WO2022172118A1 - 電極の作製方法 - Google Patents

電極の作製方法 Download PDF

Info

Publication number
WO2022172118A1
WO2022172118A1 PCT/IB2022/050797 IB2022050797W WO2022172118A1 WO 2022172118 A1 WO2022172118 A1 WO 2022172118A1 IB 2022050797 W IB2022050797 W IB 2022050797W WO 2022172118 A1 WO2022172118 A1 WO 2022172118A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
secondary battery
electrode active
lithium
Prior art date
Application number
PCT/IB2022/050797
Other languages
English (en)
French (fr)
Inventor
山崎舜平
掛端哲弥
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to CN202280012657.2A priority Critical patent/CN116830283A/zh
Priority to KR1020237028885A priority patent/KR20230145368A/ko
Priority to JP2022581028A priority patent/JPWO2022172118A1/ja
Priority to US18/264,264 priority patent/US20240097099A1/en
Publication of WO2022172118A1 publication Critical patent/WO2022172118A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode manufacturing method and an electrode manufacturing apparatus.
  • the present invention relates to a mobile information terminal, a vehicle, and the like having a secondary battery.
  • One aspect of the present invention relates to a product, method, or manufacturing method. Alternatively, the invention relates to a process, machine, manufacture, or composition of matter. One embodiment of the present invention relates to semiconductor devices, display devices, light-emitting devices, power storage devices, lighting devices, electronic devices, or manufacturing methods thereof.
  • electro-optical device refers to all devices having a power storage device, and electro-optical devices having a power storage device, information terminal devices having a power storage device, and the like are all electronic devices.
  • the power storage device generally refers to elements and devices having a power storage function.
  • a power storage device also referred to as a secondary battery
  • a lithium ion secondary battery such as a lithium ion secondary battery, a lithium ion capacitor, an electric double layer capacitor, and the like.
  • lithium-ion secondary batteries which have high output and high energy density
  • portable information terminals such as mobile phones, smartphones, or notebook computers, portable music players, digital cameras, medical equipment, hybrid vehicles (HV), electric
  • HV hybrid vehicles
  • EV next-generation clean energy vehicles
  • PSV plug-in hybrid vehicles
  • Lithium ion secondary batteries use positive electrode active materials such as lithium cobalt oxide (LiCoO2), lithium nickel - cobalt-manganese oxide (LiNi1 -x- yCoxMnyO2 ) or lithium iron phosphate ( LiFePO4 ).
  • a negative electrode containing a negative electrode active material such as a carbon material such as graphite that can absorb and release lithium, and an electrolyte containing an organic solvent such as ethylene carbonate (EC) or diethyl carbonate (DEC).
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • lithium-ion secondary batteries are required to have high capacity density, high performance, and safety in various operating environments.
  • Patent Document 1 discloses a method of manufacturing an electrode that can increase the capacity and density of a secondary battery.
  • the challenge is to realize a manufacturing method that enables high-capacity density secondary batteries.
  • Another object is to provide a method for manufacturing a secondary battery with high safety and reliability.
  • Electrodes (positive and negative electrodes) for lithium-ion secondary batteries are produced by applying a slurry containing particulate active material onto a metal foil called a current collector and drying it.
  • the electrode thus produced has an active material layer on the current collector.
  • the active material layer has an active material and voids, and it is necessary to reduce the voids as much as possible in order to increase the capacity density of the secondary battery.
  • An electrode having an active material layer with few voids may be called a high-density electrode, a high-density electrode, or a high-density electrode.
  • One of the inventions disclosed herein is a pressing method for one or both of a positive electrode and a negative electrode, which is capable of reducing defects occurring in the active material in a sufficiently densified electrode using ultrasonic waves. It is a press method having a mechanism or a pre-process that imparts vibration such as.
  • one of the inventions disclosed in this specification is a method of manufacturing an electrode used for one or both of a positive electrode and a negative electrode, which can reduce defects occurring in the active material in a sufficiently densified electrode.
  • Another example is a method of manufacturing an electrode using a press method having a mechanism for imparting vibration such as ultrasonic waves or a pre-process.
  • one of the inventions disclosed in this specification is a high-density electrode with few active material defects, a high-density electrode secondary battery with few active material defects, and a method of manufacturing the same.
  • a high-density electrode with few defects in the active material makes it possible to realize an excellent secondary battery that satisfies high capacity density, high performance, and safety in various operating environments.
  • One embodiment of the present invention is a method for manufacturing an electrode of a secondary battery, which includes a vibration treatment step of applying vibration to the electrode and a pressing step of compressing an active material layer of the electrode by applying pressure to the electrode.
  • the vibration treatment process is a method of manufacturing an electrode of a secondary battery, which is performed before the pressing process.
  • Another aspect of the present invention is a method for manufacturing an electrode of a secondary battery, which includes a vibration treatment step of applying a first vibration to the electrode, and a press for compressing the active material layer of the electrode by applying pressure to the electrode.
  • a method for manufacturing an electrode of a secondary battery comprising the steps of: applying a second vibration to the electrode at the same time as applying the pressure; and performing the vibration treatment step before the pressing step.
  • one embodiment of the present invention is a method for manufacturing an electrode of a secondary battery, which includes a vibration treatment step of applying vibration to the electrode to adjust the temperature, and applying pressure to the electrode to compress an active material layer of the electrode. and a pressing step, wherein the vibration treatment step is performed before the pressing step.
  • one embodiment of the present invention is a method for manufacturing an electrode of a secondary battery, which includes a vibration treatment step of applying a first vibration to the electrode to adjust the temperature; and applying a second vibration to the electrode simultaneously with the pressing, wherein the vibration treatment step is performed before the pressing step.
  • the electrode may be either one or both of a positive electrode and a negative electrode.
  • the temperature adjustment in the vibration treatment step and/or the pressing step is preferably adjusted so that the electrode has a temperature of 80°C or higher and 150°C or lower.
  • FIG. 1 shows an example of an electrode manufacturing apparatus showing one embodiment of the present invention.
  • 2A and 2B are electrode cross-sectional schematic diagrams showing an example of the effects of the electrode manufacturing method of one embodiment of the present invention.
  • FIG. 2C is an example showing a cross section of an electrode of one embodiment of the present invention.
  • 3A and 3B show an example of an electrode manufacturing apparatus according to one embodiment of the present invention.
  • FIG. 4 shows an example of an electrode manufacturing apparatus according to one embodiment of the present invention.
  • FIG. 5A is a top view of the positive electrode active material of one embodiment of the present invention
  • FIGS. 5B and 5C are cross-sectional views of the positive electrode active material of one embodiment of the present invention.
  • FIG. 6 illustrates the crystal structure of the positive electrode active material of one embodiment of the present invention.
  • FIG. 7 is an XRD pattern calculated from the crystal structure.
  • FIG. 8 is a diagram for explaining the crystal structure of the positive electrode active material of the comparative example.
  • FIG. 9 is an XRD pattern calculated from the crystal structure.
  • FIG. 10 is a schematic cross-sectional view of the positive electrode active material particles.
  • FIG. 11A is an STEM photograph of the particles after pressing, and FIGS. 11B and 11C are schematic cross-sectional views.
  • 12A is an exploded perspective view of a coin-type secondary battery
  • FIG. 12B is a perspective view of the coin-type secondary battery
  • FIG. 12C is a cross-sectional perspective view thereof.
  • FIG. 13A shows an example of a cylindrical secondary battery.
  • FIG. 13B shows an example of a cylindrical secondary battery.
  • FIG. 13B shows an example of a cylindrical secondary battery.
  • FIG. 13A shows an example of a cylindrical secondary battery.
  • FIG. 13C shows an example of a plurality of cylindrical secondary batteries.
  • FIG. 13D shows an example of a power storage system having a plurality of cylindrical secondary batteries.
  • 14A and 14B are diagrams for explaining an example of a secondary battery, and FIG. 14C is a diagram showing the internal state of the secondary battery.
  • 15A to 15C are diagrams illustrating examples of secondary batteries.
  • 16A and 16B are diagrams showing the appearance of a secondary battery.
  • 17A to 17C are diagrams illustrating a method for manufacturing a secondary battery.
  • 18A to 18C are diagrams showing configuration examples of battery packs.
  • 19A and 19B are diagrams illustrating an example of a secondary battery.
  • 20A to 20C are diagrams illustrating examples of secondary batteries.
  • 21A and 21B are diagrams illustrating an example of a secondary battery.
  • FIG. 22A is a perspective view of a battery pack showing one embodiment of the present invention
  • FIG. 22B is a block diagram of the battery pack
  • FIG. 22C is a block diagram of a vehicle having a motor
  • 23A to 23D are diagrams illustrating an example of a transportation vehicle.
  • 24A and 24B are diagrams illustrating a power storage device according to one embodiment of the present invention.
  • 25A is a diagram showing an electric bicycle
  • FIG. 25B is a diagram showing a secondary battery of the electric bicycle
  • FIG. 25C is a diagram explaining an electric motorcycle.
  • 26A to 26D are diagrams illustrating examples of electronic devices.
  • FIG. 27A shows an example of a wearable device
  • FIG. 27B shows a perspective view of a wristwatch-type device
  • FIG. 27C is a diagram explaining a side view of the wristwatch-type device.
  • FIG. 27D is a diagram illustrating an example of a wireless earphone.
  • composite oxide refers to an oxide containing multiple types of metal atoms in its structure.
  • crystal planes and directions are indicated by Miller indexes. Crystallographic planes and orientations are indicated by adding a superscript bar to the number from the standpoint of crystallography. symbol) may be attached.
  • individual orientations that indicate directions within the crystal are [ ]
  • collective orientations that indicate all equivalent directions are ⁇ >
  • individual planes that indicate crystal planes are ( )
  • collective planes that have equivalent symmetry are ⁇ ⁇ to express each.
  • (hkil) as well as (hkl) may be used for the Miller indices of trigonal and hexagonal crystals such as R-3m. where i is -(h+k).
  • the layered rock salt type crystal structure of a composite oxide containing lithium and a transition metal has a rock salt type ion arrangement in which cations and anions are alternately arranged, and the transition metal and A crystal structure in which lithium can diffuse two-dimensionally because lithium is arranged regularly to form a two-dimensional plane.
  • the layered rock salt type crystal structure may be a structure in which the lattice of the rock salt type crystal is distorted.
  • a rock salt-type crystal structure refers to a structure in which cations and anions are arranged alternately. A part of the crystal structure may have a defect of cations or anions.
  • the theoretical capacity of a positive electrode active material refers to the amount of electricity when all of the lithium that can be inserted and detached included in the positive electrode active material is desorbed.
  • LiFePO4 has a theoretical capacity of 170 mAh/g
  • LiCoO2 has a theoretical capacity of 274 mAh /g
  • LiNiO2 has a theoretical capacity of 275 mAh /g
  • LiMn2O4 has a theoretical capacity of 148 mAh/g.
  • x in the composition formula for example x in Li x CoO 2 or x in Li x M1O 2 .
  • Li x CoO 2 in this specification can be appropriately read as Li x M1O 2 .
  • a small x in Li x CoO 2 means, for example, 0.1 ⁇ x ⁇ 0.24.
  • the term “discharging is completed” refers to a state in which the voltage becomes 2.5 V (counter electrode lithium) or less at a current of 100 mA/g, for example.
  • the discharge voltage drops sharply before the discharge voltage reaches 2.5 V, so assume that the discharge is terminated under the above conditions.
  • the charge depth when all the lithium that can be inserted and detached is inserted into the positive electrode active material is 0, and the charge depth when all the lithium that can be inserted and detached in the positive electrode active material is desorbed. Depth is sometimes called 1.
  • Electrodes each have an active material layer and a current collector.
  • An electrode in which an active material layer is provided on one side of a current collector is called a single-sided coated electrode, and an electrode in which an active material layer is provided on both sides of a current collector is called a double-sided coated electrode.
  • An electrode manufacturing method of one embodiment of the present invention is a manufacturing method that can be applied to both a single-sided coated electrode and a double-sided coated electrode.
  • the active material layer contains an active material and may contain a conductive material and a binder. Materials such as the active material of the positive electrode and materials such as the active material of the negative electrode may be the materials described in the following embodiments.
  • the electrode production method includes a slurry production process, a coating process, a vibration treatment process, and a press process.
  • the apparatus 10 shown in FIG. 1 can be used for the vibration treatment process and the press process.
  • slurry preparation process an active material is dispersed in a dispersion medium to prepare a slurry.
  • a dispersion medium for example, when PVDF (polyvinylidene fluoride) is used as the binder, NMP (N-methyl-2-pyrrolidone) or the like can be used as the dispersion medium.
  • the slurry may have a conductive material and a binder.
  • the slurry is applied to the current collector.
  • a slot die method, a gravure method, a blade method, a method combining them, or the like can be used for applying the slurry.
  • the coated electrode 1 can be obtained by volatilizing the dispersion medium.
  • the step of volatilizing the dispersion medium (also referred to as the drying step) is preferably carried out in the temperature range of 50°C or higher and 200°C or lower, preferably 80°C or higher and 150°C or lower.
  • An example of the coated electrode 1 after the coating process is shown in FIG. 2A.
  • the active material layer 3 having the active material 5 formed on the current collector 2 has voids 4 in the active material layer 3 like the electrode 1a schematically shown in FIG. 2A. have many. 2A to 2C, the contour line indicating the active material layer 3 is considered as the volume of the active material layer 3 when calculating the film density of the active material layer 3 (mass per unit volume of the active material layer). It shows the possible areas.
  • the vibration processing section 20 of the apparatus 10 shown in FIG. 1 can be used.
  • the device 10 includes an electrode roll unwinding section 41 , a winding section 42 , a vibration processing section 20 , and a pressing section 30 .
  • the electrode 1 is in contact along the surface of the roll 21 of the vibration processing section 20 between the unwinding section 41 and the pressing section 30 .
  • vibration and heat which will be described later, can be easily transmitted to the electrode 1 .
  • the vibration processing section 20 has a roll 21 in contact with the electrode 1 and a support 22 , and the support 22 has a vibrator 23 .
  • the vibrator 23 is electrically connected to an oscillator 25, and the oscillator 23 is controlled by the oscillator 25 so as to vibrate at a predetermined frequency. Vibration is transmitted to the electrode 1 via the roll 21 . Vibrations include vertical vibrations (Z direction in FIG. 1) and/or lateral vibrations (X and/or Y directions in FIG. 1). By applying the vibration to the electrode 1, the active material 5 in the active material layer 3 can move to a stable position, and in the subsequent pressing step, the film density can be increased at a lower pressing pressure. becomes possible.
  • the roll 21 has a heating portion such as a sheathed heater inside, and the roll 21 is heated so that the electrode 1 reaches a temperature of 50° C. or more and 200° C.
  • the temperature is regulated.
  • the active material 5 in the active material layer 3 can move to a more stable position, and the effect of preheating for the pressing process. can be obtained, which is very preferable.
  • a piezoelectric ceramic vibrator can be used as the vibrator.
  • a Langevin type structure having a circular cylindrical piezoelectric ceramic portion having polarization in the thickness direction sandwiched between two circular electrode portions can be used.
  • Piezoelectric ceramics such as PZT (lead zirconate titanate) may be used as the piezoelectric ceramics.
  • the press section 30 of the apparatus 10 shown in FIG. 1 can be used.
  • the press section 30 has an upper roll 31 , an upper support 32 , a lower roll 33 and a lower support 34 .
  • the upper roll 31 has a heating portion such as a sheathed heater inside, and the temperature of the upper roll 31 is adjusted so that the electrode 1 reaches a temperature of 50° C. or higher and 200° C. or lower, preferably 80° C. or higher and 150° C. or lower in the pressing process. is preferably adjusted.
  • the electrode 1 is pressed by the upper roll 31 and the lower roll 33, and the thickness of the active material layer 3 of the electrode 1 is reduced. That is, the voids 4 of the active material layer 3 become smaller, and the film density of the active material layer 3 (mass per unit volume of the active material layer) increases.
  • FIG. 2A schematically shows the state of the electrode 1a immediately after the coating process, and the active material layer 3 has many voids 4.
  • the electrode 1 is pressurized with a very strong force to increase the film density of the active material layer 3 .
  • the active material 5 cannot withstand the pressurization, and defects such as cracks 6 and slips 7 occur as in the electrode 1b schematically shown in FIG. 2B. I had a problem that made me do it.
  • the active material layer 3 having a high film density can be obtained even when the electrode 1 is pressed with a smaller force than in the past. is possible.
  • the occurrence of defects such as cracks 6 and slips 7 is greatly reduced, and an active material layer 3 with a high film density can be obtained.
  • the vibration treatment step and the pressing step shown in the manufacturing method 1 may be integrally processed using the apparatus 11 shown in FIG. 3A.
  • a method in which the vibration treatment process and the press process are integrally processed can be called a vibration press process.
  • the upper roll 31 shown in FIG. 3A has a heating unit 37 such as a sheathed heater inside, similarly to the upper roll 31 in FIG. It is preferable that the temperature of the upper roll 31 is adjusted to a temperature of 80°C or higher and 150°C or lower.
  • FIG. 3B is a schematic diagram of the upper portion of the vibrating press section in FIG.
  • Vibrator 35 is connected to oscillator 36 .
  • the upper roll 31 has a gear 38 and receives rotational power from another gear (not shown).
  • the upper roll 31 can have a heating section 37 near the central axis.
  • the vibrator 35a and the vibrator 35b may be connected to separate oscillators, it is desirable that the vibrations generated by the vibrator 35a and the vibrator 35b have the same amplitude, frequency, and phase.
  • an apparatus 12 shown in FIG. 4 can be used in which the vibration treatment step shown in manufacturing method 1 and the vibration pressing process shown in manufacturing method 2 are combined.
  • the structure of the roll 21 and upper roll 31 shown in FIG. 4 a structure similar to that shown in FIG. 3B can be used.
  • Embodiment 2 In this embodiment, an example of a secondary battery of one embodiment of the present invention will be described. Either or both of the positive electrode and the negative electrode are preferably manufactured by the manufacturing method described in Embodiment Mode 1.
  • a secondary battery in which a positive electrode, a negative electrode, and an electrolytic solution are wrapped in an outer package will be described below as an example.
  • the positive electrode has a positive electrode active material layer and a positive electrode current collector.
  • the positive electrode active material layer contains a positive electrode active material and may contain a conductive material and a binder, which will be described later.
  • the negative electrode has a negative electrode active material layer and a negative electrode current collector.
  • the negative electrode active material layer contains a negative electrode active material, and may contain a conductive material described later and a binder described above.
  • the positive electrode current collector and the negative electrode current collector metals such as stainless steel, gold, platinum, zinc, iron, copper, aluminum, titanium, and alloys thereof, which have high conductivity and do not alloy with carrier ions such as lithium materials can be used.
  • the shape of the current collector can be appropriately used such as a sheet shape, a mesh shape, a punching metal shape, an expanded metal shape, and the like.
  • a current collector having a thickness of 10 ⁇ m or more and 30 ⁇ m or less is preferably used.
  • the negative electrode current collector it is preferable to use a material that does not alloy with carrier ions such as lithium.
  • a titanium compound may be provided by laminating it on the metal shown above as a current collector.
  • titanium compounds include titanium nitride, titanium oxide, titanium nitride in which nitrogen is partially substituted with oxygen, titanium oxide in which oxygen is partially substituted with nitrogen, and titanium oxynitride (TiO x N y , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1), or two or more may be mixed or laminated for use.
  • titanium nitride is particularly preferable because it has high conductivity and a high function of suppressing oxidation.
  • the active material layer contains an oxygen-containing compound
  • the oxidation reaction between the metal and oxygen can be suppressed.
  • the active material layer contains an oxygen-containing compound
  • the oxidation reaction between the metal and oxygen can be suppressed.
  • the active material layer contains an oxygen-containing compound
  • the oxidation reaction between the metal and oxygen can be suppressed.
  • the conductive material is also called a conductive agent or a conductive aid, and a carbon material is used.
  • a conductive agent or a conductive aid
  • a carbon material is used.
  • Active material layers such as the positive electrode active material layer and the negative electrode active material layer preferably contain a conductive material.
  • Examples of the conductive material include carbon black such as acetylene black and furnace black, graphite such as artificial graphite and natural graphite, carbon fiber such as carbon nanofiber and carbon nanotube, and graphene compounds. The above can be used.
  • carbon fibers for example, carbon fibers such as mesophase pitch-based carbon fibers and isotropic pitch-based carbon fibers can be used.
  • Carbon nanofibers, carbon nanotubes, or the like can be used as carbon fibers.
  • Carbon nanotubes can be produced, for example, by vapor deposition.
  • the active material layer may have metal powder or metal fiber such as copper, nickel, aluminum, silver, gold, etc., conductive ceramics material, etc. as a conductive material.
  • the content of the conductive aid with respect to the total amount of the active material layer is preferably 1 wt% or more and 10 wt% or less, more preferably 1 wt% or more and 5 wt% or less.
  • the graphene compound Unlike a granular conductive material such as carbon black that makes point contact with the active material, the graphene compound enables surface contact with low contact resistance. It is possible to improve the electrical conductivity with Therefore, the ratio of the active material in the active material layer can be increased. Thereby, the discharge capacity of the secondary battery can be increased.
  • a minute space refers to, for example, a region between a plurality of active materials.
  • the active material layer preferably has a binder (not shown).
  • the binder binds or fixes the electrolyte and the active material, for example. Further, the binder can bind or fix an electrolyte and a carbon-based material, an active material and a carbon-based material, a plurality of active materials, a plurality of carbon-based materials, and the like.
  • Polyimide has excellent and stable properties thermally, mechanically, and chemically.
  • PVDF polyvinylidene fluoride
  • the binder it is preferable to use rubber materials such as styrene-butadiene rubber (SBR), styrene-isoprene-styrene rubber, acrylonitrile-butadiene rubber, butadiene rubber, and ethylene-propylene-diene copolymer.
  • SBR styrene-butadiene rubber
  • Fluororubber can also be used as the binder.
  • the binder it is preferable to use, for example, a water-soluble polymer.
  • Polysaccharides for example, can be used as the water-soluble polymer.
  • cellulose derivatives such as carboxymethyl cellulose (CMC), methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose and regenerated cellulose, or starch can be used. Further, it is more preferable to use these water-soluble polymers in combination with the aforementioned rubber material.
  • Binders may be used in combination with more than one of the above.
  • the graphene compound refers to graphene, multi-layer graphene, multi-graphene, graphene oxide, multi-layer graphene oxide, multi-graphene oxide, reduced graphene oxide, reduced multi-layer graphene oxide, reduced multi-graphene oxide, and graphene. Including quantum dots, etc.
  • a graphene compound refers to a compound that contains carbon, has a shape such as a plate shape or a sheet shape, and has a two-dimensional structure formed of six-membered carbon rings. The two-dimensional structure formed by the six-membered carbon rings may be called a carbon sheet.
  • the graphene compound may have functional groups.
  • the graphene compound preferably has a bent shape.
  • the graphene compound may be rolled up like carbon nanofibers.
  • graphene oxide refers to, for example, one that has carbon and oxygen, has a sheet-like shape, and has a functional group, particularly an epoxy group, a carboxy group, or a hydroxy group.
  • reduced graphene oxide refers to, for example, one that contains carbon and oxygen, has a sheet-like shape, and has a two-dimensional structure formed of six-membered carbon rings. It can be called a carbon sheet.
  • a single sheet of reduced graphene oxide functions, but a plurality of layers may be stacked.
  • the reduced graphene oxide preferably has a portion where the carbon concentration is higher than 80 atomic % and the oxygen concentration is higher than or equal to 2 atomic % and lower than or equal to 15 atomic %. With such carbon concentration and oxygen concentration, it is possible to function as a conductive material with high conductivity even in a small amount.
  • the reduced graphene oxide preferably has an intensity ratio G/D of 1 or more between the G band and the D band in a Raman spectrum. Even a small amount of reduced graphene oxide having such an intensity ratio can function as a conductive material with high conductivity.
  • the sheet-like graphene compound is dispersed approximately uniformly in the inner region of the active material layer.
  • the plurality of graphene compounds are formed so as to partially cover the plurality of granular active materials or adhere to the surfaces of the plurality of granular active materials, and thus are in surface contact with each other.
  • a mesh-like graphene compound sheet (hereinafter referred to as graphene compound net or graphene net) can be formed by bonding a plurality of graphene compounds.
  • the graphene net covers the active material, the graphene net can also function as a binder that binds the active materials together. Therefore, the amount of binder can be reduced or not used, and the ratio of the active material to the electrode volume or electrode weight can be improved. That is, the charge/discharge capacity of the secondary battery can be increased.
  • the active material layer after completion preferably contains reduced graphene oxide.
  • graphene oxide which has extremely high dispersibility in a polar solvent
  • the graphene compound can be substantially uniformly dispersed in the inner region of the active material layer.
  • the graphene compounds remaining in the active material layer partially overlap and are dispersed to the extent that they are in surface contact with each other. can form a three-dimensional conductive path.
  • graphene oxide may be reduced by heat treatment or by using a reducing agent, for example.
  • a graphene compound which is a conductive material, is formed as a film covering the entire surface of the active material, and the graphene compound is electrically connected between the active materials to form a conductive path. can also be formed.
  • a material used for forming the graphene compound may be mixed with the graphene compound and used for the active material layer.
  • particles used as catalysts in forming the graphene compound may be mixed with the graphene compound.
  • catalysts for forming graphene compounds include particles containing silicon oxide (SiO 2 , SiO x (x ⁇ 2)), aluminum oxide, iron, nickel, ruthenium, iridium, platinum, copper, germanium, and the like.
  • the average particle diameter (D50: also referred to as median diameter) of the particles is preferably 1 ⁇ m or less, more preferably 100 nm or less.
  • a separator is placed between the positive and negative electrodes.
  • separators include fibers containing cellulose such as paper, non-woven fabrics, glass fibers, ceramics, synthetic fibers using nylon (polyamide), vinylon (polyvinyl alcohol-based fiber), polyester, acrylic, polyolefin, and polyurethane. can be used. It is preferable that the separator be processed into a bag shape and arranged so as to enclose either the positive electrode or the negative electrode.
  • the separator is a porous material having pores with a diameter of about 20 nm, preferably with a diameter of 6.5 nm or more, more preferably with a diameter of at least 2 nm.
  • the separator may have a multilayer structure.
  • an organic material film such as polypropylene or polyethylene can be coated with a ceramic material, a fluorine material, a polyamide material, or a mixture thereof.
  • the ceramic material for example, aluminum oxide particles, silicon oxide particles, or the like can be used.
  • PVDF, polytetrafluoroethylene, or the like can be used as the fluorine-based material.
  • the polyamide-based material for example, nylon, aramid (meta-aramid, para-aramid) and the like can be used.
  • Coating with a ceramic material improves oxidation resistance, so it is possible to suppress deterioration of the separator during high-voltage charging and discharging and improve the reliability of the secondary battery.
  • the separator and the electrode are more likely to adhere to each other, and the output characteristics can be improved.
  • Coating with a polyamide-based material, particularly aramid improves the heat resistance, so that the safety of the secondary battery can be improved.
  • both sides of a polypropylene film may be coated with a mixed material of aluminum oxide and aramid.
  • a polypropylene film may be coated with a mixed material of aluminum oxide and aramid on the surface thereof in contact with the positive electrode, and coated with a fluorine-based material on the surface thereof in contact with the negative electrode.
  • the safety of the secondary battery can be maintained even if the overall thickness of the separator is thin, so the capacity per unit volume of the secondary battery can be increased.
  • the electrolyte may be ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, chloroethylene carbonate, vinylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, dimethyl carbonate (DMC ), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl formate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, 1,3-dioxane, 1,4-dioxane , dimethoxyethane (DME), dimethyl sulfoxide, diethyl ether, methyl diglyme, acetonitrile, benzonitrile, tetrahydrofuran, sulfolane, sultone, etc., or two
  • Ionic liquids consist of cations and anions, including organic cations and anions.
  • Organic cations include aliphatic onium cations such as quaternary ammonium, tertiary sulfonium, and quaternary phosphonium cations, and aromatic cations such as imidazolium and pyridinium cations.
  • a monovalent amide anion a monovalent methide anion, a fluorosulfonate anion, a perfluoroalkylsulfonate anion, a tetrafluoroborate anion, a perfluoroalkylborate anion, a hexafluorophosphate anion, or a perfluoro Alkyl phosphate anions and the like are included.
  • a liquid electrolyte containing an ionic liquid is preferably used.
  • a secondary battery of one embodiment of the present invention includes, for example, alkali metal ions such as sodium ions and potassium ions, or alkaline earth metal ions such as calcium ions, strontium ions, barium ions, beryllium ions, and magnesium ions as carrier ions. .
  • alkali metal ions such as sodium ions and potassium ions
  • alkaline earth metal ions such as calcium ions, strontium ions, barium ions, beryllium ions, and magnesium ions as carrier ions.
  • the electrolyte contains a lithium salt.
  • Lithium salts such as LiPF6 , LiClO4 , LiAsF6 , LiBF4 , LiAlCl4 , LiSCN , LiBr , LiI , Li2SO4 , Li2B10Cl10 , Li2B12Cl12 , LiCF3SO3 , LiC4F9SO3 , LiC ( CF3SO2 ) 3 , LiC ( C2F5SO2 ) 3 , LiN ( CF3SO2 ) 2 , LiN ( C4F9SO2 ) ( CF3SO2 ), LiN(C 2 F 5 SO 2 ) 2 and the like can be used.
  • the electrolyte preferably contains fluorine.
  • fluorine-containing electrolyte for example, an electrolyte containing one or more fluorinated cyclic carbonates and lithium ions can be used.
  • a fluorinated cyclic carbonate can improve the nonflammability and enhance the safety of the lithium ion secondary battery.
  • fluorinated cyclic carbonates fluorinated ethylene carbonates such as monofluoroethylene carbonate (fluoroethylene carbonate, FEC, F1EC), difluoroethylene carbonate (DFEC, F2EC), trifluoroethylene carbonate (F3EC), tetrafluoroethylene carbonate (F4EC), ) and the like can be used.
  • DFEC has isomers such as cis-4,5 and trans-4,5. It is important for operation at low temperatures to solvate lithium ions using one or more fluorinated cyclic carbonates as the electrolyte and transport them in the electrolyte contained in the electrode during charging and discharging. Low temperature operation is possible when the fluorinated cyclic carbonate contributes to the transport of lithium ions during charging and discharging, rather than as a small amount of additive. Lithium ions move in clusters of several to several tens in the secondary battery.
  • the desolvation energy required for lithium ions solvated in the electrolyte contained in the electrode to enter the active material particles is reduced. If the desolvation energy can be reduced, lithium ions can be easily inserted into or desorbed from the active material particles even in the low temperature range. Lithium ions may move in a solvated state, but a hopping phenomenon in which coordinated solvent molecules are replaced may occur. When the lithium ions are easily desolvated, they tend to move due to the hopping phenomenon, which may facilitate the movement of the lithium ions.
  • Decomposition products of the electrolyte during charging and discharging of the secondary battery may cling to the surface of the active material, causing deterioration of the secondary battery.
  • the electrolyte contains fluorine
  • the electrolyte is free-flowing, and the decomposition products of the electrolyte are less likely to adhere to the surface of the active material. Therefore, deterioration of the secondary battery can be suppressed.
  • a plurality of solvated lithium ions may form clusters in the electrolyte and move within the negative electrode, between the positive and negative electrodes, within the positive electrode, and so on.
  • electrolyte is a generic term including solid, liquid, or semi-solid materials.
  • the fluorine-containing electrolyte prevents deterioration that may occur at the interface between the active material and the electrolyte, typically deterioration of the electrolyte or increase in viscosity of the electrolyte.
  • a structure in which a binder, a graphene compound, or the like is attached to or held by the electrolyte containing fluorine may be employed.
  • DFEC with two fluorines and F4EC with four fluorines are less viscous and smoother than FEC with one fluorine, and have weaker coordination bonds with lithium. Therefore, adhesion of highly viscous decomposition products to the active material particles can be reduced. If the highly viscous decomposition product adheres to or clings to the active material particles, it becomes difficult for lithium ions to move at the interface of the active material particles.
  • An electrolyte containing fluorine is solvated to reduce the formation of decomposition products attached to the surface of the active material (positive electrode active material or negative electrode active material).
  • an electrolyte containing fluorine it is possible to prevent dendrite generation and growth by preventing deposition of decomposed products.
  • electrolyte containing fluorine is used as a main component, and the electrolyte containing fluorine is 5% by volume or more, 10% by volume or more, preferably 30% by volume or more and 100% by volume or less.
  • the main component of the electrolyte means 5% by volume or more of the total electrolyte of the secondary battery.
  • 5% by volume or more of the total electrolyte of the secondary battery as used herein refers to the percentage of the total electrolyte weighed at the time of manufacture of the secondary battery.
  • an electrolyte containing fluorine By using an electrolyte containing fluorine, it is possible to realize a secondary battery that can operate in a wide temperature range, specifically -40°C or higher and 150°C or lower, preferably -40°C or higher and 85°C or lower.
  • Additives such as vinylene carbonate, propanesultone (PS), tert-butylbenzene (TBB), lithium bis(oxalate)borate (LiBOB), and dinitrile compounds such as succinonitrile and adiponitrile may also be added to the electrolyte. good.
  • the additive concentration may be, for example, 0.1% by volume or more and less than 5% by volume with respect to the entire electrolyte.
  • the electrolyte may contain one or more of aprotic organic solvents such as ⁇ -butyrolactone, acetonitrile, dimethoxyethane, and tetrahydrofuran.
  • aprotic organic solvents such as ⁇ -butyrolactone, acetonitrile, dimethoxyethane, and tetrahydrofuran.
  • gelled polymer materials include silicone gel, acrylic gel, acrylonitrile gel, polyethylene oxide gel, polypropylene oxide gel, and fluoropolymer gel.
  • polymers having a polyalkylene oxide structure such as polyethylene oxide (PEO), PVDF, polyacrylonitrile, etc., and copolymers containing them can be used.
  • PVDF-HFP which is a copolymer of PVDF and hexafluoropropylene (HFP)
  • the formed polymer may also have a porous geometry.
  • the above configuration shows an example of a secondary battery using a liquid electrolyte, it is not particularly limited.
  • semi-solid and all-solid-state batteries can be made.
  • the layer disposed between the positive electrode and the negative electrode is called the electrolyte layer in both the case of a secondary battery using a liquid electrolyte and the case of a semi-solid battery.
  • the electrolyte layer of the semi-solid battery can be said to be a layer formed by film formation, and can be distinguished from the liquid electrolyte layer.
  • a semi-solid battery refers to a battery having a semi-solid material in at least one of the electrolyte layer, positive electrode, and negative electrode.
  • Semi-solid as used herein does not mean that the proportion of solid material is 50%.
  • a semi-solid means that it has the properties of a solid, such as a small change in volume, but also has some of the properties similar to a liquid, such as having flexibility.
  • a single material or a plurality of materials may be used as long as these properties are satisfied. For example, it may be a porous solid material infiltrated with a liquid material.
  • a polymer electrolyte secondary battery refers to a secondary battery having a polymer in the electrolyte layer between the positive electrode and the negative electrode.
  • Polymer electrolyte secondary batteries include dry (or intrinsic) polymer electrolyte batteries and polymer gel electrolyte batteries.
  • the electrolyte contains a lithium ion conductive polymer and a lithium salt.
  • a lithium ion conductive polymer is a polymer having conductivity for cations such as lithium. More specifically, it is a polymer compound having a polar group capable of coordinating a cation. As the polar group, it is preferable to have an ether group, an ester group, a nitrile group, a carbonyl group, siloxane, or the like.
  • lithium ion conductive polymers examples include polyethylene oxide (PEO), derivatives having polyethylene oxide as the main chain, polypropylene oxide, polyacrylic acid esters, polymethacrylic acid esters, polysiloxane, and polyphosphazene.
  • PEO polyethylene oxide
  • derivatives having polyethylene oxide as the main chain polypropylene oxide
  • polyacrylic acid esters polymethacrylic acid esters
  • polysiloxane polyphosphazene
  • the lithium ion conductive polymer may be branched or crosslinked. It may also be a copolymer.
  • the molecular weight is preferably 10,000 or more, more preferably 100,000 or more.
  • lithium-ion conductive polymers With lithium-ion conductive polymers, lithium ions move while changing the interacting polar groups due to the partial motion (also called segmental motion) of the polymer chain. For example, in the case of PEO, lithium ions move while changing the interacting oxygen by segmental motion of the ether chain.
  • the temperature is close to or higher than the melting point or softening point of the lithium-ion conductive polymer, the crystalline region melts and the amorphous region increases, and the motion of the ether chains becomes active, resulting in a decrease in ionic conductivity. get higher Therefore, when PEO is used as the lithium ion conductive polymer, it is preferable to charge and discharge at 60° C. or higher.
  • the radius of a monovalent lithium ion is 0.590 ⁇ 10 -1 nm when 4-coordinated, and 0.76 ⁇ 10 ⁇ 1 nm, and 0.92 ⁇ 10 ⁇ 1 nm for 8-coordination.
  • the radius of the divalent oxygen ion is 1.35 ⁇ 10 ⁇ 1 nm for 2-coordinate, 1.36 ⁇ 10 ⁇ 1 nm for 3-coordinate, and 1.38 ⁇ 10 ⁇ 1 for 4-coordinate.
  • the distance between the polar groups of adjacent lithium ion conductive polymer chains is preferably at least the distance at which the lithium ions and the anions of the polar groups can stably exist while maintaining the ionic radius as described above. Moreover, it is preferable that the distance is such that the interaction between the lithium ion and the polar group is sufficiently generated. However, it is not always necessary to maintain a constant distance because segmental motion occurs as described above. It is sufficient if the distance is suitable for the passage of lithium ions.
  • lithium salt for example, a compound containing lithium and at least one of phosphorus, fluorine, nitrogen, sulfur, oxygen, chlorine, arsenic, boron, aluminum, bromine, and iodine can be used.
  • LiPF6 LiN( FSO2 ) 2 (lithium bis (fluorosulfonyl)imide, LiFSI), LiClO4, LiAsF6 , LiBF4 , LiAlCl4 , LiSCN , LiBr, LiI , Li2SO4 , Li2B10Cl 10 , Li2B12Cl12 , LiCF3SO3 , LiC4F9SO3 , LiC ( CF3SO2 ) 3 , LiC ( C2F5SO2 ) 3 , LiN ( CF3SO2 ) 2 , Lithium salts such as LiN( C4F9SO2 ) ( CF3SO2 ), LiN ( C2F5SO2 ) 2 , lithium
  • LiFSI because it has good low-temperature characteristics. LiFSI and LiTFSA are less likely to react with water than LiPF6 and the like. Therefore, it becomes easy to control the dew point when fabricating an electrode and an electrolyte layer using LiFSI. For example, it can be handled not only in an inert atmosphere such as argon from which moisture is removed as much as possible, or in a dry room with a controlled dew point, but also in a normal atmospheric atmosphere. Therefore, the productivity is improved, which is preferable. In addition, it is particularly preferable to use Li salts with high dissociation and plasticizing effect such as LiFSI and LiTFSA because they can be used in a wide temperature range when using lithium conduction utilizing segmental motion of ether chains.
  • the secondary battery With no or very little organic solvent, the secondary battery can be flammable or difficult to ignite, and safety is improved, which is preferable.
  • the electrolyte is an electrolyte layer that does not contain an organic solvent or contains an extremely small amount of organic solvent, it is possible to electrically insulate the positive electrode and the negative electrode with sufficient strength without having a separator. Since a separator is not required, the secondary battery can have high productivity. If the electrolyte layer contains an electrolyte and an inorganic filler, the strength of the secondary battery can be further increased, and a safer secondary battery can be obtained.
  • a metal material such as aluminum and a resin material can be used as the outer casing of the secondary battery.
  • a film-like exterior body can also be used.
  • a film for example, a film made of a material such as polyethylene, polypropylene, polycarbonate, ionomer, polyamide, etc. is provided with a highly flexible metal thin film such as aluminum, stainless steel, copper, nickel, etc., and an exterior is provided on the metal thin film.
  • a film having a three-layer structure provided with an insulating synthetic resin film such as a polyamide-based resin or a polyester-based resin can be used as the outer surface of the body.
  • a fluororesin film as the film.
  • the fluororesin film has high stability against acids, alkalis, organic solvents, and the like, and can suppress side reactions, corrosion, and the like that accompany the reactions of secondary batteries, and can realize excellent secondary batteries.
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxyalkane: copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether
  • FEP perfluoroethylene propene copolymer: copolymer of tetrafluoroethylene and hexafluoropropylene
  • ETFE ethylenetetrafluoroethylene copolymer: copolymer of tetrafluoroethylene and ethylene
  • a negative electrode active material a material capable of reacting with carrier ions of a secondary battery, a material capable of inserting and extracting carrier ions, a material capable of alloying reaction with a metal that serves as carrier ions, and a material serving as carrier ions. It is preferable to use a material capable of dissolving and precipitating metal, or the like.
  • metals or compounds containing one or more elements selected from silicon, tin, gallium, aluminum, germanium, lead, antimony, bismuth, silver, zinc, cadmium, and indium can be used.
  • alloy compounds using such elements include Mg2Si , Mg2Ge , Mg2Sn , SnS2 , V2Sn3 , FeSn2 , CoSn2 , Ni3Sn2 , Cu6Sn5 , Ag 3 Sn, Ag 3 Sb, Ni 2 MnSb, CeSb 3 , LaSn 3 , La 3 Co 2 Sn 7 , CoSb 3 , InSb, SbSn and the like.
  • a low-resistance material obtained by adding phosphorus, arsenic, boron, aluminum, gallium, or the like as an impurity element to silicon may be used.
  • a silicon material pre-doped with lithium may be used. Examples of the pre-doping method include a method of mixing lithium fluoride, lithium carbonate, etc. with silicon and annealing the mixture, mechanical alloying of lithium metal and silicon, and the like.
  • lithium can be doped (pre-doped) by a charge-discharge reaction in combination with an electrode made of lithium metal or the like.
  • a secondary battery may then be fabricated by combining the doped silicon electrode and a counter electrode (for example, a positive electrode to a pre-doped negative electrode).
  • silicon nanoparticles can be used as the negative electrode active material.
  • the average particle diameter D50 of the silicon nanoparticles is, for example, preferably 5 nm or more and less than 1 ⁇ m, more preferably 10 nm or more and 300 nm or less, still more preferably 10 nm or more and 100 nm or less.
  • the silicon nanoparticles may have crystallinity.
  • the silicon nanoparticles may have a crystalline region and an amorphous region.
  • a material containing silicon for example, a material represented by SiO x (where x is preferably less than 2, more preferably 0.5 or more and 1.6 or less) can be used.
  • Carbon-based materials such as graphite, graphitizable carbon, non-graphitizable carbon, carbon nanotubes, carbon black, and graphene compounds can also be used as the negative electrode active material.
  • an oxide containing one or more elements selected from titanium, niobium, tungsten and molybdenum can be used as the negative electrode active material.
  • a plurality of the metals, materials, compounds, etc. shown above can be used in combination as the negative electrode active material.
  • negative electrode active materials examples include SnO, SnO2, titanium dioxide ( TiO2 ), lithium titanium oxide ( Li4Ti5O12 ), lithium - graphite intercalation compound ( LixC6 ), and niobium pentoxide ( Nb2O ). 5 ), oxides such as tungsten oxide (WO 2 ) and molybdenum oxide (MoO 2 ) can be used.
  • Li 2.6 Co 0.4 N 3 exhibits a large charge/discharge capacity (900 mAh/g) and is preferable.
  • a double nitride of lithium and a transition metal When a double nitride of lithium and a transition metal is used as a negative electrode material, it can be combined with a material such as V 2 O 5 or Cr 3 O 8 that does not contain lithium ions as a positive electrode material, which is preferable. Note that even when a material containing lithium ions is used as the positive electrode material, a complex nitride of lithium and a transition metal can be used as the negative electrode material by preliminarily desorbing the lithium ions contained in the positive electrode material.
  • a material that causes a conversion reaction can also be used as the negative electrode active material.
  • transition metal oxides such as cobalt oxide (CoO), nickel oxide (NiO), and iron oxide (FeO) that do not undergo an alloying reaction with lithium may be used as the negative electrode active material.
  • oxides such as Fe2O3 , CuO , Cu2O , RuO2 and Cr2O3 , sulfides such as CoS0.89 , NiS and CuS, and Zn3N2 , Cu 3 N, Ge 3 N 4 and other nitrides, NiP 2 , FeP 2 and CoP 3 and other phosphides, and FeF 3 and BiF 3 and other fluorides.
  • the potential of the fluoride since the potential of the fluoride is high, it may be used as a positive electrode material.
  • Examples of the positive electrode active material include lithium-containing composite oxides having an olivine-type crystal structure, a layered rock salt-type crystal structure, or a spinel-type crystal structure.
  • a positive electrode active material having a layered crystal structure is preferably used as the positive electrode active material of one embodiment of the present invention.
  • the layered crystal structure examples include a layered rock salt type crystal structure.
  • M is a metal element, preferably one or more selected from cobalt, manganese, nickel and iron.
  • M is, for example, two or more selected from cobalt, manganese, nickel, iron, aluminum, titanium, zirconium, lanthanum, copper and zinc.
  • Examples of composite oxides represented by LiM x O y include LiCoO 2 , LiNiO 2 and LiMnO 2 .
  • Examples of NiCo-based oxides represented by LiNixCo1 - xO2 (0 ⁇ x ⁇ 1) and composite oxides represented by LiMxOy include LiNixMn1 - xO2 ( 0 ⁇ x ⁇ 1). NiMn system represented by ⁇ 1), etc. are mentioned.
  • a composite oxide represented by LiMO 2 for example, a NiCoMn system (also known as NCM ) are mentioned.
  • NCM NiCoMn system
  • composite oxides having a layered rock salt crystal structure examples include Li2MnO3 , Li2MnO3 - LiMeO2 ( Me is Co, Ni, and Mn).
  • a positive electrode active material having a layered crystal structure may enable the realization of a secondary battery with a high lithium content per volume and a high capacity per volume.
  • a positive electrode active material a large amount of lithium is desorbed per volume during charging, and in order to perform stable charging and discharging, stabilization of the crystal structure after desorption is required.
  • high-speed charging or high-speed discharging may be hindered due to collapse of the crystal structure during charging and discharging.
  • LiNiO2 or LiNi1 - xMxO2 ( 0 ⁇ x ⁇ 1) (M It is preferable to mix Co, Al, etc.). With this structure, the characteristics of the secondary battery can be improved.
  • a lithium-manganese composite oxide represented by a composition formula of LiaMnbMcOd can be used as a positive electrode active material.
  • the element M is preferably a metal element other than lithium and manganese, silicon, or phosphorus, and more preferably nickel.
  • the composition of metal, silicon, phosphorus, etc. in the entire particles of the lithium-manganese composite oxide can be measured using, for example, an ICP-MS (inductively coupled plasma mass spectrometer).
  • the oxygen composition of the entire lithium-manganese composite oxide particles can be measured using, for example, EDX (energy dispersive X-ray spectroscopy). In addition, it can be obtained by using valence evaluation of molten gas analysis and XAFS (X-ray absorption fine structure) analysis in combination with ICPMS analysis.
  • the lithium-manganese composite oxide is an oxide containing at least lithium and manganese, and includes chromium, cobalt, aluminum, nickel, iron, magnesium, molybdenum, zinc, indium, gallium, copper, titanium, niobium, silicon, and at least one element selected from the group consisting of phosphorus and the like.
  • a positive electrode active material of one embodiment of the present invention is described with reference to FIGS.
  • FIG. 5A is a schematic top view of the positive electrode active material 100 that is one embodiment of the present invention.
  • FIG. 5B shows a schematic cross-sectional view along AB in FIG. 5A.
  • the positive electrode active material 100 contains lithium, a transition metal M1, oxygen, and an additive element X. It can be said that the positive electrode active material 100 is a composite oxide represented by LiM1O 2 (M1 is one or more selected from Fe, Ni, Co, and Mn) to which the additional element X is added.
  • M1 is one or more selected from Fe, Ni, Co, and Mn
  • the transition metal contained in the positive electrode active material 100 it is preferable to use a metal capable of forming a layered rock salt-type composite oxide belonging to the space group R-3m together with lithium.
  • a metal capable of forming a layered rock salt-type composite oxide belonging to the space group R-3m together with lithium for example, at least one of manganese, cobalt, and nickel can be used. That is, as the transition metal included in the positive electrode active material 100, only cobalt may be used, only nickel may be used, two kinds of cobalt and manganese, or two kinds of cobalt and nickel may be used, or cobalt , manganese, and nickel may be used.
  • the positive electrode active material 100 includes lithium cobaltate, lithium nickelate, lithium cobaltate in which cobalt is partially replaced with manganese, lithium cobaltate in which cobalt is partially replaced by nickel, and nickel-manganese-lithium cobaltate. It can have a composite oxide containing lithium and a transition metal, such as. If nickel is included in addition to cobalt as a transition metal, the crystal structure may become more stable in a charged state at a high voltage, which is preferable.
  • the additive element X included in the positive electrode active material 100 includes nickel, cobalt, magnesium, calcium, chlorine, fluorine, aluminum, manganese, titanium, zirconium, yttrium, vanadium, iron, chromium, niobium, lanthanum, hafnium, zinc, silicon, It is preferable to use one or more selected from sulfur, phosphorus, boron and arsenic. These elements may further stabilize the crystal structure of the positive electrode active material 100 .
  • the positive electrode active material 100 includes lithium cobalt oxide containing magnesium and fluorine, magnesium, lithium cobalt oxide containing fluorine and titanium, nickel-lithium cobalt oxide containing magnesium and fluorine, cobalt-lithium aluminum oxide containing magnesium and fluorine, nickel - lithium cobalt-aluminate, nickel-cobalt-lithium aluminate with magnesium and fluorine, nickel-manganese-lithium cobaltate with magnesium and fluorine, and the like.
  • the additional element X may be referred to as a mixture, a part of the raw material, or the like.
  • the positive electrode active material 100 has a surface layer portion 100a and an inner portion 100b. It is preferable that the surface layer portion 100a has a higher concentration of the additive element X than the inner portion 100b. Further, as shown by the gradation in FIG. 5B, the additive element X preferably has a concentration gradient that increases from the inside toward the surface.
  • the surface layer portion 100a refers to a region from the surface of the positive electrode active material 100 to about 10 nm. A surface caused by cracks and/or cracks may also be referred to as a surface, and as shown in FIG. 5C, a region of about 10 nm from the surface is referred to as a surface layer portion 100c. A region deeper than the surface layer portion 100a and the surface layer portion 100c of the positive electrode active material 100 is referred to as an inner portion 100b.
  • the surface layer portion 100a having a high concentration of the additive element X does not break the layered structure composed of octahedrons of cobalt and oxygen. , that is, the outer periphery of the particle is reinforced.
  • the concentration gradient of the additional element X exists homogeneously throughout the surface layer portion 100a of the positive electrode active material 100. This is because, even if the surface layer portion 100a is partially reinforced, if there is a non-reinforced portion, stress may concentrate on the non-reinforced portion, which is not preferable. If the stress concentrates on a portion of the particles, defects such as cracks may occur there, leading to cracking of the positive electrode active material and a decrease in charge/discharge capacity.
  • Magnesium is bivalent and is more stable in the lithium site than in the transition metal site in the layered rock salt crystal structure, so it easily enters the lithium site.
  • the layered rock salt crystal structure can be easily maintained.
  • magnesium since magnesium has a strong binding force with oxygen, it is possible to suppress desorption of oxygen around magnesium. Magnesium is preferable because it does not adversely affect the insertion and extraction of lithium during charging and discharging if the concentration is appropriate. However, an excess may adversely affect lithium insertion and desorption.
  • Aluminum is trivalent and can exist at transition metal sites in the layered rock salt crystal structure. Aluminum can suppress the elution of surrounding cobalt. In addition, since aluminum has a strong bonding force with oxygen, desorption of oxygen around aluminum can be suppressed. Therefore, when aluminum is included as the additive element X, the positive electrode active material 100 whose crystal structure does not easily collapse even after repeated charging and discharging can be obtained.
  • Fluorine is a monovalent anion, and if part of the oxygen in the surface layer portion 100a is replaced with fluorine, the lithium desorption energy is reduced. This is because the change in the valence of cobalt ions accompanying lithium elimination differs depending on the presence or absence of fluorine. , due to different redox potentials of cobalt ions. Therefore, when a part of oxygen is replaced with fluorine in the surface layer portion 100a of the positive electrode active material 100, it can be said that desorption and insertion of lithium ions in the vicinity of fluorine easily occur. Therefore, when used in a secondary battery, charge/discharge characteristics, rate characteristics, etc. are improved, which is preferable.
  • Titanium oxide is known to have superhydrophilicity. Therefore, by using the positive electrode active material 100 including titanium oxide in the surface layer portion 100a, wettability to a highly polar solvent may be improved. When used as a secondary battery, the interface between the positive electrode active material 100 and the highly polar electrolyte solution is in good contact, and an increase in resistance may be suppressed. In this specification and the like, an electrolytic solution corresponds to a liquid electrolyte.
  • the voltage of the positive electrode generally increases as the charging voltage of the secondary battery increases.
  • a positive electrode active material of one embodiment of the present invention has a stable crystal structure even at high voltage. Since the crystal structure of the positive electrode active material is stable in a charged state, it is possible to suppress a decrease in capacity that accompanies repeated charging and discharging.
  • the short circuit of the secondary battery not only causes problems in the charging operation and/or discharging operation of the secondary battery, but also may cause heat generation and ignition.
  • the positive electrode active material 100 of one embodiment of the present invention suppresses short-circuit current even at high charging voltage. Therefore, a secondary battery having both high capacity and safety can be obtained.
  • a secondary battery using the positive electrode active material 100 of one embodiment of the present invention preferably satisfies high capacity, excellent charge-discharge cycle characteristics, and safety at the same time.
  • the concentration gradient of the additive element X can be evaluated using, for example, energy dispersive X-ray spectroscopy (EDX).
  • EDX energy dispersive X-ray spectroscopy
  • measuring while scanning the inside of the area and evaluating the inside of the area two-dimensionally may be called EDX surface analysis.
  • EDX surface analysis extracting linear region data from the EDX surface analysis and evaluating the distribution of the atomic concentration in the positive electrode active material particles may be referred to as linear analysis.
  • EDX surface analysis for example, elemental mapping
  • concentration of the additive element X in the surface layer portion 100a, the inner portion 100b, the vicinity of the grain boundary, etc. of the positive electrode active material 100 can be quantitatively analyze.
  • concentration distribution of the additive element X can be analyzed by EDX-ray analysis.
  • the magnesium concentration peak (the position where the concentration is maximum) in the surface layer portion 100a is present at a depth of 3 nm from the surface of the positive electrode active material 100 toward the center. Preferably, it exists up to a depth of 1 nm, more preferably up to a depth of 0.5 nm.
  • the distribution of fluorine in the positive electrode active material 100 preferably overlaps with the distribution of magnesium. Therefore, when EDX-ray analysis is performed, the peak of the fluorine concentration in the surface layer portion 100a (the position where the concentration is maximum) preferably exists within a depth of 3 nm from the surface of the positive electrode active material 100 toward the center. It is more preferable to exist up to 1 nm, and more preferably to exist up to 0.5 nm in depth.
  • the positive electrode active material 100 contains aluminum as the additive element X, it is preferable that the distribution is slightly different from that of magnesium and fluorine.
  • the magnesium concentration peak is closer to the surface than the aluminum concentration peak of the surface layer portion 100a.
  • the aluminum concentration peak preferably exists at a depth of 0.5 nm or more and 20 nm or less, more preferably 1 nm or more and 5 nm or less, from the surface toward the center of the positive electrode active material 100 .
  • the ratio of the number of atoms of the additive element X to the number of atoms of the transition metal M1 is 0.020 or more and 0.020 or more in the vicinity of the grain boundary. 50 or less is preferred. Furthermore, 0.025 or more and 0.30 or less are preferable. Furthermore, 0.030 or more and 0.20 or less are preferable.
  • the ratio of the number of magnesium atoms to the number of cobalt atoms (Mg/Co) in the vicinity of the grain boundary is preferably 0.020 or more and 0.50 or less. . Furthermore, 0.025 or more and 0.30 or less are preferable. Furthermore, 0.030 or more and 0.20 or less are preferable.
  • the additive element included in the positive electrode active material 100 is excessive, it may adversely affect the insertion and extraction of lithium.
  • the additive element X is adjusted to have an appropriate concentration in the positive electrode active material 100 .
  • the positive electrode active material 100 may have a region where excessive additive element X is unevenly distributed. Due to the presence of such a region, excessive additive element X is removed from other regions, and the concentration of additive element X can be made appropriate in the interior and most of the surface layer of the positive electrode active material 100 .
  • the concentration of additive element X can be made appropriate in the interior and most of the surface layer of the positive electrode active material 100 .
  • the positive electrode active material 100 having a region where the excess additive element X is unevenly distributed it is allowed to mix the additive element X in excess to some extent in the manufacturing process. Therefore, the margin in production is widened, which is preferable.
  • uneven distribution means that the concentration of a certain element is different between a certain region A and a certain region B. It may be said to be segregated, precipitated, heterogeneous, biased, high concentration or low concentration, and the like.
  • LiCoO 2 lithium cobalt oxide
  • Examples of materials having a layered rock salt crystal structure include composite oxides represented by LiM1O 2 (M1 is one or more selected from Fe, Ni, Co, and Mn).
  • the Jahn-Teller effect in transition metal compounds is known to vary in strength depending on the number of electrons in the d-orbital of the transition metal.
  • FIG. 6 to 9 describe the case where cobalt is used as the transition metal contained in the positive electrode active material.
  • the positive electrode active material shown in FIG. 8 is lithium cobalt oxide (LiCoO 2 , LCO) to which halogen and magnesium are not added.
  • the crystal structure of the lithium cobaltate shown in FIG. 8 changes depending on the charging depth. In other words, when expressed as LixCoO 2 , the crystal structure changes depending on the lithium occupancy x of the lithium site.
  • the CoO 2 layer is a structure in which an octahedral structure in which six oxygen atoms are coordinated to cobalt continues in the planar direction in a state of edge sharing.
  • Lithium cobalt oxide when x is about 0.12 has a crystal structure of space group R-3m.
  • the coordinates of cobalt and oxygen in the unit cell are Co (0, 0, 0.42150 ⁇ 0.00016), O1 (0, 0, 0.27671 ⁇ 0.00045), It can be expressed as O2(0, 0, 0.11535 ⁇ 0.00045).
  • O1 and O2 are each oxygen atoms.
  • the H1-3 type crystal structure is thus represented by a unit cell with one cobalt and two oxygens.
  • the O3'-type crystal structure of one embodiment of the present invention is preferably represented by a unit cell using one cobalt and one oxygen.
  • the difference in volume is also large.
  • the difference in volume between the H1-3 type crystal structure and the O3 type crystal structure in the discharged state is 3.0% or more.
  • the crystal structure of lithium cobalt oxide collapses when it is repeatedly charged and discharged at high voltage. Collapse of the crystal structure causes deterioration of cycle characteristics. It is considered that this is because the crystal structure collapses, the number of sites where lithium can stably exist decreases, and the intercalation and deintercalation of lithium becomes difficult.
  • the positive electrode active material 100 of one embodiment of the present invention can reduce displacement of the CoO 2 layer during repeated high-voltage charging and discharging. Furthermore, the change in volume can be reduced. Therefore, the positive electrode active material of one embodiment of the present invention can achieve excellent cycle characteristics. Further, the positive electrode active material of one embodiment of the present invention can have a stable crystal structure in a high-voltage charged state. Therefore, when the positive electrode active material of one embodiment of the present invention is kept in a high-voltage charged state, short-circuiting is unlikely to occur in some cases. In such a case, the safety is further improved, which is preferable.
  • the change in crystal structure between the fully discharged state and the high voltage charged state and the difference in volume for the same number of transition metal atoms are small.
  • the crystal structure of the positive electrode active material 100 before and after charging/discharging is shown in FIG.
  • the positive electrode active material 100 is a composite oxide containing lithium, cobalt as a transition metal, and oxygen. It is preferable to have magnesium as the additional element X in addition to the above. Further, it is preferable to further contain halogen such as fluorine and chlorine as the additive element X.
  • the positive electrode active material 100 of one embodiment of the present invention has a crystal structure different from the H1-3 crystal structure in a sufficiently charged state.
  • This structure is assigned to the space group R-3m, and the ions of cobalt, magnesium, etc. occupy six oxygen-coordinated positions.
  • the symmetry of the CoO2 layer in this structure is the same as the O3 type. Therefore, this structure is referred to as an O3′-type crystal structure in this specification and the like.
  • FIG. 1 the diagram of the O3′ - type crystal structure shown in FIG.
  • the representation of lithium is omitted in order to explain the symmetry of the cobalt atoms and the symmetry of the oxygen atoms.
  • magnesium is present in a thin amount between the CoO 2 layers, that is, in the lithium sites.
  • halogen such as fluorine is present randomly and thinly at the oxygen site.
  • light elements such as lithium may occupy four oxygen coordination positions.
  • the O3′ type crystal structure has lithium randomly between layers, but it can be said that the crystal structure is similar to the CdCl2 type crystal structure.
  • change in the crystal structure is suppressed more than a conventional positive electrode active material when a large amount of lithium is desorbed by charging at a high voltage. For example, as shown by the dashed line in FIG. 6, there is little displacement of the CoO 2 layer in these crystal structures.
  • the positive electrode active material 100 of one embodiment of the present invention has high structural stability even when the charging voltage is high.
  • the charging voltage at which the H1-3 type crystal structure is obtained for example, the charging voltage at which the R-3m(O3) crystal structure can be maintained even at a voltage of about 4.6 V based on the potential of lithium metal.
  • the O3' type crystal structure can be obtained even at a higher charging voltage, for example, at a voltage of about 4.65 V to 4.7 V with respect to the potential of lithium metal.
  • H1-3 type crystals may be observed.
  • the charging voltage is such that the crystal structure of R-3m (O) can be maintained.
  • the O3' type crystal structure can be obtained even at a higher charging voltage, for example, at 4.35 V or more and 4.55 V or less with respect to the potential of lithium metal.
  • the crystal structure is less likely to collapse even when charging and discharging are repeated at high voltage.
  • the coordinates of cobalt and oxygen in the unit cell are Co (0, 0, 0.5), O (0, 0, x), and within the range of 0.20 ⁇ x ⁇ 0.25 can be shown as
  • An additive element X such as magnesium, randomly and thinly present between the CoO2 layers, that is, at the lithium site, has the effect of suppressing the displacement of the CoO2 layers. Therefore, the presence of magnesium between the CoO 2 layers tends to result in an O3' type crystal structure. Therefore, magnesium is preferably distributed in at least part of the surface layer portion of the positive electrode active material 100 of one embodiment of the present invention, and more preferably distributed in the entire surface layer portion of the positive electrode active material 100 . In order to distribute magnesium over the entire surface layer portion of the positive electrode active material 100, heat treatment is preferably performed in the manufacturing process of the positive electrode active material 100 of one embodiment of the present invention.
  • a halogen compound such as a fluorine compound
  • lithium cobalt oxide before the heat treatment for distributing magnesium over the entire surface layer of the positive electrode active material 100 .
  • the melting point of lithium cobalt oxide is lowered by adding a halogen compound. By lowering the melting point, it becomes easier to distribute magnesium over the entire surface layer of the positive electrode active material 100 at a temperature at which cation mixing is less likely to occur.
  • a fluorine compound it can be expected that corrosion resistance to hydrofluoric acid generated by decomposition of the electrolytic solution will be improved.
  • the number of atoms of magnesium included in the positive electrode active material of one embodiment of the present invention is preferably 0.001 to 0.1 times the number of atoms of a transition metal such as cobalt, and more than 0.01 times and less than 0.04 times. is more preferable, and about 0.02 times is even more preferable.
  • the concentration of magnesium shown here may be, for example, a value obtained by performing an elemental analysis of the entire positive electrode active material using ICP-MS or the like, or may be a value of the raw material composition in the process of manufacturing the positive electrode active material 100. may be based.
  • Lithium cobaltate may be added with one or more metals selected from nickel, aluminum, manganese, titanium, vanadium and chromium as metals other than cobalt (hereinafter referred to as additional element X), particularly one or more of nickel and aluminum. is preferably added.
  • additional element X manganese, titanium, vanadium, and chromium may be stable by being tetravalent, and may greatly contribute to structural stability.
  • the additive element X By adding the additive element X, the crystal structure may become more stable in a charged state at a high voltage.
  • the additive element X is preferably added at a concentration that does not significantly change the crystallinity of lithium cobalt oxide. For example, it is preferable that the amount is such that the aforementioned Yarn-Teller effect or the like is not exhibited.
  • Transition metals such as nickel and manganese and aluminum are preferably present on cobalt sites, but may be partially present on lithium sites. Also, magnesium is preferably present at the lithium site. Oxygen may be partially substituted with fluorine.
  • the capacity of the positive electrode active material may decrease as the magnesium concentration of the positive electrode active material of one embodiment of the present invention increases. As a factor for this, for example, it is conceivable that the amount of lithium that contributes to charging and discharging decreases due to the entry of magnesium into the lithium sites.
  • the positive electrode active material of one embodiment of the present invention includes nickel in addition to magnesium as the additive element X
  • charge-discharge cycle characteristics can be improved in some cases.
  • the positive electrode active material of one embodiment of the present invention includes aluminum in addition to magnesium as the additive element X
  • charge-discharge cycle characteristics can be improved in some cases.
  • the positive electrode active material of one embodiment of the present invention contains magnesium, nickel, and aluminum as the additive element X, charge-discharge cycle characteristics can be improved in some cases.
  • concentrations of the elements in the positive electrode active material of one embodiment of the present invention which includes magnesium, nickel, and aluminum as the additive element X, are discussed below.
  • the number of nickel atoms included in the positive electrode active material of one embodiment of the present invention is preferably 10% or less of the number of cobalt atoms, more preferably 7.5% or less, further preferably 0.05% or more and 4% or less, and 0 .1% or more and 2% or less is particularly preferable.
  • the concentration of nickel shown here may be, for example, a value obtained by elemental analysis of the entire positive electrode active material using ICP-MS or the like, or may be based on the value of the raw material composition in the process of producing the positive electrode active material.
  • the constituent elements of the positive electrode active material are eluted into the electrolyte, and the crystal structure may collapse.
  • nickel in the above ratio, elution of constituent elements from the positive electrode active material 100 can be suppressed in some cases.
  • the number of aluminum atoms in the positive electrode active material of one embodiment of the present invention is preferably 0.05% or more and 4% or less, more preferably 0.1% or more and 2% or less, of the number of cobalt atoms.
  • the concentration of aluminum shown here may be, for example, a value obtained by performing elemental analysis of the entire positive electrode active material using ICP-MS or the like, or may be based on the value of the raw material composition in the process of producing the positive electrode active material.
  • Phosphorus is preferably used as the additive element X in the positive electrode active material containing the additive element X of one embodiment of the present invention. Further, the positive electrode active material of one embodiment of the present invention more preferably contains a compound containing phosphorus and oxygen.
  • the positive electrode active material of one embodiment of the present invention includes a compound containing phosphorus as the additive element X, a short circuit may not easily occur when a high-temperature, high-voltage charged state is maintained for a long time.
  • the positive electrode active material of one embodiment of the present invention contains phosphorus as the additive element X
  • hydrogen fluoride generated by decomposition of the electrolyte reacts with phosphorus, which may reduce the concentration of hydrogen fluoride in the electrolyte.
  • hydrolysis may generate hydrogen fluoride.
  • Hydrogen fluoride may also be generated by the reaction between PVDF used as a component of the positive electrode and alkali.
  • corrosion of the current collector and/or peeling of the film can be suppressed in some cases.
  • the stability in a high-voltage charged state is extremely high.
  • the number of phosphorus atoms is preferably 1% or more and 20% or less, more preferably 2% or more and 10% or less, and even more preferably 3% or more and 8% or less of the number of cobalt atoms.
  • the number of atoms of magnesium is preferably 0.1% or more and 10% or less, more preferably 0.5% or more and 5% or less, and more preferably 0.7% or more and 4% or less of the number of cobalt atoms.
  • the concentration of phosphorus and magnesium shown here may be, for example, a value obtained by performing an elemental analysis of the entire positive electrode active material 100 using ICP-MS or the like, or may be a value obtained by mixing raw materials in the process of manufacturing the positive electrode active material 100. may be based on the value of
  • the positive electrode active material 100 has cracks, progress of the cracks may be suppressed due to the presence of phosphorus, more specifically, for example, a compound containing phosphorus and oxygen.
  • the symmetry of oxygen atoms is slightly different between the O3 type crystal structure and the O3′ type crystal structure. Specifically, in the O3-type crystal structure, the oxygen atoms are aligned along the dotted line, whereas in the O3′-type crystal structure the oxygen atoms are not strictly aligned. This is because, in the O3′ type crystal structure, tetravalent cobalt increased as lithium decreased, causing Jahn-Teller strain to increase and the octahedral structure of CoO 6 to be distorted. In addition, the repulsion between oxygen atoms in the CoO 2 layer increased with the decrease in lithium, which also affects the results.
  • ⁇ Surface layer portion 100a> Magnesium is preferably distributed throughout the surface layer portion 100a of the positive electrode active material 100 of one embodiment of the present invention, and in addition, the magnesium concentration in the surface layer portion 100a is preferably higher than the average of the entire surface layer portion 100a. For example, it is preferable that the magnesium concentration of the surface layer portion 100a measured by XPS or the like is higher than the overall average magnesium concentration measured by ICP-MS or the like.
  • the positive electrode active material 100 of one embodiment of the present invention contains an element other than cobalt, such as one or more metals selected from nickel, aluminum, manganese, iron, and chromium
  • the concentration of the metal in the vicinity of the particle surface is Higher than the overall average is preferred.
  • the concentration of elements other than cobalt in the surface layer portion 100a measured by XPS or the like is preferably higher than the concentration of the elements in the entire particle measured by ICP-MS or the like.
  • the surface layer portion 100a of the positive electrode active material 100 is, so to speak, all crystal defects, and moreover, lithium is released from the surface during charging, so the lithium concentration tends to be lower than inside. Therefore, it tends to be unstable and the crystal structure tends to collapse. If the magnesium concentration of the surface layer portion 100a is high, it is possible to more effectively suppress changes in the crystal structure. Further, when the magnesium concentration of the surface layer portion 100a is high, it can be expected that corrosion resistance to hydrofluoric acid generated by decomposition of the electrolytic solution is improved.
  • the concentration of halogen such as fluorine in the surface layer portion 100a of the positive electrode active material 100 of one embodiment of the present invention is preferably higher than the average of the whole.
  • the presence of halogen in the surface layer portion 100a, which is the region in contact with the electrolytic solution, can effectively improve the corrosion resistance to hydrofluoric acid.
  • the surface layer portion 100a of the positive electrode active material 100 of one embodiment of the present invention preferably has a higher concentration of additive elements such as magnesium and fluorine than the inner portion 100b and has a composition different from that of the inner portion 100b. Moreover, it is preferable that the composition has a stable crystal structure at room temperature. Therefore, the surface layer portion 100a may have a crystal structure different from that of the inner portion 100b. For example, at least part of the surface layer portion 100a of the positive electrode active material 100 of one embodiment of the present invention may have a rock salt crystal structure. Moreover, when the surface layer portion 100a and the inner portion 100b have different crystal structures, it is preferable that the crystal orientations of the surface layer portion 100a and the inner portion 100b substantially match.
  • the anions of layered rock salt crystals and rock salt crystals have a cubic close-packed structure (face-centered cubic lattice structure).
  • the O3' type crystal is also presumed to have a cubic close-packed structure of anions.
  • a structure in which three layers of negative ions are mutually shifted and stacked like ABCABC is referred to as a cubic close-packed structure. Therefore, anions do not have to form a strictly cubic lattice.
  • the analysis results do not necessarily match the theory. For example, in FFT (Fast Fourier Transform) such as electron diffraction or TEM images, spots may appear at positions slightly different from their theoretical positions. For example, if the orientation with respect to the theoretical position is 5 degrees or less, or 2.5 degrees or less, it can be said that a cubic close-packed structure is obtained.
  • the anions in the (111) plane of the cubic crystal structure have a triangular shaped arrangement.
  • the layered rocksalt type has a space group R-3m and has a rhombohedral structure, but is generally represented by a compound hexagonal lattice to facilitate understanding of the structure, and the (0001) plane of the layered rocksalt type has a hexagonal lattice.
  • the cubic (111) triangular lattice has the same atomic arrangement as the (0001) hexagonal lattice of the layered rocksalt type. It can be said that the orientation of the cubic close-packed structure is aligned when both lattices are consistent.
  • the space group of layered rocksalt crystals and O3' crystals is R-3m
  • the space group of rocksalt crystals is Fm-3m (the space group of common rocksalt crystals) and Fd-3m (the simplest symmetry). Therefore, the Miller indices of the crystal planes satisfying the above conditions are different between the layered rocksalt crystal and the O3′ crystal, and the rocksalt crystal.
  • the cubic close-packed structures composed of anions are oriented in the layered rocksalt-type crystal, the O3′-type crystal, and the rocksalt-type crystal, it is sometimes said that the orientations of the crystals roughly match. be.
  • TEM transmission electron microscope
  • STEM scanning transmission electron microscope
  • HAADF-STEM high angle scattering annular dark field scanning transmission electron microscope
  • ABF-STEM Annular bright-field scanning transmission electron microscope
  • the additive element X included in the positive electrode active material 100 of one embodiment of the present invention may be randomly and sparsely present inside, but part of it is more preferably segregated at grain boundaries.
  • the concentration of the additive element X at the grain boundary and its vicinity of the positive electrode active material 100 of one embodiment of the present invention is higher than that in other regions inside.
  • the grain boundary can be considered as a planar defect. Therefore, like the particle surface, it tends to become unstable and the crystal structure tends to start changing. Therefore, if the concentration of the additive element X at the grain boundary and its vicinity is high, the change in the crystal structure can be suppressed more effectively.
  • the concentration of the additive element X at the grain boundary and its vicinity is high, even if cracks are generated along the grain boundaries of the particles of the positive electrode active material 100 of one embodiment of the present invention, the surface of the grains generated by the cracks The concentration of the additional element X increases in the vicinity. Therefore, the corrosion resistance to hydrofluoric acid can be improved even in the positive electrode active material after cracks have occurred.
  • the vicinity of the grain boundary refers to a region from the grain boundary to about 10 nm.
  • the average particle diameter D50 is preferably 1 ⁇ m or more and 100 ⁇ m or less, more preferably 2 ⁇ m or more and 40 ⁇ m or less, and even more preferably 5 ⁇ m or more and 30 ⁇ m or less.
  • a certain positive electrode active material is the positive electrode active material 100 of one embodiment of the present invention that exhibits an O3′-type crystal structure when charged at a high voltage
  • XRD can analyze the symmetry of transition metals such as cobalt in the positive electrode active material with high resolution, can compare the crystallinity level and crystal orientation, and can analyze the periodic strain and crystallite size of the lattice. It is preferable in that sufficient accuracy can be obtained even if the positive electrode obtained by disassembling the secondary battery is measured as it is.
  • the positive electrode active material 100 of one embodiment of the present invention is characterized by little change in crystal structure between a high-voltage charged state and a discharged state.
  • a material in which the crystal structure, which changes significantly from the discharged state when charged at a high voltage, accounts for 50 wt % or more is not preferable because it cannot withstand charging and discharging at a high voltage.
  • the desired crystal structure may not be obtained only by adding an additive element. For example, even if lithium cobalt oxide containing magnesium and fluorine is common, when the O3′ type crystal structure is 60 wt% or more when charged at a high voltage, the H1-3 type crystal structure is 50 wt% or more.
  • the O3' type crystal structure becomes approximately 100 wt %, and when the predetermined voltage is further increased, the H1-3 type crystal structure may occur. Therefore, in order to determine whether the material is the positive electrode active material 100 of one embodiment of the present invention, analysis of the crystal structure such as XRD is necessary.
  • the positive electrode active material in a charged or discharged state at a high voltage may undergo a change in crystal structure when exposed to the atmosphere.
  • the O3' type crystal structure may change to the H1-3 type crystal structure. Therefore, all samples are preferably handled in an inert atmosphere such as an argon atmosphere.
  • High-voltage charging for determining whether a certain composite oxide is the positive electrode active material 100 of one embodiment of the present invention is performed by, for example, preparing a coin cell (CR2032 type, diameter 20 mm, height 3.2 mm) using lithium as a counter electrode. can be charged.
  • the positive electrode can be obtained by coating a positive electrode current collector made of aluminum foil with a slurry obtained by mixing a positive electrode active material, a conductive material, and a binder.
  • Lithium metal can be used as the counter electrode.
  • the potential of the secondary battery and the potential of the positive electrode are different. Voltage and potential in this specification and the like are the potential of the positive electrode unless otherwise specified.
  • LiPF6 lithium hexafluorophosphate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Polypropylene with a thickness of 25 ⁇ m can be used for the separator.
  • the positive electrode can and the negative electrode can, those made of stainless steel (SUS) can be used.
  • SUS stainless steel
  • the coin cell produced under the above conditions is charged at a constant current of 4.6V and 0.5C, and then charged at a constant voltage until the current value reaches 0.01C.
  • 1C is 137 mA/g here.
  • the temperature should be 25°C.
  • the coin cell is dismantled in an argon atmosphere glove box and the positive electrode is taken out to obtain a positive electrode active material charged at a high voltage.
  • Figs. 7 and 9 show ideal powder XRD patterns with CuK ⁇ 1 rays calculated from models of the O3' type crystal structure and the H1-3 type crystal structure.
  • the patterns of LiCoO 2 (O3) and CoO 2 (O1) were created using Reflex Powder Diffraction, which is one of the modules of Materials Studio (BIOVIA) from crystal structure information obtained from ICSD (Inorganic Crystal Structure Database). did.
  • the pattern of the O3′-type crystal structure was estimated from the XRD pattern of the positive electrode active material of one embodiment of the present invention, and TOPAS ver. 3 (Crystal structure analysis software manufactured by Bruker) was used for fitting, and an XRD pattern was created in the same manner as the others.
  • the positive electrode active material 100 of one embodiment of the present invention has an O3'-type crystal structure when charged at a high voltage
  • not all of the positive electrode active material 100 may have an O3'-type crystal structure. It may contain other crystal structures, or may be partially amorphous.
  • the O3' type crystal structure is preferably 50 wt% or more, more preferably 60 wt% or more, and even more preferably 66 wt% or more. If the O3' type crystal structure is 50 wt% or more, preferably 60 wt% or more, and even more preferably 66 wt% or more, the positive electrode active material can have sufficiently excellent cycle characteristics.
  • the O3' type crystal structure is preferably 35 wt% or more, more preferably 40 wt% or more, and 43 wt% or more when Rietveld analysis is performed. is more preferable.
  • the crystallite size of the O3′ type crystal structure possessed by the particles of the positive electrode active material is reduced to only about 1/10 that of LiCoO 2 (O3) in the discharged state. Therefore, even under the same XRD measurement conditions as those of the positive electrode before charging and discharging, a clear peak of the O3′ type crystal structure can be confirmed in the high voltage charged state.
  • the crystallite size is small and the peak is broad and small, even if a part of it can have a structure similar to the O3′ type crystal structure. The crystallite size can be obtained from the half width of the XRD peak.
  • the positive electrode active material of one embodiment of the present invention is less affected by the Jahn-Teller effect.
  • the positive electrode active material of one embodiment of the present invention preferably has a layered rock salt crystal structure and mainly contains cobalt as a transition metal.
  • the positive electrode active material of one embodiment of the present invention may contain the above additive element X as long as the effect of the Jahn-Teller effect is small.
  • the layered rock salt type particles of the positive electrode active material in a non-charged/discharged state or in a discharged state which can be estimated from the XRD pattern wherein the a-axis lattice constant is larger than 2.814 ⁇ 10 ⁇ 10 m and smaller than 2.817 ⁇ 10 ⁇ 10 m, and the c-axis lattice constant is larger than 14.05 ⁇ 10 ⁇ 10 m. It has been found to be preferably less than 07 ⁇ 10 ⁇ 10 m.
  • the state in which charging and discharging are not performed may be, for example, the state of powder before manufacturing the positive electrode of the secondary battery.
  • the value obtained by dividing the lattice constant of the a-axis by the lattice constant of the c-axis is preferably greater than 0.20000 and less than 0.20049.
  • XRD analysis shows that 2 ⁇ is 18.50 ° or more and 19.30 ° or less. A peak may be observed, and a second peak may be observed at 2 ⁇ of 38.00° or more and 38.80° or less.
  • the peak appearing in the powder XRD pattern reflects the crystal structure of the inside 100b of the positive electrode active material 100, which occupies most of the volume of the positive electrode active material 100.
  • the crystal structure of the surface layer portion 100 a and the like can be analyzed by electron diffraction or the like of a cross section of the positive electrode active material 100 .
  • X-ray photoelectron spectroscopy can analyze a region from the surface to a depth of about 2 to 8 nm (usually about 5 nm), so the concentration of each element can be quantitatively measured for about half the region of the surface layer 100a. can be analyzed to Also, the bonding state of elements can be analyzed by narrow scan analysis.
  • the quantitative accuracy of XPS is often about ⁇ 1 atomic %, and the detection limit is about 1 atomic % although it depends on the element.
  • the number of atoms of the additive element X is preferably 1.6 to 6.0 times the number of atoms of the transition metal, and 4.8 times to 1.8 times the number of atoms of the transition metal. Less than 0 times is more preferable.
  • the additive element X is magnesium and the transition metal M1 is cobalt
  • the number of magnesium atoms is preferably 1.6 times or more and 6.0 times or less, and preferably 1.8 times or more and less than 4.0 times, the number of cobalt atoms. more preferred.
  • the number of halogen atoms such as fluorine is preferably 0.2 to 6.0 times, more preferably 1.2 to 4.0 times, the number of transition metal atoms.
  • monochromatic aluminum can be used as an X-ray source.
  • the extraction angle may be set to 45°, for example.
  • the peak indicating the binding energy between fluorine and another element is preferably 682 eV or more and less than 685 eV, more preferably about 684.3 eV. .
  • This value is different from both 685 eV, which is the binding energy of lithium fluoride, and 686 eV, which is the binding energy of magnesium fluoride. That is, in the case where the positive electrode active material 100 of one embodiment of the present invention contains fluorine, it is preferably a bond other than lithium fluoride and magnesium fluoride.
  • the peak indicating the binding energy between magnesium and another element is preferably 1302 eV or more and less than 1304 eV, more preferably about 1303 eV. This value is different from 1305 eV, which is the binding energy of magnesium fluoride, and is close to the binding energy of magnesium oxide. That is, in the case where the positive electrode active material 100 of one embodiment of the present invention contains magnesium, it is preferably a bond other than magnesium fluoride.
  • Additional elements X such as magnesium and aluminum, which are preferably abundantly present in the surface layer portion 100a, have concentrations measured by XPS or the like by ICP-MS (inductively coupled plasma mass spectrometry) or GD-MS (glow discharge mass spectrometry). ) or the like.
  • the concentration of the surface layer 100a is higher than the concentration of the inside 100b. Processing can be performed by FIB, for example.
  • the number of magnesium atoms is preferably 0.4 to 1.5 times the number of cobalt atoms.
  • the atomic ratio Mg/Co of magnesium by ICP-MS analysis is preferably 0.001 or more and 0.06 or less.
  • nickel contained in the transition metal is preferably distributed throughout the positive electrode active material 100 without being unevenly distributed in the surface layer portion 100a. However, this is not the case when there is a region where the excess additive element X is unevenly distributed as described above.
  • the positive electrode active material 100 of one embodiment of the present invention preferably has a smooth surface with few unevenness.
  • a smooth surface with little unevenness is one factor indicating that the additive element X is well distributed in the surface layer portion 100a. Note that in the process of manufacturing the positive electrode active material 100, when initial heating is performed on lithium cobalt oxide or lithium nickel-cobalt-manganese oxide before addition of the additive element X, charging and discharging at a high voltage may occur. It is particularly preferable as the positive electrode active material 100 because of its remarkably excellent repetition characteristics.
  • the surface of the positive electrode active material 100 is smooth and has few irregularities, the stability of the surface of the positive electrode active material 100 is improved, and the occurrence of pits may be suppressed.
  • the fact that the surface is smooth and has little unevenness can be determined from, for example, a cross-sectional SEM image or a cross-sectional TEM image of the positive electrode active material 100, the specific surface area of the positive electrode active material 100, or the like.
  • the smoothness of the surface can be quantified from the cross-sectional SEM image of the positive electrode active material 100 as follows.
  • the positive electrode active material 100 is processed by FIB or the like to expose the cross section. At this time, it is preferable to cover the positive electrode active material 100 with a protective film, a protective agent, or the like.
  • the surface roughness of the positive electrode active material is the surface roughness of at least 400 nm of the outer circumference of the particle.
  • the root mean square (RMS) surface roughness which is an index of roughness, is 10 nm or less, less than 3 nm, preferably less than 1 nm, more preferably less than 0.5 nm. Root mean square surface roughness (RMS) is preferred.
  • the image processing software for noise processing, interface extraction, etc. is not particularly limited, but for example, "ImageJ" can be used.
  • the spreadsheet software is not particularly limited, but for example, Microsoft Office Excel can be used.
  • the smoothness of the surface of the positive electrode active material 100 can also be quantified from the ratio between the actual specific surface area AR measured by the constant volume gas adsorption method and the ideal specific surface area Ai.
  • the ideal specific surface area Ai is calculated by assuming that all particles have the same diameter as D50, have the same weight, and have an ideal sphere shape.
  • the median diameter D50 can be measured with a particle size distribution meter or the like using a laser diffraction/scattering method.
  • the specific surface area can be measured by, for example, a specific surface area measuring device using a gas adsorption method based on a constant volume method.
  • the positive electrode active material 100 of one embodiment of the present invention preferably has a ratio AR/Ai between the ideal specific surface area Ai determined from the median diameter D50 and the actual specific surface area AR of 2 or less.
  • FIGS. 10 and 11 Examples of defects that may occur in the positive electrode active material particles are shown in FIGS. 10 and 11.
  • FIG. 10 and 11 The positive electrode active material of one embodiment of the present invention can be expected to have the effect of suppressing the following progressive defects.
  • FIG. 10 shows a schematic cross-sectional view of the positive electrode active material particles 51 .
  • pits are shown as holes at 54 and 58 , but the opening shape is not circular but deep, and cracks are shown at 57 .
  • Reference numeral 55 denotes a crystal plane
  • 52 denotes a concave portion
  • 53 and 56 denote barrier films.
  • Cracks may occur when the electrode is pressed, but cracks that occur during pressing do not have the surface layer containing the additive element X described above, so there is a risk of inducing progressive defects during charging and discharging.
  • the electrode is manufactured by the method for manufacturing an electrode of one embodiment of the present invention, it can be expected that the generation of cracks during pressing of the electrode can be suppressed. The effect of suppressing the occurrence of progressive defects due to charging and discharging can be expected.
  • the positive electrode active materials of lithium-ion secondary batteries are typically LCO and NCM, and can be said to be alloys containing multiple metal elements (cobalt, nickel, etc.). At least one of the positive electrode active material particles has a defect, and the defect may change before and after charging and discharging.
  • the positive electrode active material particles are used in a secondary battery, they are chemically or electrochemically corroded by environmental substances (electrolyte solution, etc.) surrounding the positive electrode active material particles, or the material deteriorates. There is This deterioration does not occur uniformly on the surface of the particles, but occurs locally and intensively. Repeated charging and discharging of the secondary battery causes, for example, deep defects from the surface to the inside.
  • a phenomenon in which defects progress and form holes in the positive electrode active material particles can also be called pitting corrosion, and the holes generated by this phenomenon are also called pits in this specification.
  • cracks and pits are different. Immediately after the production of the positive electrode active material particles, there are cracks but no pits.
  • a pit can be said to be a hole from which several layers of cobalt and oxygen have escaped, or a place where cobalt has been eluted, by charging and discharging under high voltage conditions of 4.5 V or higher or high temperature (45° C. or higher).
  • Cracks refer to cracks caused by new surfaces or crystal grain boundaries caused by the application of physical pressure. Cracks may occur due to expansion and contraction of particles due to charging and discharging. Pits may also arise from cracks or cavities within the particles.
  • FIG. 11A is a cross-sectional STEM photograph of a defective portion of a positive electrode active material when pressing is performed by a general method after forming a positive electrode active material layer on a current collector.
  • c-axis direction the direction perpendicular to the lattice
  • traces of deformation along the lattice stripe direction (ab plane direction) are observed.
  • FIG. 11B is a cross-sectional schematic diagram of the particles before pressing.
  • a barrier layer 56 containing Mg, Al, etc. relatively uniformly exists on the grain surface in the direction perpendicular to the lattice fringes.
  • a crystal plane 55 with no slips is also shown in FIG. 11B.
  • FIG. 11C is a schematic cross-sectional view of the particles after pressing.
  • the press process causes misalignment in the lattice pattern direction (ab plane direction).
  • the Mg and Al layers also have a plurality of steps and become non-uniform. Concerning the displacement in the ab plane direction, unevenness of a similar shape is also generated on the particle surface on the opposite side of the surface on which the unevenness is observed, and some of the particles are displaced in the ab plane direction.
  • the multiple steps illustrated in FIG. 11C are observed as stripes on the particle surface.
  • a striped pattern on the particle surface that is observed due to the unevenness of the particle surface caused by the displacement caused by pressing is called a slip (stacking fault).
  • Such particle slip also causes non-uniformity in the barrier film, which may lead to deterioration.
  • the positive electrode active material 100 of one embodiment of the present invention may be a positive electrode active material composite including a coating layer that covers at least part of the positive electrode active material 100 .
  • a coating layer that covers at least part of the positive electrode active material 100 .
  • one or more of glass, oxide, and LiM2PO4 can be used as the coating layer.
  • a material having an amorphous portion can be used as the glass that the coating layer of the positive electrode active material composite has.
  • Materials having an amorphous portion include, for example, SiO2 , SiO , Al2O3 , TiO2 , Li4SiO4 , Li3PO4 , Li2S , SiS2 , B2S3 , GeS4 , AgI , Ag2O , Li2O, P2O5 , B2O3 , and V2O5 , Li7P3S11 , or Li1 + x + yAlxTi2 - x SiyP3 - yO12 (0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3,) and the like can be used.
  • a material having an amorphous portion can be used in an entirely amorphous state or in a partially crystallized state of crystallized glass (also referred to as glass ceramics). It is desirable that the glass have lithium ion conductivity. Lithium ion conductivity can also be said to have lithium ion diffusibility and lithium ion penetrability. Further, the glass preferably has a melting point of 800° C. or lower, more preferably 500° C. or lower. Moreover, it is preferable that the glass has electronic conductivity. Also, the glass preferably has a softening point of 800° C. or lower, and for example, Li 2 O—B 2 O 3 —SiO 2 based glass can be used.
  • Examples of oxides included in the coating layer of the positive electrode active material composite include aluminum oxide, zirconium oxide, hafnium oxide, and niobium oxide.
  • Examples of LiM2PO 4 (M2 is one or more selected from Fe, Ni, Co, and Mn) included in the coating layer of the positive electrode active material composite include LiFePO 4 , LiNiPO 4 , LiCoPO 4 , LiMnPO 4 , and LiFe a Ni.
  • Compositing treatment can be used to prepare the coating layer of the positive electrode active material composite.
  • Compositing treatments include, for example, mechanical energy-based compositing treatments such as mechanochemical methods, mechanofusion methods, and ball milling methods, and compositing treatments by liquid phase reactions such as coprecipitation methods, hydrothermal methods, and sol-gel methods.
  • treatment and one or more compounding treatments by vapor phase reactions such as barrel sputtering, ALD (Atomic Layer Deposition), vapor deposition, and CVD (Chemical Vapor Deposition).
  • Picobond manufactured by Hosokawa Micron Co., Ltd. for example, can be used as a compounding treatment using mechanical energy.
  • the positive electrode active material composite reduces the contact of the positive electrode active material with the electrolyte solution, etc., so deterioration of the secondary battery can be suppressed.
  • FIG. 12A is an exploded perspective view of a coin-type (single-layer flat type) secondary battery
  • FIG. 12B is an external view
  • FIG. 12C is a cross-sectional view thereof.
  • Coin-type secondary batteries are mainly used in small electronic devices. In this specification and the like, coin-type batteries include button-type batteries.
  • FIG. 12A in order to make it easier to understand, it is a schematic diagram so that the overlapping of members (vertical relationship and positional relationship) can be understood. Therefore, FIG. 12A and FIG. 12B do not correspond to each other completely.
  • the positive electrode 304, separator 310, negative electrode 307, spacer 322, and washer 312 are stacked. These are sealed with a negative electrode can 302 and a positive electrode can 301 .
  • a gasket for sealing is not shown in FIG. 12A.
  • the spacer 322 and the washer 312 are used to protect the inside or fix the position inside the can when the positive electrode can 301 and the negative electrode can 302 are pressure-bonded. Spacers 322 and washers 312 are made of stainless steel or an insulating material.
  • a positive electrode 304 has a laminated structure in which a positive electrode active material layer 306 is formed on a positive electrode current collector 305 .
  • a separator 310 and a ring-shaped insulator 313 are arranged so as to cover the side and top surfaces of the positive electrode 304, respectively.
  • the separator 310 has a larger planar area than the positive electrode 304 .
  • FIG. 12B is a perspective view of a completed coin-type secondary battery.
  • a positive electrode can 301 that also serves as a positive electrode terminal and a negative electrode can 302 that also serves as a negative electrode terminal are insulated and sealed with a gasket 303 made of polypropylene or the like.
  • the positive electrode 304 is formed of a positive electrode current collector 305 and a positive electrode active material layer 306 provided so as to be in contact therewith.
  • the negative electrode 307 is formed of a negative electrode current collector 308 and a negative electrode active material layer 309 provided so as to be in contact therewith.
  • the negative electrode 307 is not limited to a laminated structure, and may be a lithium metal foil or a lithium-aluminum alloy foil.
  • the positive electrode 304 and the negative electrode 307 used in the coin-shaped secondary battery 300 may each have an active material layer formed on only one side.
  • the positive electrode can 301 and the negative electrode can 302 can be made of metals such as nickel, aluminum, titanium, etc., which are corrosion-resistant to the electrolyte, alloys thereof, and alloys of these with other metals (for example, stainless steel). can. In addition, it is preferable to coat nickel, aluminum, or the like in order to prevent corrosion due to an electrolyte or the like.
  • the positive electrode can 301 and the negative electrode can 302 are electrically connected to the positive electrode 304 and the negative electrode 307, respectively.
  • the negative electrode 307, the positive electrode 304 and the separator 310 are immersed in an electrolytic solution, and as shown in FIG. 301 and a negative electrode can 302 are crimped via a gasket 303 to manufacture a coin-shaped secondary battery 300 .
  • the coin-type secondary battery 300 with high capacity, high charge/discharge capacity, and excellent cycle characteristics can be obtained.
  • the separator 310 may be omitted.
  • a cylindrical secondary battery 616 has a positive electrode cap (battery lid) 601 on its top surface and battery cans (armor cans) 602 on its side and bottom surfaces.
  • the positive electrode cap 601 and the battery can (outer can) 602 are insulated by a gasket (insulating packing) 610 .
  • FIG. 13B is a diagram schematically showing a cross section of a cylindrical secondary battery.
  • the cylindrical secondary battery shown in FIG. 13B has a positive electrode cap (battery cover) 601 on the top surface and battery cans (armor cans) 602 on the side and bottom surfaces.
  • the positive electrode cap and the battery can (outer can) 602 are insulated by a gasket (insulating packing) 610 .
  • a battery element in which a strip-shaped positive electrode 604 and a strip-shaped negative electrode 606 are wound with a separator 605 interposed therebetween is provided inside a hollow cylindrical battery can 602 .
  • the battery element is wound around the central axis.
  • Battery can 602 is closed at one end and open at the other end.
  • the battery can 602 can be made of metal such as nickel, aluminum, titanium, etc., which is resistant to corrosion against the electrolyte, alloys thereof, and alloys of these and other metals (for example, stainless steel). can.
  • the battery element in which the positive electrode, the negative electrode and the separator are wound is sandwiched between a pair of insulating plates 608 and 609 facing each other.
  • a non-aqueous electrolyte (not shown) is filled inside the battery can 602 in which the battery element is provided. The same non-aqueous electrolyte as used in coin-type secondary batteries can be used.
  • FIGS. 13A to 13D illustrate the secondary battery 616 in which the height of the cylinder is greater than the diameter of the cylinder, but the present invention is not limited to this.
  • the diameter of the cylinder may be a secondary battery that is larger than the height of the cylinder. With such a configuration, for example, the size of the secondary battery can be reduced.
  • a positive electrode terminal (positive collector lead) 603 is connected to the positive electrode 604
  • a negative electrode terminal (negative collector lead) 607 is connected to the negative electrode 606 .
  • a metal material such as aluminum can be used for both the positive terminal 603 and the negative terminal 607 .
  • the positive electrode terminal 603 and the negative electrode terminal 607 are resistance welded to the safety valve mechanism 613 and the bottom of the battery can 602, respectively.
  • the safety valve mechanism 613 is electrically connected to the positive electrode cap 601 via a PTC element (Positive Temperature Coefficient) 611 .
  • the safety valve mechanism 613 disconnects the electrical connection between the positive electrode cap 601 and the positive electrode 604 when the increase in internal pressure of the battery exceeds a predetermined threshold.
  • the PTC element 611 is a thermal resistance element whose resistance increases when the temperature rises, and the increase in resistance limits the amount of current to prevent abnormal heat generation.
  • Barium titanate (BaTiO3) semiconductor ceramics or the like can be used for the PTC element.
  • FIG. 13C shows an example of the power storage system 615.
  • a power storage system 615 includes a plurality of secondary batteries 616 .
  • the positive electrode of each secondary battery contacts and is electrically connected to a conductor 624 separated by an insulator 625 .
  • Conductor 624 is electrically connected to control circuit 620 via wiring 623 .
  • a negative electrode of each secondary battery is electrically connected to the control circuit 620 through a wiring 626 .
  • a protection circuit or the like that prevents overcharge or overdischarge can be applied as the control circuit 620 .
  • FIG. 13D shows an example of the power storage system 615.
  • FIG. A power storage system 615 includes a plurality of secondary batteries 616 that are sandwiched between a conductive plate 628 and a conductive plate 614 .
  • the plurality of secondary batteries 616 are electrically connected to the conductive plates 628 and 614 by wirings 627 .
  • a plurality of secondary batteries 616 may be connected in parallel or in series.
  • a plurality of secondary batteries 616 may be connected in series after being connected in parallel.
  • a temperature control device may be provided between the plurality of secondary batteries 616 .
  • the secondary battery 616 When the secondary battery 616 is overheated, it can be cooled by the temperature control device, and when the secondary battery 616 is too cold, it can be heated by the temperature control device. Therefore, the performance of power storage system 615 is less likely to be affected by the outside air temperature.
  • the power storage system 615 is electrically connected to the control circuit 620 via wiring 621 and wiring 622 .
  • the wiring 621 is electrically connected to the positive electrodes of the plurality of secondary batteries 616 through the conductive plate 628
  • the wiring 622 is electrically connected to the negative electrodes of the plurality of secondary batteries 616 through the conductive plate 614 .
  • a secondary battery 913 shown in FIG. 14A has a wound body 950 provided with terminals 951 and 952 inside a housing 930 .
  • the wound body 950 is immersed in the electrolytic solution inside the housing 930 .
  • the terminal 952 is in contact with the housing 930, and the terminal 951 is not in contact with the housing 930 by using an insulating material or the like.
  • the housing 930 is shown separately for the sake of convenience. exist.
  • a metal material such as aluminum
  • a resin material can be used as the housing 930.
  • the housing 930 shown in FIG. 14A may be made of a plurality of materials.
  • a housing 930a and a housing 930b are attached together, and a wound body 950 is provided in a region surrounded by the housings 930a and 930b.
  • An insulating material such as organic resin can be used as the housing 930a.
  • a material such as an organic resin for the surface on which the antenna is formed shielding of the electric field by the secondary battery 913 can be suppressed.
  • an antenna may be provided inside the housing 930a.
  • a metal material, for example, can be used as the housing 930b.
  • a wound body 950 has a negative electrode 931 , a positive electrode 932 , and a separator 933 .
  • the wound body 950 is a wound body in which the negative electrode 931 and the positive electrode 932 are laminated with the separator 933 interposed therebetween, and the laminated sheet is wound. Note that the negative electrode 931, the positive electrode 932, and the separator 933 may be stacked more than once.
  • the secondary battery 913 may have a wound body 950a as shown in FIGS. 15A to 15C.
  • a wound body 950 a illustrated in FIG. 15A includes a negative electrode 931 , a positive electrode 932 , and a separator 933 .
  • the negative electrode 931 has a negative electrode active material layer 931a.
  • the positive electrode 932 has a positive electrode active material layer 932a.
  • the secondary battery 913 having high capacity, high charge/discharge capacity, and excellent cycle characteristics can be obtained.
  • the separator 933 has a wider width than the negative electrode active material layer 931a and the positive electrode active material layer 932a, and is wound so as to overlap the negative electrode active material layer 931a and the positive electrode active material layer 932a.
  • the width of the negative electrode active material layer 931a is wider than that of the positive electrode active material layer 932a.
  • the wound body 950a having such a shape is preferable because of its good safety and productivity.
  • the negative electrode 931 is electrically connected to the terminal 951 as shown in FIG. 15B.
  • Terminal 951 is electrically connected to terminal 911a.
  • the positive electrode 932 is electrically connected to the terminal 952 .
  • Terminal 952 is electrically connected to terminal 911b.
  • the casing 930 covers the wound body 950a and the electrolytic solution to form the secondary battery 913.
  • the housing 930 is preferably provided with a safety valve, an overcurrent protection element, and the like.
  • the safety valve is a valve that opens the interior of housing 930 at a predetermined internal pressure in order to prevent battery explosion.
  • the secondary battery 913 may have a plurality of wound bodies 950a. By using a plurality of wound bodies 950a, the secondary battery 913 with higher charge/discharge capacity can be obtained.
  • the description of the secondary battery 913 illustrated in FIGS. 14A to 14C can be referred to for other elements of the secondary battery 913 illustrated in FIGS. 15A and 15B.
  • FIGS. 16A and 16B show an example of an external view of an example of a laminated secondary battery.
  • 16A and 16B have a positive electrode 503, a negative electrode 506, a separator 507, an outer package 509, a positive electrode lead electrode 510 and a negative electrode lead electrode 511.
  • FIG. 1 A diagrammatic representation of an example of a laminated secondary battery.
  • the positive electrode 503 has a positive electrode current collector 501 , and the positive electrode active material layer 502 is formed on the surface of the positive electrode current collector 501 .
  • the positive electrode 503 has a region where the positive electrode current collector 501 is partially exposed (hereinafter referred to as a tab region).
  • the negative electrode 506 has a negative electrode current collector 504 , and the negative electrode active material layer 505 is formed on the surface of the negative electrode current collector 504 .
  • the negative electrode 506 has a region where the negative electrode current collector 504 is partially exposed, that is, a tab region.
  • the area and shape of the tab regions of the positive and negative electrodes are not limited to the example shown in FIG. 17A.
  • FIG. 17B shows the negative electrode 506, separator 507 and positive electrode 503 stacked.
  • an example is shown in which five sets of negative electrodes and four sets of positive electrodes are used. It can also be called a laminate consisting of a negative electrode, a separator, and a positive electrode.
  • the tab regions of the positive electrode 503 are joined together, and the positive electrode lead electrode 510 is joined to the tab region of the outermost positive electrode.
  • For joining for example, ultrasonic welding or the like may be used.
  • bonding between the tab regions of the negative electrode 506 and bonding of the negative electrode lead electrode 511 to the tab region of the outermost negative electrode are performed.
  • the negative electrode 506 , the separator 507 and the positive electrode 503 are arranged on the outer package 509 .
  • the exterior body 509 is bent at the portion indicated by the dashed line. After that, the outer peripheral portion of the exterior body 509 is joined. For example, thermocompression bonding or the like may be used for joining. At this time, a region (hereinafter referred to as an introduction port) that is not joined is provided in a part (or one side) of the exterior body 509 so that the electrolytic solution can be introduced later.
  • an introduction port a region (hereinafter referred to as an introduction port) that is not joined is provided in a part (or one side) of the exterior body 509 so that the electrolytic solution can be introduced later.
  • the electrolytic solution is introduced into the exterior body 509 through an inlet provided in the exterior body 509 . It is preferable to introduce the electrolytic solution under a reduced pressure atmosphere or an inert atmosphere. And finally, the inlet is joined. In this manner, a laminated secondary battery 500 can be manufactured.
  • the secondary battery 500 having high capacity, high charge/discharge capacity, and excellent cycle characteristics can be obtained.
  • Battery pack example An example of a secondary battery pack of one embodiment of the present invention that can be wirelessly charged using an antenna will be described with reference to FIGS. 18A to 18C.
  • FIG. 18A is a diagram showing the appearance of the secondary battery pack 531, which has a thin rectangular parallelepiped shape (also called a thick flat plate shape).
  • FIG. 18B is a diagram illustrating the configuration of the secondary battery pack 531.
  • the secondary battery pack 531 has a circuit board 540 and a secondary battery 513 .
  • a label 529 is attached to the secondary battery 513 .
  • Circuit board 540 is secured by seal 515 .
  • the secondary battery pack 531 has an antenna 517 .
  • the inside of the secondary battery 513 may have a structure having a wound body or a structure having a laminated body.
  • the secondary battery pack 531 has a control circuit 590 on a circuit board 540 as shown in FIG. 18B. Also, the circuit board 540 is electrically connected to the terminals 514 . In addition, the circuit board 540 is electrically connected to the antenna 517 , one of the positive and negative leads 551 and the other of the positive and negative leads 552 of the secondary battery 513 .
  • FIG. 18C it may have a circuit system 590 a provided on the circuit board 540 and a circuit system 590 b electrically connected to the circuit board 540 via the terminals 514 .
  • antenna 517 is not limited to a coil shape, and may be linear or plate-shaped, for example. Further, antennas such as planar antennas, aperture antennas, traveling wave antennas, EH antennas, magnetic field antennas, and dielectric antennas may be used. Alternatively, antenna 517 may be a planar conductor. This flat conductor can function as one of conductors for electric field coupling. That is, the antenna 517 may function as one of the two conductors of the capacitor. As a result, electric power can be exchanged not only by electromagnetic fields and magnetic fields, but also by electric fields.
  • the secondary battery pack 531 has a layer 519 between the antenna 517 and the secondary battery 513 .
  • the layer 519 has a function of shielding an electromagnetic field generated by the secondary battery 513, for example.
  • a magnetic material for example, can be used as the layer 519 .
  • a secondary battery 400 of one embodiment of the present invention includes a positive electrode 410, a solid electrolyte layer 420, and a negative electrode 430.
  • the cathode 410 has a cathode current collector 413 and a cathode active material layer 414 .
  • a positive electrode active material layer 414 includes a positive electrode active material 411 and a solid electrolyte 421 .
  • the positive electrode active material 100 obtained in the above embodiment is used as the positive electrode active material 411 .
  • the positive electrode active material layer 414 may contain a conductive material and a binder.
  • the solid electrolyte layer 420 has a solid electrolyte 421 .
  • Solid electrolyte layer 420 is a region located between positive electrode 410 and negative electrode 430 and having neither positive electrode active material 411 nor negative electrode active material 431 .
  • the negative electrode 430 has a negative electrode current collector 433 and a negative electrode active material layer 434 .
  • a negative electrode active material layer 434 includes a negative electrode active material 431 and a solid electrolyte 421 . Further, the negative electrode active material layer 434 may contain a conductive material and a binder. Note that when metal lithium is used as the negative electrode active material 431, particles do not need to be formed, and thus the negative electrode 430 without the solid electrolyte 421 can be formed as shown in FIG. 19B.
  • the use of metallic lithium for the negative electrode 430 is preferable because the energy density of the secondary battery 400 can be improved.
  • solid electrolyte 421 included in the solid electrolyte layer 420 for example, a sulfide-based solid electrolyte, an oxide-based solid electrolyte, a halide-based solid electrolyte, or the like can be used.
  • Sulfide - based solid electrolytes include thiolysicone - based ( Li10GeP2S12 , Li3.25Ge0.25P0.75S4 , etc.), sulfide glass ( 70Li2S , 30P2S5 , 30Li2 S.26B2S3.44LiI , 63Li2S.36SiS2.1Li3PO4 , 57Li2S.38SiS2.5Li4SiO4 , 50Li2S.50GeS2 , etc. ) , sulfide crystallized glass ( Li7 P 3 S 11 , Li 3.25 P 0.95 S 4 etc.).
  • a sulfide-based solid electrolyte has advantages such as being a material with high conductivity, being able to be synthesized at a low temperature, and being relatively soft so that a conductive path is easily maintained even after charging and discharging.
  • oxide-based solid electrolytes examples include materials having a perovskite crystal structure (La2 /3- xLi3xTiO3 , etc.) and materials having a NASICON crystal structure (Li1- YAlYTi2- Y ( PO4 ) 3 , etc.), materials having a garnet - type crystal structure ( Li7La3Zr2O12 , etc.), materials having a LISICON - type crystal structure ( Li14ZnGe4O16 , etc.) , LLZO ( Li7La3Zr2O 12 ), oxide glass ( Li3PO4 - Li4SiO4 , 50Li4SiO4 , 50Li3BO3 , etc.), oxide crystallized glass ( Li1.07Al0.69Ti1.46 ( PO4 ) 3 , Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 etc.). Oxide-based solid electrolytes have the advantage of being stable in the atmosphere.
  • Halide-based solid electrolytes include LiAlCl 4 , Li 3 InBr 6 , LiF, LiCl, LiBr, LiI, and the like. Composite materials in which pores of porous aluminum oxide or porous silica are filled with these halide-based solid electrolytes can also be used as solid electrolytes.
  • Li1 + xAlxTi2 -x ( PO4) 3 ( 0 ⁇ x ⁇ 1) (hereinafter referred to as LATP) having a NASICON-type crystal structure is aluminum and titanium in the secondary battery 400 of one embodiment of the present invention. Since it contains an element that may be contained in the positive electrode active material used in , a synergistic effect can be expected for improving cycle characteristics, which is preferable. Also, an improvement in productivity can be expected by reducing the number of processes.
  • a NASICON-type crystal structure is a compound represented by M 2 (XO 4 ) 3 (M: transition metal, X: S, P, As, Mo, W, etc.), and MO 6 It has a structure in which octahedrons and XO 4 tetrahedrons share vertices and are three-dimensionally arranged.
  • Exterior body and shape of secondary battery Various materials and shapes can be used for the exterior body of the secondary battery 400 of one embodiment of the present invention, but it preferably has a function of pressurizing the positive electrode, the solid electrolyte layer, and the negative electrode.
  • FIG. 20 is an example of a cell that evaluates materials for all-solid-state batteries.
  • FIG. 20A is a schematic cross-sectional view of the evaluation cell.
  • the evaluation cell has a lower member 761, an upper member 762, and a fixing screw or wing nut 764 for fixing them.
  • a plate 753 is pressed to secure the evaluation material.
  • An insulator 766 is provided between a lower member 761 made of stainless steel and an upper member 762 .
  • An O-ring 765 is provided between the upper member 762 and the set screw 763 for sealing.
  • FIG. 20B is an enlarged perspective view of the periphery of this evaluation material.
  • FIG. 20C As an evaluation material, an example of lamination of a positive electrode 750a, a solid electrolyte layer 750b, and a negative electrode 750c is shown, and a cross-sectional view is shown in FIG. 20C. The same symbols are used for the same portions in FIGS. 20A to 20C.
  • the electrode plate 751 and the lower member 761 electrically connected to the positive electrode 750a correspond to a positive electrode terminal. It can be said that the electrode plate 753 and the upper member 762 electrically connected to the negative electrode 750c correspond to a negative electrode terminal.
  • the electrical resistance and the like can be measured while pressing the evaluation material through the electrode plate 751 and the electrode plate 753 .
  • a highly airtight package for the exterior body of the secondary battery of one embodiment of the present invention.
  • a ceramic package or resin package can be used.
  • sealing the exterior body it is preferable to shut off the outside air and perform the sealing in a closed atmosphere, for example, in a glove box.
  • FIG. 21A shows a perspective view of a secondary battery of one embodiment of the present invention having an exterior body and a shape different from those in FIG.
  • the secondary battery of FIG. 21A has external electrodes 771 and 772 and is sealed with an exterior body having a plurality of package members.
  • FIG. 21B shows an example of a cross section cut along the dashed line in FIG. 21A.
  • a laminate having a positive electrode 750a, a solid electrolyte layer 750b, and a negative electrode 750c includes a package member 770a in which an electrode layer 773a is provided on a flat plate, a frame-shaped package member 770b, and a package member 770c in which an electrode layer 773b is provided on a flat plate. , and has a sealed structure.
  • the package members 770a, 770b, 770c can be made of insulating materials such as resin materials and ceramics.
  • the external electrode 771 is electrically connected to the positive electrode 750a through the electrode layer 773a and functions as a positive electrode terminal.
  • the external electrode 772 is electrically connected to the negative electrode 750c through the electrode layer 773b and functions as a negative electrode terminal.
  • the electric vehicle is equipped with first batteries 1301a and 1301b as secondary batteries for main driving, and a second battery 1311 that supplies power to an inverter 1312 that starts the motor 1304.
  • the second battery 1311 is also called cranking battery (also called starter battery).
  • the second battery 1311 only needs to have a high output and does not need a large capacity so much, and the capacity of the second battery 1311 is smaller than that of the first batteries 1301a and 1301b.
  • the internal structure of the first battery 1301a may be the wound type shown in FIG. 14A or 15C, or the laminated type shown in FIG. 16A or 16B. Further, the all-solid-state battery of Embodiment 4 may be used as the first battery 1301a. By using the all-solid-state battery of Embodiment 4 for the first battery 1301a, the capacity can be increased, the safety can be improved, and the size and weight can be reduced.
  • first batteries 1301a and 1301b are connected in parallel
  • three or more batteries may be connected in parallel.
  • the first battery 1301a can store sufficient electric power
  • the first battery 1301b may be omitted.
  • a large amount of electric power can be extracted by forming a battery pack including a plurality of secondary batteries.
  • a plurality of secondary batteries may be connected in parallel, may be connected in series, or may be connected in series after being connected in parallel.
  • a plurality of secondary batteries is also called an assembled battery.
  • a secondary battery for vehicle has a service plug or a circuit breaker that can cut off high voltage without using a tool in order to cut off power from a plurality of secondary batteries.
  • the power of the first batteries 1301a and 1301b is mainly used to rotate the motor 1304, but is also used to power 42V in-vehicle components (electric power steering (power steering) 1307, heater 1308, defogger 1309).
  • the first battery 1301a is also used to rotate the rear motor 1317 when the rear wheel has the rear motor 1317 .
  • the second battery 1311 supplies power to 14V vehicle-mounted components (audio 1313, power window 1314, lamps 1315, etc.) via the DCDC circuit 1310.
  • the first battery 1301a will be described with reference to FIG. 22A.
  • FIG. 22A shows an example in which nine prismatic secondary batteries 1300 are used as one battery pack 1415 .
  • Nine square secondary batteries 1300 are connected in series, one electrode is fixed by a fixing portion 1413 made of an insulator, and the other electrode is fixed by a fixing portion 1414 made of an insulator.
  • an example of fixing by fixing portions 1413 and 1414 is shown; Since it is assumed that the vehicle is subject to vibration or shaking from the outside (road surface, etc.), it is preferable to fix a plurality of secondary batteries using fixing portions 1413 and 1414, a battery housing box, and the like.
  • One electrode is electrically connected to the control circuit portion 1320 through a wiring 1421 .
  • the other electrode is electrically connected to the control circuit section 1320 by wiring 1422 .
  • control circuit portion 1320 may use a memory circuit including a transistor using an oxide semiconductor.
  • a charge control circuit or a battery control system including a memory circuit including a transistor using an oxide semiconductor is sometimes called a BTOS (battery operating system or battery oxide semiconductor).
  • oxides include In-M-Zn oxide (element M is aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, A metal oxide such as one or more selected from hafnium, tantalum, tungsten, and magnesium is preferably used.
  • In-M-Zn oxides that can be applied as oxides are preferably CAAC-OS (C-Axis Aligned Crystal Oxide Semiconductor) and CAC-OS (Cloud-Aligned Composite Oxide Semiconductor).
  • a CAAC-OS is an oxide semiconductor that includes a plurality of crystal regions, and the c-axes of the plurality of crystal regions are oriented in a specific direction. Note that the specific direction is the thickness direction of the CAAC-OS film, the normal direction to the formation surface of the CAAC-OS film, or the normal direction to the surface of the CAAC-OS film.
  • a crystalline region is a region having periodicity in atomic arrangement. If the atomic arrangement is regarded as a lattice arrangement, the crystalline region is also a region with a uniform lattice arrangement.
  • CAAC-OS has a region where a plurality of crystal regions are connected in the a-b plane direction, and the region may have strain.
  • the strain refers to a portion where the orientation of the lattice arrangement changes between a region with a uniform lattice arrangement and another region with a uniform lattice arrangement in a region where a plurality of crystal regions are connected. That is, CAAC-OS is an oxide semiconductor that is c-axis oriented and has no obvious orientation in the a-b plane direction.
  • a CAC-OS is, for example, one structure of a material in which elements constituting a metal oxide are unevenly distributed with a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or in the vicinity thereof.
  • the metal oxide one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size in the vicinity thereof.
  • the mixed state is also called mosaic or patch.
  • CAC-OS is a structure in which the material is separated into a first region and a second region to form a mosaic shape, and the first region is distributed in the film (hereinafter, also referred to as a cloud shape). ). That is, CAC-OS is a composite metal oxide in which the first region and the second region are mixed.
  • the atomic ratios of In, Ga, and Zn to the metal elements constituting the CAC-OS in the In--Ga--Zn oxide are denoted by [In], [Ga], and [Zn], respectively.
  • the first region is a region where [In] is larger than [In] in the composition of the CAC-OS film.
  • the second region is a region where [Ga] is greater than [Ga] in the composition of the CAC-OS film.
  • the first region is a region in which [In] is larger than [In] in the second region and [Ga] is smaller than [Ga] in the second region.
  • the second region is a region in which [Ga] is larger than [Ga] in the first region and [In] is smaller than [In] in the first region.
  • the first region is a region whose main component is indium oxide, indium zinc oxide, or the like.
  • the second region is a region containing gallium oxide, gallium zinc oxide, or the like as a main component. That is, the first region can be rephrased as a region containing In as a main component. Also, the second region can be rephrased as a region containing Ga as a main component.
  • a clear boundary between the first region and the second region may not be observed.
  • a region containing In as the main component (first 1 region) and a region containing Ga as a main component (second region) are unevenly distributed and can be confirmed to have a mixed structure.
  • the conductivity attributed to the first region and the insulation attributed to the second region complementarily act to provide a switching function (on/off function).
  • a switching function on/off function
  • CAC-OS a part of the material has a conductive function
  • a part of the material has an insulating function
  • the whole material has a semiconductor function.
  • Oxide semiconductors have a variety of structures, each with different characteristics.
  • An oxide semiconductor of one embodiment of the present invention includes two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, a CAC-OS, an nc-OS, and a CAAC-OS. may
  • the control circuit portion 1320 may be formed using unipolar transistors.
  • a transistor using an oxide semiconductor for a semiconductor layer has a wider operating ambient temperature of ⁇ 40° C. or more and 150° C. or less than a single-crystal Si transistor, and even if the secondary battery is overheated, the change in characteristics is greater than that of a single-crystal Si transistor. small.
  • the off-state current of a transistor using an oxide semiconductor is lower than the lower limit of measurement even at 150° C., but the off-state current characteristics of a single crystal Si transistor are highly dependent on temperature.
  • a single crystal Si transistor has an increased off-current and does not have a sufficiently large current on/off ratio.
  • the control circuitry 1320 can improve safety. Further, by combining the positive electrode active material 100 obtained in the above-described embodiment with a secondary battery using the positive electrode for the positive electrode, a synergistic effect regarding safety can be obtained.
  • the control circuit unit 1320 using a memory circuit including a transistor using an oxide semiconductor can also function as an automatic control device for a secondary battery against the cause of instability such as a micro-short.
  • Functions that eliminate the causes of secondary battery instability include overcharge prevention, overcurrent prevention, overheat control during charging, cell balance in the assembled battery, overdischarge prevention, fuel gauge, temperature-dependent Automatic control of charging voltage and current amount, control of charging current amount according to the degree of deterioration, detection of micro-short abnormal behavior, prediction of abnormality related to micro-short, etc., among which the control circuit section 1320 has at least one function.
  • a micro-short refers to a minute short circuit inside a secondary battery. It refers to a phenomenon in which a small amount of short-circuit current flows in the part. Since a large voltage change occurs in a relatively short time and even at a small location, the abnormal voltage value may affect subsequent estimation.
  • micro-shorts One of the causes of micro-shorts is that the non-uniform distribution of the positive electrode active material caused by repeated charging and discharging causes localized concentration of current in a portion of the positive electrode and a portion of the negative electrode, resulting in a separator failure. It is said that a micro short-circuit occurs due to the generation of a portion where a part fails or the generation of a side reaction product due to a side reaction.
  • control circuit unit 1320 not only detects micro-shorts, but also detects the terminal voltage of the secondary battery and manages the charging/discharging state of the secondary battery. For example, both the output transistor of the charging circuit and the cut-off switch can be turned off almost simultaneously to prevent overcharging.
  • FIG. 22B An example of a block diagram of the battery pack 1415 shown in FIG. 22A is shown in FIG. 22B.
  • the control circuit unit 1320 includes a switch unit 1324 including at least a switch for preventing overcharge and a switch for preventing overdischarge, a control circuit 1322 for controlling the switch unit 1324, a voltage measurement unit for the first battery 1301a, have
  • the control circuit unit 1320 is set with an upper limit voltage and a lower limit voltage of the secondary battery to be used, and limits the upper limit of the current from the outside, the upper limit of the output current to the outside, and the like.
  • the range from the lower limit voltage to the upper limit voltage of the secondary battery is within the voltage range recommended for use.
  • the control circuit section 1320 controls the switch section 1324 to prevent over-discharging and over-charging, it can also be called a protection circuit.
  • control circuit 1322 detects a voltage that is likely to cause overcharging
  • the switch of the switch section 1324 is turned off to cut off the current.
  • a PTC element may be provided in the charging/discharging path to provide a function of interrupting the current according to the temperature rise.
  • the control circuit section 1320 also has an external terminal 1325 (+IN) and an external terminal 1326 (-IN).
  • the switch section 1324 can be configured by combining an n-channel transistor and a p-channel transistor.
  • the switch unit 1324 is not limited to a switch having a Si transistor using single crystal silicon. indium), SiC (silicon carbide), ZnSe (zinc selenide), GaN (gallium nitride), GaOx (gallium oxide; x is a real number greater than 0), or the like.
  • a memory element using an OS transistor can be freely arranged by stacking it on a circuit using a Si transistor or the like, integration can be easily performed.
  • an OS transistor can be manufactured using a manufacturing apparatus similar to that of a Si transistor, it can be manufactured at low cost. That is, the control circuit portion 1320 using an OS transistor can be stacked on the switch portion 1324 and integrated into one chip. Since the volume occupied by the control circuit section 1320 can be reduced, miniaturization is possible.
  • the first batteries 1301a and 1301b mainly supply power to 42V system (high voltage system) in-vehicle equipment, and the second battery 1311 supplies power to 14V system (low voltage system) in-vehicle equipment.
  • the second battery 1311 may use a lead-acid battery, an all-solid battery, or an electric double layer capacitor.
  • the all-solid-state battery of Embodiment 4 may be used.
  • the capacity can be increased, and the size and weight can be reduced.
  • regenerated energy from the rotation of the tire 1316 is sent to the motor 1304 via the gear 1305 and charged to the second battery 1311 via the control circuit section 1321 from the motor controller 1303 and the battery controller 1302 .
  • the battery controller 1302 charges the first battery 1301 a through the control circuit unit 1320 .
  • the battery controller 1302 charges the first battery 1301 b through the control circuit unit 1320 . In order to efficiently charge the regenerated energy, it is desirable that the first batteries 1301a and 1301b be capable of rapid charging.
  • the battery controller 1302 can set the charging voltage and charging current of the first batteries 1301a and 1301b.
  • the battery controller 1302 can set charging conditions according to the charging characteristics of the secondary battery to be used and perform rapid charging.
  • the outlet of the charger or the connection cable of the charger is electrically connected to the battery controller 1302 .
  • Electric power supplied from an external charger charges the first batteries 1301 a and 1301 b via the battery controller 1302 .
  • Some chargers are provided with a control circuit and do not use the function of the battery controller 1302. In order to prevent overcharging, the first batteries 1301a and 1301b are charged via the control circuit unit 1320. is preferred.
  • the outlet of the charger or the connection cable of the charger is provided with a control circuit.
  • the control circuit section 1320 is sometimes called an ECU (Electronic Control Unit).
  • the ECU is connected to a CAN (Controller Area Network) provided in the electric vehicle.
  • CAN is one of serial communication standards used as an in-vehicle LAN.
  • the ECU includes a microcomputer.
  • the ECU uses a CPU or a GPU.
  • External chargers installed at charging stands, etc. include 100V outlets, 200V outlets, and 3-phase 200V and 50kW. Also, the battery can be charged by receiving power supply from an external charging facility by a non-contact power supply method or the like.
  • the secondary battery of the present embodiment described above uses the positive electrode active material 100 obtained in the embodiment described above.
  • using graphene as a conductive material even if the electrode layer is thickened and the amount supported is increased, the reduction in capacity is suppressed and the high capacity is maintained. can.
  • a traveling distance of 500 km or more per charge without increasing the weight ratio of the secondary battery to the total weight of the vehicle. be able to.
  • the operating voltage of the secondary battery can be increased by using the positive electrode active material 100 described in the above embodiment. capacity can be increased. Further, by using the positive electrode active material 100 described in the above embodiment for the positive electrode, it is possible to provide a vehicle secondary battery having excellent cycle characteristics.
  • next-generation vehicles such as hybrid vehicles (HV), electric vehicles (EV), or plug-in hybrid vehicles (PHV) can be used.
  • HV hybrid vehicles
  • EV electric vehicles
  • PSV plug-in hybrid vehicles
  • a clean energy vehicle can be realized.
  • the secondary battery can also be mounted on transportation vehicles such as planetary probes and spacecraft.
  • the secondary battery of one embodiment of the present invention can be a high-capacity secondary battery. Therefore, the secondary battery of one embodiment of the present invention is suitable for miniaturization and weight reduction, and can be suitably used for transportation vehicles.
  • FIGS. 23A to 23D illustrate a transportation vehicle as an example of a moving object using one embodiment of the present invention.
  • a vehicle 2001 shown in FIG. 23A is an electric vehicle that uses an electric motor as a power source for running. Alternatively, it is a hybrid vehicle in which an electric motor and an engine can be appropriately selected and used as power sources for running.
  • a secondary battery is mounted in a vehicle, an example of the secondary battery described in Embodiment 3 is installed at one or more places.
  • a car 2001 shown in FIG. 23A has a battery pack 2200, and the battery pack has a secondary battery module to which a plurality of secondary batteries are connected. Furthermore, it is preferable to have a charging control device electrically connected to the secondary battery module.
  • the vehicle 2001 can be charged by receiving power from an external charging facility by a plug-in system, a contactless power supply system, or the like to the secondary battery of the vehicle 2001 .
  • the charging method and the standard of the connector may be appropriately performed by a predetermined method such as CHAdeMO (registered trademark) or Combo.
  • the secondary battery may be a charging station provided in a commercial facility, or may be a household power source.
  • plug-in technology can charge a power storage device mounted on the automobile 2001 by power supply from the outside. Charging can be performed by converting AC power into DC power via a conversion device such as an ACDC converter.
  • a power receiving device can be mounted on a vehicle, and power can be supplied from a power transmission device on the ground in a contactless manner for charging.
  • this non-contact power supply system it is possible to charge the vehicle not only while the vehicle is stopped but also while the vehicle is running by installing a power transmission device on the road or the outer wall.
  • power may be transmitted and received between two vehicles.
  • a solar battery may be provided on the exterior of the vehicle, and the secondary battery may be charged while the vehicle is stopped and while the vehicle is running.
  • An electromagnetic induction method or a magnetic resonance method can be used for such contactless power supply.
  • FIG. 23B shows a large transport vehicle 2002 with electrically controlled motors as an example of a transport vehicle.
  • the secondary battery module of the transportation vehicle 2002 has a maximum voltage of 170 V, for example, a four-cell unit of secondary batteries having a nominal voltage of 3.0 V or more and 5.0 V or less, and 48 cells connected in series. Except for the number of secondary batteries forming the secondary battery module of the battery pack 2201, the function is the same as that of FIG. 23A, so the description is omitted.
  • FIG. 23C shows, as an example, a large transport vehicle 2003 with electrically controlled motors.
  • the secondary battery module of the transportation vehicle 2003 has a maximum voltage of 600 V, for example, a hundred or more secondary batteries with a nominal voltage of 3.0 V or more and 5.0 V or less connected in series.
  • a secondary battery using the positive electrode active material 100 described in the above embodiment as a positive electrode a secondary battery having good rate characteristics and charge/discharge cycle characteristics can be manufactured, and the performance of the transportation vehicle 2003 can be improved. And it can contribute to longer life.
  • 23A except that the number of secondary batteries constituting the secondary battery module of the battery pack 2202 is different, the description is omitted.
  • FIG. 23D shows an aircraft 2004 having an engine that burns fuel as an example. Since the aircraft 2004 shown in FIG. 23D has wheels for takeoff and landing, it can be said to be a type of transport vehicle, and a secondary battery module is configured by connecting a plurality of secondary batteries, and the secondary battery module and charging control are performed. It has a battery pack 2203 containing a device.
  • the secondary battery module of aircraft 2004 has a maximum voltage of 32V, for example, eight 4V secondary batteries connected in series. Except for the number of secondary batteries forming the secondary battery module of the battery pack 2203, the function is the same as that of FIG. 23A, so the explanation is omitted.
  • the house illustrated in FIG. 24A includes a power storage device 2612 including a secondary battery that is one embodiment of the present invention and a solar panel 2610.
  • the power storage device 2612 is electrically connected to the solar panel 2610 through a wiring 2611 or the like. Alternatively, the power storage device 2612 and the ground-mounted charging device 2604 may be electrically connected.
  • a power storage device 2612 can be charged with power obtained from the solar panel 2610 . Electric power stored in power storage device 2612 can be used to charge a secondary battery of vehicle 2603 via charging device 2604 .
  • Power storage device 2612 is preferably installed in the underfloor space. By installing in the space under the floor, the space above the floor can be effectively used. Alternatively, power storage device 2612 may be installed on the floor.
  • the power stored in the power storage device 2612 can also supply power to other electronic devices in the house. Therefore, the use of the power storage device 2612 according to one embodiment of the present invention as an uninterruptible power supply makes it possible to use the electronic device even when power cannot be supplied from a commercial power supply due to a power failure or the like.
  • FIG. 24B illustrates an example of a power storage device according to one embodiment of the present invention.
  • a power storage device 791 according to one embodiment of the present invention is installed in an underfloor space 796 of a building 799 .
  • the power storage device 791 may be provided with the control circuit described in Embodiment 5, and a secondary battery whose positive electrode is the positive electrode active material 100 obtained in the above embodiment can be used as the power storage device 791 for a long time.
  • the power storage device 791 can have a long life.
  • a control device 790 is installed in the power storage device 791, and the control device 790 is connected to the distribution board 703, the power storage controller 705 (also referred to as a control device), the display 706, and the router 709 by wiring. electrically connected.
  • Electric power is sent from the commercial power source 701 to the distribution board 703 via the service wire attachment portion 710 . Electric power is sent to the distribution board 703 from the power storage device 791 and the commercial power supply 701, and the distribution board 703 distributes the sent power to the general load via an outlet (not shown). 707 and power storage system load 708 .
  • General loads 707 are, for example, electric appliances such as televisions and personal computers, and power storage system loads 708 are electric appliances such as microwave ovens, refrigerators, and air conditioners.
  • the power storage controller 705 has a measurement unit 711, a prediction unit 712, and a planning unit 713.
  • the measuring unit 711 has a function of measuring the amount of electric power consumed by the general load 707 and the power storage system load 708 during a day (for example, from 00:00 to 24:00).
  • the measurement unit 711 may also have a function of measuring the amount of power in the power storage device 791 and the amount of power supplied from the commercial power source 701 .
  • the prediction unit 712 predicts the demand to be consumed by the general load 707 and the storage system load 708 during the next day based on the amount of power consumed by the general load 707 and the storage system load 708 during the day. It has a function of predicting power consumption.
  • the planning unit 713 also has a function of planning charging and discharging of the power storage device 791 based on the amount of power demand predicted by the prediction unit 712 .
  • the amount of power consumed by the general load 707 and the power storage system load 708 measured by the measurement unit 711 can be confirmed by the display 706 .
  • FIG. 25A illustrates an example of an electric bicycle using the power storage device of one embodiment of the present invention.
  • the power storage device of one embodiment of the present invention can be applied to the electric bicycle 8700 illustrated in FIG. 25A.
  • a power storage device of one embodiment of the present invention includes, for example, a plurality of storage batteries and a protection circuit.
  • the electric bicycle 8700 includes a power storage device 8702.
  • the power storage device 8702 can supply electricity to a motor that assists the driver.
  • the power storage device 8702 is portable, and is shown removed from the bicycle in FIG. 25B.
  • the power storage device 8702 includes a plurality of storage batteries 8701 included in the power storage device of one embodiment of the present invention, and the remaining battery power and the like can be displayed on a display portion 8703 .
  • the power storage device 8702 also includes a control circuit 8704 capable of controlling charging of the secondary battery or detecting an abnormality, one example of which is shown in Embodiment 5.
  • the control circuit 8704 is electrically connected to the positive and negative electrodes of the storage battery 8701 .
  • control circuit 8704 may be provided with the small solid secondary battery shown in FIGS. 21A and 21B.
  • the control circuit 8704 By providing the small solid secondary battery shown in FIGS. 21A and 21B in the control circuit 8704, power can be supplied to hold data in the memory circuit included in the control circuit 8704 for a long time.
  • the positive electrode active material 100 obtained in the above-described embodiment with a secondary battery using the positive electrode for the positive electrode, a synergistic effect regarding safety can be obtained.
  • the secondary battery using the positive electrode active material 100 obtained in the above embodiment as a positive electrode and the control circuit 8704 can greatly contribute to the elimination of accidents such as fire caused by the secondary battery.
  • FIG. 25C illustrates an example of a motorcycle using the power storage device of one embodiment of the present invention.
  • the power storage device 8602 can supply electricity to the turn signal lights 8603 .
  • the power storage device 8602 containing a plurality of secondary batteries each using the positive electrode active material 100 obtained in the above embodiment as a positive electrode can have a high capacity and can contribute to miniaturization.
  • the power storage device 8602 can be stored in the storage space 8604 under the seat.
  • the power storage device 8602 can be stored in the underseat storage 8604 even if the underseat storage 8604 is small.
  • a secondary battery which is one embodiment of the present invention, in an electronic device
  • electronic devices that implement secondary batteries include television devices (also referred to as televisions or television receivers), monitors for computers, digital cameras, digital video cameras, digital photo frames, mobile phones (mobile phones, Also referred to as a mobile phone device), a portable game machine, a personal digital assistant, a sound reproducing device, a large game machine such as a pachinko machine, and the like.
  • Portable information terminals include notebook personal computers, tablet terminals, electronic book terminals, mobile phones, and the like.
  • FIG. 26A shows an example of a mobile phone.
  • a mobile phone 2100 includes a display unit 2102 incorporated in a housing 2101, operation buttons 2103, an external connection port 2104, a speaker 2105, a microphone 2106, and the like.
  • the mobile phone 2100 has a secondary battery 2107 .
  • the secondary battery 2107 By including the secondary battery 2107 in which the positive electrode active material 100 described in the above embodiment is used for the positive electrode, the capacity can be increased, and a structure that can cope with the space saving associated with the downsizing of the housing is realized. be able to.
  • the mobile phone 2100 can execute various applications such as mobile phone, e-mail, reading and creating text, playing music, Internet communication, and computer games.
  • the operation button 2103 can have various functions such as time setting, power on/off operation, wireless communication on/off operation, manner mode execution/cancellation, and power saving mode execution/cancellation.
  • the operating system installed in the mobile phone 2100 can freely set the functions of the operation buttons 2103 .
  • the mobile phone 2100 is capable of performing standardized short-range wireless communication. For example, by intercommunicating with a headset capable of wireless communication, hands-free communication is also possible.
  • the mobile phone 2100 has an external connection port 2104, and can directly exchange data with other information terminals via connectors. Also, charging can be performed via the external connection port 2104 . Note that the charging operation may be performed by wireless power supply without using the external connection port 2104 .
  • the mobile phone 2100 preferably has a sensor.
  • sensors for example, a fingerprint sensor, a pulse sensor, a human body sensor such as a body temperature sensor, a touch sensor, a pressure sensor, an acceleration sensor, etc. are preferably mounted.
  • FIG. 26B is an unmanned aerial vehicle 2300 having multiple rotors 2302 .
  • Unmanned aerial vehicle 2300 may also be referred to as a drone.
  • Unmanned aerial vehicle 2300 has a secondary battery 2301 that is one embodiment of the present invention, a camera 2303, and an antenna (not shown).
  • Unmanned aerial vehicle 2300 can be remotely operated via an antenna.
  • a secondary battery using the positive electrode active material 100 obtained in the above embodiment as a positive electrode has a high energy density and is highly safe, so that it can be used safely for a long time. It is suitable as a secondary battery to be mounted on.
  • FIG. 26C shows an example of a robot.
  • a robot 6400 shown in FIG. 26C includes a secondary battery 6409, an illuminance sensor 6401, a microphone 6402, an upper camera 6403, a speaker 6404, a display unit 6405, a lower camera 6406 and an obstacle sensor 6407, a moving mechanism 6408, an arithmetic device, and the like.
  • the microphone 6402 has a function of detecting the user's speech and environmental sounds. Also, the speaker 6404 has a function of emitting sound. Robot 6400 can communicate with a user using microphone 6402 and speaker 6404 .
  • the display unit 6405 has a function of displaying various information.
  • the robot 6400 can display information desired by the user on the display unit 6405 .
  • the display portion 6405 may include a touch panel. Further, the display unit 6405 may be a detachable information terminal, and by installing it at a fixed position of the robot 6400, charging and data transfer are possible.
  • the upper camera 6403 and lower camera 6406 have the function of imaging the surroundings of the robot 6400.
  • the obstacle sensor 6407 can detect the presence or absence of an obstacle in the direction in which the robot 6400 moves forward using the movement mechanism 6408 .
  • Robot 6400 uses upper camera 6403, lower camera 6406, and obstacle sensor 6407 to recognize the surrounding environment and can move safely.
  • a robot 6400 includes a secondary battery 6409 according to one embodiment of the present invention and a semiconductor device or an electronic component in its internal region.
  • a secondary battery using the positive electrode active material 100 obtained in the above embodiment as a positive electrode has a high energy density and is highly safe, so that it can be used safely for a long time. It is suitable as the secondary battery 6409 to be mounted.
  • FIG. 26D shows an example of a cleaning robot.
  • the cleaning robot 6300 has a display unit 6302 arranged on the top surface of a housing 6301, a plurality of cameras 6303 arranged on the side surfaces, a brush 6304, an operation button 6305, a secondary battery 6306, various sensors, and the like.
  • the cleaning robot 6300 is provided with tires, a suction port, and the like.
  • the cleaning robot 6300 can run by itself, detect dust 6310, and suck the dust from a suction port provided on the bottom surface.
  • the cleaning robot 6300 can analyze images captured by the camera 6303 and determine the presence or absence of obstacles such as walls, furniture, or steps. Further, when an object such as wiring that is likely to get entangled in the brush 6304 is detected by image analysis, the rotation of the brush 6304 can be stopped.
  • Cleaning robot 6300 includes a secondary battery 6306 according to one embodiment of the present invention and a semiconductor device or an electronic component in its internal region.
  • a secondary battery using the positive electrode active material 100 obtained in the above embodiment as a positive electrode has a high energy density and is highly safe, so that it can be used safely for a long time. It is suitable as the secondary battery 6306 to be mounted on the
  • FIG. 27A shows an example of a wearable device.
  • a wearable device uses a secondary battery as a power source.
  • wearable devices that can be charged not only by wires with exposed connectors but also by wireless charging are being developed. Desired.
  • the secondary battery which is one embodiment of the present invention can be mounted in a spectacles-type device 4000 as shown in FIG. 27A.
  • the glasses-type device 4000 has a frame 4000a and a display section 4000b.
  • the spectacles-type device 4000 that is lightweight, has a good weight balance, and can be used continuously for a long time can be obtained.
  • a secondary battery using the positive electrode active material 100 obtained in the above embodiment as a positive electrode has a high energy density, and can realize a structure that can cope with space saving due to downsizing of the housing.
  • a secondary battery that is one embodiment of the present invention can be mounted in the headset device 4001 .
  • the headset type device 4001 has at least a microphone section 4001a, a flexible pipe 4001b, and an earphone section 4001c.
  • a secondary battery can be provided in the flexible pipe 4001b or the earphone part 4001c.
  • a secondary battery using the positive electrode active material 100 obtained in the above embodiment as a positive electrode has a high energy density, and can realize a structure that can cope with space saving due to downsizing of the housing.
  • the device 4002 that can be attached directly to the body can be equipped with the secondary battery that is one embodiment of the present invention.
  • a secondary battery 4002b can be provided in a thin housing 4002a of the device 4002 .
  • a secondary battery using the positive electrode active material 100 obtained in the above embodiment as a positive electrode has a high energy density, and can realize a structure that can cope with space saving due to downsizing of the housing.
  • the device 4003 that can be attached to clothes can be equipped with a secondary battery that is one embodiment of the present invention.
  • a secondary battery 4003b can be provided in a thin housing 4003a of the device 4003 .
  • a secondary battery using the positive electrode active material 100 obtained in the above embodiment as a positive electrode has a high energy density, and can realize a structure that can cope with space saving due to downsizing of the housing.
  • a secondary battery that is one embodiment of the present invention can be mounted in the belt-type device 4006 .
  • the belt-type device 4006 has a belt portion 4006a and a wireless power supply receiving portion 4006b, and a secondary battery can be mounted in the inner region of the belt portion 4006a.
  • a secondary battery using the positive electrode active material 100 obtained in the above embodiment as a positive electrode has a high energy density, and can realize a structure that can cope with space saving due to downsizing of the housing.
  • a secondary battery that is one embodiment of the present invention can be mounted in the wristwatch-type device 4005 .
  • a wristwatch-type device 4005 has a display portion 4005a and a belt portion 4005b, and a secondary battery can be provided in the display portion 4005a or the belt portion 4005b.
  • a secondary battery using the positive electrode active material 100 obtained in the above embodiment as a positive electrode has a high energy density, and can realize a structure that can cope with space saving due to downsizing of the housing.
  • the display unit 4005a can display not only the time but also various information such as incoming e-mails and phone calls.
  • the wristwatch-type device 4005 is a type of wearable device that is directly wrapped around the arm, it may be equipped with a sensor that measures the user's pulse, blood pressure, and the like. It is possible to accumulate data on the amount of exercise and health of the user and manage the health.
  • FIG. 27B shows a perspective view of the wristwatch-type device 4005 removed from the arm.
  • FIG. 27C shows a state in which a secondary battery 913 is incorporated in the internal area.
  • a secondary battery 913 is the secondary battery described in Embodiment 3.
  • the secondary battery 913 is provided so as to overlap with the display portion 4005a, can have high density and high capacity, and is small and lightweight.
  • the wristwatch-type device 4005 is required to be small and lightweight.
  • a small secondary battery 913 can be used.
  • FIG. 27D shows an example of wireless earphones. Although wireless earphones having a pair of main bodies 4100a and 4100b are illustrated here, they are not necessarily a pair.
  • the main bodies 4100a and 4100b have a driver unit 4101, an antenna 4102, and a secondary battery 4103.
  • a display portion 4104 may be provided.
  • the case 4110 has a secondary battery 4111 . Moreover, it is preferable to have a substrate on which circuits such as a wireless IC and a charging control IC are mounted, and a charging terminal. Further, it may have a display portion, buttons, and the like.
  • the main bodies 4100a and 4100b can wirelessly communicate with other electronic devices such as smartphones. As a result, sound data and the like sent from other electronic devices can be reproduced by main bodies 4100a and 4100b. Also, if the main bodies 4100a and 4100b have microphones, the sound acquired by the microphones can be sent to another electronic device, and the sound data processed by the electronic device can be sent back to the main bodies 4100a and 4100b for reproduction. As a result, it can also be used as a translator, for example.
  • the secondary battery 4103 of the main body 4100a can be charged from the secondary battery 4111 of the case 4110.
  • the coin-shaped secondary battery, the cylindrical secondary battery, or the like described in the above embodiment can be used.
  • a secondary battery in which the positive electrode active material 100 obtained in the above embodiment is used as a positive electrode has a high energy density, and by using the secondary battery 4103 and the secondary battery 4111, space can be saved for miniaturization of the wireless earphone. It is possible to realize a configuration that can cope with

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明の一態様は、二次電池の高容量密度化が可能な作製方法を実現することを課題とする。また、安全性または信頼性の高い二次電池の作製方法を提供することを課題とする。 二次電池の電極(正極、負極)の作製方法であって、電極に振動を与える振動処理工程と、電極に加圧し電極が有する活物質層を圧縮するプレス工程と、を有し、振動処理工程は、前記プレス工程の前に行われる、二次電池の電極の作製方法である。

Description

電極の作製方法
 二次電池及びその作製方法に関する。電極の作製方法及び電極の作製装置に関する。または、二次電池を有する携帯情報端末、車両等に関する。
 本発明の一様態は、物、方法、又は、製造方法に関する。または、本発明は、プロセス、マシン、マニュファクチャ、又は、組成物(コンポジション・オブ・マター)に関する。本発明の一態様は、半導体装置、表示装置、発光装置、蓄電装置、照明装置、電子機器、またはそれらの製造方法に関する。
 なお、本明細書中において電子機器とは、蓄電装置を有する装置全般を指し、蓄電装置を有する電気光学装置、蓄電装置を有する情報端末装置などは全て電子機器である。
 なお、本明細書中において、蓄電装置とは、蓄電機能を有する素子及び装置全般を指すものである。例えば、リチウムイオン二次電池などの蓄電装置(二次電池ともいう)、リチウムイオンキャパシタ、及び電気二重層キャパシタなどを含む。
 近年、リチウムイオン二次電池、リチウムイオンキャパシタ、空気電池等、種々の蓄電装置の開発が盛んに行われている。特に高出力、高エネルギー密度であるリチウムイオン二次電池は、携帯電話、スマートフォン、もしくはノート型コンピュータ等の携帯情報端末、携帯音楽プレーヤ、デジタルカメラ、医療機器、又は、ハイブリッド車(HV)、電気自動車(EV)、もしくはプラグインハイブリッド車(PHV)等の次世代クリーンエネルギー自動車など、半導体産業の発展と併せて急速にその需要が拡大し、繰り返し充電可能なエネルギーの供給源として現代の情報化社会に不可欠なものとなっている。
 リチウムイオン二次電池は、コバルト酸リチウム(LiCoO)、ニッケル−コバルト−マンガン酸リチウム(LiNi1−x−yCoMn)またはリン酸鉄リチウム(LiFePO)などの正極活物質を含む正極と、リチウムの吸蔵・放出が可能な黒鉛等の炭素材料などの負極活物質を含む負極と、エチレンカーボネート(EC)またはジエチルカーボネート(DEC)などの有機溶媒などを含む電解質により構成される。
 また、リチウムイオン二次電池には、高容量密度、高性能化、及びさまざまな動作環境での安全性などが求められている。
 特許文献1には二次電池の高容量密度化を図ることのできる電極の作製方法が開示されている。
WO2020/128699号パンフレット
 二次電池の高容量密度化が可能な作製方法を実現することを課題とする。また、安全性または信頼性の高い二次電池の作製方法を提供することも課題とする。
 リチウムイオン二次電池用の電極(正極、負極)は、粒子状の活物質を有するスラリーを、集電体と呼ばれる金属箔上に塗布し乾燥することで作製される。このように作製された電極は、集電体上に活物質層を有する。活物質層は、活物質と空隙と、を有し、二次電池の高容量密度化のためには、空隙を極力少なくすることが必要となる。空隙の少ない電極を用いることで、同じ体積の二次電池であっても、より大きな電池容量を得ることができ、体積当たりの容量密度を向上することが可能となる。なお、空隙の少ない活物質層を有する電極を、高密度電極、高密度化された電極、又は膜密度の高い電極、と呼ぶことがある。
 高密度電極を作製するために、ロールプレス等によって活物質層を圧縮する工程が用いられることが多い。従来の方法では、活物質層を有する電極に対し、一定の荷重を、一方向に与え、圧縮する方法が用いられており、充分に高密度化された電極を得ることが難しかった。また、充分に高密度化された電極が得られた場合であっても、活物質にクラック、スリップ等の欠陥が生じることが避けられなかった。活物質に生じる欠陥は、高電圧充電中の、活物質からの遷移金属の溶出、及び電解液の分解、ならびに高温での活物質の安定性の低下、などに繋がるため、安全性または信頼性の面で、不具合が生じる可能性が高い。
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。
 本明細書で開示する発明の一つは、正極及び負極のいずれか一又は両方に用いるプレス方法であって、充分に高密度化された電極において活物質に生じる欠陥を低減可能な、超音波などの振動を付与する機構又は前工程を有するプレス方法である。
 また、本明細書で開示する発明の一つは、正極及び負極のいずれか一又は両方に用いる電極の作製方法であって、充分に高密度化された電極において活物質に生じる欠陥を低減可能な、超音波などの振動を付与する機構又は前工程を有するプレス方法を用いる電極の作製方法である。
 また、本明細書で開示する発明の一つは、活物質の欠陥が少ない高密度電極、及び活物質の欠陥が少ない高密度電極二次電池、ならびにその作製方法である。活物質の欠陥が少ない高密度電極によって、高容量密度、高性能化、及びさまざまな動作環境での安全性を満たす優れた二次電池の実現が可能となる。
 本発明の一態様は、二次電池の電極の作製方法であって、電極に振動を与える、振動処理工程と、電極に加圧し、電極が有する活物質層を圧縮するプレス工程と、を有し、振動処理工程は、プレス工程の前に行われる、二次電池の電極の作製方法である。
 また、本発明の一態様は、二次電池の電極の作製方法であって、電極に第1の振動を与える、振動処理工程と、電極に加圧し、電極が有する活物質層を圧縮するプレス工程と、を有し、加圧と同時に、電極に第2の振動を与え、振動処理工程はプレス工程の前に行われる、二次電池の電極の作製方法である。
 また、本発明の一態様は、二次電池の電極の作製方法であって、電極に振動を与え温度調整を行う、振動処理工程と、電極に加圧し、電極が有する活物質層を圧縮するプレス工程と、を有し、振動処理工程はプレス工程の前に行われる、二次電池の電極の作製方法である。
 また、本発明の一態様は、二次電池の電極の作製方法であって、電極に第1の振動を与え温度調整を行う、振動処理工程と、電極に加圧し、電極が有する活物質層を圧縮するプレス工程と、を有し、加圧と同時に、電極に第2の振動を与え、振動処理工程はプレス工程の前に行われる、二次電池の電極の作製方法である。
 上記のいずれか一に記載の電極の作製方法において、電極は、正極及び負極のいずれか一方または双方であってよい。
 上記のいずれか一に記載の電極の作製方法において、振動処理工程及び/またはプレス工程における温度調整は、電極が80℃以上150℃以下の温度になるように調整されることが好ましい。
 二次電池の高容量密度化が可能な作製方法を実現することができる。また、安全性または信頼性の高い二次電池の作製方法を提供することができる。又は、充分に高密度化された電極において活物質に生じる欠陥を低減可能な作製方法を実現することができる。活物質の欠陥が少ない高密度電極によって、高容量密度、高性能化、及びさまざまな動作環境での安全性を満たす優れた二次電池の実現が可能となる。
図1は本発明の一態様を示す電極の作製装置の一例である。
図2A及び図2Bは本発明の一態様の電極の作製方法の効果を示す一例の、電極断面模式図である。また、図2Cは本発明の一態様の電極の断面を示す一例である。
図3A及び図3Bは本発明の一態様を示す電極の作製装置の一例である。
図4は本発明の一態様を示す電極の作製装置の一例である。
図5Aは本発明の一態様の正極活物質の上面図、図5B及び図5Cは本発明の一態様の正極活物質の断面図である。
図6は本発明の一態様の正極活物質の結晶構造を説明する図である。
図7は結晶構造から計算されるXRDパターンである。
図8は比較例の正極活物質の結晶構造を説明する図である。
図9は結晶構造から計算されるXRDパターンである。
図10は正極活物質粒子の断面模式図である。
図11Aはプレス後の粒子のSTEM写真であり、図11B及び図11Cは断面模式図である。
図12Aはコイン型二次電池の分解斜視図であり、図12Bはコイン型二次電池の斜視図であり、図12Cはその断面斜視図である。
図13Aは、円筒型の二次電池の例を示す。図13Bは、円筒型の二次電池の例を示す。図13Cは、複数の円筒型の二次電池の例を示す。図13Dは、複数の円筒型の二次電池を有する蓄電システムの例を示す。
図14A及び図14Bは二次電池の例を説明する図であり、図14Cは二次電池の内部の様子を示す図である。
図15A乃至図15Cは二次電池の例を説明する図である。
図16A、及び図16Bは二次電池の外観を示す図である。
図17A乃至図17Cは二次電池の作製方法を説明する図である。
図18A乃至図18Cは、電池パックの構成例を示す図である。
図19A及び図19Bは二次電池の例を説明する図である。
図20A乃至図20Cは二次電池の例を説明する図である。
図21A及び図21Bは二次電池の例を説明する図である。
図22Aは本発明の一態様を示す電池パックの斜視図であり、図22Bは電池パックのブロック図であり、図22Cはモータを有する車両のブロック図である。
図23A乃至図23Dは、輸送用車両の一例を説明する図である。
図24A及び図24Bは、本発明の一態様に係る蓄電装置を説明する図である。
図25Aは電動自転車を示す図であり、図25Bは電動自転車の二次電池を示す図であり、図25Cは電動バイクを説明する図である。
図26A乃至図26Dは、電子機器の一例を説明する図である。
図27Aはウェアラブルデバイスの例を示しており、図27Bは腕時計型デバイスの斜視図を示しており、図27Cは、腕時計型デバイスの側面を説明する図である。図27Dは、ワイヤレスイヤホンの例を説明する図である。
 以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
 本明細書等において、「複合酸化物」とは、複数種類の金属原子を構造中に含む酸化物のことを指すものとする。
 また、本明細書等において結晶面および方向はミラー指数で示す。結晶面および方向の表記は、結晶学上、数字に上付きのバーを付すが、本明細書等では出願表記の制約上、数字の上にバーを付す代わりに、数字の前に−(マイナス符号)を付して表現する場合がある。また、結晶内の方向を示す個別方位は[ ]で、等価な方向すべてを示す集合方位は< >で、結晶面を示す個別面は( )で、等価な対称性を有する集合面は{ }でそれぞれ表現する。またR−3mをはじめとする三方晶および六方晶のミラー指数には、(hkl)だけでなく(hkil)を用いることがある。ここでiは−(h+k)である。
 また、本明細書等において、リチウムと遷移金属を含む複合酸化物が有する層状岩塩型の結晶構造とは、陽イオンと陰イオンが交互に配列する岩塩型のイオン配列を有し、遷移金属とリチウムが規則配列して二次元平面を形成するため、リチウムの二次元的拡散が可能である結晶構造をいう。なお陽イオンまたは陰イオンの欠損等の欠陥があってもよい。また、層状岩塩型結晶構造は、厳密に言えば、岩塩型結晶の格子が歪んだ構造となっている場合がある。
 また、本明細書等において、岩塩型の結晶構造とは、陽イオンと陰イオンが交互に配列している構造をいう。なお結晶構造の一部に、陽イオンまたは陰イオンの欠損があってもよい。
 また、本明細書等において、正極活物質の理論容量とは、正極活物質が有する挿入脱離可能なリチウムが全て脱離した場合の電気量をいう。例えば、LiFePOの理論容量は170mAh/g、LiCoOの理論容量は274mAh/g、LiNiOの理論容量は275mAh/g、LiMnの理論容量は148mAh/gである。
 また正極活物質中に挿入脱離可能なリチウムがどの程度残っているかを、組成式中のx、たとえばLiCoO中のx、またはLiM1O中のxで示す。本明細書中のLiCoOは適宜LiM1Oに読み替えることができる。xは占有率ということができ、二次電池中の正極活物質の場合、x=(理論容量−充電容量)/理論容量としてもよい。たとえばLiCoOを正極活物質に用いた二次電池を219.2mAh/gまで充電した場合、Li0.2CoOまたはx=0.2ということができる。LiCoO中のxが小さいとは、たとえば0.1<x≦0.24をいう。
 コバルト酸リチウムが化学量論比をおよそ満たす場合、LiCoOであり、リチウムサイトのLiの占有率はx=1である。また放電が終了した二次電池も、LiCoOであり、x=1といってよい。ここでいう放電が終了したとは、たとえば100mA/gの電流で、電圧が2.5V(対極リチウム)以下となった状態をいう。リチウムイオン二次電池では、リチウムサイトのリチウムの占有率がx=1となり、それ以上リチウムが入らなくなると、電圧が急激に低下する。このとき、放電が終了したといえる。一般的にLiCoOを用いたリチウムイオン二次電池では、放電電圧が2.5Vになるまでに放電電圧が急激に降下するため、上記の条件で放電が終了したとする。
 また、本明細書等において、正極活物質に挿入脱離可能なリチウムが全て挿入されているときの充電深度を0、正極活物質が有する挿入脱離可能なリチウムが全て脱離したときの充電深度を1ということがある。
(実施の形態1)
 本実施の形態では、本発明の一態様の電極の作製方法について説明する。
 本発明の一態様の電極の作製方法の例について、図1乃至図4を用いて説明する。
[作製方法1]
 電極(正極、負極)は活物質層と集電体を有する。集電体の一方の面に活物質層が設けられた電極を片面塗工電極と呼び、集電体の両方の面に活物質層が設けられた電極を両面塗工電極と呼ぶ。本発明の一態様の電極の作製方法は、片面塗工電極及び両面塗工電極のいずれにも適用可能な作製方法である。なお、活物質層は活物質を有し、導電材およびバインダを有していてもよい。正極が有する活物質等の材料、及び負極が有する活物質等の材料、については以降の実施の形態に記載の材料を用いるとよい。
 電極の作製方法として、スラリー作製工程と、塗布工程と、振動処理工程と、プレス工程と、を有することが好ましい。振動処理工程及びプレス工程には、図1に示した装置10を用いることができる。
<スラリー作製工程>
 スラリー作製工程では、活物質を分散媒に分散させ、スラリーを作製する。例えばバインダとしてPVDF(ポリフッ化ビニリデン)を用いる場合、分散媒としてNMP(N−メチル−2−ピロリドン)等を用いることができる。必要に応じて、スラリーは導電材及びバインダを有していてもよい。
<塗布工程>
 塗布工程では、スラリーを集電体に塗布する。スラリーの塗布には、スロットダイ方式、グラビア、ブレード法、およびそれらを組み合わせた方式等を用いることができる。塗布後に、分散媒を揮発させることで、塗布電極1を得ることができる。分散媒の揮発工程(乾燥工程ともいう)は、50℃以上200℃以下、好ましくは80℃以上150℃以下の温度範囲で行うとよい。塗布工程後の塗布電極1の一例を、図2Aに示す。集電体2の上に形成された、活物質5を有する活物質層3は、塗布工程の直後は、図2Aに模式的に示す電極1aのように、活物質層3中に空隙4を多く有する。なお、図2A乃至図2Cにおいて活物質層3を示す輪郭線は、活物質層3の膜密度(活物質層の単位体積当たりの質量)を計算する際に、活物質層3の体積として考えることができる領域をしめしている。
<振動処理工程>
 振動処理工程では、図1に示した装置10の振動処理部20を用いることができる。装置10は電極ロールの巻き出し部41と巻取り部42と、振動処理部20と、プレス部30と、を有する。電極1は、巻き出し部41とプレス部30と、の間において、振動処理部20が有するロール21の表面に沿うように接している。電極1がロール21の表面に沿うように接することで、後述の振動及び熱を電極1に伝達し易くすることができる。振動処理部20は、電極1と接するロール21と、支持体22と、を有し、支持体22は振動子23を有する。振動子23は発振器25と電気的に接続され、所定の周波数で振動するように発振器25によって振動子23は制御される。振動はロール21を介して電極1に伝えられる。振動は上下振動(図1中のZ方向)及び/又は横振動(図1中のX及び/又はY方向)を有する。上記振動が電極1に与えられることで、活物質層3中の活物質5が、安定な位置へと移動することができ、続いてのプレス工程において、より低いプレス圧力で膜密度を高めることが可能となる。また、ロール21は、内部にシーズヒータ等の加熱部を有し、振動処理工程において、電極1が50℃以上200℃以下、好ましくは80℃以上150℃以下の温度になるようにロール21の温度が調整されていることが好ましい。ロール21の有する構造として、後述の図3Bと同様の構造を有することができる。電極1を上記の温度で加熱し、かつ振動を与えることで、活物質層3中の活物質5が、より安定な位置へと移動することができ、かつ、プレス工程の予備加熱としての効果を得ることができるため、大変好ましい。
 振動子として例えば、圧電セラミックス振動子を用いることができる。圧電セラミックス振動子の構造として、2つの円環形状の電極部に挟まれた、厚み方向に分極を有する円環柱形状の圧電セラミックス部を有する、ランジュバン型の構造を用いることができる。圧電セラミックスとして例えば、PZT(チタン酸ジルコン酸鉛)等の圧電性を有するセラミックスを用いるとよい。
<プレス工程>
 プレス工程では、図1に示した装置10のプレス部30を用いることができる。プレス部30は、上部ロール31、上部支持体32、下部ロール33、及び下部支持体34を有する。上部ロール31は、内部にシーズヒータ等の加熱部を有し、プレス工程において、電極1が50℃以上200℃以下、好ましくは80℃以上150℃以下の温度になるように上部ロール31の温度が調整されていることが好ましい。上部ロール31及び下部ロール33によって電極1は加圧され、電極1が有する活物質層3の厚さが小さくなる。つまり、活物質層3の有する空隙4が小さくなり、活物質層3の膜密度(活物質層の単位体積当たりの質量)が高まる。
 図2Aは前述のとおり、塗布工程の直後の電極1aの様子を模式的に示しており、活物質層3は空隙4を多く有する。二次電池は体積当たり容量が高いことが望ましいため、活物質層3中の空隙4が極力小さいこと(膜密度が高いこと)が望ましい。そのため、従来は非常に強い力で電極1を加圧し、活物質層3の膜密度を高めることがなされていた。ただし、非常に強い力で電極1を加圧した場合、図2Bに模式的に示す電極1bのように、活物質5が加圧に耐えられず、クラック6、及びスリップ7などの欠陥を生じさせてしまう課題があった。一方、本発明の一態様の電極の作製方法においては、振動処理工程を有することで、従来よりも小さい力で電極1を加圧した場合でも、高い膜密度を有する活物質層3を得ることが可能である。この場合、図2Cに模式的に示す電極1cのように、クラック6、及びスリップ7等の欠陥の発生が非常に低減され、かつ膜密度の高い活物質層3を得ることができる。
[作製方法2]
 また、本発明の別の一態様として、作製方法1で示した振動処理工程とプレス工程とを、図3Aに示す装置11を用いて、一体的に処理してもよい。振動処理工程とプレス工程とを一体的に処理する方法を振動プレス処理、と呼ぶことができる。なお図3Aに示す上部ロール31は、図1の上部ロール31と同様に、内部にシーズヒータ等の加熱部37を有し、振動処理工程において、電極1が50℃以上200℃以下、好ましくは80℃以上150℃以下の温度になるように上部ロール31の温度が調整されていることが好ましい。ロールが有する加熱部37の一例を図3Bに示す。図3Bは、図3Aの振動プレス部の上部を、図中X方向(電極1の移動方向)からみた模式図である。図3Bに示す上部支持体32は、上部ロール31の軸を2か所の保持部32bで保持し、上部支持体32の本体部32aと保持部32bの間に、振動子35(35a、35b)を有する。振動子35は発振器36と接続される。上部ロール31は、歯車38を有し、図示しない別の歯車から回転動力を受ける。上部ロール31は中心軸付近に、加熱部37を有することができる。なお、振動子35a及び振動子35bは、それぞれ別の発振器に接続されてもよいが、振動子35a及び振動子35bが発する振動は、振幅、振動数、位相が揃っていることが望ましい。
[作製方法3]
 また、本発明の別の一態様として、作製方法1に示した振動処理工程と、作製方法2に示した振動プレス処理と、を組み合わせた図4に示す装置12を用いることができる。図4に示すロール21及び上部ロール31の有する構造として、前述の図3Bと同様の構造を用いることができる。
 本実施の形態は、他の実施の形態と適宜組み合わせて用いることができる。
(実施の形態2)
 本実施の形態では、本発明の一態様の二次電池の例について説明する。正極及び負極のいずれか一又は両方は、実施の形態1で示した作製方法で作製されることが望ましい。
<二次電池の構成例>
 以下に、正極、負極および電解液が、外装体に包まれている二次電池を例にとって説明する。
〔正極〕
 正極は、正極活物質層および正極集電体を有する。正極活物質層は正極活物質を有し、後述の導電材およびバインダを有していてもよい。
〔負極〕
 負極は、負極活物質層および負極集電体を有する。負極活物質層は負極活物質を有し、後述の導電材および上記に記載のバインダを有していてもよい。
[集電体]
 正極集電体および負極集電体として、ステンレス、金、白金、亜鉛、鉄、銅、アルミニウム、チタン等の金属、及びこれらの合金など、導電性の高く、リチウム等のキャリアイオンと合金化しない材料を用いることができる。集電体は、シート状、網状、パンチングメタル状、エキスパンドメタル状等の形状を適宜用いることができる。集電体は、厚みが10μm以上30μm以下のものを用いるとよい。
 なお負極集電体は、リチウム等のキャリアイオンと合金化しない材料を用いることが好ましい。
 集電体として上記に示す金属の上に積層して、チタン化合物を設けてもよい。チタン化合物として例えば、窒化チタン、酸化チタン、窒素の一部が酸素に置換された窒化チタン、酸素の一部が窒素に置換された酸化チタン、および酸化窒化チタン(TiO、0<x<2、0<y<1)から選ばれる一を、あるいは二以上を混合または積層して、用いることができる。中でも窒化チタンは導電性が高くかつ酸化を抑制する機能が高いため、特に好ましい。チタン化合物を集電体の表面に設けることにより例えば、集電体上に形成される活物質層が有する材料と金属との反応が抑制される。活物質層が酸素を有する化合物を含む場合には、金属と酸素との酸化反応を抑制することができる。例えば集電体としてアルミニウムを用い、活物質層が後述する酸化グラフェンを用いて形成される場合には、酸化グラフェンが有する酸素とアルミニウムとの酸化反応が懸念される。このような場合において、アルミニウムの上にチタン化合物を設けることにより、集電体と酸化グラフェンとの酸化反応を抑制することができる。
[導電材]
 導電材は、導電付与剤、導電助剤とも呼ばれ、炭素材料が用いられる。複数の活物質の間に導電材を付着させることで複数の活物質同士が電気的に接続され、導電性が高まる。なお、「付着」とは、活物質と導電材が物理的に密着していることのみを指しているのではなく、共有結合が生じる場合、ファンデルワールス力により結合する場合、活物質の表面の一部を導電材が覆う場合、活物質の表面凹凸に導電材がはまりこむ場合、互いに接していなくとも電気的に接続される場合などを含む概念とする。
 正極活物質層、負極活物質層、等の活物質層は、導電材を有することが好ましい。
 導電材としては、例えば、アセチレンブラック、およびファーネスブラックなどのカーボンブラック、人造黒鉛、および天然黒鉛などの黒鉛、カーボンナノファイバー、およびカーボンナノチューブなどの炭素繊維、ならびにグラフェン化合物のいずれか一種又は二種以上を用いることができる。
 炭素繊維としては、例えばメソフェーズピッチ系炭素繊維、等方性ピッチ系炭素繊維等の炭素繊維を用いることができる。また炭素繊維として、カーボンナノファイバーまたはカーボンナノチューブなどを用いることができる。カーボンナノチューブは、例えば気相成長法などで作製することができる。
 また活物質層は導電材として銅、ニッケル、アルミニウム、銀、金などの金属粉末または金属繊維、導電性セラミックス材料等を有してもよい。
 活物質層の総量に対する導電助剤の含有量は、1wt%以上10wt%以下が好ましく、1wt%以上5wt%以下がより好ましい。
 活物質と点接触するカーボンブラック等の粒状の導電材と異なり、グラフェン化合物は接触抵抗の低い面接触を可能とするものであるから、通常の導電材よりも少量で粒状の活物質とグラフェン化合物との電気伝導性を向上させることができる。よって、活物質の活物質層における比率を増加させることができる。これにより、二次電池の放電容量を増加させることができる。
 カーボンブラック、黒鉛、等の粒子状の炭素含有化合物または、カーボンナノチューブ等の繊維状の炭素含有化合物は微小な空間に入りやすい。微小な空間とは例えば、複数の活物質の間の領域等を指す。微小な空間に入りやすい炭素含有化合物と、複数の粒子にわたって導電性を付与できるグラフェンなどのシート状の炭素含有化合物と、を組み合わせて使用することにより、電極の密度を高め、優れた導電パスを形成することができる。本発明の一態様の作製方法で得られる二次電池は、高容量密度を有し、かつ安定性を備えることができ、車載用の二次電池として有効である。
[バインダ]
 活物質層は、バインダ(図示せず)を有することが好ましい。バインダは例えば、電解質と活物質とを束縛または固定する。またバインダは、電解質と炭素系材料、活物質と炭素系材料、複数の活物質同士、複数の炭素系材料、等を束縛または固定することができる。
 バインダとして、ポリスチレン、ポリアクリル酸メチル、ポリメタクリル酸メチル(ポリメチルメタクリレート、PMMA)、ポリアクリル酸ナトリウム、ポリビニルアルコール(PVA)、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド、ポリイミド、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリエチレンテレフタレート、ナイロン、ポリフッ化ビニリデン(PVDF)、ポリアクリロニトリル(PAN)、エチレンプロピレンジエンポリマー、ポリ酢酸ビニル、ニトロセルロース等の材料を用いることが好ましい。
 ポリイミドは熱的、機械的、化学的に非常に優れた安定な性質を有する。
 フッ素を有する高分子材料であるフッ素ポリマー、具体的にはポリフッ化ビニリデン(PVDF)などを用いることができる。PVDFは融点を134℃以上169℃以下の範囲に有する樹脂であり、熱安定性に優れた材料である。
 またバインダとして、スチレン−ブタジエンゴム(SBR)、スチレン−イソプレン−スチレンゴム、アクリロニトリル−ブタジエンゴム、ブタジエンゴム、エチレン−プロピレン−ジエン共重合体などのゴム材料を用いることが好ましい。またバインダとして、フッ素ゴムを用いることができる。
 また、バインダとしては、例えば水溶性の高分子を用いることが好ましい。水溶性の高分子としては、例えば多糖類などを用いることができる。多糖類としては、カルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ジアセチルセルロース、再生セルロースなどのセルロース誘導体または、澱粉などを用いることができる。また、これらの水溶性の高分子を、前述のゴム材料と併用して用いると、さらに好ましい。
 バインダは上記のうち複数を組み合わせて使用してもよい。
<グラフェン化合物>
 本明細書等においてグラフェン化合物とは、グラフェン、多層グラフェン、マルチグラフェン、酸化グラフェン、多層酸化グラフェン、マルチ酸化グラフェン、還元された酸化グラフェン、還元された多層酸化グラフェン、還元されたマルチ酸化グラフェン、グラフェン量子ドット等を含む。グラフェン化合物とは、炭素を有し、平板状、シート状等の形状を有し、炭素6員環で形成された二次元的構造を有するものをいう。該炭素6員環で形成された二次元的構造は炭素シートといってもよい。グラフェン化合物は官能基を有してもよい。またグラフェン化合物は屈曲した形状を有することが好ましい。またグラフェン化合物は丸まってカーボンナノファイバーのようになっていてもよい。
 本明細書等において酸化グラフェンとは例えば、炭素と、酸素を有し、シート状の形状を有し、官能基、特にエポキシ基、カルボキシ基またはヒドロキシ基を有するものをいう。
 本明細書等において還元された酸化グラフェンとは例えば、炭素と、酸素を有し、シート状の形状を有し、炭素6員環で形成された二次元的構造を有するものをいう。炭素シートといってもよい。還元された酸化グラフェンは1枚でも機能するが、複数枚が積層されていてもよい。還元された酸化グラフェンは、炭素の濃度が80atomic%より大きく、酸素の濃度が2atomic%以上15atomic%以下である部分を有することが好ましい。このような炭素濃度および酸素濃度とすることで、少量でも導電性の高い導電材として機能することができる。また還元された酸化グラフェンは、ラマンスペクトルにおけるGバンドとDバンドの強度比G/Dが1以上であることが好ましい。このような強度比である還元された酸化グラフェンは、少量でも導電性の高い導電材として機能することができる。
 酸化グラフェンを還元することにより、グラフェン化合物に孔を設けることができる場合がある。
 また、グラフェンの端部をフッ素で終端させた材料を用いてもよい。
 活物質層の縦断面においては、活物質層の内部領域において概略均一にシート状のグラフェン化合物が分散する。複数のグラフェン化合物は、複数の粒状の活物質を一部覆うように、あるいは複数の粒状の活物質の表面上に張り付くように形成されているため、互いに面接触している。
 ここで、複数のグラフェン化合物同士が結合することにより、網目状のグラフェン化合物シート(以下グラフェン化合物ネットまたはグラフェンネットと呼ぶ)を形成することができる。活物質をグラフェンネットが被覆する場合に、グラフェンネットは活物質同士を結合するバインダとしても機能することができる。よって、バインダの量を少なくすることができる、又は使用しないことができるため、電極体積または電極重量に占める活物質の比率を向上させることができる。すなわち、二次電池の充放電容量を増加させることができる。
 ここで、グラフェン化合物として酸化グラフェンを用い、活物質と混合して活物質層となる層を形成後、還元することが好ましい。つまり完成後の活物質層は還元された酸化グラフェンを有することが好ましい。グラフェン化合物の形成に、極性溶媒中での分散性が極めて高い酸化グラフェンを用いることにより、グラフェン化合物を活物質層の内部領域において概略均一に分散させることができる。均一に分散した酸化グラフェンを含有する分散媒から溶媒を揮発除去し、酸化グラフェンを還元するため、活物質層に残留するグラフェン化合物は部分的に重なり合い、互いに面接触する程度に分散していることで三次元的な導電パスを形成することができる。なお、酸化グラフェンの還元は、例えば熱処理により行ってもよいし、還元剤を用いて行ってもよい。
 また、予め、スプレードライ装置を用いることで、活物質の表面全体を覆って導電材であるグラフェン化合物を被膜として形成し、さらに活物質同士間をグラフェン化合物で電気的に接続し、導電パスを形成することもできる。
 またグラフェン化合物と共に、グラフェン化合物を形成する際に用いる材料を混合して活物質層に用いてもよい。たとえばグラフェン化合物を形成する際の触媒として用いる粒子を、グラフェン化合物と共に混合してもよい。グラフェン化合物を形成する際の触媒としてはたとえば、酸化ケイ素(SiO、SiO(x<2))、酸化アルミニウム、鉄、ニッケル、ルテニウム、イリジウム、プラチナ、銅、ゲルマニウム等を有する粒子が挙げられる。該粒子は平均粒子径(D50:メディアン径ともいう。)が1μm以下であると好ましく、100nm以下であることがより好ましい。
[セパレータ]
 正極と負極の間にセパレータを配置する。セパレータとしては、例えば、紙をはじめとするセルロースを有する繊維、不織布、ガラス繊維、セラミックス、或いはナイロン(ポリアミド)、ビニロン(ポリビニルアルコール系繊維)、ポリエステル、アクリル、ポリオレフィン、ポリウレタンを用いた合成繊維等で形成されたものを用いることができる。セパレータは袋状に加工し、正極または負極のいずれか一方を包むように配置することが好ましい。
 セパレータは直径20nm程度の大きさの孔、好ましくは直径6.5nm以上の大きさの孔、さらに好ましくは少なくとも直径2nmの孔を有する多孔質材料である。
 セパレータは多層構造であってもよい。例えばポリプロピレン、ポリエチレン等の有機材料フィルムに、セラミック系材料、フッ素系材料、ポリアミド系材料、またはこれらを混合したもの等をコートすることができる。セラミック系材料としては、例えば酸化アルミニウム粒子、酸化シリコン粒子等を用いることができる。フッ素系材料としては、例えばPVDF、ポリテトラフルオロエチレン等を用いることができる。ポリアミド系材料としては、例えばナイロン、アラミド(メタ系アラミド、パラ系アラミド)等を用いることができる。
 セラミック系材料をコートすると耐酸化性が向上するため、高電圧充放電の際のセパレータの劣化を抑制し、二次電池の信頼性を向上させることができる。またフッ素系材料をコートするとセパレータと電極が密着しやすくなり、出力特性を向上させることができる。ポリアミド系材料、特にアラミドをコートすると、耐熱性が向上するため、二次電池の安全性を向上させることができる。
 例えばポリプロピレンのフィルムの両面に酸化アルミニウムとアラミドの混合材料をコートしてもよい。また、ポリプロピレンのフィルムの、正極と接する面に酸化アルミニウムとアラミドの混合材料をコートし、負極と接する面にフッ素系材料をコートしてもよい。
 多層構造のセパレータを用いると、セパレータ全体の厚さが薄くても二次電池の安全性を保つことができるため、二次電池の体積あたりの容量を大きくすることができる。
[電解質]
 二次電池に液状の電解質を用いる場合、例えば、電解質としてエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ギ酸メチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、1,3−ジオキサン、1,4−ジオキサン、ジメトキシエタン(DME)、ジメチルスルホキシド、ジエチルエーテル、メチルジグライム、アセトニトリル、ベンゾニトリル、テトラヒドロフラン、スルホラン、スルトン等のうちの1種、又はこれらのうちの2種以上を任意の組み合わせおよび比率で用いることができる。
 また、電解質の溶媒として、難燃性および難揮発性であるイオン液体(常温溶融塩)を一つ又は複数用いることで、二次電池の内部領域短絡または過充電等によって内部領域温度が上昇しても、二次電池の破裂または発火などを防ぐことができる。イオン液体は、カチオンとアニオンからなり、有機カチオンとアニオンとを含む。有機カチオンとして、四級アンモニウムカチオン、三級スルホニウムカチオン、および四級ホスホニウムカチオン等の脂肪族オニウムカチオン、ならびにイミダゾリウムカチオン、およびピリジニウムカチオン等の芳香族カチオンが挙げられる。また、アニオンとして、1価のアミド系アニオン、1価のメチド系アニオン、フルオロスルホン酸アニオン、パーフルオロアルキルスルホン酸アニオン、テトラフルオロボレートアニオン、パーフルオロアルキルボレートアニオン、ヘキサフルオロホスフェートアニオン、またはパーフルオロアルキルホスフェートアニオン等が挙げられる。
 特に、本発明の一態様の二次電池において、負極が有する第2の活物質としてシリコンを用いる場合、イオン液体を有する液状の電解質を用いることが好ましい。
 本発明の一態様の二次電池は例えば、ナトリウムイオン、カリウムイオンなどのアルカリ金属イオンまたは、カルシウムイオン、ストロンチウムイオン、バリウムイオン、ベリリウムイオン、マグネシウムイオンなどのアルカリ土類金属イオンをキャリアイオンとして有する。
 キャリアイオンとしてリチウムイオンを用いる場合には例えば、電解質はリチウム塩を含む。リチウム塩として例えば、LiPF、LiClO、LiAsF、LiBF、LiAlCl、LiSCN、LiBr、LiI、LiSO、Li10Cl10、Li12Cl12、LiCFSO、LiCSO、LiC(CFSO、LiC(CSO、LiN(CFSO、LiN(CSO)(CFSO)、LiN(CSO等を用いることができる。
 また、電解質はフッ素を含むことが好ましい。フッ素を含む電解質として例えば、フッ素化環状カーボネートの一種または二種以上と、リチウムイオンと、を有する電解質を用いることができる。フッ素化環状カーボネートは不燃性を向上させ、リチウムイオン二次電池の安全性を高めることができる。
 フッ素化環状カーボネートとして、フッ化エチレンカーボネート、例えば、モノフルオロエチレンカーボネート(炭酸フルオロエチレン、FEC、F1EC)、ジフルオロエチレンカーボネート(DFEC、F2EC)、トリフルオロエチレンカーボネート(F3EC)、テトラフルオロエチレンカーボネート(F4EC)などを用いることができる。なお、DFECには、シス−4,5、トランス−4,5などの異性体がある。電解質として、フッ素化環状カーボネートを一種または二種以上を用いてリチウムイオンを溶媒和させて、充放電時に電極が含む電解質内において輸送させることが低温で動作させる上で重要である。フッ素化環状カーボネートを少量の添加剤としてではなく、充放電時のリチウムイオンの輸送に寄与させると低温での動作が可能となる。二次電池内においてリチウムイオンは数個以上数十個程度の塊で移動する。
 フッ素化環状カーボネートを電解質に用いることで、電極が含む電解質内において溶媒和しているリチウムイオンが活物質粒子へ入る際に必要となる脱溶媒和のエネルギーを小さくする。この脱溶媒和のエネルギーを小さくできれば、低温範囲においてもリチウムイオンが活物質粒子へ挿入或いは脱離しやすくなる。なお、リチウムイオンは溶媒和した状態のまま移動することもあるが、配位する溶媒分子が入れ替わるホッピング現象が生じる場合もある。リチウムイオンが脱溶媒和しやすくなると、ホッピング現象による移動がしやすくなり、リチウムイオンの移動がしやすくなる場合がある。二次電池の充放電における電解質の分解生成物が、活物質の表面にまとわりつくことにより、二次電池の劣化が起こる懸念がある。しかしながら電解質がフッ素を有する場合には電解質がさらさらであり、電解質の分解生成物は活物質の表面に付着しづらくなる。このため、二次電池の劣化を抑制することができる。
 溶媒和したリチウムイオンは、電解質において、複数がクラスタを形成し、負極内、正極と負極の間、正極内、等を移動する場合がある。
 本明細書において、電解質は、固体、液体、または半固体の材料などを含む総称である。
 二次電池内に存在する界面、例えば活物質と電解質との界面で劣化が生じやすい。本発明の一態様の二次電池においては、フッ素を有する電解質を有することで、活物質と電解質との界面で生じうる劣化、代表的には電解質の変質または電解質の高粘度化を防ぐことができる。また、フッ素を有する電解質に対して、バインダまたはグラフェン化合物などをまとわりつかせる、または保持させる構成としてもよい。当該構成とすることで、電解質の粘度を低下させた状態、別言すると電解質のさらさらな状態を維持することが可能となり、二次電池の信頼性を向上させることができる。フッ素が2つついているDFECおよび4つ結合しているF4ECは、フッ素が1つ結合しているFECに比べて、粘度が低く、さらさらであり、リチウムとの配位結合が弱くなる。従って、活物質粒子に粘度の高い分解物が付着することを低減することができる。活物質粒子に粘度の高い分解物が付着する、或いはまとわりつくと活物質粒子の界面でリチウムイオンが移動しにくくなる。フッ素を有する電解質は、溶媒和することで活物質(正極活物質または負極活物質)表面につく分解物の生成を緩和する。また、フッ素を有する電解質を用いることにより、分解物が付着することを防ぐことでデンドライトの発生および成長を防止することができる。
 また、フッ素を有する電解質を主成分として用いることも特徴の一つであり、フッ素を有する電解質は、5体積%以上、10体積%以上、好ましくは30体積%以上100体積%以下とする。
 本明細書において、電解質の主成分とは、二次電池の電解質全体の5体積%以上であることを指している。また、ここでいう二次電池の電解質全体の5体積%以上とは二次電池の製造時に計量された電解質全体の占める割合を指している。また、二次電池を作製後に分解する場合には、複数種類の電解質がそれぞれどれくらいの割合であったかを定量することは困難であるが、ある一種類の有機化合物が電解質全体の5体積%以上であるかは判定することができる。
 フッ素を有する電解質を用いることで幅広い温度範囲、具体的には、−40℃以上150℃以下、好ましくは−40℃以上85℃以下で動作可能な二次電池を実現することができる。
 また、電解質にビニレンカーボネート、プロパンスルトン(PS)、tert−ブチルベンゼン(TBB)、リチウムビス(オキサレート)ボレート(LiBOB)、またスクシノニトリル、アジポニトリル等のジニトリル化合物などの添加剤を添加してもよい。添加剤の濃度は、例えば電解質全体に対して0.1体積%以上5体積%未満とすればよい。
 また、電解質は上記の他にγーブチロラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン等の非プロトン性有機溶媒の一つまたは複数を有してもよい。
 また、電解質がゲル化される高分子材料を有することで、漏液性等に対する安全性が高まる。ゲル化される高分子材料の代表例としては、シリコーンゲル、アクリルゲル、アクリロニトリルゲル、ポリエチレンオキサイド系ゲル、ポリプロピレンオキサイド系ゲル、フッ素系ポリマーのゲル等がある。
 高分子材料としては、例えばポリエチレンオキシド(PEO)などのポリアルキレンオキシド構造を有するポリマー、PVDF、およびポリアクリロニトリル等、ならびにそれらを含む共重合体等を用いることができる。例えばPVDFとヘキサフルオロプロピレン(HFP)の共重合体であるPVDF−HFPを用いることができる。また、形成される高分子は、多孔質形状を有してもよい。
 また、上記構成は、液状の電解質を用いる二次電池の例を示したが特に限定されない。例えば、半固体電池および全固体電池を作製することもできる。
 本明細書等において液状の電解質を用いる二次電池の場合も、半固体電池の場合も正極と負極の間に配置される層を電解質層と呼ぶこととする。半固体電池の電解質層は成膜で形成される層と言え、液状の電解質層と区別することができる。
 また、本明細書等において半固体電池とは、電解質層、正極、負極の少なくとも一に、半固体材料を有する電池をいう。ここでいう半固体とは、固体材料の比が50%であることは意味しない。半固体とは、体積変化が小さいといった固体の性質を有しつつも、柔軟性を有する等の液体に近い性質も一部持ち合わせることを意味する。これらの性質を満たせば、単一の材料でも、複数の材料であってもよい。たとえば液体の材料を、多孔質の固体材料に浸潤させた物であってもよい。
 また本明細書等において、ポリマー電解質二次電池とは、正極と負極の間の電解質層にポリマーを有する二次電池をいう。ポリマー電解質二次電池は、ドライ(または真性)ポリマー電解質電池、およびポリマーゲル電解質電池を含む。
 電解質は、リチウムイオン導電性ポリマーとリチウム塩を有する。
 本明細書等においてリチウムイオン導電性ポリマーとは、リチウム等のカチオンの導電性を有するポリマーである。より具体的にはカチオンが配位できる極性基を有する高分子化合物である。極性基としては、エーテル基、エステル基、ニトリル基、カルボニル基、シロキサン等を有していることが好ましい。
 リチウムイオン導電性ポリマーとしてはたとえば、ポリエチレンオキシド(PEO)、主鎖としてポリエチレンオキシドを有する誘導体、ポリプロピレンオキシド、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリシロキサン、ポリフォスファゼン等を用いることができる。
 リチウムイオン導電性ポリマーは、分岐していてもよく、架橋していてもよい。また共重合体であってもよい。分子量はたとえば1万以上であることが好ましく、10万以上であることがより好ましい。
 リチウムイオン導電性ポリマーはポリマー鎖の部分運動(セグメント運動ともいう)により相互作用する極性基を変えながらリチウムイオンが移動していく。たとえばPEOならば、エーテル鎖のセグメント運動により相互作用する酸素を変えながらリチウムイオンが移動する。温度がリチウムイオン導電性ポリマーの融点または軟化点に近いか、それより高いときは結晶領域が溶解して非晶質領域が増大し、またエーテル鎖の運動が活発になるため、イオン伝導度が高くなる。そのためリチウムイオン導電性ポリマーとしてPEOを使用する場合は60℃以上で充放電を行うことが好ましい。
 シャノンのイオン半径(Shannon et al.,Acta A 32(1976)751.)によれば、1価のリチウムイオンの半径は4配位のとき0.590×10−1nm、6配位のとき0.76×10−1nm、8配位のとき0.92×10−1nmである。また2価の酸素イオンの半径は、2配位のとき1.35×10−1nm、3配位のとき1.36×10−1nm、4配位のとき1.38×10−1nm、6配位のとき1.40×10−1nm、8配位のとき1.42×10−1nmである。隣り合うリチウムイオン導電性ポリマー鎖が有する極性基間の距離は、上記のようなイオン半径を保った状態でリチウムイオンおよび極性基が有する陰イオンが安定に存在できる距離以上であることが好ましい。かつリチウムイオンと極性基間の相互作用が十分に生じる距離であることが好ましい。ただし上述したようにセグメント運動が生じるため、常に一定の距離を保っている必要はない。リチウムイオンが通過するときに適切な距離であればよい。
 またリチウム塩としては、例えばリチウムと共に、リン、フッ素、窒素、硫黄、酸素、塩素、ヒ素、ホウ素、アルミニウム、臭素、ヨウ素のうち少なくとも一以上と、を有する化合物を用いることができる。たとえばLiPF、LiN(FSO(リチウムビス(フルオロスルホニル)イミド、LiFSI)、LiClO、LiAsF、LiBF、LiAlCl、LiSCN、LiBr、LiI、LiSO、Li10Cl10、Li12Cl12、LiCFSO、LiCSO、LiC(CFSO、LiC(CSO、LiN(CFSO、LiN(CSO)(CFSO)、LiN(CSO、リチウムビス(オキサレート)ボレート(LiBOB)等のリチウム塩を一種、又はこれらのうちの二種以上を任意の組み合わせおよび比率で用いることができる。
 特にLiFSIを用いると、低温特性が良好となり好ましい。またLiFSI及びLiTFSAは、LiPF6等と比較して水と反応しにくい。そのためLiFSIを用いた電極および電解質層を作製する際の露点の制御が容易となる。たとえば水分を極力排除したアルゴンなどの不活性雰囲気、および露点を制御したドライルームだけでなく、通常の大気雰囲気でも取り扱う事ができる。そのため生産性が向上し好ましい。また、LiFSIおよびLiTFSAのような高解離性で可塑化効果のあるLi塩を用いた方が、エーテル鎖のセグメント運動を利用したリチウム伝導を用いる際は、広い温度範囲で使用できるため特に好ましい。
 有機溶媒がない、または非常に少ないことで、引火又は発火しにくい二次電池とすることができ、安全性が向上し好ましい。また、電解質が、有機溶媒がない、または非常に少ない電解質層であれば、セパレータを有さなくても十分な強度があり正極と負極を電気的に絶縁することが可能である。セパレータを用いなくてよいため、生産性の高い二次電池とすることができる。電解質と無機フィラーと、を有する電解質層とすれば、さらに強度が増し、より安全性の高い二次電池とすることができる。
[外装体]
 二次電池が有する外装体としては、例えばアルミニウムなどの金属材料および樹脂材料を用いることができる。また、フィルム状の外装体を用いることもできる。フィルムとしては、例えばポリエチレン、ポリプロピレン、ポリカーボネート、アイオノマー、ポリアミド等の材料からなる膜上に、アルミニウム、ステンレス、銅、ニッケル等の可撓性に優れた金属薄膜を設け、さらに該金属薄膜上に外装体の外面としてポリアミド系樹脂、ポリエステル系樹脂等の絶縁性合成樹脂膜を設けた三層構造のフィルムを用いることができる。また、フィルムとしてフッ素樹脂フィルムを用いることが好ましい。フッ素樹脂フィルムは酸、アルカリ、有機溶媒、等に対する安定性が高く、二次電池の反応などに伴う副反応、腐食、等を抑制し、優れた二次電池を実現することができる。フッ素樹脂フィルムとしてPTFE(ポリテトラフルオロエチレン)、PFA(パーフルオロアルコキシアルカン:テトラフルオロエチレンとパーフルオロアルキルビニルエーテルの共重合体)、FEP(パーフルオロエチレンプロペンコポリマー:テトラフルオロエチレンとヘキサフルオロプロピレンの共重合体)、ETFE(エチレンテトラフルオロエチレンコポリマー:テトラフルオロエチレンとエチレンの共重合体)等が挙げられる。
<負極活物質の一例>
 負極活物質として、二次電池のキャリアイオンとの反応が可能な材料、キャリアイオンの挿入および脱離が可能な材料、キャリアイオンとなる金属との合金化反応が可能な材料、キャリアイオンとなる金属の溶解および析出が可能な材料、等を用いることが好ましい。
 以下に、負極活物質の一例について説明する。
 また、負極活物質として、シリコン、スズ、ガリウム、アルミニウム、ゲルマニウム、鉛、アンチモン、ビスマス、銀、亜鉛、カドミウム、インジウムから選ばれる一以上の元素を有する金属、または化合物を用いることができる。このような元素を用いた合金系化合物としては、例えば、MgSi、MgGe、MgSn、SnS、VSn、FeSn、CoSn、NiSn、CuSn、AgSn、AgSb、NiMnSb、CeSb、LaSn、LaCoSn、CoSb、InSb、SbSn等が挙げられる。
 また、シリコンに不純物元素としてリン、ヒ素、ホウ素、アルミニウム、ガリウム等を添加し、低抵抗化した材料を用いてもよい。また、リチウムをプリドープしたシリコン材料を用いても良い。プリドープの方法としてはフッ化リチウム、炭酸リチウム等とシリコンを混合してアニールする、リチウム金属とシリコンとのメカニカルアロイング、等の方法がある。また、シリコンを有する電極(シリコン電極)を形成した後に、リチウム金属等の電極と組み合わせて充放電反応によりリチウムをドープ(プリドープ)することができる。その後、ドープされたシリコン電極と、対極となる電極(例えば、プリドープされた負極に対して、正極)と、を組み合わせて二次電池を作製してもよい。
 負極活物質として例えば、シリコンナノ粒子を用いることができる。シリコンナノ粒子の平均粒子径D50は例えば、好ましくは5nm以上1μm未満、より好ましくは10nm以上300nm以下、さらに好ましくは10nm以上100nm以下である。
 シリコンナノ粒子は結晶性を有してもよい。また、シリコンナノ粒子が、結晶性を有する領域と、非晶質の領域と、を有してもよい。
 シリコンを有する材料として例えば、SiO(xは好ましくは2より小さく、より好ましくは0.5以上1.6以下)で表される材料を用いることができる。
 また負極活物質として例えば、黒鉛、易黒鉛化性炭素、難黒鉛化性炭素、カーボンナノチューブ、カーボンブラックおよびグラフェン化合物などの炭素系材料を用いることができる。
 また、負極活物質として例えば、チタン、ニオブ、タングステンおよびモリブデンから選ばれる一以上の元素を有する酸化物を用いることができる。
 負極活物質として上記に示す金属、材料、化合物、等を複数組み合わせて用いることができる。
 負極活物質として例えば、SnO、SnO、二酸化チタン(TiO)、リチウムチタン酸化物(LiTi12)、リチウム−黒鉛層間化合物(Li)、五酸化ニオブ(Nb)、酸化タングステン(WO)、酸化モリブデン(MoO)等の酸化物を用いることができる。
 また、負極活物質として、リチウムと遷移金属の複窒化物である、LiN型構造をもつLi3−xN(M=Co、Ni、Cu)を用いることができる。例えば、Li2.6Co0.4は大きな充放電容量(900mAh/g)を示し好ましい。
 リチウムと遷移金属の複窒化物を負極材料として用いると、正極材料としてリチウムイオンを含まないV、Cr等の材料と組み合わせることができ好ましい。なお、正極材料にリチウムイオンを含む材料を用いる場合でも、あらかじめ正極材料に含まれるリチウムイオンを脱離させることで、負極材料としてリチウムと遷移金属の複窒化物を用いることができる。
 また、コンバージョン反応が生じる材料を負極活物質として用いることもできる。例えば、酸化コバルト(CoO)、酸化ニッケル(NiO)、酸化鉄(FeO)等の、リチウムと合金化反応を行わない遷移金属酸化物を負極活物質に用いてもよい。コンバージョン反応が生じる材料としては、さらに、Fe、CuO、CuO、RuO、Cr等の酸化物、CoS0.89、NiS、CuS等の硫化物、Zn、CuN、Ge等の窒化物、NiP、FeP、CoP等のリン化物、FeF、BiF等のフッ化物でも起こる。なお、上記フッ化物の電位は高いため、正極材料として用いてもよい。
<正極活物質の一例>
 正極活物質として例えば、オリビン型の結晶構造、層状岩塩型の結晶構造、又はスピネル型の結晶構造を有するリチウムを有する複合酸化物等が挙げられる。
 本発明の一態様の正極活物質として層状の結晶構造を有する正極活物質を用いることが好ましい。
 層状の結晶構造として例えば、層状岩塩型の結晶構造が挙げられる。層状岩塩型の結晶構造を有する複合酸化物として例えば、LiM(x>0かつy>0、より具体的には例えばy=2かつ0.8<x<1.2)で表される複合酸化物を用いることができる。ここでMは金属元素であり、好ましくはコバルト、マンガン、ニッケルおよび鉄から選ばれる一以上である。あるいはMは例えば、コバルト、マンガン、ニッケル、鉄、アルミニウム、チタン、ジルコニウム、ランタン、銅、亜鉛から選ばれる二以上である。
 LiMで表される複合酸化物として例えば、LiCoO、LiNiO、LiMnO等が挙げられる。また、LiNiCo1−x(0<x<1)で表されるNiCo系、LiMで表される複合酸化物として例えば、LiNiMn1−x(0<x<1)で表されるNiMn系、等が挙げられる。
 また、LiMOで表される複合酸化物として例えば、LiNiCoMn(x>0、y>0、0.8<x+y+z<1.2)で表されるNiCoMn系(NCMともいう)が挙げられる。具体的には例えば、0.1x<y<8xかつ0.1x<z<8xを満たすことが好ましい。一例として、x、yおよびzは、x:y:z=1:1:1またはその近傍の値を満たすことが好ましい。または一例として、x、yおよびzは、x:y:z=5:2:3またはその近傍の値を満たすことが好ましい。または一例として、x、yおよびzは、x:y:z=8:1:1またはその近傍の値を満たすことが好ましい。または一例として、x、yおよびzは、x:y:z=6:2:2またはその近傍の値を満たすことが好ましい。または一例として、x、yおよびzは、x:y:z=1:4:1またはその近傍の値を満たすことが好ましい。
 また、層状岩塩型の結晶構造を有する複合酸化物として例えば、LiMnO、LiMnO−LiMeO(MeはCo、Ni、Mn)等が挙げられる。
 上記の複合酸化物に代表されるような層状の結晶構造を有する正極活物質を用いると、体積あたりのリチウム含有量が多く体積あたりの容量が高い二次電池を実現することができる場合がある。このような正極活物質では、充電に伴う体積あたりのリチウムの脱離量も多く、安定した充放電を行うためには、脱離した後の結晶構造の安定化が求められる。また充放電において結晶構造が崩れることにより高速充電または高速放電が阻害される場合がある。
 正極活物質としてLiMn等のマンガンを含むスピネル型の結晶構造を有するリチウム含有材料に、ニッケル酸リチウム(LiNiOまたはLiNi1−x(0<x<1)(M=Co、Al等))を混合すると好ましい。該構成とすることによって、二次電池の特性を向上させることができる。
 また、正極活物質として、組成式LiMnで表すことができるリチウムマンガン複合酸化物を用いることができる。ここで、元素Mは、リチウム、マンガン以外から選ばれた金属元素、またはシリコン、リンを用いることが好ましく、ニッケルであることがさらに好ましい。また、リチウムマンガン複合酸化物の粒子全体を測定する場合、放電時に0<a/(b+c)<2、かつc>0、かつ0.26≦(b+c)/d<0.5を満たすことが好ましい。なお、リチウムマンガン複合酸化物の粒子全体の金属、シリコン、リン等の組成は、例えばICP−MS(誘導結合プラズマ質量分析計)を用いて測定することができる。またリチウムマンガン複合酸化物の粒子全体の酸素の組成は、例えばEDX(エネルギー分散型X線分析法)を用いて測定することが可能である。また、ICPMS分析と併用して、融解ガス分析、XAFS(X線吸収微細構造)分析の価数評価を用いることで求めることができる。なお、リチウムマンガン複合酸化物とは、少なくともリチウムとマンガンとを含む酸化物をいい、クロム、コバルト、アルミニウム、ニッケル、鉄、マグネシウム、モリブデン、亜鉛、インジウム、ガリウム、銅、チタン、ニオブ、シリコン、およびリンなどからなる群から選ばれる少なくとも一種の元素を含んでいてもよい。
[正極活物質の構造]
 図5乃至図9を用いて本発明の一態様の正極活物質について説明する。
 図5Aは本発明の一態様である正極活物質100の上面模式図である。図5A中のA−Bにおける断面模式図を図5Bに示す。
<含有元素と分布>
 正極活物質100は、リチウムと、遷移金属M1と、酸素と、添加元素Xと、を有する。正極活物質100はLiM1O(M1は、Fe、Ni、Co、Mnから選ばれる一以上)で表される複合酸化物に添加元素Xが添加されたものといってもよい。
 正極活物質100が有する遷移金属としては、リチウムとともに空間群R−3mに属する層状岩塩型の複合酸化物を形成しうる金属を用いることが好ましい。例えばマンガン、コバルト、ニッケルのうち少なくとも一を用いることができる。つまり正極活物質100が有する遷移金属としてコバルトのみを用いてもよいし、ニッケルのみを用いてもよいし、コバルトとマンガンの2種、またはコバルトとニッケルの2種を用いてもよいし、コバルト、マンガン、ニッケルの3種を用いてもよい。つまり正極活物質100は、コバルト酸リチウム、ニッケル酸リチウム、コバルトの一部がマンガンで置換されたコバルト酸リチウム、コバルトの一部がニッケルで置換されたコバルト酸リチウム、ニッケル−マンガン−コバルト酸リチウム等の、リチウムと遷移金属を含む複合酸化物を有することができる。遷移金属としてコバルトに加えてニッケルを有すると、高電圧での充電状態において結晶構造がより安定になる場合があり好ましい。
 正極活物質100が有する添加元素Xとしては、ニッケル、コバルト、マグネシウム、カルシウム、塩素、フッ素、アルミニウム、マンガン、チタン、ジルコニウム、イットリウム、バナジウム、鉄、クロム、ニオブ、ランタン、ハフニウム、亜鉛、ケイ素、硫黄、リン、ホウ素、及びヒ素から選ばれる一以上を用いることが好ましい。これらの元素が、正極活物質100の結晶構造をより安定化させる場合がある。つまり正極活物質100は、マグネシウム及びフッ素を有するコバルト酸リチウム、マグネシウム、フッ素及びチタンを有するコバルト酸リチウム、マグネシウム及びフッ素を有するニッケル−コバルト酸リチウム、マグネシウム及びフッ素を有するコバルト−アルミニウム酸リチウム、ニッケル−コバルト−アルミニウム酸リチウム、マグネシウム及びフッ素を有するニッケル−コバルト−アルミニウム酸リチウム、マグネシウム及びフッ素を有するニッケル−マンガン−コバルト酸リチウム等を有することができる。なお、本明細書等において、添加元素Xを混合物、原料の一部などと置き換えて呼称してもよい。
 図5Bに示すように、正極活物質100は、表層部100aと、内部100bを有する。表層部100aは内部100bよりも添加元素Xの濃度が高いことが好ましい。また図5Bにグラデーションで示すように、添加元素Xは内部から表面に向かって高くなる濃度勾配を有することが好ましい。本明細書等において、表層部100aとは正極活物質100の表面から10nm程度までの領域をいう。ひび、及び/またはクラックにより生じた面も表面といってよく、図5Cに示すように当該表面から10nm程度までの領域を表層部100cと呼ぶ。また正極活物質100の表層部100a及び表層部100cより深い領域を、内部100bとする。
 本発明の一態様の正極活物質100では、充電により正極活物質100からリチウムが抜けても、コバルトと酸素の八面体からなる層状構造が壊れないよう、添加元素Xの濃度の高い表層部100a、すなわち粒子の外周部が補強している。
 また添加元素Xの濃度勾配は、正極活物質100の表層部100a全体に均質に存在することが好ましい。表層部100aの一部に補強があっても、補強のない部分が存在すれば、ない部分に応力が集中する恐れがあり好ましくないためである。粒子の一部に応力が集中すると、そこからクラック等の欠陥が生じ、正極活物質の割れ及び充放電容量の低下につながる恐れがある。
 マグネシウムは2価であり、層状岩塩型の結晶構造における遷移金属サイトよりもリチウムサイトに存在する方が安定であるため、リチウムサイトに入りやすい。マグネシウムが表層部100aのリチウムサイトに適切な濃度で存在することで、層状岩塩型の結晶構造を保持しやすくできる。またマグネシウムは酸素との結合力が強いため、マグネシウムの周囲の酸素の脱離を抑制することができる。マグネシウムは、適切な濃度であれば充放電に伴うリチウムの挿入及び脱離に悪影響を及ぼさず好ましい。しかしながら、過剰であるとリチウムの挿入及び脱離に悪影響が出る恐れがある。
 アルミニウムは3価であり、層状岩塩型の結晶構造における遷移金属サイトに存在しうる。アルミニウムは周囲のコバルトの溶出を抑制することができる。またアルミニウムは酸素との結合力が強いため、アルミニウムの周囲の酸素の脱離を抑制することができる。そのため添加元素Xとしてアルミニウムを有すると充放電を繰り返しても結晶構造が崩れにくい正極活物質100とすることができる。
 フッ素は1価の陰イオンであり、表層部100aにおいて酸素の一部がフッ素に置換されていると、リチウム脱離エネルギーが小さくなる。これは、リチウム脱離に伴うコバルトイオンの価数の変化がフッ素の有無で異なるためであり、例えばフッ素を有さない場合は3価から4価、フッ素を有する場合は2価から3価と、コバルトイオンの酸化還元電位が異なることによる。そのため正極活物質100の表層部100aにおいて酸素の一部がフッ素に置換されていると、フッ素近傍のリチウムイオンの脱離及び挿入がスムースに起きやすいと言える。そのため二次電池に用いたときに充放電特性、レート特性等が向上し好ましい。
 チタン酸化物は超親水性を有することが知られている。そのため、表層部100aにチタン酸化物を有する正極活物質100とすることで、極性の高い溶媒に対して濡れ性がよくなる可能性がある。二次電池としたときに正極活物質100と、極性の高い電解液との界面の接触が良好となり、抵抗の上昇を抑制できる可能性がある。なお、本明細書等において、電解液は、液体状の電解質に対応する。
 二次電池の充電電圧の上昇に伴い、正極の電圧は一般的に上昇する。本発明の一態様の正極活物質は、高い電圧においても安定な結晶構造を有する。充電状態において正極活物質の結晶構造が安定であることにより、充放電の繰り返しに伴う容量の低下を抑制することができる。
 また、二次電池のショートは二次電池の充電動作、及び/または放電動作における不具合を引き起こすのみでなく、発熱及び発火を招く恐れがある。安全な二次電池を実現するためには、高い充電電圧においてもショート電流が抑制されることが好ましい。本発明の一態様の正極活物質100は、高い充電電圧においてもショート電流が抑制される。そのため高い容量と安全性と、を両立した二次電池とすることができる。
 本発明の一態様の正極活物質100を用いた二次電池は好ましくは、高い容量、優れた充放電サイクル特性、及び安全性を同時に満たす。
 添加元素Xの濃度勾配は、例えば、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray Spectroscopy)を用いて評価できる。EDX測定のうち、領域内を走査しながら測定し、領域内を2次元に評価することをEDX面分析と呼ぶ場合がある。また、EDXの面分析から、線状の領域のデータを抽出し、原子濃度について正極活物質粒子内の分布を評価することを線分析と呼ぶ場合がある。
 EDX面分析(例えば元素マッピング)により、正極活物質100の表層部100a、内部100b及び結晶粒界近傍等における、添加元素Xの濃度を定量的に分析することができる。また、EDX線分析により、添加元素Xの濃度の分布を分析することができる。
 正極活物質100についてEDX線分析をしたとき、表層部100aのマグネシウム濃度のピーク(濃度が最大となる位置)は、正極活物質100の表面から中心に向かった深さ3nmまでに存在することが好ましく、深さ1nmまでに存在することがより好ましく、深さ0.5nmまでに存在することがさらに好ましい。
 また正極活物質100が有するフッ素の分布は、マグネシウムの分布と重畳することが好ましい。そのためEDX線分析をしたとき、表層部100aのフッ素濃度のピーク(濃度が最大となる位置)は、正極活物質100の表面から中心に向かった深さ3nmまでに存在することが好ましく、深さ1nmまでに存在することがより好ましく、深さ0.5nmまでに存在することがさらに好ましい。
 なお、全ての添加元素Xが同様の濃度分布でなくてもよい。例えば正極活物質100が添加元素Xとしてアルミニウムを有する場合はマグネシウム及びフッ素と若干異なる分布となっていることが好ましい。例えばEDX線分析をしたとき、表層部100aのアルミニウム濃度のピークよりも、マグネシウム濃度のピークが表面に近いことが好ましい。例えばアルミニウム濃度のピークは正極活物質100の表面から中心に向かった深さ0.5nm以上20nm以下に存在することが好ましく、深さ1nm以上5nm以下に存在することがより好ましい。
 また正極活物質100についてEDX線分析またはEDX面分析をしたとき、粒界近傍において、遷移金属M1の原子数に対する添加元素Xの原子数の割合(X/M1)は、0.020以上0.50以下が好ましい。さらには0.025以上0.30以下が好ましい。さらには0.030以上0.20以下が好ましい。例えば添加元素Xがマグネシウム、遷移金属M1がコバルトであるときは、粒界近傍において、コバルトの原子数に対するマグネシウムの原子数の割合(Mg/Co)は、0.020以上0.50以下が好ましい。さらには0.025以上0.30以下が好ましい。さらには0.030以上0.20以下が好ましい。
 なお上述したように正極活物質100が有する添加元素は、過剰であるとリチウムの挿入及び脱離に悪影響が出る恐れがある。また二次電池としたときに抵抗の上昇、容量の低下等を招く恐れもある。一方、不足であると表層部100a全体に分布せず、結晶構造を保持する効果が不十分になる恐れがある。このように添加元素Xは正極活物質100において適切な濃度となるように調整する。
 そのため、例えば正極活物質100は、過剰な添加元素Xが偏在する領域を有していてもよい。このような領域の存在により、過剰な添加元素Xがそれ以外の領域から除かれ、正極活物質100の内部及び表層部の大部分において適切な添加元素Xの濃度とすることができる。正極活物質100の内部及び表層部の大部分において適切な添加元素Xの濃度とすることで、二次電池としたときの抵抗の上昇、容量の低下等を抑制することができる。二次電池の抵抗の上昇を抑制できることは、特に高レートでの充放電において極めて好ましい特性である。
 また過剰な添加元素Xが偏在している領域を有する正極活物質100では、作製工程においてある程度過剰に添加元素Xを混合することが許容される。そのため生産におけるマージンが広くなり好ましい。
 なお本明細書等において、偏在とはある元素の濃度が、ある領域Aと、ある領域Bとで異なることをいう。偏析、析出、不均一、偏り、濃度が高いまたは濃度が低い、などといってもよい。
<結晶構造>
 コバルト酸リチウム(LiCoO)などの層状岩塩型の結晶構造を有する材料は、放電容量が高く、二次電池の正極活物質として優れることが知られている。層状岩塩型の結晶構造を有する材料として例えば、LiM1O(M1は、Fe、Ni、Co、Mnから選ばれる一以上)で表される複合酸化物が挙げられる。
 遷移金属化合物におけるヤーン・テラー効果は、遷移金属のd軌道の電子の数により、その効果の強さが異なることが知られている。
 ニッケルを有する化合物においては、ヤーン・テラー効果により歪みが生じやすい場合がある。よって、LiNiOにおいて高電圧における充放電を行った場合、歪みに起因する結晶構造の崩れが生じる懸念がある。LiCoOにおいてはヤーン・テラー効果の影響が小さいことが示唆され、高電圧における充放電の耐性がより優れる場合があり好ましい。
 図6乃至図9を用いて、正極活物質について説明する。図6乃至図9では、正極活物質が有する遷移金属としてコバルトを用いる場合について述べる。
<従来の正極活物質>
 図8に示す正極活物質は、ハロゲン及びマグネシウムが添加されないコバルト酸リチウム(LiCoO、LCO)である。図8に示すコバルト酸リチウムは、充電深度によって結晶構造が変化する。換言すると、LixCoOと表記する場合において、リチウムサイトのリチウムの占有率xに応じて結晶構造が変化する。
 図8に示すように、x=1の状態(放電状態)であるコバルト酸リチウムは、空間群R−3mの結晶構造を有する領域を有し、ユニットセル中にCoO層が3層存在する。そのためこの結晶構造を、O3型結晶構造と呼ぶ場合がある。なお、CoO層とはコバルトに酸素が6配位した8面体構造が、稜共有の状態で平面方向に連続した構造をいうこととする。
 またx=0のときは、空間群P−3m1の結晶構造を有し、ユニットセル中にCoO層が1層存在する。そのためこの結晶構造を、O1型結晶構造と呼ぶ場合がある。
 またx=0.12程度のときのコバルト酸リチウムは、空間群R−3mの結晶構造を有する。この構造は、P−3m1(O1)のようなCoOの構造と、R−3m(O3)のようなLiCoOの構造と、が交互に積層された構造ともいえる。そのためこの結晶構造を、H1−3型結晶構造と呼ぶ場合がある。実際のリチウムの挿入脱離にはムラが生じうるため、実験的にはx=0.25程度からH1−3型結晶構造が観測される。なお、実際にはH1−3型結晶構造は、ユニットセルあたりのコバルト原子の数が他の構造の2倍となっている。しかし図8をはじめ本明細書では、他の構造と比較しやすくするためH1−3型結晶構造のc軸をユニットセルの1/2にした図で示すこととする。
 H1−3型結晶構造は一例として、ユニットセルにおけるコバルトと酸素の座標を、Co(0、0、0.42150±0.00016)、O1(0、0、0.27671±0.00045)、O2(0、0、0.11535±0.00045)と表すことができる。O1及びO2はそれぞれ酸素原子である。このようにH1−3型結晶構造は、1つのコバルト及び2つの酸素を用いたユニットセルにより表される。一方、後述するように、本発明の一態様のO3’型結晶構造は好ましくは、1つのコバルト及び1つの酸素を用いたユニットセルにより表される。これは、O3’型結晶構造の場合とH1−3型構造の場合では、コバルトと酸素との対称性が異なり、O3’型結晶構造の方が、H1−3型構造に比べてO3の構造からの変化が小さいことを示す。正極活物質が有する結晶構造をいずれのユニットセルを用いて表すのがより好ましいか、の選択は例えば、XRDパターンのリートベルト解析において、GOF(goodness of fit)の値がより小さくなるように選択すればよい。
 充電電圧がリチウム金属の酸化還元電位を基準に4.6V以上になるような高電圧の充電、あるいはx=0.24以下になるような深い深度の充電と、放電とを繰り返すと、コバルト酸リチウムはH1−3型結晶構造と、放電状態のR−3m(O3)の構造と、の間で結晶構造の変化(つまり、非平衡な相変化)を繰り返すことになる。
 しかしながら、これらの2つの結晶構造は、CoO層のずれが大きい。図8に点線及び矢印で示すように、H1−3型結晶構造では、CoO層がR−3m(O3)から大きくずれている。このようなダイナミックな構造変化は、結晶構造の安定性に悪影響を与えうる。
 さらに体積の差も大きい。同数のコバルト原子あたりで比較した場合、H1−3型結晶構造と放電状態のO3型結晶構造の体積の差は3.0%以上である。
 加えて、H1−3型結晶構造が有する、P−3m1(O1)のようなCoO層が連続した構造は不安定である可能性が高い。
 そのため、高電圧の充放電を繰り返すとコバルト酸リチウムの結晶構造は崩れていく。結晶構造の崩れが、サイクル特性の悪化を引き起こす。これは、結晶構造が崩れることで、リチウムが安定して存在できるサイトが減少し、またリチウムの挿入脱離が難しくなるためだと考えられる。
<本発明の一態様の正極活物質>
<内部>
 本発明の一態様の正極活物質100は、高電圧の充放電の繰り返しにおいて、CoO層のずれを小さくすることができる。さらに、体積の変化を小さくすることができる。よって、本発明の一態様の正極活物質は、優れたサイクル特性を実現することができる。また、本発明の一態様の正極活物質は、高電圧の充電状態において安定な結晶構造を取り得る。よって、本発明の一態様の正極活物質は、高電圧の充電状態を保持した場合において、ショートが生じづらい場合がある。そのような場合には安全性がより向上するため、好ましい。
 本発明の一態様の正極活物質では、十分に放電された状態と、高電圧で充電された状態における、結晶構造の変化及び同数の遷移金属原子あたりで比較した場合の体積の差が小さい。
 正極活物質100の充放電前後の結晶構造を、図6に示す。正極活物質100はリチウムと、遷移金属としてコバルトと、酸素と、を有する複合酸化物である。上記に加えて添加元素Xとしてマグネシウムを有することが好ましい。また添加元素Xとしてフッ素、塩素等のハロゲンを更に有することが好ましい。
 図6のx=1(放電状態)の結晶構造は、図8と同じR−3m(O3)である。一方、本発明の一態様の正極活物質100は、十分に充電された充電状態の場合、H1−3型結晶構造とは異なる構造の結晶を有する。本構造は、空間群R−3mに帰属され、コバルト、マグネシウム等のイオンが酸素6配位位置を占める。また、本構造のCoO層の対称性はO3型と同じである。よって、本構造を本明細書等ではO3’型の結晶構造と呼ぶ。なお、図6に示されているO3’型結晶構造の図では、コバルト原子の対称性と酸素原子の対称性について説明するために、リチウムの表示を省略しているが、実際はCoO層の間にコバルトに対して例えば20原子%以下のリチウムが存在する。また、O3型結晶構造及びO3’型結晶構造のいずれの場合も、CoO層の間、つまりリチウムサイトに、希薄にマグネシウムが存在することが好ましい。また、酸素サイトに、ランダムかつ希薄に、フッ素等のハロゲンが存在することが好ましい。
 なおO3’型結晶構造では、リチウムなどの軽元素は酸素4配位位置を占める場合がありうる。
 またO3’型結晶構造は、層間にランダムにリチウムを有するが、CdCl2型の結晶構造に類似する結晶構造であるということもできる。このCdCl型に類似した結晶構造は、ニッケル酸リチウムをx=0.06まで充電したとき(Li0.06NiO)の結晶構造と近いが、純粋なコバルト酸リチウム、またはコバルトを多く含む層状岩塩型の正極活物質では通常この結晶構造を取らないことが知られている。
 本発明の一態様の正極活物質100では、高電圧で充電し多くのリチウムが脱離したときの、結晶構造の変化が、従来の正極活物質よりも抑制されている。例えば、図6中に点線で示すように、これらの結晶構造ではCoO層のずれがほとんどない。
 より詳細に説明すれば、本発明の一態様の正極活物質100は、充電電圧が高い場合にも構造の安定性が高い。例えば、従来の正極活物質においてはH1−3型結晶構造となる充電電圧、例えばリチウム金属の電位を基準として4.6V程度の電圧においてもR−3m(O3)の結晶構造を保持できる充電電圧の領域が存在し、さらに充電電圧を高めた領域、例えばリチウム金属の電位を基準として4.65V乃至4.7V程度の電圧においてもO3’型結晶構造を取り得る領域が存在する。さらに充電電圧を高めるとようやく、H1−3型結晶が観測される場合がある。なお、二次電池において例えば負極活物質として黒鉛を用いる場合には、例えば二次電池の電圧が4.3V以上4.5V以下においてもR−3m(O3)の結晶構造を保持できる充電電圧の領域が存在し、さらに充電電圧を高めた領域、例えばリチウム金属の電位を基準として4.35V以上4.55V以下においてもO3’型結晶構造を取り得る領域が存在する。
 そのため、本発明の一態様の正極活物質100においては、高電圧で充放電を繰り返しても結晶構造が崩れにくい。
 また正極活物質100では、x=1のO3型結晶構造と、x=0.2のO3’型結晶構造のユニットセルあたりの体積の差は2.5%以下、より詳細には2.2%以下である。
 なおO3’型結晶構造は、ユニットセルにおけるコバルトと酸素の座標を、Co(0,0,0.5)、O(0,0,x)、0.20≦x≦0.25の範囲内で示すことができる。
 CoO2層間、つまりリチウムサイトにランダムかつ希薄に存在する添加元素X、例えばマグネシウムは、CoO2層のずれを抑制する効果がある。そのためCoO層間にマグネシウムが存在すると、O3’型結晶構造になりやすい。そのためマグネシウムは本発明の一態様の正極活物質100の少なくとも一部の表層部に分布しており、さらに正極活物質100の表層部の全体に分布していることが好ましい。またマグネシウムを正極活物質100の表層部の全体に分布させるために、本発明の一態様の正極活物質100の作製工程において、加熱処理を行うことが好ましい。
 しかしながら、加熱処理の温度が高すぎると、カチオンミキシングが生じて添加元素X、例えばマグネシウムがコバルトサイトに入る可能性が高まる。コバルトサイトに存在するマグネシウムは、高電圧充電状態において、R−3mの構造を保つ効果がない。さらに、加熱処理の温度が高すぎると、コバルトが還元されて2価になってしまう、リチウムが蒸散するなどの悪影響も懸念される。
 そこで、マグネシウムを正極活物質100の表層部の全体に分布させるための加熱処理よりも前に、コバルト酸リチウムにフッ素化合物等のハロゲン化合物を加えておくことが好ましい。ハロゲン化合物を加えることでコバルト酸リチウムの融点降下が起こる。融点降下させることで、カチオンミキシングが生じにくい温度で、マグネシウムを正極活物質100の表層部の全体に分布させることが容易となる。さらにフッ素化合物が存在すれば、電解液が分解して生じたフッ酸に対する耐食性が向上することが期待できる。
 なお、マグネシウム濃度を所望の値以上に高くすると、結晶構造の安定化への効果が小さくなってしまう場合がある。マグネシウムが、リチウムサイトに加えて、コバルトサイトにも入るようになるためと考えられる。本発明の一態様の正極活物質が有するマグネシウムの原子数は、コバルト等の遷移金属の原子数の0.001倍以上0.1倍以下が好ましく、0.01倍より大きく0.04倍未満がより好ましく、0.02倍程度がさらに好ましい。ここで示すマグネシウムの濃度は例えば、ICP−MS等を用いて正極活物質の全体の元素分析を行った値であってもよいし、正極活物質100の作製の過程における原料の配合の値に基づいてもよい。
 コバルト酸リチウムにコバルト以外の金属(以下、添加元素X)として、例えばニッケル、アルミニウム、マンガン、チタン、バナジウム及びクロムから選ばれる一以上の金属を添加してもよく、特にニッケル及びアルミニウムの一以上を添加することが好ましい。マンガン、チタン、バナジウム及びクロムは4価であることで安定な場合があり、構造安定性への寄与が高い場合がある。添加元素Xを添加することにより、高電圧での充電状態において結晶構造がより安定になる場合がある。ここで、本発明の一態様の正極活物質において、添加元素Xは、コバルト酸リチウムの結晶性を大きく変えることのない濃度で添加されることが好ましい。例えば、前述のヤーン・テラー効果等を発現しない程度の量であることが好ましい。
 ニッケル、マンガンをはじめとする遷移金属及びアルミニウムはコバルトサイトに存在することが好ましいが、一部がリチウムサイトに存在していてもよい。またマグネシウムはリチウムサイトに存在することが好ましい。酸素は、一部がフッ素と置換されていてもよい。
 本発明の一態様の正極活物質のマグネシウム濃度が高くなるのに伴って正極活物質の容量が減少することがある。その要因として例えば、リチウムサイトにマグネシウムが入ることにより、充放電に寄与するリチウム量が減少する可能性が考えられる。本発明の一態様の正極活物質が添加元素Xとして、マグネシウムに加えて、ニッケルを有することにより、充放電サイクル特性を高めることができる場合がある。また本発明の一態様の正極活物質が添加元素Xとして、マグネシウムに加えて、アルミニウムを有することにより、充放電サイクル特性を高めることができる場合がある。また、添加元素Xとして、マグネシウム、ニッケル及びアルミニウムを有する本発明の一態様の正極活物質とすることにより、充放電サイクル特性を高めることができる場合がある。
 以下に、添加元素Xとして、マグネシウム、ニッケル及びアルミニウムを有する本発明の一態様の正極活物質の元素の濃度を検討する。
 本発明の一態様の正極活物質が有するニッケルの原子数は、コバルトの原子数の10%以下が好ましく、7.5%以下がより好ましく、0.05%以上4%以下がさらに好ましく、0.1%以上2%以下が特に好ましい。ここで示すニッケルの濃度は例えば、ICP−MS等を用いて正極活物質の全体の元素分析を行った値であってもよいし、正極活物質の作製の過程における原料の配合の値に基づいてもよい。
 高電圧で充電した状態を長時間保持すると、正極活物質の構成元素が電解液に溶出し、結晶構造が崩れる恐れが生じる。しかし上記の割合でニッケルを有することで、正極活物質100からの構成元素の溶出を抑制できる場合がある。
 本発明の一態様の正極活物質が有するアルミニウムの原子数は、コバルトの原子数の0.05%以上4%以下が好ましく、0.1%以上2%以下がより好ましい。ここで示すアルミニウムの濃度は例えば、ICP−MS等を用いて正極活物質の全体の元素分析を行った値であってもよいし、正極活物質の作製の過程における原料の配合の値に基づいてもよい。
 また、本発明の一態様の添加元素Xを有する正極活物質は、添加元素Xとしてリンを用いることが好ましい。また、本発明の一態様の正極活物質は、リンと酸素を含む化合物を有することがより好ましい。
 本発明の一態様の正極活物質が添加元素Xとしてリンを含む化合物を有することにより、高温かつ高電圧の充電状態を長時間保持した場合において、ショートが生じづらい場合がある。
 本発明の一態様の正極活物質が添加元素Xとしてリンを有する場合には、電解液の分解により発生したフッ化水素とリンが反応し、電解液中のフッ化水素濃度が低下する可能性がある。
 電解液がリチウム塩としてLiPFを有する場合、加水分解により、フッ化水素が発生する場合がある。また、正極の構成要素として用いられるPVDFとアルカリとの反応によりフッ化水素が発生する場合もある。電解液中のフッ化水素濃度が低下することにより、集電体の腐食、及び/または被膜はがれを抑制できる場合がある。また、PVDFのゲル化、及び/または不溶化による接着性の低下を抑制できる場合がある。
 本発明の一態様の正極活物質100が添加元素Xとしてリン及びマグネシウムを有する場合、高電圧の充電状態における安定性が極めて高い。添加元素Xとしてリン及びマグネシウムを有する場合、リンの原子数は、コバルトの原子数の1%以上20%以下が好ましく、2%以上10%以下がより好ましく、3%以上8%以下がさらに好ましく、加えてマグネシウムの原子数は、コバルトの原子数の0.1%以上10%以下が好ましく、0.5%以上5%以下がより好ましく、0.7%以上4%以下がより好ましい。ここで示すリン及びマグネシウムの濃度は例えば、ICP−MS等を用いて正極活物質100の全体の元素分析を行った値であってもよいし、正極活物質100の作製の過程における原料の配合の値に基づいてもよい。
 正極活物質100がクラックを有する場合、その内部にリン、より具体的には例えばリンと酸素を含む化合物が存在することにより、クラックの進行が抑制される場合がある。
 なお図6に示すように、O3型結晶構造とO3’型結晶構造では酸素原子の対称性がわずかに異なる。具体的にはO3型結晶構造では酸素原子が点線に沿って整列しているのに対して、O3’型結晶構造の酸素原子は厳密には整列しない。これはO3’型結晶構造ではリチウムの減少に伴い4価のコバルトが増加し、ヤーン・テラーひずみが大きくなりCoOの8面体構造がゆがんだことによる。またリチウムの減少に伴いCoO層の酸素同士の反発が強くなったことも影響する。
<表層部100a>
 マグネシウムは本発明の一態様の正極活物質100の表層部100aの全体に分布していることが好ましく、これに加えて表層部100aのマグネシウム濃度が、全体の平均よりも高いことが好ましい。例えば、XPS等で測定される表層部100aのマグネシウム濃度が、ICP−MS等で測定される全体の平均のマグネシウム濃度よりも高いことが好ましい。
 また、本発明の一態様の正極活物質100がコバルト以外の元素、例えばニッケル、アルミニウム、マンガン、鉄及びクロムから選ばれる一以上の金属を有する場合において、該金属の粒子表面近傍における濃度が、全体の平均よりも高いことが好ましい。例えば、XPS等で測定される表層部100aのコバルト以外の元素の濃度が、ICP−MS等で測定される粒子全体における該元素の濃度よりも高いことが好ましい。
 正極活物質100の表層部100aは、いうなれば全て結晶欠陥である上に、充電時には表面からリチウムが抜けていくので内部よりもリチウム濃度が低くなりやすい部分である。そのため、不安定になりやすく結晶構造が崩れやすい。表層部100aのマグネシウム濃度が高ければ、結晶構造の変化をより効果的に抑制することができる。また表層部100aのマグネシウム濃度が高いと、電解液が分解して生じたフッ酸に対する耐食性が向上することも期待できる。
 またフッ素等のハロゲンも、本発明の一態様の正極活物質100の表層部100aにおける濃度が、全体の平均よりも高いことが好ましい。電解液に接する領域である表層部100aにハロゲンが存在することで、フッ酸に対する耐食性を効果的に向上させることができる。
 このように本発明の一態様の正極活物質100の表層部100aは内部100bよりも、添加元素、例えばマグネシウム及びフッ素の濃度が高い、内部100bと異なる組成であることが好ましい。またその組成として常温で安定な結晶構造をとることが好ましい。そのため、表層部100aは内部100bと異なる結晶構造を有していてもよい。例えば、本発明の一態様の正極活物質100の表層部100aの少なくとも一部が、岩塩型の結晶構造を有していてもよい。また表層部100aと内部100bが異なる結晶構造を有する場合、表層部100aと内部100bの結晶の配向が概略一致していることが好ましい。
 層状岩塩型結晶、および岩塩型結晶の陰イオンは立方最密充填構造(面心立方格子構造)をとる。O3’型結晶も、陰イオンは立方最密充填構造をとると推定される。なお、本明細書等では、陰イオンがABCABCのように3層が互いにずれて積み重なる構造であれば、立方最密充填構造と呼ぶこととする。そのため陰イオンは厳密に立方格子でなくてもよい。同時に現実の結晶は必ず欠陥を有するため、分析結果が必ずしも理論通りでなくてもよい。たとえば電子回折またはTEM像等のFFT(高速フーリエ変換)において、理論上の位置と若干異なる位置にスポットが現れてもよい。たとえば理論上の位置との方位が5度以下、または2.5度以下であれば立方最密充填構造をとるといってよい。
 層状岩塩型結晶と岩塩型結晶が接するとき、陰イオンにより構成される立方最密充填構造の向きが揃う結晶面が存在する。
 または、以下のように説明することもできる。立方晶の結晶構造の(111)面における陰イオンは三角形形状の配列を有する。層状岩塩型は空間群R−3mであって、菱面体構造であるが、構造の理解を容易にするため一般に複合六方格子で表現され、層状岩塩型の(0001)面は六角格子を有する。立方晶(111)の三角格子は、層状岩塩型の(0001)面の六角格子と同様の原子配列を有する。両者の格子が整合性を持つことを、立方最密充填構造の向きが揃うということができる。
 ただし、層状岩塩型結晶およびO3’型結晶の空間群はR−3mであり、岩塩型結晶の空間群Fm−3m(一般的な岩塩型結晶の空間群)およびFd−3m(最も単純な対称性を有する岩塩型結晶の空間群)とは異なるため、上記の条件を満たす結晶面のミラー指数は層状岩塩型結晶およびO3’型結晶と、岩塩型結晶では異なる。本明細書では、層状岩塩型結晶、O3’型結晶、および岩塩型結晶において、陰イオンにより構成される立方最密充填構造の向きが揃うとき、結晶の配向が概略一致する、と言う場合がある。
 二つの領域の結晶の配向が概略一致することは、TEM(透過電子顕微鏡)像、STEM(走査透過電子顕微鏡)像、HAADF−STEM(高角散乱環状暗視野走査透過電子顕微鏡)像、ABF−STEM(環状明視野走査透過電子顕微鏡)像、電子回折、TEM像等のFFT等から判断することができる。X線回折(XRD)、中性子線回折等も判断の材料にすることができる。
<粒界>
 本発明の一態様の正極活物質100が有する添加元素Xは、内部にランダムかつ希薄に存在していてもよいが、一部は粒界に偏析していることがより好ましい。
 換言すれば、本発明の一態様の正極活物質100の結晶粒界及びその近傍の添加元素Xの濃度も、内部の他の領域よりも高いことが好ましい。
 結晶粒界は面欠陥として考えることができる。そのため、粒子表面と同様に、不安定になりやすく結晶構造の変化が始まりやすい。そのため、結晶粒界及びその近傍の添加元素Xの濃度が高ければ、結晶構造の変化をより効果的に抑制することができる。
 また、結晶粒界及びその近傍の添加元素Xの濃度が高い場合、本発明の一態様の正極活物質100の粒子の結晶粒界に沿ってクラックが生じた場合でも、クラックにより生じた表面の近傍で添加元素Xの濃度が高くなる。そのためクラックが生じた後の正極活物質においてもフッ酸に対する耐食性を高めることができる。
 なお本明細書等において、結晶粒界の近傍とは、粒界から10nm程度までの領域をいうこととする。
<粒径>
 本発明の一態様の正極活物質100の粒径が大きすぎるとリチウムの拡散が難しくなる、又は集電体に塗工したときに活物質層の表面が粗くなりすぎる、等の問題がある。一方、小さすぎると、集電体への塗工時に活物質層を担持しにくくなる、電解液との反応が過剰に進む等の問題点も生じる。そのため、平均粒子径D50が、1μm以上100μm以下が好ましく、2μm以上40μm以下であることがより好ましく、5μm以上30μm以下がさらに好ましい。
<分析方法>
 ある正極活物質が、高電圧で充電されたときO3’型結晶構造を示す本発明の一態様の正極活物質100であるか否かは、高電圧で充電された正極を、XRD、電子回折、中性子線回折、電子スピン共鳴(ESR)、核磁気共鳴(NMR)等を用いて解析することで判断できる。特にXRDは、正極活物質が有するコバルト等の遷移金属の対称性を高分解能で解析できる、結晶性の高さ及び結晶の配向性を比較できる、格子の周期性歪み及び結晶子サイズの解析ができる、二次電池を解体して得た正極をそのまま測定しても十分な精度を得られる、等の点で好ましい。
 本発明の一態様の正極活物質100は、これまで述べたように高電圧で充電した状態と放電状態とで結晶構造の変化が少ないという特徴を有する。高電圧で充電した状態で、放電状態との変化が大きな結晶構造が50wt%以上を占める材料は、高電圧の充放電に耐えられないため好ましくない。そして添加元素を添加するだけでは目的の結晶構造をとらない場合があることに注意が必要である。例えばマグネシウム及びフッ素を有するコバルト酸リチウム、という点で共通していても、高電圧で充電した状態でO3’型結晶構造が60wt%以上になる場合と、H1−3型結晶構造が50wt%以上を占める場合と、がある。また、所定の電圧では、O3’型結晶構造がほぼ100wt%になり、さらに当該所定の電圧をあげるとH1−3型結晶構造が生じる場合もある。そのため、本発明の一態様の正極活物質100であるか否かを判断するには、XRDをはじめとする結晶構造についての解析が必要である。
 ただし、高電圧で充電した状態または放電状態の正極活物質は、大気に触れると結晶構造の変化を起こす場合がある。例えばO3’型結晶構造からH1−3型結晶構造に変化する場合がある。そのため、サンプルはすべてアルゴン雰囲気等の不活性雰囲気でハンドリングすることが好ましい。
<充電方法>
 ある複合酸化物が、本発明の一態様の正極活物質100であるか否かを判断するための高電圧充電は、例えば対極リチウムでコインセル(CR2032タイプ、直径20mm高さ3.2mm)を作製して充電することができる。
 より具体的には、正極には、正極活物質、導電材及びバインダを混合したスラリーを、アルミニウム箔の正極集電体に塗工したものを用いることができる。
 対極にはリチウム金属を用いることができる。なお対極にリチウム金属以外の材料を用いたときは、二次電池の電位と正極の電位が異なる。本明細書等における電圧及び電位は、特に言及しない場合、正極の電位である。
 電解液が有する電解質には、1mol/Lの六フッ化リン酸リチウム(LiPF6)を用い、電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)がEC:DEC=3:7(体積比)、ビニレンカーボネート(VC)が2wt%で混合されたものを用いることができる。
 セパレータには厚さ25μmのポリプロピレンを用いることができる。
 正極缶及び負極缶には、ステンレス(SUS)で形成されているものを用いることができる。
 上記条件で作製したコインセルを、4.6V、0.5Cで定電流充電し、その後電流値が0.01Cとなるまで定電圧充電する。なおここでは1Cは137mA/gとする。温度は25℃とする。このようにして充電した後に、コインセルをアルゴン雰囲気のグローブボックス中で解体して正極を取り出せば、高電圧で充電された正極活物質を得られる。この後に各種分析を行う際、外界成分との反応を抑制するため、アルゴン雰囲気で密封することが好ましい。例えばXRDは、アルゴン雰囲気の密閉容器内に封入して行うことができる。
<XRD>
 O3’型結晶構造と、H1−3型結晶構造のモデルから計算される、CuKα1線による理想的な粉末XRDパターンを図7及び図9に示す。また比較のためx=1のLiCoO(O3)と、x=0のCoO(O1)の結晶構造から計算される理想的なXRDパターンも示す。なお、LiCoO(O3)及びCoO(O1)のパターンはICSD(Inorganic Crystal Structure Database)より入手した結晶構造情報からMaterials Studio(BIOVIA)のモジュールの一つである、Reflex Powder Diffractionを用いて作成した。2θの範囲は15°から75°とし、Step size=0.01、波長λ1=1.540562×10−10m、λ2は設定なし、Monochromatorはsingleとした。O3’型結晶構造のパターンは本発明の一態様の正極活物質のXRDパターンから結晶構造を推定し、TOPAS ver.3(Bruker社製結晶構造解析ソフトウェア)を用いてフィッティングし、他と同様にXRDパターンを作成した。
 図7に示すように、O3’型結晶構造では、2θ=19.30±0.20°(19.10°以上19.50°以下)、及び2θ=45.55±0.10°(45.45°以上45.65°以下)に回折ピークが出現する。より詳しく述べれば、2θ=19.30±0.10°(19.20°以上19.40°以下)、及び2θ=45.55±0.05°(45.50°以上45.60°以下)に鋭い回折ピークが出現する。しかし図9に示すようにH1−3型結晶構造及びCoO(P−3m1、O1)ではこれらの位置にピークは出現しない。そのため、高電圧で充電された状態で2θ=19.30±0.20°、及び2θ=45.55±0.10°のピークが出現することは、本発明の一態様の正極活物質100の特徴であるといえる。
 これは、x=1の結晶構造と、高電圧充電状態の結晶構造と、はXRDの回折ピークが出現する位置が近いということもできる。より具体的には、両者の主な回折ピークのうち2つ以上、より好ましくは3つ以上において、ピークが出現する位置の差が、2θ=0.7°以下、より好ましくは2θ=0.5°以下であるということができる。
 なお、本発明の一態様の正極活物質100は高電圧で充電したときO3’型結晶構造を有するが、正極活物質100のすべてがO3’型結晶構造でなくてもよい。他の結晶構造を含んでいてもよいし、一部が非晶質であってもよい。ただし、XRDパターンについてリートベルト解析を行ったとき、O3’型結晶構造が50wt%以上であることが好ましく、60wt%以上であることがより好ましく、66wt%以上であることがさらに好ましい。O3’型結晶構造が50wt%以上、より好ましくは60wt%以上、さらに好ましくは66wt%以上あれば、十分にサイクル特性に優れた正極活物質とすることができる。
 また、測定開始から100サイクル以上の充放電を経ても、リートベルト解析を行ったときO3’型結晶構造が35wt%以上であることが好ましく、40wt%以上であることがより好ましく、43wt%以上であることがさらに好ましい。
 また、正極活物質の粒子が有するO3’型結晶構造の結晶子サイズは、放電状態のLiCoO(O3)の1/10程度までしか低下しない。そのため、充放電前の正極と同じXRDの測定条件であっても、高電圧充電状態において明瞭なO3’型結晶構造のピークが確認できる。一方単純なLiCoOでは、一部がO3’型結晶構造に似た構造を取りえたとしても、結晶子サイズが小さくなり、ピークはブロードで小さくなる。結晶子サイズは、XRDピークの半値幅から求めることができる。
 本発明の一態様の正極活物質においては、前述の通り、ヤーン・テラー効果の影響が小さいことが好ましい。本発明の一態様の正極活物質は、層状岩塩型の結晶構造を有し、遷移金属としてコバルトを主として有することが好ましい。また、本発明の一態様の正極活物質において、ヤーン・テラー効果の影響が小さい範囲であれば、コバルトの他に、先に述べた添加元素Xを有してもよい。
 格子定数の好ましい範囲について考察を行ったところ、本発明の一態様の正極活物質において、XRDパターンから推定できる、充放電を行わない状態、あるいは放電状態の正極活物質の粒子が有する層状岩塩型の結晶構造において、a軸の格子定数が2.814×10−10mより大きく2.817×10−10mより小さく、かつc軸の格子定数が14.05×10−10mより大きく14.07×10−10mより小さいことが好ましいことがわかった。充放電を行わない状態とは例えば、二次電池の正極を作製する前の粉体の状態であってもよい。
 あるいは、充放電を行わない状態、あるいは放電状態の正極活物質の粒子が有する層状岩塩型の結晶構造において、a軸の格子定数をc軸の格子定数で割った値(a軸/c軸)が0.20000より大きく0.20049より小さいことが好ましい。
 あるいは、充放電を行わない状態、あるいは放電状態の正極活物質の粒子が有する層状岩塩型の結晶構造において、XRD分析をしたとき、2θが18.50°以上19.30°以下に第1のピークが観測され、かつ2θが38.00°以上38.80°以下に第2のピークが観測される場合がある。
 なお粉体XRDパターンに出現するピークは、正極活物質100の体積の大半を占める、正極活物質100の内部100bの結晶構造を反映したものである。表層部100a等の結晶構造は、正極活物質100の断面の電子回折等で分析することができる。
<XPS>
 X線光電子分光(XPS)では、表面から2乃至8nm程度(通常5nm程度)の深さまでの領域の分析が可能であるため、表層部100aの約半分の領域について、各元素の濃度を定量的に分析することができる。また、ナロースキャン分析をすれば元素の結合状態を分析することができる。なおXPSの定量精度は多くの場合±1原子%程度、検出下限は元素にもよるが約1原子%である。
 本発明の一態様の正極活物質100についてXPS分析をしたとき、添加元素Xの原子数は遷移金属の原子数の1.6倍以上6.0倍以下が好ましく、1.8倍以上4.0倍未満がより好ましい。添加元素Xがマグネシウム、遷移金属M1がコバルトである場合は、マグネシウムの原子数はコバルトの原子数の1.6倍以上6.0倍以下が好ましく、1.8倍以上4.0倍未満がより好ましい。またフッ素等のハロゲンの原子数は、遷移金属の原子数の0.2倍以上6.0倍以下が好ましく、1.2倍以上4.0倍以下がより好ましい。
 XPS分析を行う場合には例えば、X線源として単色化アルミニウムを用いることができる。また、取出角は例えば45°とすればよい。
 また、本発明の一態様の正極活物質100についてXPS分析したとき、フッ素と他の元素の結合エネルギーを示すピークは682eV以上685eV未満であることが好ましく、684.3eV程度であることがさらに好ましい。これは、フッ化リチウムの結合エネルギーである685eV、及びフッ化マグネシウムの結合エネルギーである686eVのいずれとも異なる値である。つまり、本発明の一態様の正極活物質100がフッ素を有する場合、フッ化リチウム及びフッ化マグネシウム以外の結合であることが好ましい。
 さらに、本発明の一態様の正極活物質100についてXPS分析したとき、マグネシウムと他の元素の結合エネルギーを示すピークは、1302eV以上1304eV未満であることが好ましく、1303eV程度であることがさらに好ましい。これは、フッ化マグネシウムの結合エネルギーである1305eVと異なる値であり、酸化マグネシウムの結合エネルギーに近い値である。つまり、本発明の一態様の正極活物質100がマグネシウムを有する場合、フッ化マグネシウム以外の結合であることが好ましい。
 表層部100aに多く存在することが好ましい添加元素X、例えばマグネシウム及びアルミニウムは、XPS等で測定される濃度が、ICP−MS(誘導結合プラズマ質量分析)、あるいはGD−MS(グロー放電質量分析法)等で測定される濃度よりも高いことが好ましい。
 マグネシウム及びアルミニウムは、加工によりその断面を露出させ、断面をTEM−EDXを用いて分析する場合に、表層部100aの濃度が、内部100bの濃度に比べて高いことが好ましい。加工は例えばFIBにより行うことができる。
 XPS(X線光電子分光)の分析において、マグネシウムの原子数はコバルトの原子数の0.4倍以上1.5倍以下であることが好ましい。一方ICP−MSの分析によるマグネシウムの原子数の比Mg/Coは0.001以上0.06以下であることが好ましい。
 一方、遷移金属に含まれるニッケルは表層部100aに偏在せず、正極活物質100全体に分布していることが好ましい。ただし前述した過剰な添加元素Xが偏在する領域が存在する場合はこの限りではない。
<表面粗さと比表面積>
 本発明の一態様の正極活物質100は、表面がなめらかで凹凸が少ないことが好ましい。表面がなめらかで凹凸が少ないことは、表層部100aにおける添加元素Xの分布が良好であることを示す一つの要素である。なお、正極活物質100の作製工程において、添加元素Xを添加する前のコバルト酸リチウムまたは、ニッケル−コバルト−マンガン酸リチウムに対し、初期加熱を行った場合には、高電圧での充放電の繰り返し特性が顕著に優れるため、正極活物質100として特に好ましい。
 また、正極活物質100の表面がなめらかで凹凸が少ないことで、正極活物質100の表面での安定性が向上し、ピットの発生を抑制できる可能性がある。
 表面がなめらかで凹凸が少ないことは、例えば正極活物質100の断面SEM像または断面TEM像、正極活物質100の比表面積等から判断することができる。
 例えば以下のように、正極活物質100の断面SEM像から表面のなめらかさを数値化することができる。
 まず正極活物質100をFIB等により加工して断面を露出させる。このとき保護膜、保護剤等で正極活物質100を覆うことが好ましい。次に保護膜等と正極活物質100との界面のSEM像を撮影する。該SEM像に画像処理ソフトでノイズ処理を行う。例えばガウスぼかし(σ=2)を行った後、二値化を行う。さらに画像処理ソフトで界面抽出を行う。さらにmagic handツール等で保護膜等と正極活物質100との界面ラインを選択し、データを表計算ソフト等に抽出する。表計算ソフト等の機能を用いて、回帰曲線(二次回帰)から補正を行い、傾き補正後データからラフネス算出用パラメータを求め、標準偏差を算出した二乗平均平方根(RMS)表面粗さを求めた。また、この表面粗さは、正極活物質は少なくとも粒子外周の400nmにおける表面粗さである。
 本実施の形態の正極活物質100の粒子表面においては、ラフネスの指標である二乗平均平方根(RMS)表面粗さは10nm以下、3nm未満、好ましくは1nm未満、さらに好ましくは0.5nm未満の二乗平均平方根表面粗さ(RMS)であることが好ましい。
 なおノイズ処理、界面抽出等を行う画像処理ソフトについては特に限定されないが、例えば「ImageJ」を用いることができる。また表計算ソフト等についても特に限定されないが、例えばMicrosoft Office Excelを用いることができる。
 また例えば、定容法によるガス吸着法にて測定した実際の比表面積ARと、理想的な比表面積Aiとの比からも、正極活物質100の表面のなめらかさを数値化することができる。
 理想的な比表面積Aiは、すべての粒子の直径がD50と同じであり、重量が同じであり、形状は理想的な球であるとして計算して求める。
 メディアン径D50は、レーザ回折・散乱法を用いた粒度分布計等によって測定することができる。比表面積は、例えば定容法によるガス吸着法を用いた比表面積測定装置等によって測定することができる。
 本発明の一態様の正極活物質100は、メディアン径D50から求めた理想的な比表面積Aiと、実際の比表面積ARの比AR/Aiが2以下であることが好ましい。
[正極活物質の欠陥]
 正極活物質粒子に生じうる欠陥の例を、図10及び図11に示す。本発明の一態様の正極活物質では、以下に示す進行性の欠陥の発生を抑制する効果が期待できる。
 4.5V以上の高電圧条件または高温(45℃以上)下で充放電することにより、進行性の欠陥(ピットとも呼ぶ)が正極活物質粒子に生じる場合がある。また、充放電による正極活物質粒子の膨張および収縮により割れ目(クラックとも呼ぶ)などの欠陥が新たに発生する場合もある。図10に正極活物質粒子51の断面模式図を示す。正極活物質粒子51において、ピットは、54、58に穴として図示しているが、開口形状は円ではなく奥行きがあり、クラックは57に示している。55は結晶面、52は凹部、53、56はバリア膜を示している。クラックは、電極のプレス時に発生することがあるが、プレス時に発生するクラックには、前述の添加元素Xを有する表面層が設けられていないため、充放電において、進行性の欠陥を誘発する恐れがある。本発明の一態様の電極の作製方法で作製される場合は、電極のプレス時におけるクラックの発生を抑制することが期待できるため、4.5V以上の高電圧条件または高温(45℃以上)下で充放電による、進行性の欠陥の発生を、抑制する効果が期待できる。
 リチウムイオン二次電池の正極活物質は、代表的にはLCO及びNCMであり、複数の金属元素(コバルト、ニッケルなど)を有する合金とも言える。複数の正極活物質粒子のうち、少なくとも一つには欠陥を有し、その欠陥が充放電前後で変化する場合がある。正極活物質粒子は、二次電池に用いられると、その正極活物質粒子を取り囲む環境物質(電解液など)によって化学的または電気化学的に侵食されるか、若しくは材質に劣化する現象が生じる場合がある。この劣化は、粒子表面で均一に発生するのではなく、局部的に集中して生じ、二次電池の充放電を繰り返すことで例えば表面から内部に向かって深く欠陥が生じる。
 正極活物質粒子において欠陥が進行して穴を形成する現象を孔食(Pitting Corrosion)とも呼ぶことができ、この現象で発生した穴を本明細書ではピットとも呼ぶ。
 本明細書において、クラックとピットは異なる。正極活物質粒子の作製直後にクラックは存在してもピットは存在しない。ピットは、4.5V以上の高電圧条件または高温(45℃以上)下で充放電することにより、コバルト及び酸素が何層分か抜けた穴とも言え、コバルトが溶出した箇所ともいえる。クラックは物理的な圧力が加えられることで生じる新たな面、或いは結晶粒界が起因となって生じた割れ目を指している。充放電による粒子の膨張および収縮によりクラックが発生する場合もある。また、クラック又は粒子内の空洞からピットが発生する場合もある。
<スリップ>
 図11Aは、集電体に正極活物質層を形成した後、一般的な方法でのプレスを行った場合における、正極活物質の欠陥箇所の断面STEM写真である。プレスによって、格子縞に対して垂直方向(c軸方向)の粒子表面に段差があり、格子縞方向(ab面方向)に沿って変形した形跡が観察される。
 図11Bはプレス前の粒子の断面模式図である。プレス前の粒子においては、格子縞に対して垂直方向の粒子表面では比較的均一にMg、Alなどを含むバリア層56が存在している。また、図11Bにおいてスリップを有していない結晶面55を示す。
 また、図11Cはプレス後の粒子の断面模式図である。プレス工程により、格子縞方向(ab面方向)にズレが発生する。Mg、Al層も同様に複数の段差を有し、不均一となる。ab面方向のズレに関して、粒子にて、凹凸が見られた面の反対側の粒子表面でも同様の形状で凹凸が発生しており、粒子の一部がab面方向でズレが生じている。
 図11Cで図示した複数の段差は、粒子表面に縞模様として観察される。このようにプレスによってズレが生じた粒子表面の段差により観察される粒子表面の縞模様をスリップ(積層欠陥)と呼ぶ。このような粒子のスリップにより、バリア膜も不均一となってしまうため、そこから劣化してしまう可能性がある。本発明の一態様の電極の作製方法で作製される場合は、電極のプレス時におけるスリップの発生を抑制することが期待できるため、劣化の少ない二次電池を得ることが期待できる。
[正極活物質複合体]
 または、本発明の一態様の正極活物質100は、正極活物質100の少なくとも一部を覆う被覆層を有する正極活物質複合体、としてもよい。被覆層として例えば、ガラス、酸化物、及びLiM2PO(M2は、Fe、Ni、Co、Mnから選ばれる一以上)の、一以上を用いることができる。
 正極活物質複合体の被覆層が有するガラスとして、非晶質部を有する材料を用いることができる。非晶質部を有する材料として、例えば、SiO、SiO、Al、TiO、LiSiO、LiPO、LiS、SiS、B、GeS、AgI、AgO、LiO、P、B、及びV等から選ばれる1以上を有する材料、Li11、又はLi1+x+yAlTi2−xSi3−y12(0<x<2、0<y<3、)等、を用いることができる。非晶質部を有する材料は、全体が非晶質の状態で用いること、又は一部が結晶化された結晶化ガラス(ガラスセラミックスともいう)の状態で用いること、ができる。ガラスはリチウムイオン伝導性を有することが望ましい。リチウムイオン伝導性とは、リチウムイオン拡散性及びリチウムイオン貫通性を有する、ともいえる。また、ガラスは、融点が800℃以下であることが好ましく、500℃以下であることがより好ましい。また、ガラスが電子伝導性を有することが好ましい。また、ガラスは、軟化点が800℃以下であることが好ましく、例えばLiO−B−SiO系ガラスを用いることができる。
 正極活物質複合体の被覆層が有する酸化物の例として、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム及び、酸化ニオブ等がある。また、正極活物質複合体の被覆層が有するLiM2PO(M2は、Fe、Ni、Co、Mnから選ばれる一以上)の例として、LiFePO、LiNiPO、LiCoPO、LiMnPO、LiFeNiPO、LiFeCoPO、LiFeMnPO、LiNiCoPO、LiNiMnPO(a+bは1以下、0<a<1、0<b<1)、LiFeNiCoPO、LiFeNiMnPO、LiNiCoMnPO(c+d+eは1以下、0<c<1、0<d<1、0<e<1)、LiFeNiCoMnPO(f+g+h+iは1以下、0<f<1、0<g<1、0<h<1、0<i<1)等がある。
 正極活物質複合体の被覆層の作製には、複合化処理を用いることができる。複合化処理としては、例えば、メカノケミカル法、メカノフュージョン法、及びボールミル法などの機械的エネルギーによる複合化処理、共沈法、水熱法、及びゾル−ゲル法などの液相反応による複合化処理、ならびに、バレルスパッタ法、ALD(Atomic Layer Deposition)法、蒸着法、及びCVD(Chemical Vapor Deposition)法などの気相反応による複合化処理、のいずれか一以上の複合化処理を用いることができる。なお、機械的エネルギーによる複合化処理として例えば、ホソカワミクロン製のピコボンドを用いることができる。また、複合化処理において、1回又は複数回の加熱処理を行うことが好ましい。
 正極活物質複合体により正極活物質が電解液等と接することが低減されるため、二次電池の劣化を抑制できる。
 本実施の形態の内容は他の実施の形態の内容と自由に組み合わせることができる。
(実施の形態3)
 本実施の形態では、先の実施の形態で説明した作製方法によって作製された正極または負極を有する二次電池の複数種類の形状の例について説明する。
[コイン型二次電池]
 コイン型の二次電池の一例について説明する。図12Aはコイン型(単層偏平型)の二次電池の分解斜視図であり、図12Bは、外観図であり、図12Cは、その断面図である。コイン型の二次電池は主に小型の電子機器に用いられる。本明細書等において、コイン型電池は、ボタン型電池を含む。
 図12Aでは、わかりやすくするために部材の重なり(上下関係、及び位置関係)がわかるように模式図としている。従って図12Aと図12Bは完全に一致する対応図とはしていない。
 図12Aでは、正極304、セパレータ310、負極307、スペーサ322、ワッシャー312を重ねている。これらを負極缶302と正極缶301で封止している。なお、図12Aにおいて、封止のためのガスケットは図示していない。スペーサ322、ワッシャー312は、正極缶301と負極缶302を圧着する際に、内部を保護または缶内の位置を固定するために用いられている。スペーサ322、ワッシャー312はステンレスまたは絶縁材料を用いる。
 正極集電体305上に正極活物質層306が形成された積層構造を正極304としている。
 正極と負極の短絡を防ぐため、セパレータ310と、リング状絶縁体313を正極304の側面及び上面を覆うようにそれぞれ配置する。セパレータ310は、正極304よりも広い平面面積を有している。
 図12Bは、完成したコイン型の二次電池の斜視図である。
 コイン型の二次電池300は、正極端子を兼ねた正極缶301と負極端子を兼ねた負極缶302とが、ポリプロピレン等で形成されたガスケット303で絶縁シールされている。正極304は、正極集電体305と、これと接するように設けられた正極活物質層306により形成される。また、負極307は、負極集電体308と、これに接するように設けられた負極活物質層309により形成される。また、負極307は、積層構造に限定されず、リチウム金属箔またはリチウムとアルミニウムの合金箔を用いてもよい。
 なお、コイン型の二次電池300に用いる正極304および負極307は、それぞれ活物質層は片面のみに形成すればよい。
 正極缶301、負極缶302には、電解質に対して耐食性のあるニッケル、アルミニウム、チタン等の金属、又はこれらの合金、およびこれらと他の金属との合金(例えばステンレス鋼等)を用いることができる。また、電解質などによる腐食を防ぐため、ニッケルおよびアルミニウム等を被覆することが好ましい。正極缶301は正極304と、負極缶302は負極307とそれぞれ電気的に接続する。
 これら負極307、正極304およびセパレータ310を電解液に浸し、図12Cに示すように、正極缶301を下にして正極304、セパレータ310、負極307、負極缶302をこの順で積層し、正極缶301と負極缶302とをガスケット303を介して圧着してコイン形の二次電池300を製造する。
 上記の構成を有することで、高容量、且つ、充放電容量が高く、且つ、サイクル特性に優れたコイン型の二次電池300とすることができる。なお、負極307、正極304の間に固体電解質層を有する場合にはセパレータ310を不要とすることもできる。
[円筒型二次電池]
 円筒型の二次電池の例について図13Aを参照して説明する。円筒型の二次電池616は、図13Aに示すように、上面に正極キャップ(電池蓋)601を有し、側面及び底面に電池缶(外装缶)602を有している。これら正極キャップ601と電池缶(外装缶)602とは、ガスケット(絶縁パッキン)610によって絶縁されている。
 図13Bは、円筒型の二次電池の断面を模式的に示した図である。図13Bに示す円筒型の二次電池は、上面に正極キャップ(電池蓋)601を有し、側面および底面に電池缶(外装缶)602を有している。これら正極キャップと電池缶(外装缶)602とは、ガスケット(絶縁パッキン)610によって絶縁されている。
 中空円柱状の電池缶602の内側には、帯状の正極604と負極606とがセパレータ605を間に挟んで捲回された電池素子が設けられている。図示しないが、電池素子は中心軸を中心に捲回されている。電池缶602は、一端が閉じられ、他端が開いている。電池缶602には、電解液に対して耐腐食性のあるニッケル、アルミニウム、チタン等の金属、又はこれらの合金、およびこれらと他の金属との合金(例えば、ステンレス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケルおよびアルミニウム等を電池缶602に被覆することが好ましい。電池缶602の内側において、正極、負極およびセパレータが捲回された電池素子は、対向する一対の絶縁板608、609により挟まれている。また、電池素子が設けられた電池缶602の内部は、非水電解液(図示せず)が注入されている。非水電解液は、コイン型の二次電池と同様のものを用いることができる。
 円筒型の蓄電池に用いる正極および負極は捲回するため、集電体の両面に活物質を形成することが好ましい。なお図13A乃至図13Dでは円筒の直径よりも円筒の高さの方が大きい二次電池616を図示したが、これに限らない。円筒の直径が、円筒の高さよりも大きい二次電池としてもよい。このような構成により、たとえば二次電池の小型化を図ることができる。
 前述の実施の形態で得られる正極活物質100を正極604に用いることで、高容量、且つ、充放電容量が高く、且つ、サイクル特性に優れた円筒型の二次電池616とすることができる。
 正極604には正極端子(正極集電リード)603が接続され、負極606には負極端子(負極集電リード)607が接続される。正極端子603および負極端子607は、ともにアルミニウムなどの金属材料を用いることができる。正極端子603は安全弁機構613に、負極端子607は電池缶602の底にそれぞれ抵抗溶接される。安全弁機構613は、PTC素子(Positive Temperature Coefficient)611を介して正極キャップ601と電気的に接続されている。安全弁機構613は電池の内圧の上昇が所定の閾値を超えた場合に、正極キャップ601と正極604との電気的な接続を切断するものである。また、PTC素子611は温度が上昇した場合に抵抗が増大する熱感抵抗素子であり、抵抗の増大により電流量を制限して異常発熱を防止するものである。PTC素子には、チタン酸バリウム(BaTiO3)系半導体セラミックス等を用いることができる。
 図13Cは蓄電システム615の一例を示す。蓄電システム615は複数の二次電池616を有する。それぞれの二次電池の正極は、絶縁体625で分離された導電体624に接触し、電気的に接続されている。導電体624は配線623を介して、制御回路620に電気的に接続されている。また、それぞれの二次電池の負極は、配線626を介して制御回路620に電気的に接続されている。制御回路620として、過充電または過放電を防止する保護回路等を適用することができる。
 図13Dは、蓄電システム615の一例を示す。蓄電システム615は複数の二次電池616を有し、複数の二次電池616は、導電板628及び導電板614の間に挟まれている。複数の二次電池616は、配線627により導電板628及び導電板614と電気的に接続される。複数の二次電池616は、並列接続されていてもよいし、直列接続されていてもよい。複数の二次電池616を有する蓄電システム615を構成することで、大きな電力を取り出すことができる。
 複数の二次電池616が、並列に接続された後、さらに直列に接続されてもよい。
 複数の二次電池616の間に温度制御装置を有していてもよい。二次電池616が過熱されたときは、温度制御装置により冷却し、二次電池616が冷えすぎているときは温度制御装置により加熱することができる。そのため蓄電システム615の性能が外気温に影響されにくくなる。
 また、図13Dにおいて、蓄電システム615は制御回路620に配線621及び配線622を介して電気的に接続されている。配線621は導電板628を介して複数の二次電池616の正極に、配線622は導電板614を介して複数の二次電池616の負極に、それぞれ電気的に接続される。
[二次電池の他の構造例]
 二次電池の構造例について図14及び図15を用いて説明する。
 図14Aに示す二次電池913は、筐体930の内部に端子951と端子952が設けられた捲回体950を有する。捲回体950は、筐体930の内部で電解液中に浸される。端子952は、筐体930に接し、端子951は、絶縁材などを用いることにより筐体930に接していない。なお、図14Aでは、便宜のため、筐体930を分離して図示しているが、実際は、捲回体950が筐体930に覆われ、端子951及び端子952が筐体930の外に延在している。筐体930としては、金属材料(例えばアルミニウムなど)又は樹脂材料を用いることができる。
 なお、図14Bに示すように、図14Aに示す筐体930を複数の材料によって形成してもよい。例えば、図14Bに示す二次電池913は、筐体930aと筐体930bが貼り合わされており、筐体930a及び筐体930bで囲まれた領域に捲回体950が設けられている。
 筐体930aとしては、有機樹脂など、絶縁材料を用いることができる。特に、アンテナが形成される面に有機樹脂などの材料を用いることにより、二次電池913による電界の遮蔽を抑制できる。なお、筐体930aによる電界の遮蔽が小さければ、筐体930aの内部にアンテナを設けてもよい。筐体930bとしては、例えば金属材料を用いることができる。
 さらに、捲回体950の構造について図14Cに示す。捲回体950は、負極931と、正極932と、セパレータ933と、を有する。捲回体950は、セパレータ933を挟んで負極931と、正極932が重なり合って積層され、該積層シートを捲回させた捲回体である。なお、負極931と、正極932と、セパレータ933と、の積層を、さらに複数重ねてもよい。
 また、図15A乃至図15Cに示すような捲回体950aを有する二次電池913としてもよい。図15Aに示す捲回体950aは、負極931と、正極932と、セパレータ933と、を有する。負極931は負極活物質層931aを有する。正極932は正極活物質層932aを有する。
 前述の実施の形態で得られる正極活物質100を正極932に用いることで、高容量、且つ、充放電容量が高く、且つ、サイクル特性に優れた二次電池913とすることができる。
 セパレータ933は、負極活物質層931aおよび正極活物質層932aよりも広い幅を有し、負極活物質層931aおよび正極活物質層932aと重畳するように捲回されている。また正極活物質層932aよりも負極活物質層931aの幅が広いことが安全性の点で好ましい。またこのような形状の捲回体950aは安全性および生産性がよく好ましい。
 図15Bに示すように、負極931は端子951と電気的に接続される。端子951は端子911aと電気的に接続される。また正極932は端子952と電気的に接続される。端子952は端子911bと電気的に接続される。
 図15Cに示すように、筐体930により捲回体950aおよび電解液が覆われ、二次電池913となる。筐体930には安全弁、過電流保護素子等を設けることが好ましい。安全弁は、電池破裂を防止するため、筐体930の内部が所定の内圧で開放する弁である。
 図15Bに示すように二次電池913は複数の捲回体950aを有していてもよい。複数の捲回体950aを用いることで、より充放電容量の大きい二次電池913とすることができる。図15Aおよび図15Bに示す二次電池913の他の要素は、図14A乃至図14Cに示す二次電池913の記載を参酌することができる。
<ラミネート型二次電池>
 次に、ラミネート型の二次電池の例について、外観図の一例を図16A及び図16Bに示す。図16A及び図16Bは、正極503、負極506、セパレータ507、外装体509、正極リード電極510及び負極リード電極511を有する。
 図17Aは正極503及び負極506の外観図を示す。正極503は正極集電体501を有し、正極活物質層502は正極集電体501の表面に形成されている。また、正極503は正極集電体501が一部露出する領域(以下、タブ領域という)を有する。負極506は負極集電体504を有し、負極活物質層505は負極集電体504の表面に形成されている。また、負極506は負極集電体504が一部露出する領域、すなわちタブ領域を有する。正極及び負極が有するタブ領域の面積および形状は、図17Aに示す例に限られない。
<ラミネート型二次電池の作製方法>
 ここで、図16Aに外観図を示すラミネート型二次電池の作製方法の一例について、図17B及び図17Cを用いて説明する。
 まず、負極506、セパレータ507及び正極503を積層する。図17Bに積層された負極506、セパレータ507及び正極503を示す。ここでは負極を5組、正極を4組使用する例を示す。負極とセパレータと正極からなる積層体とも呼べる。次に、正極503のタブ領域同士の接合と、最表面の正極のタブ領域への正極リード電極510の接合を行う。接合には、例えば超音波溶接等を用いればよい。同様に、負極506のタブ領域同士の接合と、最表面の負極のタブ領域への負極リード電極511の接合を行う。
 次に外装体509上に、負極506、セパレータ507及び正極503を配置する。
 次に、図17Cに示すように、外装体509を破線で示した部分で折り曲げる。その後、外装体509の外周部を接合する。接合には例えば熱圧着等を用いればよい。この時、後に電解液を入れることができるように、外装体509の一部(または一辺)に接合されない領域(以下、導入口という)を設ける。
 次に、外装体509に設けられた導入口から、電解液を外装体509の内側へ導入する。電解液の導入は、減圧雰囲気下、或いは不活性雰囲気下で行うことが好ましい。そして最後に、導入口を接合する。このようにして、ラミネート型の二次電池500を作製することができる。
 前述の実施の形態で得られる正極活物質100を正極503に用いることで、高容量、且つ、充放電容量が高く、且つ、サイクル特性に優れた二次電池500とすることができる。
[電池パックの例]
 アンテナを用いて無線充電が可能な本発明の一態様の二次電池パックの例について、図18A乃至図18Cを用いて説明する。
 図18Aは、二次電池パック531の外観を示す図であり、厚さの薄い直方体形状(厚さのある平板形状とも呼べる)である。図18Bは二次電池パック531の構成を説明する図である。二次電池パック531は、回路基板540と、二次電池513と、を有する。二次電池513には、ラベル529が貼られている。回路基板540は、シール515により固定されている。また、二次電池パック531は、アンテナ517を有する。
 二次電池513の内部は、捲回体を有する構造にしてもよいし、積層体を有する構造にしてもよい。
 二次電池パック531において例えば、図18Bに示すように、回路基板540上に、制御回路590を有する。また、回路基板540は、端子514と電気的に接続されている。また回路基板540は、アンテナ517、二次電池513の正極リード及び負極リードの一方551、正極リード及び負極リードの他方552と電気的に接続される。
 あるいは、図18Cに示すように、回路基板540上に設けられる回路システム590aと、端子514を介して回路基板540に電気的に接続される回路システム590bと、を有してもよい。
 なお、アンテナ517はコイル状に限定されず、例えば線状、板状であってもよい。また、平面アンテナ、開口面アンテナ、進行波アンテナ、EHアンテナ、磁界アンテナ、誘電体アンテナ等のアンテナを用いてもよい。又は、アンテナ517は、平板状の導体でもよい。この平板状の導体は、電界結合用の導体の一つとして機能することができる。つまり、コンデンサの有する2つの導体のうちの一つの導体として、アンテナ517を機能させてもよい。これにより、電磁界、磁界だけでなく、電界で電力のやり取りを行うこともできる。
 二次電池パック531は、アンテナ517と、二次電池513との間に層519を有する。層519は、例えば二次電池513による電磁界を遮蔽することができる機能を有する。層519としては、例えば磁性体を用いることができる。
 本実施の形態の内容は他の実施の形態の内容と自由に組み合わせることができる。
(実施の形態4)
 本実施の形態では、前述の実施の形態で得られる正極活物質100を用いて全固体電池を作製する例を示す。
 図19Aに示すように、本発明の一態様の二次電池400は、正極410、固体電解質層420および負極430を有する。
 正極410は正極集電体413および正極活物質層414を有する。正極活物質層414は正極活物質411および固体電解質421を有する。正極活物質411には、前述の実施の形態で得られる正極活物質100を用いている。また正極活物質層414は、導電材およびバインダを有していてもよい。
 固体電解質層420は固体電解質421を有する。固体電解質層420は、正極410と負極430の間に位置し、正極活物質411および負極活物質431のいずれも有さない領域である。
 負極430は負極集電体433および負極活物質層434を有する。負極活物質層434は負極活物質431および固体電解質421を有する。また負極活物質層434は、導電材およびバインダを有していてもよい。なお、負極活物質431として金属リチウムを用いる場合は粒子にする必要がないため、図19Bのように、固体電解質421を有さない負極430とすることができる。負極430に金属リチウムを用いると、二次電池400のエネルギー密度を向上させることができ好ましい。
 固体電解質層420が有する固体電解質421としては、例えば硫化物系固体電解質、酸化物系固体電解質、ハロゲン化物系固体電解質等を用いることができる。
 硫化物系固体電解質には、チオリシコン系(Li10GeP12、Li3.25Ge0.250.75等)、硫化物ガラス(70LiS・30P、30LiS・26B・44LiI、63LiS・36SiS・1LiPO、57LiS・38SiS・5LiSiO、50LiS・50GeS等)、硫化物結晶化ガラス(Li11、Li3.250.95等)が含まれる。硫化物系固体電解質は、高い伝導度を有する材料がある、低い温度で合成可能、また比較的やわらかいため充放電を経ても導電経路が保たれやすい等の利点がある。
 酸化物系固体電解質には、ペロブスカイト型結晶構造を有する材料(La2/3−xLi3xTiO等)、NASICON型結晶構造を有する材料(Li1−YAlTi2−Y(PO等)、ガーネット型結晶構造を有する材料(LiLaZr12等)、LISICON型結晶構造を有する材料(Li14ZnGe16等)、LLZO(LiLaZr12)、酸化物ガラス(LiPO−LiSiO、50LiSiO・50LiBO等)、酸化物結晶化ガラス(Li1.07Al0.69Ti1.46(PO、Li1.5Al0.5Ge1.5(PO等)が含まれる。酸化物系固体電解質は、大気中で安定であるといった利点がある。
 ハロゲン化物系固体電解質には、LiAlCl、LiInBr、LiF、LiCl、LiBr、LiI等が含まれる。また、これらハロゲン化物系固体電解質を、ポーラス酸化アルミニウムまたはポーラスシリカの細孔に充填したコンポジット材料も固体電解質として用いることができる。
 また、異なる固体電解質を混合して用いてもよい。
 中でも、NASICON型結晶構造を有するLi1+xAlTi2−x(PO(0<x<1)(以下、LATP)は、アルミニウムとチタンという、本発明の一態様の二次電池400に用いる正極活物質が有してもよい元素を含むため、サイクル特性の向上について相乗効果が期待でき好ましい。また、工程の削減による生産性の向上も期待できる。なお本明細書等において、NASICON型結晶構造とは、M(XO(M:遷移金属、X:S、P、As、Mo、W等)で表される化合物であり、MO八面体とXO四面体が頂点を共有して3次元的に配列した構造を有するものをいう。
〔外装体と二次電池の形状〕
 本発明の一態様の二次電池400の外装体には、様々な材料および形状のものを用いることができるが、正極、固体電解質層および負極を加圧する機能を有することが好ましい。
 例えば図20は、全固体電池の材料を評価するセルの一例である。
 図20Aは評価セルの断面模式図であり、評価セルは、下部部材761と、上部部材762と、それらを固定する固定ねじまたは蝶ナット764を有し、押さえ込みねじ763を回転させることで電極用プレート753を押して評価材料を固定している。ステンレス材料で構成された下部部材761と、上部部材762との間には絶縁体766が設けられている。また上部部材762と、押さえ込みねじ763の間には密閉するためのOリング765が設けられている。
 評価材料は、電極用プレート751に載せられ、周りを絶縁管752で囲み、上方から電極用プレート753で押されている状態となっている。この評価材料周辺を拡大した斜視図が図20Bである。
 評価材料としては、正極750a、固体電解質層750b、負極750cの積層の例を示しており、断面図を図20Cに示す。なお、図20A乃至図20Cにおいて同じ箇所には同じ符号を用いる。
 正極750aと電気的に接続される電極用プレート751および下部部材761は、正極端子に相当するということができる。負極750cと電気的に接続される電極用プレート753および上部部材762は、負極端子に相当するということができる。電極用プレート751および電極用プレート753を介して評価材料に押圧をかけながら電気抵抗などを測定することができる。
 また、本発明の一態様の二次電池の外装体には、気密性に優れたパッケージを使用することが好ましい。例えばセラミックパッケージまたは樹脂パッケージを用いることができる。また、外装体を封止する際には、外気を遮断し、密閉した雰囲気下、例えばグローブボックス内で行うことが好ましい。
 図21Aに、図20と異なる外装体および形状を有する本発明の一態様の二次電池の斜視図を示す。図21Aの二次電池は、外部電極771、772を有し、複数のパッケージ部材を有する外装体で封止されている。
 図21A中の一点破線で切断した断面の一例を図21Bに示す。正極750a、固体電解質層750bおよび負極750cを有する積層体は、平板に電極層773aが設けられたパッケージ部材770aと、枠状のパッケージ部材770bと、平板に電極層773bが設けられたパッケージ部材770cと、で囲まれて封止された構造となっている。パッケージ部材770a、770b、770cには、絶縁材料、例えば樹脂材料およびセラミックを用いることができる。
 外部電極771は、電極層773aを介して正極750aと電気的に接続され、正極端子として機能する。また、外部電極772は、電極層773bを介して負極750cと電気的に接続され、負極端子として機能する。
 前述の実施の形態で得られる正極活物質100を用いることで、高エネルギー密度かつ良好な出力特性をもつ全固体二次電池を実現することができる。
 本実施の形態の内容は、他の実施の形態の内容と適宜組み合わせることができる。
(実施の形態5)
 本実施の形態では、円筒型の二次電池である図13Dとは異なる二次電池を電気自動車(EV)に適用する例を図22Cを用いて示す。
 電気自動車には、メインの駆動用の二次電池として第1のバッテリ1301a、1301bと、モータ1304を始動させるインバータ1312に電力を供給する第2のバッテリ1311が設置されている。第2のバッテリ1311はクランキングバッテリー(スターターバッテリーとも呼ばれる)とも呼ばれる。第2のバッテリ1311は高出力できればよく、大容量はそれほど必要とされず、第2のバッテリ1311の容量は第1のバッテリ1301a、1301bと比較して小さい。
 第1のバッテリ1301aの内部構造は、図14Aまたは図15Cに示した捲回型であってもよいし、図16Aまたは図16Bに示した積層型であってもよい。また、第1のバッテリ1301aは、実施の形態4の全固体電池を用いてもよい。第1のバッテリ1301aに実施の形態4の全固体電池を用いることで高容量とすることができ、安全性が向上し、小型化、軽量化することができる。
 本実施の形態では、第1のバッテリ1301a、1301bを2つ並列に接続させている例を示しているが3つ以上並列に接続させてもよい。また、第1のバッテリ1301aで十分な電力を貯蔵できるのであれば、第1のバッテリ1301bはなくてもよい。複数の二次電池を有する電池パックを構成することで、大きな電力を取り出すことができる。複数の二次電池は、並列接続されていてもよいし、直列接続されていてもよいし、並列に接続された後、さらに直列に接続されていてもよい。複数の二次電池を組電池とも呼ぶ。
 また、車載用の二次電池において、複数の二次電池からの電力を遮断するため、工具を使わずに高電圧を遮断できるサービスプラグまたはサーキットブレーカを有しており、第1のバッテリ1301aに設けられる。
 また、第1のバッテリ1301a、1301bの電力は、主にモータ1304を回転させることに使用されるが、DCDC回路1306を介して42V系の車載部品(電動パワステ(パワーステアリング)1307、ヒーター1308、デフォッガ1309など)に電力を供給する。後輪にリアモータ1317を有している場合にも、第1のバッテリ1301aがリアモータ1317を回転させることに使用される。
 また、第2のバッテリ1311は、DCDC回路1310を介して14V系の車載部品(オーディオ1313、パワーウィンドウ1314、ランプ類1315など)に電力を供給する。
 また、第1のバッテリ1301aについて、図22Aを用いて説明する。
 図22Aでは9個の角型二次電池1300を一つの電池パック1415としている例を示している。また、9個の角型二次電池1300を直列接続し、一方の電極を絶縁体からなる固定部1413で固定し、もう一方の電極を絶縁体からなる固定部1414で固定している。本実施の形態では固定部1413、1414で固定する例を示しているが電池収容ボックス(筐体とも呼ぶ)に収納させる構成としてもよい。車両は外部(路面など)から振動または揺れが加えられることを想定されているため、固定部1413、1414および電池収容ボックスなどで複数の二次電池を固定することが好ましい。また、一方の電極は配線1421によって制御回路部1320に電気的に接続されている。またもう一方の電極は配線1422によって制御回路部1320に電気的に接続されている。
 また、制御回路部1320は、酸化物半導体を用いたトランジスタを含むメモリ回路を用いてもよい。酸化物半導体を用いたトランジスタを含むメモリ回路を有する充電制御回路、又は電池制御システムを、BTOS(Battery operating system、又はBattery oxide semiconductor)と呼称する場合がある。
 酸化物半導体として機能する金属酸化物を用いることが好ましい。例えば、酸化物として、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、又はマグネシウムから選ばれた一種、又は複数種)等の金属酸化物を用いるとよい。特に、酸化物として適用できるIn−M−Zn酸化物は、CAAC−OS(C−Axis Aligned Crystal Oxide Semiconductor)、CAC−OS(Cloud−Aligned Composite Oxide Semiconductor)であることが好ましい。また、酸化物として、In−Ga酸化物、In−Zn酸化物を用いてもよい。CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、またはCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。また、CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つまたは複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
 さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう。)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
 ここで、In−Ga−Zn酸化物におけるCAC−OSを構成する金属元素に対するIn、Ga、およびZnの原子数比のそれぞれを、[In]、[Ga]、および[Zn]と表記する。例えば、In−Ga−Zn酸化物におけるCAC−OSにおいて、第1の領域は、[In]が、CAC−OS膜の組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC−OS膜の組成における[Ga]よりも大きい領域である。または、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
 具体的には、上記第1の領域は、インジウム酸化物、インジウム亜鉛酸化物などが主成分である領域である。また、上記第2の領域は、ガリウム酸化物、ガリウム亜鉛酸化物などが主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
 なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
 例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
 CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、および良好なスイッチング動作を実現することができる。
 酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
 また、高温環境下で使用可能であるため、制御回路部1320は酸化物半導体を用いるトランジスタを用いることが好ましい。プロセスを簡略なものとするため、制御回路部1320は単極性のトランジスタを用いて形成してもよい。半導体層に酸化物半導体を用いるトランジスタは、動作周囲温度が単結晶Siトランジスタよりも広く−40℃以上150℃以下であり、二次電池が過熱しても特性変化が単結晶Siトランジスタに比べて小さい。酸化物半導体を用いるトランジスタのオフ電流は、150℃であっても測定下限以下であるが、単結晶Siトランジスタのオフ電流特性は、温度依存性が大きい。例えば、150℃では、単結晶Siトランジスタはオフ電流が上昇し、電流オン/オフ比が十分に大きくならない。制御回路部1320は、安全性を向上することができる。また、前述の実施の形態で得られる正極活物質100を正極に用いた二次電池と組み合わせることで安全性についての相乗効果が得られる。
 酸化物半導体を用いたトランジスタを含むメモリ回路を用いた制御回路部1320は、マイクロショート等の不安定性の原因に対し、二次電池の自動制御装置として機能させることもできる。二次電池の不安定性の原因を解消する機能としては、過充電の防止、過電流の防止、充電時過熱制御、組電池でのセルバランス、過放電の防止、残量計、温度に応じた充電電圧及び電流量自動制御、劣化度に応じた充電電流量制御、マイクロショート異常挙動検知、マイクロショートに関する異常予測などが挙げられ、そのうちの少なくとも一つの機能を制御回路部1320が有する。また、二次電池の自動制御装置の超小型化が可能である。
 また、マイクロショートとは、二次電池の内部の微小な短絡のことを指しており、二次電池の正極と負極が短絡して充放電不可能の状態になるというほどではなく、微小な短絡部でわずかに短絡電流が流れてしまう現象を指している。比較的短時間、且つ、わずかな箇所であっても大きな電圧変化が生じるため、その異常な電圧値がその後の推定に影響を与える恐れがある。
 マイクロショートの原因の一つは、充放電が複数回行われることによって、正極活物質の不均一な分布により、正極の一部と負極の一部で局所的な電流の集中が生じ、セパレータの一部が機能しなくなる箇所が発生、または副反応による副反応物の発生によりミクロな短絡が生じていると言われている。
 また、マイクロショートの検知だけでなく、制御回路部1320は、二次電池の端子電圧を検知し、二次電池の充放電状態を管理するとも言える。例えば、過充電を防ぐために充電回路の出力トランジスタと遮断用スイッチの両方をほぼ同時にオフ状態とすることができる。
 また、図22Aに示す電池パック1415のブロック図の一例を図22Bに示す。
 制御回路部1320は、少なくとも過充電を防止するスイッチと、過放電を防止するスイッチを含むスイッチ部1324と、スイッチ部1324を制御する制御回路1322と、第1のバッテリ1301aの電圧測定部と、を有する。制御回路部1320は、使用する二次電池の上限電圧と下限電圧が設定されており、外部からの電流上限、および外部への出力電流の上限などを制限している。二次電池の下限電圧以上上限電圧以下の範囲内は、使用が推奨されている電圧範囲内であり、その範囲外となるとスイッチ部1324が作動し、保護回路として機能する。また、制御回路部1320は、スイッチ部1324を制御して過放電および過充電を防止するため、保護回路とも呼べる。例えば、過充電となりそうな電圧を制御回路1322で検知した場合にスイッチ部1324のスイッチをオフ状態とすることで電流を遮断する。さらに充放電経路中にPTC素子を設けて温度の上昇に応じて電流を遮断する機能を設けてもよい。また、制御回路部1320は、外部端子1325(+IN)と、外部端子1326(−IN)とを有している。
 スイッチ部1324は、nチャネル型のトランジスタおよびpチャネル型のトランジスタを組み合わせて構成することができる。スイッチ部1324は、単結晶シリコンを用いるSiトランジスタを有するスイッチに限定されず、例えば、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)、InP(リン化インジウム)、SiC(シリコンカーバイド)、ZnSe(セレン化亜鉛)、GaN(窒化ガリウム)、GaOx(酸化ガリウム;xは0より大きい実数)などを有するパワートランジスタでスイッチ部1324を形成してもよい。また、OSトランジスタを用いた記憶素子は、Siトランジスタを用いた回路上などに積層することで自由に配置可能であるため、集積化を容易に行うことができる。またOSトランジスタは、Siトランジスタと同様の製造装置を用いて作製することが可能であるため、低コストで作製可能である。即ち、スイッチ部1324上にOSトランジスタを用いた制御回路部1320を積層し、集積化することで1チップとすることもできる。制御回路部1320の占有体積を小さくすることができるため、小型化が可能となる。
 第1のバッテリ1301a、1301bは、主に42V系(高電圧系)の車載機器に電力を供給し、第2のバッテリ1311は14V系(低電圧系)の車載機器に電力を供給する。
 本実施の形態では、第1のバッテリ1301aと第2のバッテリ1311の両方にリチウムイオン二次電池を用いる一例を示す。第2のバッテリ1311は鉛蓄電池、全固体電池、または電気二重層キャパシタを用いてもよい。例えば、実施の形態4の全固体電池を用いてもよい。第2のバッテリ1311に実施の形態4の全固体電池を用いることで高容量とすることができ、小型化、軽量化することができる。
 また、タイヤ1316の回転による回生エネルギーは、ギア1305を介してモータ1304に送られ、モータコントローラ1303およびバッテリーコントローラ1302から制御回路部1321を介して第2のバッテリ1311に充電される。またはバッテリーコントローラ1302から制御回路部1320を介して第1のバッテリ1301aに充電される。またはバッテリーコントローラ1302から制御回路部1320を介して第1のバッテリ1301bに充電される。回生エネルギーを効率よく充電するためには、第1のバッテリ1301a、1301bが急速充電可能であることが望ましい。
 バッテリーコントローラ1302は第1のバッテリ1301a、1301bの充電電圧及び充電電流などを設定することができる。バッテリーコントローラ1302は、用いる二次電池の充電特性に合わせて充電条件を設定し、急速充電することができる。
 また、図示していないが、外部の充電器と接続させる場合、充電器のコンセントまたは充電器の接続ケーブルは、バッテリーコントローラ1302に電気的に接続される。外部の充電器から供給された電力はバッテリーコントローラ1302を介して第1のバッテリ1301a、1301bに充電する。また、充電器によっては、制御回路が設けられており、バッテリーコントローラ1302の機能を用いない場合もあるが、過充電を防ぐため制御回路部1320を介して第1のバッテリ1301a、1301bを充電することが好ましい。また、充電器のコンセントまたは充電器の接続ケーブルに制御回路を備えている場合もある。制御回路部1320は、ECU(Electronic Control Unit)と呼ばれることもある。ECUは、電動車両に設けられたCAN(Controller Area Network)に接続される。CANは、車内LANとして用いられるシリアル通信規格の一つである。また、ECUは、マイクロコンピュータを含む。また、ECUは、CPUまたはGPUを用いる。
 充電スタンドなどに設置されている外部の充電器は、100Vコンセント、200Vコンセント、3相200V且つ50kWなどがある。また、非接触給電方式等により外部の充電設備から電力供給を受けて、充電することもできる。
 急速充電を行う場合、短時間での充電を行うためには、高電圧での充電に耐えうる二次電池が望まれている。
 また、上述した本実施の形態の二次電池は、前述の実施の形態で得られる正極活物質100を用いている。さらに、導電材としてグラフェンを用い、電極層を厚くして担持量を高くしても容量低下を抑え、高容量を維持することが相乗効果として大幅に電気特性が向上された二次電池を実現できる。特に車両に用いる二次電池に有効であり、車両全重量に対する二次電池の重量の割合を増加させることなく、航続距離が長い、具体的には一充電走行距離が500km以上の車両を提供することができる。
 特に上述した本実施の形態の二次電池は、前述の実施の形態で説明した正極活物質100を用いることで二次電池の動作電圧を高くすることができ、充電電圧の増加に伴い、使用できる容量を増加させることができる。また、前述の実施の形態で説明した正極活物質100を正極に用いることでサイクル特性に優れた車両用の二次電池を提供することができる。
 次に、本発明の一態様である二次電池を車両、代表的には輸送用車両に実装する例について説明する。
 また、図13D、図15C、図22Aのいずれか一に示した二次電池を車両に搭載すると、ハイブリッド車(HV)、電気自動車(EV)、又はプラグインハイブリッド車(PHV)等の次世代クリーンエネルギー自動車を実現できる。また、農業機械、電動アシスト自転車を含む原動機付自転車、自動二輪車、電動車椅子、電動カート、小型又は大型船舶、潜水艦、固定翼機および回転翼機等の航空機、ロケット、人工衛星、宇宙探査機、惑星探査機、宇宙船などの輸送用車両に二次電池を搭載することもできる。本発明の一態様の二次電池は高容量の二次電池とすることができる。そのため本発明の一態様の二次電池は、小型化、軽量化に適しており、輸送用車両に好適に用いることができる。
 図23A乃至図23Dにおいて、本発明の一態様を用いた移動体の一例として、輸送用車両を例示する。図23Aに示す自動車2001は、走行のための動力源として電気モータを用いる電気自動車である。または、走行のための動力源として電気モータとエンジンを適宜選択して用いることが可能なハイブリッド自動車である。二次電池を車両に搭載する場合、実施の形態3で示した二次電池の一例を一箇所または複数個所に設置する。図23Aに示す自動車2001は、電池パック2200を有し、電池パックは、複数の二次電池を接続させた二次電池モジュールを有する。さらに二次電池モジュールに電気的に接続する充電制御装置を有すると好ましい。
 また、自動車2001は、自動車2001が有する二次電池にプラグイン方式および非接触給電方式等により外部の充電設備から電力供給を受けて、充電することができる。充電に際しては、充電方法およびコネクタの規格等はCHAdeMO(登録商標)またはコンボ等の所定の方式で適宜行えばよい。二次電池は、商用施設に設けられた充電ステーションでもよく、また家庭の電源であってもよい。例えば、プラグイン技術によって、外部からの電力供給により自動車2001に搭載された蓄電装置を充電することができる。充電は、ACDCコンバータ等の変換装置を介して、交流電力を直流電力に変換して行うことができる。
 また、図示しないが、受電装置を車両に搭載し、地上の送電装置から電力を非接触で供給して充電することもできる。この非接触給電方式の場合には、道路または外壁に送電装置を組み込むことで、停車中に限らず走行中に充電を行うこともできる。また、この非接触給電の方式を利用して、2台の車両どうしで電力の送受電を行ってもよい。さらに、車両の外装部に太陽電池を設け、停車時および走行時に二次電池の充電を行ってもよい。このような非接触での電力の供給には、電磁誘導方式または磁界共鳴方式を用いることができる。
 図23Bは、輸送用車両の一例として電気により制御するモータを有した大型の輸送車2002を示している。輸送車2002の二次電池モジュールは、例えば公称電圧3.0V以上5.0V以下の二次電池を4個セルユニットとし、48セルを直列に接続した170Vの最大電圧とする。電池パック2201の二次電池モジュールを構成する二次電池の数などが違う以外は、図23Aと同様な機能を備えているので説明は省略する。
 図23Cは、一例として電気により制御するモータを有した大型の輸送車両2003を示している。輸送車両2003の二次電池モジュールは、例えば公称電圧3.0V以上5.0V以下の二次電池を百個以上直列に接続した600Vの最大電圧とする。前述実施の形態で説明した正極活物質100を正極用いた二次電池を用いることで、レート特性および充放電サイクル特性の良好な二次電池を製造することができ、輸送車両2003の高性能化および長寿命化に寄与することができる。また、電池パック2202の二次電池モジュールを構成する二次電池の数などが違う以外は、図23Aと同様な機能を備えているので説明は省略する。
 図23Dは、一例として燃料を燃焼するエンジンを有した航空機2004を示している。図23Dに示す航空機2004は、離着陸用の車輪を有しているため、輸送車両の一種とも言え、複数の二次電池を接続させて二次電池モジュールを構成し、二次電池モジュールと充電制御装置とを含む電池パック2203を有している。
 航空機2004の二次電池モジュールは、例えば4Vの二次電池を8個直列に接続した32Vの最大電圧とする。電池パック2203の二次電池モジュールを構成する二次電池の数などが違う以外は、図23Aと同様な機能を備えているので説明は省略する。
 本実施の形態の内容は、他の実施の形態の内容と適宜組み合わせることができる。
(実施の形態6)
 本実施の形態では、本発明の一態様である二次電池を建築物に実装する例について図24Aおよび図24Bを用いて説明する。
 図24Aに示す住宅は、本発明の一態様である二次電池を有する蓄電装置2612と、ソーラーパネル2610を有する。蓄電装置2612は、ソーラーパネル2610と配線2611等を介して電気的に接続されている。また蓄電装置2612と地上設置型の充電装置2604が電気的に接続されていてもよい。ソーラーパネル2610で得た電力は、蓄電装置2612に充電することができる。また蓄電装置2612に蓄えられた電力は、充電装置2604を介して車両2603が有する二次電池に充電することができる。蓄電装置2612は、床下空間部に設置されることが好ましい。床下空間部に設置することにより、床上の空間を有効的に利用することができる。あるいは、蓄電装置2612は床上に設置されてもよい。
 蓄電装置2612に蓄えられた電力は、住宅内の他の電子機器にも電力を供給することができる。よって、停電などにより商用電源から電力の供給が受けられない時でも、本発明の一態様に係る蓄電装置2612を無停電電源として用いることで、電子機器の利用が可能となる。
 図24Bに、本発明の一態様に係る蓄電装置の一例を示す。図24Bに示すように、建物799の床下空間部796には、本発明の一態様に係る蓄電装置791が設置されている。また、蓄電装置791に実施の形態5に説明した制御回路を設けてもよく、前述の実施の形態で得られる正極活物質100を正極に用いた二次電池を蓄電装置791に用いることで長寿命な蓄電装置791とすることができる。
 蓄電装置791には、制御装置790が設置されており、制御装置790は、配線によって、分電盤703と、蓄電コントローラ705(制御装置ともいう)と、表示器706と、ルータ709と、に電気的に接続されている。
 商業用電源701から、引込線取付部710を介して、電力が分電盤703に送られる。また、分電盤703には、蓄電装置791と、商業用電源701と、から電力が送られ、分電盤703は、送られた電力を、コンセント(図示せず)を介して、一般負荷707及び蓄電系負荷708に供給する。
 一般負荷707は、例えば、テレビおよびパーソナルコンピュータなどの電気機器であり、蓄電系負荷708は、例えば、電子レンジ、冷蔵庫、空調機などの電気機器である。
 蓄電コントローラ705は、計測部711と、予測部712と、計画部713と、を有する。計測部711は、一日(例えば、0時から24時)の間に、一般負荷707、蓄電系負荷708で消費された電力量を計測する機能を有する。また、計測部711は、蓄電装置791の電力量と、商業用電源701から供給された電力量と、を計測する機能を有していてもよい。また、予測部712は、一日の間に一般負荷707及び蓄電系負荷708で消費された電力量に基づいて、次の一日の間に一般負荷707及び蓄電系負荷708で消費される需要電力量を予測する機能を有する。また、計画部713は、予測部712が予測した需要電力量に基づいて、蓄電装置791の充放電の計画を立てる機能を有する。
 計測部711によって計測された一般負荷707及び蓄電系負荷708で消費された電力量は、表示器706によって確認することができる。また、ルータ709を介して、テレビおよびパーソナルコンピュータなどの電気機器において、確認することもできる。さらに、ルータ709を介して、スマートフォンおよびタブレットなどの携帯電子端末によっても確認することができる。また、表示器706、電気機器、携帯電子端末によって、予測部712が予測した時間帯ごと(または一時間ごと)の需要電力量なども確認することができる。
 本実施の形態の内容は、他の実施の形態の内容と適宜組み合わせることができる。
(実施の形態7)
 本実施の形態では、二輪車、自転車に本発明の一態様である蓄電装置を搭載する例を示す。
 また、図25Aは、本発明の一態様の蓄電装置を用いた電動自転車の一例である。図25Aに示す電動自転車8700に、本発明の一態様の蓄電装置を適用することができる。本発明の一態様の蓄電装置は例えば、複数の蓄電池と、保護回路と、を有する。
 電動自転車8700は、蓄電装置8702を備える。蓄電装置8702は、運転者をアシストするモータに電気を供給することができる。また、蓄電装置8702は、持ち運びができ、図25Bに自転車から取り外した状態を示している。また、蓄電装置8702は、本発明の一態様の蓄電装置が有する蓄電池8701が複数内蔵されており、そのバッテリ残量などを表示部8703で表示できるようにしている。また蓄電装置8702は、実施の形態5に一例を示した二次電池の充電制御または異常検知が可能な制御回路8704を有する。制御回路8704は、蓄電池8701の正極及び負極と電気的に接続されている。また、制御回路8704に図21A及び図21Bで示した小型の固体二次電池を設けてもよい。図21A及び図21Bで示した小型の固体二次電池を制御回路8704に設けることで制御回路8704の有するメモリ回路のデータを長時間保持することに電力を供給することもできる。また、前述の実施の形態で得られる正極活物質100を正極に用いた二次電池と組み合わせることで安全性についての相乗効果が得られる。前述の実施の形態で得られる正極活物質100を正極に用いた二次電池及び制御回路8704は、二次電池による火災等の事故撲滅に大きく寄与することができる。
 また、図25Cは、本発明の一態様の蓄電装置を用いた二輪車の一例である。図25Cに示すスクータ8600は、蓄電装置8602、サイドミラー8601、方向指示灯8603を備える。蓄電装置8602は、方向指示灯8603に電気を供給することができる。また、前述の実施の形態で得られる正極活物質100を正極に用いた二次電池を複数収納された蓄電装置8602は高容量とすることができ、小型化に寄与することができる。
 また、図25Cに示すスクータ8600は、座席下収納8604に、蓄電装置8602を収納することができる。蓄電装置8602は、座席下収納8604が小型であっても、座席下収納8604に収納することができる。
 本実施の形態の内容は、他の実施の形態内容と適宜組み合わせることができる。
(実施の形態8)
 本実施の形態では、本発明の一態様である二次電池を電子機器に実装する例について説明する。二次電池を実装する電子機器として、例えば、テレビジョン装置(テレビ、又はテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。携帯情報端末としてはノート型パーソナルコンピュータ、タブレット型端末、電子書籍端末、携帯電話機などがある。
 図26Aは、携帯電話機の一例を示している。携帯電話機2100は、筐体2101に組み込まれた表示部2102の他、操作ボタン2103、外部接続ポート2104、スピーカ2105、マイク2106などを備えている。なお、携帯電話機2100は、二次電池2107を有している。前述の実施の形態で説明した正極活物質100を正極に用いた二次電池2107を備えることで高容量とすることができ、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
 携帯電話機2100は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。
 操作ボタン2103は、時刻設定のほか、電源のオン、オフ動作、無線通信のオン、オフ動作、マナーモードの実行及び解除、省電力モードの実行及び解除など、様々な機能を持たせることができる。例えば、携帯電話機2100に組み込まれたオペレーティングシステムにより、操作ボタン2103の機能を自由に設定することもできる。
 また、携帯電話機2100は、通信規格された近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。
 また、携帯電話機2100は外部接続ポート2104を備え、他の情報端末とコネクタを介して直接データのやりとりを行うことができる。また外部接続ポート2104を介して充電を行うこともできる。なお、充電動作は外部接続ポート2104を介さずに無線給電により行ってもよい。
 携帯電話機2100はセンサを有することが好ましい。センサとして例えば、指紋センサ、脈拍センサ、体温センサ等の人体センサ、タッチセンサ、加圧センサ、加速度センサ、等が搭載されることが好ましい。
 図26Bは複数のローター2302を有する無人航空機2300である。無人航空機2300はドローンと呼ばれることもある。無人航空機2300は、本発明の一態様である二次電池2301と、カメラ2303と、アンテナ(図示しない)を有する。無人航空機2300はアンテナを介して遠隔操作することができる。前述の実施の形態で得られる正極活物質100を正極に用いた二次電池は高エネルギー密度であり、安全性が高いため、長期間に渡って長時間の安全な使用ができ、無人航空機2300に搭載する二次電池として好適である。
 図26Cは、ロボットの一例を示している。図26Cに示すロボット6400は、二次電池6409、照度センサ6401、マイクロフォン6402、上部カメラ6403、スピーカ6404、表示部6405、下部カメラ6406および障害物センサ6407、移動機構6408、演算装置等を備える。
 マイクロフォン6402は、使用者の話し声及び環境音等を検知する機能を有する。また、スピーカ6404は、音声を発する機能を有する。ロボット6400は、マイクロフォン6402およびスピーカ6404を用いて、使用者とコミュニケーションをとることが可能である。
 表示部6405は、種々の情報の表示を行う機能を有する。ロボット6400は、使用者の望みの情報を表示部6405に表示することが可能である。表示部6405は、タッチパネルを搭載していてもよい。また、表示部6405は取り外しのできる情報端末であっても良く、ロボット6400の定位置に設置することで、充電およびデータの受け渡しを可能とする。
 上部カメラ6403および下部カメラ6406は、ロボット6400の周囲を撮像する機能を有する。また、障害物センサ6407は、移動機構6408を用いてロボット6400が前進する際の進行方向における障害物の有無を察知することができる。ロボット6400は、上部カメラ6403、下部カメラ6406および障害物センサ6407を用いて、周囲の環境を認識し、安全に移動することが可能である。
 ロボット6400は、その内部領域に本発明の一態様に係る二次電池6409と、半導体装置または電子部品を備える。前述の実施の形態で得られる正極活物質100を正極に用いた二次電池は高エネルギー密度であり、安全性が高いため、長期間に渡って長時間の安全な使用ができ、ロボット6400に搭載する二次電池6409として好適である。
 図26Dは、掃除ロボットの一例を示している。掃除ロボット6300は、筐体6301上面に配置された表示部6302、側面に配置された複数のカメラ6303、ブラシ6304、操作ボタン6305、二次電池6306、各種センサなどを有する。図示されていないが、掃除ロボット6300には、タイヤ、吸い込み口等が備えられている。掃除ロボット6300は自走し、ゴミ6310を検知し、下面に設けられた吸い込み口からゴミを吸引することができる。
 例えば、掃除ロボット6300は、カメラ6303が撮影した画像を解析し、壁、家具または段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシ6304に絡まりそうな物体を検知した場合は、ブラシ6304の回転を止めることができる。掃除ロボット6300は、その内部領域に本発明の一態様に係る二次電池6306と、半導体装置または電子部品を備える。前述の実施の形態で得られる正極活物質100を正極に用いた二次電池は高エネルギー密度であり、安全性が高いため、長期間に渡って長時間の安全な使用ができ、掃除ロボット6300に搭載する二次電池6306として好適である。
 図27Aは、ウェアラブルデバイスの例を示している。ウェアラブルデバイスは、電源として二次電池を用いる。また、使用者が生活または屋外で使用する場合において、防沫性能、耐水性能または防塵性能を高めるため、接続するコネクタ部分が露出している有線による充電だけでなく、無線充電も行えるウェアラブルデバイスが望まれている。
 例えば、図27Aに示すような眼鏡型デバイス4000に本発明の一態様である二次電池を搭載することができる。眼鏡型デバイス4000は、フレーム4000aと、表示部4000bを有する。湾曲を有するフレーム4000aのテンプル部に二次電池を搭載することで、軽量であり、且つ、重量バランスがよく継続使用時間の長い眼鏡型デバイス4000とすることができる。前述の実施の形態で得られる正極活物質100を正極に用いた二次電池は高エネルギー密度であり、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
 また、ヘッドセット型デバイス4001に本発明の一態様である二次電池を搭載することができる。ヘッドセット型デバイス4001は、少なくともマイク部4001aと、フレキシブルパイプ4001bと、イヤフォン部4001cを有する。フレキシブルパイプ4001b内またはイヤフォン部4001c内に二次電池を設けることができる。前述の実施の形態で得られる正極活物質100を正極に用いた二次電池は高エネルギー密度であり、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
 また、身体に直接取り付け可能なデバイス4002に本発明の一態様である二次電池を搭載することができる。デバイス4002の薄型の筐体4002aの中に、二次電池4002bを設けることができる。前述の実施の形態で得られる正極活物質100を正極に用いた二次電池は高エネルギー密度であり、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
 また、衣服に取り付け可能なデバイス4003に本発明の一態様である二次電池を搭載することができる。デバイス4003の薄型の筐体4003aの中に、二次電池4003bを設けることができる。前述の実施の形態で得られる正極活物質100を正極に用いた二次電池は高エネルギー密度であり、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
 また、ベルト型デバイス4006に本発明の一態様である二次電池を搭載することができる。ベルト型デバイス4006は、ベルト部4006aおよびワイヤレス給電受電部4006bを有し、ベルト部4006aの内部領域に、二次電池を搭載することができる。前述の実施の形態で得られる正極活物質100を正極に用いた二次電池は高エネルギー密度であり、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
 また、腕時計型デバイス4005に本発明の一態様である二次電池を搭載することができる。腕時計型デバイス4005は表示部4005aおよびベルト部4005bを有し、表示部4005aまたはベルト部4005bに、二次電池を設けることができる。前述の実施の形態で得られる正極活物質100を正極に用いた二次電池は高エネルギー密度であり、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
 表示部4005aには、時刻だけでなく、メールおよび電話の着信等、様々な情報を表示することができる。
 また、腕時計型デバイス4005は、腕に直接巻きつけるタイプのウェアラブルデバイスであるため、使用者の脈拍、血圧等を測定するセンサを搭載してもよい。使用者の運動量および健康に関するデータを蓄積し、健康を管理することができる。
 図27Bに腕から取り外した腕時計型デバイス4005の斜視図を示す。
 また、側面図を図27Cに示す。図27Cには、内部領域に二次電池913を内蔵している様子を示している。二次電池913は実施の形態3に示した二次電池である。二次電池913は表示部4005aと重なる位置に設けられており、高密度、且つ、高容量とすることができ、小型、且つ、軽量である。
 腕時計型デバイス4005においては、小型、且つ、軽量であることが求められるため、前述の実施の形態で得られる正極活物質100を二次電池913の正極に用いることで、高エネルギー密度、且つ、小型の二次電池913とすることができる。
 図27Dはワイヤレスイヤホンの例を示している。ここでは一対の本体4100aおよび本体4100bを有するワイヤレスイヤホンを図示するが、必ずしも一対でなくてもよい。
 本体4100aおよび4100bは、ドライバユニット4101、アンテナ4102、二次電池4103を有する。表示部4104を有していてもよい。また無線用IC等の回路が載った基板、充電用端子等を有することが好ましい。またマイクを有していてもよい。
 ケース4110は、二次電池4111を有する。また無線用IC、充電制御IC等の回路が載った基板、充電用端子を有することが好ましい。また表示部、ボタン等を有していてもよい。
 本体4100aおよび4100bは、スマートフォン等の他の電子機器と無線で通信することができる。これにより他の電子機器から送られた音データ等を本体4100aおよび4100bで再生することができる。また本体4100aおよび4100bがマイクを有すれば、マイクで取得した音を他の電子機器に送り、該電子機器により処理をした後の音データ再び本体4100aおよび4100bに送って再生することができる。これにより、たとえば翻訳機として用いることもできる。
 またケース4110が有する二次電池4111から、本体4100aが有する二次電池4103に充電を行うことができる。二次電池4111および二次電池4103としては先の実施の形態のコイン型二次電池、円筒形二次電池等を用いることができる。前述の実施の形態で得られる正極活物質100を正極に用いた二次電池は高エネルギー密度であり、二次電池4103および二次電池4111に用いることで、ワイヤレスイヤホンの小型化に伴う省スペース化に対応できる構成を実現することができる。
 本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
1:電極、2:集電体、3:活物質層、4:空隙、5:活物質、6:クラック、7:スリップ、10:装置、20:振動処理部、21:ロール、22:支持体、23:振動子、30:プレス部、31:上部ロール、32:上部支持体、33:下部ロール、34:下部支持体、35:振動子、35a 振動子、35b 振動子、36:発振器、37:加熱部、38:歯車

Claims (6)

  1.  二次電池の電極の作製方法であって、
     前記電極に振動を与える、振動処理工程と、
     前記電極に加圧し、前記電極が有する活物質層を圧縮するプレス工程と、を有し、
     前記振動処理工程は、前記プレス工程の前に行われる、
     二次電池の電極の作製方法。
  2.  二次電池の電極の作製方法であって、
     前記電極に第1の振動を与える、振動処理工程と、
     前記電極に加圧し、前記電極が有する活物質層を圧縮するプレス工程と、を有し、
     前記加圧と同時に、前記電極に第2の振動を与え、
     前記振動処理工程は前記プレス工程の前に行われる、
     二次電池の電極の作製方法。
  3.  二次電池の電極の作製方法であって、
     前記電極に振動を与え温度調整を行う、振動処理工程と、
     前記電極に加圧し、前記電極が有する活物質層を圧縮するプレス工程と、を有し、
     前記振動処理工程は前記プレス工程の前に行われる、
     二次電池の電極の作製方法。
  4.  二次電池の電極の作製方法であって、
     前記電極に第1の振動を与え温度調整を行う、振動処理工程と、
     前記電極に加圧し、前記電極が有する活物質層を圧縮するプレス工程と、を有し、
     前記加圧と同時に、前記電極に第2の振動を与え、
     前記振動処理工程は前記プレス工程の前に行われる、
     二次電池の電極の作製方法。
  5.  請求項3又は請求項4において、前記温度調整は、80℃以上150℃以下の温度で調整される、
     二次電池の電極の作製方法。
  6.  請求項1乃至請求項5において、前記電極は、正極及び負極のいずれか一方または双方である、
     二次電池の電極の作製方法。
PCT/IB2022/050797 2021-02-12 2022-01-31 電極の作製方法 WO2022172118A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280012657.2A CN116830283A (zh) 2021-02-12 2022-01-31 电极的制造方法
KR1020237028885A KR20230145368A (ko) 2021-02-12 2022-01-31 전극의 제작 방법
JP2022581028A JPWO2022172118A1 (ja) 2021-02-12 2022-01-31
US18/264,264 US20240097099A1 (en) 2021-02-12 2022-01-31 Electrode manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-020670 2021-02-12
JP2021020670 2021-02-12

Publications (1)

Publication Number Publication Date
WO2022172118A1 true WO2022172118A1 (ja) 2022-08-18

Family

ID=82837502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/050797 WO2022172118A1 (ja) 2021-02-12 2022-01-31 電極の作製方法

Country Status (5)

Country Link
US (1) US20240097099A1 (ja)
JP (1) JPWO2022172118A1 (ja)
KR (1) KR20230145368A (ja)
CN (1) CN116830283A (ja)
WO (1) WO2022172118A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123668A (en) * 1980-03-04 1981-09-28 Matsushita Electric Ind Co Ltd Manufacture of electrode plate for alkaline battery
JP4219705B2 (ja) * 2003-02-17 2009-02-04 パナソニック株式会社 二次電池用電極の製造法
JP2010027673A (ja) * 2008-07-15 2010-02-04 Nihon Micro Coating Co Ltd シート電極の製造方法及び製造装置
JP2012064432A (ja) * 2010-09-16 2012-03-29 Toyota Motor Corp 粉体層の製造方法、電極体の製造方法、及び、固体電池の製造方法
CN211125857U (zh) * 2019-11-07 2020-07-28 深圳市赢合科技股份有限公司 一种固态电池电极膜成形装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210103470A (ko) 2018-12-17 2021-08-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질 및 이차 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123668A (en) * 1980-03-04 1981-09-28 Matsushita Electric Ind Co Ltd Manufacture of electrode plate for alkaline battery
JP4219705B2 (ja) * 2003-02-17 2009-02-04 パナソニック株式会社 二次電池用電極の製造法
JP2010027673A (ja) * 2008-07-15 2010-02-04 Nihon Micro Coating Co Ltd シート電極の製造方法及び製造装置
JP2012064432A (ja) * 2010-09-16 2012-03-29 Toyota Motor Corp 粉体層の製造方法、電極体の製造方法、及び、固体電池の製造方法
CN211125857U (zh) * 2019-11-07 2020-07-28 深圳市赢合科技股份有限公司 一种固态电池电极膜成形装置

Also Published As

Publication number Publication date
JPWO2022172118A1 (ja) 2022-08-18
US20240097099A1 (en) 2024-03-21
CN116830283A (zh) 2023-09-29
KR20230145368A (ko) 2023-10-17

Similar Documents

Publication Publication Date Title
CN113165908A (zh) 正极活性物质及二次电池
JP2022045353A (ja) 二次電池の作製方法、および二次電池
JP2022120836A (ja) 正極活物質の作製方法、二次電池および車両
WO2021260487A1 (ja) 二次電池、二次電池の作製方法、電子機器、及び車両
WO2022248968A1 (ja) 電池、電子機器、蓄電システムおよび移動体
WO2022029575A1 (ja) 電極、負極活物質、負極、二次電池、移動体および電子機器、負極活物質の作製方法、ならびに負極の作製方法
WO2021240298A1 (ja) 二次電池および車両
WO2022172118A1 (ja) 電極の作製方法
JP2022045263A (ja) 正極活物質、二次電池、二次電池の作製方法、電子機器、及び車両
WO2022195402A1 (ja) 蓄電装置管理システム及び電子機器
WO2022130099A1 (ja) 二次電池、電子機器、蓄電システムおよび車両
WO2022189889A1 (ja) 複合酸化物の作製方法、正極、リチウムイオン二次電池、電子機器、蓄電システム、及び移動体
WO2022167885A1 (ja) 正極活物質の製造方法、二次電池および車両
WO2022243782A1 (ja) 正極活物質の作製方法、正極、リチウムイオン二次電池、移動体、蓄電システム、及び電子機器
WO2022009019A1 (ja) 電極、二次電池、移動体および電子機器
WO2023047234A1 (ja) 複合酸化物の作製方法、及びリチウムイオン電池の作製方法
WO2022034414A1 (ja) 二次電池、電子機器、車両、及び正極活物質の作製方法
WO2021191733A1 (ja) 二次電池、電子機器、車両及び二次電池の作製方法
WO2022038454A1 (ja) 正極活物質の作製方法
WO2022013666A1 (ja) 電極、二次電池、移動体、電子機器、およびリチウムイオン二次電池用電極の作製方法
WO2021245562A1 (ja) 正極活物質、正極活物質層、二次電池、電子機器、及び車両
WO2023031729A1 (ja) 正極および正極の作製方法
WO2022123389A1 (ja) 正極、正極の作製方法、二次電池、電子機器、蓄電システムおよび車両
WO2024095112A1 (ja) 正極、二次電池、電子機器、蓄電システムおよび車両
WO2024052785A1 (ja) 電池、電子機器、及び車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581028

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280012657.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18264264

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237028885

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22752412

Country of ref document: EP

Kind code of ref document: A1