WO2021121066A1 - 正极材料及其制备方法和应用 - Google Patents

正极材料及其制备方法和应用 Download PDF

Info

Publication number
WO2021121066A1
WO2021121066A1 PCT/CN2020/134346 CN2020134346W WO2021121066A1 WO 2021121066 A1 WO2021121066 A1 WO 2021121066A1 CN 2020134346 W CN2020134346 W CN 2020134346W WO 2021121066 A1 WO2021121066 A1 WO 2021121066A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode material
diffraction peak
coating agent
product
Prior art date
Application number
PCT/CN2020/134346
Other languages
English (en)
French (fr)
Inventor
潘海龙
白艳
王壮
张树涛
Original Assignee
蜂巢能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蜂巢能源科技有限公司 filed Critical 蜂巢能源科技有限公司
Priority to KR1020227020622A priority Critical patent/KR20220111283A/ko
Priority to US17/766,227 priority patent/US20240055591A1/en
Priority to EP20903696.1A priority patent/EP4024531A4/en
Priority to JP2022528258A priority patent/JP2023502088A/ja
Publication of WO2021121066A1 publication Critical patent/WO2021121066A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention belongs to the technical field of lithium ion batteries. Specifically, the present invention relates to a positive electrode material and a preparation method and application thereof.
  • an object of the present invention is to provide a positive electrode material and its preparation method and application.
  • the positive electrode material has a low content of divalent nickel ions, a low degree of lithium-nickel mixing, a stable crystal structure, a high cycle retention rate and thermal stability, a prolonged service life and improved safety.
  • the present invention provides a cathode material.
  • the general formula of the cathode material is Li a Ni 1-xyz Co x Mn y Al z M b O 2 , wherein, 1.04 ⁇ a ⁇ 1.08, 0.04 ⁇ x ⁇ 0.08, 0.025 ⁇ y ⁇ 0.06, 0.03 ⁇ z ⁇ 0.09, 0.015 ⁇ b ⁇ 0.06, M is B and selected from Zr and Al, B, Ti, Mg, Na, Ca, At least one of Nb, Ba, Si, P, W, and Sr.
  • the cathode material of the embodiment of the present invention compared with the existing nickel-cobalt-manganese-aluminum cathode material, the cathode material is doped with M ions.
  • M ions Through the doping of M ions, the content of divalent nickel ions can be reduced, thereby reducing the content of nickel from (003 )
  • the amount of nickel ions that transition from the crystal plane to the (104) crystal plane reduces the degree of lithium-nickel mixing and stabilizes the crystal structure of the cathode material, thereby increasing the cycle retention and thermal stability of the material, so as to extend the service life of the material and increase Its safety.
  • cathode material according to the foregoing embodiment of the present invention may also have the following additional technical features:
  • the value range of b is 0.02 ⁇ b ⁇ 0.03.
  • the positive electrode material has an ⁇ -NaFeO 2 type layered structure similar to LiCoO 2 , and the crystal type of the positive electrode material belongs to the R-3m space group of the hexagonal crystal system.
  • the 2 ⁇ angle of the positive electrode material on the (003) crystal plane is around 18.74 degrees, preferably the positive electrode material is 18.74 ⁇ 0.2 degrees on the (003) crystal plane 2 ⁇ angle, and the positive electrode material is in (003)
  • the half-width of the diffraction peak of the crystal plane is 0.0550-0.0700.
  • the 2 ⁇ angle of the positive electrode material on the (104) crystal plane is around 44.4 degrees, preferably the positive electrode material is 44.4 ⁇ 0.2 degrees on the (104) crystal plane 2 ⁇ angle, and the positive electrode material is in the (003) crystal plane.
  • the ratio of the half-width of the diffraction peak of the plane to the half-width of the diffraction peak on the (104) crystal plane is 1.45-1.6.
  • the ratio of the diffraction peak intensity of the (003) crystal plane to the diffraction peak intensity of the (104) crystal plane of the positive electrode material is 2.45 ⁇ I 003 /I 104 ⁇ 3.05.
  • M is B and at least one selected from Zr, Al, and W, preferably M is a combination of B, Zr, and Al or a combination of B, Zr, Al, and W.
  • the present invention provides a method for preparing the above-mentioned positive electrode material. According to an embodiment of the present invention, the method includes:
  • calcined product with a lithium source and other dopants, and the other dopants include those selected from Zr and Al, Ti, Mg, Na, Ca, Nb, Ba, Si, P, W, and Sr.
  • At least one ion source substance At least one ion source substance;
  • the dried product is mixed with an aluminum source coating agent and a boron source coating agent and then subjected to heat treatment, so as to obtain the positive electrode material.
  • a precursor material with more orderly grain size growth direction, greater specific surface area and strength can be obtained .
  • the precursor reacts to obtain a pure single-crystal quaternary cathode material instead of a single-crystal material.
  • the dried product is packaged with the aluminum source by a dry method.
  • the coating agent and the boron source coating agent are uniformly mixed and then subjected to heat treatment.
  • the boron source acts as a fluxing agent to uniformly coat the aluminum source on the surface of the positive electrode material to obtain cycle retention and thermal stability.
  • a positive electrode material with high life and safety.
  • the method for preparing a positive electrode material according to the foregoing embodiment of the present invention may also have the following additional technical features:
  • the positive electrode precursor material is selected from at least one of Ni 1-xyz Co x Mn y Al z (OH) 2 , Ni 1-xyz Co x Mn y Al z CO 3 , Among them, 0.04 ⁇ x ⁇ 0.08, 0.04 ⁇ y ⁇ 0.06, 0.03 ⁇ z ⁇ 0.09, preferably 0.03 ⁇ y ⁇ 0.06, and more preferably 0.04 ⁇ y ⁇ 0.06.
  • the boron source dopant and the boron source dopant are independently selected from at least one of B 2 O 3 and H 3 BO 3.
  • the mass ratio of the positive electrode precursor material to the boron source dopant is 1:0.001-0.002.
  • the pre-sintering temperature is 900-1000° C., and the time is 10-15 h.
  • the mass ratio of the calcined product to the lithium source and the dopant is 480:260-280:1-10.
  • the lithium source is selected from at least one of LiOH and Li 2 CO 3.
  • the other dopants are those containing at least one ion source selected from Zr and Al, Ti, Mg, Na, Ca, Nb, Ba, Si, P, W, and Sr. substance.
  • the dopant is selected from Zr(OH) 4 , ZrO 2 , Al 2 O 3 , TiO 2 , Mg(OH) 2 , NaCl, CaCl 2 , Nb 2 O 5 , BaCl 2. At least one of SiO 2 , H 3 PO 3 , WO 3, and SrO.
  • the calcination temperature is 830-880°C, and the time is 12-17h.
  • the mass ratio of the dried product to the aluminum source coating agent and the boron source coating agent is 1:0.001-0.003:0.0015-0.007.
  • the aluminum source coating agent is selected from at least one of Al 2 O 3 , Al(OH) 3 , and AlF 3.
  • the temperature of the heat treatment is 400-600°C, and the time is 6-8h.
  • the present invention provides a lithium ion battery.
  • the lithium ion battery has the above-mentioned positive electrode material or the positive electrode material prepared by the above-mentioned method for preparing the positive electrode material.
  • the lithium ion battery of the embodiment of the present invention because the lithium ion battery has the above-mentioned positive electrode material, and the positive electrode material is doped with M ions to reduce the content of divalent nickel ions, thereby reducing the transition from the (003) crystal plane.
  • the amount of nickel ions to the (104) crystal plane reduces the degree of lithium-nickel mixing in the positive electrode material, so that the crystal structure of the positive electrode material is stable, which is beneficial to improve the cycle retention and thermal stability of the lithium ion battery, and prolong the service life of the battery And improve its safety.
  • the present invention provides an automobile.
  • the automobile has the above-mentioned lithium ion battery.
  • the automobile of the embodiment of the present invention because the automobile has the above-mentioned lithium-ion battery, the automobile can meet the long-distance requirement under the high cycle retention rate, thermal stability, service life and safety performance of the above-mentioned lithium ion battery , And can significantly reduce potential safety hazards.
  • Fig. 1 is a schematic flow chart of a method for preparing a cathode material according to an embodiment of the present invention
  • Fig. 2 shows the corrected XRD spectrum of the positive electrode material obtained in Example 1;
  • Fig. 3 shows the corrected XRD spectrum of the positive electrode material obtained in Example 4.
  • Fig. 4 shows the corrected XRD spectrum of the cathode material obtained in Example 6;
  • FIG. 5 shows the corrected XRD spectrum of the positive electrode material obtained in Example 8.
  • Fig. 6 shows the corrected XRD spectrum of the positive electrode material obtained in Example 9;
  • FIG. 7 shows the corrected XRD spectrum of the positive electrode material obtained in Comparative Example 1.
  • the present invention provides a cathode material.
  • the general formula of the cathode material is Li a Ni 1-xyz Co x Mn y Al z M b O 2 , where 1.04 ⁇ a ⁇ 1.08, 0.04 ⁇ x ⁇ 0.08, 0.025 ⁇ y ⁇ 0.06 (preferably 0.03 ⁇ y ⁇ 0.06, more preferably 0.04 ⁇ y ⁇ 0.06), 0.03 ⁇ z ⁇ 0.09, 0.015 ⁇ b ⁇ 0.06, preferably 0.02 ⁇ b ⁇ 0.03, M is B and at least one selected from Zr and Al, B, Ti, Mg, Na, Ca, Nb, Ba, Si, P, W, and Sr.
  • the positive electrode material is doped with M ions.
  • M ions the content of divalent nickel ions can be reduced, thereby reducing the transition from (003) crystal plane to (104)
  • the amount of nickel ions on the crystal plane reduces the degree of lithium-nickel mixing, so that the crystal structure of the cathode material is stabilized, thereby improving the cycle retention and thermal stability of the material, so as to extend the service life of the material and improve its safety.
  • a can be 1.04/1.05/1.06/1.07/1.08
  • x can be 0.04/0.05/0.06/0.0.7/0.08
  • y can be 0.04/0.05/0.06
  • z can be 0.03/0.04/0.05/0.06/0.0. 7/0.0.8/0.09
  • b can be 0.015/0.02/0.03/0.04/0.05/0.06.
  • too low a will result in low material capacity and cycle performance, and too high will result in high residual alkali , Affect the stability of the slurry during the later homogenization; if x is too low, it will affect the layered structure of the material, if it is too high, it will reduce the actual capacity and increase the material cost; if y is too low, the safety performance and structural stability of the material will decrease , Too high will destroy the layered structure of the material and reduce the specific capacity of the material; too low z will cause poor thermal stability of the material, too high will cause the material capacity to be low; too low b will lead to the cycle and thermal stability of the material Poor performance, too high will also make the cycle and thermal stability of the material poor.
  • the above-mentioned positive electrode material has an ⁇ -NaFeO 2 type layered structure similar to LiCoO 2 , and the crystal type of the positive electrode material belongs to the R-3m space group of the hexagonal crystal system.
  • the 2 ⁇ angle of the positive electrode material on the (003) crystal plane is around 18.74 degrees, preferably the positive electrode material on the (003) crystal plane 2 ⁇ angle is 18.74 ⁇ 0.2 degrees, and the half peak of the diffraction peak of the positive electrode material on the (003) crystal plane
  • the width is 0.0550-0.0700. The inventor found that too high a half-value width indicates that the grain size of the material is smaller, and the deviation from the complete crystal is greater, that is, poor crystallinity; too low a half-value width indicates that the material has a better capacity under large currents. difference. The material within the above range has moderate grain size and excellent electrical properties.
  • the 2 ⁇ angle of the positive electrode material on the (104) crystal plane is around 44.4 degrees, preferably the positive electrode material has a 2 ⁇ angle of 44.4 ⁇ 0.2 degrees on the (104) crystal plane, and the half-width of the diffraction peak on the (003) crystal plane is equal to 104)
  • the ratio of the half-width of the diffraction peak of the crystal plane is 1.45-1.6. The inventor found that the material within this range has good crystallization performance, and thus thermal stability performance is also good.
  • the ratio of the diffraction peak intensity of the (003) crystal plane to the diffraction peak intensity of the (104) crystal plane of the single crystal cathode material is 2.45 ⁇ I 003 /I 104 ⁇ 3.05.
  • the above-mentioned M is B and at least one selected from Zr, Al, and W, preferably M is a combination of B, Zr, and Al or a combination of B, Zr, Al, and W.
  • the cathode material of the embodiment of the present invention compared with the existing nickel-cobalt-manganese-aluminum cathode material, the cathode material is doped with M ions.
  • the content of divalent nickel ions can be reduced, thereby reducing the content of nickel from (003 )
  • the amount of nickel ions that transition from the crystal plane to the (104) crystal plane reduces the degree of lithium-nickel mixing and stabilizes the crystal structure of the cathode material, thereby increasing the cycle retention and thermal stability of the material, so as to extend the service life of the material and increase Its safety.
  • the present invention provides a method for preparing the above-mentioned cathode material. According to an embodiment of the present invention, referring to FIG. 1, the method includes:
  • the positive electrode precursor material and the boron source dopant are mixed and then calcined to obtain the calcined product.
  • the specific types of the positive electrode precursor material and the boron source dopant are not particularly limited, and those skilled in the art can choose according to actual needs.
  • the positive electrode precursor material can be selected from Ni 1-xyz.
  • the boron source dopant can be selected from at least one of B 2 O 3 and H 3 BO 3.
  • the mass ratio of the positive electrode precursor material to the boron source dopant is not particularly limited, and may be 1:0.001-0.002, for example. The inventor found that the introduction of boron source dopants can increase the internal lattice of the positive electrode precursor material, which makes it easier for lithium salts to enter and form single crystals.
  • the specific conditions of pre-sintering are not particularly limited, and those skilled in the art can choose according to actual needs.
  • the temperature of pre-sintering can be 900-1000° C., and the time can be 10-15 h.
  • the pre-calcined product is mixed with the lithium source and the dopant to obtain the mixed product.
  • the specific types of lithium sources and dopants are not particularly limited, and those skilled in the art can choose according to actual needs.
  • the lithium source can be selected from at least one of LiOH and Li 2 CO 3 One;
  • the dopant may be a substance containing at least one ion source selected from the group consisting of Zr and Al, Ti, Mg, Na, Ca, Nb, Ba, Si, P, W, and Sr.
  • the dopant may Selected from Zr(OH) 4 , ZrO 2 , Al 2 O 3 , TiO 2 , Mg(OH) 2 , NaCl, CaCl 2 , Nb 2 O 5 , BaCl 2 , SiO 2 , H 3 PO 3 , WO 3 , SrO At least one of them.
  • the mass ratio of the pre-fired product to the lithium source and the dopant is also not particularly limited, for example, it can be 480:260-280:1-10.
  • the mixed product is calcined, and the calcined product is washed with water and dried to obtain a dried product.
  • the inventor found that the lithium source and dopant are more likely to react with the calcined product, that is, the calcined precursor, to obtain a pure single crystal quaternary cathode material, rather than a single crystal-like material, which can be washed with water. Reduce the residual lithium of the material.
  • the specific conditions of calcination are not particularly limited, and those skilled in the art can choose according to actual needs.
  • the temperature of calcination can be 830-880°C and the time can be 12-17h.
  • the dried product is mixed with an aluminum source coating agent and a boron source coating agent and then subjected to heat treatment to obtain a positive electrode material.
  • the inventor found that the dried product is uniformly mixed with the aluminum source coating agent and the boron source coating agent by a dry method, and then heat treated. During the heat treatment process, the boron source acts as a flux to uniformly coat the aluminum source. On the surface of the positive electrode material.
  • the specific types of the aluminum source coating agent and the boron source coating agent are not particularly limited, and those skilled in the art can choose according to actual needs.
  • the aluminum source coating agent can be selected from Al 2 At least one of O 3 , Al(OH) 3 , and AlF 3 ;
  • the boron source coating agent can be selected from at least one of B 2 O 3 and H 3 BO 3 , and it should be noted that in this step
  • the specific type of the boron source coating agent may be the same as or different from the boron source dopant in S100, and those skilled in the art can choose according to actual needs.
  • the mass ratio of the dried product to the aluminum source coating agent and the boron source coating agent is not particularly limited, and may be 1:0.001-0.003:0.0015-0.007.
  • the coating agent is too small, the coating layer cannot be formed (the coating layer here is not a clear physical coating structure, but aluminum and boron are uniformly doped with the elements in the positive electrode material on the surface), and then Can not prevent the side reaction of the material and the electrolyte; too much coating agent will greatly reduce the conductivity of the material, thereby affecting the electrical performance.
  • the specific conditions of the heat treatment are not particularly limited, and those skilled in the art can choose according to actual needs.
  • the temperature of the heat treatment can be 400-600° C., and the time can be 6-8 hours.
  • the amount of boron source and aluminum source used in the last step of coating is very small, it basically does not affect the set dopant content, or the composition and raw material design of the cathode material obtained by the preparation method of this application.
  • the element ratio of is basically corresponding.
  • a precursor material with more orderly grain size growth direction, greater specific surface area and strength can be obtained .
  • the precursor reacts to obtain a pure single-crystal quaternary cathode material instead of a single-crystal material.
  • the dried product is packaged with the aluminum source by a dry method.
  • the coating agent and the boron source coating agent are uniformly mixed and then subjected to heat treatment.
  • the boron source acts as a fluxing agent to uniformly coat the aluminum source on the surface of the positive electrode material to obtain cycle retention and thermal stability.
  • a positive electrode material with high life and safety. It should be noted that the characteristics of the above-mentioned positive electrode material are also applicable to the method for preparing the positive electrode material, which will not be repeated here.
  • the present invention provides a lithium ion battery.
  • the lithium ion battery has the above-mentioned positive electrode material or the positive electrode material prepared by the above-mentioned method for preparing the positive electrode material.
  • the lithium ion battery of the embodiment of the present invention because the lithium ion battery has the above-mentioned positive electrode material, and the positive electrode material is doped with M ions to reduce the content of divalent nickel ions, thereby reducing the transition from the (003) crystal plane.
  • the amount of nickel ions to the (104) crystal plane reduces the degree of lithium-nickel mixing in the positive electrode material, so that the crystal structure of the positive electrode material is stable, which is beneficial to improve the cycle retention and thermal stability of the lithium ion battery, and prolong the service life of the battery And improve its safety. It should be noted that the characteristics of the above-mentioned positive electrode material or the positive electrode material prepared by the above-mentioned method for preparing the positive electrode material are also applicable to the lithium ion battery, and this will not be repeated.
  • the present invention provides an automobile.
  • the automobile has the above-mentioned lithium ion battery.
  • the automobile of the embodiment of the present invention because the automobile has the above-mentioned lithium-ion battery, the automobile can meet the long-distance requirement under the high cycle retention rate, thermal stability, service life and safety performance of the above-mentioned lithium ion battery , And can significantly reduce potential safety hazards. It should be noted that the features of the lithium-ion battery described above are also applicable to the car, and this will not be repeated here.
  • the present invention will be described below with reference to specific embodiments. It should be noted that these embodiments are only descriptive and do not limit the present invention in any way.
  • the positive electrode precursor material Ni 0.85 Co 0.08 Mn 0.03 Al 0.04 (OH) 2 and the boron source dopant B 2 O 3 were mixed according to the mass ratio of 1:0.0015, and then calcined at 900°C for 10 hours to obtain the calcined product;
  • the pre-calcined product is mixed with lithium source LiOH and dopant Al 2 O 3 in a mass ratio of 480:260:3.84 to obtain a mixed product; the mixed product is calcined at 830°C for 12 hours, and the calcined product is washed and washed with water.
  • the dried product After drying, the dried product is obtained; the dried product is mixed with aluminum source coating agent Al 2 O 3 and boron source coating agent B 2 O 3 in a mass ratio of 1:0.0012:0.0015, and then heat treated at 400°C for 6 hours to obtain a positive electrode
  • the material is Li 1.05 Ni 0.834 Co 0.079 Mn 0.03 Al 0.04 B 0.008 Al 0.012 .
  • the amount of Al doping detected by ICP is shown in Table 1, and Figure 2 shows
  • Table 1 shows The corrected XRD spectrum of the obtained cathode material shows that the half-width of the (003) diffraction peak at a 2 ⁇ angle of 18.74 degrees, and the half-width of the (003) diffraction peak at a 2 ⁇ angle of 18.74 degrees is the same as
  • the ratio of the half-width of the (104) diffraction peak, the ratio of the intensity of the (003) diffraction peak to the intensity of the (104) diffraction peak at the 2 ⁇ angle of 44.4 degrees, the 50-week cycle data at 25°C and the DSC test temperature are shown in the table 2 shown.
  • the positive electrode precursor material Ni 0.85 Co 0.08 Mn 0.03 Al 0.04 (OH) 2 and the boron source dopant B 2 O 3 were mixed according to the mass ratio of 1:0.0015, and then calcined at 900°C for 10 hours to obtain the calcined product;
  • the pre-calcined product is mixed with lithium source LiOH, dopant Al 2 O 3 , and Zr(OH) 4 at a mass ratio of 480:260:3.84:3.52 to obtain a mixed product; the mixed product is calcined at 830°C for 12h,
  • the calcined product is washed with water and dried to obtain a dried product; the dried product is mixed with aluminum source coating agent Al 2 O 3 and boron source coating agent B 2 O 3 according to a mass ratio of 1:0.0012:0.0015.
  • the cathode material Li 1.05 Ni 0.829 Co 0.078 Mn 0.03 Al 0.04 B 0.008 Al 0.012 Zr 0.003 is obtained .
  • the doping of Al and Zr detected by ICP As shown in Table 1, the half-width of the (003) diffraction peak at a 2 ⁇ angle of 18.74 degrees and the half-width of the (003) diffraction peak at a 2 ⁇ angle of 18.74 degrees and the half-width of the (003) diffraction peak at a 2 ⁇ angle of 18.74 degrees are compared with The ratio of the half-value width of the (104) diffraction peak, the ratio of the intensity of the (003) diffraction peak to the intensity of the (104) diffraction peak near 44.4 degrees, the 50-week cycle data at 25°C and the DSC test temperature are shown in Table 2. .
  • the positive electrode precursor material Ni 0.85 Co 0.08 Mn 0.03 Al 0.04 (OH) 2 and the boron source dopant B 2 O 3 were mixed according to the mass ratio of 1:0.0015, and then calcined at 900°C for 10 hours to obtain the calcined product;
  • the pre-calcined product is mixed with lithium source LiOH, dopant Al 2 O 3 , and Zr(OH) 4 at a mass ratio of 480:260:3.84:2.24 to obtain a mixed product; the mixed product is calcined at 830°C for 12h,
  • the calcined product is washed with water and dried to obtain a dried product; the dried product is mixed with aluminum source coating agent Al 2 O 3 and boron source coating agent B 2 O 3 according to a mass ratio of 1:0.0012:0.0015.
  • the cathode material Li 1.05 Ni 0.83 Co 0.078 Mn 0.029 Al 0.04 B 0.008 Al 0.012 Zr 0.002 is obtained .
  • the doping of Al and Zr detected by ICP As shown in Table 1, the half-width of the (003) diffraction peak at a 2 ⁇ angle of 18.74 degrees and the half-width of the (003) diffraction peak at a 2 ⁇ angle of 18.74 degrees and the half-width of the (003) diffraction peak at a 2 ⁇ angle of 18.74 degrees are compared with The ratio of the half-value width of the (104) diffraction peak, the ratio of the intensity of the (003) diffraction peak to the intensity of the (104) diffraction peak near 44.4 degrees, the 50-week cycle data at 25°C and the DSC test temperature are shown in Table 2. .
  • the positive electrode precursor material Ni 0.85 Co 0.08 Mn 0.03 Al 0.04 (OH) 2 and the boron source dopant B 2 O 3 were mixed according to the mass ratio of 1:0.0018, and then calcined at 930°C for 12 hours to obtain the calcined product;
  • the calcined product is mixed with lithium source LiOH, dopant Al 2 O 3 , Zr(OH) 4 , WO 3 in a mass ratio of 480:270:3.84:3.52:0.416 to obtain a mixed product;
  • the mixed product is at 850 Calcined at °C for 14h, and washed and dried the calcined product to obtain the dried product;
  • the quality of the positive electrode material is used as the benchmark and obtained by ICP.
  • the doping amounts of Al, Zr and W are shown in Table 1.
  • Figure 3 shows the corrected XRD spectrum of the cathode material obtained.
  • the cathode material has a half of the (003) diffraction peak at a 2 ⁇ angle of 18.74 degrees.
  • the ratio of the diffraction peak intensities, the 50-week cycle data at 25°C and the DSC test temperature are shown in Table 2.
  • the positive electrode precursor material Ni 0.85 Co 0.08 Mn 0.03 Al 0.04 (OH) 2 and the boron source dopant B 2 O 3 were mixed according to the mass ratio of 1:0.0018, and then calcined at 930°C for 12 hours to obtain the calcined product;
  • the calcined product is mixed with lithium source LiOH, dopant Al 2 O 3 , Zr(OH) 4 , WO 3 according to the mass ratio of 480:270:3.84:3.52:0.832 to obtain the mixed product;
  • the mixed product is at 850 Calcined at °C for 14h, and washed and dried the calcined product to obtain the dried product;
  • the quality of the positive electrode material is used as the reference, and the result is obtained by ICP.
  • the doping amounts of Al, Zr and W are shown in Table 1.
  • the half-width of the (003) diffraction peak at a 2 ⁇ angle of 18.74 degrees and a (003) diffraction peak at a 2 ⁇ angle of 18.74 degrees are shown in Table 1.
  • the ratio of the half-width of the peak to the half-width of the (104) diffraction peak at a 2 ⁇ angle of 44.4 degrees, the ratio of the intensity of the (003) diffraction peak to the intensity of the (104) diffraction peak, the 50-cycle cycle data at 25°C, and The DSC test temperature is shown in Table 2.
  • the positive electrode precursor material Ni 0.85 Co 0.08 Mn 0.03 Al 0.04 (OH) 2 and the boron source dopant B 2 O 3 were mixed according to the mass ratio of 1:0.0018, and then calcined at 930°C for 12 hours to obtain the calcined product;
  • the calcined product is mixed with lithium source LiOH, dopant Al 2 O 3 , Zr(OH) 4 , WO 3 in a mass ratio of 480:270:6.5:3.52:0.416 to obtain a mixed product;
  • the mixed product is at 850 Calcined at °C for 14h, and washed and dried the calcined product to obtain the dried product;
  • FIG. 1 shows the quality of the positive electrode material.
  • the doping amounts of Al, Zr and W are shown in Table 1.
  • Figure 4 shows the corrected XRD spectrum of the positive electrode material.
  • the positive electrode material has a half of the (003) diffraction peak at a 2 ⁇ angle of 18.74 degrees.
  • Table 2 shows the ratio of the diffraction peak intensities, the 50-week cycle data at 25°C and the DSC test temperature.
  • the positive electrode precursor material Ni 0.85 Co 0.08 Mn 0.03 Al 0.04 (OH) 2 and the boron source dopant B 2 O 3 were mixed according to the mass ratio of 1:0.002, and then calcined at 980°C for 14 hours to obtain the calcined product;
  • the calcined product is mixed with lithium source LiOH, dopant Al 2 O 3 , Zr(OH) 4 , WO 3 in a mass ratio of 480:280:7:3.52:0.416 to obtain a mixed product;
  • the mixed product is at 880 Calcined at °C for 16h, and washed and dried the calcined product to obtain the dried product;
  • the quality of the positive electrode material is used as the benchmark and obtained by ICP detection
  • the doping amounts of Al, Zr and W are shown in Table 1.
  • the half-width of the (003) diffraction peak at a 2 ⁇ angle of 18.74 degrees and a (003) diffraction peak at a 2 ⁇ angle of 18.74 degrees are shown in Table 1.
  • the DSC test temperature is shown in Table 2.
  • the positive electrode precursor material Ni 0.85 Co 0.08 Mn 0.03 Al 0.04 (OH) 2 and the boron source dopant B 2 O 3 were mixed according to the mass ratio of 1:0.002, and then calcined at 980°C for 14 hours to obtain the calcined product;
  • the calcined product is mixed with lithium source LiOH, dopant Al 2 O 3 , Zr(OH) 4 , WO 3 in a mass ratio of 480:280:7.5:3.52:0.416 to obtain a mixed product;
  • the mixed product is at 880 Calcined at °C for 16h, and washed and dried the calcined product to obtain the dried product;
  • Figure 5 shows the corrected positive electrode material XRD spectra, based on the quality of the cathode material, the doping amounts of Al, Zr, and W obtained by ICP are shown in Table 1.
  • the cathode material has half of the (003) diffraction peak at a 2 ⁇ angle of 18.74 degrees.
  • the ratio of the diffraction peak intensities, the 50-week cycle data at 25°C and the DSC test temperature are shown in Table 2.
  • the positive electrode precursor material Ni 0.85 Co 0.08 Mn 0.03 Al 0.04 (OH) 2 and the boron source dopant B 2 O 3 were mixed according to the mass ratio of 1:0.002, and then calcined at 980°C for 14 hours to obtain the calcined product;
  • the calcined product is mixed with lithium source LiOH, dopant Al 2 O 3 , Zr(OH) 4 , WO 3 at a mass ratio of 480:280:8:3.52:0.416 to obtain a mixed product;
  • the mixed product is at 880 Calcined at °C for 16h, and washed and dried the calcined product to obtain the dried product;
  • the quality of the positive electrode material is used as the benchmark and obtained by ICP.
  • the doping amounts of Al, Zr and W are shown in Table 1.
  • Figure 6 shows the corrected XRD spectrum of the cathode material obtained.
  • the cathode material has a half of the (003) diffraction peak at a 2 ⁇ angle of 18.74 degrees.
  • the ratio of the diffraction peak intensities, the 50-week cycle data at 25°C and the DSC test temperature are shown in Table 2.
  • the positive electrode precursor material Ni 0.85 Co 0.07 Mn 0.04 Al 0.04 (OH) 2 and the boron source dopant B 2 O 3 were mixed according to the mass ratio of 1:0.002, and then calcined at 980°C for 14 hours to obtain the calcined product;
  • the calcined product is mixed with lithium source LiOH, dopant Al 2 O 3 , Zr(OH) 4 , WO 3 in a mass ratio of 480:280:7:3.52:0.416 to obtain a mixed product;
  • the mixed product is at 880 Calcined at °C for 16h, and washed and dried the calcined product to obtain the dried product;
  • the quality of the cathode material is used as a benchmark and obtained by ICP detection
  • the doping amounts of Al, Zr and W are shown in Table 1.
  • the half-width of the (003) diffraction peak at a 2 ⁇ angle of 18.74 degrees and a (003) diffraction peak at a 2 ⁇ angle of 18.74 degrees are shown in Table 1.
  • the ratio of the half-width of the peak to the half-width of the (104) diffraction peak at a 2 ⁇ angle of 44.4 degrees, the ratio of the intensity of the (003) diffraction peak to the intensity of the (104) diffraction peak, the 50-cycle cycle data at 25°C, and The DSC test temperature is shown in Table 2.
  • the positive electrode precursor material Ni 0.82 Co 0.08 Mn 0.06 Al 0.04 (OH) 2 and the boron source dopant B 2 O 3 were mixed in a mass ratio of 1:0.002 and then calcined at 980°C for 14 hours to obtain the calcined product;
  • the calcined product is mixed with lithium source LiOH, dopant Al 2 O 3 , Zr(OH) 4 , WO 3 in a mass ratio of 480:285:8:3.52:1.248 to obtain a mixed product;
  • the mixed product is at 880 Calcined at °C for 16h, and washed and dried the calcined product to obtain the dried product;
  • the ICP test obtains the result
  • the doping amounts of Al, Zr and W are shown in Table 1.
  • the half-width of the (003) diffraction peak at a 2 ⁇ angle of 18.74 degrees and a (003) diffraction peak at a 2 ⁇ angle of 18.74 degrees are shown in Table 1.
  • the DSC test temperature is shown in Table 2.
  • the positive electrode precursor material Ni 0.85 Co 0.08 Mn 0.03 Al 0.04 (OH) 2 and the boron source dopant B 2 O 3 were mixed according to the mass ratio of 1:0.0015, and then calcined at 900°C for 10 hours to obtain the calcined product;
  • the pre-calcined product is mixed with the lithium source LiOH according to the mass ratio of 150:94 to obtain the mixed product;
  • the mixed product is calcined at 830°C for 12 hours, and the calcined product is washed and dried to obtain the dried product;
  • the product is mixed with aluminum source coating agent Al 2 O 3 and boron source coating agent B 2 O 3 in a mass ratio of 1:0.0012:0.0015, and then heat treated at 400°C for 6 hours to obtain cathode material Li 1.05 Ni 0.835 Co 0.079 Mn 0.03 Al 0.04 B 0.008 Al 0.006 .
  • Figure 7 shows the corrected XRD spectrum of the obtained positive electrode material.
  • the ratio of the half-width of the peak to the half-width of the (104) diffraction peak at a 2 ⁇ angle of 44.4 degrees, the ratio of the intensity of the (003) diffraction peak to the intensity of the (104) diffraction peak, the 50-cycle cycle data at 25°C and its The DSC test temperature is shown in Table 2.
  • the amount of Al doping is determined as follows: ICP is used to detect the amount of doped B and Al content of the product after pre-sintering; the Al content of the product after drying is measured by ICP, the difference between the two Al content is Al The amount of doping.
  • the measured doping amount in the table exceeds the designed doping amount because the positive electrode precursor material originally contains very small amounts of doping elements.
  • the positive electrode material synthesized in the embodiment of the present invention is doped with M ions and coated with B, and can obtain a positive electrode material with a high cycle retention rate and a high DSC temperature, that is, a long cycle, thermal Positive electrode material with good stability.
  • the half-value width of the (003) diffraction peak is 0.0550-0.0800 by co-doping in an appropriate proportion in Examples 1-11, and the half-value width of the (104) diffraction peak is the same as the (003) diffraction peak.
  • the ratio of the half-width of the peak is 1.4500-1.6000, and the ratio of the diffraction peak intensity of I 003 to I 104 is 2.45 ⁇ I 003 /I 104 ⁇ 3.00. Furthermore, the 50-week cycle (25°C) test data in Table 2 also proves that the positive electrode material obtained in Examples 1-11 has a long cycle life and high thermal stability.

Abstract

本发明公开了一种正极材料及其制备方法和应用,其通式为Li aNi 1-x-y-zCo xMn yAl zM bO 2,其中,1.04≤a≤1.08、0.04≤x≤0.08、0.025≤y≤0.06、0.03≤z≤0.09、0.015≤b≤0.06,M为B和选自Zr和Al、Ti、Mg、Na、Ca、Nb、Ba、Si、P、W、Sr中的至少之一。该正极材料相对于现有镍钴锰铝正极材料,掺杂了M离子,通过M离子的掺杂,可降低二价镍离子的含量,进而降低从(003)晶面跃迁至(104)晶面的镍离子量,降低锂镍混排程度,使得正极材料的晶体结构稳定,进而提高材料的循环保持率和热稳定性,以延长材料的使用寿命并提高其安全性。

Description

正极材料及其制备方法和应用 技术领域
本发明属于锂离子电池技术领域,具体而言,本发明涉及正极材料及其制备方法和应用。
背景技术
近年来,随着个人电脑、摄像机及手机等电子产品的快速普及,作为其电源利用的电池开发引起人们的重视。此外,在汽车领域内,电动汽车和混合动力汽车对锂离子电池的使用寿命和安全性能格外重视。人们不断开发与研究多晶型锂离子电池正极材料,例如LiNiO 3、三元的镍钴锰酸锂和镍钴铝酸锂等,但它们存在循环寿命差、热稳定性低的问题,不符合长里程需求,存在很多安全隐患。同时,对于高镍正极材料,随着镍含量的提高,正极材料的稳定性随之下降,主要表现为循环性能较差、热稳定性差等。
因此,现有正极材料有待进一步改进。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一,比如循环性和热稳定较差的问题。为此,本发明的一个目的在于提出一种正极材料及其制备方法和应用。该正极材料二价镍离子含量低,锂镍混排程度低,晶体结构稳定,循环保持率和热稳定性较高,使用寿命延长且安全性提高。
在本发明的一个方面,本发明提出了一种正极材料,根据本发明的实施例,所述正极材料的通式为Li aNi 1-x-y-zCo xMn yAl zM bO 2,其中,1.04≤a≤1.08、0.04≤x≤0.08、0.025≤y≤0.06、0.03≤z≤0.09、0.015≤b≤0.06,M为B和选自Zr和Al、B、Ti、Mg、Na、Ca、Nb、Ba、Si、P、W、Sr中的至少之一。优选0.028≤y≤0.06,优选0.04≤y≤0.06;优选1.04≤a≤1.05,优选0.075≤x≤0.08;优选0.03≤z≤0.04;优选0.02≤b≤0.05。
根据本发明实施例的正极材料,该正极材料相对于现有镍钴锰铝正极材料,掺杂了M离子,通过M离子的掺杂,可降低二价镍离子的含量,进而降低从(003)晶面跃迁至(104)晶面的镍离子量,降低锂镍混排程度,使得正极材料的晶体结构稳定,进而提高材料的循环保持率和热稳定性,以延长材料的使用寿命并提高其安全性。
另外,根据本发明上述实施例的正极材料还可以具有如下附加的技术特征:
在本发明的一些实施例中,所述b的取值范围为0.02≤b≤0.03。
在本发明的一些实施例中,所述正极材料具有与LiCoO 2类似的α-NaFeO 2型层状结构,且正极材料的晶型归属为六方晶系的R-3m空间群。
在本发明的一些实施例中,所述正极材料在(003)晶面2θ角为18.74度附近,优选正极材料在(003)晶面2θ角为18.74±0.2度,且正极材料在(003)晶面的衍射峰的半峰宽为0.0550-0.0700。
在本发明的一些实施例中,正极材料在(104)晶面2θ角为44.4度附近,优选正极材料在(104)晶面2θ角为44.4±0.2度,所述正极材料在(003)晶面的衍射峰的半峰宽与在(104)晶面的衍射峰的半峰宽的比值为1.45-1.6。
在本发明的一些实施例中,所述正极材料的(003)晶面的衍射峰强度和(104)晶面的衍射峰强度的比值为2.45≤I 003/I 104≤3.05。
进一步地,上述M为B和选自Zr和Al、W中的至少之一,优选M为B、Zr、Al的组合或B、Zr、Al、W的组合。
在本发明的再一个方面,本发明提出了一种制备上述正极材料的方法,根据本发明的实施例,该方法包括:
将正极前驱体材料与硼源掺杂剂混合后进行预烧;
将所述预烧后产物与锂源、其它掺杂剂混合,其它掺杂剂为包含选自Zr和Al、Ti、Mg、Na、Ca、Nb、Ba、Si、P、W、Sr中的至少之一离子源的物质;
将所述混合后产物进行煅烧,并将煅烧后产物进行水洗和干燥;
将所述干燥后产物与铝源包覆剂、硼源包覆剂混合后进行热处理,以便得到所述正极材料。
根据本发明实施例的制备正极材料的方法,通过将正极前驱体材料与硼源掺杂剂混合后预烧,可以得到晶粒尺寸生长方向更加有序、比表面积和强度更大的前驱体材料,同时有利于锂的脱嵌;而通过将预烧后产物即预烧后前驱体与锂源、掺杂剂混合后煅烧,锂源和掺杂剂更容易与预烧后产物即预烧后的前驱体发生反应,得到一种纯的单晶四元正极材料,而非类单晶材料,经水洗后可以降低材料的残锂;进一步的,通过采用干法将干燥后产物与铝源包覆剂、硼源包覆剂均匀混合后进行热处理,在热处理过程中,硼源起到了助熔剂的作用,使铝源均匀的包覆在正极材料表面,得到循环保持率和热稳定性、使用寿命、安全性均较高的正极材料。
另外,根据本发明上述实施例的制备正极材料的方法还可以具有如下附加的技术特征:
在本发明的一些实施例中,所述正极前驱体材料选自Ni 1-x-y-zCo xMn yAl z(OH) 2、Ni 1-x-y-zCo xMn yAl zCO 3中的至少之一,其中0.04≤x≤0.08、0.04≤y≤0.06、0.03≤z≤0.09,优选0.03≤y≤0.06,进一步优选0.04≤y≤0.06。
在本发明的一些实施例中,所述硼源掺杂剂和所述硼源掺杂剂分别独立地选自B 2O 3、H 3BO 3中的至少之一。
在本发明的一些实施例中,所述正极前驱体材料与所述硼源掺杂剂的质量比为1:0.001-0.002。
在本发明的一些实施例中,所述预烧的温度为900-1000℃,时间为10-15h。
在本发明的一些实施例中,所述预烧后产物与所述锂源、所述掺杂剂的质量比为480:260-280:1-10。
在本发明的一些实施例中,所述锂源选自LiOH、Li 2CO 3中的至少之一。
在本发明的一些实施例中,所述其它掺杂剂为包含选自Zr和Al、Ti、Mg、Na、Ca、Nb、Ba、Si、P、W、Sr中的至少之一离子源的物质。
在本发明的一些实施例中,所述掺杂剂选自Zr(OH) 4、ZrO 2、Al 2O 3、TiO 2、Mg(OH) 2、NaCl、CaCl 2、Nb 2O 5、BaCl 2、SiO 2、H 3PO 3、WO 3、SrO中的至少之一。
在本发明的一些实施例中,所述煅烧的温度为830-880℃,时间为12-17h。
在本发明的一些实施例中,所述干燥后产物与所述铝源包覆剂、所述硼源包覆剂的质量比为1:0.001-0.003:0.0015-0.007。
在本发明的一些实施例中,所述铝源包覆剂选自Al 2O 3、Al(OH) 3、AlF 3中的至少之一。
在本发明的一些实施例中,所述热处理的温度为400-600℃,时间为6-8h。
在本发明的又一个方面,本发明提出了一种锂离子电池,根据本发明的实施例,该锂离子电池具有上述正极材料或采用上述制备正极材料的方法制备得到的正极材料。根据本发明实施例的锂离子电池,因该锂离子电池具有上述正极材料,而该正极材料通过掺杂M离子,降低了其二价镍离子的含量,进而降低了从(003)晶面跃迁至(104)晶面的镍离子量,降低正极材料中锂镍混排的程度,使得正极材料的晶体结构稳定,有利于提高锂离子电池的循环保持率和热稳定性,延长电池的使用寿命并提高其安全性。
在本发明的第四个方面,本发明提出了一种汽车,根据本发明的实施例,该汽车具有上述锂离子电池。根据本发明实施例的汽车,因该汽车具有上述锂离子电池,在上述锂离子电池具有较高的循环保持率、热稳定性、使用寿命和安全性的性能下,该汽车可满足长里程需求,并可显著降低安全隐患。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明一个实施例的制备正极材料的方法流程示意图;
图2示出了实施例1所得正极材料修正后的XRD谱图;
图3示出了实施例4所得正极材料修正后的XRD谱图;
图4示出了实施例6所得正极材料修正后的XRD谱图;
图5示出了实施例8所得正极材料修正后的XRD谱图;
图6示出了实施例9所得正极材料修正后的XRD谱图;
图7示出了对比例1所得正极材料修正后的XRD谱图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的一个方面,本发明提出了一种正极材料,根据本发明的实施例,该正极材料的通式为Li aNi 1-x-y-zCo xMn yAl zM bO 2,其中,1.04≤a≤1.08、0.04≤x≤0.08、0.025≤y≤0.06(优选0.03≤y≤0.06,进一步优选0.04≤y≤0.06)、0.03≤z≤0.09、0.015≤b≤0.06,优选0.02≤b≤0.03,M为B和选自Zr和Al、B、Ti、Mg、Na、Ca、Nb、Ba、Si、P、W、Sr中的至少之一。发明人发现,该正极材料相对于现有镍钴锰铝正极材料,掺杂了M离子,通过M离子的掺杂,可降低二价镍离子的含量,进而降低从(003)晶面跃迁至(104)晶面的镍离子量,降低锂镍混排程度,使得正极材料的晶体结构稳定,进而提高材料的循环保持率和热稳定性,以延长材料的使用寿命并提高其安全性。
进一步的,优选0.028≤y≤0.06,优选0.04≤y≤0.06;优选1.04≤a≤1.05,优选0.075≤x≤0.08;优选0.03≤z≤0.04;优选0.02≤b≤0.05。a可以为1.04/1.05/1.06/1.07/1.08,x可以为0.04/0.05/0.06/0.0.7/0.08,y可以为0.04/0.05/0.06,z可以为0.03/0.04/0.05/0.06/0.0.7/0.0.8/0.09,b可以为0.015/0.02/0.03/0.04/0.05/0.06,发明人发现,a过低会造成材料容量、循环性能偏低,过高则会造成材料残碱偏高,影响后期匀浆时浆料的稳定性;x过低会影响材料的层状结构,过高则会造成实际容量降低、材料成本增加;y过低会使得材料的安全性能和结构稳定性降低,过高会破坏材料的层状结构,使材料的比容量降低;z过低会造成材料的热稳定性差,过高则会造成材料容量偏低;b过低会导致材料的循环、热稳定性较差,过高同样会使材料的循环、热稳定性较差。
进一步的,上述正极材料具有与LiCoO 2类似的α-NaFeO 2型层状结构,且正极材料的晶型归属为六方晶系的R-3m空间群。
进一步的,正极材料在(003)晶面2θ角为18.74度附近,优选正极材料在(003)晶面2θ角为18.74±0.2度,且正极材料在(003)晶面的衍射峰的半峰宽为0.0550-0.0700。发明人发现,半峰宽值过高则表明材料的晶粒尺寸较小,对完整晶体的偏离程度较大,即结晶性差;半峰宽值过低则表明材料在大电流下的容量发挥较差。在上述范围内的材料晶粒尺寸适中,电性能优异。
进一步的,正极材料在(104)晶面2θ角为44.4度附近,优选正极材料在(104)晶面2θ角为44.4±0.2度,在(003)晶面衍射峰的半峰宽与在(104)晶面衍射峰的半峰宽的比值为1.45-1.6。发明人发现,在该范围内的材料结晶性能好,从而热稳定性能也较好。
进一步的,该单晶正极材料的(003)晶面的衍射峰强度和(104)晶面的衍射峰强度的比值为2.45≤I 003/I 104≤3.05。发明人发现,通过I 003/I 104值可以判定正极材料的锂镍混排程度,该值过低则锂镍混排严重,材料层状结构不稳定,电性能较差。该值在上述范围内时锂镍混排较低,说明该正极材料结构更稳定。
进一步地,上述M为B和选自Zr和Al、W中的至少之一,优选M为B、Zr、Al的组合或B、Zr、Al、W的组合。根据本发明实施例的正极材料,该正极材料相对于现有镍钴锰铝正极材料,掺杂了M离子,通过M离子的掺杂,可降低二价镍离子的含量,进而降低从(003)晶面跃迁至(104)晶面的镍离子量,降低锂镍混排程度,使得正极材料的晶体结构稳定,进而提高材料的循环保持率和热稳定性,以延长材料的使用寿命并提高其安全性。
在本发明的再一个方面,本发明提出了一种制备上述正极材料的方法,根据本发明的实施例,参考图1,该方法包括:
S100:将正极前驱体材料与硼源掺杂剂混合后进行预烧
该步骤中,将正极前驱体材料与硼源掺杂剂混合后预烧,以便得到预烧后产物。发明人发现,正极前驱体材料与硼源掺杂剂混合后预烧可以得到晶粒尺寸生长方向更加有序、比表面积和强度更大的前驱体材料,同时有利于锂的脱嵌。根据本发明的一个实施例,正极前驱体材料和硼源掺杂剂的具体类型并不受特别限制,本领域技术人员可以根据实际需要进行选择,如正极前驱体材料可以选自Ni 1-x-y-zCo xMn yAl z(OH) 2、Ni 1-x-y-zCo xMn yAl zCO 3中的至少之一,其中0.04≤x≤0.08、0.04≤y≤0.06、0.03≤z≤0.09(优选0.03≤y≤0.06,进一步优选0.04≤y≤0.06);硼源掺杂剂可以选自B 2O 3、H 3BO 3中的至少之一。进一步的,正极前驱体材料与硼源掺杂剂的质量比也不受特别限制,如可以为1:0.001-0.002。发明人发现,硼源掺杂剂的引入会使正极前驱体材料内部晶格增大,更容易锂盐的进入,形成单晶。该值过高则硼源掺杂剂的含量太少,达不到预期掺杂效果,该值过低则硼源掺杂剂的含量太多,会使部分硼源混入材料。根据本发明的再一个实施例,预烧的具体条件也不受特别限制,本领域技术人员可以根据实际需要进行选择,如预烧的温度可以为900-1000℃,时间可以为10-15h。发明人发现,若预烧的温度在1000℃以上,会导致粒子过大化,导致材料容量低下;而烧结时间过短,会导致材料结晶性能不好,热稳定性差,时间太长成本增大。
S200:将预烧后产物与锂源、掺杂剂混合
该步骤中,将预烧后产物与锂源、掺杂剂混合,以便得到混合后产物。根据本发明的一个实施例,锂源和掺杂剂的具体类型并不受特别限制,本领域技术人员可以根据实际需要进行选择,如锂源可以选自LiOH、Li 2CO 3中的至少之一;掺杂剂可以为包含选自Zr和Al、Ti、Mg、Na、Ca、Nb、Ba、Si、P、W、Sr中的至少之一离子源的物质,具体的,掺杂剂可以选自Zr(OH) 4、ZrO 2、Al 2O 3、TiO 2、Mg(OH) 2、NaCl、CaCl 2、Nb 2O 5、BaCl 2、SiO 2、H 3PO 3、WO 3、SrO中的至少之一。进一步的,预烧后产物与锂源、掺杂剂的质量比也不受特别限制,如可以为480:260-280:1-10。
S300:将混合后产物进行煅烧,并将煅烧后产物进行水洗和干燥
该步骤中,将混合后产物进行煅烧,并将煅烧后产物进行水洗和干燥,以便得到干燥后产物。发明人发现,锂源和掺杂剂更容易与预烧后产物即预烧后的前驱体发生反应,得到一种纯的单晶四元正极材料,而非类单晶材料,经水洗后可以降低材料的残锂。根据本发明的一个实施例,煅烧的具体条件并不受特别限制,本领域技术人员可以根据实际需要进行选择,如煅烧的温度可以为830-880℃,时间可以为12-17h。发明人发现,温度过低、时间太短,材料的结晶性差,影响材料的电性能发挥;温度过高会使单晶尺寸增大,同样会起到反作用,时间太长,成本增大。
S400:将干燥后产物与铝源包覆剂、硼源包覆剂混合后进行热处理
将干燥后产物与铝源包覆剂、硼源包覆剂混合后进行热处理,以便得到正极材料。发明人发现,采用干法将干燥后产物与铝源包覆剂、硼源包覆剂均匀混合后进行热处理,在热处理过程中,硼源起到了助熔剂的作用,使铝源均匀的包覆在正极材料表面。根据本发明的一个实施例,铝源包覆剂和硼源包覆剂的具体类型并不受特别限制,本领域技术人员可以根据实际需要进行选择,如铝源包覆剂可以选自Al 2O 3、Al(OH) 3、AlF 3中的至少之一;硼源包覆剂可以选自B 2O 3、H 3BO 3中的至少之一,且需要说明的是,该步骤中的硼源包覆剂的具体类型可以与S100中的硼源掺杂剂一致,也可以不一致,本领域技术人员可以根据实际需要进行选择。进一步的,干燥后产物与铝源包覆剂、硼源包覆剂的质量比也不受特别限制,如可以为1:0.001-0.003:0.0015-0.007。发明人发现,包覆剂太少,则不能形成包覆层(这里的包覆层并不是明确的物理包覆结构,而是铝和硼与表面的正极材料中元素实现均匀掺杂),进而不能阻止材料与电解液的副反应;包覆剂太多则会大大降低材料的导电性,进而影响电性能的发挥。根据本发明的再一个实施例,热处理的具体条件也不受特别限制,本领域技术人员可以根据实际需要进行选择,如热处理的温度可以为400-600℃,时间可以为6-8h。发明人发现,温度太低,硼源不能成为熔融态,包覆效果较差,温度太高,包覆剂会进入材料里面;时间太短,反应不充分,不能形成包覆层,时间太长,成本增加。
此外,由于最后一步包覆所使用的硼源和铝源用量极少,因此其基本不会影响设定的掺杂剂的含量,或者说本申请的制备方法得到的正极材料的组成与原料设计的元素配比基本对应。
根据本发明实施例的制备正极材料的方法,通过将正极前驱体材料与硼源掺杂剂混合后预烧,可以得到晶粒尺寸生长方向更加有序、比表面积和强度更大的前驱体材料,同时有利于锂的脱嵌;而通过将预烧后产物即预烧后前驱体与锂源、掺杂剂混合后煅烧,锂源和掺杂剂更容易与预烧后产物即预烧后的前驱体发生反应,得到一种纯的单晶四元正极材料,而非类单晶材料,经水洗后可以降低材料的残锂;进一步的,通过采用干法将干燥后产物与铝源包覆剂、硼源包覆剂均匀混合后进行热处理,在热处理过程中,硼源起到了助熔剂的作用,使铝源均匀的包覆在正极材料表面,得到循环保持率和热稳定性、使用寿命、安全性均较高的正极材料。需要说明的是,上述正极材料的特征同样适用于该制备正极材料的方法,对此不再赘述。
在本发明的又一个方面,本发明提出了一种锂离子电池,根据本发明的实施例,该锂离子电池具有上述正极材料或采用上述制备正极材料的方法制备得到的正极材料。根据本发明实施例的锂离子电池,因该锂离子电池具有上述正极材料,而该正极材料通过掺杂M离子,降低了其二价镍离子的含量,进而降低了从(003)晶面跃迁至(104)晶面的镍离子量,降低正极材料中锂镍混排的程度,使得正极材料的晶体结构稳定,有利于提高锂离子电池的循环保持率和热稳定性,延长电池的使用寿命并提高其安全性。需要说明的是,上述正极材料或采用上述制备正极材料的方法制备得到的正极材料的特征同样适用于该锂离子电池,对此不再赘述。
在本发明的第四个方面,本发明提出了一种汽车,根据本发明的实施例,该汽车具有上述锂离子电池。根据本发明实施例的汽车,因该汽车具有上述锂离子电池,在上述锂离子电池具有较高的循环保持率、热稳定性、使用寿命和安全性的性能下,该汽车可满足长里程需求,并可显著降低安全隐患。需要说明的是,上述锂离子电池的特征同样适用于该汽车,对此不再赘述。
下面参考具体实施例,对本发明进行描述,需要说明的是,这些实施例仅仅是描述性的,而不以任何方式限制本发明。以下实施例和对比例XRD测试设备都为德国布鲁克D8ADVANCE,在室温(T=298K)下进行X射线衍射分析。实验条件:工作电压40KW,工作电流40mA,步长为0.02度/步,每部扫描时间为2秒。
实施例1
将正极前驱体材料Ni 0.85Co 0.08Mn 0.03Al 0.04(OH) 2与硼源掺杂剂B 2O 3按照质量比1:0.0015混合后在900℃下预烧10h,得到预烧后产物;将预烧后产物与锂源LiOH、掺杂剂Al 2O 3按照质量比480:260:3.84混合,得到混合后产物;将混合后产物在830℃下煅烧12h,并将煅烧后产物进行水洗和干燥,得到干燥后产物;将干燥后产物与铝源包覆剂Al 2O 3、硼源包覆剂B 2O 3按照质量比1:0.0012:0.0015混合后在400℃下热处理6h,得到正极材料Li 1.05Ni 0.834Co 0.079Mn 0.03Al 0.04B 0.008Al 0.012,在该正极材料中,以该正极材料质量为基准,ICP检测得到的Al的掺杂量如表1所示,图2示出了所得正极材料修正后的XRD谱图,该正极材料的在2θ角为18.74度附近的(003)衍射峰的半峰宽、在2θ角为18.74度附近的(003)衍射峰的 半峰宽与在2θ角为44.4度附近的(104)衍射峰的半峰宽的比值、(003)衍射峰强度和(104)衍射峰强度的比值、25℃下50周循环数据及其DSC测试温度如表2所示。
实施例2
将正极前驱体材料Ni 0.85Co 0.08Mn 0.03Al 0.04(OH) 2与硼源掺杂剂B 2O 3按照质量比1:0.0015混合后在900℃下预烧10h,得到预烧后产物;将预烧后产物与锂源LiOH、掺杂剂Al 2O 3、Zr(OH) 4按照质量比480:260:3.84:3.52混合,得到混合后产物;将混合后产物在830℃下煅烧12h,并将煅烧后产物进行水洗和干燥,得到干燥后产物;将干燥后产物与铝源包覆剂Al 2O 3、硼源包覆剂B 2O 3按照质量比1:0.0012:0.0015混合后在400℃下热处理6h,得到正极材料Li 1.05Ni 0.829Co 0.078Mn 0.03Al 0.04B 0.008Al 0.012Zr 0.003,在该正极材料中,以该正极材料质量为基准,ICP检测得到的Al和Zr的掺杂量如表1所示,该正极材料的在2θ角为18.74度附近的(003)衍射峰的半峰宽、在2θ角为18.74度附近的(003)衍射峰的半峰宽与在2θ角为44.4度附近的(104)衍射峰的半峰宽的比值、(003)衍射峰强度和(104)衍射峰强度的比值、25℃下50周循环数据及其DSC测试温度如表2所示。
实施例3
将正极前驱体材料Ni 0.85Co 0.08Mn 0.03Al 0.04(OH) 2与硼源掺杂剂B 2O 3按照质量比1:0.0015混合后在900℃下预烧10h,得到预烧后产物;将预烧后产物与锂源LiOH、掺杂剂Al 2O 3、Zr(OH) 4按照质量比480:260:3.84:2.24混合,得到混合后产物;将混合后产物在830℃下煅烧12h,并将煅烧后产物进行水洗和干燥,得到干燥后产物;将干燥后产物与铝源包覆剂Al 2O 3、硼源包覆剂B 2O 3按照质量比1:0.0012:0.0015混合后在400℃下热处理6h,得到正极材料Li 1.05Ni 0.83Co 0.078Mn 0.029Al 0.04B 0.008Al 0.012Zr 0.002,在该正极材料中,以该正极材料质量为基准,ICP检测得到的Al和Zr的掺杂量如表1所示,该正极材料的在2θ角为18.74度附近的(003)衍射峰的半峰宽、在2θ角为18.74度附近的(003)衍射峰的半峰宽与在2θ角为44.4度附近的(104)衍射峰的半峰宽的比值、(003)衍射峰强度和(104)衍射峰强度的比值、25℃下50周循环数据及其DSC测试温度如表2所示。
实施例4
将正极前驱体材料Ni 0.85Co 0.08Mn 0.03Al 0.04(OH) 2与硼源掺杂剂B 2O 3按照质量比1:0.0018混合后在930℃下预烧12h,得到预烧后产物;将预烧后产物与锂源LiOH、掺杂剂Al 2O 3、Zr(OH) 4、WO 3按照质量比480:270:3.84:3.52:0.416混合,得到混合后产物;将混合后产物在850℃下煅烧14h,并将煅烧后产物进行水洗和干燥,得到干燥后产物;将干燥后产物与铝源包覆剂Al 2O 3、硼源包覆剂B 2O 3按照质量比1:0.0025:0.0025混合后在450℃下热处理8h,得到正极材料Li 1.05Ni 0.826Co 0.078Mn 0.029Al 0.04B 0.01Al 0.014Zr 0.002W 0.0003,在该正极材料中,以该正极材料质量为基准,ICP检测得到的Al、Zr和W的掺杂量如表1所示,图3示出了所得正极材料修正后的XRD谱图,该正极材料的在2θ角为18.74度附近的(003)衍射峰的半峰宽、在2θ角为18.74度附近的(003)衍射峰的半峰宽与在2θ角为44.4度附近的(104)衍射峰的半峰 宽的比值、(003)衍射峰强度和(104)衍射峰强度的比值、25℃下50周循环数据及其DSC测试温度如表2所示。
实施例5
将正极前驱体材料Ni 0.85Co 0.08Mn 0.03Al 0.04(OH) 2与硼源掺杂剂B 2O 3按照质量比1:0.0018混合后在930℃下预烧12h,得到预烧后产物;将预烧后产物与锂源LiOH、掺杂剂Al 2O 3、Zr(OH) 4、WO 3按照质量比480:270:3.84:3.52:0.832混合,得到混合后产物;将混合后产物在850℃下煅烧14h,并将煅烧后产物进行水洗和干燥,得到干燥后产物;将干燥后产物与铝源包覆剂Al 2O 3、硼源包覆剂B 2O 3按照质量比1:0.0025:0.0025混合后在450℃下热处理8h,得到正极材料Li 1.05Ni 0.817Co 0.076Mn 0.029Al 0.04B 0.01Al 0.014Zr 0.002W 0.001,在该正极材料中,以该正极材料质量为基准,ICP检测得到的Al、Zr和W的掺杂量如表1所示,该正极材料的在2θ角为18.74度附近的(003)衍射峰的半峰宽、在2θ角为18.74度附近的(003)衍射峰的半峰宽与在2θ角为44.4度附近的(104)衍射峰的半峰宽的比值、(003)衍射峰强度和(104)衍射峰强度的比值、25℃下50周循环数据及其DSC测试温度如表2所示。
实施例6
将正极前驱体材料Ni 0.85Co 0.08Mn 0.03Al 0.04(OH) 2与硼源掺杂剂B 2O 3按照质量比1:0.0018混合后在930℃下预烧12h,得到预烧后产物;将预烧后产物与锂源LiOH、掺杂剂Al 2O 3、Zr(OH) 4、WO 3按照质量比480:270:6.5:3.52:0.416混合,得到混合后产物;将混合后产物在850℃下煅烧14h,并将煅烧后产物进行水洗和干燥,得到干燥后产物;将干燥后产物与铝源包覆剂Al 2O 3、硼源包覆剂B 2O 3按照质量比1:0.0025:0.0025混合后在450℃下热处理8h,得到正极材料Li 1.05Ni 0.808Co 0.076Mn 0.029Al 0.04B 0.01Al 0.034Zr 0.002W 0.0003,在该正极材料中,以该正极材料质量为基准,ICP检测得到的Al、Zr和W的掺杂量如表1所示,图4示出了所得正极材料修正后的XRD谱图,该正极材料的在2θ角为18.74度附近的(003)衍射峰的半峰宽、在2θ角为18.74度附近的(003)衍射峰的半峰宽与在2θ角为44.4度附近的(104)衍射峰的半峰宽的比值、(003)衍射峰强度和(104)衍射峰强度的比值、25℃下50周循环数据及其DSC测试温度如表2所示。
实施例7
将正极前驱体材料Ni 0.85Co 0.08Mn 0.03Al 0.04(OH) 2与硼源掺杂剂B 2O 3按照质量比1:0.002混合后在980℃下预烧14h,得到预烧后产物;将预烧后产物与锂源LiOH、掺杂剂Al 2O 3、Zr(OH) 4、WO 3按照质量比480:280:7:3.52:0.416混合,得到混合后产物;将混合后产物在880℃下煅烧16h,并将煅烧后产物进行水洗和干燥,得到干燥后产物;将干燥后产物与铝源包覆剂Al 2O 3、硼源包覆剂B 2O 3按照质量比1:0.003:0.0065混合后在500℃下热处理8h,得到正极材料Li 1.05Ni 0.805Co 0.076Mn 0.029Al 0.04B 0.01Al 0.037Zr 0.002W 0.0003,在该正极材料中,以该正极材料质量为基准,ICP检测得到的Al、Zr和W的掺杂量如表1所示,该正极材料的在2θ角为18.74度附近的(003)衍射峰的半峰宽、在2θ角为18.74度附近的(003)衍射峰的半峰宽与在2θ角为 44.4度附近的(104)衍射峰的半峰宽的比值、(003)衍射峰强度和(104)衍射峰强度的比值、25℃下50周循环数据及其DSC测试温度如表2所示。
实施例8
将正极前驱体材料Ni 0.85Co 0.08Mn 0.03Al 0.04(OH) 2与硼源掺杂剂B 2O 3按照质量比1:0.002混合后在980℃下预烧14h,得到预烧后产物;将预烧后产物与锂源LiOH、掺杂剂Al 2O 3、Zr(OH) 4、WO 3按照质量比480:280:7.5:3.52:0.416混合,得到混合后产物;将混合后产物在880℃下煅烧16h,并将煅烧后产物进行水洗和干燥,得到干燥后产物;将干燥后产物与铝源包覆剂Al 2O 3、硼源包覆剂B 2O 3按照质量比1:0.003:0.0065混合后在500℃下热处理8h,得到正极材料Li 1.05Ni 0.803Co 0.076Mn 0.028Al 0.04B 0.01Al 0.04Zr 0.002W 0.0003,在该正极材料中,图5示出了所得正极材料修正后的XRD谱图,以该正极材料质量为基准,ICP检测得到的Al、Zr和W的掺杂量如表1所示,该正极材料的在2θ角为18.74度附近的(003)衍射峰的半峰宽、在2θ角为18.74度附近的(003)衍射峰的半峰宽与在2θ角为44.4度附近的(104)衍射峰的半峰宽的比值、(003)衍射峰强度和(104)衍射峰强度的比值、25℃下50周循环数据及其DSC测试温度如表2所示。
实施例9
将正极前驱体材料Ni 0.85Co 0.08Mn 0.03Al 0.04(OH) 2与硼源掺杂剂B 2O 3按照质量比1:0.002混合后在980℃下预烧14h,得到预烧后产物;将预烧后产物与锂源LiOH、掺杂剂Al 2O 3、Zr(OH) 4、WO 3按照质量比480:280:8:3.52:0.416混合,得到混合后产物;将混合后产物在880℃下煅烧16h,并将煅烧后产物进行水洗和干燥,得到干燥后产物;将干燥后产物与铝源包覆剂Al 2O 3、硼源包覆剂B 2O 3按照质量比1:0.003:0.0065混合后在500℃下热处理8h,得到正极材料Li 1.05Ni 0.797Co 0.075Mn 0.028Al 0.04B 0.01Al 0.047Zr 0.002W 0.0003,在该正极材料中,以该正极材料质量为基准,ICP检测得到的Al、Zr和W的掺杂量如表1所示,图6示出了所得正极材料修正后的XRD谱图,该正极材料的在2θ角为18.74度附近的(003)衍射峰的半峰宽、在2θ角为18.74度附近的(003)衍射峰的半峰宽与在2θ角为44.4度附近的(104)衍射峰的半峰宽的比值、(003)衍射峰强度和(104)衍射峰强度的比值、25℃下50周循环数据及其DSC测试温度如表2所示。
实施例10
将正极前驱体材料Ni 0.85Co 0.07Mn 0.04Al 0.04(OH) 2与硼源掺杂剂B 2O 3按照质量比1:0.002混合后在980℃下预烧14h,得到预烧后产物;将预烧后产物与锂源LiOH、掺杂剂Al 2O 3、Zr(OH) 4、WO 3按照质量比480:280:7:3.52:0.416混合,得到混合后产物;将混合后产物在880℃下煅烧16h,并将煅烧后产物进行水洗和干燥,得到干燥后产物;将干燥后产物与铝源包覆剂Al 2O 3、硼源包覆剂B 2O 3按照质量比1:0.003:0.0065混合后在500℃下热处理8h,得到正极材料Li 1.05Ni 0.809Co 0.063Mn 0.04Al 0.04B 0.01Al 0.037Zr 0.002W 0.0003,在该正极材料中,以该正极材料质量为基准,ICP检测得到的Al、Zr和W的掺杂量如表1所示,该正极材料的在2θ角为18.74度附近的(003)衍射峰的半峰宽、在2θ角为18.74度附近的(003)衍射峰的半峰宽与在2θ角为44.4度附近的(104)衍射峰的半峰宽的比值、(003)衍射峰强度和(104)衍射峰强度的比值、25℃下50周循环数据及其DSC测试温度如表2所示。
实施例11
将正极前驱体材料Ni 0.82Co 0.08Mn 0.06Al 0.04(OH) 2与硼源掺杂剂B 2O 3按照质量比1:0.002混合后在980℃下预烧14h,得到预烧后产物;将预烧后产物与锂源LiOH、掺杂剂Al 2O 3、Zr(OH) 4、WO 3按照质量比480:285:8:3.52:1.248混合,得到混合后产物;将混合后产物在880℃下煅烧16h,并将煅烧后产物进行水洗和干燥,得到干燥后产物;将干燥后产物与铝源包覆剂Al 2O 3、硼源包覆剂B 2O 3按照质量比1:0.003:0.0065混合后在500℃下热处理8h,得到正极材料Li 1.08Ni 0.775Co 0.077Mn 0.058Al 0.04B 0.01Al 0.047Zr 0.002W 0.001,在该正极材料中,以该正极材料质量为基准,ICP检测得到的Al、Zr和W的掺杂量如表1所示,该正极材料的在2θ角为18.74度附近的(003)衍射峰的半峰宽、在2θ角为18.74度附近的(003)衍射峰的半峰宽与在2θ角为44.4度附近的(104)衍射峰的半峰宽的比值、(003)衍射峰强度和(104)衍射峰强度的比值、25℃下50周循环数据及其DSC测试温度如表2所示。
对比例
将正极前驱体材料Ni 0.85Co 0.08Mn 0.03Al 0.04(OH) 2与硼源掺杂剂B 2O 3按照质量比1:0.0015混合后在900℃下预烧10h,得到预烧后产物;将预烧后产物与锂源LiOH按照质量比150:94混合,得到混合后产物;将混合后产物在830℃下煅烧12h,并将煅烧后产物进行水洗和干燥,得到干燥后产物;将干燥后产物与铝源包覆剂Al 2O 3、硼源包覆剂B 2O 3按照质量比1:0.0012:0.0015混合后在400℃下热处理6h,得到正极材料Li 1.05Ni 0.835Co 0.079Mn 0.03Al 0.04B 0.008Al 0.006。图7示出了所得正极材料修正后的XRD谱图,该正极材料的在2θ角为18.74度附近的(003)衍射峰的半峰宽、在2θ角为18.74度附近的(003)衍射峰的半峰宽与在2θ角为44.4度附近的(104)衍射峰的半峰宽的比值、(003)衍射峰强度和(104)衍射峰强度的比值、25℃下50周循环数据及其DSC测试温度如表2所示。
表1实施例1-11和对比例所得的正极材料中掺杂元素的含量
Figure PCTCN2020134346-appb-000001
Figure PCTCN2020134346-appb-000002
注:Al的掺杂量确定如下:采用ICP检测出预烧结后产物的掺杂的B的量和Al的含量;采用ICP测出干燥后产物Al的含量,两次Al含量之差即为Al的掺杂量。
表中实测掺杂量超出设计掺杂量是因为正极前驱体材料中原本会含有极微量的掺杂元素。
表2实施例1-11和对比例所得正极材料的测试数据
Figure PCTCN2020134346-appb-000003
由表1和表2可知,本发明实施例合成的正极材料,因进行了M离子的掺杂和B包覆,可以得到高循环保持率和高DSC温度的正极材料,即得到长循环、热稳定性好的正极材料。结合表2的XRD衍射数据可知,实施例1-11采用适合比例共掺杂可以得到(003)衍射峰的半峰宽为0.0550-0.0800,(104)衍射峰的半峰宽与(003)衍射峰的半峰宽的比值为1.4500-1.6000,I 003与I 104衍射峰强度比值为2.45≤I 003/I 104≤3.00。进一步的,表2中50周循环(25℃)测试数据也证明,实施例1-11所得的正极材料循环寿命长、热稳定性高。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (12)

  1. 一种正极材料,其特征在于,其通式为Li aNi 1-x-y-zCo xMn yAl zM bO 2,其中,1.04≤a≤1.08、0.04≤x≤0.08、0.025≤y≤0.06、0.03≤z≤0.09、0.015≤b≤0.06,M为B和选自Zr和Al、Ti、Mg、Na、Ca、Nb、Ba、Si、P、W、Sr中的至少之一。
  2. 根据权利要求1所述的正极材料,其特征在于,0.028≤y≤0.06,优选0.04≤y≤0.06;优选1.04≤a≤1.05,优选0.075≤x≤0.08;优选0.03≤z≤0.04;优选0.02≤b≤0.05。
  3. 根据权利要求1或2所述的正极材料,其特征在于,所述b的取值范围为0.02≤b≤0.03。
  4. 根据权利要求1或2所述的正极材料,其特征在于,所述正极材料具有与LiCoO 2类似的α-NaFeO 2型层状结构,且所述正极材料的晶型归属为六方晶系的R-3m空间群。
  5. 根据权利要求1或2所述的正极材料,其特征在于,所述正极材料在(003)晶面2θ角为18.74度附近,优选所述正极材料在(003)晶面2θ角为18.74±0.2度,且所述正极材料在(003)晶面的衍射峰的半峰宽为0.0550-0.0700。
  6. 根据权利要求5所述的正极材料,其特征在于,所述正极材料在(104)晶面2θ角为44.4度附近,优选所述正极材料在(104)晶面2θ角为44.4±0.2度,所述正极材料在(003)晶面衍射峰的半峰宽与在(104)晶面衍射峰的半峰宽的比值为1.45-1.6。
  7. 根据权利要求6所述的正极材料,其特征在于,所述正极材料的(003)晶面的衍射峰强度和(104)晶面的衍射峰强度的比值为2.45≤I 003/I 104≤3.05。
  8. 根据权利要求1或2所述的正极材料,其特征在于,所述M为B和选自Zr和Al、W中的至少之一,优选M为B、Zr、Al的组合或B、Zr、Al、W的组合。
  9. 一种制备权利要求1-8中任一项所述的正极材料的方法,其特征在于,包括:
    将正极前驱体材料与硼源掺杂剂混合后进行预烧;
    将所述预烧后产物与锂源、其它掺杂剂混合,所述其它掺杂剂为包含选自Zr和Al、Ti、Mg、Na、Ca、Nb、Ba、Si、P、W、Sr中的至少之一离子源的物质;
    将所述混合后产物进行煅烧,并将煅烧后产物进行水洗和干燥;
    将所述干燥后产物与铝源包覆剂、硼源包覆剂混合后进行热处理,以便得到所述正极材料。
  10. 根据权利要求9所述的方法,其特征在于,所述正极前驱体材料选自Ni 1-x-y-zCo xMn yAl z(OH) 2、Ni 1-x-y-zCo xMn yAl zCO 3中的至少之一,其中0.04≤x≤0.08、0.04≤y≤0.06、0.03≤z≤0.09;优选0.03≤y≤0.06,进一步优选0.04≤y≤0.06;
    优选地,所述硼源掺杂剂和所述硼源包覆剂分别独立地选自B 2O 3、H 3BO 3中的至少之一;
    优选地,所述正极前驱体材料与所述硼源掺杂剂的质量比为1:0.001-0.002;
    优选地,所述预烧的温度为900-1000℃,时间为10-15h;
    优选地,所述预烧后产物与所述锂源、所述其它掺杂剂的质量比为480:260-280:1-10;
    优选地,所述锂源选自LiOH、Li 2CO 3中的至少之一;
    优选地,所述其它掺杂剂选自Zr(OH) 4、ZrO 2、Al 2O 3、TiO 2、Mg(OH) 2、NaCl、CaCl 2、Nb 2O 5、BaCl 2、SiO 2、H 3PO 3、WO 3、SrO中的至少之一;
    优选地,所述煅烧的温度为830-880℃,时间为12-17h;
    优选地,所述干燥后产物与所述铝源包覆剂、所述硼源包覆剂的质量比为1:0.001-0.003:0.0015-0.007;
    优选地,所述铝源包覆剂选自Al 2O 3、Al(OH) 3、AlF 3中的至少之一;
    优选地,所述热处理的温度为400-600℃,时间为6-8h。
  11. 一种锂离子电池,包括正极材料,其特征在于,所述正极材料为权利要求1-8中任一项所述的正极材料。
  12. 一种汽车,所述汽车具有锂离子电池,其特征在于,所述锂离子电池为权利要求11所述的锂离子电池。
PCT/CN2020/134346 2019-12-18 2020-12-07 正极材料及其制备方法和应用 WO2021121066A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227020622A KR20220111283A (ko) 2019-12-18 2020-12-07 양극 재료 및 이의 제조 방법과 응용
US17/766,227 US20240055591A1 (en) 2019-12-18 2020-12-07 Cathode electrode material and preparation method and application thereof
EP20903696.1A EP4024531A4 (en) 2019-12-18 2020-12-07 POSITIVE ELECTRODE MATERIAL, PRODUCTION METHOD THEREOF AND USE THEREOF
JP2022528258A JP2023502088A (ja) 2019-12-18 2020-12-07 正極材料およびその製造方法と使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911310399.2 2019-12-18
CN201911310399.2A CN111435738A (zh) 2019-12-18 2019-12-18 正极材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021121066A1 true WO2021121066A1 (zh) 2021-06-24

Family

ID=71580928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134346 WO2021121066A1 (zh) 2019-12-18 2020-12-07 正极材料及其制备方法和应用

Country Status (6)

Country Link
US (1) US20240055591A1 (zh)
EP (1) EP4024531A4 (zh)
JP (1) JP2023502088A (zh)
KR (1) KR20220111283A (zh)
CN (1) CN111435738A (zh)
WO (1) WO2021121066A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114914440A (zh) * 2022-06-10 2022-08-16 蜂巢能源科技股份有限公司 一种超高镍多晶镍铝镁锆酸锂正极材料及其制备方法和应用
WO2024070822A1 (ja) * 2022-09-29 2024-04-04 株式会社村田製作所 二次電池用正極活物質、二次電池用正極および二次電池

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435738A (zh) * 2019-12-18 2020-07-21 蜂巢能源科技有限公司 正极材料及其制备方法和应用
KR102580744B1 (ko) * 2020-12-21 2023-09-19 포스코홀딩스 주식회사 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR102580743B1 (ko) * 2020-12-21 2023-09-19 포스코홀딩스 주식회사 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR102580745B1 (ko) * 2020-12-21 2023-09-19 포스코홀딩스 주식회사 양극 활물질 및 이를 포함하는 리튬 이차 전지
CN113224276B (zh) * 2021-04-20 2023-04-28 宁波容百新能源科技股份有限公司 一种锂离子电池正极材料、其制备方法及应用
CN113540433A (zh) * 2021-06-28 2021-10-22 合肥国轩高科动力能源有限公司 一种正极材料及制备方法、锂离子电池正极和锂离子电池
CN114864923B (zh) * 2022-04-29 2023-11-21 巴斯夫杉杉电池材料有限公司 一种硼掺杂镍钴锰正极材料及其制备方法
CN115020699B (zh) * 2022-08-09 2022-12-13 国联汽车动力电池研究院有限责任公司 一种低钴或无钴正极材料及其制备方法和应用
CN117594778A (zh) * 2024-01-18 2024-02-23 深圳为方能源科技有限公司 一种钠离子电池正极材料及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149923A (ja) * 1998-11-04 2000-05-30 Fuji Chem Ind Co Ltd リチウムイオン二次電池用正極活物質
KR20060084821A (ko) * 2005-01-20 2006-07-25 제일모직주식회사 2차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는리튬이차전지
CN103855387A (zh) * 2014-03-25 2014-06-11 海宁美达瑞新材料科技有限公司 一种改性的锂离子电池三元正极材料及其制备方法
CN109665570A (zh) * 2018-12-03 2019-04-23 林奈(中国)新能源有限公司 一种掺杂改性的高镍四元正极材料、制备方法及用途
WO2019093653A1 (ko) * 2017-11-10 2019-05-16 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
CN110459739A (zh) * 2019-06-28 2019-11-15 河南科隆新能源股份有限公司 一种正极材料及其制备方法
CN111435738A (zh) * 2019-12-18 2020-07-21 蜂巢能源科技有限公司 正极材料及其制备方法和应用
CN111916687A (zh) * 2019-05-09 2020-11-10 深圳市贝特瑞纳米科技有限公司 一种正极材料及其制备方法和锂离子电池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105070907B (zh) * 2015-08-31 2018-06-05 宁波容百新能源科技股份有限公司 一种高镍正极材料及其制备方法和锂离子电池
JP6979460B2 (ja) * 2016-12-22 2021-12-15 ポスコPosco 正極活物質、その製造方法、およびこれを含むリチウム二次電池
US10243217B2 (en) * 2017-05-24 2019-03-26 Nanotek Instruments, Inc. Alkali metal battery having a deformable quasi-solid electrode material
CN107394160B (zh) * 2017-07-24 2019-09-10 合肥国轩高科动力能源有限公司 一种锂离子电池正极材料及其制备方法
CN110120505B (zh) * 2019-05-07 2020-12-11 厦门厦钨新能源材料股份有限公司 锂离子电池正极材料、制备方法及锂离子电池
CN111422919B (zh) * 2019-12-19 2023-04-21 蜂巢能源科技有限公司 四元正极材料及其制备方法、正极、电池
CN111952590A (zh) * 2020-07-08 2020-11-17 河南科隆新能源股份有限公司 一种提升安全和循环性能的锂离子电池正极材料及制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149923A (ja) * 1998-11-04 2000-05-30 Fuji Chem Ind Co Ltd リチウムイオン二次電池用正極活物質
KR20060084821A (ko) * 2005-01-20 2006-07-25 제일모직주식회사 2차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는리튬이차전지
CN103855387A (zh) * 2014-03-25 2014-06-11 海宁美达瑞新材料科技有限公司 一种改性的锂离子电池三元正极材料及其制备方法
WO2019093653A1 (ko) * 2017-11-10 2019-05-16 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
CN109665570A (zh) * 2018-12-03 2019-04-23 林奈(中国)新能源有限公司 一种掺杂改性的高镍四元正极材料、制备方法及用途
CN111916687A (zh) * 2019-05-09 2020-11-10 深圳市贝特瑞纳米科技有限公司 一种正极材料及其制备方法和锂离子电池
CN110459739A (zh) * 2019-06-28 2019-11-15 河南科隆新能源股份有限公司 一种正极材料及其制备方法
CN111435738A (zh) * 2019-12-18 2020-07-21 蜂巢能源科技有限公司 正极材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4024531A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114914440A (zh) * 2022-06-10 2022-08-16 蜂巢能源科技股份有限公司 一种超高镍多晶镍铝镁锆酸锂正极材料及其制备方法和应用
CN114914440B (zh) * 2022-06-10 2024-03-29 蜂巢能源科技股份有限公司 一种超高镍多晶镍铝镁锆酸锂正极材料及其制备方法和应用
WO2024070822A1 (ja) * 2022-09-29 2024-04-04 株式会社村田製作所 二次電池用正極活物質、二次電池用正極および二次電池

Also Published As

Publication number Publication date
EP4024531A1 (en) 2022-07-06
EP4024531A4 (en) 2023-10-25
US20240055591A1 (en) 2024-02-15
KR20220111283A (ko) 2022-08-09
CN111435738A (zh) 2020-07-21
JP2023502088A (ja) 2023-01-20

Similar Documents

Publication Publication Date Title
WO2021121066A1 (zh) 正极材料及其制备方法和应用
KR102194505B1 (ko) 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬 이차 전지
Du et al. Improved cyclic stability of LiNi0. 8Co0. 1Mn0. 1O2 via Ti substitution with a cut-off potential of 4.5 V
KR101746187B1 (ko) 리튬 이차 전지용 양극 활물질, 및 이를 포함하는 리튬 이차 전지
TWI535096B (zh) Li-Ni composite oxide particle powder and a method for producing the same, and a nonaqueous electrolyte battery
WO2021121168A1 (zh) 四元正极材料、正极、电池
JP6440289B2 (ja) 正極活物質、その製造方法およびそれを含むリチウム二次電池
KR101970909B1 (ko) 리튬 복합 화합물 입자 분말 및 그의 제조 방법, 비수전해질 이차 전지
KR102516459B1 (ko) 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지
TWI568068B (zh) A nickel-nickel composite oxide particle powder and a method for producing the same, a positive electrode active material particle powder for a nonaqueous electrolyte battery, a method for producing the same, and a nonaqueous electrolyte battery
WO2020043140A1 (zh) 三元正极材料及其制备方法、锂离子电池
KR101577179B1 (ko) 리튬 이차 전지용 양극활물질 및 이를 포함하는 리튬 이차 전지
KR102357836B1 (ko) 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2020238968A1 (zh) 复合型锂离子电池正极材料及锂离子电池和车
WO2005008812A1 (ja) 正極活物質及びその製造方法、並びに、これを用いたリチウム二次電池用正極及びリチウム二次電池
KR20180108521A (ko) 양극활물질 및 이를 포함하는 이차 전지
KR20140073856A (ko) 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR20130116789A (ko) 리튬 이온 이차 전지용 전극 및 리튬 이온 이차 전지
JP5055702B2 (ja) 正極活物質及びその製造方法
EP2626945B1 (en) Lithium titanium oxide, method of preparing the same, negative electrode including the same, and lithium battery including the negative electrode
KR101439638B1 (ko) 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
Yang et al. Li 4 SiO 4-coated LiNi 0.5 Mn 1.5 O 4 as the high performance cathode materials for lithium-ion batteries
US11127939B2 (en) Electrode material, use of an electrode material for a lithium-ion-based electrochemical cell, lithium-ion-based electrochemical cell
KR100872370B1 (ko) 리튬 이차전지용 스피넬형 양극 활물질 및 그 제조방법
JP2016081716A (ja) リチウムイオン二次電池用正極活物質及びその製造方法並びにリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20903696

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17766227

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2020903696

Country of ref document: EP

Effective date: 20220331

ENP Entry into the national phase

Ref document number: 2022528258

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227020622

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE