接続されている。また蓄電装置2612と地上設置型の充電装置2604が電気的に接続されていてもよい。ソーラーパネル2610で得た電力は、蓄電装置2612に充電することができる。また蓄電装置2612に蓄えられた電力は、充電装置2604を介して車両2603が有する二次電池に充電することができる。蓄電装置2612は、床下空間部に設置されることが好ましい。床下空間部に設置することにより、床上の空間を有効的に利用することができる。あるいは、蓄電装置2612は床上に設置されてもよい。
 蓄電装置2612に蓄えられた電力は、住宅内の他の電子機器にも電力を供給することができる。よって、停電などにより商用電源から電力の供給が受けられない時でも、本発明の一態様に係る蓄電装置2612を無停電電源として用いることで、電子機器の利用が可能となる。
 図28Bに、本発明の一態様に係る蓄電装置700の一例を示す。図28Bに示すように、建物799の床下空間部796には、本発明の一態様に係る蓄電装置791が設置されている。また、蓄電装置791に実施の形態15に説明した制御回路を設けてもよく、実施の形態1乃至実施の形態11で示した正極活物質100を正極に用いた二次電池を蓄電装置791に用いることで長寿命な蓄電装置791とすることができる。
 蓄電装置791には、制御装置790が設置されており、制御装置790は、配線によって、分電盤703と、蓄電コントローラ705(制御装置ともいう)と、表示器706と、ルータ709と、に電気的に接続されている。
 商業用電源701から、引込線取付部710を介して、電力が分電盤703に送られる。また、分電盤703には、蓄電装置791と、商業用電源701と、から電力が送られ、分電盤703は、送られた電力を、コンセント(図示せず)を介して、一般負荷707及び蓄電系負荷708に供給する。
 一般負荷707は、例えば、テレビおよびパーソナルコンピュータなどの電気機器であり、蓄電系負荷708は、例えば、電子レンジ、冷蔵庫、空調機などの電気機器である。
 蓄電コントローラ705は、計測部711と、予測部712と、計画部713と、を有する。計測部711は、一日(例えば、0時から24時)の間に、一般負荷707、蓄電系負荷708で消費された電力量を計測する機能を有する。また、計測部711は、蓄電装置791の電力量と、商業用電源701から供給された電力量と、を計測する機能を有していてもよい。また、予測部712は、一日の間に一般負荷707及び蓄電系負荷708で消費された電力量に基づいて、次の一日の間に一般負荷707及び蓄電系負荷708で消費される需要電力量を予測する機能を有する。また、計画部713は、予測部712が予測した需要電力量に基づいて、蓄電装置791の充放電の計画を立てる機能を有する。
 計測部711によって計測された一般負荷707及び蓄電系負荷708で消費された電力量は、表示器706によって確認することができる。また、ルータ709を介して、テレビおよびパーソナルコンピュータなどの電気機器において、確認することもできる。さらに、ルータ709を介して、スマートフォンおよびタブレットなどの携帯電子端末によっても確認することができる。また、表示器706、電気機器、携帯電子端末によって、予測部712が予測した時間帯ごと(または一時間ごと)の需要電力量なども確認することができる。
 本実施の形態の内容は、他の実施の形態の内容と適宜組み合わせることができる。
(実施の形態17)
 本実施の形態では、二輪車、自転車に本発明の一態様である蓄電装置を搭載する例を示す。
 また、図29Aは、本発明の一態様の蓄電装置を用いた電動自転車の一例である。図29Aに示す電動自転車8700に、本発明の一態様の蓄電装置を適用することができる。本発明の一態様の蓄電装置は例えば、複数の蓄電池と、保護回路と、を有する。
 電動自転車8700は、蓄電装置8702を備える。蓄電装置8702は、運転者をアシストするモータに電気を供給することができる。また、蓄電装置8702は、持ち運びができ、図29Bに自転車から取り外した状態を示している。また、蓄電装置8702は、本発明の一態様の蓄電装置が有する蓄電池8701が複数内蔵されており、そのバッテリ残量などを表示部8703で表示できるようにしている。また蓄電装置8702は、異常検知が可能な制御回路8704を有する。制御回路8704は、蓄電池8701の正極及び負極と電気的に接続されている。また、制御回路8704に図25A及び図25Bで示した小型の固体二次電池を設けてもよい。図25A及び図25Bで示した小型の固体二次電池を制御回路8704に設けることで制御回路8704の有するメモリ回路のデータを長時間保持することに電力を供給することもできる。また、実施の形態1乃至実施の形態11で示した正極活物質100を正極に用いた二次電池と組み合わせることで安全性についての相乗効果が得られる。実施の形態1乃至実施の形態11で示した正極活物質100を正極に用いた二次電池及び制御回路8704は、二次電池による火災等の事故撲滅に大きく寄与することができる。
 また、図29Cは、本発明の一態様の蓄電装置を用いた二輪車の一例である。図29Cに示すスクータ8600は、蓄電装置8602、サイドミラー8601、方向指示灯8603を備える。蓄電装置8602は、方向指示灯8603に電気を供給することができる。また、実施の形態1乃至実施の形態11で示した正極活物質100を正極に用いた二次電池を複数収納された蓄電装置8602は高容量とすることができ、小型化に寄与することができる。
 また、図29Cに示すスクータ8600は、座席下収納8604に、蓄電装置8602を収納することができる。蓄電装置8602は、座席下収納8604が小型であっても、座席下収納8604に収納することができる。
 本実施の形態の内容は、他の実施の形態内容と適宜組み合わせることができる。
(実施の形態18)
 本実施の形態では、本発明の一態様である二次電池を電子機器に実装する例について説明する。二次電池を実装する電子機器として、例えば、テレビジョン装置(テレビ、又はテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。携帯情報端末としてはノート型パーソナルコンピュータ、タブレット型端末、電子書籍端末、携帯電話機などがある。
 図30Aは、携帯電話機の一例を示している。携帯電話機2100は、筐体2101に組み込まれた表示部2102の他、操作ボタン2103、外部接続ポート2104、スピーカ2105、マイク2106などを備えている。なお、携帯電話機2100は、二次電池2107を有している。実施の形態1乃至実施の形態11で示した正極活物質100を正極に用いた二次電池2107を備えることで高容量とすることができ、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
 携帯電話機2100は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。
 操作ボタン2103は、時刻設定のほか、電源のオン、オフ動作、無線通信のオン、オフ動作、マナーモードの実行及び解除、省電力モードの実行及び解除など、様々な機能を持たせることができる。例えば、携帯電話機2100に組み込まれたオペレーティングシステムにより、操作ボタン2103の機能を自由に設定することもできる。
 また、携帯電話機2100は、通信規格された近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。
 また、携帯電話機2100は外部接続ポート2104を備え、他の情報端末とコネクタを介して直接データのやりとりを行うことができる。また外部接続ポート2104を介して充電を行うこともできる。なお、充電動作は外部接続ポート2104を介さずに無線給電により行ってもよい。
 携帯電話機2100はセンサを有することが好ましい。センサとして例えば、指紋センサ、脈拍センサ、体温センサ等の人体センサ、タッチセンサ、加圧センサ、加速度センサ、等が搭載されることが好ましい。
 図30Bは複数のローター2302を有する無人航空機2300である。無人航空機2300はドローンと呼ばれることもある。無人航空機2300は、本発明の一態様である二次電池2301と、カメラ2303と、アンテナ(図示しない)を有する。無人航空機2300はアンテナを介して遠隔操作することができる。実施の形態1乃至実施の形態11で示した正極活物質100を正極に用いた二次電池は高エネルギー密度であり、安全性が高いため、長期間に渡って長時間の安全な使用ができ、無人航空機2300に搭載する二次電池として好適である。
 図30Cは、ロボットの一例を示している。図30Cに示すロボット6400は、二次電池6409、照度センサ6401、マイクロフォン6402、上部カメラ6403、スピーカ6404、表示部6405、下部カメラ6406および障害物センサ6407、移動機構6408、演算装置等を備える。
 マイクロフォン6402は、使用者の話し声及び環境音等を検知する機能を有する。また、スピーカ6404は、音声を発する機能を有する。ロボット6400は、マイクロフォン6402およびスピーカ6404を用いて、使用者とコミュニケーションをとることが可能である。
 表示部6405は、種々の情報の表示を行う機能を有する。ロボット6400は、使用者の望みの情報を表示部6405に表示することが可能である。表示部6405は、タッチパネルを搭載していてもよい。また、表示部6405は取り外しのできる情報端末であっても良く、ロボット6400の定位置に設置することで、充電およびデータの受け渡しを可能とする。
 上部カメラ6403および下部カメラ6406は、ロボット6400の周囲を撮像する機能を有する。また、障害物センサ6407は、移動機構6408を用いてロボット6400が前進する際の進行方向における障害物の有無を察知することができる。ロボット6400は、上部カメラ6403、下部カメラ6406および障害物センサ6407を用いて、周囲の環境を認識し、安全に移動することが可能である。
 ロボット6400は、その内部領域に本発明の一態様に係る二次電池6409と、半導体装置または電子部品を備える。実施の形態1乃至実施の形態11で示した正極活物質100を正極に用いた二次電池は高エネルギー密度であり、安全性が高いため、長期間に渡って長時間の安全な使用ができ、ロボット6400に搭載する二次電池6409として好適である。
 図30Dは、掃除ロボットの一例を示している。掃除ロボット6300は、筐体6301上面に配置された表示部6302、側面に配置された複数のカメラ6303、ブラシ6304、操作ボタン6305、二次電池6306、各種センサなどを有する。図示されていないが、掃除ロボット6300には、タイヤ、吸い込み口等が備えられている。掃除ロボット6300は自走し、ゴミ6310を検知し、下面に設けられた吸い込み口からゴミを吸引することができる。
 例えば、掃除ロボット6300は、カメラ6303が撮影した画像を解析し、壁、家具または段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシ6304に絡まりそうな物体を検知した場合は、ブラシ6304の回転を止めることができる。掃除ロボット6300は、その内部領域に本発明の一態様に係る二次電池6306と、半導体装置または電子部品を備える。実施の形態1乃至実施の形態11で示した正極活物質100を正極に用いた二次電池は高エネルギー密度であり、安全性が高いため、長期間に渡って長時間の安全な使用ができ、掃除ロボット6300に搭載する二次電池6306として好適である。
 図31Aは、ウェアラブルデバイスの例を示している。ウェアラブルデバイスは、電源として二次電池を用いる。また、使用者が生活または屋外で使用する場合において、防沫性能、耐水性能または防塵性能を高めるため、接続するコネクタ部分が露出している有線による充電だけでなく、無線充電も行えるウェアラブルデバイスが望まれている。
 例えば、図31Aに示すような眼鏡型デバイス4000に本発明の一態様である二次電池を搭載することができる。眼鏡型デバイス4000は、フレーム4000aと、表示部4000bを有する。湾曲を有するフレーム4000aのテンプル部に二次電池を搭載することで、軽量であり、且つ、重量バランスがよく継続使用時間の長い眼鏡型デバイス4000とすることができる。実施の形態1乃至実施の形態11で示した正極活物質100を正極に用いた二次電池は高エネルギー密度であり、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
 また、ヘッドセット型デバイス4001に本発明の一態様である二次電池を搭載することができる。ヘッドセット型デバイス4001は、少なくともマイク部4001aと、フレキシブルパイプ4001bと、イヤフォン部4001cを有する。フレキシブルパイプ4001b内またはイヤフォン部4001c内に二次電池を設けることができる。実施の形態1乃至実施の形態11で示した正極活物質100を正極に用いた二次電池は高エネルギー密度であり、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
 また、身体に直接取り付け可能なデバイス4002に本発明の一態様である二次電池を搭載することができる。デバイス4002の薄型の筐体4002aの中に、二次電池4002bを設けることができる。実施の形態1乃至実施の形態11で示した正極活物質100を正極に用いた二次電池は高エネルギー密度であり、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
 また、衣服に取り付け可能なデバイス4003に本発明の一態様である二次電池を搭載することができる。デバイス4003の薄型の筐体4003aの中に、二次電池4003bを設けることができる。実施の形態1乃至実施の形態11で示した正極活物質100を正極に用いた二次電池は高エネルギー密度であり、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
 また、ベルト型デバイス4006に本発明の一態様である二次電池を搭載することができる。ベルト型デバイス4006は、ベルト部4006aおよびワイヤレス給電受電部4006bを有し、ベルト部4006aの内部領域に、二次電池を搭載することができる。実施の形態1乃至実施の形態11で示した正極活物質100を正極に用いた二次電池は高エネルギー密度であり、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
 また、腕時計型デバイス4005に本発明の一態様である二次電池を搭載することができる。腕時計型デバイス4005は表示部4005aおよびベルト部4005bを有し、表示部4005aまたはベルト部4005bに、二次電池を設けることができる。実施の形態1乃至実施の形態11のいずれか一に示した正極活物質100を正極に用いた二次電池は高エネルギー密度であり、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
 表示部4005aには、時刻だけでなく、メールおよび電話の着信等、様々な情報を表示することができる。
 また、腕時計型デバイス4005は、腕に直接巻きつけるタイプのウェアラブルデバイスであるため、使用者の脈拍、血圧等を測定するセンサを搭載してもよい。使用者の運動量および健康に関するデータを蓄積し、健康を管理することができる。
 図31Bに腕から取り外した腕時計型デバイス4005の斜視図を示す。
 また、側面図を図31Cに示す。図31Cには、内部領域に二次電池913を内蔵している様子を示している。二次電池913は実施の形態4に示した二次電池である。二次電池913は表示部4005aと重なる位置に設けられており、高密度、且つ、高容量とすることができ、小型、且つ、軽量である。
 腕時計型デバイス4005においては、小型、且つ、軽量であることが求められるため、実施の形態1乃至実施の形態11で示した正極活物質100を二次電池913の正極に用いることで、高エネルギー密度、且つ、小型の二次電池913とすることができる。
 図31Dはワイヤレスイヤホンの例を示している。ここでは一対の本体4100aおよび本体4100bを有するワイヤレスイヤホンを図示するが、必ずしも一対でなくてもよい。
 本体4100aおよび4100bは、ドライバユニット4101、アンテナ4102、二次電池4103を有する。表示部4104を有していてもよい。また無線用IC等の回路が載った基板、充電用端子等を有することが好ましい。またマイクを有していてもよい。
 ケース4110は、二次電池4111を有する。また無線用IC、充電制御IC等の回路が載った基板、充電用端子を有することが好ましい。また表示部、ボタン等を有していてもよい。
 本体4100aおよび4100bは、スマートフォン等の他の電子機器と無線で通信することができる。これにより他の電子機器から送られた音データ等を本体4100aおよび4100bで再生することができる。また本体4100aおよび4100bがマイクを有すれば、マイクで取得した音を他の電子機器に送り、該電子機器により処理をした後の音データ再び本体4100aおよび4100bに送って再生することができる。これにより、たとえば翻訳機として用いることもできる。
 またケース4110が有する二次電池4111から、本体4100aが有する二次電池4103に充電を行うことができる。二次電池4111および二次電池4103としては先の実施の形態のコイン型二次電池、円筒形二次電池等を用いることができる。実施の形態1乃至実施の形態11で示した正極活物質100を正極に用いた二次電池は高エネルギー密度であり、二次電池4103および二次電池4111に用いることで、ワイヤレスイヤホンの小型化に伴う省スペース化に対応できる構成を実現することができる。
 本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
11a:表層部、11b:内部、100:正極活物質、101:一次粒子、102:二次粒子、103:界面、105:空隙、550:集電体、553:アセチレンブラック、554:グラフェン化合物、555:カーボンナノチューブ、561:活物質、801:遷移金属M源、802:添加元素X源、803:ニッケル源、804:コバルト源、805:マンガン源、811:混合物、812:水溶液A、813:水溶液B、821:混合物、822:リチウム化合物、823:添加元素X源、831:混合物、832:混合物、833:添加元素X源、833a:混合物、833b:混合物、834:マグネシウム源、835:フッ素源、836:混合物、841:混合物、842:混合物、843:添加元素X源、843a:混合物、843b:混合物、845:ニッケル源、846:アルミニウム源、847:混合物、851:混合物、863:混合物、907:混合物、908:混合物、909:混合物

Claims (5)

  1.  リチウムと、遷移金属と、を有する正極活物質の作製方法であって、
     前記遷移金属を有する水溶液と塩基性水溶液を少なくとも用いて、前記遷移金属を有する水酸化物を作製する第1のステップと、
     リチウム化合物を準備する第2のステップと、
     前記リチウム化合物と、前記水酸化物と、混合し、混合物を形成する第3のステップと、
     前記混合物を加熱し、前記リチウム、及び前記遷移金属を有する複合酸化物を形成する第4のステップと、を有し、
     前記第2のステップにおいて、前記リチウム化合物としては、99.99%以上の純度の材料を準備し、
     前記第4のステップにおける加熱は、露点が−50℃以下の酸素含有雰囲気中で行われる、
     正極活物質の作製方法。
  2.  リチウムと、ニッケルと、コバルトと、マンガンと、を有する正極活物質の作製方法であって、
     ニッケルを有する水溶液、コバルトを有する水溶液、およびマンガンを有する水溶液を混合した混合溶液、ならびに塩基性水溶液を少なくとも用いて、ニッケル、コバルト、およびマンガンを有する水酸化物を作製する第1のステップと、
     リチウム化合物を準備する第2のステップと、
     前記リチウム化合物と、前記水酸化物と、混合し、混合物を形成する第3のステップと、
     前記混合物を加熱し、前記リチウム、前記ニッケル、前記コバルト、および前記マンガンを有する複合酸化物を形成する第4のステップと、を有し、
     前記第2のステップにおいて、前記リチウム化合物としては、99.99%以上の純度の材料を準備し、
     前記第4のステップにおける加熱は、露点が−50℃以下の酸素含有雰囲気中で行われる、
     正極活物質の作製方法。
  3.  リチウムと、ニッケルと、コバルトと、マンガンと、アルミニウムと、を有する正極活物質の作製方法であって、
     ニッケルを有する水溶液、コバルトを有する水溶液、マンガンを有する水溶液、およびアルミニウムを有する水溶液を混合した混合溶液、ならびに塩基性水溶液を少なくとも用いて、ニッケル、コバルト、マンガン、およびアルミニウムを有する水酸化物を作製する第1のステップと、
     リチウム化合物を準備する第2のステップと、
     前記リチウム化合物と、前記水酸化物と、混合し、混合物を形成する第3のステップと、
     前記混合物を加熱し、前記リチウム、前記ニッケル、前記コバルト、前記マンガン、および前記アルミニウムを有する複合酸化物を形成する第4のステップと、を有し、
     前記第2のステップにおいて、前記リチウム化合物としては、99.99%以上の純度の材料を準備し、
     前記第4のステップにおける加熱は、露点が−50℃以下の酸素含有雰囲気中で行われる、
     正極活物質の作製方法。
  4.  リチウムと、ニッケルと、コバルトと、マンガンと、アルミニウムと、を有する正極活物質の作製方法であって、
     ニッケルを有する水溶液、コバルトを有する水溶液、およびマンガンを有する水溶液を混合した混合溶液、ならびに塩基性水溶液を少なくとも用いて、ニッケル、コバルト、およびマンガンを有する水酸化物を作製する第1のステップと、
     リチウム化合物およびアルミニウム源を準備する第2のステップと、
     前記リチウム化合物と、前記アルミニウム源と、前記水酸化物と、を混合し、混合物を形成する第3のステップと、
     前記混合物を加熱し、前記リチウム、前記ニッケル、前記コバルト、前記マンガンおよび前記アルミニウムを有する複合酸化物を形成する第4のステップと、を有し、
     前記第2のステップにおいて、前記リチウム化合物としては、99.99%以上の純度の材料を、前記アルミニウム源としては、99.9%以上の純度の材料を、それぞれ準備し、
     前記第4のステップにおける加熱は、露点が−50℃以下の酸素含有雰囲気中で行われる、
     正極活物質の作製方法。
  5.  リチウムと、ニッケルと、コバルトと、マンガンと、アルミニウムと、マグネシウムと、フッ素と、を有する正極活物質の作製方法であって、
     ニッケルを有する水溶液、コバルトを有する水溶液、およびマンガンを有する水溶液を混合した混合溶液、ならびに塩基性水溶液を少なくとも用いて、ニッケル、コバルト、およびマンガンを有する水酸化物を作製する第1のステップと、
     リチウム化合物およびアルミニウム源を準備する第2のステップと、
     前記リチウム化合物と、前記アルミニウム源と、前記水酸化物と、を混合し、第1の混合物を形成する第3のステップと、
     前記第1の混合物を加熱し、前記リチウム、前記ニッケル、前記コバルト、前記マンガンおよび前記アルミニウムを有する第1の複合酸化物を形成する第4のステップと、
     マグネシウム源およびフッ素源を準備する第5のステップと、
     前記第1の複合酸化物と、前記マグネシウム源と、前記フッ素源と、を混合し、第2の混合物を形成する第6のステップと、
     前記第2の混合物を加熱し、前記リチウム、前記ニッケル、前記コバルト、前記マンガン、前記アルミニウム、前記マグネシウム、および前記フッ素を有する第2の複合酸化物を形成する第7のステップを有し、
     前記第2のステップにおいて、前記リチウム化合物としては、99.99%以上の純度の材料を、前記アルミニウム源としては、99.9%以上の純度の材料を、それぞれ準備し、
     前記第5のステップにおいて、前記マグネシウム源としては、99%以上の純度の材料を、前記フッ素源としては、99%以上の純度の材料を、それぞれ準備し、
     前記第4のステップおよび前記第7のステップにおける加熱は、露点が−50℃以下の酸素含有雰囲気中で行われる、
     正極活物質の作製方法。
PCT/IB2021/057244 2020-08-20 2021-08-06 正極活物質の作製方法 WO2022038454A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180050208.2A CN115956063A (zh) 2020-08-20 2021-08-06 正极活性物质的制造方法
JP2022543812A JPWO2022038454A1 (ja) 2020-08-20 2021-08-06
KR1020237005521A KR20230053601A (ko) 2020-08-20 2021-08-06 양극 활물질의 제작 방법
US18/040,286 US20230286825A1 (en) 2020-08-20 2021-08-06 Manufacturing method of positive electrode active material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020139681 2020-08-20
JP2020-139681 2020-08-20
JP2020150429 2020-09-08
JP2020-150429 2020-09-08

Publications (1)

Publication Number Publication Date
WO2022038454A1 true WO2022038454A1 (ja) 2022-02-24

Family

ID=80350460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2021/057244 WO2022038454A1 (ja) 2020-08-20 2021-08-06 正極活物質の作製方法

Country Status (5)

Country Link
US (1) US20230286825A1 (ja)
JP (1) JPWO2022038454A1 (ja)
KR (1) KR20230053601A (ja)
CN (1) CN115956063A (ja)
WO (1) WO2022038454A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294119A (ja) * 2006-04-21 2007-11-08 National Institute Of Advanced Industrial & Technology リチウム二次電池電極用酸化物の単結晶粒子及びその製造方法、ならびにそれを用いたリチウム二次電池
WO2016190251A1 (ja) * 2015-05-22 2016-12-01 国立研究開発法人産業技術総合研究所 正極材料、並びにそれを正極に使用したリチウム二次電池
JP2017103057A (ja) * 2015-11-30 2017-06-08 旭硝子株式会社 正極活物質の製造方法
WO2019243952A1 (ja) * 2018-06-22 2019-12-26 株式会社半導体エネルギー研究所 正極活物質、正極、および二次電池、ならびに正極の作製方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102918686B (zh) 2010-06-02 2015-08-12 株式会社半导体能源研究所 电力储存装置
JP6520037B2 (ja) 2014-10-09 2019-05-29 日立化成株式会社 リチウムイオン二次電池用正極活物質、及びリチウムイオン二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294119A (ja) * 2006-04-21 2007-11-08 National Institute Of Advanced Industrial & Technology リチウム二次電池電極用酸化物の単結晶粒子及びその製造方法、ならびにそれを用いたリチウム二次電池
WO2016190251A1 (ja) * 2015-05-22 2016-12-01 国立研究開発法人産業技術総合研究所 正極材料、並びにそれを正極に使用したリチウム二次電池
JP2017103057A (ja) * 2015-11-30 2017-06-08 旭硝子株式会社 正極活物質の製造方法
WO2019243952A1 (ja) * 2018-06-22 2019-12-26 株式会社半導体エネルギー研究所 正極活物質、正極、および二次電池、ならびに正極の作製方法

Also Published As

Publication number Publication date
JPWO2022038454A1 (ja) 2022-02-24
US20230286825A1 (en) 2023-09-14
KR20230053601A (ko) 2023-04-21
CN115956063A (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
WO2022090844A1 (ja) 正極活物質の作製方法、正極、二次電池、電子機器、蓄電システムおよび車両
WO2022106954A1 (ja) 二次電池、蓄電システム、車両、および正極の作製方法
WO2021260487A1 (ja) 二次電池、二次電池の作製方法、電子機器、及び車両
JP2022045353A (ja) 二次電池の作製方法、および二次電池
WO2022248968A1 (ja) 電池、電子機器、蓄電システムおよび移動体
JP2022120836A (ja) 正極活物質の作製方法、二次電池および車両
JP2022045263A (ja) 正極活物質、二次電池、二次電池の作製方法、電子機器、及び車両
WO2022038454A1 (ja) 正極活物質の作製方法
WO2022038451A1 (ja) 正極活物質の作製方法、および二次電池の作製方法
WO2022034414A1 (ja) 二次電池、電子機器、車両、及び正極活物質の作製方法
WO2022038449A1 (ja) 二次電池、電子機器および車両
WO2021245562A1 (ja) 正極活物質、正極活物質層、二次電池、電子機器、及び車両
WO2022243782A1 (ja) 正極活物質の作製方法、正極、リチウムイオン二次電池、移動体、蓄電システム、及び電子機器
WO2021191733A1 (ja) 二次電池、電子機器、車両及び二次電池の作製方法
WO2022023865A1 (ja) 二次電池及びその作製方法
WO2022167885A1 (ja) 正極活物質の製造方法、二次電池および車両
WO2022189889A1 (ja) 複合酸化物の作製方法、正極、リチウムイオン二次電池、電子機器、蓄電システム、及び移動体
WO2023031729A1 (ja) 正極および正極の作製方法
WO2022123389A1 (ja) 正極、正極の作製方法、二次電池、電子機器、蓄電システムおよび車両
WO2023047234A1 (ja) 複合酸化物の作製方法、及びリチウムイオン電池の作製方法
WO2022130099A1 (ja) 二次電池、電子機器、蓄電システムおよび車両
WO2024052785A1 (ja) 電池、電子機器、及び車両
WO2024095112A1 (ja) 正極、二次電池、電子機器、蓄電システムおよび車両
WO2022195402A1 (ja) 蓄電装置管理システム及び電子機器
WO2022172118A1 (ja) 電極の作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857842

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022543812

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21857842

Country of ref document: EP

Kind code of ref document: A1