WO2016190251A1 - 正極材料、並びにそれを正極に使用したリチウム二次電池 - Google Patents
正極材料、並びにそれを正極に使用したリチウム二次電池 Download PDFInfo
- Publication number
- WO2016190251A1 WO2016190251A1 PCT/JP2016/065059 JP2016065059W WO2016190251A1 WO 2016190251 A1 WO2016190251 A1 WO 2016190251A1 JP 2016065059 W JP2016065059 W JP 2016065059W WO 2016190251 A1 WO2016190251 A1 WO 2016190251A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- composite oxide
- discharge
- secondary battery
- charge
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/66—Nickelates containing alkaline earth metals, e.g. SrNiO3, SrNiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/76—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/77—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/85—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a high-capacity positive electrode material and a lithium secondary battery using the positive electrode material as a positive electrode.
- Lithium secondary batteries have higher energy density than secondary batteries such as nickel-cadmium batteries and nickel metal hydride batteries, and can be operated at high potentials, so they can be used as power sources for small information devices such as mobile phones and laptop computers. Widely used. Further, in recent years, since it is easy to reduce the size and weight, there is an increasing demand for hybrid vehicles, electric vehicles, large-sized applications such as stationary type and household storage batteries.
- This lithium secondary battery mainly comprises a positive electrode and a negative electrode containing materials capable of reversibly occluding and releasing lithium, an electrolyte solution in which a lithium ion conductor is dissolved in a non-aqueous organic solvent, and a separator.
- the oxide used as the positive electrode material lithium cobalt oxide (LiCoO 2 ), lithium manganese oxide (LiMn 2 O 4 ), lithium nickel oxide (LiNiO 2 ), lithium nickel cobalt Examples thereof include manganese oxide (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ).
- the lithium manganese oxide positive electrode material has a voltage of about 3 to 4 V on the basis of lithium due to the lithium desorption / insertion reaction
- materials having various crystal structures have been studied as the positive electrode material.
- the spinel type lithium manganese oxide LiMn 2 O 4 has a potential flat portion in the 4V region on the basis of lithium and has good reversibility of lithium desorption / insertion reaction. It has become.
- the capacity per oxide weight is only about 100 mA / g, which is not suitable for application to a high capacity lithium secondary battery.
- lithium manganese oxide having a layered rock-salt structure similar to lithium cobalt oxide has been studied as a high capacity positive electrode material.
- the lithium manganese oxide changes its charge / discharge curve with the progress of the charge / discharge cycle, and gradually changes to a charge / discharge curve characteristic of the spinel phase.
- lithium nickel cobalt manganese oxide having a layered rock salt structure similar to lithium cobalt oxide or the like and having a lithium excess composition or lithium nickel manganese oxide has been studied as a high capacity positive electrode material.
- the layered rock-salt structure with a lithium-rich composition is characterized by a monoclinic system, while the normal layered rock-salt structure is characterized by a crystal structure of the hexagonal (trigonal) space group R-3m.
- the crystal structure model in which lithium is occupied in the transition metal layer can be analyzed by a crystal structure analysis such as Rietveld method.
- lithium nickel manganese oxide having a lithium-excess composition has been studied energetically because it can be expected to have a high capacity of up to 300 mAh / g (Non-patent Document 2).
- Non-Patent Document 3 Li x Ni 1/4 Mn 3 / 4-y Ti y O 2 in which a part of manganese is substituted with titanium for the purpose of improving the stability of the crystal structure has been reported, Although a certain effect is recognized in the change of the charge / discharge curve, it does not lead to a fundamental solution (Non-Patent Document 3).
- Patent Document 4 substitution of magnesium to lithium manganese titanium oxide or lithium manganese iron oxide having an excessive lithium composition has been studied.
- Non-patent document 4 oxygen desorption and further migration in the crystal structure of the transition metal occur during the initial charge reaction, in addition to the lithium desorption reaction from the interlayer.
- This oxygen desorption reaction is well known to generate a potential flat portion at about 4.5 V with respect to lithium at the first charge, and this reaction is essential for the development of a high capacity.
- a large irreversible capacity, such as a small discharge capacity has a practical problem (for example, a charge curve of the first cycle of FIG. 4 (c) of Non-Patent Document 2).
- JP 2012-209242 A Japanese Patent No. 5024359 Japanese Patent Laid-Open No. 2007-257885 JP 2013-100197 A
- the present invention has been made in view of such circumstances, and when used as a positive electrode material active material of a lithium secondary battery, is it possible to have a high capacity and whether the change in the discharge curve with the progress of the cycle is small?
- the crystal structure is stabilized by having high crystallinity, and oxygen can be easily obtained.
- an alkaline earth metal element typified by magnesium and calcium into the structure as an element that can form a strong chemical bond with oxygen that does not desorb and has a strong covalent bond.
- the movement of transition metal atoms associated with charge and discharge can be suppressed.
- the arrangement of the oxygen atoms is maintained means that the oxygen atoms move in the crystal structure in accordance with the charge / discharge reaction by enhancing the covalent bondability with the cation bonded to oxygen.
- the loss of the atomic arrangement is not caused by desorption from the structure, and the elimination reaction may be completely suppressed, or the arrangement may be stable in a state in which oxygen is deficient in advance.
- the arrangement of transition metal atoms such as nickel and manganese is maintained. This can be confirmed by performing XRD measurement of the positive electrode active material in a charged state, performing crystal structure analysis by the Rietveld method, or measuring a diffraction pattern by electron diffraction. In particular, when spinelization is remarkable, the symmetry of the crystal can be confirmed by changing from a monoclinic system to a cubic system.
- lithium-excess composition is used for a compound having a structure in which lithium is occupied in a layer occupied by transition metal ions in a layered rock salt structure.
- the lithium excess composition of the present invention indicates that a long-period structure derived from a monoclinic system is confirmed by performing a crystal structure analysis using powder X-ray diffraction and powder neutron diffraction data of the sample. It can be confirmed by determining the lattice constant by performing crystal structure analysis by the Rietveld method. Furthermore, the occupation of lithium ions can be quantitatively clarified in the form of the occupation ratio of each site by crystal structure analysis.
- lithium nickel manganese composite oxide, lithium nickel cobalt manganese oxide or lithium nickel titanium manganese composite oxide having a lithium-excess layered rock salt structure is substituted with calcium and / or magnesium.
- things Li 1 + x-2y M y) (Co z Ni m Ti n Mn 1-m-n) 1-x O 2 (M: Ca and / or Mg, but Shikichu, 0 ⁇ x ⁇ 0.33,0 ⁇ Y ⁇ 0.13, 0 ⁇ z ⁇ 0.2, 0 ⁇ m ⁇ 0.5, 0 ⁇ n ⁇ 0.25) can be confirmed, and these oxides can be used as a positive electrode active material.
- oxygen desorption reaction does not occur during the first charge reaction (lithium desorption reaction) due to substitution of calcium and / or magnesium
- the potential flat portion is not recognized at about 4.5 V at the first charge, showing a curve in which the potential increases monotonously, and the crystal structure change due to charge and discharge is less likely to occur.
- the decrease does not occur unexpectedly. Rather, even in a charge / discharge test with a voltage range of 4.6 V to 2.5 V, a high capacity exceeding 250 mAh / g can be confirmed, and the charge / discharge curve hardly changes even with the cycle. It was.
- the present invention is a lithium transition metal composite oxide having a lithium-excess layered rock salt structure, which contains calcium and / or magnesium as a chemical composition, so that oxygen atoms can be removed when electrochemically desorbing lithium. It is a lithium transition metal composite oxide whose alignment is maintained. More specifically, the complex oxide maintains the arrangement of oxygen atoms when lithium is desorbed electrochemically at a potential of 4.6 V or more and 5.0 V or less.
- the composite oxide has crystallinity, has a layered rock salt structure belonging to a monoclinic system, and contains calcium and / or magnesium in the crystal structure, whereby the chemical bond with oxygen becomes strong, It is a lithium transition metal composite oxide that maintains the arrangement of oxygen atoms when electrochemically desorbing lithium.
- the composite oxide has the formula (Li 1 + x-2y M y) (Co z Ni m Ti n Mn 1-m-n) 1-x O 2 (M: Ca and / or Mg, but Shikichu, 0 ⁇ x ⁇ 0.33, 0 ⁇ y ⁇ 0.13, 0 ⁇ z ⁇ 0.2, 0 ⁇ m ⁇ 0.5, 0 ⁇ n ⁇ 0.25). It is a composite oxide substituted with magnesium.
- the present invention also provides a positive electrode material active material for a lithium secondary battery comprising the composite oxide.
- the positive electrode material active material does not undergo an oxygen desorption reaction during the initial charge reaction up to 4.8V, and can maintain the arrangement of oxygen atoms, and is initially charged in a voltage range of 4.4V to 4.7V. It is a positive electrode material active material for a lithium secondary battery in which the curve shows a charging curve in which the potential increases monotonously without showing a flat potential portion.
- the positive electrode material active material is a positive electrode material active material for a lithium secondary battery in which a change to a spinel structure accompanying a charge / discharge cycle does not appear.
- the present invention is a lithium secondary battery comprising a positive electrode, a negative electrode, a separator, and an electrolyte, wherein the positive electrode is a composite in which calcium and / or magnesium is substituted for a lithium transition metal composite oxide having a lithium-excess layered rock salt structure.
- a lithium secondary battery including an oxide as a positive electrode material active material.
- the present invention is a lithium secondary battery comprising a positive electrode, a negative electrode, a separator and an electrolyte, wherein the positive electrode comprises a lithium transition metal composite oxide having a lithium-excess layered rock salt structure, and the charge / discharge capacity of the positive electrode material is It is a lithium secondary battery provided with 250 mAh / g or more.
- the present invention has the following aspects. (1) a composite oxide comprising lithium, at least one of calcium and magnesium, nickel, and manganese and having a lithium-rich layered rock salt structure; (2) The composite oxide according to (1), wherein the composite oxide maintains an arrangement of oxygen atoms when lithium is desorbed electrochemically at a potential of 4.6 V to 5.0 V; (3) The composite oxide according to (1) or (2), wherein the composite oxide has a layered rock salt structure belonging to a monoclinic system; (4) The composite oxide has the formula (Li 1 + x-2y M y) (Co z Ni m Ti n Mn 1-m-n) 1-x O 2 ( where, M is a Ca and / or Mg X, y, z, m and n are 0 ⁇ x ⁇ 0.33, 0 ⁇ y ⁇ 0.13, 0 ⁇ z ⁇ 0.2, 0 ⁇ m ⁇ 0.5, 0 ⁇ n, respectively.
- the composite oxide has the formula (Li 1 + x-2y M y) (Co z Ni m Ti n Mn 1-m-n) 1-x O 2 (where, M is a Ca and / or Mg X, y, z, m, and n are 0.20 ⁇ x ⁇ 0.28, 0 ⁇ y ⁇ 0.03, 0 ⁇ z ⁇ 0.2, 0.1 ⁇ m ⁇ 0.3, respectively. And a composite oxide according to any one of (1) to (3), which is a number satisfying 0 ⁇ n ⁇ 0.2.
- the composite oxide has a chemical formula (Li 1 + x-2y M y ) (Co z Ni m Mn 1-m ) 1-x O 2 (wherein M is Ca and / or Mg, x, (y, z, and m are numbers satisfying 0.20 ⁇ x ⁇ 0.28, 0 ⁇ y ⁇ 0.03, 0 ⁇ z ⁇ 0.2, and 0.1 ⁇ m ⁇ 0.2, respectively)
- the composite oxide according to any one of (1) to (3) represented by: (7)
- the composite oxide has a chemical formula (Li 1 + x-2y M y ) (Ni m Mn 1-m ) 1-x O 2 (wherein M is Ca and / or Mg, and x, y and m is a number satisfying 0.20 ⁇ x ⁇ 0.28, 0 ⁇ y ⁇ 0.03, and 0.2 ⁇ m ⁇ 0.3), respectively (1) to (3)
- the composite oxide has a chemical formula (Li
- a positive electrode material active material for a lithium secondary battery comprising the composite oxide according to any one of (1) to (8); (10) The positive electrode material active material has a charge curve in which the potential monotonously increases while maintaining the arrangement of oxygen atoms in the voltage range of 4.4 V to 4.7 V during the initial charge reaction.
- the positive electrode material active material for a lithium secondary battery as described; (11) The positive electrode material active material for a lithium secondary battery according to (9), wherein the positive electrode material active material has a high capacity and maintains an arrangement of transition metal atoms with a charge / discharge cycle; (12) A lithium secondary battery comprising a positive electrode, a negative electrode, a separator, and an electrolyte, wherein the positive electrode comprises the positive electrode material active material for a lithium secondary battery according to any one of (9) to (11) (13)
- the lithium secondary battery has a charge / discharge capacity of 250 mAh / g or more and 300 mAh / g or less per unit weight of the composite oxide of the positive electrode active material.
- the lithium secondary battery as described.
- the present invention it is possible to produce a composite oxide in which calcium and / or magnesium is substituted for a lithium transition metal composite oxide having a lithium-excess layered rock salt structure, and an electrode produced using this composite oxide as a positive electrode active material
- the maximum discharge capacity is 240 mAh / g or more (preferably 250 mAh / g or more)
- the discharge capacity after 4 cycles of the maximum discharge capacity is The capacity retention rate relative to the initial maximum discharge capacity is 95% or more (preferably 97% or more)
- Energy density (mWh / g) discharge capacity calculated by dividing by (mAh / g)) is 98% or more as a potential maintenance ratio
- FIG. 2 is an X-ray powder diffraction pattern of the lithium calcium nickel manganese composite oxide of the present invention obtained in Example 1.
- FIG. 2 is an EDS spectrum obtained by chemical composition analysis of the lithium calcium nickel manganese composite oxide of the present invention obtained in Example 1.
- FIG. 4 is an X-ray powder diffraction pattern of the lithium calcium nickel titanium manganese composite oxide of the present invention obtained in Example 3.
- FIG. 3 is an EDS spectrum obtained by chemical composition analysis of the lithium calcium nickel titanium manganese composite oxide of the present invention obtained in Example 3.
- the 10th cycle charging / discharging test was performed in a voltage range of 5.0 to 2.0 V of a lithium secondary battery using the lithium calcium nickel titanium manganese composite oxide of the present invention obtained in Example 3 as a positive electrode active material. It is a discharge curve.
- 4 is an X-ray powder diffraction pattern of the lithium magnesium nickel manganese composite oxide of the present invention obtained in Example 4.
- FIG. 4 is an EDS spectrum obtained by chemical composition analysis of the lithium magnesium nickel manganese composite oxide of the present invention obtained in Example 4.
- FIG. 6 is an X-ray powder diffraction pattern of the lithium magnesium nickel manganese composite oxide of the present invention obtained in Example 5.
- FIG. 6 is an X-ray powder diffraction pattern of the lithium magnesium nickel titanium manganese composite oxide of the present invention obtained in Example 6.
- FIG. 6 is an EDS spectrum obtained by chemical composition analysis of the lithium magnesium nickel titanium manganese composite oxide of the present invention obtained in Example 6.
- 10th cycle charging / discharging test was performed in a voltage range of 5.0 to 2.0 V of a lithium secondary battery using the lithium magnesium nickel titanium manganese composite oxide of the present invention obtained in Example 6 as a positive electrode active material. It is a discharge curve.
- 7 is an X-ray powder diffraction pattern of the lithium calcium magnesium nickel manganese composite oxide of the present invention obtained in Example 7.
- FIG. Charging / discharging test in the voltage range 5.0-2.0V of the lithium secondary battery using the lithium calcium magnesium nickel manganese composite oxide of the present invention obtained in Example 7 as the positive electrode active material It is a discharge curve.
- FIG. 4 is an X-ray powder diffraction pattern of the lithium calcium cobalt nickel manganese composite oxide of the present invention obtained in Example 10.
- 2 is an X-ray powder diffraction pattern of the lithium magnesium cobalt nickel manganese composite oxide of the present invention obtained in Example 11.
- FIG. The 15th cycle charging / discharging test was performed in the voltage range of 4.8 to 2.0 V of the lithium secondary battery using the lithium magnesium cobalt nickel manganese composite oxide of the present invention obtained in Example 11 as the positive electrode active material.
- FIG. 3 is an X-ray powder diffraction pattern of the lithium calcium magnesium cobalt nickel manganese composite oxide of the present invention obtained in Example 12.
- FIG. A seventh cycle in which a charge / discharge test was conducted in a voltage range of 4.8 to 2.0 V of a lithium secondary battery using the lithium calcium magnesium cobalt nickel manganese composite oxide of the present invention obtained in Example 12 as a positive electrode active material It is a charging / discharging curve.
- 3 is an X-ray powder diffraction pattern of a known lithium nickel manganese composite oxide obtained in Comparative Example 1.
- FIG. 4 is an EDS spectrum obtained by chemical composition analysis of a known lithium nickel manganese composite oxide obtained in Comparative Example 1.
- 3 is an X-ray powder diffraction pattern of a known lithium nickel manganese composite oxide obtained in Comparative Example 2.
- 4 is an X-ray powder diffraction pattern of a known lithium cobalt nickel manganese composite oxide obtained in Comparative Example 3.
- FIG. A charge / discharge curve at the 16th cycle in which a charge / discharge test was performed in a voltage range of 4.8 to 2.0 V of a lithium secondary battery using the known lithium nickel manganese composite oxide obtained in Comparative Example 3 as a positive electrode active material is there.
- FIG. 4 is an X-ray powder diffraction pattern of a known lithium cobalt nickel manganese composite oxide obtained in Comparative Example 4.
- 6 is an X-ray powder diffraction pattern of a lithium nickel titanium manganese composite oxide obtained in Comparative Example 5.
- FIG. 6 is an EDS spectrum obtained by chemical composition analysis of the lithium nickel titanium manganese composite oxide obtained in Comparative Example 5.
- 10 is a charge / discharge curve at the 10th cycle when a charge / discharge test was conducted in a voltage range of 5.0-2.0 V of a lithium secondary battery using the lithium nickel titanium manganese composite oxide obtained in Comparative Example 5 as a positive electrode active material. .
- the inventors of the present invention have a high-capacity positive electrode material having a lithium-excess layered rock-salt structure, which can have a higher capacity and has a chemical composition that reduces the shape change of the charge / discharge curve as much as possible with the charge / discharge cycle.
- the lithium which may be expressed as Li
- calcium which may be expressed as Ca
- magnesium which may be expressed as Mg
- nickel which will be expressed as Ni
- a complex oxide having a lithium-excess layered rock salt structure more specifically, lithium nickel manganese having a lithium-excess layered rock salt type structure.
- lithium nickel cobalt manganese composite oxide or lithium nickel titanium manganese composite oxide Um and / or composite oxide containing magnesium in (Li 1 + x-2y M y) (Co z Ni m Ti n Mn 1-m-n) 1-x O 2 (wherein, M is a Ca and / or Mg X, y, z, m and n are 0 ⁇ x ⁇ 0.33, 0 ⁇ y ⁇ 0.13, 0 ⁇ z ⁇ 0.2, 0 ⁇ m ⁇ 0.5, 0 ⁇ n, respectively. It is a number that satisfies ⁇ 0.25, and the present invention has been completed.
- “calcium and / or magnesium” means at least one of calcium and magnesium, that is, one or both of calcium and magnesium.
- a potential flat portion is not generated at about 4.5 V due to an oxygen desorption reaction during the initial charging reaction, and is 4.4 V or higher.
- a charging curve in which the potential increases monotonously in a voltage range of 4.7 V or less is shown, and it has been found that high capacity and highly reversible charging / discharging characteristics with a small change in the discharging curve with the cycle are possible.
- the potential flat portion does not occur at about 4.5 V” at the time of the first charge reaction means that the change rate of the specific capacity at each voltage is between 4.4 V and 4.7 V at the time of the first charge reaction. Always takes a positive value.
- the “high capacity” means that the capacity per weight of the conventional positive electrode material active material is 200 mAh / g at the maximum, so that the capacity is 200 mAh / g or more, more preferably more than 200 mAh / g. Further, as the upper limit of the capacity, all lithium in the structure of lithium nickel manganese oxide Li 1.2 Ni 0.2 Mn 0.6 O 2 having a layered rock salt structure having an excess composition of lithium can be used for the charge / discharge reaction.
- the theoretical capacity is 378 mAh / g in the case of “Maintaining the arrangement of transition metal atoms with the charge / discharge cycle” means a constant current charge / discharge with a lower limit cutoff voltage of 2.0V or more and an upper limit cutoff voltage of 4.5V to 5.0V. In tests and the like, even when the charge / discharge cycle is repeated from 10 cycles to about 50 cycles, the arrangement of transition metal atoms in the crystal structure of the composite oxide does not change, and the change to the spinel structure does not occur. It means that a decrease in discharge voltage can be suppressed.
- magnesium contained in the complex oxide crystal is substituted for both the transition metal layer and the lithium metal layer of the complex oxide, but calcium has a much larger ionic radius than the transition metal. It is considered that the transition metal layer is not replaced but only the lithium layer is replaced. Moreover, even if excess magnesium or calcium oxide is present as an impurity, it may be present because it does not affect the battery reaction.
- the effect of calcium and / or magnesium substitution is that when the ions in the lithium layer decrease during charging, the transition metal ions move from the transition metal layer by maintaining the layer between the lithium layers expanded. It plays a role of hindering and stabilizing the interlayer structure of the lithium layer.
- lithium nickel manganese composite oxide, lithium nickel cobalt manganese oxide, lithium nickel titanium manganese composite oxide , Calcium and / or magnesium substituted lithium transition metal composite oxide of the present invention calcium and / or magnesium substituted lithium nickel manganese composite oxide, calcium and / or magnesium substituted lithium nickel cobalt manganese composite oxide, or calcium and
- an oxygen desorption reaction does not occur during the initial charge reaction, and the arrangement of oxygen atoms can be maintained.
- a potential curve portion at about 4.5 V does not occur, shows a charging curve in which the potential increases monotonously, and has a discharge capacity exceeding 250 mAh / g, and a change to the spinel structure accompanying the charge / discharge cycle. can not see.
- the calcium and / or magnesium substitution according to the present invention may be any lithium transition metal composite oxide having a lithium-excess layered rock salt structure, and is not limited to lithium nickel manganese composite oxide, for example, lithium cobalt nickel manganese composite oxide Or a composite oxide such as lithium nickel titanium manganese composite oxide.
- the composition formula Li 1.23 Ca 0.01 Ni 0.19 Mn 0.56 O 2 ; Li 1.24 Mg 0.01 Ni 0.19 Mn 0.56 O 2 ; Li 1.22 Ca 0.005 Mg 0.005 Ni 0.19 Mn 0.57 O 2 ; Li 1.23 Ca 0.01 Co 0.14 Ni 0.13 Mn 0.49 O 2 ; Li 1.22 Mg 0.01 Co 0.14 Ni 0.12 Mn 0.50 O 2 ; or Li 1.22 Ca 0.005 Mg 0.005 Co 0.14 Ni 0.13 Mn 0.49 O 2 And a composite oxide having a lithium-excess layered rock salt structure.
- a composite oxide containing lithium, at least one of calcium and magnesium, nickel, and manganese and having a lithium-excess layered rock salt structure that is, lithium having a lithium-excess layered rock salt structure
- a composite oxide in which calcium and / or magnesium is substituted on the lithium layer of nickel manganese composite oxide, lithium cobalt manganese oxide or lithium nickel titanium manganese composite oxide more specifically, (Li 1 + x-2y M y ) ( Co z Ni m Ti n Mn 1-mn ) 1-x O 2 (wherein M is Ca and / or Mg, and x, y, z, m and n are each 0 ⁇ x ⁇ 0.33, 0 ⁇ y ⁇ 0.13, 0 ⁇ z ⁇ 0.2, 0 ⁇ m ⁇ 0.5, 0 ⁇ n ⁇ 0.25.
- lithium nickel manganese composite oxide, lithium nickel cobalt manganese oxide or lithium nickel titanium manganese composite oxide (Li 1 + x-2y M y ) (Co z Ni m T n Mn) substituted with calcium and / or magnesium 1-mn ) 1-x O 2 (wherein M, x, y, z, m and n each have the above-mentioned meaning) is used as a raw material, at least one of lithium metal or a lithium compound At least one of a seed, calcium metal, magnesium metal, calcium compound, or magnesium compound, and nickel metal, or at least one of nickel compounds, cobalt metal, or at least one of cobalt compounds, titanium metal, or at least of titanium compounds
- One kind, manganese metal, or few manganese compounds The Kutomo one, (Li 1 + x-2y M y) (Co z Ni m
- a compound composed of two or more kinds of lithium, calcium and / or magnesium, nickel, cobalt, titanium, manganese and lithium and calcium and / or magnesium as essential components is used (Li 1 + x during -2y M y) (Co z Ni m Ti n Mn 1-m-n) 1-x O 2 (wherein, M, x, y, z, m and n are each as defined above) of It can be manufactured by weighing and mixing so as to have a chemical composition and heating in an atmosphere containing oxygen gas such as air.
- the lithium raw material at least one of lithium (metallic lithium) and a lithium compound is used.
- the lithium compound is not particularly limited as long as it contains lithium, and examples thereof include Li 2 CO 3 , LiOH ⁇ H 2 O, LiNO 3 , LiCl, Li 2 SO 4 , Li 2 O, Li 2 O 2 and the like. Can be mentioned.
- compounds that are already lithium nickel oxides such as LiNiO 2
- lithium titanium oxides such as Li 2 TiO 3 and Li 4 Ti 5 O 12
- lithium manganese oxides such as LiMnO 2, and the like can be given.
- lithium carbonate Li 2 CO 3 is preferable.
- the calcium and / or magnesium raw material at least one of calcium (metallic calcium), magnesium (metallic magnesium), a calcium compound, and a magnesium compound is used.
- the calcium compound is not particularly limited as long as it contains calcium, and examples thereof include CaCl 2 , CaCO 3 , CaNO 3 .4H 2 O, and CaO.
- the magnesium compound is not particularly limited as long as it contains magnesium, and examples thereof include MgCl 2 , MgC 2 O 4 , and MgO. Or already CaTiO 3 of CaMnO 3, MgTiO 3, MgMnO calcium transition metal composite oxide such as 3, compounds and the like which has a magnesium transition metal composite oxide.
- chloride CaCl 2 and / or MgCl 2 are preferable.
- the nickel raw material at least one of nickel (metallic nickel) and a nickel compound is used.
- the nickel compound is not particularly limited as long as it contains nickel, and examples thereof include (CH 3 COO) 2 Ni ⁇ 4H 2 O, NiO, NiOH, and NiOOH.
- the hydroxide already used as the manganese nickel compound, the hydroxide used as the manganese titanium nickel compound, etc. are mentioned.
- (CH 3 COO) 2 Ni ⁇ 4H 2 O and the like are preferable because they have high reactivity even at a low temperature and can easily control the composition.
- cobalt raw material at least one of cobalt (metal cobalt) and a cobalt compound is used.
- the cobalt compound is not particularly limited as long as it contains cobalt, and examples thereof include (CH 3 COO) 2 Co.4H 2 O, Co 3 O 4 , CoOH, and CoOOH. Or the hydroxide etc. which are already manganese nickel cobalt compounds are mentioned. Among these, (CH 3 COO) 2 Co ⁇ 4H 2 O and the like are preferable because they have high reactivity even at a low temperature and can easily control the composition.
- titanium raw material at least one of titanium (metallic titanium) and a titanium compound is used.
- the titanium compound is not particularly limited as long as it contains titanium, and examples thereof include TiO, Ti 2 O 3 , TiO 2 , and TiCl 4 . Or the hydroxide etc. which are already manganese titanium compounds are mentioned. Among these, anatase type TiO 2 having a large specific surface area and high reactivity is preferable.
- the manganese raw material at least one of manganese (metallic manganese) and a manganese compound is used.
- the manganese compound is not particularly limited as long as it contains manganese, and examples thereof include MnCO 3 , MnCl 2 , MnO, Mn 2 O 3 , Mn 3 O 4 , MnO 2 , MnOH, and MnOOH. Among these, MnCO 3 or the like is preferable.
- the mixing ratio of the respective elements are, (Li 1 + x-2y M y) (Co z Ni m Ti n Mn 1-m-n) 1-x O 2 (wherein, M, x, y, z , m and n Are preferably mixed so as to have a chemical composition of the above-mentioned meanings.
- the amount ratio of calcium and / or magnesium to lithium can be appropriately changed depending on the stability of the required cycle characteristics, but a decrease in the amount of lithium leads to a decrease in capacity, so that 0 ⁇ y ⁇ 0.13, Preferably 0 ⁇ y ⁇ 0.06. Further, the amount of calcium and magnesium can be appropriately changed within the range of 0 ⁇ y ⁇ 0.13, but the molar ratio Ca / Mg ⁇ 1 between which calcium and magnesium are more structurally stable is preferable. .
- the mixing method is not particularly limited as long as these can be uniformly mixed, and for example, a known mixer such as a mixer may be used to mix by a wet method or a dry method.
- the mixture is then fired.
- the firing temperature can be appropriately set depending on the raw material, but (CH 3 COO) 2 Ni ⁇ 4H 2 O, (CH 3 COO) 2 Co ⁇ 4H 2 O, etc. that decompose and melt at a low temperature are used as the raw material.
- calcination is first performed at 250 ° C. to 600 ° C., and then the maximum temperature is about 750 ° C. to 1050 ° C., preferably 800 ° C. to 950 ° C.
- the firing atmosphere is not particularly limited, and it is usually performed in an oxidizing atmosphere or air.
- the target Li 1 + x-2y M y
- Co z Ni m Ti n Mn 1-m-n Li 1 + x-2y M y
- the firing time can be appropriately changed according to the firing temperature or the like, but is preferably 3 hours or more and 24 hours or less, more preferably 8 hours or more and 20 hours or less.
- the cooling method is not particularly limited, but may be natural cooling (cooling in the furnace) or slow cooling.
- the fired product may be pulverized by a known method, if necessary, and further carried out 1 to 5 times while changing the maximum temperature of the firing step. Note that the degree of pulverization may be adjusted as appropriate according to the firing temperature and the like.
- the lithium secondary battery of the present invention the (Li 1 + x-2y M y) (Co z Ni m Ti n Mn 1-m-n) 1-x O 2 (where, M, x, y, z, m And n each have the above meaning) as an active material, and a positive electrode containing 50% by weight or more and 100% by weight or less of the active material with respect to the total weight of the positive electrode mixture is used as a constituent member. is there. That is, the lithium secondary battery of the present invention is a known lithium battery (coin type, button type, cylindrical type, except that the calcium and / or magnesium-substituted lithium transition metal composite oxide of the present invention is used as the positive electrode active material.
- FIG. 1 is a schematic view showing an example in which the lithium secondary battery of the present invention is applied to a coin-type lithium secondary battery.
- This coin-type battery 1 includes a negative electrode terminal 2 made of SUS, a negative electrode 3 using metallic lithium, a separator made of a microporous film made of polypropylene, (1M in a solvent in which ethylene carbonate and diethyl carbonate are mixed at a volume ratio of 1: 1).
- insulating packing 5 made of polypropylene
- positive electrode 6 made of the active material of the present invention
- positive electrode can 7 made of SUS.
- the composite oxide active material of the present invention is mixed with a conductive agent, a binder, etc. as necessary to prepare a positive electrode mixture, and a positive electrode is produced by pressure-bonding it to a current collector.
- a current collector a stainless mesh, an aluminum mesh, an aluminum foil or the like can be preferably used.
- a conductive agent acetylene black, ketjen black or the like can be preferably used.
- the binder tetrafluoroethylene, polyvinylidene fluoride, or the like can be preferably used.
- the composition of lithium nickel manganese composite oxide or lithium nickel cobalt manganese composite oxide substituted with calcium and / or magnesium in the positive electrode composite, lithium nickel titanium manganese composite oxide active material, conductive agent, binder, etc. is also particularly limited.
- the lithium composite oxide active material of the present invention is about 50 to 95% by weight (preferably 80 to 90% by weight) with respect to the total weight of the positive electrode mixture, and the conductive agent is 1 to 50% by weight.
- the degree (preferably 3 to 48% by weight) and the binder may be 0 to 30% by weight (preferably 2 to 15% by weight).
- the sum of the contents of the lithium composite oxide active material, the conductive agent and the binder does not exceed 100% by weight.
- the counter electrode with respect to the positive electrode for example, metallic lithium, lithium alloy, and carbon-based materials such as graphite and MCMB (mesocarbon microbeads), oxide materials such as lithium titanium oxide, etc.
- metallic lithium, lithium alloy, and carbon-based materials such as graphite and MCMB (mesocarbon microbeads), oxide materials such as lithium titanium oxide, etc.
- MCMB mesocarbon microbeads
- oxide materials such as lithium titanium oxide, etc.
- a known material that functions as a negative electrode and can occlude and release lithium can be used.
- a known battery element may be employed as the separator.
- a porous polyethylene film or a polypropylene film can be used.
- electrolyte solutions solid electrolytes, and the like can be applied as electrolytes.
- an electrolytic solution an electrolyte such as lithium perchlorate or lithium hexafluorophosphate is used in a solvent such as ethylene carbonate (EC), dimethyl carbonate (DMC), propylene carbonate (PC), or diethyl carbonate (DEC). What was dissolved can be used.
- EC ethylene carbonate
- DMC dimethyl carbonate
- PC propylene carbonate
- DEC diethyl carbonate
- Lithium calcium nickel manganese composite oxide having a lithium-excess layered rock-salt structure composition formula: Li 1.23 Ca 0.01 Ni 0.19 Mn 0.56 O 2
- Lithium carbonate Li 2 CO 3 , manufactured by Rare Metallic, purity 99.99%
- calcium chloride CaCl 2 , manufactured by High Purity Chemical Laboratory, purity 99.9% or more
- nickel acetate tetrahydrate (CH 3 COO) 2 Ni ⁇ 4H 2 O, manufactured by Wako Pure Chemical Industries, Wako Special Grade)
- manganese carbonate (MnCO 3 manufactured by High-Purity Chemical Laboratory, purity 99.9%
- the atomic ratio of Li: Ca: Ni : Mn 1.8: 0.02: 0.25: 0.75.
- lithium secondary battery The lithium calcium nickel manganese composite oxide thus obtained was used as an active material, acetylene black as a conductive agent, and tetrafluoroethylene as a binder were blended in a weight ratio of 45:45:10 to prepare an electrode. Produced.
- lithium hexafluorophosphate was mixed into a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (volume ratio 1: 1).
- EC ethylene carbonate
- DEC diethyl carbonate
- a lithium secondary battery (coin-type cell) having the structure shown in FIG. 1 was prepared using the dissolved 1M solution as an electrolyte, and the charge / discharge characteristics thereof were measured.
- the battery was produced according to a known cell configuration / assembly method.
- a more specific structure of the lithium secondary battery includes the positive electrode 6, a separator 4 made of a microporous film made of polypropylene containing the electrolytic solution, a negative electrode 3 using metallic lithium, and a negative electrode made of SUS.
- the terminals 2 are laminated in this order to form a laminated body.
- the laminated body contacts the positive electrode 6 with the inner bottom portion of the positive electrode can 7 made of SUS, and at least a part of the negative electrode terminal 2 is outside the positive electrode can 7. It is accommodated in the positive electrode can 7 so as to be exposed to the surface.
- the periphery of the laminate is covered with an insulating packing 5 made of polypropylene to form a lithium secondary battery having coin-type cells.
- the coin cell When the coin cell is placed on a plane, the coin cell has a vertical thickness of 3.2 mm and a diameter of 20 mm.
- the vertical thicknesses of the positive electrode can 7, the positive electrode 6, the separator 4 of the microporous film made of polypropylene containing the electrolytic solution, the negative electrode 3 using metallic lithium and the negative electrode terminal 2 made of SUS are respectively They are 0.25 mm, 0.3 mm, 0.02 mm, 0.2 mm, and 0.25 mm, and the remaining space is filled with a SUS wave washer 1.4 mm and a spacer 1.0 mm.
- the manufactured lithium secondary battery was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a cutoff potential of a lithium reference potential of 5.0 V to 2.0 V. As a result, it was found that the capacity increased with each cycle, the capacity became maximum at the 10th cycle, and a high capacity of 270 mAh / g charge capacity and 263 mAh / g discharge capacity at the 10th cycle was obtained.
- the “potential based on lithium” means the voltage of the battery when the potential of the dissolution / precipitation reaction of metallic lithium is the reference (0 V).
- FIG. 4 shows a charge / discharge curve at the 10th cycle. Furthermore, in the discharge curve at the 14th cycle, no decrease in capacity was observed, and the average discharge potential obtained by dividing the discharge energy density by the discharge capacity was 3.44 V, confirming that the decrease in discharge potential was slight. It was done. From the above, it has become clear that the lithium calcium nickel manganese composite oxide active material of the present invention is useful as a high-capacity lithium secondary battery material.
- a lithium secondary battery manufactured under the same conditions was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C., with a current density of 10 mA / g and a lithium reference potential of 4.8-2.5 V. It was. As a result, the charge / discharge capacity increased with each cycle, and the capacity reached the maximum at the 32nd cycle.
- the charge curve for the first cycle of this charge / discharge test is shown in FIG. There is no voltage flat at about 4.5V, which is characteristic of lithium-nickel-manganese composite oxide with lithium-rich layered rock salt structure or lithium-nickel-cobalt-manganese oxide, and the charging curve increases monotonically.
- the lithium calcium nickel manganese composite oxide active material of the present invention does not cause oxygen desorption reaction and is useful as a material for a high capacity lithium secondary battery while maintaining the arrangement of oxygen atoms. Became clear.
- a lithium secondary battery manufactured under the same conditions was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a lithium reference potential of 4.6 to 2.5 V. It was. As a result, the charge / discharge capacity increased with each cycle, and the capacity reached the maximum at the 39th cycle.
- the charge curve of the 39th cycle at this time is shown in FIG.
- the discharge capacity was 253 mAh / g, and it was confirmed that the discharge capacity at the 75th cycle thereafter showed a capacity maintenance rate of about 98% with respect to the discharge capacity at the 39th cycle. From this, it became clear that the lithium calcium nickel manganese composite oxide active material of the present invention is useful as a high capacity lithium secondary battery material.
- Lithium secondary battery Using the lithium calcium nickel titanium manganese composite oxide thus obtained as an active material, a lithium secondary battery (coin-type cell) having the same components and structure as in Example 1 was produced.
- the manufactured lithium secondary battery was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a cutoff potential of 5.0 V to 2.0 V based on lithium. As a result, the charge / discharge capacity increased with each cycle, and the capacity became maximum at the 10th cycle. It was found that a high capacity of a charge capacity of 259 mAh / g and a discharge capacity of 252 mAh / g at the 10th cycle can be obtained.
- the charge / discharge curve at the 10th cycle is shown in FIG.
- the discharge curve at the 14th cycle no decrease in capacity was observed, and it was confirmed that the average discharge potential obtained by dividing the discharge energy density by the discharge capacity was 3.30 V, and the decrease in the discharge potential was slight. It was done.
- capacitance is obtained by substituting titanium compared with the lithium calcium nickel manganese complex oxide of Example 1, although an average discharge potential falls a little. From the above, it became clear that the lithium calcium nickel titanium manganese composite oxide active material of the present invention is useful as a high-capacity lithium secondary battery material.
- Example 4> Synthesis of lithium magnesium nickel manganese composite oxide having a lithium-excess layered rock salt structure (composition formula: Li 1.24 Mg 0.01 Ni 0.19 Mn 0.56 O 2 )) Lithium carbonate (Li 2 CO 3 , manufactured by Rare Metallic, purity 99.99%), magnesium chloride (MgCl 2 , manufactured by High Purity Chemical Laboratory, purity 99.9% or more), nickel acetate tetrahydrate ((CH 3 COO) 2 Ni ⁇ 4H 2 O, manufactured by Wako Pure Chemicals, Wako Special Grade), and manganese carbonate (MnCO 3 , manufactured by High Purity Chemical Laboratory, purity 99.9%) are mixed at an atomic ratio of Li: Mg: Ni.
- Mn 1.8: 0.02: 0.25: 0.75.
- Lithium secondary battery (Lithium secondary battery) Using the thus obtained lithium magnesium nickel manganese composite oxide as an active material, a lithium secondary battery (coin-type cell) having the same components and structure as in Example 1 was produced.
- the manufactured lithium secondary battery was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a cutoff potential of a lithium reference potential of 5.0 V to 2.0 V. As a result, it was found that the capacity increased with each cycle, the capacity became the maximum at the 10th cycle, and the high capacity of the charge capacity 270 mAh / g and the discharge capacity 261 mAh / g at the 10th cycle was obtained. Further, since the energy density of the discharge at the 10th cycle is 908 Wh / kg, the average discharge potential at the 10th cycle is obtained by dividing the energy density of the discharge (908 Wh / kg) by the discharge capacity (261 mAh / g).
- FIG. 13 shows a charge / discharge curve at the 10th cycle. Further, in the discharge curve at the 14th cycle, no decrease in capacity was observed, and the average discharge potential obtained by dividing the discharge energy density by the discharge capacity was 3.45 V, and it was confirmed that the decrease in the discharge potential was slight. It was done. Moreover, it became clear that the effect equivalent to that of calcium can be obtained by magnesium substitution as compared with the lithium calcium nickel manganese composite oxide of Example 1. From the above, it was revealed that the lithium magnesium nickel manganese composite oxide active material of the present invention is useful as a high-capacity lithium secondary battery material.
- FIG. 14 shows a charge curve in the first cycle of this charge / discharge test. There is no voltage flat at about 4.5V, which is characteristic of lithium-nickel-manganese composite oxide or lithium-nickel-cobalt-manganese oxide with a lithium-rich layered rock salt structure.
- the lithium magnesium nickel manganese composite oxide active material of the present invention does not cause an oxygen desorption reaction and is useful as a high capacity lithium secondary battery material while maintaining the arrangement of oxygen atoms. Became clear.
- a lithium secondary battery manufactured under the same conditions was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a lithium reference potential of 4.6 to 2.5 V. It was. As a result, the charge / discharge capacity increased with each cycle, and the capacity reached the maximum at the 30th cycle.
- FIG. 15 shows the charge curve of the 30th cycle at this time.
- the discharge capacity was 251 mAh / g, and it was confirmed that the discharge capacity at the 76th cycle thereafter showed a capacity retention rate of about 95% with respect to the discharge capacity at the 30th cycle. From this, it became clear that the lithium magnesium nickel manganese composite oxide active material of the present invention is useful as a high-capacity lithium secondary battery material.
- Lithium secondary battery (Lithium secondary battery) Using the lithium magnesium nickel titanium manganese composite oxide thus obtained as an active material, a lithium secondary battery (coin-type cell) having the same components and structure as in Example 1 was produced, and its charge / discharge characteristics were measured. .
- the manufactured lithium secondary battery was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a cutoff potential of 5.0 V to 2.0 V based on lithium. As a result, the charge / discharge capacity increased with each cycle. It was found that a high capacity of a charge capacity of 255 mAh / g and a discharge capacity of 247 mAh / g at the 10th cycle can be obtained. In addition, since the energy density of the discharge at the 10th cycle is 828 Wh / kg, the average discharge potential at the 10th cycle is obtained by dividing the energy density of the discharge (828 Wh / kg) by the discharge capacity (247 mAh / g).
- Lithium secondary battery Using the lithium calcium magnesium nickel manganese composite oxide thus obtained as an active material, a lithium secondary battery (coin-type cell) having the same components and structure as in Example 1 was produced.
- the manufactured lithium secondary battery was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a cutoff potential of a lithium reference potential of 5.0 V to 2.0 V. As a result, the charge / discharge capacity increased with each cycle. It was found that a high capacity of a charge capacity of 292 mAh / g and a discharge capacity of 264 mAh / g at the 12th cycle can be obtained. In addition, since the energy density of the discharge at the 12th cycle is 914 Wh / kg, the average discharge potential at the 12th cycle is obtained by dividing the energy density of the discharge (914 Wh / kg) by the discharge capacity (264 mAh / g).
- FIG. 21 shows a charge / discharge curve at the 12th cycle. Further, in the discharge curve at the 16th cycle, no decrease in capacity was observed, and the average discharge potential obtained by dividing the discharge energy density by the discharge capacity was 3.44 V, and it was confirmed that the decrease in the discharge potential was slight. It was done. In addition, compared with the lithium calcium nickel manganese composite oxide of Example 1 and the lithium magnesium nickel manganese composite oxide of Example 4, it is apparent that a high capacity can be obtained when both calcium and magnesium are substituted. became. From the above, it was revealed that the lithium calcium magnesium nickel manganese composite oxide active material of the present invention is useful as a high-capacity lithium secondary battery material.
- a lithium secondary battery manufactured under the same conditions was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C., with a current density of 10 mA / g and a lithium reference potential of 4.8-2.5 V. It was. As a result, the charge / discharge capacity increased with each cycle, and the capacity reached the maximum at the 28th cycle.
- the charge curve of the first cycle of this charge / discharge test is shown in FIG. There is no voltage flat at about 4.5V, which is characteristic of lithium-nickel-manganese composite oxide with lithium-rich layered rock salt structure or lithium-nickel-cobalt-manganese oxide, and the charging curve increases monotonically.
- the lithium calcium nickel manganese composite active material of the present invention does not cause an oxygen desorption reaction and is useful as a high-capacity lithium secondary battery material while maintaining the arrangement of oxygen atoms. Became clear.
- a lithium secondary battery manufactured under the same conditions was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a lithium reference potential of 4.6 to 2.5 V. It was. As a result, the charge / discharge capacity increased with each cycle, and the capacity reached the maximum at the 24th cycle.
- FIG. 23 shows the charge curve of the 24th cycle at this time.
- the discharge capacity at the 24th cycle was 253 mAh / g, and it was confirmed that the discharge capacity at the 74th cycle thereafter showed a capacity retention rate of about 95% with respect to the discharge capacity at the 24th cycle. Moreover, it became clear that substantially the same high capacity
- Lithium secondary battery Using the lithium calcium cobalt nickel manganese composite oxide thus obtained as an active material, a lithium secondary battery (coin-type cell) having the same components and structure as in Example 1 was produced.
- the manufactured lithium secondary battery was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a lithium reference potential of 4.8 V-2.0 V. As a result, the charge / discharge capacity increased with each cycle. It was found that a high capacity of a charge capacity of 249 mAh / g and a discharge capacity of 242 mAh / g at the seventh cycle can be obtained. In addition, since the energy density of the discharge at the seventh cycle is 840 Wh / kg, the average discharge potential at the tenth cycle is obtained by dividing the energy density of the discharge (840 Wh / kg) by the discharge capacity (242 mAh / g).
- FIG. 27 shows a charge / discharge curve at the seventh cycle. Further, in the discharge curve at the 11th cycle, no decrease in capacity was observed, and the average discharge potential obtained by dividing the discharge energy density by the discharge capacity was 3.44 V, and it was confirmed that the decrease in the discharge potential was slight. It was done. From the above, it was revealed that the lithium calcium cobalt nickel manganese composite oxide active material of the present invention is useful as a high-capacity lithium secondary battery material.
- Lithium secondary battery Using the lithium magnesium cobalt nickel manganese composite oxide thus obtained as an active material, a lithium secondary battery (coin-type cell) having the same components and structure as in Example 1 was produced.
- the manufactured lithium secondary battery was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a lithium reference potential of 4.8 V-2.0 V. As a result, the charge / discharge capacity increased with each cycle. It was found that a high capacity of a charge capacity of 237 mAh / g and a discharge capacity of 229 mAh / g at the 15th cycle can be obtained. In addition, since the energy density of the discharge at the 15th cycle is 783 Wh / kg, the average discharge potential at the 15th cycle is obtained by dividing the energy density of the discharge (783 Wh / kg) by the discharge capacity (229 mAh / g).
- Lithium calcium magnesium cobalt nickel manganese composite oxide having a lithium-excess layered rock salt structure (compositional formula: Li 1.22 Ca 0.005 Mg 0.005 Co 0.14 Ni 0.13 Mn 0.49 O 2 ) Synthesis) Lithium carbonate (Li 2 CO 3 , manufactured by rare metal, purity 99.99%), calcium chloride (CaCl 2 , manufactured by High Purity Chemical Laboratory, purity 99.9% or more), magnesium chloride (MgCl 2 , high purity chemical research) Manufactured, purity 99.9% or more), cobalt acetate tetrahydrate ((CH 3 COO) 2 Co.4H 2 O, Wako Pure Chemicals, Wako Special Grade), nickel acetate tetrahydrate ((CH 3 COO ) 2 Ni ⁇ 4H 2 O, manufactured by Wako pure Chemical Industries, Ltd., Wako special grade), manganese carbonate (MnCO 3, manufactured by Kojundo Chemical Laboratory, each powder having
- Lithium secondary battery (Lithium secondary battery) Using the thus obtained lithium calcium magnesium cobalt nickel manganese composite oxide as an active material, a lithium secondary battery (coin-type cell) having the same components and structure as in Example 1 was produced.
- the manufactured lithium secondary battery was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a lithium reference potential of 4.8 V-2.0 V. As a result, the charge / discharge capacity increased with each cycle. It was found that a high capacity of a charge capacity of 252 mAh / g and a discharge capacity of 244 mAh / g in the seventh cycle can be obtained. Further, since the energy density of the discharge at the seventh cycle is 844 Wh / kg, the average discharge potential at the tenth cycle is obtained by dividing the energy density of the discharge (844 Wh / kg) by the discharge capacity (244 mAh / g).
- FIG. 31 shows a charge / discharge curve at the seventh cycle. Further, in the discharge curve at the 11th cycle, no decrease in capacity was observed, and the average discharge potential obtained by dividing the discharge energy density by the discharge capacity was 3.44 V, and it was confirmed that the decrease in the discharge potential was slight. It was done. Further, in comparison with the lithium calcium cobalt nickel manganese composite oxide of Example 10 and the lithium magnesium cobalt nickel manganese composite oxide of Example 11, the case where both calcium and magnesium are substituted has the highest capacity and high energy density. It became clear that From the above, it became clear that the lithium calcium magnesium cobalt nickel manganese composite oxide active material of the present invention is useful as a high-capacity lithium secondary battery material.
- the composite oxide obtained above was examined for the crystal structure by a powder X-ray diffractometer (trade name RINT2550V, manufactured by Rigaku). It became clear that it was a phase.
- the powder X-ray diffraction pattern at this time is shown in FIG. A peak attributed to the monoclinic system was observed from 20 ° to 35 °, confirming the lithium-rich composition.
- the lattice constant was refined as an average structure hexagonal system by the method of least squares, the following values were obtained, and it was confirmed from the lattice constant that it was a layered rock salt type structure having a lithium-excess composition. .
- Lithium secondary battery (Lithium secondary battery) Using the lithium nickel manganese composite oxide thus obtained as an active material, a lithium secondary battery (coin-type cell) having the same components and structure as in Example 1 was produced, and its charge / discharge characteristics were measured.
- Example 34 shows a charge / discharge curve at the 10th cycle.
- the discharge curve at the 14th cycle although no decrease in capacity was observed, the average discharge potential obtained by dividing the discharge energy by the discharge capacity was 3.33 V, and it was confirmed that the decrease in the discharge potential was significant.
- the capacity is low, and there is a practical problem in the composite oxide system in which the alkaline earth metal element is not substituted. It was confirmed.
- a lithium secondary battery manufactured under the same conditions was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C.
- Example 1 Example 4, or Example 7 is useful as a lithium secondary battery material having a high capacity and a high capacity retention rate.
- the chemical composition was examined using a scanning electron microscope (trade name JCM-6000, manufactured by JEOL), it was confirmed that the powder particles contained nickel and manganese, and the powder shape was high. It was confirmed to be formed from primary particles having a crystallinity of about 1-2 microns.
- Lithium secondary battery (Lithium secondary battery) Using the lithium nickel manganese composite oxide thus obtained as an active material, a lithium secondary battery (coin-type cell) having the same components and structure as in Example 1 was produced, and its charge / discharge characteristics were measured.
- the manufactured lithium secondary battery was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a lithium reference potential of 4.8-2.0 V.
- the charge / discharge capacity increased with each cycle, and the capacity became maximum at the 13th cycle.
- FIG. 37 shows a charge curve for the 13th cycle at this time. It was confirmed in the 13th cycle that the discharge capacity was 241 mAh / g. Therefore, when compared with the active material of the present invention shown in Example 1, Example 4 or Example 7, the active material of the present invention is higher even if the charged lithium amount is 1.8. It was revealed that the capacity is useful as a lithium secondary battery material.
- Lithium secondary battery (Lithium secondary battery) Using the lithium cobalt nickel manganese composite oxide thus obtained as an active material, a lithium secondary battery (coin-type cell) having the same components and structure as in Example 1 was produced, and its charge / discharge characteristics were measured.
- the manufactured lithium secondary battery was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a cut-off potential of 4.8 to 2.0 V based on lithium.
- the charge / discharge capacity increased with each cycle, and the capacity reached the maximum at the 16th cycle.
- FIG. 39 shows a charging curve at the 16th cycle at this time.
- the discharge capacity was 224 mAh / g, and it was confirmed that the capacity maintenance rate was about 98% in the subsequent 24 cycles. From this, it became clear that the active material of the present invention shown in Example 10, Example 11, or Example 12 is useful as a high-capacity lithium secondary battery material.
- the chemical composition was examined with a scanning electron microscope (trade name JCM-6000, manufactured by JEOL), it was confirmed that the powder particles contained nickel, cobalt, and manganese. It was confirmed to be formed from primary particles having a high crystallinity of about 1-2 microns.
- Lithium secondary battery (Lithium secondary battery) Using the lithium cobalt nickel manganese composite oxide thus obtained as an active material, a lithium secondary battery (coin-type cell) having the same components and structure as in Example 1 was produced, and its charge / discharge characteristics were measured.
- the manufactured lithium secondary battery was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a cut-off potential of 4.8 to 2.0 V based on lithium.
- FIG. 41 shows the charge curve of the sixth cycle at this time.
- the discharge capacity was 238 mAh / g, and the capacity was clearly reduced as compared with the calcium and / or magnesium substitute of the present invention. From these results, even if the amount of lithium in preparation was the same as in Example 10, Example 11, and Example 12, it was shown that the capacity was reduced if calcium or magnesium was not substituted. The effect by calcium and / or magnesium substitution was confirmed.
- the composite oxide obtained above was examined for the crystal structure by a powder X-ray diffractometer (trade name RINT2550V, manufactured by Rigaku). It became clear that it was a phase.
- the powder X-ray diffraction pattern at this time is shown in FIG. A peak attributed to the monoclinic system was observed from 20 ° to 35 °, confirming the lithium-rich composition.
- the lattice constant was refined as an average structure hexagonal system by the method of least squares, the following values were obtained, and it was confirmed from the lattice constant that it was a layered rock salt type structure having a lithium-excess composition. .
- Lithium secondary battery (Lithium secondary battery) Using the lithium nickel titanium manganese composite oxide thus obtained as an active material, a lithium secondary battery (coin-type cell) having the same components and structure as in Example 1 was produced, and its charge / discharge characteristics were measured.
- the method of the present invention when used as a positive electrode material active material of a lithium secondary battery, a high capacity is possible, and the change in the discharge curve with the progress of the cycle is small, or the performance can be expected. It is possible to provide a novel composite oxide having a layered rock salt structure with a lithium-rich composition, a positive electrode material containing the composite oxide, and a lithium secondary battery.
Landscapes
- Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
本願は、2015年5月22日に、日本に出願された特願2015-104962号に基づき優先権を主張し、その内容をここに援用する。
リチウム過剰組成を有する層状岩塩型構造は、通常の層状岩塩型構造が六方晶系(三方晶系)空間群R-3mを結晶構造の特徴としているのに対して、対称性が単斜晶系に低下した空間群C2/mに属すること、CuKα線を使用した粉末X線回折パターンで、対称性の低下に対応して、2θ角度で20から35度の領域に回折図形を与えることを特徴とし、さらにリートベルト法などの結晶構造解析によって、遷移金属層にリチウムが占有した結晶構造モデルで解析できることが特徴である。
この酸素脱離反応は、初回充電時にリチウム基準で約4.5Vで電位平坦部を生成することがよく知られており、この反応が高容量の発現に必須であるため、初回の充電容量に対する放電容量が小さいという不可逆容量が大きいことが、実用上の問題がある(例えば、非特許文献2のFig.4(c)の1stサイクルの充電曲線)。
このため、リチウム過剰組成を有する材料系を、実際の電池システムで使用する場合には、このような結晶構造変化、化学組成変化を含めた電極の電気化学的な活性化を行うことが必要不可欠であり、例えば上限電圧をサイクル毎に上昇させていく段階的充電手法などが提案されている(非特許文献4)。
しかしながら、この段階的充電手法でも、高容量を発現させるためには、上限電圧を4.8Vという高電圧にする必要があるため、現行の電池システムでは、電解液の酸化分解を抑制するための方策も必要となり問題である。
したがって、このような電極の電気化学的な活性化手法ではなく、材料の合成プロセスにおいて、その後の酸素脱離反応や、結晶構造変化を起こさない、或いはできるだけ変化を低減できるような材料を合成することが、電気化学的な活性化の処理工程も不要となることから、求められている。
酸素原子の配列が維持できているかどうかは、初回充電状態で、電池を解体し、充電状態にある正極活物質のXRD測定を行い、リートベルト法で結晶構造解析を行うことや、電子回折で回折図形を測定することで、確認することができる。
特に、スピネル化が顕著の場合は、結晶の対称性が単斜晶系から、立方晶系に変化することで確認することができる。
(1)リチウムと、カルシウム及びマグネシウムの少なくとも一方と、ニッケルと、マンガンとを含有し、リチウム過剰層状岩塩型構造を備える複合酸化物;
(2)前記複合酸化物は、電気化学的に4.6V以上5.0V以下の電位でリチウムを脱離したとき、酸素原子の配列が維持される(1)に記載の複合酸化物;
(3)前記複合酸化物は、単斜晶系に属する層状岩塩型構造を備える(1)又は(2)に記載の複合酸化物;
(4)前記複合酸化物は、化学式(Li1+x-2yMy)(CozNimTinMn1-m-n)1-xO2(式中、Mは、Ca及び/又はMgであり、x、y、z、m及びnは、それぞれ、0<x≦0.33、0<y<0.13、0≦z<0.2、0<m<0.5、0≦n≦0.25を満たす数である)で表される(1)~(3)のいずれか1つに記載の複合酸化物;
(5)前記複合酸化物は、化学式(Li1+x-2yMy)(CozNimTinMn1-m-n)1-xO2(式中、Mは、Ca及び/又はMgであり、x、y、z、m及びnは、それぞれ、0.20≦x≦0.28、0<y<0.03、0≦z<0.2、0.1<m<0.3、0≦n≦0.2を満たす数である)で表される(1)~(3)のいずれか1つに記載の複合酸化物;
(6)前記複合酸化物は、化学式(Li1+x-2yMy)(CozNimMn1-m)1-xO2(式中、Mは、Ca及び/又はMgであり、x、y、z及びmは、それぞれ、0.20≦x≦0.28、0<y<0.03、0≦z<0.2、0.1<m<0.2を満たす数である)で表される(1)~(3)のいずれか1つに記載の複合酸化物;
(7)前記複合酸化物は、化学式(Li1+x-2yMy)(NimMn1-m)1-xO2(式中、Mは、Ca及び/又はMgであり、x、y及びmは、それぞれ、0.20≦x≦0.28、0<y<0.03、0.2<m<0.3を満たす数である)で表される(1)~(3)のいずれか1つに記載の複合酸化物;
(8)前記複合酸化物は、化学式(Li1+x-2yMy)(NimTinMn1-m-n)1-xO2(Mは、Ca及び/又はMgであり、x、y、m及びnは、それぞれ、0.20≦x≦0.28、0<y<0.03、0.1<m<0.3、0≦n≦0.2を満たす数である)で表される(1)~(3)のいずれか1つに記載の複合酸化物;
(9)(1)~(8)のいずれか1つに記載の複合酸化物を備えるリチウム二次電池用の正極材料活物質;
(10)前記正極材料活物質は、初回充電反応時の4.4V以上4.7V以下の電圧範囲で、酸素原子の配列を維持し、電位が単調に上昇する充電曲線を示す(9)に記載のリチウム二次電池用の正極材料活物質;
(11)前記正極材料活物質は、高容量であり、かつ充放電サイクルに伴って遷移金属原子の配列を維持する(9)に記載のリチウム二次電池用の正極材料活物質;
(12)正極、負極、セパレータ及び電解質を備えるリチウム二次電池であって、前記正極は、(9)~(11)のいずれか1つに記載のリチウム二次電池用の正極材料活物質を備えるリチウム二次電池;又は
(13)前記リチウム二次電池は、その充放電容量が、前記正極材料活物質の複合酸化物の単位重量あたり250mAh/g以上300mAh/g以下である(12)に記載のリチウム二次電池。
本明細書において、「カルシウム及び/又はマグネシウム」とは、カルシウム及びマグネシウムの少なくとも一方、すなわち、カルシウム又はマグネシウムのいずれか一方又は両方を意味する。
本明細書において、初回充電反応時の「約4.5Vに電位平坦部を生じない」とは、初回充電反応時に、4.4Vから4.7Vの間で、各電圧における比容量の変化率が常に正の値をとることを意味する。
「高容量」とは、従来の正極材料活物質の重量当たりの容量が、最大200mAh/gであることから、200mAh/g以上、より好ましくは200mAh/g超の容量であることを意味する。また、容量の上限としては、リチウム過剰組成を有する層状岩塩型構造のリチウムニッケルマンガン酸化物Li1.2Ni0.2Mn0.6O2の構造中のリチウムがすべて充放電反応に利用できた場合の理論容量である378mAh/gなどが例示される。
「充放電サイクルに伴って遷移金属原子の配列を維持する」とは、充放電の下限カットオフ電圧が2.0V以上、上限カットオフ電圧が4.5V以上5.0V以下の定電流充放電試験等において、充放電サイクルを10サイクル以上50サイクル程度まで繰り返しても、複合酸化物の結晶構造中の遷移金属原子の配列が変化せず、スピネル構造への変化が起こらないことで、容量と放電電圧の低下が抑制できることを意味する。
(Li1+x-2yMy)(CozNimTinMn1-m-n)1-xO2(式中、Mは、Ca及び/又はMgであり、x、y、z、m及びnは、それぞれ、0<x≦0.33、0<y<0.13、0≦z<0.2、0<m<0.5、0≦n≦0.25を満たす数である)の組成式で表され、かつリチウム過剰層状岩塩型構造を有する複合酸化物の具体例としては、組成式:
Li1.23Ca0.01Ni0.19Mn0.56O2;
Li1.24Mg0.01Ni0.19Mn0.56O2;
Li1.22Ca0.005Mg0.005Ni0.19Mn0.57O2;
Li1.23Ca0.01Co0.14Ni0.13Mn0.49O2;
Li1.22Mg0.01Co0.14Ni0.12Mn0.50O2;又は
Li1.22Ca0.005Mg0.005Co0.14Ni0.13Mn0.49O2等で表され、かつリチウム過剰層状岩塩型構造を有する複合酸化物が挙げられる。
(カルシウム及び/又はマグネシウムが置換したリチウムニッケルマンガン複合酸化物、リチウムニッケルコバルトマンガン複合酸化物又はリチウムニッケルチタンマンガン複合酸化物(Li1+x-2yMy)(CozNimTinMn1-m-n)1-xO2(式中、Mは、Ca及び/又はMgであり、x、y、z、m及びnは、それぞれ、0<x≦0.33、0<y<0.13、0≦z<0.2、0<m<0.5、0≦n≦0.25を満たす数である)の合成)
本発明のうち、カルシウム及び/又はマグネシウムが置換したリチウムニッケルマンガン複合酸化物、リチウムニッケルコバルトマンガン酸化物又はリチウムニッケルチタンマンガン複合酸化物(Li1+x-2yMy)(CozNimTinMn1-m-n)1-xO2(式中、M、x、y、z、m及びnは、それぞれ、前記の意味を有する)は、原料として、リチウム金属、又はリチウム化合物の少なくとも1種、カルシウム金属、マグネシウム金属、カルシウム化合物、又はマグネシウム化合物の少なくとも1種、及びニッケル金属、又はニッケル化合物の少なくとも1種、コバルト金属、又はコバルト化合物の少なくとも1種、チタン金属、又はチタン化合物の少なくとも1種、マンガン金属、又はマンガン化合物の少なくとも1種を、(Li1+x-2yMy)(CozNimTinMn1-m-n)1-xO2(式中、M、x、y、z、m及びnは、それぞれ、前記の意味を有する)の化学組成となるように秤量・混合し、空気中などの酸素ガスが存在する雰囲気中で加熱することによって、製造することができる。
本発明のリチウム二次電池は、前記(Li1+x-2yMy)(CozNimTinMn1-m-n)1-xO2(式中、M、x、y、z、m及びnは、それぞれ、前記の意味を有する)を活物質として、前記活物質を、正極合材の全重量に対して、50重量%以上100重量%以下含有する正極を構成部材として用いるものである。すなわち、本発明のリチウム二次電池は、正極材料活物質として本発明のカルシウム及び/又はマグネシウム置換リチウム遷移金属複合酸化物を用いる以外は、公知のリチウム電池(コイン型、ボタン型、円筒型、全固体型等)の電池要素をそのまま採用することができる。図1は、本発明のリチウム二次電池を、コイン型リチウム二次電池に適用した1例を示す模式図である。このコイン型電池1は、SUS製の負極端子2、金属リチウムを使用した負極3、ポリプロピレン製の微多孔製膜のセパレータ、(エチレンカーボネートとジエチルカーボネートを体積比1:1で混合した溶媒に1MのLiPF6電解質を溶解した電解液)4、ポリプロピレン製の絶縁パッキング5、本発明の活物質からなる正極6、SUS製の正極缶7により構成される。
<実施例1>
炭酸リチウム(Li2CO3、レアメタリック製、純度99.99%)、塩化カルシウム(CaCl2、高純度化学研究所製、純度99.9%以上)、酢酸ニッケル四水和物((CH3COO)2Ni・4H2O、和光純薬製、和光特級)、炭酸マンガン(MnCO3、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Ca:Ni:Mn=1.8:0.02:0.25:0.75となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
a=2.8531ű0.0002Å
c=14.242ű0.002Å
V=100.40±0.01Å3
さらに、リートベルト法による結晶構造解析(プログラムRIETAN-FP使用)を行い、空間群C2/mを仮定して格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。
a=4.9427ű0.0008Å
b=8.5561ű0.0009Å
c=5.0280ű0.0004Å
β=109.274°±0.009°
V=200.72±0.04Å3
さらに、ICP分析(HITACHI製、商品名P-4010)により化学分析を行い、モル比は、Li:Ca:Ni:Mn=1.64:0.02:0.25:0.75であることが判明した。この値を、一般式(Li1+x-2yMy)(CozNimTinMn1-m-n)1-xO2(M:Ca及び/又はMg、ただし式中、0<x≦0.33、0<y<0.13、0≦z<0.2、0<m<0.5、0≦n≦0.25)で表記し直すと、x=0.25、y=0.01、z=0、m=0.25、n=0となることが確認された。また、るつぼ材由来のアルミニウム、ケイ素などは検出されなかった。
このようにして得られたリチウムカルシウムニッケルマンガン複合酸化物を活物質とし、導電剤としてアセチレンブラック、結着剤としてテトラフルオロエチレンを、重量比で45:45:10となるように配合し電極を作製した。
前記リチウム二次電池(コイン型セル)のより具体的な構造は、前記正極6、前記電解液を含むポリプロピレン製の微多孔製膜のセパレータ4、金属リチウムを使用した負極3及びSUS製の負極端子2をこの順で積層して積層体とし、前記積層体が、前記正極6をSUS製の正極缶7の内底部に接し、かつ前記負極端子2の少なくとも一部を前記正極缶7の外部に露出するようにして前記正極缶7に収容されている。前記正極缶7内で前記積層体の周囲はポリプロピレン製の絶縁パッキング5で被覆されて、コイン型セルを有するリチウム二次電池が形成されている。前記コイン型セルを平面に載置したとき、前記コイン型セルの鉛直方向の厚さは3.2mmであり、直径は20mmである。また、正極缶7、前記正極6、前記電解液を含むポリプロピレン製の微多孔製膜のセパレータ4、金属リチウムを使用した負極3及びSUS製の負極端子2の鉛直方向の厚さは、それぞれ、0.25mm、0.3mm、0.02mm、0.2mm、及び0.25mmであり、残部のスペースをいずれもSUS製のウェーブワッシャー1.4mmとスペーサー1.0mmで充填したものである。
また、同条件で作製したリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、リチウム基準の電位4.8-2.5Vのカットオフ電位で定電流充放電試験を行った。その結果、サイクル毎に充放電の容量が増大していき、32サイクル目で容量が最大となった。この充放電試験の1サイクル目の充電曲線を図5に示す。リチウム過剰層状岩塩型構造のリチウムニッケルマンガン複合酸化物、或いはリチウムニッケルコバルトマンガン酸化物に特徴的な約4.5Vでの電圧平坦部は認められず、単調に電位が増大していく充電曲線であることが確認でき、本発明のリチウムカルシウムニッケルマンガン複合酸化物活物質が、酸素脱離反応を起こさず、酸素原子の配列を維持したままで高容量のリチウム二次電池材料として有用であることが明らかとなった。
また、同条件で作製したリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、リチウム基準の電位4.6-2.5Vのカットオフ電位で定電流充放電試験を行った。その結果、サイクル毎に充放電の容量が増大していき、39サイクル目で容量が最大となった。この時の39サイクル目の充電曲線を図6に示す。39サイクル目で放電容量は、253mAh/gであり、その後の75サイクル目の放電容量が39サイクル目の放電容量に対して98%程度の容量維持率を示すことが確認された。このことから、本発明のリチウムカルシウムニッケルマンガン複合酸化物活物質が、高容量のリチウム二次電池材料として有用であることが明らかとなった。
(リチウム過剰層状岩塩型構造を有するリチウムカルシウムニッケルマンガン複合酸化物)
炭酸リチウム(Li2CO3、レアメタリック製、純度99.99%)、塩化カルシウム(CaCl2、高純度化学研究所製、純度99.9%以上)、酢酸ニッケル四水和物((CH3COO)2Ni・4H2O、和光純薬製、和光特級)、炭酸マンガン(MnCO3、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Ca:Ni:Mn=1.8:0.2:0.25:0.75となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
(リチウム過剰層状岩塩型構造を有するリチウムカルシウムニッケルチタンマンガン複合酸化物の合成)
炭酸リチウム(Li2CO3、レアメタリック製、純度99.99%)、塩化カルシウム(CaCl2、高純度化学研究所製、純度99.9%以上)、酢酸ニッケル四水和物((CH3COO)2Ni・4H2O、和光純薬製、和光特級)、二酸化チタン(TiO2、テイカ製AMT-100、含有量93%)、炭酸マンガン(MnCO3、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Ca:Ni:Ti:Mn=1.8:0.02:0.125:0.125:0.75となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
a=2.8558ű0.0004Å
c=14.260ű0.003Å
V=100.72±0.02Å3
さらに、リートベルト法による結晶構造解析(プログラムRIETAN-FP使用)を行い、空間群C2/mを仮定して格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。
a=4.9434ű0.0010Å
b=8.5551ű0.0010Å
c=5.0302ű0.0005Å
β=109.216°±0.012°
V=200.88±0.05Å3
このようにして得られたリチウムカルシウムニッケルチタンマンガン複合酸化物を活物質とし、実施例1と同じ構成要素・構造のリチウム二次電池(コイン型セル)を作製した。
(リチウム過剰層状岩塩型構造を有するリチウムマグネシウムニッケルマンガン複合酸化物(組成式:Li1.24Mg0.01Ni0.19Mn0.56O2)の合成)
炭酸リチウム(Li2CO3、レアメタリック製、純度99.99%)、塩化マグネシウム(MgCl2、高純度化学研究所製、純度99.9%以上)、酢酸ニッケル四水和物((CH3COO)2Ni・4H2O、和光純薬製、和光特級)、炭酸マンガン(MnCO3、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Mg:Ni:Mn=1.8:0.02:0.25:0.75となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
a=2.8527ű0.0004Å
c=14.242ű0.002Å
V=100.37±0.01Å3
さらに、リートベルト法による結晶構造解析(プログラムRIETAN-FP使用)を行い、空間群C2/mを仮定して格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。
a=4.9438ű0.0009Å
b=8.5594ű0.0011Å
c=5.0291ű0.0004Å
β=109.306°±0.011°
V=200.84±0.05Å3
さらに、ICP分析(HITACHI製、商品名P-4010)により化学分析を行い、モル比は、Li:Mg:Ni:Mn=1.68:0.02:0.25:0.75であることが判明した。この値を、一般式(Li1+x-2yMy)(CozNimTinMn1-m-n)1-xO2(式中、M、x、y、z、m及びnは、それぞれ、前記の意味を有する)で表記し直すと、x=0.26、y=0.01、z=0、m=0.25、n=0となることが確認された。また、るつぼ材由来のアルミニウム、ケイ素などは検出されなかった。
このようにして得られたリチウムマグネシウムニッケルマンガン複合酸化物を活物質とし、実施例1と同じ構成要素・構造のリチウム二次電池(コイン型セル)を作製した。
また、同条件で作製したリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、リチウム基準の電位4.8-2.5Vのカットオフ電位で定電流充放電試験を行った。その結果、サイクル毎に充放電の容量が増大していき、30サイクル目で容量が最大となった。この充放電試験の1サイクル目の充電曲線を図14に示す。リチウム過剰層状岩塩型構造のリチウムニッケルマンガン複合酸化物、或いはリチウムニッケルコバルトマンガン酸化物に特徴的な約4.5Vでの電圧平坦部は認められず、単調に電位が増大していく充電曲線であることが確認でき、本発明のリチウムマグネシウムニッケルマンガン複合酸化物活物質が、酸素脱離反応を起こず、酸素原子の配列を維持したままで高容量のリチウム二次電池材料として有用であることが明らかとなった。
また、同条件で作製したリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、リチウム基準の電位4.6-2.5Vのカットオフ電位で定電流充放電試験を行った。その結果、サイクル毎に充放電の容量が増大していき、30サイクル目で容量が最大となった。この時の30サイクル目の充電曲線を図15に示す。30サイクル目で放電容量は、251mAh/gであり、その後の76サイクル目の放電容量が30サイクル目の放電容量に対して95%程度の容量維持率を示すことが確認された。このことから、本発明のリチウムマグネシウムニッケルマンガン複合酸化物活物質が、高容量のリチウム二次電池材料として有用であることが明らかとなった。
(リチウム過剰層状岩塩型構造を有するリチウムマグネシウムニッケルマンガン複合酸化物の合成)
炭酸リチウム(Li2CO3、レアメタリック製、純度99.99%)、塩化マグネシウム(MgCl2、高純度化学研究所製、純度99.9%以上)、酢酸ニッケル四水和物((CH3COO)2Ni・4H2O、和光純薬製、和光特級)、炭酸マンガン(MnCO3、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Mg:Ni:Mn=1.8:0.2:0.25:0.75となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
(リチウム過剰層状岩塩型構造を有するリチウムマグネシウムニッケルチタンマンガン複合酸化物の合成)
炭酸リチウム(Li2CO3、レアメタリック製、純度99.99%)、塩化マグネシウム(MgCl2、高純度化学研究所製、純度99.9%以上)、酢酸ニッケル四水和物((CH3COO)2Ni・4H2O、和光純薬製、和光特級)、二酸化チタン(TiO2、テイカ製AMT-100、含有量93%)、炭酸マンガン(MnCO3、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Mg:Ni:Ti:Mn=1.8:0.02:0.125:0.125:0.75となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
a=2.8569ű0.0006Å
c=14.264ű0.004Å
V=100.40±0.01Å3
さらに、リートベルト法による結晶構造解析(プログラムRIETAN-FP使用)を行い、空間群C2/mを仮定して格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。
a=4.9492ű0.0014Å
b=8.5699ű0.0017Å
c=5.0346ű0.0007Å
β=109.203°±0.018°
V=201.66±0.08Å3
このようにして得られたリチウムマグネシウムニッケルチタンマンガン複合酸化物を活物質とし、実施例1と同じ構成要素・構造のリチウム二次電池(コイン型セル)を作製し、その充放電特性を測定した。
(リチウム過剰層状岩塩型構造を有するリチウムカルシウムマグネシウムニッケルマンガン複合酸化物(組成式:Li1.22Ca0.005Mg0.005Ni0.19Mn0.57O2)の合成)
炭酸リチウム(Li2CO3、レアメタリック製、純度99.99%)、塩化カルシウム(CaCl2、高純度化学研究所製、純度99.9%以上)、塩化マグネシウム(MgCl2、高純度化学研究所製、純度99.9%以上)、酢酸ニッケル四水和物((CH3COO)2Ni・4H2O、和光純薬製、和光特級)、炭酸マンガン(MnCO3、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Ca:Mg:Ni:Mn=1.8:0.01:0.01:0.25:0.75となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
a=2.8544ű0.0002Å
c=14.245ű0.001Å
V=100.51±0.01Å3
さらに、リートベルト法による結晶構造解析(プログラムRIETAN-FP使用)を行い、空間群C2/mを仮定して格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。
a=4.9457ű0.0010Å
b=8.5639ű0.0012Å
c=5.0292ű0.0004Å
β=109.287°±0.012°
V=201.06±0.05Å3
さらに、ICP分析(HITACHI製、商品名P-4010)により化学分析を行い、モル比は、Li:Ca:Mg:Ni:Mn=1.62:0.01:0.01:0.25:0.75であることが判明した。この値を、一般式(Li1+x-2yMy)(CozNimTinMn1-m-n)1-xO2(式中、M、x、y、z、m及びnは、それぞれ、前記の意味を有する)で表記し直すと、x=0.24、y=0.01、z=0、m=0.25、n=0となることが確認された。また、るつぼ材由来のアルミニウム、ケイ素などは検出されなかった。
このようにして得られたリチウムカルシウムマグネシウムニッケルマンガン複合酸化物を活物質とし、実施例1と同じ構成要素・構造のリチウム二次電池(コイン型セル)を作製した。
また、同条件で作製したリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、リチウム基準の電位4.8-2.5Vのカットオフ電位で定電流充放電試験を行った。その結果、サイクル毎に充放電の容量が増大していき、28サイクル目で容量が最大となった。この充放電試験の1サイクル目の充電曲線を図22に示す。リチウム過剰層状岩塩型構造のリチウムニッケルマンガン複合酸化物、或いはリチウムニッケルコバルトマンガン酸化物に特徴的な約4.5Vでの電圧平坦部は認められず、単調に電位が増大していく充電曲線であることが確認でき、本発明のリチウムカルシウムニッケルマンガン複合酸化物活物質が、酸素脱離反応を起こず、酸素原子の配列を維持したままで高容量のリチウム二次電池材料として有用であることが明らかとなった。
また、同条件で作製したリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、リチウム基準の電位4.6-2.5Vのカットオフ電位で定電流充放電試験を行った。その結果、サイクル毎に充放電の容量が増大していき、24サイクル目で容量が最大となった。この時の24サイクル目の充電曲線を図23に示す。24サイクル目で放電容量は、253mAh/gであり、その後の74サイクル目の放電容量が24サイクル目の放電容量に対して95%程度の容量維持率を示すことが確認された。また、実施例1のリチウムカルシウムニッケルマンガン複合酸化物、及び実施例4のリチウムマグネシウムニッケルマンガン複合酸化物と比べて、ほぼ同等の高容量が得られることが明らかとなった。このことから、本発明のリチウムカルシウムマグネシウムニッケルマンガン複合酸化物活物質が、高容量のリチウム二次電池材料として有用であることが明らかとなった。
(リチウム過剰層状岩塩型構造を有するリチウムカルシウムマグネシウムニッケルマンガン複合酸化物の合成)
炭酸リチウム(Li2CO3、レアメタリック製、純度99.99%)、塩化カルシウム(CaCl2、高純度化学研究所製、純度99.9%以上)、塩化マグネシウム(MgCl2、高純度化学研究所製、純度99.9%以上)、酢酸ニッケル四水和物((CH3COO)2Ni・4H2O、和光純薬製、和光特級)、炭酸マンガン(MnCO3、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Ca:Mg:Ni:Mn=1.8:0.03:0.03:0.25:0.75となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
(リチウム過剰層状岩塩型構造を有するリチウムカルシウムマグネシウムニッケルチタンマンガン複合酸化物の合成)
炭酸リチウム(Li2CO3、レアメタリック製、純度99.99%)、塩化カルシウム(CaCl2、高純度化学研究所製、純度99.9%以上)、塩化マグネシウム(MgCl2、高純度化学研究所製、純度99.9%以上)、酢酸ニッケル四水和物((CH3COO)2Ni・4H2O、和光純薬製、和光特級)、二酸化チタン(TiO2、テイカ製AMT-100、含有量93%)、炭酸マンガン(MnCO3、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Ca:Mg:Ni:Ti:Mn=1.8:0.01:0.01:0.125:0.125:0.75となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
a=2.8560ű0.0004Å
c=14.264ű0.004Å
V=100.76±0.02Å3
さらに、リートベルト法による結晶構造解析(プログラムRIETAN-FP使用)を行い、空間群C2/mを仮定して格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。
a=4.9508ű0.0018Å
b=8.5700ű0.0019Å
c=5.0360ű0.0008Å
β=109.24°±0.02°
V=201.73±0.09Å3
そして、以上のような確認からみて、実施例6の複合酸化物についても実施例2や実施例4と同様の、高容量が可能で、かつ、サイクルの進行に伴う放電曲線の変化が小さいという性能が期待できると言える。
(リチウム過剰層状岩塩型構造を有するリチウムカルシウムコバルトニッケルマンガン複合酸化物(組成式:Li1.23Ca0.01Co0.14Ni0.13Mn0.49O2)の合成)
炭酸リチウム(Li2CO3、レアメタリック製、純度99.99%)、塩化カルシウム(CaCl2、高純度化学研究所製、純度99.9%以上)、酢酸コバルト四水和物((CH3COO)2Co・4H2O、和光純薬製、和光特級)、酢酸ニッケル四水和物((CH3COO)2Ni・4H2O、和光純薬製、和光特級)、炭酸マンガン(MnCO3、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Ca:Mg:Ni:Mn=1.8:0.02:0.17:0.17:0.66となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
a=4.9328ű0.0002Å
b=8.5402ű0.0003Å
c=5.0233ű0.0001Å
β=109.260°±0.002°
V=199.775±0.012Å3
さらに、ICP分析(HITACHI製、商品名P-4010)により化学分析を行い、モル比は、Li:Ca:Co:Ni:Mn=1.63:0.02:0.18:0.17:0.65であることが判明した。この値を、一般式(Li1+x-2yMy)(CozNimTinMn1-m-n)1-xO2(式中、M、x、y、z、m及びnは、それぞれ、前記の意味を有する)で表記し直すと、x=0.25、y=0.01、z=0.18、m=0.17、n=0となることが確認された。また、るつぼ材由来のアルミニウム、ケイ素などは検出されなかった。
このようにして得られたリチウムカルシウムコバルトニッケルマンガン複合酸化物を活物質とし、実施例1と同じ構成要素・構造のリチウム二次電池(コイン型セル)を作製した。
(リチウム過剰層状岩塩型構造を有するリチウムマグネシウムコバルトニッケルマンガン複合酸化物(組成式:Li1.22Mg0.01Co0.14Ni0.12Mn0.50O2)の合成)
炭酸リチウム(Li2CO3、レアメタリック製、純度99.99%)、塩化マグネシウム(MgCl2、高純度化学研究所製、純度99.9%以上)、酢酸コバルト四水和物((CH3COO)2Co・4H2O、和光純薬製、和光特級)、酢酸ニッケル四水和物((CH3COO)2Ni・4H2O、和光純薬製、和光特級)、炭酸マンガン(MnCO3、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Mg:Co:Ni:Mn=1.8:0.02:0.17:0.17:0.66となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
a=4.9304ű0.0002Å
b=8.5362ű0.0003Å
c=5.0210ű0.0001Å
β=109.270°±0.002°
V=199.478±0.012Å3
さらに、ICP分析(HITACHI製、商品名P-4010)により化学分析を行い、モル比は、Li:Mg:Co:Ni:Mn=1.62:0.02:0.18:0.16:0.66であることが判明した。この値を、一般式(Li1+x-2yMy)(CozNimTinMn1-m-n)1-xO2(式中、M、x、y、z、m及びnは、それぞれ、前記の意味を有する)で表記し直すと、x=0.24、y=0.01、z=0.18、m=0.16、n=0となることが確認された。また、るつぼ材由来のアルミニウム、ケイ素などは検出されなかった。
このようにして得られたリチウムマグネシウムコバルトニッケルマンガン複合酸化物を活物質とし、実施例1と同じ構成要素・構造のリチウム二次電池(コイン型セル)を作製した。
(リチウム過剰層状岩塩型構造を有するリチウムカルシウムマグネシウムコバルトニッケルマンガン複合酸化物(組成式:Li1.22Ca0.005Mg0.005Co0.14Ni0.13Mn0.49O2)の合成)
炭酸リチウム(Li2CO3、レアメタリック製、純度99.99%)、塩化カルシウム(CaCl2、高純度化学研究所製、純度99.9%以上)、塩化マグネシウム(MgCl2、高純度化学研究所製、純度99.9%以上)、酢酸コバルト四水和物((CH3COO)2Co・4H2O、和光純薬製、和光特級)、酢酸ニッケル四水和物((CH3COO)2Ni・4H2O、和光純薬製、和光特級)、炭酸マンガン(MnCO3、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Ca:Mg:Co:Ni:Mn=1.8:0.01:0.01:0.17:0.17:0.66となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
a=4.9308ű0.0002Å
b=8.5361ű0.0003Å
c=5.0203ű0.0001Å
β=109.258°±0.002°
V=199.478±0.012Å3
さらに、ICP分析(HITACHI製、商品名P-4010)により化学分析を行い、モル比は、Li:Ca:Mg:Co:Ni:Mn=1.62:0.01:0.01:0.18:0.17:0.65であることが判明した。この値を、一般式(Li1+x-2yMy)(CozNimTinMn1-m-n)1-xO2(式中、M、x、y、z、m及びnは、それぞれ、前記の意味を有する)で表記し直すと、x=0.24、y=0.01、z=0.18、m=0.17、n=0となることが確認された。また、るつぼ材由来のアルミニウム、ケイ素などは検出されなかった。
このようにして得られたリチウムカルシウムマグネシウムコバルトニッケルマンガン複合酸化物を活物質とし、実施例1と同じ構成要素・構造のリチウム二次電池(コイン型セル)を作製した。
(リチウム過剰層状岩塩型構造を有するリチウムニッケルマンガン複合酸化物の合成)
炭酸リチウム(Li2CO3、レアメタリック製、純度99.99%)、酢酸ニッケル四水和物((CH3COO)2Ni・4H2O、和光純薬製、和光特級)、炭酸マンガン(MnCO3、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Ni:Mn=2.0:0.25:0.75となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
a=2.8516ű0.0004Å
c=14.238ű0.003Å
V=100.27±0.02Å3
さらに、リートベルト法による結晶構造解析(プログラムRIETAN-FP使用)を行い、空間群C2/mを仮定して格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。
a=4.9351ű0.0008Å
b=8.5454ű0.0004Å
c=5.0218ű0.0002Å
β=109.233°±0.005°
V=199.96±0.02Å3
さらに、ICP分析(HITACHI製、商品名P-4010)により化学分析を行い、モル比は、Li:Ni:Mn=1.75:0.25:0.75であることが判明した。この値を、一般式(Li1+x-2yMy)(CozNimTinMn1-m-n)1-xO2(式中、M、x、y、z、m及びnは、それぞれ、前記の意味を有する)で表記し直すと、x=0.27、y=0、z=0、m=0.25、n=0となることが確認された。また、るつぼ材由来のアルミニウム、ケイ素などは検出されなかった。
このようにして得られたリチウムニッケルマンガン複合酸化物を活物質とし、実施例1と同じ構成要素・構造のリチウム二次電池(コイン型セル)を作製し、その充放電特性を測定した。
また、同条件で作製したリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、リチウム基準の電位4.6-2.5Vのカットオフ電位で定電流充放電試験を行った。その結果、サイクル毎に充放電の容量が増大していき、40サイクル目で容量が最大となった。この時の40サイクル目の充電曲線を図35に示す。40サイクル目で放電容量は、239mAh/gであり、その後の82サイクル目の放電容量が40サイクル目の放電容量に対して94%程度の容量維持率を示すことが確認された。このことから、実施例1、実施例4、或いは実施例7に示す本発明の活物質が、高容量かつ容量維持率が高いリチウム二次電池材料として有用であることが明らかとなった。
<比較例2>
(リチウム過剰層状岩塩型構造を有するリチウムニッケルマンガン複合酸化物の合成)
炭酸リチウム(Li2CO3、レアメタリック製、純度99.99%)、酢酸ニッケル四水和物((CH3COO)2Ni・4H2O、和光純薬製、和光特級)、炭酸マンガン(MnCO3、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Ni:Mn=1.8:0.25:0.75となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
このようにして得られたリチウムニッケルマンガン複合酸化物を活物質とし、実施例1と同じ構成要素・構造のリチウム二次電池(コイン型セル)を作製し、その充放電特性を測定した。
<比較例3>
(リチウム過剰層状岩塩型構造を有するリチウムコバルトニッケルマンガン複合酸化物の合成)
炭酸リチウム(Li2CO3、レアメタリック製、純度99.99%)、酢酸コバルト四水和物((CH3COO)2Ni・4H2O、和光純薬製、和光特級)、酢酸ニッケル四水和物((CH3COO)2Ni・4H2O、和光純薬製、和光特級)、炭酸マンガン(MnCO3、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Co:Ni:Mn=2.0:0.17:0.17:0.66となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
a=4.9262ű0.0002Å
b=8.5276ű0.0002Å
c=5.0182ű0.0001Å
β=109.262°±0.002°
V=199.004±0.010Å3
さらに、ICP分析(HITACHI製、商品名P-4010)により化学分析を行い、モル比は、Li:Co:Ni:Mn=1.75:0.18:0.17:0.65であることが判明した。この値を、一般式(Li1+x-2yMy)(CozNimTinMn1-m-n)1-xO2(式中、M、x、y、z、m及びnは、それぞれ、前記の意味を有する)で表記し直すと、x=0.27、y=0、z=0.18、m=0.17、n=0となることが確認された。また、るつぼ材由来のアルミニウム、ケイ素などは検出されなかった。
このようにして得られたリチウムコバルトニッケルマンガン複合酸化物を活物質とし、実施例1と同じ構成要素・構造のリチウム二次電池(コイン型セル)を作製し、その充放電特性を測定した。
(リチウム過剰層状岩塩型構造を有するリチウムコバルトニッケルマンガン複合酸化物の合成)
炭酸リチウム(Li2CO3、レアメタリック製、純度99.99%)、酢酸コバルト四水和物((CH3COO)2Ni・4H2O、和光純薬製、和光特級)、酢酸ニッケル四水和物((CH3COO)2Ni・4H2O、和光純薬製、和光特級)、炭酸マンガン(MnCO3、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Co:Ni:Mn=1.8:0.17:0.17:0.66となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
このようにして得られたリチウムコバルトニッケルマンガン複合酸化物を活物質とし、実施例1と同じ構成要素・構造のリチウム二次電池(コイン型セル)を作製し、その充放電特性を測定した。
(リチウム過剰層状岩塩型構造を有するリチウムニッケルチタンマンガン複合酸化物の合成)
炭酸リチウム(Li2CO3、レアメタリック製、純度99.99%)、酢酸ニッケル四水和物((CH3COO)2Ni・4H2O、和光純薬製、和光特級)、二酸化チタン(TiO2、テイカ製AMT-100、含有量93%)、炭酸マンガン(MnCO3、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Ni:Ti:Mn=2.0:0.125:0.125:0.75となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
a=2.8596ű0.0002Å
c=14.273ű0.001Å
V=101.08±0.01Å3
さらに、リートベルト法による結晶構造解析(プログラムRIETAN-FP使用)を行い、空間群C2/mを仮定して格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。
a=4.9511ű0.0006Å
b=8.5667ű0.0006Å
c=5.0366ű0.0003Å
β=109.182°±0.008°
V=201.77±0.03Å3
このようにして得られたリチウムニッケルチタンマンガン複合酸化物を活物質とし、実施例1と同じ構成要素・構造のリチウム二次電池(コイン型セル)を作製し、その充放電特性を測定した。
Claims (13)
- リチウムと、カルシウム及びマグネシウムの少なくとも一方と、ニッケルと、マンガンとを含有し、リチウム過剰層状岩塩型構造を備える複合酸化物。
- 前記複合酸化物は、電気化学的に4.6V以上5.0V以下の電位でリチウムを脱離したとき、酸素原子の配列が維持される請求項1に記載の複合酸化物。
- 前記複合酸化物は、単斜晶系に属する層状岩塩型構造を備える請求項1又は2に記載の複合酸化物。
- 前記複合酸化物は、化学式(Li1+x-2yMy)(CozNimTinMn1-m-n)1-xO2(式中、Mは、Ca及び/又はMgであり、x、y、z、m及びnは、それぞれ、0<x≦0.33、0<y<0.13、0≦z<0.2、0<m<0.5、0≦n≦0.25を満たす数である)で表される請求項1~3のいずれか1項に記載の複合酸化物。
- 前記複合酸化物は、化学式(Li1+x-2yMy)(CozNimTinMn1-m-n)1-xO2(式中、Mは、Ca及び/又はMgであり、x、y、z、m及びnは、それぞれ、0.20≦x≦0.28、0<y<0.03、0≦z<0.2、0.1<m<0.3、0≦n≦0.2を満たす数である)で表される請求項1~3のいずれか1項に記載の複合酸化物。
- 前記複合酸化物は、化学式(Li1+x-2yMy)(CozNimMn1-m)1-xO2(式中、Mは、Ca及び/又はMgであり、x、y、z及びmは、それぞれ、0.20≦x≦0.28、0<y<0.03、0≦z<0.2、0.1<m<0.2を満たす数である)で表される請求項1~3のいずれか1項に記載の複合酸化物。
- 前記複合酸化物は、化学式(Li1+x-2yMy)(NimMn1-m)1-xO2(式中、Mは、Ca及び/又はMgであり、x、y及びmは、それぞれ、0.20≦x≦0.28、0<y<0.03、0.2<m<0.3を満たす数である)で表される請求項1~3のいずれか1項に記載の複合酸化物。
- 前記複合酸化物は、化学式(Li1+x-2yMy)(NimTinMn1-m-n)1-xO2(Mは、Ca及び/又はMgであり、x、y、m及びnは、それぞれ、0.20≦x≦0.28、0<y<0.03、0.1<m<0.3、0≦n≦0.2を満たす数である)で表される請求項1~3のいずれか1項に記載の複合酸化物。
- 請求項1~8のいずれか1項に記載の複合酸化物を備えるリチウム二次電池用の正極材料活物質。
- 前記正極材料活物質は、初回充電反応時の4.4V以上4.7V以下の電圧範囲で、酸素原子の配列を維持し、電位が単調に上昇する充電曲線を示す請求項9に記載のリチウム二次電池用の正極材料活物質。
- 前記正極材料活物質は、高容量であり、かつ充放電サイクルに伴って遷移金属原子の配列を維持する請求項9に記載のリチウム二次電池用の正極材料活物質。
- 正極、負極、セパレータ及び電解質を備えるリチウム二次電池であって、前記正極は、請求項9~11のいずれか1項に記載のリチウム二次電池用の正極材料活物質を備えるリチウム二次電池。
- 前記リチウム二次電池は、その充放電容量が、前記正極材料活物質の複合酸化物の単位重量あたり250mAh/g以上300mAh/g以下である請求項12に記載のリチウム二次電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/574,222 US10505189B2 (en) | 2015-05-22 | 2016-05-20 | Cathode material and lithium secondary battery using same as cathode |
CN201680014545.5A CN107428559B (zh) | 2015-05-22 | 2016-05-20 | 正极材料、以及将其用于正极的锂二次电池 |
JP2017520686A JP6541115B2 (ja) | 2015-05-22 | 2016-05-20 | 正極材料、並びにそれを正極に使用したリチウム二次電池 |
KR1020177025209A KR102561910B1 (ko) | 2015-05-22 | 2016-05-20 | 정극재료, 이를 정극에 사용한 리튬 이차 전지 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015104962 | 2015-05-22 | ||
JP2015-104962 | 2015-05-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016190251A1 true WO2016190251A1 (ja) | 2016-12-01 |
Family
ID=57393505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/065059 WO2016190251A1 (ja) | 2015-05-22 | 2016-05-20 | 正極材料、並びにそれを正極に使用したリチウム二次電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10505189B2 (ja) |
JP (1) | JP6541115B2 (ja) |
KR (1) | KR102561910B1 (ja) |
CN (1) | CN107428559B (ja) |
TW (1) | TWI597885B (ja) |
WO (1) | WO2016190251A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018160323A (ja) * | 2017-03-22 | 2018-10-11 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質とその前駆体、及びそれらの製造方法 |
CN109273688A (zh) * | 2018-09-17 | 2019-01-25 | 国联汽车动力电池研究院有限责任公司 | 一种表面富岩盐相的高镍正极材料及其制备方法和应用 |
EP3597603A4 (en) * | 2017-03-14 | 2021-07-07 | Mitsui Mining & Smelting Co., Ltd. | COMPOSITE OXIDE CONTAINING LITHIUM NICKEL MANGANESE SPINEL TYPE |
WO2022038454A1 (ja) * | 2020-08-20 | 2022-02-24 | 株式会社半導体エネルギー研究所 | 正極活物質の作製方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6968844B2 (ja) * | 2018-03-15 | 2021-11-17 | Basf戸田バッテリーマテリアルズ合同会社 | 非水電解質二次電池用の正極活物質粒子及びその製造方法、並びに非水電解質二次電池 |
KR102288293B1 (ko) * | 2018-06-20 | 2021-08-10 | 주식회사 엘지화학 | 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지 |
JP7365565B2 (ja) * | 2020-03-18 | 2023-10-20 | トヨタ自動車株式会社 | 正極活物質および該正極活物質を備える二次電池 |
CN111422924B (zh) * | 2020-03-31 | 2023-03-21 | 蜂巢能源科技有限公司 | 钙掺杂富锂碳酸盐前驱体及其制备方法和应用 |
CN117597796A (zh) * | 2021-07-02 | 2024-02-23 | 巴斯夫欧洲公司 | 颗粒材料、其制备方法和用途 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007516583A (ja) * | 2003-12-23 | 2007-06-21 | トロノックス エルエルシー | リチウム充電式バッテリ用高電圧薄層カソード材料及びその製法 |
CN103441238A (zh) * | 2013-08-27 | 2013-12-11 | 上海电力学院 | 一种掺杂Mg的富锂正极材料及其制备方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5024359B1 (ja) | 1965-08-19 | 1975-08-14 | ||
US5631105A (en) * | 1995-05-26 | 1997-05-20 | Matsushita Electric Industrial Co., Ltd. | Non-aqueous electrolyte lithium secondary battery |
JP2000123834A (ja) * | 1998-10-09 | 2000-04-28 | Gs Melcotec Kk | 非水電解液二次電池 |
JP3928836B2 (ja) | 1999-12-10 | 2007-06-13 | 脇原 將孝 | リチウム二次電池用正極材料およびリチウム二次電池 |
JP4404564B2 (ja) | 2003-03-25 | 2010-01-27 | 三洋電機株式会社 | 非水電解質二次電池、正極活物質 |
JP5173145B2 (ja) * | 2006-02-08 | 2013-03-27 | 三洋電機株式会社 | 非水電解質二次電池 |
JP2007257885A (ja) | 2006-03-20 | 2007-10-04 | Nissan Motor Co Ltd | 非水電解質リチウムイオン電池用正極材料およびこれを用いた電池 |
US8465873B2 (en) * | 2008-12-11 | 2013-06-18 | Envia Systems, Inc. | Positive electrode materials for high discharge capacity lithium ion batteries |
CN102804459B (zh) | 2010-03-19 | 2016-01-13 | 丰田自动车株式会社 | 锂二次电池和该锂二次电池用正极活性物质 |
JP5152246B2 (ja) * | 2010-04-23 | 2013-02-27 | 株式会社豊田自動織機 | リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池 |
JP2012142155A (ja) * | 2010-12-28 | 2012-07-26 | Sony Corp | リチウム二次電池、正極活物質、正極、電動工具、電動車両および電力貯蔵システム |
JP5880928B2 (ja) | 2011-03-14 | 2016-03-09 | 国立研究開発法人産業技術総合研究所 | リチウムマンガンチタンニッケル複合酸化物及びその製造方法、並びにそれを部材として使用したリチウム二次電池 |
JP5958926B2 (ja) | 2011-11-08 | 2016-08-02 | 国立研究開発法人産業技術総合研究所 | リチウムマンガン系複合酸化物およびその製造方法 |
KR101550956B1 (ko) * | 2012-07-31 | 2015-09-18 | 주식회사 엘지화학 | 금속 도핑된 양극 활물질 |
CN103700850B (zh) | 2012-09-27 | 2016-01-20 | 清华大学 | 锂离子电池正极复合材料 |
EP2772968B1 (en) | 2013-02-28 | 2016-11-30 | Samsung SDI Co., Ltd. | Composite positive active material, method of preparing the same, and positive electrode and lithium battery containing the material |
CN103259016B (zh) | 2013-05-10 | 2015-06-03 | 东南大学 | 锂位掺杂的锂离子电池正极材料的制备方法 |
CN104091919B (zh) | 2014-07-29 | 2016-05-18 | 中国科学院福建物质结构研究所 | 一种锂离子电池正极材料及其制备方法 |
CN106299328B (zh) | 2015-05-14 | 2019-11-08 | 中国科学院物理研究所 | 对富锂层状氧化物正极材料的掺杂方法、材料和制备方法 |
-
2016
- 2016-05-20 JP JP2017520686A patent/JP6541115B2/ja active Active
- 2016-05-20 WO PCT/JP2016/065059 patent/WO2016190251A1/ja active Application Filing
- 2016-05-20 KR KR1020177025209A patent/KR102561910B1/ko active IP Right Grant
- 2016-05-20 CN CN201680014545.5A patent/CN107428559B/zh active Active
- 2016-05-20 TW TW105115864A patent/TWI597885B/zh active
- 2016-05-20 US US15/574,222 patent/US10505189B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007516583A (ja) * | 2003-12-23 | 2007-06-21 | トロノックス エルエルシー | リチウム充電式バッテリ用高電圧薄層カソード材料及びその製法 |
CN103441238A (zh) * | 2013-08-27 | 2013-12-11 | 上海电力学院 | 一种掺杂Mg的富锂正极材料及其制备方法 |
Non-Patent Citations (2)
Title |
---|
SIMONIN,L. ET AL.: "In situ investigations of a Li-rich Mn-Ni layered oxide for Li-ion batteries", JOURNAL OF MATERIALS CHEMISTRY, vol. 22, 2012, pages 11316 - 11322, XP055335439 * |
WANG,DAN ET AL.: "Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material", ELECTROCHIMICA ACTA, vol. 107, 2013, pages 461 - 466, XP028728664 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3597603A4 (en) * | 2017-03-14 | 2021-07-07 | Mitsui Mining & Smelting Co., Ltd. | COMPOSITE OXIDE CONTAINING LITHIUM NICKEL MANGANESE SPINEL TYPE |
JP2018160323A (ja) * | 2017-03-22 | 2018-10-11 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質とその前駆体、及びそれらの製造方法 |
CN109273688A (zh) * | 2018-09-17 | 2019-01-25 | 国联汽车动力电池研究院有限责任公司 | 一种表面富岩盐相的高镍正极材料及其制备方法和应用 |
WO2022038454A1 (ja) * | 2020-08-20 | 2022-02-24 | 株式会社半導体エネルギー研究所 | 正極活物質の作製方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6541115B2 (ja) | 2019-07-10 |
CN107428559B (zh) | 2020-02-28 |
TWI597885B (zh) | 2017-09-01 |
KR20180011049A (ko) | 2018-01-31 |
KR102561910B1 (ko) | 2023-08-01 |
US20180138507A1 (en) | 2018-05-17 |
JPWO2016190251A1 (ja) | 2017-12-21 |
CN107428559A (zh) | 2017-12-01 |
US10505189B2 (en) | 2019-12-10 |
TW201705589A (zh) | 2017-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6541115B2 (ja) | 正極材料、並びにそれを正極に使用したリチウム二次電池 | |
KR102307224B1 (ko) | 도핑된 니켈레이트 화합물을 함유한 조성물 | |
TWI437753B (zh) | 鋰基電池之經金屬氧化物塗佈之正電極材料 | |
JP2021520333A (ja) | O3/p2混合相ナトリウム含有ドープ層状酸化物材料 | |
JP5846482B2 (ja) | ナトリウムマンガンチタンニッケル複合酸化物及びその製造方法、並びにそれを部材として使用したナトリウム二次電池 | |
JP5177672B2 (ja) | リチウム電池用活物質及びその製造方法、並びにそれを用いたリチウム電池 | |
JP7207261B2 (ja) | 正極活物質の製造方法、及びリチウムイオン電池の製造方法 | |
WO2010122819A1 (ja) | 正極活物質およびこれを含む正極を備える非水系二次電池 | |
JP2022078776A (ja) | 正極活物質の製造方法、正極活物質およびリチウムイオン電池の製造方法 | |
JP5880928B2 (ja) | リチウムマンガンチタンニッケル複合酸化物及びその製造方法、並びにそれを部材として使用したリチウム二次電池 | |
JP6528192B2 (ja) | リチウムナトリウム複合酸化物の製造方法 | |
JP5847204B2 (ja) | 正極活物質、正極及び非水系二次電池 | |
JP2009242121A (ja) | リチウムマンガン酸化物粉体粒子及びその製造方法、並びにそれを正極活物質として用いたリチウム二次電池 | |
WO2007007581A1 (ja) | リチウム二次電池用正極材料及びその製造方法、ならびにそれを用いたリチウム二次電池 | |
JP5093669B2 (ja) | マンガン酸化物、電池用電極活物質、及びそれらの製造方法、並びに電池用電極活物質を用いた二次電池 | |
JP2014120362A (ja) | 電池用活物質および電池 | |
WO2019188751A1 (ja) | リチウム複合酸化物、二次電池用正極活物質及び二次電池 | |
JP2022108812A (ja) | 正極活物質の製造方法 | |
KR20200073361A (ko) | V-o 계 신규 리튬 전지용 전극물질 | |
Zheng et al. | Y-Element Doping Improves the Electrochemical Performance and Structural Stability of Single-Crystal Lini0. 8co0. 1mn0. 1o2 Cathode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16799956 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017520686 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20177025209 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15574222 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16799956 Country of ref document: EP Kind code of ref document: A1 |