WO2017150949A1 - 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지 - Google Patents

이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지 Download PDF

Info

Publication number
WO2017150949A1
WO2017150949A1 PCT/KR2017/002357 KR2017002357W WO2017150949A1 WO 2017150949 A1 WO2017150949 A1 WO 2017150949A1 KR 2017002357 W KR2017002357 W KR 2017002357W WO 2017150949 A1 WO2017150949 A1 WO 2017150949A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
shell
particles
core
positive electrode
Prior art date
Application number
PCT/KR2017/002357
Other languages
English (en)
French (fr)
Inventor
이상욱
정왕모
박병천
신주경
박상민
강민석
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/743,916 priority Critical patent/US10535873B2/en
Priority to JP2018537604A priority patent/JP6723545B2/ja
Priority to PL17760353T priority patent/PL3425703T3/pl
Priority to CN201780002624.9A priority patent/CN108028369B/zh
Priority to EP17760353.7A priority patent/EP3425703B1/en
Priority claimed from KR1020170027879A external-priority patent/KR101949249B1/ko
Publication of WO2017150949A1 publication Critical patent/WO2017150949A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material for a secondary battery, a method for manufacturing the same, and a secondary battery including the same, which may improve charge and discharge characteristics of a battery.
  • lithium secondary batteries having high energy density and voltage, long cycle life, and low self discharge rate have been commercialized and widely used.
  • a lithium secondary battery has a problem in that its life is rapidly decreased as charging and discharging are repeated. In particular, this problem is more serious at high temperatures. This is due to the phenomenon that the electrolyte is decomposed or the active material is deteriorated due to moisture or other effects in the battery, and the internal resistance of the battery is increased.
  • LiCoO 2 having a layered structure. LiCoO 2 is most commonly used due to its excellent lifespan characteristics and charge and discharge efficiency. However, LiCoO 2 has a low structural stability and thus is not applicable to high capacity technology of batteries.
  • LiNiO 2 LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , Li (Ni x CoyMn z ) O 2
  • LiNiO 2 has the advantage of exhibiting battery characteristics of high discharge capacity, but the synthesis is difficult by a simple solid phase reaction, there is a problem of low thermal stability and low cycle characteristics.
  • lithium manganese oxides such as LiMnO 2 or LiMn 2 O 4 have advantages in that they are excellent in thermal safety and inexpensive, but have a small capacity and low temperature characteristics.
  • LiMn 2 O 4 but a part merchandising products to low cost, since the Mn + 3 structure modification (Jahn-Teller distortion) due to the not good life property.
  • LiFePO 4 has a low price and excellent safety, and a lot of research is being made for hybrid electric vehicles (HEV), but it is difficult to apply to other fields due to low conductivity.
  • LiCoO 2 lithium nickel manganese cobalt oxide, Li (Ni x Co y Mn z ) O 2 (At this time, X, y, and z are atomic fractions of independent oxide composition elements, respectively, where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, and 0 ⁇ x + y + z ⁇ 1.
  • This material is cheaper than LiCoO 2 and has advantages in that it can be used for high capacity and high voltage, but has a disadvantage in that the rate capability and the service life at high temperature are poor.
  • the first problem to be solved by the present invention is to solve the above problems, to provide a cathode active material for a secondary battery and a method of manufacturing the same that can improve the charge and discharge characteristics of the battery.
  • Another object of the present invention is to provide a positive electrode, a lithium secondary battery, a battery module, and a battery pack including the positive electrode active material.
  • a core A shell surrounding the core; And a buffer layer disposed between the core and the shell, the buffer layer including a three-dimensional network structure and voids connecting the core and the shell, wherein the three-dimensional network structure in the core, shell, and buffer layer are each independently a lithium composite metal.
  • a cathode active material for a secondary battery including an oxide, having a BET specific surface area of 0.2 m 2 / g to 0.5 m 2 / g, a porosity of 30% by volume or less, and an average particle size (D 50 ) of 8 ⁇ m to 15 ⁇ m. Is provided.
  • a metal raw material including a nickel raw material, cobalt raw material and M1 raw material (wherein M1 is at least one element selected from the group consisting of Al and Mn) Adding an ammonium cation-containing complex forming agent and a basic compound to the mixture of the above and coprecipitation at a pH of 11 to 13 to prepare a reaction solution in which a seed of a metal-containing hydroxide or an oxyhydroxide is formed; Adding an ammonium cation-containing complex forming agent and a basic compound to the reaction solution until the pH of the reaction solution is 8 or more and less than 11 to grow particles of the metal-containing hydroxide or oxyhydroxide; And heat-treating the grown metal-containing hydroxide or oxyhydroxide particles with a lithium raw material and an M3 raw material (wherein M3 is any one or two or more elements selected from the group consisting of W, Mo and Cr).
  • M1 is at least one element selected from the group consisting of Al and Mn
  • a cathode for a secondary battery a lithium secondary battery, a battery module, and a battery pack including the cathode active material.
  • the cathode active material for a secondary battery according to the present invention has a specific structure in which a buffer layer of a lithium composite metal oxide having a mesh structure connected to the core and the shell is further formed between the core and the shell in the particles having a core-shell structure.
  • the positive electrode active material according to the present invention is a battery in which high capacity, high life and thermal stability are required, such as a battery for an automobile or a power tool, in particular, a battery in a battery where performance degradation at high voltage is required, such as a battery for an automobile. It is useful as an active material.
  • FIG. 1 is a schematic cross-sectional view of a cathode active material for a secondary battery according to an embodiment of the present invention.
  • FE-SEM field emission scanning electron microscopy
  • a cathode active material for a secondary battery according to an embodiment of the present invention
  • a buffer layer comprising a three-dimensional network structure and voids connecting the core and the shell
  • the three-dimensional network structure in the core, shell and buffer layer each independently comprises a lithium composite metal oxide
  • the BET specific surface area is 0.2 m 2 / g to 0.5 m 2 / g, the porosity is 30% by volume or less, and the average particle size (D 50 ) is 8 ⁇ m to 15 ⁇ m.
  • the cathode active material for a secondary battery has a structure in which a buffer layer of a three-dimensional network structure connected to the core and the shell is further formed between the core and the shell in the particles having a core-shell structure.
  • the positive electrode active material may further control charge and discharge characteristics when the battery is applied by controlling the specific surface area, average particle diameter, and porosity of the particles.
  • FIG. 1 is a cross-sectional structural view schematically showing a cathode active material for a secondary battery according to an embodiment of the present invention. 1 is only an example for describing the present invention and the present invention is not limited thereto.
  • a cathode active material 10 for a secondary battery includes a core 1, a shell 2 surrounding the core, and a core between the core and the shell.
  • the core 1 is a lithium composite metal oxide (hereinafter simply referred to as a compound capable of reversible intercalation and deintercalation of lithium). 'First lithium composite metal oxide').
  • the core 1 may be made of a single particle of the first lithium composite metal oxide, or may be made of secondary particles in which primary particles of the first lithium composite metal oxide are aggregated. In this case, the primary particles may be uniform or non-uniform.
  • the shell 2 is a compound capable of reversible intercalation and deintercalation of lithium (lithiated intercalation compound).
  • Second lithium composite metal oxide ' Second lithium composite metal oxide '.
  • the second lithium composite metal oxide may be crystal-oriented particles grown radially outward from the center of the cathode active material.
  • the particles of the second lithium composite metal oxide forming the shell have crystal orientation in a direction in which lithium is easily inserted and detached, thereby realizing higher output characteristics than particles having no crystal orientation in the same composition. .
  • the particles of the second lithium composite metal oxide may have various shapes such as polygons such as hexahedrons, cylinders, fibrous or flakes. More specifically, the particles of the second lithium composite metal oxide may be fibrous having an aspect ratio of 1.5 or more. If the aspect ratio of the particles of the second lithium composite metal oxide constituting the shell is less than 1.5, uniform grain growth may not be achieved and electrochemical properties may be lowered. In this case, the aspect ratio refers to the ratio of the length in the short axis direction perpendicular to the long axis passing through the center of the oxide particles with respect to the length in the long axis direction passing through the center of the second lithium composite metal oxide particles.
  • the shell 2 may further include a void formed between the particles of the second lithium composite metal oxide.
  • a buffer layer 3 including a void 3a and a three-dimensional network structure 3b connecting between the core and the shell is located.
  • the void (3a) is formed in the process of converting the active material particles into a hollow structure by controlling the pH of the reactants during the production of the active material, between the core (1) and the shell (2) It forms a space in the buffer function during rolling for electrode production.
  • the electrolyte can easily penetrate into the cathode active material and react with the core, thereby increasing the reaction area of the active material with the electrolyte.
  • the positive electrode active material may specifically have a porosity of 30 vol% or less, more specifically 2 to 30 vol% with respect to the total volume of the positive electrode active material. By having a porosity within the above range, it is possible to exhibit an excellent buffering effect and increase the reaction area with the electrolyte solution without lowering the mechanical strength of the active material. In addition, in consideration of the remarkable improvement effect of the pore formation, the positive electrode active material may exhibit a porosity of 5 to 25% by volume with respect to the total volume of the positive electrode active material. In this case, the porosity of the cathode active material may be measured by cross-sectional analysis of the particles using a focused ion beam (FIB) or mercury intrusion.
  • FIB focused ion beam
  • the three-dimensional network structure (3b) is formed during the production of the active material particles in the process of converting the active material particles into a hollow structure to form an inner core, is connected between the core and the shell core It serves to support the space between (1) and the shell (2).
  • the three-dimensional network structure 3b is a lithium composite metal as a compound capable of reversible intercalation and deintercalation of lithium, like the core 1 and the shell 2 (lithiated intercalation compound).
  • Oxide hereinafter simply referred to as 'third lithium composite metal oxide').
  • the cathode active material 10 includes a lithium composite metal oxide, wherein the molar ratio (Li / Me molar ratio) of lithium and the composite metal in the transition metal oxide is 1 or more. It may be.
  • each of the first to third lithium composite metal oxides included in the core, the shell, and the buffer layer may independently include a compound of Formula 1 below.
  • M1 is at least one selected from the group consisting of Al and Mn
  • M2 is any one or two or more elements selected from the group consisting of Zr, Ti, Mg, Ta and Nb
  • M3 is Any one or two or more elements selected from the group consisting of W, Mo and Cr, 1.0 ⁇ a ⁇ 1.5, 0 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.5, 0.0005 ⁇ z ⁇ 0.03, 0 ⁇ w ⁇ 0.02, 0 ⁇ x + y ⁇ 0.7)
  • composition of the lithium composite metal oxide of Chemical Formula 1 is an average composition of the entire active material.
  • the positive electrode active material according to an embodiment of the present invention may include a lithium composite metal oxide having the composition of Chemical Formula 1, thereby having excellent structural stability, thereby improving lifespan characteristics of a battery.
  • Li may be included in an amount corresponding to a, that is, 1.0 ⁇ a ⁇ 1.5. If a is less than 1.0, the capacity may be lowered. If a is more than 1.5, the particles may be sintered in the firing step, and thus the production of the active material may be difficult. Considering the remarkable effect of improving the capacity characteristics of the positive electrode active material according to the Li content control and the balance of sinterability in the preparation of the active material, the Li may be included in a content of 1.0 ⁇ a ⁇ 1.15 more specifically.
  • Ni may be included in an amount corresponding to 1-x-y, that is, 0.3 ⁇ 1-x-y ⁇ 1. If 1-x-y is less than 0.3, the capacity characteristics may be lowered, and if it is 1 or more, there is a fear of low temperature stability. In consideration of the remarkable effect of improving the capacity characteristic according to the inclusion of Ni, the Ni may be more specifically included in a content of 0.5 ⁇ 1-x-y ⁇ 0.9.
  • Co may be included in an amount corresponding to x, that is, 0 ⁇ x ⁇ 0.5. If x is 0, the capacity and output characteristics may be deteriorated, and if x is more than 0.5, there is a fear of an increase in cost. Considering the remarkable effect of improving the capacity characteristics according to the inclusion of Co, the Co may be included in more specifically 0.10 ⁇ x ⁇ 0.35.
  • M1 may be included in an amount corresponding to y, that is, 0 ⁇ y ⁇ 0.5. If y is 0, the improvement effect due to the inclusion of M1 cannot be obtained. If y is greater than 0.5, the output characteristics and capacity characteristics of the battery may be deteriorated. Considering the remarkable effect of improving the battery characteristics according to the inclusion of the M1 element, M1 may be included in a content of 0 ⁇ y ⁇ 0.2 more specifically.
  • M3 is an element corresponding to Group 6 (VIB group) of the periodic table, and serves to suppress grain growth during firing of active material particles.
  • M3 may be present at a position where these elements should be present by substituting a part of Ni, Co, or M1, or may react with lithium to form lithium oxide. Accordingly, the size of the crystal grains can be controlled by controlling the content of M3 and the timing of feeding.
  • M3 may be any one or two or more elements selected from the group consisting of W, Mo, and Cr, and more specifically, may be at least one element of W and Cr. Among them, when M3 is W, it may be excellent in terms of output characteristics, and in case of Cr, it may be superior in terms of life stability.
  • Such M3 may be included in an amount corresponding to z in the lithium composite metal oxide of Chemical Formula 1, that is, 0.0005 ⁇ z ⁇ 0.03.
  • z is less than 0.0005
  • z exceeds 0.03, the crystal structure may be distorted or disintegrated, and the battery capacity may be reduced by disturbing the movement of lithium ions. More specifically, considering the embodied particle structure according to the content control of the M3 element and the remarkable effect of improving the battery characteristics, it may be 0.001 ⁇ z ⁇ 0.01.
  • the elements of Ni, Co, and M1 in the lithium composite metal oxide of Formula 1 or the lithium composite metal oxide may be added to another element, namely, M2, to improve battery characteristics by controlling distribution of metal elements in the active material. May be partially substituted or doped by.
  • M2 may be any one or two or more elements selected from the group consisting of Zr, Ti, Mg, Ta, and Nb, and more specifically, may be Ti or Mg.
  • the element of M2 may be included in an amount corresponding to w, that is, 0 ⁇ w ⁇ 0.02 in a range that does not lower the characteristics of the positive electrode active material.
  • At least one metal element of nickel, M1, and cobalt contained in the lithium composite metal oxide of Formula 1 is increased in any one region of the core, shell, and active material particles. Concentration gradients, or decreasing. Specifically, nickel, cobalt and M1 contained in the positive electrode active material may be distributed such that the average slope of the concentration profile is positive (+) or negative (-), respectively, from the center of the positive electrode active material particles to the particle surface, or in the core and the cell, respectively. Can be.
  • the concentration gradient or the concentration profile of the metal element means that the content of the metal element according to the depth of the center portion at the particle surface is determined when the X axis represents the depth of the center portion at the particle surface and the Y axis represents the content of the metal element.
  • Meaning graph to represent For example, a positive mean slope of the concentration profile means that the metal element is located in the center portion of the particle relatively more than the surface portion of the particle, and a negative mean slope means that the metal element is located in the surface portion of the particle more than the center portion of the particle. It means that it is located relatively much.
  • the concentration gradient and concentration profile of the metal in the active material may be X-ray photoelectron spectroscopy (XPS), Electron Spectroscopy for Chemical Analysis (ESCA), or electron beam microanalyzer (Electron Probe Micro). Analyzer, EPMA), Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), or Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS)
  • XPS X-ray photoelectron spectroscopy
  • ESA Electron Spectroscopy for Chemical Analysis
  • EPMA electron beam microanalyzer
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometer
  • ToF-SIMS Time of Flight Secondary Ion Mass Spectrometry
  • the metal element of at least one of nickel, cobalt, and M1 may continuously change the metal concentration in any one of the core, shell, and active material particles, more specifically, throughout the active material particles. It may have a concentration gradient, the slope of the concentration gradient of the metal element may represent one or more values. By having such a continuous concentration gradient, there is no abrupt phase boundary region from the center to the surface, so that the crystal structure is stabilized and the thermal stability is increased. In addition, when the gradient of the concentration gradient of the metal is constant, the effect of improving the structural stability may be further improved. In addition, by varying the concentration of each metal in the active material particles through the concentration gradient, it is possible to easily utilize the properties of the metal to further improve the battery performance improvement effect of the positive electrode active material.
  • concentration of the metal continuously shows a concentration gradient means that the concentration of the metal exists in a concentration distribution that gradually changes throughout the particle.
  • concentration distribution is 0.1 to 30 atomic%, more specifically 0.1 to 20 atomic%, based on the total atomic weight of the metal included in the positive electrode active material, the change in the metal concentration per 1 ⁇ m in the particles, More specifically, there may be a difference of 1 to 10 atomic%.
  • At least one metal element of nickel, cobalt, and M1 represents a concentration gradient continuously changing throughout the active material particles,
  • the gradient of concentration gradient of the metal element in the active material particles may exhibit one or more values.
  • At least one of the metal elements of nickel, cobalt, and M1 represents a concentration gradient that continuously and independently changes in the core and the shell, respectively,
  • the gradients of concentration gradients of the metal elements in the shell may be the same or different from each other.
  • the concentration of nickel contained in the positive electrode active material is reduced while having a continuous concentration gradient from the center of the active material particles toward the surface of the particles;
  • each of the core and the shell may be independently reduced while having a continuous concentration gradient from the center of the active material particles toward the surface of the particles.
  • the gradient of the concentration gradient of nickel may be constant from the center of the cathode active material particles to the surface, or in the core and the shell, respectively.
  • the concentration of cobalt contained in the positive electrode active material increases while having a continuous concentration gradient from the center of the active material particles toward the surface of the particles;
  • each of the core and the shell may be independently increased while having a continuous concentration gradient from the center of the active material particles toward the surface of the particles.
  • the concentration gradient of the cobalt may be constant from the center of the cathode active material particles to the surface, or in the core and the shell, respectively.
  • the concentration of M1 contained in the positive electrode active material increases while having a continuous concentration gradient from the center of the active material particles toward the surface of the particles;
  • each of the core and the shell may be independently increased while having a continuous concentration gradient from the center of the active material particles toward the surface of the particles.
  • the concentration gradient slope of M1 may be constant from the center of the cathode active material particles to the surface, or in the core and the shell, respectively.
  • M1 may be manganese (Mn).
  • the content of nickel contained in the core may be higher than the content of nickel included in the shell, specifically, the core is the total atomic weight of the metal elements included in the core Nickel may be included in an amount of 60 atomic% or more and less than 100 atomic% with respect to the shell, and the shell may include nickel in an amount of 30 to 60 atomic% with respect to the total atomic weight of metal elements included in the shell.
  • the content of cobalt contained in the core may be less than the content of cobalt contained in the shell.
  • the content of M1 included in the core may be less than the content of M1 included in the shell.
  • nickel, cobalt, and M1 each independently and continuously represent a concentration gradient continuously changing throughout the active material particles, the concentration of nickel from the center of the active material particles The concentration decreases with a continuous concentration gradient in the surface direction, and the concentrations of cobalt and M1 may each increase independently with a continuous concentration gradient in the surface direction from the center of the active material particles.
  • nickel, cobalt, and M1 represent a concentration gradient that continuously and independently changes in the core and the shell, respectively, and the concentration of nickel is determined from the center of the core with the core.
  • the concentration decreases with a continuous concentration gradient from the interface of the buffer layer and from the interface of the buffer layer to the shell surface, and the concentrations of cobalt and M1 are each independently from the center of the core to the interface of the core and the buffer layer, and the buffer layer and It can increase with a continuous concentration gradient from the interface of the shell to the shell surface.
  • the concentration of nickel decreases toward the surface side of the positive electrode active material particles in part or all over the active material, and the concentration of cobalt and M1 increases to include thermal stability while maintaining capacity characteristics. Can be.
  • the cathode active material according to an embodiment of the present invention may include polycrystalline lithium composite metal oxide particles having an average size of the crystal grains of 200 nm or less, specifically, 60 nm to 200 nm.
  • the average size of the crystal grains in the positive electrode active material is optimized to exhibit high output characteristics by controlling the content of the M3 element included in the lithium composite metal oxide and the firing conditions.
  • the average size of the crystal grains constituting the polycrystalline lithium composite metal oxide is 60nm to 150nm, considering the remarkable effect of the improvement of the output characteristics according to the crystal size control, the average size of the crystal grains is more specifically 80nm To 120 nm.
  • a polycrystal means a crystal formed by gathering two or more crystal particles.
  • the crystal grains constituting the polycrystals mean primary particles, and the polycrystal means a form of secondary particles in which the primary particles are aggregated.
  • the average size of the crystal grains can be quantitatively analyzed for the lithium composite metal oxide particles using X-ray diffraction analysis.
  • the average size of the crystal grains can be quantitatively analyzed by placing the polycrystalline lithium composite metal oxide particles in a holder and analyzing a diffraction grating that is irradiated with X-rays to the particles.
  • the positive electrode active material according to an embodiment of the present invention may be 0.2 to 3.0% nickel (Ni) disorder in the crystal of the lithium composite metal oxide (Ni disorder).
  • Ni disorder nickel
  • the positive electrode active material according to an embodiment of the present invention may be 0.2 to 3.0% nickel (Ni) disorder in the crystal of the lithium composite metal oxide (Ni disorder).
  • Ni disorder nickel
  • it may be 0.5 to 2%, even more specifically 0.5 to 1.5%.
  • the degree of Ni disorder can be determined from the amount of Ni ions disordered with Li sites during synthesis of the cathode active material.
  • the Ni disorder degree is analyzed by atomic structure analysis using the Rietveld method, to analyze the relative amount of Ni 2 + ions occupying Li site therefrom, and from the diffraction diagram obtained from the sample pattern, After analyzing the relative occupancy by oxygen, respectively, it is possible to determine the amount of Ni ions irregularized at the Li site during synthesis.
  • the oxygen occupancy ratio z is interpreted as a number variable, and the occupancy ratio of Li and Ni is a single variable x that can be changed between the two sites, and the occupancy ratio of the Li site by M1 ions and Co and Ni ions.
  • the occupancy of the Ni site is treated as represented by the formula (1).
  • the first cycle efficiency may be improved by decreasing the degree of nickel disorder (% Ni + ) x and increasing the relative oxygen concentration z.
  • the positive electrode active material having the above structure may have an average particle diameter (D 50 ) of 8 to 15 ⁇ m in consideration of the specific surface area and the positive electrode mixture density. If the average particle size of the positive electrode active material is less than 8 ⁇ m, there is a risk of deterioration of dispersibility in the active material layer due to the deterioration of stability of the lithium composite metal oxide particles and the aggregation between the positive electrode active materials. There exists a possibility of the fall of an output characteristic by the fall of surface area. In addition, considering the rate characteristic and initial capacity characteristics improvement effect due to the specific structure may have a mean particle diameter (D 50 ) of 9 to 12 ⁇ m.
  • the average particle diameter (D 50 ) of the positive electrode active material may be defined as the particle size at 50% of the particle size distribution.
  • the average particle diameter (D 50 ) of the positive electrode active material particles is, for example, electrons using a scanning electron microscopy (SEM) or a field emission scanning electron microscopy (FE-SEM). It can be measured by microscopic observation or by laser diffraction method.
  • SEM scanning electron microscopy
  • FE-SEM field emission scanning electron microscopy
  • the particles of the positive electrode active material are dispersed in a dispersion medium, and then introduced into a commercially available laser diffraction particle size measuring apparatus (for example, Microtrac MT 3000) to output ultrasonic waves of about 28 kHz. was irradiated with W, it is possible to calculate the mean particle size (D 50) of from 50% based on the particle size distribution of the measuring device.
  • a commercially available laser diffraction particle size measuring apparatus for example, Microtrac MT 3000
  • the ratio of the core radius to the radius of the positive electrode active material particles is greater than 0 and less than 0.4, and the length ratio from the center of the active material particle to the interface of the buffer layer and the shell with respect to the radius of the positive electrode active material particles is greater than 0 and less than 0.7. Can be.
  • the shell region determined according to Equation 1 may be 0.2 to less than 1, preferably 0.4 to 0.6.
  • Shell area (radius of anode active material-core radius-buffer layer thickness) / radius of anode active material
  • the core, the buffer layer and the shell are formed in the positive electrode active material and the concentration gradients of the metal elements are formed in the respective regions as described above, the distribution of nickel, cobalt and manganese in the active material particles is more optimized and controlled. In minimizing the destruction of the active material by the rolling process during electrode production, the reactivity with the electrolyte may be maximized to further improve the output characteristics and lifespan characteristics of the secondary battery.
  • the particle diameter of the core portion can be measured through particle cross-sectional analysis using a focused ion beam (fib).
  • the cathode active material according to an embodiment of the present invention may have a BET specific surface area of 0.2 m 2 / g to 0.5 m 2 / g.
  • the specific surface area of the positive electrode active material is measured by the Brunauer-Emmett-Teller (BET) method, specifically, nitrogen gas at liquid nitrogen temperature (77K) using BELSORP-mino II manufactured by BEL Japan It can calculate from adsorption amount.
  • BET Brunauer-Emmett-Teller
  • the positive electrode active material according to an embodiment of the present invention may exhibit excellent capacity and charge and discharge characteristics by simultaneously promoting the above average particle diameter and BET specific surface area conditions.
  • the cathode active material may have an average particle diameter (D 50 ) of 8 ⁇ m to 15 ⁇ m and a BET specific surface area of 0.2 m 2 / g to 0.5 m 2 / g, more specifically 8 ⁇ m to 10 ⁇ m Average particle diameter (D 50 ) and BET specific surface area of 0.25 m 2 / g to 0.35 m 2 / g, and more specifically, average particle diameter (D 50 ) of not less than 8 ⁇ m and less than 10 ⁇ m and 0.25 m 2 / g It may have a BET specific surface area of greater than 0.35 m 2 / g or less.
  • the specific surface area of the positive electrode active material is measured by the Brunauer-Emmett-Teller (BET) method, specifically, nitrogen gas at liquid nitrogen temperature (77K) using BELSORP-mino II manufactured by BEL Japan It can calculate from adsorption amount.
  • BET Brunauer-Emmett-Teller
  • the cathode active material according to an embodiment of the present invention, boron (B), aluminum (Al), titanium (Ti), silicon (Si), tin (Sn), magnesium (Mg) on the surface of the active material particles and at least one surface treatment layer including at least one coating element capable of protecting the surface of the active material, such as iron (Fe), bismuth (Bi), antimony (Sb), or zirconium (Zr). .
  • the surface treatment layer may have a single layer structure including each of the above coating elements, or may include two or more of the above coating elements in a single layer.
  • the surface treatment layer may have a multilayer structure of two or more layers in which at least one surface treatment layer including each of the coating elements is repeatedly formed.
  • boron lithium oxide in the case of using boron as the coating element, it is possible to form a surface treatment layer in the form of boron lithium oxide.
  • the boroxide lithium oxide can be formed uniformly on the surface of the positive electrode active material can exhibit a more excellent positive electrode active material protection effect.
  • the boroxide lithium oxide may specifically be LiBO 2 or Li 2 B 4 O 7 and the like, any one or a mixture of two or more thereof may be included.
  • the surface treatment layer may include boron in an amount of 100 ppm to 2000 ppm, more specifically 250 ppm to 1100 ppm.
  • the borated lithium oxide contained in the surface treatment layer may be included in an amount of 0.01% by weight to 1% by weight, specifically 0.05% by weight to 0.5% by weight based on the total weight of the positive electrode active material.
  • the boric acid lithium oxide is less than 0.01% by weight, the surface treatment layer formed on the surface of the lithium composite metal oxide becomes thin, the effect of suppressing side reactions between the electrolyte during charging and discharging may be insignificant, when the amount exceeds 1% by weight, Due to the excessive content of boron lithium oxide, the thickness of the surface treatment layer was thickened, thereby increasing the resistance could cause a decrease in the electrochemical properties of the lithium secondary battery.
  • the surface treatment layer may be formed by dry mixing a positive electrode active material containing a lithium composite metal oxide with a boron-containing compound, and then heat treating. Accordingly, some of the boron elements of the boron lithium oxide included in the surface treatment layer may be doped into the lithium composite metal oxide of the positive electrode active material, and the content of boron doped in the lithium composite metal oxide is from the surface of the lithium composite metal oxide to the inside. It may have a decreasing concentration gradient. As such, when a concentration gradient of boron is formed from the surface treatment layer to the inside of the cathode active material, cycle characteristics may be improved by increasing structural stability.
  • a surface treatment layer may be formed in the form of aluminum oxide.
  • aluminum may form a discontinuous pattern on the surface of the cathode active material, for example, in the form of an island. can do.
  • Aluminum present on the surface of the positive electrode active material reacts with hydrogen fluoride (HF) to be transformed into AlF 3 to protect the active material surface from hydrogen fluoride attack.
  • HF hydrogen fluoride
  • the aluminum may be specifically included in the form of an oxide such as Al 2 O 3 .
  • the aluminum-containing surface treatment layer may be formed by dry mixing a positive electrode active material containing a lithium composite metal oxide with an aluminum-containing compound, and then performing heat treatment. At this time, by controlling the particle size of the aluminum-containing compound, it is possible to suppress the crystal structure change of the aluminum oxide included in the surface treatment layer, as a result can be improved cycle stability during charge and discharge.
  • the cathode active material by forming a surface treatment layer on the surface of the cathode active material in the form of oxides such as TiO 2 , SiO 2 , SnO 2 , MgO, Fe 2 O 3 , Bi 2 O 3 , Sb 2 O 3 , or ZrO 2. It plays a role.
  • the surface treatment layer can be formed by the same method as the aluminum.
  • the thickness of the surface treatment layer may be 10 nm to 1000 nm.
  • the thickness of the surface treatment layer formed on the surface of the active material is 1000 nm or less, the internal resistance of the active material can be reduced, thereby preventing the lowering of the discharge potential and maintaining high discharge potential characteristics according to the change of current density (C-rate). have. As a result, it is possible to exhibit better life characteristics and lower discharge voltage when the battery is applied.
  • the positive electrode active material according to an embodiment of the present invention may have a tap density of 1.7 g / cc or more, or 1.7 g / cc to 2.5 g / cc.
  • the tap density of the positive electrode active material can be measured using a conventional tap density measuring device, and specifically, can be measured using a tap density tester.
  • the positive electrode active material according to an embodiment of the present invention having the above structure and physical properties, nickel raw material, cobalt raw material and M1 raw material (wherein M1 is Al And an ammonium cation-containing complex former and a basic compound, and co-precipitated at pH 11 to pH 13 to a mixture of the metal raw materials, wherein the metal raw material is at least one element selected from the group consisting of Mn.
  • step 1 Or preparing a reaction solution in which a seed of oxyhydroxide is produced (step 1); Adding an ammonium cation-containing complex forming agent and a basic compound to the reaction solution until the pH of the reaction solution is 8 or more and less than 11 to grow the particles of the metal-containing hydroxide or oxyhydroxide (step 2); And heat-treating the grown metal-containing hydroxide or oxyhydroxide particles with a lithium raw material and an M3 raw material (wherein M3 is any one or two or more elements selected from the group consisting of W, Mo and Cr). It can be produced by a manufacturing method comprising the step (step 3).
  • the cathode active material further comprises M2 (wherein M2 is any one or two or more elements selected from the group consisting of Zr, Ti, Mg, Ta and Nb), the metal raw material of step 1 M2 raw material may be added in the preparation of the mixture, or M2 raw material may be added when mixing with the lithium raw material in step 3. Accordingly, according to another embodiment of the present invention, a method of manufacturing the cathode active material is provided.
  • step 1 in the manufacturing method for the production of the positive electrode active material a mixture of a metal raw material containing nickel, cobalt, M1 and optionally M2, with an ammonium cation-containing complex forming agent and A basic compound is added and coprecipitation is performed at pH 11 to pH 13 to prepare a reaction solution in which a seed of metal-containing hydroxide or oxyhydroxide is produced.
  • preparing a mixture of the metal raw material may include a nickel raw material, a cobalt raw material, an M1-containing raw material and optionally an M2-containing raw material in a solvent, specifically water, or an organic solvent that may be uniformly mixed with water. It may be prepared by adding to a mixture of (specifically, alcohol, etc.) and water, or may be used after mixing a solution containing each raw material, specifically, an aqueous solution. In this case, each raw material may be used in an appropriate amount in consideration of the content of each metal element in the final lithium composite metal oxide to be produced.
  • the total mole number of nickel ions, cobalt ions and manganese ions may be 0.5M to 2.5M, more specifically 1M to 2.2M.
  • a raw material including the metal element acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide, or oxyhydroxide may be used, and the like, and it is not particularly limited as long as it can be dissolved in water.
  • cobalt raw material Co (OH) 2 , CoOOH, Co (OCOCH 3 ) 2 ⁇ 4H 2 O, Co (NO 3 ) 2 ⁇ 6H 2 O or Co (SO 4 ) 2 ⁇ 7H 2 O, etc. And any one or a mixture of two or more thereof may be used.
  • Ni (OH) 2 , NiO, NiOOH, NiCO 3 ⁇ 2Ni (OH) 2 ⁇ 4H 2 O, NiC 2 O 2 ⁇ 2H 2 O, Ni (NO 3 ) 2 ⁇ 6H 2 O, NiSO 4 , NiSO 4 .6H 2 O, fatty acid nickel salts or nickel halides, and the like, and any one or a mixture of two or more thereof may be used.
  • manganese raw material manganese oxides such as Mn 2 O 3 , MnO 2 , and Mn 3 O 4 ; Manganese salts such as MnCO 3 , Mn (NO 3 ) 2 , MnSO 4 , manganese acetate, manganese dicarboxylic acid, manganese citrate and fatty acid manganese; Oxy hydroxide, and manganese chloride, and the like, and any one or a mixture of two or more thereof may be used.
  • the aluminum raw material may include AlSO 4 , AlCl, AlNO 3 and the like, any one or a mixture of two or more thereof may be used.
  • the ammonium cation-containing complexing agent may specifically be NH 4 OH, (NH 4 ) 2 SO 4 , NH 4 NO 3 , NH 4 Cl, CH 3 COONH 4 , or NH 4 CO 3 , and the like. Or mixtures of two or more may be used.
  • the ammonium cation-containing complex forming agent may be used in the form of an aqueous solution, wherein a solvent may be a mixture of water or an organic solvent (specifically, alcohol, etc.) that can be mixed with water uniformly.
  • the ammonium cation-containing complex forming agent may be added in an amount such that the molar ratio of 0.5 to 1 per mole of the mixture of the metal raw material.
  • the chelating agent reacts with the metal in a molar ratio of at least 1: 1 to form a complex, but the unreacted complex which does not react with the basic aqueous solution may be converted into an intermediate product, recovered as a chelating agent, and reused.
  • the chelating usage can be lowered than usual. As a result, the crystallinity of the positive electrode active material can be increased and stabilized.
  • the basic compound may be a hydroxide of an alkali metal or an alkaline earth metal such as NaOH, KOH, or Ca (OH) 2 , or a hydrate thereof, and one or more of these may be used.
  • the basic compound may also be used in the form of an aqueous solution, and as the solvent, a mixture of water or an organic solvent (specifically, alcohol, etc.) that can be uniformly mixed with water may be used.
  • the coprecipitation reaction for forming the seed of the metal-containing hydroxide or oxyhydroxide may be carried out under the condition that the pH is 11 to 13. If the pH is out of the above range, there is a fear that the size of the hydroxide or oxyhydroxide to be prepared or to cause particle splitting. Moreover, metal ions elute on the surface of the hydroxide or oxyhydroxide, and there is a possibility of forming various oxides by side reactions. More specifically, the pH of the mixed solution may be performed at 11 to 12 conditions.
  • the ammonium cation-containing complexing agent and the basic compound may be used in a molar ratio of 1:10 to 1: 2 to satisfy the above pH range.
  • the pH value means a pH value at the temperature of the liquid 25 °C.
  • the coprecipitation reaction may be performed at a temperature of 40 ° C. to 70 ° C. under an inert atmosphere such as nitrogen.
  • the stirring process may be selectively performed to increase the reaction rate during the reaction, wherein the stirring speed may be 100 rpm to 2000 rpm.
  • the seed of the metal-containing hydroxide or the oxyhydroxide is generated and precipitates in the reaction solution.
  • the metal-containing hydroxide or oxyhydroxide may include a compound of Formula 2 below.
  • M1 is at least one selected from the group consisting of Al and Mn
  • M2 is any one or two or more elements selected from the group consisting of Zr, Ti, Mg, Ta and Nb
  • M3 is W
  • Mo and Cr Any one or two or more elements selected from the group consisting of 0 ⁇ x1 ⁇ 0.5, 0 ⁇ y1 ⁇ 0.5, 0.0005 ⁇ z1 ⁇ 0.03, 0 ⁇ w1 ⁇ 0.02, 0 ⁇ x1 + y1 ⁇ 0.7
  • A is a hydroxy group or Oxyhydroxy group
  • a drying process may be optionally performed.
  • the drying process may be carried out according to a conventional drying method, specifically, may be performed for 15 to 30 hours by a method such as heat treatment, hot air injection in the temperature range of 100 to 200 °C.
  • step 2 is a step of growing particles of the metal-containing hydroxide or oxyhydroxide prepared in step 1 to produce particles.
  • ammonium cation-containing complex forming agent and the basic compound are added to the reaction solution in which the seed of the metal-containing hydroxide or the oxyhydroxide is formed until the pH of the reaction solution is lower than the pH of the coprecipitation reaction. Particles of hydroxide can be grown.
  • Growing particles of the metal-containing hydroxide or oxyhydroxide may be different from the mixture of the first metal raw material in the mixture of the first metal raw material including the nickel raw material, the cobalt raw material and the M1 containing raw material. Adding a mixture of the second metal raw material containing the nickel, cobalt, M1 containing raw material in a concentration such that the mixing ratio is gradually changed from 100% to 0% by volume to 0% by volume to 100% by volume. Can be.
  • nickel, cobalt and M1 are each independently from the center of the particle to the surface Metal-containing hydroxides or oxyhydroxides with continuously varying concentration gradients can be prepared.
  • the concentration gradient and the slope of the metal in the hydroxide or oxyhydroxide produced can be easily controlled by the composition and the mixing feed ratio of the mixture of the first metal raw material and the mixture of the second metal raw material, and the specific metal.
  • the speed of the mixture of the second metal raw material to be added to the mixture of the first metal raw material may be carried out continuously increasing in the range of 1 to 30% compared to the initial charging speed.
  • the feed rate of the mixture of the first metal raw material may be 150ml / hr to 210ml / hr
  • the feed rate of the mixture of the second metal raw material may be 120ml / hr to 180ml / hr
  • the addition Within the speed range the loading speed of the mixture of the second metal raw material may be continuously increased within the range of 1% to 30% of the initial charging speed.
  • the reaction may be carried out at 40 °C to 70 °C.
  • the size of the precursor particles may be adjusted by adjusting the supply amount and the reaction time of the mixture of the second metal raw material to the mixture of the first metal raw material.
  • Particle growth of the metal-containing hydroxide or oxyhydroxide in step 2 may be carried out at a lower pH than the particle generation step of the metal-containing hydroxide or oxyhydroxide in step 1, specifically, lower than the pH in step 1 , pH 8 or more and less than pH 11, more specifically may be carried out in the range of pH 8 to 10.5.
  • the growth step of the metal-containing hydroxide or oxyhydroxide particles may be performed by changing the pH of the reactant at a rate of pH 1 to 2.5 per hour.
  • the desired particle structure can be easily formed by performing the pH change rate as described above at a lower pH than in the coprecipitation reaction.
  • ammonium cation-containing complex forming agent and the basic compound when added to the reaction solution in which the particles of the metal-containing hydroxide or the oxyhydroxide are formed, they may be added at the same rate, or may be added while continuously reducing the addition rate. have. If the feed rate is reduced, the feed rate can be reduced at a rate of 20% or more and less than 100%.
  • the precipitation rate of the metal-containing hydroxide or the oxyhydroxide in the particle growth step is adjusted to the metal-containing hydroxide or the oxyhydroxide in the step 1 It can be faster than the precipitation rate of.
  • the density of the vicinity of the outer surface of the metal-containing hydroxide or oxyhydroxide particles serving as the precursor can be lowered to easily induce the grain growth direction in the subsequent heat treatment step.
  • step 2 may be preferably carried out in an inert atmosphere.
  • the grown metal-containing hydroxide or oxyhydroxide particles may be selectively removed from the reaction solution, followed by washing and drying.
  • the drying process may be carried out in accordance with a conventional drying method, specifically, may be carried out by a method such as heat treatment, hot air injection in the temperature range of 100 °C to 120 °C.
  • step 3 heat treatment after mixing the particles of the metal-containing hydroxide or oxy hydroxide grown in the step 2 with the lithium raw material and M3 raw material, optionally M2 raw material
  • M2 raw material is the same as described above.
  • the heat treatment process may be performed at 250 °C to 1000 °C, or 800 °C to 900 °C. If the heat treatment temperature is less than 250 ° C., the reaction between the compounds to be used is not sufficient, and if it exceeds 1000 ° C., an unstable structure may be formed due to evaporation of Li in the crystal structure.
  • the heat treatment process may be performed in two to three stages by adding a low temperature heat treatment process to maintain the concentration gradient and grain orientation. Specifically, the method may be performed by maintaining the method at 5 to 15 hours at 250 to 450 ° C, 5 to 15 hours at 450 to 600 ° C, and 5 to 15 hours at 700 to 900 ° C.
  • the execution time of the heat treatment process varies depending on the heat treatment temperature, it may be easy to control the shape of the particles to be performed for 5 hours to 48 hours, or 10 hours to 20 hours at the above temperature conditions. Specifically, if the temperature during the heat treatment is less than 5 hours, there is a fear that the crystallization does not occur, if more than 48 hours there is a fear of excessive crystallization or unstable structure formation by Li evaporation in the crystal structure.
  • the particles of the metal-containing hydroxide or the oxyhydroxide produced and grown through the above steps 1 and 2 are crystals of the inside of the particles and the outside of the particles formed by the subsequent growth of the particles due to differences in process conditions, that is, pH, etc.
  • Silver forms a three-dimensional network that connects the core and shell of the particles.
  • crystals (shells) outside the particles grow radially from the center of the particles to the outside to have crystal orientation.
  • lithium-containing raw material examples include lithium-containing carbonates (e.g., lithium carbonate), hydrates (e.g., lithium hydroxide I hydrate (LiOH, H 2 O), etc.), hydroxides (e.g., lithium hydroxide, etc.), nitrates (Eg, lithium nitrate (LiNO 3 ), etc.), chlorides (eg, lithium chloride (LiCl), and the like), and one of these alone or a mixture of two or more thereof may be used.
  • lithium-containing carbonates e.g., lithium carbonate
  • hydrates e.g., lithium hydroxide I hydrate (LiOH, H 2 O), etc.
  • hydroxides e.g., lithium hydroxide, etc.
  • nitrates e.g, lithium nitrate (LiNO 3 ), etc.
  • chlorides eg, lithium chloride (LiCl), and the like
  • the amount of the lithium-containing raw material used may be determined according to the content of lithium and the composite metal in the final lithium composite metal oxide, and specifically, a metal element included in the lithium and metal-containing hydroxide included in the lithium raw material. (Me) and the molar ratio (molar ratio of lithium / metal element (Me)) can be used in an amount such that 1.0 or more.
  • M3 raw material acetates, nitrates, sulfates, halides, sulfides, hydroxides, oxides or oxyhydroxides containing M3 elements may be used.
  • M 3 is W
  • tungsten oxide may be used.
  • the M3 raw material may be used in a range to satisfy the content condition of the M3 element in the positive electrode active material to be manufactured.
  • a sintering agent may be optionally further added.
  • the sintering agent is specifically a compound containing ammonium ions such as NH 4 F, NH 4 NO 3 , or (NH 4 ) 2 SO 4 ; Metal oxides such as B 2 O 3 or Bi 2 O 3 ; Or a metal halide such as NiCl 2 or CaCl 2, and any one or a mixture of two or more thereof may be used.
  • the sintering agent may be used in an amount of 0.01 to 0.2 mole with respect to 1 mole of the positive electrode active material precursor.
  • the effect of improving the sintering characteristics of the positive electrode active material precursor may be insignificant, and when the content of the sintering agent is too high, exceeding 0.2 mole, the performance of the positive electrode active material decreases due to the excessive amount of the sintering agent. And an initial capacity of the battery may decrease during charging and discharging.
  • the sintering aid may optionally be further added during the heat treatment process.
  • the sintering aid can easily grow crystals at low temperatures and minimize the heterogeneous reaction during dry mixing.
  • the sintering aid has the effect of making the rounded curved particles by dulling the corners of the lithium composite metal oxide primary particles.
  • the lithium oxide-based positive electrode active material including manganese manganese is frequently eluted from the edges of the particles, and the manganese elution reduces the characteristics of the secondary battery, particularly at high temperatures.
  • the sintering aid when used, the elution portion of manganese can be reduced by rounding the corners of the primary particles, and as a result, the stability and lifespan characteristics of the secondary battery can be improved.
  • the sintering aid is boron compounds such as boric acid, lithium tetraborate, boron oxide and ammonium borate; Cobalt compounds such as cobalt oxide (II), cobalt oxide (III), cobalt oxide (IV), and tricobalt tetraoxide; Vanadium compounds such as vanadium oxide; Lanthanum compounds such as lanthanum oxide; Zirconium compounds such as zirconium boride, calcium zirconium silicate and zirconium oxide; Yttrium compounds such as yttrium oxide; Or gallium compounds such as gallium oxide, and the like, and any one or a mixture of two or more thereof may be used.
  • boron compounds such as boric acid, lithium tetraborate, boron oxide and ammonium borate
  • Cobalt compounds such as cobalt oxide (II), cobalt oxide (III), cobalt oxide (IV), and tricobalt tetraoxide
  • Vanadium compounds such as
  • the sintering aid may be used in an amount of 0.2 to 2 parts by weight, more specifically 0.4 to 1.4 parts by weight based on the total weight of the precursor.
  • a moisture removing agent may be optionally further added.
  • the water removing agent may include citric acid, tartaric acid, glycolic acid or maleic acid, and any one or a mixture of two or more thereof may be used.
  • the moisture remover may be used in an amount of 0.01 to 0.2 mole based on 1 mole of the positive electrode active material precursor.
  • the heat treatment step for the mixture containing the metal-containing hydroxide or oxyhydroxide particles, lithium raw material, M3 raw material and optionally M2 raw material may be an air atmosphere or an oxidizing atmosphere (for example, O 2 ). It is possible in the above, and more specifically, it can be carried out under an oxidizing atmosphere.
  • a washing process for removing impurities present on the surface of the cathode active material prepared after the heat treatment may be selectively performed.
  • the washing process may be performed according to a conventional method, specifically, may be performed by washing with water or a lower alcohol having 1 to 4 carbon atoms.
  • the method of manufacturing a cathode active material according to an embodiment of the present invention may further include forming a surface treatment layer on the surface of the cathode active material after the process of manufacturing the cathode active material including the lithium composite metal oxide.
  • the surface treatment layer forming process may be performed according to a conventional surface treatment layer forming method such as a solid phase synthesis method or a wet method, except that a raw material including a coating element for forming the surface treatment layer is used.
  • the coating element is as described above.
  • the surface treatment layer including the coating element-containing compound may be formed on the surface of the cathode active material by dry mixing the prepared cathode active material and the boron-containing compound and then performing heat treatment.
  • the surface treatment layer is formed by the solid phase synthesis method, it is possible to form a uniform surface treatment layer without fear of damage to the cathode active material.
  • the boron-containing compound may specifically be a boron-containing oxide, hydroxide, alkoxide or alkylate. More specifically, the H 3 BO 3, B 2 O 3, C 6 H 5 B (OH) 2, (C 6 H 5 O) 3 B, [CH 3 (CH 2) 3O] 3 B, C 3 H 9 B 3 O 6 or (C 3 H 7 O) 3 B and the like, any one or a mixture of two or more thereof may be used.
  • the amount of the boron-containing compound may be used in an appropriate amount considering the content of boron or borsorithium oxide in the surface treatment layer to be prepared as described above. Specifically, the boron-containing compound may be used in an amount of 0.05 parts by weight to 1 part by weight, more specifically 0.1 parts by weight to 0.8 parts by weight, based on 100 parts by weight of the positive electrode active material.
  • the dry mixing method includes a mortar grinder mixing method using mortar; Or roll-mill, ball-mill, high energy ball mill, planetary mill, stirred ball mill, vibrating mill or jet mill ( It may be carried out using a mixing method using a mechanical milling method such as a jet-mill, and, considering the formation of a uniform surface treatment layer, the dry mixing method may be more specifically performed using a mechanical milling method. .
  • the heat treatment may be performed near the melting point of the boron-containing compound.
  • the melting point of the boron-containing compound may be 130 ° C to 500 ° C.
  • the boron-containing compound is melted and flows by the heat treatment and reacts with at least some of the lithium impurities present on the lithium composite metal oxide to convert the boron-containing compound into boron lithium oxide. It can be easily converted and coated on the lithium metal oxide surface. As such, the lithium impurities present in the lithium composite metal oxide may be reduced by conversion of the lithium impurities into boron lithium oxide. Further, even at a low heat treatment temperature, a surface treatment layer in which boron lithium oxide is uniformly coated on the surface of the lithium composite metal oxide may be formed in an amount proportional to the amount of the boron-containing compound used.
  • the heat treatment of the boron-containing compound may be performed at 130 °C to 500 °C, even more specifically 130 °C to 500 °C, for 3 hours to 10 hours.
  • the heat treatment temperature is less than 130 ° C, the boron-containing compound is not sufficiently melted, and thus, even if the boron-containing compound remains on the lithium composite metal oxide or is converted to boron lithium oxide, a uniform surface treatment layer cannot be formed, and the temperature exceeds 500 ° C. If the reaction is too fast due to the high temperature can not form a uniform surface treatment layer on the surface of the lithium composite metal oxide.
  • the surface treatment layer may be formed on the surface of the cathode active material by mixing the prepared cathode active material with an aluminum-containing raw material and performing heat treatment.
  • the aluminum-containing raw material may be Al 2 O 3, etc.
  • uniform coating is possible when forming the surface treatment layer, single particles can be formed even at low temperature, and the crystal structure of the metal oxide formed after the surface treatment layer is formed May be one having an average particle size of 100 nm or less, more specifically 50 to 80 nm.
  • Heat treatment of the aluminum-containing compound may be carried out at 300 °C to 500 °C. If the heat treatment temperature is less than 300 ° C., even coated oxides of 100 nm or less are not crystallized, and thus, when the active material is applied to a battery, the movement of lithium ions may be disturbed. In addition, when the heat treatment temperature is higher, the evaporation of lithium and the crystallinity of the metal oxide layer formed on the surface become high, which causes a problem in the movement of Li +. In addition, when the heat treatment time is too long, there is a concern that the evaporation of lithium and the crystallinity of the metal oxide layer formed on the surface become high, thereby causing a problem in the movement of Li +.
  • the raw material including the coating element for forming the surface treatment layer is dissolved or dispersed in a solvent to prepare a composition for forming the surface treatment layer, and then it is a conventional slurry coating method, specifically, coating, spraying or dipping.
  • the surface treatment layer may be formed by treating and drying the surface of the positive electrode active material using a method such as the above.
  • the coating element containing the raw material is the same as defined above, the solvent may be appropriately selected according to the type of the raw material, it can be used without particular limitation as long as it can dissolve or uniformly disperse the raw material.
  • the surface treatment layer forming process may be performed once, or may be performed two or more times so that a surface treatment layer having a multilayer structure of two or more layers may be formed on the surface of the cathode active material. Specifically, after the primary surface treatment using the boron-containing raw material for the positive electrode active material, the secondary surface treatment process using the aluminum-containing raw material may be performed on the resulting first surface treatment layer-forming positive electrode material.
  • the cathode active material prepared according to the above-described manufacturing method includes a buffer layer including pores between the core and the shell by controlling pH, concentration and rate of the reactants, thereby minimizing destruction of the active material during rolling in the electrode manufacturing process, Maximizing the reactivity with the electrolyte, and the shell forming particles have a crystal structure of an orientation that facilitates insertion and removal of lithium ions can improve the resistance and life characteristics of the secondary battery.
  • the positive electrode active material may control the specific surface area, the average particle diameter, and the specific surface area together to further improve battery capacity characteristics. Additionally, when the distribution of the transition metal is controlled throughout the active material particles, high capacity, It can exhibit high lifespan and thermal stability while minimizing performance degradation at high voltages.
  • a cathode and a lithium secondary battery including the cathode active material are provided.
  • the positive electrode is formed on the positive electrode current collector and the positive electrode current collector, and includes a positive electrode active material layer containing the positive electrode active material.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • carbon, nickel, titanium on a surface of aluminum or stainless steel Surface treated with silver, silver or the like can be used.
  • the positive electrode current collector may have a thickness of about 3 to 500 ⁇ m, and may form fine irregularities on the surface of the current collector to increase adhesion of the positive electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • the cathode active material layer may include a conductive material and a binder together with the cathode active material described above.
  • the conductive material is used to impart conductivity to the electrode.
  • the conductive material may be used without particular limitation as long as it has electronic conductivity without causing chemical change. Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives, and the like, or a mixture of two or more kinds thereof may be used.
  • the conductive material may typically be included in an amount of 1 to 30% by weight based on the total weight of the positive electrode active material layer.
  • the binder serves to improve adhesion between the cathode active material particles and adhesion between the cathode active material and the current collector.
  • specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC).
  • the binder may be included in an amount of 1 to 30% by weight based on the total weight of the positive electrode active material layer.
  • the positive electrode may be manufactured according to a conventional positive electrode manufacturing method except for using the positive electrode active material described above.
  • the positive electrode active material and optionally, a composition for forming a positive electrode active material layer including a binder and a conductive material may be prepared by applying a positive electrode current collector, followed by drying and rolling.
  • the type and content of the cathode active material, the binder, and the conductive material are as described above.
  • the solvent may be a solvent generally used in the art, and may include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone or acetone. Water, and the like, one of these alone or a mixture of two or more thereof may be used.
  • the amount of the solvent is sufficient to dissolve or disperse the positive electrode active material, the conductive material, and the binder in consideration of the coating thickness of the slurry and the production yield, and to have a viscosity that can exhibit excellent thickness uniformity during application for the production of the positive electrode. Do.
  • the positive electrode may be prepared by casting the composition for forming the positive electrode active material layer on a separate support, and then laminating the film obtained by peeling from the support onto a positive electrode current collector.
  • an electrochemical device including the anode is provided.
  • the electrochemical device may be specifically a battery or a capacitor, and more specifically, may be a lithium secondary battery.
  • the lithium secondary battery specifically includes a positive electrode, a negative electrode positioned to face the positive electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the positive electrode is as described above.
  • the lithium secondary battery may further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • the negative electrode current collector may be formed on a surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper, or stainless steel. Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy and the like can be used.
  • the negative electrode current collector may have a thickness of about 3 to 500 ⁇ m, and like the positive electrode current collector, fine concavities and convexities may be formed on the surface of the current collector to enhance the bonding force of the negative electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • the negative electrode active material layer optionally includes a binder and a conductive material together with the negative electrode active material.
  • the negative electrode active material layer is coated with a negative electrode active material, and optionally a composition for forming a negative electrode including a binder and a conductive material on a negative electrode current collector and dried, or casting the negative electrode forming composition on a separate support It may be produced by laminating a film obtained by peeling from this support onto a negative electrode current collector.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fibers, and amorphous carbon;
  • Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys;
  • Metal oxides capable of doping and undoping lithium such as SiO x (0 ⁇ x ⁇ 2), SnO 2 , vanadium oxide, lithium vanadium oxide;
  • a composite including the metallic compound and the carbonaceous material such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the anode active material.
  • the carbon material both low crystalline carbon and high crystalline carbon can be used. Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is amorphous, plate, scaly, spherical or fibrous natural graphite or artificial graphite, Kish graphite (Kish) graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch High-temperature calcined carbon such as derived cokes is typical.
  • the binder and the conductive material may be the same as described above in the positive electrode.
  • the separator is to separate the negative electrode and the positive electrode and to provide a passage for the movement of lithium ions, if it is usually used as a separator in a lithium secondary battery can be used without particular limitation, in particular to the ion movement of the electrolyte It is desirable to have a low resistance against the electrolyte and excellent electrolytic solution-moisture capability.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used.
  • a porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
  • examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. It doesn't happen.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent may be an ester solvent such as methyl acetate, ethyl acetate, ⁇ -butyrolactone or ⁇ -caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate, Carbonate solvents such as PC); Alcohol solvents such as ethyl alcohol and isopropyl alcohol; Nitriles such as R-CN (R is a C2 to C20 linear, branched or cyclic hydrocarbon group, which may include a
  • carbonate-based solvents are preferable, and cyclic carbonates having high ionic conductivity and high dielectric constant (for example, ethylene carbonate or propylene carbonate) that can improve the charge and discharge performance of a battery, and low viscosity linear carbonate compounds (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate and the like is more preferable.
  • the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of about 1: 1 to about 1: 9, so that the performance of the electrolyte may be excellent.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB (C 2 O 4 ) 2 and the like can be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc. for the purpose of improving battery life characteristics, reducing battery capacity, and improving discharge capacity of the battery.
  • haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc.
  • Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included. In this case, the additive may be included in 0.1 to 5% by weight based on the total weight of the electrolyte.
  • the lithium secondary battery including the cathode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate
  • portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles ( It is useful for electric vehicle fields such as hybrid electric vehicle (HEV).
  • HEV hybrid electric vehicle
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or the battery pack is a power tool (Power Tool); Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • Power Tool Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • nickel sulphate, cobalt sulphate and manganese sulphate were mixed in water at a molar ratio of 80:10:10 to prepare a mixed solution of 2M concentration of the first metal raw material.
  • nickel sulphate, cobalt sulphate and manganese sulphate were mixed in water at a molar ratio of 40:30:30 to prepare a mixed solution of 2M concentration of the second metal raw material.
  • the container containing the mixed solution of the first metal raw material was connected to enter the reactor, and the container containing the mixed solution of the second metal raw material was connected to enter the container containing the mixed solution of the first metal raw material.
  • 4M NaOH solution and 7% NH 4 OH aqueous solution were prepared and connected to the reactor, respectively.
  • the particles of the metal-containing hydroxide prepared above were mixed with lithium hydroxide and tungsten oxide in a molar ratio of 1: 1.07: 0.2 as a lithium raw material, and then heat-treated at 300 ° C. for 10 hours, at 500 ° C. for 10 hours, and at 820 ° C. for 10 hours. .
  • a three-dimensional network structure was formed to prepare a cathode active material including a core, a shell, and a buffer layer structure.
  • alumina (Al 2 O 3 ) particles having a size of 100 nm were mixed with respect to the cathode active material prepared in Example 1, and a heat treatment was performed at 400 ° C. for 5 hours to form a surface treatment layer.
  • boric acid manufactured by Samjung Pure Chemical Co., Ltd.
  • a heat treatment was performed at 400 ° C. for 5 hours to form a surface treatment layer.
  • the resulting nickel manganese cobalt-based composite metal hydroxide particles were mixed with lithium hydroxide as a lithium raw material in a molar ratio of 1: 1.07, and then heat-treated at 820 ° C. for 10 hours under an oxygen atmosphere (20% oxygen partial pressure) to prepare a cathode active material. It was.
  • a lithium secondary battery was manufactured using the cathode active materials prepared in Example 1 and Comparative Example 1, respectively.
  • the positive electrode active material, the carbon black conductive material and the PVdF binder prepared in Example 1 and Comparative Example 1 were mixed in an N-methylpyrrolidone solvent in a ratio of 95: 2.5: 2.5 by weight in a composition for forming a positive electrode.
  • Viscosity: 5000 mPa ⁇ s was prepared, which was applied to an aluminum current collector, dried at 130 ° C., and rolled to prepare a positive electrode.
  • a negative electrode active material a natural graphite, a carbon black conductive material, and a PVdF binder are mixed in an N-methylpyrrolidone solvent in a weight ratio of 85: 10: 5 to prepare a composition for forming a negative electrode, which is applied to a copper current collector. To prepare a negative electrode.
  • An electrode assembly was manufactured between the positive electrode and the negative electrode prepared as described above through a separator of porous polyethylene, the electrode assembly was placed in a case, and an electrolyte solution was injected into the case to prepare a lithium secondary battery.
  • Example 1 The precursor prepared in Example 1 was observed with a field emission scanning electron microscopy (FE-SEM), and the diameters and volumes of the core and the shell, and the ratios in the active material were calculated from the results. The results are shown in Table 1 below.
  • FE-SEM field emission scanning electron microscopy
  • the cathode active material prepared in Example 1 was processed using ion milling, and then the cross-sectional structure of the cathode active material was observed using FE-SEM. The results are shown in FIG.
  • the porosity in the positive electrode active material was about 22% by volume.
  • Example 2 the component analysis was performed for the positive electrode active material using EPMA. The results are shown in Table 2 below. Scan position in the following table, as shown in Figure 2, was determined from scan 1 to scan 5 in order.
  • the average particle diameter, specific surface area, and rolling density of the cathode active materials prepared in Examples 1 to 3 and Comparative Example 1 were measured, and the results are shown in Table 3 below.
  • Average particle diameter (D 50 ) 50% of the particle size distribution in the measuring device after being introduced into a laser diffraction particle size measuring device (for example, Microtrac MT 3000) and irradiating an ultrasonic wave of about 28 kHz at an output of 60 W.
  • the average particle diameter (D 50 ) in the reference can be calculated.
  • BET specific surface area The specific surface area of the positive electrode active material is measured by the BET method, specifically, it can be calculated from the amount of nitrogen gas adsorption under liquid nitrogen temperature (77K) using BELSORP-mino II manufactured by BEL Japan. Can be.
  • Ni disorder and average particle size (crystal size) of the crystal grains Measured using an X-ray diffraction (XRD) analyzer.
  • Example 1 Example 2 Example 3 Comparative Example 1 Average particle diameter (D50) ( ⁇ m) 9.9 9.8 9.8 10 BET specific surface area (m 2 / g) 0.31 0.32 0.27 0.25 Porosity (%) 22 22 22 0 Ni disorder (%) 1.0 1.1 1.0 3.5 Average Particle Size of Crystal Particles (nm) 110 105 110 250
  • the positive electrode active materials of Examples 1 to 3 according to the present invention exhibited an increased BET specific surface area and porosity while having an average particle diameter equivalent to that of Comparative Example 1 due to its unique structure.
  • the BET specific surface area value was numerically represented by the boron component to uniformly form a protective film on the surface of the active material to mitigate surface curvature. The results were slightly reduced compared to.
  • the cathode active materials of Examples 1 to 3 according to the present invention showed lower Ni disorder and crystal grain size than Comparative Example 1 in terms of crystal grains.
  • Coin cells using a negative electrode of Li metal
  • a constant current (CC) of 4.25 V was obtained.
  • the battery was charged at a constant voltage (CV) of 4.25V and charged for the first time until the charging current became 0.05mAh.
  • the battery was discharged to a constant current of 0.1C until 3.0V, and the discharge capacity of the first cycle was measured. Then, the charge and discharge capacity, charge and discharge efficiency and rate characteristics were evaluated by varying the discharge conditions at 2C. The results are shown in Table 4 below.
  • the lithium secondary battery containing the positive electrode active material of Examples 1 to 3 compared with the lithium secondary battery containing the positive electrode active material of Comparative Example 1 exhibits an improved effect in terms of charge and discharge efficiency, rate characteristics and capacity characteristics It was.
  • the lithium secondary battery was charged / discharged 800 times at a temperature of 25 ° C. under a condition of 1 C / 2 C within a 2.8 V to 4.15 V driving voltage range.
  • cycle capacity retention which is the ratio of the discharge capacity at the 800th cycle with respect to the resistance at room temperature (25 ° C) and low temperature (-30 ° C) and the initial capacity after 800 charge / discharge cycles at room temperature Were respectively measured and shown in Table 5 below.
  • Example 1 1.34 1.45 95.0
  • Example 2 1.30 1.49 96.5
  • Example 3 1.25 1.40 96.7 Comparative Example 1 1.58 1.77 88.5

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명에서는 코어; 상기 코어를 둘러싸며 위치하는 쉘; 및 상기 코어와 쉘 사이에 위치하며, 상기 코어와 쉘을 연결하는 3차원 망목구조체 및 공극을 포함하는 완충층을 포함하고, 상기 코어, 쉘 및 완충층에서의 3차원 망목구조체는 각각 독립적으로 리튬 니켈망간코발트계 복합금속 산화물을 포함하고, BET 비표면적이 0.2m2/g 내지 0.5m2/g이고, 기공도가 30부피% 이하이며, 평균 입자크기(D50)가 8㎛ 내지 15㎛로, 특이적인 구조와 함께 활물질 입자의 비표면적과 평균 입자 직경 그리고 기공도가 함께 제어됨으로써, 전극 제조시 압연공정에 의한 활물질의 파괴가 최소화되고, 전해액과의 반응성이 극대화되며, 또 쉘을 형성하는 입자가 리튬이온의 삽입 및 탈리가 용이한 배향의 결정구조를 가져 이차전지의 출력 특성 및 수명 특성을 향상시킬 수 있는 이차전지용 양극활물질 및 이를 포함하는 이차전지가 제공된다.

Description

이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
관련출원과의 상호인용
본 출원은 2016년 3월 4일자 한국특허출원 제2016-0026224호 및 2017년 3월 3일자 한국특허출원 제2017-0027879호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 전지의 충방전 특성을 개선시킬 수 있는 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
그러나, 리튬 이차전지는 충방전을 거듭함에 따라서 수명이 급속하게 떨어지는 문제점이 있다. 특히, 고온에서는 이러한 문제가 더욱 심각하다. 이러한 이유는 전지내부의 수분이나 기타 다른 영향으로 인해 전해질이 분해 되거나 활물질이 열화되고, 또한 전지의 내부저항이 증가되어 생기는 현상 때문이다.
이에 따라 현재 활발하게 연구 개발되어 사용되고 있는 리튬 이차전지용 양극활물질은 층상구조의 LiCoO2이다. LiCoO2는 수명특성 및 충방전 효율이 우수하여 가장 많이 사용되고 있지만, 구조적 안정성이 낮아 전지의 고용량화 기술에 적용되기에는 한계가 있다.
이를 대체하기 위한 양극활물질로서, LiNiO2, LiMnO2, LiMn2O4, LiFePO4, Li(NixCoyMnz)O2 등의 다양한 리튬 복합금속 산화물이 개발되었다. 이중, LiNiO2의 경우 높은 방전용량의 전지 특성을 나타내는 장점이 있으나, 간단한 고상반응으로는 합성이 어렵고, 열적 안정성 및 사이클 특성이 낮은 문제점이 있다. 또, LiMnO2, 또는 LiMn2O4 등의 리튬 망간계 산화물은 열적안전성이 우수하고, 가격이 저렴하다는 장점이 있지만, 용량이 작고, 고온 특성이 낮은 문제점이 있다. 특히, LiMn2O4의 경우 저가격 제품에 일부 상품화가 되어 있으나, Mn3 +로 인한 구조변형(Jahn-Teller distortion) 때문에 수명특성이 좋지 않다. 또한, LiFePO4는 낮은 가격과 안전성이 우수하여 현재 하이브리드 자동차(hybrid electric vehicle, HEV)용으로 많은 연구가 이루어지고 있으나, 낮은 전도도로 인해 다른 분야에 적용은 어려운 실정이다.
이 같은 사정으로 인해, LiCoO2의 대체 양극활물질로 최근 가장 각광받고 있는 물질은 리튬 니켈망간코발트 산화물, Li(NixCoyMnz)O2 (이때, 상기 x, y, z는 각각 독립적인 산화물 조성 원소들의 원자분율로서, 0<x≤1, 0<y≤1, 0<z≤1, 0<x+y+z≤1임)이다. 이 재료는 LiCoO2보다 저가격이며 고용량 및 고전압에 사용될 수 있는 장점이 있으나, 율 특성(rate capability) 및 고온에서의 수명특성이 좋지 않은 단점을 갖고 있다.
이에 따라 리튬 복합금속 산화물 내 조성의 변화 또는 결정 구조의 제어를 통해 리튬 이차전지의 성능을 향상시킬 수 있는 양극 활물질의 제조방법이 절실히 요구되고 있는 실정이다.
본 발명이 해결하고자 하는 제1 과제는 상기와 같은 문제점을 해결하여, 전지의 충방전 특성을 개선시킬 수 있는 이차전지용 양극활물질 및 그 제조방법을 제공하는 것이다.
또, 본 발명이 해결하고자 하는 제2 과제는 상기 양극활물질을 포함하는 양극, 리튬 이차전지, 전지모듈 및 전지팩을 제공하는 것이다.
상기 과제를 해결하기 위하여 본 발명의 일 실시예에 따르면, 코어; 상기 코어를 둘러싸며 위치하는 쉘; 및 상기 코어와 쉘 사이에 위치하며, 상기 코어와 쉘을 연결하는 3차원 망목구조체 및 공극을 포함하는 완충층을 포함하고, 상기 코어, 쉘 및 완충층에서의 3차원 망목구조체는 각각 독립적으로 리튬 복합금속 산화물을 포함하며, BET 비표면적이 0.2m2/g 내지 0.5m2/g이고, 기공도가 30부피% 이하이며, 평균 입자크기(D50)가 8㎛ 내지 15㎛인 이차전지용 양극활물질이 제공된다.
또, 본 발명의 다른 일 실시예에 따르면, 니켈 원료물질, 코발트 원료물질 및 M1 원료물질(이때, M1은 Al 및 Mn으로 이루어진 군에서 선택되는 적어도 어느 하나의 원소임)을 포함하는 금속 원료물질의 혼합물에, 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 첨가하고 pH 11 내지 pH 13에서 공침반응시켜, 금속 함유 수산화물 또는 옥시수산화물의 씨드가 생성된 반응용액을 준비하는 단계; 상기 반응용액에 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 상기 반응용액의 pH가 8 이상 11 미만이 될 때까지 첨가하여 상기 금속 함유 수산화물 또는 옥시수산화물의 입자를 성장시키는 단계; 그리고 상기 성장된 금속 함유 수산화물 또는 옥시수산화물의 입자를 리튬 원료물질 및 M3 원료물질(이때, M3은 W, Mo 및 Cr로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소임)과 혼합한 후 열처리하는 단계를 포함하는, 상기한 이차전지용 양극활물질의 제조방법이 제공된다.
본 발명의 또 다른 일 실시예에 따르면, 상기한 양극활물질을 포함하는 이차전지용 양극, 리튬 이차전지, 전지모듈 및 전지팩이 제공된다.
기타 본 발명의 실시예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
본 발명에 따른 이차전지용 양극활물질은 코어-쉘 구조를 갖는 입자에서의 코어와 쉘 사이에 상기 코어 및 쉘과 연결된 망목 구조의 리튬 복합금속 산화물의 완충층이 더 형성된 특이적인 구조와 함께 활물질 입자의 비표면적과 평균 입자 직경 그리고 기공도가 함께 제어됨으로써, 전극 제조시 압연공정에 의한 활물질의 파괴가 최소화되고, 전해액과의 반응성이 극대화되며, 또 쉘을 형성하는 입자가 리튬이온의 삽입 및 탈리가 용이한 배향의 결정구조를 가져 이차전지의 출력 특성 및 수명 특성을 향상시킬 수 있다. 이에 따라 본 발명에 따른 양극활물질은 자동차용 전지 또는 전동공구용 전지 등과 같이 고용량, 고수명 및 열안정성이 요구되는 전지, 특히 자동차용 전지와 같이 고전압시 성능 열화를 최소화가 요구되는 전지에서의 양극활물질로서 유용하다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 이차전지용 양극활물질을 개략적으로 나타낸 단면구조도이다.
도 2는 실시예 1에서 제조한 양극활물질을 전계 방사형 전자현미경(field emission scanning electron microscopy, FE-SEM)으로 관찰한 사진이다(관찰배율=30000배).
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 실시예에 따른 이차전지용 양극활물질은,
코어;
상기 코어를 둘러싸며 위치하는 쉘; 및
상기 코어와 쉘 사이에 위치하며, 상기 코어와 쉘을 연결하는 3차원 망목구조체 및 공극을 포함하는 완충층을 포함하고,
상기 코어, 쉘 및 완충층에서의 3차원 망목구조체는 각각 독립적으로 리튬 복합금속 산화물을 포함하며,
BET 비표면적이 0.2m2/g 내지 0.5m2/g이고, 기공도가 30부피% 이하이며, 평균 입자크기(D50)가 8㎛ 내지 15㎛이다.
이와 같이, 본 발명의 일 실시예에 따른 이차전지용 양극활물질은, 코어-쉘 구조를 갖는 입자에서, 코어와 쉘 사이에 상기 코어 및 쉘과 연결된 3차원 망목 구조의 완충층이 더 형성된 구조를 가짐으로써, 전극 제조시 압연공정에 의한 활물질의 파괴를 최소화하고, 전해액과의 반응성을 극대화하며, 또 쉘을 형성하는 입자가 리튬이온의 삽입 및 탈리가 용이한 배향의 결정구조를 가져 이차전지의 출력 특성 및 수명 특성을 향상시킬 수 있다. 또 상기 양극활물질은 입자의 비표면적과 평균 입자 직경 그리고 기공도가 함께 제어됨으로써 전지 적용시 충방전 특성을 더욱 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 이차전지용 양극활물질을 개략적으로 나타낸 단면 구조도이다. 도 1은 본 발명을 설명하기 위한 일 예일 뿐 본 발명이 이에 한정되는 것은 아니다.
도 1을 참조하여 설명하면, 본 발명의 일 실시예에 따른 이차전지용 양극활물질(10)은 코어(1), 상기 코어를 둘러싸는 쉘(2), 그리고 코어와 쉘 사이에 상기 코어를 둘러싸며 위치하는 완충층(3)을 포함하며, 상기 완충층(3)은 공극(3a)과 3차원 망목구조체(3b)를 포함한다.
구체적으로, 상기 양극활물질(10)에 있어서, 상기 코어(1)는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)로서 리튬 복합금속 산화물(이하 간단히 '제1리튬 복합금속 산화물'이라 함)을 포함한다.
상기 코어(1)는 상기한 제1리튬 복합금속 산화물의 단일 입자로 이루어질 수도 있고, 또는 상기 제1리튬 복합금속 산화물의 1차 입자들이 응집된 2차 입자로 이루어질 수도 있다. 이때 1차 입자들은 균일할 수도 있고, 불균일할 수도 있다.
또, 상기 양극활물질(10)에 있어서, 상기 쉘(2)은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)로서 리튬 복합금속 산화물(이하 간단히 '제2리튬 복합금속 산화물'이라 함)을 포함한다.
상기 제2리튬 복합금속 산화물은, 양극활물질의 중심에서부터 외부로 방사형으로 성장된, 결정배향성 입자일 수 있다. 이와 같이, 쉘을 형성하는 제2리튬 복합금속 산화물의 입자가 리튬의 삽입 및 탈리가 원활한 방향으로의 결정배향성을 가짐으로써, 동일 조성의 결정배향성을 갖지 않는 입자에 비해 높은 출력특성을 구현할 수 있다.
구체적으로, 상기 쉘(2)에 있어서 상기 제2리튬 복합금속 산화물의 입자는 육면체 등의 다각형, 원기둥, 섬유상 또는 인편상 등의 다양한 형상을 가질 수 있다. 보다 구체적으로 상기 제2리튬 복합금속 산화물의 입자는 1.5 이상의 종횡비(aspect ratio)를 갖는 섬유상일 수 있다. 쉘을 구성하는 제2리튬 복합금속 산화물의 입자의 종횡비가 1.5 미만이면 균일한 입자 성장이 이루어지지 않아 전기화학 특성이 저하될 우려가 있다. 이때, 상기 종횡비는 제2리튬 복합금속 산화물 입자의 중심을 지나는 장축방향의 길이에 대해, 상기 산화물 입자의 중심을 지나며 상기 장축에 수직하는 단축방향의 길이의 비를 의미한다.
또, 상기 쉘(2)은 제2리튬 복합금속 산화물의 입자 사이에 형성되는 공극을 더 포함할 수도 있다.
한편, 상기한 코어(1)와 쉘(2) 사이에는, 공극(3a) 및 상기 코어와 쉘 사이를 연결하는 3차원 망목구조체(3b)를 포함하는 완충층(3)이 위치한다.
상기 완충층(3)에 있어서, 공극(3a)은 활물질의 제조시 반응물의 pH를 제어함에 따라 활물질 입자가 중공형 구조로 변환되는 과정에서 형성되는 것으로, 상기 코어(1)와 쉘(2) 사이에 공간을 형성하여 전극 제조를 위한 압연시 완충작용을 한다. 또 양극활물질 내부로까지 전해액이 용이하게 침투하여 코어와 반응할 수 있도록 함으로써 활물질의 전해액과의 반응면적을 증가시키는 역할을 할 수 있다.
이와 같이 완충층 내 형성되는 공극(3a)과 함께, 상기 쉘 내 포함되는 리튬 복합금속 산화물 입자간에 형성될 수 있는 공극을 선택적으로 더 포함할 수 있다. 상기 양극활물질은, 구체적으로 양극활물질 총 부피에 대하여 30부피% 이하, 보다 구체적으로는 2 내지 30부피%의 기공도를 나타낼 수 있다. 상기 범위 내의 기공도를 가짐으로써, 활물질의 기계적 강도의 저하 없이 우수한 완충작용 및 전해액과의 반응면적 증가 효과를 나타낼 수 있다. 또, 상기 공극 형성에 따른 개선효과의 현저함을 고려할 때 상기 양극활물질은 양극활물질 총 부피에 대하여 5 내지 25부피%의 기공도를 나타낼 수 있다. 이때 양극활물질의 기공도는 집속이온빔(focused ion beam, FIB)을 이용한 입자의 단면 분석 또는 수은압입법에 의해 측정할 수 있다.
또, 상기 완충층(3)에 있어서, 3차원 망목구조체(3b)는 활물질의 제조시 활물질 입자가 중공형 구조로 변환되며 내부 코어를 생성하는 과정에서 형성되는 것으로, 코어와 쉘 사이에 연결되어 코어(1)와 쉘(2) 사이의 공간을 지지하는 역할을 한다. 이에 따라 상기 3차원 망목구조체(3b)는 코어(1) 및 쉘(2)과 마찬가지로 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)로서 리튬 복합금속 산화물 (이하 간단히 '제3리튬 복합금속 산화물'이라 함)을 포함한다.
상기와 같은 구조를 갖는 본 발명의 일 실시예에 따른 양극활물질(10)은, 리튬 복합금속 산화물을 포함하되, 상기 전이금속 산화물에서의 리튬과 복합금속의 몰비(Li/Me몰비)가 1 이상인 것일 수 있다.
보다 구체적으로, 상기 코어, 쉘 및 완충층에 포함되는 제1 내지 제3의 리튬 복합금속 산화물은 각각 독립적으로 하기 화학식 1의 화합물을 포함할 수 있다.
[화학식 1]
LiaNi1 -x- yCoxM1yM3zM2wO2
(상기 화학식 1에서, M1은 Al 및 Mn으로 이루어진 군에서 선택되는 적어도 어느 하나이고, M2는 Zr, Ti, Mg, Ta 및 Nb로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소이며, 그리고 M3은 W, Mo 및 Cr로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소이고, 1.0≤a≤1.5, 0<x≤0.5, 0<y≤0.5, 0.0005≤z≤0.03, 0≤w≤0.02, 0<x+y≤0.7이다)
상기 화학식 1의 리튬 복합금속 산화물의 조성은 활물질 전체의 평균 조성이다.
본 발명의 일 실시예에 따른 상기 양극활물질은, 상기한 화학식 1의 조성을 갖는 리튬 복합금속 산화물을 포함함으로써 우수한 구조 안정성을 가져 전지의 수명 특성을 향상시킬 수 있다.
구체적으로, 상기 화학식 1의 리튬 복합금속 산화물에 있어서, Li은 a에 해당하는 함량, 즉 1.0≤a≤1.5으로 포함될 수 있다. a가 1.0 미만이면 용량이 저하될 우려가 있고, 1.5를 초과하면 소성 공정에서 입자가 소결되어 버려, 활물질 제조가 어려울 수 있다. Li 함량 제어에 따른 양극활물질의 용량 특성 개선 효과의 현저함 및 활물질 제조시 소결성의 발란스를 고려할 때 상기 Li는 보다 구체적으로 1.0≤a≤1.15의 함량으로 포함될 수 있다.
또, 상기 화학식 1의 리튬 복합금속 산화물에 있어서, Ni는 1-x-y에 해당하는 함량, 즉 0.3≤1-x-y<1의 함량으로 포함될 수 있다. 1-x-y 가 0.3 미만일 경우 용량 특성이 저하될 우려가 있고, 또 1 이상일 경우 고온안정성 저하의 우려가 있다. Ni 포함에 따른 용량 특성 개선 효과의 현저함을 고려할 때, 상기 Ni는 보다 구체적으로 0.5≤1-x-y<0.9의 함량으로 포함될 수 있다.
또, 상기 화학식 1의 리튬 복합금속 산화물에 있어서, Co는 x에 해당하는 함량, 즉 0<x≤0.5의 함량으로 포함될 수 있다. x가 0일 경우 용량 및 출력 특성이 저하될 우려가 있고, 또 0.5를 초과할 경우 비용 증가의 우려가 있다. Co 포함에 따른 용량 특성 개선 효과의 현저함을 고려할 때, 상기 Co는 보다 구체적으로 0.10≤x≤0.35의 함량으로 포함될 수 있다.
상기 M1은 y에 해당하는 함량, 즉 0<y≤0.5의 함량으로 포함될 수 있다. y가 0이면 M1 포함에 따른 개선효과를 얻을 수 없고, 0.5를 초과하면 오히려 전지의 출력 특성 및 용량 특성이 저하될 우려가 있다. M1 원소의 포함에 따른 전지 특성 개선 효과의 현저함을 고려할 때, 상기 M1은 보다 구체적으로 0<y≤0.2의 함량으로 포함될 수 있다.
또, 상기 화학식 1의 리튬 복합금속 산화물에 있어서 M3은 주기율표 6족(VIB족)에 해당하는 원소로서, 활물질 입자의 제조시 소성 공정 중 입자 성장을 억제하는 역할을 한다. 상기 M3은 양극활물질의 결정 구조에 있어서, Ni, Co 또는 M1의 일부를 치환하여 이들 원소가 존재해야 할 위치에 존재할 수도 있고, 또는 리튬과 반응하여 리튬 산화물을 형성할 수도 있다. 이에 따라 M3의 함량 및 투입 시기의 조절을 통해 결정립의 크기를 제어할 수 있다. 구체적으로, 상기 M3은 W, Mo 및 Cr로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소일 수 있으며, 보다 구체적으로는 W 및 Cr중 적어도 어느 하나의 원소일 수 있다. 이중에서도 M3이 W인 경우에는 출력 특성 면에서 우수하고, Cr인 경우에는 수명 안정성 면에서 보다 우수할 수 있다.
이와 같은 상기 M3은 상기 화학식 1의 리튬 복합금속 산화물 중 z에 해당하는 함량, 즉 0.0005≤z≤0.03으로 포함될 수 있다. z가 0.0005 미만일 경우 전술한 특성을 충족하는 활물질의 구현이 용이하지 않고, 그 결과 출력 및 수명 특성 개선효과가 미미할 수 있다. 또, z가 0.03을 초과할 경우 결정구조의 왜곡이나 붕괴를 유발할 수 있고, 리튬 이온의 이동을 방해함으로써 전지 용량을 저하시킬 수 있다. M3 원소의 함량 제어에 따른 입자 구조 구현 및 그에 따른 전지 특성 개선효과의 현저함을 고려할 때 보다 구체적으로, 0.001≤z≤0.01일 수 있다.
또, 상기 화학식 1의 리튬 복합금속 산화물, 또는 상기 리튬 복합금속 산화물에서의 Ni, Co 및 M1의 원소는, 활물질 내 금속 원소의 분포 조절을 통한 전지 특성 개선을 위해, 또 다른 원소, 즉 M2에 의해 일부 치환되거나 도핑될 수도 있다. 상기 M2는 구체적으로 Zr, Ti, Mg, Ta 및 Nb로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소일 수 있으며, 보다 구체적으로는 Ti 또는 Mg일 수 있다.
상기 M2의 원소는 양극활물질의 특성을 저하시키지 않는 범위 내에서 w에 해당하는 양, 즉 0≤w≤0.02의 함량으로 포함될 수 있다.
또, 상기 양극활물질에 있어서, 상기 화학식 1의 리튬 복합금속 산화물내 포함되는 상기 니켈, M1 및 코발트 중 적어도 어느 하나의 금속원소는, 상기 코어, 쉘 및 활물질 입자 전체 중 어느 하나의 영역 내에서 증가하거나 또는 감소하는 농도구배를 나타낼 수 있다. 구체적으로 상기 양극활물질 내 포함된 니켈, 코발트 및 M1은 양극활물질 입자의 중심에서부터 입자 표면까지, 또는 코어 및 셀 내에서 각각 농도 프로파일의 평균 기울기가 양(+) 또는 음(-)이 되도록 분포될 수 있다.
본 발명에 있어서, 금속원소의 농도구배 또는 농도 프로파일이란 X축이 입자표면에서 중심부의 깊이를 나타내고, Y축이 금속원소의 함유량을 나타낼 때, 입자 표면에서 중심부의 깊이에 따른 금속원소의 함유량을 나타내는 그래프를 의미한다. 일례로, 농도 프로파일의 평균 기울기가 양이라는 것은 입자 중심부 구간이 입자 표면 부분 보다 해당 금속 원소가 상대적으로 많이 위치하는 것을 의미하고, 평균 기울기가 음이라는 것은 입자 중심부 구간 보다 입자 표면 부분에 금속원소가 상대적으로 많이 위치하고 있는 것을 의미한다. 본 발명에 있어서, 활물질 내에서의 금속의 농도구배 및 농도 프로파일은 X선 광전자 분광법(X-ray Photoelectron Spectroscopy(XPS), ESCA(Electron Spectroscopy for Chemical Analysis)라고도 함), 전자선 마이크로 애널라이저(Electron Probe Micro Analyzer, EPMA), 유도결합 플라스마-원자 방출 분광법(Inductively Coupled Plasma - Atomic Emission Spectrometer, ICP-AES), 또는 비행 시간형 2차 이온 질량분석기(Time of Flight Secondary Ion Mass Spectrometry, ToF-SIMS) 등의 방법을 이용하여 확인할 수 있다. 예를 들어, XPS를 이용하여 활물질내 금속원소의 프로파일을 확인하는 경우, 입자 표면에서 중심부 방향으로 활물질을 에칭하면서, 에칭시간(etching time) 별로 금속원소비(atomic ratio)를 측정하고, 이로부터 금속원소의 농도 프로파일을 확인할 수 있다.
구체적으로, 상기 니켈, 코발트 및 M1 중 적어도 하나의 금속원소는, 상기 코어, 쉘 및 활물질 입자 전체 중 어느 하나의 영역 내에서, 보다 구체적으로는 활물질 입자 전체에 걸쳐 금속의 농도가 연속적으로 변화하는 농도구배를 가질 수 있으며, 금속원소의 농도구배 기울기는 하나 이상의 값을 나타낼 수 있다. 이와 같이 연속적인 농도구배를 가짐으로써, 중심으로부터 표면에 이르기까지 급격한 상 경계 영역이 존재하지 않아 결정 구조가 안정화되고 열 안정성이 증가하게 된다. 또, 금속의 농도구배 기울기가 일정할 경우, 구조 안정성 개선효과가 더욱 향상될 수 있다. 또, 농도구배를 통해 활물질 입자 내에서의 각 금속의 농도를 달리함으로써, 해당 금속의 특성을 용이하게 활용하여 양극활물질의 전지성능 개선효과를 더욱 향상시킬 수 있다.
본 발명에 있어서 "금속의 농도가 연속적으로 농도 구배를 나타낸다"란, 금속의 농도가 입자 전체에 걸쳐 점진적으로 변화하는 농도 분포로 존재한다는 것을 의미한다. 구체적으로, 상기 농도 분포는 입자 내에서 1㎛ 당 금속 농도의 변화가, 양극활물질내 포함되는 해당 금속의 총 원자량을 기준으로, 각각 0.1 내지 30원자%, 보다 구체적으로는 0.1 내지 20원자%, 보다 더 구체적으로는 1 내지 10원자%의 차이가 있는 것일 수 있다.
보다 구체적으로, 구체적으로, 본 발명의 일 실시예에 따른 상기 양극활물질에 있어서, 상기 니켈, 코발트 및 M1 중 적어도 어느 하나의 금속원소는 활물질 입자 전체에 걸쳐 연속적으로 변화하는 농도구배를 나타내고, 상기 활물질 입자 내에서의 금속원소의 농도구배 기울기는 하나 이상의 값을 나타낼 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질에 있어서, 상기 니켈, 코발트 및 M1 중 적어도 어느 하나의 금속원소는 코어 및 쉘 내에서 각각 독립적으로 연속적으로 변화하는 농도구배를 나타내고, 상기 코어 및 쉘 내에서의 금속원소의 농도구배 기울기는 서로 동일할 수도 또는 상이할 수도 있다.
보다 구체적으로는, 본 발명의 일 실시예에 따른 상기 양극활물질에 있어서, 양극활물질내 포함된 니켈의 농도는 활물질 입자의 중심에서부터 입자의 표면 방향으로 연속적인 농도구배를 가지면서 감소하거나; 또는 코어 및 쉘 내에서 각각 독립적으로 활물질 입자의 중심에서부터 입자의 표면 방향으로 연속적인 농도구배를 가지면서 감소할 수 있다. 이때 상기 니켈의 농도구배 기울기는 양극활물질 입자의 중심에서부터 표면까지, 또는 코어 및 쉘 내에서 각각 일정할 수 있다. 이와 같이 활물질 입자 내 입자 중심에서 니켈의 농도가 고농도를 유지하고, 입자 표면측으로 갈수록 농도가 감소하는 농도 구배를 포함하는 경우, 열안정성을 나타내면서도 용량의 감소를 방지할 수 있다.
또, 본 발명의 일 실시예에 따른 양극활물질에 있어서, 양극활물질내 포함된 코발트의 농도는 활물질 입자의 중심에서부터 입자의 표면 방향으로 연속적인 농도구배를 가지면서 증가하거나; 또는 코어 및 쉘 내에서 각각 독립적으로 활물질 입자의 중심에서부터 입자의 표면 방향으로 연속적인 농도구배를 가지면서 증가할 수 있다. 이때 상기 코발트의 농도구배 기울기는 양극활물질 입자의 중심에서부터 표면까지, 또는 코어 및 쉘 내에서 각각 일정할 수 있다. 이와 같이 활물질 입자 내에 입자 중심에서 코발트의 농도가 저농도를 유지하고, 표면측으로 갈수록 농도가 증가하는 농도구배를 포함하는 경우, 코발트의 사용량을 감소시키면서도 용량의 감소를 방지할 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질에 있어서, 양극활물질내 포함된 M1의 농도는 활물질 입자의 중심에서부터 입자의 표면 방향으로 연속적인 농도구배를 가지면서 증가하거나; 또는 코어 및 쉘 내에서 각각 독립적으로 활물질 입자의 중심에서부터 입자의 표면 방향으로 연속적인 농도구배를 가지면서 증가할 수 있다. 이때 상기 M1의 농도구배 기울기는 양극활물질 입자의 중심에서부터 표면까지, 또는 코어 및 쉘 내에서 각각 일정할 수 있다. 이와 같이, 활물질 입자 내에 입자 중심에서 M1의 농도가 저농도를 유지하고, 입자 표면측으로 갈수록 농도가 증가하는 농도구배를 포함하는 경우, 용량 감소 없이 열안정성을 개선시킬 수 있다. 보다 구체적으로 상기 M1은 망간(Mn)일 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질에 있어서, 상기 코어 내에 포함되는 니켈의 함량이 쉘 내에 포함되는 니켈의 함량 보다 많을 수 있으며, 구체적으로 상기 코어는 코어 내 포함되는 금속원소 총 원자량에 대하여 60원자% 이상 100원자% 미만의 함량으로 니켈을 포함하고, 상기 쉘은 쉘 내 포함되는 금속원소 총 원자량에 대하여 30 내지 60원자% 미만의 함량으로 니켈을 포함할 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질에 있어서, 상기 코어 내에 포함되는 코발트의 함량이 쉘 내에 포함되는 코발트의 함량 보다 적을 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질에 있어서, 상기 코어 내에 포함되는 M1의 함량이 쉘 내에 포함되는 M1의 함량 보다 적을 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질에 있어서, 니켈, 코발트 및 M1은 활물질 입자 전체에 걸쳐 각각 독립적으로, 연속적으로 변화하는 농도구배를 나타내고, 상기 니켈의 농도는 활물질 입자의 중심에서부터 표면 방향으로 연속적인 농도구배를 가지면서 감소하고, 그리고 상기 코발트 및 M1의 농도는 각각 독립적으로 활물질 입자의 중심에서부터 표면 방향으로 연속적인 농도구배를 가지면서 증가할 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질에 있어서, 니켈, 코발트 및 M1은 코어 및 쉘 내에서 각각 독립적으로 연속적으로 변화하는 농도구배를 나타내고, 상기 니켈의 농도는 코어의 중심에서부터 코어와 완충층의 계면까지, 그리고 완충층과 쉘의 계면에서부터 쉘 표면까지 연속적인 농도구배를 가지면서 감소하고, 그리고 상기 코발트 및 M1의 농도는 각각 독립적으로 코어의 중심에서부터 코어와 완충층의 계면까지, 그리고 완충층과 쉘의 계면에서부터 쉘 표면까지 연속적인 농도구배를 가지면서 증가할 수 있다.
이와 같이, 활물질 내에 부분적으로 또는 전체에 걸쳐 양극활물질 입자의 표면측으로 갈수록 니켈의 농도는 감소하고, 코발트 및 M1의 농도는 증가하는 조합된 농도구배를 포함함으로써, 용량 특성을 유지하면서도 열안정성을 나타낼 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질은 결정 입자의 평균 크기가 200nm 이하, 구체적으로는 60nm 내지 200nm인 다결정 리튬 복합금속 산화물 입자를 포함할 수 있다.
상기 양극활물질에서의 결정 입자의 평균 크기는 그 제조시 상기 리튬 복합금속 산화물 내 포함되는 M3 원소의 함량과 소성 조건의 제어를 통해, 고출력 특성을 나타낼 수 있도록 최적화된 것이다. 구체적으로, 상기 다결정 리튬 복합금속 산화물을 구성하는 결정 입자의 평균 크기는 60nm 내지 150nm이며, 결정 크기 제어에 따른 출력 특성 개선효과의 현저함을 고려할 때, 결정 입자의 평균 크기는 보다 구체적으로는 80nm 내지 120nm일 수 있다.
본 발명에 있어서, 다결정(polycrystal)이란 둘 이상의 결정 입자들이 모여서 이루어진 결정체를 의미한다. 또 본 발명에 있어서, 상기 다결정체를 이루는 결정 입자들은 1차 입자를 의미하고, 상기 다결정체는 이러한 1차 입자가 응집된 2차 입자의 형태를 의미한다.
또, 본 발명에 있어서, 결정 입자의 평균 크기는 상기 리튬 복합금속 산화물 입자를 X-선 회절 분석을 이용하여 정량적으로 분석할 수 있다. 예를 들면, 상기 다결정 리튬 복합금속 산화물 입자를 홀더에 넣고, X-선을 상기 입자에 조사하여 나오는 회절 격자를 분석함으로써, 결정 입자의 평균 크기를 정량적으로 분석할 수 있다.
또, 본 발명의 일 실시예에 따른 양극활물질은 리튬 복합금속 산화물의 결정내 니켈(Ni) 무질서화도(Ni disorder)가 0.2 내지 3.0%일 수 있다. 이와 같이 낮은 Ni의 무질서화도를 가짐으로써 우수한 사이클 효율 및 용량 특성을 나타낼 수 있다. 보다 구체적으로는 0.5 내지 2%, 보다 더 구체적으로는 0.5 내지 1.5%일 수 있다.
본 발명에서 있어서, 상기 Ni 무질서화도는 양극활물질의 합성 중 Li 사이트로 무질서화되는 Ni 이온량으로부터 결정할 수 있다. 구체적으로는, 상기 Ni 무질서화도는 Rietveld법을 이용하여 원자 구조 분석을 수행하고, 이로부터 Li 사이트를 차지하는 Ni2 이온의 상대량을 분석하고, 또 시료 패턴으로부터 얻은 각 회절도로부터 산소 사이트의 산소에 의한 상대 점유율을 각각 분석한 후, 이로부터 합성중의 Li 사이트에 불규칙화되는 Ni 이온량의 결정할 수 있다. 이때, 산소 점유율 z는 개수 변수로서 해석하고, Li 및 Ni의 점유율은 두 개의 사이트간에서 변화할 수 있는 단일의 변수 x로 하며, 또 Li 사이트의 M1 이온에 의한 점유율과, Co 및 Ni 이온에 의한 Ni 사이트의 점유율은 상기 화학식 1로 표현되는 것으로서 일정하게 처리한다. 니켈 무질서화도(%Ni) x의 감소 및 상대 산소 농도 z의 증대에 따라 제1사이클 효율이 향상될 수 있다.
상기한 구조의 양극활물질은 비표면적 및 양극 합제밀도를 고려하여 8 내지 15㎛의 평균 입자 직경(D50)을 가질 수 있다. 양극활물질의 평균입자직경이 8㎛ 미만이면 리튬 복합금속 산화물 입자의 안정성 저하 및 양극활물질간 응집으로 인해 활물질층내 분산성 저하의 우려가 있고, 15㎛를 초과할 경우 양극활물질의 기계적 강도 저하 및 비표면적의 저하에 따른 출력 특성 저하의 우려가 있다. 또 그 특이적인 구조로 인한 율특성 및 초기용량 특성 개선효과를 고려할 때 9 내지 12㎛의 평균 입자 직경(D50)을 갖는 것일 수 있다.
본 발명에 있어서, 상기 양극활물질의 평균 입자 직경(D50)은 입경 분포의 50% 기준에서의 입경으로 정의할 수 있다. 본 발명에 있어서 양극활물질 입자의 평균 입자 직경(D50)은 예를 들어, 주사전자 현미경(scanning electron microscopy, SEM) 또는 전계 방사형 전자 현미경(field emission scanning electron microscopy, FE-SEM) 등을 이용한 전자 현미경 관찰이나, 또는 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 레이저 회절법에 의해 측정시, 보다 구체적으로는, 양극활물질의 입자를 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28 kHz의 초음파를 출력 60 W로 조사한 후, 측정 장치에 있어서의 입경 분포의 50% 기준에서의 평균 입자 직경(D50)을 산출할 수 있다.
또, 상기 양극활물질에 있어서, 양극활물질 입자의 반지름에 대한 코어 반지름의 비가 0 초과 0.4 미만이고, 양극활물질 입자의 반지름에 대한, 활물질 입자 중심에서 완충층과 쉘의 계면까지의 길이 비가 0 초과 0.7 미만일 수 있다.
또, 상기 양극활물질에 있어서, 하기 수학식 1에 따라 결정되는 쉘 영역이 0.2 내지 1 미만, 바람직하게는 0.4 내지 0.6일 수 있다.
[수학식 1]
쉘 영역=(양극활물질의 반지름-코어 반지름-완충층 두께)/양극활물질의 반지름
상기한 바와 같은 비율로 양극활물질내 코어, 완충층 및 쉘이 형성되고, 또 각각의 영역 내에서 금속원소의 농도구배가 형성될 경우, 활물질 입자내 니켈, 코발트 및 망간의 분포가 보다 최적화되어 제어됨으로써, 전극 제조시 압연공정에 의한 활물질의 파괴를 최소화하고, 전해액과의 반응성을 극대화하여 이차전지의 출력 특성 및 수명 특성을 더욱 더 향상시킬 수 있다.
본 발명에 있어서, 코어부의 입경은 집속 이온빔(forced ion beam, fib)를 이용한 입자 단면 분석을 통해 측정할 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질은 BET 비표면적이 0.2m2/g 내지 0.5m2/g인 것일 수 있다.
양극활물질의 BET 비표면적이 0.5m2/g를 초과하면 양극활물질간 응집으로 인한 활물질층내 양극활물질의 분산성 저하 및 전극내 저항 증가의 우려가 있고, 또 BET 비표면적이 0.2m2/g 미만일 경우, 양극활물질 자체의 분산성 저하 및 용량 저하의 우려가 있다. 본 발명에 있어서, 양극활물질의 비표면적은 BET(Brunauer-Emmett-Teller) 법에 의해 측정한 것으로서, 구체적으로는 BEL Japan 사 BELSORP-mino II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출할 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질은 상기한 평균 입자 직경 및 BET 비표면적 조건을 동시에 중촉함으로써 우수한 용량 및 충방전 특성을 나타낼 수 있다. 구체적으로, 상기 양극활물질은 8㎛ 내지 15㎛의 평균 입자 직경(D50) 및 0.2m2/g 내지 0.5m2/g의 BET 비표면적을 가질 수 있으며, 보다 구체적으로는 8㎛ 내지 10㎛의 평균 입자 직경(D50) 및 0.25m2/g 내지 0.35m2/g의 BET 비표면적, 보다 더 구체적으로는 8㎛ 이상 10㎛ 미만의 평균 입자 직경(D50) 및 0.25m2/g 초과 0.35m2/g 이하의 BET 비표면적을 가질 수 있다. 본 발명에 있어서, 양극활물질의 비표면적은 BET(Brunauer-Emmett-Teller) 법에 의해 측정한 것으로서, 구체적으로는 BEL Japan 사 BELSORP-mino II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출할 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질은, 활물질 입자의 표면 상에 붕소(B), 알루미늄(Al), 티타늄(Ti), 실리콘(Si), 주석(Sn), 마그네슘(Mg), 철(Fe), 비스무트(Bi), 안티모니(Sb) 또는 지르코늄(Zr) 등과 같이 활물질 표면을 보호할 수 있는 코팅 원소를 적어도 하나 이상 포함하는 표면처리층을 1층 이상 더 포함할 수 있다.
구체적으로, 상기 표면처리층은 상기한 코팅원소를 각각 포함하는 단일층 구조를 가질 수도 있고, 또는 단일층 내에 상기한 코팅원소 둘 이상을 포함할 수도 있다. 또, 상기 표면처리층은 상기한 코팅원소를 각각 포함하는 표면처리층이 1층 이상 반복 형성된 2층 이상의 다층 구조를 가질 수도 있다.
보다 구체적으로, 상기 코팅원소로 붕소를 사용할 경우, 붕소리튬산화물의 형태로 표면처리층을 형성할 수 있다. 특히 붕소리튬산화물은 양극활물질 표면에 균일하게 형성될 수 있기 때문에 보다 우수한 양극활물질 보호 효과를 나타낼 수 있다. 상기 붕소리튬산화물은 구체적으로 LiBO2 또는 Li2B4O7 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 포함될 수 있다.
또, 상기 표면처리층은 붕소를 100 ppm 내지 2000 ppm, 보다 구체적으로는 250 ppm 내지 1100 ppm의 양으로 포함할 수 있다.
또, 상기 표면처리층에 포함되는 붕소리튬산화물은 양극 활물질 총 중량에 대해 0.01 중량% 내지 1 중량%, 구체적으로는 0.05 중량% 내지 0.5 중량%의 양으로 포함될 수 있다. 상기 붕소리튬산화물이 0.01 중량% 미만인 경우, 리튬 복합금속 산화물의 표면에 형성되는 표면처리층이 얇아져 충방전시 전해액간의 부반응을 억제할 수 있는 효과가 미미할 수 있고, 1 중량%를 초과하는 경우, 붕소리튬산화물의 과량 함유로 인해 표면처리층의 두께가 두꺼워져, 이로 인한 저항 증가로 리튬 이차전지의 전기 화학적 특성의 저하를 야기시킬 수 있었다.
또, 본 발명의 일 실시예에 따르면, 상기 표면처리층은 리튬 복합금속 산화물을 포함하는 양극활물질을 붕소 함유 화합물과 건식 혼합한 후, 열처리함으로써 형성될 수 있다. 이에 따라 표면처리층내 포함되는 붕소 리튬 산화물 중 일부 붕소 원소가 양극활물질의 리튬 복합금속 산화물 내로 도핑될 수 있으며, 상기 리튬 복합금속 산화물 내에 도핑된 붕소의 함량은 상기 리튬 복합금속 산화물의 표면에서 내부로 갈수록 감소하는 농도구배를 가질 수 있다. 이와 같이 표면처리층 내에서부터 양극활물질 내부로 까지 붕소의 농도구배가 형성될 경우 구조 안정성의 증가로 사이클 특성이 향상될 수 있다.
또, 상기 코팅원소로 알루미늄을 사용할 경우, 알루미늄 산화물의 형태로 표면처리층을 형성할 수 있으며, 붕소와 달리 알루미늄의 경우 양극활물질 표면에 불연속적인 패턴, 예를 들면 아일랜드 형태로 표면처리층을 형성할 수 있다. 양극활물질의 표면에 존재하는 알루미늄은 불화수소(HF)와 반응하여 AlF3로 변형됨으로써 불화수소 공격으로부터 활물질 표면을 보호해 준다. 상기 알루미늄은 구체적으로 Al2O3 등과 같은 산화물 형태로 포함될 수 있다.
예컨대 알루미늄 포함 표면처리층은, 리튬 복합금속 산화물을 포함하는 양극활물질을 알루미늄 함유 화합물과 건식 혼합한 후, 열처리함으로써 형성될 수 있다. 이때 알루미늄 함유 화합물의 입자 크기 제어를 통해, 표면처리층 내 포함되는 알루미늄 산화물의 결정 구조 변화를 억제할 수 있으며, 그 결과로서 충방전시 사이클 안정성이 향상될 수 있다.
또, 상기 티타늄(Ti), 실리콘(Si), 주석(Sn), 마그네슘(Mg), 철(Fe), 비스무트(Bi), 안티모니(Sb) 또는 지르코늄(Zr) 등의 코팅원소의 경우, TiO2, SiO2, SnO2, MgO, Fe2O3, Bi2O3, Sb2O3, 또는 ZrO2와 같은 산화물의 형태로 양극활물질의 표면에 대해 표면처리층을 형성하여 양극활물질을 보호하는 역할을 한다.
이들 코팅원소의 경우에도 상기 알루미늄과 동일한 방법으로 표면처리층을 형성할 수 있다.
한편, 상기 표면처리층의 두께는 10 nm 내지 1000 nm일 수 있다.
활물질 표면 상에 형성되는 표면처리층의 두께가 1000 nm 이하인 경우, 활물질의 내부저항을 작게 할 수 있어 방전 전위의 저하를 방지하여 전류밀도(C-rate) 변화에 따른 높은 방전 전위 특성을 유지할 수 있다. 그 결과 전지 적용시 보다 우수한 수명 특성 및 방전 전압 저하를 나타낼 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질은 1.7g/cc 이상, 또는 1.7g/cc 내지 2.5g/cc의 탭밀도를 가질 수 있다. 상기한 범위의 높은 탭밀도를 가짐으로써, 고용량 특성을 나타낼 수 있다. 본 발명에 있어서, 양극활물질의 탭밀도는 통상의 탭밀도 측정기를 이용하여 측정할 수 있으며, 구체적으로는 탭밀도 시험기(tap density tester)를 이용하여 측정할 수 있다.
한편, 본 발명의 다른 실시예에 따르면, 상기와 같은 구조 및 물성적 특성을 갖는 본 발명의 일 실시예에 따른 양극활물질은, 니켈 원료물질, 코발트 원료물질 및 M1 원료물질(이때, M1은 Al 및 Mn으로 이루어진 군에서 선택되는 적어도 어느 하나의 원소임)을 포함하는 금속 원료물질의 혼합물에, 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 첨가하고 pH 11 내지 pH 13에서 공침반응시켜, 금속 함유 수산화물 또는 옥시수산화물의 씨드가 생성된 반응용액을 준비하는 단계(단계 1); 상기 반응용액에 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 상기 반응용액의 pH가 8 이상 11 미만이 될 때까지 첨가하여 상기 금속 함유 수산화물 또는 옥시수산화물의 입자를 성장시키는 단계 (단계 2); 그리고 상기 성장된 금속 함유 수산화물 또는 옥시수산화물의 입자를 리튬 원료물질 및 M3 원료물질(이때, M3은 W, Mo 및 Cr로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소임)과 혼합한 후 열처리하는 단계 (단계 3)를 포함하는 제조방법에 의해 제조될 수 있다. 이때, 상기 양극활물질이 M2(이때, M2는 Zr, Ti, Mg, Ta 및 Nb로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소임)를 더 포함하는 경우, 상기 단계 1에서의 금속 원료물질의 혼합물의 제조시 M2 원료물질이 첨가될 수도 있고, 또는 단계 3에서 리튬 원료물질과 혼합시 M2 원료물질이 첨가될 수도 있다. 이에 따라 본 발명의 다른 일 실시예에 따르면 상기한 양극활물질의 제조방법이 제공된다.
이하 각 단계별로 보다 상세히 설명하면, 상기 양극활물질의 제조를 위한 제조방법에 있어서 단계 1은, 니켈, 코발트, M1 및 선택적으로 M2를 포함하는 금속 원료물질의 혼합물에, 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 첨가하고 pH 11 내지 pH 13에서 공침반응시켜, 금속 함유 수산화물 또는 옥시수산화물의 씨드가 생성된 반응용액을 준비하는 단계이다.
구체적으로, 상기 금속 원료물질의 혼합물을 준비하는 것은, 니켈 원료물질, 코발트 원료물질, M1 함유 원료물질 그리고 선택적으로 M2 함유 원료물질을 용매, 구체적으로는 물, 또는 물과 균일하게 혼합가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물에 첨가하여 제조할 수도 있고, 또는 각각의 원료물질을 포함하는 용액, 구체적으로는 수용액을 제조한 후 이를 혼합하여 사용할 수도 있다. 이때 각각의 원료물질은 최종 제조되는 리튬 복합금속 산화물에서의 각 금속원소의 함량을 고려하여 적절한 함량으로 사용될 수 있다.
구체적으로 니켈 이온, 코발트 이온 및 망간 이온의 합계 몰수가 0.5M 내지 2.5M, 보다 구체적으로는 1M 내지 2.2M일 수 있다. 또, 이 같은 이온 농도가 유지되도록 전이금속 수산화물의 석출 속도에 맞추어 전이금속의 원료물질을 연속적으로 공급하는 것이 바람직하다.
상기한 금속원소를 포함하는 원료물질로는 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등이 사용될 수 있으며, 물에 용해될 수 있는 한 특별히 한정되지 않는다.
일례로 상기 코발트 원료물질로는 Co(OH)2, CoOOH, Co(OCOCH3)2ㆍ4H2O, Co(NO3)2ㆍ6H2O 또는 Co(SO4)2ㆍ7H2O 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 니켈 원료물질로는 Ni(OH)2, NiO, NiOOH, NiCO3·2Ni(OH)2·4H2O, NiC2O2·2H2O, Ni(NO3)2·6H2O, NiSO4, NiSO4·6H2O, 지방산 니켈염 또는 니켈 할로겐화물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 망간 원료물질로는 Mn2O3, MnO2, 및 Mn3O4 등의 망간산화물; MnCO3, Mn(NO3)2, MnSO4, 아세트산 망간, 디카르복실산 망간염, 시트르산 망간 및 지방산 망간염과 같은 망간염; 옥시 수산화물, 그리고 염화 망간 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 알루미늄 원료물질로는 AlSO4, AlCl, 또는 AlNO3 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
다음으로, 상기에서 제조한 금속 원료물질의 혼합물에, 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 첨가하고 pH 11 내지 pH 13에서 공침반응시킴으로써 금속 함유 수산화물 또는 옥시수산화물의 씨드가 생성된 반응용액을 제조할 수 있다.
상기 암모늄 양이온 함유 착물 형성제는 구체적으로 NH4OH, (NH4)2SO4, NH4NO3, NH4Cl, CH3COONH4, 또는 NH4CO3 등일 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 또, 상기 암모늄 양이온 함유 착물 형성제는 수용액의 형태로 사용될 수도 있으며, 이때 용매로는 물, 또는 물과 균일하게 혼합가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
상기 암모늄 양이온 함유 착물 형성제는 상기 금속 원료물질의 혼합물 1몰에 대하여 0.5 내지 1의 몰비가 되도록 하는 양으로 첨가될 수 있다. 일반적으로 킬레이팅제는 금속과 1:1 몰비 이상으로 반응하여 착제를 형성하지만, 형성된 착체 중 염기성 수용액과 반응하지 않은 미반응 착체가 중간 생성물로 변하여 킬레이팅제로 회수되어 재사용될 수 있기 때문에 본 발명에서는 통상에 비해 킬레이팅 사용량을 낮출 수 있다. 그 결과, 양극활물질의 결정성을 높이고, 안정화할 수 있다.
상기 염기성 화합물은 NaOH, KOH 또는 Ca(OH)2 등과 같은 알칼리 금속 또는 알칼리 토금속의 수산화물 또는 이들의 수화물일 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 염기성 화합물 역시 수용액의 형태로 사용될 수도 있으며, 이때 용매로는 물, 또는 물과 균일하게 혼합가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
또, 상기 금속 함유 수산화물 또는 옥시수산화물의 씨드 형성을 위한 공침반응은, pH가 11 내지 13인 조건에서 수행될 수 있다. pH가 상기한 범위를 벗어날 경우, 제조되는 수산화물 또는 옥시수산화물의 크기를 변화시키거나 입자 쪼개짐을 유발할 우려가 있다. 또 수산화물 또는 옥시수산화물 표면에 금속 이온이 용출되어 부반응에 의해 각종 산화물을 형성할 우려가 있다. 보다 구체적으로는 혼합용액의 pH가 11 내지 12인 조건에서 수행될 수 있다.
상기한 pH 범위를 충족하도록 하기 위해 상기 암모늄 양이온 함유 착물 형성제와 염기성 화합물은 1:10 내지 1:2의 몰비로 사용될 수 있다. 이때 상기 pH값은 액체의 온도 25℃에서의 pH값을 의미한다.
상기 공침반응은 질소 등의 비활성 분위기하에서, 40℃ 내지 70℃의 온도에서 수행될 수 있다. 또, 상기 반응시 반응 속도를 증가시키기 위하여 교반 공정이 선택적으로 수행될 수 있으며, 이때 교반 속도는 100 rpm 내지 2000 rpm일 수 있다.
상기와 같은 공정에 의해 금속 함유 수산화물 또는 옥시수산화물의 씨드가 생성되어 반응용액 중에 석출되게 된다. 구체적으로 상기 금속 함유 수산화물 또는 옥시수산화물은 하기 화학식 2의 화합물을 포함할 수 있다.
[화학식 2]
Ni1 -x1- y1Cox1M1y1M3z1M2w1A
(상기 화학식 2에서,
M1은 Al 및 Mn으로 이루어진 군에서 선택되는 적어도 어느 하나이고, M2는 Zr, Ti, Mg, Ta 및 Nb로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소이며, 및 M3은 W, Mo 및 Cr로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소이고, 0<x1≤0.5, 0<y1≤0.5, 0.0005≤z1≤0.03, 0≤w1≤0.02, 0<x1+y1≤0.7이고, A는 히드록시기 또는 옥시히드록시기이다)
또, 침전된 금속 함유 수산화물 또는 옥시수산화물에 대해서는 통상의 방법에 따라 분리 후, 건조 공정이 선택적으로 수행될 수 있다.
상기 건조 공정은 통상의 건조 방법에 따라 실시될 수 있으며, 구체적으로는 100 내지 200℃의 온도범위에서의 가열처리, 열풍주입 등의 방법으로 15 내지 30시간 수행될 수 있다.
다음으로, 상기 양극활물질의 제조를 위한 제조방법에 있어서 단계 2는 상기 단계 1에서 제조한 금속 함유 수산화물 또는 옥시수산화물의 씨드를 성장시켜 입자를 제조하는 공정이다.
구체적으로 상기 금속 함유 수산화물 또는 옥시수산화물의 씨드가 생성된 반응용액에 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 상기 반응용액의 pH가 공침 반응시의 pH 보다 낮아질 때까지 첨가함으로써 상기 금속 함유 수산화물 또는 옥시수산화물의 입자를 성장시킬 수 있다.
상기 금속 함유 수산화물 또는 옥시수산화물의 입자를 성장시키는 단계는, 니켈 원료물질, 코발트 원료물질 및 M1 함유 원료물질을 포함하는 제1 금속 원료물질의 혼합물에 상기 제1 금속 원료물질의 혼합물과는 서로 다른 농도로 니켈, 코발트, M1 함유 원료물질을 포함하는 제2 금속 원료물질의 혼합물을 혼합비율이 100부피%:0부피%에서 0부피%:100부피%까지 점진적으로 변화되도록 첨가하는 단계를 포함할 수 있다.
이와 같이 상기 제1 금속 원료물질의 혼합물에 대한 제2 금속 원료물질의 혼합물의 투입량을 연속적으로 증가시키며 반응속도 및 반응시간을 제어함으로써, 니켈, 코발트 및 M1이 각각 독립적으로 입자의 중심에서부터 표면까지 연속적으로 변화하는 농도구배를 나타내는 금속 함유 수산화물 또는 옥시수산화물을 제조할 수 있다. 이때 생성되는 수산화물 또는 옥시수산화물 내에서의 금속의 농도구배와 그 기울기는 제1 금속 원료물질의 혼합물 및 제2 금속 원료물질의 혼합물의 조성과 혼합 공급 비율에 의해 용이하게 조절될 수 있으며, 특정 금속의 농도가 높은 고밀도 상태를 만들기 위해서는 반응시간을 길게 하고, 반응속도를 낮추는 것이 바람직하고, 특정 금속의 농도가 낮은 저밀도 상태를 만들기 위해서는 반응시간을 짧게 하고, 반응속도를 증가시키는 것이 바람직하다.
구체적으로, 상기 제1 금속 원료물질의 혼합물에 첨가되는 제2 금속 원료물질의 혼합물의 속도는 초기 투입속도 대비 1 내지 30%의 범위 내에서 연속적으로 증가시키며 수행될 수 있다. 구체적으로, 제1 금속 원료물질의 혼합물의 투입속도는 150ml/hr 내지 210ml/hr일 수 있고, 상기 제2 금속 원료물질의 혼합물의 투입속도는 120ml/hr 내지 180ml/hr일 수 있으며, 상기 투입 속도 범위 내에서 초기 투입속도 대비 1% 내지 30%의 범위 내에서 제2금속 원료물질의 혼합물의 투입속도가 연속적으로 증가될 수 있다. 이때 상기 반응은 40℃ 내지 70℃에서 수행될 수 있다. 또, 상기 제1 금속 원료물질의 혼합물에 대한 제2 금속 원료물질의 혼합물의 공급량 및 반응시간을 조절함으로써 전구체 입자의 크기를 조절할 수 있다.
상기 단계 2에서의 금속 함유 수산화물 또는 옥시수산화물의 입자 성장 단계는, 단계 1에서의 금속 함유 수산화물 또는 옥시수산화물의 입자 생성 단계 보다 낮은 pH에서 실시될 수 있으며, 구체적으로는 단계 1에서의 pH 보다 낮은, pH 8 이상이고 pH 11 미만, 보다 구체적으로는 pH 8 내지 10.5의 범위에서 실시될 수 있다.
상기 금속 함유 수산화물 또는 옥시수산화물 입자의 성장 단계는 반응물의 pH를 시간당 pH 1 내지 2.5의 속도로 변화시키며 수행될 수 있다. 이와 같이 공침 반응시에 비해 낮은 pH에서 상기와 같은 pH 변화속도로 수행됨으로써 원하는 입자 구조를 용이하게 형성할 수 있다.
또, 상기 금속 함유 수산화물 또는 옥시수산화물의 입자가 생성된 반응용액에 대한 암모늄 양이온 함유 착물 형성제와 염기성 화합물의 투입시, 동일 속도로 투입할 수도 있고, 또는 투입 속도를 연속적으로 감소시키며 투입할 수 있다. 투입 속도를 감소시키며 투입할 경우, 20% 이상 100% 미만의 속도 감소율로 투입속도를 감소시키며 투입할 수 있다.
상기와 같이 암모늄 양이온 함유 착물 형성제와 염기성 화합물의 투입 속도와 농도, 그리고 반응온도를 제어함으로써, 입자 성장 단계에서의 금속 함유 수산화물 또는 옥시수산화물의 석출속도를 단계 1에서의 금속 함유 수산화물 또는 옥시수산화물의 석출속도 보다 빠르게 할 수 있다. 그 결과 전구체가 되는 금속 함유 수산화물 또는 옥시수산화물 입자의 외표면 근방부의 밀도를 낮게 하여 후속의 열처리 공정시 입자 성장 방향을 용이하게 유도할 수 있다.
또, 상기 단계 2의 공정은 비활성 분위기 하에서 실시되는 것이 바람직할 수 있다.
상기 단계 2의 공정 후, 성장된 금속 함유 수산화물 또는 옥시수산화물의 입자를 반응용액으로부터 분리한 후 세정 및 건조하는 공정을 선택적으로 더 실시할 수 있다.
상기 건조 공정은 통상의 건조 방법에 따라 실시될 수 있으며, 구체적으로는 100℃ 내지 120℃의 온도범위에서의 가열처리, 열풍주입 등의 방법으로 실시될 수 있다.
다음으로 상기 양극활물질의 제조를 위한 제조방법에 있어서 단계 3은, 상기 단계 2에서 성장된 금속 함유 수산화물 또는 옥시수산화물의 입자를 리튬 원료물질 및 M3 원료물질, 선택적으로 M2 원료물질과 혼합한 후 열처리함으로써, 코어-쉘 사이에 완충층이 개재된 구조를 갖는 양극활물질을 제조하는 단계이다. 이때 M2 원료물질은 앞서 설명한 바와 동일하다.
상기 열처리 공정은 250℃ 내지 1000℃, 혹은 800℃ 내지 900℃에서 수행될 수 있다. 열처리 온도가 250℃ 미만이면 사용하는 화합물간의 반응이 충분하지 않고, 1000℃를 초과하면 결정 구조 내 Li의 증발로 인해 불안정한 구조가 형성될 우려가 있다.
상기 열처리 공정은 농도 구배 및 입자 배향성 유지를 위해 저온 열처리 공정을 추가하여 2 내지 3 단계의 다단계로 수행될 수도 있다. 구체적으로는 250 내지 450℃에서 5 내지 15시간, 450 내지 600℃에서 5 내지 15시간, 그리고 700 내지 900℃에서 5 내지 15시간 유지하는 방법으로 수행될 수 있다.
상기 열처리 공정 수행 시간은 열처리 온도에 따라 다르지만, 상기한 온도 조건에서 5시간 내지 48시간, 혹은 10시간 내지 20시간 수행되는 것이 입자의 형상 제어에 용이할 수 있다. 구체적으로 열처리시 온도가 5시간 미만이면 결정화가 이루어지지 않을 우려가 있고, 48시간을 초과하면 결정화가 과도하게 일어나거나 또는 결정 구조 내의 Li 증발에 의한 불안정한 구조 형성의 우려가 있다.
상기 단계 1 및 2을 통해 생성, 성장된 금속 함유 수산화물 또는 옥시수산화물의 입자는 그 제조 공정시의 공정 조건, 즉, pH 등의 차이로 인해 입자의 내부와 이후 입자 성장에 의해 형성된 입자 외부의 결정이 서로 다른 성질을 갖는다. 즉, pH가 높을 때 만들어진 내부의 결정은 상기와 같은 열처리 공정시 수축하고, 낮은 pH 및 온도에서 만들어진 결정은 성장을 하게 된다. 이에 따라, 수축된 결정은 코어를 형성하고, 외부로 성장한 결정은 쉘을 형성하며, 이 같은 코어와 쉘의 형성으로 상기 코어와 쉘 사이에 공극이 형성되는 동시에, 코어와 쉘 사이에 위치하는 결정은 입자의 코어와 쉘을 연결하는 3차원 망목 구조를 형성하게 된다. 또, 상기 입자 외부의 결정(쉘)은 입자의 중심에서 외부로 방사형으로 성장하여 결정배향성을 갖게 된다.
상기 리튬 함유 원료물질로는 리튬 함유 탄산염(예를 들어, 탄산리튬 등), 수화물(예를 들어 수산화리튬 I수화물(LiOH·H2O) 등), 수산화물(예를 들어 수산화리튬 등), 질산염(예를 들어, 질산리튬(LiNO3) 등), 염화물(예를 들어, 염화리튬(LiCl) 등) 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 또, 상기 리튬 함유 원료물질의 사용량은 최종 제조되는 리튬 복합금속 산화물에서의 리튬과 복합금속의 함량에 따라 결정될 수 있으며, 구체적으로는 리튬 원료물질내 포함되는 리튬과 금속 함유 수산화물내 포함되는 금속원소(Me)와 몰비(리튬/금속원소(Me)의 몰비)가 1.0 이상이 되도록 하는 양으로 사용될 수 있다.
상기 M3 원료물질로는 M3 원소를 포함하는 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등이 사용될 수 있다. 일례로 M3이 W인 경우, 산화텅스텐이 사용될 수 있다. 상기 M3 원료물질은 최종 제조되는 양극활물질에서의 M3 원소의 함량 조건을 충족할 수 있도록 하는 범위로 사용될 수 있다.
상기 금속 함유 수산화물 또는 옥시수산화물과, 리튬 함유 원료물질의 혼합시, 소결제가 선택적으로 더 첨가될 수 있다. 상기 소결제는 구체적으로 NH4F, NH4NO3, 또는 (NH4)2SO4과 같은 암모늄 이온을 함유한 화합물; B2O3 또는 Bi2O3과 같은 금속산화물; 또는 NiCl2 또는 CaCl2과 같은 금속할로겐화물 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 상기 소결제는 양극활물질 전구체 1몰에 대하여 0.01 내지 0.2몰의 함량으로 사용될 수 있다. 상기 소결제의 함량이 0.01몰 미만으로 지나치게 낮으면 양극활물질 전구체의 소결 특성 향상 효과가 미미할 수 있고, 또 소결제의 함량이 0.2몰을 초과하여 지나치게 높으면, 과량의 소결제로 인해 양극활물질로서의 성능 저하 및 충방전 진행시 전지의 초기 용량이 저하될 우려가 있다.
상기 열처리 공정시 소결 보조제가 선택적으로 더 첨가될 수 있다.
소결 보조제의 첨가시 저온에서 결정을 쉽게 성장시킬 수 있고, 또 건식 혼합시 불균일 반응을 최소화할 수 있다. 또 상기 소결 보조제는 리튬 복합금속 산화물 1차 입자의 모서리 부분을 둔하게 하여 둥근 곡선 형태의 입자로 만드는 효과가 있다. 일반적으로 망간을 포함하는 리튬 산화물계 양극활물질에서는 입자의 모서리로부터 망간의 용출이 빈번히 발생하며, 이러한 망간 용출로 인해 이차전지의 특성 특히 고온시의 수명특성이 감소된다. 이에 대해 소결보조제를 사용할 경우, 1차 입자의 모서리를 둥글게 함으로써 망간의 용출 부위를 감소시킬 수 있고, 그 결과 이차전지의 안정성 및 수명특성을 향상시킬 수 있다.
구체적으로, 상기 소결보조제는, 붕산, 사붕산리튬, 산화붕소 및 붕산암모늄 등의 붕소 화합물; 산화코발트(Ⅱ), 산화코발트(Ⅲ), 산화코발트(Ⅳ) 및 사산화삼코발트 등의 코발트 화합물; 산화 바나듐 등의 바나듐 화합물; 산화 란타늄 등의 란타늄 화합물; 붕화 지르코늄, 규산칼슘 지르코늄 및 산화 지르코늄 등의 지르코늄 화합물; 산화이트륨 등의 이트륨 화합물; 또는 산화 갈륨 등의 갈륨 화합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 소결 보조제는 전구체의 총 중량 대비 0.2 중량부 내지 2 중량부, 보다 구체적으로는 0.4 중량부 내지 1.4 중량부의 양으로 사용될 수 있다.
또, 상기 금속 함유 수산화물 또는 옥시수산화물과, 리튬 함유 원료물질의 혼합시, 수분제거제가 선택적으로 더 첨가될 수도 있다. 구체적으로 상기 수분제거제로는 구연산, 주석산, 글리콜산 또는 말레인산 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 상기 수분제거제는 양극활물질 전구체 1몰에 대하여 0.01 내지 0.2몰의 함량으로 사용될 수 있다.
또, 상기 금속 함유 수산화물 또는 옥시수산화물의 입자와, 리튬 원료물질, M3 원료물질 및 선택적으로 M2 원료물질을 포함하는 혼합물에 대한 열처리 공정은, 공기 분위기 또는 산화분위기(예를 들면, O2 등)에서 가능하며, 보다 구체적으로는 산화분위기 하에서 수행될 수 있다.
한편, 상기 열처리 공정 후 제조된 양극활물질에 대해 표면에 존재하는 불순물을 제거하기 위한 수세 공정이 선택적으로 더 실시될 수 있다.
상기 수세 공정은 통상의 방법에 따라 수행될 수 있으며, 구체적으로는 물 또는 탄소수 1 내지 4의 저급 알코올을 이용한 세척에 의해 수행될 수 있다.
본 발명의 일 실시예에 따른 양극활물질의 제조방법은, 상기 리튬 복합금속 산화물을 포함하는 양극활물질의 제조 공정 후, 양극활물질 표면 상에 표면처리층을 형성하는 단계를 더 포함할 수 있다.
상기 표면처리층 형성 공정은 표면처리층 형성용 코팅원소 포함 원료물질을 사용하는 것을 제외하고는, 고상합성법 또는 습식법 등 통상의 표면처리층 형성 방법에 따라 수행될 수 있다. 또 상기 코팅원소는 앞서 설명한 바와 같다.
구체적으로, 고상합성법을 이용하는 경우, 제조한 양극활물질과 붕소 함유 화합물을 건식 혼합한 후 열처리함으로써, 양극활물질의 표면 상에 코팅원소 포함 화합물을 포함하는 표면처리층을 형성할 수 있다. 이와 같이 고상합성법에 의해 표면처리층을 형성할 경우, 양극활물질에 대한 손상의 우려없이 균일한 표면처리층 형성이 가능하다.
일례로 상기 코팅원소가 붕소(B)일 경우, 상기 붕소 함유 화합물은 구체적으로 붕소 함유 산화물, 수산화물, 알록시화물 또는 알킬화물 등일 수 있다. 보다 구체적으로는 H3BO3, B2O3, C6H5B(OH)2, (C6H5O)3B, [CH3(CH2)3O]3B, C3H9B3O6 또는 (C3H7O)3B 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 붕소 함유 화합물의 사용량은 앞서 설명한, 최종 제조되는 표면처리층내 붕소의 함량 또는 붕소리튬산화물의 함량을 고려한 적절한 함량으로 사용될 수 있다. 구체적으로 상기 붕소 함유 화합물은 상기 양극활물질 100 중량부에 대하여 0.05 중량부 내지 1 중량부, 보다 구체적으로는 0.1 중량부 내지 0.8 중량부로 사용될 수 있다.
또, 상기 건식 혼합 방법은 몰타르를 이용한 몰타르 그라인더 혼합(mortar grinder mixing)법; 또는 롤밀 (roll-mill), 볼밀 (ball-mill), 고에너지 볼밀(high energy ball mill), 유성 밀(planetary mill), 교반 볼밀(stirred ball mill), 진동밀(vibrating mill) 또는 제트 밀(jet-mill) 등과 같은 기계적 밀링법을 이용한 혼합법을 이용하여 수행될 수 있으며, 균일한 표면처리층 형성을 고려할 때, 상기 건식 혼합 방법은 보다 구체적으로는 기계적 밀링법을 이용하여 수행될 수 있다.
상기 열처리는 붕소 함유 화합물의 녹는점 부근에서 수행될 수 있다. 예를 들어, 상기 붕소 함유 화합물의 녹는점은 130 ℃ 내지 500 ℃일 수 있다. 상기한 온도 범위에서 붕소 함유 화합물의 열처리를 수행할 때, 상기 열처리에 의해 붕소 함유 화합물이 용융되어 흐르면서 리튬 복합금속 산화물 상에 존재하는 리튬 불순물 중 적어도 일부와 반응하여 붕소 함유 화합물이 붕소 리튬 산화물로 용이하게 전환되어 리튬 금속 산화물 표면에 코팅될 수 있다. 이와 같이, 상기 리튬 불순물이 붕소 리튬 산화물로의 전환에 의해 리튬 복합금속 산화물 상에 존재하는 리튬 불순물을 감소시킬 수 있다. 또한, 낮은 열처리 온도에서도 붕소 함유 화합물의 사용량에 비례하는 양으로 리튬 복합금속 산화물의 표면에 붕소 리튬 산화물이 균일하게 도포된 표면처리층을 형성할 수도 있다.
보다 구체적으로, 상기 붕소 함유 화합물의 열처리는 130 ℃ 내지 500 ℃, 보다 더 구체적으로는 130 ℃ 내지 500 ℃에서, 3시간 내지 10시간 동안 수행될 수 있다. 열처리 온도가 130℃ 미만인 경우 붕소 함유 화합물이 충분히 용융되지 않으므로 리튬 복합금속 산화물 상에 붕소 함유 화합물이 그대로 남아 있거나, 붕소 리튬 산화물로 전환되더라도 균일한 표면처리층을 형성할 수 없고, 500℃를 초과하는 경우 높은 온도로 인해 반응이 너무 빨리 이루어져 리튬 복합금속 산화물의 표면에 균일한 표면처리층을 형성할 수 없다.
또, 상기 표면처리층이 알루미늄을 포함하는 경우, 제조한 양극활물질을 알루미늄 함유 원료물질과 혼합 후 열처리 함으로써, 양극활물질 표면상에 표면처리층을 형성할 수 있다. 이때 알루미늄 함유 원료물질은 Al2O3 등일 수 있으며, 표면처리층 형성시 균일 코팅이 가능하고, 낮은 온도에서도 단일 입자의 형성이 가능하며, 또 표면처리층 형성 후에는 형성된 금속 산화물의 결정 구조 변화가 억제될 수 있도록 100nm 이하, 보다 구체적으로는 50 내지 80nm의 평균 입자 크기를 갖는 것일 수 있다.
상기 알루미늄 함유 화합물의 열처리는 300℃ 내지 500℃에서 수행될 수 있다. 열처리 온도가 300℃미만이면, 100 nm 이하의 코팅된 산화물이라도 결정화되지 않으므로 이 활물질을 전지에 적용하면 리튬 이온의 이동이 방해를 받을 수 있다. 또한, 열처리 온도가 보다 높으면 리튬의 증발 및 표면에 형성된 금속 산화물 층의 결정도가 높아져 Li+의 이동에 문제가 생기게 된다. 또, 열처리 시간이 지나치게 길면 리튬의 증발 및 표면에 형성된 금속 산화물 층의 결정도가 높아져 Li+의 이동에 문제가 생길 우려가 있다.
한편, 습식법을 이용하는 경우, 표면처리층 형성용 코팅원소 포함 원료물질을 용매 중에 용해 또는 분산시켜 표면처리층 형성용 조성물을 제조한 후, 이를 통상의 슬러리 코팅법, 구체적으로는 도포, 분무 또는 침지 등의 방법을 이용하여 양극활물질 표면을 처리하고, 건조함으로써 표면처리층을 형성할 수도 있다.
이때 상기 코팅원소 포함 원료물질은 앞서 정의한 바와 동일하며, 상기 용매는 원료물질의 종류에 따라 적절히 선택될 수 있으며, 상기 원료물질을 용해 또는 균일 분산시킬 수 있는 것이라면 특별한 제한없이 사용가능하다.
상기 표면처리층 형성 공정은 1회 실시될 수도 있고, 또는 양극활물질 표면에 2층 이상의 다층 구조의 표면처리층이 형성될 수 있도록 2회 이상 실시될 수도 있다. 구체적으로는 양극활물질에 대한 붕소 함유 원료물질을 이용한 1차 표면처리 후, 결과의 제1표면처리층 형성 양극물질에 대해 알루미늄 함유 원료물질을 이용한 2차 표면처리 공정이 수행될 수 있다.
상기한 제조방법에 따라 제조된 양극활물질은, 반응물의 pH, 농도 및 속도를 제어하여 코어와 쉘 사이에 공극을 포함하는 완충층을 포함함으로써, 전극 제조 공정에서의 압연시 활물질의 파괴를 최소화하고, 전해액과의 반응성을 극대화하며, 또 쉘을 형성하는 입자가 리튬이온의 삽입 및 탈리가 용이한 배향의 결정구조를 가져 이차전지의 저항 감소 및 수명 특성을 향상시킬 수 있다. 또, 상기 양극활물질은 비표면적과 평균 입자 직경 그리고 비표면적이 함께 제어됨으로써, 전지 용량 특성을 더욱 개선시킬 수 있으며, 추가적으로 활물질 입자 전체에 걸쳐 전이금속의 분포가 제어되는 경우에는 전지 적용시 고용량, 고수명 및 열안정성을 나타내는 동시에 고전압시 성능 열화를 최소화 할 수 있다.
이에 따라 본 발명의 또 다른 일 실시예에 따르면 상기한 양극활물질을 포함하는 양극 및 리튬 이차전지를 제공한다.
구체적으로, 상기 양극은 양극집전체 및 상기 양극집전체 위에 형성되며, 상기한 양극활물질을 포함하는 양극활물질층을 포함한다.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또, 상기 양극활물질층은 앞서 설명한 양극활물질과 함께, 도전재 및 바인더를 포함할 수 있다.
이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 양극활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
또, 상기 바인더는 양극활물질 입자들 간의 부착 및 양극활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 양극은 상기한 양극활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극활물질 및 선택적으로, 바인더 및 도전재를 포함하는 양극활물질층 형성용 조성물을 양극집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다. 이때 상기 양극활물질, 바인더, 도전재의 종류 및 함량은 앞서 설명한 바와 같다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸설폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또, 다른 방법으로, 상기 양극은 상기 양극활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 양극을 포함하는 전기화학소자가 제공된다. 상기 전기화학소자는 구체적으로 전지 또는 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 상기 양극은 앞서 설명한 바와 같다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극집전체 및 상기 음극집전체 상에 위치하는 음극활물질층을 포함한다.
상기 음극집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극활물질층은 음극활물질과 함께 선택적으로 바인더 및 도전재를 포함한다. 상기 음극활물질층은 일례로서 음극집전체 상에 음극활물질, 및 선택적으로 바인더 및 도전재를 포함하는 음극 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극집전체 상에 라미네이션함으로써 제조될 수도 있다.
상기 음극활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOx(0 < x < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
또, 상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일한 것일 수 있다.
한편, 상기 리튬 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
상기와 같이 본 발명에 따른 양극활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
[ 실시예 1: 양극활물질의 제조]
60℃로 설정된 회분식 배치(batch)형 5L 반응기에서, 니켈 설페이트, 코발트 설페이트 및 망간 설페이트를 물 중에서 80:10:10의 몰비로 혼합하여 2M 농도의 제1 금속 원료물질의 혼합 용액을 준비하였다. 이와 별도로 니켈 설페이트, 코발트 설페이트 및 망간 설페이트를 물 중에서 40:30:30의 몰비로 혼합하여 2M 농도의 제2 금속 원료물질의 혼합 용액을 준비하였다. 제1 금속 원료물질의 혼합 용액이 담겨있는 용기는 반응기로 들어가도록 연결하고, 제2 금속 원료물질의 혼합 용액이 담겨있는 용기는 제1 금속 원료물질의 혼합 용액이 담긴 용기로 들어가도록 연결하였다. 추가로 4M NaOH 용액과 7% 농도의 NH4OH 수용액을 준비하여 각각 반응기에 연결하였다.
공침 반응기(용량 5L)에 탈이온수 3리터를 넣은 뒤 질소가스를 반응기에 2리터/분의 속도로 퍼징하여 물 속의 용존 산소를 제거하고 반응기 내를 비산화 분위기로 조성하였다. 이후 4M NaOH를 100ml 투입한 후, 60℃ 온도에서 1200rpm의 교반속도로 pH 12.0이 되도록 유지시켰다.
이후 상기 제1 금속 원료물질의 혼합 용액을 180ml/hr, NaOH 수용액을 180ml/hr, NH4OH 수용액을 10ml/hr의 속도로 각각 투입하여 pH 12에서 30분간 반응시켜 제1 금속 원료물질의 혼합 용액의 수산화물의 씨드를 형성하였다. 이후 NaOH 및 NH4OH의 양을 점진적으로 감소시키며 시간당 pH 2의 속도로 pH를 낮추어 pH를 10으로 변화시킴과 동시에 제2 금속 원료물질의 혼합 용액을 제1 금속 원료물질의 혼합 용액의 용기로 150ml/hr로 투입시켜 수산화물 입자의 성장을 유도함과 동시에 입자 내부에 농도구배가 생기도록 유도하였다. 이후 36시간 동안 반응을 유지하여 금속 함유 수산화물 입자를 성장시켰다. 결과로 형성된 금속 함유 수산화물의 입자를 분리하여 수세 후 120℃의 오븐에서 건조하였다.
상기에서 제조한 금속 함유 수산화물의 입자를 리튬 원료물질로서 리튬 수산화물과 텅스텐 산화물을 1:1.07:0.2의 몰비로 혼합한 후 300℃에서 10시간, 500℃에서 10시간, 820℃에서 10시간 열처리하였다. 이에 따라, pH가 높을 때 만들어진 내부 결정은 수축하고, pH가 낮을 때 만들어진 결정은 성장하여, 코어 및 쉘을 형성하고, 코어 및 쉘 사이에 공극이 형성되는 동시에 코어 및 쉘 사이에 위치하는 결정은 3차원 망목 구조를 형성하여, 코어, 쉘, 및 완충층 구조를 포함하는 양극활물질을 제조하였다.
[ 실시예 2: 양극활물질의 제조]
상기 실시예 1에서 제조한 양극활물질에 대해 100 nm 크기의 알루미나(Al2O3) 입자를 1중량% 혼합하고, 대기중 400℃의 온도에서 5시간 열처리하여 표면처리층을 형성하였다.
[ 실시예 3: 양극활물질의 제조]
상기 실시예 1에서 제조한 양극활물질에 대해 붕산(삼정순약 사제)을 0.1중량% 혼합하고, 대기중 400℃의 온도에서 5시간 열처리하여 표면처리층을 형성하였다.
[ 비교예 1: 양극활물질의 제조]
60℃로 설정된 회분식 배치(batch)형 5L 반응기에서, 니켈 설페이트, 코발트 설페이트 및 망간 설페이트를 물 중에서 60:20:20의 몰비로 혼합하여 2M 농도의 금속염 용액을 준비하였다. 금속염이 담겨있는 용기는 반응기로 들어가도록 연결하고, 4M NaOH 용액과 7% 농도의 NH4OH 수용액을 준비하여 각각 반응기에 연결하였다.
공침 반응기(용량 5L)에 탈이온수 3리터를 넣은 뒤 질소가스를 반응기에 2리터/분의 속도로 퍼징하여 물 속의 용존 산소를 제거하고 반응기 내를 비산화 분위기로 조성하였다. 이후 4M NaOH를 100ml 투입한 후, 60℃ 온도에서 1200rpm의 교반속도로 pH 12.0이 되도록 유지시켰다.
이후 상기 금속염 용액을 180ml/hr, NaOH 수용액을 180ml/hr, NH4OH 수용액을 10ml/hr의 속도로 각각 투입하여 36시간 반응시켜 니켈망간코발트계 복합금속 수산화물 입자를 형성하였다.
결과로 형성된 니켈망간코발트계 복합금속 수산화물의 입자를 리튬 원료물질로서 리튬 수산화물과 1:1.07의 몰비로 혼합한 후 산소분위기(산소 분압 20%)하에서, 820℃에서 10시간 열처리하여 양극활물질을 제조하였다.
[ 제조예 : 리튬 이차전지의 제조]
상기 실시예 1 및 비교예 1에서 제조한 양극활물질을 각각 이용하여 리튬 이차전지를 제조하였다.
상세하게는, 상기 실시예 1 및 비교예 1에서 제조한 양극활물질, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 95:2.5:2.5의 비율로 혼합하여 양극 형성용 조성물(점도: 5000mPa·s)을 제조하고, 이를 알루미늄 집전체에 도포한 후, 130℃에서 건조 후, 압연하여 양극을 제조하였다.
또, 음극활물질로서 천연흑연, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 85:10:5의 비율로 혼합하여 음극 형성용 조성물을 제조하고, 이를 구리 집전체에 도포하여 음극을 제조하였다.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차 전지를 제조하였다. 이때 전해액은 에틸렌카보네이트/디메틸카보네이트/에틸메틸카보네이트(EC/DMC/EMC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다.
[ 실험예 1: 양극활물질의 구조 관찰]
상기 실시예 1에서 제조한 전구체에 대해 전계 방사형 전자 현미경(field emission scanning electron microscopy, FE-SEM)으로 관찰하고, 그 결과로부터 코어 및 쉘의 직경과 부피, 활물질내 비율을 각각 계산하였다. 그 결과를 하기 표 1에 나타내었다.
직경(㎛) 부피(㎛3) 비(%)
코어 4.6 51 11
5.1 427 89
전체 9.7 478 100
상기 실시예 1에서 제조한 양극활물질에 대하여 이온 밀링(ion milling)을 이용하여 가공한 후, FE-SEM을 이용하여 양극활물질 단면 구조를 관찰하였다. 그 결과를 도 2에 나타내었다.
단면 구조를 확인한 결과, 코어 및 쉘 부 내에 3차원 망목 구조체를 포함하는 완층층의 형성을 확인할 수 있으며, 또 쉘내 입자가 입자 중심으로부터 표면방향으로 결정배향성을 나타내고 있음을 확인할 수 있다. 또, 양극활물질의 총 입자 직경은 9.9㎛ 이었으며, 양극활물질의 반지름 4.95㎛에서, 코어부(1)의 두께(반지름)은 1.4㎛이고, 완층충의 두께는 1.7㎛, 쉘(2)의 두께는 1.85㎛ 이었다. 이로부터 부피비를 환산하여 공극율을 계산한 결과, 양극활물질내 공극율은 약 22부피%이었다.
[ 실험예 2: 양극활물질 농도구배 분석]
또, 상기 실시예 1에서 양극활물질에 대하여 EPMA를 이용하여 성분분석을 실시하였다. 그 결과를 하기 표 2에 나타내었다. 하기 표에서 Scan 위치는 도 2에 나타난 바와 같이, scan 1에서 순서에 따라 scan 5까지 책정하였다.
Scan Ni (mol%) Co (mol%) Mn (mol%)
코어 01 67 18 16
완충층 02 65 19 17
03 61 20 19
04 59 20 20
05 58 22 22
전체 60 20 20
상기 표 2에 나타난 바와 같이, 양극활물질의 중심에서 표면으로 갈수록 Ni의 농도가 감소하고, 코발트 및 망간의 농도는 증가하는 농도구배로 포함되어 있음을 확인할 수 있다.
[ 실험예 3: 양극활물질의 분석]
상기 실시예 1 내지 3, 및 비교예 1에서 제조한 양극활물질에 대해 평균 입자 직경, 비표면적 및 압연밀도를 측정하고, 그 결과를 하기 표 3에 나타내었다.
(1) 평균 입자 직경(D50): 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28 kHz의 초음파를 출력 60 W로 조사한 후, 측정 장치에 있어서의 입경 분포의 50% 기준에서의 평균 입자 직경(D50)을 산출할 수 있다.
(2) BET 비표면적: 양극활물질의 비표면적은 BET 법에 의해 측정한 것으로서, 구체적으로는 BEL Japan 사 BELSORP-mino II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출할 수 있다.
(3) 탭 밀도: 탭밀도 시험기(tap density tester)를 이용하여 탭 밀도를 측정하였다.
(4) Ni 무질서화도(Ni disorder) 및 결정 입자의 평균 입자 크기(crystal size): X선 회절(X-ray Diffraction, XRD) 분석기를 이용하여 측정하였다.
실시예1 실시예2 실시예3 비교예1
평균 입자 직경(D50)(㎛) 9.9 9.8 9.8 10
BET 비표면적 (m2/g) 0.31 0.32 0.27 0.25
기공도 (%) 22 22 22 0
Ni 무질서화도(%) 1.0 1.1 1.0 3.5
결정 입자의 평균 입자 크기(nm) 110 105 110 250
본 발명에 따른 실시예 1 내지 3의 양극활물질은 그 특유의 구조로 인해 비교예 1과 비교하여 동등 수준의 평균 입자 직경을 가지면서도 보다 증가된 BET 비표면적과 기공도를 나타내었다. 다만, 붕소 포함 표면처리층을 형성한 실시예 3의 양극활물질의 경우 붕소 성분이 활물질 표면에 균일하게 보호막을 형성하여 표면 굴곡을 완화시켜 줌으로써 BET 비표면적 값이 수치적으로는 실시예 1 및 2에 비해 다소 감소한 결과를 나타내었다. 또, 본 발명에 따른 실시예 1 내지 3의 양극활물질은 결정입자의 측면에서도 비교예 1에 비해 더 낮은 Ni 무질서화도 및 결정입자 크기를 나타내었다.
[ 실험예 4: 양극 활물질의 평가]
상기 실시예 1 내지 3, 및 비교예 1에서 제조한 양극활물질을 이용하여 제조한 코인셀(Li 금속의 음극 사용)을 25℃에서 0.1C의 정전류(CC) 4.25V가 될 때까지 충전하고, 이후 4.25V의 정전압(CV)으로 충전하여 충전전류가 0.05mAh가 될 때까지 1회째 충전을 행하였다. 이후 20분간 방치한 다음 0.1C의 정전류로 3.0V가 될 때까지 방전하여 1사이클째의 방전 용량을 측정하였다. 이후 2C로 방전 조건을 달리하여 충/방전 용량, 충방전 효율 및 율 특성을 각각 평가하였다. 그 결과를 하기 표 4에 나타내었다.
제1충방전 2C rate
충전용량(mAh/g) 방전용량(mAh/g) 충방전 효율(%) 용량(mAh/g) 2.0C/0.1C(%)
실시예1 194.0 177.5 91.5 160.5 90.4
실시예2 193.4 177.0 91.5 159.1 89.9
실시예3 195.1 178.9 91.7 161.6 90.3
비교예1 192.5 173.8 90.3 154.9 89.1
실험결과, 실시예 1 내지 3의 양극활물질을 포함하는 리튬 이차전지는, 비교예 1의 양극활물질을 포함하는 리튬 이차전지과 비교하여 충방전 효율, 율 특성 및 용량 특성 면에서 모두 개선된 효과를 나타내었다.
[ 실험예 5: 리튬 이차전지의 전지 특성 평가]
상기 실시예 1 내지 3, 및 비교예 1에서의 양극활물질을 각각 포함하는 리튬 이차전지에 대해 하기와 같은 방법으로 전지 특성을 평가하였다.
상세하게는, 상기 리튬 이차전지에 대해 25℃의 온도에서 2.8V 내지 4.15V 구동전압 범위내에서 1C/2C의 조건으로 충/방전을 800회 실시하였다.
또, 출력 특성을 평가하기 위하여 상온(25℃)에서 충방전한 전지를 SOC 50%를 기준으로 충전하여 저항을 측정하였으며, 저온(-30℃)에서는 SOC 50%를 기준으로 전류인가시 전압이 강하되는 폭을 측정하였다.
그 결과로서, 상온(25℃) 및 저온(-30℃)에서의 저항, 그리고 상온에서의 충방전 800회 실시 후의 초기용량에 대한 800 사이클째의 방전용량의 비율인 사이클 용량유지율(capacity retention)을 각각 측정하고, 하기 표 5에 나타내었다.
상온(25℃) 저항(mohm) 저온(-30℃) 저항(△V) 상온(25℃)에서의 800회 사이클 용량유지율 (%)
실시예1 1.34 1.45 95.0
실시예2 1.30 1.49 96.5
실시예3 1.25 1.40 96.7
비교예1 1.58 1.77 88.5
실험결과, 실시예 1 내지 3에서 제조한 양극활물질을 이용한 리튬 이차전지는, 비교예 1에 비해, 상온 및 저온에서의 출력특성, 그리고 사이클 특성이 모두 우수함을 확인할 수 있었다.

Claims (20)

  1. 코어;
    상기 코어를 둘러싸며 위치하는 쉘; 및
    상기 코어와 쉘 사이에 위치하며, 상기 코어와 쉘을 연결하는 3차원 망목구조체 및 공극을 포함하는 완충층을 포함하고,
    상기 코어, 쉘 및 완충층에서의 3차원 망목구조체는 각각 독립적으로 리튬 복합금속 산화물을 포함하며,
    BET 비표면적이 0.2m2/g 내지 0.5m2/g이고, 기공도가 30부피% 이하이며, 평균 입자크기(D50)가 8㎛ 내지 15㎛인 이차전지용 양극활물질.
  2. 제1항에 있어서,
    상기 리튬 복합금속 산화물은 하기 화학식 1의 화합물을 포함하는 것인 이차전지용 양극활물질.
    [화학식 1]
    LiaNi1 -x- yCoxM1yM3zM2wO2
    (상기 화학식 1에서, M1은 Al 및 Mn으로 이루어진 군에서 선택되는 적어도 어느 하나이고, M2는 Zr, Ti, Mg, Ta 및 Nb로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소이며, 그리고 M3은 W, Mo 및 Cr로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소이고, 1.0≤a≤1.5, 0<x≤0.5, 0<y≤0.5, 0.0005≤z≤0.03, 0≤w≤0.02, 0<x+y≤0.7이다)
  3. 제2항에 있어서,
    상기 니켈, M1 및 코발트 중 적어도 어느 하나의 금속원소는, 상기 코어, 쉘 및 활물질 입자 전체 중 어느 하나의 영역 내에서 연속적으로 변화하는 농도구배를 나타내는 것인 이차전지용 양극활물질.
  4. 제2항에 있어서,
    상기 코어 내에 포함되는 니켈의 함량이 쉘 내에 포함되는 니켈의 함량 보다 많은 것인 이차전지용 양극활물질.
  5. 제2항에 있어서,
    상기 코어 내에 포함되는 코발트의 함량이 쉘 내에 포함되는 코발트의 함량 보다 적은 것인 이차전지용 양극활물질.
  6. 제2항에 있어서,
    상기 코어 내에 포함되는 M1의 함량이 쉘 내에 포함되는 M1의 함량 보다 적은 것인 이차전지용 양극활물질.
  7. 제2항에 있어서,
    상기 니켈, 코발트 및 M1은 활물질 입자 전체에 걸쳐 각각 독립적으로 연속적으로 변화하는 농도구배를 나타내고,
    상기 니켈의 농도는 활물질 입자의 중심에서부터 표면 방향으로 연속적인 농도구배를 가지면서 감소하고, 그리고
    상기 코발트 및 M1의 농도는 각각 독립적으로 활물질 입자의 중심에서부터 표면 방향으로 연속적인 농도구배를 가지면서 증가하는 것인 이차전지용 양극활물질.
  8. 제2항에 있어서,
    상기 M1이 망간(Mn)인 것인 이차전지용 양극활물질.
  9. 제1항에 있어서,
    상기 양극활물질은 둘 이상의 1차 결정 입자가 응집된 2차 결정 입자 형태이고, 평균 결정 입자의 크기가 60nm 내지 200nm인 다결정 리튬 복합금속 산화물을 포함하는 것인 이차전지용 양극활물질.
  10. 제2항에 있어서,
    상기 양극활물질은 결정내 니켈 무질서화도가 0.2% 내지 3.0%인 리튬 복합금속 산화물을 포함하는 것인 이차전지용 양극활물질.
  11. 제1항에 있어서,
    상기 코어는 1차 입자가 응집된 2차 입자인 것인 이차전지용 양극활물질.
  12. 제1항에 있어서,
    상기 쉘은 양극활물질의 중심에서부터 표면 방향으로 방사형으로 성장된 결정배향성의 리튬 복합금속 산화물의 입자를 포함하는 것인 이차전지용 양극활물질.
  13. 제1항에 있어서,
    상기 쉘은 하기 수학식 1에 따라 결정되는 쉘 영역이 0.2 내지 1 미만인 것인 이차전지용 양극활물질.
    [수학식 1]
    쉘 영역=(양극활물질의 반지름-코어 반지름-완충층 두께)/양극활물질의 반지름
  14. 제1항에 있어서,
    상기 양극활물질의 반지름에 대한 코어 반지름의 비가 0 초과 0.4 미만이고, 상기 양극활물질 입자의 반지름에 대한, 양극활물질 입자 중심에서 완충층과 쉘의 계면까지의 길이 비가 0 초과 0.7 미만인 것인 이차전지용 양극활물질.
  15. 제1항에 있어서,
    상기 양극활물질 입자의 표면 상에 붕소(B), 알루미늄(Al), 티타늄(Ti), 실리콘(Si), 주석(Sn), 마그네슘(Mg), 철(Fe), 비스무트(Bi), 안티모니(Sb) 및 지르코늄(Zr)으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 코팅 원소를 포함하는 표면처리층을 1층 이상 더 포함하는 것인 이차전지용 양극활물질.
  16. 니켈 원료물질, 코발트 원료물질, M1 원료물질(이때, M1은 Al 및 Mn으로 이루어진 군에서 선택되는 적어도 어느 하나의 원소임)을 포함하는 금속 원료물질의 혼합물과, 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 혼합하고 pH 11 내지 pH 13에서 공침반응시켜, 금속 함유 수산화물 또는 옥시수산화물의 씨드가 생성된 반응용액을 준비하는 단계;
    상기 반응용액에 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 상기 반응용액의 pH가 8 이상 11 미만이 될 때까지 첨가하여 상기 금속 함유 수산화물 또는 옥시수산화물의 입자를 성장시키는 단계; 그리고
    상기 성장된 금속 함유 수산화물 또는 옥시수산화물의 입자를 리튬 원료물질 및 M3 원료물질(이때, M3은 W, Mo 및 Cr로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소임)과 혼합한 후 열처리하는 단계를 포함하는, 제1항에 따른 이차전지용 양극활물질의 제조방법.
  17. 제16항에 있어서,
    상기 금속 함유 수산화물 또는 옥시수산화물의 입자를 성장시키는 단계는,
    니켈 원료물질, 코발트 원료물질 및 M1 함유 원료물질을 포함하는 제1 금속 원료물질의 혼합물에 상기 제1 금속 원료물질의 혼합물과는 서로 다른 농도로 니켈, 코발트, M1 함유 원료물질을 포함하는 제2 금속 원료물질의 혼합물을 혼합비율이 100부피%:0부피%에서 0부피%:100부피%까지 점진적으로 변화되도록 첨가하는 단계를 포함하는 것인 이차전지용 양극활물질의 제조방법.
  18. 제16항에 있어서,
    상기 열처리 공정 후 결과로 제조된 양극활물질에 대해, 붕소(B), 알루미늄(Al), 티타늄(Ti), 실리콘(Si), 주석(Sn), 마그네슘(Mg), 철(Fe), 비스무트(Bi), 안티모니(Sb) 및 지르코늄(Zr)으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 코팅 원소를 포함하는 표면처리층을 형성하는 단계를 더 포함하는 이차전지용 양극활물질의 제조방법.
  19. 제1항 내지 제15항 중 어느 한 항에 따른 양극활물질을 포함하는 이차전지용 양극.
  20. 제19항에 따른 양극을 포함하는 리튬 이차전지.
PCT/KR2017/002357 2016-03-04 2017-03-03 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지 WO2017150949A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/743,916 US10535873B2 (en) 2016-03-04 2017-03-03 Positive electrode active material for secondary battery, method of preparing the same and secondary battery including the same
JP2018537604A JP6723545B2 (ja) 2016-03-04 2017-03-03 二次電池用正極活物質、その製造方法およびこれを含む二次電池
PL17760353T PL3425703T3 (pl) 2016-03-04 2017-03-03 Materiał aktywny katody do baterii akumulatorowej, sposób jego wytwarzania oraz zawierająca go bateria akumulatorowa
CN201780002624.9A CN108028369B (zh) 2016-03-04 2017-03-03 二次电池用正极活性材料、其制备方法以及包含其的二次电池
EP17760353.7A EP3425703B1 (en) 2016-03-04 2017-03-03 Cathode active material for secondary battery, manufacturing method therefor, and secondary battery including same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0026224 2016-03-04
KR20160026224 2016-03-04
KR10-2017-0027879 2017-03-03
KR1020170027879A KR101949249B1 (ko) 2016-03-04 2017-03-03 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지

Publications (1)

Publication Number Publication Date
WO2017150949A1 true WO2017150949A1 (ko) 2017-09-08

Family

ID=59744207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002357 WO2017150949A1 (ko) 2016-03-04 2017-03-03 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지

Country Status (1)

Country Link
WO (1) WO2017150949A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190057951A (ko) * 2017-11-21 2019-05-29 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019139445A1 (ko) * 2018-01-12 2019-07-18 한양대학교 산학협력단 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬 이차 전지
CN111771303A (zh) * 2017-12-26 2020-10-13 株式会社Posco 锂二次电池正极活性材料、其制备方法和包含它的锂二次电池
CN113683129A (zh) * 2021-08-24 2021-11-23 南通金通储能动力新材料有限公司 一种新型小颗粒三元前驱体及其制备方法
US20220140320A1 (en) * 2019-08-12 2022-05-05 Lg Chem, Ltd. Positive Electrode for Lithium Secondary Battery and Lithium Secondary Battery Including the Same
CN114728812A (zh) * 2020-03-20 2022-07-08 株式会社Lg化学 制备锂二次电池用正极活性材料前体的方法、正极活性材料前体以及通过使用所述前体制备的正极活性材料、正极和锂二次电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090082790A (ko) * 2008-01-28 2009-07-31 주식회사 에너세라믹 리튬 이차 전지용 복합 양극 활물질, 이의 제조 방법, 및이를 포함하는 리튬 이차 전지
KR20110083383A (ko) * 2010-01-14 2011-07-20 주식회사 에코프로 회분식 반응기(batch reactor)를 사용하여 농도구배층을 가지는 리튬 이차 전지용 양극활물질 전구체, 양극활물질을 제조하는 방법, 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질 전구체, 양극활물질
JP2013051172A (ja) * 2011-08-31 2013-03-14 Toyota Motor Corp リチウム二次電池
KR20130138147A (ko) * 2012-06-08 2013-12-18 한양대학교 산학협력단 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
KR20150121009A (ko) * 2013-02-28 2015-10-28 닛산 지도우샤 가부시키가이샤 정극 활물질, 정극 재료, 정극 및 비수전해질 이차 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090082790A (ko) * 2008-01-28 2009-07-31 주식회사 에너세라믹 리튬 이차 전지용 복합 양극 활물질, 이의 제조 방법, 및이를 포함하는 리튬 이차 전지
KR20110083383A (ko) * 2010-01-14 2011-07-20 주식회사 에코프로 회분식 반응기(batch reactor)를 사용하여 농도구배층을 가지는 리튬 이차 전지용 양극활물질 전구체, 양극활물질을 제조하는 방법, 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질 전구체, 양극활물질
JP2013051172A (ja) * 2011-08-31 2013-03-14 Toyota Motor Corp リチウム二次電池
KR20130138147A (ko) * 2012-06-08 2013-12-18 한양대학교 산학협력단 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
KR20150121009A (ko) * 2013-02-28 2015-10-28 닛산 지도우샤 가부시키가이샤 정극 활물질, 정극 재료, 정극 및 비수전해질 이차 전지

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190057951A (ko) * 2017-11-21 2019-05-29 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR102268079B1 (ko) 2017-11-21 2021-06-23 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
CN111771303A (zh) * 2017-12-26 2020-10-13 株式会社Posco 锂二次电池正极活性材料、其制备方法和包含它的锂二次电池
CN111771303B (zh) * 2017-12-26 2024-03-29 浦项控股股份有限公司 锂二次电池正极活性材料、其制备方法和包含它的锂二次电池
US11973221B2 (en) 2017-12-26 2024-04-30 Posco Holdings Inc. Cathode active material for lithium secondary battery, production method therefor, and lithium secondary battery comprising same
WO2019139445A1 (ko) * 2018-01-12 2019-07-18 한양대학교 산학협력단 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬 이차 전지
US11894557B2 (en) 2018-01-12 2024-02-06 Battery Solution Positive active material, method of preparing the same, and lithium secondary battery including the same
US20220140320A1 (en) * 2019-08-12 2022-05-05 Lg Chem, Ltd. Positive Electrode for Lithium Secondary Battery and Lithium Secondary Battery Including the Same
CN114728812A (zh) * 2020-03-20 2022-07-08 株式会社Lg化学 制备锂二次电池用正极活性材料前体的方法、正极活性材料前体以及通过使用所述前体制备的正极活性材料、正极和锂二次电池
CN113683129A (zh) * 2021-08-24 2021-11-23 南通金通储能动力新材料有限公司 一种新型小颗粒三元前驱体及其制备方法
CN113683129B (zh) * 2021-08-24 2023-07-14 南通金通储能动力新材料有限公司 一种新型小颗粒三元前驱体及其制备方法

Similar Documents

Publication Publication Date Title
WO2017057900A1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
WO2016068594A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2016204563A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2019235885A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2017150945A1 (ko) 이차전지용 양극활물질의 전구체 및 이를 이용하여 제조된 양극활물질
WO2021132761A1 (ko) 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2019221497A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2017150949A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2016175597A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2019103363A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019078503A1 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021080374A1 (ko) 양극 활물질 전구체의 제조 방법 및 양극 활물질 전구체
WO2017095153A1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
WO2016053056A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019059654A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2017095134A1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
WO2018160023A1 (ko) 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2022124801A1 (ko) 리튬 이차 전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 양극
WO2021154026A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021154021A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2020111898A1 (ko) 리튬 이차전지용 양극 활물질 전구체의 제조 방법
WO2021132762A1 (ko) 양극활물질, 이의 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2017095081A1 (ko) 이차전지용 양극활물질, 이를 포함하는 이차전지용 양극 및 이차전지
WO2020055198A1 (ko) 리튬 이차전지용 양극재의 제조 방법 및 이에 의해 제조된 리튬 이차전지용 양극재
WO2022139311A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15743916

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2018537604

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17760353

Country of ref document: EP

Kind code of ref document: A1