WO2021129319A1 - 正极材料及其制备方法和应用 - Google Patents

正极材料及其制备方法和应用 Download PDF

Info

Publication number
WO2021129319A1
WO2021129319A1 PCT/CN2020/132903 CN2020132903W WO2021129319A1 WO 2021129319 A1 WO2021129319 A1 WO 2021129319A1 CN 2020132903 W CN2020132903 W CN 2020132903W WO 2021129319 A1 WO2021129319 A1 WO 2021129319A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
calcination
electrode material
mixture
calcined
Prior art date
Application number
PCT/CN2020/132903
Other languages
English (en)
French (fr)
Inventor
朱金鑫
王鹏飞
Original Assignee
蜂巢能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蜂巢能源科技有限公司 filed Critical 蜂巢能源科技有限公司
Priority to EP20905523.5A priority Critical patent/EP4044288A4/en
Publication of WO2021129319A1 publication Critical patent/WO2021129319A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention belongs to the technical field of lithium ion batteries. Specifically, the present invention relates to a positive electrode material and a preparation method and application thereof.
  • LiNi a Co b Mn (1-ab) O 2 , LNCM lithium nickel cobalt manganese
  • the mainstream ternary NCM cathode materials include LiNi 0.5 Co 0.2 Mn 0.3 O 2 (NCM523), LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM622) and so on.
  • the current high-nickel technology route for ternary NCM cathode materials is an inevitable choice to achieve higher energy density ternary NCM lithium-ion batteries.
  • some companies that produce cathode materials have rapidly launched LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811) laboratory, pilot and even mass production process development activities.
  • the NCM811 lithium-ion battery has many problems, mainly including low safety and short cycle life.
  • An important reason for these problems is that the NCM811 cathode material increases the nickel content to obtain a high specific capacity, and at the same time causes the instability of the crystal structure of the material.
  • researchers have carried out a large number of optimization and modification experiments, such as doping and coating of metal elements.
  • surface coating is used to reduce the side reaction between the material surface and the electrolyte during the charge and discharge cycle, thereby improving its cycle capacity retention; through Al element doping, the advantage of the high strength of the Al-O chemical bond is used to improve Its electrochemical stability during charge and discharge cycles.
  • Current research is mainly focused on taking a variety of measures to improve the structural stability of polycrystalline particles.
  • the existing polycrystalline particle cathode materials still have the problem of microcracks caused by uncontrolled primary particle interface stress.
  • an object of the present invention is to provide a positive electrode material and its preparation method and application.
  • the positive electrode material has no crystal internal interfacial stress, high safety, and high energy density, cycle life and rate performance.
  • the present invention provides a cathode material.
  • X is Nb or Ti
  • M is selected from at least one of Mg, Ti, Zr, Zn, Ca, B, Ce and Cr 1.
  • the positive electrode material has a layered structure of ⁇ -NaFeO 2 and belongs to the R-3m space group.
  • the positive electrode material is a single crystal particle, which can fundamentally eliminate the interfacial stress inside the crystal, making it one of the potential positive electrode materials with high energy density and long cycle life; and the positive electrode material It has anion and cation co-modification, uses fluoride ion to partially replace oxygen ion, and simultaneously introduces aluminum ion, niobium ion or titanium ion, M ion (selected from Mg, Ti, Zr, Zn, Ca, B, Ce and Cr At least one) cation, which further strengthens the strength of the chemical bond in the material and improves its safety performance. After testing, the positive electrode material has advantages in the rate data under high current, and can realize the high power performance of the power lithium-ion battery.
  • cathode material according to the foregoing embodiment of the present invention may also have the following additional technical features:
  • the particle size of the positive electrode material is 0.5-14 ⁇ m, preferably 2-10 ⁇ m.
  • the present invention provides a method for preparing the above-mentioned cathode material.
  • the method includes: mixing and grinding the cathode precursor material with a lithium salt to obtain a first mixture material;
  • the first mixture material is placed in a calcination atmosphere for first calcination, so as to obtain a first calcined material; after grinding the first calcined material, it is mixed with the lithium salt and the fluoride ion modifier to obtain The second mixture material; the second mixture material is placed in the calcination atmosphere for second calcination, so as to obtain the positive electrode material.
  • the entire process can realize the preparation of the positive electrode material only by mixing, grinding and calcination, which can be adapted to large-scale material production; and during the preparation process, it can be different according to the positive electrode precursor material.
  • Flexible selection of cationic and fluoride ion modifiers, and the calcination process can be adjusted according to the specific types of the selected cationic modifier and fluoride ion modifier to obtain a single crystal positive electrode material with both cationic and anionic modifications.
  • the method for preparing a positive electrode material according to the foregoing embodiment of the present invention may also have the following additional technical features:
  • the positive electrode precursor material is Ni ⁇ Co ⁇ Mn ⁇ Al ⁇ X ⁇ M ⁇ (OH) 2 , wherein 0.75 ⁇ 1, 0 ⁇ 0.2, 0 ⁇ 0.25, 0 ⁇ 0.05, 0 ⁇ 0.05, 0 ⁇ 0.05, X is Nb or Ti, and M is selected from at least one of Mg, Ti, Zr, Zn, Ca, B, Ce, and Cr.
  • the lithium salt is selected from at least one of LiOH ⁇ H 2 O, Li 2 CO 3 , Li 3 PO 4 , Li 2 HPO 4 , LiH 2 PO 4 , LiNO 3 , and LiF .
  • the calcination atmosphere is a mixed atmosphere containing oxygen and inert gas.
  • the temperature of the first calcination is 750-950° C., and the time is 10-24 h.
  • the fluoride ion modifier is selected from at least one of LiF, NH 4 F, AlF 3 , TiF 4 , TiF 3 , MgF 2 , and ZrF 2.
  • the temperature of the second calcination is 700-900° C., and the time is 8-20 h.
  • the positive electrode precursor material is Ni ⁇ Co ⁇ Mn ⁇ Al ⁇ (OH) 2 , where 0.75 ⁇ 1, 0 ⁇ 0.2, 0 ⁇ 0.25, 0 ⁇ ⁇ 0.05, preferably 0.80 ⁇ 0.90, 0.05 ⁇ 0.1, 0.01 ⁇ 0.0.05, 0.01 ⁇ 0.03.
  • the second mixture material when the positive electrode precursor material is Ni ⁇ Co ⁇ Mn ⁇ Al ⁇ (OH) 2 , the second mixture material is placed in a calcination atmosphere for second calcination to obtain the second calcination material
  • the above method further includes: mixing and grinding the second calcined material with a niobium ion modifier or a titanium ion modifier to obtain a third mixture material; placing the third mixture under the calcining atmosphere for third It is calcined to obtain the positive electrode material.
  • the niobium ion modifier is selected from at least one of LiNbO 3 , Nb 2 O 5 , C 2 H 6 NbO, and NbF 5.
  • the titanium ion modifier is selected from at least one of Ti ⁇ OCH(CH 3 ) 2 ⁇ 4 , TiO 2 , TiF 4 , and Li 4 Ti 5 O 12 .
  • the temperature of the third calcination is 500-900° C., and the time is 6-20 h.
  • the present invention provides a lithium ion battery.
  • the lithium ion battery has the above-mentioned positive electrode material or the positive electrode material prepared by the above-mentioned method for preparing the positive electrode material.
  • the lithium ion battery of the embodiment of the present invention because the battery has the above-mentioned positive electrode material, and the positive electrode material is a single crystal particle, it can fundamentally eliminate the interfacial stress inside the crystal, making it a rich product with high energy density and long cycle life.
  • the cathode material has anion and cation co-modification, using fluoride ions to partially replace oxygen ions, and at the same time introducing aluminum ions, niobium ions or titanium ions, M ions (selected from Mg, Ti, Zr, Zn , Ca, B, Ce and Cr at least one) cation, further strengthen the strength of the chemical bond in the material and improve its safety performance.
  • the positive electrode material has advantages in the rate data under high current, and can realize the high power performance of the power lithium-ion battery.
  • the present invention provides an automobile.
  • the automobile has the above-mentioned lithium ion battery.
  • the car of the embodiment of the present invention because the car has the above-mentioned lithium ion battery containing the positive electrode material, the high energy density, long cycle life, and strong chemical bond performance of the positive electrode material make the lithium ion battery have a high current rate
  • the data has advantages, high power performance, and high safety, so that the car can safely achieve the purpose of long cruising range.
  • Fig. 1 is a schematic flow chart of a method for preparing a single crystal cathode material according to an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a method for preparing a single crystal cathode material according to another embodiment of the present invention
  • Example 3 is an SEM image of the cathode material obtained in Example 1;
  • Figure 5 is the first charge and discharge curve of a button battery prepared by using the positive electrode material obtained in Examples 1-4;
  • Figure 6 shows the specific discharge capacity of the cathode materials obtained in Examples 1-4 at different rates
  • Fig. 7 is the cycle capacity retention rate of the cathode material obtained in Examples 1-4 at a current density of 0.5C/1C;
  • FIG. 10 is an SEM image of the positive electrode material obtained in Example 4.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features.
  • the present invention provides a cathode material.
  • X is Nb or Ti
  • M is selected from at least one of Mg, Ti, Zr, Zn, Ca, B, Ce, and Cr
  • the cathode material has a layered structure of ⁇ -NaFeO 2 and belongs to the R-3m space group.
  • the positive electrode material is a single crystal particle, which can fundamentally eliminate the interfacial stress inside the crystal, making it one of the potential positive electrode materials with high energy density and long cycle life; and the positive electrode material has anions and cations.
  • Co-modification using fluoride ions to partially replace oxygen ions, and simultaneously introducing aluminum ions, niobium ions or titanium ions, and M ions (at least one selected from Mg, Ti, Zr, Zn, Ca, B, Ce, and Cr) cations , Further strengthen the strength of the chemical bond in the material and improve its safety performance.
  • a can be 0/0.02/0.04/0.06/0.08/0.1
  • can be 0.75/0.80/0.85/0.90/0.95/0.99
  • can be 0/0.05/0.1/0.15/0.19
  • can be 0.01 /0.05/0.10/0.15/0.20/0.24
  • can be 0.01/0.02/0.0.3/0.04/0.05
  • can be 0.01/0.02/0.03/0.04/0.05
  • can be 0/0.01/0.02/0.03/ 0.04/0.05
  • the value of a may affect the number of lithium ions inserted and inserted; ⁇ , ⁇ , and ⁇ may affect the electrochemical activity and structural stability of the cathode material; ⁇ , ⁇ , ⁇ , and ⁇ may affect the material crystal
  • the stability of the structure, a, ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ adopt the corresponding ranges in this application, which can make the positive electrode material have better electrochemical activity, and the crystal structure is stable without affecting the lithium Ion embedding and embedding.
  • the particle size of the positive electrode material may be 0.5-14 ⁇ m, such as 0.5/2/4/6/8/10/12/14 ⁇ m, preferably 2-10 ⁇ m. The inventor found that too large or small particle size of the positive electrode material may affect the specific surface area, compaction density, rate performance, and DC resistance of the battery.
  • the positive electrode material is a single crystal particle, which can fundamentally eliminate the interfacial stress inside the crystal, making it one of the potential positive electrode materials with high energy density and long cycle life; and the positive electrode material It has anion and cation co-modification, uses fluoride ion to partially replace oxygen ion, and simultaneously introduces aluminum ion, niobium ion or titanium ion, M ion (selected from Mg, Ti, Zr, Zn, Ca, B, Ce and Cr At least one) cation, which further strengthens the strength of the chemical bond in the material and improves its safety performance. After testing, the positive electrode material has advantages in the rate data under high current, and can realize the high power performance of the power lithium-ion battery.
  • the present invention provides a method for preparing the above-mentioned cathode material. According to an embodiment of the present invention, referring to FIG. 1, the method includes:
  • the positive electrode precursor material and the lithium salt are mixed and ground to obtain the first mixed material.
  • the positive electrode precursor material and the lithium salt can be mixed more fully and uniformly.
  • the specific type of the positive electrode precursor material is not particularly limited, and those skilled in the art can choose according to actual needs, for example, it can be Ni ⁇ Co ⁇ Mn ⁇ Al ⁇ X ⁇ M ⁇ (OH) 2 , where 0.75 ⁇ 1, 0 ⁇ 0.2, 0 ⁇ 0.25, 0 ⁇ 0.05, 0 ⁇ 0.05, 0 ⁇ 0.05, X is Nb or Ti, M is selected from Mg, At least one of Ti, Zr, Zn, Ca, B, Ce and Cr; preferably, 0.80 ⁇ 0.90, 0.05 ⁇ 0.1, 0.01 ⁇ 0.0.05, 0.01 ⁇ 0.03, 0.01 ⁇ ⁇ 0.03, 0 ⁇ 0.02, or Ni ⁇ Co ⁇ Mn ⁇ Al ⁇ (OH) 2 , where 0.75 ⁇ 1, 0 ⁇ 0.2, 0 ⁇ 0.25, 0
  • the corresponding preparation process can be selected according to the specific types of positive electrode precursor materials, fluoride ion modifiers and cationic modifiers, so that the preparation method has high flexibility, strong adaptability, and is suitable for scale-up production.
  • the specific type of lithium salt is not particularly limited, and those skilled in the art can also choose according to actual needs, for example, it can be selected from LiOH ⁇ H 2 O, Li 2 CO 3 , Li 3 PO 4. At least one of Li 2 HPO 4 , LiH 2 PO 4 , LiNO 3, and LiF.
  • the mass ratio of the positive electrode precursor material to the lithium salt is not particularly limited, and those skilled in the art can make a selection according to the general formula of the positive electrode material to be prepared. It should be noted that if the mass ratio of the positive electrode precursor material to the lithium salt is too high or too low, it will directly affect the composition and content of lithium and transition metals in the positive electrode material.
  • the first mixture material is placed in a calcination atmosphere for the first calcination, so as to obtain the first calcination material.
  • the inventor found that the first calcination of the first mixture material containing the positive electrode precursor material and the lithium salt can obtain the expected crystal structure, so that the material after the first calcination has a suitable layered structure, controllable crystal defects, Lower degree of lithium-nickel mixing.
  • the specific type of the calcination atmosphere is not particularly limited, and those skilled in the art can choose according to actual needs, for example, it can be a mixed atmosphere containing oxygen and inert gas. Further, the volume ratio of oxygen to inert gas in the calcination atmosphere is not particularly limited.
  • it can be a pure oxygen atmosphere or a pure inert gas atmosphere, such as a pure nitrogen or pure argon atmosphere, or it can be oxygen and inert gas.
  • the inventor found that the role of oxygen content in the calcination atmosphere is to control the valence of transition metal ions of the positive electrode precursor material and lithium salt during the calcination process, and may affect the morphology of the positive electrode material particles. The higher the oxygen content, it may be beneficial to the positive electrode material. The formation of crystal structure, but may have a certain bad influence on the single crystallization of particles.
  • the specific conditions of the first calcination are not particularly limited, and those skilled in the art can choose according to actual needs.
  • the temperature of the first calcination may be 750-950°C, such as 750°C. 800/850/900/950°C
  • the time can be 10-24h, such as 10/12/14/16/18/20/22/24h.
  • the inventor found that the temperature of the first calcination is an important factor affecting the solid-phase reaction between the positive electrode precursor material and the lithium salt. The temperature is not higher or lower, the better, and the time is not longer or shorter, the better.
  • the temperature and time of the first calcination can be combined to a certain degree, for example, a higher first calcination temperature + a shorter calcination time or a lower first calcination temperature + a longer calcination time.
  • the calcination conditions need to be adjusted, such as when When the positive electrode precursor material is Ni ⁇ Co ⁇ Mn ⁇ Al ⁇ (OH) 2 , there can be three calcinations, and when the positive electrode precursor material is Ni ⁇ Co ⁇ Mn ⁇ Al ⁇ X ⁇ M ⁇ (OH) 2 , there is Calcined twice.
  • the first calcined material is ground, it is mixed with the lithium salt and the fluoride ion modifier to obtain the second mixture material. Therefore, it is advantageous to mix the first calcined material with the lithium salt and the fluoride ion modifier uniformly.
  • the specific types of lithium salt and fluoride ion modifier are not particularly limited, and those skilled in the art can choose according to actual needs.
  • the lithium salt can be selected from LiOH ⁇ H 2 O, Li 2 CO 3.
  • At least one of Li 3 PO 4 , Li 2 HPO 4 , LiH 2 PO 4 , LiNO 3 , LiF, and the fluoride ion modifier can be selected from LiF, NH 4 F, AlF 3 , TiF 4 , TiF 3 , MgF 2. At least one of ZrF 2.
  • the specific types of lithium salts in steps S300 and S100 may be the same or different, and those skilled in the art can make selections according to actual needs.
  • the mass ratio of the first calcined material to the lithium salt and the fluoride ion modifier is not particularly limited, and those skilled in the art can choose according to actual needs, for example, according to the general formula of the final desired cathode material.
  • the content of each element is set due to the electrochemical, chemical, or physical chemical effects of the element.
  • fluoride ions are used to enhance the structural stability of the cathode material, and too high a content will result in more oxygen defect sites, and a very low content will have a limited stabilizing effect.
  • the second mixture material is placed in a calcination atmosphere for second calcination.
  • the positive electrode precursor material is Ni ⁇ Co ⁇ Mn ⁇ Al ⁇ X ⁇ M ⁇ (OH) 2
  • the positive electrode material can be obtained.
  • the inventor found that the calcination mechanism here is to optimize the content or distribution of lithium ions in the cathode material, and fluoride ions enter the crystal structure and replace oxygen ions.
  • the influence of different cathode precursor materials is used. Not significant.
  • the specific conditions of the second calcination are not particularly limited, and those skilled in the art can choose according to actual needs.
  • the temperature of the second calcination may be 700-900°C, such as 700/750. /800/850/900°C, the time can be 8-20h, such as 8/12/16/20h.
  • the specific type of the calcination atmosphere is not particularly limited, and those skilled in the art can choose according to actual needs, for example, it can be a mixed atmosphere containing oxygen and inert gas.
  • the volume ratio of oxygen to inert gas in the calcination atmosphere is not particularly limited.
  • it can be a pure oxygen atmosphere or a pure inert gas atmosphere, such as a pure nitrogen or pure argon atmosphere, or it can be oxygen and inert gas.
  • the role of oxygen content in the calcination atmosphere is to control the valence state of transition metal ions during the calcination process of the second mixture material, and may affect the morphology of the cathode material particles.
  • the calcination atmosphere during the second calcination may be the same as or different from the first calcination, and those skilled in the art can choose according to actual needs.
  • the positive electrode precursor material is Ni ⁇ Co ⁇ Mn ⁇ Al ⁇ (OH) 2
  • the second mixture material is placed in a calcination atmosphere for second calcination to obtain a second calcination
  • the above method for preparing the positive electrode material further includes:
  • the second calcined material is mixed and ground with a niobium ion modifier or a titanium ion modifier to obtain a third mixture material.
  • the inventor found that mixing and grinding the second calcined material with the niobium ion modifier or titanium ion modifier is beneficial to make these materials fully mixed and uniform, and it is beneficial for the niobium ion or titanium ion to enter the crystal structure of the transition metal during the next calcination process. On the site of the cation.
  • the specific type of niobium ion modifier or titanium ion modifier is not particularly limited, and those skilled in the art can choose according to actual needs.
  • the niobium ion modifier can be selected from LiNbO 3 , Nb 2 At least one of O 5 , C 2 H 6 NbO, and NbF 5 ;
  • the titanium ion modifier can be selected from at least one of Ti ⁇ OCH(CH 3 ) 2 ⁇ 4 , TiO 2 , TiF 4 , Li 4 Ti 5 O 12 one.
  • the mass ratio of the second calcined material to the niobium ion modifier or the titanium ion modifier is not particularly limited, and those skilled in the art can make selections according to actual needs, for example, it can be determined according to the general formula of the required positive electrode material .
  • the element content is set due to the electrochemical, chemical, or physical chemical effects of the element.
  • niobium ions or titanium ions are used to enhance the structural stability of the positive electrode material and inhibit the entry of nickel ions into the lithium sites of the lithium layer. If the content is too high, the electrochemical activity of the positive electrode material may decrease. The stabilizing effect is limited.
  • the third mixture is placed in a calcination atmosphere for third calcination, so as to obtain a positive electrode material.
  • the specific type of the calcination atmosphere is not particularly limited, and those skilled in the art can choose according to actual needs, for example, it can be a mixed atmosphere containing oxygen and inert gas. Further, the volume ratio of oxygen to inert gas in the calcination atmosphere is not particularly limited.
  • the calcination atmosphere helps the migration of ions in the high-temperature solid phase reaction, and helps the titanium ions or niobium ions migrate to the transition metal ions in the crystal structure.
  • the calcination atmosphere and the calcination temperature are synergistic, but the calcination temperature The role played is more important.
  • the calcination atmosphere during the third calcination may be the same as that during the first calcination and/or the second calcination, or may not be consistent, and those skilled in the art can choose according to actual needs.
  • the specific conditions of the third calcination are not particularly limited, and those skilled in the art can choose according to actual needs.
  • the temperature of the third calcination may be 500-900°C, such as 500°C. 600/700/800/900°C
  • the time can be 6-20h, such as 6/8/10/12/14/16/18/20h.
  • the entire process can realize the preparation of the positive electrode material only by mixing, grinding and calcination, which can be adapted to large-scale material production; and during the preparation process, it can be different according to the positive electrode precursor material.
  • Flexible selection of cationic and fluoride ion modifiers, and the calcination process can be adjusted according to the specific types of the selected cationic modifier and fluoride ion modifier to obtain a single crystal positive electrode material with both cationic and anionic modifications.
  • the present invention provides a lithium ion battery.
  • the lithium ion battery has the above-mentioned positive electrode material or the positive electrode material prepared by the above-mentioned method for preparing the positive electrode material.
  • the lithium ion battery of the embodiment of the present invention because the battery has the above-mentioned positive electrode material, and the positive electrode material is a single crystal particle, it can fundamentally eliminate the interfacial stress inside the crystal, making it a rich product with high energy density and long cycle life.
  • the cathode material has anion and cation co-modification, using fluoride ions to partially replace oxygen ions, and at the same time introducing aluminum ions, niobium ions or titanium ions, M ions (selected from Mg, Ti, Zr, Zn , Ca, B, Ce and Cr at least one) cation, further strengthen the strength of the chemical bond in the material.
  • the positive electrode material has advantages in the rate data under high current, and can realize the high power performance of the power lithium-ion battery.
  • the present invention provides an automobile.
  • the automobile has the above-mentioned lithium ion battery.
  • the car of the embodiment of the present invention because the car has the above-mentioned lithium ion battery containing the positive electrode material, the high energy density, long cycle life, and strong chemical bond performance of the positive electrode material make the lithium ion battery have a high current rate
  • the data has advantages, high power performance, and high safety, so that the car can safely achieve the purpose of long cruising range.
  • test methods for the first charge and discharge, specific discharge capacity, and cycle capacity retention rate of each positive electrode material are as follows: the test system for the first charge and discharge is that the voltage window is 3.0-4.3V, and the charge-discharge rate is 0.1C ; Cycle retention rate test charge is 0.5C, discharge is 1C, and the voltage window is 3.0-4.3V.
  • the second mixture material is calcined in a calciner at 760°C and a pure oxygen atmosphere for 15 hours to obtain Li 1.05 Ni 0.88 Co 0.06 Mn 0.03 Al 0.02 Nb 0.01 O 1.95 F 0.05 cathode material.
  • the SEM image is shown in the figure As shown in Figure 3, the X-ray diffraction pattern is shown in Figure 4, the first charge-discharge curve is shown in Figure 5, and the specific discharge capacity at different rates is shown in Figure 6. The cycle capacity at a current density of 0.5C/1C The retention rate is shown in Figure 7.
  • the second mixture material then the second mixture material is calcined in a calciner at 700°C and a pure nitrogen atmosphere for 20 hours to obtain Li 1.05 Ni 0.88 Co 0.06 Mn 0.03 Al 0.02 Ti 0.01 O 1.95 F 0.05 cathode material.
  • the SEM image is shown in the figure As shown in Figure 8, the X-ray diffraction pattern is shown in Figure 4, the first charge-discharge curve is shown in Figure 5, and the specific discharge capacity at different rates is shown in Figure 6, and the cycle capacity at a current density of 0.5C/1C The retention rate is shown in Figure 7.
  • the SEM image is shown in Figure 9, and the X-ray diffraction pattern is shown in Figure 4.
  • the discharge curve is shown in Figure 5, the specific discharge capacity at different rates is shown in Figure 6, and the cycle capacity retention rate at a current density of 0.5C/1C is shown in Figure 7.
  • the SEM image is shown in Figure 10, and the X-ray diffraction pattern is As shown in Figure 4, the first charge-discharge curve is shown in Figure 5, the specific discharge capacity at different rates is shown in Figure 6, and the cycle capacity retention rate at a current density of 0.5C/1C is shown in Figure 7.
  • the first charge and discharge values of the positive electrode materials of Examples 5 to 10 and Comparative Example 1 and the 50-week cycle capacity retention rate at a current density of 0.5C/1C are shown in Table 1, and the specific discharge capacity at different rates is shown in Table 1. 2 shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种正极材料及其制备方法和应用,其通式为Li 1+aNi αCo βMn γAl νX μM λO 2- σF σ,其中0≤a≤0.1,0.75≤α<1,0≤β<0.2,0<γ<0.25,0<ν≤0.05,0<μ≤0.05,0≤λ≤0.05,0<σ≤0.1,且1+a+α+β+γ+ν+μ+λ=1,X为Nb或Ti,M选自Mg、Ti、Zr、Zn、Ca、B、Ce和Cr中的至少之一,所述正极材料具有α-NaFeO 2层状结构,归属R-3m空间群;该正极材料为单晶颗粒,可从根本上消除晶体内部的界面应力,使其成为高能量密度、长循环寿命的富有潜力正极材料之一;且该正极材料中具有阴离子和阳离子共同修饰,采用氟离子部分取代氧离子,且同时引入铝离子、铌离子或钛离子、M离子阳离子,进一步加强了材料中化学键的强度;经测试,该正极材料在大电流下的倍率数据具有优势,可以实现动力锂离子电池高的功率性能。

Description

正极材料及其制备方法和应用 技术领域
本发明属于锂离子电池技术领域,具体而言,本发明涉及正极材料及其制备方法和应用。
背景技术
近年来,电动汽车以及电动化出行在世界范围内引起了广泛的关注,各大主流车企以及上游动力电池供应商也相继在这方面进行了大量的投资与布局。在此浪潮下,电池技术获得了较快的发展。在中国大陆地区,在强有力的电动汽车补贴政策的刺激下,众多相关企业得以迅速成长与扩张,且以高能量密度的镍钴锰酸锂(LiNi aCo bMn (1-a-b)O 2,LNCM)锂离子电池为重要发展方向,俗称三元NCM锂电池以及相应的三元NCM正极材料。目前主流的三元NCM正极材料有LiNi 0.5Co 0.2Mn 0.3O 2(NCM523)、LiNi 0.6Co 0.2Mn 0.2O 2(NCM622)等。受制于市场对长续航里程的需求,目前三元NCM正极材料高镍化技术路线是达到更高能量密度三元NCM锂离子电池的必然选择。在此背景下,某些生产正极材料的企业已迅速展开LiNi 0.8Co 0.1Mn 0.1O 2(NCM811)实验室、中试乃至量产工艺的开发活动。然而,经过大量的试验评测以及装车实测,发现NCM811锂离子电池存在诸多问题,主要包括安全性较低、循环寿命较短等。导致这些问题的重要原因是NCM811正极材料在增加镍含量获得高比容量的同时,造成了材料晶体结构的不稳定性。鉴于此,研究人员进行了大量的优化及改性试验,如金属元素的掺杂、包覆等。如通过表面包覆以降低其在充放电循环过程中材料表面与电解液之间的副反应,从而提高其循环容量保持率;通过Al元素掺杂,借助Al-O化学键高强度的优点来提高其在充放电循环过程中的电化学稳定性。目前的研究主要集中在采取多种措施提高多晶颗粒的结构稳定性,不过现有多晶颗粒的正极材料仍然存在一次颗粒界面应力失控导致微裂纹产生的问题。
因此,现有正极材料仍有待进一步改进。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出一种正极材料及其制备方法和应用。该正极材料不存在晶体内部界面应力,安全性高,且具有较高的能量密度、循环寿命和倍率性能。
在本发明的一个方面,本发明提出了一种正极材料,根据本发明的实施例,所述正极材料的通式为Li 1+aNi αCo βMn γAl νX μM λO 2-σF σ,其中0≤a≤0.1,0.75≤α<1,0≤β<0.2,0<γ<0.25,0<ν≤0.05,0<μ≤0.05,0≤λ≤0.05,0<σ≤0.1,且1+a+α+β+γ+ν+μ+λ=2,X为Nb或Ti,M选自Mg、Ti、Zr、Zn、Ca、B、Ce和Cr中的至少之一,所述正极材料具有α-NaFeO 2层状结构,归属R-3m空间群。
根据本发明实施例的正极材料,该正极材料为单晶颗粒,可从根本上消除晶体内部的界面应力,使其成为高能量密度、长循环寿命的富有潜力正极材料之一;且该正极材料中具有阴离子和阳离子共同修饰,采用氟离子部分取代氧离子,且同时引入铝离子、铌离子或钛离子、M离子(选自Mg、Ti、Zr、Zn、Ca、B、Ce和Cr中的至少之一)阳离子,进一步加强了材料中化学键的强度,提高其安全性能。经测试,该正极材料在大电流下的倍率数据具有优势,可以实现动力锂离子电池高的功率性能。
进一步地,0.02≤a≤0.08,0.80≤α≤0.90,0.05≤β≤0.1,0.01≤γ≤0.0.05,0.01≤ν≤0.03,0.01≤μ≤0.03,0≤λ≤0.02,0.01≤σ≤0.05。
另外,根据本发明上述实施例的正极材料还可以具有如下附加的技术特征:
在本发明的一些实施例中,所述正极材料的粒径为0.5-14μm,优选2-10μm。
在本发明的再一个方面,本发明提出了一种制备上述正极材料的方法,根据本发明的实施例,该方法包括:将正极前驱体材料与锂盐混合研磨,以便得到第一混合物料;将所述第一混合物料置于煅烧气氛下进行第一煅烧,以便得到第一煅烧后物料;将所述第一煅烧后物料研磨后,与所述锂盐、氟离子修饰剂混合,以便得到第二混合物料;将所述第二混合物料置于所述煅烧气氛下进行第二煅烧,以便得到所述正极材料。
根据本发明实施例的制备正极材料的方法,整个工艺只通过混合、研磨和煅烧即可实现正极材料的制备,能够适应大规模的材料生产;且在制备过程中,可以根据正极前驱体材料不同,灵活选择阳离子和氟离子修饰剂,并可根据所选择的阳离子修饰剂和氟离子修饰剂的具体类型,调整煅烧工序,以得到单晶且同时具有阳离子和阴离子修饰的正极材料。
另外,根据本发明上述实施例的制备正极材料的方法还可以具有如下附加的技术特征:
在本发明的一些实施例中,所述正极前驱体材料为Ni αCo βMn γAl νX μM λ(OH) 2,其中0.75≤α<1,0≤β<0.2,0<γ<0.25,0<ν≤0.05,0<μ≤0.05,0≤λ≤0.05,X为Nb或Ti,M选自Mg、Ti、Zr、Zn、Ca、B、Ce和Cr中的至少之一。
进一步地,0.80≤α≤0.90,0.05≤β≤0.1,0.01≤γ≤0.0.05,0.01≤ν≤0.03,0.01≤μ≤0.03,0≤λ≤0.02。
在本发明的一些实施例中,所述锂盐选自LiOH·H 2O、Li 2CO 3、Li 3PO 4、Li 2HPO 4、LiH 2PO 4、LiNO 3、LiF中的至少之一。
在本发明的一些实施例中,所述煅烧气氛为含氧气和惰性气体的混合气氛。
在本发明的一些实施例中,所述第一煅烧的温度为750-950℃,时间为10-24h。
在本发明的一些实施例中,所述氟离子修饰剂选自LiF、NH 4F、AlF 3、TiF 4、TiF 3、MgF 2、ZrF 2中的至少之一。
在本发明的一些实施例中,所述第二煅烧的温度为700-900℃,时间为8-20h。
在本发明的一些实施例中,所述正极前驱体材料为Ni αCo βMn γAl ν(OH) 2,其中0.75≤α<1,0≤β<0.2,0<γ<0.25,0<ν≤0.05,优选地,0.80≤α≤0.90,0.05≤β≤0.1,0.01≤γ≤0.0.05,0.01≤ν≤0.03。
在本发明的一些实施例中,当正极前驱体材料为Ni αCo βMn γAl ν(OH) 2时,将第二混合物料置于煅烧气氛下进行第二煅烧以得到第二煅烧后物料,上述方法进一步包括:将所述第二煅烧后物料与铌离子修饰剂或钛离子修饰剂混合研磨,以便得到第三混合物料;将所述第三混合物置于所述煅烧气氛下进行第三煅烧,以便得到所述正极材料。
在本发明的一些实施例中,所述铌离子修饰剂选自LiNbO 3、Nb 2O 5、C 2H 6NbO、NbF 5中的至少之一。
在本发明的一些实施例中,所述钛离子修饰剂选自Ti{OCH(CH 3) 2} 4、TiO 2、TiF 4、Li 4Ti 5O 12中的至少之一。
在本发明的一些实施例中,所述第三煅烧的温度为500-900℃,时间为6-20h。
在本发明的又一个方面,本发明提出了一种锂离子电池,根据本发明的实施例,该锂离子电池具有上述正极材料或采用上述制备正极材料的方法制备得到的正极材料。根据本发明实施例的锂离子电池,因该电池具有上述正极材料,而该正极材料为单晶颗粒,可从根本上消除晶体内部的界面应力,使其成为高能量密度、长循环寿命的富有潜力正极材料之一;且该正极材料中具有阴离子和阳离子共同修饰,采用氟离子部分取代氧离子,且同时引入铝离子、铌离子或钛离子、M离子(选自Mg、Ti、Zr、Zn、Ca、B、Ce和Cr中的至少之一)阳离子,进一步加强了材料中化学键的强度,提高其安全性能。经测试,该正极材料在大电流下的倍率数据具有优势,可以实现动力锂离子电池高的功率性能。
在本发明的第四个方面,本发明提出了一种汽车,根据本发明的实施例,该汽车具有上述锂离子电池。根据本发明实施例的汽车,因该汽车具有上述含有正极材料的锂离子电池,在该正极材料的高能量密度、长循环寿命、强化学键的性能下,使得锂离子电池在大电流下的倍率数据具有优势,具有高的功率性能,且安全性较高,进而使得该汽车可安全实现长续航里程的目的。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明一个实施例的制备单晶正极材料的方法流程示意图;
图2是根据本发明再一个实施例的制备单晶正极材料的方法流程示意图;
图3是实施例1所得正极材料的SEM图;
图4是实施例1-4所得正极材料的X射线衍射图谱;
图5是采用实施例1-4所得正极材料制备的扣式电池的首次充放电曲线;
图6是实施例1-4所得的正极材料在不同倍率下的放电比容量;
图7是实施例1-4所得的正极材料在0.5C/1C的电流密度下的循环容量保持率;
图8是实施例2所得正极材料的SEM图;
图9是实施例3所得正极材料的SEM图;
图10是实施例4所得正极材料的SEM图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
在本发明的一个方面,本发明提出了一种正极材料,根据本发明的实施例,该正极材料的通式为Li 1+aNi αCo βMn γAl νX μM λO 2-σF σ,其中0≤a≤0.1,0.75≤α<1,0≤β<0.2,0<γ<0.25,0<ν≤0.05,0<μ≤0.05,0≤λ≤0.05,0<σ≤0.1,且1+a+α+β+γ+ν+μ+λ=2,X为Nb或Ti,M选自Mg、Ti、Zr、Zn、Ca、B、Ce和Cr中的至少之一,正极材料具有α-NaFeO 2层状结构,归属R-3m空间群。发明人发现,该正极材料为单晶颗粒,可从根本上消除晶体内部的界面应力,使其成为高能量密度、长循环寿命的富有潜力正极材料之一;且该正极材料中具有阴离子和阳离子共同修饰,采用氟离子部分取代氧离子,且同时引入铝离子、铌离子或钛离子、M离子(选自Mg、Ti、Zr、Zn、Ca、B、Ce和Cr中的至少之一)阳离子,进一步加强了材料中化学键的强度,提高其安全性能。
优选地,上述0.02≤a≤0.08,0.80≤α≤0.90,0.05≤β≤0.1,0.01≤γ≤0.0.05,0.01≤ν≤0.03,0.01≤μ≤0.03,0≤λ≤0.02,0.01≤σ≤0.05。
进一步的,a可以为0/0.02/0.04/0.06/0.08/0.1,α可以为0.75/0.80/0.85/0.90/0.95/0.99,β可以为0/0.05/0.1/0.15/0.19,γ可以为0.01/0.05/0.10/0.15/0.20/0.24,ν可以为0.01/0.02/0.0.3/0.04/0.05,μ可以为0.01/0.02/0.03/0.04/0.05,λ可以为0/0.01/0.02/0.03/0.04/0.05,σ可以为0.02/0.04/0.06/0.08/0.1,且1+a+α+β+γ+ν+μ+λ=2。发明人发现,a的数值可能影响锂离子嵌入、嵌出的数量;α、β、γ则可能影响正极材料的电化学活性及其结构的稳定性;ν、μ、λ、σ可能影响材料晶体结构的稳定性,a、α、β、γ、ν、μ、λ、σ采用本申请中的相应范围,可使得正极材料具有较优的电化学活性,且晶体结构稳定,同时不会影响锂离子嵌入和嵌出。 进一步的,正极材料的粒径可以为0.5-14μm,如可以为0.5/2/4/6/8/10/12/14μm,优选2-10μm。发明人发现,正极材料的粒径过大过小均可能影响正极材料的比表面积、压实密度、倍率性能、以及电池的直流电阻。
根据本发明实施例的正极材料,该正极材料为单晶颗粒,可从根本上消除晶体内部的界面应力,使其成为高能量密度、长循环寿命的富有潜力正极材料之一;且该正极材料中具有阴离子和阳离子共同修饰,采用氟离子部分取代氧离子,且同时引入铝离子、铌离子或钛离子、M离子(选自Mg、Ti、Zr、Zn、Ca、B、Ce和Cr中的至少之一)阳离子,进一步加强了材料中化学键的强度,提高其安全性能。经测试,该正极材料在大电流下的倍率数据具有优势,可以实现动力锂离子电池高的功率性能。
在本发明的再一个方面,本发明提出了一种制备上述正极材料的方法,根据本发明的实施例,参考图1,该方法包括:
S100:将正极前驱体材料与锂盐混合研磨,以得到第一混合物料;
该步骤中,将正极前驱体材料与锂盐混合研磨,以便得到第一混合物料。通过混合研磨可使正极前驱体材料与锂盐混合更加充分且均匀。根据本发明的一个实施例,正极前驱体材料的具体类型并不受特别限制,本领域技术人员可以根据实际需要进行选择,如可以为Ni αCo βMn γAl νX μM λ(OH) 2,其中0.75≤α<1,0≤β<0.2,0<γ<0.25,0<ν≤0.05,0<μ≤0.05,0≤λ≤0.05,X为Nb或Ti,M选自Mg、Ti、Zr、Zn、Ca、B、Ce和Cr中的至少之一;优选地,0.80≤α≤0.90,0.05≤β≤0.1,0.01≤γ≤0.0.05,0.01≤ν≤0.03,0.01≤μ≤0.03,0≤λ≤0.02,也可以为Ni αCo βMn γAl ν(OH) 2,其中0.75≤α<1,0≤β<0.2,0<γ<0.25,0<ν≤0.05,优选地,0.80≤α≤0.90,0.05≤β≤0.1,0.01≤γ≤0.0.05,0.01≤ν≤0.03。发明人发现,可以根据正极前驱体材料、氟离子修饰剂和阳离子修饰剂等的具体类型选择相应的制备工艺,使得该制备方法灵活度高,适应性强,适合放大规模生产。根据本发明的再一个实施例,锂盐的具体类别也不受特别限制,本领域技术人员也可以根据实际需要进行选择,如可以选自LiOH·H 2O、Li 2CO 3、Li 3PO 4、Li 2HPO 4、LiH 2PO 4、LiNO 3、LiF中的至少之一。根据本发明的又一个实施例,正极前驱体材料与锂盐的质量比也不受特别限制,本领域技术人员可以根据所需制备的正极材料的通式进行选择。需要说明的是,正极前驱体材料与锂盐的质量比过高过低都会直接影响到正极材料中的锂、过渡金属的组成及含量。
S200:将第一混合物料置于煅烧气氛下进行第一煅烧,以得到第一煅烧后物料;
该步骤中,将第一混合物料置于煅烧气氛下进行第一煅烧,以便得到第一煅烧后物料。发明人发现,将包含有正极前驱体材料和锂盐的第一混合物料进行第一煅烧是可得到预期的晶体结构,使得第一煅烧后物料具有合适的层状结构、可控的晶体缺陷、较低的锂镍混排程度。根据本发明的一个实施例,煅烧气氛的具体类别并不受特别限制,本领域技术人员可以根据实际需要进行选择,如可以为含氧气和惰性气体的混合气氛。进一步的,煅烧气氛中氧气与惰性气体的体积比并不受特别限制,如可以为纯氧气气氛,也可以为纯惰性气体气氛,如为纯氮气或纯氩气气氛,也可以是氧气和惰性气体以任意体积比混合的混合气氛。发明人发现,煅烧气氛中氧含量的作用是调控正极前驱体材料与锂盐在煅烧过程中过渡金属离子的 价态,以及可能影响正极材料颗粒的形貌,氧含量越高可能有利于正极材料晶体结构的形成,但可能对颗粒单晶化有一定的不好影响。根据本发明的再一个实施例,第一煅烧的具体条件也不受特别限制,本领域技术人员可以根据实际需要进行选择,如第一煅烧的温度可以为750-950℃,如可以为750/800/850/900/950℃,时间可以为10-24h,如可以为10/12/14/16/18/20/22/24h。发明人发现,第一煅烧的温度是影响正极前驱体材料与锂盐发生固相反应的重要因素。温度不是越高或者越低就越好,时间也不是越长或者越短就越好。但是第一煅烧的温度和时间可以进行一定的组合,例如较高的第一煅烧温度+较短的煅烧时间或较低的第一煅烧温度+较长的煅烧时间。且为了确保正极前驱体材料中各金属元素都能够进入到正极材料的晶体结构位点中,减少杂相、杂晶的形成,当正极前驱体材料选择不同时,煅烧的条件需要调整,如当正极前驱体材料为Ni αCo βMn γAl ν(OH) 2时,可以有三次煅烧,而当正极前驱体材料为Ni αCo βMn γAl νX μM λ(OH) 2时,存在两次煅烧。
S300:将第一煅烧后物料研磨后,与锂盐、氟离子修饰剂混合,以得到第二混合物料;
该步骤中,将第一煅烧后物料研磨后,与锂盐、氟离子修饰剂混合,以便得到第二混合物料。由此,有利于将第一煅烧后物料与锂盐、氟离子修饰剂混合均匀。根据本发明的一个实施例,锂盐和氟离子修饰剂的具体类型并不受特别限制,本领域技术人员可以根据实际需要进行选择,如锂盐可以选自LiOH·H 2O、Li 2CO 3、Li 3PO 4、Li 2HPO 4、LiH 2PO 4、LiNO 3、LiF中的至少之一,氟离子修饰剂可以选自LiF、NH 4F、AlF 3、TiF 4、TiF 3、MgF 2、ZrF 2中的至少之一。需要说明的是,步骤S300和S100中锂盐的具体类型可以一致也可以不一致,本领域技术人员可以根据实际需要进行选择。进一步的,第一煅烧后物料与锂盐、氟离子修饰剂的质量比也不受特别限制,本领域技术人员可以根据实际需要进行选择,如可以根据最终所需正极材料的通式进行选择。发明人发现,不同的质量比是为了达到正极材料通式中相应元素的含量范围的要求。各元素的含量因该元素所起到的电化学或者化学、物理化学作用而设定。例如,氟离子是为了增强正极材料的结构稳定性,而含量过高则会导致产生更多的氧缺陷位,含量很低时所起到的稳定作用则有限。
S400:将第二混合物料置于煅烧气氛下进行第二煅烧,以得到所述正极材料
该步骤中,将第二混合物料置于煅烧气氛下进行第二煅烧,当正极前驱体材料为Ni αCo βMn γAl νX μM λ(OH) 2时,可以得到正极材料。发明人发现,此处的煅烧机理是进行锂离子在正极材料中的含量或者分布优化、以及氟离子进入晶体结构以及替代氧离子,且在第二煅烧过程中,采用不同正极前驱体材料的影响并不显著。根据本发明的一个实施例,第二煅烧的具体条件并不受特别限制,本领域技术人员可以根据实际需要进行选择,如第二煅烧的温度可以为700-900℃,如可以为700/750/800/850/900℃,时间可以为8-20h,如可以为8/12/16/20h。发明人发现,第二煅烧温度的高低、时间的长短取决于锂盐和掺杂剂的性质,如粒径大小、熔点高低等。温度太高、时间太长可能影响材料晶体结构;温度过低、时间过短则可能达不到使锂离子或者氟离子进入晶格所需要的推动力。根据本发明的再一个实施例,该煅烧气氛的具体类别并不受特别限制,本领域技术人员可以根据实际需要进行选择,如可以为含氧气和惰性气体的混合气氛。进一步的,煅烧气氛中氧气与惰性气体的体积比并不受 特别限制,如可以为纯氧气气氛,也可以为纯惰性气体气氛,如为纯氮气或纯氩气气氛,也可以是氧气和惰性气体以任意体积比混合的混合气氛。发明人发现,煅烧气氛中氧含量的作用是调控第二混合物料在煅烧过程中过渡金属离子的价态,以及可能影响正极材料颗粒的形貌,氧含量越高可能有利于正极材料晶体结构的形成,但可能对颗粒单晶化有一定的不好影响。需要说明的是,第二煅烧时的煅烧气氛可以与第一煅烧时一致,也可以不一致,本领域技术人员可以根据实际需要进行选择。
根据本发明的实施例,参考图2,当正极前驱体材料为Ni αCo βMn γAl ν(OH) 2时,将第二混合物料置于煅烧气氛下进行第二煅烧以得到第二煅烧后物料,上述制备正极材料的方法进一步包括:
S500:将第二煅烧后物料与铌离子修饰剂或钛离子修饰剂混合研磨,以便得到第三混合物料;
该步骤中,将第二煅烧后物料与铌离子修饰剂或钛离子修饰剂混合研磨,以便得到第三混合物料。发明人发现,通过将第二煅烧后物料与铌离子修饰剂或钛离子修饰剂混合研磨有利于让这些物料充分混合均匀,利于下一步煅烧过程中铌离子或者钛离子进入到晶体结构中过渡金属阳离子的位点上。根据本发明的一个实施例,铌离子修饰剂或钛离子修饰剂的具体类型并不受特别限制,本领域技术人员可以根据实际需要进行选择,如铌离子修饰剂可以选自LiNbO 3、Nb 2O 5、C 2H 6NbO、NbF 5中的至少之一;钛离子修饰剂可以选自Ti{OCH(CH 3) 2} 4、TiO 2、TiF 4、Li 4Ti 5O 12中的至少之一。进一步的,第二煅烧后物料与铌离子修饰剂或钛离子修饰剂的质量比也不受特别限制,本领域技术人员可以根据实际需要进行选择,如可以根据所需正极材料的通式进行确定。发明人发现,不同的质量比是为了达到通式中相应元素的含量范围要求。元素含量是因该元素所起到的电化学或者化学、物理化学作用而设定的。例如,铌离子或者钛离子是为了增强正极材料的结构稳定性、抑制镍离子进入锂层的锂位点中,而含量过高则可能导致正极材料电化学活性降低,含量很低时所起到的稳定作用则有限。
S600:将第三混合物置于煅烧气氛下进行第三煅烧,以便得到所述正极材料。
该步骤中,将第三混合物置于煅烧气氛下进行第三煅烧,以便得到正极材料。发明人发现,第三煅烧可以提供钛离子或者铌离子迁移到晶体结构中过渡金属离子位点上的反应条件,使钛离子或者铌离子能够最大限度地、均匀地扩散到晶体体相中。根据本发明的一个实施例,煅烧气氛的具体类别并不受特别限制,本领域技术人员可以根据实际需要进行选择,如可以为含氧气和惰性气体的混合气氛。进一步的,煅烧气氛中氧气与惰性气体的体积比并不受特别限制,如可以为纯氧气气氛,也可以为纯惰性气体气氛,如为纯氮气或纯氩气气氛,也可以是氧气和惰性气体以任意体积比混合的混合气氛。发明人发现,煅烧气氛有助于高温固相反应中离子的迁移,帮忙钛离子或者铌离子迁移到晶体结构中过渡金属离子的位点上,同时煅烧气氛与煅烧温度是协同作用,但煅烧温度起到的作用更加重要一些。需要说明的是,第三煅烧时的煅烧气氛可以与第一煅烧和/或第二煅烧时的一致,也可以不一致,本领域技术人员可以根据实际需要进行选择。根据本发明的再一个实施例,第三煅烧的具体条件也不受特别限制,本领域技术人员可以根据实际需要进行选择,如第三煅烧的温度可以为500-900℃, 如可以为500/600/700/800/900℃,时间可以为6-20h,如可以为6/8/10/12/14/16/18/20h。发明人发现,温度过高、时间过长可能导致原本晶体中的过渡金属离子发生迁移、阳离子重排,影响晶体结构,也可能导致单晶颗粒再次生长以及颗粒表面局部粉化;温度过低或时间不足则可能导致钛离子或者铌离子不能进入颗粒内部,不能很好地在体相中均匀分布。
根据本发明实施例的制备正极材料的方法,整个工艺只通过混合、研磨和煅烧即可实现正极材料的制备,能够适应大规模的材料生产;且在制备过程中,可以根据正极前驱体材料不同,灵活选择阳离子和氟离子修饰剂,并可根据所选择的阳离子修饰剂和氟离子修饰剂的具体类型,调整煅烧工序,以得到单晶且同时具有阳离子和阴离子修饰的正极材料。
在本发明的又一个方面,本发明提出了一种锂离子电池,根据本发明的实施例,该锂离子电池具有上述正极材料或采用上述制备正极材料的方法制备得到的正极材料。根据本发明实施例的锂离子电池,因该电池具有上述正极材料,而该正极材料为单晶颗粒,可从根本上消除晶体内部的界面应力,使其成为高能量密度、长循环寿命的富有潜力正极材料之一;且该正极材料中具有阴离子和阳离子共同修饰,采用氟离子部分取代氧离子,且同时引入铝离子、铌离子或钛离子、M离子(选自Mg、Ti、Zr、Zn、Ca、B、Ce和Cr中的至少之一)阳离子,进一步加强了材料中化学键的强度。经测试,该正极材料在大电流下的倍率数据具有优势,可以实现动力锂离子电池高的功率性能。
在本发明的第四个方面,本发明提出了一种汽车,根据本发明的实施例,该汽车具有上述锂离子电池。根据本发明实施例的汽车,因该汽车具有上述含有正极材料的锂离子电池,在该正极材料的高能量密度、长循环寿命、强化学键的性能下,使得锂离子电池在大电流下的倍率数据具有优势,具有高的功率性能,且安全性较高,进而使得该汽车可安全实现长续航里程的目的。
下面参考具体实施例,对本发明进行描述,需要说明的是,这些实施例仅仅是描述性的,而不以任何方式限制本发明。
以下实施例和对比例中,各正极材料的首次充放电、放电比容量以及循环容量保持率的测试方法如下:首次充放电的测试制度为电压窗口为3.0-4.3V、充放电倍率为0.1C;循环保持率测试充电为0.5C、放电为1C,电压窗口为3.0-4.3V。
实施例1
1mol的Ni 0.88Co 0.06Mn 0.03Al 0.02Nb 0.01(OH) 2与0.6mol的LiOH·H 2O置于研磨中充分研磨混合,得到第一混和物料;随后将该第一混和物料置于950℃、纯氧气气氛的煅烧炉煅烧24h,得到第一煅烧后物料;然后将该第一煅烧后物料研磨后与0.4mol的LiOH·H 2O、0.05mol的LiF置于研磨中充分混合,得到第二混合物料;随后将该第二混合物料置于760℃、纯氧气气氛的煅烧炉煅烧15h,得到Li 1.05Ni 0.88Co 0.06Mn 0.03Al 0.02Nb 0.01O 1.95F 0.05正极材料,其SEM图如图3所示,X射线衍射图谱如图4所示,首次充放电曲线如图5所示,在不同倍率下的放电比容量如图6所示,在0.5C/1C的电流密度下的循环容量保持率如图7所示。
实施例2
1mol的Ni 0.88Co 0.06Mn 0.03Al 0.02Ti 0.01(OH) 2与0.6mol的LiOH·H 2O置于研磨中充分研磨混合,得到第一混和物料;随后将该第一混和物料置于850℃、纯氮气气氛的煅烧炉煅烧10h,得到第一煅烧后物料;然后将该第一煅烧后物料研磨后与0.4mol的LiOH·H 2O、0.05mol的LiF置于研磨中充分混合,得到第二混合物料;随后将该第二混合物料置于700℃、纯氮气气氛的煅烧炉煅烧20h,得到Li 1.05Ni 0.88Co 0.06Mn 0.03Al 0.02Ti 0.01O 1.95F 0.05正极材料,其SEM图如图8所示,X射线衍射图谱如图4所示,首次充放电曲线如图5所示,在不同倍率下的放电比容量如图6所示,在0.5C/1C的电流密度下的循环容量保持率如图7所示。
实施例3
1mol的Ni 0.88Co 0.06Mn 0.03Al 0.02(OH) 2与0.6mol的LiOH·H 2O置于研磨中充分研磨混合,得到第一混和物料;随后将该第一混和物料置于900℃、纯氧气气氛的煅烧炉煅烧18h,得到第一煅烧后物料;然后将该第一煅烧后物料研磨后与0.39mol的LiOH·H 2O、0.05mol的LiF置于研磨中充分混合,得到第二混合物料;随后将该第二混合物料置于900℃、纯氧气气氛的煅烧炉煅烧8h,煅烧后与0.01mol的LiNbO 3充分混合研磨,以便得到第三混合物料;将该第三混合物置于810℃、纯氧气气氛下煅烧16h,得到Li 1.05Ni 0.88Co 0.06Mn 0.03Al 0.02Nb 0.01O 1.95F 0.05正极材料,其SEM图如图9所示,X射线衍射图谱如图4所示,首次充放电曲线如图5所示,在不同倍率下的放电比容量如图6所示,在0.5C/1C的电流密度下的循环容量保持率如图7所示。
实施例4
1mol的Ni 0.88Co 0.06Mn 0.03Al 0.02(OH) 2与0.6mol的LiOH·H 2O置于研磨中充分研磨混合,得到第一混和物料;随后将该第一混和物料置于950℃、纯氧气气氛的煅烧炉煅烧24h,得到第一煅烧后物料;然后将该第一煅烧后物料研磨后与0.4mol的LiOH·H 2O、0.05mol的LiF置于研磨中充分混合,得到第二混合物料;随后将该第二混合物料置于760℃、纯氧气气氛的煅烧炉煅烧15h,煅烧后与0.01mol的Ti{OCH(CH 3) 2} 4充分混合研磨,以便得到第三混合物料;将该第三混合物置于800℃、纯氧气气氛下煅烧14h,得到Li 1.05Ni 0.88Co 0.06Mn 0.03Al 0.02Ti 0.01O 1.95F 0.05正极材料,其SEM图如图10所示,X射线衍射图谱如图4所示,首次充放电曲线如图5所示,在不同倍率下的放电比容量如图6所示,在0.5C/1C的电流密度下的循环容量保持率如图7所示。
结论:由图3、8、9、10可知,实施例1-4得到的正极材料均为单晶颗粒,无多晶颗粒存在;由图4可知,实施例1-4得到的正极材料均形成了α-NaFeO 2层状结构,归属R-3m空间群,且没有其它杂晶形成;由图5可知,将实施例1-4所得的正极材料制备成扣式电池,其放电比容量均大于200mAh/g,首次库伦效率均大于86%;由图6可知,实施例1-4所得的正极材料均具有良好的大电流密度的充/放电性能,其中1C倍率对应的最高放电比容量达到189mAh/g;由图7可知,实施例1-4所得的正极材料在0.5C/1C的电流密度下的循环容量保持率经过50个充/放循环后,容量保持率最高达到88%。
实施例5
1mol的Ni 0.88Co 0.06Mn 0.03Al 0.02Nb 0.01(OH) 2与0.6mol的LiOH·H 2O置于研磨中充分研磨混合,得到第一混和物料;随后将该第一混和物料置于950℃、纯氧气气氛的煅烧炉煅烧24h,得到第一煅烧后物料;然后将该第一煅烧后物料研磨后与0.4mol的LiOH·H 2O、0.01mol的LiF置于研磨中充分混合,得到第二混合物料;随后将该第二混合物料置于760℃、纯氧气气氛的煅烧炉煅烧15h,得到Li 1.05Ni 0.88Co 0.06Mn 0.03Al 0.02Nb 0.01O 1.99F 0.01正极材料。
实施例6
1mol的Ni 0.88Co 0.06Mn 0.03Al 0.02Nb 0.01(OH) 2与0.6mol的LiOH·H 2O置于研磨中充分研磨混合,得到第一混和物料;随后将该第一混和物料置于950℃、纯氧气气氛的煅烧炉煅烧24h,得到第一煅烧后物料;然后将该第一煅烧后物料研磨后与0.4mol的LiOH·H 2O、0.05mol的NH 4F置于研磨中充分混合,得到第二混合物料;随后将该第二混合物料置于760℃、纯氧气气氛的煅烧炉煅烧15h,得到Li 1.00Ni 0.88Co 0.06Mn 0.03Al 0.02Nb 0.01O 1.95F 0.05正极材料。
实施例7
1mol的Ni 0.88Co 0.06Mn 0.03Al 0.02Nb 0.01(OH) 2与0.6mol的LiOH·H 2O置于研磨中充分研磨混合,得到第一混和物料;随后将该第一混和物料置于950℃、纯氧气气氛的煅烧炉煅烧24h,得到第一煅烧后物料;然后将该第一煅烧后物料研磨后与0.4mol的LiOH·H 2O、0.01mol的AlF 3置于研磨中充分混合,得到第二混合物料;随后将该第二混合物料置于760℃、纯氧气气氛的煅烧炉煅烧15h,得到Li 1.00Ni 0.88Co 0.06Mn 0.03Al 0.03Nb 0.01O 1.97F 0.03正极材料。
实施例8
1mol的Ni 0.88Co 0.06Mn 0.03Al 0.02Nb 0.01(OH) 2与0.6mol的LiOH·H 2O置于研磨中充分研磨混合,得到第一混和物料;随后将该第一混和物料置于950℃、纯氧气气氛的煅烧炉煅烧24h,得到第一煅烧后物料;然后将该第一煅烧后物料研磨后与0.15mol的Li 3PO 4、0.05mol的LiF置于研磨中充分混合,得到第二混合物料;随后将该第二混合物料置于760℃、纯氧气气氛的煅烧炉煅烧15h,得到Li 1.05Ni 0.88Co 0.06Mn 0.03Al 0.02Nb 0.01O 1.95F 0.05正极材料。
实施例9
1mol的Ni 0.88Co 0.06Mn 0.03Al 0.02(OH) 2与0.6mol的LiOH·H 2O置于研磨中充分研磨混合,得到第一混和物料;随后将该第一混和物料置于950℃、纯氧气气氛的煅烧炉煅烧24h,得到第一煅烧后物料;然后将该第一煅烧后物料研磨后与0.4mol的LiOH·H 2O、0.05mol的LiF置于研磨中充分混合,得到第二混合物料;随后将该第二混合物料置于760℃、纯氧气气氛的煅烧炉煅烧15h,煅烧后与0.01mol的Ti{OCH(CH 3) 2} 4充分混合研磨,以便得到第三混合物料;将该第三混合物置于500℃、纯氧气气氛下煅烧20h,得到Li 1.05Ni 0.88Co 0.06Mn 0.03Al 0.02Ti 0.01O 1.95F 0.05正极材料。
实施例10
1mol的Ni 0.88Co 0.06Mn 0.03Al 0.02(OH) 2与0.6mol的LiOH·H 2O置于研磨中充分研磨混合,得到第一混和物料;随后将该第一混和物料置于950℃、纯氧气气氛的煅烧炉煅烧24h,得到第一煅烧后物料;然后将该第一煅烧后物料研磨后与0.4mol的LiOH·H 2O、0.05mol的LiF置于研磨中充分混合,得到第二混合物料;随后将该第二混合物料置于760℃、纯氧气气氛的煅烧炉煅烧15h,煅烧后与0.01mol的Ti{OCH(CH 3) 2} 4充分混合研磨,以便得到第三混合物料;将该第三混合物置于900℃、纯氧气气氛下煅烧6h,得到Li 1.05Ni 0.88Co 0.06Mn 0.03Al 0.02Ti 0.01O 1.95F 0.05正极材料。
对比例1
1mol的Ni 0.88Co 0.06Mn 0.03Al 0.02Nb 0.01(OH) 2与0.6mol的LiOH·H 2O置于研磨中充分研磨混合,得到第一混和物料;随后将该第一混和物料置于950℃、纯氧气气氛的煅烧炉煅烧24h,得到第一煅烧后物料;然后将该第一煅烧后物料研磨后与0.45mol的LiOH·H 2O置于研磨中充分混合,得到第二混合物料;随后将该第二混合物料置于760℃、纯氧气气氛的煅烧炉煅烧15h,得到Li 1.05Ni 0.88Co 0.06Mn 0.03Al 0.02Nb 0.01O 2正极材料。
实施例5至10以及对比例1的正极材料的首次充放电数值和在0.5C/1C的电流密度下的50周循环容量保持率如表1所示,在不同倍率下的放电比容量如表2所示。
表1
  首次充电比容量mAh/g 首次放电比容量mAh/g 50周循环容量保持率
对比例1 193.1 160.0 82.9%
实施例5 196.2 163.3 83.2%
实施例6 203.7 171.5 84.1%
实施例7 201.0 173.9 86.5%
实施例8 204.5 179.1 87.5%
实施例9 203.6 181.9 89.3%
实施例10 202.9 181.4 89.4%
表2
Figure PCTCN2020132903-appb-000001
Figure PCTCN2020132903-appb-000002
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (12)

  1. 一种正极材料,其特征在于,其通式为Li 1+aNi αCo βMn γAl νX μM λO 2-σF σ,其中0≤a≤0.1,0.75≤α<1,0≤β<0.2,0<γ<0.25,0<ν≤0.05,0<μ≤0.05,0≤λ≤0.05,0<σ≤0.1,且1+a+α+β+γ+ν+μ+λ=2,X为Nb或Ti,M选自Mg、Ti、Zr、Zn、Ca、B、Ce和Cr中的至少之一,所述正极材料具有α-NaFeO 2层状结构,归属R-3m空间群。
  2. 根据权利要求1所述的正极材料,其特征在于,0≤a≤0.08,0.80≤α≤0.90,0.05≤β≤0.1,0.01≤γ≤0.0.05,0.01≤ν≤0.03,0.01≤μ≤0.03,0≤λ≤0.02,0.01≤σ≤0.05。
  3. 根据权利要求1所述的正极材料,其特征在于,所述正极材料的粒径为0.5-14μm,优选2-10μm。
  4. 根据权利要求1所述的正极材料,其特征在于,所述正极材料具有单晶结构。
  5. 一种制备权利要求1至4中任一项所述的正极材料的方法,其特征在于,包括:
    将正极前驱体材料与锂盐混合研磨,以得到第一混合物料;
    将所述第一混合物料置于煅烧气氛下进行第一煅烧,以得到第一煅烧后物料;
    将所述第一煅烧后物料研磨后,与所述锂盐、氟离子修饰剂混合,以得到第二混合物料;
    将所述第二混合物料置于所述煅烧气氛下进行第二煅烧,以得到所述正极材料。
  6. 根据权利要求5所述的方法,其特征在于,所述正极前驱体材料为Ni αCo βMn γAl νX μM λ(OH) 2,其中0.75≤α<1,0≤β<0.2,0<γ<0.25,0<ν≤0.05,0<μ≤0.05,0≤λ≤0.05,X为Nb或Ti,M选自Mg、Ti、Zr、Zn、Ca、B、Ce和Cr中的至少之一;
    优选地,0.80≤α≤0.90,0.05≤β≤0.1,0.01≤γ≤0.0.05,0.01≤ν≤0.03,0.01≤μ≤0.03,0≤λ≤0.02,
    优选地,所述锂盐选自LiOH·H 2O、Li 2CO 3、Li 3PO 4、Li 2HPO 4、LiH 2PO 4、LiNO 3、LiF中的至少之一。
  7. 根据权利要求5所述的方法,其特征在于,所述煅烧气氛为含氧气和惰性气体的混合气氛;
    优选地,所述第一煅烧的温度为750-950℃,时间为10-24h。
  8. 根据权利要求5所述的方法,其特征在于,所述氟离子修饰剂选自LiF、NH 4F、AlF 3、TiF 4、TiF 3、MgF 2、ZrF 2中的至少之一;
    优选地,所述第二煅烧的温度为700-900℃,时间为8-20h。
  9. 根据权利要求5所述的方法,其特征在于,所述正极前驱体材料为Ni αCo βMn γAl ν(OH) 2,其中0.75≤α<1,0≤β<0.2,0<γ<0.25,0<ν≤0.05,优选地,0.80≤α≤0.90,0.05≤β≤0.1,0.01≤γ≤0.0.05,0.01≤ν≤0.03。
  10. 根据权利要求5所述的方法,其特征在于,当正极前驱体材料为Ni αCo βMn γAl ν(OH) 2时,将所述第二混合物料置于所述煅烧气氛下进行第二煅烧以得到第二煅烧后物料,所述方法进一步包括:
    将所述第二煅烧后物料与铌离子修饰剂或钛离子修饰剂混合研磨,以便得到第三混合物料;
    将所述第三混合物置于所述煅烧气氛下进行第三煅烧,以便得到所述正极材料;
    优选地,所述铌离子修饰剂选自LiNbO 3、Nb 2O 5、C 2H 6NbO、NbF 5中的至少之一;
    优选地,所述钛离子修饰剂选自Ti{OCH(CH 3) 2} 4、TiO 2、TiF 4、Li 4Ti 5O 12中的至少之一;
    优选地,所述第三煅烧的温度为500-900℃,优选为800~810℃,时间为6-20h。
  11. 一种锂离子电池,其特征在于,所述锂离子电池具有权利要求1至4中任一项所述的正极材料或具有采用权利要求5-10中任一项所述的制备正极材料的方法制备得到的正极材料。
  12. 一种汽车,其特征在于,所述汽车具有权利要求11所述的锂离子电池。
PCT/CN2020/132903 2019-12-26 2020-11-30 正极材料及其制备方法和应用 WO2021129319A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20905523.5A EP4044288A4 (en) 2019-12-26 2020-11-30 POSITIVE ELECTRODE MATERIAL, PRODUCTION METHOD THEREOF AND USE THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911366282.6 2019-12-26
CN201911366282.6A CN111435739B (zh) 2019-12-26 2019-12-26 正极材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021129319A1 true WO2021129319A1 (zh) 2021-07-01

Family

ID=71580979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132903 WO2021129319A1 (zh) 2019-12-26 2020-11-30 正极材料及其制备方法和应用

Country Status (3)

Country Link
EP (1) EP4044288A4 (zh)
CN (1) CN111435739B (zh)
WO (1) WO2021129319A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116477665A (zh) * 2022-01-17 2023-07-25 复旦大学 一种锰酸锂正极材料及其制备方法和锂离子电池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435739B (zh) * 2019-12-26 2024-04-30 蜂巢能源科技有限公司 正极材料及其制备方法和应用
CN111969200B (zh) * 2020-08-28 2022-11-04 巴斯夫杉杉电池材料有限公司 一种高容量、长循环镍钴锰三元正极材料及其制备方法
KR102580743B1 (ko) * 2020-12-21 2023-09-19 포스코홀딩스 주식회사 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR102580745B1 (ko) * 2020-12-21 2023-09-19 포스코홀딩스 주식회사 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR102580744B1 (ko) * 2020-12-21 2023-09-19 포스코홀딩스 주식회사 양극 활물질 및 이를 포함하는 리튬 이차 전지
CN113003615A (zh) * 2021-02-10 2021-06-22 中国科学院宁波材料技术与工程研究所 一种高熵正极材料及其制备方法和应用
CN116525814B (zh) * 2023-06-29 2023-11-28 宁波容百新能源科技股份有限公司 正极材料及其制备方法、正极极片和钠离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104136376A (zh) * 2011-12-20 2014-11-05 住友金属矿山株式会社 镍复合氢氧化物及其制造方法、非水系电解质二次电池用正极活性物质及其制造方法以及非水系电解质二次电池
CN107180963A (zh) * 2017-06-21 2017-09-19 四川科能锂电有限公司 一种镍钴锰酸锂材料及其制备方法
CN107528056A (zh) * 2017-08-28 2017-12-29 四川富骅新能源科技有限公司 正极材料及其制备方法、锂离子电池
CN111435739A (zh) * 2019-12-26 2020-07-21 蜂巢能源科技有限公司 正极材料及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094523A (zh) * 2013-01-17 2013-05-08 东莞新能源科技有限公司 一种锂离子电池正极材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104136376A (zh) * 2011-12-20 2014-11-05 住友金属矿山株式会社 镍复合氢氧化物及其制造方法、非水系电解质二次电池用正极活性物质及其制造方法以及非水系电解质二次电池
CN107180963A (zh) * 2017-06-21 2017-09-19 四川科能锂电有限公司 一种镍钴锰酸锂材料及其制备方法
CN107528056A (zh) * 2017-08-28 2017-12-29 四川富骅新能源科技有限公司 正极材料及其制备方法、锂离子电池
CN111435739A (zh) * 2019-12-26 2020-07-21 蜂巢能源科技有限公司 正极材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GU HAIDONG, LIU TINGRUI, LIU TINGTING, ZHOU YUYANG, XU MING, CHEN FENG: "Improving the electrochemical properties of Mn-rich Li1.20[Mn0.54Ni0.13Co0.13]O2 by Nb and F co-doping", SOLID STATE IONICS, vol. 336, 1 August 2019 (2019-08-01), NL, pages 129 - 138, XP055824792, ISSN: 0167-2738, DOI: 10.1016/j.ssi.2019.03.018 *
See also references of EP4044288A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116477665A (zh) * 2022-01-17 2023-07-25 复旦大学 一种锰酸锂正极材料及其制备方法和锂离子电池

Also Published As

Publication number Publication date
CN111435739A (zh) 2020-07-21
EP4044288A1 (en) 2022-08-17
EP4044288A4 (en) 2024-01-03
CN111435739B (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
WO2021129319A1 (zh) 正极材料及其制备方法和应用
CN109336193B (zh) 多元素原位共掺杂三元材料前驱体及其制备方法和应用
WO2021189997A1 (zh) 正极材料及其制备方法,正极、锂离子电池和车辆
CN108847477B (zh) 一种镍钴锰酸锂三元正极材料及其制备方法
EP4024531A1 (en) Positive electrode material, preparation method therefor and application thereof
CN112736230B (zh) 一种高电压复合尖晶石包覆正极材料及其制备方法
CN110534733A (zh) 一种大单晶锂离子电池镍钴锰酸锂正极材料制备方法
WO2020043140A1 (zh) 三元正极材料及其制备方法、锂离子电池
CN110581269A (zh) 一种磷酸锂包覆锂离子电池高镍单晶三元正极材料及其制备方法
CN105810934B (zh) 一种稳定富锂层状氧化物材料晶畴结构方法
WO2020238968A1 (zh) 复合型锂离子电池正极材料及锂离子电池和车
CN113690414B (zh) 一种混合型富锂正极材料及其制备方法和应用
CN109742336A (zh) 一种表层包覆钨酸锂及掺杂w的三元正极材料及制备方法
WO2021175233A1 (zh) 一种富锂锰基材料及其制备方法和应用
CN108899538A (zh) 一种三元钠离子电池正极材料、其制备方法以及钠离子电池
WO2007131411A1 (en) A positive electrode material for secondary battery and the preparation method of the same
WO2014063407A1 (zh) 改性高能量密度锂离子电池正极材料及其制备方法
CN110233250A (zh) 一种单晶颗粒三元正极材料的制备方法
CN108550822A (zh) 一种镧、镁共掺杂高镍三元锂电池正极材料及制备方法
JP7408794B2 (ja) リチウム二次電池正極活物質、その製造方法、及びこれを含むリチウム二次電池
CN110459764B (zh) 一种锂离子电池正极材料及其制备方法与应用
WO2019113870A1 (zh) 一种富锂锰基材料及其制备和应用
CN110085845A (zh) 一种具有核壳结构的镍基正极材料及其制备方法
JP2018206554A (ja) 非水系電解質二次電池用正極活物質及びその製造方法
EP4057387A1 (en) Lithium ion battery positive electrode material and preparation method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905523

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020905523

Country of ref document: EP

Effective date: 20220513

NENP Non-entry into the national phase

Ref country code: DE