KR20230145368A - 전극의 제작 방법 - Google Patents

전극의 제작 방법 Download PDF

Info

Publication number
KR20230145368A
KR20230145368A KR1020237028885A KR20237028885A KR20230145368A KR 20230145368 A KR20230145368 A KR 20230145368A KR 1020237028885 A KR1020237028885 A KR 1020237028885A KR 20237028885 A KR20237028885 A KR 20237028885A KR 20230145368 A KR20230145368 A KR 20230145368A
Authority
KR
South Korea
Prior art keywords
active material
positive electrode
secondary battery
additionally
electrode active
Prior art date
Application number
KR1020237028885A
Other languages
English (en)
Inventor
슌페이 야마자키
šœ페이 야마자키
데츠야 가케하타
Original Assignee
가부시키가이샤 한도오따이 에네루기 켄큐쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 한도오따이 에네루기 켄큐쇼 filed Critical 가부시키가이샤 한도오따이 에네루기 켄큐쇼
Publication of KR20230145368A publication Critical patent/KR20230145368A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명의 일 형태는 이차 전지의 고용량 밀도화가 가능한 제작 방법을 실현하는 것을 과제로 한다. 또한 안전성 또는 신뢰성이 높은 이차 전지의 제작 방법을 제공하는 것을 과제로 한다. 이차 전지의 전극(양극, 음극)의 제작 방법으로서, 전극에 진동을 가하는 진동 처리 공정과, 전극에 가압하여 전극이 가지는 활물질층을 압축하는 프레스 공정을 가지고, 진동 처리 공정은 상기 프레스 공정 전에 수행되는 이차 전지의 전극의 제작 방법이다.

Description

전극의 제작 방법
이차 전지 및 그 제작 방법에 관한 것이다. 전극의 제작 방법 및 전극의 제작 장치에 관한 것이다. 또는 이차 전지를 가지는 휴대 정보 단말기, 차량 등에 관한 것이다.
본 발명의 일 형태는 물건, 방법, 또는 제조 방법에 관한 것이다. 또는 본 발명은 공정(process), 기계(machine), 제품(manufacture), 또는 조성물(composition of matter)에 관한 것이다. 본 발명의 일 형태는 반도체 장치, 표시 장치, 발광 장치, 축전 장치, 조명 장치, 전자 기기, 또는 이들의 제조 방법에 관한 것이다.
또한 본 명세서에서 전자 기기란, 축전 장치를 가지는 장치 전반을 가리키며, 축전 장치를 가지는 전기 광학 장치, 축전 장치를 가지는 정보 단말 장치 등은 모두 전자 기기이다.
또한 본 명세서에서 축전 장치란, 축전 기능을 가지는 소자 및 장치 전반을 가리키는 것이다. 예를 들어 리튬 이온 이차 전지 등의 축전 장치(이차 전지라고도 함), 리튬 이온 커패시터, 및 전기 이중층 커패시터 등이 포함된다.
근년, 리튬 이온 이차 전지, 리튬 이온 커패시터, 공기 전지 등 다양한 축전 장치의 개발이 활발히 진행되고 있다. 특히 고출력이고 에너지 밀도가 높은 리튬 이온 이차 전지는 휴대 전화기, 스마트폰, 또는 노트북형 컴퓨터 등의 휴대 정보 단말기, 휴대 음악 플레이어, 디지털 카메라, 의료 기기, 또는 하이브리드 자동차(HV), 전기 자동차(EV), 또는 플러그인 하이브리드 자동차(PHV) 등의 차세대 클린 에너지 자동차 등, 반도체 산업의 발전과 함께 그 수요가 급속하게 확대되어, 충전을 반복적으로 수행할 수 있는 에너지 공급원으로서 현대의 정보화 사회에 불가결한 것이 되었다.
리튬 이온 이차 전지는 코발트산 리튬(LiCoO2), 니켈-코발트-망가니즈산 리튬(LiNi1-x-yCoxMnyO2), 또는 인산 철 리튬(LiFePO4) 등의 양극 활물질을 포함하는 양극과, 리튬의 흡장방출이 가능한 흑연 등의 탄소 재료 등의 음극 활물질을 포함하는 음극과, 에틸렌 카보네이트(EC) 또는 다이에틸카보네이트(DEC) 등의 유기 용매 등을 포함하는 전해질로 구성된다.
또한 리튬 이온 이차 전지에는 고용량 밀도, 고성능화, 및 다양한 동작 환경에서의 안전성 등이 요구되고 있다.
특허문헌 1에는 이차 전지의 고용량 밀도화를 도모할 수 있는 전극의 제작 방법이 개시(開示)되어 있다.
국제공개공보 WO2020/128699호 팸플릿
이차 전지의 고용량 밀도화가 가능한 제작 방법을 실현하는 것을 과제로 한다. 또한 안전성 또는 신뢰성이 높은 이차 전지의 제작 방법을 제공하는 것도 과제로 한다.
리튬 이온 이차 전지용 전극(양극, 음극)은 입자상의 활물질을 가지는 슬러리를 집전체라고 불리는 금속박 위에 코팅하고 건조시킴으로써 제작된다. 이러한 식으로 제작된 전극은 집전체 위에 활물질층을 가진다. 활물질층은 활물질과 공극을 가지는데, 이차 전지의 고용량 밀도화를 달성하기 위해서는 공극을 가능한 한 적게 할 필요가 있다. 공극이 적은 전극을 사용함으로써, 같은 체적의 이차 전지이어도 보다 큰 전지 용량을 얻을 수 있어, 체적당 용량 밀도를 향상시킬 수 있다. 또한 공극이 적은 활물질층을 가지는 전극을 고밀도 전극, 고밀도화된 전극, 또는 막 밀도가 높은 전극이라고 부르는 경우가 있다.
고밀도 전극을 제작하기 위하여 롤 프레스 등에 의하여 활물질층을 압축하는 공정이 자주 사용된다. 종래의 방법에서는 활물질층을 가지는 전극에 대하여 일정한 하중을 한 방향으로 가하여 압축하는 방법이 사용되고, 이 방법으로는 충분히 고밀도화된 전극을 얻기가 어려웠다. 또한 충분히 고밀도화된 전극이 얻어진 경우에도 활물질에 크랙, 슬립 등의 결함이 발생하는 것을 피할 수 없었다. 활물질에 발생한 결함은 고전압 충전 시의 활물질로부터의 전이 금속의 용출 및 전해액의 분해, 그리고 고온에서의 활물질의 안정성 저하 등으로 이어지기 때문에, 안전성 또는 신뢰성의 면에서 문제가 발생할 가능성이 높다.
또한 이들 과제의 기재는 다른 과제의 존재를 방해하는 것은 아니다. 또한 본 발명의 일 형태는 이들 과제 모두를 해결할 필요는 없는 것으로 한다. 또한 명세서, 도면, 청구항의 기재에서 이들 외의 과제가 추출될 수 있다.
본 명세서에 개시되는 발명 중 하나는 양극 및 음극 중 어느 한쪽 또는 양쪽에 사용하는 프레스 방법으로서, 충분히 고밀도화된 전극에서 활물질에 발생하는 결함을 저감할 수 있는, 초음파 등의 진동을 부여하는 기구 또는 전(前)공정을 가지는 프레스 방법이다.
또한 본 명세서에 개시되는 발명 중 하나는 양극 및 음극 중 어느 한쪽 또는 양쪽에 사용하는 전극의 제작 방법으로서, 충분히 고밀도화된 전극에서 활물질에 발생하는 결함을 저감할 수 있는, 초음파 등의 진동을 부여하는 기구 또는 전공정을 가지는 프레스 방법을 사용하는 전극의 제작 방법이다.
또한 본 명세서에 개시되는 발명 중 하나는 활물질의 결함이 적은 고밀도 전극 및 활물질의 결함이 적은 고밀도 전극 이차 전지, 그리고 그 제작 방법이다. 활물질의 결함이 적은 고밀도 전극에 의하여, 고용량 밀도, 고성능화, 및 다양한 동작 환경에서의 안전성을 만족시키는 우수한 이차 전지를 실현할 수 있다.
본 발명의 일 형태는 이차 전지의 전극의 제작 방법으로서, 전극에 진동을 가하는 진동 처리 공정과, 전극에 가압하여 전극이 가지는 활물질층을 압축하는 프레스 공정을 가지고, 진동 처리 공정은 프레스 공정 전에 수행되는 이차 전지의 전극의 제작 방법이다.
또한 본 발명의 일 형태는 이차 전지의 전극의 제작 방법으로서, 전극에 제 1 진동을 가하는 진동 처리 공정과, 전극에 가압하여 전극이 가지는 활물질층을 압축하는 프레스 공정을 가지고, 가압과 동시에 전극에 제 2 진동을 가하고, 진동 처리 공정은 프레스 공정 전에 수행되는 이차 전지의 전극의 제작 방법이다.
또한 본 발명의 일 형태는 이차 전지의 전극의 제작 방법으로서, 전극에 진동을 가하고 온도 조정을 수행하는 진동 처리 공정과, 전극에 가압하여 전극이 가지는 활물질층을 압축하는 프레스 공정을 가지고, 진동 처리 공정은 프레스 공정 전에 수행되는 이차 전지의 전극의 제작 방법이다.
또한 본 발명의 일 형태는 이차 전지의 전극의 제작 방법으로서, 전극에 제 1 진동을 가하고 온도 조정을 수행하는 진동 처리 공정과, 전극에 가압하여 전극이 가지는 활물질층을 압축하는 프레스 공정을 가지고, 가압과 동시에 전극에 제 2 진동을 가하고, 진동 처리 공정은 프레스 공정 전에 수행되는 이차 전지의 전극의 제작 방법이다.
상기 중 어느 하나에 기재된 전극의 제작 방법에 있어서, 전극은 양극 및 음극 중 어느 한쪽 또는 양쪽이어도 좋다.
상기 중 어느 하나에 기재된 전극의 제작 방법에 있어서, 진동 처리 공정 및/또는 프레스 공정에서의 온도 조정은 전극이 80℃ 이상 150℃ 이하의 온도가 되도록 수행되는 것이 바람직하다.
이차 전지의 고용량 밀도화가 가능한 제작 방법을 실현할 수 있다. 또한 안전성 또는 신뢰성이 높은 이차 전지의 제작 방법을 제공할 수 있다. 또는 충분히 고밀도화된 전극에서 활물질에 발생하는 결함을 저감할 수 있는 제작 방법을 실현할 수 있다. 활물질의 결함이 적은 고밀도 전극에 의하여, 고용량 밀도, 고성능화, 및 다양한 동작 환경에서의 안전성을 만족시키는 우수한 이차 전지를 실현할 수 있다.
도 1은 본 발명의 일 형태를 나타내는 전극의 제작 장치의 일례를 나타낸 것이다.
도 2의 (A) 및 (B)는 본 발명의 일 형태의 전극의 제작 방법의 효과를 나타내는 전극 단면 모식도의 일례를 나타낸 것이다. 또한 도 2의 (C)는 본 발명의 일 형태의 전극의 단면의 일례를 나타낸 것이다.
도 3의 (A) 및 (B)는 본 발명의 일 형태를 나타내는 전극의 제작 장치의 일례를 나타낸 것이다.
도 4는 본 발명의 일 형태를 나타내는 전극의 제작 장치의 일례를 나타낸 것이다.
도 5의 (A)는 본 발명의 일 형태의 양극 활물질의 상면도이고, 도 5의 (B) 및 (C)는 본 발명의 일 형태의 양극 활물질의 단면도이다.
도 6은 본 발명의 일 형태의 양극 활물질의 결정 구조를 설명하는 도면이다.
도 7은 결정 구조로부터 계산되는 XRD 패턴이다.
도 8은 비교예의 양극 활물질의 결정 구조를 설명하는 도면이다.
도 9는 결정 구조로부터 계산되는 XRD 패턴이다.
도 10은 양극 활물질 입자의 단면 모식도이다.
도 11의 (A)는 프레스 후의 입자의 STEM 사진이고, 도 11의 (B) 및 (C)는 단면 모식도이다.
도 12의 (A)는 코인형 이차 전지의 분해 사시도이고, 도 12의 (B)는 코인형 이차 전지의 사시도이고, 도 12의 (C)는 그 단면 사시도이다.
도 13의 (A)는 원통형 이차 전지의 예를 나타낸 것이다. 도 13의 (B)는 원통형 이차 전지의 예를 나타낸 것이다. 도 13의 (C)는 복수의 원통형 이차 전지의 예를 나타낸 것이다. 도 13의 (D)는 복수의 원통형 이차 전지를 가지는 축전 시스템의 예를 나타낸 것이다.
도 14의 (A) 및 (B)는 이차 전지의 예를 설명하는 도면이고, 도 14의 (C)는 이차 전지의 내부의 상태를 나타낸 도면이다.
도 15의 (A) 내지 (C)는 이차 전지의 예를 설명하는 도면이다.
도 16의 (A) 및 (B)는 이차 전지의 외관을 나타낸 도면이다.
도 17의 (A) 내지 (C)는 이차 전지의 제작 방법을 설명하는 도면이다.
도 18의 (A) 내지 (C)는 전지 팩의 구성예를 나타낸 도면이다.
도 19의 (A) 및 (B)는 이차 전지의 예를 설명하는 도면이다.
도 20의 (A) 내지 (C)는 이차 전지의 예를 설명하는 도면이다.
도 21의 (A) 및 (B)는 이차 전지의 예를 설명하는 도면이다.
도 22의 (A)는 본 발명의 일 형태를 나타내는 전지 팩의 사시도이고, 도 22의 (B)는 전지 팩의 블록도이고, 도 22의 (C)는 모터를 가지는 차량의 블록도이다.
도 23의 (A) 내지 (D)는 수송용 차량의 일례를 설명하는 도면이다.
도 24의 (A) 및 (B)는 본 발명의 일 형태에 따른 축전 장치를 설명하는 도면이다.
도 25의 (A)는 전동 자전거를 나타낸 도면이고, 도 25의 (B)는 전동 자전거의 이차 전지를 나타낸 도면이고, 도 25의 (C)는 전동 오토바이를 설명하는 도면이다.
도 26의 (A) 내지 (D)는 전자 기기의 일례를 설명하는 도면이다.
도 27의 (A)는 웨어러블 디바이스의 예를 나타낸 것이고, 도 27의 (B)는 손목시계형 디바이스의 사시도를 나타낸 것이고, 도 27의 (C)는 손목시계형 디바이스의 측면을 설명하는 도면이다. 도 27의 (D)는 와이어리스 이어폰의 예를 설명하는 도면이다.
이하에서 본 발명의 실시형태에 대하여 도면을 사용하여 자세히 설명한다. 다만 본 발명은 이하의 설명에 한정되지 않고 그 형태 및 자세한 사항을 다양하게 변경할 수 있다는 것은 통상의 기술자라면 용이하게 이해된다. 또한 본 발명은 이하에 기재된 실시형태의 기재 내용에 한정하여 해석되는 것은 아니다.
본 명세서 등에서 "복합 산화물"이란, 복수 종류의 금속 원자를 구조 중에 포함하는 산화물을 가리키는 것으로 한다.
또한 본 명세서 등에서 결정면 및 방향은 밀러 지수(Miller index)로 나타낸다. 결정면 및 방향을 표기할 때, 결정학에서는 숫자 위에 바를 부기하지만, 본 명세서 등에서는 출원 표기의 제약상 숫자 위에 바를 부기하는 대신 숫자 앞에 -(마이너스 기호)를 부기하여 표현하는 경우가 있다. 또한 결정 내의 방향을 나타내는 개별 방위는 []로, 등가인 방향 모두를 나타내는 집합 방위는 <>로, 결정면을 나타내는 개별 면은 ()로, 등가인 대칭성을 가지는 집합 면은 {}로 각각 표현한다. 또한 R-3m을 비롯한 삼방정 및 육방정의 밀러 지수에는 (hkl)뿐만 아니라 (hkil)을 사용하는 경우가 있다. 여기서 i는 -(h+k)이다.
또한 본 명세서 등에서 리튬과 전이 금속을 포함하는 복합 산화물이 가지는 층상 암염형의 결정 구조란, 양이온과 음이온이 번갈아 배열되는 암염형 이온 배열을 가지고, 전이 금속과 리튬이 규칙적으로 배열되어 2차원 평면을 형성하여 리튬을 2차원적으로 확산할 수 있는 결정 구조를 말한다. 또한 양이온 또는 음이온의 결손 등의 결함이 있어도 좋다. 또한 층상 암염형 결정 구조는, 엄밀하게 말하자면 암염형 결정의 격자가 변형된 구조인 경우가 있다.
또한 본 명세서 등에서 암염형의 결정 구조란, 양이온과 음이온이 번갈아 배열된 구조를 말한다. 또한 결정 구조의 일부에 양이온 또는 음이온의 결손이 있어도 좋다.
또한 본 명세서 등에서 양극 활물질의 이론 용량이란, 양극 활물질이 가지는 삽입·이탈 가능한 리튬이 모두 이탈되었을 때의 전기량을 말한다. 예를 들어 LiFePO4의 이론 용량은 170mAh/g이고, LiCoO2의 이론 용량은 274mAh/g이고, LiNiO2의 이론 용량은 275mAh/g이고, LiMn2O4의 이론 용량은 148mAh/g이다.
또한 삽입 이탈이 가능한 리튬이 양극 활물질 중에 어느 정도 남아 있는지를 조성식 중의 x, 예를 들어 LixCoO2 중의 x, 또는 LixM1O2 중의 x로 나타낸다. 본 명세서 중의 LixCoO2는 적절히 LixM1O2로 바꿔 읽을 수 있다. x는 점유율이라고 할 수 있고, 이차 전지 중의 양극 활물질의 경우, x=(이론 용량-충전 용량)/이론 용량으로 하여도 좋다. 예를 들어 LiCoO2를 양극 활물질에 사용한 이차 전지를 219.2mAh/g까지 충전한 경우, Li0.2CoO2 또는 x=0.2라고 할 수 있다. LixCoO2 중의 x가 작다는 것은 예를 들어 0.1<x≤0.24인 것을 말한다.
코발트산 리튬이 화학량론비를 대략 충족시키는 경우, LiCoO2이고 리튬 자리의 Li의 점유율은 x=1이다. 또한 방전이 종료한 상태의 이차 전지에서도 LiCoO2이고 x=1이라고 하여도 좋다. 여기서 방전이 종료한 상태란 예를 들어 100mA/g의 전류에서 전압이 2.5V(상대 전극 리튬) 이하가 된 상태를 말한다. 리튬 이온 이차 전지에서는, 리튬 자리에서의 리튬의 점유율이 x=1이 되고, 더 이상 리튬이 들어가지 않으면 전압이 급격하게 저하된다. 이때, 방전이 종료한 상태라고 할 수 있다. 일반적으로 LiCoO2를 사용한 리튬 이온 이차 전지에서는, 방전 전압이 2.5V가 되기 전에 방전 전압이 급격하게 강하하기 때문에, 상기 조건에서 방전이 종료한 것으로 한다.
또한 본 명세서 등에서, 양극 활물질에 삽입·이탈 가능한 리튬이 모두 삽입되어 있을 때의 충전 심도를 0으로 하고, 양극 활물질이 가지는 삽입·이탈 가능한 리튬이 모두 이탈되었을 때의 충전 심도를 1로 하는 경우가 있다.
(실시형태 1)
본 실시형태에서는 본 발명의 일 형태의 전극의 제작 방법에 대하여 설명한다.
본 발명의 일 형태의 전극의 제작 방법의 예에 대하여 도 1 내지 도 4를 사용하여 설명한다.
[제작 방법 1]
전극(양극, 음극)은 활물질층과 집전체를 가진다. 집전체의 한쪽 면에 활물질층이 제공된 전극을 편면(片面) 코팅 전극이라고 부르고, 집전체의 양쪽 면에 활물질층이 제공된 전극을 양면(兩面) 코팅 전극이라고 부른다. 본 발명의 일 형태의 전극의 제작 방법은 편면 코팅 전극 및 양면 코팅 전극의 모든 경우에 적용할 수 있는 제작 방법이다. 또한 활물질층은 활물질을 가지고, 도전재 및 바인더를 가져도 좋다. 양극이 가지는 활물질 등의 재료 및 음극이 가지는 활물질 등의 재료로서는 이하의 실시형태에 기재된 재료를 사용하는 것이 좋다.
전극의 제작 방법으로서 슬러리 제작 공정과, 코팅 공정과, 진동 처리 공정과, 프레스 공정을 가지는 것이 바람직하다. 진동 처리 공정 및 프레스 공정에는 도 1에 나타낸 장치(10)를 사용할 수 있다.
<슬러리 제작 공정>
슬러리 제작 공정에서는 활물질을 분산매에 분산시켜 슬러리를 제작한다. 예를 들어 바인더로서 PVDF(폴리플루오린화 바이닐리덴)를 사용하는 경우, 분산매로서 NMP(N-메틸-2-피롤리돈) 등을 사용할 수 있다. 필요에 따라 슬러리는 도전재 및 바인더를 가져도 좋다.
<코팅 공정>
코팅 공정에서는 슬러리를 집전체에 코팅한다. 슬러리의 코팅에는 슬롯 다이 방식, 그라비어법, 블레이드법, 및 이들을 조합한 방식 등을 사용할 수 있다. 코팅 후에 분산매를 휘발시킴으로써 코팅 전극(1)을 얻을 수 있다. 분산매의 휘발 공정(건조 공정이라고도 함)은 50℃ 이상 200℃ 이하, 바람직하게는 80℃ 이상 150℃ 이하의 온도 범위에서 수행하는 것이 좋다. 코팅 공정 후의 코팅 전극(1)의 일례를 도 2의 (A)에 나타내었다. 집전체(2) 위에 형성된, 활물질(5)을 가지는 활물질층(3)은 코팅 공정 직후에는 도 2의 (A)에 모식적으로 나타낸 전극(1a)과 같이 활물질층(3) 중에 공극(4)을 많이 가진다. 또한 도 2의 (A) 내지 (C)에서 활물질층(3)을 나타내는 윤곽선은 활물질층(3)의 막 밀도(활물질층의 단위 체적당 질량)를 계산할 때 활물질층(3)의 체적으로 간주할 수 있는 영역을 나타낸다.
<진동 처리 공정>
진동 처리 공정에서는 도 1에 나타낸 장치(10)의 진동 처리부(20)를 사용할 수 있다. 장치(10)는 전극 롤의 권출부(41)와 권취부(42)와, 진동 처리부(20)와, 프레스부(30)를 가진다. 전극(1)은 권출부(41)와 프레스부(30) 사이에서 진동 처리부(20)가 가지는 롤(21)의 표면을 따르도록 접한다. 전극(1)이 롤(21)의 표면을 따르도록 접함으로써, 후술하는 진동 및 열을 전극(1)에 전달하기 쉽게 할 수 있다. 진동 처리부(20)는 전극(1)과 접하는 롤(21)과, 지지체(22)를 가지고, 지지체(22)는 진동자(23)를 가진다. 진동자(23)는 발진기(25)와 전기적으로 접속되며 소정의 주파수로 진동하도록 발진기(25)에 의하여 제어된다. 진동은 롤(21)을 통하여 전극(1)에 전달된다. 진동에는 상하 진동(도 1 중의 Z방향) 및/또는 가로 진동(도 1 중의 X방향 및/또는 Y방향)이 있다. 상기 진동이 전극(1)에 가해짐으로써 활물질층(3) 중의 활물질(5)이 안정된 위치로 이동할 수 있으므로, 이어서 수행되는 프레스 공정에서 보다 낮은 프레스 압력으로 막 밀도를 높일 수 있다. 또한 롤(21)은 내부에 시즈 히터 등의 가열부를 가지고, 진동 처리 공정에서 전극(1)이 50℃ 이상 200℃ 이하, 바람직하게는 80℃ 이상 150℃ 이하의 온도가 되도록 롤(21)의 온도가 조정되는 것이 바람직하다. 롤(21)의 구조로서, 후술하는 도 3의 (B)와 같은 구조를 적용할 수 있다. 전극(1)을 상기 온도에서 가열하고, 또한 진동을 가함으로써, 활물질층(3) 중의 활물질(5)이 보다 안정된 위치로 이동할 수 있고, 또한 프레스 공정의 예비 가열로서의 효과를 얻을 수 있기 때문에 매우 바람직하다.
진동자로서 예를 들어 압전 세라믹 진동자를 사용할 수 있다. 압전 세라믹 진동자의 구조로서, 2개의 원환 형상의 전극부에 끼워진, 두께 방향으로 분극을 가지는 원환 기둥 형상의 압전 세라믹부를 가지는 랑주뱅형 구조를 적용할 수 있다. 압전 세라믹으로서 예를 들어 PZT(타이타늄산 지르콘산 연) 등의 압전성을 가지는 세라믹을 사용하는 것이 좋다.
<프레스 공정>
프레스 공정에서는 도 1에 나타낸 장치(10)의 프레스부(30)를 사용할 수 있다. 프레스부(30)는 상부 롤(31), 상부 지지체(32), 하부 롤(33), 및 하부 지지체(34)를 가진다. 상부 롤(31)은 내부에 시즈 히터 등의 가열부를 가지고, 프레스 공정에서 전극(1)이 50℃ 이상 200℃ 이하, 바람직하게는 80℃ 이상 150℃ 이하의 온도가 되도록 상부 롤(31)의 온도가 조정되는 것이 바람직하다. 상부 롤(31) 및 하부 롤(33)에 의하여 전극(1)은 가압되어, 전극(1)이 가지는 활물질층(3)의 두께가 작아진다. 즉 활물질층(3)이 가지는 공극(4)이 작아져, 활물질층(3)의 막 밀도(활물질층의 단위 체적당 질량)가 향상된다.
도 2의 (A)는 상술한 바와 같이 코팅 공정 직후의 전극(1a)의 상태를 모식적으로 나타낸 것이고, 활물질층(3)은 공극(4)을 많이 가진다. 이차 전지는 체적당 용량이 높은 것이 바람직하기 때문에 활물질층(3) 중의 공극(4)이 가능한 한 작은 것(막 밀도가 높은 것)이 바람직하다. 그러므로 종래에는 매우 강한 힘으로 전극(1)을 가압하여 활물질층(3)의 막 밀도를 높이고 있었다. 다만 매우 강한 힘으로 전극(1)을 가압한 경우, 도 2의 (B)에 모식적으로 나타낸 전극(1b)과 같이, 활물질(5)이 가압에 견딜 수 없어 크랙(6) 및 슬립(7) 등의 결함이 발생된다는 과제가 있었다. 한편 본 발명의 일 형태의 전극의 제작 방법에서는 진동 처리 공정을 가짐으로써, 종래보다 작은 힘으로 전극(1)을 가압한 경우에도 높은 막 밀도를 가지는 활물질층(3)을 얻을 수 있다. 이 경우 도 2의 (C)에 모식적으로 나타낸 전극(1c)과 같이, 크랙(6) 및 슬립(7) 등의 결함의 발생이 대폭으로 저감되며, 막 밀도가 높은 활물질층(3)을 얻을 수 있다.
[제작 방법 2]
또한 본 발명의 다른 일 형태로서, 도 3의 (A)에 나타낸 장치(11)를 사용하여 제작 방법 1에서 설명한 진동 처리 공정과 프레스 공정을 통합적으로 처리하여도 좋다. 진동 처리 공정과 프레스 공정을 통합적으로 처리하는 방법을 진동 프레스 처리라고 부를 수 있다. 또한 도 3의 (A)에 나타낸 상부 롤(31)은 도 1의 상부 롤(31)과 마찬가지로 내부에 시즈 히터 등의 가열부(37)를 가지고, 진동 처리 공정에서 전극(1)이 50℃ 이상 200℃ 이하, 바람직하게는 80℃ 이상 150℃ 이하의 온도가 되도록 상부 롤(31)의 온도가 조정되는 것이 바람직하다. 롤이 가지는 가열부(37)의 일례를 도 3의 (B)에 나타내었다. 도 3의 (B)는 도 3의 (A)의 진동 프레스부의 상부를 도면 중 X방향(전극(1)의 이동 방향)에서 본 모식도이다. 도 3의 (B)에 나타낸 상부 지지체(32)는 상부 롤(31)의 축을 2개의 유지부(32b)로 유지하고, 상부 지지체(32)의 본체부(32a)와 유지부(32b) 사이에 진동자(35)(35a, 35b)를 가진다. 진동자(35)는 발진기(36)와 접속된다. 상부 롤(31)은 톱니바퀴(38)를 가지며, 도시되지 않은 다른 톱니바퀴로부터 회전 동력을 받는다. 상부 롤(31)은 중심축 부근에 가열부(37)를 가질 수 있다. 또한 진동자(35a)와 진동자(35b)는 각각 다른 발진기에 접속되어도 좋지만 진동자(35a)와 진동자(35b)가 발하는 진동은 진폭, 진동수, 위상이 일치하는 것이 바람직하다.
[제작 방법 3]
또한 본 발명의 다른 일 형태로서, 제작 방법 1에서 설명한 진동 처리 공정과, 제작 방법 2에서 설명한 진동 프레스 처리를 조합한 도 4에 나타낸 장치(12)를 사용할 수 있다. 도 4에 나타낸 롤(21) 및 상부 롤(31)이 가지는 구조로서, 상술한 도 3의 (B)와 같은 구조를 사용할 수 있다.
본 실시형태는 다른 실시형태와 적절히 조합하여 사용할 수 있다.
(실시형태 2)
본 실시형태에서는 본 발명의 일 형태의 이차 전지의 예에 대하여 설명한다. 양극 및 음극 중 어느 한쪽 또는 양쪽은 실시형태 1에서 설명한 제작 방법으로 제작되는 것이 바람직하다.
<이차 전지의 구성예>
이하에서는 양극, 음극, 및 전해액이 외장체에 감싸여 있는 이차 전지를 예로 들어 설명한다.
[양극]
양극은 양극 활물질층 및 양극 집전체를 가진다. 양극 활물질층은 양극 활물질을 가지고, 후술하는 도전재 및 바인더를 가져도 좋다.
[음극]
음극은 음극 활물질층 및 음극 집전체를 가진다. 음극 활물질층은 음극 활물질을 가지고, 후술하는 도전재 및 상술한 바인더를 가져도 좋다.
[집전체]
양극 집전체 및 음극 집전체로서 스테인리스, 금, 백금, 아연, 철, 구리, 알루미늄, 타이타늄 등의 금속, 및 이들의 합금 등, 도전성이 높고 리튬 등의 캐리어 이온과 합금화되지 않는 재료를 사용할 수 있다. 집전체에는 시트 형상, 그물 형상, 펀칭 메탈 형상, 강망(expanded-metal) 형상 등의 형상을 적절히 사용할 수 있다. 집전체로서는 두께가 10μm 이상 30μm 이하인 것을 사용하는 것이 좋다.
또한 음극 집전체에는 리튬 등의 캐리어 이온과 합금화되지 않는 재료를 사용하는 것이 바람직하다.
집전체로서 상술한 금속 위에 타이타늄 화합물을 적층하여도 좋다. 타이타늄 화합물로서 예를 들어 질화 타이타늄, 산화 타이타늄, 질소의 일부가 산소로 치환된 질화 타이타늄, 산소의 일부가 질소로 치환된 산화 타이타늄, 및 산화질화 타이타늄(TiOxNy, 0<x<2, 0<y<1)에서 선택되는 하나 또는 2개 이상을 혼합 또는 적층하여 사용할 수 있다. 그 중에서도 질화 타이타늄은 도전성이 높고, 또한 산화를 억제하는 기능이 높기 때문에 특히 바람직하다. 타이타늄 화합물을 집전체의 표면에 제공함으로써 예를 들어 집전체 위에 형성되는 활물질층이 가지는 재료와 금속의 반응이 억제된다. 활물질층이 산소를 가지는 화합물을 포함하는 경우에는, 금속과 산소의 산화 반응을 억제할 수 있다. 예를 들어 집전체로서 알루미늄을 사용하고, 활물질층이 후술하는 산화 그래핀을 사용하여 형성되는 경우에는 산화 그래핀이 가지는 산소와 알루미늄의 산화 반응이 우려된다. 이러한 경우에 알루미늄 위에 타이타늄 화합물을 제공함으로써 집전체와 산화 그래핀의 산화 반응을 억제할 수 있다.
[도전재]
도전재는 도전 부여제, 도전 조제라고도 불리며, 탄소 재료가 사용된다. 복수의 활물질 사이에 도전재를 부착시킴으로써 복수의 활물질들이 서로 전기적으로 접속되고, 도전성이 높아진다. 또한 "부착"이란, 활물질과 도전재가 물리적으로 밀착되는 것만을 가리키는 것이 아니며, 공유 결합이 생기는 경우, 판데르발스력에 의하여 결합되는 경우, 활물질의 표면의 일부를 도전재가 덮는 경우, 활물질의 표면 요철에 도전재가 끼이는 경우, 서로 접하지 않아도 전기적으로 접속되는 경우 등을 포함하는 개념인 것으로 한다.
양극 활물질층, 음극 활물질층 등의 활물질층은 도전재를 가지는 것이 바람직하다.
도전재로서 예를 들어 아세틸렌 블랙 및 퍼니스 블랙 등의 카본 블랙, 인조 흑연 및 천연 흑연 등의 흑연, 탄소 나노 섬유 및 탄소 나노 튜브 등의 탄소 섬유, 그리고 그래핀 화합물 중 어느 1종류 또는 2종류 이상을 사용할 수 있다.
탄소 섬유로서는 예를 들어 메소페이스 피치계 탄소 섬유, 등방성 피치계 탄소 섬유 등의 탄소 섬유를 사용할 수 있다. 또한 탄소 섬유로서 탄소 나노 섬유나 탄소 나노 튜브 등을 사용할 수 있다. 탄소 나노 튜브는 예를 들어 기상 증착법(vapor deposition method) 등으로 제작할 수 있다.
또한 활물질층은 도전재로서 구리, 니켈, 알루미늄, 은, 및 금 등의 금속 분말 또는 금속 섬유, 도전성 세라믹 재료 등을 가져도 좋다.
활물질층의 총량에 대한 도전 조제의 함유량은 1wt% 이상 10wt% 이하인 것이 바람직하고, 1wt% 이상 5wt% 이하인 것이 더 바람직하다.
활물질과 점접촉되는 카본 블랙 등 입자상의 도전재와 달리, 그래핀 화합물은 접촉 저항이 낮은 면접촉이 가능한 것이기 때문에 일반적인 도전재보다 작은 양으로 입자상의 활물질과 그래핀 화합물의 전기 전도성을 향상시킬 수 있다. 따라서 활물질의 활물질층에서의 비율을 증가시킬 수 있다. 이로써 이차 전지의 방전 용량을 증가시킬 수 있다.
카본 블랙, 흑연 등의 입자상의 탄소 함유 화합물 또는 탄소 나노 튜브 등의 섬유상의 탄소 함유 화합물은 미소한 공간에 들어가기 쉽다. 미소한 공간이란 예를 들어 복수의 활물질들 사이의 영역 등을 가리킨다. 미소한 공간에 들어가기 쉬운 탄소 함유 화합물과, 복수의 입자에 걸쳐 도전성을 부여할 수 있는 그래핀 등의 시트상의 탄소 함유 화합물을 조합하여 사용함으로써, 전극의 밀도를 높이고 우수한 도전 경로를 형성할 수 있다. 본 발명의 일 형태의 제작 방법에 의하여 얻어지는 이차 전지는 고용량 밀도이면서 안정성을 가질 수 있어, 차량 탑재용 이차 전지로서 유효하다.
[바인더]
활물질층은 바인더(도시하지 않았음)를 가지는 것이 바람직하다. 바인더는 예를 들어 전해질과 활물질을 속박 또는 고정한다. 또한 바인더는 전해질과 탄소계 재료, 활물질과 탄소계 재료, 복수의 활물질끼리, 복수의 탄소계 재료 등을 속박 또는 고정할 수 있다.
바인더로서는 폴리스타이렌, 폴리아크릴산 메틸, 폴리메타크릴산 메틸(폴리메틸메타크릴레이트, PMMA), 폴리아크릴산 소듐, 폴리바이닐 알코올(PVA), 폴리에틸렌옥사이드(PEO), 폴리프로필렌옥사이드, 폴리이미드, 폴리염화 바이닐, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아이소뷰틸렌, 폴리에틸렌테레프탈레이트, 나일론, 폴리플루오린화 바이닐리덴(PVDF), 폴리아크릴로나이트릴(PAN), 에틸렌프로필렌다이엔 폴리머, 폴리아세트산 바이닐, 나이트로셀룰로스 등 재료를 사용하는 것이 바람직하다.
폴리이미드는 열적, 기계적, 화학적으로 매우 우수하고 안정된 성질을 가진다.
플루오린을 가지는 고분자 재료인 플루오린 폴리머, 구체적으로는 폴리플루오린화 바이닐리덴(PVDF) 등을 사용할 수 있다. PVDF는 융점이 134℃ 이상 169℃ 이하의 범위에 있는 수지이고, 열 안정성이 우수한 재료이다.
또한 바인더로서는 스타이렌-뷰타다이엔 고무(SBR), 스타이렌-아이소프렌-스타이렌 고무, 아크릴로나이트릴-뷰타다이엔 고무, 뷰타다이엔 고무, 에틸렌-프로필렌-다이엔 공중합체 등의 고무 재료를 사용하는 것이 바람직하다. 또한 바인더로서 플루오린 고무를 사용할 수 있다.
또한 바인더로서는 예를 들어 수용성 고분자를 사용하는 것이 바람직하다. 수용성 고분자로서는 예를 들어 다당류 등을 사용할 수 있다. 다당류로서는 카복시메틸 셀룰로스(CMC), 메틸 셀룰로스, 에틸 셀룰로스, 하이드록시프로필 셀룰로스, 다이아세틸 셀룰로스, 재생 셀룰로스 등의 셀룰로스 유도체, 또는 녹말 등을 사용할 수 있다. 또한 이러한 수용성 고분자를 상술한 고무 재료와 병용하는 것이 더 바람직하다.
바인더에는 상기 재료 중에서 복수를 조합하여 사용하여도 좋다.
<그래핀 화합물>
본 명세서 등에서 그래핀 화합물이란, 그래핀, 다층 그래핀, 멀티 그래핀, 산화 그래핀, 다층 산화 그래핀, 멀티 산화 그래핀, 환원된 산화 그래핀, 환원된 다층 산화 그래핀, 환원된 멀티 산화 그래핀, 그래핀 퀀텀닷(quantum dot) 등을 포함한다. 그래핀 화합물이란, 탄소를 포함하고, 평판 형상, 시트 형상 등의 형상을 가지고, 탄소 6원 고리로 형성된 2차원적 구조를 가지는 것을 말한다. 상기 탄소 6원 고리로 형성된 2차원적 구조를 탄소 시트라고 하여도 좋다. 그래핀 화합물은 관능기를 가져도 좋다. 또한 그래핀 화합물은 굴곡된 형상을 가지는 것이 바람직하다. 또한 그래핀 화합물은 동그래지고 탄소 나노 섬유와 같이 되어 있어도 좋다.
본 명세서 등에서 산화 그래핀이란, 예를 들어 탄소와 산소를 포함하고, 시트 형상이고, 관능기, 특히 에폭시기, 카복시기, 또는 하이드록시기를 포함하는 것을 말한다.
본 명세서 등에서 환원된 산화 그래핀이란, 예를 들어 탄소와 산소를 포함하고, 시트 형상이고, 탄소 6원 고리로 형성된 2차원적 구조를 가지는 것을 말한다. 탄소 시트라고 하여도 좋다. 환원된 산화 그래핀은 하나로도 기능하지만, 복수가 적층되어 있어도 좋다. 환원된 산화 그래핀은 탄소의 농도가 80atomic%보다 높고, 산소의 농도가 2atomic% 이상 15atomic% 이하인 부분을 가지는 것이 바람직하다. 이러한 탄소 농도 및 산소 농도로 함으로써, 소량으로도 도전성이 높은 도전재로서 기능할 수 있다. 또한 환원된 산화 그래핀은 라만 스펙트럼에서의 G밴드와 D밴드의 강도비 G/D가 1 이상인 것이 바람직하다. 이러한 강도비인 환원된 산화 그래핀은 소량으로도 도전성이 높은 도전재로서 기능할 수 있다.
산화 그래핀을 환원함으로써 그래핀 화합물에 구멍을 제공할 수 있는 경우가 있다.
또한 그래핀의 에지를 플루오린으로 종단한 재료를 사용하여도 좋다.
활물질층의 종단면에서는, 활물질층의 내부 영역에서 시트 형상의 그래핀 화합물이 실질적으로 균일하게 분산된다. 복수의 그래핀 화합물은 복수의 입자상의 활물질의 일부를 덮도록, 또는 복수의 입자상의 활물질의 표면 위에 부착되도록 형성되어 있기 때문에, 서로 면접촉된다.
여기서, 복수의 그래핀 화합물들이 결합됨으로써, 그물 형상의 그래핀 화합물 시트(이하 그래핀 화합물 네트 또는 그래핀 네트라고 함)를 형성할 수 있다. 활물질을 그래핀 네트가 피복하는 경우에는, 그래핀 네트는 활물질들을 결합하는 바인더로서도 기능할 수 있다. 따라서 바인더의 양을 줄일 수 있거나 또는 사용하지 않게 할 수 있기 때문에, 전극 체적 또는 전극 중량에서 차지하는 활물질의 비율을 높일 수 있다. 즉 이차 전지의 충방전 용량을 증가시킬 수 있다.
여기서, 그래핀 화합물로서 산화 그래핀을 사용하고, 활물질과 혼합하여 활물질층이 되는 층을 형성한 후, 환원하는 것이 바람직하다. 즉 완성 후의 활물질층은 환원된 산화 그래핀을 포함하는 것이 바람직하다. 그래핀 화합물의 형성에, 극성 용매 중에서의 분산성이 매우 높은 산화 그래핀을 사용함으로써, 그래핀 화합물을 활물질층의 내부 영역에서 실질적으로 균일하게 분산시킬 수 있다. 균일하게 분산된 산화 그래핀을 함유하는 분산매로부터 용매를 휘발시켜 제거하여 산화 그래핀을 환원하기 때문에, 활물질층에 잔류된 그래핀 화합물은 부분적으로 중첩되고, 서로 면접촉될 정도로 분산되므로, 3차원적인 도전 경로를 형성할 수 있다. 또한 산화 그래핀의 환원은 예를 들어 열처리에 의하여 수행하여도 좋고, 환원제를 사용하여 수행하여도 좋다.
또한 스프레이 드라이 장치를 사용함으로써 활물질의 표면 전체를 덮어 도전재인 그래핀 화합물을 피막으로서 미리 형성하고, 또한 활물질들 간을 그래핀 화합물에 의하여 전기적으로 접속하여, 도전 경로를 형성할 수도 있다.
또한 그래핀 화합물을 형성할 때 사용하는 재료를 그래핀 화합물과 혼합하여 활물질층에 사용하여도 좋다. 예를 들어 그래핀 화합물을 형성할 때 촉매로서 사용하는 입자를 그래핀 화합물과 혼합하여도 좋다. 그래핀 화합물을 형성할 때의 촉매로서는 예를 들어 산화 실리콘(SiO2, SiOx(x<2)), 산화 알루미늄, 철, 니켈, 루테늄, 이리듐, 백금, 구리, 저마늄 등을 가지는 입자가 있다. 이 입자는 평균 입경(D50: 중위 직경이라고도 함)이 1μm 이하인 것이 바람직하고, 100nm 이하인 것이 더 바람직하다.
[세퍼레이터]
양극과 음극 사이에 세퍼레이터를 배치한다. 세퍼레이터로서는 예를 들어 종이를 비롯한 셀룰로스를 가지는 섬유, 부직포, 유리 섬유, 세라믹, 또는 나일론(폴리아마이드), 바이닐론(폴리바이닐 알코올계 섬유), 폴리에스터, 아크릴, 폴리올레핀, 폴리우레탄을 사용한 합성 섬유 등으로 형성된 것을 사용할 수 있다. 세퍼레이터는 봉투 형상으로 가공되고 양극 및 음극 중 어느 한쪽을 감싸도록 배치되는 것이 바람직하다.
세퍼레이터는 직경 20nm 정도의 구멍, 바람직하게는 직경 6.5nm 이상의 구멍, 더 바람직하게는 적어도 직경 2nm의 구멍을 가지는 다공질 재료이다.
세퍼레이터는 다층 구조를 가져도 좋다. 예를 들어 폴리프로필렌, 폴리에틸렌 등의 유기 재료 필름을, 세라믹계 재료, 플루오린계 재료, 폴리아마이드계 재료, 또는 이들을 혼합한 것 등으로 코팅할 수 있다. 세라믹계 재료로서는 예를 들어 산화 알루미늄 입자, 산화 실리콘 입자 등을 사용할 수 있다. 플루오린계 재료로서는 예를 들어 PVDF, 폴리테트라플루오로에틸렌 등을 사용할 수 있다. 폴리아마이드계 재료로서는 예를 들어 나일론, 아라미드(메타계 아라미드, 파라계 아라미드) 등을 사용할 수 있다.
세라믹계 재료를 코팅하면 내산화성이 향상되기 때문에 고전압으로의 충전, 방전 시의 세퍼레이터의 열화를 억제하여 이차 전지의 신뢰성을 향상시킬 수 있다. 또한 플루오린계 재료로 코팅하면 세퍼레이터와 전극이 밀착되기 쉬워져, 출력 특성을 향상시킬 수 있다. 폴리아마이드계 재료, 특히 아라미드로 코팅하면 내열성이 향상되기 때문에 이차 전지의 안전성을 향상시킬 수 있다.
예를 들어 폴리프로필렌 필름의 양면을, 산화 알루미늄과 아라미드의 혼합 재료로 코팅하여도 좋다. 또한 폴리프로필렌의 필름에서 양극과 접촉하는 면을 산화 알루미늄과 아라미드의 혼합 재료로 코팅하고, 음극과 접촉하는 면을 플루오린계 재료로 코팅하여도 좋다.
다층 구조의 세퍼레이터를 사용하면, 세퍼레이터 전체의 두께가 얇아도 이차 전지의 안전성을 유지할 수 있기 때문에 이차 전지의 체적당 용량을 크게 할 수 있다.
[전해질]
이차 전지에 액상의 전해질을 사용하는 경우, 예를 들어 전해질로서 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 뷰틸렌 카보네이트, 클로로에틸렌 카보네이트, 바이닐렌 카보네이트, γ-뷰티로락톤, γ-발레로락톤, 다이메틸 카보네이트(DMC), 다이에틸 카보네이트(DEC), 에틸 메틸 카보네이트(EMC), 폼산 메틸, 아세트산 메틸, 아세트산 에틸, 프로피온산 메틸, 프로피온산 에틸, 프로피온산 프로필, 뷰티르산 메틸, 1,3-다이옥세인, 1,4-다이옥세인, 다이메톡시에테인(DME), 다이메틸 설폭사이드, 다이에틸에터, 메틸 다이글라임, 아세토나이트릴, 벤조나이트릴, 테트라하이드로퓨란, 설포레인, 설톤 등 중 1종류 또는 이들 중 2종류 이상을 임의의 조합 및 비율로 사용할 수 있다.
또한 전해질의 용매로서 난연성 및 난휘발성인 이온 액체(상온 용융염)를 하나 또는 복수 사용함으로써, 이차 전지의 내부 영역 단락 또는 과충전 등으로 인하여 내부 영역 온도가 상승하여도, 이차 전지의 파열 또는 발화 등을 방지할 수 있다. 이온 액체는 양이온과 음이온으로 이루어지며 유기 양이온과 음이온을 포함한다. 유기 양이온으로서 4급 암모늄 양이온, 3급 설포늄 양이온, 및 4급 포스포늄 양이온 등의 지방족 오늄 양이온, 그리고 이미다졸륨 양이온 및 피리디늄 양이온 등의 방향족 양이온을 들 수 있다. 또한 음이온으로서, 1가 아마이드계 음이온, 1가 메티드계 음이온, 플루오로설폰산 음이온, 퍼플루오로알킬설폰산 음이온, 테트라플루오로보레이트 음이온, 퍼플루오로알킬보레이트 음이온, 헥사플루오로포스페이트 음이온, 또는 퍼플루오로알킬포스페이트 음이온 등을 들 수 있다.
특히 본 발명의 일 형태의 이차 전지에 있어서, 음극이 가지는 제 2 활물질로서 실리콘을 사용하는 경우, 이온 액체를 가지는 액상의 전해질을 사용하는 것이 바람직하다.
본 발명의 일 형태의 이차 전지는 예를 들어 소듐 이온, 포타슘 이온 등의 알칼리 금속 이온 또는 칼슘 이온, 스트론튬 이온, 바륨 이온, 베릴륨 이온, 마그네슘 이온 등의 알칼리 토금속 이온을 캐리어 이온으로서 가진다.
캐리어 이온으로서 리튬 이온을 사용하는 경우에는, 예를 들어 전해질은 리튬염을 포함한다. 리튬염으로서 예를 들어 LiPF6, LiClO4, LiAsF6, LiBF4, LiAlCl4, LiSCN, LiBr, LiI, Li2SO4, Li2B10Cl10, Li2B12Cl12, LiCF3SO3, LiC4F9SO3, LiC(CF3SO2)3, LiC(C2F5SO2)3, LiN(CF3SO2)2, LiN(C4F9SO2)(CF3SO2), LiN(C2F5SO2)2 등을 사용할 수 있다.
또한 전해질은 플루오린을 포함하는 것이 바람직하다. 플루오린을 포함하는 전해질로서 예를 들어 플루오린화 환상 카보네이트의 1종류 또는 2종류 이상과, 리튬 이온을 가지는 전해질을 사용할 수 있다. 플루오린화 환상 카보네이트는 불연성을 향상시켜, 리튬 이온 이차 전지의 안전성을 높일 수 있다.
플루오린화 환상 카보네이트로서, 플루오린화 에틸렌카보네이트, 예를 들어 모노플루오로에틸렌카보네이트(탄산 플루오로에틸렌, FEC, F1EC), 다이플루오로에틸렌카보네이트(DFEC, F2EC), 트라이플루오로에틸렌카보네이트(F3EC), 테트라플루오로에틸렌카보네이트(F4EC) 등을 사용할 수 있다. 또한 DFEC에는 시스-4,5, 트랜스-4,5 등의 이성질체가 있다. 저온에서 동작시키는 데에 있어서, 전해질로서, 플루오린화 환상 카보네이트를 1종류 또는 2종류 이상 사용하여 리튬 이온을 용매화(溶媒和)시키고, 충방전 시에 전극이 포함하는 전해질 내에서 수송시키는 것이 중요하다. 플루오린화 환상 카보네이트를 소량의 첨가제로서 사용하는 것이 아니라 충방전 시의 리튬 이온의 수송에 기여시키면 저온에서의 동작이 가능해진다. 이차 전지 내에서 리튬 이온은 몇 개 이상 수십 개 정도의 덩어리가 되어 이동한다.
플루오린화 환상 카보네이트를 전해질에 사용함으로써, 전극이 포함하는 전해질 내에서 용매화된 리튬 이온이 활물질 입자에 들어갈 때 필요한 탈용매화 에너지가 작아진다. 이 탈용매화 에너지를 작게 할 수 있으면, 저온 범위에서도 리튬 이온이 활물질 입자로 삽입되기 쉬워지거나 이탈되기 쉬워진다. 또한 리튬 이온은 용매화된 상태를 유지한 채 이동하는 경우도 있지만, 배위하는 용매 분자가 바뀌게 되는 호핑 현상(hopping phenomenon)이 발생될 경우도 있다. 리튬 이온이 탈용매화되기 쉬워지면, 호핑 현상에 의한 이동이 쉬워져, 리튬 이온의 이동이 쉬워지는 경우가 있다. 이차 전지의 충방전에서의 전해질의 분해 생성물이 활물질의 표면에 달라붙음으로써 이차 전지가 열화될 우려가 있다. 그러나 전해질이 플루오린을 가지는 경우에는 전해질이 끈적거리지 않고, 전해질의 분해 생성물은 활물질의 표면에 부착되기 어려워진다. 그러므로 이차 전지의 열화를 억제할 수 있다.
용매화된 리튬 이온은, 전해질에서 복수가 모여 클러스터를 형성하고, 음극 내, 양극과 음극 사이, 양극 내 등을 이동하는 경우가 있다.
본 명세서에서 전해질이란, 고체, 액체, 또는 반고체의 재료 등을 포함하는 총칭이다.
이차 전지 내에 존재하는 계면, 예를 들어 활물질과 전해질의 계면에서는 열화가 발생되기 쉽다. 본 발명의 일 형태의 이차 전지에서는 플루오린을 가지는 전해질을 가짐으로써, 활물질과 전해질의 계면에서 발생될 수 있는 열화, 대표적으로는 전해질의 변질 또는 전해질의 고점도화를 방지할 수 있다. 또한 플루오린을 가지는 전해질에 대하여 바인더 또는 그래핀 화합물 등을 달라붙게 하거나 유지시키는 구성으로 하여도 좋다. 상기 구성으로 함으로써 전해질의 점도를 저하시킨 상태, 바꿔 말하면 전해질의 끈적거리지 않는 상태를 유지할 수 있어 이차 전지의 신뢰성을 향상시킬 수 있다. 플루오린이 2개 결합하는 DFEC 및 4개 결합하는 F4EC는 플루오린이 하나 결합하는 FEC와 비교하여 점도가 낮고, 끈적거리지 않고, 리튬과의 배위 결합이 약해진다. 따라서, 활물질 입자에 점도가 높은 분해물이 부착되는 것을 저감할 수 있다. 활물질 입자에 점도가 높은 분해물이 부착되거나 달라붙으면 활물질 입자의 계면에서 리튬 이온이 이동하기 어려워진다. 플루오린을 가지는 전해질은 용매화됨으로써 활물질(양극 활물질 또는 음극 활물질) 표면에 부착되는 분해물의 생성을 완화시킨다. 또한 플루오린을 가지는 전해질을 사용함으로써 분해물이 부착되는 것을 방지하여 덴드라이트의 발생 및 성장을 방지할 수 있다.
또한 플루오린을 가지는 전해질을 주성분으로서 사용하는 것도 특징 중 하나이고, 플루오린을 가지는 전해질은 5volume% 이상, 10volume% 이상, 바람직하게는 30volume% 이상 100volume% 이하로 한다.
본 명세서에서 전해질의 주성분이란, 이차 전지의 전해질 전체의 5volume% 이상을 차지하는 것을 가리킨다. 또한 여기서 이차 전지의 전해질 전체의 5volume% 이상이란 이차 전지의 제조 시에 계량된 전해질 전체가 차지하는 비율을 가리킨다. 또한 이차 전지를 제작한 후에 분해하는 경우에는 복수 종류의 전해질이 각각 어느 정도의 비율이었는지를 정량하는 것은 어렵지만, 어느 1종류의 유기 화합물이 전해질 전체의 5volume% 이상인지는 판정할 수 있다.
플루오린을 가지는 전해질을 사용함으로써 넓은 온도 범위, 구체적으로는 -40℃ 이상 150℃ 이하에서, 바람직하게는 -40℃ 이상 85℃ 이하에서 동작 가능한 이차 전지를 실현할 수 있다.
또한 전해질에 바이닐렌카보네이트, 프로페인설톤(PS), tert-뷰틸벤젠(TBB), 리튬비스(옥살레이토)보레이트(LiBOB), 숙시노나이트릴, 아디포나이트릴 등의 다이나이트릴 화합물 등의 첨가제를 첨가하여도 좋다. 첨가제의 농도는 예를 들어 전해질 전체에 대하여 0.1volume% 이상 5volume% 미만으로 하면 좋다.
또한 전해질은 상기 이외에 γ-뷰티로락톤, 아세토나이트릴, 다이메톡시에테인, 테트라하이드로퓨란 등의 비양성자성 유기 용매 중 하나 또는 복수를 가져도 좋다.
또한 전해질이 겔화된 고분자 재료를 가짐으로써 누액성 등에 대한 안전성이 높아진다. 겔화된 고분자 재료의 대표적인 예로서는, 실리콘(silicone) 겔, 아크릴 겔, 아크릴로나이트릴 겔, 폴리에틸렌옥사이드계 겔, 폴리프로필렌옥사이드계 겔, 플루오린계 폴리머의 겔 등이 있다.
고분자 재료로서는 예를 들어 폴리에틸렌옥사이드(PEO) 등의 폴리알킬렌옥사이드 구조를 가지는 폴리머, PVDF, 및 폴리아크릴로나이트릴 등, 그리고 이들을 포함하는 공중합체 등을 사용할 수 있다. 예를 들어 PVDF와 헥사플루오로프로필렌(HFP)의 공중합체인 PVDF-HFP를 사용할 수 있다. 또한 형성되는 고분자는 다공질 형상을 가져도 좋다.
또한 상기 구성으로서는 액상의 전해질을 사용하는 이차 전지의 예를 나타내었지만 특별히 이에 한정되는 것은 아니다. 예를 들어 반고체 전지 및 전고체 전지를 제작할 수도 있다.
본 명세서 등에서 액상의 전해질을 사용하는 이차 전지의 경우도, 반고체 전지의 경우도 양극과 음극 사이에 배치되는 층을 전해질층이라고 부르기로 한다. 반고체 전지의 전해질층은 성막으로 형성되는 층이라고 할 수 있고, 액상의 전해질층과 구별할 수 있다.
또한 본 명세서 등에서 반고체 전지란 전해질층, 양극, 음극 중 적어도 하나에 반고체 재료를 가지는 전지를 가리킨다. 여기서 반고체는 고체 재료의 비가 50%인 것은 의미하지 않는다. 반고체란, 체적 변화가 작다는 고체의 성질을 가지면서도, 유용성 등 액체에 가까운 성질도 일부 가지는 것을 의미한다. 이들 성질을 만족하면, 단일의 재료이어도 좋고, 복수의 재료이어도 좋다. 예를 들어 액체의 재료를 다공질의 고체 재료에 침윤시킨 것이어도 좋다.
또한 본 명세서 등에서 폴리머 전해질 이차 전지란, 양극과 음극 사이의 전해질층에 폴리머를 포함한 이차 전지를 말한다. 폴리머 전해질 이차 전지는 드라이(또는 진성) 폴리머 전해질 전지 및 폴리머 겔 전해질 전지를 포함한다.
전해질은 리튬 이온 도전성 폴리머와 리튬염을 가진다.
본 명세서 등에서 리튬 이온 도전성 폴리머란, 리튬 등의 양이온의 도전성을 가지는 폴리머이다. 더 구체적으로는, 양이온을 배위할 수 있는 극성기를 가지는 고분자 화합물이다. 극성기로서는 에터기, 에스터기, 나이트릴기, 카보닐기, 실록세인 등을 가지는 것이 바람직하다.
리튬 이온 도전성 폴리머로서는 예를 들어 폴리에틸렌옥사이드(PEO), 주사슬로서는 폴리에틸렌옥사이드를 가지는 유도체, 폴리프로필렌옥사이드, 폴리아크릴산 에스터, 폴리메타크릴산 에스터, 폴리실록세인, 폴리포스파젠 등을 사용할 수 있다.
리튬 이온 도전성 폴리머는 분기되어도 좋고, 가교되어도 좋다. 또한 공중합체이어도 좋다. 분자량은 예를 들어 1만 이상인 것이 바람직하고, 10만 이상인 것이 더 바람직하다.
리튬 이온 도전성 폴리머는 폴리머쇄의 부분 운동(세그먼트 운동이라고도 함)에 의하여 상호 작용하는 극성기를 변경하면서 리튬 이온이 이동한다. 예를 들어 PEO이면, 에터쇄의 세그먼트 운동에 의하여 상호 작용하는 산소를 변경하면서 리튬 이온이 이동한다. 온도가 리튬 이온 도전성 폴리머의 융점 또는 연화점에 가깝거나 그보다 높을 때에는 결정 영역이 용해되어 비정질 영역이 증대되기 때문에, 또한 에터쇄가 활발하게 운동하기 때문에, 이온 전도도가 높아진다. 그러므로 리튬 이온 도전성 폴리머로서 PEO를 사용하는 경우에는 60℃ 이상에서 충방전을 수행하는 것이 바람직하다.
섀넌의 이온 반지름(Shannon et al., Acta A 32(1976) 751.)에 따르면 1가의 리튬 이온의 반경은 4배위일 때 0.590Х10-1nm이고, 6배위일 때 0.76Х10-1nm이고, 8배위일 때 0.92Х10-1nm이다. 또한 2가의 산소 이온의 반경은 2배위일 때 1.35Х10-1nm이고, 3배위일 때 1.36Х10-1nm이고, 4배위일 때 1.38Х10-1nm이고, 6배위일 때 1.40Х10-1nm이고, 8배위일 때 1.42Х10-1nm이다. 인접한 리튬 이온 도전성 폴리머쇄가 가지는 극성기 사이의 거리는 상기와 같은 이온 반지름을 유지한 상태에서 리튬 이온 및 극성기가 가지는 음이온이 안정적으로 존재할 수 있는 거리 이상인 것이 바람직하다. 또한 리튬 이온과 극성기 사이의 상호 작용이 충분히 생기는 거리인 것이 바람직하다. 다만 상술한 바와 같이, 세그먼트 운동이 일어나기 때문에, 항상 일정한 거리를 유지할 필요는 없다. 리튬 이온이 통과할 때에 적절한 거리를 유지하면 좋다.
또한 리튬염으로서는 예를 들어 리튬과 함께 인, 플루오린, 질소, 황, 산소, 염소, 비소, 보론, 알루미늄, 브로민, 아이오딘 중 적어도 하나 이상을 가지는 화합물을 사용할 수 있다. 예를 들어 LiPF6, LiN(FSO2)2(리튬비스(플루오로설폰일)이미드, LiFSI), LiClO4, LiAsF6, LiBF4, LiAlCl4, LiSCN, LiBr, LiI, Li2SO4, Li2B10Cl10, Li2B12Cl12, LiCF3SO3, LiC4F9SO3, LiC(CF3SO2)3, LiC(C2F5SO2)3, LiN(CF3SO2)2, LiN(C4F9SO2)(CF3SO2), LiN(C2F5SO2)2, 리튬비스(옥살레이토)보레이트(LiBOB) 등의 리튬염을 1종류, 또는 이들 중 2종류 이상을 임의의 조합 및 비율로 사용할 수 있다.
특히 LiFSI를 사용하면 저온 특성이 양호해져 바람직하다. 또한 LiFSI 및 LiTFSA는 LiPF6 등과 비교하여 물과 반응하기 어렵다. 그러므로 LiFSI를 사용한 전극 및 전해질층을 제작할 때의 이슬점의 제어가 용이해진다. 예를 들어 수분을 가능한 한 배제한 아르곤 등의 불활성 분위기 및 이슬점을 제어한 건조실뿐만 아니라, 통상의 대기 분위기에서도 취급할 수 있다. 그러므로 생산성이 향상되어 바람직하다. 또한 에터쇄의 세그먼트 운동을 이용한 리튬 전도를 사용할 때, LiFSI 및 LiTFSA와 같은 해리성이 높고 가소화 효과가 있는 Li염을 사용하면, 더 넓은 온도 범위에서 사용할 수 있기 때문에 특히 바람직하다.
유기 용매가 없거나, 유기 용매가 매우 적으면 인화 또는 발화가 일어나기 어려운 이차 전지로 할 수 있어, 안전성이 향상되기 때문에 바람직하다. 또한 전해질이 유기 용매가 없거나 매우 적은 전해질층이면, 세퍼레이터를 가지지 않아도 충분한 강도가 있고 양극과 음극을 전기적으로 절연할 수 있다. 세퍼레이터를 사용할 필요가 없기 때문에, 생산성이 높은 이차 전지로 할 수 있다. 전해질과 무기 필러를 가지는 전해질층으로 하면 강도가 더 높아져 안전성이 더 높은 이차 전지로 할 수 있다.
[외장체]
이차 전지가 가지는 외장체로서는 예를 들어 알루미늄 등의 금속 재료 및 수지 재료를 사용할 수 있다. 또한 필름 형태의 외장체를 사용할 수도 있다. 필름으로서는, 예를 들어 폴리에틸렌, 폴리프로필렌, 폴리카보네이트, 이오노머, 폴리아마이드 등의 재료로 이루어지는 막 위에, 알루미늄, 스테인리스, 구리, 니켈 등의 가요성이 우수한 금속 박막을 제공하고, 이 금속 박막 위에 외장체의 외면으로서 폴리아마이드계 수지, 폴리에스터계 수지 등의 절연성 합성 수지막을 제공한 3층 구조의 필름을 사용할 수 있다. 또한 필름으로서 플루오린 수지 필름을 사용하는 것이 바람직하다. 플루오린 수지 필름은 산, 알칼리, 유기 용매 등에 대한 안정성이 높고, 이차 전지의 반응 등에 따른 부반응, 부식 등을 억제하여 우수한 이차 전지를 실현할 수 있다. 플루오린 수지 필름으로서 PTFE(폴리테트라플루오로에틸렌), PFA(퍼플루오로알콕시알케인: 테트라플루오로에틸렌과 퍼플루오로알킬바이닐에터의 공중합체), FEP(퍼플루오로에틸렌프로필렌 공중합체: 테트라플루오로에틸렌과 헥사플루오로프로필렌의 공중합체), ETFE(에틸렌테트라플루오로에틸렌 공중합체: 테트라플루오로에틸렌과 에틸렌의 공중합체) 등을 들 수 있다.
<음극 활물질의 일례>
음극 활물질로서, 이차 전지의 캐리어 이온과의 반응이 가능한 재료, 캐리어 이온이 삽입 및 이탈될 수 있는 재료, 캐리어 이온이 되는 금속과의 합금화 반응이 가능한 재료, 캐리어 이온이 되는 금속의 용해 및 석출이 가능한 재료 등을 사용하는 것이 바람직하다.
이하에서 음극 활물질의 일례에 대하여 설명한다.
음극 활물질로서 실리콘, 주석, 갈륨, 알루미늄, 저마늄, 납, 안티모니, 비스무트, 은, 아연, 카드뮴, 인듐에서 선택되는 하나 이상의 원소를 가지는 금속, 또는 화합물을 사용할 수 있다. 이러한 원소를 사용한 합금계 화합물로서는, 예를 들어 Mg2Si, Mg2Ge, Mg2Sn, SnS2, V2Sn3, FeSn2, CoSn2, Ni3Sn2, Cu6Sn5, Ag3Sn, Ag3Sb, Ni2MnSb, CeSb3, LaSn3, La3Co2Sn7, CoSb3, InSb, SbSn 등이 있다.
또한 실리콘에 불순물 원소로서 인, 비소, 보론, 알루미늄, 갈륨 등을 첨가하여 저저항화한 재료를 사용하여도 좋다. 또한 리튬을 프리도핑(predoping)한 실리콘 재료를 사용하여도 좋다. 프리도핑의 방법으로서는 플루오린화 리튬, 탄산 리튬 등과 실리콘을 혼합하고 어닐링하는, 리튬 금속과 실리콘의 메커니컬 알로잉 등의 방법이 있다. 또한 실리콘을 가지는 전극(실리콘 전극)을 형성한 후에 리튬 금속 등의 전극과 조합하여 충방전 반응에 의하여 리튬을 도핑(프리도핑)할 수 있다. 그 후, 도핑된 실리콘 전극과, 상대 전극이 되는 전극(예를 들어 프리도핑된 음극에 대하여 양극)을 조합하여 이차 전지를 제작하여도 좋다.
음극 활물질로서 예를 들어 실리콘 나노 입자를 사용할 수 있다. 실리콘 나노 입자의 평균 입경 D50은 예를 들어 바람직하게는 5nm 이상 1μm 미만, 더 바람직하게는 10nm 이상 300nm 이하, 더욱 바람직하게는 10nm 이상 100nm 이하이다.
실리콘 나노 입자는 결정성을 가져도 좋다. 또한 실리콘 나노 입자가 결정성을 가지는 영역과 비정질의 영역을 가져도 좋다.
실리콘을 가지는 재료로서 예를 들어 SiOx(x는 바람직하게는 2보다 작고, 더 바람직하게는 0.5 이상 1.6 이하)로 나타내어지는 재료를 사용할 수 있다.
또한 음극 활물질로서, 예를 들어 흑연, 이흑연화성 탄소, 난흑연화성 탄소, 탄소 나노 튜브, 카본 블랙, 및 그래핀 화합물 등의 탄소계 재료를 사용할 수 있다.
또한 음극 활물질로서 예를 들어 타이타늄, 나이오븀, 텅스텐, 및 몰리브데넘에서 선택되는 하나 이상의 원소를 가지는 산화물을 사용할 수 있다.
음극 활물질로서 상술한 금속, 재료, 화합물 등을 복수 조합하여 사용할 수 있다.
음극 활물질로서 예를 들어 SnO, SnO2, 이산화 타이타늄(TiO2), 리튬 타이타늄 산화물(Li4Ti5O12), 리튬-흑연 층간 화합물(LixC6), 오산화 나이오븀(Nb2O5), 산화 텅스텐(WO2), 산화 몰리브데넘(MoO2) 등의 산화물을 사용할 수 있다.
또한 음극 활물질로서 리튬과 전이 금속의 복합 질화물인 Li3N형 구조를 가지는 Li3-xMxN(M=Co, Ni, Cu)을 사용할 수 있다. 예를 들어 Li2.6Co0.4N3은 충방전 용량이 크기 때문에(900mAh/g) 바람직하다.
리튬과 전이 금속의 복합 질화물을 음극 재료로서 사용하면, 양극 재료로서 리튬 이온을 포함하지 않는 V2O5, Cr3O8 등의 재료와 조합할 수 있어 바람직하다. 또한 양극 재료에 리튬 이온을 포함하는 재료를 사용하는 경우에도, 양극 재료에 포함되는 리튬 이온을 미리 이탈시킴으로써, 음극 재료로서 리튬과 전이 금속의 복합 질화물을 사용할 수 있다.
또한 컨버전(conversion) 반응이 일어나는 재료를 음극 활물질로서 사용할 수도 있다. 예를 들어 산화 코발트(CoO), 산화 니켈(NiO), 산화 철(FeO) 등, 리튬과 합금화 반응을 일으키지 않는 전이 금속 산화물을 음극 활물질에 사용하여도 좋다. 컨버전 반응이 일어나는 재료로서는 Fe2O3, CuO, Cu2O, RuO2, Cr2O3 등의 산화물, CoS0.89, NiS, CuS 등의 황화물, Zn3N2, Cu3N, Ge3N4 등의 질화물, NiP2, FeP2, CoP3 등의 인화물, FeF3, BiF3 등의 플루오린화물도 들 수 있다. 또한 상기 플루오린화물은 전위가 높기 때문에 양극 재료로서 사용하여도 좋다.
<양극 활물질의 일례>
양극 활물질로서, 예를 들어 올리빈형의 결정 구조, 층상 암염형의 결정 구조, 또는 스피넬형의 결정 구조를 가지는 리튬을 가지는 복합 산화물 등이 있다.
본 발명의 일 형태의 양극 활물질로서, 층상의 결정 구조를 가지는 양극 활물질을 사용하는 것이 바람직하다.
층상의 결정 구조로서 예를 들어 층상 암염형의 결정 구조가 있다. 층상 암염형의 결정 구조를 가지는 복합 산화물로서 예를 들어 LiMxOy(x>0 또한 y>0, 더 구체적으로는 예를 들어 y=2 또한 0.8<x<1.2)로 나타내어지는 복합 산화물을 사용할 수 있다. 여기서 M은 금속 원소이고, 바람직하게는 코발트, 망가니즈, 니켈, 및 철에서 선택되는 하나 이상이다. 또는 M은 예를 들어 코발트, 망가니즈, 니켈, 철, 알루미늄, 타이타늄, 지르코늄, 란타넘, 구리, 아연에서 선택되는 2개 이상이다.
LiMxOy로 나타내어지는 복합 산화물로서 예를 들어 LiCoO2, LiNiO2, LiMnO2 등이 있다. 또한 LiNixCo1-xO2(0<x<1)로 나타내어지는 NiCo계, LiMxOy로 나타내어지는 복합 산화물로서 예를 들어 LiNixMn1-xO2(0<x<1)로 나타내어지는 NiMn계 등이 있다.
또한 LiMO2로 나타내어지는 복합 산화물로서 예를 들어 LiNixCoyMnzO2(x>0, y>0, 0.8<x+y+z<1.2)로 나타내어지는 NiCoMn계(NCM라고도 함)가 있다. 구체적으로는 예를 들어 0.1x<y<8x이며 0.1x<z<8x를 만족시키는 것이 바람직하다. 일례로서 x, y, 및 z는 x:y:z=1:1:1 또는 그 근방의 값을 만족시키는 것이 바람직하다. 또는 일례로서 x, y, 및 z는 x:y:z=5:2:3 또는 그 근방의 값을 만족시키는 것이 바람직하다. 또는 일례로서 x, y, 및 z는 x:y:z=8:1:1 또는 그 근방의 값을 만족시키는 것이 바람직하다. 또는 일례로서 x, y, 및 z는 x:y:z=6:2:2 또는 그 근방의 값을 만족시키는 것이 바람직하다. 또는 일례로서 x, y, 및 z는 x:y:z=1:4:1 또는 그 근방의 값을 만족시키는 것이 바람직하다.
또한 층상 암염형의 결정 구조를 가지는 복합 산화물로서 예를 들어 Li2MnO3, Li2MnO3-LiMeO2(Me는 Co, Ni, Mn) 등이 있다.
상기 복합 산화물로 대표되는 층상의 결정 구조를 가지는 양극 활물질을 사용하면, 체적당 리튬 함유량이 많아 체적당 용량이 높은 이차 전지를 실현할 수 있는 경우가 있다. 이러한 양극 활물질에서는, 충전에 따른 체적당 리튬 이탈량도 많고, 충방전을 안정적으로 수행하기 위해서는 이탈된 후의 결정 구조의 안정화가 요구된다. 또한 충방전에서 결정 구조가 무너지는 것으로 인하여 고속 충전이나 고속 방전이 저해되는 경우가 있다.
양극 활물질로서 LiMn2O4 등 망가니즈를 포함하는 스피넬형의 결정 구조를 가지는 리튬 함유 재료에 니켈산 리튬(LiNiO2 또는 LiNi1-xMxO2(0<x<1)(M=Co, Al 등))을 혼합시키는 것이 바람직하다. 이 구성으로 함으로써 이차 전지의 특성을 향상시킬 수 있다.
또한 양극 활물질로서, 조성식 LiaMnbMcOd로 나타낼 수 있는 리튬 망가니즈 복합 산화물을 사용할 수 있다. 여기서 원소 M으로서는 리튬, 망가니즈 이외에서 선택된 금속 원소, 실리콘, 또는 인을 사용하는 것이 바람직하고, 니켈을 사용하는 것이 더 바람직하다. 또한 리튬 망가니즈 복합 산화물의 입자 전체를 측정하는 경우, 방전 시에 0<a/(b+c)<2, c>0, 및 0.26≤(b+c)/d<0.5를 만족시키는 것이 바람직하다. 또한 리튬 망가니즈 복합 산화물의 입자 전체의 금속, 실리콘, 및 인 등의 조성은 예를 들어 ICP-MS(유도 결합 플라스마 질량 분석계)를 사용하여 측정될 수 있다. 또한 리튬 망가니즈 복합 산화물의 입자 전체의 산소의 조성은 예를 들어 EDX(에너지 분산형 X선 분석법)를 사용하여 측정될 수 있다. 또한 ICPMS 분석과 병용하여, 융해 가스 분석(fusion gas analysis), XAFS(X선 흡수 미세 구조) 분석의 가수 평가를 사용하여 구할 수 있다. 또한 리튬 망가니즈 복합 산화물이란 적어도 리튬과 망가니즈를 포함하는 산화물을 말하고, 크로뮴, 코발트, 알루미늄, 니켈, 철, 마그네슘, 몰리브데넘, 아연, 인듐, 갈륨, 구리, 타이타늄, 나이오븀, 실리콘, 및 인 등으로 이루어지는 군에서 선택되는 적어도 1종류의 원소가 포함되어도 좋다.
[양극 활물질의 구조]
도 5 내지 도 9를 사용하여 본 발명의 일 형태의 양극 활물질에 대하여 설명한다.
도 5의 (A)는 본 발명의 일 형태인 양극 활물질(100)의 상면 모식도이다. 도 5의 (A) 중의 A-B를 따르는 단면 모식도를 도 5의 (B)에 나타내었다.
<함유 원소와 분포>
양극 활물질(100)은 리튬과, 전이 금속 M1과, 산소와, 첨가 원소 X를 포함한다. 양극 활물질(100)은 LiM1O2(M1은 Fe, Ni, Co, Mn에서 선택되는 하나 이상)로 나타내어지는 복합 산화물에 첨가 원소 X가 첨가된 것이라고 하여도 좋다.
양극 활물질(100)이 가지는 전이 금속으로서는 리튬과 함께 공간군 R-3m에 속하는 층상 암염형의 복합 산화물을 형성할 수 있는 금속을 사용하는 것이 바람직하다. 예를 들어 망가니즈, 코발트, 니켈 중 적어도 하나를 사용할 수 있다. 즉 양극 활물질(100)이 가지는 전이 금속으로서 코발트만을 사용하여도 좋고, 니켈만을 사용하여도 좋고, 코발트와 망가니즈의 2종류, 또는 코발트와 니켈의 2종류를 사용하여도 좋고, 코발트, 망가니즈, 니켈의 3종류를 사용하여도 좋다. 즉 양극 활물질(100)은 코발트산 리튬, 니켈산 리튬, 코발트의 일부가 망가니즈로 치환된 코발트산 리튬, 코발트의 일부가 니켈로 치환된 코발트산 리튬, 니켈-망가니즈-코발트산 리튬 등, 리튬과 전이 금속을 포함하는 복합 산화물을 가질 수 있다. 전이 금속으로서 코발트에 더하여 니켈을 포함하면, 고전압으로의 충전 상태에서 결정 구조가 더 안정되는 경우가 있어 바람직하다.
양극 활물질(100)이 포함하는 첨가 원소 X로서는 니켈, 코발트, 마그네슘, 칼슘, 염소, 플루오린, 알루미늄, 망가니즈, 타이타늄, 지르코늄, 이트륨, 바나듐, 철, 크로뮴, 나이오븀, 란타넘, 하프늄, 아연, 실리콘, 황, 인, 보론, 및 비소에서 선택되는 하나 이상을 사용하는 것이 바람직하다. 이들 원소가, 양극 활물질(100)이 가지는 결정 구조를 더 안정화시키는 경우가 있다. 즉 양극 활물질(100)은, 마그네슘 및 플루오린을 포함하는 코발트산 리튬, 마그네슘, 플루오린, 및 타이타늄을 포함하는 코발트산 리튬, 마그네슘 및 플루오린을 포함하는 니켈-코발트산 리튬, 마그네슘 및 플루오린을 포함하는 코발트-알루미늄산 리튬, 니켈-코발트-알루미늄산 리튬, 마그네슘 및 플루오린을 포함하는 니켈-코발트-알루미늄산 리튬, 마그네슘 및 플루오린을 포함하는 니켈-망가니즈-코발트산 리튬 등을 가질 수 있다. 또한 본 명세서 등에서 첨가 원소 X를 혼합물, 원료의 일부 등이라고 바꿔 불러도 좋다.
도 5의 (B)에 나타낸 바와 같이, 양극 활물질(100)은 표층부(100a)와, 내부(100b)를 가진다. 표층부(100a)는 내부(100b)보다 첨가 원소 X의 농도가 높은 것이 바람직하다. 또한 도 5의 (B)에 그러데이션으로 나타낸 바와 같이, 첨가 원소 X는 내부로부터 표면을 향하여 높아지는 농도 구배를 가지는 것이 바람직하다. 본 명세서 등에서 표층부(100a)란, 양극 활물질(100)의 표면으로부터 10nm 정도까지의 영역을 말한다. 금 및/또는 크랙에 의하여 발생한 면도 표면이라고 하여도 좋고, 도 5의 (C)에 나타낸 바와 같이 상기 표면으로부터 10nm 정도까지의 영역을 표층부(100c)라고 부른다. 또한 양극 활물질(100)의 표층부(100a) 및 표층부(100c)보다 깊은 영역을 내부(100b)로 한다.
본 발명의 일 형태의 양극 활물질(100)에서는 충전에 의하여 양극 활물질(100)로부터 리튬이 빠져도 코발트와 산소의 팔면체로 이루어지는 층상 구조가 붕괴되지 않도록, 첨가 원소 X의 농도가 높은 표층부(100a), 즉 입자의 외주부가 보강되어 있다.
또한 첨가 원소 X의 농도 구배는, 양극 활물질(100)의 표층부(100a) 전체에 균질하게 존재하는 것이 바람직하다. 이는, 표층부(100a)의 일부가 보강되어 있어도, 보강되지 않는 부분이 존재하면 보강되지 않는 부분에 응력이 집중할 우려가 있어 바람직하지 않기 때문이다. 입자의 일부에 응력이 집중되면 거기서 크랙 등의 결함이 생겨, 양극 활물질의 깨짐 및 충방전 용량의 저하로 이어질 우려가 있다.
마그네슘은 2가이고, 층상 암염형의 결정 구조에서의 전이 금속 자리에 존재하는 경우보다 리튬 자리에 존재하는 경우에 안정되기 때문에, 리튬 자리에 들어가기 쉽다. 마그네슘이 표층부(100a)의 리튬 자리에 적절한 농도로 존재함으로써 층상 암염형의 결정 구조를 유지하기 쉽게 할 수 있다. 또한 마그네슘은 산소와의 결합력이 강하기 때문에, 마그네슘의 주위의 산소가 이탈되는 것을 억제할 수 있다. 마그네슘은 적절한 농도이면 충방전에 따른 리튬의 삽입 및 이탈에 악영향을 미치지 않기 때문에 바람직하다. 그러나 과잉하면 리튬의 삽입 및 이탈에 악영향을 미칠 우려가 있다.
알루미늄은 3가이며, 층상 암염형의 결정 구조에서의 전이 금속 자리에 존재할 수 있다. 알루미늄은 주위의 코발트가 용출되는 것을 억제할 수 있다. 또한 알루미늄은 산소와의 결합력이 강하기 때문에, 알루미늄의 주위의 산소가 이탈되는 것을 억제할 수 있다. 그러므로 첨가 원소 X로서 알루미늄을 가지면, 충방전을 반복하여도 결정 구조가 붕괴되기 어려운 양극 활물질(100)로 할 수 있다.
플루오린은 1가 음이온이고, 표층부(100a)에서 산소의 일부가 플루오린으로 치환되어 있으면 리튬 이탈 에너지가 작아진다. 이는 리튬 이탈에 따른 코발트 이온의 가수의 변화가 플루오린의 유무에 따라 달라지기 때문이고, 예를 들어 플루오린을 가지지 않는 경우에는 3가에서 4가, 플루오린을 가지는 경우에는 2가에서 3가가 되는 바와 같이 코발트 이온의 산화 환원 전위가 다르기 때문이다. 그러므로 양극 활물질(100)의 표층부(100a)에서 산소의 일부가 플루오린으로 치환되어 있으면, 플루오린 근방의 리튬 이온의 이탈 및 삽입이 원활하게 일어나기 쉽다고 할 수 있다. 이로써 이차 전지에 사용하였을 때 충방전 특성, 레이트 특성 등이 향상되므로 바람직하다.
타이타늄 산화물은 초친수성을 가지는 것이 알려져 있다. 그러므로 표층부(100a)에 타이타늄 산화물을 가지는 양극 활물질(100)로 함으로써, 극성이 높은 용매에 대한 젖음성이 높아질 가능성이 있다. 이차 전지에 사용한 경우에 양극 활물질(100)과 극성이 높은 전해액의 계면의 접촉이 양호해져, 저항의 상승을 억제할 수 있을 가능성이 있다. 또한 본 명세서 등에 있어서, 전해액은 액체상의 전해질에 대응한다.
일반적으로, 이차 전지의 충전 전압의 상승에 따라 양극의 전압은 상승된다. 본 발명의 일 형태의 양극 활물질은 높은 전압에서도 안정적인 결정 구조를 가진다. 충전 상태에서 양극 활물질의 결정 구조가 안정되어 있으면, 충방전의 반복에 따른 용량의 저하를 억제할 수 있다.
또한 이차 전지의 단락은 이차 전지의 충전 동작 및/또는 방전 동작에서의 문제를 일으킬 뿐만 아니라, 발열 및 발화를 일으킬 우려가 있다. 안전한 이차 전지를 실현하기 위해서는 높은 충전 전압에서도 단락 전류가 억제되는 것이 바람직하다. 본 발명의 일 형태의 양극 활물질(100)은 높은 충전 전압에서도 단락 전류가 억제된다. 그러므로 높은 용량과 안전성을 양립한 이차 전지로 할 수 있다.
본 발명의 일 형태의 양극 활물질(100)을 사용한 이차 전지는, 바람직하게는 높은 용량, 우수한 충방전 사이클 특성, 및 안전성을 동시에 만족시킨다.
첨가 원소 X의 농도 구배는 예를 들어 에너지 분산형 X선 분광법(EDX: Energy Dispersive X-ray Spectroscopy)을 사용하여 평가할 수 있다. EDX 측정에서, 영역 내를 주사하면서 측정하고, 영역 내를 2차원적으로 평가하는 것을 EDX 면 분석이라고 부르는 경우가 있다. 또한 EDX 면 분석에서 선상(線狀)의 영역의 데이터를 추출하고, 양극 활물질 입자 내에서의 원자 농도의 분포를 평가하는 것을 선 분석이라고 부르는 경우가 있다.
EDX 면 분석(예를 들어 원소 매핑)에 의하여, 양극 활물질(100)의 표층부(100a), 내부(100b), 및 결정립계 근방 등에 있어서의 첨가 원소 X의 농도를 정량적으로 분석할 수 있다. 또한 EDX 선 분석에 의하여 첨가 원소 X의 농도의 분포를 분석할 수 있다.
양극 활물질(100)에 대하여 EDX 선 분석을 수행하였을 때, 표층부(100a)의 마그네슘 농도의 피크(농도가 최대가 되는 위치)는 양극 활물질(100)의 표면으로부터 중심을 향하여 깊이 3nm까지에 존재하는 것이 바람직하고, 깊이 1nm까지에 존재하는 것이 더 바람직하고, 깊이 0.5nm까지에 존재하는 것이 더욱 바람직하다.
또한 양극 활물질(100)이 가지는 플루오린의 분포는 마그네슘의 분포와 중첩되는 것이 바람직하다. 따라서 EDX 선 분석을 수행하였을 때, 표층부(100a)의 플루오린 농도의 피크(농도가 최대가 되는 위치)는 양극 활물질(100)의 표면으로부터 중심을 향하여 깊이 3nm까지에 존재하는 것이 바람직하고, 깊이 1nm까지에 존재하는 것이 더 바람직하고, 깊이 0.5nm까지에 존재하는 것이 더욱 바람직하다.
또한 모든 첨가 원소 X가 같은 농도 분포를 가지지 않아도 된다. 예를 들어, 양극 활물질(100)이 첨가 원소 X로서 알루미늄을 포함하는 경우에는 마그네슘 및 플루오린과 약간 다른 분포가 되어 있는 것이 바람직하다. 예를 들어 EDX 선 분석을 수행하였을 때, 표층부(100a)의 알루미늄 농도의 피크보다 마그네슘 농도의 피크가 표면에 가까운 것이 바람직하다. 예를 들어 알루미늄 농도의 피크는 양극 활물질(100)의 표면으로부터 중심을 향한 깊이 0.5nm 이상 20nm 이하에 존재하는 것이 바람직하고, 깊이 1nm 이상 5nm 이하에 존재하는 것이 더 바람직하다.
또한 양극 활물질(100)에 대하여 EDX 선 분석 또는 EDX 면 분석을 수행하였을 때, 입계 근방에서 전이 금속 M1의 원자수에 대한 첨가 원소 X의 원자수의 비율(X/M1)은 0.020 이상 0.50 이하인 것이 바람직하다. 0.025 이상 0.30 이하인 것이 더 바람직하다. 0.030 이상 0.20 이하인 것이 더욱 바람직하다. 예를 들어 첨가 원소 X가 마그네슘이고 전이 금속 M1이 코발트인 경우에는, 입계 근방에서 코발트의 원자수에 대한 마그네슘의 원자수의 비율(Mg/Co)은 0.020 이상 0.50 이하인 것이 바람직하다. 0.025 이상 0.30 이하인 것이 더 바람직하다. 0.030 이상 0.20 이하인 것이 더욱 바람직하다.
또한 상술한 바와 같이, 양극 활물질(100)이 가지는 첨가 원소는, 과잉하면 리튬의 삽입 및 이탈에 악영향을 미칠 우려가 있다. 또한 이차 전지에 사용하였을 때에 저항의 상승, 용량의 저하 등을 일으킬 우려도 있다. 한편, 첨가물이 부족하면 표층부(100a) 전체에 분포하지 않고, 결정 구조를 유지하는 효과가 불충분해질 우려가 있다. 이와 같이 첨가 원소 X는 양극 활물질(100)에 있어서 적절한 농도가 되도록 조정한다.
그러므로 예를 들어 양극 활물질(100)은 과잉한 첨가 원소 X가 편재하는 영역을 가져도 좋다. 이와 같은 영역이 존재함으로써 과잉한 첨가 원소 X가 그 외의 영역에서 제거되므로, 양극 활물질(100)의 내부 및 표층부의 대부분에서 적절한 첨가 원소 X의 농도로 할 수 있다. 양극 활물질(100)의 내부 및 표층부의 대부분에서 적절한 첨가 원소 X의 농도로 함으로써, 이차 전지로 하였을 때의 저항의 상승, 용량의 저하 등을 억제할 수 있다. 이차 전지의 저항의 상승을 억제할 수 있는 것은, 특히 높은 레이트에서 충방전하는 경우에 매우 바람직한 특성이다.
또한 과잉한 첨가 원소 X가 편재하는 영역을 가지는 양극 활물질(100)에서는, 제작 공정에서 어느 정도 과잉으로 첨가 원소 X를 혼합하는 것이 허용된다. 그러므로 생산에서의 마진이 넓어져 바람직하다.
또한 본 명세서 등에서 편재란, 어떤 원소의 농도가 어떤 영역 A와 어떤 영역 B에서 다른 것을 말한다. 편석, 석출, 불균일, 편중, 농도가 높다 또는 농도가 낮다 등이라고 하여도 좋다.
<결정 구조>
코발트산 리튬(LiCoO2) 등 층상 암염형의 결정 구조를 가지는 재료는 방전 용량이 높아, 이차 전지의 양극 활물질로서 우수한 것이 알려져 있다. 층상 암염형의 결정 구조를 가지는 재료로서 예를 들어 LiM1O2(M1은 Fe, Ni, Co, Mn에서 선택되는 하나 이상)로 나타내어지는 복합 산화물이 있다.
전이 금속 화합물에서의 얀-텔러 효과는 전이 금속의 d궤도의 전자수에 따라, 그 효과의 크기가 다른 것이 알려져 있다.
니켈을 포함하는 화합물에서는 얀-텔러 효과로 인하여 변형이 발생하기 쉬운 경우가 있다. 따라서 LiNiO2에 대하여 고전압으로의 충전, 방전을 수행한 경우, 변형에 기인하는 결정 구조의 붕괴가 발생할 우려가 있다. LiCoO2에서는, 얀-텔러 효과의 영향이 작은 것이 시사되므로 고전압으로의 충전, 방전에 대한 내성이 더 우수한 경우가 있어 바람직하다.
도 6 내지 도 9를 사용하여 양극 활물질에 대하여 설명한다. 도 6 내지 도 9에서는 양극 활물질이 가지는 전이 금속으로서 코발트를 사용하는 경우에 대하여 설명한다.
<종래의 양극 활물질>
도 8에 나타낸 양극 활물질은 할로젠 및 마그네슘이 첨가되지 않는 코발트산 리튬(LiCoO2, LCO)이다. 도 8에 나타낸 코발트산 리튬은 충전 심도에 따라 결정 구조가 변화된다. 바꿔 말하면 LixCoO2라고 표기하는 경우에 있어서, 리튬 자리의 리튬의 점유율 x에 따라 결정 구조가 변화한다.
도 8에 나타낸 바와 같이, x=1의 상태(방전 상태)인 코발트산 리튬은 공간군 R-3m의 결정 구조를 가지는 영역을 가지고, 단위 격자(unit cell) 중에 CoO2층이 3층 존재한다. 그러므로 이 결정 구조를 O3형 결정 구조라고 하는 경우가 있다. 또한 CoO2층이란 코발트에 산소가 6배위한 팔면체 구조가 모서리 공유 상태로 평면 방향으로 연속한 구조를 말한다.
또한 x=0일 때는 공간군 P-3m1의 결정 구조를 가지고, 단위 격자 내에 CoO2층이 1층 존재한다. 그러므로 이 결정 구조를 O1형 결정 구조라고 하는 경우가 있다.
또한 x=0.12 정도일 때의 코발트산 리튬은 공간군 R-3m의 결정 구조를 가진다. 이 구조는, P-3m1(O1)과 같은 CoO2 구조와 R-3m(O3)과 같은 LiCoO2 구조가 교대로 적층된 구조라고도 할 수 있다. 따라서 이 결정 구조를 H1-3형 결정 구조라고 하는 경우가 있다. 실제로는 리튬의 삽입·이탈은 불균일하게 일어날 수 있기 때문에 실험에서는 x=0.25 정도부터 H1-3형 결정 구조가 관측된다. 또한 실제로는 H1-3형 결정 구조는 단위 격자당 코발트 원자의 수가 다른 구조의 2배이다. 다만 도 8을 비롯하여 본 명세서에서는 다른 구조와 비교하기 쉽게 하기 위하여 H1-3형 결정 구조의 c축을 단위 격자의 2분의 1로 한 도면으로 나타내었다.
H1-3형 결정 구조는 일례로서, 단위 격자에서의 코발트와 산소의 좌표를 Co(0, 0, 0.42150±0.00016), O1(0, 0, 0.27671±0.00045), O2(0, 0, 0.11535±0.00045)로 나타낼 수 있다. O1 및 O2는 각각 산소 원자이다. 이와 같이, H1-3형 결정 구조는 하나의 코발트 및 2개의 산소를 사용한 단위 격자로 나타내어진다. 한편 후술하는 바와 같이, 본 발명의 일 형태의 O3'형 결정 구조는 하나의 코발트 및 하나의 산소를 사용한 단위 격자로 나타내어지는 것이 바람직하다. 이는 O3'형 결정 구조와 H1-3형 구조 사이에서 코발트와 산소의 대칭성이 다르고, O3 구조에서의 변화가 H1-3형 구조보다 O3'형 결정 구조에서 더 작은 것을 나타낸다. 양극 활물질이 가지는 결정 구조를 어느 단위 격자를 사용하여 나타내는 것이 더 바람직한지의 선택은 예를 들어 XRD 패턴의 리트벨트 해석에서 GOF(goodness of fit)의 값이 더 작아지도록 선택하는 것이 좋다.
리튬 금속의 산화 환원 전위를 기준으로 하여 충전 전압이 4.6V 이상이 될 정도로 높은 전압으로의 충전, 또는 x=0.24 이하가 될 정도로 깊은 심도의 충전과, 방전을 반복하면, 코발트산 리튬은 H1-3형 결정 구조와 방전 상태의 R-3m(O3) 구조 사이에서 결정 구조의 변화(즉 비평형(非平衡)적인 상(相)변화)를 반복하게 된다.
그러나 이들 2개의 결정 구조 사이에서는 CoO2층의 위치에 큰 차이가 있다. 도 8에서 점선 및 화살표로 나타낸 바와 같이, H1-3형 결정 구조에서는 CoO2층이 R-3m(O3)에서 크게 어긋나 있다. 이러한 큰 구조 변화는 결정 구조의 안정성에 악영향을 미칠 수 있다.
게다가 부피 차이도 크다. 같은 수의 코발트 원자당으로 비교하였을 때, H1-3형 결정 구조와 방전 상태의 O3형 결정 구조의 부피 차이는 3.0% 이상이다.
또한 H1-3형 결정 구조가 가지는, P-3m1(O1) 등 CoO2층이 연속한 구조는 불안정한 가능성이 높다.
따라서 고전압으로의 충전, 방전을 반복하면 코발트산 리튬의 결정 구조는 붕괴된다. 결정 구조의 붕괴가 사이클 특성의 악화를 일으킨다. 이는, 결정 구조가 붕괴됨으로써 리튬이 안정적으로 존재할 수 있는 자리가 감소하고, 또한 리튬의 삽입·이탈이 어려워지기 때문이라고 생각된다.
<본 발명의 일 형태의 양극 활물질>
<내부>
본 발명의 일 형태의 양극 활물질(100)은 고전압으로의 충전, 방전의 반복에서, CoO2층들의 어긋남을 작게 할 수 있다. 또한 부피 변화를 작게 할 수 있다. 따라서 본 발명의 일 형태의 양극 활물질은 우수한 사이클 특성을 실현할 수 있다. 또한 본 발명의 일 형태의 양극 활물질은 고전압의 충전 상태에서 안정적인 결정 구조를 가질 수 있다. 따라서 본 발명의 일 형태의 양극 활물질은 고전압의 충전 상태를 유지한 경우에서, 단락이 발생되기 어려운 경우가 있다. 이러한 경우에는 안전성이 더 향상되기 때문에 바람직하다.
본 발명의 일 형태의 양극 활물질에서는, 충분히 방전된 상태와 고전압으로 충전된 상태에서, 결정 구조의 변화 및 동수의 전이 금속 원자당으로 비교한 경우의 체적의 차이가 작다.
양극 활물질(100)의 충방전 전후의 결정 구조를 도 6에 나타내었다. 양극 활물질(100)은 리튬과, 전이 금속으로서의 코발트와, 산소를 포함하는 복합 산화물이다. 상기에 더하여, 첨가 원소 X로서 마그네슘을 포함하는 것이 바람직하다. 또한 첨가 원소 X로서 플루오린, 염소 등의 할로젠을 더 포함하는 것이 바람직하다.
도 6의 x=1(방전 상태)의 결정 구조는 도 8과 같은 R-3m(O3)이다. 한편, 본 발명의 일 형태의 양극 활물질(100)은, 충분히 충전된 충전 상태인 경우, H1-3형 결정 구조와는 다른 구조의 결정을 가진다. 본 구조는 공간군 R-3m에 속하고, 코발트, 마그네슘 등의 이온이 산소 6배위 위치를 차지한다. 또한 본 구조의 CoO2층의 대칭성은 O3형과 같다. 따라서 본 구조를 본 명세서 등에서는 O3'형의 결정 구조라고 부른다. 또한 O3'형 결정 구조를 나타낸 도 6에서는 코발트 원자의 대칭성과 산소 원자의 대칭성을 설명하기 위하여 리튬의 표시를 생략하였지만, 실제로는 CoO2층들 간에, 코발트에 대하여 예를 들어 20atomic% 이하의 리튬이 존재한다. 또한 O3형 결정 구조 및 O3'형 결정 구조는 둘 다, CoO2층들 간, 즉 리튬 자리에 마그네슘이 희박하게 존재하는 것이 바람직하다. 또한 산소 자리에 플루오린 등의 할로젠이 랜덤으로 또한 희박하게 존재하는 것이 바람직하다.
또한 O3'형 결정 구조에서는 리튬 등의 경원소는 산소 4배위 위치를 차지하는 경우가 있을 수 있다.
또한 O3'형 결정 구조는 층간에 리튬을 랜덤으로 가지지만 CdCl2형의 결정 구조와 유사한 결정 구조라고도 할 수 있다. 이 CdCl2형과 유사한 결정 구조는 니켈산 리튬을 x=0.06까지 충전하였을 때(Li0.06NiO2)의 결정 구조와 가깝지만, 순수한 코발트산 리튬, 또는 코발트를 많이 포함하는 층상 암염형 양극 활물질은 일반적으로 이러한 결정 구조를 가지지 않는 것이 알려져 있다.
본 발명의 일 형태의 양극 활물질(100)에서는, 고전압으로 충전되어 대량의 리튬이 이탈되었을 때의 결정 구조의 변화가 종래의 양극 활물질보다 억제된다. 예를 들어 도 6에서 점선으로 나타낸 바와 같이, 이 결정 구조들 사이에서는 CoO2층들의 어긋남이 거의 없다.
더 자세하게 설명하면, 본 발명의 일 형태의 양극 활물질(100)은 충전 전압이 높은 경우에도 구조의 안정성이 높다. 예를 들어 종래의 양극 활물질에서는 H1-3형 결정 구조가 되는 충전 전압, 예를 들어 리튬 금속의 전위를 기준으로 하여 4.6V 정도의 전압에서도 R-3m(O3)의 결정 구조를 유지할 수 있는 충전 전압의 영역이 존재하고, 충전 전압을 더 높인 영역, 예를 들어 리튬 금속의 전위를 기준으로 하여 4.65V 내지 4.7V 정도의 전압에서도 O3'형 결정 구조를 가질 수 있는 영역이 존재한다. 충전 전압을 더욱 높이면 마침내 H1-3형 결정이 관측되는 경우가 있다. 또한 이차 전지에서, 음극 활물질로서 예를 들어 흑연을 사용하는 경우에는, 예를 들어 이차 전지의 전압이 4.3V 이상 4.5V 이하에서도 R-3m(O3)의 결정 구조를 유지할 수 있는 충전 전압의 영역이 존재하고, 충전 전압을 더 높인 영역, 예를 들어 리튬 금속의 전위를 기준으로 하여 4.35V 이상 4.55V 이하에서도 O3'형 결정 구조를 가질 수 있는 영역이 존재한다.
그러므로 본 발명의 일 형태의 양극 활물질(100)에서는 고전압으로의 충전, 방전을 반복하여도 결정 구조가 무너지기 어렵다.
또한 양극 활물질(100)에서, x=1의 O3형 결정 구조와 x=0.2의 O3'형 결정 구조의 단위 격자당 체적의 차이는 2.5% 이하, 더 자세하게는 2.2% 이하이다.
또한 O3'형 결정 구조는 단위 격자에서의 코발트와 산소의 좌표를 Co(0, 0, 0.5), O(0, 0, x), 0.20≤x≤0.25의 범위 내로 나타낼 수 있다.
CoO2층들 간, 즉 리튬 자리에 랜덤하며 희박하게 존재하는 첨가 원소 X, 예를 들어 마그네슘에는 CoO2층들의 어긋남을 저감할 수 있는 효과가 있다. 그러므로 CoO2층들 간에 마그네슘이 존재하면 O3'형 결정 구조가 되기 쉽다. 그러므로 마그네슘은 본 발명의 일 형태의 양극 활물질(100)의 적어도 일부의 표층부에 분포되어 있고, 또한 양극 활물질(100)의 표층부의 전체에 분포되어 있는 것이 바람직하다. 또한 마그네슘을 양극 활물질(100)의 표층부의 전체에 분포시키기 위하여 본 발명의 일 형태의 양극 활물질(100)의 제작 공정에서 가열 처리를 수행하는 것이 바람직하다.
그러나 가열 처리의 온도가 지나치게 높으면 양이온 혼합(cation mixing)이 일어나 첨가 원소 X, 예를 들어 마그네슘이 코발트 자리에 들어갈 가능성이 높아진다. 코발트 자리에 존재하는 마그네슘은 고전압 충전 상태에 있어서 R-3m의 구조를 유지하는 효과가 없다. 또한 가열 처리의 온도가 지나치게 높으면 코발트가 환원되어 2가가 되거나, 리튬이 증발된다는 등의 악영향도 우려된다.
그러므로 양극 활물질(100)의 표층부 전체에 마그네슘을 분포시키기 위한 가열 처리 전에, 플루오린 화합물 등의 할로젠 화합물을 코발트산 리튬에 첨가하는 것이 바람직하다. 할로젠 화합물을 첨가함으로써 코발트산 리튬의 융점 강하가 일어난다. 융점 강하가 일어나면, 양이온 혼합이 일어나기 어려운 온도에서 양극 활물질(100)의 표층부 전체에 마그네슘을 분포시키는 것이 용이해진다. 또한 플루오린 화합물이 존재하면, 전해액이 분해되어 생긴 플루오린화 수소산에 대한 내식성이 향상되는 것을 기대할 수 있다.
또한 마그네슘 농도를 원하는 값 이상으로 높게 하면, 결정 구조의 안정화의 효과가 감소되는 경우가 있다. 이것은 마그네슘이 리튬 자리뿐만 아니라 코발트 자리에도 들어가게 되기 때문이라고 생각된다. 본 발명의 일 형태의 양극 활물질이 가지는 마그네슘의 원자수는 코발트 등의 전이 금속의 원자수의 0.001배 이상 0.1배 이하가 바람직하고, 0.01배보다 크고 0.04배 미만이 더 바람직하고, 0.02배 정도가 더욱 바람직하다. 여기서 나타내는 마그네슘의 농도는 예를 들어 ICP-MS 등을 사용하여 양극 활물질(100) 전체에 대하여 원소 분석을 실시하여 얻은 값이어도 좋고, 양극 활물질의 제작 과정에서의 원료의 배합의 값에 기초한 것이어도 좋다.
코발트산 리튬에 코발트 이외의 금속(이하 첨가 원소 X)으로서 예를 들어 니켈, 알루미늄, 망가니즈, 타이타늄, 바나듐, 및 크로뮴에서 선택되는 하나 이상의 금속을 첨가하여도 좋고, 특히 니켈 및 알루미늄 중 하나 이상을 첨가하는 것이 바람직하다. 망가니즈, 타이타늄, 바나듐, 및 크로뮴은 4가일 때 안정되는 경우가 있고, 구조 안정화에 크게 기여하는 경우가 있다. 첨가 원소 X를 첨가함으로써 고전압으로의 충전 상태에서 결정 구조가 더 안정되는 경우가 있다. 여기서 본 발명의 일 형태의 양극 활물질에 있어서, 첨가 원소 X는 코발트산 리튬의 결정성을 크게 바꾸지 않는 농도로 첨가되는 것이 바람직하다. 예를 들어 상술한 얀-텔러 효과 등이 발현되지 않을 정도의 양인 것이 바람직하다.
니켈, 망가니즈를 비롯한 전이 금속 및 알루미늄은 코발트 자리에 존재하는 것이 바람직하지만, 일부가 리튬 자리에 존재하여도 좋다. 또한 마그네슘은 리튬 자리에 존재하는 것이 바람직하다. 산소는 일부가 플루오린과 치환되어도 좋다.
본 발명의 일 형태의 양극 활물질의 마그네슘 농도가 높아질수록 양극 활물질의 용량이 감소되는 경우가 있다. 그 요인의 예로서는, 리튬 자리에 마그네슘이 들어감으로써 충방전에 기여하는 리튬의 양이 감소되는 것을 들 수 있다. 본 발명의 일 형태의 양극 활물질이 첨가 원소 X로서 마그네슘에 더하여 니켈을 포함함으로써 충방전 사이클 특성을 높일 수 있는 경우가 있다. 또한 본 발명의 일 형태의 양극 활물질이 첨가 원소 X로서 마그네슘에 더하여 알루미늄을 포함함으로써 충방전 사이클 특성을 높일 수 있는 경우가 있다. 또한 첨가 원소 X로서 마그네슘, 니켈, 및 알루미늄을 포함하는 본 발명의 일 형태의 양극 활물질로 함으로써 충방전 사이클 특성을 높일 수 있는 경우가 있다.
이하에서, 첨가 원소 X로서 마그네슘, 니켈, 및 알루미늄을 포함하는 본 발명의 일 형태의 양극 활물질의 원소의 농도를 검토한다.
본 발명의 일 형태의 양극 활물질에 포함되는 니켈의 원자수는 코발트의 원자수의 10% 이하가 바람직하고, 7.5% 이하가 더 바람직하고, 0.05% 이상 4% 이하가 더욱 바람직하고, 0.1% 이상 2% 이하가 특히 바람직하다. 여기서 나타내는 니켈의 농도는 예를 들어 ICP-MS 등을 사용하여 양극 활물질의 전체를 원소 분석하여 얻은 값이어도 좋고, 양극 활물질의 제작 과정에서의 원료의 배합의 값에 기초하여도 좋다.
고전압으로 충전된 상태를 장시간 유지하면, 양극 활물질의 구성 원소가 전해액에 용출되어 결정 구조가 붕괴될 우려가 생긴다. 그러나 상기 비율로 니켈을 포함함으로써, 양극 활물질(100)로부터의 구성 원소의 용출을 억제할 수 있는 경우가 있다.
본 발명의 일 형태의 양극 활물질에 포함되는 알루미늄의 원자수는 코발트의 원자수의 0.05% 이상 4% 이하가 바람직하고, 0.1% 이상 2% 이하가 더 바람직하다. 여기서 나타내는 알루미늄 농도는, 예를 들어 ICP-MS 등을 사용하여 양극 활물질 전체를 원소 분석하여 얻은 값이어도 좋고, 양극 활물질의 제작 과정에서의 원료의 배합의 값에 기초하여도 좋다.
또한 본 발명의 일 형태의 첨가 원소 X를 포함하는 양극 활물질은 첨가 원소 X로서 인을 사용하는 것이 바람직하다. 또한 본 발명의 일 형태의 양극 활물질은 인과 산소를 포함하는 화합물을 가지는 것이 더 바람직하다.
본 발명의 일 형태의 양극 활물질이 첨가 원소 X로서 인을 포함하는 화합물을 가짐으로써 고온이며 고전압인 충전 상태를 장시간 유지한 경우에 있어서, 단락이 발생되기 어려운 경우가 있다.
본 발명의 일 형태의 양극 활물질이 첨가 원소 X로서 인을 가지는 경우에는 전해액의 분해에 의하여 발생한 플루오린화 수소와 인이 반응하여 전해액 중의 플루오린화 수소 농도가 저하될 가능성이 있다.
전해액이 리튬염으로서 LiPF6을 포함하는 경우, 가수 분해에 의하여 플루오린화 수소가 발생하는 경우가 있다. 또한 양극의 구성 요소로서 사용되는 PVDF와 알칼리의 반응에 의하여 플루오린화 수소가 발생하는 경우도 있다. 전해액 내의 플루오린화 수소 농도가 저하됨으로써, 집전체의 부식 및/또는 피막의 벗겨짐을 억제할 수 있는 경우가 있다. 또한 PVDF의 겔화 및/또는 불용화로 인한 접착성의 저하를 억제할 수 있는 경우가 있다.
본 발명의 일 형태의 양극 활물질(100)이 첨가 원소 X로서 인 및 마그네슘을 포함하는 경우, 고전압의 충전 상태에서의 안정성이 매우 높다. 첨가 원소 X로서 인 및 마그네슘을 포함하는 경우, 인의 원자수는 코발트의 원자수의 1% 이상 20% 이하가 바람직하고, 2% 이상 10% 이하가 더 바람직하고, 3% 이상 8% 이하가 더욱 바람직하고, 또한 마그네슘의 원자수는 코발트의 원자수의 0.1% 이상 10% 이하가 바람직하고, 0.5% 이상 5% 이하가 더 바람직하고, 0.7% 이상 4% 이하가 더욱 바람직하다. 여기서 나타내는 인 및 마그네슘의 농도는, 예를 들어 ICP-MS 등을 사용하여 양극 활물질(100)의 전체를 원소 분석하여 얻은 값이어도 좋고, 양극 활물질(100)의 제작 과정에서의 원료의 배합의 값에 기초하여도 좋다.
양극 활물질(100)이 크랙을 가지는 경우, 그 내부에 인, 더 구체적으로는 예를 들어 인과 산소를 포함한 화합물이 존재함으로써 크랙의 진행이 억제되는 경우가 있다.
또한 도 6에 나타낸 바와 같이, O3형 결정 구조와 O3'형 결정 구조에서는 산소 원자의 대칭성이 약간 다르다. 구체적으로는, O3형 결정 구조에서는 산소 원자가 점선을 따라 정렬되어 있는 반면, O3'형 결정 구조에서는 산소 원자는 엄밀하게 정렬되어 있지는 않다. 이는, O3'형 결정 구조에서는 리튬의 감소에 따라 4가의 코발트가 증가되고 얀-텔러의 변형이 커져 CoO6의 팔면체 구조가 변형되었기 때문이다. 또한 리튬의 감소에 따라 CoO2층의 산소들 사이의 반발이 강해진 것도 영향을 미친다.
<표층부(100a)>
마그네슘은 본 발명의 일 형태의 양극 활물질(100)의 표층부(100a)의 전체에 분포되는 것이 바람직하고, 이에 더하여 표층부(100a)의 마그네슘 농도가 전체의 평균보다 높은 것이 바람직하다. 예를 들어 XPS 등으로 측정되는 표층부(100a)의 마그네슘 농도가 ICP-MS 등으로 측정되는 전체의 평균의 마그네슘 농도보다 높은 것이 바람직하다.
또한 본 발명의 일 형태의 양극 활물질(100)이 코발트 이외의 원소, 예를 들어 니켈, 알루미늄, 망가니즈, 철, 및 크로뮴에서 선택되는 하나 이상의 금속을 포함하는 경우에는, 상기 금속의 입자 표면 근방에서의 농도가 전체의 평균보다 높은 것이 바람직하다. 예를 들어 XPS 등으로 측정되는 표층부(100a)의 코발트 이외의 원소의 농도가 ICP-MS 등으로 측정되는 입자 전체에서의 상기 원소의 농도보다 높은 것이 바람직하다.
양극 활물질(100)의 표층부(100a)는 이를테면 전체가 결정 결함이고, 게다가 충전 시에는 표면에서 리튬이 빠져나가기 때문에 내부보다 리튬 농도가 낮아지기 쉬운 부분이다. 그러므로 불안정해지기 쉬워 결정 구조가 붕괴되기 쉽다. 표층부(100a)의 마그네슘 농도가 높으면, 결정 구조의 변화를 더 효과적으로 억제할 수 있다. 또한 표층부(100a)의 마그네슘 농도가 높으면, 전해액이 분해되어 생긴 플루오린화 수소산에 대한 내식성이 향상되는 것도 기대할 수 있다.
또한 플루오린 등의 할로젠도, 본 발명의 일 형태의 양극 활물질(100)의 표층부(100a)에서의 농도가 전체의 평균보다 높은 것이 바람직하다. 전해액과 접한 영역인 표층부(100a)에 할로젠이 존재함으로써, 플루오린화 수소산에 대한 내식성을 효과적으로 향상시킬 수 있다.
상술한 바와 같이 본 발명의 일 형태의 양극 활물질(100)의 표층부(100a)는 첨가 원소, 예를 들어 마그네슘 및 플루오린의 농도가 내부(100b)보다 높은, 내부(100b)와 다른 조성인 것이 바람직하다. 또한 그 조성으로서 상온에서 안정적인 결정 구조를 가지는 것이 바람직하다. 그러므로 표층부(100a)는 내부(100b)와 다른 결정 구조를 가져도 좋다. 예를 들어 본 발명의 일 형태의 양극 활물질(100)의 표층부(100a) 중 적어도 일부가 암염형의 결정 구조를 가져도 좋다. 또한 표층부(100a)와 내부(100b)가 다른 결정 구조를 가지는 경우, 표층부(100a)와 내부(100b)의 결정 배향이 실질적으로 일치하는 것이 바람직하다.
층상 암염형 결정 및 암염형 결정의 음이온은 입방 최조밀 쌓임 구조(면심 입방 격자 구조)를 가진다. O3'형 결정도 음이온은 입방 최조밀 쌓임 구조를 가진다고 추정된다. 또한 본 명세서 등에서는, 음이온이 ABCABC와 같이 3층이 서로 어긋난 상태로 쌓이는 구조이면, 입방 최조밀 쌓임 구조라고 부른다. 그러므로 음이온은 엄밀한 입방 격자가 아니어도 된다. 또한 결정은 현실에서는 반드시 결함을 가지기 때문에, 분석 결과가 반드시 이론과 같지 않아도 된다. 예를 들어 전자 회절 또는 TEM 이미지 등의 FFT(고속 푸리에 변환)에서, 이론상의 위치와 약간 다른 위치에 스폿이 나타나도 좋다. 예를 들어 이론상의 위치와의 방위 차이가 5° 이하 또는 2.5° 이하이면 입방 최조밀 쌓임 구조를 가진다고 하여도 좋다.
층상 암염형 결정과 암염형 결정이 접할 때, 음이온으로 구성되는 입방 최조밀 쌓임 구조의 방향이 일치하는 결정면이 존재한다.
또는 다음과 같이 설명할 수도 있다. 입방정의 결정 구조의 (111)면에서의 음이온은 삼각형 배열을 가진다. 층상 암염형은 공간군 R-3m이고 능면체 구조이지만, 구조를 이해하기 쉽게 하기 위하여 일반적으로 복합 육방 격자로 표현되고, 층상 암염형의 (0001)면은 육각 격자를 가진다. 입방정 (111)의 삼각 격자는 층상 암염형의 (0001)면의 육각 격자와 같은 원자 배열을 가진다. 양쪽의 격자가 정합성을 가지는 것을 입방 최조밀 쌓임 구조의 방향이 일치한다고 할 수 있다.
다만 층상 암염형 결정 및 O3'형 결정의 공간군은 R-3m이고, 암염형 결정의 공간군 Fm-3m(일반적인 암염형 결정의 공간군) 및 Fd-3m(가장 단순한 대칭성을 가지는 암염형 결정의 공간군)과 다르기 때문에, 상기 조건을 만족시키는 결정면의 밀러 지수는 층상 암염형 결정 및 O3'형 결정과 암염형 결정 사이에서 다르다. 본 명세서에서는 층상 암염형 결정, O3'형 결정, 및 암염형 결정에서, 음이온으로 구성되는 입방 최조밀 쌓임 구조의 방향이 일치하는 상태를, 결정 배향이 실질적으로 일치한다고 하는 경우가 있다.
2개의 영역의 결정 배향이 실질적으로 일치하는지에 대해서는, TEM(transmission electron microscope) 이미지, STEM(scanning transmission electron microscope) 이미지, HAADF-STEM(high-angle annular dark-field scanning transmission electron microscope) 이미지, ABF-STEM(annular bright-field scanning transmission electron microscope) 이미지, 전자 회절, TEM 이미지 등의 FFT 등으로부터 판단할 수 있다. X선 회절(XRD), 중성자 회절 등도 판단의 재료로 할 수 있다.
<입계>
본 발명의 일 형태의 양극 활물질(100)이 가지는 첨가 원소 X는 내부에 불균일하며 희박하게 존재하여도 좋지만, 일부는 입계에 편석되어 있는 것이 더 바람직하다.
바꿔 말하면 본 발명의 일 형태의 양극 활물질(100)의 결정립계 및 그 근방의 첨가 원소 X의 농도도 내부의 다른 영역보다 높은 것이 바람직하다.
결정립계는 면 결함으로 간주할 수 있다. 그러므로 입자 표면과 마찬가지로 불안정해지기 쉬워 결정 구조의 변화가 시작되기 쉽다. 그러므로 결정립계 및 그 근방의 첨가 원소 X의 농도가 높으면 결정 구조의 변화를 더 효과적으로 억제할 수 있다.
또한 결정립계 및 그 근방의 첨가 원소 X의 농도가 높은 경우, 본 발명의 일 형태의 양극 활물질(100)의 입자의 결정립계를 따라 크랙이 생긴 경우에도, 크랙에 의하여 생긴 표면 근방에서 첨가 원소 X의 농도가 높아진다. 따라서 크랙이 생긴 후의 양극 활물질도 플루오린화 수소산에 대한 내식성을 높일 수 있다.
또한 본 명세서 등에 있어서, 결정립계의 근방이란, 입계로부터 10nm 정도까지의 영역을 말한다.
<입경>
본 발명의 일 형태의 양극 활물질(100)의 입경이 지나치게 크면 리튬의 확산이 어려워지거나 집전체에 코팅된 경우에 활물질층의 표면이 지나치게 거칠어진다는 등의 문제가 있다. 한편, 지나치게 작으면 집전체에 코팅되었을 때 활물질층을 담지(擔持)하기 어려워지거나 전해액과의 반응이 과도하게 진행된다는 등의 문제도 생긴다. 그러므로 평균 입경 D50이 1μm 이상 100μm 이하인 것이 바람직하고, 2μm 이상 40μm 이하인 것이 더 바람직하고, 5μm 이상 30μm 이하인 것이 더욱 바람직하다.
<분석 방법>
어떤 양극 활물질이 고전압으로 충전되었을 때 O3'형 결정 구조를 가지는 본 발명의 일 형태의 양극 활물질(100)인지 여부는, 고전압으로 충전된 양극을 XRD, 전자 회절, 중성자 회절, 전자 스핀 공명(ESR), 핵자기 공명(NMR) 등을 사용하여 해석함으로써 판단할 수 있다. 특히 XRD는, 양극 활물질에 포함되는 코발트 등의 전이 금속의 대칭성을 고분해능으로 해석할 수 있거나, 결정성의 정도 및 결정의 배향성을 비교할 수 있거나, 격자의 주기성의 변형 및 결정자 크기를 해석할 수 있거나, 이차 전지를 해체하여 얻은 양극을 그대로 측정하여도 충분한 정확도를 얻을 수 있다는 등의 점에서 바람직하다.
본 발명의 일 형태의 양극 활물질(100)은 상술한 바와 같이, 고전압으로 충전한 상태와 방전 상태 사이에서 체적 및 결정 구조의 변화가 적다는 특징을 가진다. 고전압에서 충전된 상태와 방전 상태 사이의 변화가 큰 결정 구조가 50wt% 이상을 차지하는 재료는 고전압으로의 충전, 방전에 견딜 수 없기 때문에 바람직하지 않다. 그리고 첨가 원소를 첨가하는 것만으로는 목적하는 결정 구조를 가지지 않는 경우가 있다는 점에 주의하여야 한다. 예를 들어 마그네슘 및 플루오린을 포함하는 코발트산 리튬이라는 점이 공통되어도, 고전압으로 충전된 상태에서, O3'형 결정 구조가 60wt% 이상을 차지하는 경우와, H1-3형 결정 구조가 50wt% 이상을 차지하는 경우가 있다. 또한 소정의 전압에서는 O3'형 결정 구조가 거의 100wt%가 되고, 상기 소정의 전압을 더 높이면 H1-3형 결정 구조가 생기는 경우도 있다. 따라서 본 발명의 일 형태의 양극 활물질(100)인지 여부를 판단하기 위해서는 XRD를 비롯한 결정 구조에 대한 해석이 필요하다.
다만 고전압에서 충전된 상태 또는 방전 상태의 양극 활물질은 대기에 노출되면 결정 구조의 변화를 일으키는 경우가 있다. 예를 들어 O3'형 결정 구조에서 H1-3형 결정 구조로 변화되는 경우가 있다. 따라서 시료는 모두 아르곤 분위기 등의 불활성 분위기에서 취급하는 것이 바람직하다.
<충전 방법>
어떤 복합 산화물이 본 발명의 일 형태의 양극 활물질(100)인지 여부를 판단하기 위한 고전압 충전은 예를 들어 상대 전극이 리튬인 코인 셀(CR2032형, 직경 20mm 높이 3.2mm)을 제작하여 충전할 수 있다.
더 구체적으로는, 양극에는 양극 활물질, 도전재, 및 바인더를 혼합한 슬러리를 알루미늄박의 양극 집전체에 코팅한 것을 사용할 수 있다.
상대 전극에는 리튬 금속을 사용할 수 있다. 또한 상대 전극에 리튬 금속 이외의 재료를 사용하였을 때는 이차 전지의 전위와 양극의 전위가 달라진다. 본 명세서 등에서 전압 및 전위는 특별히 언급하지 않은 한 양극의 전위이다.
전해액이 가지는 전해질로서는 1mol/L의 육플루오린화 인산 리튬(LiPF6)을 사용하고, 전해액으로서는 에틸렌카보네이트(EC)와 다이에틸카보네이트(DEC)가 EC:DEC=3:7(체적비)로, 바이닐렌카보네이트(VC)가 2wt%로 혼합된 것을 사용할 수 있다.
세퍼레이터로서는 두께가 25μm인 폴리프로필렌을 사용할 수 있다.
양극 캔 및 음극 캔으로서는 스테인리스(SUS)로 형성된 것을 사용할 수 있다.
상기 조건으로 제작한 코인 셀을 4.6V, 0.5C로 정전류 충전한 다음, 전류값이 0.01C가 될 때까지 정전압 충전한다. 또한 여기서는 1C는 137mA/g으로 한다. 온도는 25℃로 한다. 이러한 식으로 충전한 후에, 코인 셀을 아르곤 분위기의 글로브 박스 내에서 해체하고 양극을 꺼내면, 고전압으로 충전된 양극 활물질을 얻을 수 있다. 나중에 각종 분석을 수행하는 경우에, 외부 성분과의 반응을 억제하기 위하여, 아르곤 분위기에서 밀봉하는 것이 바람직하다. 예를 들어 XRD는 아르곤 분위기의 밀폐 용기 내에 봉입하여 수행할 수 있다.
<XRD>
O3'형 결정 구조와 H1-3형 결정 구조의 모델에서 계산되는, CuKα1선을 사용한 이상적인 분말 XRD 패턴을 도 7 및 도 9에 나타내었다. 또한 비교를 위하여, x=1일 때의 LiCoO2(O3)과 x=0일 때의 CoO2(O1)의 결정 구조에서 계산되는 이상적인 XRD 패턴도 나타내었다. 또한 LiCoO2(O3) 및 CoO2(O1)의 패턴은 ICSD(Inorganic Crystal Structure Database)에서 입수한 결정 구조 정보에서, Materials Studio(BIOVIA)의 모듈 중 하나인 Reflex Powder Diffraction을 사용하여 작성하였다. 2θ의 범위를 15° 내지 75°로, Step size=0.01로, 파장 λ1=1.540562Х10-10m로 하였고, λ2는 설정하지 않았고, 싱글 모노크로메이터를 사용하였다. O3'형 결정 구조의 패턴은 본 발명의 일 형태의 양극 활물질의 XRD 패턴으로부터 결정 구조를 추정하고, TOPAS ver.3(Bruker Corporation 제조의 결정 구조 해석 소프트웨어)을 사용하여 피팅하고 다른 구조와 같은 식으로 XRD 패턴을 작성하였다.
도 7에 나타낸 바와 같이, O3'형 결정 구조에서는 2θ=19.30±0.20°(19.10° 이상 19.50° 이하) 및 2θ=45.55±0.10°(45.45° 이상 45.65° 이하)에 회절 피크가 출현한다. 보다 자세하게는 2θ=19.30±0.10°(19.20° 이상 19.40° 이하) 및 2θ=45.55±0.05°(45.50° 이상 45.60° 이하)에 날카로운 회절 피크가 출현한다. 그러나 도 9에 나타낸 바와 같이, H1-3형 결정 구조 및 CoO2(P-3m1, O1)에서는 이들 위치에 피크가 출현하지 않는다. 그러므로 고전압으로 충전된 상태에서 2θ=19.30±0.20° 및 2θ=45.55±0.10°의 피크가 출현한다는 것은 본 발명의 일 형태의 양극 활물질(100)의 특징이라고 할 수 있다.
이는, x=1의 결정 구조와 고전압 충전 상태의 결정 구조는 XRD의 회절 피크가 출현하는 위치가 가깝다고도 할 수 있다. 더 구체적으로는, 양자의 주된 회절 피크 중 2개 이상, 바람직하게는 3개 이상에서, 피크가 출현하는 위치의 차이가 2θ=0.7° 이하, 바람직하게는 2θ=0.5° 이하라고 할 수 있다.
또한 본 발명의 일 형태의 양극 활물질(100)은 고전압으로 충전하였을 때 O3'형 결정 구조를 가지지만, 양극 활물질(100) 전체가 O3'형 결정 구조일 필요는 없다. 다른 결정 구조를 포함하여도 좋고, 일부가 비정질이어도 좋다. 다만 XRD 패턴에 대하여 리트벨트 해석을 수행하였을 때, O3'형 결정 구조가 50wt% 이상인 것이 바람직하고, 60wt% 이상인 것이 더 바람직하고, 66wt% 이상인 것이 더욱 바람직하다. O3'형 결정 구조가 50wt% 이상, 바람직하게는 60wt% 이상, 더 바람직하게는 66wt% 이상이면 사이클 특성이 충분히 우수한 양극 활물질로 할 수 있다.
또한 측정을 시작해서 100사이클 이상의 충방전을 거쳐도, 리트벨트 해석을 수행하였을 때 O3'형 결정 구조가 35wt% 이상인 것이 바람직하고, 40wt% 이상인 것이 더 바람직하고, 43wt% 이상인 것이 더욱 바람직하다.
또한 양극 활물질의 입자가 가지는 O3'형 결정 구조의 결정자 크기는 방전 상태의 LiCoO2(O3)의 10분의 1 정도까지만 저하된다. 따라서 충방전 전의 양극과 같은 XRD 측정 조건이더라도, 고전압 충전 상태에서 O3'형 결정 구조의 명확한 피크가 확인될 수 있다. 한편 단순한 LiCoO2에서는, 일부가 O3'형 결정 구조와 비슷한 구조를 가질 수 있더라도, 결정자 크기가 작아지고 피크는 넓고 작아진다. 결정자 크기는 XRD 피크의 반치 폭에서 구할 수 있다.
본 발명의 일 형태의 양극 활물질에서는 상술한 바와 같이, 얀-텔러 효과의 영향이 작은 것이 바람직하다. 본 발명의 일 형태의 양극 활물질은 층상 암염형의 결정 구조를 가지고, 전이 금속으로서 코발트를 주로 가지는 것이 바람직하다. 또한 본 발명의 일 형태의 양극 활물질에 있어서, 얀-텔러 효과의 영향이 작은 범위이면 코발트 외에 앞서 설명한 첨가 원소 X를 포함하여도 좋다.
격자 상수의 바람직한 범위에 대하여 고찰한 결과, 본 발명의 일 형태의 양극 활물질에 있어서, XRD 패턴에서 추정될 수 있는, 충방전을 수행하지 않은 상태 또는 방전 상태의 양극 활물질의 입자가 가지는 층상 암염형의 결정 구조에서, a축의 격자 상수가 2.814Х10-10m보다 크고 2.817Х10-10m보다 작으며, c축의 격자 상수가 14.05Х10-10m보다 크고 14.07Х10-10m보다 작은 것이 바람직한 것을 알게 되었다. 충방전을 수행하지 않은 상태란, 예를 들어 이차 전지의 양극을 제작하기 전의 분체의 상태이어도 좋다.
또는 충방전을 수행하지 않은 상태 또는 방전 상태의 양극 활물질의 입자가 가지는 층상 암염형의 결정 구조에 있어서, a축의 격자 상수를 c축의 격자 상수로 나눈 값(a축/c축)이 0.20000보다 크고 0.20049보다 작은 것이 바람직하다.
또는 충방전을 수행하지 않은 상태 또는 방전 상태의 양극 활물질의 입자가 가지는 층상 암염형의 결정 구조에 있어서, XRD 분석을 수행하였을 때, 2θ가 18.50° 이상 19.30° 이하에 제 1 피크가 관측되며, 2θ가 38.00° 이상 38.80° 이하에 제 2 피크가 관측되는 경우가 있다.
또한 분체 XRD 패턴에 출현하는 피크는, 양극 활물질(100)의 체적의 대부분을 차지하는 양극 활물질(100)의 내부(100b)의 결정 구조를 반영한 것이다. 표층부(100a) 등의 결정 구조는 양극 활물질(100)의 단면의 전자 회절 등으로 분석할 수 있다.
<XPS>
X선 광전자 분광(XPS)을 사용함으로써, 표면으로부터 깊이 2nm 내지 8nm 정도(보통 5nm 정도)까지의 영역을 분석할 수 있기 때문에, 표층부(100a)의 약 절반의 영역에 대하여 각 원소의 농도를 정량적으로 분석할 수 있다. 또한 고분해능 분석을 수행하면 원소의 결합 상태를 분석할 수 있다. 또한 XPS의 정량적 정확도는 많은 경우에서 ±1atomic% 정도이고, 검출 하한은 원소에 따라 다르지만 약 1atomic%다.
본 발명의 일 형태의 양극 활물질(100)에 대하여 XPS 분석을 하였을 때, 첨가 원소 X의 원자수는 전이 금속의 원자수의 1.6배 이상 6.0배 이하가 바람직하고, 1.8배 이상 4.0배 미만이 더 바람직하다. 첨가 원소 X가 마그네슘이고, 전이 금속 M1이 코발트인 경우에는, 마그네슘의 원자수는 코발트의 원자수의 1.6배 이상 6.0배 이하가 바람직하고, 1.8배 이상 4.0배 미만이 더 바람직하다. 또한 플루오린 등의 할로젠의 원자수는 전이 금속의 원자수의 0.2배 이상 6.0배 이하가 바람직하고, 1.2배 이상 4.0배 이하가 더 바람직하다.
XPS 분석을 수행하는 경우에는 예를 들어 X선원으로서 단색화 알루미늄을 사용할 수 있다. 또한 취출각은 예를 들어 45°로 하면 좋다.
또한 본 발명의 일 형태의 양극 활물질(100)에 대하여 XPS 분석을 수행하였을 때, 플루오린과 다른 원소의 결합 에너지를 나타내는 피크는 682eV 이상 685eV 미만인 것이 바람직하고, 684.3eV 정도인 것이 더 바람직하다. 이는 플루오린화 리튬의 결합 에너지인 685eV 및 플루오린화 마그네슘의 결합 에너지인 686eV 중 어느 것과도 다른 값이다. 즉 본 발명의 일 형태의 양극 활물질(100)이 플루오린을 포함하는 경우, 플루오린화 리튬 및 플루오린화 마그네슘 이외의 결합인 것이 바람직하다.
또한 본 발명의 일 형태의 양극 활물질(100)에 대하여 XPS 분석을 수행하였을 때, 마그네슘과 다른 원소의 결합 에너지를 나타내는 피크는 1302eV 이상 1304eV 미만인 것이 바람직하고, 1303eV 정도인 것이 더 바람직하다. 이는 플루오린화 마그네슘의 결합 에너지인 1305eV와 상이한 값이며 산화 마그네슘의 결합 에너지에 가까운 값이다. 즉 본 발명의 일 형태의 양극 활물질(100)이 마그네슘을 가지는 경우, 플루오린화 마그네슘 이외의 결합인 것이 바람직하다.
표층부(100a)에 많이 존재하는 것이 바람직한 첨가 원소 X, 예를 들어 마그네슘 및 알루미늄은 XPS 등으로 측정되는 농도가 ICP-MS(유도 결합 플라스마 질량 분석) 또는 GD-MS(글로 방전 질량 분석법) 등으로 측정되는 농도보다 높은 것이 바람직하다.
마그네슘 및 알루미늄은 가공에 의하여 그 단면을 노출시키고 단면을 TEM-EDX를 사용하여 분석하는 경우에, 표층부(100a)의 농도가 내부(100b)의 농도에 비하여 높은 것이 바람직하다. 가공은 예를 들어 FIB에 의하여 수행할 수 있다.
XPS(X선 광전자 분광)의 분석에서, 마그네슘의 원자수는 코발트의 원자수의 0.4배 이상 1.5배 이하인 것이 바람직하다. 한편으로, ICP-MS의 분석에 의한 마그네슘의 원자수의 비율 Mg/Co는 0.001 이상 0.06 이하인 것이 바람직하다.
한편 전이 금속에 포함되는 니켈은 표층부(100a)에 편재하지 않고, 양극 활물질(100) 전체에 분포되어 있는 것이 바람직하다. 다만 앞서 설명한 과잉한 첨가 원소 X가 편재하는 영역이 존재하는 경우에는 이에 한정되지 않는다.
<표면 거칠기와 비표면적>
본 발명의 일 형태의 양극 활물질(100)은 표면이 매끄럽고 요철이 적은 것이 바람직하다. 표면이 매끄럽고 요철이 적은 것이 표층부(100a)에서의 첨가 원소 X의 분포가 양호한 것을 나타내는 요소 중 하나이다. 또한 양극 활물질(100)의 제작 공정에서, 첨가 원소 X를 첨가하기 전의 코발트산 리튬 또는 니켈-코발트-망가니즈산 리튬에 대하여 초기 가열을 수행한 경우에는 고전압으로의 충전, 방전을 반복하였을 때의 특성이 매우 우수하기 때문에 양극 활물질(100)로서 특히 바람직하다.
또한 양극 활물질(100)의 표면이 매끄럽고 요철이 적은 것에 의하여 양극 활물질(100)의 표면에서의 안정성이 향상되므로 피트의 발생을 억제할 수 있을 가능성이 있다.
표면이 매끄럽고 요철이 적은 것은 예를 들어 양극 활물질(100)의 단면 SEM 이미지 또는 단면 TEM 이미지, 양극 활물질(100)의 비표면적 등으로부터 판단할 수 있다.
예를 들어 이하에서 설명하는 바와 같이, 양극 활물질(100)의 단면 SEM 이미지로부터 표면의 매끄러움을 수치화할 수 있다.
우선 양극 활물질(100)을 FIB 등에 의하여 가공하여 단면을 노출시킨다. 이때 보호막, 보호제 등으로 양극 활물질(100)을 덮는 것이 바람직하다. 다음으로 보호막 등과 양극 활물질(100)의 계면의 SEM 이미지를 촬영한다. 이 SEM 이미지에 대하여 화상 처리 소프트웨어로 노이즈 처리를 수행한다. 예를 들어 가우시안 블러(Gaussian Blur)(σ=2)를 수행한 후, 2치화를 수행한다. 그리고 화상 처리 소프트웨어로 계면 추출을 수행한다. 다음으로 magic hand 툴 등으로 보호막 등과 양극 활물질(100)의 계면 라인을 선택하고, 데이터를 표 계산 소프트웨어 등에 추출한다. 표 계산 소프트웨어 등의 기능을 이용하여 회귀 곡선(이차 회귀)으로부터 보정을 수행하고, 기울기 보정 후의 데이터에서 조도(roughness) 산출용 파라미터를 구하고, 표준 편차를 산출한 제곱 평균 제곱근(RMS) 표면 거칠기를 구한다. 또한 이 표면 거칠기는 양극 활물질에서, 적어도 입자 외주의 400nm에서의 표면 거칠기이다.
본 실시형태의 양극 활물질(100)의 입자 표면에서는, 조도의 지표인 제곱 평균 제곱근(RMS) 표면 거칠기는 10nm 이하, 바람직하게는 3nm 미만, 더 바람직하게는 1nm 미만, 더욱 바람직하게는 0.5nm 미만인 것이 바람직하다.
또한 노이즈 처리, 계면 추출 등을 수행하는 화상 처리 소프트웨어는 특별히 한정되지 않지만, 예를 들어 "ImageJ"를 사용할 수 있다. 또한 표 계산 소프트웨어 등도 특별히 한정되지 않지만, 예를 들어 Microsoft Office Excel을 사용할 수 있다.
또한 예를 들어 일정 부피법에 의한 가스 흡착법으로 측정한 실제의 비표면적 AR와, 이상적인 비표면적 Ai의 비로부터도 양극 활물질(100)의 표면의 매끄러움을 수치화할 수 있다.
이상적인 비표면적 Ai는 모든 입자의 직경이 D50과 같고, 중량이 같고, 형상은 이상적인 구체인 것으로 하여 산출한다.
중위 직경 D50은 레이저 회절·산란법을 이용한 입도 분포계 등에 의하여 측정할 수 있다. 비표면적은 예를 들어 일정 부피법에 의한 가스 흡착법을 이용한 비표면적 측정 장치 등에 의하여 측정할 수 있다.
본 발명의 일 형태의 양극 활물질(100)은, 중위 직경 D50에서 구한 이상적인 비표면적 Ai와 실제의 비표면적 AR의 비 AR/Ai가 2 이하인 것이 바람직하다.
[양극 활물질에서의 결함]
양극 활물질 입자에 발생할 수 있는 결함의 예를 도 10 및 도 11에 나타내었다. 본 발명의 일 형태의 양극 활물질에서는 이하에서 설명하는 진행성 결함의 발생을 억제하는 효과를 기대할 수 있다.
4.5V 이상의 고전압 조건 또는 고온(45℃ 이상)에서 충방전을 수행하면 양극 활물질 입자에 진행성 결함(피트라고도 부름)이 발생할 경우가 있다. 또한 충방전에 의한 양극 활물질 입자의 팽창 및 수축으로 인하여 균열(크랙이라고도 부름) 등의 결함이 새로 발생할 경우도 있다. 도 10에 양극 활물질 입자(51)의 단면 모식도를 나타내었다. 양극 활물질 입자(51)에 있어서, 54, 58에는 피트를 구멍으로서 도시하였지만 개구 형상은 원형이 아니라 깊이가 있고, 57에는 크랙을 도시하였다. 55에는 결정면, 52에는 오목부, 53, 56에는 배리어막을 도시하였다. 크랙은 전극 프레스 시에 발생할 경우가 있고, 프레스 시에 발생하는 크랙에는 상술한 첨가 원소 X를 가지는 표면층이 제공되지 않았기 때문에 충방전에 의하여 진행성 결함을 유발할 우려가 있다. 본 발명의 일 형태의 전극의 제작 방법으로 제작되는 경우에는 전극 프레스 시의 크랙의 발생이 억제되는 것을 기대할 수 있기 때문에, 4.5V 이상의 고전압 조건 또는 고온(45℃ 이상)에서의 충방전으로 인한 진행성 결함의 발생이 억제되는 효과를 기대할 수 있다.
리튬 이온 이차 전지의 양극 활물질은 대표적으로 LCO 및 NCM이고, 복수의 금속 원소(코발트, 니켈 등)를 가지는 합금이라고도 할 수 있다. 복수의 양극 활물질 입자 중 적어도 하나에 결함을 가지고, 그 결함이 충방전 전후에서 변화되는 경우가 있다. 양극 활물질 입자는 이차 전지에 사용되면, 이 양극 활물질 입자를 둘러싸는 환경 물질(전해액 등)에 의하여, 화학적 또는 전기 화학적으로 침식되거나, 재질이 열화되는 현상이 발생하는 경우가 있다. 이 열화는 입자의 표면에서 균일하게 발생하는 것이 아니라, 국부적으로 집중하여 발생하고, 이차 전지의 충방전을 반복함으로써 예를 들어 표면으로부터 내부를 향하여 깊게 결함이 발생한다.
양극 활물질 입자에서 결함이 진행되어 구멍을 형성하는 현상을 공식(Pitting Corrosion)이라고도 부를 수 있고, 이 현상으로 인하여 발생한 구멍을 본 명세서에서는 피트라고도 부른다.
본 명세서에서 크랙과 피트는 상이하다. 양극 활물질 입자의 제작 직후에 크랙은 존재하여도 피트는 존재하지 않는다. 피트는 4.5V 이상의 고전압 조건 또는 고온(45℃ 이상)에서 충방전을 함으로써, 몇 층분의 코발트 및 산소가 빠져 생긴 구멍이라고도 할 수 있고, 코발트가 용출된 부분이라고도 할 수 있다. 크랙은 물리적인 압력이 가해진 것으로 인하여 발생하는 새로운 면, 또는 결정립계로 인하여 발생한 균열을 가리킨다. 충방전에 의한 입자의 팽창 및 수축으로 인하여 크랙이 발생할 경우도 있다. 또한 크랙 또는 입자 내의 공동(cavity)에서 피트가 발생하는 경우도 있다.
<슬립>
도 11의 (A)는 집전체에 양극 활물질층을 형성한 후 일반적인 방법으로 프레스를 수행한 경우의 양극 활물질의 결함 부분의 단면 STEM 사진이다. 프레스에 의하여 격자 무늬에 대하여 수직인 방향(c축 방향)의 입자 표면에 단차가 있고, 격자 무늬 방향(ab면 방향)을 따라 변형된 흔적이 관찰된다.
도 11의 (B)는 프레스 전의 입자의 단면 모식도이다. 프레스 전의 입자에서는 격자 무늬에 대하여 수직인 방향의 입자 표면에, Mg, Al 등을 포함하는 배리어층(56)이 비교적 균일하게 존재한다. 또한 도 11의 (B)에 슬립을 가지지 않는 결정면(55)을 나타내었다.
또한 도 11의 (C)는 프레스 후의 입자의 단면 모식도이다. 프레스 공정에 의하여 격자 무늬 방향(ab면 방향)으로 어긋남이 발생한다. Mg, Al층도 마찬가지로 복수의 단차를 가지고 불균일해진다. ab면 방향의 어긋남에 관하여, 입자에서 요철이 관찰된 면과 반대쪽의 입자 표면에서도 같은 형상의 요철이 발생하고 있으므로, 입자의 일부가 ab면 방향으로 어긋나 있다.
도 11의 (C)에서 도시한 복수의 단차는 입자 표면에서 줄무늬로 관찰된다. 이와 같이 프레스에 의하여 어긋남이 발생한 입자 표면의 단차 때문에 관찰되는 입자 표면의 줄무늬를 슬립(적층 결함)이라고 한다. 이러한 입자의 슬립에 의하여 배리어막도 불균일해지므로 거기서 열화를 일으킬 가능성이 있다. 본 발명의 일 형태의 전극의 제작 방법으로 제작되는 경우에는 전극 프레스 시의 슬립의 발생이 억제되는 것을 기대할 수 있기 때문에, 열화가 적은 이차 전지를 얻을 수 있는 것을 기대할 수 있다.
[양극 활물질 복합체]
또는 본 발명의 일 형태의 양극 활물질(100)은 양극 활물질(100)의 적어도 일부를 덮는 피복층을 가지는 양극 활물질 복합체로 하여도 좋다. 피복층으로서 예를 들어 유리, 산화물, 및 LiM2PO4(M2는 Fe, Ni, Co, 및 Mn에서 선택되는 하나 이상) 중 하나 이상을 사용할 수 있다.
양극 활물질 복합체의 피복층이 가지는 유리에는, 비정질부를 가지는 재료를 사용할 수 있다. 비정질부를 가지는 재료로서 예를 들어 SiO2, SiO, Al2O3, TiO2, Li4SiO4, Li3PO4, Li2S, SiS2, B2S3, GeS4, AgI, Ag2O, Li2O, P2O5, B2O3, 및 V2O5 등에서 선택되는 하나 이상을 가지는 재료, Li7P3S11, 또는 Li1+x+yAlxTi2-xSiyP3-yO12(0<x<2, 0<y<3) 등을 사용할 수 있다. 비정질부를 가지는 재료는 전체가 비정질인 상태로 사용하거나 일부가 결정화된 결정화 유리(유리 세라믹이라고도 함)의 상태로 사용할 수 있다. 유리는 리튬 이온 전도성을 가지는 것이 바람직하다. '리튬 이온 전도성을 가진다'란 '리튬 이온 확산성 및 리튬 이온 관통성을 가진다'라고 할 수도 있다. 또한 유리는 융점이 800℃ 이하인 것이 바람직하고, 500℃ 이하인 것이 더 바람직하다. 또한 유리가 전자 전도성을 가지는 것이 바람직하다. 또한 유리는 연화점이 800℃ 이하인 것이 바람직하고, 예를 들어 Li2O-B2O3-SiO2계 유리를 사용할 수 있다.
양극 활물질 복합체의 피복층이 가지는 산화물의 예로서 산화 알루미늄, 산화 지르코늄, 산화 하프늄, 및 산화 나이오븀 등이 있다. 또한 양극 활물질 복합체의 피복층이 가지는 LiM2PO4(M2는 Fe, Ni, Co, Mn에서 선택되는 하나 이상)의 예로서는 LiFePO4, LiNiPO4, LiCoPO4, LiMnPO4, LiFeaNibPO4, LiFeaCobPO4, LiFeaMnbPO4, LiNiaCobPO4, LiNiaMnbPO4(a+b는 1 이하, 0<a<1, 0<b<1), LiFecNidCoePO4, LiFecNidMnePO4, LiNicCodMnePO4(c+d+e는 1 이하, 0<c<1, 0<d<1, 0<e<1), LiFefNigCohMniPO4(f+g+h+i는 1 이하, 0<f<1, 0<g<1, 0<h<1, 0<i<1) 등이 있다.
양극 활물질 복합체의 피복층의 제작에는 복합화 처리를 사용할 수 있다. 복합화 처리로서는 예를 들어 메커노케미컬(mechanochemical)법, 메커노퓨전(mechanofusion)법, 및 볼밀법 등의 기계적 에너지에 의한 복합화 처리, 공침법, 수열법, 및 졸 겔법 등의 액상 반응에 의한 복합화 처리, 그리고 배럴 스퍼터링(barrel sputtering)법, ALD(Atomic Layer Deposition)법, 증착법, 및 CVD(Chemical Vapor Deposition)법 등의 기상 반응에 의한 복합화 처리 중 어느 하나 이상의 복합화 처리를 사용할 수 있다. 또한 기계적 에너지에 의한 복합화 처리로서 예를 들어 HOSOKAWA MICRON CORPORATION 제조의 Picobond를 사용할 수 있다. 또한 복합화 처리에서 한 번 또는 여러 번의 가열 처리를 수행하는 것이 바람직하다.
양극 활물질 복합체에 의하여 양극 활물질이 전해액 등과 접하는 것이 저감되기 때문에 이차 전지의 열화를 억제할 수 있다.
본 실시형태의 내용은 다른 실시형태의 내용과 자유로이 조합할 수 있다.
(실시형태 3)
본 실시형태에서는, 앞의 실시형태에서 설명한 제작 방법에 의하여 제작된 양극 또는 음극을 가지는 이차 전지의 복수 종류의 형상의 예에 대하여 설명한다.
[코인형 이차 전지]
코인형 이차 전지의 일례에 대하여 설명한다. 도 12의 (A)는 코인형(단층 편평형) 이차 전지의 분해 사시도이고, 도 12의 (B)는 외관도이고, 도 12의 (C)는 그 단면도이다. 코인형 이차 전지는 주로 소형 전자 기기에 사용된다. 본 명세서 등에서, 코인형 전지는 버튼형 전지를 포함한다.
도 12의 (A)는 이해하기 쉽게 하기 위하여 부재의 중첩(상하 관계 및 위치 관계)을 나타낸 모식도로 하였다. 따라서, 도 12의 (A)와 (B)는 완전히 일치하는 대응 도면이 아니다.
도 12의 (A)에서는 양극(304), 세퍼레이터(310), 음극(307), 스페이서(322), 와셔(312)를 중첩시켰다. 이들을 음극 캔(302)과 양극 캔(301)으로 밀봉하였다. 또한 도 12의 (A)에서 밀봉을 위한 개스킷은 도시하지 않았다. 스페이서(322) 및 와셔(312)는 양극 캔(301)과 음극 캔(302)을 압착할 때, 내부를 보호 또는 캔 내의 위치를 고정하기 위하여 사용된다. 스페이서(322), 와셔(312)에는 스테인리스 또는 절연 재료를 사용한다.
양극(304)은 양극 집전체(305) 위에 양극 활물질층(306)이 형성된 적층 구조이다.
양극과 음극의 단락을 방지하기 위하여, 세퍼레이터(310)와 링 형상의 절연체(313)는 양극(304)의 측면 및 상면을 덮도록 각각 배치한다. 세퍼레이터(310)의 평면의 면적은 양극(304)의 평면의 면적보다 넓다.
도 12의 (B)는 완성된 코인형 이차 전지의 사시도이다.
코인형 이차 전지(300)에서, 양극 단자를 겸하는 양극 캔(301)과 음극 단자를 겸하는 음극 캔(302)이, 폴리프로필렌 등으로 형성된 개스킷(303)에 의하여 절연되고 밀봉되어 있다. 양극(304)은 양극 집전체(305) 및 이와 접촉하도록 제공된 양극 활물질층(306)으로 형성된다. 또한 음극(307)은 음극 집전체(308) 및 이와 접촉하도록 제공된 음극 활물질층(309)으로 형성된다. 또한 음극(307)은 적층 구조에 한정되지 않고, 리튬 금속박 또는 리튬과 알루미늄의 합금박을 사용하여도 좋다.
또한 코인형 이차 전지(300)에 사용되는 양극(304) 및 음극(307)에서는, 각각 한쪽 면에만 활물질층을 형성하면 좋다.
양극 캔(301), 음극 캔(302)에는 전해질에 대하여 내식성이 있는 니켈, 알루미늄, 타이타늄 등의 금속, 또는 이들의 합금, 및 이들과 다른 금속의 합금(예를 들어 스테인리스강 등)을 사용할 수 있다. 또한 전해질 등으로 인한 부식을 방지하기 위하여 니켈 및 알루미늄 등으로 피복하는 것이 바람직하다. 양극 캔(301)은 양극(304)과, 음극 캔(302)은 음극(307)과 각각 전기적으로 접속된다.
이들 음극(307), 양극(304), 및 세퍼레이터(310)를 전해액에 함침(含浸)시키고, 도 12의 (C)에 나타낸 바와 같이 양극 캔(301)을 아래로 하여 양극(304), 세퍼레이터(310), 음극(307), 음극 캔(302)을 이 순서대로 적층하고, 양극 캔(301)과 음극 캔(302)을 개스킷(303)을 개재(介在)하여 압착함으로써 코인형 이차 전지(300)를 제작한다.
상기 구성을 가짐으로써, 용량 및 충방전 용량이 크고, 사이클 특성이 우수한 코인형 이차 전지(300)로 할 수 있다. 또한 음극(307)과 양극(304) 사이에 고체 전해질층을 가지는 경우에는 세퍼레이터(310)를 제공하지 않아도 된다.
[원통형 이차 전지]
원통형 이차 전지의 예에 대하여 도 13의 (A)를 참조하여 설명한다. 원통형 이차 전지(616)는 도 13의 (A)에 나타낸 바와 같이 상면에 양극캡(전지 뚜껑)(601)을 가지고, 측면 및 저면에 전지 캔(외장 캔)(602)을 가진다. 이들 양극캡(601)과 전지 캔(외장 캔)(602)은 개스킷(절연 패킹(610))에 의하여 절연된다.
도 13의 (B)는 원통형 이차 전지의 단면을 모식적으로 나타낸 도면이다. 도 13의 (B)에 나타낸 원통형 이차 전지는 상면에 양극캡(전지 뚜껑)(601)을 가지고, 측면 및 저면에 전지 캔(외장 캔)(602)을 가진다. 이들 양극캡과 전지 캔(외장 캔)(602)은 개스킷(절연 패킹)(610)에 의하여 절연되어 있다.
중공 원통형 전지 캔(602)의 안쪽에는 띠 형상의 양극(604)과 음극(606)이 세퍼레이터(605)를 사이에 두고 권취된 전지 소자가 제공되어 있다. 도시하지 않았지만, 전지 소자는 중심축을 중심으로 권취되어 있다. 전지 캔(602)은 한쪽 단부가 닫혀 있고, 다른 쪽 단부가 열려 있다. 전지 캔(602)에는 전해액에 대하여 내부식성이 있는 니켈, 알루미늄, 타이타늄 등의 금속, 또는 이들의 합금, 및 이들과 다른 금속의 합금(예를 들어 스테인리스강 등)을 사용할 수 있다. 또한 전해액으로 인한 부식을 방지하기 위하여 니켈 및 알루미늄 등으로 전지 캔(602)을 피복하는 것이 바람직하다. 전지 캔(602)의 내측에서, 양극, 음극, 및 세퍼레이터가 권취된 전지 소자는 대향하는 한 쌍의 절연판(608 및 609) 사이에 끼워진다. 또한 전지 소자가 제공된 전지 캔(602)의 내부에는 비수전해액(도시하지 않았음)이 주입되어 있다. 비수전해액으로서는 코인형 이차 전지에 사용하는 것과 같은 것을 사용할 수 있다.
원통형 축전지에 사용하는 양극 및 음극은 권취되기 때문에, 집전체의 양면에 활물질을 형성하는 것이 바람직하다. 또한 도 13의 (A) 내지 (D)에서는 원통의 직경보다 원통의 높이가 더 큰 이차 전지(616)를 도시하였지만 이에 한정되지 않는다. 원통의 직경이 원통의 높이보다 큰 이차 전지로 하여도 좋다. 이와 같은 구성에 의하여, 예를 들어 이차 전지의 소형화를 도모할 수 있다.
상술한 실시형태에서 얻어지는 양극 활물질(100)을 양극(604)에 사용함으로써, 용량 및 충방전 용량이 크고, 사이클 특성이 우수한 원통형 이차 전지(616)로 할 수 있다.
양극(604)에는 양극 단자(양극 집전 리드)(603)가 접속되고, 음극(606)에는 음극 단자(음극 집전 리드)(607)가 접속된다. 양극 단자(603) 및 음극 단자(607)에는 둘 다 알루미늄 등의 금속 재료를 사용할 수 있다. 양극 단자(603)는 안전 밸브 기구(613)에 저항 용접되고, 음극 단자(607)는 전지 캔(602)의 바닥에 저항 용접된다. 안전 밸브 기구(613)는 PTC 소자(Positive Temperature Coefficient)(611)를 통하여 양극캡(601)에 전기적으로 접속되어 있다. 안전 밸브 기구(613)는 전지의 내압이 소정의 문턱값을 넘어 상승한 경우에 양극캡(601)과 양극(604)의 전기적 접속을 절단하는 것이다. 또한 PTC 소자(611)는 온도가 상승한 경우에 저항이 증대되는 열감 저항 소자이며, 저항의 증대에 따라 전류량을 제한하여 이상 발열을 방지하는 것이다. PTC 소자에는 타이타늄산 바륨(BaTiO3)계 반도체 세라믹 등을 사용할 수 있다.
도 13의 (C)는 축전 시스템(615)의 일례를 나타낸 것이다. 축전 시스템(615)은 복수의 이차 전지(616)를 가진다. 각 이차 전지의 양극은 절연체(625)로 분리된 도전체(624)에 접촉하고 전기적으로 접속되어 있다. 도전체(624)는 배선(623)을 통하여 제어 회로(620)에 전기적으로 접속되어 있다. 또한 각 이차 전지의 음극은 배선(626)을 통하여 제어 회로(620)에 전기적으로 접속되어 있다. 제어 회로(620)로서, 과충전 또는 과방전을 방지하는 보호 회로 등을 적용할 수 있다.
도 13의 (D)는 축전 시스템(615)의 일례를 나타낸 것이다. 축전 시스템(615)은 복수의 이차 전지(616)를 가지고, 복수의 이차 전지(616)는 도전판(628)과 도전판(614) 사이에 끼워져 있다. 복수의 이차 전지(616)는 배선(627)에 의하여 도전판(628) 및 도전판(614)에 전기적으로 접속된다. 복수의 이차 전지(616)는 병렬 접속되어도 좋고, 직렬 접속되어도 좋다. 복수의 이차 전지(616)를 가지는 축전 시스템(615)을 구성함으로써, 큰 전력을 추출할 수 있다.
복수의 이차 전지(616)는 병렬로 접속된 후 직렬로 접속되어도 좋다.
복수의 이차 전지(616) 사이에 온도 제어 장치를 가져도 좋다. 이차 전지(616)가 과열되었을 때에는 온도 제어 장치에 의하여 냉각하고, 이차 전지(616)가 지나치게 냉각되었을 때에는 온도 제어 장치에 의하여 가열할 수 있다. 그러므로 축전 시스템(615)의 성능이 외기 온도의 영향을 받기 어려워진다.
또한 도 13의 (D)에서, 축전 시스템(615)은 제어 회로(620)와 배선(621) 및 배선(622)을 통하여 전기적으로 접속되어 있다. 배선(621)은 도전판(628)을 통하여 복수의 이차 전지(616)의 양극에 전기적으로 접속되고, 배선(622)은 도전판(614)을 통하여 복수의 이차 전지(616)의 음극에 전기적으로 접속된다.
[이차 전지의 다른 구조예]
이차 전지의 구조예에 대하여 도 14 및 도 15를 사용하여 설명한다.
도 14의 (A)에 나타낸 이차 전지(913)는 하우징(930) 내부에 단자(951)와 단자(952)가 제공된 권취체(950)를 포함한다. 권취체(950)는 하우징(930) 내부에서 전해액에 함침된다. 단자(952)는 하우징(930)과 접하고, 단자(951)는 절연재 등이 사용됨으로써 하우징(930)과 접하지 않는다. 또한 도 14의 (A)에서는 편의상 하우징(930)을 분리하여 도시하였지만, 실제로는 권취체(950)가 하우징(930)으로 덮이고, 단자(951) 및 단자(952)가 하우징(930) 외부로 연장되어 있다. 하우징(930)에는 금속 재료(예를 들어 알루미늄 등) 또는 수지 재료를 사용할 수 있다.
또한 도 14의 (B)에 나타낸 바와 같이, 도 14의 (A)에 나타낸 하우징(930)을 복수의 재료에 의하여 형성하여도 좋다. 예를 들어 도 14의 (B)에 나타낸 이차 전지(913)에서는 하우징(930a)과 하우징(930b)이 접합되고, 하우징(930a) 및 하우징(930b)으로 둘러싸인 영역에 권취체(950)가 제공되어 있다.
하우징(930a)에는 유기 수지 등의 절연 재료를 사용할 수 있다. 특히 안테나가 형성되는 면에 유기 수지 등의 재료를 사용함으로써, 이차 전지(913)에 의한 전계의 차폐를 억제할 수 있다. 또한 하우징(930a)에 의한 전계의 차폐가 작은 경우에는, 하우징(930a) 내부에 안테나를 제공하여도 좋다. 하우징(930b)에는 예를 들어 금속 재료를 사용할 수 있다.
또한 권취체(950)의 구조에 대하여 도 14의 (C)에 나타내었다. 권취체(950)는 음극(931)과, 양극(932)과, 세퍼레이터(933)를 가진다. 권취체(950)는 세퍼레이터(933)를 사이에 두고 음극(931)과 양극(932)이 중첩되어 적층되고, 이 적층 시트를 권취시킨 권취체이다. 또한 음극(931)과, 양극(932)과, 세퍼레이터(933)의 적층을 복수 더 중첩시켜도 좋다.
또한 도 15의 (A) 내지 (C)에 나타낸 바와 같은 권취체(950a)를 가지는 이차 전지(913)로 하여도 좋다. 도 15의 (A)에 나타낸 권취체(950a)는 음극(931)과, 양극(932)과, 세퍼레이터(933)를 가진다. 음극(931)은 음극 활물질층(931a)을 가진다. 양극(932)은 양극 활물질층(932a)을 가진다.
상술한 실시형태에서 얻어지는 양극 활물질(100)을 양극(932)에 사용함으로써, 용량 및 충방전 용량이 크고, 사이클 특성이 우수한 이차 전지(913)로 할 수 있다.
세퍼레이터(933)는 음극 활물질층(931a) 및 양극 활물질층(932a)보다 넓은 폭을 가지고, 음극 활물질층(931a) 및 양극 활물질층(932a)과 중첩되도록 권취되어 있다. 또한 안전성의 관점에서, 양극 활물질층(932a)의 폭보다 음극 활물질층(931a)의 폭이 넓은 것이 바람직하다. 또한 이와 같은 형상의 권취체(950a)는 안전성 및 생산성이 높으므로 바람직하다.
도 15의 (B)에 나타낸 바와 같이, 음극(931)은 단자(951)와 전기적으로 접속된다. 단자(951)는 단자(911a)와 전기적으로 접속된다. 또한 양극(932)은 단자(952)와 전기적으로 접속된다. 단자(952)는 단자(911b)와 전기적으로 접속된다.
도 15의 (C)에 나타낸 바와 같이 하우징(930)에 의하여 권취체(950a) 및 전해액이 덮여, 이차 전지(913)가 된다. 하우징(930)에는 안전 밸브, 과전류 보호 소자 등을 제공하는 것이 바람직하다. 안전 밸브는 전지 파열을 방지하기 위하여, 하우징(930)의 내부가 소정의 내압이 되었을 때 개방되는 밸브이다.
도 15의 (B)에 나타낸 바와 같이 이차 전지(913)는 복수의 권취체(950a)를 가져도 좋다. 복수의 권취체(950a)를 사용함으로써 충방전 용량이 더 큰 이차 전지(913)로 할 수 있다. 도 15의 (A) 및 (B)에 나타낸 이차 전지(913)의 다른 요소에 대해서는 도 14의 (A) 내지 (C)에 나타낸 이차 전지(913)의 기재를 참조할 수 있다.
<래미네이트형 이차 전지>
다음으로 래미네이트형 이차 전지의 예에 대하여 외관도의 일례를 도 16의 (A) 및 (B)에 나타내었다. 도 16의 (A) 및 (B)는 양극(503), 음극(506), 세퍼레이터(507), 외장체(509), 양극 리드 전극(510), 및 음극 리드 전극(511)을 가진다.
도 17의 (A)는 양극(503) 및 음극(506)의 외관도이다. 양극(503)은 양극 집전체(501)를 가지고, 양극 활물질층(502)은 양극 집전체(501)의 표면에 형성되어 있다. 또한 양극(503)은 양극 집전체(501)가 일부 노출되는 영역(이하 탭 영역이라고 함)을 가진다. 음극(506)은 음극 집전체(504)를 가지고, 음극 활물질층(505)은 음극 집전체(504)의 표면에 형성되어 있다. 또한 음극(506)은 음극 집전체(504)가 일부 노출되는 영역, 즉 탭 영역을 가진다. 양극 및 음극이 가지는 탭 영역의 면적 및 형상은 도 17의 (A)에 나타낸 예에 한정되지 않는다.
<래미네이트형 이차 전지의 제작 방법>
여기서, 도 16의 (A)에 외관도를 나타낸 래미네이트형 이차 전지의 제작 방법의 일례에 대하여 도 17의 (B) 및 (C)를 사용하여 설명한다.
우선 음극(506), 세퍼레이터(507), 및 양극(503)을 적층한다. 도 17의 (B)에 적층된 음극(506), 세퍼레이터(507), 및 양극(503)을 나타내었다. 여기서는 음극을 5개, 양극을 4개 사용한 예를 나타내었다. 이는 음극, 세퍼레이터, 및 양극으로 이루어지는 적층체라고도 할 수 있다. 다음으로 양극(503)의 탭 영역들의 접합과, 가장 바깥쪽에 위치하는 양극의 탭 영역에 대한 양극 리드 전극(510)의 접합을 수행한다. 접합에는 예를 들어 초음파 용접 등을 사용하면 좋다. 마찬가지로, 음극(506)의 탭 영역들의 접합과, 가장 바깥쪽에 위치하는 음극의 탭 영역에 대한 음극 리드 전극(511)의 접합을 수행한다.
다음으로 외장체(509) 위에 음극(506), 세퍼레이터(507), 및 양극(503)을 배치한다.
다음으로 도 17의 (C)에 나타낸 바와 같이 외장체(509)를 파선으로 나타낸 부분에서 접는다. 그 후, 외장체(509)의 외주부를 접합한다. 접합에는 예를 들어 열 압착 등을 사용하면 좋다. 이때 나중에 전해액을 도입할 수 있도록, 외장체(509)의 일부(또는 한 변)에 접합되지 않는 영역(이하 도입구라고 함)을 제공한다.
다음으로, 외장체(509)에 제공된 도입구로부터, 전해액을 외장체(509)의 내측에 도입한다. 전해액의 도입은, 감압 분위기하 또는 불활성 분위기하에서 수행하는 것이 바람직하다. 그리고 마지막에 도입구를 접합한다. 이로써 래미네이트형 이차 전지(500)를 제작할 수 있다.
상술한 실시형태에서 얻어지는 양극 활물질(100)을 양극(503)에 사용함으로써, 용량 및 충방전 용량이 크고, 사이클 특성이 우수한 이차 전지(500)로 할 수 있다.
[전지 팩의 예]
안테나를 사용하여 무선 충전이 가능한 본 발명의 일 형태의 이차 전지 팩의 예에 대하여 도 18의 (A) 내지 (C)를 사용하여 설명한다.
도 18의 (A)는 이차 전지 팩(531)의 외관을 나타낸 도면이고, 두께가 얇은 직방체 형상(두께를 가지는 평판 형상이라고도 할 수 있음)이다. 도 18의 (B)는 이차 전지 팩(531)의 구성을 설명하는 도면이다. 이차 전지 팩(531)은 회로 기판(540)과 이차 전지(513)를 가진다. 이차 전지(513)에는 라벨(529)이 붙어 있다. 회로 기판(540)은 실(seal)(515)에 의하여 고정되어 있다. 또한 이차 전지 팩(531)은 안테나(517)를 가진다.
이차 전지(513)의 내부는 권취체를 가지는 구조로 하여도 좋고, 적층체를 가지는 구조로 하여도 좋다.
이차 전지 팩(531)에서는, 예를 들어 도 18의 (B)에 나타낸 바와 같이, 회로 기판(540) 위에 제어 회로(590)를 가진다. 또한 회로 기판(540)은 단자(514)에 전기적으로 접속되어 있다. 또한 회로 기판(540)은 안테나(517), 이차 전지(513)의 양극 리드 및 음극 리드 중 한쪽(551), 양극 리드 및 음극 리드 중 다른 쪽(552)에 전기적으로 접속된다.
또는 도 18의 (C)에 나타낸 바와 같이, 회로 기판(540) 위에 제공되는 회로 시스템(590a)과, 단자(514)를 통하여 회로 기판(540)에 전기적으로 접속되는 회로 시스템(590b)을 가져도 좋다.
또한 안테나(517)는 코일 형상에 한정되지 않고, 예를 들어 선형, 판형이어도 좋다. 또한 평면 안테나, 개구면 안테나, 진행파 안테나, EH 안테나, 자계 안테나, 유전체 안테나 등의 안테나를 사용하여도 좋다. 또는 안테나(517)는 평판 형상의 도체이어도 좋다. 이 평판 형상의 도체는 전계 결합용 도체 중 하나로서 기능할 수 있다. 즉 콘덴서가 가지는 2개의 도체 중 하나의 도체로서, 안테나(517)를 기능시켜도 좋다. 이에 의하여, 전자계, 자계뿐만 아니라 전계에 의한 전력의 송수신도 가능하게 된다.
이차 전지 팩(531)은 안테나(517)와 이차 전지(513) 사이에 층(519)을 가진다. 층(519)은 예를 들어 이차 전지(513)에 의한 전자계를 차폐할 수 있는 기능을 가진다. 층(519)으로서는 예를 들어 자성체를 사용할 수 있다.
본 실시형태의 내용은 다른 실시형태의 내용과 자유로이 조합할 수 있다.
(실시형태 4)
본 실시형태에서는 상술한 실시형태에서 얻어지는 양극 활물질(100)을 사용하여 전고체 전지를 제작하는 예에 대하여 설명한다.
도 19의 (A)에 나타낸 바와 같이 본 발명의 일 형태의 이차 전지(400)는 양극(410), 고체 전해질층(420), 및 음극(430)을 가진다.
양극(410)은 양극 집전체(413) 및 양극 활물질층(414)을 가진다. 양극 활물질층(414)은 양극 활물질(411) 및 고체 전해질(421)을 가진다. 양극 활물질(411)에는 상술한 실시형태에서 얻어지는 양극 활물질(100)을 사용한다. 또한 양극 활물질층(414)은 도전재 및 바인더를 가져도 좋다.
고체 전해질층(420)은 고체 전해질(421)을 가진다. 고체 전해질층(420)은 양극(410)과 음극(430) 사이에 위치하고, 양극 활물질(411)도 음극 활물질(431)도 가지지 않는 영역이다.
음극(430)은 음극 집전체(433) 및 음극 활물질층(434)을 가진다. 음극 활물질층(434)은 음극 활물질(431) 및 고체 전해질(421)을 가진다. 또한 음극 활물질층(434)은 도전재 및 바인더를 가져도 좋다. 또한 음극 활물질(431)로서 금속 리튬을 사용하는 경우에는 입자로 할 필요가 없으므로, 도 19의 (B)와 같이 고체 전해질(421)을 가지지 않는 음극(430)으로 할 수 있다. 음극(430)에 금속 리튬을 사용하면 이차 전지(400)의 에너지 밀도를 향상시킬 수 있어 바람직하다.
고체 전해질층(420)이 가지는 고체 전해질(421)로서는 예를 들어 황화물계 고체 전해질, 산화물계 고체 전해질, 할로젠화물계 고체 전해질 등을 사용할 수 있다.
황화물계 고체 전해질에는 싸이오 리시콘(thio-LISICON)계(Li10GeP2S12, Li3.25Ge0.25P0.75S4 등), 황화물 유리(70Li2S·30P2S5, 30Li2S·26B2S3·44LiI, 63Li2S·36SiS2·1Li3PO4, 57Li2S·38SiS2·5Li4SiO4, 50Li2S·50GeS2 등), 황화물 결정화 유리(Li7P3S11, Li3.25P0.95S4 등)가 포함된다. 황화물계 고체 전해질은 높은 전도도를 가지는 재료가 있고, 낮은 온도에서의 합성이 가능하고, 또한 비교적 부드럽기 때문에 충방전을 거쳐도 도전 경로가 유지되기 쉽다는 등의 이점이 있다.
산화물계 고체 전해질에는, 페로브스카이트형 결정 구조를 가지는 재료(La2/3-xLi3xTiO3 등), NASICON형 결정 구조를 가지는 재료(Li1-YAlYTi2-Y(PO4)3 등), 가닛형 결정 구조를 가지는 재료(Li7La3Zr2O12 등), LISICON형 결정 구조를 가지는 재료(Li14ZnGe4O16 등), LLZO(Li7La3Zr2O12), 산화물 유리(Li3PO4-Li4SiO4, 50Li4SiO4·50Li3BO3 등), 산화물 결정화 유리(Li1.07Al0.69Ti1.46(PO4)3, Li1.5Al0.5Ge1.5(PO4)3 등)가 포함된다. 산화물계 고체 전해질은 대기 중에서 안정적이라는 이점이 있다.
할로젠화물계 고체 전해질에는 LiAlCl4, Li3InBr6, LiF, LiCl, LiBr, LiI 등이 포함된다. 또한 이들 할로젠화물계 고체 전해질을 다공성 산화 알루미늄 또는 다공성 실리카의 세공에 충전(充塡)한 복합 재료도 고체 전해질로서 사용할 수 있다.
또한 상이한 고체 전해질을 혼합하여 사용하여도 좋다.
그 중에서도 NASICON형 결정 구조를 가지는 Li1+xAlxTi2-x(PO4)3(0<x<1)(이하 LATP)는, 본 발명의 일 형태의 이차 전지(400)에 사용하는 양극 활물질에 포함되어도 좋은 알루미늄과 타이타늄이라는 원소를 포함하기 때문에, 사이클 특성 향상에 대한 시너지 효과를 기대할 수 있어 바람직하다. 또한 공정 삭감에 의한 생산성 향상도 기대할 수 있다. 또한 본 명세서 등에 있어서, NASICON형 결정 구조란, M2(XO4)3(M: 전이 금속, X: S, P, As, Mo, W 등)으로 나타내어지는 화합물이고, MO6 팔면체와 XO4 사면체가 정점을 공유하여 3차원적으로 배열된 구조를 가지는 것을 말한다.
[외장체와 이차 전지의 형상]
본 발명의 일 형태의 이차 전지(400)의 외장체에는 다양한 재료 및 형상을 사용할 수 있지만, 양극, 고체 전해질층, 및 음극을 가압하는 기능을 가지는 것이 바람직하다.
예를 들어 도 20은 전고체 전지의 재료를 평가하기 위한 셀의 일례이다.
도 20의 (A)는 평가 셀의 단면 모식도이고, 평가 셀은 하부 부재(761)와, 상부 부재(762)와, 이들을 고정하는 고정 나사 또는 나비 너트(764)를 가지고, 누르기용 나사(763)를 회전시킴으로써 전극용 판(753)을 눌러 평가 재료를 고정하고 있다. 스테인리스 재료로 구성된 하부 부재(761)와 상부 부재(762) 사이에는 절연체(766)가 제공되어 있다. 또한 상부 부재(762)와 누르기용 나사(763) 사이에는 밀폐를 위한 O링(765)이 제공되어 있다.
평가 재료는 전극용 판(751)에 얹히고 주위를 절연관(752)으로 둘러싸여 상방으로부터 전극용 판(753)에 눌린 상태가 되어 있다. 이 평가 재료와 주변을 확대한 사시도가 도 20의 (B)이다.
평가 재료로서는 양극(750a), 고체 전해질층(750b), 음극(750c)의 적층을 예시하였고, 단면도를 도 20의 (C)에 나타내었다. 또한 도 20의 (A) 내지 (C)에서 같은 부분에는 같은 부호를 사용하였다.
양극(750a)과 전기적으로 접속되는 전극용 판(751) 및 하부 부재(761)는 양극 단자에 상당한다고 할 수 있다. 음극(750c)과 전기적으로 접속되는 전극용 판(753) 및 상부 부재(762)는 음극 단자에 상당한다고 할 수 있다. 전극용 판(751) 및 전극용 판(753)을 통하여 평가 재료를 누르면서 전기 저항 등을 측정할 수 있다.
또한 본 발명의 일 형태의 이차 전지의 외장체에는 기밀성이 우수한 패키지를 사용하는 것이 바람직하다. 예를 들어, 세라믹 패키지 또는 수지 패키지를 사용할 수 있다. 또한 외장체의 밀봉은, 외기가 차단되어 밀폐된 분위기, 예를 들어 글로브 박스 내에서 수행되는 것이 바람직하다.
도 21의 (A)에, 도 20과는 다른 외장체 및 형상을 가지는 본 발명의 일 형태의 이차 전지의 사시도를 나타내었다. 도 21의 (A)의 이차 전지는 외부 전극(771, 772)을 가지고, 복수의 패키지 부재를 가지는 외장체로 밀봉되어 있다.
도 21의 (A) 중의 일점파선을 따라 절단한 단면의 일례를 도 21의 (B)에 나타내었다. 양극(750a), 고체 전해질층(750b), 및 음극(750c)을 가지는 적층체는, 평판에 전극층(773a)이 제공된 패키지 부재(770a)와, 프레임 형상의 패키지 부재(770b)와, 평판에 전극층(773b)이 제공된 패키지 부재(770c)로 둘러싸여 밀봉된 구조를 가진다. 패키지 부재(770a, 770b, 770c)에는 절연 재료, 예를 들어 수지 재료 및 세라믹을 사용할 수 있다.
외부 전극(771)은 전극층(773a)을 통하여 양극(750a)과 전기적으로 접속되고 양극 단자로서 기능한다. 또한 외부 전극(772)은 전극층(773b)을 통하여 음극(750c)과 전기적으로 접속되고 음극 단자로서 기능한다.
상술한 실시형태에서 얻어지는 양극 활물질(100)을 사용함으로써, 에너지 밀도가 높으며 출력 특성이 양호한 전고체 이차 전지를 실현할 수 있다.
본 실시형태의 내용은 다른 실시형태의 내용과 적절히 조합할 수 있다.
(실시형태 5)
본 실시형태에서는 원통형 이차 전지인 도 13의 (D)와는 다른 이차 전지를 전기 자동차(EV)에 적용하는 예를 도 22의 (C)를 사용하여 설명한다.
전기 자동차에는 메인 구동용 이차 전지로서의 제 1 배터리(1301a, 1301b)와, 모터(1304)를 시동시키는 인버터(1312)에 전력을 공급하는 제 2 배터리(1311)가 설치되어 있다. 제 2 배터리(1311)는 크랭킹 배터리(또는 스타터 배터리)라고도 불린다. 제 2 배터리(1311)는 고출력이면 되고, 제 2 배터리(1311)의 용량은 그다지 클 필요는 없고 제 1 배터리(1301a, 1301b)의 용량에 비하여 작다.
제 1 배터리(1301a)의 내부 구조는 도 14의 (A) 또는 도 15의 (C)에 나타낸 권취형이어도 좋고, 도 16의 (A) 또는 (B)에 나타낸 적층형이어도 좋다. 또한 제 1 배터리(1301a)는 실시형태 4의 전고체 전지를 사용하여도 좋다. 제 1 배터리(1301a)에 실시형태 4의 전고체 전지를 사용함으로써 고용량화, 안전성 향상, 소형화, 및 경량화가 가능해진다.
본 실시형태에서는, 2개의 제 1 배터리(1301a, 1301b)를 병렬로 접속시키는 예를 나타내었지만, 3개 이상을 병렬로 접속시켜도 좋다. 또한 제 1 배터리(1301a)로 충분한 전력을 저장할 수 있는 경우에는 제 1 배터리(1301b)는 제공하지 않아도 된다. 복수의 이차 전지를 가지는 전지 팩을 구성함으로써, 큰 전력을 추출할 수 있다. 복수의 이차 전지는 병렬로 접속되어도 좋고, 직렬로 접속되어도 좋고, 병렬로 접속된 후에 직렬로 접속되어도 좋다. 복수의 이차 전지를 조전지라고도 부른다.
또한 차량 탑재용 이차 전지에서, 복수의 이차 전지로부터의 전력을 차단하기 위하여 공구를 사용하지 않고 고전압을 차단할 수 있는 서비스 플러그 또는 서킷 브레이커가 제 1 배터리(1301a)에 제공된다.
또한 제 1 배터리(1301a, 1301b)의 전력은 주로 모터(1304)를 회전시키기 위하여 사용되지만, DCDC 회로(1306)를 통하여 42V계 차량 탑재 부품(전동 파워 스티어링(1307), 히터(1308), 디포거(1309) 등)에 전력을 공급한다. 뒷바퀴에 리어 모터(1317)를 가지는 경우에도 제 1 배터리(1301a)는 리어 모터(1317)를 회전시키기 위하여 사용된다.
또한 제 2 배터리(1311)는 DCDC 회로(1310)를 통하여 14V계 차량 탑재 부품(오디오(1313), 파워 윈도(1314), 램프류(1315) 등)에 전력을 공급한다.
또한 제 1 배터리(1301a)에 대하여 도 22의 (A)를 사용하여 설명한다.
도 22의 (A)에는 9개의 각형 이차 전지(1300)를 하나의 전지 팩(1415)으로 한 예를 나타내었다. 또한 9개의 각형 이차 전지(1300)를 직렬 접속하고, 한쪽 전극을 절연체로 이루어지는 고정부(1413)로 고정하고, 다른 쪽 전극을 절연체로 이루어지는 고정부(1414)로 고정하였다. 본 실시형태에서는 고정부(1413, 1414)로 고정하는 예를 나타내었지만 전지 수용 박스(하우징이라고도 함)에 수납시키는 구성으로 하여도 좋다. 차량에는 외부(노면 등)로부터 진동 또는 흔들림이 가해지는 것이 상정되므로 고정부(1413, 1414) 및 전지 수용 박스 등으로 복수의 이차 전지를 고정하는 것이 바람직하다. 또한 한쪽 전극은 배선(1421)을 통하여 제어 회로부(1320)에 전기적으로 접속되어 있다. 또한 다른 쪽 전극은 배선(1422)을 통하여 제어 회로부(1320)와 전기적으로 접속되어 있다.
또한 제어 회로부(1320)에는 산화물 반도체를 사용한 트랜지스터를 포함하는 메모리 회로를 사용하여도 좋다. 산화물 반도체를 사용한 트랜지스터를 포함하는 메모리 회로를 가지는 충전 제어 회로 또는 전지 제어 시스템을 BTOS(Battery operating system 또는 Battery oxide semiconductor)라고 부르는 경우가 있다.
산화물 반도체로서 기능하는 금속 산화물을 사용하는 것이 바람직하다. 예를 들어, 산화물로서 In-M-Zn 산화물(원소 M은 알루미늄, 갈륨, 이트륨, 구리, 바나듐, 베릴륨, 보론, 타이타늄, 철, 니켈, 저마늄, 지르코늄, 몰리브데넘, 란타넘, 세륨, 네오디뮴, 하프늄, 탄탈럼, 텅스텐, 및 마그네슘에서 선택된 1종류 또는 복수 종류) 등의 금속 산화물을 사용하는 것이 좋다. 특히 산화물로서 적용할 수 있는 In-M-Zn 산화물은 CAAC-OS(C-Axis Aligned Crystal Oxide Semiconductor), CAC-OS(Cloud-Aligned Composite Oxide Semiconductor)인 것이 바람직하다. 또한 산화물로서 In-Ga 산화물, In-Zn 산화물을 사용하여도 좋다. CAAC-OS는 복수의 결정 영역을 가지고, 상기 복수의 결정 영역은 c축이 특정 방향으로 배향되는 산화물 반도체이다. 또한 특정 방향이란, CAAC-OS막의 두께 방향, CAAC-OS막의 피형성면의 법선 방향, 또는 CAAC-OS막의 표면의 법선 방향을 말한다. 또한 결정 영역이란, 원자 배열에 주기성을 가지는 영역을 말한다. 또한 원자 배열을 격자 배열로 간주하면, 결정 영역은 격자 배열이 정렬된 영역이기도 하다. 또한 CAAC-OS는 a-b면 방향에서 복수의 결정 영역이 연결되는 영역을 가지고, 상기 영역은 변형을 가지는 경우가 있다. 또한 변형이란, 복수의 결정 영역이 연결되는 영역에서 격자 배열이 정렬된 영역과, 격자 배열이 정렬된 다른 영역 사이에서 격자 배열의 방향이 변화되는 부분을 가리킨다. 즉 CAAC-OS는 c축 배향을 가지고, a-b면 방향으로는 명확한 배향을 가지지 않는 산화물 반도체이다. 또한 CAC-OS란, 예를 들어 금속 산화물을 구성하는 원소가 0.5nm 이상 10nm 이하, 바람직하게는 1nm 이상 3nm 이하, 또는 그 근방의 크기로 편재한 재료의 한 구성이다. 또한 이하에서는 금속 산화물에서 하나 또는 복수의 금속 원소가 편재되고, 상기 금속 원소를 포함하는 영역이 0.5nm 이상 10nm 이하, 바람직하게는 1nm 이상 3nm 이하, 또는 그 근방의 크기로 혼합된 상태를 모자이크 패턴 또는 패치 패턴이라고도 한다.
또한 CAC-OS란, 재료가 제 1 영역과 제 2 영역으로 분리하여 모자이크 패턴을 형성하고, 상기 제 1 영역이 막 중에 분포된 구성(이하 클라우드상이라고도 함)이다. 즉 CAC-OS는 상기 제 1 영역과 상기 제 2 영역이 혼합된 구성을 가지는 복합 금속 산화물이다.
여기서, In-Ga-Zn 산화물에서의 CAC-OS를 구성하는 금속 원소에 대한 In, Ga, 및 Zn의 원자수비를 각각 [In], [Ga], 및 [Zn]이라고 표기한다. 예를 들어 In-Ga-Zn 산화물에서의 CAC-OS에 있어서, 제 1 영역은 [In]이 CAC-OS막의 조성에서의 [In]보다 큰 영역이다. 또한 제 2 영역은 [Ga]가 CAC-OS막의 조성에서의 [Ga]보다 큰 영역이다. 또는 예를 들어 제 1 영역은 [In]이 제 2 영역에서의 [In]보다 크며, [Ga]가 제 2 영역에서의 [Ga]보다 작은 영역이다. 또한 제 2 영역은 [Ga]가 제 1 영역에서의 [Ga]보다 크며, [In]이 제 1 영역에서의 [In]보다 작은 영역이다.
구체적으로는 상기 제 1 영역은 인듐 산화물, 인듐 아연 산화물 등이 주성분인 영역이다. 또한 상기 제 2 영역은 갈륨 산화물, 갈륨 아연 산화물 등이 주성분인 영역이다. 즉 상기 제 1 영역을 In을 주성분으로 하는 영역으로 바꿔 말할 수 있다. 또한 상기 제 2 영역을 Ga를 주성분으로 하는 영역으로 바꿔 말할 수 있다.
또한 상기 제 1 영역과 상기 제 2 영역 사이에서 명확한 경계를 관찰할 수 없는 경우가 있다.
예를 들어 In-Ga-Zn 산화물에서의 CAC-OS에서는, 에너지 분산형 X선 분광법(EDX: Energy Dispersive X-ray spectroscopy)을 사용하여 취득한 EDX 매핑으로부터, In을 주성분으로 하는 영역(제 1 영역)과 Ga를 주성분으로 하는 영역(제 2 영역)이 편재되고 혼합된 구조를 가지는 것을 확인할 수 있다.
CAC-OS를 트랜지스터에 사용하는 경우에는, 제 1 영역에 기인하는 도전성과 제 2 영역에 기인하는 절연성이 상보적으로 작용함으로써 스위칭 기능(On/Off 기능)을 CAC-OS에 부여할 수 있다. 즉 CAC-OS는 재료의 일부에서는 도전성의 기능을 가지고, 재료의 일부에서는 절연성의 기능을 가지고, 재료 전체에서는 반도체로서의 기능을 가진다. 도전성의 기능과 절연성의 기능을 분리함으로써, 양쪽의 기능을 최대한 높일 수 있다. 따라서 CAC-OS를 트랜지스터에 사용함으로써, 큰 온 전류(Ion), 높은 전계 효과 이동도(μ), 및 양호한 스위칭 동작을 실현할 수 있다.
산화물 반도체는 다양한 구조를 가지고, 각각이 다른 특성을 가진다. 본 발명의 일 형태의 산화물 반도체에는 비정질 산화물 반도체, 다결정 산화물 반도체, a-like OS, CAC-OS, nc-OS, CAAC-OS 중 2종 이상이 포함되어도 좋다.
또한 고온 환경하에서 사용할 수 있기 때문에, 제어 회로부(1320)에는 산화물 반도체를 사용한 트랜지스터를 사용하는 것이 바람직하다. 공정을 간략하게 하기 위하여, 제어 회로부(1320)는 단극성의 트랜지스터를 사용하여 형성하여도 좋다. 반도체층에 산화물 반도체가 사용된 트랜지스터는 동작 주위 온도가 단결정 Si 트랜지스터보다 넓은 -40℃ 이상 150℃ 이하이기 때문에, 이차 전지가 과열되어도 특성 변화가 단결정 Si 트랜지스터에 비하여 작다. 산화물 반도체를 사용하는 트랜지스터의 오프 전류는 150℃에서도 측정 하한 이하이지만, 단결정 Si 트랜지스터의 오프 전류 특성은 온도 의존성이 크다. 예를 들어, 150℃에서는 단결정 Si 트랜지스터의 오프 전류가 상승되고, 전류의 온 오프비는 충분히 커질 수 없다. 제어 회로부(1320)는 안전성을 향상시킬 수 있다. 또한 상술한 실시형태에서 얻어지는 양극 활물질(100)을 양극에 사용한 이차 전지와 조합함으로써 안전성에 대한 시너지 효과를 얻을 수 있다.
산화물 반도체를 사용한 트랜지스터를 포함하는 메모리 회로를 사용한 제어 회로부(1320)는 마이크로 단락 등 불안정성의 원인에 대한 이차 전지의 자동 제어 장치로서 기능시킬 수도 있다. 이차 전지의 불안정성의 원인을 해소하는 기능으로서는, 과충전 방지, 과전류 방지, 충전 시 과열 제어, 조전지에서의 셀 밸런스, 과방전 방지, 잔량계, 온도에 따른 충전 전압 및 전류량 자동 제어, 열화도에 따른 충전 전류량 제어, 마이크로 단락 이상 거동 검지, 마이크로 단락에 관한 이상 예측 등을 들 수 있고, 이들 중 적어도 하나의 기능을 제어 회로부(1320)가 가진다. 또한 이차 전지의 자동 제어 장치의 초소형화가 가능하다.
또한 마이크로 단락이란, 이차 전지의 내부의 미소한 단락을 가리키고, 이차 전지의 양극과 음극이 단락되어 충방전이 불 가능한 상태가 될 정도는 아니지만 미소한 단락부에서 약간의 단락 전류가 흐르는 현상을 가리킨다. 비교적 단시간이며, 아주 작은 곳에서도 큰 전압 변화가 발생하기 때문에, 그 이상이 있는 전압값이 추후의 추정에 영향을 미칠 우려가 있다.
마이크로 단락은, 충방전이 여러 번 수행됨으로써 양극 활물질이 불균일하게 분포되어, 양극의 일부와 음극의 일부에서 국소적인 전류 집중이 생겨, 세퍼레이터의 일부에 기능하지 않게 되는 부분이 발생하거나, 또는 부반응으로 인하여 부반응물이 발생하여 미소한 단락이 발생하는 것이 원인 중 하나라고 생각되고 있다.
또한 마이크로 단락의 검지뿐만 아니라, 제어 회로부(1320)는 이차 전지의 단자 전압을 검지하고, 이차 전지의 충방전 상태를 관리한다고도 할 수 있다. 예를 들어 과충전을 방지하기 위하여, 충전 회로의 출력 트랜지스터와 차단용 스위치 양쪽을 대략 동시에 오프 상태로 할 수 있다.
또한 도 22의 (A)에 나타낸 전지 팩(1415)의 블록도의 일례를 도 22의 (B)에 나타내었다.
제어 회로부(1320)는 적어도 과충전을 방지하는 스위치와 과방전을 방지하는 스위치를 포함하는 스위치부(1324)와, 스위치부(1324)를 제어하는 제어 회로(1322)와, 제 1 배터리(1301a)의 전압 측정부를 가진다. 제어 회로부(1320)에는 사용하는 이차 전지의 상한 전압과 하한 전압이 설정되어 있고, 외부로부터의 전류 상한 및 외부로의 출력 전류의 상한 등을 제한한다. 이차 전지의 하한 전압 이상 상한 전압 이하의 범위 내는 사용이 권장되는 전압 범위 내이고, 이 범위를 벗어나면 스위치부(1324)가 작동되고 보호 회로로서 기능한다. 또한 제어 회로부(1320)는 스위치부(1324)를 제어하여 과방전 및 과충전을 방지하기 때문에 보호 회로라고도 할 수 있다. 예를 들어 과충전이 될 수 있는 전압을 제어 회로(1322)에서 검지한 경우에 스위치부(1324)의 스위치를 오프 상태로 함으로써 전류를 차단한다. 또한 충방전 경로 중에 PTC 소자를 제공하여 온도의 상승에 따라 전류를 차단하는 기능을 제공하여도 좋다. 또한 제어 회로부(1320)는 외부 단자(1325)(+IN)와 외부 단자(1326)(-IN)를 가진다.
스위치부(1324)는 n채널형 트랜지스터 및 p채널형 트랜지스터를 조합하여 구성할 수 있다. 스위치부(1324)는 단결정 실리콘을 사용하는 Si 트랜지스터를 포함하는 스위치에 한정되지 않고, 예를 들어 Ge(저마늄), SiGe(실리콘 저마늄), GaAs(갈륨 비소), GaAlAs(갈륨 알루미늄 비소), InP(인화 인듐), SiC(실리콘 카바이드), ZnSe(셀레늄화 아연), GaN(질화 갈륨), GaOx(산화 갈륨; x는 0보다 큰 실수) 등을 포함하는 파워 트랜지스터로 형성되어도 좋다. 또한 OS 트랜지스터를 사용한 기억 소자는 Si 트랜지스터를 사용한 회로 위 등에 적층함으로써 자유로이 배치할 수 있기 때문에 집적화가 용이하다. 또한 OS 트랜지스터는 Si 트랜지스터와 같은 제조 장치를 사용하여 제작할 수 있으므로 저비용으로 제작할 수 있다. 즉 스위치부(1324) 위에 OS 트랜지스터를 사용한 제어 회로부(1320)를 적층하여 집적화함으로써 하나의 칩으로 할 수도 있다. 제어 회로부(1320)의 점유 부피를 작게 할 수 있기 때문에 소형화가 가능하다.
제 1 배터리(1301a, 1301b)는 주로 42V계(고전압계)의 차량 탑재용 기기에 전력을 공급하고, 제 2 배터리(1311)는 14V계(저전압계)의 차량 탑재용 기기에 전력을 공급한다.
본 실시형태에서는 제 1 배터리(1301a)와 제 2 배터리(1311) 양쪽에 리튬 이온 이차 전지를 사용하는 일례를 나타내었다. 제 2 배터리(1311)에는 납축전지, 전고체 전지, 또는 전기 이중층 커패시터를 사용하여도 좋다. 예를 들어, 실시형태 4의 전고체 전지를 사용하여도 좋다. 제 2 배터리(1311)에 실시형태 4의 전고체 전지를 사용함으로써 고용량화, 소형화, 및 경량화가 가능하다.
또한 타이어(1316)의 회전에 의한 회생 에너지는 기어(1305)를 통하여 모터(1304)로 전달되고, 모터 컨트롤러(1303) 및 배터리 컨트롤러(1302)로부터 제어 회로부(1321)를 통하여 제 2 배터리(1311)에 충전된다. 또는 배터리 컨트롤러(1302)로부터 제어 회로부(1320)를 통하여 제 1 배터리(1301a)에 충전된다. 또는 배터리 컨트롤러(1302)로부터 제어 회로부(1320)를 통하여 제 1 배터리(1301b)에 충전된다. 회생 에너지를 효율적으로 충전하기 위해서는 제 1 배터리(1301a, 1301b)를 급속 충전할 수 있는 것이 바람직하다.
배터리 컨트롤러(1302)는 제 1 배터리(1301a, 1301b)의 충전 전압 및 충전 전류 등을 설정할 수 있다. 배터리 컨트롤러(1302)는 사용하는 이차 전지의 충전 특성에 맞추어 충전 조건을 설정하여 급속 충전할 수 있다.
또한 도시하지 않았지만, 외부의 충전기와 접속시키는 경우, 충전기의 콘센트 또는 충전기의 접속 케이블은 배터리 컨트롤러(1302)에 전기적으로 접속된다. 외부의 충전기로부터 공급된 전력은 배터리 컨트롤러(1302)를 통하여 제 1 배터리(1301a, 1301b)에 충전된다. 또한 충전기에 따라서는 제어 회로가 제공되어 있어 배터리 컨트롤러(1302)의 기능을 사용하지 않는 경우도 있지만, 과충전을 방지하기 위하여 제어 회로부(1320)를 통하여 제 1 배터리(1301a, 1301b)를 충전하는 것이 바람직하다. 또한 충전기의 콘센트 또는 충전기의 접속 케이블에 제어 회로가 제공되는 경우도 있다. 제어 회로부(1320)는 ECU(Electronic Control Unit)라고 불리는 경우도 있다. ECU는 전동 차량에 제공된 CAN(Controller Area Network)에 접속된다. CAN은 차량 내 LAN으로서 사용되는 직렬 통신 규격의 하나이다. 또한 ECU는 마이크로 컴퓨터를 포함한다. 또한 ECU로서, CPU 또는 GPU를 사용한다.
충전 스탠드 등에 설치되어 있는 외부의 충전기는 100V 콘센트, 200V 콘센트, 3상 200V 50kW 등이 있다. 또한 비접촉 급전 방식 등에 의하여 외부의 충전 설비로부터 전력을 공급받아 충전할 수도 있다.
급속 충전을 수행하는 경우, 짧은 시간 내에 충전을 수행하기 위하여 고전압 충전에 견딜 수 있는 이차 전지가 요구된다.
또한 상술한 본 실시형태의 이차 전지는 상술한 실시형태에서 얻어지는 양극 활물질(100)을 사용한다. 또한 도전재로서 그래핀을 사용하고, 전극층을 두껍게 하여 담지량을 높여도 용량 저하가 억제되고, 고용량이 유지되는 것이 시너지 효과를 이루므로, 전기 특성이 큰 폭으로 향상된 이차 전지를 실현할 수 있다. 특히 차량에 사용되는 이차 전지에 유효하고, 차량 전체의 중량에 대한 이차 전지의 중량의 비율을 증가시키지 않고, 항속 거리가 긴, 구체적으로는 한 번의 충전에 의한 주행 거리가 500km 이상인 차량을 제공할 수 있다.
특히 상술한 본 실시형태의 이차 전지에는 위의 실시형태에서 설명한 양극 활물질(100)을 사용함으로써 이차 전지의 동작 전압을 높일 수 있어, 충전 전압의 증가에 따라 사용할 수 있는 용량을 늘릴 수 있다. 또한 위의 실시형태에서 설명한 양극 활물질(100)을 양극에 사용함으로써 사이클 특성이 우수한 차량용 이차 전지를 제공할 수 있다.
다음으로 본 발명의 일 형태인 이차 전지를 차량, 대표적으로는 수송용 차량에 실장하는 예에 대하여 설명한다.
또한 도 13의 (D), 도 15의 (C), 도 22의 (A) 중 어느 하나에 나타낸 이차 전지를 차량에 탑재하면, 하이브리드 자동차(HV), 전기 자동차(EV), 또는 플러그인 하이브리드 자동차(PHV) 등의 차세대 클린에너지 자동차를 실현할 수 있다. 또한 농업 기계, 전동 어시스트 자전거를 포함하는 원동기 장치 자전거, 자동 이륜차, 전동 휠체어, 전동 카트, 소형 또는 대형 선박, 잠수함, 고정익 항공기 및 회전익 항공기 등의 항공기, 로켓, 인공위성, 우주 탐사선, 행성 탐사선, 우주선 등의 수송용 차량에 이차 전지를 탑재할 수도 있다. 본 발명의 일 형태의 이차 전지는 고용량의 이차 전지로 할 수 있다. 그러므로 본 발명의 일 형태의 이차 전지는 소형화 및 경량화에 적합하고, 수송용 차량에 적합하게 사용할 수 있다.
도 23의 (A) 내지 (D)에 본 발명의 일 형태를 사용한 이동체의 일례로서 수송용 차량을 예시하였다. 도 23의 (A)에 나타낸 자동차(2001)는 주행을 위한 동력원으로서 전기 모터를 사용하는 전기 자동차이다. 또는 주행을 위한 동력원으로서 전기 모터와 엔진을 적절히 선택하여 사용할 수 있는 하이브리드 자동차이다. 이차 전지를 차량에 탑재하는 경우, 실시형태 3에서 예시한 이차 전지를 한 군데 또는 여러 군데에 설치한다. 도 23의 (A)에 나타낸 자동차(2001)는 전지 팩(2200)을 가지고, 전지 팩은 복수의 이차 전지를 접속시킨 이차 전지 모듈을 가진다. 또한 이차 전지 모듈에 전기적으로 접속되는 충전 제어 장치를 가지는 것이 바람직하다.
또한 자동차(2001)는, 자동차(2001)가 가지는 이차 전지에 플러그인 방식 및 비접촉 급전 방식 등에 의하여 외부의 충전 설비로부터 전력 공급을 받아 충전할 수 있다. 충전에 대하여 충전 방법 및 커넥터의 규격 등은 CHAdeMO(등록 상표) 또는 콤보 등의 소정의 방식으로 적절히 수행하면 된다. 이차 전지는 상용 시설에 제공된 충전 스테이션이어도 좋고, 또한 가정용 전원이어도 좋다. 예를 들어, 플러그인 기술에 의하여, 외부로부터의 전력 공급에 의하여 자동차(2001)에 탑재된 축전 장치를 충전할 수 있다. 충전은 ACDC 컨버터 등의 변환 장치를 통하여 교류 전력을 직류 전력으로 변환하여 수행할 수 있다.
또한 도시하지 않았지만, 수전 장치를 차량에 탑재하여 지상의 송전 장치로부터 전력을 비접촉으로 공급하여 충전할 수도 있다. 이 비접촉 급전 방식의 경우에는 도로 또는 외벽에 송전 장치를 제공함으로써 정차 시뿐만 아니라 주행 시에도 충전할 수 있다. 또한 이 비접촉 급전 방식을 이용하여 2대의 차량 사이에서 전력을 주고받아도 좋다. 또한 차량의 외장부에 태양 전지를 제공하여, 정차 시 및 주행 시에 이차 전지를 충전하여도 좋다. 이와 같은 비접촉 전력 공급에는 전자기 유도 방식 또는 자기 공명 방식을 이용할 수 있다.
도 23의 (B)는 수송용 차량의 일례로서 전기에 의하여 제어하는 모터를 가지는 대형 수송차(2002)를 나타낸 것이다. 수송차(2002)의 이차 전지 모듈은, 예를 들어 공칭 전압 3.0V 이상 5.0V 이하의 이차 전지 4개를 셀 유닛으로 하고, 48셀을 직렬로 접속한 170V를 최대 전압으로 한다. 전지 팩(2201)의 이차 전지 모듈을 구성하는 이차 전지의 개수 등이 상이하다는 점 이외에는 도 23의 (A)와 같은 기능을 가지기 때문에 설명은 생략한다.
도 23의 (C)는 일례로서 전기에 의하여 제어하는 모터를 가지는 대형 수송 차량(2003)을 나타낸 것이다. 수송 차량(2003)의 이차 전지 모듈은 예를 들어 공칭 전압 3.0V 이상 5.0V 이하의 이차 전지를 100개 이상 직렬로 접속한 600V를 최대 전압으로 한다. 위의 실시형태에서 설명한 양극 활물질(100)을 양극에 사용한 이차 전지를 사용함으로써, 레이트 특성 및 충방전 사이클 특성이 양호한 이차 전지를 제조할 수 있어 수송 차량(2003)의 고성능화 및 장수명화에 기여할 수 있다. 또한 전지 팩(2202)의 이차 전지 모듈을 구성하는 이차 전지의 개수 등이 상이하다는 점 이외에는 도 23의 (A)와 같은 기능을 가지기 때문에 설명은 생략한다.
도 23의 (D)는 일례로서 연료를 연소하는 엔진을 가지는 항공기(2004)를 나타낸 것이다. 도 23의 (D)에 나타낸 항공기(2004)는 이착륙용 차륜을 가지기 때문에, 수송 차량의 일종이라고도 할 수 있고, 복수의 이차 전지를 접속시켜 이차 전지 모듈을 구성하고, 이차 전지 모듈과 충전 제어 장치를 포함하는 전지 팩(2203)을 가진다.
항공기(2004)의 이차 전지 모듈은, 예를 들어 4V의 이차 전지를 8개 직렬로 접속한 32V를 최대 전압으로 한다. 전지 팩(2203)의 이차 전지 모듈을 구성하는 이차 전지의 개수 등이 상이하다는 점 이외에는 도 23의 (A)와 같은 기능을 가지기 때문에 설명은 생략한다.
본 실시형태의 내용은 다른 실시형태의 내용과 적절히 조합할 수 있다.
(실시형태 6)
본 실시형태에서는, 본 발명의 일 형태의 이차 전지를 건축물에 실장하는 예에 대하여 도 24의 (A) 및 (B)를 사용하여 설명한다.
도 24의 (A)에 나타낸 주택은 본 발명의 일 형태의 이차 전지를 포함한 축전 장치(2612)와, 태양광 패널(2610)을 포함한다. 축전 장치(2612)는 태양광 패널(2610)과 배선(2611) 등을 통하여 전기적으로 접속되어 있다. 또한 축전 장치(2612)와 지상 설치형 충전 장치(2604)가 전기적으로 접속되어도 좋다. 태양광 패널(2610)에서 얻은 전력은 축전 장치(2612)에 충전할 수 있다. 또한 축전 장치(2612)에 저장된 전력은 충전 장치(2604)를 통하여 차량(2603)이 가지는 이차 전지에 충전할 수 있다. 축전 장치(2612)는 바닥 아래 공간에 설치되는 것이 바람직하다. 바닥 아래 공간에 설치함으로써, 바닥 위의 공간을 유효하게 이용할 수 있다. 또는 축전 장치(2612)는 바닥 위에 설치되어도 좋다.
축전 장치(2612)에 저장된 전력은 주택 내의 다른 전자 기기에도 전력을 공급할 수 있다. 따라서, 정전 등으로 인하여 상용 전원으로부터 전력이 공급되지 않는 경우에도, 본 발명의 일 형태에 따른 축전 장치(2612)를 무정전 전원으로서 사용함으로써 전자 기기를 이용할 수 있다.
본 발명의 일 형태에 따른 축전 장치의 일례를 도 24의 (B)에 나타내었다. 도 24의 (B)에 나타낸 바와 같이, 건물(799)의 바닥 아래 공간(796)에는 본 발명의 일 형태에 따른 축전 장치(791)가 설치되어 있다. 또한 축전 장치(791)에 실시형태 5에서 설명한 제어 회로를 제공하여도 좋고, 상술한 실시형태에서 얻어지는 양극 활물질(100)을 양극에 사용한 이차 전지를 축전 장치(791)에 사용함으로써 수명이 긴 축전 장치(791)로 할 수 있다.
축전 장치(791)에는 제어 장치(790)가 설치되어 있고, 제어 장치(790)는 배선을 통하여 분전반(703), 축전 컨트롤러(705)(제어 장치라고도 함), 표시기(706), 및 공유기(709)와 전기적으로 접속되어 있다.
상용 전원(701)으로부터 인입선 장착부(710)를 통하여 전력이 분전반(703)으로 송신된다. 또한 분전반(703)에는 축전 장치(791) 및 상용 전원(701)으로부터 전력이 송신되고, 분전반(703)은 송신된 전력을 콘센트(도시하지 않았음)를 통하여 일반 부하(707) 및 축전계 부하(708)에 공급한다.
일반 부하(707)는 예를 들어 텔레비전 및 퍼스널 컴퓨터 등의 전기 기기이고, 축전계 부하(708)는 예를 들어 전자 레인지, 냉장고, 에어컨디셔너 등의 전기 기기이다.
축전 컨트롤러(705)는 계측부(711)와, 예측부(712)와, 계획부(713)를 가진다. 계측부(711)는 하루(예를 들어 0시부터 24시까지)에 일반 부하(707) 및 축전계 부하(708)에 의하여 소비된 전력량을 계측하는 기능을 가진다. 또한 계측부(711)는 축전 장치(791)의 전력량과 상용 전원(701)으로부터 공급된 전력량을 계측하는 기능을 가져도 좋다. 또한 예측부(712)는 하루에 일반 부하(707) 및 축전계 부하(708)에 의하여 소비된 전력량에 기초하여, 다음날에 일반 부하(707) 및 축전계 부하(708)에 의하여 소비되는 수요 전력량을 예측하는 기능을 가진다. 또한 계획부(713)는 예측부(712)가 예측한 수요 전력량에 기초하여 축전 장치(791)의 충방전 계획을 세우는 기능을 가진다.
계측부(711)로 계측된, 일반 부하(707) 및 축전계 부하(708)에 의하여 소비된 전력량은 표시기(706)를 사용하여 확인할 수 있다. 또한 공유기(709)를 통하여 텔레비전 및 퍼스널 컴퓨터 등의 전기 기기에서 확인할 수도 있다. 또한 공유기(709)를 통하여 스마트폰 및 태블릿 등의 휴대 전자 단말기로도 확인할 수 있다. 또한 표시기(706), 전기 기기, 휴대 전자 단말기를 사용하여, 예측부(712)가 예측한 시간대별(또는 1시간당) 수요 전력량 등도 확인할 수 있다.
본 실시형태의 내용은 다른 실시형태의 내용과 적절히 조합할 수 있다.
(실시형태 7)
본 실시형태에서는 이륜차, 자전거에 본 발명의 일 형태인 축전 장치를 탑재하는 예에 대하여 설명한다.
또한 도 25의 (A)는 본 발명의 일 형태의 축전 장치를 사용한 전동 자전거의 일례를 나타낸 도면이다. 도 25의 (A)에 나타낸 전동 자전거(8700)에 본 발명의 일 형태의 축전 장치를 적용할 수 있다. 본 발명의 일 형태의 축전 장치는 예를 들어 복수의 축전지와, 보호 회로를 가진다.
전동 자전거(8700)는 축전 장치(8702)를 가진다. 축전 장치(8702)는 운전자를 어시스트하는 모터에 전기를 공급할 수 있다. 또한 축전 장치(8702)는 들고 다닐 수 있고, 도 25의 (B)에 자전거로부터 분리된 상태를 나타내었다. 또한 축전 장치(8702)는 본 발명의 일 형태의 축전 장치가 가지는 축전지(8701)가 복수로 내장되어 있고, 그 배터리 잔량 등을 표시부(8703)에 표시할 수 있다. 또한 축전 장치(8702)는 실시형태 5에서 예시한 이차 전지의 충전 제어 또는 이상 검지가 가능한 제어 회로(8704)를 가진다. 제어 회로(8704)는 축전지(8701)의 양극 및 음극에 전기적으로 접속되어 있다. 또한 제어 회로(8704)에 도 21의 (A) 및 (B)에 나타낸 소형 고체 이차 전지를 제공하여도 좋다. 도 21의 (A) 및 (B)에 나타낸 소형 고체 이차 전지를 제어 회로(8704)에 제공함으로써 제어 회로(8704)가 가지는 메모리 회로의 데이터를 장시간 유지하기 위하여 전력을 공급할 수도 있다. 또한 상술한 실시형태에서 얻어지는 양극 활물질(100)을 양극에 사용한 이차 전지와 조합함으로써 안전성에 대한 시너지 효과를 얻을 수 있다. 상술한 실시형태에서 얻어지는 양극 활물질(100)을 양극에 사용한 이차 전지 및 제어 회로(8704)는 이차 전지로 인한 화재 등의 사고를 박멸하는 데 크게 기여할 수 있다.
또한 도 25의 (C)는 본 발명의 일 형태의 축전 장치를 사용한 이륜차의 일례를 나타낸 것이다. 도 25의 (C)에 나타낸 스쿠터(8600)는 축전 장치(8602), 사이드 미러(8601), 방향 지시등(8603)을 가진다. 축전 장치(8602)는 방향 지시등(8603)에 전기를 공급할 수 있다. 또한 상술한 실시형태에서 얻어지는 양극 활물질(100)을 양극에 사용한 이차 전지가 복수 수납된 축전 장치(8602)는 용량을 크게 할 수 있어, 소형화에 기여할 수 있다.
또한 도 25의 (C)에 나타낸 스쿠터(8600)는 좌석 아래 수납 공간(8604)에 축전 장치(8602)를 수납할 수 있다. 축전 장치(8602)는 좌석 아래 수납 공간(8604)이 작아도 좌석 아래 수납 공간(8604)에 수납될 수 있다.
본 실시형태의 내용은 다른 실시형태 내용과 적절히 조합할 수 있다.
(실시형태 8)
본 실시형태에서는 본 발명의 일 형태인 이차 전지를 전자 기기에 실장하는 예에 대하여 설명한다. 이차 전지를 실장하는 전자 기기로서는 예를 들어 텔레비전 장치(텔레비전 또는 텔레비전 수신기라고도 함), 컴퓨터용 등의 모니터, 디지털 카메라, 디지털 비디오 카메라, 디지털 액자, 휴대 전화기(휴대 전화, 휴대 전화 장치라고도 함), 휴대용 게임기, 휴대 정보 단말기, 음향 재생 장치, 파친코기 등의 대형 게임기 등이 있다. 휴대 정보 단말기로서는 노트북형 퍼스널 컴퓨터, 태블릿형 단말기, 전자책 단말기, 휴대 전화기 등이 있다.
도 26의 (A)는 휴대 전화기의 일례를 나타낸 것이다. 휴대 전화기(2100)는 하우징(2101)에 제공된 표시부(2102) 외에, 조작 버튼(2103), 외부 접속 포트(2104), 스피커(2105), 마이크로폰(2106) 등을 가진다. 또한 휴대 전화기(2100)는 이차 전지(2107)를 가진다. 위의 실시형태에서 설명한 양극 활물질(100)을 양극에 사용한 이차 전지(2107)를 가짐으로써 용량을 크게 할 수 있기 때문에, 하우징의 소형화에 따라 요구되는 공간 절약이 가능한 구성을 실현할 수 있다.
휴대 전화기(2100)는 이동 전화, 전자 메일, 문장 열람 및 작성, 음악 재생, 인터넷 통신, 컴퓨터 게임 등, 다양한 애플리케이션을 실행할 수 있다.
조작 버튼(2103)은 시각 설정 외에, 전원의 온, 오프 동작, 무선 통신의 온, 오프 동작, 매너 모드의 실행 및 해제, 전력 절약 모드의 실행 및 해제 등, 다양한 기능을 가질 수 있다. 예를 들어 휴대 전화기(2100)에 제공된 운영 체계에 의하여, 조작 버튼(2103)의 기능을 자유로이 설정할 수도 있다.
또한 휴대 전화기(2100)는 통신 규격화된 근거리 무선 통신을 실행할 수 있다. 예를 들어 무선 통신할 수 있는 헤드셋과 상호 통신함으로써, 핸즈프리로 통화할 수도 있다.
또한 휴대 전화기(2100)는 외부 접속 포트(2104)를 가지고, 다른 정보 단말기와 커넥터를 통하여 데이터를 직접 주고받을 수 있다. 또한 외부 접속 포트(2104)를 통하여 충전을 수행할 수도 있다. 또한 충전 동작은 외부 접속 포트(2104)를 통하지 않고 무선 급전에 의하여 수행하여도 좋다.
휴대 전화기(2100)는 센서를 가지는 것이 바람직하다. 센서로서는 예를 들어 지문 센서, 맥박 센서, 체온 센서 등의 인체 센서, 터치 센서, 가압 센서, 가속도 센서 등이 탑재되는 것이 바람직하다.
도 26의 (B)는 복수의 로터(2302)를 가지는 무인 항공기(2300)이다. 무인 항공기(2300)는 드론이라고 불리는 경우도 있다. 무인 항공기(2300)는 본 발명의 일 형태인 이차 전지(2301)와, 카메라(2303)와, 안테나(도시하지 않았음)를 가진다. 무인 항공기(2300)는 안테나를 통하여 원격 조작할 수 있다. 상술한 실시형태에서 얻어지는 양극 활물질(100)을 양극에 사용한 이차 전지는 에너지 밀도가 높으며 안전성이 높기 때문에 장기간에 걸쳐 장시간 안전하게 사용할 수 있어, 무인 항공기(2300)에 탑재하는 이차 전지로서 적합하다.
도 26의 (C)는 로봇의 일례를 나타낸 것이다. 도 26의 (C)에 나타낸 로봇(6400)은 이차 전지(6409), 조도 센서(6401), 마이크로폰(6402), 상부 카메라(6403), 스피커(6404), 표시부(6405), 하부 카메라(6406), 장애물 센서(6407), 이동 기구(6408), 및 연산 장치 등을 가진다.
마이크로폰(6402)은 사용자의 목소리 및 환경음 등을 검지하는 기능을 가진다. 또한 스피커(6404)는 음성을 발하는 기능을 가진다. 로봇(6400)은 마이크로폰(6402) 및 스피커(6404)를 사용하여 사용자와의 의사소통을 할 수 있다.
표시부(6405)는 각종 정보의 표시를 수행하는 기능을 가진다. 로봇(6400)은 사용자가 원하는 정보를 표시부(6405)에 표시할 수 있다. 표시부(6405)에는 터치 패널을 탑재하여도 좋다. 또한 표시부(6405)는 탈착 가능한 정보 단말기이어도 좋고, 로봇(6400)의 정위치에 설치함으로써 충전 및 데이터의 수수를 할 수 있다.
상부 카메라(6403) 및 하부 카메라(6406)는 로봇(6400)의 주위를 촬상하는 기능을 가진다. 또한 장애물 센서(6407)는 이동 기구(6408)를 사용하여 로봇(6400)이 앞으로 갈 때의 진행 방향에서의 장애물 유무를 검지할 수 있다. 로봇(6400)은 상부 카메라(6403), 하부 카메라(6406), 및 장애물 센서(6407)를 사용하여 주위의 환경을 인식하여 안전하게 이동할 수 있다.
로봇(6400)은 내부 영역에 본 발명의 일 형태에 따른 이차 전지(6409)와, 반도체 장치 또는 전자 부품을 가진다. 상술한 실시형태에서 얻어지는 양극 활물질(100)을 양극에 사용한 이차 전지는 에너지 밀도가 높으며 안전성이 높기 때문에 장기간에 걸쳐 장시간 안전하게 사용할 수 있어, 로봇(6400)에 탑재하는 이차 전지(6409)로서 적합하다.
도 26의 (D)는 로봇 청소기의 일례를 나타낸 것이다. 로봇 청소기(6300)는 하우징(6301) 상면에 배치된 표시부(6302), 측면에 배치된 복수의 카메라(6303), 브러시(6304), 조작 버튼(6305), 이차 전지(6306), 각종 센서 등을 가진다. 도시하지 않았지만, 로봇 청소기(6300)에는 바퀴, 흡입구 등이 제공되어 있다. 로봇 청소기(6300)는 자율 주행하고, 먼지(6310)를 검지하고, 하면에 제공된 흡입구로부터 먼지를 흡입할 수 있다.
예를 들어 로봇 청소기(6300)는 카메라(6303)가 촬영한 화상을 해석하여 벽, 가구, 또는 단차 등의 장애물의 유무를 판단할 수 있다. 또한 화상 해석에 의하여, 배선 등 브러시(6304)에 얽히기 쉬운 물체를 검지한 경우에는 브러시(6304)의 회전을 멈출 수 있다. 로봇 청소기(6300)는 그 내부 영역에 본 발명의 일 형태에 따른 이차 전지(6306)와, 반도체 장치 또는 전자 부품을 가진다. 상술한 실시형태에서 얻어지는 양극 활물질(100)을 양극에 사용한 이차 전지는 에너지 밀도가 높으며 안전성이 높기 때문에 장기간에 걸쳐 장시간 안전하게 사용할 수 있어, 로봇 청소기(6300)에 탑재하는 이차 전지(6306)로서 적합하다.
도 27의 (A)는 웨어러블 디바이스의 예를 나타낸 것이다. 웨어러블 디바이스는 전원으로서 이차 전지를 사용한다. 또한 사용자가 일상 생활 또는 옥외에서 사용하는 데에 있어, 방말(防沫) 성능, 내수 성능, 또는 방진 성능을 높이기 위하여, 접속되는 커넥터 부분이 노출되는 유선으로의 충전뿐만 아니라 무선 충전도 가능한 웨어러블 디바이스가 요구되고 있다.
예를 들어 도 27의 (A)에 나타낸 바와 같은 안경형 디바이스(4000)에 본 발명의 일 형태의 이차 전지를 탑재할 수 있다. 안경형 디바이스(4000)는 프레임(4000a)과 표시부(4000b)를 가진다. 만곡을 가지는 프레임(4000a)의 템플부에 이차 전지를 탑재함으로써, 경량이면서 중량 밸런스가 좋고, 지속 사용 시간이 긴 안경형 디바이스(4000)로 할 수 있다. 상술한 실시형태에서 얻어지는 양극 활물질(100)을 양극에 사용한 이차 전지는 에너지 밀도가 높기 때문에, 하우징의 소형화에 따라 요구되는 공간 절약이 가능한 구성을 실현할 수 있다.
또한 헤드셋형 디바이스(4001)에 본 발명의 일 형태인 이차 전지를 탑재할 수 있다. 헤드셋형 디바이스(4001)는 적어도 마이크로폰부(4001a)와, 플렉시블 파이프(4001b)와, 이어폰부(4001c)를 가진다. 플렉시블 파이프(4001b) 내 또는 이어폰부(4001c) 내에 이차 전지를 제공할 수 있다. 상술한 실시형태에서 얻어지는 양극 활물질(100)을 양극에 사용한 이차 전지는 에너지 밀도가 높기 때문에, 하우징의 소형화에 따라 요구되는 공간 절약이 가능한 구성을 실현할 수 있다.
또한 몸에 직접 장착할 수 있는 디바이스(4002)에 본 발명의 일 형태인 이차 전지를 탑재할 수 있다. 디바이스(4002)의 박형 하우징(4002a) 내에 이차 전지(4002b)를 제공할 수 있다. 상술한 실시형태에서 얻어지는 양극 활물질(100)을 양극에 사용한 이차 전지는 에너지 밀도가 높기 때문에, 하우징의 소형화에 따라 요구되는 공간 절약이 가능한 구성을 실현할 수 있다.
또한 옷에 장착할 수 있는 디바이스(4003)에 본 발명의 일 형태인 이차 전지를 탑재할 수 있다. 디바이스(4003)의 박형 하우징(4003a) 내에 이차 전지(4003b)를 제공할 수 있다. 상술한 실시형태에서 얻어지는 양극 활물질(100)을 양극에 사용한 이차 전지는 에너지 밀도가 높기 때문에, 하우징의 소형화에 따라 요구되는 공간 절약이 가능한 구성을 실현할 수 있다.
또한 벨트형 디바이스(4006)에 본 발명의 일 형태인 이차 전지를 탑재할 수 있다. 벨트형 디바이스(4006)는 벨트부(4006a) 및 와이어리스 급전 수전부(4006b)를 가지고, 벨트부(4006a)의 내부 영역에 이차 전지를 탑재할 수 있다. 상술한 실시형태에서 얻어지는 양극 활물질(100)을 양극에 사용한 이차 전지는 에너지 밀도가 높기 때문에, 하우징의 소형화에 따라 요구되는 공간 절약이 가능한 구성을 실현할 수 있다.
또한 손목시계형 디바이스(4005)에 본 발명의 일 형태인 이차 전지를 탑재할 수 있다. 손목시계형 디바이스(4005)는 표시부(4005a) 및 벨트부(4005b)를 가지고, 표시부(4005a) 또는 벨트부(4005b)에 이차 전지를 제공할 수 있다. 상술한 실시형태에서 얻어지는 양극 활물질(100)을 양극에 사용한 이차 전지는 에너지 밀도가 높기 때문에, 하우징의 소형화에 따라 요구되는 공간 절약이 가능한 구성을 실현할 수 있다.
표시부(4005a)에는 시각뿐만 아니라, 메일 및 전화의 착신 등, 다양한 정보를 표시시킬 수 있다.
또한 손목시계형 디바이스(4005)는 팔에 직접 감는 형태의 웨어러블 디바이스이기 때문에, 사용자의 맥박, 혈압 등을 측정하는 센서를 탑재하여도 좋다. 사용자의 운동량 및 건강에 관한 데이터를 축적하여 건강을 관리할 수 있다.
도 27의 (B)는 팔에서 푼 손목시계형 디바이스(4005)의 사시도이다.
또한 측면도를 도 27의 (C)에 나타내었다. 도 27의 (C)는 내부 영역에 이차 전지(913)가 내장된 상태를 나타낸 것이다. 이차 전지(913)는 실시형태 3에서 제시한 이차 전지이다. 이차 전지(913)는 표시부(4005a)와 중첩되는 위치에 제공되어 있으며, 밀도 및 용량을 높일 수 있고, 소형이며 경량이다.
손목시계형 디바이스(4005)에서는, 소형이며 경량인 것이 요구되기 때문에, 상술한 실시형태에서 얻어지는 양극 활물질(100)을 이차 전지(913)의 양극에 사용함으로써, 에너지 밀도가 높으며 소형인 이차 전지(913)로 할 수 있다.
도 27의 (D)에는 와이어리스 이어폰의 예를 나타내었다. 여기서는 한 쌍의 본체(4100a) 및 본체(4100b)를 가지는 와이어리스 이어폰을 도시하였지만, 반드시 한 쌍일 필요는 없다.
본체(4100a) 및 본체(4100b)는 드라이버 유닛(4101), 안테나(4102), 이차 전지(4103)를 가진다. 표시부(4104)를 가져도 좋다. 또한 무선용 IC 등의 회로가 제공된 기판, 충전용 단자 등을 가지는 것이 바람직하다. 또한 마이크로폰을 가져도 좋다.
케이스(4110)는 이차 전지(4111)를 가진다. 또한 무선용 IC, 충전 제어 IC 등의 회로가 제공된 기판, 충전용 단자를 가지는 것이 바람직하다. 또한 표시부, 버튼 등을 가져도 좋다.
본체(4100a) 및 본체(4100b)는 스마트폰 등의 다른 전자 기기와 무선으로 통신할 수 있다. 이로써 다른 전자 기기로부터 송신된 소리 데이터 등을 본체(4100a) 및 본체(4100b)로 재생할 수 있다. 또한 본체(4100a 및 4100b)가 마이크로폰을 가지면, 마이크로폰으로 취득한 소리를 다른 전자 기기에 송신하고, 상기 전자 기기에 의하여 처리를 한 후의 소리 데이터를 다시 본체(4100a 및 4100b)에 송신하여 재생할 수 있다. 이로써 예를 들어 번역기로서 사용할 수도 있다.
또한 케이스(4110)가 가지는 이차 전지(4111)로부터 본체(4100a)가 가지는 이차 전지(4103)로 충전을 수행할 수 있다. 이차 전지(4111) 및 이차 전지(4103)로서는 앞의 실시형태의 코인형 이차 전지, 원통형 이차 전지 등을 사용할 수 있다. 상술한 실시형태에서 얻어지는 양극 활물질(100)을 양극에 사용한 이차 전지는 에너지 밀도가 높기 때문에, 이차 전지(4103) 및 이차 전지(4111)에 사용함으로써, 와이어리스 이어폰의 소형화에 따라 요구되는 공간 절약이 가능한 구성을 실현할 수 있다.
본 실시형태는 다른 실시형태와 적절히 조합하여 실시할 수 있다.
1: 전극, 2: 집전체, 3: 활물질층, 4: 공극, 5: 활물질, 6: 크랙, 7: 슬립, 10: 장치, 20: 진동 처리부, 21: 롤, 22: 지지체, 23: 진동자, 30: 프레스부, 31: 상부 롤, 32: 상부 지지체, 33: 하부 롤, 34: 하부 지지체, 35: 진동자, 35a 진동자, 35b 진동자, 36: 발진기, 37: 가열부, 38: 톱니바퀴

Claims (6)

  1. 이차 전지의 전극의 제작 방법으로서,
    상기 전극에 진동을 가하는 진동 처리 공정과,
    상기 전극에 가압하여 상기 전극이 가지는 활물질층을 압축하는 프레스 공정을 가지고,
    상기 진동 처리 공정은 상기 프레스 공정 전에 수행되는, 이차 전지의 전극의 제작 방법.
  2. 이차 전지의 전극의 제작 방법으로서,
    상기 전극에 제 1 진동을 가하는 진동 처리 공정과,
    상기 전극에 가압하여 상기 전극이 가지는 활물질층을 압축하는 프레스 공정을 가지고,
    상기 가압과 동시에 상기 전극에 제 2 진동을 가하고,
    상기 진동 처리 공정은 상기 프레스 공정 전에 수행되는, 이차 전지의 전극의 제작 방법.
  3. 이차 전지의 전극의 제작 방법으로서,
    상기 전극에 진동을 가하고 온도 조정을 수행하는 진동 처리 공정과,
    상기 전극에 가압하여 상기 전극이 가지는 활물질층을 압축하는 프레스 공정을 가지고,
    상기 진동 처리 공정은 상기 프레스 공정 전에 수행되는, 이차 전지의 전극의 제작 방법.
  4. 이차 전지의 전극의 제작 방법으로서,
    상기 전극에 제 1 진동을 가하고 온도 조정을 수행하는 진동 처리 공정과,
    상기 전극에 가압하여 상기 전극이 가지는 활물질층을 압축하는 프레스 공정을 가지고,
    상기 가압과 동시에 상기 전극에 제 2 진동을 가하고,
    상기 진동 처리 공정은 상기 프레스 공정 전에 수행되는, 이차 전지의 전극의 제작 방법.
  5. 제 3 항 또는 제 4 항에 있어서,
    상기 온도 조정은 80℃ 이상 150℃ 이하의 온도에서 수행되는, 이차 전지의 전극의 제작 방법.
  6. 제 1 항 내지 제 5 항에 있어서,
    상기 전극은 양극 및 음극 중 어느 한쪽 또는 양쪽인, 이차 전지의 전극의 제작 방법.
KR1020237028885A 2021-02-12 2022-01-31 전극의 제작 방법 KR20230145368A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021020670 2021-02-12
JPJP-P-2021-020670 2021-02-12
PCT/IB2022/050797 WO2022172118A1 (ja) 2021-02-12 2022-01-31 電極の作製方法

Publications (1)

Publication Number Publication Date
KR20230145368A true KR20230145368A (ko) 2023-10-17

Family

ID=82837502

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020237028885A KR20230145368A (ko) 2021-02-12 2022-01-31 전극의 제작 방법

Country Status (5)

Country Link
US (1) US20240097099A1 (ko)
JP (1) JPWO2022172118A1 (ko)
KR (1) KR20230145368A (ko)
CN (1) CN116830283A (ko)
WO (1) WO2022172118A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020128699A1 (ja) 2018-12-17 2020-06-25 株式会社半導体エネルギー研究所 正極活物質および二次電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123668A (en) * 1980-03-04 1981-09-28 Matsushita Electric Ind Co Ltd Manufacture of electrode plate for alkaline battery
JP4219705B2 (ja) * 2003-02-17 2009-02-04 パナソニック株式会社 二次電池用電極の製造法
JP2010027673A (ja) * 2008-07-15 2010-02-04 Nihon Micro Coating Co Ltd シート電極の製造方法及び製造装置
JP2012064432A (ja) * 2010-09-16 2012-03-29 Toyota Motor Corp 粉体層の製造方法、電極体の製造方法、及び、固体電池の製造方法
CN211125857U (zh) * 2019-11-07 2020-07-28 深圳市赢合科技股份有限公司 一种固态电池电极膜成形装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020128699A1 (ja) 2018-12-17 2020-06-25 株式会社半導体エネルギー研究所 正極活物質および二次電池

Also Published As

Publication number Publication date
JPWO2022172118A1 (ko) 2022-08-18
WO2022172118A1 (ja) 2022-08-18
US20240097099A1 (en) 2024-03-21
CN116830283A (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
KR20230097054A (ko) 양극 활물질의 제작 방법, 양극, 이차 전지, 전자 기기, 축전 시스템, 및 차량
JP2022045353A (ja) 二次電池の作製方法、および二次電池
KR20230029793A (ko) 이차 전지, 이차 전지의 제작 방법, 전자 기기, 및 차량
WO2022029575A1 (ja) 電極、負極活物質、負極、二次電池、移動体および電子機器、負極活物質の作製方法、ならびに負極の作製方法
WO2021240298A1 (ja) 二次電池および車両
KR20240015086A (ko) 전지, 전자 기기, 축전 시스템, 및 이동체
JP2022045263A (ja) 正極活物質、二次電池、二次電池の作製方法、電子機器、及び車両
KR20230145368A (ko) 전극의 제작 방법
WO2022130099A1 (ja) 二次電池、電子機器、蓄電システムおよび車両
KR20230160267A (ko) 축전 장치 관리 시스템 및 전자 기기
WO2022123389A1 (ja) 正極、正極の作製方法、二次電池、電子機器、蓄電システムおよび車両
WO2022034414A1 (ja) 二次電池、電子機器、車両、及び正極活物質の作製方法
WO2021245562A1 (ja) 正極活物質、正極活物質層、二次電池、電子機器、及び車両
WO2021255572A1 (ja) グラフェン化合物、二次電池、移動体および電子機器
WO2022013666A1 (ja) 電極、二次電池、移動体、電子機器、およびリチウムイオン二次電池用電極の作製方法
WO2021181197A1 (ja) 二次電池およびその作製方法、及び車両
WO2022009019A1 (ja) 電極、二次電池、移動体および電子機器
WO2021191733A1 (ja) 二次電池、電子機器、車両及び二次電池の作製方法
KR20240011717A (ko) 양극 활물질의 제작 방법, 양극, 리튬 이온 이차 전지, 이동체, 축전 시스템, 및 전자 기기
KR20230138499A (ko) 양극 활물질의 제작 방법, 이차 전지, 및 차량
KR20230156083A (ko) 복합 산화물의 제작 방법, 양극, 리튬 이온 이차 전지, 전자 기기, 축전 시스템, 및 이동체
KR20230052905A (ko) 이차 전지, 전자 기기, 및 차량
CN116685557A (zh) 正极、正极的制造方法、二次电池、电子设备、蓄电系统以及车辆
KR20230053601A (ko) 양극 활물질의 제작 방법
KR20220106997A (ko) 이차 전지, 양극 활물질의 제작 방법, 휴대 정보 단말기, 및 차량