WO2020238968A1 - 复合型锂离子电池正极材料及锂离子电池和车 - Google Patents

复合型锂离子电池正极材料及锂离子电池和车 Download PDF

Info

Publication number
WO2020238968A1
WO2020238968A1 PCT/CN2020/092654 CN2020092654W WO2020238968A1 WO 2020238968 A1 WO2020238968 A1 WO 2020238968A1 CN 2020092654 W CN2020092654 W CN 2020092654W WO 2020238968 A1 WO2020238968 A1 WO 2020238968A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode material
content
positive electrode
weight
lithium
Prior art date
Application number
PCT/CN2020/092654
Other languages
English (en)
French (fr)
Inventor
潘仪
郝嵘
陈娜
袁晓涛
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP20812772.0A priority Critical patent/EP3965188A4/en
Priority to US17/614,285 priority patent/US20220255066A1/en
Priority to KR1020217041167A priority patent/KR20220009443A/ko
Priority to JP2021570462A priority patent/JP7426414B2/ja
Publication of WO2020238968A1 publication Critical patent/WO2020238968A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the technical field of battery materials, in particular to a composite lithium-ion battery cathode material, a lithium-ion battery and a vehicle.
  • Lithium-ion batteries have been widely used in portable appliances, electric vehicles, large-scale energy storage and other power supply devices.
  • the main cost and performance bottleneck of lithium-ion batteries lies in the internal materials of the battery, including positive electrode, negative electrode, electrolyte and separator.
  • the pros and cons of cathode materials are the key to limiting the performance of lithium-ion batteries.
  • the current commercial cathode materials mainly include high nickel NCM and NCA used alone and NCM cathode materials with surface modification.
  • the two cathode materials still have problems such as unstable structure and low capacity, which cannot meet the needs of lithium-ion batteries.
  • the technical solution of the present disclosure is completed by the inventors based on the following findings:
  • the current commercialized cathode materials mainly include high-nickel NCM and NCA used alone, and surface-modified NCM cathode materials.
  • Ni mole NCM with a content of ⁇ 80% has an unstable surface structure and is easy to form a rock salt layer structure on the surface;
  • a ternary material with a high Ni content has a high residual alkali content on the surface, which is easy to form gel during the pulping process and has poor processing performance;
  • Ternary materials with high Ni content have poor thermal stability, and are prone to oxygen evolution in high-voltage and high-temperature environments, causing thermal runaway.
  • NCA materials with Ni molar content ⁇ 80% have better structural stability and surface stability than NCM due to the contribution of Al element, but NCA materials with the same Ni content have lower specific capacity than NCM.
  • the surface activity of the uncoated high nickel NCM is relatively high, no matter it is in the atmosphere or in the battery, more side reactions will occur.
  • the residual alkali on the surface of high-nickel NCM in the atmospheric environment will continue to increase, and at the same time there will be a rock salt phase structure; in the battery, its surface will react with the electrolyte, causing the oxidation of the electrolyte, and the internal gas production of the battery, which will lead to the performance of the battery. Degrade.
  • the purpose of the present disclosure is to overcome the problems of rock salt phase, unstable structure and deterioration of battery performance on the surface of the uncoated and single-use high nickel NCM in the prior art, and provide a composite lithium ion battery cathode material and lithium ion Battery and car.
  • the composite lithium ion battery cathode material of the present disclosure is sequentially from the inside to the outside, a lithium nickel cobalt manganese oxide material (core), a lithium nickel cobalt manganese oxide material doped with element E (transition layer) and a lithium doped element E Nickel-cobalt-oxygen material (surface layer), but the composite lithium-ion battery cathode material does not have an obvious core-shell boundary structure, which is more conducive to maintaining the stability of the material structure.
  • the rate, cycle and storage performance of the cathode material are relatively
  • the traditional lithium nickel cobalt manganese oxide material Ni mol% ⁇ 80%
  • the Li/Ni mixing in the lithium nickel cobalt manganese oxide material can be reduced to ensure the capacity of the material.
  • the first aspect of the present disclosure provides a lithium ion battery cathode material, wherein the core of the cathode material is a lithium nickel cobalt manganese oxide material, and the surface layer of the cathode material is lithium doped with element E.
  • Nickel-cobalt-oxygen material there is a transition layer between the inner core and the surface layer, and the transition layer is a lithium nickel-cobalt-manganese-oxygen material doped with element E, wherein, along the direction from the surface layer of the positive electrode material to the inner core , The content of the element E in the transition layer shows a decreasing trend;
  • the general formula for the composition of the transition layer is Li 1+m Ni 1-xyz Co x Mn y E z O 2 , where 0 ⁇ m ⁇ 0.1, 0.01 ⁇ x ⁇ 0.1, 0.01 ⁇ y ⁇ 0.1, 0.01 ⁇ z ⁇ 0.1;
  • E is one or more of Al, Zr, Ti, Y, Ba and Sr.
  • a second aspect of the present disclosure provides a lithium ion battery, wherein the lithium ion battery includes: a positive electrode and a negative electrode, wherein the positive electrode is prepared by using the aforementioned composite lithium ion battery positive electrode material.
  • a third aspect of the present disclosure provides a vehicle, wherein the vehicle contains the aforementioned lithium ion battery.
  • Figure 1 is a comparison diagram of the cycle performance of the positive electrode active materials prepared in Comparative Example 1 and Example 1;
  • FIG. 2 is a schematic diagram of a cross-section of a composite lithium ion battery cathode material prepared by the present disclosure.
  • Curve 1 shows the cycle performance of the NCM/NCMA/NCA composite material prepared in Example 1 at 45°C;
  • Curve 2 shows the cycle performance of the NCM prepared in Comparative Example 1 without surface coating at 45°C.
  • the first aspect of the present disclosure provides a composite lithium ion battery cathode material, wherein the core of the cathode material is a lithium nickel cobalt manganese oxide material, and the surface layer of the cathode material is lithium nickel cobalt oxide doped with element E.
  • the composition of the transition layer (lithium nickel cobalt manganese oxide material doped with element E) can be represented by the general formula Li 1+m Ni 1-xyz Co x Mn y E z O 2 , where 0 ⁇ m ⁇ 0.1, 0.01 ⁇ x ⁇ 0.1, 0.01 ⁇ y ⁇ 0.1, 0.01 ⁇ z ⁇ 0.1, for example, m is 0, 0.01...0.09, 0.1, x is 0, 0.01...0.09, 0.1, y is 0, 0.01... 0.09, 0.1, z is 0, 0.01...0.09, 0.1;
  • E is one or more of Al, Zr, Ti, Y, Ba, and Sr.
  • the general formula of the composition of the transition layer is Li 1+m Ni 1-xyz Co x Mn y E z O 2 , 0 ⁇ m ⁇ 0.05, 0.02 ⁇ x ⁇ 0.06, 0.02 ⁇ y ⁇ 0.06, 0.02 ⁇ z ⁇ 0.06.
  • the cathode material may be a single crystal material.
  • the content of the element E in the transition layer shows a decreasing trend, where it should be noted that “decrease” can be a gradient decrease or a non-gradient decrease.
  • the positive electrode material can be regarded as a core-shell structure, that is, the positive electrode material can include an inner core, a transition layer, and a surface layer from the inside to the outside.
  • the doping element E is in During the sintering process, it gradually diffuses from the surface layer (surface) to the bulk phase (transition layer), so although the structure formed is composed of lithium nickel cobalt manganese oxide material from the inside to the outside, lithium nickel cobalt manganese oxide doped with element E Materials and lithium nickel cobalt oxygen materials doped with element E, but there is no obvious boundary between the core and shell, which is different from the simple surface coating structure, so the cathode material can be regarded as a core-like material Shell structure is different from core-shell structure, which is actually a one-piece structure.
  • the content of the element E in the surface layer accounts for 0.5-8% by weight of the total weight of the cathode material
  • the content of the element E in the transition layer accounts for the cathode material
  • the content of the element E in the surface layer accounts for 0.5% by weight, 0.6% by weight...7.9% by weight, 8% by weight of the total weight of the positive electrode material
  • the content of the element E in the transition layer accounts for 0.05% by weight, 0.06% by weight...4.99% by weight, and 5% by weight of the total weight of the positive electrode material.
  • the content of the element E in the surface layer accounts for 2-5% by weight of the total weight of the positive electrode material
  • the content of the element E in the transition layer accounts for the total weight of the positive electrode material ⁇ 0.1-2% by weight.
  • the doping element while adding a coating layer to the core of the positive electrode material, the doping element will gradually penetrate into the bulk phase of the lithium nickel cobalt manganese oxide material in the form of a concentration gradient during the sintering process.
  • Element doping can effectively reduce the degree of Li/Ni mixing in bulk lithium nickel cobalt manganese oxide materials.
  • element doping can reduce the degree of change of the c-axis of the material during the deintercalation of lithium, which can improve the crystallinity of the material. The stability of the grid.
  • doping can also reduce the volume change of the material in the process of deintercalating lithium and reduce cracking.
  • the transition layer formed during the diffusion process also provides a buffer for the expansion and contraction of the inner layer and the shell layer during the circulation process to avoid material cracking.
  • doping elements can stabilize the material structure, reduce cracking, reduce side reactions with electrolyte, and reduce gas production.
  • the element E is Al.
  • the surface layer NCA benefits from the stable Al-O bond, which can inhibit the oxygen evolution of high nickel materials, so that the material has good surface structure stability; the core NCM has a higher level of high nickel (Ni>80%) design.
  • the high-nickel NCM core will not change from layered to salt rock layer, and always maintain a stable layered structure, thus ensuring the stable cycle performance and rate performance of the material; in addition,
  • the NCMA transition layer formed in the sintering process not only has the advantages of the surface layer and the inner core mentioned above, but also provides a buffer for the expansion and contraction of the inner core and the surface layer during the cycle, thereby ensuring that the inner surface layer will not The phenomenon of particle cracking and performance degradation due to the difference in expansion and contraction.
  • the composition formula of the core is Li 1+m Ni 1-xy Co x Mn y O 2 , where m, x, and y are defined as
  • the nickel element mole content in the lithium nickel cobalt manganese oxide material (core) accounts for the total moles of the core
  • the mole content of nickel in the lithium nickel cobalt manganese oxide material (inner core) accounts for no less than 90% of the total mole content of the inner core.
  • the average particle size of the lithium nickel cobalt manganese oxide material may be 1.5-2.5 ⁇ m, such as 1.5 ⁇ m, 1.6 ⁇ m...2.4 ⁇ m, 2.5 ⁇ m.
  • the content of the inner core is 80-98% by weight, for example, 80% by weight, 80.1% by weight... 97.9% by weight, 98% by weight %, in a specific embodiment of the present disclosure, based on the total weight of the positive electrode material, the content of the inner core is 90-98% by weight.
  • the composition of the surface layer may be the general formula Li 1+m Ni 1-x-y1 Co x E y1 O 2 , wherein, The definitions of m and x are as described in the general formula for the composition of the transition layer, and will not be repeated here; where 0.01 ⁇ y1 ⁇ 0.15, for example, y1 is 0.01, 0.02...0.14, 0.15; one according to the present invention In a specific embodiment, 0.05 ⁇ y1 ⁇ 0.1; in an embodiment of the present invention, the thickness of the lithium nickel cobalt oxide material (surface layer) doped with element E may be 5-50nm, such as 5nm, 6nm...49nm , 50nm, in a specific embodiment of the present invention, the thickness of the lithium nickel cobalt oxide material (surface layer) doped with element E can be 5-20nm.
  • the content of the lithium nickel cobalt oxygen material (surface layer) doped with element E is at most 8% by weight, for example, 1% by weight, 2 Weight %...7 wt%, 8 wt%, according to a specific embodiment of the present disclosure, based on the total weight of the positive electrode material, the content of the lithium nickel cobalt oxygen material (surface layer) doped with element E It is 1-2% by weight.
  • the surface layer of the positive electrode material in the present disclosure is a material with a large aluminum content, and the aluminum content gradient decreases toward the inner core to the core.
  • the content of the lithium nickel cobalt oxygen material doped with element E is limited to the above range, so as to ensure that the material has high capacity and good stability.
  • the thickness of the lithium nickel cobalt manganese oxide material (transition layer) doped with element E may be 5-200nm, for example, 5nm, 6nm...199nm,...200nm, according to the present disclosure In a specific embodiment, the thickness of the lithium nickel cobalt manganese oxide material (transition layer) doped with element E is 5-50 nm.
  • the content of the transition layer is 0.5-12% by weight, such as 0.5% by weight, 0.6% by weight... 11.9% by weight, 12% by weight
  • the content of the transition layer is 1-5% by weight.
  • the positive electrode material may be a primary positive electrode material, or a secondary positive electrode material formed by agglomeration of the primary positive electrode material.
  • the positive electrode The material is in the form of single crystals, but there may be a small amount of small single crystals gathered together, for example, two, three, four, etc.
  • the average particle size of the primary cathode material may be 1.5-2.5 ⁇ m, for example, the average particle size of the primary cathode material may be 1.5 ⁇ m, 1.6 ⁇ m...2.4 ⁇ m, 2.5 ⁇ m, the average particle size of the secondary cathode material may be 4.1-4.3 ⁇ m, for example, the average particle size of the secondary cathode material is 4.1 ⁇ m, 4.2 ⁇ m, 4.3 ⁇ m; in a specific embodiment of the present disclosure
  • the positive electrode material is a single crystal material.
  • the content of surface lithium hydroxide of the positive electrode material may be below 1100 ppm, and the content of surface lithium carbonate of the positive electrode material may be below 1750 ppm.
  • controlling the surface lithium hydroxide and lithium carbonate content of the positive electrode material within the above range can make the positive electrode material have good surface stability, which is beneficial to the storage process of the material and the maintenance of high temperature cycles.
  • the stability is beneficial to the storage process of the material and the maintenance of high temperature cycles.
  • the method for preparing the cathode material may include:
  • the pH value in steps (a) and (b), may be the same or different, and the pH value in step (a) and the pH value in step (b) may be separate It is 10-12, for example, the pH value is 10, 10.1...11.9, 12, respectively.
  • the sintering temperature in step (c), may be 800-950°C, the time may be 5-15h, and the heating rate may be 2-10°C/min, for example, the sintering temperature may be 800°C , 801°C administrat949°C, 950°C, time is 5h, 5.1h «14.9h, 15h, heating rate is 2°C/min, 2.1°C/min whil9.9°C/min, 10°C/min.
  • the sintering temperature is relatively high, which is different from the traditional ternary material cladding sintering.
  • the oxide can form a uniform coating layer on the surface of the material, and at the same time, due to thermal diffusion,
  • the metal elements in the partially coated oxide enter the crystal lattice of the core (lithium nickel cobalt manganese oxide) material in the form of doping, and finally obtain lithium nickel cobalt manganese oxide material/lithium nickel cobalt manganese doped with element E
  • Multi-level structure of oxygen material/lithium nickel cobalt oxygen material doped with element E NCM/NCMA/NCA).
  • the nickel salt is one or more of nickel sulfate, nickel nitrate, and nickel acetate.
  • the nickel salt is nickel sulfate;
  • the cobalt salt is cobalt sulfate, One or more of cobalt nitrate and cobalt acetate, according to a specific embodiment of the present invention, the cobalt salt is cobalt sulfate;
  • the manganese salt is one or more of manganese sulfate, manganese nitrate and manganese acetate, according to the present invention In a specific embodiment, the manganese salt is manganese sulfate.
  • the metal oxide containing element E may be Al 2 O 3 , ZrO 2 , TiO 2 , Y 2 O 3 , BaO, and SrO.
  • a cyclone mill in step (c), can be used for crushing, and the particle size after crushing is not specifically limited, as long as it is crushed to a certain degree; in addition, The washing with water is not specifically limited, and can be under conditions well known to those skilled in the art.
  • the method for preparing the cathode material may further include:
  • the nickel salt, cobalt salt, manganese salt, and the metal oxide containing element E are as described above, and will not be repeated here.
  • the precipitating agent may be sodium hydroxide and/or ammonia; in addition, in the present disclosure, the sodium hydroxide solution and ammonia are added dropwise to Co-precipitation reaction is carried out in an aqueous solution containing nickel salt, cobalt salt and manganese salt, and precipitation is precipitated, and then the precipitate is filtered, washed, and dried to obtain the precursor for the preparation of ternary materials, that is, nickel, cobalt, and manganese ternary hydrogen
  • the oxide precursor, wherein filtering, washing and drying are not specifically limited, and can be carried out under conditions well known to those skilled in the art.
  • the molar concentration of the sodium hydroxide solution may be 0.1-1 mol/L
  • the molar concentration of the ammonia water may be 0.1-1 mol/L.
  • the molar concentration of the sodium hydroxide solution may be 0.1 mol/L. L, 0.2mol/L...0.9mol/L, 1mol/L
  • the molar concentration of ammonia water can be 0.1mol/L, 0.2mol/L...0.9mol/L, 1mol/L.
  • the water is not specifically limited. According to a specific example of the present disclosure, the water is deionized water.
  • the calcination temperature in step (f), may be 800-950°C, the time may be 8-15h, and the heating rate may be 2-10°C/min, for example, the calcination temperature may be 800°C, 801°C administrat949°C, 950°C, time is 8h, 8.1h hence14.9h, 15h, heating rate is 2°C/min, 2.1°C/min whil9.9°C/min, 10°C/min.
  • the mechanical mixing may be mixed by means of ball milling, wherein the conditions of the ball milling may include: the rotation speed is 200-600 rpm, and the time is 2-4h, for example, the rotation speed is 200rpm, 210rpm...590rpm, 600rpm, and the time is 2h, 2.1h...3.9h, 4h.
  • a second aspect of the present disclosure provides a lithium ion battery, wherein the lithium ion battery includes a positive electrode and a negative electrode, wherein the positive electrode is prepared by using the aforementioned composite lithium ion battery positive electrode material.
  • the positive electrode manufacturing process is obtained by mixing the above-mentioned positive electrode material with a conductive agent and a binder to obtain a slurry, and then coating the slurry on an aluminum foil. It should be noted that those skilled in the art can select the conductive agent, the binder, and the mixing ratio thereof according to actual needs, which will not be repeated here.
  • the negative electrode is obtained by mixing artificial graphite and a binder to obtain a slurry and then coating it on a copper foil. It should be noted that those skilled in the art can select the binder for preparing the negative electrode and the mixing ratio of the binder and the artificial graphite according to actual needs, which will not be repeated here.
  • the lithium ion battery of the present disclosure includes a solid lithium ion battery and a liquid lithium ion battery.
  • the third aspect of the present disclosure provides a vehicle, wherein the vehicle contains the aforementioned lithium ion battery.
  • Cathode material gram capacity in the voltage range of 2.5-4.25V, charge the material at 1/3C constant current and constant voltage to 4.25V, and the cut-off current is 0.05C during constant voltage charging.
  • Cycle performance Perform 1C/1C cycle test on the battery at 45°C.
  • the voltage range is 2.5-4.25V.
  • the cut-off current is 0.2C. Take the capacity retention rate after 500 weeks for comparison.
  • Storage performance Perform a 60-day storage experiment on the battery at 60°C to compare the capacity retention rate and recovery rate of the battery, as well as the changes in battery DCIR and thickness.
  • XRD is used to test the ratio of I(003)/I(104), where XRD is purchased from Bruker and the model is Bruker D8.
  • This embodiment is intended to illustrate the cathode material prepared by the method of the present disclosure.
  • (1) Mix and dissolve nickel sulfate, cobalt sulfate, and manganese sulfate in deionized water.
  • the total molar concentration of nickel sulfate, cobalt sulfate, and manganese sulfate is 1M, and the molar ratio of nickel, cobalt, and manganese is 9:1:1.
  • the precursor obtained above is mixed with lithium hydroxide (the molar amount of lithium is 5% excess relative to the metal) and then sintered in an oxygen atmosphere; the mixture is heated to 875°C at a rate of 5°C/min, and then Keep the temperature for 10 hours and then cool naturally; the sintered sample is crushed and sieved to obtain the finished product, wherein the sieves used are 325 meshes. Due to the relatively high sintering temperature, the oxide can form a uniform coating layer NCA on the surface of the material.
  • the Al element on the surface enters the lattice of the NCM material in the form of doping, and the Al element The content gradually decreases from the surface layer to the inner core, and finally obtains the multi-level structure single crystal nanoparticles of NCM/NCMA/NCA.
  • the prepared positive electrode material is an ellipsoidal single crystal material with an average particle size of 2.2 ⁇ m; the content of the element Al in the surface layer accounts for 3% by weight of the total weight of the positive electrode material, and the element in the transition layer The content of Al accounts for 1.5% by weight of the total weight of the positive electrode material, and along the direction from the surface layer of the positive electrode material to the inner core, the content of the element Al in the transition layer shows a decreasing trend;
  • the content of the surface layer is 2.5% by weight
  • the content of the transition layer is 6.5% by weight
  • the content of the inner core is 91% by weight.
  • NCM is Li 1+m Ni 1-xy Co x Mn y O 2 ;
  • NCA is Li 1+m Ni 1-x-y1 Co x Al y1 O 2 , 0.01 ⁇ y1 ⁇ 0.15;
  • NCMA is Li 1+m Ni 1-xyz Co x Mn y Al z O 2 , 0 ⁇ m ⁇ 0.1, 0.01 ⁇ x ⁇ 0.05, 0.01 ⁇ y ⁇ 0.05, 0.01 ⁇ z ⁇ 0.1; and the average particle size of NCM is 2.2 ⁇ m, the thickness of NCA About 20nm, the thickness of NCMA is about 40nm.
  • Table 1 is the content of free lithium on the surface of the cathode material
  • Table 2 is the ratio of I(003)/I(104).
  • FIG. 2 is a schematic diagram of a cross-section of a composite lithium ion battery cathode material prepared by the present disclosure, that is, a schematic diagram of a cross-section of a single crystal particle of the NCM/NCMA/NCA composite material prepared by the method of Example 1.
  • the black part of the outer layer represents NCA
  • the white part in the middle represents NCM.
  • the change process from black to white from the surface to the inner core represents the decreasing content of Al element.
  • This embodiment is to illustrate the cathode material prepared by the method of the present disclosure.
  • the cathode material was prepared according to the same method as in Example 1, except that the element aluminum in the general formula of the surface layer and the transition layer of the cathode material was replaced with element zirconium, and the nickel sulfate, cobalt sulfate, and manganese sulfate were used.
  • the amount of lithium hydroxide and elemental zirconium makes:
  • the prepared positive electrode material was an ellipsoidal single crystal material with an average particle size of 2.1 ⁇ m; the content of the element Zr in the surface layer accounted for 4% by weight of the total weight of the positive electrode material, and the element in the transition layer The content of Zr accounts for 2% by weight of the total weight of the positive electrode material, and along the direction from the surface layer of the positive electrode material to the inner core, the content of the element Zr in the transition layer shows a decreasing trend;
  • the content of the surface layer is 2.5% by weight
  • the content of the transition layer is 6.5% by weight
  • the content of the inner core is 91% by weight.
  • NCM is Li 1+m Ni 1-xy Co x Mn y O 2 ;
  • NCA is Li 1+m Ni 1-x-y1 Co x Zr y1 O 2 , 0.01 ⁇ y1 ⁇ 0.15;
  • NCMA is Li 1+m Ni 1-xyz Co x Mn y Zr z O 2 , 0 ⁇ m ⁇ 0.1, 0.01 ⁇ x ⁇ 0.05, 0.01 ⁇ y ⁇ 0.05, 0.01 ⁇ z ⁇ 0.1; and the average particle size of NCM is 2.2 ⁇ m, the thickness of NCA About 20nm, the thickness of NCMA is about 40nm.
  • Table 1 is the content of free lithium on the surface of the cathode material
  • Table 2 is the ratio of I(003)/I(104).
  • This embodiment is to illustrate the cathode material prepared by the method of the present disclosure.
  • the positive electrode material was prepared according to the same method as in Example 1, except that the element aluminum in the general formula of the surface layer and the transition layer of the positive electrode material was replaced with strontium, and the nickel sulfate, cobalt sulfate, manganese sulfate,
  • the amount of sodium hydroxide, ammonia, lithium hydroxide and elemental strontium is such that:
  • the prepared positive electrode material was an ellipsoidal single crystal material with an average particle diameter of 2.0 ⁇ m; the content of the element Sr in the surface layer accounted for 4% by weight of the total weight of the positive electrode material, and the element in the transition layer The content of Sr accounts for 2% by weight of the total weight of the positive electrode material, and along the direction from the surface layer of the positive electrode material to the inner core, the content of the element Sr in the transition layer shows a decreasing trend;
  • the content of the surface layer is 2.5% by weight
  • the content of the transition layer is 6.5% by weight
  • the content of the inner core is 91% by weight.
  • NCM is Li 1+m Ni 1-xy Co x Mn y O 2 ;
  • NCA is Li 1+m Ni 1-x-y1 Co x Sr y1 O 2 , 0.01 ⁇ y1 ⁇ 0.15;
  • NCMA is Li 1+m Ni 1-xyz Co x Mn y Sr z O 2 , 1 ⁇ m ⁇ 1.1, 0.01 ⁇ x ⁇ 0.05, 0.01 ⁇ y ⁇ 0.05, 0.01 ⁇ z ⁇ 0.1; and the average particle size of NCM is 2.0 ⁇ m, the thickness of NCA About 20nm, the thickness of NCMA is about 40nm.
  • Table 1 is the content of free lithium on the surface of the cathode material
  • Table 2 is the ratio of I(003)/I(104).
  • This embodiment is intended to illustrate the cathode material prepared by the method of the present disclosure.
  • the positive electrode material was prepared according to the same method as in Example 1, except that the content of aluminum in the general formula of the surface layer and the transition layer of the positive electrode material was reduced, resulting in:
  • the content of the element Al in the surface layer accounts for 1.5% by weight of the total weight of the positive electrode material, and the content of the element Al in the transition layer accounts for 0.8% by weight of the total weight of the positive electrode material, and is along the positive electrode material. From the surface layer to the inner core, the content of the element E in the transition layer shows a decreasing trend;
  • the content of the surface layer is 2.5% by weight
  • the content of the transition layer is 6.5% by weight
  • the content of the inner core is 91% by weight.
  • NCM is Li 1+m Ni 1-xy Co x Mn y O 2 ;
  • NCA is Li 1+m Ni 1-x-y1 Co x Al y1 O 2 , 0.01 ⁇ y1 ⁇ 0.15;
  • NCMA is Li 1+m Ni 1-xyz Co x Mn y Al z O 2 , 0 ⁇ m ⁇ 0.1, 0.01 ⁇ x ⁇ 0.05, 0.01 ⁇ y ⁇ 0.05, 0.01 ⁇ z ⁇ 0.1; and the average particle size of NCM is 2.2 ⁇ m, the thickness of NCA About 20nm, the thickness of NCMA is about 40nm.
  • Table 1 is the free lithium content on the surface of the cathode material
  • Table 2 is the ratio of I(003)/I(104).
  • This embodiment is intended to illustrate the cathode material prepared by the method of the present disclosure.
  • the positive electrode material was prepared according to the same method as in Example 1, except that the content of aluminum in the general formula of the surface layer and transition layer of the positive electrode material was increased, resulting in:
  • the total weight of the positive electrode material is a reference, the content of the element Al in the surface layer accounts for 4% by weight of the total weight of the positive electrode material, and the content of the element Al in the transition layer accounts for 2% of the total weight of the positive electrode material. Weight %, and along the direction from the surface layer of the positive electrode material to the inner core, the content of the element Al in the transition layer shows a decreasing trend;
  • the content of the surface layer is 3.5% by weight
  • the content of the transition layer is 5.5% by weight
  • the content of the inner core is 91% by weight.
  • NCM is Li 1+m Ni 1-xy Co x Mn y O 2 ;
  • NCA is Li 1+m Ni 1-x-y1 Co x Al y1 O 2 , 0.01 ⁇ y1 ⁇ 0.15;
  • NCMA is Li 1+m Ni 1-xyz Co x Mn y Al z O 2 , 0 ⁇ m ⁇ 0.1, 0.01 ⁇ x ⁇ 0.05, 0.01 ⁇ y ⁇ 0.05, 0.01 ⁇ z ⁇ 0.1; and the average particle size of NCM is 2.2 ⁇ m, the thickness of NCA About 20nm, the thickness of NCMA is about 40nm.
  • Table 1 is the free lithium content on the surface of the cathode material
  • Table 2 is the ratio of I(003)/I(104).
  • This embodiment is intended to illustrate the cathode material prepared by the method of the present disclosure.
  • the positive electrode material was prepared according to the same method as in Example 1, except that the doping and coating elements remained unchanged, and the nickel content in the ternary precursor of step (1) was changed to 95 mol%.
  • the content of the element Al in the surface layer accounts for 3% by weight of the total weight of the positive electrode material, and the content of the element Al in the transition layer accounts for 1.5% by weight of the total weight of the positive electrode material, and is along the From the surface layer to the inner core, the content of the element Al in the transition layer shows a decreasing trend;
  • the content of the surface layer is 3% by weight
  • the content of the transition layer is 5.5% by weight
  • the content of the inner core is 91.5% by weight.
  • NCM is Li 1+m Ni 1-xy Co x Mn y O 2 ;
  • NCA is Li 1+m Ni 1-x-y1 Co x Al y1 O 2 , 0.01 ⁇ y1 ⁇ 0.15;
  • NCMA is Li 1+m Ni 1-xyz Co x Mn y Al z O 2 , 0 ⁇ m ⁇ 0.1, 0.01 ⁇ x ⁇ 0.05, 0.01 ⁇ y ⁇ 0.05, 0.01 ⁇ z ⁇ 0.1; and the average particle size of NCM is 2.2 ⁇ m, the thickness of NCA About 20nm, the thickness of NCMA is about 40nm.
  • Table 1 is the content of free lithium on the surface of the cathode material
  • Table 2 is the ratio of I(003)/I(104).
  • This embodiment is intended to illustrate the cathode material prepared by the method of the present disclosure.
  • the positive electrode material was prepared according to the same method as in Example 1, except that the aluminum element in the general formula of the surface layer and the transition layer of the positive electrode material was replaced with a mixed element of aluminum and zirconium, as a result:
  • the total content of the elements Al and Zr in the surface layer accounts for 3% by weight of the total weight of the positive electrode material, and the total content of the elements Al and Zr in the transition layer accounts for 1.5% by weight of the total weight of the positive electrode material , And along the direction from the surface layer of the positive electrode material to the inner core, the total content of the elements Al and Zr in the transition layer shows a decreasing trend;
  • the content of the surface layer is 2.5% by weight
  • the content of the transition layer is 5.5% by weight
  • the content of the inner core is 91% by weight.
  • NCM is Li 1+m Ni 1-xy Co x Mn y O 2
  • NCA is Li 1+m Ni 1-x-y1 Co x A y1 O 2 , 0.01 ⁇ y1 ⁇ 0.15
  • NCMA is Li 1+m Ni 1-xyz Co x Mn y AO 2 , 0 ⁇ m ⁇ 0.1, 0.01 ⁇ x ⁇ 0.05, 0.01 ⁇ y ⁇ 0.05, 0.01 ⁇ z ⁇ 0.1
  • A represents Zr and Al, where the mass of Al and Zr The ratio is 2:3; and the average particle size of NCM is 2.2 ⁇ m, the thickness of NCA is about 20 nm, and the thickness of NCMA is about 40 nm.
  • Table 1 is the free lithium content on the surface of the cathode material
  • Table 2 is the ratio of I(003)/I(104).
  • This embodiment is intended to illustrate the cathode material prepared by the method of the present disclosure.
  • the positive electrode material was prepared according to the same method as in Example 1, except that in step (3), the calcination temperature was 850°C.
  • the content of the element Al in the surface layer accounts for 2% by weight of the total weight of the positive electrode material, and the content of the element Al in the transition layer accounts for 1% by weight of the total weight of the positive electrode material, and is located along the positive electrode. From the surface layer of the material to the inner core, the content of the element Al in the transition layer shows a decreasing trend;
  • the content of the surface layer is 2.5% by weight
  • the content of the transition layer is 6.5% by weight
  • the content of the inner core is 91% by weight.
  • NCM is Li 1+m Ni 1-xy Co x Mn y O 2 ;
  • NCA is Li 1+m Ni 1-x-y1 Co x Al y1 O 2 , 0.01 ⁇ y1 ⁇ 0.15;
  • NCMA is Li 1+m Ni 1-xyz Co x Mn y Al z O 2 , 0 ⁇ m ⁇ 0.1, 0.01 ⁇ x ⁇ 0.05, 0.01 ⁇ y ⁇ 0.05, 0.01 ⁇ z ⁇ 0.1; and the average particle size of NCM is 2.2 ⁇ m, the thickness of NCA About 20nm, the thickness of NCMA is about 40nm.
  • Table 1 is the content of free lithium on the surface of the cathode material
  • Table 2 is the ratio of I(003)/I(104).
  • the positive electrode material was prepared according to the same method as in Example 1, except that there was no coating during the preparation process, that is, the lithium nickel cobalt manganese oxide material was prepared in Comparative Example 1.
  • the prepared positive electrode material is an ellipsoidal single crystal material with an average particle size of 2.0 ⁇ m.
  • Table 1 is the content of free lithium on the surface of the cathode material
  • Table 2 is the ratio of I(003)/I(104).
  • Fig. 1 is a comparison diagram of the cycle performance of the positive electrode active materials prepared in Comparative Example 1 and Example 1.
  • Curve 1 shows the cycle performance of the NCM/NCMA/NCA composite material prepared in Example 1 at 45°C.
  • Curve 2 shows the cycle performance of the NCM without surface coating prepared in Comparative Example 1 at 45°C. It can be seen from Figure 1 that the NCM/NCMA/NCA composite material of the present disclosure has stable cycle performance.
  • the cathode material was prepared according to the same method as in Example 1, except that the manganese sulfate was replaced with aluminum sulfate, that is, the lithium nickel cobalt aluminum oxide material was prepared.
  • the prepared positive electrode material is an ellipsoidal single crystal material with an average particle size of 2.0 ⁇ m.
  • Table 1 is the free lithium content on the surface of the cathode material
  • Table 2 is the ratio of I(003)/I(104).
  • the positive electrode material was prepared according to the same method as in Example 1, except that: NCM and NCA were synthesized separately and then the two were mixed, and NCA was coated on the surface of NCM.
  • NCM and NCA were prepared by the methods of Example 1 and Comparative Example 2, and then ball milled and mixed according to a certain ratio (the aluminum content of the mixture was the same as in Example 1), and then sintered at a certain temperature to obtain NCM/NCA samples.
  • Table 1 is the free lithium content on the surface of the cathode material
  • Table 2 is the ratio of I(003)/I(104).
  • Example Lithium hydroxide (ppm) Lithium carbonate (ppm) Example 1 823.4 1556.8 Example 2 955.3 1226.2 Example 3 1059.4 1696.7 Example 4 935.4 1670.5 Example 5 855.2 1433.8 Example 6 1043.5 1715.5 Example 7 722.5 1322.5 Example 8 872.3 1256.8 Comparative example 1 1523.4 2454.6 Comparative example 2 1143.2 1605.4 Comparative example 3 1230.4 2210.5
  • the free lithium forms on the surface of the positive electrode materials prepared in Examples 1-8 and Comparative Examples 1-3 include lithium hydroxide and lithium carbonate. Among them, lithium hydroxide and carbonic acid in Examples 1-8 The content of lithium is lower than the content of both in Comparative Examples 1 and 3, which shows that the composite material is more stable than the single uncoated material, and the free lithium on the surface is less, which is more conducive to processing and battery capacity. Play.
  • Comparative Example 2 since NCA is very stable, the free lithium content on its surface is not very high, but the capacity of NCA is relatively low.
  • Example I(003)/I(104) Example 1 1.44 Example 2 1.57 Example 3 1.41 Example 4 1.43 Example 5 1.52 Example 6 1.40 Example 7 1.50 Example 8 1.41 Comparative example 1 1.21 Comparative example 2 1.40 Comparative example 3 1.35
  • Example 5 196.4 91.2
  • Example 6 203.5
  • Example 7 200.3 93.4
  • Example 8 196.5 87.1 Comparative example 1 198.2 79.4 Comparative example 2 195.3 85.5 Comparative example 3 195.5 83.3
  • Example Capacity retention rate (%) Capacity recovery rate (%) DCIR change rate (%)
  • Example 1 93 96 10 Example 2 91 93 12
  • Example 3 89 92 13 Example 4 90 93 16
  • Example 5 92 95 15
  • Example 6 87 91 10
  • Example 7 93 95 11
  • Example 8 89 93 12 Comparative example 1 85 89 20
  • Comparative example 2 88 91 19 Comparative example 3 86 90 17

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

公开了复合型锂离子电池正极材料及锂离子电池和车。所述正极材料的内核为锂镍钴锰氧材料,所述正极材料的表层为掺杂有元素E的锂镍钴氧材料,在所述内核和表层之间存在过渡层,所述过渡层为掺杂有元素E的锂镍钴锰氧材料,其中,沿所述正极材料的表层到所述内核的方向,所述元素E在所述过渡层中的含量呈递减趋势,所述过渡层的组成通式为Li 1+mNi 1-x-y-zCo xMn yE zO 2,0≤m≤0.1,0.01≤x≤0.1,0.01≤y≤0.1,0.01≤z≤0.1;E为Al、Zr、Ti、Y、Ba和Sr中的至少一种。

Description

复合型锂离子电池正极材料及锂离子电池和车
优先权信息
本公开请求于2019年5月28日向中国国家知识产权局提交的、专利申请号为201910450988.4、申请名称为“复合型锂离子电池正极材料及锂离子电池正极以及锂电池、电池模组、电池包和车”的中国专利申请的优先权,并且其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电池材料技术领域,具体地涉及一种复合型锂离子电池正极材料及锂离子电池和车。
背景技术
锂离子电池已经广泛应用于便携式电器,电动汽车,大规模储能和其他电源装置中。而锂离子电池的主要成本和性能瓶颈在于电池内部材料,包括正极、负极、电解液和隔膜。在这四种主要材料中,正极材料的优劣又是限制锂离子电池性能的关键所在。
目前商业化的正极材料主要包括单独使用的高镍NCM和NCA以及表面修饰改性处理的NCM正极材料。但该两种正极材料仍然存在结构不稳定,容量低等问题,无法满足锂离子电池的需求。
公开内容
本公开的技术方案是发明人基于下列发现完成的:目前商业化的正极材料主要包括单独使用的高镍NCM和NCA以及表面修饰改性处理的NCM正极材料,其中,NCM的优缺点:Ni摩尔含量≥80%的NCM,表面结构不稳定,极易在表面生成岩盐层结构;Ni含量高的三元材料其表面残碱含量较高,易在制浆过程中生成凝胶,加工性能差;Ni含量高的三元材料的热稳定性差,其在高电压以及高温环境中易析氧,造成热失控。NCA的优缺点:Ni摩尔含量≥80%的NCA材料由于Al元素的贡献,结构稳定性和表面稳定性相对NCM更优,但是相同Ni含量的NCA材料相比NCM,其比容量较低。未包覆的高镍NCM其表面活性相对较高,无论其在大气环境中还是在电池中,都会发生较多的副反应。高镍NCM在大气环境中表面残碱会不断增加,同时还会有岩盐相结构出现;在电池中,其表面会与电解液反应,造成电解液的氧化,电池内部产气,导致电池性能的劣化。
本公开的目的是为了克服现有技术存在的未包覆的单独使用的高镍NCM表面存在岩 盐相、结构不稳定以及电池性能劣化的问题,提供一种复合型锂离子电池正极材料及锂离子电池和车。本公开的复合型锂离子电池正极材料从内到外依次是锂镍钴锰氧材料(内核)、掺杂有元素E的锂镍钴锰氧材料(过渡层)和掺杂有元素E的锂镍钴氧材料(表层),但是该复合型锂离子电池正极材料并不存在明显的核壳界限的结构,这样更有利于保持材料结构的稳定性,该正极材料的倍率、循环以及存储性能相对于传统的锂镍钴锰氧材料(Ni摩尔%≥80%)得到了显著提高,以及能够降低锂镍钴锰氧材料中的Li/Ni混排,保证材料的容量。
为了实现上述目的,本公开第一方面提供了一种锂离子电池正极材料,其中,所述正极材料的内核为锂镍钴锰氧材料,所述正极材料的表层为掺杂有元素E的锂镍钴氧材料,在所述内核和表层之间存在过渡层,所述过渡层为掺杂有元素E的锂镍钴锰氧材料,其中,沿所述正极材料的表层到所述内核的方向,所述元素E在所述过渡层中的含量呈递减趋势;
其中,所述过渡层的组成通式为Li 1+mNi 1-x-y-zCo xMn yE zO 2,其中,0≤m≤0.1,0.01≤x≤0.1,0.01≤y≤0.1,0.01≤z≤0.1;
其中,E为Al、Zr、Ti、Y、Ba和Sr中的一种或多种。
本公开第二方面提供了一种锂离子电池,其中,该锂离子电池包括:正极和负极,其中,所述正极采用前述所述的复合型锂离子电池正极材料制备得到。
本公开第三方面提供了一种车,其中,该车含有前述所述的锂离子电池。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是对比例1和实施例1制备的正极活性材料的循环性能对比图;
图2是本公开制备的复合型锂离子电池正极材料的横截面的示意图。
附图标记说明:
曲线1表示的是实施例1制备的NCM/NCMA/NCA复合材料在45℃下的循环性能;
曲线2表示的是对比例1制备的没有表面包覆的NCM在45℃下的循环性能。
公开详细描述
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个 范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
为了使本公开所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
本公开第一方面提供了一种复合型锂离子电池正极材料,其中,所述正极材料的内核为锂镍钴锰氧材料,所述正极材料的表层为掺杂有元素E的锂镍钴氧材料,在所述内核和表层之间存在过渡层,所述过渡层为掺杂有元素E的锂镍钴锰氧材料,其中,沿所述正极材料的表层到所述内核的方向,所述元素E在所述过渡层中的含量呈递减趋势;
其中,所述过渡层(掺杂有元素E的锂镍钴锰氧材料)的组成可以由通式Li 1+mNi 1-x-y-zCo xMn yE zO 2表示,其中,0≤m≤0.1,0.01≤x≤0.1,0.01≤y≤0.1,0.01≤z≤0.1,例如m为0、0.01……0.09、0.1,x为0、0.01……0.09、0.1,y为0、0.01……0.09、0.1,z为0、0.01……0.09、0.1;
其中,E为Al、Zr、Ti、Y、Ba、Sr中的一种或多种。
根据本公开的一个实施例,所述过渡层的组成通式为Li 1+mNi 1-x-y-zCo xMn yE zO 2中,0≤m≤0.05,0.02≤x≤0.06,0.02≤y≤0.06,0.02≤z≤0.06。
根据本公开的再一个实施例,所述正极材料可以为单晶材料。
根据本公开的又一个实施例,所述元素E在所述过渡层中的含量呈递减趋势,其中,需要说明的是,“递减”可以为梯度递减,也可以为非梯度递减。
根据本公开的又一个实施例,所述正极材料可以视为类核壳结构,即,所述正极材料可以由内而外依次包括内核、过渡层和表层,但是,由于掺杂元素E是在烧结过程中逐步由表层(表面)扩散到体相(过渡层)之中的,所以形成的结构虽然从内到外依次是锂镍钴锰氧材料,掺杂有元素E的锂镍钴锰氧材料和掺杂有元素E的锂镍钴氧材料,但并不存在明显的核壳之间的界限,其与单纯的表面包覆结构还有区别,所以,可以将该正极材料看作类核壳结构,其与核壳结构是有区别的,其实际上是一体结构。
根据本公开的又一个实施例,所述表层中所述元素E的含量占所述正极材料的总重量的0.5-8重量%,所述过渡层中所述元素E的含量占所述正极材料的总重量的0.05-5重量%,例如,所述表层中所述元素E的含量占所述正极材料的总重量的0.5重量%、0.6重量%……7.9重量%、8重量%;所述过渡层中所述元素E的含量占所述正极材料的总重量的0.05重量%、0.06重量%……4.99重量%、5重量%。根据本公开的一个具体实施例,所述表层中所述元素E的含量占所述正极材料总重量的2-5重量%,所述过渡层所述元素E的含量占所述正极材料总重量的0.1-2重量%。
在本公开中,在所述正极材料的内核增加一层包覆层的同时,掺杂元素会在烧结过程中呈浓度梯度的形式逐步渗透到锂镍钴锰氧材料的体相中,这种元素掺杂可以有效降低体相锂镍钴锰氧材料中的Li/Ni混排程度,另外,元素掺杂可以减小材料在脱嵌锂过程中c轴的变化程度,这些都能够提高材料晶格的稳定性。另外,掺杂还可以减少材料在脱嵌锂过程中体积变化,减少开裂。扩散过程中形成的过渡层,同时还为循环过程时内层和壳层产生的膨胀收缩提供缓冲作用,避免材料开裂。总之,掺杂元素能够使材料结构稳定,开裂变小,与电解液之间的副反应减少,产气量降低。
根据本公开的一个具体实施例,所述元素E为Al。表层NCA受益于稳定的Al-O键,能够抑制高镍材料的析氧现象,使得该材料获得良好的表面结构稳定性;内核NCM由于高镍(Ni>80%)的设计,具备更高的克容量;同时得益于NCA表层的保护,高镍NCM内核不会出现层状向盐岩层的转变,始终保持稳定的层状结构,从而保障了该材料稳定的循环性能和倍率性能;另外,在烧结过程中形成的NCMA过渡层,不但兼具以上所提及的表层和内核的优势,同时还为循环过程中内核和表层产生的膨胀收缩提供缓冲,从而保证内表层在循环过程中不会因膨胀收缩的不同造成颗粒开裂,性能劣化的现象。
根据本公开的又一个实施例,所述内核(锂镍钴锰氧材料)的组成通式为Li 1+mNi 1-x-yCo xMn yO 2,其中,m、x和y的限定如上述的过渡层的组成通式中描述所述,在此不再赘述;根据本公开的一个具体实施例,所述锂镍钴锰氧材料(内核)中镍元素摩尔含量占所述内核总摩尔量的比例不低于80%,根据本公开的一个具体示例,所述锂镍钴锰氧材料(内核)中镍元素摩尔含量占所述内核总摩尔量的比例不低于90%。在本公开的又一个实施例,所述锂镍钴锰氧材料(内核)的平均粒径可以为1.5-2.5μm,例如1.5μm、1.6μm……2.4μm、2.5μm。另外,在本公开的又一个实施例,以所述正极材料的总重量为基准,所述内核的含量为80-98重量%,例如80重量%、80.1重量%……97.9重量%、98重量%,在本公开的一个具体实施例中,以所述正极材料的总重量为基准,所述内核的含量为90-98重量%。
根据本公开的又一个实施例,所述表层(掺杂有元素E的锂镍钴氧材料)的组成可以通式为Li 1+mNi 1-x-y1Co xE y1O 2,其中,m和x的限定如上述的过渡层的组成通式中描述所述,在此不再赘述;其中,0.01≤y1≤0.15,例如y1为0.01、0.02……0.14、0.15;根据本发明的一个具体实施例,0.05≤y1≤0.1;在本发明的一个实施例中,所述掺杂有元素E的锂镍钴氧材料(表层)的厚度可以为5-50nm,例如5nm、6nm……49nm、50nm,在本发明的一个具体实施例中,所述掺杂有元素E的锂镍钴氧材料(表层)的厚度可以为5-20nm。
根据本公开的又一个实施例,以所述正极材料的总重量为基准,所述掺杂有元素E的锂镍钴氧材料(表层)的含量至多为8重量%,例如1重量%、2重量%……7重量%、8重 量%,根据本公开的一个具体实施例,以所述正极材料的总重量为基准,所述掺杂有元素E的锂镍钴氧材料(表层)的含量为1-2重量%。因为,掺杂有元素E的锂镍钴氧材料(表层)在同等镍含量下的比容量要小于锂镍钴锰氧材料(内核),所以掺杂有元素E的锂镍钴氧材料的含量太多不利于材料整体比容量发挥,故本公开中的正极材料的表层是铝含量较多的材料,而向内核,直至核心,铝含量梯度减少。在本公开中,将所述掺杂有元素E的锂镍钴氧材料的含量限定为上述范围之内,这样既保证材料具有高的容量同时也具备较好的稳定性。
根据本公开的又一个实施例,所述掺杂有元素E的锂镍钴锰氧材料(过渡层)的厚度可以为5-200nm,例如5nm、6nm……199nm、……200nm,根据本公开的一个具体实施例,所述掺杂有元素E的锂镍钴锰氧材料(过渡层)的厚度为5-50nm。根据本发明的又一个实施例,以所述正极材料的总重量为基准,所述过渡层的含量为0.5-12重量%,例如0.5重量%、0.6重量%……11.9重量%、12重量%,根据本发明的一个具体实施例,以所述正极材料的总重量为基准,所述过渡层的含量为1-5重量%。
根据本公开的又一个实施例,所述正极材料可以是一次正极材料,也可以是由一次正极材料团聚而成的二次正极材料,在本公开中,没有特别说明的情况下,所述正极材料是以单晶形式存在的,只是可能会少量存在小单晶聚集在一起,例如,两颗,三颗,四颗等的情况。在本公开中的一个实施例中,所述一次正极材料的平均粒径可以为1.5-2.5μm,例如,所述一次正极材料的平均粒径可以为1.5μm、1.6μm……2.4μm、2.5μm,所述二次正极材料的平均粒径可以为4.1-4.3μm,例如,所述二次正极材料的平均粒径为4.1μm、4.2μm、4.3μm;在本公开中的一个具体实施例中,所述正极材料为单晶材料。
根据本公开的又一个实施例,所述正极材料的表面氢氧化锂的含量可以在1100ppm以下,所述正极材料的表面碳酸锂的含量可以在1750ppm以下。
在本公开中,将所述正极材料的表面氢氧化锂和碳酸锂含量控制为上述范围之内,能够使得所述正极材料具有很好的表面稳定性,有利于材料的存储过程以及保持高温循环的稳定性。
根据本公开的一个实施例,所述的正极材料的制备方法可以包括:
(a)调节含有镍盐、钴盐和锰盐的水溶液体系的pH值共沉淀出镍钴锰三元氢氧化物前驱体;
(b)继续添加镍盐、钴盐和含有元素E的盐,调节pH值共沉淀形成镍、钴和元素E包覆的镍钴锰三元氢氧化物前驱体;
(c)将镍、钴和元素E包覆的镍钴锰三元氢氧化物前驱体与氢氧化锂混合并进行烧结、破碎和水洗制得复合型锂离子电池正极材料。
根据本公开的一个具体实施例,在步骤(a)和(b)中,pH值可以相同也可以不相同,在步骤(a)中的pH值和在步骤(b)中的pH值可以各自为10-12,例如pH值各自为10、10.1……11.9、12。
根据本公开的再一个具体实施例,在步骤(c)中,烧结温度可以为800-950℃,时间为5-15h,以及升温速率可以为2-10℃/min,例如烧结温度为800℃、801℃……949℃、950℃,时间为5h、5.1h……14.9h、15h,升温速率为2℃/min、2.1℃/min……9.9℃/min、10℃/min。在本公开中,所述烧结温度比较高,其不同于传统的三元材料的包覆烧结,在该温度下,能够使得氧化物在材料表面形成均匀的包覆层,同时由于热扩散作用,部分包覆氧化物中的金属元素以掺杂的形式进入到内核(锂镍钴锰氧)材料的晶格之中,最终得到锂镍钴锰氧材料/掺杂有元素E的锂镍钴锰氧材料/掺杂有元素E的锂镍钴氧材料(NCM/NCMA/NCA)的多级结构。
根据本公开的又一个具体实施例,镍盐为硫酸镍、硝酸镍和醋酸镍中的一种或多种,根据本发明的一个具体实施例,镍盐为硫酸镍;钴盐为硫酸钴、硝酸钴和醋酸钴中的一种或多种,根据本发明的一个具体实施例,钴盐为硫酸钴;锰盐为硫酸锰、硝酸锰和醋酸锰中的一种或多种,根据本发明的一个具体实施例,锰盐为硫酸锰。
根据本公开的又一个具体实施例,含有元素E的金属氧化物可以为Al 2O 3、ZrO 2、TiO 2、Y 2O 3、BaO和SrO。
根据本公开的又一个具体实施例,在步骤(c)中,可以采用旋流磨进行破碎,对所述破碎后的粒径没有具体限定,只要将其进行一定程度的破碎即可;另外,水洗没有具体限定,可以为本领域技术人员所熟知的条件。
根据本公开再一个实施例,所述的正极材料的制备方法还可以包括:
(d)将沉淀剂滴加到含有镍盐、钴盐和锰盐的水溶液中进行共沉淀反应,制得镍钴锰三元氢氧化物前驱体;
(e)将所述镍钴锰三元氢氧化物前驱体与氢氧化锂进行混合、煅烧、破碎和水洗,制得锂镍钴锰氧材料;
(f)将所述锂镍钴锰氧材料与含有元素E的金属氧化物、镍钴二元氢氧化物前驱体和LiOH进行机械混合后再进行煅烧,制得复合型锂离子电池正极材料。
根据本公开的一个具体实施例,在步骤(d)和(f)中,镍盐、钴盐、锰盐以及含有元素E的金属氧化物均如上述所述,在此不再赘述。
根据本公开的再一个具体实施例,在步骤(d)中,所述沉淀剂可以为氢氧化钠和/或氨水;另外,在本公开中,在将氢氧化钠溶液和氨水同时滴加到含有镍盐、钴盐和锰盐的水溶液中进行共沉淀反应,有沉淀析出,然后将沉淀过滤、清洗、烘干之后得到用于制备三 元材料的前躯体,即,镍钴锰三元氢氧化物前驱体,其中,过滤、清洗和烘干没有具体限定,可以为本领域技术人员所熟知的条件进行。
根据本公开的又一个具体实施例,氢氧化钠溶液的摩尔浓度可以为0.1-1mol/L,氨水的摩尔浓度可以为0.1-1mol/L,例如氢氧化钠溶液的摩尔浓度可以为0.1mol/L、0.2mol/L……0.9mol/L、1mol/L,氨水的摩尔浓度可以为0.1mol/L、0.2mol/L……0.9mol/L、1mol/L。另外,所述水没有具体限定,根据本公开的一个具体示例,水为去离子水。
根据本公开的又一个具体实施例,在步骤(f)中,煅烧温度可以为800-950℃,时间为8-15h,以及升温速率可以为2-10℃/min例如煅烧温度为800℃、801℃……949℃、950℃,时间为8h、8.1h……14.9h、15h,升温速率为2℃/min、2.1℃/min……9.9℃/min、10℃/min。
另外,在本公开的又一个具体实施例中,在步骤(f)中,所述机械混合可以采用球磨的方式进行混合,其中,所述球磨的条件可以包括:转速在200-600rpm,时间为2-4h,例如转速为200rpm、210rpm……590rpm、600rpm,时间为2h、2.1h……3.9h、4h。
本公开第二方面提供了一种锂离子电池,其中,该锂离子电池包括正极和负极,其中,所述正极采用前述所述的复合型锂离子电池正极材料制备得到。该正极制作过程是将上述的正极材料与导电剂、粘结剂混合得到浆料,然后将浆料涂覆在铝箔上得到的。需要说明的是,本领域技术人员可以根据实际需要对导电剂、粘结剂以及其混合比例等进行选择,此处不再赘述。
根据本公开的一个实施例,负极则是将人造石墨和粘结剂混合得到浆料后涂覆在铜箔上得到。需要说明的是,本领域技术人员可以根据实际需要对制备负极的粘结剂以及粘结剂与人造石墨的混合比例等进行选择,此处不再赘述。同时本公开的锂离子电池包括固态锂离子电池和液态锂离子电池,如果是液态锂离子电池,则需要将正负极片和隔膜按卷绕的方式制备得到电芯,然后将电芯装入电池壳,烘烤,注入电解液,焊接密封,再经过化成、老化得到电池。
本公开第三方面提供了一种车,其中,该车含有前述所述的锂离子电池。
下面参考具体实施例,对本公开进行描述,需要说明的是,这些实施例仅仅是描述性的,而不以任何方式限制本公开。
以下实施例和对比例中:
1、正极材料克容量:在2.5-4.25V的电压范围之间,对材料以1/3C恒流恒压充电至4.25V,恒压充电时截止电流为0.05C。
2、循环性能:在45℃下对电池进行1C/1C循环测试,电压范围为2.5-4.25V,充电时先1C恒流充电至4.25V再恒压充电,截止电流为0.2C。同取500周之后的容量保持率作 为比较。
3、存储性能:在60℃下对电池进行60天的存储实验,比较电池的容量保持率以及恢复率,以及电池DCIR和厚度的变化。
4、采用XRD测试I(003)/I(104)比值,其中,XRD采用购自Bruker,型号为Bruker D8。
实施例1
本实施例在于说明采用本公开的方法制备的正极材料。
(1)将硫酸镍、硫酸钴、硫酸锰混合溶解在去离子水中,硫酸镍、硫酸钴、硫酸锰总摩尔浓度为1M,其中,镍、钴、锰的摩尔比为9:1:1,将氢氧化钠溶液和氨水同时滴加到上述溶液中,调节溶液的pH到11,有沉淀析出,得到镍钴锰三元氢氧化物前驱体,其中氢氧化钠浓度为0.5M,氨水浓度为0.5M;
(2)在前面得到的前驱体溶液中,继续加入硫酸镍、硫酸钴和硫酸铝的溶液,溶液中镍钴铝总的摩尔浓度为1M,镍、钴、铝的摩尔比为80:5:15,控制pH使得镍、钴、铝沉淀包覆在前面得到的镍钴锰前驱体表面,所得的沉淀在室温下陈化12h,将沉淀离心分离,并用去离子水清洗3-4次,然后进行70℃真空干燥得到前驱体;
(3)将前面得到的前驱体与氢氧化锂(锂的摩尔量相对于金属过量5%)混合后在氧气气氛中进行烧结;混合物以5℃/min的速率升温到875℃,然后在该温度下保温10h,然后自然冷却;烧结完的样品经过粉碎,过筛得到成品,其中使用的筛网为325目。由于烧结温度比较高,可以使得氧化物在材料表面形成均匀的包覆层NCA,同时由于热扩散作用,表面的Al元素以掺杂的形式进入到NCM材料的晶格之中,并且Al元素的含量沿着表层到内核方向上依次递减,最终得到NCM/NCMA/NCA的多级结构单晶纳米粒子。
上述实验条件的运用使得:
所制备的正极材料为椭球形的单晶材料,平均粒径为2.2μm;所述表层中的所述元素Al的含量占正极材料总重量的3重量%,所述过渡层中的所述元素Al的含量占正极材料总重量的1.5重量%,且沿着所述正极材料的表层到所述内核的方向,所述元素Al在所述过渡层中的含量呈递减趋势;
其中,以所述正极材料的总重量为基准,表层的含量为2.5重量%,过渡层的含量为6.5重量%,内核的含量为91重量%。
其中,NCM为Li 1+mNi 1-x-yCo xMn yO 2;NCA为Li 1+mNi 1-x-y1Co xAl y1O 2,0.01≤y1≤0.15;NCMA为Li 1+mNi 1-x-y-zCo xMn yAl zO 2,0≤m≤0.1,0.01≤x≤0.05,0.01≤y≤0.05,0.01≤z≤0.1;以及NCM的平均粒径为2.2μm,NCA的厚度约为20nm,NCMA的厚度约为40nm。
结果将制备得到的正极材料的性能进行测试如表1和表2所示,其中,表1是该正极 材料的表面的游离锂的含量,表2是I(003)/I(104)比值。
另外,图2是本公开制备的复合型锂离子电池正极材料的横截面的示意图,即,采用实施例1的方法制备得到的NCM/NCMA/NCA复合材料的单晶颗粒的横截面的示意图,其中,外层黑色的部分代表NCA,中间白色的部分代表NCM,从表层到内核由黑色到白色的变化过程表示Al元素含量的递减。
实施例2
本实施例在于说明采用本公开的方法制备的正极材料。
按照与实施例1相同的方法制备正极材料,所不同之处在于:将组成正极材料的表层和过渡层通式中的元素铝替换为元素锆,并且所使用的硫酸镍、硫酸钴、硫酸锰、氢氧化锂以及元素锆的用量使得:
结果制备的正极材料为椭球形的单晶材料,平均粒径为2.1μm;所述表层中的所述元素Zr的含量占正极材料总重量的4重量%,所述过渡层中的所述元素Zr的含量占正极材料总重量的2重量%,且沿着所述正极材料的表层到所述内核的方向,所述元素Zr在所述过渡层中的含量呈递减趋势;
其中,以所述正极材料的总重量为基准,表层的含量为2.5重量%,过渡层的含量为6.5重量%,内核的含量为91重量%。
其中,NCM为Li 1+mNi 1-x-yCo xMn yO 2;NCA为Li 1+mNi 1-x-y1Co xZr y1O 2,0.01≤y1≤0.15;NCMA为Li 1+mNi 1-x-y-zCo xMn yZr zO 2,0≤m≤0.1,0.01≤x≤0.05,0.01≤y≤0.05,0.01≤z≤0.1;以及NCM的平均粒径为2.2μm,NCA的厚度约为20nm,NCMA的厚度约为40nm。
结果将制备得到的正极材料的性能进行测试如表1和表2所示,其中,表1是该正极材料的表面的游离锂的含量,表2是I(003)/I(104)比值。
实施例3
本实施例在于说明采用本公开的方法制备的正极材料。
按照与实施例1相同的方法制备正极材料,所不同之处在于:将组成正极材料的表层和过渡层通式中的元素铝替换为锶,并且所使用的硫酸镍、硫酸钴、硫酸锰、氢氧化钠、氨水、氢氧化锂以及元素锶的用量使得:
结果制备的正极材料为椭球形的单晶材料,平均粒径为2.0μm;所述表层中的所述元素Sr的含量占正极材料总重量的4重量%,所述过渡层中的所述元素Sr的含量占正极材料总重量的2重量%,且沿着所述正极材料的表层到所述内核的方向,所述元素Sr在所述过渡层中的含量呈递减趋势;
其中,以所述正极材料的总重量为基准,表层的含量为2.5重量%,过渡层的含量为6.5重量%,内核的含量为91重量%。
其中,NCM为Li 1+mNi 1-x-yCo xMn yO 2;NCA为Li 1+mNi 1-x-y1Co xSr y1O 2,0.01≤y1≤0.15;NCMA为Li 1+mNi 1-x-y-zCo xMn ySr zO 2,1≤m≤1.1,0.01≤x≤0.05,0.01≤y≤0.05,0.01≤z≤0.1;以及NCM的平均粒径为2.0μm,NCA的厚度约为20nm,NCMA的厚度约为40nm。
结果将制备得到的正极材料的性能进行测试如表1和表2所示,其中,表1是该正极材料的表面的游离锂的含量,表2是I(003)/I(104)比值。
实施例4
本实施例在于说明采用本公开的方法制备的正极材料。
按照与实施例1相同的方法制备正极材料,所不同之处在于:将组成正极材料的表层和过渡层通式中的铝元素的含量降低,结果使:
所述表层中的所述元素Al的含量占正极材料总重量的1.5重量%,所述过渡层中的所述元素Al的含量占正极材料总重量的0.8重量%,且沿着所述正极材料的表层到所述内核的方向,所述元素E在所述过渡层中的含量呈递减趋势;
其中,以所述正极材料的总重量为基准,表层的含量为2.5重量%,过渡层的含量为6.5重量%,内核的含量为91重量%。
其中,NCM为Li 1+mNi 1-x-yCo xMn yO 2;NCA为Li 1+mNi 1-x-y1Co xAl y1O 2,0.01≤y1≤0.15;NCMA为Li 1+mNi 1-x-y-zCo xMn yAl zO 2,0≤m≤0.1,0.01≤x≤0.05,0.01≤y≤0.05,0.01≤z≤0.1;以及NCM的平均粒径为2.2μm,NCA的厚度约为20nm,NCMA的厚度约为40nm。
结果将制备得到的正极材料的性能进行测试如表1和表2所示,其中,表1是该正极材料的表面的游离锂的含量,表2是I(003)/I(104)比值。
实施例5
本实施例在于说明采用本公开的方法制备的正极材料。
按照与实施例1相同的方法制备正极材料,所不同之处在于:将组成正极材料的表层和过渡层通式中的铝元素的含量增加,结果使:
所述正极材料的总重量为基准,所述表层中的所述元素Al的含量占正极材料总重量的4重量%,所述过渡层中的所述元素Al的含量占正极材料总重量的2重量%,且沿着所述正极材料的表层到所述内核的方向,所述元素Al在所述过渡层中的含量呈递减趋势;
其中,以所述正极材料的总重量为基准,表层的含量为3.5重量%,过渡层的含量为5.5重量%,内核的含量为91重量%。
其中,NCM为Li 1+mNi 1-x-yCo xMn yO 2;NCA为Li 1+mNi 1-x-y1Co xAl y1O 2,0.01≤y1≤0.15;NCMA为Li 1+mNi 1-x-y-zCo xMn yAl zO 2,0≤m≤0.1,0.01≤x≤0.05,0.01≤y≤0.05,0.01≤z≤0.1;以及NCM的平均粒径为2.2μm,NCA的厚度约为20nm,NCMA的厚度约为40nm。
结果将制备得到的正极材料的性能进行测试如表1和表2所示,其中,表1是该正极材料的表面的游离锂的含量,表2是I(003)/I(104)比值。
实施例6
本实施例在于说明采用本公开的方法制备的正极材料。
按照与实施例1相同的方法制备正极材料,所不同之处在于:掺杂包覆元素不变,将步骤(1)的三元前躯体中的镍含量变为95mol%。
所述表层中的所述元素Al的含量占正极材料总重量的3重量%,所述过渡层中所述元素Al的含量占正极材料总重量的1.5重量%,且沿着所述正极材料的表层到所述内核的方向,所述元素Al在所述过渡层中的含量呈递减趋势;
其中,以所述正极材料的总重量为基准,表层的含量为3重量%,过渡层的含量为5.5重量%,内核的含量为91.5重量%。
其中,NCM为Li 1+mNi 1-x-yCo xMn yO 2;NCA为Li 1+mNi 1-x-y1Co xAl y1O 2,0.01≤y1≤0.15;NCMA为Li 1+mNi 1-x-y-zCo xMn yAl zO 2,0≤m≤0.1,0.01≤x≤0.05,0.01≤y≤0.05,0.01≤z≤0.1;以及NCM的平均粒径为2.2μm,NCA的厚度约为20nm,NCMA的厚度约为40nm。
结果将制备得到的正极材料的性能进行测试如表1和表2所示,其中,表1是该正极材料的表面的游离锂的含量,表2是I(003)/I(104)比值。
实施例7
本实施例在于说明采用本公开的方法制备的正极材料。
按照与实施例1相同的方法制备正极材料,所不同之处在于:将组成正极材料的表层和过渡层通式中的铝元素替换为铝和锆的混合元素,结果使:
所述表层中的所述元素Al和Zr元素的总含量占正极材料总重量的3重量%,所述过渡层中的所述元素Al和Zr元素的总含量占正极材料总重量的1.5重量%,且沿着所述正极材料的表层到所述内核的方向,所述元素Al和Zr元素的总含量在所述过渡层中呈递减趋势;
其中,以所述正极材料的总重量为基准,表层的含量为2.5重量%,过渡层的含量为5.5重量%,内核的含量为91重量%。
其中,NCM为Li 1+mNi 1-x-yCo xMn yO 2;NCA为Li 1+mNi 1-x-y1Co xA y1O 2,0.01≤y1≤0.15;NCMA为Li 1+mNi 1-x-y-zCo xMn yAO 2,0≤m≤0.1,0.01≤x≤0.05,0.01≤y≤0.05,0.01≤z≤0.1;在 这里,A表示Zr和Al,其中Al和Zr的质量比为2:3;以及NCM的平均粒径为2.2μm,NCA的厚度约为20nm,NCMA的厚度约为40nm。
结果将制备得到的正极材料的性能进行测试如表1和表2所示,其中,表1是该正极材料的表面的游离锂的含量,表2是I(003)/I(104)比值。
实施例8
本实施例在于说明采用本公开的方法制备的正极材料。
按照与实施例1相同的方法制备正极材料,所不同之处在于:在步骤(3)中,煅烧温度为850℃。
所述表层中的所述元素Al的含量占正极材料的总重量的2重量%,所述过渡层中的所述元素Al的含量占正极材料总重量的1重量%,且沿着所述正极材料的表层到所述内核的方向,所述元素Al在所述过渡层中的含量呈递减趋势;
其中,以所述正极材料的总重量为基准,表层的含量为2.5重量%,过渡层的含量为6.5重量%,内核的含量为91重量%。
其中,NCM为Li 1+mNi 1-x-yCo xMn yO 2;NCA为Li 1+mNi 1-x-y1Co xAl y1O 2,0.01≤y1≤0.15;NCMA为Li 1+mNi 1-x-y-zCo xMn yAl zO 2,0≤m≤0.1,0.01≤x≤0.05,0.01≤y≤0.05,0.01≤z≤0.1;以及NCM的平均粒径为2.2μm,NCA的厚度约为20nm,NCMA的厚度约为40nm。
结果将制备得到的正极材料的性能进行测试如表1和表2所示,其中,表1是该正极材料的表面的游离锂的含量,表2是I(003)/I(104)比值。
对比例1
按照与实施例1相同的方法制备正极材料,所不同之处在于:制备过程中没有经过包覆,即,对比例1制备的是锂镍钴锰氧材料。
所制备的正极材料为椭球形的单晶材料,平均粒径为2.0μm。
结果将制备得到的正极材料的性能进行测试如表1和表2所示,其中,表1是该正极材料的表面的游离锂的含量,表2是I(003)/I(104)比值。
另外,图1是对比例1和实施例1制备的正极活性材料的循环性能对比图,其中,曲线1表示的是实施例1制备的NCM/NCMA/NCA复合材料在45℃下的循环性能,曲线2表示的是对比例1制备的没有表面包覆的NCM在45℃下的循环性能,从图1可以看出:采用本公开的NCM/NCMA/NCA复合材料具有稳定的循环性能。
对比例2
按照与实施例1相同的方法制备正极材料,所不同之处在于:将硫酸锰替换为硫酸铝,即,制备的是锂镍钴铝氧材料。
所制备的正极材料为椭球形的单晶材料,平均粒径为2.0μm。
结果将制备得到的正极材料的性能进行测试如表1和表2所示,其中,表1是该正极材料的表面的游离锂的含量,表2是I(003)/I(104)比值。
对比例3
按照与实施例1相同的方法制备正极材料,所不同之处在于:单独分别合成NCM和NCA之后再将两者混合,把NCA包覆在NCM表面。
用实施例1和对比例2的方法分别制备得到NCM和NCA,然后按一定比例(混合物铝含量与实施例1相同),进行球磨混合,混合之后在一定温度下进行烧结得到NCM/NCA样品。
结果将制备得到的正极材料的性能进行测试如表1和表2所示,其中,表1是该正极材料的表面的游离锂的含量,表2是I(003)/I(104)比值。
表1
实施例 氢氧化锂(ppm) 碳酸锂(ppm)
实施例1 823.4 1556.8
实施例2 955.3 1226.2
实施例3 1059.4 1696.7
实施例4 935.4 1670.5
实施例5 855.2 1433.8
实施例6 1043.5 1715.5
实施例7 722.5 1322.5
实施例8 872.3 1256.8
对比例1 1523.4 2454.6
对比例2 1143.2 1605.4
对比例3 1230.4 2210.5
从表1可以看出:实施例1-8和对比例1-3制备的正极材料的表面游离的锂的形态有氢氧化锂和碳酸锂,其中,实施例1-8中氢氧化锂和碳酸锂的含量均低于对比例1和3中两者的含量,这说明:复合材料相对于单独的没有包覆的材料表面更加稳定,表面的游离锂少,这更有利于加工以及电池容量的发挥。另外,对比例2,由于NCA是很稳定的,所以其表 面的游离锂含量也不会很高,但是,NCA容量比较低。
表2
实施例 I(003)/I(104)
实施例1 1.44
实施例2 1.57
实施例3 1.41
实施例4 1.43
实施例5 1.52
实施例6 1.40
实施例7 1.50
实施例8 1.41
对比例1 1.21
对比例2 1.40
对比例3 1.35
从表2可以看出:实施例1-8制备的正极材料的I(003)/I(104)的比值相对于对比例1和3高,这是因为I(003)/I(104)的比值越高,通常可以认为Li +/Ni 2+混排的程度越低。例如,对比实施例1和对比例1可以看出,实施例1制备的正极材料相对于单独的NCM具有更低的Li +/Ni 2+混排程度,表明其结构更加稳定,混排程度低,那么在充放电过程中可以自由脱嵌的锂离子更多,材料的容量更高。另外,对比例2由于NCA本身本来就比较稳定,所以用其去包覆NCM,则对比例2的Li/Ni混排程度也很低,但是,单独的NCA在电池容量上不占优势。
测试例
为了评价材料的电化学性能,将实施例1-8和对比例1-3制备的正极材料做成电池进行测试,结果如表3和表4所示,其中,表3是克容量和循环性能对比,表4是在60℃环境下存储60天性能对比。
表3
实施例 克容量(mAh/g) 45℃循环500周容量保持率(%)
实施例1 199.3 91.5
实施例2 197.3 90.7
实施例3 196.2 88.6
实施例4 197.5 86.3
实施例5 196.4 91.2
实施例6 203.5 86.6
实施例7 200.3 93.4
实施例8 196.5 87.1
对比例1 198.2 79.4
对比例2 195.3 85.5
对比例3 195.5 83.3
从图3电化学测试结果表明:
(1)对比例1(镍含量90%的NCM)的克容量为198.2mAh/g,对比例2(NCA)的克容量为195.3mAh/g,对比例3(NCM/NCA)的克容量为195.5,而实施例1(Al掺杂,复合材料)的克容量为199.3mAh/g;这说明复合材料在容量上相对于单一的NCM和NCA更有优势;
(2)45℃下,在经过500圈的恒流恒压充放电循环之后,对比例1(NCM)的容量保持率为79.4%,对比例2(NCA)的容量保持率为85.5%,对比例3(NCM/NCA)的容量保持率为83.3%,而实施例1(Al掺杂,复合材料)的容量保持率高于90%;这说明这样一种带有过渡层的类核壳结构在结构上更稳定,能够有效的减缓电池材料性能的衰减。
表4
实施例 容量保持率(%) 容量恢复率(%) DCIR变化率(%)
实施例1 93 96 10
实施例2 91 93 12
实施例3 89 92 13
实施例4 90 93 16
实施例5 92 95 15
实施例6 87 91 10
实施例7 93 95 11
实施例8 89 93 12
对比例1 85 89 20
对比例2 88 91 19
对比例3 86 90 17
从图4电化学测试结果表明:
经过60℃的高温存储之后,对比例1(NCM)的容量剩余率为85%,恢复率为89%,在60%SOC(State of charge,剩余电量)时,其DCIR(直流电阻)上升了约20%,同样条件下,对比例2(NCA)的剩余率为88%,恢复率为91%,60%SOC下的DCIR上升了19%,而实施例1(Al掺杂,复合材料)表现出了很好的稳定性,对应的电池存储之后容量的剩余率为93%,容量恢复率达到了96%,DCIR上升了10%;这说明复合材料相对于单一材料而言能够有效的抑制电池自放电现象。DCIR的提升,通常跟电极材料的表面副反应有关,副反应多会导致材料表面成膜比较多,阻抗增加,复合材料相对于单一材料具有更加惰性,稳定的表面。
以上详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (16)

  1. 一种复合型锂离子电池正极材料,其中,所述正极材料的内核为锂镍钴锰氧材料,所述正极材料的表层为掺杂有元素E的锂镍钴氧材料,在所述内核和表层之间存在过渡层,所述过渡层为掺杂有元素E的锂镍钴锰氧材料,其中,沿所述正极材料的表层到所述内核的方向,所述元素E在所述过渡层中的含量呈递减趋势;
    其中,所述过渡层的组成通式为Li 1+mNi 1-x-y-zCo xMn yE zO 2,其中,0≤m≤0.1,0.01≤x≤0.1,0.01≤y≤0.1,0.01≤z≤0.1;
    其中,E为Al、Zr、Ti、Y、Ba和Sr中的一种或多种。
  2. 根据权利要求1所述的正极材料,其中,所述正极材料为单晶材料。
  3. 根据权利要求1或2所述的正极材料,其中,所述表层中的所述元素E的含量占所述正极材料的总重量的0.5-8重量%,所述过渡层中的所述元素E含量占所述正极材料的总重量的0.05-5重量%。
  4. 根据权利要求1-3中任一项所述的正极材料,其中,所述过渡层的厚度为5-200nm。
  5. 根据权利要求1-4中任一项所述的正极材料,其中,以所述正极材料的总重量为基准,所述过渡层的含量为0.5-12重量%。
  6. 根据权利要求1-5中任一项所述的正极材料,其中,所述内核的组成通式为Li 1+mNi 1-x-yCo xMn yO 2
  7. 根据权利要求1-6中任一项所述的正极材料,其中,所述内核中镍元素的摩尔含量占所述内核的总摩尔数的比例不低于80%。
  8. 根据权利要求1-7中任一项所述的正极材料,其中,所述内核的平均粒径为1.5-2.5μm。
  9. 根据权利要求1-8中任一项所述的正极材料,其中,以所述正极材料的总重量为基准,所述内核的含量为80-98重量%。
  10. 根据权利要求1-9中任一项所述的正极材料,其中,以所述正极材料的总重量为基准,所述内核的含量为90-98重量%。
  11. 根据权利要求1-10中任一项所述的正极材料,其中,所述表层的组成通式为Li 1+mNi 1-x-y1Co xE y1O 2,其中,0.01≤y1≤0.15。
  12. 根据权利要求1-11中任一项所述的正极材料,其中,所述表层的厚度为5-50nm。
  13. 根据权利要求1-12中任一项所述的正极材料,其中,以所述正极材料的总重量为基准,所述表层的含量至多为8重量%。
  14. 根据权利要求1-13中任一项所述的正极材料,其中,所述元素E为Al。
  15. 一种锂离子电池,其中,所述锂离子电池包括正极和负极,其中,所述正极采用权利要求1-14中任一项所述的正极材料制备得到。
  16. 一种车,其中,所述车含有权利要求15所述的锂离子电池。
PCT/CN2020/092654 2019-05-28 2020-05-27 复合型锂离子电池正极材料及锂离子电池和车 WO2020238968A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20812772.0A EP3965188A4 (en) 2019-05-28 2020-05-27 COMPOSITE POSITIVE ELECTRODE MATERIAL FOR LITHIUM ION BATTERY, LITHIUM ION BATTERY AND VEHICLE
US17/614,285 US20220255066A1 (en) 2019-05-28 2020-05-27 Composite positive electrode material for lithium ion battery, lithium ion battery, and vehicle
KR1020217041167A KR20220009443A (ko) 2019-05-28 2020-05-27 리튬 이온 배터리용 복합 캐소드 재료, 리튬 이온 배터리, 및 차량
JP2021570462A JP7426414B2 (ja) 2019-05-28 2020-05-27 複合型リチウムイオン電池の正極材料、リチウムイオン電池及び車

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910450988.4 2019-05-28
CN201910450988.4A CN112018335B (zh) 2019-05-28 2019-05-28 复合型锂离子电池正极材料及锂离子电池正极以及锂电池、电池模组、电池包和车

Publications (1)

Publication Number Publication Date
WO2020238968A1 true WO2020238968A1 (zh) 2020-12-03

Family

ID=73500646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092654 WO2020238968A1 (zh) 2019-05-28 2020-05-27 复合型锂离子电池正极材料及锂离子电池和车

Country Status (6)

Country Link
US (1) US20220255066A1 (zh)
EP (1) EP3965188A4 (zh)
JP (1) JP7426414B2 (zh)
KR (1) KR20220009443A (zh)
CN (1) CN112018335B (zh)
WO (1) WO2020238968A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112694139A (zh) * 2020-12-29 2021-04-23 福建常青新能源科技有限公司 单晶ncm三元正极材料前驱体的制备方法
WO2022211507A1 (ko) * 2021-03-30 2022-10-06 주식회사 포스코 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2023203424A1 (ja) * 2022-04-21 2023-10-26 株式会社半導体エネルギー研究所 正極活物質および二次電池
CN117509756A (zh) * 2023-11-20 2024-02-06 金驰能源材料有限公司 一种富镍的铝掺杂镍钴锰三元前驱体及其制备方法
JP7483044B2 (ja) 2021-09-14 2024-05-14 寧徳時代新能源科技股▲分▼有限公司 高ニッケル正極活物質、その製造方法、それを含むリチウムイオン電池、電池モジュール、電池パック及び電力消費装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021163987A1 (zh) * 2020-02-21 2021-08-26 宁德新能源科技有限公司 正极材料和包含所述正极材料的电化学装置
CN114188527A (zh) * 2021-11-26 2022-03-15 南通金通储能动力新材料有限公司 一种具有核壳结构的ncma正极材料及其制备方法
CN114792794A (zh) * 2022-05-28 2022-07-26 天津巴莫科技有限责任公司 核壳结构的层状高镍正极材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006033529A1 (en) * 2004-09-24 2006-03-30 Lg Chem, Ltd. Powdered lithium transition metal oxide having doped interface layer and outer layer and method for preparation of the same
CN103490060A (zh) * 2013-10-11 2014-01-01 宁德新能源科技有限公司 锂镍钴锰正极材料及其制备方法
CN103500827A (zh) * 2013-10-11 2014-01-08 宁德新能源科技有限公司 锂离子电池及其多元正极材料、制备方法
CN105870402A (zh) * 2015-01-22 2016-08-17 辅仁大学学校财团法人辅仁大学 金属梯度掺杂锂电池正极材料
CN107408667A (zh) * 2015-06-17 2017-11-28 株式会社Lg 化学 二次电池用正极活性材料、其制备方法和包含其的二次电池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167209A (ja) * 1997-08-27 1999-03-09 Sanyo Electric Co Ltd リチウム二次電池
JP5505608B2 (ja) 2008-09-10 2014-05-28 戸田工業株式会社 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
CN101997113A (zh) * 2009-08-17 2011-03-30 北京当升材料科技股份有限公司 一种锂离子电池用多层包覆结构的多元材料及其制备方法
US9764962B2 (en) 2011-04-14 2017-09-19 Toda Kogyo Corporation Li—Ni composite oxide particles and process for producing the same, and non-aqueous electrolyte secondary battery
KR101666879B1 (ko) 2012-08-14 2016-10-17 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 리튬 이차 전지용 양극 활물질의 제조 방법 및 상기 양극 활물질을 포함하는 리튬 이차 전지
JP2015204256A (ja) 2014-04-16 2015-11-16 トヨタ自動車株式会社 被覆正極活物質の製造方法
CN104409716A (zh) * 2014-10-30 2015-03-11 中国科学院过程工程研究所 一种具有浓度梯度的镍锂离子电池正极材料及其制备方法
JP6034413B2 (ja) 2015-01-29 2016-11-30 輔仁大學學校財團法人輔仁大學 リチウムイオン電池の金属勾配ドープ正極材料
KR102081858B1 (ko) * 2016-12-02 2020-02-26 주식회사 엘지화학 이차전지용 양극활물질 전구체 및 이를 이용하여 제조한 이차전지용 양극활물질
CN106784798B (zh) * 2017-02-15 2020-01-14 中国科学院过程工程研究所 正极活性材料、制备方法及包含其的高性能正极浆料和全固态锂离子电池
CN107359346B (zh) * 2017-06-19 2019-07-26 荆门市格林美新材料有限公司 一种锂电池正极材料改性多元前驱体及制备方法
CN107585794B (zh) * 2017-09-13 2019-05-14 中南大学 三元正极材料及该材料和其前驱体的制备方法
CN107968202B (zh) * 2017-11-21 2020-12-25 宁波纳微新能源科技有限公司 一种含铝的镍钴锰核壳结构的正极材料及其制备方法
CN108298599B (zh) * 2018-01-23 2020-05-05 昶联金属材料应用制品(广州)有限公司 单晶高镍三元材料前驱体及制备方法,单晶高镍三元材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006033529A1 (en) * 2004-09-24 2006-03-30 Lg Chem, Ltd. Powdered lithium transition metal oxide having doped interface layer and outer layer and method for preparation of the same
CN103490060A (zh) * 2013-10-11 2014-01-01 宁德新能源科技有限公司 锂镍钴锰正极材料及其制备方法
CN103500827A (zh) * 2013-10-11 2014-01-08 宁德新能源科技有限公司 锂离子电池及其多元正极材料、制备方法
CN105870402A (zh) * 2015-01-22 2016-08-17 辅仁大学学校财团法人辅仁大学 金属梯度掺杂锂电池正极材料
CN107408667A (zh) * 2015-06-17 2017-11-28 株式会社Lg 化学 二次电池用正极活性材料、其制备方法和包含其的二次电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3965188A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112694139A (zh) * 2020-12-29 2021-04-23 福建常青新能源科技有限公司 单晶ncm三元正极材料前驱体的制备方法
WO2022211507A1 (ko) * 2021-03-30 2022-10-06 주식회사 포스코 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
JP7483044B2 (ja) 2021-09-14 2024-05-14 寧徳時代新能源科技股▲分▼有限公司 高ニッケル正極活物質、その製造方法、それを含むリチウムイオン電池、電池モジュール、電池パック及び電力消費装置
WO2023203424A1 (ja) * 2022-04-21 2023-10-26 株式会社半導体エネルギー研究所 正極活物質および二次電池
CN117509756A (zh) * 2023-11-20 2024-02-06 金驰能源材料有限公司 一种富镍的铝掺杂镍钴锰三元前驱体及其制备方法

Also Published As

Publication number Publication date
US20220255066A1 (en) 2022-08-11
CN112018335B (zh) 2023-03-14
EP3965188A1 (en) 2022-03-09
JP2022534939A (ja) 2022-08-04
KR20220009443A (ko) 2022-01-24
CN112018335A (zh) 2020-12-01
EP3965188A4 (en) 2022-07-20
JP7426414B2 (ja) 2024-02-01

Similar Documents

Publication Publication Date Title
WO2020238968A1 (zh) 复合型锂离子电池正极材料及锂离子电池和车
WO2020134781A1 (zh) 一种高压实密度正极材料及电化学储能装置
KR101400593B1 (ko) 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2021189997A1 (zh) 正极材料及其制备方法,正极、锂离子电池和车辆
CN107591519B (zh) 改性锂镍钴锰正极材料及其制备方法
WO2021121066A1 (zh) 正极材料及其制备方法和应用
TWI553949B (zh) 鋰離子電池正極複合材料
TWI487178B (zh) 鋰離子電池正極複合材料的製備方法
TWI463730B (zh) 鋰離子電池正極複合材料
WO2020043140A1 (zh) 三元正极材料及其制备方法、锂离子电池
WO2017096525A1 (zh) 锂离子电池正极材料、其制备方法、锂离子电池正极以及锂离子电池
WO2021129319A1 (zh) 正极材料及其制备方法和应用
JP7267504B2 (ja) コバルトフリー層状正極材料及びその製造方法、リチウムイオン電池
KR20160074236A (ko) 복합 양극 활물질, 그 제조방법, 이를 포함한 양극 및 리튬 전지
JP2001291518A (ja) リチウム二次電池用正極活物質及びその製造方法
WO2024016662A1 (zh) 一种正极材料用复合包覆剂、一种高镍单晶正极材料和电池
KR101439638B1 (ko) 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
CN112701276A (zh) 一种四元多晶正极材料及其制备方法和应用
CN112117452A (zh) 正极材料包覆剂及其制备方法、锂离子电池正极材料、锂离子电池和用电设备
WO2022237110A1 (zh) 氟掺杂锂正极材料及其制备方法和应用
WO2020090678A1 (ja) 非水電解質二次電池、非水電解質二次電池の製造方法及び非水電解質二次電池の使用方法
CN111170369A (zh) 一种锰酸锂或镍锰酸锂材料及其制备方法和应用
WO2024066867A1 (zh) 高镍三元正极材料及其制备方法、应用和锂电池
WO2024087568A1 (zh) 一种锰基固溶体正极材料及制备方法与用途
WO2023165160A1 (zh) 一种正极材料及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20812772

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021570462

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217041167

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020812772

Country of ref document: EP

Effective date: 20211202