WO2020106024A1 - 리튬 이차전지용 양극 활물질 및 이의 제조 방법 - Google Patents

리튬 이차전지용 양극 활물질 및 이의 제조 방법

Info

Publication number
WO2020106024A1
WO2020106024A1 PCT/KR2019/015860 KR2019015860W WO2020106024A1 WO 2020106024 A1 WO2020106024 A1 WO 2020106024A1 KR 2019015860 W KR2019015860 W KR 2019015860W WO 2020106024 A1 WO2020106024 A1 WO 2020106024A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode active
active material
lithium
transition metal
Prior art date
Application number
PCT/KR2019/015860
Other languages
English (en)
French (fr)
Inventor
황병현
양송이
김성배
김우현
신선식
이은희
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PL19886156.9T priority Critical patent/PL3869594T3/pl
Priority to JP2021527047A priority patent/JP7171918B2/ja
Priority to CN201980076176.6A priority patent/CN113169329A/zh
Priority to EP19886156.9A priority patent/EP3869594B1/en
Priority to US17/294,542 priority patent/US20210408537A1/en
Publication of WO2020106024A1 publication Critical patent/WO2020106024A1/ko
Priority to JP2022176534A priority patent/JP7460250B2/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium secondary battery, a manufacturing method thereof, a positive electrode for a lithium secondary battery and a lithium secondary battery comprising the positive electrode active material.
  • lithium secondary batteries having high energy density and voltage, long cycle life, and low self-discharge rate have been commercialized and widely used.
  • Lithium transition metal composite oxide is used as a positive electrode active material of a lithium secondary battery, and among them, LiCoO 2 having a high working voltage and excellent capacity characteristics Lithium cobalt composite metal oxides such as are mainly used.
  • LiCoO 2 has very poor thermal properties due to destabilization of the crystal structure due to delithium, and is expensive, and thus has a limitation in mass use as a power source in fields such as electric vehicles.
  • lithium manganese composite metal oxides LiMnO 2 or LiMn 2 O 4, etc.
  • lithium iron phosphate compounds LiFePO 4, etc.
  • lithium nickel composite metal oxides LiNiO 2, etc.
  • the LiNiO 2 is inferior in thermal stability to LiCoO 2, and when an internal short circuit occurs due to pressure from the outside in a charged state, the positive electrode active material itself decomposes to cause the battery to burst and ignite. Accordingly, as a method for improving the low thermal stability while maintaining the excellent reversible capacity of the LiNiO 2 , a lithium nickel cobalt manganese oxide in which a part of Ni is substituted with Mn and Co was developed.
  • the particle strength and structural stability are low and the capacity is low.
  • nickel in the lithium nickel cobalt metal oxide is Ni Due to the tendency to remain 2 + , there was a problem that a large amount of lithium by-products such as LiOH and Li 2 CO 3 are generated on the surface.
  • a lithium nickel cobalt metal oxide having a high content of lithium by-products is used on the surface, it may cause a swelling phenomenon in a lithium secondary battery by reacting with an electrolyte injected into the lithium secondary battery, and a secondary including it The battery could not sufficiently exhibit battery performance.
  • the first technical problem of the present invention is a average particle diameter (D 50 ) after rolling with a rolling density of 3.0 g / cm 3 to 3.3 g / cm 3 and a single particle form. It is to provide a positive electrode active material having a high-capacity characteristic and improved life characteristics and resistance characteristics while being doped with a specific doping element.
  • the second technical problem of the present invention is to produce a positive electrode active material by doping a specific doping element, even if it is fired at a relatively low temperature than the firing temperature for producing a lithium transition metal oxide containing a high-content nickel in the form of a single particle.
  • degradation without 3.0g / cm 3 to 3.3g / cm average particle size (D 50) after rolling in the rolling of the third density to the fourth 10 ⁇ m is to provide a method for producing the positive electrode active material having the form of a single particle.
  • the third technical problem of the present invention is to provide a positive electrode for a lithium secondary battery comprising the positive electrode active material.
  • the fourth technical problem of the present invention is to provide a lithium secondary battery including the positive electrode for a lithium secondary battery.
  • the present invention is a lithium transition metal oxide containing nickel (Ni), cobalt (Co), and manganese (Mn).
  • the lithium transition metal oxide has a nickel (Ni) content of 60 for the total number of moles of transition metal excluding lithium. It is at least mol%, and includes the lithium transition metal oxide doped with at least one doping element selected from the group consisting of B, Zr, Mg, Ti, Sr, W and Al, 3.0 g / cm 3 to 3.3 g
  • An average particle diameter (D 50 ) after rolling with a rolling density of / cm 3 is 4 to 10 ⁇ m, and a positive electrode active material having a single particle form is provided.
  • the present invention is a step of preparing a transition metal hydroxide precursor containing 60 mol% or more of nickel (Ni) relative to the total number of moles of transition metal hydroxide including nickel (Ni), cobalt (Co), and manganese (Mn). ; Mixing and drying the transition metal hydroxide precursor and an aqueous solution containing a doping element raw material selected from the group consisting of B, Zr, Mg, Ti, Sr, W and Al; And mixing the lithium raw material in the mixture and firing at 810 ° C or higher to prepare a lithium transition metal oxide in the form of a single particle.
  • a doping element raw material selected from the group consisting of B, Zr, Mg, Ti, Sr, W and Al
  • a positive electrode for a lithium secondary battery comprising a positive electrode active material according to the present invention.
  • the present invention when producing a positive electrode active material containing a high content of nickel, even if baked at a relatively low temperature than the temperature for producing a conventional single-particle positive electrode active material by doping with a specific doping element 3.0g / cm 3 to 3.3g / cm
  • the average particle diameter (D 50 ) after rolling with a rolling density of 3 is 4 to 10 ⁇ m, and a positive electrode active material having a single particle form can be produced. Accordingly, it is possible to provide a positive electrode active material with improved life characteristics and resistance characteristics without deterioration of the electrochemical properties of the positive electrode active material due to high temperature firing.
  • Example 1 is a SEM image of the positive electrode active material prepared in Example 1 of the present invention.
  • Figure 4 is a graph showing the capacity retention rate according to the presence or absence of B doping by firing temperature of the lithium secondary battery comprising the positive electrode active material prepared in Examples 1 to 2 and Comparative Examples 1 to 4 of the present invention.
  • FIG 5 is a graph showing the capacity retention rate according to the cycle of the lithium secondary battery including the positive electrode active material prepared in Examples 1 to 2 and Comparative Examples 1 to 4 of the present invention.
  • FIG. 6 is a graph showing resistance characteristics according to the presence or absence of B doping according to the firing temperature of the lithium secondary battery including the positive electrode active material prepared in Examples 1 to 3 and Comparative Examples 1 to 2 of the present invention.
  • 'particles' refers to micro-scale grains, which can be classified as 'grains' having a crystal form of several tens of nanometers when enlarged and observed. When this is further enlarged, it is possible to identify a divided region of a shape in which atoms form a lattice structure in a certain direction, which is called a 'crystallite', and the size of a particle observed in XRD is defined as the size of a crystallite. .
  • the crystallite size can be measured using the peak broadening of the XRD data, and the crystallite size can be measured and quantitatively calculated using the Scherrer equation.
  • the average particle diameter (D 50 ) may be defined as a particle diameter corresponding to 50% of the volume accumulation amount in the particle size distribution curve of the particles.
  • the average particle diameter (D 50 ) can be measured, for example, using a laser diffraction method.
  • the laser diffraction method can generally measure a particle diameter of several mm from a submicron region, and can obtain high reproducibility and high resolution.
  • a high-content nickel-containing positive electrode active material containing 60 mol% or more of nickel relative to the total number of moles of transition metal excluding lithium was used.
  • a swelling phenomenon of the secondary battery is caused due to excessive generation of lithium by-products on the surface of the positive electrode active material, and there is also a problem that stability of the positive electrode active material is poor due to low particle strength.
  • stability was improved, but there were problems such as deterioration of life characteristics and resistance characteristics as firing at a high firing temperature.
  • the present inventors conducted a continual study to develop a single-particle positive electrode active material containing nickel in a high content but not deteriorating in life and resistance characteristics, and identified a high-content nickel-containing lithium transition metal oxide.
  • doping with a doping element even if the conventional high-content nickel-containing positive electrode active material is fired at a temperature lower than the firing temperature for producing a single particle type, it is possible to manufacture a positive electrode active material having a single particle form and having improved life characteristics and resistance characteristics. Found out and completed the present invention.
  • the positive electrode active material according to the present invention is a lithium transition metal oxide containing nickel (Ni), cobalt (Co), and manganese (Mn), and the lithium transition metal oxide is nickel (Ni with respect to the total number of moles of transition metal except lithium) ) Is 60 mol% or more, and includes the lithium transition metal oxide doped with at least one doping element selected from the group consisting of B, Zr, Mg, Ti, Sr, W, and Al, and 3.0 g /
  • the average particle diameter (D 50 ) after rolling at a rolling density of cm 3 to 3.3 g / cm 3 is 4 to 10 ⁇ m, and it has a single particle form.
  • the lithium transition metal oxide according to an embodiment of the present invention includes nickel (Ni), cobalt (Co), and manganese (Mn), and the content of nickel (Ni) in the total transition metal content is 60 mol% or more, more Preferably, it may be an NCM-based lithium transition metal oxide containing high-content nickel (High-Ni) satisfying 80 mol% or more, most preferably 85 mol% to 90 mol%.
  • lithium transition metal oxide containing 60 mol% or more, preferably 80 mol% or more of nickel based on the total number of moles of transition metal oxide excluding lithium as described above, according to the high content of nickel content It can exhibit high capacity characteristics.
  • the lithium transition metal oxide containing high content nickel is at least one doping element selected from the group consisting of B, Zr, Mg, Ti, Sr, W and Al, most preferably doped with B.
  • the lithium transition metal oxide containing the high content of nickel is doped with at least one doping element selected from the group consisting of B, Zr, Mg, Ti, Sr, W and Al, structural stability of the positive electrode active material is improved and this When applied to a battery, life characteristics and resistance characteristics can be improved.
  • B is included as a doping element, crystal growth of the positive electrode active material is promoted by the B, and after producing and disintegrating the positive electrode active material, even when rolling at a rolling density of 3.0 to 3.3 g / cm 3 , A positive electrode active material having an average particle diameter (D 50 ) may be prepared.
  • the covalent bond between BOs is stronger than the transition metal-O covalent bond. Accordingly, the structure expansion is suppressed when lithium ions are inserted / detached, and the SEI layer can be formed more stably, thereby reducing side reactions between the surface of the positive electrode active material and the electrolyte. Accordingly, the specific surface area of the positive electrode active material is reduced, the particle strength is improved, particle breakage is suppressed during rolling, and the content of lithium by-products is reduced, thereby reducing side reactions with the electrolyte.
  • a battery with improved stability and resistance characteristics can be provided.
  • the doping element may be 100 ppm to 4,000 ppm, preferably 500 ppm to 2,000 ppm, based on the total weight of the lithium transition metal oxide.
  • life characteristics and resistance characteristics may be further improved.
  • the positive electrode active material of the present invention is composed of a single particle form, ie, primary particles, rather than aggregated secondary particles.
  • 'primary particles' means a primary structure of a single particle
  • 'secondary particles' are physical particles between primary particles without an intentional aggregation or assembly process for the primary particles constituting the secondary particles. Or it means an aggregate aggregated between primary particles by chemical bonding, that is, a secondary structure.
  • the positive electrode active material of the present invention may have an average particle diameter (D 50 ) of 4 ⁇ m to 10 ⁇ m, preferably 4 ⁇ m to 6 ⁇ m after rolling, with a rolling density of 3.0 g / cm 3 to 3.3 g / cm 3 .
  • the positive electrode active material is present in the form of secondary particles in which primary particles are aggregated in the process of mixing and firing the positive electrode active material precursor and the lithium raw material, disintegrating it and crushing it from 3.0 g / cm 3 to 3.3 g / cm When rolling with a rolling density of 3 , the positive electrode active material in agglomerated form is broken around the grain.
  • the positive electrode active material is doped with a specific doping element, for example, at least one doping element selected from the group consisting of B, Zr, Mg, Ti, Sr, W and Al, most preferably B
  • a specific doping element for example, at least one doping element selected from the group consisting of B, Zr, Mg, Ti, Sr, W and Al, most preferably B
  • the doping element B is doped, the crystal size of the positive electrode active material increases, and accordingly, the average particle diameter (D 50 ) after rolling the positive electrode active material is formed to satisfy the above range. That is, according to the present invention, the crystal size of the positive electrode active material is increased by doping the doping element. In this case, firing is performed at a temperature lower than the firing temperature (for example, 900 ° C. or higher) for forming a single particle.
  • the particle strength of the positive electrode active material thus prepared can be suppressed to crack particles during rolling, improve the rolling density, decrease the specific surface area, Lithium by-products can be reduced to reduce the amount of gas generated due to side reactions with the electrolyte.
  • the lithium transition metal oxide may have a grain size of 170 nm or more, preferably 180 nm to 200 nm.
  • the lithium transition metal oxide may have a single particle form.
  • the positive electrode active material exceeds 200 nm, the positive electrode active material exhibits a single particle form, but the rate characteristic may deteriorate as the grain size increases.
  • the grain size of the positive electrode active material is less than 170 nm, the lithium transition metal oxide may be in the form of secondary particles in which primary particles are aggregated, rather than in a single particle form. Since the positive electrode active material has a single particle form, the strength of the particles increases, and then, when charging and discharging of a battery including the same, crack generation of the positive electrode active material decreases, so that stability of the positive electrode active material may be improved.
  • lithium transition metal oxide according to an embodiment of the present invention may be represented by the following formula (1).
  • M 1 is B, Zr, Mg, Ti, Sr, W and At least one selected from the group consisting of Al, more preferably 0 ⁇ a ⁇ 0.5, 0.8 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.2, 0 ⁇ z ⁇ 0.2, 0 ⁇ w ⁇ 0.01, M 1 is B.
  • a high-content nickel (High-Ni) NCM-based positive electrode active material doped with a specific doping element of the present invention having a single particle form and having a composition of 60 mol% or more of nickel (Ni) is capable of realizing high capacity, At the same time, excellent stability can be secured. Specifically, the specific surface area is reduced, particle strength is improved, particle breakage is suppressed during rolling, and the content of lithium by-products is reduced, thereby reducing side reactions with the electrolyte.
  • the high-content nickel (High-Ni) NCM-based positive electrode active material of the present invention is secured excellent structural stability and chemical stability, it is possible to reduce the amount of gas generated when driving the cell, it is possible to secure thermal stability.
  • the transition metal hydroxide including nickel (Ni), cobalt (Co), and manganese (Mn)
  • the transition metal containing 60 mol% or more of nickel
  • a hydroxide precursor Preparing a hydroxide precursor; Mixing and drying the transition metal hydroxide precursor and an aqueous solution containing a doping element raw material selected from the group consisting of B, Zr, Mg, Ti, Sr, W and Al; And mixing the lithium raw material with the mixture and firing at 810 ° C or higher to prepare a single-particle lithium transition metal oxide.
  • a transition metal precursor containing 60 mol% or more of nickel is prepared based on the total number of moles of the transition metal hydroxide including nickel (Ni), cobalt (Co), and manganese (Mn).
  • the transition metal precursor may be purchased according to a commercially available positive electrode active material precursor, or may be prepared according to a method for preparing a positive electrode active material precursor well known in the art.
  • the precursor may be prepared by coprecipitation reaction by adding an ammonium cation-containing complexing agent and a basic compound to a transition metal solution containing a nickel-containing raw material, a cobalt-containing raw material, and a manganese-containing raw material.
  • the nickel-containing raw material may be, for example, nickel-containing acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide, and specifically, Ni (OH) 2 , NiO, NiOOH, NiCO 3 ⁇ 2Ni (OH) 2 ⁇ 4H 2 O, NiC 2 O 2 ⁇ 2H 2 O, Ni (NO 3 ) 2 ⁇ 6H 2 O, NiSO 4 , NiSO 4 ⁇ 6H 2 O, fatty acid nickel salt, nickel halide or their It may be a combination, but is not limited thereto.
  • the cobalt-containing raw material may be cobalt-containing acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide, and specifically Co (OH) 2 , CoOOH, Co (OCOCH 3 ) 2 ⁇ 4H 2 O , Co (NO 3 ) 2 ⁇ 6H 2 O, CoSO 4 , Co (SO 4 ) 2 ⁇ 7H 2 O, or a combination thereof, but is not limited thereto.
  • the manganese-containing raw material may be, for example, manganese-containing acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide, oxyhydroxide or a combination thereof, specifically Mn 2 O 3 , MnO 2 , Mn 3 Manganese oxide such as O 4 ; Manganese salts such as MnCO 3 , Mn (NO 3 ) 2 , MnSO 4 , manganese acetate, manganese dicarboxylic acid, manganese citrate, and manganese fatty acids; Manganese oxyhydroxide, manganese chloride, or a combination thereof, but is not limited thereto.
  • the transition metal solution contains a nickel-containing raw material, a cobalt-containing raw material, and a manganese-containing raw material in a solvent, specifically water, or a mixed solvent of an organic solvent (for example, alcohol) that can be uniformly mixed with water. It may be produced by adding or mixing an aqueous solution of a nickel-containing raw material, an aqueous solution of a cobalt-containing raw material, and a manganese-containing raw material.
  • the ammonium cation-containing complex forming agent is, for example, NH 4 OH, (NH 4 ) 2 SO 4 , NH 4 NO 3 , NH 4 Cl, CH 3 COONH 4 , NH 4 CO 3 Or it may be a combination of these, but is not limited thereto.
  • the ammonium cation-containing complex forming agent may be used in the form of an aqueous solution, and at this time, as a solvent, a mixture of water or an organic solvent (specifically, alcohol, etc.) uniformly mixed with water and water may be used.
  • the basic compound may be a hydroxide of an alkali metal or alkaline earth metal, such as NaOH, KOH, or Ca (OH) 2 , hydrates thereof, or a combination thereof.
  • the basic compound may also be used in the form of an aqueous solution, in which a mixture of water or an organic solvent (specifically, alcohol, etc.) uniformly mixed with water and water may be used as the solvent.
  • the basic compound is added to adjust the pH of the reaction solution, and the pH of the metal solution may be added in an amount of 11 to 13.
  • the co-precipitation reaction may be performed at a temperature of 40 ° C to 70 ° C under an inert atmosphere such as nitrogen or argon.
  • particles of nickel-cobalt-manganese hydroxide are produced and precipitated in the reaction solution.
  • concentrations of the nickel-containing raw material, the cobalt-containing raw material, and the manganese-containing raw material a precursor having a nickel (Ni) content of 60 mol% or more in the total content of the transition metal may be prepared.
  • the precipitated nickel-cobalt-manganese hydroxide particles can be separated according to a conventional method and dried to obtain a nickel-cobalt-manganese precursor.
  • the doping element raw material-containing aqueous solution and the transition metal hydroxide precursor are mixed and dried.
  • the doping element raw material, sulfate, nitrate, acetate, halide, hydroxide or oxyhydroxide containing at least one doping element selected from the group consisting of B, Zr, Mg, Ti, Sr, W and Al can be used. If it can be dissolved in a solvent such as water, it can be used without particular limitation.
  • the doping element raw material may be a sulfate, nitrate, acetate, halide, hydroxide or oxyhydroxide containing B, more preferably boric acid, boron trioxide, boron carbide, boron trifluoride, monofluor It may include at least one selected from the group consisting of boron fluoride.
  • the doping element When the doping element is doped by a wet process of dissolving the doping element raw material in an aqueous solution and mixing it with the transition metal hydroxide precursor as described above, the doping element can be uniformly doped throughout the positive electrode active material.
  • the doping element raw material is doped using a dry method to a transition metal hydroxide precursor, the doping element may be partially agglomerated and doped. Can be inferior.
  • the doping element raw material may be dissolved in an aqueous solution to a concentration of 0.1M to 0.5M, preferably 0.2M to 0.4M.
  • concentration 0.1M to 0.5M, preferably 0.2M to 0.4M.
  • the probability of lithium and the doping element reacting increases, so that the reactivity of the precursor and lithium may decrease, and in this case, the structural completeness of the positive electrode active material decreases, specific capacity, efficiency characteristics, and Life characteristics can be reduced.
  • the positive electrode active material is to mix the doping element M raw material-containing aqueous solution so that the content of the doping element is 100 ppm to 4,000 ppm, preferably 500 ppm to 2,000 ppm, based on the total weight of the lithium transition metal oxide. You can.
  • transition metal hydroxide precursor when the transition metal hydroxide precursor is doped with B as a doping element, even if the firing temperature is lowered when the positive electrode active material is produced by B, growth of the positive electrode active material grains is promoted by B, thereby providing a single particle type positive electrode active material.
  • B a high content Ni-containing transition metal hydroxide precursor having a Ni content of 60 mol% or more with respect to the total number of moles of the transition metal is mixed with a lithium raw material (for example, LiOHH 2 O), and when calcined, lithium is melted. The reaction begins with the transition metal hydroxide precursor.
  • the transition metal hydroxide precursor and lithium react at 400 ° C. or higher.
  • B can react with Li at about 150 ° C.
  • B and Li react at 150 ° C. and B acts as a catalyst when reacting Li and a transition metal hydroxide precursor at 450 ° C. or higher. It can also be done. Accordingly, the reaction temperature of Li and the transition metal hydroxide precursor is lowered, and when B is applied, firing is performed at a temperature lower than the firing temperature of the mixture of the transition metal hydroxide precursor containing the high-content nickel and the lithium raw material. Even if, it is possible to produce a single-particle positive electrode active material. Accordingly, it is possible to manufacture a single-particle positive electrode active material containing high-content nickel with improved life characteristics and resistance characteristics by preventing the inferiority of the electrochemical characteristics previously generated by high temperature firing.
  • the drying is for drying an aqueous solution in which the raw material of the doping element is dissolved, and any method that can dry the solvent without causing a chemical change in the battery can be used without particular limitation.
  • the spray drying method It may be performed using a drying method using a rotary evaporator, a vacuum drying method or a natural drying method.
  • the mixture of the doping element raw material-containing aqueous solution and the transition metal hydroxide precursor may be mixed with a lithium raw material and fired at 810 ° C. or higher to prepare a single particle positive electrode active material.
  • the lithium raw material may be used without particular limitation as long as it is a compound containing a lithium source, preferably lithium carbonate (Li 2 CO 3 ), lithium hydroxide (LiOH), LiNO 3 , CH 3 COOLi and Li 2 (COO ) 2 may be used at least one selected from the group consisting of.
  • a lithium source preferably lithium carbonate (Li 2 CO 3 ), lithium hydroxide (LiOH), LiNO 3 , CH 3 COOLi and Li 2 (COO ) 2
  • Li 2 (COO ) 2 may be used at least one selected from the group consisting of.
  • the firing may be performed for 12 hours to 24 hours in an oxygen atmosphere at 810 ° C or higher, preferably 810 ° C to 880 ° C, preferably 810 ° C to 850 ° C, and more preferably 810 ° C to 830 ° C. .
  • the positive electrode active material may be recrystallized and formed into a single particle form by performing calcination at 810 ° C or higher for 12 to 24 hours.
  • the firing process when the firing process is performed at a temperature below 810 ° C, recrystallization of the positive electrode active material does not occur, so that the positive electrode active material may be formed in the form of secondary particles in which primary particles are aggregated, and in this case, the positive electrode active material Since the particle strength of the is poor, the stability of the secondary battery to which it is applied may be deteriorated.
  • the firing process when the firing process is performed at a temperature exceeding 880 ° C., the positive electrode active material is recrystallized and formed into a single particle, whereas in the case of a transition metal hydroxide precursor containing high content of Ni, it is mixed with lithium. By performing high-temperature calcination, the phase transition from Ni 3 + to Ni 2 + is replaced by the site of the Li site, and when applied to the battery, capacity, life and resistance characteristics may be inferior.
  • a process of washing the lithium transition metal oxide may be further performed.
  • lithium transition metal oxide containing nickel at a high concentration
  • unreacted lithium hydroxide or lithium by-products such as lithium carbonate are more generated in the manufacturing process because it is structurally unstable than a lithium transition metal oxide having a low nickel content.
  • the lithium by-products and the electrolyte react to cause gas generation and swelling, which significantly deteriorates high-temperature stability. Accordingly, a water washing process for removing lithium by-products from the lithium transition metal oxide containing high concentration nickel may be further performed.
  • the washing step may be performed, for example, by adding lithium transition metal oxide to ultrapure water and stirring.
  • the water washing temperature may be 20 ° C or less, preferably 10 ° C to 20 ° C, and the water washing time may be about 10 minutes to 1 hour.
  • the water washing temperature and the water washing time satisfy the above range, lithium by-products can be effectively removed.
  • the positive electrode for a secondary battery includes a positive electrode current collector, a positive electrode active material layer formed on the positive electrode current collector, and the positive electrode active material layer includes a positive electrode active material according to the present invention, and provides a positive electrode for a lithium secondary battery.
  • the positive electrode current collector is not particularly limited as long as it does not cause a chemical change in the battery and has conductivity.
  • stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon, nickel, titanium on aluminum or stainless steel surfaces , Surface treatment with silver or the like can be used.
  • the positive electrode current collector may have a thickness of usually 3 to 500 ⁇ m, and may form fine irregularities on the current collector surface to increase the adhesive force of the positive electrode active material.
  • it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
  • the positive electrode active material layer may include a conductive material and a binder, if necessary, together with the positive electrode active material.
  • the positive electrode active material may be included in an amount of 80 to 99% by weight, more specifically 85 to 98.5% by weight based on the total weight of the positive electrode active material layer. When included in the above-mentioned content range, it can exhibit excellent capacity characteristics.
  • the conductive material is used to impart conductivity to the electrode, and in a battery configured, it can be used without particular limitation as long as it has electronic conductivity without causing chemical changes.
  • Specific examples include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, and carbon fiber; Metal powders or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or a conductive polymer, such as a polyphenylene derivative, and the like, or a mixture of two or more of them may be used.
  • the conductive material may be included in an amount of 0.1 to 15% by weight based on the total weight of the positive electrode active material layer.
  • the binder serves to improve the adhesion between the positive electrode active material particles and the adhesion between the positive electrode active material and the current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, and carboxymethyl cellulose (CMC) ), Starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluorine rubber, or various copolymers thereof, and one of these may be used alone or as a mixture of two or more.
  • the binder may be included in 0.1 to 15% by weight based on the total weight of the positive electrode active material layer.
  • the positive electrode may be manufactured according to a conventional positive electrode manufacturing method except for using the positive electrode active material.
  • the positive electrode active material and, optionally, a binder and a conductive material may be prepared by dissolving or dispersing in a solvent to apply a composition for forming a positive electrode active material layer on a positive electrode current collector, followed by drying and rolling.
  • the solvent may be a solvent generally used in the art, dimethyl sulfoxide (dimethyl sulfoxide, DMSO), isopropyl alcohol (isopropyl alcohol), N-methylpyrrolidone (NMP), acetone (acetone) or Water and the like, and among these, one kind alone or a mixture of two or more kinds can be used.
  • the amount of the solvent used is sufficient to dissolve or disperse the positive electrode active material, the conductive material, and the binder in consideration of the coating thickness of the slurry and the production yield, and to have a viscosity capable of exhibiting excellent thickness uniformity after coating for positive electrode manufacturing. Do.
  • the positive electrode may be produced by casting the composition for forming the positive electrode active material layer on a separate support, and then laminating the film obtained by peeling from the support on the positive electrode current collector.
  • the present invention can manufacture an electrochemical device including the anode.
  • the electrochemical device may be specifically a battery, a capacitor, or the like, and more specifically, a lithium secondary battery.
  • the lithium secondary battery includes a positive electrode, a negative electrode located opposite to the positive electrode, and a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the positive electrode is the same as described above, so a detailed description is omitted, Hereinafter, only the rest of the configuration will be described in detail.
  • the lithium secondary battery may further include a battery container for housing the electrode assembly of the positive electrode, the negative electrode and the separator, and a sealing member for sealing the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing a chemical change in the battery.
  • the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like may be used.
  • the negative electrode current collector may have a thickness of usually 3 ⁇ m to 500 ⁇ m, and, like the positive electrode current collector, may form fine irregularities on the surface of the current collector to enhance the bonding force of the negative electrode active material.
  • it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
  • the negative active material layer optionally includes a binder and a conductive material together with the negative active material.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fibers, and amorphous carbon;
  • Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy or Al alloy;
  • a complex containing the metal compound and the carbonaceous material such as a Si-C composite or a Sn-C composite, and the like, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the negative electrode active material.
  • both low crystalline carbon and high crystalline carbon may be used as the carbon material.
  • Soft carbon and hard carbon are typical examples of low-crystalline carbon, and amorphous or plate-like, scaly, spherical or fibrous natural graphite or artificial graphite, and kissy graphite are examples of high-crystalline carbon. graphite), pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch derived cokes).
  • the negative active material may be included in 80 parts by weight to 99 parts by weight based on the total weight of the negative electrode active material layer.
  • the binder is a component that assists in bonding between the conductive material, the active material, and the current collector, and is usually added in an amount of 0.1 to 10 parts by weight based on the total weight of the negative electrode active material layer.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro Roethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, nitrile-butadiene rubber, fluorine rubber, and various copolymers thereof.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • EPDM ethylene-propylene-diene polymer
  • EPDM ethylene-propylene-diene polymer
  • the conductive material is a component for further improving the conductivity of the negative electrode active material, and may be added in an amount of 10 parts by weight or less, preferably 5 parts by weight or less based on the total weight of the negative electrode active material layer.
  • the conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • graphite such as natural graphite or artificial graphite
  • Carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black
  • Conductive fibers such as carbon fibers and metal fibers
  • Metal powders such as carbon fluoride, aluminum, and nickel powders
  • Conductive whiskey such as zinc oxide and potassium titanate
  • Conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives
  • the negative electrode active material layer is prepared by coating and drying a negative electrode active material, and a composition for forming a negative electrode active material layer prepared by dissolving or dispersing a binder and a conductive material in a solvent on a negative electrode current collector, or the negative electrode It can be prepared by casting the composition for forming an active material layer on a separate support, and then laminating the film obtained by peeling from the support on a negative electrode current collector.
  • the negative electrode active material layer is, for example, a negative electrode active material, and optionally a binder and a conductive material are dissolved or dispersed in a solvent on a negative electrode current collector to apply and dry a composition for forming a negative electrode active material layer, or for drying the negative electrode active material layer It can also be prepared by casting the composition on a separate support and then laminating the film obtained by peeling from the support on a negative electrode current collector.
  • the separator separates the negative electrode from the positive electrode and provides a passage for lithium ions, and is usually used as a separator in a lithium secondary battery, and can be used without particular limitation. It is desirable to have low resistance and excellent electrolyte-moisturizing ability.
  • porous polymer films such as ethylene homopolymers, propylene homopolymers, ethylene / butene copolymers, ethylene / hexene copolymers and polyolefin polymers such as ethylene / methacrylate copolymers or the like.
  • a laminate structure of two or more layers of may be used.
  • a conventional porous non-woven fabric for example, a high-melting point glass fiber, a polyethylene terephthalate fiber or the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may optionally be used in a single layer or multilayer structure.
  • examples of the electrolyte used in the present invention include organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel polymer electrolytes, solid inorganic electrolytes, molten inorganic electrolytes, and the like, which can be used in the manufacture of lithium secondary batteries. It does not work.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent methyl acetate (methyl acetate), ethyl acetate (ethyl acetate), ⁇ -butyrolactone ( ⁇ -butyrolactone), ⁇ -caprolactone ( ⁇ -caprolactone), such as ester-based solvents; Ether-based solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon-based solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (ethylmethylcarbonate, EMC), ethylene carbonate (EC), propylene carbonate (propylene carbonate, PC) and other carbonate-based solvents; Alcohol-based solvent
  • carbonate-based solvents are preferred, and cyclic carbonates (for example, ethylene carbonate or propylene carbonate) having high ionic conductivity and high dielectric constant capable of increasing the charge and discharge performance of the battery, and low-viscosity linear carbonate-based compounds (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • the mixture of the cyclic carbonate and the chain carbonate in a volume ratio of about 1: 1 to about 1: 9 may be used to exhibit excellent electrolyte performance.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB (C 2 O 4 ) 2 and the like can be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can be effectively moved.
  • the electrolyte includes haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, and tree for the purpose of improving the life characteristics of the battery, suppressing the decrease in battery capacity, and improving the discharge capacity of the battery.
  • haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, and tree for the purpose of improving the life characteristics of the battery, suppressing the decrease in battery capacity, and improving the discharge capacity of the battery.
  • Ethylphosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be further included. In this case, the additive may be included in an amount of 0.1 to 5 parts by weight based on the total weight of the electrolyte.
  • the lithium secondary battery comprising the positive electrode active material according to the present invention as described above stably exhibits excellent discharge capacity, output characteristics and life characteristics, portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles ( It is useful for electric vehicle fields such as hybrid electric vehicle (HEV).
  • HEV hybrid electric vehicle
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or battery pack includes a power tool;
  • An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); Alternatively, it can be used as a power supply for any one or more of medium and large-sized devices in a power storage system.
  • EV electric vehicle
  • PHEV plug-in hybrid electric vehicle
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape, a square shape, a pouch shape or a coin shape using a can.
  • the lithium secondary battery according to the present invention can be used not only for a battery cell used as a power source for a small device, but also as a unit battery in a medium-to-large battery module including a plurality of battery cells.
  • Nickel sulfate, cobalt sulfate, and manganese sulfate were dissolved in ion-exchanged water in an amount such that the molar ratio of nickel: cobalt: manganese was 90: 4: 6 to prepare a 2.4M aqueous transition metal solution.
  • a 9% aqueous ammonia solution and a 25% aqueous sodium hydroxide solution were prepared, respectively.
  • the aqueous transition metal solution, aqueous ammonia solution and aqueous sodium hydroxide solution were added to the co-precipitation reactor at a constant rate, and the co-precipitation reaction was performed under a nitrogen atmosphere to synthesize a transition metal hydroxide precursor.
  • transition metal hydroxide precursor was added to 150 mL of the boric acid aqueous solution, followed by stirring.
  • the mixed solution was vacuum dried using a rotary evaporator, and the slurry mixture was dried at 100 ° C. for 5 hours or more to prepare a transition metal hydroxide precursor.
  • the transition metal hydroxide precursor prepared above was mixed with LiOH in a molar ratio of Me: Li of 1: 1.02, and fired at 810 ° C. for 11 hours to form a single-particle positive electrode active material having a grain size of 178 nm (LiNi 0.90 Co 0.04 Mn 0.06 B 0.009 O 2 ) was prepared.
  • a positive electrode active material and a lithium secondary battery including the same were prepared using the same method as in Example 1, except that boron was not doped.
  • a positive electrode active material and a lithium secondary battery including the same were prepared using the same method as in Example 2, except that boron was not doped.
  • the transition metal hydroxide precursor prepared in Comparative Example 1 and LiOH were mixed at a molar ratio of 1: 1.02 and fired at 730 ° C. for 11 hours to form a positive electrode active material in the form of secondary particles in which primary particles were aggregated (LiNi 0 . 90 Co 0. 04 Mn 0. 06 O 2) was prepared for, is a rechargeable lithium battery including the positive electrode active material, and it was prepared using the same procedure as in Comparative example 1 except for using them.
  • the pellet density of the positive electrode active material prepared in Examples 1 to 3 and Comparative Examples 1 to 4 was measured at 3.0 ton by using a rolling density meter (4350, Carver Co.) to measure the internal volume under pressure.
  • a rolling density meter (4350, Carver Co.)
  • the internal volume the volume inside the Sus was measured using a vernier caliper (Miltutoyo), and the results are also shown in Table 1 below.
  • the positive electrode active materials prepared in Examples 1 to 3 and Comparative Example 3 were measured using a X-ray diffraction analyzer (Bruker AXS D4-Endeavor XRD) to measure grain sizes, and the results are shown in Table 2 below.
  • the positive electrode active materials prepared in Examples 1 to 3 were in the form of single particles having a grain size of 170 nm or more.
  • Comparative Example 3 as the primary particles were produced in the form of aggregated secondary particles, it was confirmed that the grain size was significantly smaller than that of the present invention.
  • Lithium secondary batteries were manufactured using the positive electrode active materials prepared in Examples 1 to 2 and Comparative Examples 1 to 4, and each of the lithium secondary batteries including the positive electrode active materials of Examples 1 to 2 and Comparative Examples 1 to 4 was used. The dose characteristics were evaluated.
  • the positive electrode active material, carbon black conductive material and polyvinylidene fluoride (PVdF) binder prepared in Examples 1 to 2 and Comparative Examples 1 to 4, respectively, were N-methylpyrrolidone in a weight ratio of 96.5: 1.5: 2.
  • NMP N-methylpyrrolidone
  • a positive electrode slurry was prepared by mixing in a solvent. The positive electrode slurry was coated on one surface of an aluminum current collector, dried at 100 ° C., and rolled to prepare a positive electrode.
  • lithium metal was used as the negative electrode.
  • An electrode assembly was prepared by interposing a porous polyethylene separator between the positive electrode and the negative electrode prepared above, and then placing it inside the battery case, and then injecting an electrolyte into the case to prepare a lithium secondary battery.
  • 1.0M lithium hexafluorophosphate (LiPF 6 ) was dissolved in an organic solvent in which ethylene carbonate: ethyl methyl carbonate: diethyl carbonate (EC: EMC: DEC) was mixed in a volume ratio of 3: 4: 3 as the electrolyte solution.
  • Each of the lithium secondary batteries according to Examples 1 to 2 and Comparative Examples 1 to 4 prepared above were charged at 0.05 C cut off to 4.25 V with a constant current of 0.2 C at room temperature. Thereafter, discharge was performed at a constant current of 0.2 C until 2.5 V was reached.
  • the charging and discharging behavior was set to 1 cycle, and from the second time, charging and discharging up to 2.5V with 0.5C constant current to 0.05V cut off to 4.25V with 0.5C constant current was taken as 1 cycle.
  • the capacity retention rate according to the cycle of the secondary batteries according to Examples 1 to 2 and Comparative Examples 1 to 4 was measured, and the results are shown in Tables 3, 4, and 5 below.
  • the initial discharge capacity of the secondary batteries prepared in Examples 1 and 2, in which B doping was performed is higher than that of the secondary batteries prepared in Comparative Examples 1 and 2, in which B doping was not performed.
  • each of the lithium secondary batteries of Examples 1 to 3 and Comparative Examples 1 to 2 was charged with 0.05C cut off to 4.25V at 0.5C constant current at room temperature. Thereafter, discharge was performed at a constant current of 0.5 C until 2.5 V was reached. At this time, the voltage corresponding to 60 seconds was recorded, and the difference from the initial voltage was divided by the applied current to calculate the resistance.
  • the initial resistance of the secondary batteries according to Examples 1 to 3 and Comparative Examples 1 to 2 was measured, and the results are shown in Table 4 and FIG. 6 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 리튬 전이금속 산화물이며, 상기 리튬 전이금속 산화물은 리튬을 제외한 전이금속의 전체 몰수에 대하여 니켈(Ni)의 함량이 60몰% 이상이고, 상기 리튬 전이금속 산화물을 B, Zr, Mg, Ti, Sr, W 및 Al로 이루어진 군에서 선택된 적어도 어느 하나의 도핑원소로 도핑된 것을 포함하며, 3.0g/cm3 내지 3.3g/cm3의 압연 밀도로 압연 후의 평균 입경(D50)이 4 내지 10㎛이고, 단일입자 형태를 가지는 양극 활물질, 상기 양극 활물질의 제조 방법 및 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지에 관한 것이다.

Description

리튬 이차전지용 양극 활물질 및 이의 제조 방법
관련출원과의 상호 인용
본 출원은 2018년 11월 20일자 한국특허출원 제10-2018-0143804호 및 2019년 11월 18일자 한국특허출원 제10-2019-0147928호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 리튬 이차전지용 양극 활물질, 이의 제조 방법, 상기 양극 활물질을 포함하는 리튬 이차전지용 양극 및 리튬 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
리튬 이차전지의 양극 활물질로는 리튬 전이금속 복합 산화물이 이용되고 있으며, 이 중에서도 작용전압이 높고 용량 특성이 우수한 LiCoO2 등의 리튬 코발트 복합금속 산화물이 주로 사용되고 있다. 그러나, LiCoO2는 탈리튬에 따른 결정 구조의 불안정화로 열적 특성이 매우 열악하고, 고가이기 때문에 전기 자동차 등과 같은 분야의 동력원으로 대량 사용하기에는 한계가 있다.
상기 LiCoO2를 대체하기 위한 재료로서, 리튬 망간 복합금속 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4 등) 또는 리튬 니켈 복합금속 산화물(LiNiO2 등) 등이 개발되었다. 이 중에서도 약 200 mAh/g의 높은 가역용량을 가져 대용량의 전지 구현이 용이한 리튬 니켈 복합금속 산화물에 대한 연구 개발이 보다 활발히 연구되고 있다. 그러나, 상기 LiNiO2는 LiCoO2와 비교하여 열안정성이 열위하고, 충전 상태에서 외부로부터의 압력 등에 의해 내부 단락이 생기면 양극 활물질 그 자체가 분해되어 전지의 파열 및 발화를 초래하는 문제가 있었다. 이에 따라 상기 LiNiO2의 우수한 가역용량은 유지하면서도 낮은 열안정성을 개선하기 위한 방법으로서, Ni의 일부를 Mn과 Co으로 치환한 리튬 니켈코발트망간 산화물이 개발되었다.
그러나, 상기 리튬 니켈코발트망간 산화물의 경우, 입자 강도 및 구조 안정성이 낮고 용량이 낮으며, 특히 용량 특성을 높이기 위해 니켈의 함량을 60 몰% 이상으로 높일 경우, 리튬 니켈코발트금속 산화물 중의 니켈이 Ni2 +로 유지되려는 경향으로 인해, 그 표면에 LiOH 및 Li2CO3 등 리튬 부산물이 다량 생성된다는 문제점이 있었다. 이와 같이, 표면에 리튬 부산물의 함량이 높은 리튬 니켈코발트금속 산화물을 사용할 경우, 리튬 이차전지에 주입된 전해액과 반응함으로써 리튬 이차전지에서 스웰링(swelling) 현상을 야기할 수 있어, 이를 포함하는 이차전지는 전지 성능을 충분히 발휘할 수 없었다.
따라서, 고용량 특성을 나타내고, 입자 강도 및 구조적 안정성을 개선함으로써 수명 특성 및 저항 특성이 개선된 이차전지를 제조할 수 있는 양극 활물질의 개발이 요구되고 있다.
상기와 같은 문제점을 해결하기 위하여, 본 발명의 제1 기술적 과제는 3.0g/cm3 내지 3.3g/cm3의 압연 밀도로 압연 후의 평균 입경(D50)이 4 내지 10㎛이고 단일 입자 형태를 가지며, 특정 도핑원소로 도핑되어, 고용량 특성을 가지면서도 수명 특성 및 저항 특성이 개선된 양극 활물질을 제공하는 것이다.
본 발명의 제2 기술적 과제는 양극 활물질 제조 시, 특정 도핑 원소를 도핑함으로써 종래 고함량 니켈을 포함하는 리튬 전이금속 산화물을 단일 입자형태로 제조하기 위한 소성 온도보다 비교적 저온에서 소성하더라도 전기화학적 특성의 열화 없이 3.0g/cm3 내지 3.3g/cm3의 압연 밀도로 압연 후의 평균 입경(D50)이 4 내지 10㎛이고 단일 입자 형태를 가지는 양극 활물질의 제조 방법을 제공하는 것이다.
본 발명의 제3 기술적 과제는 상기 양극 활물질을 포함하는 리튬 이차전지용 양극을 제공하는 것이다.
본 발명의 제4 기술적 과제는 상기 리튬 이차전지용 양극을 포함하는 리튬 이차전지를 제공하는 것이다.
본 발명은 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 리튬 전이금속 산화물이며, 상기 리튬 전이금속 산화물은 리튬을 제외한 전이금속의 전체 몰수에 대하여 니켈(Ni)의 함량이 60몰% 이상이고, 상기 리튬 전이금속 산화물을 B, Zr, Mg, Ti, Sr, W 및 Al로 이루어진 군에서 선택된 적어도 어느 하나의 도핑원소로 도핑된 것을 포함하며, 3.0g/cm3 내지 3.3g/cm3의 압연 밀도로 압연 후의 평균 입경(D50)이 4 내지 10㎛이고, 단일입자 형태를 가지는 양극 활물질을 제공한다.
또한, 본 발명은 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 전이금속 수산화물 전체 몰 수에 대하여, 니켈(Ni)을 60몰% 이상 포함하는 전이금속 수산화물 전구체를 준비하는 단계; B, Zr, Mg, Ti, Sr, W 및 Al로 이루어진 군에서 선택된 도핑원소 원료 물질-함유 수용액과 상기 전이금속 수산화물 전구체를 혼합하고 건조하는 단계; 및 상기 혼합물에 리튬 원료 물질을 혼합하고, 810℃ 이상에서 소성하여, 단일입자 형태의 리튬 전이금속 산화물을 제조하는 단계;를 포함하는, 양극 활물질의 제조 방법을 제공한다.
또한, 본 발명에 따른 양극 활물질을 포함하는, 리튬 이차전지용 양극을 제공한다.
또한, 본 발명에 따른 양극을 포함하는, 리튬 이차전지를 제공한다.
본 발명에 따르면, 고함량의 니켈을 포함하는 양극 활물질 제조 시, 특정 도핑원소로 도핑함으로써 종래 단일 입자형 양극 활물질을 제조하기 위한 온도보다 비교적 저온에서 소성하더라도 3.0g/cm3 내지 3.3g/cm3의 압연 밀도로 압연 후의 평균 입경(D50)이 4 내지 10㎛이고, 단일입자 형태를 가지는 양극 활물질을 제조할 수 있다. 이에 따라, 고온 소성에 따른 양극 활물질의 전기 화학적 특성의 열화 없이, 수명 특성 및 저항 특성이 개선된 양극 활물질을 제공할 수 있다.
도 1은 본 발명의 실시예 1에서 제조한 양극 활물질의 SEM 이미지이다.
도 2는 본 발명의 비교예 1에서 제조한 양극 활물질의 SEM 이미지이다.
도 3은 본 발명의 비교예 3에서 제조한 양극 활물질의 SEM 이미지이다.
도 4는 본 발명의 실시예 1~2 및 비교예 1~4에서 제조한 양극 활물질을 포함하는 리튬 이차전지의 소성 온도 별 B 도핑 유무에 따른 용량 유지율을 나타낸 그래프이다.
도 5는 본 발명의 실시예 1~2 및 비교예 1~4에서 제조한 양극 활물질을 포함하는 리튬 이차전지의 사이클에 따른 용량 유지율을 나타낸 그래프이다.
도 6은 본 발명의 실시예 1~3 및 비교예 1~2에서 제조한 양극 활물질을 포함하는 리튬 이차전지의 소성 온도 별 B 도핑 유무에 따른 저항 특성을 나타낸 그래프이다.
도 7은 실시예 1~2 및 비교예 3에서 제조한 양극 활물질을 포함하는 리튬 이차전지의 연속 충전 특성을 나타낸 그래프이다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서 전체에서, '입자'는 마이크로 단위의 알갱이를 지칭하며, 이를 확대하여 관측하면 수십 나노 단위의 결정 형태를 가진 '그레인(grain)'으로 구분할 수 있다. 이를 더욱 확대하면 원자들이 일정한 방향의 격자구조를 이루는 형태의 구분된 영역을 확인할 수 있으며, 이를 '결정립(crystallite)'이라고 하며, XRD에서 관측하는 입자의 크기는 결정립(crystallite)의 크기로 정의된다. 결정 사이즈(crystalite size)를 측정하는 방법은 XRD data의 peak broadening을 이용하여 crystallite size를 가늠할 수 있으며, scherrer equation을 통해 정량적으로 계산할 수 있다.
본 명세서 전체에서, 평균 입경(D50)은 입자의 입경 분포 곡선에 있어서, 체적 누적량의 50%에 해당하는 입경으로 정의할 수 있다. 상기 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다.
양극 활물질
종래에는, 리튬 이차전지의 용량을 높이기 위하여, 리튬을 제외한 전이금속의 총 몰수에 대하여 60몰% 이상의 니켈을 포함하는 고함량 니켈 함유 양극 활물질을 사용하였다. 그러나, 이 경우 양극 활물질 표면에 리튬 부산물이 과량 생성됨에 따라 이차전지의 스웰링 현상이 야기되고, 또한 낮은 입자 강도로 인하여 양극 활물질의 안정성이 열위하다는 문제점이 있었다. 이를 개선하기 위하여 고함량 니켈 함유 양극 활물질을 과소성하여 단일 입자형 양극 활물질을 제조할 경우, 안정성은 개성되었지만, 높은 소성 온도로 소성함에 따라 수명 특성 및 저항 특성 열화 등의 문제점이 있었다.
이에, 본 발명자들은 니켈을 고함량으로 포함하면서도 수명 특성 및 저항 특성의 열화가 발생하지 않는 단일 입자 형태의 양극 활물질을 개발하기 위해 부단한 연구를 수행한 결과, 고함량 니켈 함유 리튬 전이금속 산화물을 특정 도핑 원소로 도핑함으로써, 종래 고함량 니켈 함유 양극 활물질을 단일 입자형으로 제조하기 위한 소성 온도보다 낮은 온도로 소성하더라도, 단일 입자 형태를 가지면서 수명 특성 및 저항 특성이 개선된 양극 활물질을 제조할 수 있음을 알아내고 본 발명을 완성하였다.
본 발명에 따른 양극 활물질은, 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 리튬 전이금속 산화물이며, 상기 리튬 전이금속 산화물은 리튬을 제외한 전이금속의 전체 몰수에 대하여 니켈(Ni)의 함량이 60몰% 이상이고, 상기 리튬 전이금속 산화물을 B, Zr, Mg, Ti, Sr, W 및 Al로 이루어진 군에서 선택된 적어도 어느 하나의 도핑원소로 도핑된 것을 포함하며, 3.0g/cm3 내지 3.3g/cm3의 압연 밀도로 압연 후의 평균 입경(D50)이 4 내지 10㎛이고, 단일입자 형태를 가지는 것이다.
본 발명의 일 실시예에 따른 상기 리튬 전이금속 산화물은 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하며, 전체 전이금속 함량 중 니켈(Ni)의 함량이 60몰% 이상, 보다 바람직하게는 80몰% 이상, 가장 바람직하게는 85몰% 내지 90몰%를 만족하는 고함량 니켈(High-Ni)을 포함하는 NCM계 리튬 전이금속 산화물일 수 있다.
상기와 같이 리튬을 제외한 전이금속 산화물의 전체 몰수에 대하여 60몰% 이상, 바람직하게는 80몰% 이상의 니켈을 포함하는 리튬 전이금속 산화물을 사용할 경우, 이를 전지에 적용 시 고함량의 니켈 함유에 따른 고용량 특성을 나타낼 수 있다.
더불어, 상기 고함량 니켈을 포함하는 리튬 전이금속 산화물은 B, Zr, Mg, Ti, Sr, W 및 Al로 이루어진 군에서 선택된 적어도 어느 하나의 도핑원소, 가장 바람직하게는 B로 도핑된 것이다.
상기 고함량 니켈을 포함하는 리튬 전이금속 산화물을 B, Zr, Mg, Ti, Sr, W 및 Al로 이루어진 군에서 선택된 적어도 어느 하나의 도핑원소로 도핑할 경우, 양극 활물질의 구조 안정성이 개선되어 이를 전지에 적용 시 수명 특성 및 저항 특성을 개선할 수 있다. 특히, 도핑원소로서 B를 포함할 경우, 상기 B에 의해 양극 활물질 결정 성장이 촉진되어, 양극 활물질을 제조하고 해쇄한 후, 3.0 내지 3.3g/cm3의 압연밀도로 압연하더라도 4 내지 10㎛의 평균 입경(D50)을 갖는 양극 활물질을 제조할 수 있다. 더불어, B의 사면체 (tetrahedral) 결정구조로 인하여, B-O 사이의 공유결합이 전이금속-O 공유 결합보다 강하다. 이에 따라, 리튬 이온의 삽입/탈리 시 구조 팽창을 억제하며, SEI layer를 보다 안정하게 형성하도록 하여, 양극 활물질 표면과 전해액 사이의 부반응을 감소킬 수 있다. 이에 따라, 양극 활물질의 비표면적이 감소되고, 입자 강도가 개선되어 압연시 입자 깨짐이 억제되며, 리튬 부산물의 함량이 감소되어 전해액과의 부반응을 감소시킬 수 있어, 이를 전지에 적용 시 수명 특성, 안정성 및 저항 특성이 개선된 전지를 제공할 수 있다.
예를 들면, 상기 도핑원소는 상기 리튬 전이금속 산화물 전체 중량에 대하여 100ppm 내지 4,000ppm, 바람직하게는 500ppm 내지 2,000ppm으로 포함하는 것일 수 있다. 상기 도핑 원소를 상기 범위로 포함할 경우, 수명 특성 및 저항 특성이 더욱 개선될 수 있다.
본 발명의 양극 활물질은, 응집된 2차 입자의 형태가 아닌 단일입자 (single particle) 형태, 즉 1차 입자로 이루어진다. 본 발명에 있어서, '1차 입자'는 단일 입자의 1차 구조체를 의미하고, '2차 입자'는 2차 입자를 구성하는 1차 입자에 대한 의도적인 응집 또는 조립 공정 없이도 1차 입자 간의 물리적 또는 화학적 결합에 의해 1차 입자들끼리 응집된 응집체, 즉 2차 구조체를 의미한다.
또한, 본 발명의 양극 활물질은 3.0g/cm3 내지 3.3g/cm3의 압연 밀도로 압연 후의 평균 입경(D50)이 4㎛ 내지 10㎛, 바람직하게는 4㎛ 내지 6㎛일 수 있다. 예를 들면, 상기 양극 활물질은 양극 활물질 전구체와 리튬 원료물질을 혼합하고 소성하는 과정에서 1차 입자들이 응집된 2차 입자 형태로 존재하게 되는데, 이를 해쇄하고 3.0g/cm3 내지 3.3g/cm3의 압연 밀도로 압연하면, 응집된 형태의 양극 활물질이 그레인(grain)을 중심으로 깨지게 된다. 특히, 상기 양극 활물질을 특정 도핑원소, 예를 들면, B, Zr, Mg, Ti, Sr, W 및 Al로 이루어진 군에서 선택된 적어도 어느 하나의 도핑원소, 가장 바람직하게는 B로 도핑할 경우, 상기 B 도핑원소를 도핑함에 따라 양극 활물질의 결정 사이즈가 증가하게 되고, 이에 따라 상기 양극 활물질을 압연 후의 평균 입경(D50)이 상기 범위를 만족하도록 형성되는 것이다. 즉, 본 발명에 따르면 상기 도핑원소를 도핑하는 것에 의해 양극 활물질의 결정 사이즈가 증가하게 되며, 이 경우, 종래 단일입자를 형성하기 위한 소성 온도(예를 들면, 900℃ 이상)보다 낮은 온도에서 소성하더라도 용이하게 단일 입자 형태를 가지는 양극 활물질을 제조할 수 있으며, 이렇게 제조한 양극 활물질의 입자 강도가 커져 압연시 입자 깨짐을 억제할 수 있고, 압연 밀도를 향상시킬 수 있으며, 비표면적이 감소되고, 리튬 부산물이 감소되어 전해액과의 부반응에 의한 가스 발생량을 감소시킬 수 있다.
상기 리튬 전이금속 산화물의 결정립 크기는 170 nm 이상, 바람직하게는 180nm 내지 200nm인 것일 수 있다. 상기 리튬 전이금속 산화물의 결정립 크기가 상기 범위를 만족할 경우, 상기 리튬 전이금속 산화물이 단일 입자 형태를 가지는 것일 수 있다. 예를 들면, 상기 양극 활물질의 결정립 크기가 200nm를 초과할 경우, 상기 양극 활물질은 단일 입자 형태를 나타내나, 결정립 크기 상승에 따라 율 특성이 저하될 수 있다. 또한, 상기 양극 활물질의 결정립 크기가 170 nm 미만일 경우, 상기 리튬 전이금속 산화물은 단일 입자 형태가 아닌, 1차 입자가 응집된 2차 입자의 형태일 수 있다. 상기 양극 활물질이 단일 입자 형태를 가짐으로써 입자의 강도가 증가하여, 이후 이를 포함하는 전지의 충방전 시 양극 활물질의 크랙 발생이 감소하여 양극 활물질의 안정성이 개선될 수 있다.
보다 구체적으로, 본 발명의 일 실시예에 따른 상기 리튬 전이금속 산화물은 하기 화학식 1로 표시되는 것일 수 있다.
[화학식 1]
Li1+aNixCoyMnzM1 wO2
상기 화학식 1에서, 0≤a≤0.5, 0.6≤x<1, 0<y≤0.4, 0<z≤0.4, 0<w≤0.04, M1는 B, Zr, Mg, Ti, Sr, W 및 Al로 이루어진 군에서 선택된 적어도 어느 하나, 더욱 바람직하게는 0≤a≤0.5, 0.8≤x<1, 0<y≤0.2, 0<z≤0.2, 0<w≤0.01, M1은 B임.
이와 같이 단일 입자(single particle) 형태이며, 니켈(Ni) 60몰% 이상 조성을 갖는 본 발명의 특정 도핑원소로 도핑된 고함량 니켈(High-Ni) NCM계 양극 활물질은, 고용량 구현이 가능하면서도, 동시에 우수한 안정성을 확보할 수 있다. 구체적으로, 비표면적이 감소되고, 입자 강도가 개선되어 압연시 입자 깨짐이 억제되며, 리튬 부산물의 함량이 감소되어 전해액과의 부반응을 감소시킬 수 있다. 또한, 이러한 본 발명의 고함량 니켈(High-Ni) NCM계 양극 활물질은 우수한 구조적 안정성 및 화학적 안정성이 확보되어, 셀 구동시 가스 발생량을 감소시킬 수 있으며, 열 안정성을 확보할 수 있다.
양극 활물질의 제조 방법
다음으로, 본 발명에 따른 양극 활물질의 제조 방법에 대해 설명한다.
구체적으로, 본 발명에 따른 양극 활물질을 제조하기 위해서, 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 전이금속 수산화물 전체 몰 수에 대하여, 니켈을 60몰% 이상 포함하는 전이금속 수산화물 전구체를 준비하는 단계; B, Zr, Mg, Ti, Sr, W 및 Al로 이루어진 군에서 선택된 도핑원소 원료 물질-함유 수용액과 상기 전이금속 수산화물 전구체를 혼합하고 건조하는 단계; 및 상기 혼합물에 리튬 원료 물질을 혼합하고, 810℃ 이상에서 소성하여, 단일 입자 형태의 리튬 전이금속 산화물을 제조하는 것이다.
이를 보다 자세하게 설명하면, 먼저, 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 전이금속 수산화물 전체 몰 수에 대하여, 60몰% 이상의 니켈을 포함하는 전이금속 전구체를 준비한다.
상기 전이금속 전구체는 시판되는 양극 활물질용 전구체를 구입하여 사용하거나, 당해 기술 분야에 잘 알려진 양극 활물질용 전구체의 제조 방법에 따라 제조될 수 있다.
상기 전구체는 니켈 함유 원료물질, 코발트 함유 원료물질 및 망간 함유 원료물질을 포함하는 전이금속 용액에 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 첨가하여 공침 반응시켜 제조되는 것일 수 있다.
상기 니켈 함유 원료물질은 예를 들면, 니켈 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있으며, 구체적으로는, Ni(OH)2, NiO, NiOOH, NiCO3ㆍ2Ni(OH)2ㆍ4H2O, NiC2O2ㆍ2H2O, Ni(NO3)2ㆍ6H2O, NiSO4, NiSO4ㆍ6H2O, 지방산 니켈염, 니켈 할로겐화물 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 코발트 함유 원료 물질은 코발트 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있으며, 구체적으로는 Co(OH)2, CoOOH, Co(OCOCH3)2ㆍ4H2O, Co(NO3)2ㆍ6H2O, CoSO4, Co(SO4)2ㆍ7H2O 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 망간 함유 원료물질은 예를 들면, 망간 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물, 옥시수산화물 또는 이들의 조합일 수 있으며, 구체적으로는 Mn2O3, MnO2, Mn3O4 등과 같은 망간산화물; MnCO3, Mn(NO3)2, MnSO4, 아세트산 망간, 디카르복실산 망간염, 시트르산 망간, 지방산 망간염과 같은 망간염; 옥시 수산화망간, 염화 망간 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 전이금속 용액은 니켈 함유 원료물질, 코발트 함유 원료물질 및 망간 함유 원료물질을 용매, 구체적으로는 물, 또는 물과 균일하게 혼합될 수 있는 유기 용매(예를 들면, 알코올 등)의 혼합 용매에 첨가하여 제조되거나, 또는 니켈 함유 원료물질의 수용액, 코발트 함유 원료물질의 수용액 및 망간 함유 원료물질을 혼합하여 제조된 것일 수 있다.
상기 암모늄 양이온 함유 착물 형성제는, 예를 들면 NH4OH, (NH4)2SO4, NH4NO3, NH4Cl, CH3COONH4, NH4CO3 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다. 한편, 상기 암모늄 양이온 함유 착물 형성제는 수용액의 형태로 사용될 수도 있으며, 이때 용매로는 물, 또는 물과 균일하게 혼합 가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
상기 염기성 화합물은 NaOH, KOH 또는 Ca(OH)2 등과 같은 알칼리 금속 또는 알칼리 토금속의 수산화물, 이들의 수화물 또는 이들의 조합일 수 있다. 상기 염기성 화합물 역시 수용액의 형태로 사용될 수도 있으며, 이때 용매로는 물, 또는 물과 균일하게 혼합가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
상기 염기성 화합물은 반응 용액의 pH를 조절하기 위해 첨가되는 것으로, 금속 용액의 pH가 11 내지 13이 되는 양으로 첨가될 수 있다.
한편, 상기 공침 반응은 질소 또는 아르곤 등의 비활성 분위기하에서, 40℃ 내지 70℃의 온도에서 수행될 수 있다.
상기와 같은 공정에 의해 니켈-코발트-망간 수산화물의 입자가 생성되고, 반응 용액 내에 침전된다. 니켈 함유 원료물질, 코발트 함유 원료물질 및 망간 함유 원료물질의 농도를 조절하여, 전이금속 전체 함량 중 니켈(Ni)의 함량이 60몰% 이상인 전구체를 제조할 수 있다. 침전된 니켈-코발트-망간 수산화물 입자를 통상의 방법에 따라 분리시키고, 건조시켜 니켈-코발트-망간 전구체를 얻을 수 있다.
이어서, 도핑원소 원료 물질-함유 수용액과 상기 전이금속 수산화물 전구체를 혼합하고 건조한다.
상기 도핑원소 원료 물질은, B, Zr, Mg, Ti, Sr, W 및 Al로 이루어진 군에서 선택된 적어도 어느 하나의 도핑원소를 포함하는 황산염, 질산염, 아세트산염, 할라이드, 수산화물 또는 옥시수산화물 등을 사용할 수 있으며, 물 등의 용매에 용해될 수 있는 것이라면, 특별히 제한되지 않고 사용될 수 있다. 바람직하게는, 상기 도핑원소 원료 물질은 B를 포함하는 황산염, 질산염, 아세트산염, 할라이드, 수산화물 또는 옥시수산화물 등일 수 있으며, 더 바람직하게는 붕산, 삼산화붕소, 탄화붕소, 삼플루오르화 붕소, 일플루오르화 붕소로 이루어진 군에서 선택된 적어도 어느 하나를 포함할 수 있다.
상기와 같이 도핑원소 원료 물질을 수용액에 용해시키고, 이를 상기 전이금속 수산화물 전구체와 혼합하는 습식 공정에 의해 상기 도핑원소를 도핑할 경우, 양극 활물질 전체에 도핑원소를 균일하게 도핑할 수 있다. 예를 들면, 전이금속 수산화물 전구체에 건식 방법을 이용하여 도핑원소 원료 물질을 도핑할 경우, 도핑원소가 부분적으로 응집되어 도핑될 수 있어, 전지에 적용 시 수명 특성 및 저항 특성 개선 효과가 습식 방식에 의해 열위할 수 있다.
예를 들면, 상기 도핑원소 원료 물질은 수용액 내에 0.1M 내지 0.5M, 바람직하게는 0.2M 내지 0.4M의 농도가 되도록 용해시키는 것일 수 있다. 예를 들면, 상기 범위를 초과할 경우, 리튬과 도핑 원소가 반응할 확률이 증가하여 전구체와 리튬의 반응성이 감소할 수 있으며, 이 경우 양극 활물질의 구조 완성도가 감소되고, 비용량, 효율 특성 및 수명 특성이 감소될 수 있다.
예를 들면, 상기 양극 활물질은 상기 리튬 전이금속 산화물 총 중량부에 대하여, 도핑원소의 함량이 100ppm 내지 4,000ppm, 바람직하게는 500ppm 내지 2,000ppm이 되도록 도핑원소 M 원료 물질-함유 수용액을 혼합하는 것일 수 있다.
특히, 상기 전이금속 수산화물 전구체를 도핑원소로서 B 도핑할 경우, 상기 B에 의해 양극 활물질 제조 시 소성 온도를 낮추더라도, 상기 B에 의해 양극 활물질 결정립의 성장이 촉진되어, 단일입자 형태의 양극 활물질을 제조할 수 있다. 일반적으로 전이금속 전체 몰수에 대하여 Ni의 함량이 60몰% 이상인 고함량 Ni 함유 전이금속 수산화물 전구체와, 리튬 원료물질(예를 들면, LiOH·H2O)을 혼합하고 소성 시, 리튬이 녹는 시점부터 전이금속 수산화물 전구체와 반응이 시작되는데, 이때, 상기 LiOH·H2O의 녹는점은 약 400℃이기 때문에, 400℃이상에서는 전이금속 수산화물 전구체와 리튬이 반응하게 된다. 그러나, 상기 B는, Li과 약 150℃에서 반응을 할 수 있기 때문에, 150℃에서는 B와 Li이 반응을 하게 되고, 450℃ 이상에서 Li과 전이금속 수산화물 전구체의 반응 시 상기 B가 촉매제의 역할 또한 수행할 수 있다. 이에 따라, Li과 전이금속 수산화물 전구체의 반응 온도를 낮춰주어, 상기 B를 적용할 경우 종래 고함량 니켈을 포함하는 전이금속 수산화물 전구체와 리튬 원료 물질과의 혼합물의 소성 온도보다 낮은 온도에서 소성을 수행하더라도, 단일 입자 형태의 양극 활물질을 제조할 수 있다. 이에 따라, 종래에 고온 소성에 의해 발생하였던 전기 화학적 특성의 열위를 방지하여, 수명 특성 및 저항 특성이 개선된 고함량 니켈을 포함하는 단일 입자 형태의 양극 활물질을 제조할 수 있다.
상기 건조는 상기 도핑원소 원료 물질을 용해시킨 수용액을 건조하기 위한 것으로, 전지에 화학적 변화를 유발하지 않으면서 상기 용매를 건조시킬 수 있는 방법이라면 특별히 제한되지 않고 사용할 수 있으며, 예를 들면, 분무 건조법, 회전식 증발기(rotary evaporator)를 이용한 건조법, 진공 건조법 또는 자연 건조법을 이용하여 수행할 수 있다.
다음으로, 상기 도핑원소 원료 물질-함유 수용액과 상기 전이금속 수산화물 전구체를 혼합한 혼합물에, 리튬 원료 물질을 혼합하고 810℃ 이상에서 소성하여, 단일 입자 형태의 양극 활물질을 제조할 수 있다.
상기 리튬 원료 물질은, 리튬 소스를 포함하는 화합물이라면 특별히 제한되지 않고 사용할 수 있으며, 바람직하게는 탄산리튬(Li2CO3), 수산화리튬(LiOH), LiNO3, CH3COOLi 및 Li2(COO)2로 이루어진 군에서 선택되는 적어도 하나를 사용할 수 있다.
상기 소성은 산소 분위기 하, 810℃ 이상, 바람직하게는 810℃ 내지 880℃, 바람직하게는 810℃ 내지 850℃, 더 바람직하게는 810℃ 내지 830℃에서 12시간 내지 24시간 동안 수행하는 것일 수 있다. 상기와 같이 810℃ 이상에서 12 내지 24시간 동안 소성을 수햄함으로써 상기 양극 활물질이 재결정화되어 단일 입자 형태로 형성되는 것일 수 있다. 예를 들면, 상기 810℃ 미만의 온도로 소성 공정을 수행할 경우, 상기 양극 활물질의 재결정화가 일어나지 않아 상기 양극 활물질은 1차 입자가 응집된 2차 입자 형태로 형성될 수 있으며, 이 경우 양극 활물질의 입자 강도가 열위하여 이를 적용한 이차전지의 안정성이 저하될 수 있다. 또한, 880℃를 초과하는 온도로 소성 공정을 수행할 경우, 상기 양극 활물질은 재결정화되어 단일 입자로 형태로 형성되는 반면, 고함량의 Ni을 포함하는 전이금속 수산화물 전구체의 경우, 리튬과 혼합하고 고온 소성을 수행함으로써 Ni3 + → Ni2 +로 상전이하여 Li site의 자리로 치환되어 이를 전지에 적용 시 용량, 수명 및 저항 특성이 열위해질 수 있다.
다음으로, 리튬 전이금속 산화물의 표면에 존재하는 리튬 부산물을 제거하기 위해, 상기 리튬 전이금속 산화물을 수세하는 공정을 더 수행할 수 있다.
니켈을 고농도로 함유하는 리튬 전이금속 산화물의 경우, 니켈 함량이 적은 리튬 전이금속 산화물에 비해 구조적으로 불안정하기 때문에 제조 공정에서 미반응 수산화리튬이나 탄산리튬과 같은 리튬 부산물이 더 많이 발생한다. 양극 활물질에 리튬 부산물이 다량 존재할 경우, 리튬 부산물과 전해액이 반응하여 가스 발생 및 스웰링 현상이 발생하게 되고, 이로 인해 고온 안정성이 현저하게 저하되게 된다. 따라서, 고농도 니켈을 포함하는 리튬 전이금속 산화물로부터 리튬 부산물을 제거하기 위한 수세 공정을 더 수행할 수 있다.
상기 수세 단계는, 예를 들면, 초순수에 리튬 전이금속 산화물을 투입하고, 교반시키는 방법으로 수행될 수 있다. 이때, 상기 수세 온도는 20℃ 이하, 바람직하게는 10℃ 내지 20℃일 수 있으며, 수세 시간은 10분 내지 1시간 정도일 수 있다. 수세 온도 및 수세 시간이 상기 범위를 만족할 때, 리튬 부산물이 효과적으로 제거될 수 있다.
양극
다음으로, 본 발명에 따른 양극 활물질을 포함하는, 리튬 이차전지용 양극을 제공한다.
구체적으로, 상기 이차전지용 양극은, 양극 집전체, 상기 양극 집전체 상에 형성된 양극 활물질층을 포함하며, 상기 양극 활물질층은 본 발명에 따른 양극 활물질을 포함하는, 리튬 이차전지용 양극을 제공한다.
이때, 상기 양극 활물질은 상술한 바와 동일하므로, 구체적인 설명을 생략하고, 이하 나머지 구성에 대해서만 구체적으로 설명한다.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질층은 상기 양극 활물질과 함께, 도전재 및 필요에 따라 선택적으로 바인더를 포함할 수 있다.
이때 상기 양극 활물질은 양극 활물질층 총 중량에 대하여 80 내지 99중량%, 보다 구체적으로는 85 내지 98.5중량%의 햠량으로 포함될 수 있다. 상기한 함량범위로 포함될 때 우수한 용량 특성을 나타낼 수 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한 없이 사용 가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 양극 활물질층 총 중량에 대하여 0.1 내지 15 중량%로 포함될 수 있다.
상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 0.1 내지 15 중량%로 포함될 수 있다.
상기 양극은 상기한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 활물질 및 선택적으로, 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 양극 활물질층 형성용 조성물을 양극집전체 상에 도포한 후, 건조 및 압연함으로써 제조할 수 있다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또한, 다른 방법으로, 상기 양극은 상기 양극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
리튬 이차전지
또한, 본 발명은 상기 양극을 포함하는 전기화학소자를 제조할 수 있다. 상기 전기화학소자는 구체적으로 전지, 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로, 양극, 상기 양극과 대향하여 위치하는 음극, 및 상기 양극과 음극 사이에 개재되는 분리막 및 전해질을 포함하고, 상기 양극은 앞서 설명한 바와 동일하므로, 구체적인 설명을 생략하고, 이하 나머지 구성에 대해서만 구체적으로 설명한다.
또한, 상기 리튬 이차전지는 상기 양극, 음극, 분리막의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질층을 포함한다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ (0<β<2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
상기 음극활물질은 음극 활물질층의 전체 중량을 기준으로 80 중량부 내지 99중량부로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 활물질층의 전체 중량을 기준으로 0.1 중량부 내지 10 중량부로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 음극활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 활물질층의 전체 중량을 기준으로 10 중량부 이하, 바람직하게는 5 중량부 이하로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
예를 들면, 상기 음극 활물질층은 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 음극 활물질층 형성용 조성물을 도포하고 건조함으로써 제조되거나, 또는 상기 음극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수 있다.
상기 음극 활물질층은 일례로서 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 음극 활물질층 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
한편, 상기 리튬 이차전지에 있어서, 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또한, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2 . LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량부로 포함될 수 있다.
상기와 같이 본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 수명 특성을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
실시예 1
황산 니켈, 황산 코발트 및 황산 망간을 니켈:코발트:망간의 몰비가 90:4:6이 되도록 하는 양으로 이온 교환수 중에 녹여 2.4M의 전이금속 수용액을 준비하였다. 또한, 9% 농도의 암모니아 수용액과, 25% 농도의 수산화나트륨 수용액을 각각 준비하였다. 공침 반응기에 상기 전이금속 수용액, 암모니아 수용액 및 수산화나트륨 수용액을 일정 속도로 투입하고, 질소 분위기 하에서 공침 반응을 진행하여, 전이금속 수산화물 전구체를 합성하였다.
이어서, 붕산 2.1g을 150mL의 물에 녹인 후, 상기 붕산 수용액 150mL에 350g의 전이금속 수산화물 전구체를 투입한 후 교반하였다. 혼합된 용액을 회전 증발기(rotary evaporator)로 진공 건조를 수행하였고, 슬러리 상태의 혼합물을 100℃에서 5 시간 이상 건조하여, 전이금속 수산화물 전구체를 제조하였다.
상기에서 제조한 전이금속 수산화물 전구체와, LiOH를 Me:Li가 1:1.02가 되는 몰비로 혼합하고, 810℃에서 11시간 동안 소성하여, 결정립의 크기가 178nm인 단일 입자형의 양극 활물질(LiNi0.90Co0.04Mn0.06B0.009O2)을 제조하였다.
실시예 2
상기 실시예 1에서 제조한 전이금속 수산화물 전구체와, LiOH를 혼합하고 소성 시, 소성 온도를 830℃로 하는 것을 제외하고는, 상기 실시예 1과 동일한 방법을 이용하여 양극 활물질 및 이를 포함하는 리튬 이차전지를 제조하였다.
실시예 3
상기 실시예 1에서 제조한 양극 활물질 전구체 전체 중량에 대하여 1,000 ppm의 붕산을 건식 혼합한 후, 830℃에서 소성하여 양극 활물질(LiNi0.89Co0.04Mn0.06B0.009O2)을 제조하는 것을 제외하고는, 상기 실시예 1과 동일한 방법을 이용하여 양극 활물질 및 이를 포함하는 리튬 이차전지를 제조하였다.
비교예 1
전이금속 수산화물 전구체 제조 시, 붕소를 도핑하지 않는 것을 제외하고는, 상기 실시예 1과 동일한 방법을 이용하여 양극 활물질 및 이를 포함하는 리튬 이차전지를 제조하였다.
비교예 2
전이금속 수산화물 전구체 제조 시, 붕소를 도핑하지 않는 것을 제외하고는, 상기 실시예 2와 동일한 방법을 이용하여 양극 활물질 및 이를 포함하는 리튬 이차전지를 제조하였다.
비교예 3
상기 비교예 1에서 제조한 전이금속 수산화물 전구체와, LiOH를 1:1.02의 몰비로 혼합하고, 730℃에서 11시간 동안 소성하여, 1차 입자들이 응집된 2차 입자 형태의 양극 활물질(LiNi0 . 90Co0 . 04Mn0 . 06O2)을 제조하였고, 이를 사용한 것을 제외하고는 상기 비교예 1과 동일한 방법을 이용하여 양극 활물질 및 이를 포함하는 리튬 이차전지를 제조하였다.
비교예 4
상기 실시예 1에서 제조한 전이금속 수산화물 전구체와, LiOH를 혼합하고 소성 시, 소성 온도를 730℃로 하는 것을 제외하고는, 상기 실시예 1과 동일한 방법을 이용하여 양극 활물질 및 이를 포함하는 리튬 이차전지를 제조하였다.
실험예 1: 양극 활물질의 특성 확인 확인
1) SEM 이미지
상기 실시예 1, 비교예 1 및 3에서 각각 제조한 양극 활물질의 표면 특성을 확인하기 위하여 주사전자현미경을 이용하여 SEM 이미지를 확인하였다. 도 1 내지 도 3에 도시된 바와 같이, 실시예 1(도 1) 및 비교예 1(도 2)에서 제조한 양극 활물질은 단일 입자 형태를 가지는 것을 확인할 수 있었다. 반면, 비교예 3(도 3)에서 제조한 양극 활물질은 1차 입자가 응집된 2차 입자의 형태인 것을 확인할 수 있었다.
2) 양극 활물질의 평균 입경 측정
상기 실시예 1~3 및 비교예 1~4에서 각각 제조한 B-도핑된 양극 활물질을 간이 믹서기(HMF600, 한일믹서)를 이용하여 4분 동안 해쇄한 후, 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28 kHz의 초음파를 출력 60 W로 조사한 후, 측정 장치에 있어서의 입경에 따른 입자 개수 누적 분포의 50% 기준에서의 평균 입자 직경(D50)을 산출하여, 이를 하기 표 1에 나타내었다. 또, 상기 실시예 1~3 및 비교예 1~4에서 제조한 B-도핑된 양극 활물질을 해쇄한 후, 3톤의 압력(3.1~3.2g/cm3)을 가해 압축한 후, 상술한 방법으로 측정한 평균 입경(D50) 또한 하기 표 1에 나타내었다.
3) 양극 활물질의 펠렛 밀도
실시예 1~3 및 비교예 1~4에서 각각 제조한 양극 활물질의 펠렛 밀도는 압연밀도 측정기(4350, Carver 社)를 이용하여 3.0 ton으로 압력 시 내부 부피를 측정하였다. 내부 부피는 버니어 캘리퍼스(Miltutoyo 社)를 이용하여 Sus 내부의 부피를 측정하였고, 이 결과 또한 하기 표 1에 나타내었다.
해쇄 후 입자 크기(D50)(㎛) 압연 후 입자 크기(D50)(㎛) 펠렛 밀도(g/cc)
실시예 1 8.8 4.0 3.16
실시예 2 8.4 4.5 3.19
실시예 3 8.1 4.6 3.17
비교예 1 7.3 2.9 3.18
비교예 2 7.4 3.3 3.20
비교예 3 5.2 입자 깨짐 2.85
비교예 4 5.9 입자 깨짐 2.83
상기 표 1에 나타난 바와 같이, 실시예 1~3에서 제조한 양극 활물질의 경우, 결정립 크기 증가에 따라 압연 후에도 평균 입자 크기(D50)이 4~6㎛을 유지하는 것을 확인할 수 있었다. 그러나, 비교예 1~2에서 제조한 양극 활물질은, B 도핑에 의한 양극 활물질 입자의 결정 성장이 실시예에 비해 열위하여 압연 후 입자 크기가 본원발명의 범위 미만인 것을 확인할 수 있었다. 또한, 비교예 3~4에서 제조한 양극 활물질은, 소성온도가 본원 범위 미만으로 낮아 이 경우 B 도핑 여부에 관계없이 3.1~3.2g/cm3의 압연밀도로 압연 시 양극 활물질 입자가 깨지는 것을 확인할 수 있었다.
또한, 실시예 1~3에서 제조한 이차전지의 경우, B를 도핑하더라도 비교예 1~2와 같이 B 도핑하지 않은 경우와 비교하였을 때 동등 수준의 펠렛 밀도를 나타내는 것을 확인할 수 있다. 또한, 실시예 1~3의 양극 활물질의 경우, 1차 입자가 응집된 2차 입자 형태인 비교예 3~4에 비해서 우수한 펠렛 밀도를 나타내는 것을 확인할 수 있다.
4) 양극 활물질의 결정립 크기
상기 실시예 1~3 및 비교예 3에서 제조한 양극 활물질을 X선 회절 분석기(Bruker AXS D4-Endeavor XRD)를 이용하여, 결정립 크기를 측정하였고, 그 결과를 하기 표 2에 나타내었다.
결정립 크기(nm)
실시예 1 178
실시예 2 189
실시예 3 208
비교예 3 100
상기 표 2에 나타난 바와 같이, 실시예 1~3에서 제조한 양극 활물질은 170 nm 이상의 결정립 크기를 가지는 단일입자 형태인 것을 확인할 수 있었다. 반면, 비교예 3의 경우 1차 입자가 응집된 2차 입자 형태로 제조됨에 따라 결정립 크기가 본 발명에 비해 현저히 작은 것을 확인할 수 있었다.
실험예 2: 용량 특성 평가
상기 실시예 1~2 및 비교예 1~4에서 제조한 양극 활물질을 이용하여 리튬 이차전지를 제조하였고, 실시예 1~2 및 비교예 1~4의 양극 활물질을 포함하는 리튬 이차전지 각각에 대하여 용량 특성을 평가하였다.
구체적으로, 실시예 1~2 및 비교예 1~4에서 각각 제조한 양극 활물질, 카본블랙 도전재 및 폴리비닐리덴플루오라이드(PVdF) 바인더를 96.5:1.5:2의 중량비로 N-메틸피롤리돈(NMP) 용매 중에서 혼합하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 알루미늄 집전체의 일면에 도포한 후, 100℃에서 건조 후, 압연하여 양극을 제조하였다.
한편, 음극으로서 리튬 메탈을 사용하였다.
상기에서 제조한 양극과 음극 사이에 다공성 폴리에틸렌 분리막을 개재하여 전극 조립체를 제조한 다음, 이를 전지 케이스 내부에 위치시킨 후, 상기 케이스 내부로 전해액을 주입하여 리튬 이차전지를 제조하였다. 이때, 전해액으로서 에틸렌카보네이트:에틸메틸카보네이트:디에틸카보네이트(EC:EMC:DEC)를 3:4:3의 부피비로 혼합한 유기 용매에 1.0M의 리튬헥사플루오로포스페이트(LiPF6)를 용해시킨 전해액을 주입하여, 실시예 1~2 및 비교예 1~4에 따른 리튬 이차전지를 제조하였다.
상기에서 제조한 실시예 1~2 및 비교예 1~4에 따른 리튬 이차전지 각각에 대하여 상온에서 0.2C 정전류로 4.25V까지 0.05C cut off로 충전하였다. 이후, 0.2C 정전류로 2.5V가 될 때까지 방전하였다. 상기 충전 및 방전 거동을 1 사이클로 하고, 2회째부터는 0.5C 정전류로 4.25V까지 0.05C cut off로 충전 및 0.5C 정전류로 2.5V까지 방전하는 것을 1 사이클로 하였다. 이러한 사이클을 30회 반복 실시한 후, 상기 실시예 1~2 및 비교예 1~4에 따른 이차전지의 사이클에 따른 용량 유지율을 측정하였고, 이를 하기 표 3, 도 4 및 도 5에 나타내었다.
초기 방전용량 (mAh/g) 용량 유지율 @30cycles(%)
실시예 1 201.7 91.3
실시예 2 197.3 92.8
비교예 1 199.8 91.1
비교예 2 196.7 91.0
비교예 3 206.2 88.5
비교예 4 207.7 89.1
상기 표 3, 도 4 및 도 5에 나타난 바와 같이, 동일 조건에서 양극 활물질을 제조하되, B 도핑 여부만 상이한 실시예 1과 비교예 1, 실시예 2와 비교예 2의 양극 활물질을 포함하는 리튬 이차전지의 경우, 각각 B 도핑을 수행한 실시예 1 및 2에서 제조한 이차전지의 초기 방전용량이 B 도핑을 수행하지 않은 비교예 1 및 2에서 제조한 이차전지의 초기 방전용량보다 높은 것을 확인할 수 있었다.
또한, 비교예 3 내지 4에서 제조한 이차전지의 경우, 초기 방전용량은 우수하였으나, 구조 안정성이 열위하여 실시예 1~2에서 제조한 이차전지에 비해 30 사이클 이상에서 용량유지율이 열위한 것을 확인할 수 있었다.
실험예 3: 저항 특성 평가
상기 실험예 2에서 각각 제조한 실시예 1~3 및 비교예 1~2에 따른 리튬 이차전지 각각에 대하여 저항 특성을 평가하였다.
구체적으로, 실시예 1~3 및 비교예 1~2의 리튬 이차전지 각각에 대하여 상온에서 0.5C 정전류로 4.25V까지 0.05C cut off로 충전하였다. 이후, 0.5C 정전류로 2.5V가 될 때까지 방전하였다. 이때, 60초에 해당하는 전압을 기록하여, 초기 전압과의 차이를 인가한 전류로 나누어 저항을 계산하였다. 상기 실시예 1~3 및 비교예 1~2에 따른 이차전지의 초기 저항을 측정하였고, 그 결과를 하기 표 4 및 도 6에 나타내었다.
초기 DCIR (%)
실시예 1 25.2
실시예 2 33.7
실시예 3 39.0
비교예 1 41.6
비교예 2 61.8
상기 표 4 및 도 6에 나타난 바와 같이, 본원발명에 따른 초기 저항 특성의 경우, 실시예 1~3에서 제조한 양극 활물질을 적용한 이차전지가 비교예 1~2에서 제조한 양극 활물질을 적용한 이차전지보다 우수한 것을 확인할 수 있었다.
실험예 4 : 연속 충전 시험
상기 실험예 2에서 제조한 실시예 1~2 및 비교예 3에 따른 리튬 이차전지 각각에 대하여 60℃에서 4.5V가 유지되도록 120시간 동안 충전하였고, 이때 발생되는 전류의 양을 측정하였고, 이를 도 7에 나타내었다.
도 7에 도시된 바와 같이, 비교예 3의 경우 실시예 1~2에 비해 연속충전시 발생하는 전류가 더 많은 것을 확인할 수 있었다. 이는 비교예 3의 경우 양극 활물질의 안정성이 실시예 1~2 보다 열위하였기 때문에, 양극 활물질 표면과 전해액 사이의 부반응에 의한 전류 발생량이 더 많은 것이었다.

Claims (11)

  1. 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 리튬 전이금속 산화물이며,
    상기 리튬 전이금속 산화물은 리튬을 제외한 전이금속의 전체 몰수에 대하여 니켈(Ni)의 함량이 60몰% 이상이고,
    상기 리튬 전이금속 산화물을 B, Zr, Mg, Ti, Sr, W 및 Al로 이루어진 군에서 선택된 적어도 어느 하나의 도핑원소로 도핑된 것을 포함하며,
    3.0g/cm3 내지 3.3g/cm3의 압연 밀도로 압연 후의 평균 입경(D50)이 4 내지 10㎛이고, 단일입자 형태를 가지는 양극 활물질.
  2. 제1항에 있어서,
    상기 리튬 전이금속 산화물을 하기 화학식 1로 표시되는 것인, 양극 활물질.
    [화학식 1]
    Li1 + aNixCoyMnzM1 wO2
    상기 화학식 1에서, 0≤a≤0.5, 0.6≤x<1, 0<y≤0.4, 0<z≤0.4, 0<w≤0.01, M1는 B, Zr, Mg, Ti, Sr, W 및 Al로 이루어진 군에서 선택된 적어도 어느 하나임.
  3. 제1항에 있어서,
    상기 도핑원소는 B인, 양극 활물질.
  4. 제1항에 있어서,
    상기 리튬 전이금속 산화물의 결정립 크기는 170 nm 내지 220 nm인, 양극 활물질.
  5. 제1항에 있어서,
    상기 도핑 원소는 상기 리튬 전이금속 산화물 전체 중량에 대하여 100 내지 4,000ppm로 포함하는, 양극 활물질.
  6. 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 전이금속 수산화물 전체 몰 수에 대하여, 니켈(Ni)을 60몰% 이상 포함하는 전이금속 수산화물 전구체를 준비하는 단계;
    B, Zr, Mg, Ti, Sr, W 및 Al로 이루어진 군에서 선택된 도핑원소 원료 물질-함유 수용액과 상기 전이금속 수산화물 전구체를 혼합하고 건조하는 단계; 및
    상기 혼합물에 리튬 원료 물질을 혼합하고, 810℃ 이상에서 소성하여, 단일입자 형태의 리튬 전이금속 산화물을 제조하는 단계;를 포함하는, 양극 활물질의 제조 방법.
  7. 제6항에 있어서,
    상기 도핑원소는 B를 포함하는 것인, 양극 활물질의 제조 방법.
  8. 제6항에 있어서,
    상기 도핑원소 원료 물질은 붕산, 삼산화붕소, 탄화붕소, 삼플루오르화 붕소 및 일플루오르화 붕소로 이루어진 군에서 선택된 적어도 어느 하나를 포함하는, 양극 활물질의 제조 방법.
  9. 제6항에 있어서,
    상기 소성은 810℃ 내지 880℃에서 수행하는 것인, 양극 활물질의 제조 방법.
  10. 제1항 내지 제5항 중 어느 한 항에 따른 양극 활물질을 포함하는, 리튬 이차전지용 양극.
  11. 제10항에 따른 양극을 포함하는, 리튬 이차전지.
PCT/KR2019/015860 2018-11-20 2019-11-19 리튬 이차전지용 양극 활물질 및 이의 제조 방법 WO2020106024A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PL19886156.9T PL3869594T3 (pl) 2018-11-20 2019-11-19 Materiał aktywny elektrody dodatniej do wtórnej baterii litowej i sposób jego przygotowania
JP2021527047A JP7171918B2 (ja) 2018-11-20 2019-11-19 リチウム二次電池用正極活物質及びこの製造方法
CN201980076176.6A CN113169329A (zh) 2018-11-20 2019-11-19 锂二次电池用正极活性材料及其制备方法
EP19886156.9A EP3869594B1 (en) 2018-11-20 2019-11-19 Positive electrode active material for lithium secondary battery and preparation method therefor
US17/294,542 US20210408537A1 (en) 2018-11-20 2019-11-19 Positive Electrode Active Material for Lithium Secondary Battery and Method of Preparing the Same
JP2022176534A JP7460250B2 (ja) 2018-11-20 2022-11-02 リチウム二次電池用正極活物質及びこの製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180143804 2018-11-20
KR10-2018-0143804 2018-11-20
KR1020190147928A KR102327532B1 (ko) 2018-11-20 2019-11-18 리튬 이차전지용 양극 활물질 및 이의 제조 방법
KR10-2019-0147928 2019-11-18

Publications (1)

Publication Number Publication Date
WO2020106024A1 true WO2020106024A1 (ko) 2020-05-28

Family

ID=70773890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015860 WO2020106024A1 (ko) 2018-11-20 2019-11-19 리튬 이차전지용 양극 활물질 및 이의 제조 방법

Country Status (7)

Country Link
US (1) US20210408537A1 (ko)
EP (1) EP3869594B1 (ko)
JP (2) JP7171918B2 (ko)
KR (1) KR102327532B1 (ko)
CN (1) CN113169329A (ko)
PL (1) PL3869594T3 (ko)
WO (1) WO2020106024A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284470A (zh) * 2021-11-29 2022-04-05 蜂巢能源科技有限公司 正极材料、其制备方法、包括其的正极和锂离子电池
CN114420937A (zh) * 2022-03-30 2022-04-29 中南大学 一种双阳离子共掺杂的高镍三元层状正极材料及其制备方法和应用
CN114730855A (zh) * 2021-03-19 2022-07-08 宁德新能源科技有限公司 电化学装置及电子装置
CN115485243A (zh) * 2020-09-21 2022-12-16 株式会社Lg化学 固相合成的正极活性材料及其制造方法
JP7531626B2 (ja) 2020-06-12 2024-08-09 エコプロ ビーエム カンパニー リミテッド 正極活物質およびこれを含むリチウム二次電池

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102622330B1 (ko) 2020-08-21 2024-01-09 주식회사 엘지화학 양극 활물질의 제조방법
KR102649190B1 (ko) * 2020-12-21 2024-03-18 포스코홀딩스 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
JP2023553178A (ja) * 2020-12-23 2023-12-20 エルジー エナジー ソリューション リミテッド 正極活物質、これを含む正極及びリチウム二次電池
CN113562781A (zh) * 2021-07-26 2021-10-29 赣州启源新材料有限公司 一种高镍锂离子电池正极材料的改性方法
WO2023063779A1 (ko) * 2021-10-14 2023-04-20 주식회사 엘지에너지솔루션 리튬 이차 전지
WO2023063785A1 (ko) * 2021-10-14 2023-04-20 주식회사 엘지에너지솔루션 리튬 이차 전지
US20230117468A1 (en) * 2021-10-14 2023-04-20 Lg Energy Solution, Ltd. Lithium secondary battery
US20230121815A1 (en) * 2021-10-15 2023-04-20 Lg Energy Solution, Ltd. Lithium secondary battery
US20240243278A1 (en) * 2021-11-19 2024-07-18 Lg Energy Solution, Ltd. Composition for cathode active material layer, and lithium secondary battery
US20230207799A1 (en) * 2021-12-24 2023-06-29 Lg Energy Solution, Ltd. Positive Electrode Active Material, and Positive Electrode and Lithium Secondary Battery Including the Same
EP4439713A1 (en) * 2021-12-24 2024-10-02 LG Energy Solution, Ltd. Positive electrode active material, and positive electrode and lithium secondary battery comprising same
CN114695856B (zh) * 2022-03-28 2024-02-13 中国电子新能源(武汉)研究院有限责任公司 一种钠离子电池正极材料、制备方法、极片和电池
CN114804235B (zh) * 2022-05-26 2024-03-12 广东邦普循环科技有限公司 一种高电压镍钴锰酸锂正极材料及其制备方法和应用
WO2024004709A1 (ja) * 2022-06-30 2024-01-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
EP4439726A1 (en) * 2022-08-04 2024-10-02 LG Energy Solution, Ltd. Lithium secondary battery, battery module, and battery pack
JP2024116667A (ja) * 2023-02-16 2024-08-28 株式会社田中化学研究所 金属複合化合物及び金属複合化合物を前駆体とした正極活物質

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100734225B1 (ko) * 2005-12-09 2007-07-02 제일모직주식회사 비수계 전해질 리튬 이차전지용 양극활물질, 그 제조방법및 이를 포함하는 리튬 이차전지
KR101731473B1 (ko) * 2009-02-13 2017-04-28 쳉두 징유안 뉴 머티리얼스 테크놀로지 컴퍼니 리미티드 도펀트를 가진 니켈-코발트-망간 다중-원소 리튬 이온 배터리의 양극 물질 및 이의 제조방법
KR20170100534A (ko) * 2014-12-23 2017-09-04 콴텀스케이프 코포레이션 리튬이 풍부한 니켈 망간 코발트 산화물
KR20180093079A (ko) * 2016-01-04 2018-08-20 쥐알에스티 인터내셔널 리미티드 리튬 이온 전지의 캐소드 물질의 제조 방법
JP2018532236A (ja) * 2015-11-30 2018-11-01 エルジー・ケム・リミテッド 二次電池用正極活物質及びこれを含む二次電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE545162T1 (de) * 2007-10-23 2012-02-15 Mitsui Mining & Smelting Co Lithium-übergangsmetalloxid des spinelltyps
EP3041071B1 (en) * 2013-08-29 2018-10-03 LG Chem, Ltd. Lithium transition metal composite particles, method for preparing same, and positive active materials comprising same
KR20170009557A (ko) 2015-07-17 2017-01-25 주식회사 엘지화학 양극 활물질 입자 강도 변경을 통해 안전성이 향상된 원통형 이차전지
CN105375010B (zh) * 2015-11-26 2018-09-18 长沙矿冶研究院有限责任公司 一种高压实密度锂离子正极材料的制备方法
WO2017095153A1 (ko) * 2015-11-30 2017-06-08 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
JP2017188428A (ja) * 2016-03-30 2017-10-12 Basf戸田バッテリーマテリアルズ合同会社 非水電解質二次電池用の正極活物質及びその製造方法、並びにそれを用いた非水電解質二次電池
US10224547B2 (en) * 2016-03-31 2019-03-05 Nichia Corporation Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
CN108306014B (zh) * 2017-12-26 2020-10-20 深圳市德方纳米科技股份有限公司 一种单晶镍钴锰酸锂正极材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100734225B1 (ko) * 2005-12-09 2007-07-02 제일모직주식회사 비수계 전해질 리튬 이차전지용 양극활물질, 그 제조방법및 이를 포함하는 리튬 이차전지
KR101731473B1 (ko) * 2009-02-13 2017-04-28 쳉두 징유안 뉴 머티리얼스 테크놀로지 컴퍼니 리미티드 도펀트를 가진 니켈-코발트-망간 다중-원소 리튬 이온 배터리의 양극 물질 및 이의 제조방법
KR20170100534A (ko) * 2014-12-23 2017-09-04 콴텀스케이프 코포레이션 리튬이 풍부한 니켈 망간 코발트 산화물
JP2018532236A (ja) * 2015-11-30 2018-11-01 エルジー・ケム・リミテッド 二次電池用正極活物質及びこれを含む二次電池
KR20180093079A (ko) * 2016-01-04 2018-08-20 쥐알에스티 인터내셔널 리미티드 리튬 이온 전지의 캐소드 물질의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3869594A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7531626B2 (ja) 2020-06-12 2024-08-09 エコプロ ビーエム カンパニー リミテッド 正極活物質およびこれを含むリチウム二次電池
CN115485243A (zh) * 2020-09-21 2022-12-16 株式会社Lg化学 固相合成的正极活性材料及其制造方法
EP4129926A4 (en) * 2020-09-21 2023-12-20 Lg Chem, Ltd. POSITIVE ELECTRODE ACTIVE MATERIAL MANUFACTURED BY SOLID PHASE SYNTHESIS, AND METHOD FOR MANUFACTURING SAME
CN115485243B (zh) * 2020-09-21 2024-09-10 株式会社Lg化学 固相合成的正极活性材料及其制造方法
CN114730855A (zh) * 2021-03-19 2022-07-08 宁德新能源科技有限公司 电化学装置及电子装置
WO2022193283A1 (zh) * 2021-03-19 2022-09-22 宁德新能源科技有限公司 电化学装置及电子装置
CN114284470A (zh) * 2021-11-29 2022-04-05 蜂巢能源科技有限公司 正极材料、其制备方法、包括其的正极和锂离子电池
CN114420937A (zh) * 2022-03-30 2022-04-29 中南大学 一种双阳离子共掺杂的高镍三元层状正极材料及其制备方法和应用

Also Published As

Publication number Publication date
KR20200059164A (ko) 2020-05-28
KR102327532B1 (ko) 2021-11-17
PL3869594T3 (pl) 2024-04-29
JP2022507671A (ja) 2022-01-18
JP7171918B2 (ja) 2022-11-15
JP7460250B2 (ja) 2024-04-02
US20210408537A1 (en) 2021-12-30
JP2023001232A (ja) 2023-01-04
EP3869594B1 (en) 2024-02-14
EP3869594A1 (en) 2021-08-25
EP3869594A4 (en) 2021-12-22
CN113169329A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
WO2020106024A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2019235885A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019221497A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2017150945A1 (ko) 이차전지용 양극활물질의 전구체 및 이를 이용하여 제조된 양극활물질
WO2019172568A1 (ko) 양극 활물질, 그 제조 방법, 이를 포함하는 양극 및 이차전지
WO2020145639A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2021080374A1 (ko) 양극 활물질 전구체의 제조 방법 및 양극 활물질 전구체
WO2021154026A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2018160023A1 (ko) 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021154021A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2020055198A1 (ko) 리튬 이차전지용 양극재의 제조 방법 및 이에 의해 제조된 리튬 이차전지용 양극재
WO2022124774A1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2022139311A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
WO2016053056A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2022103105A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2020111898A1 (ko) 리튬 이차전지용 양극 활물질 전구체의 제조 방법
WO2020085731A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2022092906A1 (ko) 양극 활물질 및 이의 제조방법
WO2020004988A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021154035A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2022154603A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
WO2022114872A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2022092922A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2019194609A1 (ko) 리튬 이차전지용 양극 활물질의 제조방법, 리튬 이차전지용 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021060911A1 (ko) 이차전지용 양극 활물질 전구체, 그 제조방법 및 양극 활물질의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886156

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527047

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019886156

Country of ref document: EP

Effective date: 20210518

NENP Non-entry into the national phase

Ref country code: DE