WO2019132087A1 - 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 - Google Patents

리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
WO2019132087A1
WO2019132087A1 PCT/KR2017/015779 KR2017015779W WO2019132087A1 WO 2019132087 A1 WO2019132087 A1 WO 2019132087A1 KR 2017015779 W KR2017015779 W KR 2017015779W WO 2019132087 A1 WO2019132087 A1 WO 2019132087A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
total
secondary battery
temperature
lithium secondary
Prior art date
Application number
PCT/KR2017/015779
Other languages
English (en)
French (fr)
Inventor
신재신
최창민
정혜윤
이창현
최수안
전상훈
안지선
Original Assignee
주식회사 엘 앤 에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘 앤 에프 filed Critical 주식회사 엘 앤 에프
Priority to PCT/KR2017/015779 priority Critical patent/WO2019132087A1/ko
Publication of WO2019132087A1 publication Critical patent/WO2019132087A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Cathode active material for lithium secondary batteries a method for producing the same, and a lithium secondary battery comprising the lithium secondary battery
  • a positive electrode active material useful for a high-energy type lithium ion secondary battery having a positive voltage there has been proposed a negative electrode active material having a spinel type structure, Needle-layer type of rock-salt type structure (: 002, needle 02, etc. is generally known in ⁇ and a lithium ion secondary battery using a 10 second inter alia has received attention as a cell having a discharge capacity of 20 high.
  • the compound may have a 2+ content of 2.5% or less when measured by Rietveld.
  • the secondary particle may be represented by the following general formula (1).
  • 0/3-axis ratio of the positive electrode active material may be from 4.9415 to 4.9420.
  • the present invention also provides a method for producing a cathode active material for a lithium secondary battery.
  • At least one selected from the group consisting of doping, Raw material; And lyrium raw material, followed by firing, the total firing time may be 10-50 hours.
  • the maintenance interval may be performed for 15-20 hours.
  • the final temperature of the heating section may be 730-74CTC, and the final temperature of the heating section may be 770-78CTC.
  • a positive electrode comprising a positive electrode active material according to an embodiment of the present invention;
  • a negative electrode comprising a negative electrode active material;
  • an electrolyte positioned between the positive electrode and the negative electrode.
  • Fig. 1 shows the results of the measurement of the resistance of the powder.
  • FIG. 2 shows the results of analysis of the content of Ni 2+ in the 3b site.
  • Fig. 4 shows results of electrochemical property evaluation.
  • Figs. 5 and 6 are profiles of the holding temperature holding period.
  • the lyrium metal oxide particle is a secondary particle in which lyrium metal oxide primary particles are aggregated, the lyrium metal oxide particle is a layered structure, the powder resistance of the secondary particle is 80 to 300 ohm-cm, And having a grain size (si ze) of 50 nm or less.
  • the powder resistance may be 80 to 300 ohm-cm or less.
  • Powder resistance is measured by using a powder resistance meter (MCP-PD51) measuring 3.5 g of active material and measuring 4, 8, 12, 16, 20 KN It can be measured by pressure.
  • MCP-PD51 powder resistance meter
  • the secondary shape may be a hollow shape.
  • the hollow shape means that a hollow portion is included in the secondary shape. These hollow portions can communicate with the outside of the secondary particle. In the case of such a hollow secondary particle, the efficiency is increased and the high output characteristic is improved.
  • the Ni 2+ content of the compound may be 2.5% or less when the Rietveld is measured. More specifically, it may be 1.5% or more and 2% or less. When this range is satisfied, there is an effect that the cat ion mixing phenomenon is reduced, the irreversible capacity decreases, and the rat e characteristic is improved.
  • the c / a axis ratio of the cathode active material may be 4.9415 - 4.9420. When this range is satisfied, it can be confirmed that the two-dimensional planar structure in the layered structure has been developed, and the diffusibility of the remodel can be improved due to the increase of the interlayer of 6c_site.
  • the secondary particle may be represented by the following general formula (1).
  • A is at least one selected from Zr, Ti, Al and Mg.
  • the initial capacity reduction can be minimized through the above combination, and the capacity retention rate and life characteristics can be improved when the battery is cycled for a long period of time at room temperature and high temperature.
  • the precursor is doped with Zr, Ti, Al, and Mg At least one selected doping source material;
  • the firing temperature includes a temperature rising period, a firing period, and a cooling period, and the temperature condition of the firing period includes a temperature range of the initial firing period of 710-750 ° C
  • the final sustain period temperature range is 770-790 ° C.
  • the present invention also provides a method for producing a cathode active material for a lithium secondary battery.
  • the total firing time can be from 10 to 50 hours, which can be performed for 15 to 20 hours.
  • the final temperature of the heating section may be 730-740 ° C, and the final temperature of the heating section may be 770-78CTC.
  • the powder resistance increases and the cat ion mixing phenomenon decreases, thereby reducing the irreversible capacity, thereby increasing the initial capacity and efficiency, and improving the property of the wire.
  • Cubic phase can be grown well in the crystal structure when the temperature rises rapidly to the final sintering temperature in the situation where lithium can not get into the structure during sintering of the active material.
  • composition of the precursor used and the description of the doping element are the same as those of the above-mentioned cathode active material, so that the description thereof will be omitted.
  • Another embodiment of the present invention provides a lithium secondary battery comprising a cathode, a cathode, and an electrolytic solution containing the above-mentioned cathode active material.
  • the positive electrode includes a positive electrode collector and a positive electrode active material layer formed on the positive electrode collector.
  • the cathode active material layer includes the above-described cathode active material, and optionally a binder, a conductive material, or a combination thereof. 2019/132087 1 »(: 1 ⁇ ⁇ 2017/015779
  • aluminum may be used, but the present invention is not limited thereto.
  • the binder may be selected from, for example, polyvinyl alcohol, carboxymethylcellulose, hydroxypropylcellulose, diacetylcellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polymers comprising ethylene oxide, Polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon, and the like.
  • the conductive material is used for imparting conductivity to the electrode. Any conductive material can be used without causing any chemical change in the battery. Examples of the conductive material include metal powders such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, copper, nickel, aluminum and silver, metal fibers and the like, and conductive materials such as polyphenylene derivatives May be used alone or in combination.
  • the negative electrode includes a current collector and a negative electrode active material layer formed on the current collector.
  • the current collector may be a copper foil, a nickel foil, a stainless steel foil, a titanium foil, a nickel foil, a copper foil, a polymer substrate coated with a conductive metal, or a combination thereof.
  • the negative electrode active material layer includes a negative electrode active material, a binder composition, and / or a conductive material.
  • the negative electrode active material includes a material capable of reversibly intercalating / deminucrating lyrium ion, a lyrium metal, an alloy of lyrium metal, a material capable of doping and dedoping lyrium, or a transition metal oxide. Descriptions of the negative electrode active material, the binder composition and the conductive material will be omitted.
  • the electrolyte includes a water-soluble organic solvent, a wari salt. The non-aqueous organic solvent and the lithium salt can be applied without limitation as long as they are compatible with each other 2019/132087 1 »(: 1 ⁇ ⁇ 2017/015779
  • the material thus obtained is pulverized and classified to obtain a powder having an average particle diameter of
  • FIG. 5 and FIG. 6 A specific graph of the firing temperature profile shown in Table 2 can be referred to FIG. 5 and FIG. 6.
  • Powder resistance can be 80 or more and 300 ohm-cm or less. Powder resistance can be measured by using a powder resistance meter (MCP-PD51) measuring 3.5 g of active material and measuring 4, 8, 12, 16 and 20 KN pressure with 4-pin probe under the condition of start range -3ohm and 10V. When such a powder resistance range is satisfied, there is an effect that the initial capacity and efficiency increase and the output characteristics are improved.
  • MCP-PD51 powder resistance meter measuring 3.5 g of active material and measuring 4, 8, 12, 16 and 20 KN pressure with 4-pin probe under the condition of start range -3ohm and 10V.
  • FIG. 1 shows the results of the measurement of the powder resistance.
  • black is Comparative Example 1
  • red is Comparative Example 2
  • blue is the result of Example 1.
  • Example 2 shows the result of analyzing the content of Ni 2+ in 3b site.
  • black is Comparative Example 1
  • red is Comparative Example 2
  • blue is the result of Example 1.
  • Comparative Examples 1 and 2 had a higher Ni 2+ content than that of Example 1, so that Cat ion mi xing phenomenon appeared and irreversible capacity was increased and output characteristics were degraded.
  • Example 1 exhibited the lowest Ni 2+ content, indicating that Cat ion m x ing phenomenon was reduced, and that capacity retention and life characteristics were improved when the battery was cycled for a long time at room temperature and high temperature.
  • a CR2032 coin type half cell (coin cell) was assembled in a controlled humidity drier and aged at room temperature for 12 hours to assure electrolytic solution impregnation and electrochemical equilibrium after cell assembly.
  • Fig. 4 shows the results of the electrochemical property evaluation.
  • black is Comparative Example 1
  • red is Comparative Example 2
  • blue is the result of Example 1.
  • Example 1 shows that the capacity retention rate during cycle evaluation is higher than that of Comparative Example 1, 2019/132087 1 »(: 1 ⁇ ⁇ 2017/015779

Abstract

리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지에 대한 것으로, 리튬 금속 산화물 1차 입자가 집합된 2차 입자이며, 상기 리튬 금속 산화물 입자는 층상 구조이며, 상기 2차 입자의 분체 저항은 80내지 300 ohm-cm이고, 결정립 크기 (grain size)가 50nm이하인 리튬 이차 전지용 양극 활물질을 제공할 수 있다.

Description

2019/132087 1»(:1^1{2017/015779
【명세서】
【발명의 명칭】
리툼 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리륨이차전지
5 【기술분야】
리툼 이차 전지용 양극 활물질 이의 제조 방법, 및 이를 포함하는 리륨이차전지에 관한것이다.
【발명의 배경이 되는기술】
최근, ^기기나ᄄ등의 전자기기 포터블화,무선화가급속히 진행되고 10 있어 이들의 구동용 전원으로서 소형, 경량으로 고에너지 밀도를 가지는 이차전지로의 요구가 높아지고 있다. 또한 최근 지구 환경을 위해 전기 자동차, 하이브리드 자동차의 개발 및 실용화가 이루어져 중대형으로 저장 특성이 우수한 리륨 이온 이차전지로의 요구가 높아지고 있다. 이러한 상황하에서 충방전 용량이 크고 수명 특성이 장점인 리튬 이온 이차전지가 15 주목되고 있다.
종래, 급의 전압을가지는고에너지형 리툼이온이차전지에 유용한 양극 활물질로서는 스피넬형 구조의 니¾1¾04, 지그재그층형 구조의
Figure imgf000003_0001
층형 암염형 구조의 니(:002 , 니附02 등이 일반적으로 알려져 있으며 그 중에서도 1 02를 이용한리튬이온 이차전지는높은중방전 용량을가지는 20 전지로서 주목받고 있다.
그러나 이 재료는충방전사이클 내구성이 떨어지기 때문에, 한층 더 특성 개선이 요구되고 있다.
최근 이 제외된 2원계에서는 의 함량을 극대화시켜
Figure imgf000003_0002
25 추가적인 도펀트의 활용이 필요하게 된다.
이 때 입자의 형상이나 내부 치밀도를 고려하여 묘아^)의 활용이 알려져 있으나 8의 경우 용량감소에 대한 민감도가 다른 원소보다 높아 내부 치밀화 효과 발현을 위한 첨가 시 상당한 용량의 감소를 필수적으로 수반하게 된다.
30 이에 3을 대체하여 용량감소를 최소하면서도 입자 내부 치밀도를 2019/132087 1»(:1^1{2017/015779
증가시키는 도펀트의 조합을 찾는 것이 2원계에 있어서 현재까지 과제로남아있다.
【발명의 내용】
【해결하고자하는과제】
고출력 특성을 확보한 리륨 이차 전지용 양극 활물질을 제공하고자 한다.
【과제의 해결수단】
본 발명의 일 구현예에서는, 리툼 금속 산화물 1차 입자가 집합된 2차 입자이며, 상기 리륨 금속 산화물 입자는 층상 구조이며, 상기 2차 입자의 분체 저항은 80 내지 300 01101-011이고, 결정립 크기( 11 가 50™이하인 리륨이차전지용양극활물질을제공한다.
상기 2차입자는중공형태일 수 있다.
상기 화합물은 2+함유량이 리트벨트측정 시 2.5 %이하일수 있다. 상기 2차입자는하기 화학식 1로표시될수 있다.
[화학식 1]
I 0 [( 刀에)1-3
상기 화학식 1에서, 0.98 < & < 1.02, 0.001 < < 0.015, 0.80 < X < 0.85,및 0.09 < 7 < 0.12, 0.06 < å < 0.08이고,쇼는九, Ti ,시, 및 ¾¾중선택된 적어도어느하나이다.
상기 양극활물질의 0/3축비율은 4.9415-4.9420일 수 있다.
본발명의 다른 일 구현예에서는, ,(:0 ,및 을포함하는전구체를 준비하는단계; 및상기 전구체에 , , 시,
Figure imgf000004_0001
선택된 적어도어느 하나의 도핑 원료 물질; 및 리륨 원료 물질을 건식 혼합 후 소성하는 단계;를포함하고, 상기 전구체에
Figure imgf000004_0002
,시, 및 ¾¾중선택된 적어도어느 하나의 도핑 원료 물질; 및 리륨 원료 물질을 건식 혼합 후 소성하는 단계;에서, 상기 소성 온도는 승온 구간, 유지 구간, 및 냉각 구간을 포함하고, 상기 유지 구간의 온도 조건은, 최초 유지 기간 온도 범위가 710-7501:이고, 최종 유지 기간 온도 범위가 770-7901:인 것인 리륨 이차 전지용양극활물질의 제조방법을제공한다.
상기 전구체에 , ,시, 및 ¾¾중선택된 적어도어느하나의 도핑 원료 물질 ; 및 리륨 원료 물질을 건식 혼합 후 소성하는 단계 ;에서, 전체 소성 시간은 10-50시간일 수 있다.
상기 유지 구간은 15-20시간동안수행될수 있다.
상기 승온 구간의 최종 온도는 730-74CTC이고, 상기 유지 구간의 최종온도는 770-78CTC일수 있다.
본 발명의 또 다른 일 구현예에서는, 본 전술한 본 발명의 일 구현예에 따른양극활물질을포함하는양극; 음극활물질을포함하는음극; 및 상기 양극 및 음극 사이에 위치하는 전해질;을 포함하는 리륨 이차 전지를제공한다.
【발명의 효과】
초기 방전 용량, 출력 특성 및 사이클 특성을 향상 시킨 양극 활물질을제공할수 있다.
【도면의 간단한설명】
도 1은분체 저항측정 결과이다.
도 2는 3b사이트에서의 Ni2+의 함량분석 결과이다.
도 3는 c/a축값분석 결과이다.
도 4은전기화학적 특성 평가결과이다.
도 5및 도 6은소성 온도유지 구간의 프로파일이다.
【발명을실시하기 위한구체적인 내용】
이하, 본 발명의 구현 예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은후술할청구항의 범주에 의해 정의될뿐이다.
양극활물질
본 발명의 일 구현예에서는, 리륨 금속 산화물 1차 입자가 집합된 2차 입자이며, 상기 리륨 금속 산화물 입자는 층상 구조이며, 상기 2차 입자의 분체 저항은 80이상 300 ohm-cm 이하 이고, 결정립 크기 (grain、 s i ze)가 50nm이하인 리륨이차전지용양극활물질을제공한다.
상기 분체 저항은 80이상 300 ohm-cm이하일수 있다.
분체 저항은 활물질 3.5g을 계량하여 분체저항 측정기 (MCP-PD51)를 이용해 Start range _3ohm, 10V 조건에서 4-pin probe로 4,8, 12, 16,20 KN 압력으로측정할수있다.
이러한분체 저항범위를만족하는경우, 초기용량및 효율증가하고 출력 특성이 향상되는효과가있다.
상기 2차입자는중공형태일 수 있다.중공형태란, 2차입자내부에 중공부를 포함하는 것을 의미한다. 이들 중공부는 2차 입자 외부에 연통될 수 있다. 이러한 중공 형태의 2차 입자의 경우, 효율이 증가하고 고출력 특성이 향상되는효과가있다.
상기 화합물은 Ni2+함유량이 리트벨트측정 시 2.5 %이하일 수 있다. 보다구체적으로, 1.5%이상및 2 %이하일 수 있다. 이러한범위를만족하는 경우, Cat i on mixing현상이 감소하여 비가역적 용량이 감소하고 Rat e특성이 향상되는효과가있다.
상기 양극 활물질의 c/a 축비율은 4.9415 - 4.9420일 수 있다. 이 범위를 만족하는 경우, 층상구조내 2차원 평면구조가발달하였음을 확인할 수 있으며, 6c_s i te의 inter l ayer 증가로 인해 리콤의 확산성이 향상될 수 있다.
상기 2차입자는하기 화학식 1로표시될수 있다.
[화학식 1]
Li a [ (Ni xCoyMnz ) i- p A (3 ] ¾
상기 화학식 1에서,
0.98 < a < 1.02, 0.001 < < 0.015, 0.80 < x < 0.85, 및
0.09 < y < 0.12, 0.06 < z < 0.08이고, A는 Zr, Ti, A1 , 및 Mg중선택된 적어도어느하나이다.
이러한 몰비를 만족하는 경우, 상온 및 고온 조건에서의 사이클 특성을동시에 개선할수 있다. 추가적으로, 초기 용량 감소를 최소화할수 있다.
또한상기 조합을통해 초기 용량 감소를 최소화할수 있으며, 상온 및 고온 환경에서 장기간 사이클 진행 시, 용량 유지율 및 수명 특성을 개선할수 있다.
양극활물질의 제조방법
본발명의 다른 일 구현예에서는,상기 전구체에 Zr , Ti, A1,및 Mg중 선택된 적어도어느하나의 도핑 원료물질; 및 리륨원료물질을건식 혼합 후 소성하는 단계;에서, 상기 소성 온도는 승온 구간, 유지 구간, 및 냉각 구간을 포함하고, 상기 유지 구간의 온도 조건은, 최초 유지 기간 온도 범위가 710-750 °C이고, 최종유지 기간온도 범위가 770-790 °C인 것인 리륨 이차전지용양극활물질의 제조방법을제공한다.
보다구체적으로,전체 소성 시간은 10-50시간일수 있다.이중상기 유지 구간은 15-20시간동안수행될수 있다.
또한, 상기 승온 구간의 최종 온도는 730-740°C이고, 상기 유지 구간의 최종온도는 770-78CTC일 수 있다.
이 때 최종소성 온도범위를 전술한범위로설정하는 것이 중요하다. 상기 온도범위를만족하는경우,분체저항이 증가하고 Cat ion mixing현상이 감소하여 비가역 용량이 감소되어 초기용량 및 효율이 증가하고 줄력특성이 향상되는효과가있다.
활물질 소성 시 리튬이 구조내로다들어가지 못한상황에서 급하게 최종소성 온도까지 온도가올라갈 경우 결정 구조에서 Cubi c상이 더욱 잘 성장할수 있는조건이 된다.
이에 저온에서 비교적 길게 소성하여 리륨이 구조 내로 충분히 잘 들어갈시간을늘려주고 Layered구조의 생성비율이 많아지게 해야된다. 그 후 온도를 소성 온도보다 조금 더 올려서 초기 승온 과정에서 부족했던소성 열량을보상하며 결정을성장시킬수 있다.
이에 대한 조건은 후술하는 실시예에서 보다 자세히 설명하도록 한다.
사용하는 전구체의 조성 및 도핑 원소에 대한 설명은 전술한 양극 활물질과동일하기 때문에 그설명을생략하도록한다.
리튬이차전지
본 발명의 다른 일 구현예에서는 전술한 양극 활물질을 포함하는 양극, 음극, 및 전해액을포함하는리튬이차전지를제공한다.
상기 양극은 양극 집전체 및 상기 양극 집전체 위에 형성되는 양극 활물질 층을포함한다. 상기 양극활물질 층은 전술한 양극활물질, 그리고 선택적으로바인더, 도전재, 또는이들의 조합을포함한다. 2019/132087 1»(:1^1{2017/015779
이하에서는, 전술한 양극 활물질에 ·대한 중복되는 설명은 생략하고, 리툼이차전지에 포함된 나머지 구성을설명한다.
상기 집전체로는 알루미늄을 사용할 수 있으나 이에 한정되는 것은 아니다.
상기 바인더는 예를 들어 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 디아세틸셀룰로즈 , 폴리비닐클로라이드 , 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드 , 에틸렌 옥사이드를 포함하는 폴리머 , 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌 , 폴리비닐리덴 플루오라이드 , 폴리에틸렌, 폴리프로필렌 , 스티렌-부타디엔 러버 , 아크릴레이티드스티텐-부타디엔 러버, 에폭시 수지 , 나일론등일수 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로, 전지에서 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하다. 도전재의 예로천연흑연, 인조흑연, 카본블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유, 구리, 니켈, 알루미늄, 은등의 금속분말, 금속 섬유등을사용할수 있고,또한폴리페닐렌 유도체 등의 도전성 재료를 1종 또는 1종이상을혼합하여 사용할수 있다.
상기 음극은 집전체 및 상기 집전체 위에 형성된 음극 활물질 층을 포함한다.
상기 집전체로는구리 박,니켈박,스테인레스강박,티타늄박,니켈 발포체(^ ),구리 발포체,전도성 금속이 코팅된폴리머 기재,또는이들의 조합을사용할수 있다.
상기 음극 활물질 층은 음극 활물질, 바인더 조성물, 및/또는 도전재를포함한다.
상기 음극 활물질로는 리륨 이온을 가역적으로 인터칼레이션/디민터칼레이션할수 있는물질, 리륨금속, 리륨금속의 합금, 리륨을도프및 탈도프할수 있는물질, 또는전이 금속산화물을포함한다. 상기 음극활물질과바인더 조성물, 도전재에 대한설명은생략한다. 상기 전해질은비수성 유기 용매와리륨염을포함한다. 상기 비수성 유기 용매와 리툼염은 상용되는 것이라면 제한 없이 적용될 수 있으므로 2019/132087 1»(:1^1{2017/015779
자세한설명은생략한다.
이하 본 발명의 실시예, 이에 대비되는 비교예, 그리고 이들의 평가예를 기재한다. 하기 실시예는 본 발명의 일 실시예일뿐이므로 본 발명이 하기한실시예에 한정되는 것은아니다.
실시예 1
(1)양극활물질의 제조
목적하는 Lii.oi38Nio.8mCo。.1。44!110.0685 I· 0.00141오 0.◦◦27 0.006()2의 화학양론적 몰비가 되게, 니켈계 금속 수산화물 전구체인 丈的 예 八⑶ ,리튬의 원료물질인나0 計원료물질인 02, 원료 물질인 II 02및 ¾¾원료물질인 ¾¾(0 2룰, 건식으로혼합하였다.
건식 혼합물 총 650§의 혼합물을 물라이트 (11111 재질의 내화갑 (드크요요 )에 충진시키고, 산소 (¾)분위기의 소결로에서, 소성 유지구간 온도 735 - >7801: 조건으로, 승온 및 냉각 구간을 포함하여 총 30시간동안 소성하였다.
이에 따라 얻어진 물질을 물질을 분쇄 분급하여, 평균 입경이
5.7_이 되도록하였고 , 실시예 1의 양극활물질로수득하였다.
구체적인소성 조건은도 5, 도 6, 및 하기 표 2에 나타내었다.
(2)리륨이차전지 (¾ 611)의 제조
실시예 1의 양극 활물질과 도전재 예라구) , 바인더 0 )의 질량비가 90:5:5 (활물질: 도전재: 바인더)가되도록 메틸- 2피롤리돈 ( ) 용매에서 균일하게 혼합하였다.
상기의 혼합물을알루미늄호일에 고르게 도포한후열풍건조를통해 ■를 증발 시켰고. 롤프레스에서 압착하고 100 내지 1201: 진공오븐에서 12시간 진공 건조하여 양극을 제조하였다. 상대 전극으로 니-01 31을 사용하고, 전해액으로에틸렌카보네이트 ( ):디메틸카보네이트犯1:) = 1:1인 혼합용매에 1.2몰의 니묘 용액을 액체 전해액으로 사용하여 통상적인 제조방법에 따라 0^2032 코인 타입의 반쪽 전지 (1131군 00111 0611)를 제조하였다.
실시예 2
목적하는
Figure imgf000009_0001
화학양론적 몰비가 되게, 니켈계 금속 수산화물 전구체인 吹的 細九,리륨의 원료물질인니0比計원료물질인計02, 원료 물질인 02
Figure imgf000010_0001
물질인 ¾位(細)2룰, 시 원료 물질인 /\1(0 3물질을 건식으로혼합하였다.
이후의 공정은 실시예 1과 같으며, 이후 평균 입경 5.8미의 실시예
2의 양극활물질로수득하였다.
비교예 1
니1.0138 0.8171(00.1044 ¾ . 크 대刀아 .0027¾登0.006()2로 목적하여 원료를 건식 혼합하고,소성유지 구간온도가 7551: 조건이고, 나머지는실시예 1과 동일한 공정으로 활물질을 제조하고, 이를 포함하는 반쪽 전지를 제조하였다.
비교예 2
1-11.0138 10.8171(〕0。 .1044¾!¾) .0685 1" 0.0014710.0027¾0.。에어로 목적하여 원료를 건식 혼합하고, 소성 유지 구간 온도가 700 -> 790
Figure imgf000010_0002
조건이고, 나머지는 실시예 1과동일한공정으로활물질을제조하고 ,이를포함하는반쪽전지를 제조하였다.
[표 1]
Figure imgf000010_0003
Figure imgf000011_0001
[표 2]
Figure imgf000011_0002
상기 표 2의 소성 온도 프로파일의 구체적인 그래프는 도 5및 도 6을참조하면 된다.
평가예 1(분체 저항, 결정 구조측정)
분체 저항 80이상 300 ohm-cm 이하일 수 있다. 분체 저항은 활물질 3.5g을 계량하여 분체저항측정기 (MCP-PD51)를 이용해 Start range -3ohm, 10V 조건에서 4-pin probe로 4,8,12,16,20 KN 압력으로 측정할 수 있다. 이러한 분체 저항 범위를 만족하는 경우, 초기용량 및 효율 증가하고 출력 특성이 향상되는효과가있다.
결정 구조의 XRD 패턴을 얻기 위해 Rigaku-Ultima IV X-ray diffractometer (Cu Ka)가사용되었으며, 1 deg/mi n, 10°-90°(2theta/deg) 조건으로측정 되었다. 이때 얻어진 XRD패턴은 Fu l l Prof 프히빰에겨 iC齊 분석값과함께 Win plotr을이용해서 리트펠트방법 (Ri etve ld ref inement )을 통해 분석되었다.
이의 결과는상기 표 1과같다.
도 1은 분체 저항 측정 결과이다 도 1에서, 흑색은 비교예 1이고, 붉은색은비교예 2이고, 푸른색은실시예 1의 결과이다.
실시예에 따른 양극 활물질이 가장높은 분체 저항 측정값을 가지고 있어 상온 및 고온환경에서 장기간사이클 진행 시 , 용량 유지율 및 수명 특성이 개선된 것을확인 할수 있었다.
도 2는 3b사이트에서의 Ni2+의 함량분석 결과이다.도 2에서 ,흑색은 비교예 1이고, 붉은색은비교예 2이고, 푸른색은실시예 1의 결과이다.
비교예 1 및 2는 실시예 1 보다 높은 Ni 2+ 함유량을 가지고 있어서 Cat ion mi xing 현상이 나타나서 비가역적 용량을 증가시키고 출력 특성이 저하되었다. 실시예 1 이 가장 낮은 Ni2+ 함유량을 가지고 있어서 Cat i on mi x ing 현상이 감소하여 상온 및 고온 환경에서 장기간 사이클 진행 시, 용량유지율및 수명 특성이 개선된 것을확인 할수 있었다.
평가예 3 (코인셀평가결과)
수분이 제어된 드라이룸에서 CR2032 코인 타입 반쪽전지 (코인셀)를 조립하였으며, 셀 조립 후 전해액 함침 및 전기화학적 평형상태를 만들기 위해 12시간동안상온에서 에이징 (Aging)하였다.
코인셀은 T0SCAT-3100 충방전기 (Bat tery tester)를 이용하여 평가되었다. 먼저 화성 (Format i on)은상온 (25°C ) 3.0V - 4.2V전압범위에서
◦ .1C의 전류밀도를 인가하여 2사이클 동안 충방전을 반복하였으며, 이후 동일 전압범위에서 1.0C전류밀도를인가하여 충방전을각각 25 °C 500사이클, 45 °C 350사이클 진행하였다. 화성단계에서의 초기용량과 쿨통효율, 사이클 평가가진행되는동안의 용량유지율을표에 나타내었다.
그결과는상기 표 1과같다.
도 4는 전기화학적 특성 평가 결과이다. 도 4에서, 흑색은 비교예 1이고 , 붉은색은 비교예 2이고 , 푸른색은 실시예 1의 결과이다. 실시예 1은 바교예 1과비교예 2보다사이클평가가진행되는동안의 용량유지율이 높게 2019/132087 1»(:1^1{2017/015779
평가됐다. 또한, 비교예 2는비교예 1에 비해 용량유지율이 높게 평가됐다. 소성 프로파일 변경에 의해 [ 근 선 구조가 더욱 안정화 됐으며 사이클 수명이 향상됐다.
본 발명은상기 실시예들에 한정되는 것이 아니라서로 다른 다양한 5 형태로 제조될 수 있으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만한다.

Claims

2019/132087 1»(:1^1{2017/015779
【청구범위】
【청구항 11
리륨금속산화물 1차입자가집합된 2차입자이며 ,
상기 리륨금속산화물 입자는증상구조이며,
상기 2차입자의 분체 저항은 80내지 300 0 11-011이고,
^절정립 크기 ( 크 가 5011111 이하인 리튬 이차 전지용 양극 활물질.
【청구항 2]
제 1항에 있어서,
상기 2차입자는중공 형태인 것인 리륨이차전지용양극활물질.
【청구항 3】
제 1항에 있어서,
상기 화합물은 2+ 함유량이 리트벨트 측정 시 2.5 % 이하인 것인 리튬이차전지용양극활물질.
【청구항 4]
제 1항에 있어서,
상기 2차 입자는 하기 화학식 1로 표시되는 것인 리륨 이차 전지용 양극활물질:
[화학식 1]
Figure imgf000014_0001
상기 화학식 1에서,
0.98 < (X < 1.02 , 0.001 < 욘 < 0.015 , 0.80 < X < 0.85 , 및 0.09 < 7 < 0. 12 , 0.06 < < 0.08이고,
Figure imgf000014_0002
【청구항 5】
제 1항에 있어서,
상기 양극 활물질의 :八 축비율은 4.9415-4.9420인 것인 리륨 이차 전지용양극활물질.
【청구항 6】
, 0) , 및 !&1을포함하는전구체를준비하는단계; 및 2019/132087 1»(:1^1{2017/015779
상기 전구체에 計, ,시, 및 ¾¾중선택된 적어도어느하나의 도핑 원료물질; 및 리륨원료물질을건식 혼합후소성하는단계 ;를포함하고, 상기 전구체에 計, ,시, 및 ¾¾중선택된 적어도어느하나의 도핑 원료물질; 및 리륨원료물질을건식 혼합후소성하는단계;에서,
상기 소성 온도는승온구간, 유지 구간, 및 냉각구간을포함하고, 상기 유지 구간의 온도 조건은, 최초 유지 기간 온도 범위가
710-7501:이고, 최종 유지 기간 온도 범위가 770-7901:인 것인 리륨 이차 전지용양극활물질의 제조방법.
【청구항 7】
저 16항에 있어서,
상기
Figure imgf000015_0001
선택된 적어도어느하나의 도핑 원료물질; 및 리튬원료물질을건식 혼합후소성하는단계;에서,
전체 소성 시간은 10-50 시간인 것인 리튬 이차 전지용 양극 활물질의 제조방법 .
【청구항 8】
제 6항에 있어서,
상기 유지 구간은 15-20시간 동안 수행되는 것인 리륨 이차 전지용 양극활물질의 제조방법.
【청구항 9】
제 6항에 있어서,
상기 승온 구간의 최종 온도는 730-7401:이고, 상기 유지 구간의 최종온도는 770-7801:인 것인 리륨 이차전지용양극활물질의 제조방법 .
【청구항 10】
제 1항 내지 저] 5항 중 어느 한 항에. 따른 양극 활물질을 포함하는 양극;
음극활물질을포함하는음극; 및
상기 양극및 음극사이에 위치하는전해질;
을포함하는리튬이차전지 .
PCT/KR2017/015779 2017-12-29 2017-12-29 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 WO2019132087A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/015779 WO2019132087A1 (ko) 2017-12-29 2017-12-29 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/015779 WO2019132087A1 (ko) 2017-12-29 2017-12-29 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지

Publications (1)

Publication Number Publication Date
WO2019132087A1 true WO2019132087A1 (ko) 2019-07-04

Family

ID=67067589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015779 WO2019132087A1 (ko) 2017-12-29 2017-12-29 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지

Country Status (1)

Country Link
WO (1) WO2019132087A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11777136B2 (en) * 2019-09-09 2023-10-03 Korea Institute Of Science And Technology Cathode active material for sodium ion battery, and preparation process thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130059158A (ko) * 2011-11-28 2013-06-05 주식회사 포스코이에스엠 리튬-니켈-코발트-알루미늄 복합 산화물의 제조 방법, 이에 의하여 제조된 리튬-니켈-코발트-알루미늄 복합 산화물 및 이를 포함하는 리튬 이차 전지
KR20150030232A (ko) * 2012-07-12 2015-03-19 스미토모 긴조쿠 고잔 가부시키가이샤 비수계 전해질 이차전지용 양극 활물질과 그의 제조방법 및 양극 활물질을 이용한 비수계 전해질 이차전지
JP2016115658A (ja) * 2014-12-15 2016-06-23 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池
KR20170038485A (ko) * 2015-09-30 2017-04-07 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
KR101749374B1 (ko) * 2013-12-05 2017-06-20 주식회사 엘지화학 다공성 리튬 금속 산화물 입자의 제조방법 및 이에 의해 제조된 다공성 리튬 금속 산화물 입자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130059158A (ko) * 2011-11-28 2013-06-05 주식회사 포스코이에스엠 리튬-니켈-코발트-알루미늄 복합 산화물의 제조 방법, 이에 의하여 제조된 리튬-니켈-코발트-알루미늄 복합 산화물 및 이를 포함하는 리튬 이차 전지
KR20150030232A (ko) * 2012-07-12 2015-03-19 스미토모 긴조쿠 고잔 가부시키가이샤 비수계 전해질 이차전지용 양극 활물질과 그의 제조방법 및 양극 활물질을 이용한 비수계 전해질 이차전지
KR101749374B1 (ko) * 2013-12-05 2017-06-20 주식회사 엘지화학 다공성 리튬 금속 산화물 입자의 제조방법 및 이에 의해 제조된 다공성 리튬 금속 산화물 입자
JP2016115658A (ja) * 2014-12-15 2016-06-23 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および、非水系電解質二次電池
KR20170038485A (ko) * 2015-09-30 2017-04-07 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11777136B2 (en) * 2019-09-09 2023-10-03 Korea Institute Of Science And Technology Cathode active material for sodium ion battery, and preparation process thereof

Similar Documents

Publication Publication Date Title
KR101746187B1 (ko) 리튬 이차 전지용 양극 활물질, 및 이를 포함하는 리튬 이차 전지
KR102014983B1 (ko) 양극 및 이를 채용한 리튬 전지
JP5489723B2 (ja) 非水電解質二次電池用正極活物質ならびにそれを用いた非水電解質二次電池
JP6508806B2 (ja) 正極活物質、その製造方法、それを採用した正極及びリチウム二次電池
KR101316053B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
EP2096692B1 (en) Cathode active material, and cathode and lithium battery including the same
KR102214826B1 (ko) 복합 양극 활물질, 이를 포함하는 리튬 전지, 및 이의 제조방법
Shu Electrochemical behavior and stability of Li 4 Ti 5 O 12 in a broad voltage window
Yi et al. Enhanced electrochemical performance of Li-rich low-Co Li1. 2Mn0. 56Ni0. 16Co0. 08− xAlxO2 (0≤ x≤ 0.08) as cathode materials
US20090104530A1 (en) Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
BR112016017104B1 (pt) Bateria secundária de lítio
KR101550956B1 (ko) 금속 도핑된 양극 활물질
BRPI0919658B1 (pt) Material ativo de cátodo, mistura de cátodo, cátodo para baterias secundárias e bateria secundária de lítio
WO2016176928A1 (zh) 负极材料与制备方法以及用该负极材料的锂离子二次电池
JP2012174546A (ja) 非水電解質二次電池
KR20160123164A (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
Zhang et al. Synthesis and characterization of mono-dispersion LiNi0. 8Co0. 1Mn0. 1O2 micrometer particles for lithium-ion batteries
KR101882878B1 (ko) 리튬 이차 전지용 양극 활물질, 및 이를 포함하는 리튬 이차 전지
CN108807928B (zh) 一种金属氧化物及锂离子电池的合成
JP5451671B2 (ja) 正極活物質、正極及び非水系二次電池
JP5451681B2 (ja) 正極活物質、正極及び非水系二次電池
WO2019132087A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR102000724B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20180113185A (ko) 고용량 소듐 이온 전지용 양극활물질
KR20190081609A (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936551

Country of ref document: EP

Kind code of ref document: A1