WO2023203424A1 - 正極活物質および二次電池 - Google Patents

正極活物質および二次電池 Download PDF

Info

Publication number
WO2023203424A1
WO2023203424A1 PCT/IB2023/053562 IB2023053562W WO2023203424A1 WO 2023203424 A1 WO2023203424 A1 WO 2023203424A1 IB 2023053562 W IB2023053562 W IB 2023053562W WO 2023203424 A1 WO2023203424 A1 WO 2023203424A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
surface layer
secondary battery
Prior art date
Application number
PCT/IB2023/053562
Other languages
English (en)
French (fr)
Inventor
吉谷友輔
平原誉士
石谷哲二
神保安弘
掛端哲弥
池田隆之
山崎舜平
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Publication of WO2023203424A1 publication Critical patent/WO2023203424A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • One embodiment of the present invention relates to a product, a method, or a manufacturing method. Alternatively, the invention relates to a process, machine, manufacture, or composition of matter.
  • One embodiment of the present invention relates to a power storage device including a secondary battery, a semiconductor device, a display device, a light emitting device, a lighting device, an electronic device, or a manufacturing method thereof.
  • electronic equipment refers to all devices that have a power storage device, and an electro-optical device that has a power storage device, an information terminal device that has a power storage device, etc. are all electronic devices.
  • lithium ion secondary batteries lithium ion capacitors
  • air batteries air batteries
  • all-solid-state batteries lithium ion secondary batteries
  • demand for high-output, high-capacity lithium-ion secondary batteries is rapidly expanding along with the development of the semiconductor industry, and they have become indispensable in today's information society as a source of rechargeable energy. .
  • Lithium ion secondary batteries still have room for improvement in various aspects such as charge/discharge rate characteristics, discharge capacity, cycle characteristics, reliability, safety, and cost.
  • An object of one embodiment of the present invention is to provide a positive electrode active material or a composite oxide that can be used in a lithium ion secondary battery and has excellent charge/discharge rate characteristics.
  • one of the challenges is to provide a secondary battery with high safety or reliability.
  • Another object of one embodiment of the present invention is to provide a positive electrode active material, a composite oxide, a power storage device, or a manufacturing method thereof.
  • One embodiment of the present invention is a positive electrode active material having a transition metal M, oxygen, and an additive element, where the transition metal M is nickel, manganese, and cobalt, and the additive elements are magnesium, aluminum, One or more selected from calcium, titanium, and zirconium, and the positive electrode active material has a first surface layer, a second surface layer, and an interior, and the second surface layer has a first surface layer. It is closer to the interior than the surface layer, and the interior has a larger ratio of nickel to the sum of the number of transition metal M atoms than the first surface layer and the second surface layer, and the second surface layer has a larger ratio of nickel to the sum of the atoms of transition metal M than the first surface layer and the second surface layer.
  • the ratio of the number of atoms of at least one element selected from cobalt and manganese to the total number of atoms of the transition metal M is large, and the first surface layer has a larger ratio of the number of atoms of at least one element selected from cobalt and manganese to the sum of the number of atoms of the transition metal M. It is a positive electrode active material with high concentration.
  • Another embodiment of the present invention is a secondary battery having a positive electrode having a positive electrode active material and a negative electrode, wherein the positive electrode active material has a transition metal M, oxygen, and an additive element.
  • the transition metal M is nickel, manganese, and cobalt
  • the additive element is one or more selected from magnesium, aluminum, calcium, titanium, and zirconium
  • the positive electrode active material is the first surface layer portion and the first surface layer portion. 2
  • the second surface layer is closer to the inside than the first surface layer, and the inside has a transition metal layer closer to the inside than the first surface layer and the second surface layer.
  • the ratio of nickel to the total number of atoms of M is larger, and the ratio of the number of atoms of at least one element selected from cobalt and manganese to the total number of atoms of transition metal M is higher in the second surface layer than in the interior.
  • the first surface layer is a secondary battery in which the concentration of at least one of the additive elements is higher than that of the interior and the second surface layer.
  • the positive electrode active material preferably has a crystallite size of 150 nm or more calculated from an XRD pattern.
  • Another embodiment of the present invention is a positive electrode active material having a transition metal M and oxygen, wherein the transition metal M is nickel, manganese, and cobalt, and the positive electrode active material is calculated from an XRD pattern.
  • a secondary battery that uses a positive electrode active material and has a crystallite size of 150 nm or more has a current of 2000 mA/g after CC/CV (4.5 V, 100 mA/g, 10 mA/g cut) charge at 25°C.
  • the positive electrode active material has a discharge capacity at CC (constant current) of 70 mAh/g or more.
  • Another embodiment of the present invention is a secondary battery having a positive electrode having a positive electrode active material and a negative electrode, wherein the positive electrode active material has a transition metal M and oxygen, and the positive electrode active material has a transition metal M. are nickel, manganese, and cobalt, the positive electrode active material has a crystallite size calculated from the XRD pattern of 150 nm or more, and the secondary battery has a CC/CV (4.5 V, 100 mA/g The secondary battery has a discharge capacity of 70 mAh/g or more at 2000 mA/g CC (constant current) after charging (10 mA/g cut).
  • a positive electrode active material or a composite oxide that can be used in a lithium ion secondary battery and has excellent charge/discharge rate characteristics.
  • a highly safe or reliable secondary battery can be provided.
  • a positive electrode active material a composite oxide, a power storage device, or a manufacturing method thereof can be provided.
  • FIG. 1A to 1C are cross-sectional views of the positive electrode active material.
  • FIG. 2 is an example of a TEM image in which the crystal orientations are approximately the same.
  • FIG. 3A is an example of a STEM image in which the crystal orientations are approximately the same.
  • FIG. 3B is an FFT pattern of a region of rock salt type crystal RS.
  • FIG. 3C is an FFT pattern of a region of layered rock salt type crystal LRS.
  • 4A and 4B are cross-sectional views of the positive electrode active material.
  • 5A to 5C are cross-sectional views of the positive electrode active material.
  • FIG. 6 is a diagram illustrating a method for producing a positive electrode active material.
  • FIG. 7 is a diagram illustrating a method for producing a positive electrode active material.
  • FIG. 6 is a diagram illustrating a method for producing a positive electrode active material.
  • FIG. 8 is a diagram illustrating a method for producing a positive electrode active material.
  • FIG. 9 is a diagram illustrating a method for producing a positive electrode active material.
  • 10A to 10D are cross-sectional views illustrating an example of a positive electrode of a secondary battery.
  • FIG. 11A is an exploded perspective view of a coin-type secondary battery
  • FIG. 11B is a perspective view of the coin-type secondary battery
  • FIG. 11C is a cross-sectional perspective view thereof.
  • FIG. 12A shows an example of a cylindrical secondary battery.
  • FIG. 12B shows an example of a cylindrical secondary battery.
  • FIG. 12C shows an example of a plurality of cylindrical secondary batteries.
  • FIG. 12D shows an example of a power storage system having a plurality of cylindrical secondary batteries.
  • FIG. 13A and 13B are diagrams illustrating an example of a secondary battery
  • FIG. 13C is a diagram illustrating the inside of the secondary battery
  • 14A to 14C are diagrams illustrating examples of secondary batteries.
  • 15A and 15B are diagrams showing the appearance of a secondary battery.
  • 16A to 16C are diagrams illustrating a method for manufacturing a secondary battery.
  • FIG. 17A is a perspective view of a battery pack showing one embodiment of the present invention
  • FIG. 17B is a block diagram of the battery pack
  • FIG. 17C is a block diagram of a vehicle having the battery pack.
  • 18A to 18D are diagrams illustrating an example of a transportation vehicle.
  • FIG. 18E is a diagram illustrating an example of an artificial satellite.
  • FIG. 19A is a diagram showing an electric bicycle
  • FIG. 19B is a diagram showing a secondary battery of the electric bicycle
  • FIG. 19C is a diagram explaining a scooter.
  • 20A to 20D are diagrams illustrating an example of an electronic device.
  • 21A to 21F are SEM images of the surface of the positive electrode active material.
  • FIGS. 22A and 22B are graphs showing discharge rate characteristics of secondary batteries.
  • 23A and 23B are graphs showing charging rate characteristics of a secondary battery.
  • 24A to 24H are surface SEM images of the positive electrode active material.
  • 25A to 25C are cross-sectional SEM images of the positive electrode active material
  • FIGS. 25D to 25F are graphs showing the results of EDX point analysis.
  • particles is not limited to only spherical shapes (circular cross-sectional shapes), but also includes individual particles whose cross-sectional shapes are elliptical, rectangular, trapezoidal, pyramidal, square with rounded corners, and asymmetrical. Further, individual particles may have an amorphous shape.
  • homogeneity refers to a state in which a certain element (for example, A) is distributed with similar characteristics in a specific region in a solid composed of multiple elements (for example, A, B, and C). Note that it is sufficient that the concentrations of the elements in the specific regions are substantially the same. For example, it is sufficient if the difference in the detected amount of a certain element (for example, the count number in STEM-EDX) between specific regions is within 10%.
  • Specific areas include, for example, the surface layer, the surface, protrusions, recesses, and the inside.
  • a positive electrode active material to which additive elements are added may be expressed as a composite oxide, a positive electrode material, a positive electrode material, a positive electrode material for secondary batteries, etc.
  • the positive electrode active material of one embodiment of the present invention preferably contains a compound.
  • the positive electrode active material of one embodiment of the present invention preferably has a composition.
  • the positive electrode active material of one embodiment of the present invention preferably has a composite.
  • the characteristics of individual particles of the positive electrode active material in this specification and the like not all particles necessarily have the characteristics. For example, if 50% or more, preferably 70% or more, more preferably 90% or more of three or more randomly selected positive electrode active material particles have the characteristic, it is sufficient to have the positive electrode active material and the same. It can be said that this has the effect of improving the characteristics of the secondary battery.
  • the positive electrode active material of one embodiment of the present invention has a stable crystal structure even at high charging voltage. Since the crystal structure of the positive electrode active material is stable in the charged state, it is possible to suppress a decrease in charge/discharge capacity due to repeated charging/discharging.
  • a short circuit in the secondary battery not only causes problems in the charging and/or discharging operation of the secondary battery, but also may cause heat generation and ignition.
  • short current is suppressed even at high charging voltage. Therefore, it is possible to obtain a secondary battery that has both high discharge capacity and safety.
  • materials included in the secondary battery will be described in terms of their state before deterioration.
  • a decrease in discharge capacity due to aging treatment (which may also be called burn-in treatment) in the secondary battery manufacturing stage is not called deterioration.
  • a lithium ion secondary cell or a lithium secondary assembled battery hereinafter referred to as a lithium ion secondary battery
  • the rated capacity is based on JIS C 8711:2019 for lithium ion secondary batteries for portable devices. In the case of other lithium ion secondary batteries, they comply with not only the JIS standards mentioned above but also JIS and IEC standards for electric vehicle propulsion, industrial use, etc.
  • the state of the materials of the secondary battery before deterioration is called the initial product or initial state
  • the state after deterioration (the state when the secondary battery has a discharge capacity of less than 97% of its rated capacity) is called the initial product or initial state.
  • the positive electrode active material 100 includes lithium, a transition metal M, and oxygen.
  • the transition metal M is one or more selected from nickel, manganese, and cobalt. In addition to this, it is preferable to have an additive element.
  • the positive electrode active material 100 may include nickel-manganese-lithium cobalt oxide to which additional elements are added.
  • the positive electrode active material of a lithium ion secondary battery must contain a transition metal capable of redox in order to maintain charge neutrality even when lithium ions are inserted or removed.
  • the positive electrode active material 100 according to one embodiment of the present invention includes nickel, manganese, and cobalt as the transition metal M responsible for the redox reaction.
  • nickel preferably accounts for 50% or more, more preferably 60% or more, and even more preferably 75% or more.
  • Additional elements included in the positive electrode active material 100 include magnesium, aluminum, calcium, titanium, zirconium, fluorine, vanadium, iron, manganese, chromium, niobium, arsenic, zinc, silicon, sulfur, phosphorus, boron, bromine, and beryllium. It is preferable to use one or more selected ones. Further, the ratio of the sum of the atoms of the transition metal M to the additive element is preferably less than 25 atom %, more preferably less than 10 atom %, and even more preferably less than 5 atom %.
  • the additive element has the same meaning as a mixture or a part of raw materials.
  • additive elements do not necessarily include magnesium, aluminum, calcium, titanium, zirconium, fluorine, vanadium, iron, manganese, chromium, niobium, arsenic, zinc, silicon, sulfur, phosphorus, boron, bromine, and beryllium. .
  • the particles of the positive electrode active material 100 are preferably single crystal.
  • the single crystal particle is sometimes referred to as a single particle.
  • the primary particles are large, the formation of secondary particles due to aggregation and sintering of the primary particles is suppressed. Furthermore, when the primary particle size is large, the crystallite size calculated from the half-width of the XRD diffraction pattern also becomes large. Therefore, if the positive electrode active material 100 is a single particle, or if the crystallite size calculated from the XRD diffraction pattern is large, the primary There are no or few cracks that can occur between particles. Therefore, it can be expected that cracks will be suppressed even if the volume of the positive electrode active material 100 changes due to charging and discharging.
  • the crystallite size calculated from the half width of the XRD diffraction pattern is preferably 150 nm or more, more preferably 180 nm or more, and even more preferably 200 nm or more.
  • the size of the single crystal and the crystallite size are set to an appropriate size.
  • the crystallite size calculated from an XRD diffraction pattern is preferably 1000 nm or less, more preferably 800 nm or less.
  • a positive electrode active material whose crystallite size calculated from an XRD diffraction pattern is within the above range can be said to be a positive electrode active material that has a sufficiently large crystallite size and has characteristics similar to a single particle.
  • the XRD pattern used to calculate the half-width may be obtained with only the positive electrode active material, or with the positive electrode containing a current collector, binder, conductive material, etc. in addition to the positive electrode active material. Good too.
  • the positive electrode active material may be oriented due to the influence of pressure during the manufacturing process. If the positive electrode active material is strongly oriented, the crystallite size may not be accurately calculated. Therefore, it is more preferable to obtain the sample by a method that reduces the orientation, such as by peeling off the positive electrode active material layer from the positive electrode, removing some binder, etc. in the positive electrode active material layer using a solvent, etc., and then filling the sample holder.
  • XRD device Bruker AXS, D8 ADVANCE
  • X-ray source CuK ⁇ 1 -ray output: 40kV, 40mA
  • Divergence angle Div. Slit
  • 0.5° Detector LynxEye Scan method: 2 ⁇ / ⁇ continuous scan Measurement range (2 ⁇ ): 15° or more and 90° or less Step width (2 ⁇ ): 0.01°
  • Step width 2 ⁇ : 0.01°
  • Setting Counting time 1 second/step Sample table rotation: 15 rpm
  • the sample to be measured is a powder, it can be set by placing it in a glass sample holder or by sprinkling the sample on a greased silicone non-reflective plate.
  • the positive electrode can be attached to the substrate with double-sided tape, and the positive electrode active material layer can be set according to the measurement surface required by the apparatus.
  • the crystallite size can be calculated.
  • FIG. 1A is a cross-sectional view when the positive electrode active material 100 is a single particle. It is preferable that the positive electrode active material 100 has a surface layer portion and an interior portion 100c.
  • the surface layer portion preferably includes a surface layer portion 100a and a surface layer portion 100b. The surface layer portion 100b is closer to the interior 100c than the surface layer portion 100a.
  • the surface layer portion 100a of the positive electrode active material 100 refers to, for example, a region within 200 nm from the surface toward the inside.
  • the surface layer portion 100b of the positive electrode active material 100 refers to, for example, a region from the surface toward the inside, exceeding 200 nm and within 1000 nm. Cracks and/or surfaces caused by cracks may also be referred to as surfaces. Surface layer portion is synonymous with near surface, near surface region, or shell.
  • Interior 100c is synonymous with interior region or core.
  • the surface of the positive electrode active material 100 refers to the surface of the composite oxide including the surface layer portion and the interior portion 100c. Therefore, it is assumed that the positive electrode active material 100 does not contain carbonate, hydroxyl groups, etc. that are chemically adsorbed after fabrication. It is also assumed that the electrolyte, binder, conductive material, or compounds derived from these adhered to the positive electrode active material 100 are not included.
  • the surface of the positive electrode active material 100 in a cross-sectional STEM (scanning transmission electron microscope) image, etc. is the boundary between a region where a combined image of an electron beam is observed and a region where it is not observed, and is a metal with a higher atomic number than lithium.
  • the surface in a cross-sectional STEM image or the like may be determined in conjunction with the results of analysis with higher spatial resolution, such as electron energy loss spectroscopy (EELS).
  • EELS electron energy loss spectroscopy
  • FIGS. 1B and 1C are cross-sectional views of a positive electrode active material 100 having primary particles that are secondary particles and have a large crystallite size, and have crystal grain boundaries 101.
  • the surface layer portion 100a and the surface layer portion 100b may not exist around the grain boundary 101 as shown in FIG. 1B, or may exist as shown in FIG. 1C.
  • the crystal grain boundaries 101 are, for example, areas where primary particles of the positive electrode active material 100 are fixed to each other, or areas where the crystal orientation changes inside the positive electrode active material 100, in other words, where repeating of bright lines and dark lines in a STEM image etc. is not observed.
  • crystal defects refer to defects that can be observed in cross-sectional TEM (transmission electron microscope), cross-sectional STEM images, etc., that is, structures in which other elements enter between lattices, cavities, etc.
  • the grain boundary 101 can be said to be one of the planar defects.
  • the vicinity of the grain boundary 101 refers to a region within 10 nm from the grain boundary 101.
  • Grain boundaries are one of the planar defects. Therefore, like the surface, it tends to become unstable and the crystal structure tends to change. Therefore, if the concentration of the additive element at the grain boundary and its vicinity is high, changes in the crystal structure can be more effectively suppressed as described later.
  • the concentration of the additive element at the grain boundary 101 and its vicinity is high, even if a crack occurs along the grain boundary of the positive electrode active material 100 of one embodiment of the present invention, the concentration of the additive element near the surface where the crack occurs is The concentration of added elements increases. Therefore, it is possible to further stabilize the crystal structure even in the surface layer portion caused by cracks.
  • a layered rock salt type composite oxide has a high discharge capacity, has a two-dimensional lithium ion diffusion path, is suitable for lithium ion insertion and desorption reactions, and is excellent as a positive electrode active material for secondary batteries. Therefore, it is particularly preferable that the interior 100c, which occupies most of the volume of the positive electrode active material 100, has a layered rock salt crystal structure.
  • the surface layer of the positive electrode active material 100 of one embodiment of the present invention is designed so that even if a large amount of lithium is removed from the positive electrode active material 100 due to charging, the layered structure made of the octahedron of transition metal M and oxygen in the interior 100c is not destroyed. It is preferable to have a reinforcing function. Alternatively, it is preferable that the surface layer portion functions as a barrier film of the positive electrode active material 100. Alternatively, it is preferable that the surface layer portion, which is the outer peripheral portion of the positive electrode active material 100, reinforces the positive electrode active material 100.
  • Reinforcement here refers to suppressing structural changes in the surface layer and interior 100c of the positive electrode active material 100, including desorption of oxygen, and/or oxidative decomposition of the electrolyte on the surface of the positive electrode active material 100. It means to suppress. That is, functioning as a barrier film means, for example, that the surface layer portion suppresses structural changes in the positive electrode active material 100 and suppresses oxidative decomposition of the electrolyte.
  • the surface layer portion has a different composition and crystal structure from the inner portion 100c.
  • the surface layer portion preferably has a composition and crystal structure that are more stable at room temperature (25° C.) than the interior portion 100c.
  • at least a portion of the surface layer of the positive electrode active material 100 according to one embodiment of the present invention has a rock salt crystal structure.
  • the surface layer portion preferably has both a layered rock salt type crystal structure and a rock salt type crystal structure.
  • the surface layer portion preferably has characteristics of both a layered rock salt type and a rock salt type crystal structure.
  • the surface layer is a region where lithium ions are first desorbed during charging, and is a region where the lithium concentration tends to be lower than in the interior 100c. Further, it can be said that the atoms on the surface of the positive electrode active material 100 included in the surface layer portion are in a state where some bonds are broken. Therefore, the surface layer tends to become unstable and can be said to be a region where the crystal structure tends to deteriorate. On the other hand, if the surface layer can be made sufficiently stable, even when x in Li x MO 2 is small, the layered structure consisting of the octahedron of transition metal M and oxygen in the interior 100c can be made difficult to break. Furthermore, it is possible to suppress misalignment of the octahedral layer of transition metal M and oxygen in the interior 100c.
  • the surface layer preferably contains an additive element, and more preferably contains a plurality of additive elements. Furthermore, it is preferable that the composition of the transition metal M is different between the surface layer portion and the interior portion 100c.
  • the concentration peak of the additive element is present in the surface layer portion, and more preferably that the concentration peak of the additive element is present in the surface layer portion 100a closer to the surface.
  • the concentration of at least one of cobalt and manganese among the transition metals M in the surface layer portion is higher than that in the interior portion 100c.
  • the inside 100c preferably has a higher concentration of nickel than the surface layer.
  • at least one of cobalt and manganese has a concentration gradient that increases toward the surface of the positive electrode active material 100.
  • nickel preferably has a concentration gradient that increases toward the inside of the positive electrode active material 100.
  • the surface layer portion 100b is a region where the concentration of cobalt and manganese is higher than that of the interior portion 100c, although there is no concentration peak of the additive elements.
  • the surface layer portion 100a has a higher concentration of one or more selected additive elements than the surface layer portion 100b and the interior portion 100c. Further, it is preferable that one or more selected from the additive elements included in the positive electrode active material 100 have a concentration gradient. Further, it is more preferable that the distribution of the positive electrode active material 100 differs depending on the added element. For example, it is more preferable that the depth of the concentration peak from the surface differs depending on the added element.
  • the concentration peak here refers to the maximum value of concentration in the surface layer portion 100a or 200 nm or less from the surface.
  • some of the additive elements such as magnesium, fluorine, nickel, titanium, silicon, phosphorus, boron, calcium, etc., preferably have a concentration gradient that increases from the interior 100c toward the surface.
  • additive element may be included in trace amounts in the transition metal M source, etc., in addition to those contained in the additive element source. Regardless of the material origin, if the additive element has a preferable concentration and distribution, it can contribute to the chemical stability of the positive electrode active material 100.
  • magnesium which is one of the additive elements, can easily maintain the layered rock-salt crystal structure of the interior 100c by being present at an appropriate concentration in the lithium sites in the surface layer. This is presumed to be because the magnesium present in the lithium site functions as a pillar that supports the two MO layers.
  • magnesium is at an appropriate concentration, it will not adversely affect the insertion and desorption of lithium during charging and discharging, and the above benefits can be enjoyed.
  • an excess of magnesium may have an adverse effect on lithium intercalation and deintercalation.
  • the effect on stabilizing the crystal structure may be reduced.
  • unnecessary magnesium compounds oxides, fluorides, etc.
  • the discharge capacity of the positive electrode active material may decrease. This is thought to be because too much magnesium enters the lithium site, reducing the amount of lithium that contributes to charging and discharging.
  • aluminum may exist at the transition metal M site in a layered rock salt crystal structure.
  • Aluminum is a typical trivalent element and its valence does not change, so lithium around aluminum is difficult to move during charging and discharging. Therefore, aluminum and the lithium surrounding it function as pillars and can suppress changes in the crystal structure. Furthermore, aluminum has the effect of suppressing the elution of surrounding transition metal M and improving continuous charging resistance. Furthermore, since the Al--O bond is stronger than the transition metal M--O bond, desorption of oxygen around aluminum can be suppressed. These effects improve thermal stability. Therefore, when aluminum is included as an additive element, safety can be improved when used in a secondary battery. Moreover, the positive electrode active material 100 can be made such that the crystal structure does not easily collapse even after repeated charging and discharging.
  • the entire positive electrode active material 100 has an appropriate amount of aluminum.
  • titanium oxide which is one of the additive elements, has superhydrophilic properties. Therefore, by using the positive electrode active material 100 having titanium oxide in the surface layer portion 100a, the wettability with respect to a highly polar solvent may be improved. When used as a secondary battery, the interface between the positive electrode active material 100 and the highly polar electrolytic solution becomes good, and there is a possibility that an increase in internal resistance can be suppressed.
  • phosphorus which is one of the additive elements
  • An example of a compound containing phosphorus and oxygen is lithium phosphate.
  • the positive electrode active material 100 contains phosphorus because the phosphorus reacts with hydrogen fluoride generated by decomposition of the electrolyte, and there is a possibility that the hydrogen fluoride concentration in the electrolyte can be reduced.
  • hydrogen fluoride may be generated due to hydrolysis. Furthermore, there is a possibility that hydrogen fluoride may be generated due to the reaction between polyvinylidene fluoride (PVDF) used as a component of the positive electrode and an alkali.
  • PVDF polyvinylidene fluoride
  • the positive electrode active material 100 contains phosphorus together with magnesium because stability in a state where x in Li x MO 2 is small is extremely high.
  • the crack progresses due to the presence of phosphorus, more specifically, a compound containing phosphorus and oxygen, inside the positive electrode active material with the crack as the surface, for example, in the embedded part. Can be suppressed.
  • the surface layer portion 100a must contain at least the transition metal M, also contain lithium in the discharge state, and have a path for inserting and extracting lithium.
  • the sum of the number of atoms of the transition metal M in the surface layer portion 100a is higher than the sum of the number of atoms of the additive elements.
  • additive elements particularly magnesium and aluminum
  • they have a higher concentration in the surface layer than in the interior 100c
  • they exist randomly and dilutely in the interior 100c.
  • the crystal structure changes continuously from the interior 100c toward the surface due to the concentration gradient of the additive element as described above.
  • the crystal orientations of the surface layer portion and the interior portion 100c are approximately the same.
  • the crystal structure changes continuously from the interior 100c of the layered rock salt type toward the surface and surface layer portion that has the characteristics of the rock salt type or both the rock salt type and the layered rock salt type.
  • the orientation of the surface layer portion having the characteristics of a rock salt type, or both of a rock salt type and a layered rock salt type, and the orientation of the interior 100c of the layered rock salt type are approximately the same.
  • the layered rock-salt crystal structure belonging to space group R-3m which a composite oxide containing lithium and transition metal M has, refers to a rock-salt-type crystal structure in which cations and anions are arranged alternately. It is a crystal structure that has an ionic arrangement, and because the transition metal and lithium are regularly arranged to form a two-dimensional plane, it is possible for lithium to diffuse two-dimensionally. Note that there may be defects such as cation or anion deficiency. Strictly speaking, the layered rock salt crystal structure may have a structure in which the lattice of the rock salt crystal is distorted.
  • rock salt type crystal structure refers to a structure having a cubic crystal structure including a space group Fm-3m, in which cations and anions are arranged alternately. Note that there may be a deficiency of cations or anions.
  • the presence of both layered rock salt type and rock salt type crystal structure characteristics can be determined by electron beam diffraction, TEM images, cross-sectional STEM images, etc.
  • the rock salt type has no distinction in cation sites, but the layered rock salt type has two types of cation sites in its crystal structure, one mostly occupied by lithium and the other occupied by transition metals.
  • the layered structure in which two-dimensional planes of cations and two-dimensional planes of anions are arranged alternately is the same for both the rock salt type and the layered rock salt type.
  • the central spot transparent spot
  • the bright spot closest to the central spot is the ideal one.
  • a state rock salt type has a (111) plane
  • a layered rock salt type has a (003) plane, for example.
  • the bright spot on the (003) plane of LiMO 2 is approximately half the distance of the bright spot on the (111) plane of MgO. be observed. Therefore, when the analysis region has two phases, for example, rock salt type MgO and layered rock salt type LiMO2 , in the electron beam diffraction image, there is a plane orientation in which bright spots with strong brightness and bright spots with weak brightness are arranged alternately. do. Bright spots common to the halite type and layered halite type have strong brightness, and bright spots that occur only in the layered halite type have weak brightness.
  • Layered rock salt crystals and anions of rock salt crystals have a cubic close-packed structure (face-centered cubic lattice structure). Therefore, when a layered rock salt crystal and a rock salt crystal come into contact, there is a crystal plane in which the cubic close-packed structure composed of anions is oriented in the same direction.
  • Anions in the ⁇ 111 ⁇ plane of the cubic crystal structure have a triangular lattice.
  • the layered rock salt type has a space group R-3m and has a rhombohedral structure, but to facilitate understanding of the structure, it is generally expressed as a complex hexagonal lattice, and the (0001) plane of the layered rock salt type has a hexagonal lattice.
  • the triangular lattice of the cubic ⁇ 111 ⁇ plane has an atomic arrangement similar to the hexagonal lattice of the (0001) plane of the layered rock salt type. When both lattices are consistent, it can be said that the orientations of the cubic close-packed structures are aligned.
  • the space group of a layered rock salt crystal is R-3m, which is different from the space group Fm-3m of a rock salt crystal (the space group of a general rock salt crystal), so it is a mirror of crystal planes that satisfy the above conditions.
  • the index is different between layered rock salt type crystals and rock salt type crystals.
  • a layered rock salt type crystal and a rock salt type crystal when the directions of the cubic close-packed structures constituted by anions are aligned, it may be said that the orientations of the crystals approximately coincide.
  • having three-dimensional structural similarity such that the crystal orientations roughly match, or having the same crystallographic orientation is called topotaxy.
  • TEM Transmission Electron Microscope
  • STEM Sccanning Transmission Electron Microscope
  • HAADF-STEM High-angle Annular Dark Field Scanning TEM, high-angle scattering annular dark-field scanning transmission electron microscope
  • ABF-STEM Annular Bright-Field Scanning Transmission Microscope, annular bright-field scanning transmission electron microscope
  • FIG. 2 shows an example of a TEM image in which the orientations of the layered rock salt crystal LRS and the rock salt crystal RS are approximately the same.
  • a TEM image, a STEM image, a HAADF-STEM image, an ABF-STEM image, etc., provide images that reflect the crystal structure.
  • contrast derived from crystal planes is obtained. Due to electron beam diffraction and interference, for example, when an electron beam is incident perpendicularly to the c-axis of a layered rock-salt complex hexagonal lattice, the contrast originating from the (0003) plane is divided into bright bands (bright strips) and dark bands (dark strips). ) is obtained by repeating. Therefore, repeating bright lines and dark lines are observed in the TEM image, and if the angle between the bright lines (for example, L RS and L LRS shown in Figure 2) is 5 degrees or less or 2.5 degrees or less, the crystal plane is approximately It can be determined that they match, that is, the crystal orientations approximately match. Similarly, when the angle between the dark lines is 5 degrees or less, or 2.5 degrees or less, it can be determined that the orientations of the crystals approximately match.
  • the angle between the dark lines is 5 degrees or less, or 2.5 degrees or less
  • the transition metal M specifically manganese (atomic number 25), cobalt (atomic number 27) and nickel (atomic number 28) Since the atomic number of M is large, the electron beam is strongly scattered at the positions of these atoms, and the arrangement of the transition metal M atoms is observed as a bright line or an arrangement of points with strong brightness.
  • the transition metal M atoms are observed perpendicularly to the c-axis.
  • the arrangement is observed as a bright line or an arrangement of points with strong brightness, and the arrangement of lithium atoms and oxygen atoms is observed as a dark line or a region of low brightness.
  • fluorine (atomic number 9) and magnesium (atomic number 12) are used as additive elements of nickel-manganese-lithium cobalt oxide.
  • FIG. 3A shows an example of a STEM image in which the orientations of the layered rock salt crystal LRS and the rock salt crystal RS are approximately the same.
  • FIG. 3B shows the FFT pattern of the region of the rock salt crystal RS
  • FIG. 3C shows the FFT pattern of the region of the layered rock salt crystal LRS.
  • the composition, JCPDS card number, and the d value and angle calculated from this are shown on the left side of FIGS. 3B and 3C. Actual measurements are shown on the right. Spots marked with O are 0th order diffraction.
  • examples of lithium cobalt oxide and cobalt oxide are shown here, one embodiment of the present invention is not limited thereto. For example, it is presumed that the orientations of nickel-manganese-lithium cobalt oxide and nickel oxide, manganese oxide, and/or cobalt oxide also roughly match.
  • the spots labeled A in FIG. 3B originate from the 11-1 reflection of the cubic crystal.
  • the spots labeled A in FIG. 3C originate from layered rock salt type 0003 reflections. It can be seen from FIGS. 3B and 3C that the orientation of the 11-1 reflection of the cubic crystal and the orientation of the 0003 reflection of the layered rock salt type roughly match. That is, it can be seen that the straight line passing through AO in FIG. 3B and the straight line passing through AO in FIG. 3C are approximately parallel. As used herein, “approximately matching” and “approximately parallel” mean that the angle is 5 degrees or less, or 2.5 degrees or less.
  • the direction of the 11-1 reflection of the cubic crystal and the direction of the 0003 reflection of the layered rock salt type may vary.
  • a spot that is not derived from layered rock salt type 0003 reflection may be observed.
  • the spot labeled B in FIG. 3C is derived from the 1014 reflection of the layered rock salt type.
  • ⁇ AOB is 52° or more and 56° or less
  • d may be observed at a location of 0.19 nm or more and 0.21 nm or less.
  • this index is just an example, and does not necessarily have to match this index.
  • equivalent reciprocal lattice points in each may be used.
  • a spot that is not derived from the 11-1 reflection of the cubic crystal may be observed on a reciprocal lattice space different from the direction in which the 11-1 reflection of the cubic crystal was observed.
  • the spot labeled B in FIG. 3B is derived from 200 reflections of a cubic crystal. This is a diffraction spot at a location that is at an angle of 54° or more and 56° or less (that is, ⁇ AOB is 54° or more and 56° or less) from the direction of the reflection derived from cubic crystal 11-1 (A in Figure 3B). may be observed. Note that this index is just an example, and does not necessarily have to match this index. For example, equivalent reciprocal lattice points in each may be used.
  • the layered rock salt type positive electrode active material which is LiMO 2 (M is at least one of Ni, Co, and Mn), has a (0003) plane and an equivalent plane, and a (10-14) plane and an equivalent plane. It is known that they tend to appear as crystal planes. Therefore, by carefully observing the shape of the positive electrode active material using a SEM or the like, it is possible to thin it so that the (0003) plane can be easily observed using a TEM or the like.
  • XPS ⁇ X-ray photoelectron spectroscopy
  • inorganic oxides if monochromatic aluminum K ⁇ rays are used as the X-ray source, it is possible to analyze a region from the surface to a depth of about 2 to 8 nm (usually 5 nm or less). Therefore, it is possible to quantitatively analyze the concentration of each element in a region approximately half of the depth of the surface layer 100a. Additionally, narrow scan analysis allows the bonding state of elements to be analyzed. Note that the quantitative accuracy of XPS is about ⁇ 1 atomic % in most cases, and the lower limit of detection is about 1 atomic %, although it depends on the element.
  • the concentration of one or more selected from the additive elements is higher in the surface layer than in the interior 100c.
  • concentration of one or more selected additive elements in the surface layer portion is preferably higher than the average of the entire positive electrode active material 100. Therefore, for example, the concentration of one or more additive elements selected from the surface layer measured by It can be said that it is preferable that the concentration is higher than the average concentration of the added element in the entire positive electrode active material 100 to be measured.
  • the magnesium concentration of at least a portion of the surface layer portion 100a measured by XPS or the like is higher than the magnesium concentration of the entire positive electrode active material 100.
  • the aluminum concentration in at least a portion of the surface layer portion 100a is higher than the aluminum concentration in the entire positive electrode active material 100.
  • the surface and surface layer portion of the positive electrode active material 100 do not contain carbonate, hydroxyl groups, etc. that were chemically adsorbed after the positive electrode active material 100 was produced as described above. It is also assumed that the electrolytic solution, binder, conductive material, or compounds derived from these adhered to the surface of the positive electrode active material 100 are not included. Therefore, when quantifying the elements contained in the positive electrode active material, correction may be made to exclude carbon, hydrogen, excess oxygen, excess fluorine, etc. that can be detected by surface analysis such as XPS. For example, in XPS, it is possible to separate the types of bonds by analysis, and correction may be performed to exclude binder-derived C-F bonds.
  • samples such as the positive electrode active material and the positive electrode active material layer are washed to remove the electrolyte, binder, conductive material, or compounds derived from these that have adhered to the surface of the positive electrode active material. You may do so. At this time, lithium may dissolve into the solvent used for cleaning, but even in that case, the additive elements are difficult to dissolve, so the atomic ratio of the additive elements is not affected.
  • the take-out angle may be, for example, 45°.
  • the take-out angle may be, for example, 45°.
  • it can be measured using the following equipment and conditions.
  • concentration gradient of the additive element and the transition metal M can be determined by, for example, exposing a cross section of the positive electrode active material 100 using a FIB (Focused Ion Beam) or the like, and subjecting the cross section to energy dispersive X-ray spectroscopy (EDX). This can be evaluated by analysis using , EPMA (electron probe microanalysis), or the like.
  • EDX surface analysis measuring while scanning the area and evaluating the area two-dimensionally. Also, measuring while scanning linearly and evaluating the distribution of atomic concentration within the positive electrode active material is called line analysis. Furthermore, data on a linear region extracted from the EDX surface analysis is sometimes called line analysis. Also, measuring a certain area without scanning it is called point analysis.
  • EDX plane analysis for example, elemental mapping
  • concentration distribution and maximum value of the added element can be analyzed by EDX-ray analysis.
  • analysis in which the sample is sliced into thin sections such as STEM-EDX, can analyze the concentration distribution in the depth direction from the surface of the positive electrode active material toward the center in a specific region without being affected by the distribution in the depth direction. More suitable.
  • the concentration of each additive element in the surface layer portion is higher than that in the interior 100c. Further, it is preferable that the concentration of at least one of the transition metals M selected from cobalt and manganese in the surface layer portion is higher than that in the interior 100c. Similarly, the concentration of nickel in the interior 100c is preferably higher than that in the surface layer.
  • the magnesium and/or aluminum concentration in the surface layer portion is higher than the magnesium and/or aluminum concentration in the interior 100c. is preferred.
  • the surface of the positive electrode active material 100 is smooth and have few irregularities, the surface of the positive electrode active material 100 does not necessarily have to be smooth.
  • a composite oxide having an R-3m layered rock salt crystal structure tends to slip easily in a plane parallel to the (001) plane, for example, a plane in which lithium is arranged. For example, as shown in Figure 4A, if a (001) plane exists, slipping occurs parallel to the (001) plane as shown by the arrow in Figure 4B through processes such as pressing, and deformation may occur. be.
  • the additive element may not exist or be below the detection limit on the surface newly generated as a result of the slip and its surface layer portion 100a.
  • E-F in FIG. 4B is an example of the surface newly generated as a result of slipping, and its surface layer portion 100a and surface layer portion 100b.
  • the transition metal M is arranged parallel to the (001) plane. Furthermore, in the HAADF-STEM image, the brightness of cobalt, which has the largest atomic number among LiMO 2 , is the highest. Therefore, in the HAADF-STEM image, the arrangement of atoms with high brightness can be considered to be the arrangement of transition metals M. This repeated arrangement of high brightness is synonymous with crystal fringes or lattice fringes.
  • the positive electrode active material 100 may have a coating on at least a portion of the surface. Examples of a positive electrode active material 100 having a coating 104 are shown in FIGS. 5A, 5B, and 5C.
  • the film 104 is preferably formed by, for example, depositing decomposition products of the electrolytic solution during charging and discharging.
  • a coating derived from the electrolyte on the surface of the positive electrode active material 100, it is expected that the charge/discharge cycle characteristics will be improved. This is for reasons such as suppressing an increase in impedance on the surface of the positive electrode active material or suppressing elution of the transition metal M.
  • coating 104 includes carbon, oxygen, and fluorine, for example.
  • the coating 104 containing one or more selected from boron, nitrogen, sulfur, and fluorine may be a high-quality coating and is therefore preferable. Further, the coating 104 does not need to cover all of the positive electrode active material 100.
  • This embodiment can be used in combination with other embodiments.
  • the positive electrode active material 100 having the distribution, composition, and/or crystal structure of the additive elements as described in the previous embodiment, how to add the additive elements is important.
  • the manufacturing process of the positive electrode active material 100 it is preferable to first synthesize nickel-manganese-lithium cobalt oxide with a large crystallite size, and then mix the additive element source and perform a heat treatment.
  • Method 1 for manufacturing the positive electrode active material 100 will be described using FIGS. 6 and 7.
  • transition metal M sources that is, a nickel source (Ni source), a cobalt source (Co source), and a manganese source (Mn source) are prepared. It is preferable that the mixing ratio of nickel, cobalt, and manganese be such that a layered rock salt type crystal structure can be formed.
  • the raw material may be cheaper than when the positive electrode active material 100 contains a large amount of cobalt, and the charge/discharge capacity per weight may increase, which is preferable.
  • nickel preferably accounts for more than 50 atom %, more preferably 60 atom % or more, and even more preferably 75 atom % or more.
  • the content of nickel in the transition metal M is 95 atomic % or less.
  • cobalt As the transition metal M, since the average discharge voltage is high, and since cobalt contributes to stabilizing the layered rock salt type structure, a highly reliable secondary battery can be obtained. However, since cobalt is more expensive than nickel and manganese and is unstable, if the proportion of cobalt is too high, the cost of manufacturing secondary batteries may increase. Therefore, for example, cobalt in the transition metal M is preferably 2.5 atomic % or more and 34 atomic % or less.
  • transition metal M does not necessarily need to contain cobalt.
  • the transition metal M it is preferable to have manganese as the transition metal M because heat resistance and chemical stability are improved. However, if the proportion of manganese is too high, the discharge voltage and discharge capacity tend to decrease. Therefore, for example, it is preferable that the content of manganese in the transition metal M is 2.5 atomic % or more and 34 atomic % or less.
  • transition metal M does not necessarily need to contain manganese.
  • the transition metal M source is prepared as an aqueous solution containing transition metal M.
  • an aqueous solution of nickel salt can be used.
  • nickel salt for example, nickel sulfate, nickel chloride, nickel nitrate, or hydrates thereof can be used.
  • organic acid salts of nickel such as nickel acetate, or hydrates thereof can also be used.
  • an aqueous solution of nickel alkoxide or an organic nickel complex can be used as the nickel source.
  • an organic acid salt refers to a compound of an organic acid such as acetic acid, citric acid, oxalic acid, formic acid, butyric acid, and a metal.
  • an aqueous solution of cobalt salt can be used as the cobalt source.
  • cobalt salt for example, cobalt sulfate, cobalt chloride, cobalt nitrate, or hydrates thereof can be used.
  • organic acid salts of cobalt such as cobalt acetate, or hydrates thereof can also be used.
  • an aqueous solution of a cobalt alkoxide or an organic cobalt complex can be used as the cobalt source.
  • an aqueous solution of manganese salt can be used as the manganese source.
  • the manganese salt for example, manganese sulfate, manganese chloride, manganese nitrate, or hydrates thereof can be used.
  • organic acid salts of manganese such as manganese acetate, or hydrates thereof can also be used.
  • an aqueous solution of manganese alkoxide or an organic manganese complex can be used as the manganese source.
  • an aqueous solution in which nickel sulfate, cobalt sulfate, and manganese sulfate are dissolved in pure water is prepared as a transition metal M source.
  • the aqueous solution exhibits acidity.
  • a chelating agent may be prepared.
  • Chelating agents include, for example, glycine, oxine, 1-nitroso-2-naphthol, 2-mercaptobenzothiazole, or EDTA (ethylenediaminetetraacetic acid).
  • you may use multiple types selected from glycine, oxine, 1-nitroso-2-naphthol, and 2-mercaptobenzothiazole. At least one of these is dissolved in pure water and used as a chelate aqueous solution.
  • Chelating agents are complexing agents that create chelate compounds and are preferred over common complexing agents.
  • a complexing agent may be used instead of a chelating agent, and aqueous ammonia can be used as the complexing agent.
  • a chelate aqueous solution because it can suppress unnecessary generation of crystal nuclei and promote growth. When the generation of unnecessary nuclei is suppressed, the generation of fine particles is suppressed, so that a composite hydroxide with a good particle size distribution can be obtained.
  • an aqueous chelate solution the acid-base reaction can be delayed, and the reaction proceeds gradually, making it possible to obtain nearly spherical secondary particles.
  • Glycine has the effect of keeping the pH value constant at a pH of 9 or more and 10 or less, and by using a glycine aqueous solution as the chelate aqueous solution, the pH of the reaction tank when obtaining the above composite hydroxide 98 can be adjusted. This is preferable because it is easier to control.
  • Step S14 Next, in step S14 in FIG. 6, a transition metal M source and a chelating agent are mixed to prepare an acid solution.
  • an alkaline solution is prepared.
  • an aqueous solution containing sodium hydroxide, potassium hydroxide, lithium hydroxide or ammonia can be used.
  • An aqueous solution in which these are dissolved using pure water can be used.
  • it may be an aqueous solution in which multiple types selected from sodium hydroxide, potassium hydroxide, lithium hydroxide, or ammonia are dissolved in pure water.
  • the pure water preferably used for the transition metal M source and alkaline solution is water with a specific resistance of 1 M ⁇ cm or more, more preferably water with a specific resistance of 10 M ⁇ cm or more, and even more preferably 15 M ⁇ cm or more. water. Water that satisfies the specific resistance has high purity and contains very few impurities.
  • Step S22 it is preferable to prepare water in the reaction tank.
  • This water may be an aqueous solution of a chelating agent, but is more preferably pure water. By using pure water, nucleation is promoted and a composite hydroxide with a small particle size can be produced.
  • the water prepared in this reaction tank can be called a filling liquid or adjustment liquid for the reaction tank.
  • the description in step S13 can be taken into consideration.
  • step S31 of FIG. 6 the acid solution and the alkaline solution are mixed and reacted.
  • the reaction can be referred to as a coprecipitation reaction, a neutralization reaction, or an acid-base reaction.
  • the pH of the reaction system is 9.0 or more and 11.5 or less.
  • the reaction tank has a reaction container and the like.
  • the stirring means includes a stirrer or stirring blades. Two or more stirring blades and six or less stirring blades can be provided. For example, when four stirring blades are provided, they are preferably arranged in a cross shape when viewed from above.
  • the rotation speed of the stirring means is preferably 800 rpm or more and 1200 rpm or less.
  • a baffle plate may be provided in the reaction tank to change the stirring direction and flow rate. By providing a baffle plate, the mixing efficiency is improved, and composite hydroxide particles having a more uniform size can be synthesized.
  • the temperature of the reaction tank is preferably adjusted to 50°C or more and 90°C or less. It is preferable to start dropping the alkaline solution or acid solution after the reaction tank has reached the desired temperature.
  • the inert atmosphere in this case can be nitrogen or argon.
  • nitrogen gas is preferably introduced at a flow rate of 0.5 L/min or more and 2 L/min.
  • a reflux condenser allows nitrogen gas to be vented from the reactor and water vapor to be returned to the reactor.
  • Step S32> In order to recover the composite hydroxide 98, it is preferable to perform filtration as shown in step S32 in FIG.
  • the filtration is preferably suction filtration.
  • an organic solvent such as acetone
  • the filtered composite hydroxide 98 is preferably dried. For example, it is dried under vacuum at a temperature of 60° C. or more and 200° C. or less for 0.5 hours or more and 20 hours or less. For example, it can be dried for 12 hours. In this way, composite hydroxide 98 can be obtained.
  • composite hydroxide 98 containing transition metal M can be obtained.
  • the composite hydroxide 98 refers to hydroxides of multiple types of metals.
  • the composite hydroxide 98 can be said to be a precursor of the positive electrode active material 100.
  • a lithium source is prepared. At this time, since the step of adding and heating the lithium source is performed multiple times, an amount smaller than the final amount of lithium is prepared in step S41.
  • lithium can be set to 0.5 or more and 0.9 or less (atomic ratio), and 0.7 (atomic ratio). More preferred.
  • lithium hydroxide lithium carbonate, or lithium nitrate
  • a material with a low melting point among lithium compounds such as lithium hydroxide (melting point: 462° C.). Since cation mixing occurs more easily in a positive electrode active material containing a high proportion of nickel than in lithium cobalt oxide or the like, heating in step S43 and the like needs to be performed at a low temperature. Therefore, it is preferable to use a material with a low melting point.
  • the particle size of the lithium source is small because the reaction tends to proceed well.
  • a lithium source made into fine particles using a fluidized bed jet mill can be used.
  • the particle size here refers to the median diameter.
  • step S42 in FIG. 7 the composite hydroxide 98 and a lithium source are mixed.
  • Mixing can be done dry or wet.
  • a ball mill, a bead mill, etc. can be used for mixing.
  • zirconia balls it is preferable to use zirconia balls as the media, for example.
  • the peripheral speed is preferably 100 mm/sec to 2000 mm/sec in order to suppress contamination from media or materials.
  • the cobalt compound and the lithium compound may be crushed.
  • Step S43 Next, the mixture of the composite hydroxide 98 and the lithium source is heated. To distinguish from other heating steps, in FIG. 7, step S43 may be referred to as first heating, step S53 as second heating, and step S55 as third heating.
  • a muffle furnace, a roller hearth kiln, a rotary kiln, or the like can be used as a firing device for performing this heating.
  • the crucible, sheath, setter, and container used during heating are preferably made of materials that do not easily release impurities.
  • an aluminum oxide crucible with a purity of 99.9% may be used.
  • mullite/cordierite (Al 2 O 3 .SiO 2 .MgO) pods may be used.
  • the temperature of the heating in step S43 is preferably 400°C or more and 750°C or less, more preferably 650°C or more and 750°C or less. Further, the heating time in step S43 is preferably 1 hour or more and 30 hours or less, more preferably 2 hours or more and 20 hours or less.
  • the heating atmosphere is preferably an oxygen-containing atmosphere or an oxygen-containing atmosphere that is so-called dry air and contains little water (for example, a dew point of -50°C or lower, more preferably a dew point of -80°C or lower).
  • step S44 it is preferable to include a crushing step after heating as step S44. Disintegration can be carried out, for example, in a mortar. Furthermore, it may be classified using a sieve. By including the crushing step, the particle size and/or shape of the positive electrode active material 100 can be made more uniform.
  • a composite oxide is obtained (step S45).
  • a lithium source is prepared.
  • a lithium source is prepared so that the final amount of lithium is obtained.
  • the final amount of lithium is set to 1.01 (atomic ratio) when the sum of the numbers of atoms of nickel, cobalt, and manganese is 1, but one embodiment of the present invention is not limited to this.
  • the final amount of lithium is preferably 0.95 or more and 1.25 or less (atomic ratio), and 1.00 or more and 1.10 or less (atomic ratio). ) is more preferable. Except for the amount of the lithium source to be prepared, the description in step S41 can be referred to.
  • FIG. 7 describes a method in which the lithium source is added twice in step S41 and step S51 and heated in each step, one embodiment of the present invention is not limited to this.
  • the lithium source may be added in three or more portions and heated each time.
  • Step S52> the composite oxide obtained in step S45 and the above lithium source are mixed.
  • the description in step S42 can be considered.
  • Step S53 Next, the mixture of the composite hydroxide 98 and the lithium source is heated.
  • the heating in step S53 is preferably at a sufficiently high temperature in order to increase the crystallite size of the positive electrode active material 100, but the range may vary depending on the composition of the transition metal M.
  • the temperature is preferably 750°C or higher, more preferably 800°C or higher, and even more preferably 850°C or higher.
  • the temperature is preferably 950°C or lower, more preferably 920°C or lower, and even more preferably 900°C or lower.
  • the temperature is preferably 900°C or higher, more preferably 950°C or higher, and even more preferably about 970°C.
  • the temperature is preferably 1020°C or lower, and more preferably 990°C or lower.
  • the description in step S43 can be referred to.
  • step S54 it is preferable to include a crushing step after heating as step S54.
  • the description in step S44 can be considered.
  • Step S55 Furthermore, it is more preferable to perform heating in step S55. By performing the heating, residues such as lithium sources can be reduced.
  • the temperature of the heating in step S55 is preferably 400°C or more and 900°C or less, more preferably 750°C or more and 850°C or less.
  • the heating time in step S52 is preferably 1 hour or more and 30 hours or less, more preferably 2 hours or more and 20 hours or less.
  • the heating in step S55 may not be performed.
  • the description in step S43 can be referred to.
  • step S56 it is preferable to include a crushing step after heating as step S56.
  • the description in step S44 can be considered.
  • FIG. 7 describes a method in which the lithium source is mixed in step S51 and then heated twice in step S53 and step S55, one embodiment of the present invention is not limited to this. Heating may be performed three or more times.
  • the positive electrode active material 100 can be produced.
  • a method 2 for manufacturing the positive electrode active material 100 will be described using FIGS. 6 and 8.
  • the positive electrode active material 100 produced by the production method 2 has an additive element.
  • the steps that are different from Manufacturing Method 1 will be mainly described, and the description of Manufacturing Method 1 can be referred to for other steps.
  • step S71 of FIG. 8 an additive element source is prepared.
  • additive element examples include one or more selected from magnesium, aluminum, calcium, titanium, zirconium, fluorine, vanadium, iron, manganese, chromium, niobium, arsenic, zinc, silicon, sulfur, phosphorus, boron, bromine, and beryllium. Two or more can be used.
  • organic compounds containing magnesium such as magnesium fluoride, magnesium hydroxide, magnesium carbonate, magnesium acetylacetone (dihydrate), magnesium lactate, and magnesium phthalocyanine (II) can be used.
  • organic compounds containing aluminum such as aluminum hydroxide, aluminum fluoride, aluminum alkoxide, aluminum acetylacetone, and aluminum lactate can be used.
  • Step S72> The above additive element source and a composite oxide having a large crystallite size obtained in the same process as in Production Method 1 are mixed.
  • step S72 describes a manufacturing method in which additive elements are mixed in step S72, one embodiment of the present invention is not limited to this. Additional elements may be mixed in other steps.
  • the additive element may be mixed at the same time as the lithium source in step S42 and step S52. Further, additional elements may be mixed simultaneously with the transition metal M source in step S14.
  • Step S73 Next, the mixture of the additive element source and the composite oxide is heated.
  • the temperature of the heating in step S73 is preferably 400°C or more and 900°C or less, more preferably 750°C or more and 850°C or less.
  • the heating time in step S73 is preferably 0.5 hours or more and 30 hours or less, more preferably 1 hour or more and 10 hours or less.
  • the description in step S43 can be referred to.
  • step S74 it is preferable to include a crushing step after heating as step S74.
  • the description in step S44 can be considered.
  • the positive electrode active material 100 can be manufactured (step S75).
  • Method 3 for manufacturing the positive electrode active material 100 will be described using FIGS. 6 and 9.
  • the positive electrode active material 100 produced by the production method 3 has an additive element, and the ratio of the number of atoms of at least one element of cobalt and manganese is larger in the surface layer than in the interior. Mainly, the steps different from the manufacturing method 2 will be explained, and the description of the manufacturing method 2 can be referred to for other steps.
  • Step S61 At step S61 in FIG. 9, at least one of a cobalt source and a manganese source is prepared.
  • cobalt source organic compounds containing cobalt such as cobalt oxide, cobalt hydroxide, and cobalt alkoxide can be used.
  • organic compounds containing manganese such as manganese oxide, manganese hydroxide, and manganese alkoxide can be used.
  • a composite hydroxide may be prepared.
  • a composite hydroxide containing cobalt and manganese may be prepared as a cobalt source and a manganese source.
  • a nickel-manganese-cobalt hydroxide having a lower proportion of nickel than the composite hydroxide produced in FIG. 6 may be prepared.
  • Step S62> At least one of the above-mentioned cobalt source and manganese source and a composite oxide having a large crystallite size obtained in the same process as Production Method 1 are mixed.
  • the mixing method is not particularly limited.
  • the cobalt source and/or manganese source is an alkoxide
  • a sol-gel method can be employed.
  • the cobalt source and/or manganese source is a composite hydroxide, a mechanochemical method can be employed.
  • Step S63> the mixture of the cobalt source and/or the manganese source and the composite oxide is heated.
  • step S64 it is preferable to include a crushing step after heating as step S64.
  • the description in step S44 can be considered.
  • the cathode active material 100 can be produced by mixing additive elements and heating in the same manner as in the production method 2 of the cathode active material.
  • FIGS. 6 and 9 describe a method of adding at least one of a cobalt source and a manganese source before adding the additive element source
  • At least one of the cobalt source and the manganese source may be added after adding the additional element source, or may be added together with the additional element source.
  • the composition of the transition metal M in the interior and the surface layer may be changed. In this case, for example, by changing from an acid solution containing a high nickel ratio in the transition metal M to an acid solution containing a low nickel ratio, the nickel ratio in the interior and the surface layer can be changed.
  • This embodiment can be used in combination with other embodiments.
  • the positive electrode has a positive electrode active material layer and a positive electrode current collector.
  • the positive electrode active material layer includes a positive electrode active material and may further include at least one of a conductive material and a binder.
  • the positive electrode active material the material described in Embodiment 1 can be used.
  • FIG. 10A shows an example of a schematic cross-sectional view of the positive electrode.
  • the positive electrode current collector 21 for example, metal foil can be used.
  • the positive electrode can be formed by applying a slurry onto a metal foil and drying it. Note that pressing may be applied after drying.
  • the positive electrode has an active material layer formed on a positive electrode current collector 21.
  • the slurry is a material liquid used to form an active material layer on the positive electrode current collector 21, and contains an active material, a binder, and a solvent, preferably further mixed with a conductive material.
  • the slurry is sometimes called an electrode slurry or an active material slurry, and when forming a positive electrode active material layer, a positive electrode slurry is used, and when forming a negative electrode active material layer, it is called a negative electrode slurry. There is also.
  • the positive electrode active material 100 has the function of taking in and releasing lithium ions during charging and discharging.
  • a material that exhibits little deterioration due to charging and discharging even at a high charging voltage can be used.
  • charging voltage is expressed based on the potential of lithium metal.
  • a high charging voltage is, for example, a charging voltage of 4.5V or higher, preferably 4.55V or higher, more preferably 4.6V or higher, 4.65V or higher, or 4.7V or higher. do.
  • the cathode active material 100 used as one embodiment of the present invention any material can be used as long as it exhibits little deterioration due to charging and discharging even at a high charging voltage, and any material can be used as described in Embodiment 1 or 2. can be used.
  • the positive electrode active material 100 can be made of two or more types of materials with different particle sizes, as long as they are less likely to deteriorate due to charging and discharging even at high charging voltages.
  • the conductive material is also called a conductivity imparting agent or a conductivity aid, and a carbon material can be used.
  • a conductive material By attaching a conductive material between the plurality of active materials, the plurality of active materials are electrically connected to each other, thereby increasing conductivity.
  • adheresion does not only mean that the active material and the conductive material are in close physical contact with each other, but also refers to the case where a covalent bond occurs or the case where they are bonded by van der Waals force.
  • the concept includes cases in which a conductive material covers part of the surface of an active material, cases in which a conductive material fits into irregularities on the surface of an active material, cases in which the conductive material is electrically connected even though they are not in contact with each other.
  • FIGS. 10A to 10D Examples of positive electrodes are shown in FIGS. 10A to 10D.
  • FIG. 10A illustrates carbon black 43, which is an example of a conductive material, and electrolyte 51 contained in a gap located between the positive electrode active materials 100, and shows not only the positive electrode active material 100 but also the second positive electrode active material 100. An example further including a substance 110 is shown.
  • a binder As a positive electrode of a secondary battery, a binder (resin) may be mixed in order to fix the positive electrode current collector 21 such as metal foil and the active material.
  • a binder is also called a binding agent.
  • the binder is a polymeric material, and when a large amount of the binder is included, the proportion of the active material in the positive electrode decreases, and the discharge capacity of the secondary battery decreases. Therefore, it is preferable to mix the amount of binder to a minimum.
  • FIG. 10A shows an example in which the positive electrode active material 100 is spherical, it is not particularly limited.
  • the cross-sectional shape of the positive electrode active material 100 may be an ellipse, a rectangle, a trapezoid, a triangle, a polygon with rounded corners, or an asymmetric shape.
  • FIG. 10B shows an example in which the positive electrode active material 100 has a polygonal shape with rounded corners.
  • graphene 42 is used as a carbon material used as a conductive material.
  • a positive electrode active material layer including a positive electrode active material 100, graphene 42, and carbon black 43 is formed on the positive electrode current collector 21.
  • the weight of the carbon black to be mixed is 1.5 times or more and 20 times or less, preferably 2 times or more and 9.5 times or less of the weight of graphene. It is preferable to do so.
  • the dispersion stability of the carbon black 43 is excellent during slurry preparation, and agglomerated portions are less likely to occur.
  • the mixture of graphene 42 and carbon black 43 is within the above range, it is possible to have a higher electrode density than a positive electrode using only carbon black 43 as a conductive material. By increasing the electrode density, the capacity per unit weight can be increased. Specifically, the density of the positive electrode active material layer measured by weight can be 3.5 g/cc or more.
  • the electrode density is lower than that of a positive electrode that uses only graphene as the conductive material, by mixing the first carbon material (graphene) and the second carbon material (acetylene black) within the above range, rapid charging is possible. can be accommodated. Therefore, it is particularly effective when used as an on-vehicle secondary battery.
  • FIG. 10C illustrates an example of a positive electrode that uses carbon fiber 44 instead of graphene.
  • FIG. 10C shows an example different from FIG. 10B.
  • Use of carbon fibers 44 can prevent agglomeration of carbon black 43 and improve dispersibility.
  • the region not filled with the positive electrode active material 100, the carbon fibers 44, and the carbon black 43 indicates voids or binder.
  • FIG. 10D is illustrated as an example of another positive electrode.
  • FIG. 10C shows an example in which carbon fiber 44 is used in addition to graphene 42. When both graphene 42 and carbon fiber 44 are used, agglomeration of carbon black such as carbon black 43 can be prevented and dispersibility can be further improved.
  • regions not filled with the positive electrode active material 100, carbon fibers 44, graphene 42, and carbon black 43 indicate voids or binder.
  • a secondary battery can be produced by filling the battery.
  • ⁇ Binder> As the binder, it is preferable to use rubber materials such as styrene-butadiene rubber (SBR), styrene-isoprene-styrene rubber, acrylonitrile-butadiene rubber, butadiene rubber, and ethylene-propylene-diene copolymer. Furthermore, fluororubber can be used as the binder.
  • SBR styrene-butadiene rubber
  • fluororubber can be used as the binder.
  • the binder it is preferable to use, for example, a water-soluble polymer.
  • a water-soluble polymer for example, polysaccharides can be used.
  • polysaccharide cellulose derivatives such as carboxymethyl cellulose (CMC), methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, regenerated cellulose, or starch can be used. Further, it is more preferable to use these water-soluble polymers in combination with the above-mentioned rubber material.
  • polystyrene polymethyl acrylate, polymethyl methacrylate (polymethyl methacrylate, PMMA), sodium polyacrylate, polyvinyl alcohol (PVA), polyethylene oxide (PEO), polypropylene oxide, polyimide, polyvinyl chloride
  • PVA polyvinyl alcohol
  • PEO polyethylene oxide
  • PEO polypropylene oxide
  • polyimide polyvinyl chloride
  • materials such as polytetrafluoroethylene, polyethylene, polypropylene, polyisobutylene, polyethylene terephthalate, nylon, polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), ethylene propylene diene polymer, polyvinyl acetate, nitrocellulose, etc.
  • the binder may be used in combination of more than one of the above.
  • a material with particularly excellent viscosity adjusting effect may be used in combination with other materials.
  • rubber materials have excellent adhesive strength and elasticity, it may be difficult to adjust the viscosity when mixed with a solvent. In such cases, for example, it is preferable to mix with a material that is particularly effective in controlling viscosity.
  • a material having a particularly excellent viscosity adjusting effect for example, a water-soluble polymer may be used.
  • the above-mentioned polysaccharides such as carboxymethyl cellulose (CMC), methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, cellulose derivatives such as regenerated cellulose, or starch are used. be able to.
  • cellulose and cellulose derivatives used as binders for electrodes include salts thereof.
  • the viscosity is stabilized, and other materials to be combined as the active material and binder, such as styrene-butadiene rubber, can be stably dispersed in the aqueous solution. Furthermore, since it has a functional group, it is expected that it will be easily adsorbed stably on the surface of the active material. In addition, many cellulose derivatives such as carboxymethylcellulose have functional groups such as hydroxyl or carboxyl groups, and because of these functional groups, polymers interact with each other and may exist widely covering the surface of the active material. Be expected.
  • the binder When the binder forms a film that covers or is in contact with the surface of the active material, it is expected to serve as a passive film and suppress the decomposition of the electrolyte.
  • the "passive film” is a film with no electrical conductivity or a film with extremely low electrical conductivity.
  • the passive film when a passive film is formed on the surface of an active material, the battery reaction potential In this case, decomposition of the electrolytic solution can be suppressed. Further, it is more desirable that the passive film suppresses electrical conductivity and can conduct lithium ions.
  • the conductive material is also called a conductivity imparting agent or a conductivity aid, and a carbon material is used.
  • a conductive material By attaching a conductive material between the plurality of active materials, the plurality of active materials are electrically connected to each other, thereby increasing conductivity.
  • adheresion does not only mean that the active material and the conductive material are in close physical contact with each other, but also when a covalent bond occurs or when they bond due to van der Waals forces, the surface of the active material
  • the concept includes cases where a conductive material covers a part of the active material, cases where the conductive material fits into the unevenness of the surface of the active material, cases where the active material is electrically connected even if they are not in contact with each other.
  • the active material layers such as the positive electrode active material layer and the negative electrode active material layer, include a conductive material.
  • Examples of the conductive material include carbon black such as acetylene black and furnace black, graphite such as artificial graphite and natural graphite, carbon fibers such as carbon nanofibers and carbon nanotubes, and graphene compounds. More than one species can be used.
  • carbon fibers such as mesophase pitch carbon fiber and isotropic pitch carbon fiber can be used.
  • carbon nanofibers, carbon nanotubes, or the like can be used as the carbon fibers.
  • Carbon nanotubes can be produced, for example, by a vapor phase growth method.
  • graphene compounds refer to graphene, multilayer graphene, multigraphene, graphene oxide, multilayer graphene oxide, multilayer graphene oxide, reduced graphene oxide, reduced multilayer graphene oxide, reduced multilayer graphene oxide, graphene Including quantum dots, etc.
  • a graphene compound refers to a compound that contains carbon, has a shape such as a flat plate or a sheet, and has a two-dimensional structure formed of a six-membered carbon ring. The two-dimensional structure formed by the six-membered carbon ring may be called a carbon sheet.
  • the graphene compound may have a functional group. Further, it is preferable that the graphene compound has a bent shape. Further, the graphene compound may be curled into a shape similar to carbon nanofibers.
  • the content of the conductive material relative to the total amount of the active material layer is preferably 1 wt% or more and 10 wt% or less, more preferably 1 wt% or more and 5 wt% or less.
  • graphene compounds Unlike granular conductive materials such as carbon black, which make point contact with the active material, graphene compounds enable surface contact with low contact resistance. It is possible to improve electrical conductivity with Therefore, the ratio of active material in the active material layer can be increased. Thereby, the discharge capacity of the battery can be increased.
  • Particulate carbon-containing compounds such as carbon black and graphite, or fibrous carbon-containing compounds such as carbon nanotubes, easily enter minute spaces.
  • the minute space refers to, for example, a region between a plurality of active materials.
  • ⁇ Positive electrode current collector> As the positive electrode current collector, highly conductive materials such as metals such as stainless steel, gold, platinum, aluminum, and titanium, and alloys thereof can be used. Further, it is preferable that the material used for the positive electrode current collector does not elute at the potential of the positive electrode. Furthermore, an aluminum alloy to which an element that improves heat resistance, such as silicon, titanium, neodymium, scandium, or molybdenum is added, can be used. Alternatively, it may be formed of a metal element that reacts with silicon to form silicide.
  • the positive electrode current collector may have a shape such as a foil, a plate, a sheet, a net, a punched metal, or an expanded metal as appropriate.
  • the positive electrode current collector preferably has a thickness of 5 ⁇ m or more and 30 ⁇ m or less.
  • the negative electrode has a negative electrode active material layer and a negative electrode current collector. Further, the negative electrode active material layer includes a negative electrode active material, and may further include a conductive material and a binder.
  • Niobium electrode active material for example, an alloy material or a carbon material can be used.
  • an element that can perform a charge/discharge reaction by alloying/dealloying reaction with lithium can be used as the negative electrode active material.
  • a material containing at least one of silicon, tin, gallium, aluminum, germanium, lead, antimony, bismuth, silver, zinc, cadmium, indium, etc. can be used. These elements have a larger capacity than carbon, and silicon in particular has a high theoretical capacity of 4200 mAh/g. For this reason, it is preferable to use silicon as the negative electrode active material. Further, compounds having these elements may also be used.
  • an element that can perform a charging/discharging reaction by alloying/dealloying reaction with lithium, a compound having the element, etc. may be referred to as an alloy-based material.
  • SiO refers to silicon monoxide, for example.
  • SiO can also be expressed as SiO x .
  • x preferably has a value of 1 or a value close to 1.
  • x is preferably 0.2 or more and 1.5 or less, and preferably 0.3 or more and 1.2 or less.
  • carbon material graphite, graphitizable carbon (soft carbon), non-graphitizable carbon (hard carbon), carbon fiber (carbon nanotube), graphene, carbon black, etc. may be used.
  • Examples of graphite include artificial graphite and natural graphite.
  • Examples of the artificial graphite include mesocarbon microbeads (MCMB), coke-based artificial graphite, and pitch-based artificial graphite.
  • MCMB mesocarbon microbeads
  • spherical graphite having a spherical shape can be used as the artificial graphite.
  • MCMB may have a spherical shape, which is preferred.
  • it is relatively easy to reduce the surface area of MCMB which may be preferable.
  • Examples of natural graphite include flaky graphite and spheroidized natural graphite.
  • Graphite exhibits a potential as low as that of lithium metal (0.05 V or more and 0.3 V or less vs. Li/Li + ) when lithium ions are inserted into graphite (when a lithium-graphite intercalation compound is generated). This allows lithium ion batteries using graphite to exhibit high operating voltage. Furthermore, graphite is preferable because it has advantages such as a relatively high capacity per unit volume, a relatively small volumetric expansion, low cost, and higher safety than lithium metal.
  • titanium dioxide TiO 2
  • lithium titanium oxide Li 4 Ti 5 O 12
  • lithium-graphite intercalation compound Li x C 6
  • niobium pentoxide Nb 2 O 5
  • oxidized Oxides such as tungsten (WO 2 ) and molybdenum oxide (MoO 2 ) can be used.
  • Li 2.6 Co 0.4 N 3 is preferable because it exhibits a large discharge capacity (900 mAh/g, 1890 mAh/cm 3 ).
  • the negative electrode active material contains lithium ions, it can be combined with materials such as V 2 O 5 and Cr 3 O 8 that do not contain lithium ions as the positive electrode active material, which is preferable. . Note that even when a material containing lithium ions is used as the positive electrode active material, a double nitride of lithium and a transition metal can be used as the negative electrode active material by removing lithium ions contained in the positive electrode active material in advance.
  • a material that causes a conversion reaction can also be used as the negative electrode active material.
  • transition metal oxides that do not form an alloy with lithium such as cobalt oxide (CoO), nickel oxide (NiO), and iron oxide (FeO)
  • CoO cobalt oxide
  • NiO nickel oxide
  • FeO iron oxide
  • Materials that cause conversion reactions include oxides such as Fe 2 O 3 , CuO, Cu 2 O, RuO 2 , and Cr 2 O 3 , sulfides such as CoS 0.89 , NiS, and CuS, and Zn 3 N 2 , Cu 3 N, Ge 3 N 4 and other nitrides, NiP 2 , FeP 2 and CoP 3 and other phosphides, and FeF 3 and BiF 3 and other fluorides.
  • the negative electrode it may be a negative electrode that does not have a negative electrode active material at the time of completion of battery production.
  • An example of a negative electrode that does not have a negative electrode active material is a negative electrode that has only a negative electrode current collector at the end of battery production, and the lithium ions that are released from the positive electrode active material when the battery is charged are deposited on the negative electrode current collector. It can be a negative electrode that is precipitated as lithium metal to form a negative electrode active material layer.
  • a battery using such a negative electrode is sometimes called a negative electrode-free (anode-free) battery, a negative electrode-less (anode-less) battery, or the like.
  • a film may be provided on the negative electrode current collector to uniformly deposit lithium.
  • a solid electrolyte having lithium ion conductivity can be used as a membrane for uniformly depositing lithium.
  • the solid electrolyte sulfide-based solid electrolytes, oxide-based solid electrolytes, polymer-based solid electrolytes, and the like can be used.
  • a polymer solid electrolyte is suitable as a film for uniformly depositing lithium because it is relatively easy to form a uniform film on the negative electrode current collector.
  • a metal film that forms an alloy with lithium can be used as a metal film that forms an alloy with lithium can be used.
  • a magnesium metal film can be used as the metal film that forms an alloy with lithium. Since lithium and magnesium form a solid solution over a wide composition range, it is suitable as a film for uniformizing the precipitation of lithium.
  • a negative electrode current collector having unevenness can be used.
  • the concave portions of the negative electrode current collector become cavities in which the lithium contained in the negative electrode current collector is likely to precipitate, so when lithium is precipitated, it is suppressed from forming a dendrite-like shape. can do.
  • the same materials as the conductive material and binder that the positive electrode active material layer can have can be used.
  • ⁇ Negative electrode current collector> In addition to the same materials as the positive electrode current collector, copper or the like can also be used for the negative electrode current collector. Note that it is preferable to use a material that does not form an alloy with carrier ions such as lithium for the negative electrode current collector.
  • the electrolytic solution includes a solvent and an electrolyte.
  • aprotic organic solvents are preferred, such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, chloroethylene carbonate, vinylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, and dimethyl carbonate.
  • DMC diethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • methyl formate methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, 1,3-dioxane, 1,4 -
  • DME dimethoxyethane
  • DME dimethyl sulfoxide
  • diethyl ether methyl diglyme
  • acetonitrile benzonitrile
  • tetrahydrofuran sulfolane
  • sultone etc.
  • Ionic liquids are composed of cations and anions, and include organic cations and anions.
  • Examples of the organic cation used in the electrolytic solution include aliphatic onium cations such as quaternary ammonium cations, tertiary sulfonium cations, and quaternary phosphonium cations, and aromatic cations such as imidazolium cations and pyridinium cations.
  • examples of anions used in the electrolytic solution include monovalent amide anions, monovalent methide anions, fluorosulfonic acid anions, perfluoroalkylsulfonic acid anions, tetrafluoroborate anions, perfluoroalkylborate anions, and hexafluorophosphate anions. , or perfluoroalkyl phosphate anion.
  • electrolytes to be dissolved in the above solvent examples include LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiAlCl 4 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl12 , LiCF3SO3 , LiC4F9SO3 , LiC ( CF3SO2 ) 3 , LiC( C2F5SO2 ) 3 , LiN( CF3SO2 ) 2 , LiN ( C4F9
  • One type of lithium salt such as SO 2 )(CF 3 SO 2 ), LiN(C 2 F 5 SO 2 ) 2 or any combination of two or more thereof in any ratio can be used.
  • the electrolytic solution used in the secondary battery it is preferable to use a highly purified electrolytic solution that has a low content of particulate dust or elements other than the constituent elements of the electrolytic solution (hereinafter also simply referred to as "impurities"). Specifically, it is preferable that the weight ratio of impurities to the electrolytic solution is 1% or less, preferably 0.1% or less, and more preferably 0.01% or less.
  • the electrolyte contains vinylene carbonate, propane sultone (PS), tert-butylbenzene (TBB), fluoroethylene carbonate (FEC), lithium bis(oxalate)borate (LiBOB), and dinitrile compounds such as succinonitrile and adiponitrile.
  • Additives such as fluorobenzene and ethylene glycose bis(propionitrile) ether may also be added.
  • the concentration of each added material may be, for example, 0.1 wt% or more and 5 wt% or less with respect to the entire solvent.
  • VC or LiBOB is particularly preferable because it easily forms a good coating.
  • the additive may form a film that adheres to the surface of the active material during aging treatment of the secondary battery. Therefore, in a secondary battery that has been charged and discharged even slightly, at least some additives may not be detected in the electrolyte.
  • a polymer gel electrolyte in which a polymer is swollen with an electrolytic solution may be used.
  • silicone gel acrylic gel, acrylonitrile gel, polyethylene oxide gel, polypropylene oxide gel, fluoropolymer gel, etc. can be used.
  • polymers having a polyalkylene oxide structure such as polyethylene oxide (PEO), PVDF, polyacrylonitrile, and copolymers containing them can be used.
  • PVDF-HFP which is a copolymer of PVDF and hexafluoropropylene (HFP)
  • the polymer formed may also have a porous shape.
  • a solid electrolyte having an inorganic material such as a sulfide-based or oxide-based material, a solid electrolyte having a polymeric material such as a PEO (polyethylene oxide)-based material, etc. can be used.
  • a solid electrolyte it is not necessary to install a separator and/or spacer. Additionally, since the entire battery can be solidified, there is no risk of leakage, dramatically improving safety.
  • a separator When the electrolyte contains an electrolytic solution, a separator is placed between the positive electrode and the negative electrode.
  • a separator for example, fibers containing cellulose such as paper, nonwoven fabrics, glass fibers, ceramics, synthetic fibers using nylon (polyamide), vinylon (polyvinyl alcohol fiber), polyester, acrylic, polyolefin, polyurethane, etc. It is possible to use one formed of . It is preferable that the separator is processed into a bag shape and arranged so as to surround either the positive electrode or the negative electrode.
  • the separator may have a multilayer structure.
  • a film of an organic material such as polypropylene or polyethylene can be coated with a ceramic material, a fluorine material, a polyamide material, or a mixture thereof.
  • the ceramic material for example, aluminum oxide particles, silicon oxide particles, etc. can be used.
  • the fluorine-based material for example, PVDF, polytetrafluoroethylene, etc. can be used.
  • the polyamide material for example, nylon, aramid (meta-aramid, para-aramid), etc. can be used.
  • Coating with a ceramic material improves oxidation resistance, so it is possible to suppress deterioration of the separator during high voltage charging and discharging and improve the reliability of the secondary battery. Furthermore, coating with a fluorine-based material makes it easier for the separator and electrode to come into close contact with each other, thereby improving output characteristics. Coating with a polyamide-based material, especially aramid, improves heat resistance, thereby improving the safety of the secondary battery.
  • a mixed material of aluminum oxide and aramid may be coated on both sides of a polypropylene film.
  • the surface of the polypropylene film in contact with the positive electrode may be coated with a mixed material of aluminum oxide and aramid, and the surface in contact with the negative electrode may be coated with a fluorine-based material.
  • the safety of the secondary battery can be maintained even if the overall thickness of the separator is thin, so the capacity per volume of the secondary battery can be increased.
  • a metal material such as aluminum or a resin material can be used, for example.
  • a film-like exterior body can also be used.
  • a film for example, a highly flexible metal thin film such as aluminum, stainless steel, copper, or nickel is provided on a film made of a material such as polyethylene, polypropylene, polycarbonate, ionomer, or polyamide, and an exterior coating is further applied on the metal thin film.
  • a three-layered film having an insulating synthetic resin film such as polyamide resin or polyester resin can be used as the outer surface of the body.
  • FIG. 11A is an exploded perspective view of a coin-shaped (single-layer flat type) secondary battery
  • FIG. 11B is an external view
  • FIG. 11C is a cross-sectional view thereof.
  • Coin-shaped secondary batteries are mainly used in small electronic devices.
  • FIG. 11A is a schematic diagram so that the overlapping (vertical relationship and positional relationship) of members can be seen. Therefore, FIG. 11A and FIG. 11B are not completely corresponding diagrams.
  • the positive electrode 304, separator 310, negative electrode 307, spacer 322, and washer 312 are stacked. These are sealed with a negative electrode can 302 and a positive electrode can 301 with a gasket. Note that in FIG. 11A, a gasket for sealing is not shown.
  • the spacer 322 and the washer 312 are used to protect the inside or fix the position inside the can when the positive electrode can 301 and the negative electrode can 302 are crimped together.
  • the spacer 322 and washer 312 are made of stainless steel or an insulating material.
  • a positive electrode 304 has a laminated structure in which a positive electrode active material layer 306 is formed on a positive electrode current collector 305 .
  • FIG. 11B is a perspective view of the completed coin-shaped secondary battery.
  • a positive electrode can 301 that also serves as a positive electrode terminal and a negative electrode can 302 that also serves as a negative electrode terminal are insulated and sealed with a gasket 303 made of polypropylene or the like.
  • the positive electrode 304 is formed by a positive electrode current collector 305 and a positive electrode active material layer 306 provided in contact with the positive electrode current collector 305 .
  • the negative electrode 307 is formed of a negative electrode current collector 308 and a negative electrode active material layer 309 provided in contact with the negative electrode current collector 308. Further, the negative electrode 307 is not limited to a laminated structure, and lithium metal foil or lithium-aluminum alloy foil may be used.
  • each of the positive electrode 304 and negative electrode 307 used in the coin-shaped secondary battery 300 may be formed only on one side.
  • the positive electrode can 301 and the negative electrode can 302 metals such as nickel, aluminum, titanium, etc., which are corrosion resistant to electrolyte, or alloys thereof, or alloys of these and other metals (for example, stainless steel, etc.) can be used. can. Further, in order to prevent corrosion due to electrolyte and the like, it is preferable to coat with nickel, aluminum, or the like.
  • the positive electrode can 301 is electrically connected to the positive electrode 304
  • the negative electrode can 302 is electrically connected to the negative electrode 307.
  • negative electrode 307, positive electrode 304, and separator 310 are immersed in an electrolytic solution, and the positive electrode 304, separator 310, negative electrode 307, and negative electrode can 302 are stacked in this order with the positive electrode can 301 facing down, as shown in FIG. 301 and a negative electrode can 302 are crimped together via a gasket 303 to produce a coin-shaped secondary battery 300.
  • the cylindrical secondary battery 616 has a positive electrode cap (battery lid) 601 on the top surface and a battery can (exterior can) 602 on the side and bottom surfaces. These positive electrode cap 601 and battery can (exterior can) 602 are insulated by a gasket (insulating packing) 610.
  • FIG. 12B is a diagram schematically showing a cross section of a cylindrical secondary battery.
  • the cylindrical secondary battery shown in FIG. 12B has a positive electrode cap (battery lid) 601 on the top surface and a battery can (exterior can) 602 on the side and bottom surfaces.
  • These positive electrode cap 601 and battery can (exterior can) 602 are insulated by a gasket (insulating packing) 610.
  • a battery element is provided inside the hollow cylindrical battery can 602, in which a band-shaped positive electrode 604 and a negative electrode 606 are wound with a separator 605 in between.
  • the battery element is wound around a central axis.
  • the battery can 602 has one end closed and the other end open.
  • metals such as nickel, aluminum, titanium, etc., which are corrosion resistant to electrolyte, or alloys thereof, or alloys of these and other metals (for example, stainless steel, etc.) can be used. .
  • a battery element in which a positive electrode, a negative electrode, and a separator are wound is sandwiched between a pair of opposing insulating plates 608 and 609. Furthermore, a non-aqueous electrolyte (not shown) is injected into the inside of the battery can 602 in which the battery element is provided.
  • the non-aqueous electrolyte the same one as a coin-type secondary battery can be used.
  • a positive electrode terminal (positive electrode current collector lead) 603 is connected to the positive electrode 604, and a negative electrode terminal (negative electrode current collector lead) 607 is connected to the negative electrode 606.
  • Both the positive electrode terminal 603 and the negative electrode terminal 607 can be made of a metal material such as aluminum.
  • the positive terminal 603 and the negative terminal 607 are resistance welded to the safety valve mechanism 613 and the bottom of the battery can 602, respectively.
  • the safety valve mechanism 613 is electrically connected to the positive electrode cap 601 via a PTC element (Positive Temperature Coefficient) 611. The safety valve mechanism 613 disconnects the electrical connection between the positive electrode cap 601 and the positive electrode 604 when the increase in the internal pressure of the battery exceeds a predetermined threshold value.
  • the PTC element 611 is a heat-sensitive resistance element whose resistance increases when the temperature rises, and the increase in resistance limits the amount of current to prevent abnormal heat generation.
  • Barium titanate (BaTiO 3 )-based semiconductor ceramics or the like can be used for the PTC element.
  • FIG. 12C shows an example of the power storage system 615.
  • Power storage system 615 includes a plurality of secondary batteries 616.
  • the positive electrode of each secondary battery contacts a conductor 624 separated by an insulator 625 and is electrically connected.
  • the conductor 624 is electrically connected to the control circuit 620 via the wiring 623.
  • the negative electrode of each secondary battery is electrically connected to the control circuit 620 via a wiring 626.
  • As the control circuit 620 a charging/discharging control circuit that performs charging and discharging, or a protection circuit that prevents overcharging and/or overdischarging can be applied.
  • FIG. 12D shows an example of the power storage system 615.
  • the power storage system 615 includes a plurality of secondary batteries 616, and the plurality of secondary batteries 616 are sandwiched between a conductive plate 628 and a conductive plate 614.
  • the plurality of secondary batteries 616 are electrically connected to a conductive plate 628 and a conductive plate 614 by wiring 627.
  • the plurality of secondary batteries 616 may be connected in parallel, connected in series, or connected in parallel and then further connected in series.
  • the plurality of secondary batteries 616 may be connected in parallel and then further connected in series.
  • a temperature control device may be provided between the plurality of secondary batteries 616.
  • the secondary battery 616 When the secondary battery 616 is overheated, it can be cooled by the temperature control device, and when the secondary battery 616 is too cold, it can be heated by the temperature control device. Therefore, the performance of power storage system 615 is less affected by outside temperature.
  • the power storage system 615 is electrically connected to the control circuit 620 via wiring 621 and wiring 622.
  • the wiring 621 is electrically connected to the positive electrodes of the plurality of secondary batteries 616 via the conductive plate 628
  • the wiring 622 is electrically connected to the negative electrodes of the plurality of secondary batteries 616 via the conductive plate 614.
  • FIGS. 13 and 14 A structural example of a secondary battery will be described using FIGS. 13 and 14.
  • a secondary battery 913 shown in FIG. 13A has a wound body 950 in which a terminal 951 and a terminal 952 are provided inside a casing 930.
  • the wound body 950 is immersed in the electrolyte inside the housing 930.
  • the terminal 952 is in contact with the housing 930, and the terminal 951 is not in contact with the housing 930 by using an insulating material or the like.
  • the housing 930 is shown separated in FIG. 13A for convenience, in reality, the wound body 950 is covered by the housing 930, and the terminals 951 and 952 extend outside the housing 930.
  • a metal material for example, aluminum
  • a resin material can be used as the housing 930.
  • the casing 930 shown in FIG. 13A may be formed of a plurality of materials.
  • a housing 930a and a housing 930b are bonded together, and a wound body 950 is provided in an area surrounded by the housing 930a and the housing 930b.
  • an insulating material such as organic resin can be used.
  • a material such as an organic resin on the surface where the antenna is formed shielding of the electric field by the secondary battery 913 can be suppressed.
  • an antenna may be provided inside the housing 930a.
  • a metal material can be used as the housing 930b.
  • the wound body 950 includes a negative electrode 931, a positive electrode 932, and a separator 933.
  • the wound body 950 is a wound body in which a negative electrode 931 and a positive electrode 932 are stacked on top of each other with a separator 933 in between, and the laminated sheet is wound. Note that a plurality of layers of the negative electrode 931, the positive electrode 932, and the separator 933 may be stacked.
  • a secondary battery 913 having a wound body 950a as shown in FIG. 14 may be used.
  • a wound body 950a shown in FIG. 14A includes a negative electrode 931, a positive electrode 932, and a separator 933.
  • the negative electrode 931 has a negative electrode active material layer 931a.
  • the positive electrode 932 has a positive electrode active material layer 932a.
  • the separator 933 has a width wider than the negative electrode active material layer 931a and the positive electrode active material layer 932a, and is wound so as to overlap with the negative electrode active material layer 931a and the positive electrode active material layer 932a. Further, from the viewpoint of safety, it is preferable that the width of the negative electrode active material layer 931a is wider than that of the positive electrode active material layer 932a. Further, the wound body 950a having such a shape is preferable because it has good safety and productivity.
  • the negative electrode 931 is electrically connected to the terminal 951 by ultrasonic bonding, welding, or crimping.
  • Terminal 951 is electrically connected to terminal 911a.
  • the positive electrode 932 is electrically connected to the terminal 952 by ultrasonic bonding, welding, or crimping.
  • Terminal 952 is electrically connected to terminal 911b.
  • the wound body 950a and the electrolyte are covered by the casing 930, forming a secondary battery 913.
  • the housing 930 is provided with a safety valve, an overcurrent protection element, and the like.
  • the safety valve is a valve that opens the inside of the casing 930 at a predetermined internal pressure in order to prevent the battery from exploding.
  • the secondary battery 913 may have a plurality of wound bodies 950a. By using a plurality of wound bodies 950a, the secondary battery 913 can have a larger discharge capacity.
  • the description of the secondary battery 913 shown in FIGS. 13A to 13C can be referred to.
  • FIGS. 15A and 15B an example of an external view of an example of a laminate type secondary battery is shown in FIGS. 15A and 15B.
  • 15A and 15B have a positive electrode 503, a negative electrode 506, a separator 507, an exterior body 509, a positive lead electrode 510, and a negative lead electrode 511.
  • FIG. 16A shows an external view of the positive electrode 503 and negative electrode 506.
  • the positive electrode 503 has a positive electrode current collector 501 , and the positive electrode active material layer 502 is formed on the surface of the positive electrode current collector 501 . Further, the positive electrode 503 has a region (hereinafter referred to as a tab region) where the positive electrode current collector 501 is partially exposed.
  • the negative electrode 506 has a negative electrode current collector 504 , and the negative electrode active material layer 505 is formed on the surface of the negative electrode current collector 504 . Further, the negative electrode 506 has a region where the negative electrode current collector 504 is partially exposed, that is, a tab region. Note that the area or shape of the tab regions of the positive electrode and the negative electrode is not limited to the example shown in FIG. 16A.
  • FIG. 16B shows a stacked negative electrode 506, separator 507, and positive electrode 503.
  • an example is shown in which five sets of negative electrodes and four sets of positive electrodes are used. It can also be called a laminate consisting of a negative electrode, a separator, and a positive electrode.
  • the tab regions of the positive electrodes 503 are joined together, and the positive lead electrode 510 is joined to the tab region of the outermost positive electrode. For example, ultrasonic welding or the like may be used for joining.
  • the tab regions of the negative electrodes 506 are bonded to each other, and the negative lead electrode 511 is bonded to the tab region of the outermost negative electrode.
  • a negative electrode 506, a separator 507, and a positive electrode 503 are placed on the exterior body 509.
  • the exterior body 509 is bent at the portion indicated by the broken line. After that, the outer peripheral portion of the exterior body 509 is joined. For example, thermocompression bonding or the like may be used for joining. At this time, a region (hereinafter referred to as an inlet) that is not joined is provided in a part (or one side) of the exterior body 509 so that the electrolyte can be introduced later.
  • an inlet a region (hereinafter referred to as an inlet) that is not joined is provided in a part (or one side) of the exterior body 509 so that the electrolyte can be introduced later.
  • the electrolytic solution is introduced into the interior of the exterior body 509 from the introduction port provided in the exterior body 509.
  • the electrolytic solution is preferably introduced under a reduced pressure atmosphere or an inert atmosphere.
  • connect the inlet In this way, a laminate type secondary battery 500 can be manufactured.
  • a secondary battery can typically be applied to an automobile.
  • automobiles include next-generation clean energy vehicles such as hybrid vehicles (HV), electric vehicles (EV), and plug-in hybrid vehicles (PHEV or PHV).
  • a secondary battery can be applied.
  • Vehicles are not limited to automobiles.
  • vehicles include trains, monorails, ships, submersibles (deep sea exploration vehicles, unmanned submarines), flying vehicles (helicopters, unmanned aerial vehicles (drones), airplanes, rockets, artificial satellites), electric bicycles, electric motorcycles, etc.
  • the secondary battery of one embodiment of the present invention can be applied to these vehicles.
  • FIG. 17(C) is an example in which the secondary battery of the present invention is applied to an electric vehicle (EV).
  • the electric vehicle is installed with first batteries 1301a and 1301b as main secondary batteries for driving, and a second battery 1311 that supplies power to an inverter 1312 that starts a motor 1304.
  • the second battery 1311 is also called a cranking battery (also called a starter battery).
  • the second battery 1311 only needs to have a high output, and a large capacity is not required, and the capacity of the second battery 1311 is smaller than that of the first batteries 1301a and 1301b.
  • the internal structure of the first battery 1301a may be a wound type shown in FIG. 13C or FIG. 14A, or a stacked type shown in FIG. 15A or FIG. 15B.
  • the all-solid-state battery of Embodiment 6 may be used as the first battery 1301a.
  • this embodiment shows an example in which two first batteries 1301a and 1301b are connected in parallel, three or more may be connected in parallel. Furthermore, if the first battery 1301a can store sufficient power, the first battery 1301b may not be necessary.
  • a battery pack that includes a plurality of secondary batteries, a large amount of electric power can be extracted.
  • a plurality of secondary batteries may be connected in parallel, may be connected in series, or may be connected in parallel and then further connected in series.
  • a plurality of secondary batteries is also called an assembled battery.
  • the first battery 1301a has a service plug or circuit breaker that can cut off high voltage without using tools. provided.
  • the power of the first batteries 1301a and 1301b is mainly used to rotate the motor 1304, but is also used to power 42V in-vehicle components (electric power steering 1307, heater 1308, defogger 1309, etc.) via a DCDC circuit 1306. to supply power. Even when the rear motor 1317 is provided on the rear wheel, the first battery 1301a is used to rotate the rear motor 1317.
  • the second battery 1311 supplies power to 14V vehicle components (audio 1313, power window 1314, lamps 1315, etc.) via the DCDC circuit 1310.
  • FIG. 17A shows an example in which nine square secondary batteries 1300 are used as one battery pack 1415. Further, nine prismatic secondary batteries 1300 are connected in series, one electrode is fixed by a fixing part 1413 made of an insulator, and the other electrode is fixed by a fixing part 1414 made of an insulator.
  • this embodiment shows an example in which the battery is fixed using the fixing parts 1413 and 1414, it may also be configured to be housed in a battery housing box (also referred to as a housing). Since it is assumed that the vehicle is subjected to vibrations or shaking from the outside (road surface, etc.), the fixed parts 1413, 1414, etc. It is preferable to fix the plurality of secondary batteries in a battery storage box or the like.
  • one electrode is electrically connected to the control circuit section 1320 by a wiring 1421.
  • the other electrode is electrically connected to the control circuit section 1320 by a wiring 1422.
  • control circuit section 1320 may use a memory circuit including a transistor using an oxide semiconductor.
  • a charging control circuit or a battery control system having a memory circuit including a transistor using an oxide semiconductor may be referred to as a BTOS (Battery operating system or Battery oxide semiconductor).
  • a metal oxide that functions as an oxide semiconductor It is preferable to use a metal oxide that functions as an oxide semiconductor.
  • a metal oxide In-M2-Zn oxide (element M2 is aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium) , hafnium, tantalum, tungsten, or one or more selected from magnesium, etc.) may be used.
  • In-M-Zn oxides that can be applied as metal oxides are CAAC-OS (C-Axis Aligned Crystal Oxide Semiconductor), CAC-OS (Cloud-Aligned Composite Oxide) Semiconductor) is preferable.
  • CAAC-OS C-Axis Aligned Crystal Oxide Semiconductor
  • CAC-OS Cloud-Aligned Composite Oxide
  • an In-Ga oxide or an In-Zn oxide may be used as the metal oxide.
  • CAAC-OS is an oxide semiconductor that has a plurality of crystal regions, and the c-axes of the plurality of crystal regions are oriented in a specific direction. Note that the specific direction is the thickness direction of the CAAC-OS film, the normal direction to the surface on which the CAAC-OS film is formed, or the normal direction to the surface of the CAAC-OS film.
  • a crystal region is a region having periodicity in atomic arrangement. Note that if the atomic arrangement is regarded as a lattice arrangement, a crystal
  • CAC-OS has a mosaic-like structure in which the material is separated into a first region and a second region, and the first region is distributed in the film (hereinafter referred to as a cloud-like structure). ). That is, CAC-OS is a composite metal oxide having a configuration in which the first region and the second region are mixed. However, it may be difficult to observe a clear boundary between the first region and the second region.
  • CAC-OS When CAC-OS is used in a transistor, the conductivity caused by the first region and the insulation caused by the second region act complementary to each other, resulting in a switching function (on/off function). can be provided to the CAC-OS.
  • a part of the material has a conductive function
  • a part of the material has an insulating function
  • the entire material has a semiconductor function.
  • Oxide semiconductors have a variety of structures, each with different properties.
  • the oxide semiconductor of one embodiment of the present invention includes two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, a CAC-OS, an nc-OS, and a CAAC-OS. It's okay.
  • control circuit section 1320 can be used in a high-temperature environment, it is preferable to use a transistor using an oxide semiconductor.
  • the control circuit section 1320 may be formed using unipolar transistors.
  • the operating ambient temperature of a transistor using an oxide semiconductor in the semiconductor layer is wider than that of single crystal Si, from ⁇ 40° C. to 150° C., and changes in characteristics are smaller than those of a single crystal even when the secondary battery is heated.
  • the off-state current of a transistor using an oxide semiconductor is below the measurement lower limit regardless of the temperature even at 150° C., the off-state current characteristics of a single-crystal Si transistor are highly temperature dependent.
  • the off-state current of a single-crystal Si transistor increases, and the current on/off ratio does not become sufficiently large.
  • the control circuit section 1320 can improve safety. Moreover, a synergistic effect regarding safety can be obtained by combining the positive electrode active material 100 obtained in Embodiments 1, 2, etc. with a secondary battery using the positive electrode.
  • the secondary battery and control circuit section 1320 using the positive electrode active material 100 obtained in Embodiments 1, 2, etc. as a positive electrode can greatly contribute to eradicating accidents such as fires caused by secondary batteries.
  • the control circuit unit 1320 using a memory circuit including a transistor using an oxide semiconductor can also function as an automatic control device for a secondary battery to deal with the 10 causes of instability such as micro shorts.
  • the functions that eliminate the causes of instability in 10 areas include overcharging prevention, overcurrent prevention, overheating control during charging, cell balance in assembled batteries, overdischarge prevention, fuel gauge, and temperature-based charging. Examples include automatic control of voltage and current amount, control of charging current amount according to the degree of deterioration, micro-short abnormal behavior detection, and abnormal prediction regarding micro-short, and the control circuit unit 1320 has at least one of these functions. Further, it is possible to miniaturize the automatic control device for the secondary battery.
  • micro short refers to a minute short circuit inside the secondary battery, and it is not so much that the positive and negative electrodes of the secondary battery are short-circuited, making it impossible to charge or discharge, but rather a minute short circuit inside the secondary battery. This refers to the phenomenon in which a small amount of short-circuit current flows in a short-circuited part. Since a large voltage change occurs even in a relatively short period of time and at a small location, the abnormal voltage value may affect subsequent estimation.
  • micro short circuits occur due to the occurrence of parts where some parts no longer function or the generation of side reactants due to side reactions.
  • control circuit unit 1320 can also be said to detect the terminal voltage of the secondary battery and manage the charging/discharging state of the secondary battery. For example, to prevent overcharging, both the output transistor and the cutoff switch of the charging circuit can be turned off almost simultaneously.
  • FIG. 17B shows an example of a block diagram of the battery pack 1415 shown in FIG. 17A.
  • the control circuit section 1320 includes a switch section 1324 including at least a switch for preventing overcharging and a switch for preventing overdischarge, a control circuit 1322 for controlling the switch section 1324, and a voltage measuring section for the first battery 1301a. has.
  • the control circuit section 1320 has an upper limit voltage and a lower limit voltage set for the secondary battery to be used, and limits the upper limit of the current from the outside or the upper limit of the output current to the outside.
  • the range of the secondary battery's lower limit voltage to upper limit voltage is within the recommended voltage range, and when the voltage is outside of that range, the switch section 1324 is activated and functions as a protection circuit.
  • control circuit section 1320 can also be called a protection circuit because it controls the switch section 1324 to prevent over-discharging and/or over-charging. For example, when the control circuit 1322 detects a voltage that is likely to cause overcharging, the switch section 1324 is turned off to cut off the current. Furthermore, a PTC element may be provided in the charging/discharging path to provide a function of cutting off the current in response to a rise in temperature. Further, the control circuit section 1320 has an external terminal 1325 (+IN) and an external terminal 1326 (-IN).
  • the switch section 1324 can be configured by combining n-channel transistors or p-channel transistors.
  • the switch section 1324 is not limited to a switch having an Si transistor using single crystal silicon, but includes, for example, Ge (germanium), SiGe (silicon germanium), GaAs (gallium arsenide), GaAlAs (gallium aluminum arsenide), InP (phosphide).
  • the switch portion 1324 may be formed using a power transistor including indium (indium), SiC (silicon carbide), ZnSe (zinc selenide), GaN (gallium nitride), GaOx (gallium oxide; x is a real number greater than 0), or the like.
  • a memory element using an OS transistor can be freely arranged by stacking it on a circuit using a Si transistor, it can be easily integrated. Furthermore, since an OS transistor can be manufactured using the same manufacturing equipment as a Si transistor, it can be manufactured at low cost. That is, the control circuit section 1320 using an OS transistor can be stacked on the switch section 1324 and integrated into one chip. Since the volume occupied by the control circuit section 1320 can be reduced, miniaturization is possible.
  • the first batteries 1301a and 1301b mainly supply power to 42V system (high voltage system) on-board equipment, and the second battery 1311 supplies power to 14V system (low voltage system) onboard equipment.
  • a lead-acid battery is often used because it is advantageous in terms of cost.
  • Lead-acid batteries have the disadvantage that they have greater self-discharge than lithium-ion batteries and are more susceptible to deterioration due to a phenomenon called sulfation.
  • Using a lithium ion battery as the second battery 1311 has the advantage of being maintenance-free.
  • the second battery 1311 that starts the inverter becomes inoperable, the second battery 1311 is powered by a lead-acid In the case of a storage battery, power is supplied from the first battery to the second battery, and the battery is charged so as to always maintain a fully charged state.
  • the second battery 1311 may be a lead-acid battery, an all-solid-state battery, or an electric double layer capacitor.
  • the all-solid-state battery of Embodiment 6 may be used.
  • regenerated energy from the rotation of the tires 1316 is sent to the motor 1304 via the gear 1305, and charged to the second battery 1311 from the motor controller 1303 or the battery controller 1302 via the control circuit section 1321.
  • the first battery 1301a is charged from the battery controller 1302 via the control circuit section 1320.
  • the first battery 1301b is charged from the battery controller 1302 via the control circuit unit 1320. In order to efficiently charge the regenerated energy, it is desirable that the first batteries 1301a and 1301b can be rapidly charged.
  • the battery controller 1302 can set the charging voltage, charging current, etc. of the first batteries 1301a and 1301b.
  • the battery controller 1302 can set charging conditions according to the charging characteristics of the secondary battery to be used and perform rapid charging.
  • the outlet of the charger or the connection cable of the charger is electrically connected to the battery controller 1302.
  • Power supplied from an external charger charges the first batteries 1301a and 1301b via the battery controller 1302.
  • a control circuit is provided and the function of the battery controller 1302 is not used in some cases, but in order to prevent overcharging, the first batteries 1301a and 1301b are charged via the control circuit section 1320. It is preferable.
  • the connecting cable or the connecting cable of the charger is provided with a control circuit.
  • the control circuit section 1320 is sometimes called an ECU (Electronic Control Unit).
  • the ECU is connected to a CAN (Controller Area Network) provided in the electric vehicle.
  • CAN is one of the serial communication standards used as an in-vehicle LAN.
  • the ECU includes a microcomputer. Further, the ECU uses a CPU or a GPU.
  • External chargers installed at charging stations etc. include 100V outlet-200V outlet, or 3-phase 200V and 50kW. It is also possible to charge the battery by receiving power from an external charging facility using a non-contact power supply method or the like.
  • the capacity decrease is suppressed even when the electrode layer is made thicker and the loading amount is increased, and the synergistic effect of maintaining high capacity has resulted in a secondary battery with significantly improved electrical characteristics.
  • It is particularly effective for secondary batteries used in vehicles, and provides a vehicle with a long cruising range, specifically a cruising range of 500 km or more on one charge, without increasing the weight ratio of the secondary battery to the total vehicle weight. be able to.
  • the operating voltage of the secondary battery can be increased by using the positive electrode active material 100 described in Embodiments 1, 2, etc., and as the charging voltage increases. , the available capacity can be increased. Further, by using the positive electrode active material 100 described in Embodiments 1, 2, etc. as a positive electrode, a secondary battery for a vehicle with excellent cycle characteristics can be provided.
  • next-generation clean energy such as a hybrid vehicle (HV), electric vehicle (EV), or plug-in hybrid vehicle (PHV) can be realized.
  • HV hybrid vehicle
  • EV electric vehicle
  • PSV plug-in hybrid vehicle
  • a car can be realized.
  • secondary batteries in agricultural machinery, motorized bicycles including electric assist bicycles, motorcycles, electric wheelchairs, electric carts, ships, submarines, aircraft, rockets, artificial satellites, space probes, planetary probes, or spacecraft. It can also be installed.
  • the secondary battery of one embodiment of the present invention can be a high capacity secondary battery. Therefore, the secondary battery of one embodiment of the present invention is suitable for reduction in size and weight, and can be suitably used for transportation vehicles.
  • a car 2001 shown in FIG. 18A is an electric car that uses an electric motor as a power source for driving. Alternatively, it is a hybrid vehicle that can appropriately select and use an electric motor and an engine as a power source for driving.
  • a secondary battery is mounted on a vehicle, the example of the secondary battery shown in Embodiment 4 is installed at one location or at multiple locations.
  • a car 2001 shown in FIG. 18A includes a battery pack 2200, and the battery pack includes a secondary battery module to which a plurality of secondary batteries are connected. Furthermore, it is preferable to include a charging control device electrically connected to the secondary battery module.
  • the automobile 2001 can be charged by receiving power from an external charging facility using a plug-in method, a non-contact power supply method, or the like to a secondary battery of the automobile 2001.
  • a predetermined charging method or connector standard such as CHAdeMO (registered trademark) or combo may be used as appropriate.
  • the charging device may be a charging station provided at a commercial facility or may be a home power source.
  • plug-in technology it is possible to charge the power storage device mounted on the vehicle 2001 by supplying power from the outside. Charging can be performed by converting AC power into DC power via a conversion device such as an ACDC converter.
  • a power receiving device can be mounted on a vehicle, and power can be supplied from a ground power transmitting device in a non-contact manner for charging.
  • this non-contact power supply method by incorporating a power transmission device into the road or outside wall, charging can be performed not only while the vehicle is stopped but also while the vehicle is running. Further, electric power may be transmitted and received between two vehicles using this contactless power supply method.
  • a solar cell may be provided on the exterior of the vehicle, and the secondary battery may be charged when the vehicle is stopped or traveling.
  • an electromagnetic induction method or a magnetic resonance method can be used.
  • FIG. 18B shows a large transport vehicle 2002 having an electrically controlled motor as an example of a transport vehicle.
  • the secondary battery module of the transport vehicle 2002 has a maximum voltage of 170V, for example, in which four secondary batteries with a nominal voltage of 3.0 V or more and 5.0 V or less are connected in series, and 48 cells are connected in series. Except for the difference in the number of secondary batteries constituting the secondary battery module of the battery pack 2201, etc., it has the same functions as those in FIG. 18A, so a description thereof will be omitted.
  • FIG. 18C shows, as an example, a large transport vehicle 2003 with an electrically controlled motor.
  • the secondary battery module of the transportation vehicle 2003 has a maximum voltage of 600 V, for example, by connecting in series one hundred or more secondary batteries with a nominal voltage of 3.0 V or more and 5.0 V or less. Therefore, a secondary battery with small variations in characteristics is required.
  • a secondary battery in which the positive electrode active material 100 described in Embodiments 1 and 2 is used as a positive electrode a secondary battery having stable battery characteristics can be manufactured at low cost from the viewpoint of yield. Mass production is possible. Further, except for the difference in the number of secondary batteries constituting the secondary battery module of the battery pack 2202, etc., it has the same functions as those in FIG. 20A, so a description thereof will be omitted.
  • FIG. 18D shows an example aircraft 2004 with an engine that burns fuel. Since the aircraft 2004 shown in FIG. 18D has wheels for takeoff and landing, it can be said to be a type of transportation vehicle, and a plurality of secondary batteries are connected to form a secondary battery module, and the secondary battery module and charging control are performed. It has a battery pack 2203 that includes a device.
  • the secondary battery module of the aircraft 2004 has a maximum voltage of 32V, for example, by connecting eight 4V secondary batteries in series. Except for the difference in the number of secondary batteries constituting the secondary battery module of the battery pack 2203, etc., it has the same functions as those in FIG. 18A, so a description thereof will be omitted.
  • FIG. 18E shows an artificial satellite 2005 equipped with a secondary battery 2204 as an example. Since the artificial satellite 2005 is used in outer space at extremely low temperatures, it is preferable to include a secondary battery 2204, which is an embodiment of the present invention and has excellent low-temperature resistance. Furthermore, it is more preferable that the secondary battery 2204 is mounted inside the artificial satellite 2005 while being covered with a heat insulating member.
  • FIG. 19A is an example of an electric bicycle using the power storage device of one embodiment of the present invention.
  • the power storage device of one embodiment of the present invention can be applied to an electric bicycle 8700 illustrated in FIG. 19A.
  • a power storage device according to one embodiment of the present invention includes, for example, a plurality of storage batteries and a protection circuit.
  • the electric bicycle 8700 includes a power storage device 8702.
  • the power storage device 8702 can supply electricity to a motor that assists the driver. Further, the power storage device 8702 is portable, and FIG. 19B shows a state in which it has been removed from the bicycle. Further, the power storage device 8702 has a plurality of built-in storage batteries 8701 included in the power storage device of one embodiment of the present invention, and can display the remaining battery level and the like on a display portion 8703.
  • Power storage device 8702 also includes a control circuit 8704 that can control charging or detect abnormality of a secondary battery, an example of which is shown in Embodiment 7. The control circuit 8704 is electrically connected to the positive and negative electrodes of the storage battery 8701.
  • the positive electrode active material 100 obtained in Embodiments 1, 2, etc. with a secondary battery using the positive electrode, a synergistic effect regarding safety can be obtained.
  • the secondary battery and control circuit 8704 using the positive electrode active material 100 obtained in Embodiments 1, 2, etc. as a positive electrode can greatly contribute to eradicating accidents such as fires caused by secondary batteries.
  • FIG. 19C is an example of a two-wheeled vehicle using the power storage device of one embodiment of the present invention.
  • a scooter 8600 shown in FIG. 19C includes a power storage device 8602, a side mirror 8601, and a direction indicator light 8603.
  • the power storage device 8602 can supply electricity to the direction indicator light 8603.
  • the power storage device 8602 that houses a plurality of secondary batteries using the positive electrode active material 100 obtained in Embodiments 1, 2, etc. as a positive electrode can have a high capacity and can contribute to miniaturization.
  • the scooter 8600 shown in FIG. 19C can store a power storage device 8602 in an under-seat storage 8604.
  • the power storage device 8602 can be stored in the under-seat storage 8604 even if the under-seat storage 8604 is small.
  • a secondary battery which is one embodiment of the present invention, is mounted in an electronic device
  • electronic devices incorporating secondary batteries include television devices (also called televisions or television receivers), computer monitors, digital cameras, digital video cameras, digital photo frames, mobile phones (mobile phones, Examples include mobile phone devices (also referred to as mobile phone devices), portable game machines, personal digital assistants, audio playback devices, and large game machines such as pachinko machines.
  • portable information terminals include notebook personal computers, tablet terminals, electronic book terminals, and mobile phones.
  • FIG. 20A shows an example of a mobile phone.
  • the mobile phone 2100 includes a display section 2102 built into a housing 2101, as well as operation buttons 2103, an external connection port 2104, a speaker 2105, a microphone 2106, and the like.
  • the mobile phone 2100 includes a secondary battery 2107.
  • a secondary battery 2107 By providing a secondary battery 2107 using the positive electrode active material 100 described in Embodiments 1, 2, etc. as a positive electrode, high capacity can be achieved, and a configuration that can accommodate space saving due to the miniaturization of the housing is provided. It can be realized.
  • the mobile phone 2100 can execute various applications such as mobile phone calls, e-mail, text viewing and creation, music playback, Internet communication, computer games, etc.
  • the operation button 2103 can have various functions such as turning on and off the power, turning on and off wireless communication, executing and canceling silent mode, and executing and canceling power saving mode.
  • the functions of the operation buttons 2103 can be freely set using the operating system built into the mobile phone 2100.
  • the mobile phone 2100 is capable of performing short-range wireless communication according to communication standards. For example, by communicating with a headset capable of wireless communication, it is also possible to make hands-free calls.
  • the mobile phone 2100 is equipped with an external connection port 2104, and can directly exchange data with other information terminals via a connector. Charging can also be performed via the external connection port 2104. Note that the charging operation may be performed by wireless power supply without using the external connection port 2104.
  • the mobile phone 2100 has a sensor.
  • a human body sensor such as a fingerprint sensor, a pulse sensor, a body temperature sensor, a touch sensor, a pressure sensor, an acceleration sensor, or the like.
  • FIG. 20B is an unmanned aircraft 2300 with multiple rotors 2302.
  • Unmanned aerial vehicle 2300 is sometimes called a drone.
  • Unmanned aircraft 2300 includes a secondary battery 2301, which is one embodiment of the present invention, a camera 2303, and an antenna (not shown).
  • Unmanned aerial vehicle 2300 can be remotely controlled via an antenna.
  • a secondary battery using the positive electrode active material 100 obtained in Embodiments 1, 2, etc. as a positive electrode has a high energy density and is highly safe, so it can be used safely for a long time and can be used unattended. It is suitable as a secondary battery mounted on the aircraft 2300.
  • FIG. 20C shows an example of a robot.
  • the robot 6400 shown in FIG. 20C includes a secondary battery 6409, an illuminance sensor 6401, a microphone 6402, an upper camera 6403, a speaker 6404, a display section 6405, a lower camera 6406, an obstacle sensor 6407, a movement mechanism 6408, a calculation device, and the like.
  • the microphone 6402 has a function of detecting the user's speaking voice, environmental sounds, and the like. Furthermore, the speaker 6404 has a function of emitting sound.
  • the robot 6400 can communicate with a user using a microphone 6402 and a speaker 6404.
  • the display unit 6405 has a function of displaying various information.
  • the robot 6400 can display information desired by the user on the display section 6405.
  • the display unit 6405 may include a touch panel. Further, the display unit 6405 may be a removable information terminal, and by installing it at a fixed position on the robot 6400, charging and data exchange are possible.
  • the upper camera 6403 and the lower camera 6406 have a function of capturing images around the robot 6400. Further, the obstacle sensor 6407 can detect the presence or absence of an obstacle in the direction of movement of the robot 6400 when the robot 6400 moves forward using the moving mechanism 6408.
  • the robot 6400 uses an upper camera 6403, a lower camera 6406, and an obstacle sensor 6407 to recognize the surrounding environment and can move safely.
  • the robot 6400 includes a secondary battery 6409 according to one embodiment of the present invention and a semiconductor device or electronic component in its internal area.
  • a secondary battery using the cathode active material 100 obtained in Embodiments 1, 2, etc. as a cathode has a high energy density and is highly safe, so it can be used safely for a long time and can be used for robots. It is suitable as the secondary battery 6409 mounted on the 6400.
  • FIG. 20D shows an example of a cleaning robot.
  • the cleaning robot 6300 includes a display portion 6302 placed on the top surface of a housing 6301, a plurality of cameras 6303 placed on the side, a brush 6304, an operation button 6305, a secondary battery 6306, various sensors, and the like.
  • the cleaning robot 6300 is equipped with tires, a suction port, and the like.
  • the cleaning robot 6300 is self-propelled, detects dirt 6310, and can suck the dirt from a suction port provided on the bottom surface.
  • the cleaning robot 6300 can analyze the image taken by the camera 6303 and determine the presence or absence of obstacles such as walls, furniture, or steps. Furthermore, if an object such as wiring that is likely to become entangled with the brush 6304 is detected through image analysis, the rotation of the brush 6304 can be stopped.
  • the cleaning robot 6300 includes a secondary battery 6306 according to one embodiment of the present invention and a semiconductor device or an electronic component in its internal area.
  • a secondary battery using the positive electrode active material 100 obtained in Embodiments 1, 2, etc. as a positive electrode has a high energy density and is highly safe, so it can be used safely for a long time and is easy to clean. It is suitable as the secondary battery 6306 mounted on the robot 6300.
  • a positive electrode active material 100 with a large crystallite size was produced and its characteristics were evaluated.
  • step S11 of FIG. 6 nickel (II) sulfate was prepared as a nickel source, cobalt (II) sulfate as a cobalt source, and manganese (II) sulfate as a manganese source.
  • a 5 mol/L aqueous sodium hydroxide solution was used as the alkaline solution.
  • the filling liquid was sometimes referred to as the adjustment liquid.
  • the charging liquid and the adjustment liquid refer to water or an aqueous solution before the reaction, that is, water or an aqueous solution in an initial state.
  • the acid solution was mixed into the charging solution at 0.10 mL/min while stirring at 1000 rpm.
  • An alkaline solution was appropriately added dropwise to maintain the pH of the charging solution at 11.0. Further, the temperature of the filling liquid was maintained at 50°C.
  • a baffle plate was installed in the reaction tank to change the stirring direction and flow rate. OptiMax (manufactured by Mettler Toledo) was used for these coprecipitation reactions.
  • the precipitate produced in the above coprecipitation reaction was filtered with pure water and acetone, and dried in a vacuum drying oven at 200°C for 12 hours to obtain a composite hydroxide.
  • lithium hydroxide was prepared as a lithium source.
  • the lithium hydroxide was pulverized using a fluidized bed jet mill.
  • step S42 the composite hydroxide obtained above and a lithium source were mixed.
  • the mixing ratio was 0.7 (atomic ratio) for lithium when the sum of the atomic numbers of nickel, cobalt, and manganese was 1.
  • step S43 the mixture of composite hydroxide and lithium source was heated.
  • An aluminum oxide crucible was used for heating, and the mixture was heated at 700° C. for 10 hours in an oxygen atmosphere in a muffle furnace.
  • the flow rate of oxygen was 5 L/min, and the temperature increase was 100° C./hour. Thereafter, it was cooled to room temperature and crushed (step S44) to obtain a composite oxide (step S44).
  • step S51 lithium hydroxide similar to step S41 was prepared.
  • step S52 the composite oxide obtained above and a lithium source were mixed.
  • the mixing ratio was 0.31 (atomic ratio) for lithium when the sum of the atomic numbers of nickel, cobalt, and manganese was 1.
  • the total amount of lithium mixed in step S42 and step S52 was set to 1.01 (atomic ratio), where the sum of the numbers of atoms of nickel, cobalt, and manganese was taken as 1.
  • step S53 the mixture of the composite oxide and the lithium source was heated.
  • the same procedure as step S43 was performed except that the heating temperature was 850°C. Thereafter, it was allowed to cool to room temperature and crushed (step S54) to obtain a positive electrode active material. This was designated as sample 1.
  • Sample 2 was prepared in the same manner as Sample 1 except that the heating in step S53 was 875°C.
  • Sample 3 was prepared in the same manner as Sample 1 except that the heating in step S53 was 900°C.
  • a positive electrode active material was prepared in which the lithium source was mixed only once. Specifically, in step S41, when the sum of the numbers of atoms of nickel, cobalt, and manganese is 1, lithium was mixed in an amount of 1.01 (atomic ratio), and in step S52, it was not mixed. Sample 4 was produced in the same manner as Sample 1 in other respects.
  • a positive electrode active material prepared by further heating Sample 4 at 800° C. for 10 hours was designated as Sample 5.
  • glycine was prepared which was weighed to be 0.100 mol/L in the acid solution. Further, a 0.100M aqueous glycine solution was used as a filling liquid. Further, when mixing the acid solution with the filling liquid, the rate was set at 0.0443 mL/min. After the coprecipitation reaction, the liquid temperature was controlled at 25° C., and then filtered with pure water and then with acetone.
  • Sample 6, Sample 7, Sample 8, and Sample 9 were further heated at 800° C. for 10 hours after Step S54 (Step S55) and crushed (Step S56).
  • Step S55 Step S54
  • Step S56 The same procedure as step S43 was performed except for the heating temperature.
  • Positive electrode active materials prepared under the same conditions as Samples 1 to 4 were used as Samples 6 to 9.
  • Sample 21 was prepared in the same manner as Sample 8, except that after heating and cooling in step S55, heating was again performed at 800° C. for 2 hours.
  • Table 1 shows the manufacturing conditions for Samples 1 to 9 and Sample 21.
  • FIG. 21A The SEM image of sample 1 is shown in FIG. 21A
  • the SEM image of sample 2 is shown in FIG. 21B
  • the SEM image of sample 3 is shown in FIG. 21C
  • the SEM image of sample 6 is shown in FIG. 21D
  • the SEM image of sample 7 is shown in FIG. 21E
  • SEM images of Sample 8 are shown in FIG. 21F. It was confirmed that all of the positive electrode active materials had large primary particles. Further, in Samples 1 to 3 which were not subjected to S55 heating, deposits presumed to be residues of lithium sources etc. were observed on the surface of the positive electrode active material. On the other hand, in Samples 6 to 8 which were heated at S55, smooth surfaces with almost no residue were observed.
  • ⁇ Crystallite size> The crystallite size of Samples 1 to 9 was calculated by XRD analysis. The XRD apparatus and calculation method were as shown in Embodiment 1. The crystallite size is also shown in Table 1.
  • the size was large. When the lithium source was added once, the crystallite size was less than 140 nm, whereas when the lithium source was added multiple times, the crystallite size was 140 nm or more, more specifically, 150 nm or more. Ta.
  • Half cells were assembled using the positive electrode active materials of Samples 7 to 9, and the charge/discharge rate characteristics were evaluated. Understand the performance of the positive electrode alone by evaluating the cycle characteristics of the half cell.
  • the amount of active material supported on the positive electrode was approximately 7 mg/cm 2 .
  • Lithium metal was prepared as a counter electrode, and a coin-shaped half cell including the above-mentioned positive electrode and the like was formed.
  • Figure 22A shows the discharge capacities of 0.5C, 10C and 20C measured at 25°C
  • Figure 22B shows the similar discharge capacities measured at 65°C.
  • charge is CC/CV (constant current/constant voltage) (0.5C, 4.5V, 0.05C cut)
  • discharge is CC (constant current) (0.5C, 10C or 20C, 2.5V cut).
  • 1C was 200 mA/g.
  • secondary batteries using cathode active materials with large crystallite sizes such as Samples 7 and 8 are more effective than positive electrode active materials with small crystallite sizes, such as Sample 9. , showed high discharge capacity at high discharge rates exceeding 10C.
  • the discharge capacity at 25° C. and 10 C was 70 mAh/g or more, and more specifically, sample 8 had a discharge capacity of 85 mAh/g, and sample 7 had a discharge capacity of 98 mAh/g.
  • the discharge capacity at 65° C. and 10 C was 150 mAh/g or more, and more specifically, sample 7 was 158 mAh/g, and sample 8 was 168 mAh/g.
  • the discharge capacity at 65° C. and 20C was 100 mAh/g or more, and more specifically, sample 8 was 111 mAh/g, and sample 7 was 124 mAh/g.
  • Figure 23A shows the discharge capacities of 0.1C, 0.5C, 1C and 5C measured at 25°C
  • Figure 23B shows the similar discharge capacities measured at 65°C.
  • charge was set to CC/CV (0.1C, 0.5C, 1C or 5C, 4.5V, 0.05C cut), and discharge was set to CC (0.5C, 2.5V cut).
  • the horizontal axis shows the charging and discharging rates as C-rate. Charge rates of 0.1C, 0.5C, 1C and 5C were tested in duplicate.
  • the discharge capacity at 25° C. and 5/0.5 (charge/discharge) C was 150 mAh/g or more, and more specifically, it was 170 mAh/g both times.
  • the discharge capacity at 65° C. and 5/0.5 was 170 mAh/g or more, and more specifically, the first 5/0.5 was 180 mAh/g, and the second was 184 mAh/g.
  • the positive electrode active material of one embodiment of the present invention which has a large crystallite size, has excellent charge/discharge rate characteristics.
  • a positive electrode active material 100 was produced in which the crystallite size of the primary particles was large and the surface layer portion 100a contained an additive element.
  • a composite oxide was produced through steps S11 to S56 in the same manner as in Example 1 (step S57).
  • aluminum hydroxide was prepared as an aluminum source as an additive element.
  • step S72 the above composite oxide and aluminum source were mixed.
  • the mixing ratio was 0.01 (atomic ratio) for aluminum when the sum of the atomic numbers of nickel, cobalt, and manganese was 1.
  • step S73 the mixture of the composite oxide and the aluminum source was heated.
  • the same procedure as step S43 was performed except that the heating temperature was 800° C. and the heating time was 2 hours. Thereafter, it was cooled to room temperature and crushed (step S74) to obtain a positive electrode active material. This was designated as sample 32.
  • Sample 32 was used except that the additive element was magnesium, magnesium carbonate was prepared as the magnesium source, and the mixing ratio was 0.01 (atomic ratio) for magnesium when the sum of the atomic numbers of nickel, cobalt, and manganese was 1.
  • Sample 33 was prepared in the same manner.
  • Sample 34 was prepared in the same manner as Sample 32 and Sample 33, except that the added elements were aluminum and magnesium, aluminum was 0.005 (atomic ratio), and magnesium was 0.005 (atomic ratio). .
  • Sample 31 was prepared in the same manner as Sample 32, except that no additional elements were added.
  • Table 2 shows the manufacturing conditions for samples 31 to 34.
  • FIG. 24A A surface SEM image of sample 31 is shown in FIG. 24A
  • a surface SEM image of sample 32 is shown in FIG. 24B
  • a surface SEM image of sample 33 is shown in FIG. 24C
  • a surface SEM image of sample 34 is shown in FIG. 24D.
  • FIG. 24E shows an enlarged image of the square portion in FIG. 24A
  • FIG. 24F shows an enlarged image of the square portion in FIG. 24C
  • FIG. 24G shows an enlarged image of the square portion in FIG. 24D
  • FIG. An enlarged image is shown in FIG. 24H.
  • FIG. 25A a cross-sectional SEM image of sample 32 is shown in FIG. 25A
  • FIG. 25B a cross-sectional SEM image of sample 33 is shown in FIG. 25B
  • FIG. 25C a cross-sectional SEM image of sample 34 is shown in FIG. 25C.
  • EDX point analysis was performed on the locations shown in (1) to (4) in FIG. 25A, and the measured aluminum concentrations are shown in FIG. 25D.
  • the magnesium concentrations at the locations (1) to (4) in FIG. 25B are shown in FIG. 25E.
  • the aluminum and magnesium concentrations at the locations (1) to (4) in FIG. 25C are shown in FIG. 25F. In both cases, the aluminum concentration and magnesium concentration decreased from the surface layer 100a toward the inside.
  • samples 32 to 34 were positive electrode active materials in which the crystallite size of the positive electrode active material was large and the concentration of added elements in the surface layer portion 100a was higher than in the inside.
  • 100 positive electrode active material
  • 100a surface layer
  • 100b surface layer
  • 100c interior
  • 101 grain boundary
  • 104 coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

充放電レート特性に優れた正極活物質およびこれを用いた二次電池を提供する。XRDパターンから算出される結晶子サイズが150nm以上であり、内部は、第1の表層部および第2の表層部よりも、遷移金属の原子数の和に占めるニッケルの比が大きく、第2の表層部は内部よりも、遷移金属の原子数の和に占めるコバルトおよびマンガンから選ばれる少なくとも一の元素の原子数の比が大きく、第1の表層部は内部および第2の表層部よりも添加元素の少なくとも一の濃度が高い、正極活物質を提供する。

Description

正極活物質および二次電池
 本発明の一様態は、物、方法、又は、製造方法に関する。または、本発明は、プロセス、マシン、マニュファクチャ、又は、組成物(コンポジション・オブ・マター)に関する。本発明の一態様は、二次電池を含む蓄電装置、半導体装置、表示装置、発光装置、照明装置、電子機器またはそれらの製造方法に関する。
 なお、本明細書中において電子機器とは、蓄電装置を有する装置全般を指し、蓄電装置を有する電気光学装置、蓄電装置を有する情報端末装置などは全て電子機器である。
 近年、リチウムイオン二次電池、リチウムイオンキャパシタ、空気電池、全固体電池等、種々の蓄電装置の開発が盛んに行われている。特に高出力、高容量であるリチウムイオン二次電池は半導体産業の発展と併せて急速にその需要が拡大し、充電可能なエネルギーの供給源として現代の情報化社会に不可欠なものとなっている。
 なかでもモバイル電子機器向け二次電池等では、重量あたりの放電容量が大きく、サイクル特性に優れた二次電池の需要が高い。これらの需要に応えるため、二次電池の正極が有する正極活物質の改良が盛んに行われている(たとえば特許文献1および非特許文献1)。
 リチウムイオン二次電池には、充放電レート特性、放電容量、サイクル特性、信頼性、安全性、又はコストといった様々な面で改善の余地が残されている。
 そのためこれに用いられる正極活物質にも、二次電池に用いたときに、充放電レート特性、放電容量、サイクル特性、信頼性、安全性、又はコスト等の課題が改善できる材料が求められている。
 本発明の一態様は、リチウムイオン二次電池に用いることができ、充放電レート特性に優れた正極活物質または複合酸化物を提供することを課題の一とする。または、安全性又は信頼性の高い二次電池を提供することを課題の一とする。
 また本発明の一態様は、正極活物質、複合酸化物、蓄電装置、又はそれらの作製方法を提供することを課題の一とする。
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。
 本発明の一態様は、遷移金属Mと、酸素と、添加元素と、を有する正極活物質であって、遷移金属Mは、ニッケルと、マンガンと、コバルトであり、添加元素はマグネシウム、アルミニウム、カルシウム、チタン、ジルコニウムから選ばれる一または二以上であり、正極活物質は第1の表層部と、第2の表層部と、内部と、を有し、第2の表層部は、第1の表層部よりも内部に近く、内部は、第1の表層部および第2の表層部よりも、遷移金属Mの原子数の和に占めるニッケルの比が大きく、第2の表層部は内部よりも、遷移金属Mの原子数の和に占めるコバルトおよびマンガンから選ばれる少なくとも一の元素の原子数の比が大きく、第1の表層部は内部および第2の表層部よりも添加元素の少なくとも一の濃度が高い、正極活物質である。
 また本発明の別の一態様は、正極活物質を有する正極と、負極と、を有する二次電池であって、正極活物質は、遷移金属Mと、酸素と、添加元素と、を有し、遷移金属Mは、ニッケルと、マンガンと、コバルトであり、添加元素はマグネシウム、アルミニウム、カルシウム、チタン、ジルコニウムから選ばれる一または二以上であり、正極活物質は第1の表層部と、第2の表層部と、内部と、を有し、第2の表層部は、第1の表層部よりも内部に近く、内部は、第1の表層部および第2の表層部よりも、遷移金属Mの原子数の和に占めるニッケルの比が大きく、第2の表層部は内部よりも、遷移金属Mの原子数の和に占めるコバルトおよびマンガンから選ばれる少なくとも一の元素の原子数の比が大きく、第1の表層部は内部および第2の表層部よりも添加元素の少なくとも一の濃度が高い、二次電池である。
 上記において、正極活物質はXRDパターンから算出される正極活物質の結晶子サイズが150nm以上であることが好ましい。
 また本発明の別の一態様は、遷移金属Mと、酸素と、を有する正極活物質であって、遷移金属Mは、ニッケルと、マンガンと、コバルトであり、正極活物質はXRDパターンから算出される結晶子サイズが150nm以上であり、正極活物質を用いた二次電池は、25℃においてCC/CV(4.5V、100mA/g、10mA/g cut)充電後の、2000mA/gのCC(定電流)での放電容量が70mAh/g以上である、正極活物質である。
 また本発明の別の一態様は、正極活物質を有する正極と、負極と、を有する二次電池であって、正極活物質は、遷移金属Mと、酸素と、を有し、遷移金属Mは、ニッケルと、マンガンと、コバルトであり、正極活物質はXRDパターンから算出される結晶子サイズが150nm以上であり、二次電池は、25℃においてCC/CV(4.5V、100mA/g、10mA/g cut)充電後の、2000mA/gのCC(定電流)での放電容量が70mAh/g以上である、二次電池である。
 本発明の一態様により、リチウムイオン二次電池に用いることができ、充放電レート特性に優れた正極活物質または複合酸化物を提供することができる。または、安全性又は信頼性の高い二次電池を提供することができる。
 また本発明の一態様により、正極活物質、複合酸化物、蓄電装置、又はそれらの作製方法を提供することができる。
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
図1A乃至図1Cは正極活物質の断面図である。
図2は結晶の配向が概略一致しているTEM像の例である。
図3Aは結晶の配向が概略一致しているSTEM像の例である。図3Bは岩塩型結晶RSの領域のFFTパターンである。図3Cは層状岩塩型結晶LRSの領域のFFTパターンである。
図4Aおよび図4Bは正極活物質の断面図である。
図5A乃至図5Cは正極活物質の断面図である。
図6は正極活物質の作製方法を説明する図である。
図7は正極活物質の作製方法を説明する図である。
図8は正極活物質の作製方法を説明する図である。
図9は正極活物質の作製方法を説明する図である。
図10A乃至図10Dは、二次電池の正極の例を説明する断面図である。
図11Aはコイン型二次電池の分解斜視図であり、図11Bはコイン型二次電池の斜視図であり、図11Cはその断面斜視図である。
図12Aは、円筒型の二次電池の例を示す。図12Bは、円筒型の二次電池の例を示す。図12Cは、複数の円筒型の二次電池の例を示す。図12Dは、複数の円筒型の二次電池を有する蓄電システムの例を示す。
図13A及び図13Bは、二次電池の例を説明する図であり、図13Cは、二次電池の内部の様子を示す図である。
図14A乃至図14Cは、二次電池の例を説明する図である。
図15A及び図15Bは、二次電池の外観を示す図である。
図16A乃至図16Cは、二次電池の作製方法を説明する図である。
図17Aは、本発明の一態様を示す電池パックの斜視図であり、図17Bは、電池パックのブロック図であり、図17Cは、電池パックを有する車両のブロック図である。
図18A乃至図18Dは、輸送用車両の一例を説明する図である。図18Eは、人工衛星の一例を説明する図である。
図19Aは、電動自転車を示す図であり、図19Bは、電動自転車の二次電池を示す図であり、図19Cは、スクータを説明する図である。
図20A乃至図20Dは、電子機器の一例を説明する図である。
図21A乃至図21Fは正極活物質の表面SEM像である。
図22Aおよび図22Bは二次電池の放電レート特性を示すグラフである。
図23Aおよび図23Bは二次電池の充電レート特性を示すグラフである。
図24A乃至図24Hは正極活物質の表面SEM像である。
図25A乃至図25Cは正極活物質の断面SEM像、図25D乃至図25FはEDX点分析の結果を示すグラフである。
 以下では、本発明を実施するための形態例について図面等を用いて説明する。ただし、本発明は以下の形態例に限定して解釈されるものではない。本発明の趣旨を逸脱しない範囲で発明を実施する形態を変更することは可能である。
 なお本明細書等において、粒子とは球形(断面形状が円)のみを指すことに限定されず、個々の粒子の断面形状が楕円形、長方形、台形、錐形、角が丸まった四角形、非対称の形状などが挙げられ、さらに個々の粒子は不定形であってもよい。
 また均質とは、複数の元素(例えばA,B,C)からなる固体において、ある元素(例えばA)が特定の領域に同様の特徴を有して分布する状態をいう。なお特定の領域同士の元素の濃度が実質的に同一であればよい。たとえば特定領域同士のある元素の検出量(たとえばSTEM−EDXにおけるカウント数)の差が10%以内であればよい。特定の領域としてはたとえば表層部、表面、凸部、凹部、内部などが挙げられる。
 また添加元素が添加された正極活物質を複合酸化物、正極材、正極材料、二次電池用正極材、等と表現する場合がある。また本明細書等において、本発明の一態様の正極活物質は、化合物を有することが好ましい。また本明細書等において、本発明の一態様の正極活物質は、組成物を有することが好ましい。また本明細書等において、本発明の一態様の正極活物質は、複合体を有することが好ましい。
 また、本明細書等で正極活物質の個別の粒子の特徴について述べる場合、必ずしも全ての粒子がその特徴を有していなくてもよい。たとえばランダムに3個以上選択した正極活物質の粒子のうち50%以上、好ましくは70%以上、より好ましくは90%以上がその特徴を有していれば、十分に正極活物質およびそれを有する二次電池の特性を向上させる効果があるということができる。
 二次電池の充電電圧の上昇に伴い、正極の電位は一般的に上昇する。本発明の一態様の正極活物質は、高い充電電圧においても安定な結晶構造を有する。充電状態において正極活物質の結晶構造が安定であることにより、充放電の繰り返しに伴う充放電容量の低下を抑制することができる。
 また、二次電池のショートは二次電池の充電動作および/または放電動作における不具合を引き起こすのみでなく、発熱および発火を招く恐れがある。安全な二次電池を実現するためには、高い充電電圧においてもショート電流が抑制されることが好ましい。本発明の一態様の正極活物質は、高い充電電圧においてもショート電流が抑制される。そのため高い放電容量と安全性と、を両立した二次電池とすることができる。
 また特に言及しない限り、二次電池が有する材料(正極活物質、負極活物質、電解質、セパレータ等)は、劣化前の状態について説明するものとする。なお二次電池製造段階におけるエージング処理(バーンイン処理といってもよい)によって放電容量が減少することは劣化とは呼ばないとする。たとえば、リチウムイオン二次単電池およびリチウム二次組電池(以下、リチウムイオン二次電池という)の定格容量の97%以上の放電容量を有する場合は、劣化前の状態と言うことができる。定格容量は、ポータブル機器用リチウムイオン二次電池の場合JIS C 8711:2019に準拠する。これ以外のリチウムイオン二次電池の場合、上記JIS規格に限らず電動車両推進用、産業用などの各JIS、IEC規格等に準拠する。
 また二次電池が有する材料の劣化前の状態を、初期品、または初期状態と呼称し、劣化後の状態(二次電池の定格容量の97%未満の放電容量を有する場合の状態)を、使用中品または使用中の状態、あるいは使用済み品または使用済み状態と呼称する場合がある。
(実施の形態1)
 本実施の形態では、図1乃至図5を用いて本発明の一態様の正極活物質100について説明する。
<含有元素>
 正極活物質100は、リチウムと、遷移金属Mと、酸素と、を有する。遷移金属Mは、ニッケルと、マンガンと、コバルトから選ばれる一または二以上である。これに加えて添加元素を有することが好ましい。または正極活物質100はニッケル−マンガン−コバルト酸リチウムに添加元素が加えられたものを有することができる。
 リチウムイオン二次電池の正極活物質は、リチウムイオンが挿入または脱離しても電荷中性を保つために、酸化還元が可能な遷移金属を有する必要がある。本発明の一態様の正極活物質100は酸化還元反応を担う遷移金属Mとしてニッケルと、マンガンと、コバルトと、を有する。
 正極活物質100が有する遷移金属Mのうち、ニッケルの占める割合が大きいと、コバルトが過半を占める場合と比較して、充電電圧が低くても充放電容量を大きくしやすく好ましい。そのためたとえば遷移金属Mのうち、ニッケルが50%以上を占めると好ましく、60%以上を占めるとより好ましく、75%以上を占めるとさらに好ましい。
 正極活物質100が有する添加元素としては、マグネシウム、アルミニウム、カルシウム、チタン、ジルコニウム、フッ素、バナジウム、鉄、マンガン、クロム、ニオブ、ヒ素、亜鉛、ケイ素、硫黄、リン、ホウ素、臭素、及びベリリウムから選ばれる一または二以上を用いることが好ましい。また遷移金属Mの原子数の和と添加元素の比は、添加元素が25原子%未満であることが好ましく、10原子%未満がより好ましく、5原子%未満がさらに好ましい。
 これらの添加元素が、後述するように正極活物質100が有する結晶構造をより安定化させる。なお本明細書等において添加元素は混合物、原料の一部と同義である。
 なお添加元素として、必ずしもマグネシウム、アルミニウム、カルシウム、チタン、ジルコニウム、フッ素、バナジウム、鉄、マンガン、クロム、ニオブ、ヒ素、亜鉛、ケイ素、硫黄、リン、ホウ素、臭素、及びベリリウムを含まなくてもよい。
<単粒子>
 正極活物質100の粒子は単結晶であることが好ましい。正極活物質100が単結晶粒子である場合、該単結晶粒子を単粒子ということがある。または正極活物質100は結晶子サイズが大きい方が好ましい。
 一次粒子が大きいと、一次粒子の凝集および焼結による二次粒子の形成が抑制される。また一次粒子サイズが大きいと、XRDの回折パターンの半値幅から算出される結晶子サイズも当然大きくなる。そのため、正極活物質100が単粒子であると、またはXRDの回折パターンから算出される結晶子サイズが大きいと、多数の一次粒子が焼結して形成された正極活物質と比較して、一次粒子間で生じうるクラックがない、または少ない。そのため充放電によって正極活物質100の体積が変化してもクラックが抑制されることが期待できる。
 たとえばXRDの回折パターンの半値幅から算出される結晶子サイズが、150nm以上であることが好ましく、180nm以上であることがより好ましく、200nm以上であることがさらに好ましい。
 ただし単結晶を大きくする、または結晶子サイズを大きくしようとする際には、長時間あるいは高温での加熱、または化学量論的組成よりリチウムを過剰に添加しての加熱が必要になる場合がある。しかし、長時間の加熱工程は生産性を低下させる。また高温での加熱はニッケルイオンとリチウムイオンのカチオンミキシングを起こす恐れがある。また過剰なリチウムは正極のスラリーを作製する際にバインダのゲル化を起こす恐れがある。これらのデメリットを避け、単結晶の大きさ、および結晶子サイズは適度な大きさとすることが好ましい。
 たとえばXRDの回折パターンから算出される結晶子サイズは1000nm以下であることが好ましく、800nm以下であることがより好ましい。XRDの回折パターンから算出される結晶子サイズが上記の範囲である正極活物質は、十分に結晶子サイズが大きく、単粒子に近い特徴を有する正極活物質ということができる。
 なお半値幅を算出する際のXRDパターンは、正極活物質のみの状態で取得してもよいし、正極活物質に加えて集電体、バインダおよび導電材等を含む正極の状態で取得してもよい。ただし正極の状態では、作製工程における加圧等の影響で正極活物質が配向している可能性がある。正極活物質の配向が強いと結晶子サイズが正確に算出できない恐れがある。そのため、たとえば正極から正極活物質層を剥がしとり、溶媒等を用いて正極活物質層中のバインダ等をある程度取り除いてから試料ホルダに充填するなど、配向を減じる方法で取得することがより好ましい。
≪XRD≫
 結晶子サイズを算出する際のXRD測定の装置および条件は特に限定されない。たとえば下記のような装置および条件で測定することができる。
XRD装置 :Bruker AXS社製、D8 ADVANCE
X線源 :CuKα
出力 :40kV、40mA
発散角 :Div.Slit、0.5°
検出器:LynxEye
スキャン方式 :2θ/θ連続スキャン
測定範囲(2θ) :15°以上90°以下
ステップ幅(2θ) :0.01°設定
計数時間 :1秒間/ステップ
試料台回転 :15rpm
 測定サンプルが粉末の場合は、ガラスのサンプルホルダーに入れる、またはグリースを塗ったシリコン無反射板にサンプルを振りかける、等の手法でセッティングすることができる。測定サンプルが正極の場合は、正極を基板に両面テープで貼り付け、正極活物質層を装置の要求する測定面に合わせてセッティングすることができる。
 得られたXRD回折パターンを結晶構造解析ソフトウェア(たとえばTOPAS ver.3等)を用いて解析することで、結晶子サイズを算出することができる。
<表層部>
 図1Aは正極活物質100が単粒子である場合の断面図である。正極活物質100は、表層部と、内部100cと、を有することが好ましい。表層部は、表層部100aおよび表層部100bを有することが好ましい。表層部100bは、表層部100aよりも内部100cに近い。
 本明細書等において、正極活物質100の表層部100aとは、例えば、表面から内部に向かって200nm以内の領域をいう。また正極活物質100の表層部100bとは例えば、表面から内部に向かって、200nmを超えて1000nm以内の領域をいう。ひびおよび/またはクラックにより生じた面も表面といってよい。表層部は、表面近傍、表面近傍領域またはシェルと同義である。
 また正極活物質の表層部より深い領域を、内部100cと呼ぶ。内部100cは、内部領域またはコアと同義である。
 また正極活物質100の表面とは、上記表層部および内部100cを含む複合酸化物の表面をいうこととする。そのため正極活物質100は、作製後に化学吸着した炭酸塩、ヒドロキシ基等は含まないとする。また正極活物質100に付着した電解質、バインダ、導電材、またはこれら由来の化合物も含まないとする。また断面STEM(走査型透過電子顕微鏡)像等における正極活物質100の表面とは、電子線の結合像が観察される領域と、観察されない領域の境界であって、リチウムより原子番号の大きな金属元素の原子核に由来する輝点が確認される領域の最も外側とする。断面STEM像等における表面は、より空間分解能の高い分析、たとえば電子エネルギー損失分光法(Electron Energy Loss Spectroscopy,EELS)等の分析結果と併せて判断してもよい。
 図1Bおよび図1Cは、二次粒子であって、結晶子サイズが大きい一次粒子を有する正極活物質100の断面図であり、結晶粒界101を有する。表層部100aおよび表層部100bは、図1Bに示すように結晶粒界101の周辺に存在しなくてもよいし、図1Cに示すように存在していてもよい。
 また結晶粒界101とは、たとえば正極活物質100が有する一次粒子同士が固着している部分、正極活物質100内部で結晶方位が変わる部分、つまりSTEM像等における明線と暗線の繰り返しが不連続になった部分、結晶欠陥を多く含む部分、結晶構造が乱れている部分等をいう。また結晶欠陥とは断面TEM(透過型電子顕微鏡)、断面STEM像等で観察可能な欠陥、つまり格子間に他の元素が入り込んだ構造、空洞等をいうこととする。結晶粒界101は、面欠陥の一つといえる。また結晶粒界101の近傍とは、結晶粒界101から10nm以内の領域をいうこととする。
 結晶粒界は面欠陥の一つである。そのため表面と同様不安定になりやすく結晶構造の変化が始まりやすい。そのため、結晶粒界およびその近傍の添加元素濃度が高ければ、後述するように結晶構造の変化をより効果的に抑制することができる。
 また、結晶粒界101およびその近傍の添加元素の濃度が高い場合、本発明の一態様の正極活物質100の結晶粒界に沿ってクラックが生じた場合でも、クラックにより生じた表面の近傍で添加元素の濃度が高くなる。そのためクラックにより生じた表層部においても、結晶構造をより安定化することが可能となる。
<結晶構造>
 本発明の一態様の正極活物質100は放電状態、つまりLiMO(MはNi,Co,Mnの少なくとも一)中のx=1の場合に、空間群R−3mに帰属する層状岩塩型の結晶構造を有することが好ましい。層状岩塩型の複合酸化物は、放電容量が高く、二次元的なリチウムイオンの拡散経路を有しリチウムイオンの挿入および脱離反応に適しており、二次電池の正極活物質として優れる。そのため特に、正極活物質100の体積の大半を占める内部100cが層状岩塩型の結晶構造を有することが好ましい。
 一方、本発明の一態様の正極活物質100の表層部は、充電により正極活物質100からリチウムが多く抜けても、内部100cの遷移金属Mと酸素の8面体からなる層状構造が壊れないよう補強する機能を有することが好ましい。または表層部が正極活物質100のバリア膜として機能することが好ましい。または正極活物質100の外周部である表層部が正極活物質100を補強することが好ましい。ここでいう補強とは、酸素の脱離をはじめとする正極活物質100の表層部および内部100cの構造変化を抑制すること、および/または電解質が正極活物質100の表面で酸化分解されることを抑制することをいう。すなわちバリア膜として機能するとは、たとえば表層部が正極活物質100の構造変化を抑制すること、および電解質の酸化分解を抑制することを言う。
 そのため表層部は、内部100cと異なる組成および結晶構造を有していることが好ましい。また表層部は、内部100cよりも室温(25℃)で安定な組成および結晶構造であることが好ましい。例えば、本発明の一態様の正極活物質100の表層部の少なくとも一部が、岩塩型の結晶構造を有することが好ましい。または表層部は、層状岩塩型と岩塩型の結晶構造の両方の結晶構造を有していることが好ましい。または表層部は、層状岩塩型と岩塩型の結晶構造の両方の特徴を有することが好ましい。
 表層部は充電時にリチウムイオンが最初に脱離する領域であり、内部100cよりもリチウム濃度が低くなりやすい領域である。また表層部が有する正極活物質100の表面の原子は、一部の結合が切断された状態ともいえる。そのため表層部は不安定になりやすく、結晶構造の劣化が始まりやすい領域といえる。一方で表層部を十分に安定にできれば、LiMO中のxが小さいときでも、内部100cの遷移金属Mと酸素の8面体からなる層状構造を壊れにくくすることができる。さらには、内部100cの遷移金属Mと酸素の8面体からなる層のずれを抑制することができる。
 表層部を安定な組成および結晶構造とするために、表層部は添加元素を有することが好ましく、添加元素を複数有することがより好ましい。さらに表層部と内部100cとで、遷移金属Mの組成が異なることが好ましい。
 たとえば表層部に添加元素の濃度ピークがあることが好ましく、より表面に近い表層部100aに添加元素の濃度ピークがあることがより好ましい。
 また表層部は遷移金属Mのうち、コバルトおよびマンガンの少なくとも一の濃度が、内部100cよりも高いことが好ましい。同様に内部100cは、表層部よりもニッケルの濃度が高いことが好ましい。またコバルトおよびマンガンの少なくとも一は、正極活物質100の表面に向かって高くなる濃度勾配を有することが好ましい。同様にニッケルは、正極活物質100の内部に向かって高くなる濃度勾配を有することが好ましい。
 上記より表層部100bは、添加元素の濃度ピークはないものの、コバルトおよびマンガンの濃度が、内部100cよりも高い領域であることが好ましい。
 また表層部100aは、表層部100bおよび内部100cよりも添加元素から選ばれた一または二以上の濃度が高いことが好ましい。また正極活物質100が有する添加元素から選ばれた一または二以上は濃度勾配を有していることが好ましい。また正極活物質100は添加元素によって分布が異なっていることがより好ましい。たとえば添加元素によって濃度ピークの表面からの深さが異なっていることがより好ましい。ここでいう濃度ピークとは、表層部100aまたは表面から200nm以下における濃度の極大値をいうこととする。
 たとえば添加元素の一部、マグネシウム、フッ素、ニッケル、チタン、ケイ素、リン、ホウ素、カルシウム等は内部100cから表面に向かって高くなる濃度勾配を有することが好ましい。
 これらの添加元素が、後述するように正極活物質100が有する結晶構造をより安定化させる。なお、添加元素は、添加元素源に含まれるものに加えて、遷移金属M源等に微量に含まれていてもよい。いずれの材料由来でも、添加元素が好ましい濃度および分布であれば、正極活物質100の化学的安定性に寄与しうる。
 たとえば添加元素の一つであるマグネシウムは表層部のリチウムサイトに適切な濃度で存在することで、内部100cの層状岩塩型の結晶構造を保持しやすくできる。これはリチウムサイトに存在するマグネシウムが、MO層同士を支える柱として機能するためと推測される。
 マグネシウムは、適切な濃度であれば充放電に伴うリチウムの挿入および脱離に悪影響を及ぼさず上記のメリットを享受できる。しかしマグネシウムが過剰であるとリチウムの挿入および脱離に悪影響が出る恐れがある。さらに結晶構造の安定化への効果が小さくなってしまう場合がある。加えて、リチウムサイトにも遷移金属Mサイトにも置換しない、不要なマグネシウム化合物(酸化物およびフッ化物等)が正極活物質の表面等に偏析し、二次電池の抵抗成分となる恐れがある。また正極活物質のマグネシウム濃度が高くなるのに伴って正極活物質の放電容量が減少することがある。これはリチウムサイトにマグネシウムが入りすぎ、充放電に寄与するリチウム量が減少するためと考えられる。
 またアルミニウムは層状岩塩型の結晶構造における遷移金属Mサイトに存在しうる。アルミニウムは3価の典型元素であり価数が変化しないため、充放電の際もアルミニウム周辺のリチウムは移動しにくい。そのためアルミニウムとその周辺のリチウムが柱として機能し、結晶構造の変化を抑制しうる。またアルミニウムは周囲の遷移金属Mの溶出を抑制し、連続充電耐性を向上する効果がある。またAl−Oの結合は遷移金属M−O結合よりも強いため、アルミニウムの周囲の酸素の脱離を抑制することができる。これらの効果により、熱安定性が向上する。そのため添加元素としてアルミニウムを有すると、二次電池に用いたときの安全性を向上できる。また充放電を繰り返しても結晶構造が崩れにくい正極活物質100とすることができる。
 一方でアルミニウムが過剰であるとリチウムの挿入および脱離に悪影響が出る恐れがある。そのため正極活物質100全体が有するアルミニウムが適切な量であることが好ましい。
 また添加元素の一つであるチタンの酸化物は超親水性を有することが知られている。そのため、表層部100aにチタン酸化物を有する正極活物質100とすることで、極性の高い溶媒に対して濡れ性がよくなる可能性がある。二次電池としたときに正極活物質100と、極性の高い電解液との界面の接触が良好となり、内部抵抗の上昇を抑制できる可能性がある。
 また添加元素の一つであるリンを表層部100aに有すると、LiMO中のxが小さい状態を保持した場合において、ショートを抑制できる場合があり好ましい。たとえばリンと酸素を含む化合物として表層部100aに存在することが好ましい。リンと酸素を含む化合物としては、たとえばリン酸リチウムがある。
 正極活物質100がリンを有する場合には、電解質の分解により発生したフッ化水素とリンが反応し、電解質中のフッ化水素濃度を低下できる可能性があり好ましい。
 電解質がLiPFを有する場合、加水分解により、フッ化水素が発生する恐れがある。また、正極の構成要素として用いられるポリフッ化ビニリデン(PVDF)とアルカリとの反応によりフッ化水素が発生する恐れもある。電解質中のフッ化水素濃度が低下することにより、集電体の腐食および/または後述する被膜104のはがれを抑制できる場合がある。また、PVDFのゲル化および/または不溶化による接着性の低下を抑制できる場合がある。
 正極活物質100がマグネシウムと共にリンを有すると、LiMO中のxが小さい状態における安定性が極めて高くなり好ましい。
 また正極活物質100がクラックを有する場合、クラックを表面とした正極活物質の内部、たとえば埋め込み部にリン、より具体的には例えばリンと酸素を含む化合物が存在することにより、クラックの進行が抑制されうる。
 ただし表層部が添加元素と酸素の化合物のみで占められると、リチウムの挿入脱離が難しくなってしまうため好ましくない。たとえば表層部が、酸化マグネシウム、および酸化マグネシウムと2価の遷移金属Mの酸化物が固溶した構造のみで占められるのは好ましくない。そのため表層部100aは少なくとも遷移金属Mを有し、放電状態においてはリチウムも有し、リチウムの挿入脱離の経路を有している必要がある。
 十分にリチウムの挿入脱離の経路を確保するために、表層部100aは添加元素の原子数の和よりも、遷移金属Mの原子数の和が高いことが好ましい。
 また添加元素の一部、特にマグネシウムおよびアルミニウムは、内部100cよりも表層部の濃度が高いことが好ましいものの、内部100cにもランダムかつ希薄に存在することが好ましい。マグネシウムおよびアルミニウムが内部100cのリチウムサイトに適切な濃度で存在すると、上記と同様に層状岩塩型の結晶構造を保持しやすくできるといった効果がある。
 また上述のような添加元素の濃度勾配に起因して、内部100cから、表面に向かって結晶構造が連続的に変化することが好ましい。または表層部と内部100cの結晶の配向が概略一致していることが好ましい。
 たとえば層状岩塩型の内部100cから、岩塩型、または岩塩型と層状岩塩型の両方の特徴を有する表面および表層部に向かって結晶構造が連続的に変化することが好ましい。または岩塩型、または岩塩型と層状岩塩型の両方の特徴を有する表層部と、層状岩塩型の内部100cの配向が概略一致していることが好ましい。
 なお本明細書等において、リチウムと遷移金属Mを含む複合酸化物が有する、空間群R−3mに帰属する層状岩塩型の結晶構造とは、陽イオンと陰イオンが交互に配列する岩塩型のイオン配列を有し、遷移金属とリチウムが規則配列して二次元平面を形成するため、リチウムの二次元的拡散が可能である結晶構造をいう。なお陽イオンまたは陰イオンの欠損等の欠陥があってもよい。また、層状岩塩型結晶構造は、厳密に言えば、岩塩型結晶の格子が歪んだ構造となっている場合がある。
 また岩塩型の結晶構造とは、空間群Fm−3mをはじめとする立方晶系の結晶構造を有し、陽イオンと陰イオンが交互に配列している構造をいう。なお陽イオンまたは陰イオンの欠損があってもよい。
 また層状岩塩型と岩塩型の結晶構造の特徴の両方を有することは、電子線回折、TEM像、断面STEM像等によって判断することができる。
 岩塩型は陽イオンのサイトに区別がないが、層状岩塩型は結晶構造の陽イオンのサイトが2種あり、1つはリチウムが大半を占有し、もう1つは遷移金属が占有する。陽イオンの二次元平面と陰イオンの二次元平面とが交互に配列する積層構造は、岩塩型も層状岩塩型も同じである。この二次平面を形成する結晶面に対応する電子線回折像の輝点の中で、中心のスポット(透過斑点)を原点000とした際、中心のスポットに最も近い輝点は、理想的な状態の岩塩型ではたとえば(111)面、層状岩塩型ではたとえば(003)面になる。たとえば岩塩型MgOと層状岩塩型LiMOの電子線回折像を比較する場合、LiMOの(003)面の輝点は、MgOの(111)面の輝点の距離のおよそ半分程度の距離に観察される。そのため分析領域に、たとえば岩塩型MgOと層状岩塩型LiMOの2相を有する場合、電子線回折像では、強い輝度の輝点と、弱い輝度の輝点とが交互に配列する面方位が存在する。岩塩型と層状岩塩型で共通する輝点は強い輝度となり、層状岩塩型のみで生じる輝点は弱い輝度となる。
 また断面STEM像等では、層状岩塩型の結晶構造をc軸に垂直な方向から観察したとき、強い輝度で観察される層と、弱い輝度で観察される層が交互に観察される。岩塩型は陽イオンのサイトに区別がないためこのような特徴はみられない。岩塩型と層状岩塩型の両方の特徴を有する結晶構造の場合、特定の結晶方位から観察すると、断面STEM像等では強い輝度で観察される層と、弱い輝度で観察される層が交互に観察され、さらに弱い輝度の層、すなわちリチウム層の一部にリチウムより原子番号の大きい金属が存在する。
 層状岩塩型結晶、および岩塩型結晶の陰イオンは立方最密充填構造(面心立方格子構造)をとる。そのため層状岩塩型結晶と岩塩型結晶が接するとき、陰イオンにより構成される立方最密充填構造の向きが揃う結晶面が存在する。
 または、以下のように説明することもできる。立方晶の結晶構造の{111}面における陰イオンは三角格子を有する。層状岩塩型は空間群R−3mであって、菱面体構造であるが、構造の理解を容易にするため一般に複合六方格子で表現され、層状岩塩型の(0001)面は六角格子を有する。立方晶{111}面の三角格子は、層状岩塩型の(0001)面の六角格子と同様の原子配列を有する。両者の格子が整合性を持つことを、立方最密充填構造の向きが揃うということができる。
 ただし、層状岩塩型結晶の空間群はR−3mであり、岩塩型結晶の空間群Fm−3m(一般的な岩塩型結晶の空間群)とは異なるため、上記の条件を満たす結晶面のミラー指数は層状岩塩型結晶と、岩塩型結晶では異なる。本明細書では、層状岩塩型結晶および岩塩型結晶において、陰イオンにより構成される立方最密充填構造の向きが揃うとき、結晶の配向が概略一致する、と言う場合がある。また、結晶の配向が概略一致するような三次元的な構造上の類似性を有すること、または結晶学的に同じ配向であることをトポタキシ(topotaxy)という。
 二つの領域の結晶の配向が概略一致することは、TEM(Transmission Electron Microscope、透過電子顕微鏡)像、STEM(Scanning Transmission Electron Microscope、走査透過電子顕微鏡)像、HAADF−STEM(High−angle Annular Dark Field Scanning TEM、高角散乱環状暗視野走査透過電子顕微鏡)像、ABF−STEM(Annular Bright−Field Scanning Transmission Electron Microscope、環状明視野走査透過電子顕微鏡)像、電子線回折パターン、TEM像およびSTEM像等のFFTパターン等から判断することができる。XRD(X−ray Diffraction、X線回折)、電子線回折、中性子線回折等も判断の材料にすることができる。
 図2に、層状岩塩型結晶LRSと岩塩型結晶RSの配向が概略一致しているTEM像の例を示す。TEM像、STEM像、HAADF−STEM像、ABF−STEM像等では、結晶構造を反映した像が得られる。
 たとえばTEMの高分解能像等では、結晶面に由来するコントラストが得られる。電子線の回折および干渉によって、たとえば層状岩塩型の複合六方格子のc軸と垂直に電子線が入射した場合、(0003)面に由来するコントラストが明るい帯(明るいストリップ)と暗い帯(暗いストリップ)の繰り返しとして得られる。そのためTEM像において明線と暗線の繰り返しが観察され、明線同士(たとえば図2に示すLRSとLLRS)の角度が5度以下、または2.5度以下である場合、結晶面が概略一致している、すなわち結晶の配向が概略一致していると判断することができる。同様に、暗線同士の角度が5度以下、または2.5度以下である場合も、結晶の配向が概略一致していると判断することができる。
 またHAADF−STEM像では、原子番号に比例したコントラストが得られ、原子番号が大きい元素ほど明るく観察される。たとえば空間群R−3mに属する層状岩塩型のニッケル−マンガンーコバルト酸リチウムの場合、遷移金属M、具体的にはマンガン(原子番号25)、コバルト(原子番号27)およびニッケル(原子番号28)の原子番号が大きいため、これらの原子の位置で電子線が強く散乱され、遷移金属M原子の配列が明線もしくは強い輝度の点の配列として観察される。そのため層状岩塩型の結晶構造を有するニッケル−マンガン−コバルト酸リチウムを空間群R−3mに属する層状岩塩型の結晶構造のc軸と垂直に観察した場合、c軸と垂直に遷移金属M原子の配列が明線もしくは強い輝度の点の配列として観察され、リチウム原子、酸素原子の配列は暗線もしくは輝度の低い領域として観察される。ニッケル−マンガン−コバルト酸リチウムの添加物元素としてフッ素(原子番号9)およびマグネシウム(原子番号12)を有する場合も同様である。
 そのためHAADF−STEM像において、結晶構造の異なる二つの領域で明線と暗線の繰り返しが観察され、明線同士の角度が5度以下、または2.5度以下である場合、原子の配列が概略一致している、すなわち結晶の配向が概略一致していると判断することができる。同様に、暗線同士の角度が5度以下、または2.5度以下である場合も、結晶の配向が概略一致していると判断することができる。
 なおABF−STEMでは原子番号が小さい元素ほど明るく観察されるが、原子番号に応じたコントラストが得られる点ではHAADF−STEMと同様であるため、HAADF−STEM像と同様に結晶の配向を判断することができる。
 図3Aに層状岩塩型結晶LRSと岩塩型結晶RSの配向が概略一致しているSTEM像の例を示す。岩塩型結晶RSの領域のFFTパターンを図3Bに、層状岩塩型結晶LRSの領域のFFTパターンを図3Cに示す。図3Bおよび図3Cの左に組成、JCPDSのカードナンバー、およびこれから計算されるd値および角度を示す。右に実測値を示す。Oを付したスポットは0次回折である。ここではコバルト酸リチウムと酸化コバルトの例について示すが、本発明の一態様はこれに限らない。たとえばニッケル−マンガン−コバルト酸リチウムと、酸化ニッケル、酸化マンガンおよび/または酸化コバルトについても同様に配向が概略一致すると推測される。
 図3BでAを付したスポットは立方晶の11−1反射に由来するものである。図3CでAを付したスポットは層状岩塩型の0003反射に由来するものである。図3Bおよび図3Cから、立方晶の11−1反射の方位と、層状岩塩型の0003反射の方位と、が概略一致していることがわかる。すなわち図3BのAOを通る直線と、図3CのAOを通る直線と、が概略平行であることがわかる。ここでいう概略一致および概略平行とは、角度が5度以下、または2.5度以下であることをいう。
 このようにFFTパターンおよび電子線回折パターンでは、層状岩塩型結晶と岩塩型結晶の配向が概略一致していると、層状岩塩型の〈0003〉方位と、岩塩型の〈11−1〉方位と、が概略一致する場合がある。このとき、これらの逆格子点はスポット状であること、つまり他の逆格子点と連続していないことが好ましい。逆格子点がスポット状で、他の逆格子点と連続していないことは、結晶性が高いことを意味する。
 また、上述のように立方晶の11−1反射の方位と、層状岩塩型の0003反射の方位と、が概略一致している場合、電子線の入射方位によっては、層状岩塩型の0003反射の方位とは異なる逆格子空間上に、層状岩塩型の0003反射由来ではないスポットが観測されることがある。例えば図3CでBを付したスポットは、層状岩塩型の1014反射に由来するものである。これは、層状岩塩型の0003反射由来の逆格子点(図3CのA)の方位から、52°以上56°以下の角度であり(すなわち∠AOBが52°以上56°以下であり)、dが0.19nm以上0.21nm以下の箇所に観測されることがある。なおこの指数は一例であり、必ずしもこれに一致している必要は無い。例えば、それぞれにおける等価な逆格子点でも良い。
 同様に立方晶の11−1反射が観測された方位とは別の逆格子空間上に、立方晶の11−1反射由来ではないスポットが観測されることがある。例えば、図3BでBを付したスポットは、立方晶の200反射に由来するものである。これは、立方晶の11−1由来の反射(図3BのA)の方位から、54°以上56°以下の角度である(すなわち∠AOBが54°以上56°以下である)箇所に回折スポットが観測されることがある。なおこの指数は一例であり、必ずしもこれに一致している必要は無い。例えば、それぞれにおける等価な逆格子点でも良い。
 なお、結晶の配向の一致について判断したいときは、層状岩塩型の(0003)面が観察しやすいよう薄片化することが好ましい。そのためTEM等において電子線がたとえば[12−10]入射となるように観察サンプルをFIB等で薄片加工することが好ましい。LiMO(MはNi,Co,Mnの少なくとも一)である層状岩塩型の正極活物質は、(0003)面およびこれと等価な面、並びに(10−14)面およびこれと等価な面が結晶面として現れやすいことが知られている。そのため正極活物質の形状をSEM等でよく観察することで、TEM等において(0003)面が観察しやすいように薄片化することが可能である。
≪XPS≫
 X線光電子分光(XPS)では、無機酸化物の場合で、X線源として単色アルミニウムのKα線を用いると、表面から2乃至8nm程度(通常5nm以下)の深さまでの領域の分析が可能であるため、表層部100aの深さに対して約半分の領域について、各元素の濃度を定量的に分析することができる。また、ナロースキャン分析をすれば元素の結合状態を分析することができる。なおXPSの定量精度は多くの場合±1原子%程度、検出下限は元素にもよるが約1原子%である。
 本発明の一態様の正極活物質100は、添加元素から選ばれた一または二以上の濃度が内部100cよりも表層部において高いことが好ましい。これは表層部における添加元素から選ばれた一または二以上の濃度が、正極活物質100全体の平均よりも高いことが好ましい、と同義である。そのためたとえば、XPS等で測定される表層部から選ばれた一または二以上の添加元素の濃度が、ICP−MS(誘導結合プラズマ質量分析)、あるいはGD−MS(グロー放電質量分析法)等で測定される正極活物質100全体の平均の添加元素の濃度よりも高いことが好ましい、ということができる。たとえばXPS等で測定される表層部100aの少なくとも一部のマグネシウムの濃度が、正極活物質100全体のマグネシウム濃度よりも高いことが好ましい。また表層部100aの少なくとも一部のアルミニウムの濃度が、正極活物質100全体のアルミニウム濃度よりも高いことが好ましい。
 なお本発明の一態様の正極活物質100の表面および表層部には、上述したように正極活物質100作製後に化学吸着した炭酸塩、ヒドロキシ基等は含まないとする。また正極活物質100の表面に付着した電解液、バインダ、導電材、またはこれら由来の化合物も含まないとする。そのため正極活物質が有する元素を定量するときは、XPSをはじめとする表面分析で検出されうる炭素、水素、過剰な酸素、過剰なフッ素等を除外する補正をしてもよい。例えば、XPSでは結合の種類を解析で分離することが可能であり、バインダ由来のC−F結合を除外する補正をおこなってもよい。
 さらに各種分析に供する前に、正極活物質の表面に付着した電解液、バインダ、導電材、またはこれら由来の化合物を除くために、正極活物質および正極活物質層等の試料に対して洗浄等を行ってもよい。このとき洗浄に用いる溶媒等にリチウムが溶け出す場合があるが、たとえその場合であっても、添加元素は溶け出しにくいため、添加元素の原子数比に影響があるものではない。
 XPS分析を行う場合には例えば、X線源として単色化アルミニウムKα線を用いることができる。また、取出角は例えば45°とすればよい。たとえば下記の装置および条件で測定することができる。
測定装置 :PHI 社製QuanteraII
X線源 :単色化Al Kα(1486.6eV)
 検出領域 :100μmφ
検出深さ :約4~5nm(取出角45°)
 測定スペクトル :ワイドスキャン,各検出元素のナロースキャン
≪EDX≫
 正極活物質100が有する添加元素から選ばれた一または二以上、および遷移金属Mは濃度勾配を有していることが好ましい。また正極活物質100は添加元素によって、濃度ピークの表面からの深さが異なっていることがより好ましい。添加元素および遷移金属Mの濃度勾配はたとえば、FIB(Focused Ion Beam)等により正極活物質100の断面を露出させ、その断面をエネルギー分散型X線分光法(EDX:Energy Dispersive X−ray Spectroscopy)、EPMA(電子プローブ微小分析)等を用いて分析することで評価できる。
 EDX測定のうち、領域内を走査しながら測定し、領域内を2次元に評価することをEDX面分析と呼ぶ。また線状に走査しながら測定し、原子濃度について正極活物質内の分布を評価することを線分析と呼ぶ。さらにEDXの面分析から、線状の領域のデータを抽出したものを線分析と呼ぶ場合もある。またある領域について走査せずに測定することを点分析と呼ぶ。
 EDX面分析(例えば元素マッピング)により、正極活物質100の表層部、内部100cおよび結晶粒界101近傍等における、添加元素および遷移金属Mの濃度を定量的に分析することができる。また、EDX線分析により、添加元素の濃度分布および最大値を分析することができる。またSTEM−EDXのようにサンプルを薄片化する分析は、奥行き方向の分布の影響を受けずに、特定の領域における正極活物質の表面から中心に向かった深さ方向の濃度分布を分析でき、より好適である。
 そのため本発明の一態様の正極活物質100についてEDX面分析またはEDX点分析したとき、表層部の各添加元素の濃度が、内部100cのそれよりも高いことが好ましい。また表層部の遷移金属Mのうちコバルトおよびマンガンから選ばれる少なくとも一の濃度が、内部100cのそれよりも高いことが好ましい。同様に内部100cのニッケルの濃度は、表層部のそれよりも高いことが好ましい。
 たとえば添加元素としてマグネシウムおよび/またはアルミニウムを有する正極活物質100についてEDX面分析またはEDX点分析したとき、表層部のマグネシウムおよび/またはアルミニウム濃度が、内部100cのマグネシウムおよび/またはアルミニウム濃度よりも高いことが好ましい。
 また、正極活物質100の表面はなめらかで凹凸が少ないことが好ましいが、必ずしも、正極活物質100の全てがそうでなくてもよい。R−3mの層状岩塩型の結晶構造を有する複合酸化物は、(001)面に平行な面、たとえばリチウムが配列した面においてスリップが生じやすい。たとえば図4Aのように、(001)面が存在する場合は、プレス等の工程を経ることで図4B中に矢印で示したように(001)面と平行にスリップが起こり、変形する場合がある。
 この場合、スリップした結果新たに生じた表面およびその表層部100aには、添加元素が存在しないか、検出下限以下である場合がある。図4B中のE−Fはスリップした結果新たに生じた表面およびその表層部100aおよび表層部100bの例である。
 しかしスリップは(001)面に平行に生じやすいため、新たに生じた表面およびその表層部100aは(001)配向となりやすい。この場合リチウムイオンの拡散経路が露出せず、比較的安定であるため、添加元素が存在しないか、検出下限以下であっても問題がほとんどない。
 なお上述のように、組成がLiMO、結晶構造がR−3mの層状岩塩型を有する複合酸化物では、(001)面と平行に遷移金属Mが配列する。またHAADF−STEM像では、LiMOのうち原子番号の最も大きいコバルトの輝度が最も高くなる。そのためHAADF−STEM像において、輝度の高い原子の配列は遷移金属Mの配列と考えてよい。この輝度の高い配列の繰り返しは、結晶縞または格子縞と同義である。
 また正極活物質100は、表面の少なくとも一部に被膜を有していてもよい。図5A、図5B、及び図5Cに被膜104を有する正極活物質100の例を示す。
 被膜104はたとえば充放電に伴い電解液の分解物が堆積して形成されたものであることが好ましい。正極活物質100の表面に電解液由来の被膜を有することで、充放電サイクル特性が向上することが期待される。これは正極活物質表面のインピーダンスの上昇を抑制する、または遷移金属Mの溶出を抑制する、等の理由による。被膜104はたとえば炭素、酸素およびフッ素を有することが好ましい。さらに電解液の一部にLiBOB、および/またはSUN(スベロニトリル)を用いた場合などは良質な被膜を得られやすい。そのため、ホウ素、窒素、硫黄およびフッ素から選ばれた一または二以上を有する被膜104は良質な被膜である場合があり好ましい。また被膜104は正極活物質100の全てを覆っていなくてもよい。
 本実施の形態は、他の実施の形態と組み合わせ用いることができる。
(実施の形態2)
 本実施の形態では、図6乃至図9を用いて、本発明の一態様の正極活物質100の作製方法の例について説明する。
 先の実施の形態で説明したような添加元素の分布、組成、および/または結晶構造を有する正極活物質100を作製するためには、添加元素の加え方が重要である。
 そのため正極活物質100の作製工程において、まず結晶子サイズの大きなニッケル−マンガン−コバルト酸リチウムを合成し、その後添加元素源を混合して加熱処理を行うことが好ましい。
 結晶子サイズの大きなニッケル−マンガン−コバルト酸リチウムを合成するためには、リチウム源を加え加熱する工程を複数回行うことが有効である。
 またニッケル源、マンガン源およびコバルト源、またはリチウム源と同時に添加元素源を混合して合成する方法では、表層部の添加元素濃度を高めることが難しい。またニッケル−マンガン−コバルト酸リチウムを合成後、添加元素源を混合するのみで加熱を行わなければ、添加元素はニッケル−マンガン−コバルト酸リチウムに固溶することなく付着するのみである。十分な加熱を経なければ、やはり添加元素を良好に分布させることが難しい。そのためニッケル−マンガン−コバルト酸リチウムを合成してから添加元素源を混合し、加熱処理を行うことが好ましい。この添加元素源を混合した後の加熱処理をアニールという場合がある。
《正極活物質の作製方法1》
 図6および図7を用いて、正極活物質100の作製方法1について説明する。
<ステップS11>
 図6のステップS11として、まず遷移金属M源、すなわちニッケル源(Ni源)、コバルト源(Co源)およびマンガン源(Mn源)を用意する。これらは層状岩塩型の結晶構造をとりうる範囲のニッケル、コバルト、マンガンの混合比とすることが好ましい。
 特に正極活物質100が有する遷移金属Mとしてニッケルを多く含むと、コバルトが多い場合と比較して原料が安価になる場合があり、また重量あたりの充放電容量が増加する場合があり好ましい。たとえば遷移金属Mのうちニッケルは、50原子%を超えることが好ましく、60原子%以上がより好ましく、75原子%以上がさらに好ましい。しかしニッケルの占める割合が高すぎると、化学安定性および耐熱性が下がるおそれがある。そのため遷移金属Mのうちニッケルは95原子%以下であることが好ましい。
 遷移金属Mとしてコバルトを有すると、平均放電電圧が高く、またコバルトが層状岩塩型の構造を安定化に寄与するため信頼性の高い二次電池とすることができ好ましい。しかしコバルトは価格がニッケルおよびマンガンよりも高くまた不安定であるため、コバルトの占める割合が高すぎると、二次電池製造のコストが増大するおそれがある。そのためたとえば遷移金属Mのうちコバルトは、2.5原子%以上34原子%以下であることが好ましい。
 なお遷移金属Mとして、必ずしもコバルトを含まなくてもよい。
 遷移金属Mとしてマンガンを有すると、耐熱性および化学安定性が向上するため好ましい。しかしマンガンの占める割合が高すぎると、放電電圧および放電容量が低下する傾向がある。そのためたとえば遷移金属Mのうちマンガンは、2.5原子%以上34原子%以下であることが好ましい。
 なお遷移金属Mとして、必ずしもマンガンを含まなくてもよい。
 遷移金属M源は遷移金属Mを含む水溶液として用意する。ニッケル源としては、ニッケル塩の水溶液を用いることができる。ニッケル塩としては、たとえば硫酸ニッケル、塩化ニッケル、硝酸ニッケル、またはこれらの水和物を用いることができる。また酢酸ニッケルをはじめとするニッケルの有機酸塩、またはこれらの水和物を用いることもできる。またニッケル源としてニッケルアルコキシドまたは有機ニッケル錯体の水溶液を用いることができる。なお本明細書等において、有機酸塩とは、酢酸、クエン酸、シュウ酸、ギ酸、酪酸等の有機酸と金属の化合物をいうこととする。
 同様にコバルト源としては、コバルト塩の水溶液を用いることができる。コバルト塩としては、たとえば硫酸コバルト、塩化コバルト、硝酸コバルト、またはこれらの水和物を用いることができる。また酢酸コバルトをはじめとするコバルトの有機酸塩、またはこれらの水和物を用いることもできる。またコバルト源としてコバルトアルコキシド、有機コバルト錯体の水溶液を用いることができる。
 同様にマンガン源としては、マンガン塩の水溶液を用いることができる。マンガン塩としては、たとえば硫酸マンガン、塩化マンガン、硝酸マンガン、またはこれらの水和物を用いることができる。また酢酸マンガンをはじめとするマンガンの有機酸塩、またはこれらの水和物を用いることもできる。またマンガン源としてマンガンアルコキシド、または有機マンガン錯体の水溶液を用いることができる。
 本実施の形態では、遷移金属M源として、硫酸ニッケル、硫酸コバルトおよび硫酸マンガンを純水に溶解させた水溶液を用意することとする。このときニッケル、コバルトおよびマンガンの原子数比は、Ni:Co:Mn=8:1:1またはこの近傍とする。該水溶液は酸性を示す。
<ステップS13>
 また図6のステップS13に示すように、キレート剤を用意してもよい。キレート剤として、たとえばグリシン、オキシン、1−ニトロソ−2−ナフトール2−メルカプトベンゾチアゾール、またはEDTA(エチレンジアミン四酢酸)が挙げられる。なお、グリシン、オキシン、1−ニトロソ−2−ナフトールまたは2−メルカプトベンゾチアゾールから選ばれた複数種を用いてもよい。これらのうち少なくとも一つを純水に溶解させキレート水溶液として用いる。キレート剤は、キレート化合物を作る錯化剤であり、一般的な錯化剤より好ましい。勿論キレート剤でなく錯化剤を用いてもよく、錯化剤としてアンモニア水を用いることができる。キレート水溶液を用いることで結晶の核の不要な発生を抑え、成長を促すことができ好ましい。不要な核の発生が抑制されると微粒子の生成が抑制されるため、粒度分布が良好な複合水酸化物を得ることができる。またキレート水溶液を用いることで、酸塩基反応を遅らせることができ、徐々に反応が進むことで球状に近い二次粒子を得ることができる。グリシンは9以上10以下及びその付近のpHにて、当該pH値を一定に保つ作用があり、キレート水溶液としてグリシン水溶液を用いることで、上記複合水酸化物98を得る際の反応槽のpHが制御しやすくなり好ましい。
<ステップS14>
 次に図6のステップS14として、遷移金属M源とキレート剤を混合し、酸溶液を作製する。
<ステップS21>
 次に図6のステップS21として、アルカリ溶液を用意する。アルカリ溶液としては、たとえば水酸化ナトリウム、水酸化カリウム、水酸化リチウム、またはアンモニアを有する水溶液を用いることができる。純水を用いてこれらを溶解させた水溶液を用いることができる。また水酸化ナトリウム、水酸化カリウム、水酸化リチウム、またはアンモニアから選ばれた複数種を純水に溶解させた水溶液でもよい。
 上記遷移金属M源およびアルカリ溶液に用いると好ましい純水とは、比抵抗が1MΩ・cm以上の水、より好ましくは比抵抗が10MΩ・cm以上の水、さらに好ましくは比抵抗が15MΩ・cm以上の水である。当該比抵抗を満たす水は純度が高く、含有される不純物が非常に少ない。
<ステップS22>
 また図6のステップS22に示すように、水を反応槽に用意することが好ましい。この水は、キレート剤の水溶液であってもよいが、純水であることがより好ましい。純水を用いることで核形成が促進され、小粒径の複合水酸化物を作製することができる。この反応槽に用意した水は、反応槽の張り込み液または調整液ということができる。キレート水溶液とする場合、ステップS13の記載を参酌することができる。
<ステップS31>
 次に図6のステップS31として、酸溶液とアルカリ溶液を混合し、反応させる。該反応は、共沈反応、中和反応または酸塩基反応ということができる。
 ステップS31の共沈反応中は、反応系のpHを9.0以上11.5以下となるようにすることが好ましい。
 たとえばアルカリ溶液を反応槽に入れ酸溶液を反応槽へ滴下する場合、反応槽の水溶液のpHを上記条件の範囲に維持するとよい。また酸溶液を反応槽に入れておき、アルカリ溶液を滴下する場合も、同様である。酸溶液またはアルカリ溶液の滴下速度は、反応槽の溶液が200mL以上350mL以下の場合、0.01mL/分以下とするとpH条件を制御しやすく好ましい。反応槽は反応容器等を有する。
 反応槽では攪拌手段を用いて水溶液を攪拌しておくとよい。攪拌手段はスターラーまたは攪拌翼等を有する。攪拌翼は2枚以上6枚以下設けることができ、たとえば4枚の攪拌翼とする場合、上方からみて十字状に配置するとよい。攪拌手段の回転数は、800rpm以上1200rpm以下とするとよい。また反応槽にバッフル板を設け、攪拌の方向および流速を変化させてもよい。バッフル板を設けることで混合効率が向上し、より大きさ等が均一な複合水酸化物の粒子を合成することができる。
 反応槽の温度は50℃以上90℃以下となるように調整することが好ましい。アルカリ溶液または酸溶液の滴下は反応槽が当該温度になったのちに開始するとよい。
 また反応槽内は不活性雰囲気とするとよい。この場合の不活性雰囲気には窒素またはアルゴンを用いることができる。窒素雰囲気とする場合、窒素ガスを0.5L/分以上2L/分の流量で導入するとよい。
 また反応槽には還流冷却器を配置するとよい。還流冷却器により、窒素ガスを反応槽から放出させることができ、水蒸気は反応槽に戻すことができる。
 上記の共沈反応により、遷移金属Mを有する複合水酸化物98が沈殿する。
<ステップS32>
 複合水酸化物98を回収するために、図6のステップS32に示すように濾過を行うことが好ましい。濾過は吸引濾過が好ましい。濾過の際、反応槽に沈殿した反応生成物を純水で洗浄した後に、有機溶媒(例えばアセトン等)を用いてもよい。
<ステップS33>
 図6のステップS33に示すように、濾過後の複合水酸化物98は乾燥させるとよい。たとえば60℃以上200℃以下の真空下にて、0.5時間以上20時間以下で乾燥させる。たとえば12時間乾燥させることができる。このようにして複合水酸化物98を得ることができる。
 このようにして、遷移金属Mを有する複合水酸化物98を得ることができる。本明細書等において複合水酸化物98とは、複数種の金属の水酸化物をいうこととする。複合水酸化物98は、正極活物質100の前駆体ということができる。
<ステップS41>
 次に図7のステップS41として、リチウム源を用意する。このとき、リチウム源を加えて加熱する工程を複数回行うため、ステップS41では最終的なリチウム量よりも少ない量を用意する。たとえばニッケル、コバルトおよびマンガンの原子数の和を1としたとき、リチウムを0.5以上0.9以下(原子数比)とすることができ、0.7(原子数比)とすることがより好ましい。
 リチウム源としてはたとえば水酸化リチウム、炭酸リチウム、または硝酸リチウムを用いることができる。特に水酸化リチウム(融点462℃)などリチウム化合物のなかでは融点の低い材料を用いると好ましい。ニッケルの割合が高い正極活物質は、コバルト酸リチウム等と比較してカチオンミキシングが生じやすいため、ステップS43などの加熱を低温で行う必要がある。そのため融点の低い材料を用いることが好ましい。
 またリチウム源の粒径が小さい方が、反応が良好に進みやすく好ましい。たとえば流動層式ジェットミルを用いて微粒子化したリチウム源を用いることができる。ここでいう粒径とは、メディアン径をいうこととする。
<ステップS42>
 次に図7のステップS42として、複合水酸化物98とリチウム源とを混合する。混合は乾式または湿式で行うことができる。混合には例えばボールミル、ビーズミル等を用いることができる。ボールミルを用いる場合は、例えばメディアとしてジルコニアボールを用いることが好ましい。また、ボールミル、またはビーズミル等を用いる場合、メディアまたは材料からのコンタミネーションを抑制するために、周速を100mm/秒以上2000mm/秒以下とすることが好ましい。混合と同時にコバルト化合物及びリチウム化合物は粉砕されることがある。
<ステップS43>
 次に複合水酸化物98とリチウム源の混合物に加熱を行う。他の加熱工程との区別のために、図7ではステップS43を第1の加熱、ステップS53を第2の加熱、ステップS55を第3の加熱という場合がある。
 これらの加熱を行う焼成装置としては、マッフル炉、ローラーハースキルン、またはロータリーキルン等を用いることができる。加熱の際に用いる、るつぼ、サヤ、セッター、容器は不純物を放出しにくい材質であると好ましい。たとえば純度が99.9%の酸化アルミニウムのるつぼを用いるとよい。量産する場合には例えばムライト・コーディライト(Al・SiO・MgO)のサヤを用いるとよい。
 ステップS43の加熱は、温度は400℃以上750℃以下が好ましく、650℃以上750℃以下がより好ましい。また、ステップS43の加熱の時間は、1時間以上30時間以下が好ましく、2時間以上20時間以下がより好ましい。
 加熱雰囲気は、酸素を有する雰囲気、又はいわゆる乾燥空気であって水が少ない酸素含有雰囲気(例えば露点が−50℃以下、より好ましくは露点が−80℃以下)で行うことが好ましい。
 またステップS44として、加熱の後に解砕工程を有することが好ましい。解砕はたとえば乳鉢で行うことができる。さらに、ふるいを用いて分級してもよい。解砕工程を有することで、正極活物質100の粒径および/または形状をより均一化することができる。以上の工程により、複合酸化物を得る(ステップS45)。
<ステップS51>
 次にステップS51として、リチウム源を用意する。このときステップS41と合わせて最終的なリチウム量となるようにリチウム源を用意する。たとえばステップS41においてニッケル、コバルトおよびマンガンの原子数の和を1としたとき、リチウムを0.7(原子数比)とした場合は、ステップS51ではたとえば0.31(原子数比)を用意することが好ましい。ここではニッケル、コバルトおよびマンガンの原子数の和を1としたときの最終的なリチウム量を1.01(原子数比)としたが、本発明の一態様はこれに限らない。ニッケル、コバルトおよびマンガンの原子数の和を1としたときの最終的なリチウム量は0.95以上1.25以下(原子数比)が好ましく、1.00以上1.10以下(原子数比)であるとより好ましい。用意するリチウム源の量以外は、ステップS41の記載を参酌することができる。
 なお図7ではリチウム源をステップS41とステップS51の2回に分けて加え、それぞれ加熱する方法について説明するが、本発明の一態様はこれに限らない。リチウム源を3回以上に分けて加え、それぞれ加熱してもよい。
<ステップS52>
 次にステップS45で得た複合酸化物と、上記のリチウム源とを混合する。混合はステップS42の記載を参酌することができる。
<ステップS53>
 次に複合水酸化物98とリチウム源の混合物に加熱を行う。ステップS53の加熱は正極活物質100の結晶子サイズを大きくするため、十分に高い温度であることが好ましいが、その範囲は遷移金属Mの組成により異なる場合がある。
 遷移金属Mのうちニッケルの占める割合が高い、たとえば70%以上である場合は、たとえば750℃以上が好ましく、800℃以上がより好ましく、850℃以上であるとさらに好ましい。一方で温度が高すぎるとニッケル等の遷移金属Mが2価に還元される等の恐れがある。そのため、たとえば950℃以下が好ましく、920℃以下がより好ましく、900℃以下がさらに好ましい。
 遷移金属Mのうちニッケルの占める割合が40%以上70%未満の場合は、たとえば900℃以上が好ましく、950℃以上がより好ましく、970℃程度がより好ましい。一方で温度が高すぎると上記と同様のデメリットが生じる恐れがあり、1020℃以下が好ましく、990℃以下がより好ましい。加熱のその他の条件は、ステップS43の記載を参酌することができる。
 またステップS54として、加熱の後に解砕工程を有することが好ましい。解砕はステップS44の記載を参酌することができる。
<ステップS55>
 さらに、ステップS55の加熱を行うことがより好ましい。該加熱を行うことで、リチウム源などの残渣を減少させることができる。ステップS55の加熱は、温度は400℃以上900℃以下が好ましく、750℃以上850℃以下がより好ましい。また、ステップS52の加熱の時間は、1時間以上30時間以下が好ましく、2時間以上20時間以下がより好ましい。ただしステップS55の加熱は行わなくてもよい。加熱のその他の条件は、ステップS43の記載を参酌することができる。
 またステップS56として、加熱の後に解砕工程を有することが好ましい。解砕はステップS44の記載を参酌することができる。
 また図7ではステップS51でリチウム源を混合した後、ステップS53とステップS55の2回加熱をする方法について説明するが、本発明の一態様はこれに限らない。3回以上の加熱を行ってもよい。
 以上の工程により、正極活物質100を作製することができる。
《正極活物質の作製方法2》
 図6および図8を用いて、正極活物質100の作製方法2について説明する。作製方法2を経て作製された正極活物質100は添加元素を有する。主に作製方法1と異なる工程について説明し、その他の工程は作製方法1の記載を参酌することができる。
<ステップS71>
 図8のステップS71として、添加元素源を用意する。
 添加元素としては、例えば、マグネシウム、アルミニウム、カルシウム、チタン、ジルコニウム、フッ素、バナジウム、鉄、マンガン、クロム、ニオブ、ヒ素、亜鉛、ケイ素、硫黄、リン、ホウ素、臭素、及びベリリウムから選ばれる一または二以上を用いることができる。
 マグネシウム源としては、たとえばフッ化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、アセチルアセトンマグネシウム(2水和物)、乳酸マグネシウム、フタロシアニンマグネシウム(II)をはじめとするマグネシウムを有する有機化合物等を用いることができる。
 アルミニウム源としては、たとえば水酸化アルミニウム、フッ化アルミニウム、アルミニウムアルコキシド、アセチルアセトンアルミニウム、乳酸アルミニウムをはじめとするアルミニウムを有する有機化合物等を用いることができる。
<ステップS72>
 上記の添加元素源と、作製方法1と同様の工程で得た結晶子サイズの大きな複合酸化物と、を混合する。
 なお本実施の形態ではステップS72で添加元素を混合する作製方法について説明するが、本発明の一態様はこれに限らない。他の工程において添加元素を混合してもよい。たとえばステップS42およびステップS52にてリチウム源と同時に添加元素を混合してもよい。またステップS14にて遷移金属M源と同時に添加元素を混合してもよい。
<ステップS73>
 次に添加元素源と、複合酸化物の混合物に加熱を行う。ステップS73の加熱は、温度は400℃以上900℃以下が好ましく、750℃以上850℃以下がより好ましい。また、ステップS73の加熱の時間は、0.5時間以上30時間以下が好ましく、1時間以上10時間以下がより好ましい。加熱のその他の条件は、ステップS43の記載を参酌することができる。
 またステップS74として、加熱の後に解砕工程を有することが好ましい。解砕はステップS44の記載を参酌することができる。
 以上の工程により、正極活物質100を作製することができる(ステップS75)。
《正極活物質の作製方法3》
 図6および図9を用いて、正極活物質100の作製方法3について説明する。作製方法3を経て作製された正極活物質100は、添加元素を有し、内部よりも表層部においてコバルトおよびマンガンの少なくとも一の元素の原子数の比が大きい。主に作製方法2と異なる工程について説明し、その他の工程は作製方法2の記載を参酌することができる。
<ステップS61>
 図9のステップS61として、コバルト源およびマンガン源の少なくとも一を用意する。
 コバルト源としては、たとえば酸化コバルト、水酸化コバルト、コバルトアルコキシドをはじめとするコバルトを有する有機化合物等を用いることができる。
 マンガン源としては、たとえば酸化マンガン、水酸化マンガン、マンガンアルコキシドをはじめとするマンガンを有する有機化合物等を用いることができる。
 なおステップS61において、複合水酸化物を用意してもよい。たとえば、コバルトとマンガンを有する複合水酸化物を、コバルト源およびマンガン源として用意してもよい。また、図6で作製した複合水酸化物よりニッケルの占める割合が低い、ニッケル−マンガン−コバルト水酸化物を用意してもよい。
<ステップS62>
 上記のコバルト源およびマンガン源の少なくとも一と、作製方法1と同様の工程で得た結晶子サイズの大きな複合酸化物と、を混合する。混合の方法は特に限定されない。たとえばコバルト源および/またはマンガン源がアルコキシドである場合、ゾルゲル法を採用することができる。またコバルト源および/またはマンガン源が複合水酸化物である場合、メカノケミカル法を採用することができる。
<ステップS63>
 次にコバルト源および/またはマンガン源と、複合酸化物の混合物に加熱を行う。
 またステップS64として、加熱の後に解砕工程を有することが好ましい。解砕はステップS44の記載を参酌することができる。
 以上の工程により複合酸化物を作製した後、正極活物質の作製方法2と同様に添加元素を混合し、加熱することで、正極活物質100を作製することができる。
 なお図6および図9では添加元素源を加える前にコバルト源およびマンガン源の少なくとも一を加える方法について説明したが、本発明の一態様はこれに限らない。添加元素源を加えた後にコバルト源およびマンガン源の少なくとも一を加えてもよいし、添加元素源と共に加えてもよい。また図6の複合水酸化物98を作製する際に、内部と表層部における遷移金属Mの組成を変化させてもよい。この場合、たとえば遷移金属Mに含まれるニッケル比が高い酸溶液から、ニッケル比の低い酸溶液へ変化させることで、内部と表層部におけるニッケル比を変化させることができる。
 本実施の形態は、他の実施の形態と組み合わせ用いることができる。
(実施の形態3)
 本実施の形態では、リチウムイオン電池を構成する要素について、各々説明する。
[正極]
 正極は、正極活物質層及び正極集電体を有する。正極活物質層は正極活物質を有し、さらに導電材及びバインダの少なくとも一を有していてもよい。正極活物質は、実施の形態1で説明したものを用いることができる。
 図10Aは、正極の断面の模式図の一例を示している。
 正極集電体21は、例えば金属箔を用いることができる。正極は、金属箔上にスラリーを塗布して乾燥させることによって形成することができる。なお、乾燥後にプレスを加えてもよい。正極は、正極集電体21上に活物質層を形成したものである。
 スラリーとは、正極集電体21上に活物質層を形成するために用いる材料液であり、活物質とバインダと溶媒を含有し、好ましくはさらに導電材を混合させたものを指している。なお、スラリーは、電極用スラリーまたは活物質スラリーと呼ばれることもあり、正極活物質層を形成する場合には正極用スラリーを用い、負極活物質層を形成する場合には負極用スラリーと呼ばれることもある。
 正極活物質100は、充放電に伴い、リチウムイオンを取り込む、および放出する機能を有する。本発明の一態様として用いる正極活物質100は、高い充電電圧としても充放電に伴う劣化の少ない材料を用いることができる。なお、本明細書等において、特に言及しない場合、充電電圧はリチウム金属の電位を基準として表すものとする。また、本明細書等において、高い充電電圧とは、例えば4.5V以上の充電電圧とし、好ましくは4.55V以上、さらに好ましくは4.6V以上、4.65V以上、または4.7V以上とする。
 本発明の一態様として用いる正極活物質100は、高い充電電圧としても充放電に伴う劣化の少ない材料であれば何でも用いることが可能であり、実施の形態1または実施の形態2で説明したものを用いることができる。なお、正極活物質100は、高い充電電圧としても充放電に伴う劣化の少ない材料であれば、粒径が異なる2種類以上の材料を用いることができる。
 導電材は、導電付与剤、導電助剤とも呼ばれ、炭素材料を用いることができる。複数の活物質の間に導電材を付着させることで複数の活物質同士が電気的に接続され、導電性が高まる。なお、本明細書等において「付着」とは、活物質と導電材が物理的に密着していることのみを指しているのではなく、共有結合が生じる場合、ファンデルワールス力により結合する場合、活物質の表面の一部を導電材が覆う場合、活物質の表面凹凸に導電材がはまりこむ場合、互いに接していなくとも電気的に接続される場合などを含む概念とする。
 導電材として用いることができる炭素材料の具体例は、カーボンブラック(ファーネスブラック、アセチレンブラックなど)が挙げられる。
 正極の例を図10A乃至図10Dに示す。
 図10Aは、導電材の一例であるカーボンブラック43と、正極活物質100同士の間に位置する空隙部に含まれる電解質51を図示しており、正極活物質100だけでなく第2の正極活物質110を更に有する例を示している。
 二次電池の正極として、金属箔などの正極集電体21と、活物質と、を固着させるために、バインダ(樹脂)を混合してもよい。バインダは結着剤とも呼ばれる。バインダは高分子材料であり、バインダを多く含ませると正極における活物質の割合が低下して、二次電池の放電容量が小さくなる。そのため、バインダの量は最小限に混合させることが好ましい。
 なお、図10Aでは正極活物質100を球形として図示した例を示しているが、特に限定されない。例えば、正極活物質100の断面形状は楕円形、長方形、台形、三角形、角が丸まった多角形、非対称の形状であってもよい。例えば、図10Bでは、正極活物質100が、角が丸まった多角形の形状を有する例を示している。
 また、図10Bの正極では、導電材として用いられる炭素材料として、グラフェン42を用いている。図10Bは、正極集電体21上に正極活物質100、グラフェン42、カーボンブラック43を有する正極活物質層を形成している。
 なお、グラフェン42、カーボンブラック43を混合し、電極スラリーを得る工程において、混合するカーボンブラックの重量はグラフェンの1.5倍以上20倍以下、好ましくは2倍以上9.5倍以下の重量とすることが好ましい。
 また、グラフェン42とカーボンブラック43の混合を上記範囲とすると、スラリー調製時に、カーボンブラック43の分散安定性に優れ、凝集部が生じにくい。また、グラフェン42とカーボンブラック43の混合を上記範囲とすると、カーボンブラック43のみを導電材に用いる正極よりも高い電極密度とすることができる。電極密度を高くすることで、単位重量当たりの容量を大きくすることができる。具体的には、重量測定による正極活物質層の密度は、3.5g/cc以上とすることができる。
 また、グラフェンのみを導電材に用いる正極に比べると電極密度は低いが、第1の炭素材料(グラフェン)と第2の炭素材料(アセチレンブラック)の混合を上記範囲とすることで、急速充電に対応することができる。このため、車載用の二次電池として用いる場合に特に有効である。
 図10Cでは、グラフェンに代えて炭素繊維44を用いる正極の例を図示している。図10Cは、図10Bと異なる例を示している。炭素繊維44を用いるとカーボンブラック43の凝集を防ぎ、分散性を高めることができる。
 なお、図10Cにおいて、正極活物質100、炭素繊維44、カーボンブラック43で埋まっていない領域は、空隙またはバインダを指している。
 また、他の正極の例として、図10Dを図示している。図10Cでは、グラフェン42に加えて炭素繊維44を用いる例を示している。グラフェン42及び炭素繊維44の両方を用いると、カーボンブラック43などのカーボンブラックの凝集を防ぎ、分散性をより高めることができる。
 なお、図10Dにおいて、正極活物質100、炭素繊維44、グラフェン42、カーボンブラック43で埋まっていない領域は、空隙またはバインダを指している。
 図10A乃至図10Dのいずれか一の正極を用い、正極上にセパレータを重ね、セパレータ上に負極を重ねた積層体を収容する容器(外装体、金属缶など)などに入れ、容器に電解液を充填させることで二次電池を作製することができる。
<バインダ>
 バインダとしては、例えば、スチレン−ブタジエンゴム(SBR)、スチレン−イソプレン−スチレンゴム、アクリロニトリル−ブタジエンゴム、ブタジエンゴム、エチレン−プロピレン−ジエン共重合体などのゴム材料を用いることが好ましい。またバインダとして、フッ素ゴムを用いることができる。
 また、バインダとしては、例えば水溶性の高分子を用いることが好ましい。水溶性の高分子としては、例えば多糖類などを用いることができる。多糖類としては、カルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ジアセチルセルロース、再生セルロースなどのセルロース誘導体、または澱粉などを用いることができる。また、これらの水溶性の高分子を、前述のゴム材料と併用して用いると、さらに好ましい。
 または、バインダとしては、ポリスチレン、ポリアクリル酸メチル、ポリメタクリル酸メチル(ポリメチルメタクリレート、PMMA)、ポリアクリル酸ナトリウム、ポリビニルアルコール(PVA)、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド、ポリイミド、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリエチレンテレフタレート、ナイロン、ポリフッ化ビニリデン(PVDF)、ポリアクリロニトリル(PAN)、エチレンプロピレンジエンポリマー、ポリ酢酸ビニル、ニトロセルロース等の材料を用いることが好ましい。
 バインダは上記のうち複数を組み合わせて使用してもよい。
 例えば粘度調整効果の特に優れた材料と、他の材料とを組み合わせて使用してもよい。例えばゴム材料等は接着力及び弾性力に優れる反面、溶媒に混合した場合に粘度調整が難しい場合がある。このような場合には例えば、粘度調整効果の特に優れた材料と混合することが好ましい。粘度調整効果の特に優れた材料としては、例えば水溶性高分子を用いるとよい。また、粘度調整効果に特に優れた水溶性高分子としては、前述の多糖類、例えばカルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース及びジアセチルセルロース、再生セルロースなどのセルロース誘導体、または澱粉を用いることができる。
 なお、カルボキシメチルセルロースなどのセルロース誘導体は、例えばカルボキシメチルセルロースのナトリウム塩またはアンモニウム塩などの塩とすることにより溶解度が上がり、粘度調整剤としての効果を発揮しやすくなる。溶解度が高くなることにより電極のスラリーを作製する際に活物質または他の構成要素との分散性を高めることもできる。本明細書等においては、電極のバインダとして使用するセルロース及びセルロース誘導体としては、それらの塩も含むものとする。
 水溶性高分子は水に溶解することにより粘度を安定化させ、活物質及びバインダとして組み合わせる他の材料、例えばスチレンブタジエンゴムを水溶液中に安定して分散させることができる。また、官能基を有するために活物質表面に安定に吸着しやすいことが期待される。また、例えばカルボキシメチルセルロースなどのセルロース誘導体は、水酸基またはカルボキシル基などの官能基を有する材料が多く、官能基を有するために高分子同士が相互作用し、活物質表面を広く覆って存在することが期待される。
 活物質表面を覆う、または表面に接するバインダが膜を形成する場合には、不動態膜としての役割を果たして電解液の分解を抑える効果も期待される。ここで、「不動態膜」とは、電気の電導性のない膜、または電気電導性の極めて低い膜であり、例えば活物質の表面に不動態膜が形成された場合には、電池反応電位において、電解液の分解を抑制することができる。また、不動態膜は、電気の電導性を抑えるとともに、リチウムイオンは伝導できるとさらに望ましい。
<導電材>
 導電材は、導電付与剤、導電助剤とも呼ばれ、炭素材料が用いられる。複数の活物質の間に導電材を付着させることで複数の活物質同士が電気的に接続され、導電性が高まる。なお、「付着」とは、活物質と導電材が物理的に密着していることのみを指しているのではなく、共有結合が生じる場合、ファンデルワールス力により結合する場合、活物質の表面の一部を導電材が覆う場合、活物質の表面凹凸に導電材がはまりこむ場合、互いに接していなくとも電気的に接続される場合などを含む概念とする。
 正極活物質層、負極活物質層、等の活物質層は、導電材を有することが好ましい。
 導電材としては、例えば、アセチレンブラック、およびファーネスブラックなどのカーボンブラック、人造黒鉛、および天然黒鉛などの黒鉛、カーボンナノファイバー、およびカーボンナノチューブなどの炭素繊維、ならびにグラフェン化合物、のいずれか一種又は二種以上を用いることができる。
 炭素繊維としては、例えばメソフェーズピッチ系炭素繊維、等方性ピッチ系炭素繊維等の炭素繊維を用いることができる。また炭素繊維として、カーボンナノファイバーまたはカーボンナノチューブなどを用いることができる。カーボンナノチューブは、例えば気相成長法などで作製することができる。
 本明細書等においてグラフェン化合物とは、グラフェン、多層グラフェン、マルチグラフェン、酸化グラフェン、多層酸化グラフェン、マルチ酸化グラフェン、還元された酸化グラフェン、還元された多層酸化グラフェン、還元されたマルチ酸化グラフェン、グラフェン量子ドット等を含む。グラフェン化合物とは、炭素を有し、平板状、シート状等の形状を有し、炭素6員環で形成された二次元的構造を有するものをいう。該炭素6員環で形成された二次元的構造は炭素シートといってもよい。グラフェン化合物は官能基を有してもよい。またグラフェン化合物は屈曲した形状を有することが好ましい。またグラフェン化合物は丸まってカーボンナノファイバーのようになっていてもよい。
 活物質層の総量に対する導電材の含有量は、1wt%以上10wt%以下が好ましく、1wt%以上5wt%以下がより好ましい。
 活物質と点接触するカーボンブラック等の粒状の導電材と異なり、グラフェン化合物は接触抵抗の低い面接触を可能とするものであるから、通常の導電材よりも少量で粒状の活物質とグラフェン化合物との電気伝導性を向上させることができる。よって、活物質の活物質層における比率を増加させることができる。これにより、電池の放電容量を増加させることができる。
 カーボンブラック、黒鉛、等の粒子状の炭素含有化合物または、カーボンナノチューブ等の繊維状の炭素含有化合物は微小な空間に入りやすい。微小な空間とは例えば、複数の活物質の間の領域等を指す。微小な空間に入りやすい炭素含有化合物と、複数の粒子にわたって導電性を付与できるグラフェンなどのシート状の炭素含有化合物と、を組み合わせて使用することにより、電極の密度を高め、優れた導電パスを形成することができる。本発明の一態様の作製方法で得られる電池は、高容量密度を有し、かつ安定性を備えることができ、車載用の電池として有効である。
<正極集電体>
 正極集電体としては、ステンレス、金、白金、アルミニウム、チタン等の金属、及びこれらの合金など、導電性が高い材料を用いることができる。また正極集電体に用いる材料は、正極の電位で溶出しないことが好ましい。また、シリコン、チタン、ネオジム、スカンジウム、モリブデンなどの耐熱性を向上させる元素が添加されたアルミニウム合金を用いることができる。また、シリコンと反応してシリサイドを形成する金属元素で形成してもよい。シリコンと反応してシリサイドを形成する金属元素としては、ジルコニウム、チタン、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、コバルト、ニッケル等がある。正極集電体は、箔状、板状、シート状、網状、パンチングメタル状、エキスパンドメタル状等の形状を適宜用いることができる。正極集電体は、厚みが5μm以上30μm以下のものを用いるとよい。
[負極]
 負極は、負極活物質層及び負極集電体を有する。また、負極活物質層は負極活物質を有し、さらに導電材及びバインダを有していてもよい。
<負極活物質>
 負極活物質としては、例えば合金系材料または炭素材料を用いることができる。
 また、負極活物質は、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素を用いることができる。例えば、シリコン、スズ、ガリウム、アルミニウム、ゲルマニウム、鉛、アンチモン、ビスマス、銀、亜鉛、カドミウム、インジウム等のうち少なくとも一つを含む材料を用いることができる。このような元素は炭素と比べて容量が大きく、特にシリコンは理論容量が4200mAh/gと高い。このため、負極活物質にシリコンを用いることが好ましい。また、これらの元素を有する化合物を用いてもよい。例えば、SiO、MgSi、MgGe、SnO、SnO、MgSn、SnS、VSn、FeSn、CoSn、NiSn、CuSn、AgSn、AgSb、NiMnSb、CeSb、LaSn、LaCoSn、CoSb、InSb、SbSn等がある。ここで、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素、及び該元素を有する化合物等を合金系材料と呼ぶ場合がある。
 本明細書等において、「SiO」は例えば一酸化シリコンを指す。あるいはSiOは、SiOと表すこともできる。ここでxは1または1近傍の値を有することが好ましい。例えばxは、0.2以上1.5以下が好ましく、0.3以上1.2以下が好ましい。
 炭素材料は、黒鉛、易黒鉛化性炭素(ソフトカーボン)、難黒鉛化性炭素(ハードカーボン)、炭素繊維(カーボンナノチューブ)、グラフェン、カーボンブラック等を用いればよい。
 黒鉛は、人造黒鉛または天然黒鉛等が挙げられる。人造黒鉛としては例えば、メソカーボンマイクロビーズ(MCMB)、コークス系人造黒鉛、ピッチ系人造黒鉛等が挙げられる。ここで人造黒鉛として、球状の形状を有する球状黒鉛を用いることができる。例えば、MCMBは球状の形状を有する場合があり、好ましい。また、MCMBはその表面積を小さくすることが比較的容易であり、好ましい場合がある。天然黒鉛としては、例えば、鱗片状黒鉛、球状化天然黒鉛等が挙げられる。
 黒鉛は、リチウムイオンが黒鉛に挿入されたとき(リチウム−黒鉛層間化合物の生成時)にリチウム金属と同程度に低い電位を示す(0.05V以上0.3V以下 vs.Li/Li)。これにより、黒鉛を用いたリチウムイオン電池は高い作動電圧を示すことができる。さらに、黒鉛は、単位体積当たりの容量が比較的高い、体積膨張が比較的小さい、安価である、リチウム金属に比べて安全性が高い等の利点を有するため、好ましい。
 また、負極活物質として、二酸化チタン(TiO)、リチウムチタン酸化物(LiTi12)、リチウム−黒鉛層間化合物(Li)、五酸化ニオブ(Nb)、酸化タングステン(WO)、酸化モリブデン(MoO)等の酸化物を用いることができる。
 また、負極活物質として、リチウムと遷移金属の複窒化物である、LiN型構造をもつLi3−xN(M=Co、Ni、Cu)を用いることができる。例えば、Li2.6Co0.4は大きな放電容量(900mAh/g、1890mAh/cm)を示し好ましい。
 リチウムと遷移金属の複窒化物を用いると、負極活物質中にリチウムイオンを含むため、正極活物質としてリチウムイオンを含まないV、Cr等の材料と組み合わせることができ好ましい。なお、正極活物質にリチウムイオンを含む材料を用いる場合でも、予め正極活物質に含まれるリチウムイオンを脱離させることで、負極活物質としてリチウムと遷移金属の複窒化物を用いることができる。
 また、コンバージョン反応が生じる材料を負極活物質として用いることもできる。例えば、酸化コバルト(CoO)、酸化ニッケル(NiO)、酸化鉄(FeO)等の、リチウムとの合金を作らない遷移金属酸化物を負極活物質に用いてもよい。コンバージョン反応が生じる材料としては、さらに、Fe、CuO、CuO、RuO、Cr等の酸化物、CoS0.89、NiS、CuS等の硫化物、Zn、CuN、Ge等の窒化物、NiP、FeP、CoP等のリン化物、FeF、BiF等のフッ化物でも起こる。
 また、負極の別の形態として、電池の作製終了時点において負極活物質を有さない負極であってもよい。負極活物質を有さない負極として、例えば電池の作製終了時点において負極集電体のみを有する負極であって、電池の充電によって正極活物質から脱離するリチウムイオンが、負極集電体上にリチウム金属として析出し負極活物質層を形成する負極、とすることができる。このような負極を用いた電池は、負極フリー(アノードフリー)電池、負極レス(アノードレス)電池、などと呼ぶことがある。
 負極活物質を有さない負極を用いる場合、負極集電体上にリチウムの析出を均一化するための膜を有してもよい。リチウムの析出を均一化するための膜として、例えばリチウムイオン伝導性を有する固体電解質を用いることができる。固体電解質として、硫化物系固体電解質、酸化物系固体電解質、及び高分子系固体電解質などを用いることができる。なかでも、高分子系固体電解質は負極集電体上に均一に膜形成することが比較的容易であるため、リチウムの析出を均一化するための膜として好適である。また、リチウムの析出を均一化するための膜として、例えばリチウムと合金を形成する金属膜を用いることができる。リチウムと合金を形成する金属膜として、例えばマグネシウム金属膜を用いることができる。リチウムとマグネシウムとは広い組成範囲において固溶体を形成するため、リチウムの析出を均一化するための膜として好適である。
 また、負極活物質を有さない負極を用いる場合、凹凸を有する負極集電体を用いることができる。凹凸を有する負極集電体を用いる場合、負極集電体の凹部は負極集電体が有するリチウムが析出し易い空洞となるため、リチウムが析出する際に、デンドライト状の形状となることを抑制することができる。
 負極活物質層が有することのできる導電材及びバインダとしては、正極活物質層が有することのできる導電材及びバインダと同様の材料を用いることができる。
<負極集電体>
 負極集電体には、正極集電体と同様の材料に加え、銅なども用いることができる。なお負極集電体は、リチウム等のキャリアイオンと合金化しない材料を用いることが好ましい。
[電解液]
 電解液は、溶媒と電解質を有する。電解液の溶媒としては、非プロトン性有機溶媒が好ましく、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ギ酸メチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、1,3−ジオキサン、1,4−ジオキサン、ジメトキシエタン(DME)、ジメチルスルホキシド、ジエチルエーテル、メチルジグライム、アセトニトリル、ベンゾニトリル、テトラヒドロフラン、スルホラン、スルトン等の1種、又はこれらのうちの2種以上を任意の組み合わせおよび比率で用いることができる。
 また、電解液の溶媒として、難燃性および難揮発性であるイオン液体(常温溶融塩)を一つ又は複数用いることで、二次電池の内部短絡または過充電等によって内部温度が上昇しても、二次電池の破裂および/または発火などを防ぐことができる。イオン液体は、カチオンとアニオンからなり、有機カチオンとアニオンとを含む。電解液に用いる有機カチオンとして、四級アンモニウムカチオン、三級スルホニウムカチオン、および四級ホスホニウムカチオン等の脂肪族オニウムカチオン、イミダゾリウムカチオンおよびピリジニウムカチオン等の芳香族カチオンが挙げられる。また、電解液に用いるアニオンとして、1価のアミド系アニオン、1価のメチド系アニオン、フルオロスルホン酸アニオン、パーフルオロアルキルスルホン酸アニオン、テトラフルオロボレートアニオン、パーフルオロアルキルボレートアニオン、ヘキサフルオロホスフェートアニオン、またはパーフルオロアルキルホスフェートアニオン等が挙げられる。
 また、上記の溶媒に溶解させる電解質としては、例えばLiPF、LiClO、LiAsF、LiBF、LiAlCl、LiSCN、LiBr、LiI、LiSO、Li10Cl10、Li12Cl12、LiCFSO、LiCSO、LiC(CFSO、LiC(CSO、LiN(CFSO、LiN(CSO)(CFSO)、LiN(CSO等のリチウム塩を一種、又はこれらのうちの二種以上を任意の組み合わせおよび比率で用いることができる。
 二次電池に用いる電解液は、粒状のごみまたは電解液の構成元素以外の元素(以下、単に「不純物」ともいう。)の含有量が少ない高純度化された電解液を用いることが好ましい。具体的には、電解液に対する不純物の重量比を1%以下、好ましくは0.1%以下、より好ましくは0.01%以下とすることが好ましい。
 また、電解液にビニレンカーボネート、プロパンスルトン(PS)、tert−ブチルベンゼン(TBB)、フルオロエチレンカーボネート(FEC)、リチウムビス(オキサレート)ボレート(LiBOB)、またスクシノニトリル、アジポニトリル等のジニトリル化合物、フルオロベンゼン、エチレングリコースビス(プロピオニトリル)エーテルなどの添加剤を添加してもよい。添加する材料の濃度はそれぞれ、例えば溶媒全体に対してそれぞれ0.1wt%以上5wt%以下とすればよい。VCまたはLiBOBは良好な被覆部を形成しやすく、特に好ましい。なお添加剤は二次電池のエージング処理の際に活物質表面に付着する被膜となる場合がある。そのため少しでも充放電を経た二次電池では、電解液から少なくとも一部の添加剤が検出されない場合がある。
 また、ポリマーを電解液で膨潤させたポリマーゲル電解質を用いてもよい。
 ポリマーゲル電解質を用いることで、漏液性等に対する安全性が高まる。また、二次電池の薄型化および軽量化が可能である。
 ゲル化されるポリマーとして、シリコーンゲル、アクリルゲル、アクリロニトリルゲル、ポリエチレンオキサイド系ゲル、ポリプロピレンオキサイド系ゲル、フッ素系ポリマーのゲル等を用いることができる。
 ポリマーとしては、例えばポリエチレンオキシド(PEO)などのポリアルキレンオキシド構造を有するポリマー、PVDF、およびポリアクリロニトリル等、およびそれらを含む共重合体等を用いることができる。例えばPVDFとヘキサフルオロプロピレン(HFP)の共重合体であるPVDF−HFPを用いることができる。また、形成されるポリマーは、多孔質形状を有してもよい。
 また、電解液の代わりに、硫化物系または酸化物系等の無機物材料を有する固体電解質、PEO(ポリエチレンオキシド)系等の高分子材料を有する固体電解質等を用いることができる。固体電解質を用いる場合には、セパレータおよび/またはスペーサの設置が不要となる。また、電池全体を固体化できるため、漏液のおそれがなくなり安全性が飛躍的に向上する。
[セパレータ]
 電解質が電解液を含む場合、正極と負極の間にセパレータを配置する。セパレータとしては、例えば、紙をはじめとするセルロースを有する繊維、不織布、ガラス繊維、セラミックス、或いはナイロン(ポリアミド)、ビニロン(ポリビニルアルコール系繊維)、ポリエステル、アクリル、ポリオレフィン、ポリウレタンを用いた合成繊維等で形成されたものを用いることができる。セパレータは袋状に加工し、正極または負極のいずれか一方を包むように配置することが好ましい。
 セパレータは多層構造であってもよい。例えばポリプロピレン、ポリエチレン等の有機材料フィルムに、セラミックス系材料、フッ素系材料、ポリアミド系材料、またはこれらを混合したもの等をコートすることができる。セラミックス系材料としては、例えば酸化アルミニウム粒子、酸化シリコン粒子等を用いることができる。フッ素系材料としては、例えばPVDF、ポリテトラフルオロエチレン等を用いることができる。ポリアミド系材料としては、例えばナイロン、アラミド(メタ系アラミド、パラ系アラミド)等を用いることができる。
 セラミックス系材料をコートすると耐酸化性が向上するため、高電圧充放電の際のセパレータの劣化を抑制し、二次電池の信頼性を向上させることができる。またフッ素系材料をコートするとセパレータと電極が密着しやすくなり、出力特性を向上させることができる。ポリアミド系材料、特にアラミドをコートすると、耐熱性が向上するため、二次電池の安全性を向上させることができる。
 例えば、ポリプロピレンのフィルムの両面に酸化アルミニウムとアラミドの混合材料をコートしてもよい。また、ポリプロピレンのフィルムの、正極と接する面に酸化アルミニウムとアラミドの混合材料をコートし、負極と接する面にフッ素系材料をコートしてもよい。
 多層構造のセパレータを用いると、セパレータ全体の厚さが薄くても二次電池の安全性を保つことができるため、二次電池の体積あたりの容量を大きくすることができる。
[外装体]
 二次電池が有する外装体としては、例えばアルミニウムなどの金属材料または樹脂材料を用いることができる。また、フィルム状の外装体を用いることもできる。フィルムとしては、例えばポリエチレン、ポリプロピレン、ポリカーボネート、アイオノマー、ポリアミド等の材料からなる膜上に、アルミニウム、ステンレス、銅、ニッケル等の可撓性に優れた金属薄膜を設け、さらに該金属薄膜上に外装体の外面としてポリアミド系樹脂、ポリエステル系樹脂等の絶縁性合成樹脂膜を設けた三層構造のフィルムを用いることができる。
(実施の形態4)
 本実施の形態では、先の実施の形態で説明した作製方法によって作製された正極を有する二次電池に関し、形状の例を説明する。
[コイン型二次電池]
 コイン型の二次電池の一例について説明する。図11Aはコイン型(単層偏平型)の二次電池の分解斜視図であり、図11Bは、外観図であり、図11Cは、その断面図である。コイン型の二次電池は主に小型の電子機器に用いられる。
 なお、図11Aでは、わかりやすくするために部材の重なり(上下関係、及び位置関係)がわかるように模式図としている。従って図11Aと図11Bは完全に一致する対応図とはしていない。
 図11Aでは、正極304、セパレータ310、負極307、スペーサ322、ワッシャー312を重ねている。これらを負極缶302と正極缶301とガスケットで封止している。なお、図11Aにおいて、封止のためのガスケットは図示していない。スペーサ322、ワッシャー312は、正極缶301と負極缶302を圧着する際に、内部を保護または缶内の位置を固定するために用いられている。スペーサ322、ワッシャー312はステンレスまたは絶縁材料を用いる。
 正極集電体305上に正極活物質層306が形成された積層構造を正極304としている。
 図11Bは、完成したコイン型の二次電池の斜視図である。
 コイン型の二次電池300は、正極端子を兼ねた正極缶301と負極端子を兼ねた負極缶302とが、ポリプロピレン等で形成されたガスケット303で絶縁シールされている。正極304は、正極集電体305と、これと接するように設けられた正極活物質層306により形成される。また、負極307は、負極集電体308と、これに接するように設けられた負極活物質層309により形成される。また、負極307は、積層構造に限定されず、リチウム金属箔またはリチウムとアルミニウムの合金箔を用いてもよい。
 なお、コイン型の二次電池300に用いる正極304及び負極307は、それぞれ活物質層は片面のみに形成すればよい。
 正極缶301、負極缶302には、電解液に対して耐食性のあるニッケル、アルミニウム、チタン等の金属、若しくはこれらの合金又はこれらと他の金属との合金(例えばステンレス鋼等)を用いることができる。また、電解液などによる腐食を防ぐため、ニッケルまたはアルミニウム等を被覆することが好ましい。正極缶301は正極304と、負極缶302は負極307とそれぞれ電気的に接続する。
 これら負極307、正極304及びセパレータ310を電解液に浸し、図11Cに示すように、正極缶301を下にして正極304、セパレータ310、負極307、負極缶302をこの順で積層し、正極缶301と負極缶302とをガスケット303を介して圧着してコイン形の二次電池300を製造する。
 上記の構成を有することで、放電容量が高く、且つ、サイクル特性に優れたコイン型の二次電池300とすることができる。
[円筒型二次電池]
 円筒型の二次電池の例について図12Aを参照して説明する。円筒型の二次電池616は、図12Aに示すように、上面に正極キャップ(電池蓋)601を有し、側面及び底面に電池缶(外装缶)602を有している。これら正極キャップ601と電池缶(外装缶)602とは、ガスケット(絶縁パッキン)610によって絶縁されている。
 図12Bは、円筒型の二次電池の断面を模式的に示した図である。図12Bに示す円筒型の二次電池は、上面に正極キャップ(電池蓋)601を有し、側面及び底面に電池缶(外装缶)602を有している。これら正極キャップ601と電池缶(外装缶)602とは、ガスケット(絶縁パッキン)610によって絶縁されている。
 中空円柱状の電池缶602の内側には、帯状の正極604と負極606とがセパレータ605を間に挟んで捲回された電池素子が設けられている。図示しないが、電池素子は中心軸を中心に捲回されている。電池缶602は、一端が閉じられ、他端が開いている。電池缶602には、電解液に対して耐腐食性のあるニッケル、アルミニウム、チタン等の金属、又はこれらの合金、これらと他の金属との合金(例えば、ステンレス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケル及びアルミニウム等を電池缶602に被覆することが好ましい。電池缶602の内側において、正極、負極及びセパレータが捲回された電池素子は、対向する一対の絶縁板608、609により挟まれている。また、電池素子が設けられた電池缶602の内部は、非水電解液(図示せず)が注入されている。非水電解液は、コイン型の二次電池と同様のものを用いることができる。
 円筒型の蓄電池に用いる正極及び負極は捲回するため、集電体の両面に活物質を形成することが好ましい。
 実施の形態1、2等で得られる正極活物質100を正極604に用いることで、高容量、且つ、放電容量が高く、且つ、サイクル特性に優れた円筒型の二次電池616とすることができる。
 正極604には正極端子(正極集電リード)603が接続され、負極606には負極端子(負極集電リード)607が接続される。正極端子603及び負極端子607は、ともにアルミニウムなどの金属材料を用いることができる。正極端子603は安全弁機構613に、負極端子607は電池缶602の底にそれぞれ抵抗溶接される。安全弁機構613は、PTC素子(Positive Temperature Coefficient)611を介して正極キャップ601と電気的に接続されている。安全弁機構613は電池の内圧の上昇が所定の閾値を超えた場合に、正極キャップ601と正極604との電気的な接続を切断するものである。また、PTC素子611は温度が上昇した場合に抵抗が増大する熱感抵抗素子であり、抵抗の増大により電流量を制限して異常発熱を防止するものである。PTC素子には、チタン酸バリウム(BaTiO)系半導体セラミックス等を用いることができる。
 図12Cは蓄電システム615の一例を示す。蓄電システム615は複数の二次電池616を有する。それぞれの二次電池の正極は、絶縁体625で分離された導電体624に接触し、電気的に接続されている。導電体624は配線623を介して、制御回路620に電気的に接続されている。また、それぞれの二次電池の負極は、配線626を介して制御回路620に電気的に接続されている。制御回路620として、充放電などを行う充放電制御回路、または過充電もしくは/及び過放電を防止する保護回路を適用することができる。
 図12Dは、蓄電システム615の一例を示す。蓄電システム615は複数の二次電池616を有し、複数の二次電池616は、導電板628及び導電板614の間に挟まれている。複数の二次電池616は、配線627により導電板628及び導電板614と電気的に接続される。複数の二次電池616は、並列接続されていてもよいし、直列接続されていてもよいし、並列に接続された後さらに直列に接続されていてもよい。複数の二次電池616を有する蓄電システム615を構成することで、大きな電力を取り出すことができる。
 複数の二次電池616が、並列に接続された後、さらに直列に接続されてもよい。
 また、複数の二次電池616の間に温度制御装置を有していてもよい。二次電池616が過熱されたときは、温度制御装置により冷却し、二次電池616が冷えすぎているときは温度制御装置により加熱することができる。そのため蓄電システム615の性能が外気温に影響されにくくなる。
 また、図12Dにおいて、蓄電システム615は制御回路620に配線621及び配線622を介して電気的に接続されている。配線621は導電板628を介して複数の二次電池616の正極に、配線622は導電板614を介して複数の二次電池616の負極に、それぞれ電気的に接続される。
[二次電池の他の構造例]
 二次電池の構造例について図13及び図14を用いて説明する。
 図13Aに示す二次電池913は、筐体930の内部に端子951と端子952が設けられた捲回体950を有する。捲回体950は、筐体930の内部で電解液中に浸される。端子952は、筐体930に接し、端子951は、絶縁材などを用いることにより筐体930に接していない。なお、図13Aでは、便宜のため、筐体930を分離して図示しているが、実際は、捲回体950が筐体930に覆われ、端子951及び端子952が筐体930の外に延在している。筐体930としては、金属材料(例えばアルミニウムなど)又は樹脂材料を用いることができる。
 なお、図13Bに示すように、図13Aに示す筐体930を複数の材料によって形成してもよい。例えば、図13Bに示す二次電池913は、筐体930aと筐体930bが貼り合わされており、筐体930a及び筐体930bで囲まれた領域に捲回体950が設けられている。
 筐体930aとしては、有機樹脂など、絶縁材料を用いることができる。特に、アンテナが形成される面に有機樹脂などの材料を用いることにより、二次電池913による電界の遮蔽を抑制できる。なお、筐体930aによる電界の遮蔽が小さければ、筐体930aの内部にアンテナを設けてもよい。筐体930bとしては、例えば金属材料を用いることができる。
 さらに、捲回体950の構造について図13Cに示す。捲回体950は、負極931と、正極932と、セパレータ933と、を有する。捲回体950は、セパレータ933を挟んで負極931と、正極932が重なり合って積層され、該積層シートを捲回させた捲回体である。なお、負極931と、正極932と、セパレータ933と、の積層を、さらに複数重ねてもよい。
 また、図14に示すような捲回体950aを有する二次電池913としてもよい。図14Aに示す捲回体950aは、負極931と、正極932と、セパレータ933と、を有する。負極931は負極活物質層931aを有する。正極932は正極活物質層932aを有する。
 実施の形態1、2等で得られる正極活物質100を正極932に用いることで、高容量、且つ、放電容量が高く、且つ、サイクル特性に優れた二次電池913とすることができる。
 セパレータ933は、負極活物質層931a及び正極活物質層932aよりも広い幅を有し、負極活物質層931a及び正極活物質層932aと重畳するように捲回されている。また正極活物質層932aよりも負極活物質層931aの幅が広いことが安全性の点で好ましい。またこのような形状の捲回体950aは安全性及び生産性がよく好ましい。
 図14Bに示すように、負極931は、超音波接合、溶接、または圧着により端子951と電気的に接続される。端子951は端子911aと電気的に接続される。また正極932は、超音波接合、溶接、または圧着により端子952と電気的に接続される。端子952は端子911bと電気的に接続される。
 図14Cに示すように、筐体930により捲回体950a及び電解液が覆われ、二次電池913となる。筐体930には安全弁、過電流保護素子等を設けることが好ましい。安全弁は、電池破裂を防止するため、筐体930の内部が所定の内圧で開放する弁である。
 図14Bに示すように二次電池913は複数の捲回体950aを有していてもよい。複数の捲回体950aを用いることで、より放電容量の大きい二次電池913とすることができる。図14A及び図14Bに示す二次電池913の他の要素は、図13A乃至図13Cに示す二次電池913の記載を参酌することができる。
<ラミネート型二次電池>
 次に、ラミネート型の二次電池の例について、外観図の一例を図15A及び図15Bに示す。図15A及び図15Bは、正極503、負極506、セパレータ507、外装体509、正極リード電極510、及び負極リード電極511を有する。
 図16Aは正極503及び負極506の外観図を示す。正極503は正極集電体501を有し、正極活物質層502は正極集電体501の表面に形成されている。また、正極503は正極集電体501が一部露出する領域(以下、タブ領域という)を有する。負極506は負極集電体504を有し、負極活物質層505は負極集電体504の表面に形成されている。また、負極506は負極集電体504が一部露出する領域、すなわちタブ領域を有する。なお、正極及び負極が有するタブ領域の面積または形状は、図16Aに示す例に限られない。
<ラミネート型二次電池の作製方法>
 図15Aに外観図を示すラミネート型二次電池の作製方法の一例について、図16B及び図16Cを用いて説明する。
 まず、負極506、セパレータ507及び正極503を積層する。図16Bに積層された負極506、セパレータ507及び正極503を示す。ここでは負極を5組、正極を4組使用する例を示す。負極とセパレータと正極からなる積層体とも呼べる。次に、正極503のタブ領域同士の接合と、最表面の正極のタブ領域への正極リード電極510の接合を行う。接合には、例えば超音波溶接等を用いればよい。同様に、負極506のタブ領域同士の接合と、最表面の負極のタブ領域への負極リード電極511の接合を行う。
 次に、外装体509上に、負極506、セパレータ507及び正極503を配置する。
 次に、図16Cに示すように、外装体509を破線で示した部分で折り曲げる。その後、外装体509の外周部を接合する。接合には例えば熱圧着等を用いればよい。この時、後に電解液を入れることができるように、外装体509の一部(または一辺)に接合されない領域(以下、導入口という)を設ける。
 次に、外装体509に設けられた導入口から、電解液を外装体509の内側へ導入する。電解液の導入は、減圧雰囲気下、或いは不活性雰囲気下で行うことが好ましい。そして最後に、導入口を接合する。このようにして、ラミネート型の二次電池500を作製することができる。
 実施の形態1、2等で得られる正極活物質100を正極503に用いることで、高容量、且つ、放電容量が高く、且つ、サイクル特性に優れた二次電池500とすることができる。
(実施の形態5)
 本実施の形態では、本発明の一態様の二次電池を有する車両の例を示す。
 車両として、代表的には自動車に二次電池を適用することができる。自動車としては、ハイブリッド車(HV)、電気自動車(EV)、又はプラグインハイブリッド車(PHEVまたはPHVともいう)等の次世代クリーンエネルギー自動車を挙げることができ、自動車に搭載する電源の一つとして二次電池を適用することができる。車両は自動車に限定されない。例えば、車両としては、電車、モノレール、船、潜水艇(深海探査艇、無人潜水艇)、飛行体(ヘリコプター、無人航空機(ドローン)、飛行機、ロケット、人工衛星)、電動自転車、電動バイクなども挙げることができ、これらの車両に本発明の一態様の二次電池を適用することができる。
 図17(C)は本発明の二次電池を電気自動車(EV)に適用する例である。電気自動車には、メインの駆動用の二次電池として第1のバッテリ1301a、1301bと、モータ1304を始動させるインバータ1312に電力を供給する第2のバッテリ1311が設置されている。第2のバッテリ1311はクランキングバッテリー(スターターバッテリーとも呼ばれる)とも呼ばれる。第2のバッテリ1311は高出力できればよく、大容量はそれほど必要とされず、第2のバッテリ1311の容量は第1のバッテリ1301a、1301bと比較して小さい。
 第1のバッテリ1301aの内部構造は、図13Cまたは図14Aに示した捲回型であってもよいし、図15Aまたは図15Bに示した積層型であってもよい。また、第1のバッテリ1301aは、実施の形態6の全固体電池を用いてもよい。第1のバッテリ1301aに実施の形態6の全固体電池を用いることで高容量とすることができ、安全性が向上し、小型化、軽量化することができる。
 本実施の形態では、第1のバッテリ1301a、1301bを2つ並列に接続させている例を示しているが3つ以上並列に接続させてもよい。また、第1のバッテリ1301aで十分な電力を貯蔵できるのであれば、第1のバッテリ1301bはなくてもよい。複数の二次電池を有する電池パックを構成することで、大きな電力を取り出すことができる。複数の二次電池は、並列接続されていてもよいし、直列接続されていてもよいし、並列に接続された後、さらに直列に接続されていてもよい。複数の二次電池を組電池とも呼ぶ。
 また、車載用の二次電池において、複数の二次電池からの電力を遮断するため、工具を使わずに高電圧を遮断できるサービスプラグまたはサーキットブレーカを有しており、第1のバッテリ1301aに設けられる。
 また、第1のバッテリ1301a、1301bの電力は、主にモータ1304を回転させることに使用されるが、DCDC回路1306を介して42V系の車載部品(電動パワステ1307、ヒーター1308、デフォッガ1309など)に電力を供給する。後輪にリアモータ1317を有している場合にも、第1のバッテリ1301aがリアモータ1317を回転させることに使用される。
 また、第2のバッテリ1311は、DCDC回路1310を介して14V系の車載部品(オーディオ1313、パワーウィンドウ1314、ランプ類1315など)に電力を供給する。
 次に、第1のバッテリ1301aについて、図17Aを用いて説明する。
 図17Aでは9個の角型二次電池1300を一つの電池パック1415としている例を示している。また、9個の角型二次電池1300を直列接続し、一方の電極を絶縁体からなる固定部1413で固定し、もう一方の電極を絶縁体からなる固定部1414で固定している。本実施の形態では固定部1413、1414で固定する例を示しているが電池収容ボックス(筐体とも呼ぶ)に収納させる構成としてもよい。車両は外部(路面など)から振動または揺れが加えられることを想定されているため、固定部1413、1414や。電池収容ボックスなどで複数の二次電池を固定することが好ましい。また、一方の電極は配線1421によって制御回路部1320に電気的に接続されている。またもう一方の電極は配線1422によって制御回路部1320に電気的に接続されている。
 また、制御回路部1320は、酸化物半導体を用いたトランジスタを含むメモリ回路を用いてもよい。酸化物半導体を用いたトランジスタを含むメモリ回路を有する充電制御回路、又は電池制御システムを、BTOS(Battery operating system、又はBattery oxide semiconductor)と呼称する場合がある。
 酸化物半導体として機能する金属酸化物を用いることが好ましい。例えば、金属酸化物として、In−M2−Zn酸化物(元素M2は、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、又はマグネシウム等から選ばれた一種、又は複数種)等の金属酸化物を用いるとよい。特に、金属酸化物として適用できるIn−M−Zn酸化物は、CAAC−OS(C−Axis Aligned Crystal Oxide Semiconductor)、CAC−OS(Cloud−Aligned Composite Oxide Semiconductor)であることが好ましい。また、金属酸化物として、In−Ga酸化物、In−Zn酸化物を用いてもよい。CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、またはCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。
 なお、「CAC−OS」は、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう。)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。ただし、第1の領域と第2の領域は、明確な境界が観察困難な場合がある。
 例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
 CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、及び良好なスイッチング動作を実現することができる。
 酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
 また、高温環境下で使用可能であるため、制御回路部1320は酸化物半導体を用いるトランジスタを用いることが好ましい。プロセスを簡略なものとするため、制御回路部1320は単極性のトランジスタを用いて形成してもよい。半導体層に酸化物半導体を用いるトランジスタは、動作周囲温度が単結晶Siよりも広く−40℃以上150℃以下であり、二次電池が加熱しても特性変化が単結晶に比べて小さい。酸化物半導体を用いるトランジスタのオフ電流は、150℃であっても温度によらず測定下限以下であるが、単結晶Siトランジスタのオフ電流特性は、温度依存性が大きい。例えば、150℃では、単結晶Siトランジスタはオフ電流が上昇し、電流オン/オフ比が十分に大きくならない。制御回路部1320は、安全性を向上することができる。また、実施の形態1、2等で得られる正極活物質100を正極に用いた二次電池と組み合わせることで安全性についての相乗効果が得られる。実施の形態1、2等で得られる正極活物質100を正極に用いた二次電池及び制御回路部1320は、二次電池による火災等の事故撲滅に大きく寄与することができる。
 酸化物半導体を用いたトランジスタを含むメモリ回路を用いた制御回路部1320は、マイクロショート等の10項目の不安定性の原因に対し、二次電池の自動制御装置として機能させることもできる。10項目の不安定性の原因を解消する機能としては、過充電の防止、過電流の防止、充電時過熱制御、組電池でのセルバランス、過放電の防止、残量計、温度に応じた充電電圧及び電流量自動制御、劣化度に応じた充電電流量制御、マイクロショート異常挙動検知、マイクロショートに関する異常予測などが挙げられ、そのうちの少なくとも一つの機能を制御回路部1320が有する。また、二次電池の自動制御装置の超小型化が可能である。
 また、「マイクロショート」とは、二次電池の内部の微小な短絡のことを指しており、二次電池の正極と負極が短絡して充放電不可能の状態になるというほどではなく、微小な短絡部でわずかに短絡電流が流れてしまう現象を指している。比較的短時間、且つ、わずかな箇所であっても大きな電圧変化が生じるため、その異常な電圧値がその後の推定に影響を与える恐れがある。
 マイクロショートの原因の一つは、充放電が複数回行われることによって、正極活物質の不均一な分布により、正極の一部と負極の一部で局所的な電流の集中が生じ、セパレータの一部が機能しなくなる箇所が発生、または副反応による副反応物の発生によりミクロな短絡が生じていると言われている。
 また、マイクロショートの検知だけでなく、制御回路部1320は、二次電池の端子電圧を検知し、二次電池の充放電状態を管理するとも言える。例えば、過充電を防ぐために充電回路の出力トランジスタと遮断用スイッチの両方をほぼ同時にオフ状態とすることができる。
 次に、図17Aに示す電池パック1415のブロック図の一例を図17Bに示す。
 制御回路部1320は、少なくとも過充電を防止するスイッチと、過放電を防止するスイッチを含むスイッチ部1324と、スイッチ部1324を制御する制御回路1322と、第1のバッテリ1301aの電圧測定部と、を有する。制御回路部1320は、使用する二次電池の上限電圧と下限電圧が設定されており、外部からの電流上限、または外部への出力電流の上限などを制限している。二次電池の下限電圧以上上限電圧以下の範囲内は、使用が推奨されている電圧範囲内であり、その範囲外となるとスイッチ部1324が作動し、保護回路として機能する。また、制御回路部1320は、スイッチ部1324を制御して過放電および/または過充電を防止するため、保護回路とも呼べる。例えば、過充電となりそうな電圧を制御回路1322で検知した場合にスイッチ部1324のスイッチをオフ状態とすることで電流を遮断する。さらに充放電経路中にPTC素子を設けて温度の上昇に応じて電流を遮断する機能を設けてもよい。また、制御回路部1320は、外部端子1325(+IN)と、外部端子1326(−IN)とを有している。
 スイッチ部1324は、nチャネル型のトランジスタまたはpチャネル型のトランジスタを組み合わせて構成することができる。スイッチ部1324は、単結晶シリコンを用いるSiトランジスタを有するスイッチに限定されず、例えば、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)、InP(リン化インジウム)、SiC(シリコンカーバイド)、ZnSe(セレン化亜鉛)、GaN(窒化ガリウム)、GaOx(酸化ガリウム;xは0より大きい実数)などを有するパワートランジスタでスイッチ部1324を形成してもよい。また、OSトランジスタを用いた記憶素子は、Siトランジスタを用いた回路上などに積層することで自由に配置可能であるため、集積化を容易に行うことができる。またOSトランジスタは、Siトランジスタと同様の製造装置を用いて作製することが可能であるため、低コストで作製可能である。即ち、スイッチ部1324上にOSトランジスタを用いた制御回路部1320を積層し、集積化することで1チップとすることもできる。制御回路部1320の占有体積を小さくすることができるため、小型化が可能となる。
 第1のバッテリ1301a、1301bは、主に42V系(高電圧系)の車載機器に電力を供給し、第2のバッテリ1311は14V系(低電圧系)の車載機器に電力を供給する。第2のバッテリ1311は鉛蓄電池がコスト上有利のため採用されることが多い。鉛蓄電池はリチウムイオン電池と比べて自己放電が大きく、サルフェーションとよばれる現象により劣化しやすい欠点がある。第2のバッテリ1311をリチウムイオン電池とすることでメンテナンスフリーとするメリットがある。特にインバータを起動する第2のバッテリ1311が動作不能となると、第1のバッテリ1301a、1301bに残容量があってもモータを起動させることができなくなることを防ぐため、第2のバッテリ1311が鉛蓄電池の場合は、第1のバッテリから第2のバッテリに電力を供給し、常に満充電状態を維持するように充電されている。
 本実施の形態では、第1のバッテリ1301aと第2のバッテリ1311の両方にリチウムイオン電池を用いる一例を示す。第2のバッテリ1311は、鉛蓄電池、全固体電池、または電気二重層キャパシタを用いてもよい。例えば、実施の形態6の全固体電池を用いてもよい。第2のバッテリ1311に実施の形態6の全固体電池を用いることで高容量とすることができ、小型化、軽量化することができる。
 また、タイヤ1316の回転による回生エネルギーは、ギア1305を介してモータ1304に送られ、モータコントローラ1303、またはバッテリーコントローラ1302から制御回路部1321を介して第2のバッテリ1311に充電される。またはバッテリーコントローラ1302から制御回路部1320を介して第1のバッテリ1301aに充電される。またはバッテリーコントローラ1302から制御回路部1320を介して第1のバッテリ1301bに充電される。回生エネルギーを効率よく充電するためには、第1のバッテリ1301a、1301bが急速充電可能であることが望ましい。
 バッテリーコントローラ1302は第1のバッテリ1301a、1301bの充電電圧及び充電電流などを設定することができる。バッテリーコントローラ1302は、用いる二次電池の充電特性に合わせて充電条件を設定し、急速充電することができる。
 また、図示していないが、外部の充電器と接続させる場合、充電器のコンセントまたは充電器の接続ケーブルは、バッテリーコントローラ1302に電気的に接続される。外部の充電器から供給された電力はバッテリーコントローラ1302を介して第1のバッテリ1301a、1301bに充電する。また、充電器によっては、制御回路が設けられており、バッテリーコントローラ1302の機能を用いない場合もあるが、過充電を防ぐため制御回路部1320を介して第1のバッテリ1301a、1301bを充電することが好ましい。また、接続ケーブルまたは充電器の接続ケーブルに制御回路を備えている場合もある。制御回路部1320は、ECU(Electronic Control Unit)と呼ばれることもある。ECUは、電動車両に設けられたCAN(Controller Area Network)に接続される。CANは、車内LANとして用いられるシリアル通信規格の一つである。また、ECUは、マイクロコンピュータを含む。また、ECUは、CPUまたはGPUを用いる。
 充電スタンドなどに設置されている外部の充電器は、100Vコンセント−200Vコンセント、または3相200V且つ50kWなどがある。また、非接触給電方式等により外部の充電設備から電力供給を受けて、充電することもできる。
 急速充電を行う場合、短時間での充電を行うためには、高電圧での充電に耐えうる二次電池が望まれている。
 また、導電材としてグラフェンを用い、電極層を厚くして担持量を高くしても容量低下を抑え、高容量を維持することが相乗効果として大幅に電気特性が向上された二次電池を実現できる。特に車両に用いる二次電池に有効であり、車両全重量に対する二次電池の重量の割合を増加させることなく、航続距離が長い、具体的には一充電走行距離が500km以上の車両を提供することができる。
 特に上述した本実施の形態の二次電池は、実施の形態1、2等で説明した正極活物質100を用いることで二次電池の動作電圧を高くすることができ、充電電圧の増加に伴い、使用できる容量を増加させることができる。また、実施の形態1、2等で説明した正極活物質100を正極に用いることでサイクル特性に優れた車両用の二次電池を提供することができる。
 次に、本発明の一態様である二次電池を車両、代表的には輸送用車両に実装する例について説明する。
 図12D、図14C、図17Aのいずれか一に示した二次電池を車両に搭載すると、ハイブリッド車(HV)、電気自動車(EV)、又はプラグインハイブリッド車(PHV)等の次世代クリーンエネルギー自動車を実現できる。また、農業機械、電動アシスト自転車を含む原動機付自転車、自動二輪車、電動車椅子、電動カート、船舶、潜水艦、航空機、ロケット、人工衛星、宇宙探査機、惑星探査機、または宇宙船に二次電池を搭載することもできる。本発明の一態様の二次電池は高容量の二次電池とすることができる。そのため本発明の一態様の二次電池は、小型化、軽量化に適しており、輸送用車両に好適に用いることができる。
 図18A乃至図18Dにおいて、本発明の一態様を用いた輸送用車両を例示する。図18Aに示す自動車2001は、走行のための動力源として電気モータを用いる電気自動車である。または、走行のための動力源として電気モータとエンジンを適宜選択して用いることが可能なハイブリッド自動車である。二次電池を車両に搭載する場合、実施の形態4で示した二次電池の一例を一箇所または複数個所に設置する。図18Aに示す自動車2001は、電池パック2200を有し、電池パックは、複数の二次電池を接続させた二次電池モジュールを有する。さらに二次電池モジュールに電気的に接続する充電制御装置を有すると好ましい。
 また、自動車2001は、自動車2001が有する二次電池にプラグイン方式または非接触給電方式等により外部の充電設備から電力供給を受けて、充電することができる。充電に際しては、充電方法またはコネクタの規格等はCHAdeMO(登録商標)またはコンボ等の所定の方式で適宜行えばよい。充電装置は、商用施設に設けられた充電ステーションでもよく、また家庭の電源であってもよい。例えば、プラグイン技術によって、外部からの電力供給により自動車2001に搭載された蓄電装置を充電することができる。充電は、ACDCコンバータ等の変換装置を介して、交流電力を直流電力に変換して行うことができる。
 また、図示しないが、受電装置を車両に搭載し、地上の送電装置から電力を非接触で供給して充電することもできる。この非接触給電方式の場合には、道路または外壁に送電装置を組み込むことで、停車中に限らず走行中に充電を行うこともできる。また、この非接触給電の方式を利用して、2台の車両どうしで電力の送受電を行ってもよい。さらに、車両の外装部に太陽電池を設け、停車時または走行時に二次電池の充電を行ってもよい。このような非接触での電力の供給には、電磁誘導方式または磁界共鳴方式を用いることができる。
 図18Bは、輸送用車両の一例として電気により制御するモータを有した大型の輸送車2002を示している。輸送車2002の二次電池モジュールは、例えば公称電圧3.0V以上5.0V以下の二次電池を4個セルユニットとし、48セルを直列に接続した170Vの最大電圧とする。電池パック2201の二次電池モジュールを構成する二次電池の数などが違う以外は、図18Aと同様な機能を備えているので説明は省略する。
 図18Cは、一例として電気により制御するモータを有した大型の輸送車両2003を示している。輸送車両2003の二次電池モジュールは、例えば公称電圧3.0V以上5.0V以下の二次電池を百個以上直列に接続した600Vの最大電圧とする。従って、特性バラツキの小さい二次電池が求められる。実施の形態1、2等で説明した正極活物質100を正極に用いた二次電池を用いることで、安定した電池特性を有する二次電池を製造することができ、歩留まりの観点から低コストで大量生産が可能である。また、電池パック2202の二次電池モジュールを構成する二次電池の数などが違う以外は、図20Aと同様な機能を備えているので説明は省略する。
 図18Dは、一例として燃料を燃焼するエンジンを有した航空機2004を示している。図18Dに示す航空機2004は、離着陸用の車輪を有しているため、輸送車両の一種とも言え、複数の二次電池を接続させて二次電池モジュールを構成し、二次電池モジュールと充電制御装置とを含む電池パック2203を有している。
 航空機2004の二次電池モジュールは、例えば4Vの二次電池を8個直列に接続した32Vの最大電圧とする。電池パック2203の二次電池モジュールを構成する二次電池の数などが異なる以外は、図18Aと同様な機能を備えているので説明は省略する。
 図18Eは、一例として二次電池2204を備えた人工衛星2005を示している。人工衛星2005は極低温の宇宙空間で使用されるため、低温耐性に優れた本発明の一態様である二次電池2204を備えることが好ましい。また、人工衛星2005の内部において、保温部材に覆われた状態で二次電池2204が搭載されることがさらに好ましい。
(実施の形態6)
 本実施の形態では、二次電池を車両に搭載する一例として、二輪車、自転車に本発明の一態様であるリチウムイオン電池を搭載する例を示す。
 図19Aは、本発明の一態様の蓄電装置を用いた電動自転車の一例である。図19Aに示す電動自転車8700に、本発明の一態様の蓄電装置を適用することができる。本発明の一態様の蓄電装置は例えば、複数の蓄電池と、保護回路と、を有する。
 電動自転車8700は、蓄電装置8702を備える。蓄電装置8702は、運転者をアシストするモータに電気を供給することができる。また、蓄電装置8702は、持ち運びができ、図19Bに自転車から取り外した状態を示している。また、蓄電装置8702は、本発明の一態様の蓄電装置が有する蓄電池8701が複数内蔵されており、そのバッテリ残量などを表示部8703で表示できるようにしている。また蓄電装置8702は、実施の形態7に一例を示した二次電池の充電制御または異常検知が可能な制御回路8704を有する。制御回路8704は、蓄電池8701の正極及び負極と電気的に接続されている。また、実施の形態1、2等で得られる正極活物質100を正極に用いた二次電池と組み合わせることで、安全性についての相乗効果が得られる。実施の形態1、2等で得られる正極活物質100を正極に用いた二次電池及び制御回路8704は、二次電池による火災等の事故撲滅に大きく寄与することができる。
 図19Cは、本発明の一態様の蓄電装置を用いた二輪車の一例である。図19Cに示すスクータ8600は、蓄電装置8602、サイドミラー8601、方向指示灯8603を備える。蓄電装置8602は、方向指示灯8603に電気を供給することができる。また、実施の形態1、2等で得られる正極活物質100を正極に用いた二次電池を複数収納された蓄電装置8602は高容量とすることができ、小型化に寄与することができる。
 また、図19Cに示すスクータ8600は、座席下収納8604に、蓄電装置8602を収納することができる。蓄電装置8602は、座席下収納8604が小型であっても、座席下収納8604に収納することができる。
(実施の形態7)
 本実施の形態では、本発明の一態様である二次電池を電子機器に実装する例について説明する。二次電池を実装する電子機器として、例えば、テレビジョン装置(テレビ、又はテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。携帯情報端末としてはノート型パーソナルコンピュータ、タブレット型端末、電子書籍端末、携帯電話機などがある。
 図20Aは、携帯電話機の一例を示している。携帯電話機2100は、筐体2101に組み込まれた表示部2102の他、操作ボタン2103、外部接続ポート2104、スピーカ2105、マイク2106などを備えている。なお、携帯電話機2100は、二次電池2107を有している。実施の形態1、2等で説明した正極活物質100を正極に用いた二次電池2107を備えることで高容量とすることができ、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
 携帯電話機2100は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。
 操作ボタン2103は、時刻設定のほか、電源のオン、オフ動作、無線通信のオン、オフ動作、マナーモードの実行及び解除、省電力モードの実行及び解除など、様々な機能を持たせることができる。例えば、携帯電話機2100に組み込まれたオペレーティングシステムにより、操作ボタン2103の機能を自由に設定することもできる。
 また、携帯電話機2100は、通信規格された近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。
 また、携帯電話機2100は、外部接続ポート2104を備え、他の情報端末とコネクタを介して直接データのやりとりを行うことができる。また外部接続ポート2104を介して充電を行うこともできる。なお、充電動作は外部接続ポート2104を介さずに無線給電により行ってもよい。
 また、携帯電話機2100は、センサを有することが好ましい。センサとしては、例えば、指紋センサ、脈拍センサ、体温センサ等の人体センサ、タッチセンサ、加圧センサ、または加速度センサ等が搭載されることが好ましい。
 図20Bは、複数のローター2302を有する無人航空機2300である。無人航空機2300はドローンと呼ばれることもある。無人航空機2300は、本発明の一態様である二次電池2301と、カメラ2303と、アンテナ(図示しない)を有する。無人航空機2300はアンテナを介して遠隔操作することができる。実施の形態1、2等で得られる正極活物質100を正極に用いた二次電池は高エネルギー密度であり、安全性が高いため、長期間に渡って長時間の安全な使用ができ、無人航空機2300に搭載する二次電池として好適である。
 図20Cは、ロボットの一例を示している。図20Cに示すロボット6400は、二次電池6409、照度センサ6401、マイクロフォン6402、上部カメラ6403、スピーカ6404、表示部6405、下部カメラ6406及び障害物センサ6407、移動機構6408、演算装置等を備える。
 マイクロフォン6402は、使用者の話し声及び環境音等を検知する機能を有する。また、スピーカ6404は、音声を発する機能を有する。ロボット6400は、マイクロフォン6402及びスピーカ6404を用いて、使用者とコミュニケーションをとることが可能である。
 表示部6405は、種々の情報の表示を行う機能を有する。ロボット6400は、使用者の望みの情報を表示部6405に表示することが可能である。表示部6405は、タッチパネルを搭載していてもよい。また、表示部6405は取り外しのできる情報端末であっても良く、ロボット6400の定位置に設置することで、充電及びデータの受け渡しを可能とする。
 上部カメラ6403及び下部カメラ6406は、ロボット6400の周囲を撮像する機能を有する。また、障害物センサ6407は、移動機構6408を用いてロボット6400が前進する際の進行方向における障害物の有無を察知することができる。ロボット6400は、上部カメラ6403、下部カメラ6406及び障害物センサ6407を用いて、周囲の環境を認識し、安全に移動することが可能である。
 ロボット6400は、その内部領域に本発明の一態様に係る二次電池6409と、半導体装置または電子部品を備える。実施の形態1、2等で得られる正極活物質100を正極に用いた二次電池は高エネルギー密度であり、安全性が高いため、長期間に渡って長時間の安全な使用ができ、ロボット6400に搭載する二次電池6409として好適である。
 図20Dは、掃除ロボットの一例を示している。掃除ロボット6300は、筐体6301上面に配置された表示部6302、側面に配置された複数のカメラ6303、ブラシ6304、操作ボタン6305、二次電池6306、各種センサなどを有する。図示されていないが、掃除ロボット6300には、タイヤ、吸い込み口等が備えられている。掃除ロボット6300は自走し、ゴミ6310を検知し、下面に設けられた吸い込み口からゴミを吸引することができる。
 掃除ロボット6300は、カメラ6303が撮影した画像を解析し、壁、家具または段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシ6304に絡まりそうな物体を検知した場合は、ブラシ6304の回転を止めることができる。掃除ロボット6300は、その内部領域に本発明の一態様に係る二次電池6306と、半導体装置または電子部品を備える。実施の形態1、2等で得られる正極活物質100を正極に用いた二次電池は高エネルギー密度であり、安全性が高いため、長期間に渡って長時間の安全な使用ができ、掃除ロボット6300に搭載する二次電池6306として好適である。
 本実施例では、結晶子サイズの大きな正極活物質100を作製し、その特性を評価した。
<正極活物質の作製>
 図6および図7に示す作製方法を参照しながら本実施例で作製したサンプルについて説明する。
<サンプル1乃至サンプル5>
 図6のステップS11において、ニッケル源として硫酸ニッケル(II)、コバルト源として硫酸コバルト(II)、マンガン源として硫酸マンガン(II)を用意した。ステップS13においてキレート剤としてグリシンを用意した。これらの遷移金属M源を2mol/LかつNi:Co:Mn=8:1:1(原子数比)となるよう秤量し、グリシンを0.200mol/Lとなるよう秤量し、これらに純水を加えて溶解させ(ステップS14)、酸溶液を作製した。
 アルカリ溶液として5mol/Lの水酸化ナトリウム水溶液を用いた。
 張り込み液として純水を用いた。張り込み液には窒素をバブリングし、窒素流量は1L/分とした。なおここでの純水のように反応槽にはじめから入れられた水または水溶液を張り込み液と記すことがある。張り込み液は、調整液と記す場合がある。張り込み液及び調整液は、反応前の水または水溶液、つまり初期状態の水または水溶液を指す。
 0.10mL/分で酸溶液を張り込み液に混合しながら、1000rpmで攪拌した。アルカリ溶液を適宜滴下し、張り込み液をpH11.0に維持した。また張り込み液の温度を50℃に維持した。また反応槽にバッフル板を設け、攪拌の方向および流速を変化させた。これらの共沈反応には、OptiMax(メトラー・トレド社製)を用いた。
 上記の共沈反応で生成した沈殿物を純水とアセトンで濾過し、真空乾燥炉で200℃、12時間乾燥し、複合水酸化物を得た。
 図7のステップS41において、リチウム源として水酸化リチウムを用意した。該水酸化リチウムは流動層式ジェットミルを用いて粉砕したものとした。ステップS42において、上記で得られた複合水酸化物と、リチウム源とを混合した。混合比はニッケル、コバルトおよびマンガンの原子数の和を1としたときリチウムを0.7(原子数比)とした。
 ステップS43において、複合水酸化物とリチウム源の混合物を加熱した。加熱には酸化アルミニウムのるつぼを用いて、700℃で10時間、酸素雰囲気でマッフル炉にて加熱した。酸素の流量は5L/分、昇温は100℃/時間とした。その後室温まで冷却し、解砕し(ステップS44)、複合酸化物を得た(ステップS44)。
 ステップS51において、ステップS41と同様の水酸化リチウムを用意した。ステップS52において、上記で得られた複合酸化物と、リチウム源とを混合した。混合比はニッケル、コバルトおよびマンガンの原子数の和を1としたときリチウムを0.31(原子数比)とした。つまりステップS42およびステップS52で混合したリチウムの合計を、ニッケル、コバルトおよびマンガンの原子数の和を1としたとき1.01(原子数比)とした。
 ステップS53において、複合酸化物とリチウム源の混合物を加熱した。加熱温度を850℃とした他はステップS43と同様に行った。その後室温まで放冷し、解砕し(ステップS54)、正極活物質を得た。これをサンプル1とした。
 ステップS53の加熱を875℃とした他はサンプル1と同様に作製したものを、サンプル2とした。
 ステップS53の加熱を900℃とした他はサンプル1と同様に作製したものを、サンプル3とした。
 また比較例として、リチウム源の混合を1回とした正極活物質を作製した。具体的にはステップS41において、ニッケル、コバルトおよびマンガンの原子数の和を1としたときリチウムが1.01(原子数比)となるように混合し、ステップS52では混合しなかった。他はサンプル1と同様に作製したものを、サンプル4とした。
 またサンプル4にさらに800℃、10時間加熱を行って作製した正極活物質を、サンプル5とした。
<サンプル6乃至サンプル9>
 ステップS13として、酸溶液において0.100mol/Lとなるよう秤量したグリシンを用意した。また張り込み液として0.100Mのグリシン水溶液を用いた。また張り込み液に酸溶液を混合する際、0.0443mL/分とした。また共沈反応後に、液温を25℃に制御した後、純水濾過後にアセトンで濾過した。
 またサンプル6、サンプル7、サンプル8およびサンプル9は、ステップS54の後にさらに800℃、10時間加熱を行い(ステップS55)、解砕した(ステップS56)。加熱温度の他はステップS43と同様に行った。他の条件はサンプル1乃至サンプル4と同様に行って作製した正極活物質を、サンプル6乃至サンプル9とした。
<サンプル21>
 またステップS55の加熱および放冷の後に、再度800℃、2時間の加熱を加えた他は、サンプル8と同様に作製したものを、サンプル21とした。
 サンプル1乃至サンプル9およびサンプル21の作製条件を表1に示す。
Figure JPOXMLDOC01-appb-T000001
<SEM>
 サンプル1のSEM像を図21Aに、サンプル2のSEM像を図21Bに、サンプル3のSEM像を図21Cに、サンプル6のSEM像を図21Dに、サンプル7のSEM像を図21Eに、サンプル8のSEM像を図21Fに、それぞれ示す。いずれも一次粒子が大きい正極活物質であることが確認された。またS55の加熱を行っていないサンプル1乃至サンプル3では、正極活物質の表面にリチウム源などの残渣と推測される付着物が観察された。一方で、S55の加熱を行ったサンプル6乃至サンプル8では残渣のほとんどない、なめらかな表面が観察された。
<結晶子サイズ>
 サンプル1乃至サンプル9について、XRD分析により結晶子サイズを算出した。XRD装置および算出方法は実施の形態1に示した通りとした。結晶子サイズを表1に併せて示す。
 表1に示すように、リチウム源を複数回にわけて加えたサンプル1乃至サンプル3およびサンプル6乃至サンプル8では、リチウム源を1回で加えたサンプル4、サンプル5、サンプル9よりも結晶子サイズが大きかった。リチウム源を1回で加えたものは結晶子サイズが140nm未満であったのに対して、リチウム源を複数回にわけて加えたものの結晶子サイズは140nm以上、より詳細には150nm以上であった。
<ハーフセル充放電レート特性>
 サンプル7乃至サンプル9の正極活物質を用いて、ハーフセルを組み立てて充放電レート特性を評価した。ハーフセルに対するサイクル特性評価により正極単体の性能を把握する。
 以下にハーフセルの条件を説明する。まず上記正極活物質を用意し、導電材にアセチレンブラック(AB)を用意し、結着剤にポリフッ化ビニリデン(PVDF)を用意し、正極活物質:AB:PVDF=95:3:2(重量比)で混合してスラリーを作製し、該スラリーをアルミニウムの集電体に塗工した。スラリーの溶媒としてNMPを用いた。
 集電体にスラリーを塗工した後、溶媒を揮発させた。以上の工程により、正極を得た。正極の活物質担持量はおよそ7mg/cmとした。
 電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)をEC:DEC=3:7(体積比)で混合したものに、添加材としてビニレンカーボネート(VC)を2wt%加えたものを用い、電解液が有する電解質には、1mol/Lの六フッ化リン酸リチウム(LiPF)を用いた。セパレータにはポリプロピレンを用いた。
 対極にはリチウム金属を用意して、上記正極等を備えたコイン型のハーフセルを形成した。
<放電レート特性>
 上記ハーフセルを用いて、放電レート特性を測定した。
 図22Aに25℃で測定した0.5C、10Cおよび20Cの放電容量、図22Bに65℃で測定した同様の放電容量を示す。いずれも充電をCC/CV(定電流/定電圧)(0.5C,4.5V,0.05C cut)、放電をCC(定電流)(0.5C、10Cまたは20C,2.5V cut)とした。なお1Cは200mA/gとした。
 図22Aおよび図22Bに示す通り、サンプル7およびサンプル8のように結晶子サイズの大きい正極活物質を用いた二次電池は、サンプル9のように結晶子サイズの小さい正極活物質と比較して、10Cを超える高い放電レートにおいて高い放電容量を示した。たとえば25℃、10Cにおける放電容量は70mAh/g以上であり、より詳細にはサンプル8が85mAh/gであり、サンプル7が98mAh/gであった。また65℃、10Cにおける放電容量は150mAh/g以上であり、より詳細にはサンプル7が158mAh/gであり、サンプル8が168mAh/gであった。また65℃、20Cにおける放電容量は100mAh/g以上であり、より詳細にはサンプル8が111mAh/gであり、サンプル7が124mAh/gであった。
<充電レート特性>
 次にサンプル21を用いて同様にハーフセルを作製し、充電レート特性を評価した。
 図23Aに25℃で測定した0.1C、0.5C、1Cおよび5Cの放電容量、図23Bに65℃で測定した同様の放電容量を示す。いずれも充電をCC/CV(0.1C、0.5C、1Cまたは5C,4.5V,0.05C cut)、放電をCC(0.5C,2.5V cut)とした。横軸にC−rateとして充電時と放電時のレートを示した。0.1C、0.5C、1Cおよび5Cの充電レートについて2回ずつ試験した。
 図23Aおよび図23Bに示す通り、充電レートが0.1Cから0.5Cに変化しても放電容量に大きな変化はなく、高い充電レートでも十分に充放電ができていることが示された。たとえば25℃、5/0.5(充電/放電)Cにおける放電容量は150mAh/g以上であり、より詳細には2回とも170mAh/gであった。また65℃、5/0.5における放電容量は170mAh/g以上であり、より詳細には1回目の5/0.5が180mAh/g、2回目が184mAh/gであった。
 上記の結果から、結晶子サイズが大きな本発明の一態様の正極活物質が、優れた充放電レート特性を有することが明らかとなった。
 本実施例では、一次粒子の結晶子サイズが大きく、表層部100aに添加元素を有する正極活物質100を作製した。
<正極活物質の作製>
 図6および図8に示す作製方法を参照しながら本実施例で作製したサンプルについて説明する。
 まず実施例1と同様にステップS11乃至ステップS56を経て複合酸化物を作製した(ステップS57)。次に図8のステップS71において、添加元素のアルミニウム源として水酸化アルミニウムを用意した。ステップS72において、上記の複合酸化物とアルミニウム源とを混合した。混合比は、ニッケル、コバルトおよびマンガンの原子数の和を1としたときアルミニウムが0.01(原子数比)とした。
 ステップS73として複合酸化物とアルミニウム源の混合物を加熱した。加熱温度を800℃、加熱時間を2時間とした他はステップS43と同様に行った。その後室温まで冷却し、解砕し(ステップS74)、正極活物質を得た。これをサンプル32とした。
 添加元素をマグネシウムとし、マグネシウム源として炭酸マグネシウムを用意し、混合比をニッケル、コバルトおよびマンガンの原子数の和を1としたときマグネシウムが0.01(原子数比)とした他はサンプル32と同様に作製したものを、サンプル33とした。
 添加元素をアルミニウムおよびマグネシウムとし、アルミニウムを0.005(原子数比)、マグネシウムを0.005(原子数比)とした他はサンプル32およびサンプル33と同様に作製したものを、サンプル34とした。
 添加元素を加えなかった他はサンプル32と同様に作製したものを、サンプル31とした。
 サンプル31乃至サンプル34の作製条件を表2に示す。
Figure JPOXMLDOC01-appb-T000002
<表面SEM>
 サンプル31の表面SEM像を図24Aに、サンプル32の表面SEM像を図24Bに、サンプル33の表面SEM像を図24Cに、サンプル34の表面SEM像を図24Dに示す。また図24A中の四角部分の拡大像を図24Eに、図24B中の四角部分の拡大像を図24Fに、図24C中の四角部分の拡大像を図24Gに、図24D中の四角部分の拡大像を図24Hに示す。
<断面SEM−EDX>
 次にサンプル32の断面SEM像を図25Aに、サンプル33の断面SEM像を図25Bに、サンプル34の断面SEM像を図25Cに示す。図25A中に(1)乃至(4)で示した箇所についてEDX点分析を行い、測定されたアルミニウム濃度を図25Dに示す。同情に、図25B中に(1)乃至(4)で示した箇所のマグネシウム濃度を図25Eに示す。図25C中に(1)乃至(4)で示した箇所のアルミニウムおよびマグネシウム濃度を図25Fに示す。いずれも、表層部100aから内部に向かってアルミニウム濃度およびマグネシウム濃度が減少していた。
 図24A乃至図25Fの通り、サンプル32乃至サンプル34は正極活物質の結晶子サイズが大きく、表層部100aの添加元素濃度が内部よりも高い正極活物質であることが示された。
100:正極活物質、100a:表層部、100b:表層部、100c:内部、101:結晶粒界、104:被膜

Claims (6)

  1.  遷移金属Mと、酸素と、添加元素と、を有する正極活物質であって、
     前記遷移金属Mは、ニッケルと、マンガンと、コバルトであり、
     前記添加元素はマグネシウム、アルミニウム、カルシウム、チタン、ジルコニウムから選ばれる一または二以上であり、
     前記正極活物質は第1の表層部と、第2の表層部と、内部と、を有し、
     前記第2の表層部は、前記第1の表層部よりも前記内部に近く、
     前記内部は、前記第1の表層部および前記第2の表層部よりも、遷移金属Mの原子数の和に占めるニッケルの比が大きく、
     前記第2の表層部は前記内部よりも、遷移金属Mの原子数の和に占めるコバルトおよびマンガンから選ばれる少なくとも一の元素の原子数の比が大きく、
     前記第1の表層部は前記内部および前記第2の表層部よりも前記添加元素の少なくとも一の濃度が高い、正極活物質。
  2.  請求項1において、
     前記正極活物質はXRDパターンから算出される正極活物質の結晶子サイズが150nm以上である、正極活物質。
  3.  正極活物質を有する正極と、負極と、を有する二次電池であって、
     前記正極活物質は、遷移金属Mと、酸素と、添加元素と、を有し、
     前記遷移金属Mは、ニッケルと、マンガンと、コバルトであり、
     前記添加元素はマグネシウム、アルミニウム、カルシウム、チタン、ジルコニウムから選ばれる一または二以上であり、
     前記正極活物質は第1の表層部と、第2の表層部と、内部と、を有し、
     前記第2の表層部は、前記第1の表層部よりも前記内部に近く、
     前記内部は、前記第1の表層部および前記第2の表層部よりも、遷移金属Mの原子数の和に占めるニッケルの比が大きく、
     前記第2の表層部は前記内部よりも、遷移金属Mの原子数の和に占めるコバルトおよびマンガンから選ばれる少なくとも一の元素の原子数の比が大きく、
     前記第1の表層部は前記内部および前記第2の表層部よりも前記添加元素の少なくとも一の濃度が高い、二次電池。
  4.  請求項3において、
     前記正極活物質はXRDパターンから算出される正極活物質の結晶子サイズが150nm以上である、二次電池。
  5.  遷移金属Mと、酸素と、を有する正極活物質であって、
     前記遷移金属Mは、ニッケルと、マンガンと、コバルトであり、
     前記正極活物質はXRDパターンから算出される結晶子サイズが150nm以上であり、
     前記正極活物質を用いた二次電池は、25℃において上限電圧4.5V、定電流100mA/g、終止電流10mA/gのCC/CV充電後の、2000mA/gのCCでの放電容量が70mAh/g以上である、正極活物質。
  6.  正極活物質を有する正極と、負極と、を有する二次電池であって、
     前記正極活物質は、遷移金属Mと、酸素と、を有し、
     前記遷移金属Mは、ニッケルと、マンガンと、コバルトであり、
     前記正極活物質はXRDパターンから算出される結晶子サイズが150nm以上であり、
     前記二次電池は、25℃において上限電圧4.5V、定電流100mA/g、終止電流10mA/gのCC/CV充電後の、2000mA/gのCCでの放電容量が70mAh/g以上である、二次電池。
PCT/IB2023/053562 2022-04-21 2023-04-07 正極活物質および二次電池 WO2023203424A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022069971 2022-04-21
JP2022-069971 2022-04-21

Publications (1)

Publication Number Publication Date
WO2023203424A1 true WO2023203424A1 (ja) 2023-10-26

Family

ID=88419338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/053562 WO2023203424A1 (ja) 2022-04-21 2023-04-07 正極活物質および二次電池

Country Status (1)

Country Link
WO (1) WO2023203424A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148096A1 (ja) * 2015-03-13 2016-09-22 三井金属鉱業株式会社 層構造を有するリチウム金属複合酸化物の製造方法
WO2020238968A1 (zh) * 2019-05-28 2020-12-03 比亚迪股份有限公司 复合型锂离子电池正极材料及锂离子电池和车
JP2022052817A (ja) * 2020-09-24 2022-04-05 日立金属株式会社 リチウムイオン二次電池用正極活物質、及びその製造方法、並びにリチウムイオン二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148096A1 (ja) * 2015-03-13 2016-09-22 三井金属鉱業株式会社 層構造を有するリチウム金属複合酸化物の製造方法
WO2020238968A1 (zh) * 2019-05-28 2020-12-03 比亚迪股份有限公司 复合型锂离子电池正极材料及锂离子电池和车
JP2022052817A (ja) * 2020-09-24 2022-04-05 日立金属株式会社 リチウムイオン二次電池用正極活物質、及びその製造方法、並びにリチウムイオン二次電池

Similar Documents

Publication Publication Date Title
JP7442709B2 (ja) リチウムイオン二次電池
WO2021260487A1 (ja) 二次電池、二次電池の作製方法、電子機器、及び車両
JP2022045353A (ja) 二次電池の作製方法、および二次電池
WO2023180868A1 (ja) リチウムイオン電池
WO2022248968A1 (ja) 電池、電子機器、蓄電システムおよび移動体
KR20220113292A (ko) 양극 활물질의 제작 방법, 이차 전지, 및 차량
WO2023203424A1 (ja) 正極活物質および二次電池
JP2022045263A (ja) 正極活物質、二次電池、二次電池の作製方法、電子機器、及び車両
WO2024052785A1 (ja) 電池、電子機器、及び車両
WO2023209475A1 (ja) 正極活物質、正極、二次電池、電子機器および車両
WO2024023625A1 (ja) 電池
WO2023209474A1 (ja) 正極活物質、リチウムイオン電池、電子機器、および車両
WO2023242669A1 (ja) リチウムイオン二次電池
WO2024074938A1 (ja) 二次電池
WO2023248053A1 (ja) 二次電池、正極活物質及び正極活物質の製造方法
WO2024095112A1 (ja) 正極、二次電池、電子機器、蓄電システムおよび車両
WO2021245562A1 (ja) 正極活物質、正極活物質層、二次電池、電子機器、及び車両
WO2022023865A1 (ja) 二次電池及びその作製方法
WO2021191733A1 (ja) 二次電池、電子機器、車両及び二次電池の作製方法
WO2022038454A1 (ja) 正極活物質の作製方法
WO2022038449A1 (ja) 二次電池、電子機器および車両
WO2024013609A1 (ja) 正極活物質の製造方法、及び正極活物質
WO2022034414A1 (ja) 二次電池、電子機器、車両、及び正極活物質の作製方法
WO2024028684A1 (ja) 二次電池
US20240092655A1 (en) Method for forming positive electrode active material and secondary battery and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791408

Country of ref document: EP

Kind code of ref document: A1