WO2016190251A1 - 正極材料、並びにそれを正極に使用したリチウム二次電池 - Google Patents

正極材料、並びにそれを正極に使用したリチウム二次電池 Download PDF

Info

Publication number
WO2016190251A1
WO2016190251A1 PCT/JP2016/065059 JP2016065059W WO2016190251A1 WO 2016190251 A1 WO2016190251 A1 WO 2016190251A1 JP 2016065059 W JP2016065059 W JP 2016065059W WO 2016190251 A1 WO2016190251 A1 WO 2016190251A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
composite oxide
discharge
secondary battery
charge
Prior art date
Application number
PCT/JP2016/065059
Other languages
English (en)
French (fr)
Inventor
秋本 順二
早川 博
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to US15/574,222 priority Critical patent/US10505189B2/en
Priority to CN201680014545.5A priority patent/CN107428559B/zh
Priority to JP2017520686A priority patent/JP6541115B2/ja
Priority to KR1020177025209A priority patent/KR102561910B1/ko
Publication of WO2016190251A1 publication Critical patent/WO2016190251A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/66Nickelates containing alkaline earth metals, e.g. SrNiO3, SrNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a high-capacity positive electrode material and a lithium secondary battery using the positive electrode material as a positive electrode.
  • Lithium secondary batteries have higher energy density than secondary batteries such as nickel-cadmium batteries and nickel metal hydride batteries, and can be operated at high potentials, so they can be used as power sources for small information devices such as mobile phones and laptop computers. Widely used. Further, in recent years, since it is easy to reduce the size and weight, there is an increasing demand for hybrid vehicles, electric vehicles, large-sized applications such as stationary type and household storage batteries.
  • This lithium secondary battery mainly comprises a positive electrode and a negative electrode containing materials capable of reversibly occluding and releasing lithium, an electrolyte solution in which a lithium ion conductor is dissolved in a non-aqueous organic solvent, and a separator.
  • the oxide used as the positive electrode material lithium cobalt oxide (LiCoO 2 ), lithium manganese oxide (LiMn 2 O 4 ), lithium nickel oxide (LiNiO 2 ), lithium nickel cobalt Examples thereof include manganese oxide (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ).
  • the lithium manganese oxide positive electrode material has a voltage of about 3 to 4 V on the basis of lithium due to the lithium desorption / insertion reaction
  • materials having various crystal structures have been studied as the positive electrode material.
  • the spinel type lithium manganese oxide LiMn 2 O 4 has a potential flat portion in the 4V region on the basis of lithium and has good reversibility of lithium desorption / insertion reaction. It has become.
  • the capacity per oxide weight is only about 100 mA / g, which is not suitable for application to a high capacity lithium secondary battery.
  • lithium manganese oxide having a layered rock-salt structure similar to lithium cobalt oxide has been studied as a high capacity positive electrode material.
  • the lithium manganese oxide changes its charge / discharge curve with the progress of the charge / discharge cycle, and gradually changes to a charge / discharge curve characteristic of the spinel phase.
  • lithium nickel cobalt manganese oxide having a layered rock salt structure similar to lithium cobalt oxide or the like and having a lithium excess composition or lithium nickel manganese oxide has been studied as a high capacity positive electrode material.
  • the layered rock-salt structure with a lithium-rich composition is characterized by a monoclinic system, while the normal layered rock-salt structure is characterized by a crystal structure of the hexagonal (trigonal) space group R-3m.
  • the crystal structure model in which lithium is occupied in the transition metal layer can be analyzed by a crystal structure analysis such as Rietveld method.
  • lithium nickel manganese oxide having a lithium-excess composition has been studied energetically because it can be expected to have a high capacity of up to 300 mAh / g (Non-patent Document 2).
  • Non-Patent Document 3 Li x Ni 1/4 Mn 3 / 4-y Ti y O 2 in which a part of manganese is substituted with titanium for the purpose of improving the stability of the crystal structure has been reported, Although a certain effect is recognized in the change of the charge / discharge curve, it does not lead to a fundamental solution (Non-Patent Document 3).
  • Patent Document 4 substitution of magnesium to lithium manganese titanium oxide or lithium manganese iron oxide having an excessive lithium composition has been studied.
  • Non-patent document 4 oxygen desorption and further migration in the crystal structure of the transition metal occur during the initial charge reaction, in addition to the lithium desorption reaction from the interlayer.
  • This oxygen desorption reaction is well known to generate a potential flat portion at about 4.5 V with respect to lithium at the first charge, and this reaction is essential for the development of a high capacity.
  • a large irreversible capacity, such as a small discharge capacity has a practical problem (for example, a charge curve of the first cycle of FIG. 4 (c) of Non-Patent Document 2).
  • JP 2012-209242 A Japanese Patent No. 5024359 Japanese Patent Laid-Open No. 2007-257885 JP 2013-100197 A
  • the present invention has been made in view of such circumstances, and when used as a positive electrode material active material of a lithium secondary battery, is it possible to have a high capacity and whether the change in the discharge curve with the progress of the cycle is small?
  • the crystal structure is stabilized by having high crystallinity, and oxygen can be easily obtained.
  • an alkaline earth metal element typified by magnesium and calcium into the structure as an element that can form a strong chemical bond with oxygen that does not desorb and has a strong covalent bond.
  • the movement of transition metal atoms associated with charge and discharge can be suppressed.
  • the arrangement of the oxygen atoms is maintained means that the oxygen atoms move in the crystal structure in accordance with the charge / discharge reaction by enhancing the covalent bondability with the cation bonded to oxygen.
  • the loss of the atomic arrangement is not caused by desorption from the structure, and the elimination reaction may be completely suppressed, or the arrangement may be stable in a state in which oxygen is deficient in advance.
  • the arrangement of transition metal atoms such as nickel and manganese is maintained. This can be confirmed by performing XRD measurement of the positive electrode active material in a charged state, performing crystal structure analysis by the Rietveld method, or measuring a diffraction pattern by electron diffraction. In particular, when spinelization is remarkable, the symmetry of the crystal can be confirmed by changing from a monoclinic system to a cubic system.
  • lithium-excess composition is used for a compound having a structure in which lithium is occupied in a layer occupied by transition metal ions in a layered rock salt structure.
  • the lithium excess composition of the present invention indicates that a long-period structure derived from a monoclinic system is confirmed by performing a crystal structure analysis using powder X-ray diffraction and powder neutron diffraction data of the sample. It can be confirmed by determining the lattice constant by performing crystal structure analysis by the Rietveld method. Furthermore, the occupation of lithium ions can be quantitatively clarified in the form of the occupation ratio of each site by crystal structure analysis.
  • lithium nickel manganese composite oxide, lithium nickel cobalt manganese oxide or lithium nickel titanium manganese composite oxide having a lithium-excess layered rock salt structure is substituted with calcium and / or magnesium.
  • things Li 1 + x-2y M y) (Co z Ni m Ti n Mn 1-m-n) 1-x O 2 (M: Ca and / or Mg, but Shikichu, 0 ⁇ x ⁇ 0.33,0 ⁇ Y ⁇ 0.13, 0 ⁇ z ⁇ 0.2, 0 ⁇ m ⁇ 0.5, 0 ⁇ n ⁇ 0.25) can be confirmed, and these oxides can be used as a positive electrode active material.
  • oxygen desorption reaction does not occur during the first charge reaction (lithium desorption reaction) due to substitution of calcium and / or magnesium
  • the potential flat portion is not recognized at about 4.5 V at the first charge, showing a curve in which the potential increases monotonously, and the crystal structure change due to charge and discharge is less likely to occur.
  • the decrease does not occur unexpectedly. Rather, even in a charge / discharge test with a voltage range of 4.6 V to 2.5 V, a high capacity exceeding 250 mAh / g can be confirmed, and the charge / discharge curve hardly changes even with the cycle. It was.
  • the present invention is a lithium transition metal composite oxide having a lithium-excess layered rock salt structure, which contains calcium and / or magnesium as a chemical composition, so that oxygen atoms can be removed when electrochemically desorbing lithium. It is a lithium transition metal composite oxide whose alignment is maintained. More specifically, the complex oxide maintains the arrangement of oxygen atoms when lithium is desorbed electrochemically at a potential of 4.6 V or more and 5.0 V or less.
  • the composite oxide has crystallinity, has a layered rock salt structure belonging to a monoclinic system, and contains calcium and / or magnesium in the crystal structure, whereby the chemical bond with oxygen becomes strong, It is a lithium transition metal composite oxide that maintains the arrangement of oxygen atoms when electrochemically desorbing lithium.
  • the composite oxide has the formula (Li 1 + x-2y M y) (Co z Ni m Ti n Mn 1-m-n) 1-x O 2 (M: Ca and / or Mg, but Shikichu, 0 ⁇ x ⁇ 0.33, 0 ⁇ y ⁇ 0.13, 0 ⁇ z ⁇ 0.2, 0 ⁇ m ⁇ 0.5, 0 ⁇ n ⁇ 0.25). It is a composite oxide substituted with magnesium.
  • the present invention also provides a positive electrode material active material for a lithium secondary battery comprising the composite oxide.
  • the positive electrode material active material does not undergo an oxygen desorption reaction during the initial charge reaction up to 4.8V, and can maintain the arrangement of oxygen atoms, and is initially charged in a voltage range of 4.4V to 4.7V. It is a positive electrode material active material for a lithium secondary battery in which the curve shows a charging curve in which the potential increases monotonously without showing a flat potential portion.
  • the positive electrode material active material is a positive electrode material active material for a lithium secondary battery in which a change to a spinel structure accompanying a charge / discharge cycle does not appear.
  • the present invention is a lithium secondary battery comprising a positive electrode, a negative electrode, a separator, and an electrolyte, wherein the positive electrode is a composite in which calcium and / or magnesium is substituted for a lithium transition metal composite oxide having a lithium-excess layered rock salt structure.
  • a lithium secondary battery including an oxide as a positive electrode material active material.
  • the present invention is a lithium secondary battery comprising a positive electrode, a negative electrode, a separator and an electrolyte, wherein the positive electrode comprises a lithium transition metal composite oxide having a lithium-excess layered rock salt structure, and the charge / discharge capacity of the positive electrode material is It is a lithium secondary battery provided with 250 mAh / g or more.
  • the present invention has the following aspects. (1) a composite oxide comprising lithium, at least one of calcium and magnesium, nickel, and manganese and having a lithium-rich layered rock salt structure; (2) The composite oxide according to (1), wherein the composite oxide maintains an arrangement of oxygen atoms when lithium is desorbed electrochemically at a potential of 4.6 V to 5.0 V; (3) The composite oxide according to (1) or (2), wherein the composite oxide has a layered rock salt structure belonging to a monoclinic system; (4) The composite oxide has the formula (Li 1 + x-2y M y) (Co z Ni m Ti n Mn 1-m-n) 1-x O 2 ( where, M is a Ca and / or Mg X, y, z, m and n are 0 ⁇ x ⁇ 0.33, 0 ⁇ y ⁇ 0.13, 0 ⁇ z ⁇ 0.2, 0 ⁇ m ⁇ 0.5, 0 ⁇ n, respectively.
  • the composite oxide has the formula (Li 1 + x-2y M y) (Co z Ni m Ti n Mn 1-m-n) 1-x O 2 (where, M is a Ca and / or Mg X, y, z, m, and n are 0.20 ⁇ x ⁇ 0.28, 0 ⁇ y ⁇ 0.03, 0 ⁇ z ⁇ 0.2, 0.1 ⁇ m ⁇ 0.3, respectively. And a composite oxide according to any one of (1) to (3), which is a number satisfying 0 ⁇ n ⁇ 0.2.
  • the composite oxide has a chemical formula (Li 1 + x-2y M y ) (Co z Ni m Mn 1-m ) 1-x O 2 (wherein M is Ca and / or Mg, x, (y, z, and m are numbers satisfying 0.20 ⁇ x ⁇ 0.28, 0 ⁇ y ⁇ 0.03, 0 ⁇ z ⁇ 0.2, and 0.1 ⁇ m ⁇ 0.2, respectively)
  • the composite oxide according to any one of (1) to (3) represented by: (7)
  • the composite oxide has a chemical formula (Li 1 + x-2y M y ) (Ni m Mn 1-m ) 1-x O 2 (wherein M is Ca and / or Mg, and x, y and m is a number satisfying 0.20 ⁇ x ⁇ 0.28, 0 ⁇ y ⁇ 0.03, and 0.2 ⁇ m ⁇ 0.3), respectively (1) to (3)
  • the composite oxide has a chemical formula (Li
  • a positive electrode material active material for a lithium secondary battery comprising the composite oxide according to any one of (1) to (8); (10) The positive electrode material active material has a charge curve in which the potential monotonously increases while maintaining the arrangement of oxygen atoms in the voltage range of 4.4 V to 4.7 V during the initial charge reaction.
  • the positive electrode material active material for a lithium secondary battery as described; (11) The positive electrode material active material for a lithium secondary battery according to (9), wherein the positive electrode material active material has a high capacity and maintains an arrangement of transition metal atoms with a charge / discharge cycle; (12) A lithium secondary battery comprising a positive electrode, a negative electrode, a separator, and an electrolyte, wherein the positive electrode comprises the positive electrode material active material for a lithium secondary battery according to any one of (9) to (11) (13)
  • the lithium secondary battery has a charge / discharge capacity of 250 mAh / g or more and 300 mAh / g or less per unit weight of the composite oxide of the positive electrode active material.
  • the lithium secondary battery as described.
  • the present invention it is possible to produce a composite oxide in which calcium and / or magnesium is substituted for a lithium transition metal composite oxide having a lithium-excess layered rock salt structure, and an electrode produced using this composite oxide as a positive electrode active material
  • the maximum discharge capacity is 240 mAh / g or more (preferably 250 mAh / g or more)
  • the discharge capacity after 4 cycles of the maximum discharge capacity is The capacity retention rate relative to the initial maximum discharge capacity is 95% or more (preferably 97% or more)
  • Energy density (mWh / g) discharge capacity calculated by dividing by (mAh / g)) is 98% or more as a potential maintenance ratio
  • FIG. 2 is an X-ray powder diffraction pattern of the lithium calcium nickel manganese composite oxide of the present invention obtained in Example 1.
  • FIG. 2 is an EDS spectrum obtained by chemical composition analysis of the lithium calcium nickel manganese composite oxide of the present invention obtained in Example 1.
  • FIG. 4 is an X-ray powder diffraction pattern of the lithium calcium nickel titanium manganese composite oxide of the present invention obtained in Example 3.
  • FIG. 3 is an EDS spectrum obtained by chemical composition analysis of the lithium calcium nickel titanium manganese composite oxide of the present invention obtained in Example 3.
  • the 10th cycle charging / discharging test was performed in a voltage range of 5.0 to 2.0 V of a lithium secondary battery using the lithium calcium nickel titanium manganese composite oxide of the present invention obtained in Example 3 as a positive electrode active material. It is a discharge curve.
  • 4 is an X-ray powder diffraction pattern of the lithium magnesium nickel manganese composite oxide of the present invention obtained in Example 4.
  • FIG. 4 is an EDS spectrum obtained by chemical composition analysis of the lithium magnesium nickel manganese composite oxide of the present invention obtained in Example 4.
  • FIG. 6 is an X-ray powder diffraction pattern of the lithium magnesium nickel manganese composite oxide of the present invention obtained in Example 5.
  • FIG. 6 is an X-ray powder diffraction pattern of the lithium magnesium nickel titanium manganese composite oxide of the present invention obtained in Example 6.
  • FIG. 6 is an EDS spectrum obtained by chemical composition analysis of the lithium magnesium nickel titanium manganese composite oxide of the present invention obtained in Example 6.
  • 10th cycle charging / discharging test was performed in a voltage range of 5.0 to 2.0 V of a lithium secondary battery using the lithium magnesium nickel titanium manganese composite oxide of the present invention obtained in Example 6 as a positive electrode active material. It is a discharge curve.
  • 7 is an X-ray powder diffraction pattern of the lithium calcium magnesium nickel manganese composite oxide of the present invention obtained in Example 7.
  • FIG. Charging / discharging test in the voltage range 5.0-2.0V of the lithium secondary battery using the lithium calcium magnesium nickel manganese composite oxide of the present invention obtained in Example 7 as the positive electrode active material It is a discharge curve.
  • FIG. 4 is an X-ray powder diffraction pattern of the lithium calcium cobalt nickel manganese composite oxide of the present invention obtained in Example 10.
  • 2 is an X-ray powder diffraction pattern of the lithium magnesium cobalt nickel manganese composite oxide of the present invention obtained in Example 11.
  • FIG. The 15th cycle charging / discharging test was performed in the voltage range of 4.8 to 2.0 V of the lithium secondary battery using the lithium magnesium cobalt nickel manganese composite oxide of the present invention obtained in Example 11 as the positive electrode active material.
  • FIG. 3 is an X-ray powder diffraction pattern of the lithium calcium magnesium cobalt nickel manganese composite oxide of the present invention obtained in Example 12.
  • FIG. A seventh cycle in which a charge / discharge test was conducted in a voltage range of 4.8 to 2.0 V of a lithium secondary battery using the lithium calcium magnesium cobalt nickel manganese composite oxide of the present invention obtained in Example 12 as a positive electrode active material It is a charging / discharging curve.
  • 3 is an X-ray powder diffraction pattern of a known lithium nickel manganese composite oxide obtained in Comparative Example 1.
  • FIG. 4 is an EDS spectrum obtained by chemical composition analysis of a known lithium nickel manganese composite oxide obtained in Comparative Example 1.
  • 3 is an X-ray powder diffraction pattern of a known lithium nickel manganese composite oxide obtained in Comparative Example 2.
  • 4 is an X-ray powder diffraction pattern of a known lithium cobalt nickel manganese composite oxide obtained in Comparative Example 3.
  • FIG. A charge / discharge curve at the 16th cycle in which a charge / discharge test was performed in a voltage range of 4.8 to 2.0 V of a lithium secondary battery using the known lithium nickel manganese composite oxide obtained in Comparative Example 3 as a positive electrode active material is there.
  • FIG. 4 is an X-ray powder diffraction pattern of a known lithium cobalt nickel manganese composite oxide obtained in Comparative Example 4.
  • 6 is an X-ray powder diffraction pattern of a lithium nickel titanium manganese composite oxide obtained in Comparative Example 5.
  • FIG. 6 is an EDS spectrum obtained by chemical composition analysis of the lithium nickel titanium manganese composite oxide obtained in Comparative Example 5.
  • 10 is a charge / discharge curve at the 10th cycle when a charge / discharge test was conducted in a voltage range of 5.0-2.0 V of a lithium secondary battery using the lithium nickel titanium manganese composite oxide obtained in Comparative Example 5 as a positive electrode active material. .
  • the inventors of the present invention have a high-capacity positive electrode material having a lithium-excess layered rock-salt structure, which can have a higher capacity and has a chemical composition that reduces the shape change of the charge / discharge curve as much as possible with the charge / discharge cycle.
  • the lithium which may be expressed as Li
  • calcium which may be expressed as Ca
  • magnesium which may be expressed as Mg
  • nickel which will be expressed as Ni
  • a complex oxide having a lithium-excess layered rock salt structure more specifically, lithium nickel manganese having a lithium-excess layered rock salt type structure.
  • lithium nickel cobalt manganese composite oxide or lithium nickel titanium manganese composite oxide Um and / or composite oxide containing magnesium in (Li 1 + x-2y M y) (Co z Ni m Ti n Mn 1-m-n) 1-x O 2 (wherein, M is a Ca and / or Mg X, y, z, m and n are 0 ⁇ x ⁇ 0.33, 0 ⁇ y ⁇ 0.13, 0 ⁇ z ⁇ 0.2, 0 ⁇ m ⁇ 0.5, 0 ⁇ n, respectively. It is a number that satisfies ⁇ 0.25, and the present invention has been completed.
  • “calcium and / or magnesium” means at least one of calcium and magnesium, that is, one or both of calcium and magnesium.
  • a potential flat portion is not generated at about 4.5 V due to an oxygen desorption reaction during the initial charging reaction, and is 4.4 V or higher.
  • a charging curve in which the potential increases monotonously in a voltage range of 4.7 V or less is shown, and it has been found that high capacity and highly reversible charging / discharging characteristics with a small change in the discharging curve with the cycle are possible.
  • the potential flat portion does not occur at about 4.5 V” at the time of the first charge reaction means that the change rate of the specific capacity at each voltage is between 4.4 V and 4.7 V at the time of the first charge reaction. Always takes a positive value.
  • the “high capacity” means that the capacity per weight of the conventional positive electrode material active material is 200 mAh / g at the maximum, so that the capacity is 200 mAh / g or more, more preferably more than 200 mAh / g. Further, as the upper limit of the capacity, all lithium in the structure of lithium nickel manganese oxide Li 1.2 Ni 0.2 Mn 0.6 O 2 having a layered rock salt structure having an excess composition of lithium can be used for the charge / discharge reaction.
  • the theoretical capacity is 378 mAh / g in the case of “Maintaining the arrangement of transition metal atoms with the charge / discharge cycle” means a constant current charge / discharge with a lower limit cutoff voltage of 2.0V or more and an upper limit cutoff voltage of 4.5V to 5.0V. In tests and the like, even when the charge / discharge cycle is repeated from 10 cycles to about 50 cycles, the arrangement of transition metal atoms in the crystal structure of the composite oxide does not change, and the change to the spinel structure does not occur. It means that a decrease in discharge voltage can be suppressed.
  • magnesium contained in the complex oxide crystal is substituted for both the transition metal layer and the lithium metal layer of the complex oxide, but calcium has a much larger ionic radius than the transition metal. It is considered that the transition metal layer is not replaced but only the lithium layer is replaced. Moreover, even if excess magnesium or calcium oxide is present as an impurity, it may be present because it does not affect the battery reaction.
  • the effect of calcium and / or magnesium substitution is that when the ions in the lithium layer decrease during charging, the transition metal ions move from the transition metal layer by maintaining the layer between the lithium layers expanded. It plays a role of hindering and stabilizing the interlayer structure of the lithium layer.
  • lithium nickel manganese composite oxide, lithium nickel cobalt manganese oxide, lithium nickel titanium manganese composite oxide , Calcium and / or magnesium substituted lithium transition metal composite oxide of the present invention calcium and / or magnesium substituted lithium nickel manganese composite oxide, calcium and / or magnesium substituted lithium nickel cobalt manganese composite oxide, or calcium and
  • an oxygen desorption reaction does not occur during the initial charge reaction, and the arrangement of oxygen atoms can be maintained.
  • a potential curve portion at about 4.5 V does not occur, shows a charging curve in which the potential increases monotonously, and has a discharge capacity exceeding 250 mAh / g, and a change to the spinel structure accompanying the charge / discharge cycle. can not see.
  • the calcium and / or magnesium substitution according to the present invention may be any lithium transition metal composite oxide having a lithium-excess layered rock salt structure, and is not limited to lithium nickel manganese composite oxide, for example, lithium cobalt nickel manganese composite oxide Or a composite oxide such as lithium nickel titanium manganese composite oxide.
  • the composition formula Li 1.23 Ca 0.01 Ni 0.19 Mn 0.56 O 2 ; Li 1.24 Mg 0.01 Ni 0.19 Mn 0.56 O 2 ; Li 1.22 Ca 0.005 Mg 0.005 Ni 0.19 Mn 0.57 O 2 ; Li 1.23 Ca 0.01 Co 0.14 Ni 0.13 Mn 0.49 O 2 ; Li 1.22 Mg 0.01 Co 0.14 Ni 0.12 Mn 0.50 O 2 ; or Li 1.22 Ca 0.005 Mg 0.005 Co 0.14 Ni 0.13 Mn 0.49 O 2 And a composite oxide having a lithium-excess layered rock salt structure.
  • a composite oxide containing lithium, at least one of calcium and magnesium, nickel, and manganese and having a lithium-excess layered rock salt structure that is, lithium having a lithium-excess layered rock salt structure
  • a composite oxide in which calcium and / or magnesium is substituted on the lithium layer of nickel manganese composite oxide, lithium cobalt manganese oxide or lithium nickel titanium manganese composite oxide more specifically, (Li 1 + x-2y M y ) ( Co z Ni m Ti n Mn 1-mn ) 1-x O 2 (wherein M is Ca and / or Mg, and x, y, z, m and n are each 0 ⁇ x ⁇ 0.33, 0 ⁇ y ⁇ 0.13, 0 ⁇ z ⁇ 0.2, 0 ⁇ m ⁇ 0.5, 0 ⁇ n ⁇ 0.25.
  • lithium nickel manganese composite oxide, lithium nickel cobalt manganese oxide or lithium nickel titanium manganese composite oxide (Li 1 + x-2y M y ) (Co z Ni m T n Mn) substituted with calcium and / or magnesium 1-mn ) 1-x O 2 (wherein M, x, y, z, m and n each have the above-mentioned meaning) is used as a raw material, at least one of lithium metal or a lithium compound At least one of a seed, calcium metal, magnesium metal, calcium compound, or magnesium compound, and nickel metal, or at least one of nickel compounds, cobalt metal, or at least one of cobalt compounds, titanium metal, or at least of titanium compounds
  • One kind, manganese metal, or few manganese compounds The Kutomo one, (Li 1 + x-2y M y) (Co z Ni m
  • a compound composed of two or more kinds of lithium, calcium and / or magnesium, nickel, cobalt, titanium, manganese and lithium and calcium and / or magnesium as essential components is used (Li 1 + x during -2y M y) (Co z Ni m Ti n Mn 1-m-n) 1-x O 2 (wherein, M, x, y, z, m and n are each as defined above) of It can be manufactured by weighing and mixing so as to have a chemical composition and heating in an atmosphere containing oxygen gas such as air.
  • the lithium raw material at least one of lithium (metallic lithium) and a lithium compound is used.
  • the lithium compound is not particularly limited as long as it contains lithium, and examples thereof include Li 2 CO 3 , LiOH ⁇ H 2 O, LiNO 3 , LiCl, Li 2 SO 4 , Li 2 O, Li 2 O 2 and the like. Can be mentioned.
  • compounds that are already lithium nickel oxides such as LiNiO 2
  • lithium titanium oxides such as Li 2 TiO 3 and Li 4 Ti 5 O 12
  • lithium manganese oxides such as LiMnO 2, and the like can be given.
  • lithium carbonate Li 2 CO 3 is preferable.
  • the calcium and / or magnesium raw material at least one of calcium (metallic calcium), magnesium (metallic magnesium), a calcium compound, and a magnesium compound is used.
  • the calcium compound is not particularly limited as long as it contains calcium, and examples thereof include CaCl 2 , CaCO 3 , CaNO 3 .4H 2 O, and CaO.
  • the magnesium compound is not particularly limited as long as it contains magnesium, and examples thereof include MgCl 2 , MgC 2 O 4 , and MgO. Or already CaTiO 3 of CaMnO 3, MgTiO 3, MgMnO calcium transition metal composite oxide such as 3, compounds and the like which has a magnesium transition metal composite oxide.
  • chloride CaCl 2 and / or MgCl 2 are preferable.
  • the nickel raw material at least one of nickel (metallic nickel) and a nickel compound is used.
  • the nickel compound is not particularly limited as long as it contains nickel, and examples thereof include (CH 3 COO) 2 Ni ⁇ 4H 2 O, NiO, NiOH, and NiOOH.
  • the hydroxide already used as the manganese nickel compound, the hydroxide used as the manganese titanium nickel compound, etc. are mentioned.
  • (CH 3 COO) 2 Ni ⁇ 4H 2 O and the like are preferable because they have high reactivity even at a low temperature and can easily control the composition.
  • cobalt raw material at least one of cobalt (metal cobalt) and a cobalt compound is used.
  • the cobalt compound is not particularly limited as long as it contains cobalt, and examples thereof include (CH 3 COO) 2 Co.4H 2 O, Co 3 O 4 , CoOH, and CoOOH. Or the hydroxide etc. which are already manganese nickel cobalt compounds are mentioned. Among these, (CH 3 COO) 2 Co ⁇ 4H 2 O and the like are preferable because they have high reactivity even at a low temperature and can easily control the composition.
  • titanium raw material at least one of titanium (metallic titanium) and a titanium compound is used.
  • the titanium compound is not particularly limited as long as it contains titanium, and examples thereof include TiO, Ti 2 O 3 , TiO 2 , and TiCl 4 . Or the hydroxide etc. which are already manganese titanium compounds are mentioned. Among these, anatase type TiO 2 having a large specific surface area and high reactivity is preferable.
  • the manganese raw material at least one of manganese (metallic manganese) and a manganese compound is used.
  • the manganese compound is not particularly limited as long as it contains manganese, and examples thereof include MnCO 3 , MnCl 2 , MnO, Mn 2 O 3 , Mn 3 O 4 , MnO 2 , MnOH, and MnOOH. Among these, MnCO 3 or the like is preferable.
  • the mixing ratio of the respective elements are, (Li 1 + x-2y M y) (Co z Ni m Ti n Mn 1-m-n) 1-x O 2 (wherein, M, x, y, z , m and n Are preferably mixed so as to have a chemical composition of the above-mentioned meanings.
  • the amount ratio of calcium and / or magnesium to lithium can be appropriately changed depending on the stability of the required cycle characteristics, but a decrease in the amount of lithium leads to a decrease in capacity, so that 0 ⁇ y ⁇ 0.13, Preferably 0 ⁇ y ⁇ 0.06. Further, the amount of calcium and magnesium can be appropriately changed within the range of 0 ⁇ y ⁇ 0.13, but the molar ratio Ca / Mg ⁇ 1 between which calcium and magnesium are more structurally stable is preferable. .
  • the mixing method is not particularly limited as long as these can be uniformly mixed, and for example, a known mixer such as a mixer may be used to mix by a wet method or a dry method.
  • the mixture is then fired.
  • the firing temperature can be appropriately set depending on the raw material, but (CH 3 COO) 2 Ni ⁇ 4H 2 O, (CH 3 COO) 2 Co ⁇ 4H 2 O, etc. that decompose and melt at a low temperature are used as the raw material.
  • calcination is first performed at 250 ° C. to 600 ° C., and then the maximum temperature is about 750 ° C. to 1050 ° C., preferably 800 ° C. to 950 ° C.
  • the firing atmosphere is not particularly limited, and it is usually performed in an oxidizing atmosphere or air.
  • the target Li 1 + x-2y M y
  • Co z Ni m Ti n Mn 1-m-n Li 1 + x-2y M y
  • the firing time can be appropriately changed according to the firing temperature or the like, but is preferably 3 hours or more and 24 hours or less, more preferably 8 hours or more and 20 hours or less.
  • the cooling method is not particularly limited, but may be natural cooling (cooling in the furnace) or slow cooling.
  • the fired product may be pulverized by a known method, if necessary, and further carried out 1 to 5 times while changing the maximum temperature of the firing step. Note that the degree of pulverization may be adjusted as appropriate according to the firing temperature and the like.
  • the lithium secondary battery of the present invention the (Li 1 + x-2y M y) (Co z Ni m Ti n Mn 1-m-n) 1-x O 2 (where, M, x, y, z, m And n each have the above meaning) as an active material, and a positive electrode containing 50% by weight or more and 100% by weight or less of the active material with respect to the total weight of the positive electrode mixture is used as a constituent member. is there. That is, the lithium secondary battery of the present invention is a known lithium battery (coin type, button type, cylindrical type, except that the calcium and / or magnesium-substituted lithium transition metal composite oxide of the present invention is used as the positive electrode active material.
  • FIG. 1 is a schematic view showing an example in which the lithium secondary battery of the present invention is applied to a coin-type lithium secondary battery.
  • This coin-type battery 1 includes a negative electrode terminal 2 made of SUS, a negative electrode 3 using metallic lithium, a separator made of a microporous film made of polypropylene, (1M in a solvent in which ethylene carbonate and diethyl carbonate are mixed at a volume ratio of 1: 1).
  • insulating packing 5 made of polypropylene
  • positive electrode 6 made of the active material of the present invention
  • positive electrode can 7 made of SUS.
  • the composite oxide active material of the present invention is mixed with a conductive agent, a binder, etc. as necessary to prepare a positive electrode mixture, and a positive electrode is produced by pressure-bonding it to a current collector.
  • a current collector a stainless mesh, an aluminum mesh, an aluminum foil or the like can be preferably used.
  • a conductive agent acetylene black, ketjen black or the like can be preferably used.
  • the binder tetrafluoroethylene, polyvinylidene fluoride, or the like can be preferably used.
  • the composition of lithium nickel manganese composite oxide or lithium nickel cobalt manganese composite oxide substituted with calcium and / or magnesium in the positive electrode composite, lithium nickel titanium manganese composite oxide active material, conductive agent, binder, etc. is also particularly limited.
  • the lithium composite oxide active material of the present invention is about 50 to 95% by weight (preferably 80 to 90% by weight) with respect to the total weight of the positive electrode mixture, and the conductive agent is 1 to 50% by weight.
  • the degree (preferably 3 to 48% by weight) and the binder may be 0 to 30% by weight (preferably 2 to 15% by weight).
  • the sum of the contents of the lithium composite oxide active material, the conductive agent and the binder does not exceed 100% by weight.
  • the counter electrode with respect to the positive electrode for example, metallic lithium, lithium alloy, and carbon-based materials such as graphite and MCMB (mesocarbon microbeads), oxide materials such as lithium titanium oxide, etc.
  • metallic lithium, lithium alloy, and carbon-based materials such as graphite and MCMB (mesocarbon microbeads), oxide materials such as lithium titanium oxide, etc.
  • MCMB mesocarbon microbeads
  • oxide materials such as lithium titanium oxide, etc.
  • a known material that functions as a negative electrode and can occlude and release lithium can be used.
  • a known battery element may be employed as the separator.
  • a porous polyethylene film or a polypropylene film can be used.
  • electrolyte solutions solid electrolytes, and the like can be applied as electrolytes.
  • an electrolytic solution an electrolyte such as lithium perchlorate or lithium hexafluorophosphate is used in a solvent such as ethylene carbonate (EC), dimethyl carbonate (DMC), propylene carbonate (PC), or diethyl carbonate (DEC). What was dissolved can be used.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • PC propylene carbonate
  • DEC diethyl carbonate
  • Lithium calcium nickel manganese composite oxide having a lithium-excess layered rock-salt structure composition formula: Li 1.23 Ca 0.01 Ni 0.19 Mn 0.56 O 2
  • Lithium carbonate Li 2 CO 3 , manufactured by Rare Metallic, purity 99.99%
  • calcium chloride CaCl 2 , manufactured by High Purity Chemical Laboratory, purity 99.9% or more
  • nickel acetate tetrahydrate (CH 3 COO) 2 Ni ⁇ 4H 2 O, manufactured by Wako Pure Chemical Industries, Wako Special Grade)
  • manganese carbonate (MnCO 3 manufactured by High-Purity Chemical Laboratory, purity 99.9%
  • the atomic ratio of Li: Ca: Ni : Mn 1.8: 0.02: 0.25: 0.75.
  • lithium secondary battery The lithium calcium nickel manganese composite oxide thus obtained was used as an active material, acetylene black as a conductive agent, and tetrafluoroethylene as a binder were blended in a weight ratio of 45:45:10 to prepare an electrode. Produced.
  • lithium hexafluorophosphate was mixed into a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (volume ratio 1: 1).
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • a lithium secondary battery (coin-type cell) having the structure shown in FIG. 1 was prepared using the dissolved 1M solution as an electrolyte, and the charge / discharge characteristics thereof were measured.
  • the battery was produced according to a known cell configuration / assembly method.
  • a more specific structure of the lithium secondary battery includes the positive electrode 6, a separator 4 made of a microporous film made of polypropylene containing the electrolytic solution, a negative electrode 3 using metallic lithium, and a negative electrode made of SUS.
  • the terminals 2 are laminated in this order to form a laminated body.
  • the laminated body contacts the positive electrode 6 with the inner bottom portion of the positive electrode can 7 made of SUS, and at least a part of the negative electrode terminal 2 is outside the positive electrode can 7. It is accommodated in the positive electrode can 7 so as to be exposed to the surface.
  • the periphery of the laminate is covered with an insulating packing 5 made of polypropylene to form a lithium secondary battery having coin-type cells.
  • the coin cell When the coin cell is placed on a plane, the coin cell has a vertical thickness of 3.2 mm and a diameter of 20 mm.
  • the vertical thicknesses of the positive electrode can 7, the positive electrode 6, the separator 4 of the microporous film made of polypropylene containing the electrolytic solution, the negative electrode 3 using metallic lithium and the negative electrode terminal 2 made of SUS are respectively They are 0.25 mm, 0.3 mm, 0.02 mm, 0.2 mm, and 0.25 mm, and the remaining space is filled with a SUS wave washer 1.4 mm and a spacer 1.0 mm.
  • the manufactured lithium secondary battery was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a cutoff potential of a lithium reference potential of 5.0 V to 2.0 V. As a result, it was found that the capacity increased with each cycle, the capacity became maximum at the 10th cycle, and a high capacity of 270 mAh / g charge capacity and 263 mAh / g discharge capacity at the 10th cycle was obtained.
  • the “potential based on lithium” means the voltage of the battery when the potential of the dissolution / precipitation reaction of metallic lithium is the reference (0 V).
  • FIG. 4 shows a charge / discharge curve at the 10th cycle. Furthermore, in the discharge curve at the 14th cycle, no decrease in capacity was observed, and the average discharge potential obtained by dividing the discharge energy density by the discharge capacity was 3.44 V, confirming that the decrease in discharge potential was slight. It was done. From the above, it has become clear that the lithium calcium nickel manganese composite oxide active material of the present invention is useful as a high-capacity lithium secondary battery material.
  • a lithium secondary battery manufactured under the same conditions was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C., with a current density of 10 mA / g and a lithium reference potential of 4.8-2.5 V. It was. As a result, the charge / discharge capacity increased with each cycle, and the capacity reached the maximum at the 32nd cycle.
  • the charge curve for the first cycle of this charge / discharge test is shown in FIG. There is no voltage flat at about 4.5V, which is characteristic of lithium-nickel-manganese composite oxide with lithium-rich layered rock salt structure or lithium-nickel-cobalt-manganese oxide, and the charging curve increases monotonically.
  • the lithium calcium nickel manganese composite oxide active material of the present invention does not cause oxygen desorption reaction and is useful as a material for a high capacity lithium secondary battery while maintaining the arrangement of oxygen atoms. Became clear.
  • a lithium secondary battery manufactured under the same conditions was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a lithium reference potential of 4.6 to 2.5 V. It was. As a result, the charge / discharge capacity increased with each cycle, and the capacity reached the maximum at the 39th cycle.
  • the charge curve of the 39th cycle at this time is shown in FIG.
  • the discharge capacity was 253 mAh / g, and it was confirmed that the discharge capacity at the 75th cycle thereafter showed a capacity maintenance rate of about 98% with respect to the discharge capacity at the 39th cycle. From this, it became clear that the lithium calcium nickel manganese composite oxide active material of the present invention is useful as a high capacity lithium secondary battery material.
  • Lithium secondary battery Using the lithium calcium nickel titanium manganese composite oxide thus obtained as an active material, a lithium secondary battery (coin-type cell) having the same components and structure as in Example 1 was produced.
  • the manufactured lithium secondary battery was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a cutoff potential of 5.0 V to 2.0 V based on lithium. As a result, the charge / discharge capacity increased with each cycle, and the capacity became maximum at the 10th cycle. It was found that a high capacity of a charge capacity of 259 mAh / g and a discharge capacity of 252 mAh / g at the 10th cycle can be obtained.
  • the charge / discharge curve at the 10th cycle is shown in FIG.
  • the discharge curve at the 14th cycle no decrease in capacity was observed, and it was confirmed that the average discharge potential obtained by dividing the discharge energy density by the discharge capacity was 3.30 V, and the decrease in the discharge potential was slight. It was done.
  • capacitance is obtained by substituting titanium compared with the lithium calcium nickel manganese complex oxide of Example 1, although an average discharge potential falls a little. From the above, it became clear that the lithium calcium nickel titanium manganese composite oxide active material of the present invention is useful as a high-capacity lithium secondary battery material.
  • Example 4> Synthesis of lithium magnesium nickel manganese composite oxide having a lithium-excess layered rock salt structure (composition formula: Li 1.24 Mg 0.01 Ni 0.19 Mn 0.56 O 2 )) Lithium carbonate (Li 2 CO 3 , manufactured by Rare Metallic, purity 99.99%), magnesium chloride (MgCl 2 , manufactured by High Purity Chemical Laboratory, purity 99.9% or more), nickel acetate tetrahydrate ((CH 3 COO) 2 Ni ⁇ 4H 2 O, manufactured by Wako Pure Chemicals, Wako Special Grade), and manganese carbonate (MnCO 3 , manufactured by High Purity Chemical Laboratory, purity 99.9%) are mixed at an atomic ratio of Li: Mg: Ni.
  • Mn 1.8: 0.02: 0.25: 0.75.
  • Lithium secondary battery (Lithium secondary battery) Using the thus obtained lithium magnesium nickel manganese composite oxide as an active material, a lithium secondary battery (coin-type cell) having the same components and structure as in Example 1 was produced.
  • the manufactured lithium secondary battery was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a cutoff potential of a lithium reference potential of 5.0 V to 2.0 V. As a result, it was found that the capacity increased with each cycle, the capacity became the maximum at the 10th cycle, and the high capacity of the charge capacity 270 mAh / g and the discharge capacity 261 mAh / g at the 10th cycle was obtained. Further, since the energy density of the discharge at the 10th cycle is 908 Wh / kg, the average discharge potential at the 10th cycle is obtained by dividing the energy density of the discharge (908 Wh / kg) by the discharge capacity (261 mAh / g).
  • FIG. 13 shows a charge / discharge curve at the 10th cycle. Further, in the discharge curve at the 14th cycle, no decrease in capacity was observed, and the average discharge potential obtained by dividing the discharge energy density by the discharge capacity was 3.45 V, and it was confirmed that the decrease in the discharge potential was slight. It was done. Moreover, it became clear that the effect equivalent to that of calcium can be obtained by magnesium substitution as compared with the lithium calcium nickel manganese composite oxide of Example 1. From the above, it was revealed that the lithium magnesium nickel manganese composite oxide active material of the present invention is useful as a high-capacity lithium secondary battery material.
  • FIG. 14 shows a charge curve in the first cycle of this charge / discharge test. There is no voltage flat at about 4.5V, which is characteristic of lithium-nickel-manganese composite oxide or lithium-nickel-cobalt-manganese oxide with a lithium-rich layered rock salt structure.
  • the lithium magnesium nickel manganese composite oxide active material of the present invention does not cause an oxygen desorption reaction and is useful as a high capacity lithium secondary battery material while maintaining the arrangement of oxygen atoms. Became clear.
  • a lithium secondary battery manufactured under the same conditions was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a lithium reference potential of 4.6 to 2.5 V. It was. As a result, the charge / discharge capacity increased with each cycle, and the capacity reached the maximum at the 30th cycle.
  • FIG. 15 shows the charge curve of the 30th cycle at this time.
  • the discharge capacity was 251 mAh / g, and it was confirmed that the discharge capacity at the 76th cycle thereafter showed a capacity retention rate of about 95% with respect to the discharge capacity at the 30th cycle. From this, it became clear that the lithium magnesium nickel manganese composite oxide active material of the present invention is useful as a high-capacity lithium secondary battery material.
  • Lithium secondary battery (Lithium secondary battery) Using the lithium magnesium nickel titanium manganese composite oxide thus obtained as an active material, a lithium secondary battery (coin-type cell) having the same components and structure as in Example 1 was produced, and its charge / discharge characteristics were measured. .
  • the manufactured lithium secondary battery was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a cutoff potential of 5.0 V to 2.0 V based on lithium. As a result, the charge / discharge capacity increased with each cycle. It was found that a high capacity of a charge capacity of 255 mAh / g and a discharge capacity of 247 mAh / g at the 10th cycle can be obtained. In addition, since the energy density of the discharge at the 10th cycle is 828 Wh / kg, the average discharge potential at the 10th cycle is obtained by dividing the energy density of the discharge (828 Wh / kg) by the discharge capacity (247 mAh / g).
  • Lithium secondary battery Using the lithium calcium magnesium nickel manganese composite oxide thus obtained as an active material, a lithium secondary battery (coin-type cell) having the same components and structure as in Example 1 was produced.
  • the manufactured lithium secondary battery was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a cutoff potential of a lithium reference potential of 5.0 V to 2.0 V. As a result, the charge / discharge capacity increased with each cycle. It was found that a high capacity of a charge capacity of 292 mAh / g and a discharge capacity of 264 mAh / g at the 12th cycle can be obtained. In addition, since the energy density of the discharge at the 12th cycle is 914 Wh / kg, the average discharge potential at the 12th cycle is obtained by dividing the energy density of the discharge (914 Wh / kg) by the discharge capacity (264 mAh / g).
  • FIG. 21 shows a charge / discharge curve at the 12th cycle. Further, in the discharge curve at the 16th cycle, no decrease in capacity was observed, and the average discharge potential obtained by dividing the discharge energy density by the discharge capacity was 3.44 V, and it was confirmed that the decrease in the discharge potential was slight. It was done. In addition, compared with the lithium calcium nickel manganese composite oxide of Example 1 and the lithium magnesium nickel manganese composite oxide of Example 4, it is apparent that a high capacity can be obtained when both calcium and magnesium are substituted. became. From the above, it was revealed that the lithium calcium magnesium nickel manganese composite oxide active material of the present invention is useful as a high-capacity lithium secondary battery material.
  • a lithium secondary battery manufactured under the same conditions was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C., with a current density of 10 mA / g and a lithium reference potential of 4.8-2.5 V. It was. As a result, the charge / discharge capacity increased with each cycle, and the capacity reached the maximum at the 28th cycle.
  • the charge curve of the first cycle of this charge / discharge test is shown in FIG. There is no voltage flat at about 4.5V, which is characteristic of lithium-nickel-manganese composite oxide with lithium-rich layered rock salt structure or lithium-nickel-cobalt-manganese oxide, and the charging curve increases monotonically.
  • the lithium calcium nickel manganese composite active material of the present invention does not cause an oxygen desorption reaction and is useful as a high-capacity lithium secondary battery material while maintaining the arrangement of oxygen atoms. Became clear.
  • a lithium secondary battery manufactured under the same conditions was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a lithium reference potential of 4.6 to 2.5 V. It was. As a result, the charge / discharge capacity increased with each cycle, and the capacity reached the maximum at the 24th cycle.
  • FIG. 23 shows the charge curve of the 24th cycle at this time.
  • the discharge capacity at the 24th cycle was 253 mAh / g, and it was confirmed that the discharge capacity at the 74th cycle thereafter showed a capacity retention rate of about 95% with respect to the discharge capacity at the 24th cycle. Moreover, it became clear that substantially the same high capacity
  • Lithium secondary battery Using the lithium calcium cobalt nickel manganese composite oxide thus obtained as an active material, a lithium secondary battery (coin-type cell) having the same components and structure as in Example 1 was produced.
  • the manufactured lithium secondary battery was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a lithium reference potential of 4.8 V-2.0 V. As a result, the charge / discharge capacity increased with each cycle. It was found that a high capacity of a charge capacity of 249 mAh / g and a discharge capacity of 242 mAh / g at the seventh cycle can be obtained. In addition, since the energy density of the discharge at the seventh cycle is 840 Wh / kg, the average discharge potential at the tenth cycle is obtained by dividing the energy density of the discharge (840 Wh / kg) by the discharge capacity (242 mAh / g).
  • FIG. 27 shows a charge / discharge curve at the seventh cycle. Further, in the discharge curve at the 11th cycle, no decrease in capacity was observed, and the average discharge potential obtained by dividing the discharge energy density by the discharge capacity was 3.44 V, and it was confirmed that the decrease in the discharge potential was slight. It was done. From the above, it was revealed that the lithium calcium cobalt nickel manganese composite oxide active material of the present invention is useful as a high-capacity lithium secondary battery material.
  • Lithium secondary battery Using the lithium magnesium cobalt nickel manganese composite oxide thus obtained as an active material, a lithium secondary battery (coin-type cell) having the same components and structure as in Example 1 was produced.
  • the manufactured lithium secondary battery was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a lithium reference potential of 4.8 V-2.0 V. As a result, the charge / discharge capacity increased with each cycle. It was found that a high capacity of a charge capacity of 237 mAh / g and a discharge capacity of 229 mAh / g at the 15th cycle can be obtained. In addition, since the energy density of the discharge at the 15th cycle is 783 Wh / kg, the average discharge potential at the 15th cycle is obtained by dividing the energy density of the discharge (783 Wh / kg) by the discharge capacity (229 mAh / g).
  • Lithium calcium magnesium cobalt nickel manganese composite oxide having a lithium-excess layered rock salt structure (compositional formula: Li 1.22 Ca 0.005 Mg 0.005 Co 0.14 Ni 0.13 Mn 0.49 O 2 ) Synthesis) Lithium carbonate (Li 2 CO 3 , manufactured by rare metal, purity 99.99%), calcium chloride (CaCl 2 , manufactured by High Purity Chemical Laboratory, purity 99.9% or more), magnesium chloride (MgCl 2 , high purity chemical research) Manufactured, purity 99.9% or more), cobalt acetate tetrahydrate ((CH 3 COO) 2 Co.4H 2 O, Wako Pure Chemicals, Wako Special Grade), nickel acetate tetrahydrate ((CH 3 COO ) 2 Ni ⁇ 4H 2 O, manufactured by Wako pure Chemical Industries, Ltd., Wako special grade), manganese carbonate (MnCO 3, manufactured by Kojundo Chemical Laboratory, each powder having
  • Lithium secondary battery (Lithium secondary battery) Using the thus obtained lithium calcium magnesium cobalt nickel manganese composite oxide as an active material, a lithium secondary battery (coin-type cell) having the same components and structure as in Example 1 was produced.
  • the manufactured lithium secondary battery was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a lithium reference potential of 4.8 V-2.0 V. As a result, the charge / discharge capacity increased with each cycle. It was found that a high capacity of a charge capacity of 252 mAh / g and a discharge capacity of 244 mAh / g in the seventh cycle can be obtained. Further, since the energy density of the discharge at the seventh cycle is 844 Wh / kg, the average discharge potential at the tenth cycle is obtained by dividing the energy density of the discharge (844 Wh / kg) by the discharge capacity (244 mAh / g).
  • FIG. 31 shows a charge / discharge curve at the seventh cycle. Further, in the discharge curve at the 11th cycle, no decrease in capacity was observed, and the average discharge potential obtained by dividing the discharge energy density by the discharge capacity was 3.44 V, and it was confirmed that the decrease in the discharge potential was slight. It was done. Further, in comparison with the lithium calcium cobalt nickel manganese composite oxide of Example 10 and the lithium magnesium cobalt nickel manganese composite oxide of Example 11, the case where both calcium and magnesium are substituted has the highest capacity and high energy density. It became clear that From the above, it became clear that the lithium calcium magnesium cobalt nickel manganese composite oxide active material of the present invention is useful as a high-capacity lithium secondary battery material.
  • the composite oxide obtained above was examined for the crystal structure by a powder X-ray diffractometer (trade name RINT2550V, manufactured by Rigaku). It became clear that it was a phase.
  • the powder X-ray diffraction pattern at this time is shown in FIG. A peak attributed to the monoclinic system was observed from 20 ° to 35 °, confirming the lithium-rich composition.
  • the lattice constant was refined as an average structure hexagonal system by the method of least squares, the following values were obtained, and it was confirmed from the lattice constant that it was a layered rock salt type structure having a lithium-excess composition. .
  • Lithium secondary battery (Lithium secondary battery) Using the lithium nickel manganese composite oxide thus obtained as an active material, a lithium secondary battery (coin-type cell) having the same components and structure as in Example 1 was produced, and its charge / discharge characteristics were measured.
  • Example 34 shows a charge / discharge curve at the 10th cycle.
  • the discharge curve at the 14th cycle although no decrease in capacity was observed, the average discharge potential obtained by dividing the discharge energy by the discharge capacity was 3.33 V, and it was confirmed that the decrease in the discharge potential was significant.
  • the capacity is low, and there is a practical problem in the composite oxide system in which the alkaline earth metal element is not substituted. It was confirmed.
  • a lithium secondary battery manufactured under the same conditions was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C.
  • Example 1 Example 4, or Example 7 is useful as a lithium secondary battery material having a high capacity and a high capacity retention rate.
  • the chemical composition was examined using a scanning electron microscope (trade name JCM-6000, manufactured by JEOL), it was confirmed that the powder particles contained nickel and manganese, and the powder shape was high. It was confirmed to be formed from primary particles having a crystallinity of about 1-2 microns.
  • Lithium secondary battery (Lithium secondary battery) Using the lithium nickel manganese composite oxide thus obtained as an active material, a lithium secondary battery (coin-type cell) having the same components and structure as in Example 1 was produced, and its charge / discharge characteristics were measured.
  • the manufactured lithium secondary battery was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a lithium reference potential of 4.8-2.0 V.
  • the charge / discharge capacity increased with each cycle, and the capacity became maximum at the 13th cycle.
  • FIG. 37 shows a charge curve for the 13th cycle at this time. It was confirmed in the 13th cycle that the discharge capacity was 241 mAh / g. Therefore, when compared with the active material of the present invention shown in Example 1, Example 4 or Example 7, the active material of the present invention is higher even if the charged lithium amount is 1.8. It was revealed that the capacity is useful as a lithium secondary battery material.
  • Lithium secondary battery (Lithium secondary battery) Using the lithium cobalt nickel manganese composite oxide thus obtained as an active material, a lithium secondary battery (coin-type cell) having the same components and structure as in Example 1 was produced, and its charge / discharge characteristics were measured.
  • the manufactured lithium secondary battery was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a cut-off potential of 4.8 to 2.0 V based on lithium.
  • the charge / discharge capacity increased with each cycle, and the capacity reached the maximum at the 16th cycle.
  • FIG. 39 shows a charging curve at the 16th cycle at this time.
  • the discharge capacity was 224 mAh / g, and it was confirmed that the capacity maintenance rate was about 98% in the subsequent 24 cycles. From this, it became clear that the active material of the present invention shown in Example 10, Example 11, or Example 12 is useful as a high-capacity lithium secondary battery material.
  • the chemical composition was examined with a scanning electron microscope (trade name JCM-6000, manufactured by JEOL), it was confirmed that the powder particles contained nickel, cobalt, and manganese. It was confirmed to be formed from primary particles having a high crystallinity of about 1-2 microns.
  • Lithium secondary battery (Lithium secondary battery) Using the lithium cobalt nickel manganese composite oxide thus obtained as an active material, a lithium secondary battery (coin-type cell) having the same components and structure as in Example 1 was produced, and its charge / discharge characteristics were measured.
  • the manufactured lithium secondary battery was subjected to a constant current charge / discharge test under a temperature condition of 25 ° C. with a current density of 10 mA / g and a cut-off potential of 4.8 to 2.0 V based on lithium.
  • FIG. 41 shows the charge curve of the sixth cycle at this time.
  • the discharge capacity was 238 mAh / g, and the capacity was clearly reduced as compared with the calcium and / or magnesium substitute of the present invention. From these results, even if the amount of lithium in preparation was the same as in Example 10, Example 11, and Example 12, it was shown that the capacity was reduced if calcium or magnesium was not substituted. The effect by calcium and / or magnesium substitution was confirmed.
  • the composite oxide obtained above was examined for the crystal structure by a powder X-ray diffractometer (trade name RINT2550V, manufactured by Rigaku). It became clear that it was a phase.
  • the powder X-ray diffraction pattern at this time is shown in FIG. A peak attributed to the monoclinic system was observed from 20 ° to 35 °, confirming the lithium-rich composition.
  • the lattice constant was refined as an average structure hexagonal system by the method of least squares, the following values were obtained, and it was confirmed from the lattice constant that it was a layered rock salt type structure having a lithium-excess composition. .
  • Lithium secondary battery (Lithium secondary battery) Using the lithium nickel titanium manganese composite oxide thus obtained as an active material, a lithium secondary battery (coin-type cell) having the same components and structure as in Example 1 was produced, and its charge / discharge characteristics were measured.
  • the method of the present invention when used as a positive electrode material active material of a lithium secondary battery, a high capacity is possible, and the change in the discharge curve with the progress of the cycle is small, or the performance can be expected. It is possible to provide a novel composite oxide having a layered rock salt structure with a lithium-rich composition, a positive electrode material containing the composite oxide, and a lithium secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本発明は、リチウムと、カルシウム及びマグネシウムの少なくとも一方と、ニッケルと、マンガンとを含有し、リチウム過剰層状岩塩型構造を備える複合酸化物、並びに前記複合酸化物を含む正極材料活物質及びリチウム二次電池に関する。

Description

正極材料、並びにそれを正極に使用したリチウム二次電池
 本発明は、高容量の正極材料、並びにその正極材料を正極に使用したリチウム二次電池に関する。
 本願は、2015年5月22日に、日本に出願された特願2015-104962号に基づき優先権を主張し、その内容をここに援用する。
 リチウム二次電池は、ニッカド電池やニッケル水素電池などの二次電池と比較してエネルギー密度が高く、高電位で作動させることができるため、携帯電話やノートパソコンなどの小型情報機器用の電源として広く用いられている。また近年、小型軽量化が図りやすいことから、ハイブリット自動車や電気自動車用、或いは定置型、家庭用蓄電池などの大型用途での需要が高まっている。
 このリチウム二次電池は、いずれもリチウムを可逆的に吸蔵・放出することが可能な材料を含有する正極及び負極、非水系有機溶媒にリチウムイオン伝導体を溶解させた電解液、セパレータを主要構成要素とする。これらの構成要素のうち、正極材料として使用されている酸化物として、リチウムコバルト酸化物(LiCoO)、リチウムマンガン酸化物(LiMn)、リチウムニッケル酸化物(LiNiO)、リチウムニッケルコバルトマンガン酸化物(LiNi1/3Co1/3Mn1/3)などが挙げられる。
 一方、大型用途での普及のためには、正極材料に資源量が少ないコバルト元素を使用することは、資源とコストの観点から、コバルトを構成元素として使用せず、高容量な正極材料が好ましい。
 リチウムマンガン酸化物正極材料は、リチウムの脱離・挿入反応により、リチウム基準で約3~4V程度の電圧を有することから、様々な結晶構造を有する材料が正極材料として検討されている。中でも、スピネル型リチウムマンガン酸化物LiMnは、リチウム基準で4V領域に電位平坦部を有し、リチウム脱離・挿入反応の可逆性が良好であることから、現在、実用材料のひとつとなっている。しかしながら、酸化物重量当たりの容量は100mA/g程度しかなく、高容量リチウム二次電池への応用には適さない。
 一方、リチウムコバルト酸化物などと同様の層状岩塩型構造を有するリチウムマンガン酸化物が高容量正極材料として検討されている。
 しかしながら、リチウムマンガン酸化物は、充放電サイクルの経過に伴い、充放電曲線が変化し、次第にスピネル相に特徴的な充放電曲線に変化してしまうことがよく知られている。
 これに対して、250mAh/g程度の高容量が可能な層状岩塩型構造を有するリチウムニッケルチタンマンガン酸化物について、充放電に伴ったスピネル化が起こりにくい組成について検討がなされ、特にNi:Ti:Mn=1:1:8付近が充放電曲線の変化が少ないことが明らかにされている。しかし、サイクルに伴う充放電曲線の変化は依然として残されている(特許文献1,非特許文献1)。
 また、層状岩塩型構造を有するNi及びMn系正極材料について、Mg、Na、Alなどを置換することで、サイクル特性が改善できるという報告がある(特許文献2、3)。
 これらの元素置換は、サイクル特性改善には一定の効果が認められるものの、そもそもの容量が低下してしまうことが問題として残されている。
 一方、リチウムコバルト酸化物などと同様の層状岩塩型構造を有する系で、リチウム過剰組成からなるリチウムニッケルコバルトマンガン酸化物、或いはリチウムニッケルマンガン酸化物が、高容量正極材料として検討されている。
  リチウム過剰組成を有する層状岩塩型構造は、通常の層状岩塩型構造が六方晶系(三方晶系)空間群R-3mを結晶構造の特徴としているのに対して、対称性が単斜晶系に低下した空間群C2/mに属すること、CuKα線を使用した粉末X線回折パターンで、対称性の低下に対応して、2θ角度で20から35度の領域に回折図形を与えることを特徴とし、さらにリートベルト法などの結晶構造解析によって、遷移金属層にリチウムが占有した結晶構造モデルで解析できることが特徴である。
 特に、リチウム過剰組成を有するリチウムニッケルマンガン酸化物は、300mAh/gまでの高容量が期待できることから、精力的に検討されている(非特許文献2)。
 しかしながら、充放電サイクルの経過に伴い、充放電曲線が変化し、次第にスピネル相に特徴的な充放電曲線に近づくことが知られており、作動電圧が変化してしまうことが実用上問題である。
 この課題を解決する目的で、結晶構造の安定性を高める効果を狙い、マンガンの一部をチタンに置換したLiNi1/4Mn3/4-yTiの合成が報告され、充放電曲線の変化においては、一定の効果が認められているものの、根本的な解決には繋がっていない(非特許文献3)。
 このスピネル化に伴う充放電曲線の変化は、充電状態でリチウム層の電荷が減少し、構造的に不安定になるため、遷移金属層の遷移金属イオンが移動してくることが原因とされている。
 そのため、チタン置換のみでは、サイクルに伴う充放電曲線の形状変化を完全に抑制することは困難であることから、チタン置換体の更なる組成最適化として、層状岩塩型構造のリチウム層へより化学結合が強い陽イオンを置換することで、リチウム層の構造安定性を高める効果が期待されている。
 この指針で、リチウム過剰組成のリチウムマンガンチタン酸化物、或いはリチウムマンガン鉄酸化物へのマグネシウム置換が検討されている(特許文献4)。
 上述のように、正極材料として高容量が期待できるリチウム過剰組成の層状岩塩型構造を有する系のうちリチウムマンガンチタン酸化物やリチウムマンガン鉄酸化物については、充放電サイクルに伴う充放電曲線の変化を抑制するため、層状岩塩型構造のリチウム層へのマグネシウム置換が検討されている。しかしながら、マグネシウムイオンは、イオン半径が遷移金属イオンにも、リチウムイオンにも近く、リチウム層にも、遷移金属層にも置換されてしまうことから、可逆性の改善には一定の効果が確認されているものの、結果的に容量が低下してしまうことが問題である。そのような事情もあって、リチウム過剰組成の層状岩塩型構造を有するリチウムニッケルマンガン複合酸化物、リチウムニッケルコバルトマンガン複合酸化物、又はリチウムニッケルチタンマンガン複合酸化物については、そのようなマグネシウム置換は検討されていない。
 一般的に、充電に伴い、リチウム層のリチウム占有量が減少してくると、リチウム層の層間距離は広がる傾向にあることが知られている。しがたって、充電状態で、結晶構造変化を抑制する目的では、広がった層間で効果を発揮できる、より大きいイオン半径の元素を置換することが効果的である。そのため、マグネシウム単独の置換よりも、マグネシウムとカルシウム、或いはカルシウムのみを置換させることが非常に効果的であるが、これまでにリチウム過剰組成のリチウム層へのカルシウムイオンの置換は、イオン半径が大きく異なることから、困難であるとされ、公知の文献での報告はない。
 さらに、リチウム過剰組成を有する材料系では、初回充電反応時に、層間からのリチウムの脱離反応以外に、酸素脱離、更に遷移金属の結晶構造中の移動が起こることがよく知られている(非特許文献4)。
 この酸素脱離反応は、初回充電時にリチウム基準で約4.5Vで電位平坦部を生成することがよく知られており、この反応が高容量の発現に必須であるため、初回の充電容量に対する放電容量が小さいという不可逆容量が大きいことが、実用上の問題がある(例えば、非特許文献2のFig.4(c)の1stサイクルの充電曲線)。
 また、初回の放電容量は250mAh/g程度の高容量が得られた場合でも、サイクルを繰り返すと材料の結晶構造が変化することが原因で放電電圧が大きく低下し、また、容量低下も著しいことが知られている。
 このため、リチウム過剰組成を有する材料系を、実際の電池システムで使用する場合には、このような結晶構造変化、化学組成変化を含めた電極の電気化学的な活性化を行うことが必要不可欠であり、例えば上限電圧をサイクル毎に上昇させていく段階的充電手法などが提案されている(非特許文献4)。
 しかしながら、この段階的充電手法でも、高容量を発現させるためには、上限電圧を4.8Vという高電圧にする必要があるため、現行の電池システムでは、電解液の酸化分解を抑制するための方策も必要となり問題である。
 したがって、このような電極の電気化学的な活性化手法ではなく、材料の合成プロセスにおいて、その後の酸素脱離反応や、結晶構造変化を起こさない、或いはできるだけ変化を低減できるような材料を合成することが、電気化学的な活性化の処理工程も不要となることから、求められている。
特開2012―209242号公報 日本国特許第5024359号公報 特開2007―257885号公報 特開2013―100197号公報
N.Ishida,H.Hayakawa,H.Shibuya,J.Imaizumi,J.Akimoto,Journal of Power Sources,244,505-509(2013) T.Ohzuku,M.Nagayama,K.Tsuji,K.Ariyoshi,Journal of Materials Chemistry,21,10179-10188(2011) S.Yamamoto,H.Noguchi,W.Zhao,Journal of Power Sources,278,76-86(2015) A.Ito,D.Li,Y.Ohsawa,Y.Sato,Journal of Power Sources,183,344-348(2008)
 本発明は、このような事情に鑑みてなされたものであり、リチウム二次電池の正極材料活物質として用いると、高容量が可能で、かつ、サイクルの進行に伴う放電曲線の変化が小さいか、又は、それらの性能が期待できるリチウム過剰組成の層状岩塩型構造を有する新規な複合酸化物を提供することを課題とする。また、リチウム二次電池用のリチウム過剰組成の層状岩塩型構造を有する正極材料であって、高容量が可能で、かつ、サイクルの進行に伴う放電曲線の変化が小さいか、又は、それらの性能が期待できる正極材料を提供することを課題とする。さらに、前記複合酸化物又は正極材料を用いたリチウム二次電池を提供することを課題とする。
 そこで、酸素脱離反応や、結晶構造変化を起こさない、或いはできるだけ変化を低減できるような材料を合成して提供するためには、高い結晶性を有することで結晶構造が安定化し、容易に酸素脱離しないように強固な共有結合性が強い化学結合を酸素と形成できる元素としてマグネシウムやカルシウムに代表されるアルカリ土類金属元素を構造中に導入することで、充電時における酸素脱離反応を抑制し、結晶構造中の酸素原子の配列が維持されると共に、充放電に伴う遷移金属原子の移動が抑制できる。
 本明細書において、「酸素原子の配列が維持される」とは、酸素と結合する陽イオンとの共有結合性を高めることによって、充放電反応に伴って、酸素原子が結晶構造中を移動する、或いは構造から脱離することにより原子配列に欠損を生じないことであり、完全に脱離反応を抑制することでも良いし、或いはあらかじめ酸素欠損した状態で安定な配列であることでも良い。
 したがって、共有結合性を高める方策としては、前述のマグネシウム、カルシウムなどのアルカリ土類金属元素をリチウム席へ置換が効果的である。また、充放電時に酸素脱離をさせない方策としては、合成時に還元雰囲気でマンガン等の遷移金属元素の価数を低下させることで、あらかじめ酸素欠損を形成することが効果的である。
 酸素原子の配列が維持できているかどうかは、初回充電状態で、電池を解体し、充電状態にある正極活物質のXRD測定を行い、リートベルト法で結晶構造解析を行うことや、電子回折で回折図形を測定することで、確認することができる。
 また、充放電サイクルを繰り返した後に、ニッケル、マンガンなどの遷移金属原子の配列が維持されており、スピネル構造などに結晶構造が変化しているかどうかについても、充放電サイクル後に、電池を解体し、充電状態にある正極活物質のXRD測定を行い、リートベルト法で結晶構造解析を行うことや、電子回折で回折図形を測定することで、確認することができる。
 特に、スピネル化が顕著の場合は、結晶の対称性が単斜晶系から、立方晶系に変化することで確認することができる。
 本明細書において、「リチウム過剰組成」という表現は、層状岩塩型構造において、遷移金属イオンが占有している層に、一部リチウムが占有している構造をとっている化合物について用いる。
 したがって、リチウムのモル数がその他の金属イオンのモル数よりも過剰であることは必ずしも必要ではない。また、本発明のリチウム過剰組成であることは、試料の粉末X線回折、粉末中性子回折データを使用した結晶構造解析を行うことで、単斜晶系に由来した長周期構造が確認されること、及び、リートベルト法による結晶構造解析を行うことで、格子定数を決定することで確認することができる。さらに、リチウムイオンの占有についても、結晶構造解析によって、各サイトの占有率の形で定量的に明らかにできる。
 本発明者らは鋭意検討した結果、リチウム過剰層状岩塩型構造を有するリチウムニッケルマンガン複合酸化物、リチウムニッケルコバルトマンガン酸化物又はリチウムニッケルチタンマンガン複合酸化物にカルシウム及び/又はマグネシウムが置換した複合酸化物(Li1+x-2y)(CoNiTiMn1-m-n1-x(M:Ca及び/又はMg、ただし式中、0<x≦0.33、0<y<0.13、0≦z<0.2、0<m<0.5、0≦n≦0.25)が作製可能であることが確認でき、さらにこれらの酸化物を正極活物質として作製した電極を用いたリチウム二次電池において、カルシウム及び/又はマグネシウムの置換によって、初回の充電反応(リチウム脱離反応)時に、酸素脱離反応が起こらず、酸素原子の配列が維持され、初回充電時に約4.5Vに電位平坦部が認められず、電位が単調に増加する曲線を示し、さらに充放電による結晶構造変化が起こりにくくなった結果、容量低下が意外にも生じず、むしろ、電圧範囲が4.6Vから2.5Vの充放電試験でも250mAh/gを超える高容量と、サイクルに伴ってもほとんど充放電曲線が変化しないことが確認できた。
 すなわち、本発明は、リチウム過剰層状岩塩型構造を有するリチウム遷移金属複合酸化物であって、化学組成としてカルシウム及び/又はマグネシウムを含むことにより、電気化学的にリチウムを脱離した時に酸素原子の配列が維持されるリチウム遷移金属複合酸化物である。より具体的には、電気化学的に4.6V以上5.0V以下の電位でリチウムを脱離したとき、酸素原子の配列が維持される前記複合酸化物である。
 前記複合酸化物は、結晶性を備え、単斜晶系に属する層状岩塩型構造を備え、結晶構造中にカルシウム及び/又はマグネシウムを含むことにより、酸素との化学結合が強固となることで、電気化学的にリチウムを脱離した時に酸素原子の配列を維持したリチウム遷移金属複合酸化物である。
 前記複合酸化物は、化学式(Li1+x-2y)(CoNiTiMn1-m-n1-x(M:Ca及び/又はMg、ただし式中、0<x≦0.33、0<y<0.13、0≦z<0.2、0<m<0.5、0≦n≦0.25)で表されるリチウム遷移金属複合酸化物にカルシウム及び/又はマグネシウムを置換した複合酸化物である。
 また、本発明は、前記複合酸化物からなるリチウム二次電池用の正極材料活物質である。
 前記正極材料活物質は、4.8Vまでの初回充電反応時に、酸素脱離反応が起こらず、酸素原子の配列を維持可能であり、4.4V以上4.7V以下の電圧範囲で、初回充電曲線が電位平坦部を示さずに、電位が単調に増加していく充電曲線を示すリチウム二次電池用の正極材料活物質である。
 前記正極材料活物質は、充放電サイクルに伴うスピネル構造への変化が出現しないリチウム二次電池用の正極材料活物質である。
 さらに本発明は、正極、負極、セパレータ及び電解質を備えるリチウム二次電池であって、前記正極は、リチウム過剰層状岩塩型構造を有するリチウム遷移金属複合酸化物にカルシウム及び/又はマグネシウムが置換した複合酸化物を正極材料活物質として備えるリチウム二次電池である。
 また、本発明は、正極、負極、セパレータ及び電解質を備えるリチウム二次電池であって、前記正極はリチウム過剰層状岩塩型構造を備えるリチウム遷移金属複合酸化物を備え、正極材料の充放電容量が250mAh/g以上を備えるリチウム二次電池である。
  すなわち、本発明は、以下の側面を有する。
(1)リチウムと、カルシウム及びマグネシウムの少なくとも一方と、ニッケルと、マンガンとを含有し、リチウム過剰層状岩塩型構造を備える複合酸化物;
(2)前記複合酸化物は、電気化学的に4.6V以上5.0V以下の電位でリチウムを脱離したとき、酸素原子の配列が維持される(1)に記載の複合酸化物;
(3)前記複合酸化物は、単斜晶系に属する層状岩塩型構造を備える(1)又は(2)に記載の複合酸化物;
(4)前記複合酸化物は、化学式(Li1+x-2y)(CoNiTiMn1-m-n1-x(式中、Mは、Ca及び/又はMgであり、x、y、z、m及びnは、それぞれ、0<x≦0.33、0<y<0.13、0≦z<0.2、0<m<0.5、0≦n≦0.25を満たす数である)で表される(1)~(3)のいずれか1つに記載の複合酸化物;
(5)前記複合酸化物は、化学式(Li1+x-2y)(CoNiTiMn1-m-n1-x(式中、Mは、Ca及び/又はMgであり、x、y、z、m及びnは、それぞれ、0.20≦x≦0.28、0<y<0.03、0≦z<0.2、0.1<m<0.3、0≦n≦0.2を満たす数である)で表される(1)~(3)のいずれか1つに記載の複合酸化物;
(6)前記複合酸化物は、化学式(Li1+x-2y)(CoNiMn1-m1-x(式中、Mは、Ca及び/又はMgであり、x、y、z及びmは、それぞれ、0.20≦x≦0.28、0<y<0.03、0≦z<0.2、0.1<m<0.2を満たす数である)で表される(1)~(3)のいずれか1つに記載の複合酸化物;
(7)前記複合酸化物は、化学式(Li1+x-2y)(NiMn1-m1-x(式中、Mは、Ca及び/又はMgであり、x、y及びmは、それぞれ、0.20≦x≦0.28、0<y<0.03、0.2<m<0.3を満たす数である)で表される(1)~(3)のいずれか1つに記載の複合酸化物;
(8)前記複合酸化物は、化学式(Li1+x-2y)(NiTiMn1-m-n1-x(Mは、Ca及び/又はMgであり、x、y、m及びnは、それぞれ、0.20≦x≦0.28、0<y<0.03、0.1<m<0.3、0≦n≦0.2を満たす数である)で表される(1)~(3)のいずれか1つに記載の複合酸化物;
(9)(1)~(8)のいずれか1つに記載の複合酸化物を備えるリチウム二次電池用の正極材料活物質;
(10)前記正極材料活物質は、初回充電反応時の4.4V以上4.7V以下の電圧範囲で、酸素原子の配列を維持し、電位が単調に上昇する充電曲線を示す(9)に記載のリチウム二次電池用の正極材料活物質;
(11)前記正極材料活物質は、高容量であり、かつ充放電サイクルに伴って遷移金属原子の配列を維持する(9)に記載のリチウム二次電池用の正極材料活物質;
(12)正極、負極、セパレータ及び電解質を備えるリチウム二次電池であって、前記正極は、(9)~(11)のいずれか1つに記載のリチウム二次電池用の正極材料活物質を備えるリチウム二次電池;又は
(13)前記リチウム二次電池は、その充放電容量が、前記正極材料活物質の複合酸化物の単位重量あたり250mAh/g以上300mAh/g以下である(12)に記載のリチウム二次電池。
 本発明によれば、リチウム過剰層状岩塩型構造を有するリチウム遷移金属複合酸化物にカルシウム及び/又はマグネシウムが置換した複合酸化物が作製可能であり、この複合酸化物を正極活物質として作製した電極を用いたリチウム二次電池において、初回充電時に酸素脱離反応に起因する約4.5Vにおける電位平坦部がなく、単調に電位が増大していく充電曲線を示し、高容量と、サイクルに伴う放電曲線の変化が小さい可逆性の高い充放電特性が可能となる〔例えば、最大の放電容量が240mAh/g以上(好ましくは250mAh/g以上)、最大放電容量の4サイクル後の放電容量が、当初の最大放電容量に対する容量維持率として95%以上(好ましくは97%以上)で、かつ、平均放電電位(V)(各サイクルの放電のエネルギー密度(mWh/g)を放電の容量(mAh/g)で除算することで算出)が、放電容量最大時の平均放電電位に対する電位維持率として98%以上(好ましくは99%以上)〕。
リチウム二次電池の1例を示す模式図である。 実施例1で得られた本発明のリチウムカルシウムニッケルマンガン複合酸化物のX線粉末回折図形である。 実施例1で得られた本発明のリチウムカルシウムニッケルマンガン複合酸化物の化学組成分析によるEDSスペクトルである。 実施例1で得られた本発明のリチウムカルシウムニッケルマンガン複合酸化物を正極活物質とするリチウム二次電池の電圧範囲5.0-2.0Vで充放電試験を行った10サイクル目の充放電曲線である。 実施例1で得られた本発明のリチウムカルシウムニッケルマンガン複合酸化物を正極活物質とするリチウム二次電池の電圧範囲4.8-2.5Vで充放電試験を行った1サイクル目の充電曲線である。 実施例1で得られた本発明のリチウムカルシウムニッケルマンガン複合酸化物を正極活物質とするリチウム二次電池の電圧範囲4.6-2.5Vで充放電試験を行った39サイクル目の充電曲線である。 実施例2で得られた本発明のリチウムカルシウムニッケルマンガン複合酸化物のX線粉末回折図形である。 実施例3で得られた本発明のリチウムカルシウムニッケルチタンマンガン複合酸化物のX線粉末回折図形である。 実施例3で得られた本発明のリチウムカルシウムニッケルチタンマンガン複合酸化物の化学組成分析によるEDSスペクトルである。 実施例3で得られた本発明のリチウムカルシウムニッケルチタンマンガン複合酸化物を正極活物質とするリチウム二次電池の電圧範囲5.0-2.0Vで充放電試験を行った10サイクル目の充放電曲線である。 実施例4で得られた本発明のリチウムマグネシウムニッケルマンガン複合酸化物のX線粉末回折図形である。 実施例4で得られた本発明のリチウムマグネシウムニッケルマンガン複合酸化物の化学組成分析によるEDSスペクトルである。 実施例4で得られた本発明のリチウムマグネシウムニッケルマンガン複合酸化物を正極活物質とするリチウム二次電池の電圧範囲5.0-2.0Vで充放電試験を行った10サイクル目の充放電曲線である。 実施例4で得られた本発明のリチウムマグネシウムニッケルマンガン複合酸化物を正極活物質とするリチウム二次電池の電圧範囲4.8-2.5Vで充放電試験を行った1サイクル目の充電曲線である。 実施例4で得られた本発明のリチウムマグネシウムニッケルマンガン複合酸化物を正極活物質とするリチウム二次電池の電圧範囲4.6-2.5Vで充放電試験を行った30サイクル目の充放電曲線である。 実施例5で得られた本発明のリチウムマグネシウムニッケルマンガン複合酸化物のX線粉末回折図形である。 実施例6で得られた本発明のリチウムマグネシウムニッケルチタンマンガン複合酸化物のX線粉末回折図形である。 実施例6で得られた本発明のリチウムマグネシウムニッケルチタンマンガン複合酸化物の化学組成分析によるEDSスペクトルである。 実施例6で得られた本発明のリチウムマグネシウムニッケルチタンマンガン複合酸化物を正極活物質とするリチウム二次電池の電圧範囲5.0-2.0Vで充放電試験を行った10サイクル目の充放電曲線である。 実施例7で得られた本発明のリチウムカルシウムマグネシウムニッケルマンガン複合酸化物のX線粉末回折図形である。 実施例7で得られた本発明のリチウムカルシウムマグネシウムニッケルマンガン複合酸化物を正極活物質とするリチウム二次電池の電圧範囲5.0-2.0Vで充放電試験を行った12サイクル目の充放電曲線である。 実施例7で得られた本発明のリチウムカルシウムマグネシウムニッケルマンガン複合酸化物を正極活物質とするリチウム二次電池の電圧範囲4.8-2.5Vで充放電試験を行った1サイクル目の充電曲線である。 実施例7で得られた本発明のリチウムカルシウムマグネシウムニッケルマンガン複合酸化物を正極活物質とするリチウム二次電池の電圧範囲4.6-2.5Vで充放電試験を行った24サイクル目の充放電曲線である。 実施例8で得られた本発明のリチウムカルシウムマグネシウムニッケルマンガン複合酸化物のX線粉末回折図形である。 実施例9で得られた本発明のリチウムカルシウムマグネシウムニッケルチタンマンガン複合酸化物のX線粉末回折図形である。 実施例10で得られた本発明のリチウムカルシウムコバルトニッケルマンガン複合酸化物のX線粉末回折図形である。 実施例10で得られた本発明のリチウムカルシウムコバルトニッケルマンガン複合酸化物を正極活物質とするリチウム二次電池の電圧範囲4.8-2.0Vで充放電試験を行った7サイクル目の充放電曲線である。 実施例11で得られた本発明のリチウムマグネシウムコバルトニッケルマンガン複合酸化物のX線粉末回折図形である。 実施例11で得られた本発明のリチウムマグネシウムコバルトニッケルマンガン複合酸化物を正極活物質とするリチウム二次電池の電圧範囲4.8-2.0Vで充放電試験を行った15サイクル目の充放電曲線である。 実施例12で得られた本発明のリチウムカルシウムマグネシウムコバルトニッケルマンガン複合酸化物のX線粉末回折図形である。 実施例12で得られた本発明のリチウムカルシウムマグネシウムコバルトニッケルマンガン複合酸化物を正極活物質とするリチウム二次電池の電圧範囲4.8-2.0Vで充放電試験を行った7サイクル目の充放電曲線である。 比較例1で得られた公知のリチウムニッケルマンガン複合酸化物のX線粉末回折図形である。 比較例1で得られた公知のリチウムニッケルマンガン複合酸化物の化学組成分析によるEDSスペクトルである。 比較例1で得られた公知のリチウムニッケルマンガン複合酸化物を正極活物質とするリチウム二次電池の電圧範囲5.0-2.0Vで充放電試験を行った10サイクル目の充放電曲線である。 比較例1で得られた公知のリチウムニッケルマンガン複合酸化物を正極活物質とするリチウム二次電池の電圧範囲4.6-2.5Vで充放電試験を行った40サイクル目の充放電曲線である。 比較例2で得られた公知のリチウムニッケルマンガン複合酸化物のX線粉末回折図形である。 比較例2で得られた公知のリチウムニッケルマンガン複合酸化物を正極活物質とするリチウム二次電池の電圧範囲4.8-2.0Vで充放電試験を行った13サイクル目の充放電曲線である。 比較例3で得られた公知のリチウムコバルトニッケルマンガン複合酸化物のX線粉末回折図形である。 比較例3で得られた公知のリチウムニッケルマンガン複合酸化物を正極活物質とするリチウム二次電池の電圧範囲4.8-2.0Vで充放電試験を行った16サイクル目の充放電曲線である。 比較例4で得られた公知のリチウムコバルトニッケルマンガン複合酸化物のX線粉末回折図形である。 比較例4で得られた公知のリチウムニッケルマンガン複合酸化物を正極活物質とするリチウム二次電池の電圧範囲4.8-2.0Vで充放電試験を行った6サイクル目の充放電曲線である。 比較例5で得られたリチウムニッケルチタンマンガン複合酸化物のX線粉末回折図形である。 比較例5で得られたリチウムニッケルチタンマンガン複合酸化物の化学組成分析によるEDSスペクトルである。 比較例5で得られたリチウムニッケルチタンマンガン複合酸化物を正極活物質とするリチウム二次電池の電圧範囲5.0-2.0Vで充放電試験を行った10サイクル目の充放電曲線である。
 本発明者らは、リチウム過剰層状岩塩型構造を有する高容量の正極材料について、より高容量が可能であり、かつ充放電サイクルに伴い充放電曲線の形状変化を出来るだけ少なくなるような化学組成について鋭意検討した結果、リチウム(Liと表記する場合がある)と、カルシウム(Caと表記する場合がある)及びマグネシウム(Mgと表記する場合がある)の少なくとも一方と、ニッケル(Niと表記する場合がある)と、マンガン(Mnと表記する場合がある)とを含有し、リチウム過剰層状岩塩型構造を有する複合酸化物、より具体的には、リチウム過剰層状岩塩型構造を有するリチウムニッケルマンガン複合酸化物、リチウムニッケルコバルトマンガン複合酸化物又はリチウムニッケルチタンマンガン複合酸化物の結晶中にカルシウム及び/又はマグネシウムを含む複合酸化物(Li1+x-2y)(CoNiTiMn1-m-n1-x(式中、Mは、Ca及び/又はMgであり、x、y、z、m及びnは、それぞれ、0<x≦0.33、0<y<0.13、0≦z<0.2、0<m<0.5、0≦n≦0.25を満たす数である)が作製可能であることを見出し、本発明を完成した。
 本明細書において、「カルシウム及び/又はマグネシウム」とは、カルシウム及びマグネシウムの少なくとも一方、すなわち、カルシウム又はマグネシウムのいずれか一方又は両方を意味する。
 また、この複合酸化物を正極活物質として作製した電極を用いたリチウム二次電池において、初回充電反応時に酸素脱離反応に起因する約4.5Vに電位平坦部を生じず、4.4V以上4.7V以下の電圧範囲で単調に電位が増加していく充電曲線を示し、高容量と、サイクルに伴う放電曲線の変化が小さい可逆性の高い充放電特性が可能であることを見出した。
 本明細書において、初回充電反応時の「約4.5Vに電位平坦部を生じない」とは、初回充電反応時に、4.4Vから4.7Vの間で、各電圧における比容量の変化率が常に正の値をとることを意味する。
 「高容量」とは、従来の正極材料活物質の重量当たりの容量が、最大200mAh/gであることから、200mAh/g以上、より好ましくは200mAh/g超の容量であることを意味する。また、容量の上限としては、リチウム過剰組成を有する層状岩塩型構造のリチウムニッケルマンガン酸化物Li1.2Ni0.2Mn0.6の構造中のリチウムがすべて充放電反応に利用できた場合の理論容量である378mAh/gなどが例示される。
 「充放電サイクルに伴って遷移金属原子の配列を維持する」とは、充放電の下限カットオフ電圧が2.0V以上、上限カットオフ電圧が4.5V以上5.0V以下の定電流充放電試験等において、充放電サイクルを10サイクル以上50サイクル程度まで繰り返しても、複合酸化物の結晶構造中の遷移金属原子の配列が変化せず、スピネル構造への変化が起こらないことで、容量と放電電圧の低下が抑制できることを意味する。
 なお、複合酸化物の結晶中に含まれるマグネシウムは、複合酸化物の遷移金属層とリチウム金属層の両方に置換されていると考えられるが、カルシウムは、イオン半径が遷移金属よりもかなり大きいため、遷移金属層には置換されず、リチウム層にのみ置換されていると考えられる。また、過剰のマグネシウムやカルシウム酸化物が不純物として存在しても、電池反応には影響ないので、存在してもよい。
 カルシウム及び/又はマグネシウム置換の効果は、充電時にリチウム層のイオンが少なくなった場合に、リチウム層の層間を広げたまま維持することで、遷移金属層から遷移金属イオンが移動してくるのを妨げ、また、リチウム層の層間構造を安定化させる役割を担っている。
 本発明の1つの側面において、公知のリチウム過剰層状岩塩型構造を有するリチウム遷移金属複合酸化物、リチウムニッケルマンガン複合酸化物や、リチウムニッケルコバルトマンガン酸化物、リチウムニッケルチタンマンガン複合酸化物と比べて、本発明のカルシウム及び/又はマグネシウム置換したリチウム遷移金属複合酸化物、カルシウム及び/又はマグネシウム置換したリチウムニッケルマンガン複合酸化物、カルシウム及び/又はマグネシウム置換したリチウムニッケルコバルトマンガン複合酸化物、或いはカルシウム及び/又はマグネシウム置換したリチウムニッケルチタン複合酸化物を活物質として作製した正極を使用したリチウム二次電池では、初回充電反応時に酸素脱離反応が起こらず、酸素原子の配列が維持可能であり、また、約4.5Vでの電位平坦部が生じず、単調に電位が増加していく充電曲線を示し、かつ250mAh/gを超える放電容量と、充放電サイクルに伴うスピネル構造への変化が見られない。
 本発明に係るカルシウム及び/又はマグネシウム置換は、リチウム過剰層状岩塩型構造を有するリチウム遷移金属複合酸化物であればよく、リチウムニッケルマンガン複合酸化物に限らずに、例えばリチウムコバルトニッケルマンガン複合酸化物、リチウムニッケルチタンマンガン複合酸化物等の複合酸化物であってもよい。
 (Li1+x-2y)(CoNiTiMn1-m-n1-x(式中、Mは、Ca及び/又はMgであり、x、y、z、m及びnは、それぞれ、0<x≦0.33、0<y<0.13、0≦z<0.2、0<m<0.5、0≦n≦0.25を満たす数である)の組成式で表され、かつリチウム過剰層状岩塩型構造を有する複合酸化物の具体例としては、組成式:
Li1.23Ca0.01Ni0.19Mn0.56
Li1.24Mg0.01Ni0.19Mn0.56
Li1.22Ca0.005Mg0.005Ni0.19Mn0.57
Li1.23Ca0.01Co0.14Ni0.13Mn0.49
Li1.22Mg0.01Co0.14Ni0.12Mn0.50;又は
Li1.22Ca0.005Mg0.005Co0.14Ni0.13Mn0.49等で表され、かつリチウム過剰層状岩塩型構造を有する複合酸化物が挙げられる。
 以下、本発明に係る、リチウムと、カルシウム及びマグネシウムの少なくとも一方と、ニッケルと、マンガンとを含有し、リチウム過剰層状岩塩型構造を有する複合酸化物、すなわち、リチウム過剰層状岩塩型構造を有するリチウムニッケルマンガン複合酸化物、リチウムコバルトマンガン酸化物又はリチウムニッケルチタンマンガン複合酸化物のリチウム層にカルシウム及び/又はマグネシウムが置換した複合酸化物、より具体的には、(Li1+x-2y)(CoNiTiMn1-m-n1-x(式中、Mは、Ca及び/又はMgであり、x、y、z、m及びnは、それぞれ、0<x≦0.33、0<y<0.13、0≦z<0.2、0<m<0.5、0≦n≦0.25を満たす数である)の組成式で表され、かつリチウム過剰層状岩塩型構造を有する複合酸化物の製造方法を詳述する。
(カルシウム及び/又はマグネシウムが置換したリチウムニッケルマンガン複合酸化物、リチウムニッケルコバルトマンガン複合酸化物又はリチウムニッケルチタンマンガン複合酸化物(Li1+x-2y)(CoNiTiMn1-m-n1-x(式中、Mは、Ca及び/又はMgであり、x、y、z、m及びnは、それぞれ、0<x≦0.33、0<y<0.13、0≦z<0.2、0<m<0.5、0≦n≦0.25を満たす数である)の合成)
 本発明のうち、カルシウム及び/又はマグネシウムが置換したリチウムニッケルマンガン複合酸化物、リチウムニッケルコバルトマンガン酸化物又はリチウムニッケルチタンマンガン複合酸化物(Li1+x-2y)(CoNiTiMn1-m-n1-x(式中、M、x、y、z、m及びnは、それぞれ、前記の意味を有する)は、原料として、リチウム金属、又はリチウム化合物の少なくとも1種、カルシウム金属、マグネシウム金属、カルシウム化合物、又はマグネシウム化合物の少なくとも1種、及びニッケル金属、又はニッケル化合物の少なくとも1種、コバルト金属、又はコバルト化合物の少なくとも1種、チタン金属、又はチタン化合物の少なくとも1種、マンガン金属、又はマンガン化合物の少なくとも1種を、(Li1+x-2y)(CoNiTiMn1-m-n1-x(式中、M、x、y、z、m及びnは、それぞれ、前記の意味を有する)の化学組成となるように秤量・混合し、空気中などの酸素ガスが存在する雰囲気中で加熱することによって、製造することができる。
 あるいはまた、出発原料として、リチウム、カルシウム及び/又はマグネシウム、ニッケル、コバルト、チタン、マンガンのうちのリチウムとカルシウム及び/又はマグネシウムを必須成分として含む2種類以上からなる化合物を用いて、(Li1+x-2y)(CoNiTiMn1-m-n1-x(式中、M、x、y、z、m及びnは、それぞれ、前記の意味を有する)の化学組成となるように秤量・混合し、空気中などの酸素ガスが存在する雰囲気中で加熱することによって、製造することができる。
 リチウム原料としては、リチウム(金属リチウム)及びリチウム化合物の少なくとも1種を用いる。リチウム化合物としては、リチウムを含有するものであれば特に制限されず、例えばLiCO、LiOH・HO、LiNO、LiCl、LiSO、LiO、Li等が挙げられる。或いはすでにLiNiOなどのリチウムニッケル酸化物、LiTiO、LiTi12などのリチウムチタン酸化物、LiMnOなどのリチウムマンガン酸化物となっている化合物等が挙げられる。これらの中でも、炭酸リチウムLiCO等が好ましい。
 カルシウム及び/又はマグネシウム原料としては、カルシウム(金属カルシウム)、マグネシウム(金属マグネシウム)、カルシウム化合物、及びマグネシウム化合物の少なくとも1種を用いる。カルシウム化合物としては、カルシウムを含有するものであれば特に制限されず、例えばCaCl、CaCO、CaNO・4HO、CaO等が挙げられる。マグネシウム化合物としては、マグネシウムを含有するものであれば特に制限されず、例えばMgCl、MgC、MgO等が挙げられる。或いはすでにCaTiOなCaMnO、MgTiO、MgMnO等のカルシウム遷移金属複合酸化物、マグネシウム遷移金属複合酸化物となっている化合物等が挙げられる。これらの中でも、塩化物CaCl及び/又はMgCl等が好ましい。
 ニッケル原料としては、ニッケル(金属ニッケル)及びニッケル化合物の少なくとも1種を用いる。ニッケル化合物としては、ニッケルを含有するものであれば特に制限されず、例えば(CHCOO)Ni・4HO、NiO、NiOH、NiOOH等が挙げられる。或いはすでにマンガンニッケル化合物となっている水酸化物、マンガンチタンニッケル化合物となっている水酸化物等が挙げられる。これらの中でも、低い温度でも反応性が高く、組成制御しやすいことから、(CHCOO)Ni・4HO等が好ましい。
 コバルト原料としては、コバルト(金属コバルト)及びコバルト化合物の少なくとも1種を用いる。コバルト化合物としては、コバルトを含有するものであれば特に制限されず、例えば(CHCOO)Co・4HO、Co、CoOH、CoOOH等が挙げられる。或いはすでにマンガンニッケルコバルト化合物となっている水酸化物等が挙げられる。これらの中でも、低い温度でも反応性が高く、組成制御しやすいことから、(CHCOO)Co・4HO等が好ましい。
 チタン原料としては、チタン(金属チタン)及びチタン化合物の少なくとも1種を用いる。チタン化合物としては、チタンを含有するものであれば特に制限されず、例えばTiO、Ti、TiO、TiCl等が挙げられる。或いはすでにマンガンチタン化合物となっている水酸化物等が挙げられる。これらの中でも、粉体の比表面積が大きく、反応性が高いアナターゼ型のTiO等が好ましい。
 マンガン原料としては、マンガン(金属マンガン)及びマンガン化合物の少なくとも1種を用いる。マンガン化合物としては、マンガンを含有するものであれば特に制限されず、例えばMnCO、MnCl、MnO、Mn、Mn、MnO、MnOH、MnOOH等が挙げられる。これらの中でも、MnCO等が好ましい。
 はじめに、これらを含む混合物を調整する。各構成元素の混合割合は、(Li1+x-2y)(CoNiTiMn1-m-n1-x(式中、M、x、y、z、m及びnは、それぞれ、前記の意味を有する)の化学組成となるように混合することが好ましい。カルシウム及び/又はマグネシウムのリチウムに対する量比は必要とするサイクル特性の安定性によって適宜変更することができるが、リチウム量が減少することは容量の低下に繋がるので、0<y<0.13、好ましくは0<y≦0.06である。また、カルシウムとマグネシウムの量は、0<y<0.13の範囲内で適宜変更することができるが、構造的な安定性がより高くなるカルシウムとマグネシウムのモル比Ca/Mg≧1が好ましい。
 また、混合方法は、これらを均一に混合できる限り特に限定されず、例えばミキサー等の公知の混合機を用いて、湿式又は乾式で混合すればよい。
 次いで、混合物を焼成する。焼成温度は、原料によって適宜設定することができるが、低温で分解、溶融するような(CHCOO)Ni・4HO、(CHCOO)Co・4HO等を原料とする場合は、まず250℃~600℃で仮焼し、その後、最高温度として750℃~1050℃程度、好ましくは800℃から950℃とすればよい。また、焼成雰囲気も特に限定されず、通常は酸化性雰囲気又は大気中で実施すればよい。
 また、高温焼成の時間が長い場合や回数が多い場合は、リチウムが高温で揮発し、化学組成中のリチウム量が減少してしまうことが起こるので、その場合は、あらかじめ、目的とする(Li1+x-2y)(CoNiTiMn1-m-n1-x(式中、M、x、y、z、m及びnは、それぞれ、前記の意味を有する)の組成比よりも、モル比で0~30%リチウム量を過剰にすることが好ましく、過剰量は0~10%の範囲がより好ましい。過剰に仕込んでも、結晶構造の制約から、最大のリチウム量x=0.33以上となることは不可能である。
 焼成時間は、焼成温度等に応じて適宜変更することができるが、好ましくは3時間以上24時間以下、より好ましくは8時間以上20時間以下とすればよい。冷却方法も特に限定されないが、通常は自然放冷(炉内放冷)又は徐冷とすればよい。
 焼成後は、必要に応じて焼成物を公知の方法で粉砕し、さらに上記の焼成工程の最高温度を変更しながら1~5回実施してもよい。なお、粉砕の程度は、焼成温度などに応じて適宜調節すればよい。
(リチウム二次電池)
 本発明のリチウム二次電池は、前記(Li1+x-2y)(CoNiTiMn1-m-n1-x(式中、M、x、y、z、m及びnは、それぞれ、前記の意味を有する)を活物質として、前記活物質を、正極合材の全重量に対して、50重量%以上100重量%以下含有する正極を構成部材として用いるものである。すなわち、本発明のリチウム二次電池は、正極材料活物質として本発明のカルシウム及び/又はマグネシウム置換リチウム遷移金属複合酸化物を用いる以外は、公知のリチウム電池(コイン型、ボタン型、円筒型、全固体型等)の電池要素をそのまま採用することができる。図1は、本発明のリチウム二次電池を、コイン型リチウム二次電池に適用した1例を示す模式図である。このコイン型電池1は、SUS製の負極端子2、金属リチウムを使用した負極3、ポリプロピレン製の微多孔製膜のセパレータ、(エチレンカーボネートとジエチルカーボネートを体積比1:1で混合した溶媒に1MのLiPF電解質を溶解した電解液)4、ポリプロピレン製の絶縁パッキング5、本発明の活物質からなる正極6、SUS製の正極缶7により構成される。
 本発明では、上記本発明の複合酸化物活物質に、必要に応じて導電剤、結着剤等を配合して正極合材を調整し、これを集電体に圧着することにより正極が作製できる。集電体としては、好ましくはステンレスメッシュ、アルミメッシュ、アルミ箔等を用いることができる。導電剤としては、好ましくはアセチレンブラック、ケッチェンブラック等を用いることができる。結着剤としては、好ましくはテトラフルオロエチレン、ポリフッ化ビニリデン等を用いることができる。
 正極合材におけるカルシウム及び/又はマグネシウムが置換したリチウムニッケルマンガン複合酸化物又はリチウムニッケルコバルトマンガン複合酸化物、リチウムニッケルチタンマンガン複合酸化物活物質、導電剤、結着剤等の配合も特に限定的ではないが、本発明のリチウム複合酸化物活物質が、正極合材の全重量に対して、50~95重量%程度(好ましくは80~90重量%)とし、導電剤が1~50重量%程度(好ましくは3~48重量%)、結着剤が0~30重量%(好ましくは2~15重量%)とすればよい。ただし、リチウム複合酸化物活物質、導電剤及び結着剤の含有量の和は、100重量%を超えない。
 本発明のリチウム二次電池において、上記正極に対する対極としては、例えば金属リチウム、リチウム合金、及び黒鉛、MCMB(メソカーボンマイクロビーズ)などの炭素系材料、リチウムチタン酸化物などの酸化物材料など、負極として機能し、リチウムを吸蔵・放出可能な公知のものを採用することができる。
 また、本発明のリチウム二次電池において、セパレータとしても公知の電池要素を採用すればよく、例えば、多孔性のポリエチレンフィルム、ポリプロピレンフィルムなどが使用できる。
 さらに、電解質としても公知の電解液、固体電解質等が適用できる。例えば、電解液としては、過塩素酸リチウム、6フッ化リン酸リチウム等の電解質を、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)等の溶媒に溶解させたものが使用できる。
 以下に、実施例を示し、本発明の特徴とするところをより一層明確にする。本発明は、これら実施例に限定されるものではない。
<実施例1>
(リチウム過剰層状岩塩型構造を有するリチウムカルシウムニッケルマンガン複合酸化物(組成式:Li1.23Ca0.01Ni0.19Mn0.56))
 炭酸リチウム(LiCO、レアメタリック製、純度99.99%)、塩化カルシウム(CaCl、高純度化学研究所製、純度99.9%以上)、酢酸ニッケル四水和物((CHCOO)Ni・4HO、和光純薬製、和光特級)、炭酸マンガン(MnCO、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Ca:Ni:Mn=1.8:0.02:0.25:0.75となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
 上記により得られたリチウムカルシウムニッケルマンガン複合酸化物について、粉末X線回折装置(リガク製、商品名RINT2550V)により結晶構造を調べたところ、良好な結晶性を有する、リチウム過剰組成に特徴的な単斜晶系に属する層状岩塩型構造が主相であることが明らかとなった。この時の粉末X線回折図形を図2に示す。単斜晶系に帰属されるピークが20°から35°にかけて観測され、リチウム過剰組成であることが確認された。また、最小自乗法により、平均構造である六方晶系として格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。
 a=2.8531ű0.0002Å
 c=14.242ű0.002Å
 V=100.40±0.01Å
 さらに、リートベルト法による結晶構造解析(プログラムRIETAN-FP使用)を行い、空間群C2/mを仮定して格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。
 a=4.9427ű0.0008Å
 b=8.5561ű0.0009Å
 c=5.0280ű0.0004Å
 β=109.274°±0.009°
 V=200.72±0.04Å
 また、走査型電子顕微鏡(JEOL製、商品名JCM-6000)により化学組成を調べたところ、粉体粒子が、カルシウム、ニッケル、マンガンを含有していることを確認され、粉体試料全体の組成比として、Ca:Ni:Mn=0.02:0.25:0.75(m=0.25)であることが判明した。このときのSEM-EDSスペクトルを図3に示す。
 さらに、ICP分析(HITACHI製、商品名P-4010)により化学分析を行い、モル比は、Li:Ca:Ni:Mn=1.64:0.02:0.25:0.75であることが判明した。この値を、一般式(Li1+x-2y)(CoNiTiMn1-m-n1-x(M:Ca及び/又はMg、ただし式中、0<x≦0.33、0<y<0.13、0≦z<0.2、0<m<0.5、0≦n≦0.25)で表記し直すと、x=0.25、y=0.01、z=0、m=0.25、n=0となることが確認された。また、るつぼ材由来のアルミニウム、ケイ素などは検出されなかった。
(リチウム二次電池)
 このようにして得られたリチウムカルシウムニッケルマンガン複合酸化物を活物質とし、導電剤としてアセチレンブラック、結着剤としてテトラフルオロエチレンを、重量比で45:45:10となるように配合し電極を作製した。
 この電極を作用極(正極)、対極(負極)にリチウム金属を用いて、6フッ化リン酸リチウムをエチレンカーボネート(EC)とジエチルカーボネート(DEC)との混合溶媒(体積比1:1)に溶解させた1M溶液を電解液とする、図1に示す構造のリチウム二次電池(コイン型セル)を作製し、その充放電特性を測定した。電池の作製は、公知のセルの構成・組み立て方法に従って行った。
 前記リチウム二次電池(コイン型セル)のより具体的な構造は、前記正極6、前記電解液を含むポリプロピレン製の微多孔製膜のセパレータ4、金属リチウムを使用した負極3及びSUS製の負極端子2をこの順で積層して積層体とし、前記積層体が、前記正極6をSUS製の正極缶7の内底部に接し、かつ前記負極端子2の少なくとも一部を前記正極缶7の外部に露出するようにして前記正極缶7に収容されている。前記正極缶7内で前記積層体の周囲はポリプロピレン製の絶縁パッキング5で被覆されて、コイン型セルを有するリチウム二次電池が形成されている。前記コイン型セルを平面に載置したとき、前記コイン型セルの鉛直方向の厚さは3.2mmであり、直径は20mmである。また、正極缶7、前記正極6、前記電解液を含むポリプロピレン製の微多孔製膜のセパレータ4、金属リチウムを使用した負極3及びSUS製の負極端子2の鉛直方向の厚さは、それぞれ、0.25mm、0.3mm、0.02mm、0.2mm、及び0.25mmであり、残部のスペースをいずれもSUS製のウェーブワッシャー1.4mmとスペーサー1.0mmで充填したものである。
 作製されたリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、リチウム基準の電位5.0V-2.0Vのカットオフ電位で定電流充放電試験を行った。その結果、サイクル毎に容量が増大していき、10サイクル目で容量が最大となり、10サイクル目の充電容量270mAh/g、放電容量263mAh/gという高容量が得られることが判明した。本明細書において、「リチウム基準の電位」とは、金属リチウムの溶解・析出反応の電位を基準(0V)とした場合の電池の電圧を意味する。また、10サイクル目の放電のエネルギー密度は913Wh/kgであることから、10サイクル目の平均放電電位は、放電のエネルギー密度(913Wh/kg)を放電容量(263mAh/g)で除算することで、(913÷263=3.47)Vであることが明らかとなった。10サイクル目の充放電曲線を図4に示す。さらに、14サイクル目の放電曲線では、容量の低下は認められず、また、放電エネルギー密度を放電容量で割り算した平均放電電位は3.44Vであり、放電電位の減少はわずかであることが確認された。以上から、本発明のリチウムカルシウムニッケルマンガン複合酸化物活物質が、高容量のリチウム二次電池材料として有用であることが明らかとなった。
 また、同条件で作製したリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、リチウム基準の電位4.8-2.5Vのカットオフ電位で定電流充放電試験を行った。その結果、サイクル毎に充放電の容量が増大していき、32サイクル目で容量が最大となった。この充放電試験の1サイクル目の充電曲線を図5に示す。リチウム過剰層状岩塩型構造のリチウムニッケルマンガン複合酸化物、或いはリチウムニッケルコバルトマンガン酸化物に特徴的な約4.5Vでの電圧平坦部は認められず、単調に電位が増大していく充電曲線であることが確認でき、本発明のリチウムカルシウムニッケルマンガン複合酸化物活物質が、酸素脱離反応を起こさず、酸素原子の配列を維持したままで高容量のリチウム二次電池材料として有用であることが明らかとなった。
 また、同条件で作製したリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、リチウム基準の電位4.6-2.5Vのカットオフ電位で定電流充放電試験を行った。その結果、サイクル毎に充放電の容量が増大していき、39サイクル目で容量が最大となった。この時の39サイクル目の充電曲線を図6に示す。39サイクル目で放電容量は、253mAh/gであり、その後の75サイクル目の放電容量が39サイクル目の放電容量に対して98%程度の容量維持率を示すことが確認された。このことから、本発明のリチウムカルシウムニッケルマンガン複合酸化物活物質が、高容量のリチウム二次電池材料として有用であることが明らかとなった。
<実施例2>
(リチウム過剰層状岩塩型構造を有するリチウムカルシウムニッケルマンガン複合酸化物)
 炭酸リチウム(LiCO、レアメタリック製、純度99.99%)、塩化カルシウム(CaCl、高純度化学研究所製、純度99.9%以上)、酢酸ニッケル四水和物((CHCOO)Ni・4HO、和光純薬製、和光特級)、炭酸マンガン(MnCO、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Ca:Ni:Mn=1.8:0.2:0.25:0.75となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
 上記により得られたリチウムカルシウムニッケルマンガン複合酸化物について、粉末X線回折装置(リガク製、商品名RINT2550V)により結晶構造を調べたところ、良好な結晶性を有する、リチウム過剰組成に特徴的な単斜晶系に属する層状岩塩型構造が主相であることが明らかとなった。この時の粉末X線回折図形を図7に示す。単斜晶系に帰属されるピークが20°から35°にかけて観測され、リチウム過剰組成であることが確認された。一方、副相として、酸化カルシウムに帰属されるピーク(図中*印)が観測され、この仕込み組成がカルシウムの固溶限界であることが明らかになった。したがって、カルシウム単独での置換の場合、置換量yは0.13未満であることが確認できた。
<実施例3>
(リチウム過剰層状岩塩型構造を有するリチウムカルシウムニッケルチタンマンガン複合酸化物の合成)
 炭酸リチウム(LiCO、レアメタリック製、純度99.99%)、塩化カルシウム(CaCl、高純度化学研究所製、純度99.9%以上)、酢酸ニッケル四水和物((CHCOO)Ni・4HO、和光純薬製、和光特級)、二酸化チタン(TiO、テイカ製AMT-100、含有量93%)、炭酸マンガン(MnCO、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Ca:Ni:Ti:Mn=1.8:0.02:0.125:0.125:0.75となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
 上記により得られたリチウムカルシウムニッケルチタンマンガン複合酸化物について、粉末X線回折装置(リガク製、商品名RINT2550V)により結晶構造を調べたところ、良好な結晶性を有する、単斜晶系に属する層状岩塩型構造が主相であることが明らかとなった。この時の粉末X線回折図形を図8に示す。単斜晶系に帰属されるピークが20°から35°にかけて観測され、リチウム過剰組成であることが確認された。また、最小自乗法により、平均構造である六方晶系として格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。特に、チタンの置換に伴い、実施例1の格子定数と比べて、a軸、c軸長共に顕著に長くなっていることが確認された。
 a=2.8558ű0.0004Å
 c=14.260ű0.003Å
 V=100.72±0.02Å
 さらに、リートベルト法による結晶構造解析(プログラムRIETAN-FP使用)を行い、空間群C2/mを仮定して格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。
 a=4.9434ű0.0010Å
 b=8.5551ű0.0010Å
 c=5.0302ű0.0005Å
 β=109.216°±0.012°
 V=200.88±0.05Å
 また、走査型電子顕微鏡(JEOL製、商品名JCM-6000)により化学組成を調べたところ、粉体粒子が、カルシウム、ニッケル、チタン、マンガンを含有していることを確認され、粉体試料全体の組成比として、Ca:Ni:Ti:Mn=0.02:0.125:0.125:0.75(m=0.125、n=0.125)であることが判明した。このときのSEM-EDSスペクトルを図9に示す。
(リチウム二次電池)
 このようにして得られたリチウムカルシウムニッケルチタンマンガン複合酸化物を活物質とし、実施例1と同じ構成要素・構造のリチウム二次電池(コイン型セル)を作製した。
 作製されたリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、リチウム基準の電位5.0V-2.0Vのカットオフ電位で定電流充放電試験を行った。その結果、サイクル毎に充放電の容量が増大していき、10サイクル目で容量が最大となった。10サイクル目の充電容量259mAh/g、放電容量252mAh/gという高容量が得られることが判明した。また、10サイクル目の放電のエネルギー密度は913Wh/kgであることから、10サイクル目の平均放電電位は、放電のエネルギー密度(839Wh/kg)を放電容量(252mAh/g)で除算することで、(839÷252=3.33)Vであることが明らかとなった。10サイクル目の充放電曲線を図10に示す。さらに、14サイクル目の放電曲線では、容量の低下は認められず、また、放電エネルギー密度を放電容量で割り算した平均放電電位は3.30Vであり、放電電位の減少はわずかであることが確認された。また、実施例1のリチウムカルシウムニッケルマンガン複合酸化物と比べて、チタンを置換することで、平均放電電位はやや低下するものの、同等の高容量が得られることが明らかとなった。以上から、本発明のリチウムカルシウムニッケルチタンマンガン複合酸化物活物質が、高容量のリチウム二次電池材料として有用であることが明らかとなった。
<実施例4>
(リチウム過剰層状岩塩型構造を有するリチウムマグネシウムニッケルマンガン複合酸化物(組成式:Li1.24Mg0.01Ni0.19Mn0.56)の合成)
 炭酸リチウム(LiCO、レアメタリック製、純度99.99%)、塩化マグネシウム(MgCl、高純度化学研究所製、純度99.9%以上)、酢酸ニッケル四水和物((CHCOO)Ni・4HO、和光純薬製、和光特級)、炭酸マンガン(MnCO、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Mg:Ni:Mn=1.8:0.02:0.25:0.75となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
 上記により得られた複合酸化物について、粉末X線回折装置(リガク製、商品名RINT2550V)により結晶構造を調べたところ、良好な結晶性を有する、単斜晶系に属する層状岩塩型構造の単一相であることが明らかとなった。この時の粉末X線回折図形を図11に示す。単斜晶系に帰属されるピークが20°から35°にかけて観測され、リチウム過剰組成であることが確認された。また、最小自乗法により、平均構造である六方晶系として格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。
 a=2.8527ű0.0004Å
 c=14.242ű0.002Å
 V=100.37±0.01Å
 さらに、リートベルト法による結晶構造解析(プログラムRIETAN-FP使用)を行い、空間群C2/mを仮定して格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。
 a=4.9438ű0.0009Å
 b=8.5594ű0.0011Å
 c=5.0291ű0.0004Å
 β=109.306°±0.011°
 V=200.84±0.05Å
 また、走査型電子顕微鏡(JEOL製、商品名JCM-6000)により化学組成を調べたところ、粉体粒子が、マグネシウム、ニッケル、マンガンを含有していることを確認され、粉体試料全体の組成比として、Mg:Ni:Mn=0.02:0.25:0.75(m=0.25)であることが判明した。このときのSEM-EDSスペクトルを図12に示す。
 さらに、ICP分析(HITACHI製、商品名P-4010)により化学分析を行い、モル比は、Li:Mg:Ni:Mn=1.68:0.02:0.25:0.75であることが判明した。この値を、一般式(Li1+x-2y)(CoNiTiMn1-m-n1-x(式中、M、x、y、z、m及びnは、それぞれ、前記の意味を有する)で表記し直すと、x=0.26、y=0.01、z=0、m=0.25、n=0となることが確認された。また、るつぼ材由来のアルミニウム、ケイ素などは検出されなかった。
(リチウム二次電池)
 このようにして得られたリチウムマグネシウムニッケルマンガン複合酸化物を活物質とし、実施例1と同じ構成要素・構造のリチウム二次電池(コイン型セル)を作製した。
 作製されたリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、リチウム基準の電位5.0V-2.0Vのカットオフ電位で定電流充放電試験を行った。その結果、サイクル毎に容量が増大していき、10サイクル目で容量が最大となり、10サイクル目の充電容量270mAh/g、放電容量261mAh/gという高容量が得られることが判明した。また、10サイクル目の放電のエネルギー密度は908Wh/kgであることから、10サイクル目の平均放電電位は、放電のエネルギー密度(908Wh/kg)を放電容量(261mAh/g)で除算することで、(908÷261=3.48)Vであることが明らかとなった。10サイクル目の充放電曲線を図13に示す。さらに、14サイクル目の放電曲線では、容量の低下は認められず、また、放電エネルギー密度を放電容量で割り算した平均放電電位は3.45Vであり、放電電位の減少はわずかであることが確認された。また、実施例1のリチウムカルシウムニッケルマンガン複合酸化物と比べて、マグネシウム置換でも、カルシウムと同等の効果が得られることが明らかとなった。以上から、本発明のリチウムマグネシウムニッケルマンガン複合酸化物活物質が、高容量のリチウム二次電池材料として有用であることが明らかとなった。
 また、同条件で作製したリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、リチウム基準の電位4.8-2.5Vのカットオフ電位で定電流充放電試験を行った。その結果、サイクル毎に充放電の容量が増大していき、30サイクル目で容量が最大となった。この充放電試験の1サイクル目の充電曲線を図14に示す。リチウム過剰層状岩塩型構造のリチウムニッケルマンガン複合酸化物、或いはリチウムニッケルコバルトマンガン酸化物に特徴的な約4.5Vでの電圧平坦部は認められず、単調に電位が増大していく充電曲線であることが確認でき、本発明のリチウムマグネシウムニッケルマンガン複合酸化物活物質が、酸素脱離反応を起こず、酸素原子の配列を維持したままで高容量のリチウム二次電池材料として有用であることが明らかとなった。
 また、同条件で作製したリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、リチウム基準の電位4.6-2.5Vのカットオフ電位で定電流充放電試験を行った。その結果、サイクル毎に充放電の容量が増大していき、30サイクル目で容量が最大となった。この時の30サイクル目の充電曲線を図15に示す。30サイクル目で放電容量は、251mAh/gであり、その後の76サイクル目の放電容量が30サイクル目の放電容量に対して95%程度の容量維持率を示すことが確認された。このことから、本発明のリチウムマグネシウムニッケルマンガン複合酸化物活物質が、高容量のリチウム二次電池材料として有用であることが明らかとなった。
<実施例5>
(リチウム過剰層状岩塩型構造を有するリチウムマグネシウムニッケルマンガン複合酸化物の合成)
 炭酸リチウム(LiCO、レアメタリック製、純度99.99%)、塩化マグネシウム(MgCl、高純度化学研究所製、純度99.9%以上)、酢酸ニッケル四水和物((CHCOO)Ni・4HO、和光純薬製、和光特級)、炭酸マンガン(MnCO、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Mg:Ni:Mn=1.8:0.2:0.25:0.75となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
 上記により得られた複合酸化物について、粉末X線回折装置(リガク製、商品名RINT2550V)により結晶構造を調べたところ、良好な結晶性を有する、リチウム過剰組成に特徴的な単斜晶系に属する層状岩塩型構造が主相であることが明らかとなった。この時の粉末X線回折図形を図16に示す。単斜晶系に帰属されるピークが20°から35°にかけて観測され、リチウム過剰組成であることが確認された。一方、副相として、リチウムマグネシウムマンガン酸化物に帰属されるピーク(図中*印)が観測され、この仕込み組成がマグネシウムの固溶限界であることが明らかになった。したがって、マグネシウム単独での置換の場合、置換量yは0.13未満であることが確認できた。
<実施例6>
(リチウム過剰層状岩塩型構造を有するリチウムマグネシウムニッケルチタンマンガン複合酸化物の合成)
 炭酸リチウム(LiCO、レアメタリック製、純度99.99%)、塩化マグネシウム(MgCl、高純度化学研究所製、純度99.9%以上)、酢酸ニッケル四水和物((CHCOO)Ni・4HO、和光純薬製、和光特級)、二酸化チタン(TiO、テイカ製AMT-100、含有量93%)、炭酸マンガン(MnCO、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Mg:Ni:Ti:Mn=1.8:0.02:0.125:0.125:0.75となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
 上記により得られた複合酸化物について、粉末X線回折装置(リガク製、商品名RINT2550V)により結晶構造を調べたところ、良好な結晶性を有する、単斜晶系に属する層状岩塩型構造の単一相であることが明らかとなった。この時の粉末X線回折図形を図17に示す。単斜晶系に帰属されるピークが20°から35°にかけて観測され、リチウム過剰組成であることが確認された。また、最小自乗法により、平均構造である六方晶系として格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。特に、チタンの置換に伴い、実施例3の格子定数と比べて、a軸、c軸長共に顕著に長くなっていることが確認された。
 a=2.8569ű0.0006Å
 c=14.264ű0.004Å
 V=100.40±0.01Å
 さらに、リートベルト法による結晶構造解析(プログラムRIETAN-FP使用)を行い、空間群C2/mを仮定して格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。
 a=4.9492ű0.0014Å
 b=8.5699ű0.0017Å
 c=5.0346ű0.0007Å
 β=109.203°±0.018°
 V=201.66±0.08Å
 また、走査型電子顕微鏡(JEOL製、商品名JCM-6000)により化学組成を調べたところ、粉体粒子が、マグネシウム、ニッケル、チタン、マンガンを含有していることを確認され、粉体試料全体の組成比として、Mg:Ni:Ti:Mn=0.02:0.125:0.125:0.75(m=0.125、n=0.125)であることが判明した。このときのSEM-EDSスペクトルを図18に示す。
(リチウム二次電池)
 このようにして得られたリチウムマグネシウムニッケルチタンマンガン複合酸化物を活物質とし、実施例1と同じ構成要素・構造のリチウム二次電池(コイン型セル)を作製し、その充放電特性を測定した。
 作製されたリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、リチウム基準の電位5.0V-2.0Vのカットオフ電位で定電流充放電試験を行った。その結果、サイクル毎に充放電の容量が増大していった。10サイクル目の充電容量255mAh/g、放電容量247mAh/gという高容量が得られることが判明した。また、10サイクル目の放電のエネルギー密度は828Wh/kgであることから、10サイクル目の平均放電電位は、放電のエネルギー密度(828Wh/kg)を放電容量(247mAh/g)で除算することで、(828÷247=3.35)Vであることが明らかとなった。10サイクル目の充放電曲線を図19に示す。さらに、14サイクル目の放電曲線では、容量の低下は認められず、また、放電エネルギー密度を放電容量で割り算した平均放電電位は3.33Vであり、放電電位の減少はわずかであることが確認された。また、実施例4のリチウムマグネシウムニッケルマンガン複合酸化物と比べて、チタンを置換することで、平均放電電位はやや低下するものの、同等の高容量が得られることが明らかとなった。以上から、本発明のリチウムマグネシウムニッケルチタンマンガン複合酸化物活物質が、高容量のリチウム二次電池材料として有用であることが明らかとなった。
<実施例7>
(リチウム過剰層状岩塩型構造を有するリチウムカルシウムマグネシウムニッケルマンガン複合酸化物(組成式:Li1.22Ca0.005Mg0.005Ni0.19Mn0.57)の合成)
 炭酸リチウム(LiCO、レアメタリック製、純度99.99%)、塩化カルシウム(CaCl、高純度化学研究所製、純度99.9%以上)、塩化マグネシウム(MgCl、高純度化学研究所製、純度99.9%以上)、酢酸ニッケル四水和物((CHCOO)Ni・4HO、和光純薬製、和光特級)、炭酸マンガン(MnCO、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Ca:Mg:Ni:Mn=1.8:0.01:0.01:0.25:0.75となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
 上記により得られた複合酸化物について、粉末X線回折装置(リガク製、商品名RINT2550V)により結晶構造を調べたところ、良好な結晶性を有する、単斜晶系に属する層状岩塩型構造の単一相であることが明らかとなった。この時の粉末X線回折図形を図20に示す。単斜晶系に帰属されるピークが20°から35°にかけて観測され、リチウム過剰組成であることが確認された。また、最小自乗法により、平均構造である六方晶系として格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。特に、カルシウムとマグネシウムの両方の置換に伴い、実施例1及び実施例3の格子定数と比べて、ほぼ同等であることが確認された。
 a=2.8544ű0.0002Å
 c=14.245ű0.001Å
 V=100.51±0.01Å
 さらに、リートベルト法による結晶構造解析(プログラムRIETAN-FP使用)を行い、空間群C2/mを仮定して格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。
 a=4.9457ű0.0010Å
 b=8.5639ű0.0012Å
 c=5.0292ű0.0004Å
 β=109.287°±0.012°
 V=201.06±0.05Å
 さらに、ICP分析(HITACHI製、商品名P-4010)により化学分析を行い、モル比は、Li:Ca:Mg:Ni:Mn=1.62:0.01:0.01:0.25:0.75であることが判明した。この値を、一般式(Li1+x-2y)(CoNiTiMn1-m-n1-x(式中、M、x、y、z、m及びnは、それぞれ、前記の意味を有する)で表記し直すと、x=0.24、y=0.01、z=0、m=0.25、n=0となることが確認された。また、るつぼ材由来のアルミニウム、ケイ素などは検出されなかった。
(リチウム二次電池)
 このようにして得られたリチウムカルシウムマグネシウムニッケルマンガン複合酸化物を活物質とし、実施例1と同じ構成要素・構造のリチウム二次電池(コイン型セル)を作製した。
 作製されたリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、リチウム基準の電位5.0V-2.0Vのカットオフ電位で定電流充放電試験を行った。その結果、サイクル毎に充放電の容量が増大していった。12サイクル目の充電容量292mAh/g、放電容量264mAh/gという高容量が得られることが判明した。また、12サイクル目の放電のエネルギー密度は914Wh/kgであることから、12サイクル目の平均放電電位は、放電のエネルギー密度(914Wh/kg)を放電容量(264mAh/g)で除算することで、(914÷264=3.46)Vであることが明らかとなった。12サイクル目の充放電曲線を図21に示す。さらに、16サイクル目の放電曲線では、容量の低下は認められず、また、放電エネルギー密度を放電容量で割り算した平均放電電位は3.44Vであり、放電電位の減少はわずかであることが確認された。また、実施例1のリチウムカルシウムニッケルマンガン複合酸化物、及び実施例4のリチウムマグネシウムニッケルマンガン複合酸化物と比べて、カルシウムとマグネシウムの両方を置換した場合も、高容量が得られることが明らかとなった。以上から、本発明のリチウムカルシウムマグネシウムニッケルマンガン複合酸化物活物質が、高容量のリチウム二次電池材料として有用であることが明らかとなった。
 また、同条件で作製したリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、リチウム基準の電位4.8-2.5Vのカットオフ電位で定電流充放電試験を行った。その結果、サイクル毎に充放電の容量が増大していき、28サイクル目で容量が最大となった。この充放電試験の1サイクル目の充電曲線を図22に示す。リチウム過剰層状岩塩型構造のリチウムニッケルマンガン複合酸化物、或いはリチウムニッケルコバルトマンガン酸化物に特徴的な約4.5Vでの電圧平坦部は認められず、単調に電位が増大していく充電曲線であることが確認でき、本発明のリチウムカルシウムニッケルマンガン複合酸化物活物質が、酸素脱離反応を起こず、酸素原子の配列を維持したままで高容量のリチウム二次電池材料として有用であることが明らかとなった。
 また、同条件で作製したリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、リチウム基準の電位4.6-2.5Vのカットオフ電位で定電流充放電試験を行った。その結果、サイクル毎に充放電の容量が増大していき、24サイクル目で容量が最大となった。この時の24サイクル目の充電曲線を図23に示す。24サイクル目で放電容量は、253mAh/gであり、その後の74サイクル目の放電容量が24サイクル目の放電容量に対して95%程度の容量維持率を示すことが確認された。また、実施例1のリチウムカルシウムニッケルマンガン複合酸化物、及び実施例4のリチウムマグネシウムニッケルマンガン複合酸化物と比べて、ほぼ同等の高容量が得られることが明らかとなった。このことから、本発明のリチウムカルシウムマグネシウムニッケルマンガン複合酸化物活物質が、高容量のリチウム二次電池材料として有用であることが明らかとなった。
<実施例8>
(リチウム過剰層状岩塩型構造を有するリチウムカルシウムマグネシウムニッケルマンガン複合酸化物の合成)
 炭酸リチウム(LiCO、レアメタリック製、純度99.99%)、塩化カルシウム(CaCl、高純度化学研究所製、純度99.9%以上)、塩化マグネシウム(MgCl、高純度化学研究所製、純度99.9%以上)、酢酸ニッケル四水和物((CHCOO)Ni・4HO、和光純薬製、和光特級)、炭酸マンガン(MnCO、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Ca:Mg:Ni:Mn=1.8:0.03:0.03:0.25:0.75となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
 上記により得られたリチウムカルシウムニッケルマンガン複合酸化物について、粉末X線回折装置(リガク製、商品名SmartLab)により結晶構造を調べたところ、良好な結晶性を有する、リチウム過剰組成に特徴的な単斜晶系に属する層状岩塩型構造が主相であることが明らかとなった。この時の粉末X線回折図形を図24に示す。単斜晶系に帰属されるピークが20°から35°にかけて観測され、リチウム過剰組成であることが確認された。一方、副相として、リチウムニッケルマンガン酸化物に帰属されるピーク(図中*印)が観測され、この仕込み組成がマグネシウムとカルシウムが1:1で両方固溶する場合の固溶限界であることが明らかになった。
<実施例9>
(リチウム過剰層状岩塩型構造を有するリチウムカルシウムマグネシウムニッケルチタンマンガン複合酸化物の合成)
 炭酸リチウム(LiCO、レアメタリック製、純度99.99%)、塩化カルシウム(CaCl、高純度化学研究所製、純度99.9%以上)、塩化マグネシウム(MgCl、高純度化学研究所製、純度99.9%以上)、酢酸ニッケル四水和物((CHCOO)Ni・4HO、和光純薬製、和光特級)、二酸化チタン(TiO、テイカ製AMT-100、含有量93%)、炭酸マンガン(MnCO、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Ca:Mg:Ni:Ti:Mn=1.8:0.01:0.01:0.125:0.125:0.75となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
 上記により得られた複合酸化物について、粉末X線回折装置(リガク製、商品名RINT2550V)により結晶構造を調べたところ、良好な結晶性を有する、単斜晶系に属する層状岩塩型構造の単一相であることが明らかとなった。この時の粉末X線回折図形を図25に示す。単斜晶系に帰属されるピークが20°から35°にかけて観測され、リチウム過剰組成であることが確認された。また、最小自乗法により、平均構造である六方晶系として格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。特に、チタンの置換に伴い、実施例5の格子定数と比べて、a軸、c軸長共に顕著に長くなっていることが確認され、またカルシウムとマグネシウムの両方の置換で、実施例2及び実施例4に近い値であった。
 a=2.8560ű0.0004Å
 c=14.264ű0.004Å
 V=100.76±0.02Å
 さらに、リートベルト法による結晶構造解析(プログラムRIETAN-FP使用)を行い、空間群C2/mを仮定して格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。
 a=4.9508ű0.0018Å
 b=8.5700ű0.0019Å
 c=5.0360ű0.0008Å
 β=109.24°±0.02°
 V=201.73±0.09Å
 そして、以上のような確認からみて、実施例6の複合酸化物についても実施例2や実施例4と同様の、高容量が可能で、かつ、サイクルの進行に伴う放電曲線の変化が小さいという性能が期待できると言える。
<実施例10>
(リチウム過剰層状岩塩型構造を有するリチウムカルシウムコバルトニッケルマンガン複合酸化物(組成式:Li1.23Ca0.01Co0.14Ni0.13Mn0.49)の合成)
 炭酸リチウム(LiCO、レアメタリック製、純度99.99%)、塩化カルシウム(CaCl、高純度化学研究所製、純度99.9%以上)、酢酸コバルト四水和物((CHCOO)Co・4HO、和光純薬製、和光特級)、酢酸ニッケル四水和物((CHCOO)Ni・4HO、和光純薬製、和光特級)、炭酸マンガン(MnCO、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Ca:Mg:Ni:Mn=1.8:0.02:0.17:0.17:0.66となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
 上記により得られた複合酸化物について、粉末X線回折装置(リガク製、商品名SmartLab)により結晶構造を調べたところ、良好な結晶性を有する、単斜晶系に属する層状岩塩型構造の単一相であることが明らかとなった。この時の粉末X線回折図形を図26に示す。単斜晶系に帰属されるピークが20°から35°にかけて観測され、リチウム過剰組成であることが確認された。また、リートベルト法による結晶構造解析(プログラムRIETAN-FP使用)を行い、空間群C2/mを仮定して格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。
 a=4.9328ű0.0002Å
 b=8.5402ű0.0003Å
 c=5.0233ű0.0001Å
 β=109.260°±0.002°
 V=199.775±0.012Å
 さらに、ICP分析(HITACHI製、商品名P-4010)により化学分析を行い、モル比は、Li:Ca:Co:Ni:Mn=1.63:0.02:0.18:0.17:0.65であることが判明した。この値を、一般式(Li1+x-2y)(CoNiTiMn1-m-n1-x(式中、M、x、y、z、m及びnは、それぞれ、前記の意味を有する)で表記し直すと、x=0.25、y=0.01、z=0.18、m=0.17、n=0となることが確認された。また、るつぼ材由来のアルミニウム、ケイ素などは検出されなかった。
(リチウム二次電池)
 このようにして得られたリチウムカルシウムコバルトニッケルマンガン複合酸化物を活物質とし、実施例1と同じ構成要素・構造のリチウム二次電池(コイン型セル)を作製した。
 作製されたリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、リチウム基準の電位4.8V-2.0Vのカットオフ電位で定電流充放電試験を行った。その結果、サイクル毎に充放電の容量が増大していった。7サイクル目の充電容量249mAh/g、放電容量242mAh/gという高容量が得られることが判明した。また、7サイクル目の放電のエネルギー密度は840Wh/kgであることから、10サイクル目の平均放電電位は、放電のエネルギー密度(840Wh/kg)を放電容量(242mAh/g)で除算することで、(840÷242=3.47)Vであることが明らかとなった。7サイクル目の充放電曲線を図27に示す。さらに、11サイクル目の放電曲線では、容量の低下は認められず、また、放電エネルギー密度を放電容量で割り算した平均放電電位は3.44Vであり、放電電位の減少はわずかであることが確認された。以上から、本発明のリチウムカルシウムコバルトニッケルマンガン複合酸化物活物質が、高容量のリチウム二次電池材料として有用であることが明らかとなった。
<実施例11>
(リチウム過剰層状岩塩型構造を有するリチウムマグネシウムコバルトニッケルマンガン複合酸化物(組成式:Li1.22Mg0.01Co0.14Ni0.12Mn0.50)の合成)
 炭酸リチウム(LiCO、レアメタリック製、純度99.99%)、塩化マグネシウム(MgCl、高純度化学研究所製、純度99.9%以上)、酢酸コバルト四水和物((CHCOO)Co・4HO、和光純薬製、和光特級)、酢酸ニッケル四水和物((CHCOO)Ni・4HO、和光純薬製、和光特級)、炭酸マンガン(MnCO、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Mg:Co:Ni:Mn=1.8:0.02:0.17:0.17:0.66となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
 上記により得られた複合酸化物について、粉末X線回折装置(リガク製、商品名SmartLab)により結晶構造を調べたところ、良好な結晶性を有する、単斜晶系に属する層状岩塩型構造の単一相であることが明らかとなった。この時の粉末X線回折図形を図28に示す。単斜晶系に帰属されるピークが20°から35°にかけて観測され、リチウム過剰組成であることが確認された。また、リートベルト法による結晶構造解析(プログラムRIETAN-FP使用)を行い、空間群C2/mを仮定して格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。また、実施例10のカルシウム置換体の格子体積と比べると、マグネシウムイオンがカルシウムイオンよりも小さいことを反映して、やや格子体積が小さいことが確認され、マグネシウムが構造中に置換されていることが確認できた。
 a=4.9304ű0.0002Å
 b=8.5362ű0.0003Å
 c=5.0210ű0.0001Å
 β=109.270°±0.002°
 V=199.478±0.012Å
 さらに、ICP分析(HITACHI製、商品名P-4010)により化学分析を行い、モル比は、Li:Mg:Co:Ni:Mn=1.62:0.02:0.18:0.16:0.66であることが判明した。この値を、一般式(Li1+x-2y)(CoNiTiMn1-m-n1-x(式中、M、x、y、z、m及びnは、それぞれ、前記の意味を有する)で表記し直すと、x=0.24、y=0.01、z=0.18、m=0.16、n=0となることが確認された。また、るつぼ材由来のアルミニウム、ケイ素などは検出されなかった。
(リチウム二次電池)
 このようにして得られたリチウムマグネシウムコバルトニッケルマンガン複合酸化物を活物質とし、実施例1と同じ構成要素・構造のリチウム二次電池(コイン型セル)を作製した。
 作製されたリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、リチウム基準の電位4.8V-2.0Vのカットオフ電位で定電流充放電試験を行った。その結果、サイクル毎に充放電の容量が増大していった。15サイクル目の充電容量237mAh/g、放電容量229mAh/gという高容量が得られることが判明した。また、15サイクル目の放電のエネルギー密度は783Wh/kgであることから、15サイクル目の平均放電電位は、放電のエネルギー密度(783Wh/kg)を放電容量(229mAh/g)で除算することで、(783÷229=3.42)Vであることが明らかとなった。15サイクル目の充放電曲線を図29に示す。さらに、19サイクル目の放電曲線では、容量の低下は認められず、また、放電エネルギー密度を放電容量で割り算した平均放電電位は3.39Vであり、放電電位の減少はわずかであることが確認された。以上から、本発明のリチウムマグネシウムコバルトニッケルマンガン複合酸化物活物質が、高容量のリチウム二次電池材料として有用であることが明らかとなった。
<実施例12>
(リチウム過剰層状岩塩型構造を有するリチウムカルシウムマグネシウムコバルトニッケルマンガン複合酸化物(組成式:Li1.22Ca0.005Mg0.005Co0.14Ni0.13Mn0.49)の合成)
 炭酸リチウム(LiCO、レアメタリック製、純度99.99%)、塩化カルシウム(CaCl、高純度化学研究所製、純度99.9%以上)、塩化マグネシウム(MgCl、高純度化学研究所製、純度99.9%以上)、酢酸コバルト四水和物((CHCOO)Co・4HO、和光純薬製、和光特級)、酢酸ニッケル四水和物((CHCOO)Ni・4HO、和光純薬製、和光特級)、炭酸マンガン(MnCO、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Ca:Mg:Co:Ni:Mn=1.8:0.01:0.01:0.17:0.17:0.66となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
 上記により得られた複合酸化物について、粉末X線回折装置(リガク製、商品名SmartLab)により結晶構造を調べたところ、良好な結晶性を有する、単斜晶系に属する層状岩塩型構造の単一相であることが明らかとなった。この時の粉末X線回折図形を図30に示す。単斜晶系に帰属されるピークが20°から35°にかけて観測され、リチウム過剰組成であることが確認された。また、リートベルト法による結晶構造解析(プログラムRIETAN-FP使用)を行い、空間群C2/mを仮定して格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。実施例10及び実施例11のカルシウム置換体、及びマグネシウム置換体の格子体積と比較すると、両者の間の大きさであることが確認され、カルシウムとマグネシウムの両方が置換した効果であることが確認された。
 a=4.9308ű0.0002Å
 b=8.5361ű0.0003Å
 c=5.0203ű0.0001Å
 β=109.258°±0.002°
 V=199.478±0.012Å
 さらに、ICP分析(HITACHI製、商品名P-4010)により化学分析を行い、モル比は、Li:Ca:Mg:Co:Ni:Mn=1.62:0.01:0.01:0.18:0.17:0.65であることが判明した。この値を、一般式(Li1+x-2y)(CoNiTiMn1-m-n1-x(式中、M、x、y、z、m及びnは、それぞれ、前記の意味を有する)で表記し直すと、x=0.24、y=0.01、z=0.18、m=0.17、n=0となることが確認された。また、るつぼ材由来のアルミニウム、ケイ素などは検出されなかった。
(リチウム二次電池)
 このようにして得られたリチウムカルシウムマグネシウムコバルトニッケルマンガン複合酸化物を活物質とし、実施例1と同じ構成要素・構造のリチウム二次電池(コイン型セル)を作製した。
 作製されたリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、リチウム基準の電位4.8V-2.0Vのカットオフ電位で定電流充放電試験を行った。その結果、サイクル毎に充放電の容量が増大していった。7サイクル目の充電容量252mAh/g、放電容量244mAh/gという高容量が得られることが判明した。また、7サイクル目の放電のエネルギー密度は844Wh/kgであることから、10サイクル目の平均放電電位は、放電のエネルギー密度(844Wh/kg)を放電容量(244mAh/g)で除算することで、(844÷244=3.46)Vであることが明らかとなった。7サイクル目の充放電曲線を図31に示す。さらに、11サイクル目の放電曲線では、容量の低下は認められず、また、放電エネルギー密度を放電容量で割り算した平均放電電位は3.44Vであり、放電電位の減少はわずかであることが確認された。また、実施例10のリチウムカルシウムコバルトニッケルマンガン複合酸化物、及び実施例11のリチウムマグネシウムコバルトニッケルマンガン複合酸化物と比べて、カルシウムとマグネシウムの両方を置換した場合が、最も高容量かつ高エネルギー密度が得られることが明らかとなった。以上から、本発明のリチウムカルシウムマグネシウムコバルトニッケルマンガン複合酸化物活物質が、高容量のリチウム二次電池材料として有用であることが明らかとなった。
<比較例1>
(リチウム過剰層状岩塩型構造を有するリチウムニッケルマンガン複合酸化物の合成)
 炭酸リチウム(LiCO、レアメタリック製、純度99.99%)、酢酸ニッケル四水和物((CHCOO)Ni・4HO、和光純薬製、和光特級)、炭酸マンガン(MnCO、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Ni:Mn=2.0:0.25:0.75となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
 上記により得られた複合酸化物について、粉末X線回折装置(リガク製、商品名RINT2550V)により結晶構造を調べたところ、良好な結晶性を有する、単斜晶系に属する層状岩塩型構造が主相であることが明らかとなった。この時の粉末X線回折図形を図32に示す。単斜晶系に帰属されるピークが20°から35°にかけて観測され、リチウム過剰組成であることが確認された。また、最小自乗法により、平均構造である六方晶系として格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。この値は、公知のリチウム過剰層状岩塩型構造を有するリチウムニッケルマンガン複合酸化物の報告と良く一致していた。一方、実施例1のカルシウム置換体、実施例4のマグネシウム置換体の格子定数と比べると、a軸、c軸長共に最も短く、無置換体のものは、格子体積が小さいことが確認できた。
 a=2.8516ű0.0004Å
 c=14.238ű0.003Å
 V=100.27±0.02Å
 さらに、リートベルト法による結晶構造解析(プログラムRIETAN-FP使用)を行い、空間群C2/mを仮定して格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。
 a=4.9351ű0.0008Å
 b=8.5454ű0.0004Å
 c=5.0218ű0.0002Å
 β=109.233°±0.005°
 V=199.96±0.02Å
 また、走査型電子顕微鏡(JEOL製、商品名JCM-6000)により化学組成を調べたところ、粉体粒子が、ニッケル、マンガンを含有していることを確認され、粉体試料全体の組成比として、Ni:Mn=0.25:0.75(m=0.25)であることが判明した。このときのSEM-EDSスペクトルを図33に示す。
 さらに、ICP分析(HITACHI製、商品名P-4010)により化学分析を行い、モル比は、Li:Ni:Mn=1.75:0.25:0.75であることが判明した。この値を、一般式(Li1+x-2y)(CoNiTiMn1-m-n1-x(式中、M、x、y、z、m及びnは、それぞれ、前記の意味を有する)で表記し直すと、x=0.27、y=0、z=0、m=0.25、n=0となることが確認された。また、るつぼ材由来のアルミニウム、ケイ素などは検出されなかった。
(リチウム二次電池)
 このようにして得られたリチウムニッケルマンガン複合酸化物を活物質とし、実施例1と同じ構成要素・構造のリチウム二次電池(コイン型セル)を作製し、その充放電特性を測定した。
 作製されたリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、リチウム基準の電位5.0V-2.0Vのカットオフ電位で定電流充放電試験を行った。その結果、10サイクル目の充電容量253mAh/g、放電容量243mAh/gという高容量が得られることが判明した。また、10サイクル目の放電のエネルギー密度は840Wh/kgであることから、10サイクル目の平均放電電位は、放電のエネルギー密度(840Wh/kg)を放電容量(243mAh/g)で除算することで、(840÷243=3.46)Vであることが明らかとなった。10サイクル目の充放電曲線を図34に示す。一方、14サイクル目の放電曲線では、容量の低下は認められないものの、放電エネルギーを放電容量で割り算した平均放電電位は3.33Vであり、放電電位の減少が顕著であることが確認された。また、実施例1、実施例3のカルシウム、マグネシウムを置換したリチウムニッケルマンガン複合酸化物と比べて、容量も低く、アルカリ土類金属元素を置換していない複合酸化物系では実用上問題があることが確認された。
 また、同条件で作製したリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、リチウム基準の電位4.6-2.5Vのカットオフ電位で定電流充放電試験を行った。その結果、サイクル毎に充放電の容量が増大していき、40サイクル目で容量が最大となった。この時の40サイクル目の充電曲線を図35に示す。40サイクル目で放電容量は、239mAh/gであり、その後の82サイクル目の放電容量が40サイクル目の放電容量に対して94%程度の容量維持率を示すことが確認された。このことから、実施例1、実施例4、或いは実施例7に示す本発明の活物質が、高容量かつ容量維持率が高いリチウム二次電池材料として有用であることが明らかとなった。
<比較例2>
(リチウム過剰層状岩塩型構造を有するリチウムニッケルマンガン複合酸化物の合成)
 炭酸リチウム(LiCO、レアメタリック製、純度99.99%)、酢酸ニッケル四水和物((CHCOO)Ni・4HO、和光純薬製、和光特級)、炭酸マンガン(MnCO、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Ni:Mn=1.8:0.25:0.75となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
 上記により得られた複合酸化物について、粉末X線回折装置(リガク製、商品名SmartLab)により結晶構造を調べたところ、良好な結晶性を有する、単斜晶系に属する層状岩塩型構造が主相であることが明らかとなった。この時の粉末X線回折図形を図36に示す。単斜晶系に帰属されるピークが20°から35°にかけて観測され、リチウム過剰組成であることが確認された。
 また、走査型電子顕微鏡(JEOL製、商品名JCM-6000)により化学組成を調べたところ、粉体粒子が、ニッケル、マンガンを含有していることを確認され、また、粉体形状は、高い結晶性を有する、1-2ミクロン程度の一次粒子から形成されていることが確認された。
(リチウム二次電池)
 このようにして得られたリチウムニッケルマンガン複合酸化物を活物質とし、実施例1と同じ構成要素・構造のリチウム二次電池(コイン型セル)を作製し、その充放電特性を測定した。
 作製されたリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、リチウム基準の電位4.8-2.0Vのカットオフ電位で定電流充放電試験を行った。その結果、サイクル毎に充放電の容量が増大していき、13サイクル目で容量が最大となった。この時の13サイクル目の充電曲線を図37に示す。13サイクル目で放電容量は、241mAh/gであることが確認された。このことから、実施例1、実施例4、或いは実施例7に示す本発明の活物質と比較すると、仕込みのリチウム量が同じ1.8であっても、本発明の活物質の方が高容量であり、リチウム二次電池材料として有用であることが明らかとなった。
 
<比較例3>
(リチウム過剰層状岩塩型構造を有するリチウムコバルトニッケルマンガン複合酸化物の合成)
 炭酸リチウム(LiCO、レアメタリック製、純度99.99%)、酢酸コバルト四水和物((CHCOO)Ni・4HO、和光純薬製、和光特級)、酢酸ニッケル四水和物((CHCOO)Ni・4HO、和光純薬製、和光特級)、炭酸マンガン(MnCO、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Co:Ni:Mn=2.0:0.17:0.17:0.66となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
 上記により得られた複合酸化物について、粉末X線回折装置(リガク製、商品名SmartLab)により結晶構造を調べたところ、良好な結晶性を有する、単斜晶系に属する層状岩塩型構造が主相であることが明らかとなった。この時の粉末X線回折図形を図38に示す。単斜晶系に帰属されるピークが20°から35°にかけて観測され、リチウム過剰組成であることが確認された。また、リートベルト法による結晶構造解析(プログラムRIETAN-FP使用)を行い、空間群C2/mを仮定して格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。また、実施例10、実施例11、実施例12のカルシウムやマグネシウムを置換した場合の格子体積と比べると、最も小さく、本発明の化合物が、構造中にカルシウム、マグネシウムが置換されていることが確認された。
 a=4.9262ű0.0002Å
 b=8.5276ű0.0002Å
 c=5.0182ű0.0001Å
 β=109.262°±0.002°
 V=199.004±0.010Å
 また、走査型電子顕微鏡(JEOL製、商品名JCM-6000)により化学組成を調べたところ、粉体粒子が、ニッケル、マンガンを含有していることを確認され、粉体試料全体の組成比として、Co:Ni:Mn=0.17:0.17:0.66(m=0.17)であることが判明した。
 さらに、ICP分析(HITACHI製、商品名P-4010)により化学分析を行い、モル比は、Li:Co:Ni:Mn=1.75:0.18:0.17:0.65であることが判明した。この値を、一般式(Li1+x-2y)(CoNiTiMn1-m-n1-x(式中、M、x、y、z、m及びnは、それぞれ、前記の意味を有する)で表記し直すと、x=0.27、y=0、z=0.18、m=0.17、n=0となることが確認された。また、るつぼ材由来のアルミニウム、ケイ素などは検出されなかった。
(リチウム二次電池)
 このようにして得られたリチウムコバルトニッケルマンガン複合酸化物を活物質とし、実施例1と同じ構成要素・構造のリチウム二次電池(コイン型セル)を作製し、その充放電特性を測定した。
 作製されたリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、リチウム基準の電位4.8-2.0Vのカットオフ電位で定電流充放電試験を行った。その結果、サイクル毎に充放電の容量が増大していき、16サイクル目で容量が最大となった。この時の16サイクル目の充電曲線を図39に示す。16サイクル目で放電容量は、224mAh/gであり、その後の24サイクルでは容量維持率98%程度を示すことが確認された。このことから、実施例10、実施例11、或いは実施例12に示す本発明の活物質が、高容量なリチウム二次電池材料として有用であることが明らかとなった。
<比較例4>
(リチウム過剰層状岩塩型構造を有するリチウムコバルトニッケルマンガン複合酸化物の合成)
 炭酸リチウム(LiCO、レアメタリック製、純度99.99%)、酢酸コバルト四水和物((CHCOO)Ni・4HO、和光純薬製、和光特級)、酢酸ニッケル四水和物((CHCOO)Ni・4HO、和光純薬製、和光特級)、炭酸マンガン(MnCO、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Co:Ni:Mn=1.8:0.17:0.17:0.66となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
 上記により得られた複合酸化物について、粉末X線回折装置(リガク製、商品名SmartLab)により結晶構造を調べたところ、良好な結晶性を有する、単斜晶系に属する層状岩塩型構造が主相であることが明らかとなった。この時の粉末X線回折図形を図40に示す。単斜晶系に帰属されるピークが20°から35°にかけて観測され、リチウム過剰組成であることが確認された。
 また、走査型電子顕微鏡(JEOL製、商品名JCM-6000)により化学組成を調べたところ、粉体粒子が、ニッケル、コバルト、マンガンを含有していることを確認され、また、粉体形状は、高い結晶性を有する、1-2ミクロン程度の一次粒子から形成されていることが確認された。
(リチウム二次電池)
 このようにして得られたリチウムコバルトニッケルマンガン複合酸化物を活物質とし、実施例1と同じ構成要素・構造のリチウム二次電池(コイン型セル)を作製し、その充放電特性を測定した。
 作製されたリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、リチウム基準の電位4.8-2.0Vのカットオフ電位で定電流充放電試験を行った。この時の6サイクル目の充電曲線を図41に示す。放電容量は、238mAh/gであり、本発明のカルシウム及び/又はマグネシウム置換体と比べると容量が明らかに低下していた。この結果から、実施例10、実施例11、実施例12と仕込みのリチウム量が同じ場合であっても、カルシウム又はマグネシウムが置換していないと容量が低下することを示しており、本発明のカルシウム及び/又はマグネシウム置換による効果が確認できた。
<比較例5>
(リチウム過剰層状岩塩型構造を有するリチウムニッケルチタンマンガン複合酸化物の合成)
 炭酸リチウム(LiCO、レアメタリック製、純度99.99%)、酢酸ニッケル四水和物((CHCOO)Ni・4HO、和光純薬製、和光特級)、二酸化チタン(TiO、テイカ製AMT-100、含有量93%)、炭酸マンガン(MnCO、高純度化学研究所製、純度99.9%)の各粉末を、原子比でLi:Ni:Ti:Mn=2.0:0.125:0.125:0.75となるように秤量した。これらを乳鉢中で、エタノールを媒体として湿式混合したのち、ニッカトー製、グレードSSA-S、型番C3のアルミナるつぼに充填し、蓋をしたのち、マッフル炉(ヤマト科学製、FP310)を用いて、はじめに空気中300℃で3時間加熱した。その後、電気炉中で自然放冷し、その後、エタノールを用いた湿式粉砕を行い、さらに600℃12時間、800℃12時間、900℃12時間、再度900℃12時間加熱を行い、試料を得た。
 上記により得られた複合酸化物について、粉末X線回折装置(リガク製、商品名RINT2550V)により結晶構造を調べたところ、良好な結晶性を有する、単斜晶系に属する層状岩塩型構造が主相であることが明らかとなった。この時の粉末X線回折図形を図42に示す。単斜晶系に帰属されるピークが20°から35°にかけて観測され、リチウム過剰組成であることが確認された。また、最小自乗法により、平均構造である六方晶系として格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。この値は、比較例1のリチウムニッケルマンガン複合酸化物の値と比べ、a軸、c軸長共に顕著に長く、一方、実施例2のカルシウム置換体、実施例4のマグネシウム置換体の格子定数よりも、さらに長いことが明らかとなった。このことから、実施例2、実施例4のリチウム層へのカルシウム、マグネシウムの置換が、格子定数の顕著な差異により確認することができた。
 a=2.8596ű0.0002Å
 c=14.273ű0.001Å
 V=101.08±0.01Å
 さらに、リートベルト法による結晶構造解析(プログラムRIETAN-FP使用)を行い、空間群C2/mを仮定して格子定数の精密化を行ったところ、以下の値となり、格子定数からもリチウム過剰組成を有する層状岩塩型構造であることが確認された。
 a=4.9511ű0.0006Å
 b=8.5667ű0.0006Å
 c=5.0366ű0.0003Å
 β=109.182°±0.008°
 V=201.77±0.03Å
 また、走査型電子顕微鏡(JEOL製、商品名JCM-6000)により化学組成を調べたところ、粉体粒子が、ニッケル、チタン、マンガンを含有していることを確認され、粉体試料全体の組成比として、Ni:Ti:Mn=0.125:0.125:0.75(m=0.125、n=0.125)であることが判明した。このときのSEM-EDSスペクトルを図43に示す。また、粉末X線回折データを用いて、リートベルト法(プログラムRIETAN-FP使用)による結晶構造解析を行った結果、化学式Li1+x(NiTiMn1-m-n1-xにおけるリチウム量x=0.30であることが確認された。
(リチウム二次電池)
 このようにして得られたリチウムニッケルチタンマンガン複合酸化物を活物質とし、実施例1と同じ構成要素・構造のリチウム二次電池(コイン型セル)を作製し、その充放電特性を測定した。
 作製されたリチウム二次電池について、25℃の温度条件下で、電流密度10mA/g、リチウム基準の電位5.0V-2.0Vのカットオフ電位で定電流充放電試験を行った。その結果、10サイクル目の充電容量261mAh/g、放電容量256mAh/gという高容量が得られることが判明した。また、10サイクル目の放電のエネルギー密度は855Wh/kgであることから、10サイクル目の平均放電電位は、放電のエネルギー密度(855Wh/kg)を放電容量(256mAh/g)で除算することで、(855÷256=3.34)Vであることが明らかとなった。10サイクル目の充放電曲線を図44に示す。一方、14サイクル目の放電曲線では、容量の低下は認められないものの、放電エネルギー密度を放電容量で割り算した平均放電電位は3.21Vであり、放電電位の減少が顕著であることが確認された。以上から、アルカリ土類金属元素を置換していない複合酸化物系ではサイクルに伴って遷移金属原子の配列が維持できず、次第にスピネル化が進行しており、実用上問題があることが確認された。
 本発明の方法によれば、リチウム二次電池の正極材料活物質として用いると、高容量が可能で、かつ、サイクルの進行に伴う放電曲線の変化が小さいか、又は、それらの性能が期待できるリチウム過剰組成の層状岩塩型構造を有する新規な複合酸化物、並びに前記複合酸化物を含む正極材料及びリチウム二次電池を提供することができる。

Claims (13)

  1.  リチウムと、カルシウム及びマグネシウムの少なくとも一方と、ニッケルと、マンガンとを含有し、リチウム過剰層状岩塩型構造を備える複合酸化物。
  2.  前記複合酸化物は、電気化学的に4.6V以上5.0V以下の電位でリチウムを脱離したとき、酸素原子の配列が維持される請求項1に記載の複合酸化物。
  3.  前記複合酸化物は、単斜晶系に属する層状岩塩型構造を備える請求項1又は2に記載の複合酸化物。
  4.  前記複合酸化物は、化学式(Li1+x-2y)(CoNiTiMn1-m-n1-x(式中、Mは、Ca及び/又はMgであり、x、y、z、m及びnは、それぞれ、0<x≦0.33、0<y<0.13、0≦z<0.2、0<m<0.5、0≦n≦0.25を満たす数である)で表される請求項1~3のいずれか1項に記載の複合酸化物。
  5.  前記複合酸化物は、化学式(Li1+x-2y)(CoNiTiMn1-m-n1-x(式中、Mは、Ca及び/又はMgであり、x、y、z、m及びnは、それぞれ、0.20≦x≦0.28、0<y<0.03、0≦z<0.2、0.1<m<0.3、0≦n≦0.2を満たす数である)で表される請求項1~3のいずれか1項に記載の複合酸化物。
  6.  前記複合酸化物は、化学式(Li1+x-2y)(CoNiMn1-m1-x(式中、Mは、Ca及び/又はMgであり、x、y、z及びmは、それぞれ、0.20≦x≦0.28、0<y<0.03、0≦z<0.2、0.1<m<0.2を満たす数である)で表される請求項1~3のいずれか1項に記載の複合酸化物。
  7.  前記複合酸化物は、化学式(Li1+x-2y)(NiMn1-m1-x(式中、Mは、Ca及び/又はMgであり、x、y及びmは、それぞれ、0.20≦x≦0.28、0<y<0.03、0.2<m<0.3を満たす数である)で表される請求項1~3のいずれか1項に記載の複合酸化物。
  8.  前記複合酸化物は、化学式(Li1+x-2y)(NiTiMn1-m-n1-x(Mは、Ca及び/又はMgであり、x、y、m及びnは、それぞれ、0.20≦x≦0.28、0<y<0.03、0.1<m<0.3、0≦n≦0.2を満たす数である)で表される請求項1~3のいずれか1項に記載の複合酸化物。
  9.  請求項1~8のいずれか1項に記載の複合酸化物を備えるリチウム二次電池用の正極材料活物質。
  10.  前記正極材料活物質は、初回充電反応時の4.4V以上4.7V以下の電圧範囲で、酸素原子の配列を維持し、電位が単調に上昇する充電曲線を示す請求項9に記載のリチウム二次電池用の正極材料活物質。
  11.  前記正極材料活物質は、高容量であり、かつ充放電サイクルに伴って遷移金属原子の配列を維持する請求項9に記載のリチウム二次電池用の正極材料活物質。
  12.  正極、負極、セパレータ及び電解質を備えるリチウム二次電池であって、前記正極は、請求項9~11のいずれか1項に記載のリチウム二次電池用の正極材料活物質を備えるリチウム二次電池。
  13.  前記リチウム二次電池は、その充放電容量が、前記正極材料活物質の複合酸化物の単位重量あたり250mAh/g以上300mAh/g以下である請求項12に記載のリチウム二次電池。
PCT/JP2016/065059 2015-05-22 2016-05-20 正極材料、並びにそれを正極に使用したリチウム二次電池 WO2016190251A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/574,222 US10505189B2 (en) 2015-05-22 2016-05-20 Cathode material and lithium secondary battery using same as cathode
CN201680014545.5A CN107428559B (zh) 2015-05-22 2016-05-20 正极材料、以及将其用于正极的锂二次电池
JP2017520686A JP6541115B2 (ja) 2015-05-22 2016-05-20 正極材料、並びにそれを正極に使用したリチウム二次電池
KR1020177025209A KR102561910B1 (ko) 2015-05-22 2016-05-20 정극재료, 이를 정극에 사용한 리튬 이차 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015104962 2015-05-22
JP2015-104962 2015-05-22

Publications (1)

Publication Number Publication Date
WO2016190251A1 true WO2016190251A1 (ja) 2016-12-01

Family

ID=57393505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065059 WO2016190251A1 (ja) 2015-05-22 2016-05-20 正極材料、並びにそれを正極に使用したリチウム二次電池

Country Status (6)

Country Link
US (1) US10505189B2 (ja)
JP (1) JP6541115B2 (ja)
KR (1) KR102561910B1 (ja)
CN (1) CN107428559B (ja)
TW (1) TWI597885B (ja)
WO (1) WO2016190251A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018160323A (ja) * 2017-03-22 2018-10-11 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその前駆体、及びそれらの製造方法
CN109273688A (zh) * 2018-09-17 2019-01-25 国联汽车动力电池研究院有限责任公司 一种表面富岩盐相的高镍正极材料及其制备方法和应用
EP3597603A4 (en) * 2017-03-14 2021-07-07 Mitsui Mining & Smelting Co., Ltd. COMPOSITE OXIDE CONTAINING LITHIUM NICKEL MANGANESE SPINEL TYPE
WO2022038454A1 (ja) * 2020-08-20 2022-02-24 株式会社半導体エネルギー研究所 正極活物質の作製方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6968844B2 (ja) * 2018-03-15 2021-11-17 Basf戸田バッテリーマテリアルズ合同会社 非水電解質二次電池用の正極活物質粒子及びその製造方法、並びに非水電解質二次電池
KR102288293B1 (ko) * 2018-06-20 2021-08-10 주식회사 엘지화학 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지
JP7365565B2 (ja) * 2020-03-18 2023-10-20 トヨタ自動車株式会社 正極活物質および該正極活物質を備える二次電池
CN111422924B (zh) * 2020-03-31 2023-03-21 蜂巢能源科技有限公司 钙掺杂富锂碳酸盐前驱体及其制备方法和应用
CN117597796A (zh) * 2021-07-02 2024-02-23 巴斯夫欧洲公司 颗粒材料、其制备方法和用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007516583A (ja) * 2003-12-23 2007-06-21 トロノックス エルエルシー リチウム充電式バッテリ用高電圧薄層カソード材料及びその製法
CN103441238A (zh) * 2013-08-27 2013-12-11 上海电力学院 一种掺杂Mg的富锂正极材料及其制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5024359B1 (ja) 1965-08-19 1975-08-14
US5631105A (en) * 1995-05-26 1997-05-20 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte lithium secondary battery
JP2000123834A (ja) * 1998-10-09 2000-04-28 Gs Melcotec Kk 非水電解液二次電池
JP3928836B2 (ja) 1999-12-10 2007-06-13 脇原 將孝 リチウム二次電池用正極材料およびリチウム二次電池
JP4404564B2 (ja) 2003-03-25 2010-01-27 三洋電機株式会社 非水電解質二次電池、正極活物質
JP5173145B2 (ja) * 2006-02-08 2013-03-27 三洋電機株式会社 非水電解質二次電池
JP2007257885A (ja) 2006-03-20 2007-10-04 Nissan Motor Co Ltd 非水電解質リチウムイオン電池用正極材料およびこれを用いた電池
US8465873B2 (en) * 2008-12-11 2013-06-18 Envia Systems, Inc. Positive electrode materials for high discharge capacity lithium ion batteries
CN102804459B (zh) 2010-03-19 2016-01-13 丰田自动车株式会社 锂二次电池和该锂二次电池用正极活性物质
JP5152246B2 (ja) * 2010-04-23 2013-02-27 株式会社豊田自動織機 リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
JP2012142155A (ja) * 2010-12-28 2012-07-26 Sony Corp リチウム二次電池、正極活物質、正極、電動工具、電動車両および電力貯蔵システム
JP5880928B2 (ja) 2011-03-14 2016-03-09 国立研究開発法人産業技術総合研究所 リチウムマンガンチタンニッケル複合酸化物及びその製造方法、並びにそれを部材として使用したリチウム二次電池
JP5958926B2 (ja) 2011-11-08 2016-08-02 国立研究開発法人産業技術総合研究所 リチウムマンガン系複合酸化物およびその製造方法
KR101550956B1 (ko) * 2012-07-31 2015-09-18 주식회사 엘지화학 금속 도핑된 양극 활물질
CN103700850B (zh) 2012-09-27 2016-01-20 清华大学 锂离子电池正极复合材料
EP2772968B1 (en) 2013-02-28 2016-11-30 Samsung SDI Co., Ltd. Composite positive active material, method of preparing the same, and positive electrode and lithium battery containing the material
CN103259016B (zh) 2013-05-10 2015-06-03 东南大学 锂位掺杂的锂离子电池正极材料的制备方法
CN104091919B (zh) 2014-07-29 2016-05-18 中国科学院福建物质结构研究所 一种锂离子电池正极材料及其制备方法
CN106299328B (zh) 2015-05-14 2019-11-08 中国科学院物理研究所 对富锂层状氧化物正极材料的掺杂方法、材料和制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007516583A (ja) * 2003-12-23 2007-06-21 トロノックス エルエルシー リチウム充電式バッテリ用高電圧薄層カソード材料及びその製法
CN103441238A (zh) * 2013-08-27 2013-12-11 上海电力学院 一种掺杂Mg的富锂正极材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SIMONIN,L. ET AL.: "In situ investigations of a Li-rich Mn-Ni layered oxide for Li-ion batteries", JOURNAL OF MATERIALS CHEMISTRY, vol. 22, 2012, pages 11316 - 11322, XP055335439 *
WANG,DAN ET AL.: "Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material", ELECTROCHIMICA ACTA, vol. 107, 2013, pages 461 - 466, XP028728664 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3597603A4 (en) * 2017-03-14 2021-07-07 Mitsui Mining & Smelting Co., Ltd. COMPOSITE OXIDE CONTAINING LITHIUM NICKEL MANGANESE SPINEL TYPE
JP2018160323A (ja) * 2017-03-22 2018-10-11 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその前駆体、及びそれらの製造方法
CN109273688A (zh) * 2018-09-17 2019-01-25 国联汽车动力电池研究院有限责任公司 一种表面富岩盐相的高镍正极材料及其制备方法和应用
WO2022038454A1 (ja) * 2020-08-20 2022-02-24 株式会社半導体エネルギー研究所 正極活物質の作製方法

Also Published As

Publication number Publication date
JP6541115B2 (ja) 2019-07-10
CN107428559B (zh) 2020-02-28
TWI597885B (zh) 2017-09-01
KR20180011049A (ko) 2018-01-31
KR102561910B1 (ko) 2023-08-01
US20180138507A1 (en) 2018-05-17
JPWO2016190251A1 (ja) 2017-12-21
CN107428559A (zh) 2017-12-01
US10505189B2 (en) 2019-12-10
TW201705589A (zh) 2017-02-01

Similar Documents

Publication Publication Date Title
JP6541115B2 (ja) 正極材料、並びにそれを正極に使用したリチウム二次電池
KR102307224B1 (ko) 도핑된 니켈레이트 화합물을 함유한 조성물
TWI437753B (zh) 鋰基電池之經金屬氧化物塗佈之正電極材料
JP2021520333A (ja) O3/p2混合相ナトリウム含有ドープ層状酸化物材料
JP5846482B2 (ja) ナトリウムマンガンチタンニッケル複合酸化物及びその製造方法、並びにそれを部材として使用したナトリウム二次電池
JP5177672B2 (ja) リチウム電池用活物質及びその製造方法、並びにそれを用いたリチウム電池
JP7207261B2 (ja) 正極活物質の製造方法、及びリチウムイオン電池の製造方法
WO2010122819A1 (ja) 正極活物質およびこれを含む正極を備える非水系二次電池
JP2022078776A (ja) 正極活物質の製造方法、正極活物質およびリチウムイオン電池の製造方法
JP5880928B2 (ja) リチウムマンガンチタンニッケル複合酸化物及びその製造方法、並びにそれを部材として使用したリチウム二次電池
JP6528192B2 (ja) リチウムナトリウム複合酸化物の製造方法
JP5847204B2 (ja) 正極活物質、正極及び非水系二次電池
JP2009242121A (ja) リチウムマンガン酸化物粉体粒子及びその製造方法、並びにそれを正極活物質として用いたリチウム二次電池
WO2007007581A1 (ja) リチウム二次電池用正極材料及びその製造方法、ならびにそれを用いたリチウム二次電池
JP5093669B2 (ja) マンガン酸化物、電池用電極活物質、及びそれらの製造方法、並びに電池用電極活物質を用いた二次電池
JP2014120362A (ja) 電池用活物質および電池
WO2019188751A1 (ja) リチウム複合酸化物、二次電池用正極活物質及び二次電池
JP2022108812A (ja) 正極活物質の製造方法
KR20200073361A (ko) V-o 계 신규 리튬 전지용 전극물질
Zheng et al. Y-Element Doping Improves the Electrochemical Performance and Structural Stability of Single-Crystal Lini0. 8co0. 1mn0. 1o2 Cathode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017520686

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177025209

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15574222

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799956

Country of ref document: EP

Kind code of ref document: A1