WO2023063779A1 - 리튬 이차 전지 - Google Patents

리튬 이차 전지 Download PDF

Info

Publication number
WO2023063779A1
WO2023063779A1 PCT/KR2022/015610 KR2022015610W WO2023063779A1 WO 2023063779 A1 WO2023063779 A1 WO 2023063779A1 KR 2022015610 W KR2022015610 W KR 2022015610W WO 2023063779 A1 WO2023063779 A1 WO 2023063779A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
battery
positive electrode
negative electrode
secondary battery
Prior art date
Application number
PCT/KR2022/015610
Other languages
English (en)
French (fr)
Inventor
김수진
류덕현
이관희
장진수
이윤주
박근호
손승연
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220131651A external-priority patent/KR20230053534A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Publication of WO2023063779A1 publication Critical patent/WO2023063779A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium secondary battery, and more particularly, to a lithium secondary battery to which a single-particle or pseudo-single-particle cathode active material coated with a nano-sized conductive material is applied.
  • Lithium secondary batteries can be classified into can-type batteries, such as cylindrical or prismatic batteries, and pouch-type batteries, depending on the shape of the battery case.
  • the can-type battery is formed by sequentially stacking a sheet-shaped positive plate, separator, and negative electrode plate on a battery can. After storing the jelly-roll type electrode assembly manufactured by winding in one direction, the top of the battery can is covered with a cap plate and sealed.
  • a positive electrode tab and a negative electrode tab in the form of a strip are respectively provided on the positive electrode plate and the negative electrode plate, and the positive electrode tab and the negative electrode tab are connected to electrode terminals to electrically connect to an external power source.
  • the positive electrode terminal is a cap plate
  • the negative electrode terminal is a battery can.
  • current is concentrated on the strip-shaped electrode tab, resulting in high resistance, high heat generation, and poor current collection efficiency.
  • the amount of heat and gas generated inside the battery also increases. This is because the temperature and pressure inside the battery increase due to such heat and gas, which can cause the battery to ignite or explode. In order to prevent this, heat and gas inside the battery must be properly discharged to the outside, and for this, the cross-sectional area of the battery, which serves as a passage for discharging heat to the outside of the battery, must increase to match the increase in volume.
  • the increase in cross-sectional area does not reach the increase in volume, as the size of the battery increases, the amount of heat generated inside the battery increases, resulting in problems such as increased risk of explosion and reduced output.
  • rapid charging is performed at a high voltage, a large amount of heat is generated around the electrode tab for a short period of time, and the battery may ignite.
  • the present invention is to solve the above problems, and by applying a single particle and / or quasi-single particle coated with a conductive nanomaterial as a cathode active material, excellent high-temperature stability and electrochemical properties are obtained even when the volume of the battery increases. It is intended to provide a lithium secondary battery having
  • the present invention an electrode assembly in which a positive electrode plate, a negative electrode plate, a separator interposed between the positive electrode plate and the negative electrode plate is wound in one direction; a battery can in which the electrode assembly is accommodated; and a sealing body sealing the open end of the battery can, wherein the positive electrode plate includes a core having a single particle or quasi-single particle shape and a coating layer formed on the core and including a conductive nanomaterial. It provides a lithium secondary battery comprising a.
  • the cathode active material may include a lithium nickel-based oxide containing 80 mol% or more of Ni based on the total number of moles of transition metal, for example, a lithium nickel-based oxide represented by the following [Formula 1] it may be
  • M 1 is Mn, Al or a combination thereof
  • M 2 is Zr, W, Ti, Mg, Ca, Sr, and Ba, and 0.8 ⁇ a ⁇ 1.2, 0.83 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 0.17,0 ⁇ d ⁇ 0.17, 0 ⁇ e ⁇ 0.1
  • the negative electrode plate may include a silicon-based negative electrode active material.
  • the negative electrode plate may include a silicon-based negative active material and a carbon-based negative active material, and in this case, the silicon-based negative active material and the carbon-based negative active material may be included in a weight ratio of 1:99 to 20:80.
  • the secondary battery may be a cylindrical battery having a form factor ratio of 0.4 or greater, and may include, for example, 46110 cells, 4875 cells, 48110 cells, 4880 cells, or 4680 cells.
  • the form factor ratio is a value obtained by dividing the diameter of the cylindrical battery by the height.
  • the secondary battery according to the present invention may be a battery in which a positive electrode plate and a negative electrode plate each include a non-coated portion on which an active material layer is not formed, and at least a portion of the positive electrode or negative electrode plate of the uncoated portion defines an electrode tab.
  • the positive electrode uncoated portion and the negative electrode uncoated portion are located along ends of one side of the positive and negative electrode plates parallel to the winding direction of the electrode assembly, and a current collecting plate is coupled to each of the positive and negative electrode uncoated portions, and the current collecting plate is an electrode. It may be connected to the terminal.
  • the positive electrode uncoated portion and the negative electrode uncoated portion are processed into a plurality of independently bendable segment segments, at least some of the plurality of segment segments define the electrode tab, and the winding center C of the electrode assembly It may be bent towards.
  • at least some of the plurality of bent segments may overlap on upper and lower ends of the electrode assembly, and the current collecting plate may be coupled to the overlapping plurality of segment segments.
  • an insulating layer covering a portion of the positive electrode active material layer and a portion of the uncoated portion may be further formed along a direction parallel to the winding direction.
  • the present invention provides a battery pack including the cylindrical lithium secondary battery according to the present invention and an automobile including the battery pack.
  • a cathode active material including a single particle or quasi-single particle type core having high particle strength is applied, and gas is generated due to particle breakage during electrode manufacturing and internal cracks during charging and discharging.
  • excellent high-temperature stability can be implemented even in a large-sized cylindrical battery with increased volume.
  • a coating layer containing a conductive nanomaterial on a single-particle or quasi-single-particle core excellent electrical conductivity can be realized without adding a separate conductive material to the positive electrode slurry.
  • a cathode active material coated with a conductive nanomaterial is applied to the surface of a single particle or quasi-single particle as in the present invention, the viscosity of the cathode slurry is reduced and the solid content is reduced because there is no need to use a conductive material that causes aggregation of the cathode slurry. can be increased, and the effect of improving electrode coating processability and electrode adhesiveness can be obtained.
  • thermal stability of the cylindrical battery can be further improved by using a cathode active material having D min of 1.0 ⁇ m or more.
  • D min minimum particle size
  • the lithium secondary battery according to the present invention by applying a positive electrode active material having D 50 , D max , and particle size distribution (PSD) properly adjusted, can minimize the increase in resistance due to application of a single particle, thereby providing excellent capacity Characteristics and output characteristics can be implemented.
  • a positive electrode active material having D 50 , D max , and particle size distribution (PSD) properly adjusted, can minimize the increase in resistance due to application of a single particle, thereby providing excellent capacity Characteristics and output characteristics can be implemented.
  • the lithium secondary battery according to the present invention may include a silicon-based negative electrode active material having a large capacity as an anode active material, and in this case, a higher energy density may be realized.
  • the lithium secondary battery according to the present invention may have a structure in which uncoated portions of the positive electrode plate and the negative electrode plate serve as electrode tabs, for example, a tab-less structure.
  • a conventional can-type battery has a structure in which an electrode plate and an electrode lead are connected through an electrode tab. In this case, as a large amount of current is concentrated on the electrode tab during charging, a lot of heat is generated around the electrode tab. In particular, during rapid charging, this phenomenon intensifies and there is a risk of battery ignition or explosion.
  • the lithium secondary battery according to the present invention has a structure in which an uncoated portion without an active material layer is formed at the ends of the positive electrode plate and the negative electrode plate and connected to the electrode terminal by welding the uncoated portion with a current collecting plate having a large cross-sectional area. can be formed Since a battery having such a structure has less current concentration than a conventional battery having electrode tabs, it is possible to effectively reduce heat generated inside the battery, and thus, an effect of improving thermal safety of the battery can be obtained.
  • FIG. 1 is a view showing a laminated state before winding of an electrode assembly according to the present invention.
  • FIG. 2 is a cross-sectional view showing the structure of an electrode plate of an electrode assembly according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional view showing the structure of a battery having a tab-less structure according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing the structure of a battery having a tab-less structure according to another embodiment of the present invention.
  • FIG. 5 is a view for explaining the structure of an electrode assembly according to an embodiment of the present invention.
  • FIG. 6 is a diagram for explaining a battery pack according to the present invention.
  • FIG. 7 is a diagram for explaining a vehicle including a battery pack according to the present invention.
  • the "primary particle” is a particle unit in which no grain boundary exists when observed in a field of view of 5000 to 20000 times using a scanning electron microscope or backscatter electron diffraction (EBSD). it means.
  • Average particle diameter of primary particles means an arithmetic average value calculated after measuring the particle diameters of primary particles observed in a scanning electron microscope image.
  • secondary particles are particles formed by aggregation of a plurality of primary particles.
  • secondary particles in which 10 or less primary particles are aggregated are referred to as quasi-single particles in order to distinguish them from conventional secondary particles formed by aggregation of tens to hundreds of primary particles.
  • D min is the minimum particle size appearing in the volume cumulative distribution
  • D 50 is the particle size when the volume cumulative amount is 50%
  • D max is the maximum particle size appearing in the volume cumulative distribution.
  • the particle size value of the volume cumulative distribution is, for example, after dispersing the cathode active material in a dispersion medium, introducing it into a commercially available laser diffraction particle size measuring device (e.g., Microtrac MT 3000) and irradiating ultrasonic waves of about 28 kHz with an output of 60 W. After that, it can be measured by obtaining a volume cumulative particle size distribution graph.
  • the cathode active material is a single particle composed of one primary particle or an aggregate of 10 or less primary particles.
  • the present invention was completed by finding that the safety and electrical conductivity of a large battery can be dramatically improved by using a cathode active material coated with a conductive nanomaterial on a quasi-single particle core.
  • the cylindrical lithium secondary battery according to the present invention includes an electrode assembly in which a positive electrode plate, a negative electrode plate, and a separator interposed between the positive electrode plate and the negative electrode plate are wound in one direction, and a battery can in which the electrode assembly is accommodated; and a sealing body sealing the open end of the battery can.
  • the electrode assembly has a structure in which a positive electrode plate, a negative electrode plate, and a separator interposed between the positive electrode plate and the negative electrode plate are wound in one direction, and may be, for example, a jelly-roll type electrode assembly.
  • FIG. 1 shows a laminated structure of an electrode assembly according to the present invention before winding
  • FIG. 2 shows a cross-sectional structure of an electrode plate (positive electrode plate or negative electrode plate) according to the present invention.
  • the electrode assembly of the present invention is a laminate formed by sequentially stacking a separator 12, a positive electrode plate 10, a separator 12, and a negative electrode plate 11 at least once in one direction (X ).
  • the positive electrode plate 10 and the negative electrode plate 11 have a structure in which the active material layer 21 is formed on a sheet-shaped current collector 20, and the active material layer 21 is not formed in a partial region of the current collector 20. It may include an uncoated portion 22.
  • a separate electrode tab is not provided, and at least a portion of the uncoated portion of the positive electrode 10 and the negative electrode plate 11 covers the electrode tab.
  • a battery having a defined tap-less structure can be implemented.
  • the uncoated portion 22 may be formed long along the winding direction X at one end of the current collector 20, and a current collecting plate is coupled to each of the positive and negative plate uncoated portions, and the A battery having a tab-less structure may be implemented by connecting the current collecting plate to the electrode terminal.
  • a battery having a tab-less structure may be manufactured through the following method. First, a separator, a positive electrode plate, a separator, and a negative electrode plate are sequentially stacked so that the uncoated portions 22 of the positive electrode plate 10 and the negative electrode plate 11 are located in opposite directions, and then wound in one direction to manufacture an electrode assembly. Then, after bending the uncoated portions 22 of the positive and negative plates in the direction of the winding center (C), the non-coated portions 22 of the positive and negative plates are welded and coupled to the non-coated portions of the positive and negative plates, respectively, and the current-collecting plates are coupled to the electrode terminals. By connecting, a battery having a tab-less structure can be manufactured.
  • the current collecting plate has a larger cross-sectional area than a strip-type electrode tab, and resistance is inversely proportional to the cross-sectional area of a passage through which current flows, when a secondary battery is formed in the above structure, cell resistance can be greatly reduced.
  • the non-coated portions of the positive electrode plate and the negative electrode plate may be processed into a plurality of independently bendable segments, and at least some of the plurality of segment segments may be bent toward the winding center C of the electrode assembly.
  • the segment pieces may be formed by processing the current collectors of the positive and negative plates through a metal foil cutting process such as laser notching, ultrasonic cutting, and punching.
  • the stress applied to the uncoated parts during bending can be reduced to prevent deformation or damage to the uncoated parts, and welding characteristics with the current collector plate can be improved. there is.
  • the current collector plate and the uncoated portion are joined by, for example, welding.
  • strong pressure must be applied to the welding region of the uncoated portion to bend the uncoated portion as flat as possible.
  • the shape of the uncoated portion may be irregularly distorted and deformed, and the deformed portion may contact an electrode of opposite polarity to cause an internal short circuit or cause fine cracks in the uncoated portion.
  • stress applied to the uncoated portions during bending is alleviated, thereby minimizing deformation and damage to the uncoated portions.
  • the uncoated portion is processed in the form of segments as described above, an overlap occurs between a plurality of segment segments during bending, which increases the welding strength with the current collector plate and uses the latest technology such as laser welding.
  • the current collector plate uses the latest technology such as laser welding.
  • at least some of the plurality of bent segments may overlap on upper and lower ends of the electrode assembly, and a current collecting plate may be coupled to the overlapping plurality of segment segments.
  • the electrode assembly according to the present invention may be formed in a structure in which an insulating layer 24 is additionally formed on the positive electrode plate 10 .
  • the insulating layer 24 may be formed to cover a portion of the positive electrode active material layer and a portion of the uncoated portion along a direction parallel to the winding direction of the electrode assembly.
  • the positive electrode plate 10 protrudes above the separator 12
  • An electrode assembly is formed so that the negative electrode plate 11 can protrude below the separator 12, and the protruding positive electrode plate 10 and/or negative electrode plate 11 are bent and combined with the current collecting plate.
  • the current collector of the positive electrode plate 10 or the negative electrode plate 11 crosses the separator and is positioned close to the electrode of the opposite polarity, and thus the positive electrode plate and the negative electrode plate 11 There is a possibility that the negative plate may be electrically contacted and cause an internal short circuit.
  • the positive electrode plate 10 and the negative electrode plate 11 are electrically contacted by the insulating layer 24. This can prevent a short circuit from occurring inside the battery.
  • the insulating layer 24 may be provided on at least one side of the current collector of the positive electrode plate 10, and preferably, may be provided on both sides of the positive electrode plate 10.
  • the insulating layer 24 may be formed in a region of the positive electrode plate 10 that may face the active material layer 21a of the negative electrode plate 11 .
  • the insulating layer 24 may be formed extending to the end of the uncoated portion 22c.
  • the insulating layer 24 is formed only before a part of the uncoated portion 22c, for example, before the bending point of the uncoated portion 22c. desirable. This is because when the insulating layer 24 is formed on the entire area of the uncoated portion of the surface opposite to the surface facing the negative electrode plate 11, electrical contact with the current collecting plate is impossible and thus cannot function as an electrode tab.
  • the insulating layer 24 can be attached to the positive electrode plate while securing insulating performance, and its material or component is not particularly limited.
  • the insulating layer may be an insulating coating layer or an insulating tape, and the insulating coating layer may include an organic binder and inorganic particles.
  • the organic binder may be, for example, styrene-butadiene rubber (SBR), and the inorganic particles may be alumina oxide, but are not limited thereto.
  • the positive electrode plate may have, for example, a structure in which a positive electrode active material layer is formed on one side or both sides of a sheet-shaped positive electrode current collector, and the positive electrode active material layer may include a positive electrode active material and, if necessary, further include a binder. can do.
  • the positive electrode plate is made of dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP) as a positive electrode active material and a binder on one side or both sides of a sheet-shaped positive electrode current collector. , acetone, water, etc., by applying a cathode slurry prepared by dispersing in a solvent, removing the solvent of the cathode slurry through a drying process, and then rolling. Meanwhile, when the positive electrode slurry is applied, a positive electrode plate including an uncoated portion may be manufactured by not applying the positive electrode slurry to a partial region of the positive electrode current collector, for example, one end of the positive electrode current collector.
  • DMSO dimethyl sulfoxide
  • NMP N-methylpyrrolidone
  • the positive electrode current collector various positive electrode current collectors used in the art may be used.
  • the cathode current collector stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel surface-treated with carbon, nickel, titanium, or silver may be used.
  • the cathode current collector may have a thickness of typically 3 to 500 ⁇ m, and adhesion of the cathode active material may be increased by forming fine irregularities on the surface of the cathode current collector.
  • the cathode current collector may be used in various forms such as, for example, a film, sheet, foil, net, porous material, foam, or nonwoven fabric.
  • the cathode active material may include a single particle composed of one primary particle or a quasi-single particle type core that is an aggregate of 10 or less primary particles; and a coating layer formed on the core and including a conductive nanomaterial.
  • a cathode active material in the form of a single particle whose core is composed of one primary particle or a pseudo-single particle in which 10 or less primary particles are agglomerated is conventional secondary particles in which dozens to hundreds of primary particles are aggregated. Since the particle strength is higher than that of the cathode active material in the form, particle breakage hardly occurs during rolling.
  • a cathode active material having a single-particle or quasi-single-particle core since the number of primary particles constituting the particles is small, the change due to volume expansion and contraction of the primary particles during charging and discharging is small. The occurrence of cracks inside the particles is also significantly reduced.
  • the core may be a lithium nickel-based oxide, and specifically, may include a lithium nickel-based oxide containing 80 mol% or more of Ni based on the total number of moles of the transition metal.
  • the lithium nickel-based oxide may include 80 mol% or more and less than 100 mol%, 82 mol% or more and less than 100 mol%, or 83 mol% or more and less than 100 mol% of Ni. As described above, when the lithium nickel-based oxide having a high Ni content is used, high capacity can be realized.
  • the core may be a lithium nickel-based oxide represented by the following [Formula 1].
  • M 1 may be Mn, Al or a combination thereof, preferably Mn or Mn and Al.
  • M 2 is at least one selected from the group consisting of Zr, W, Y, Ba, Ca, Ti, Mg, Ta, and Nb, preferably one selected from the group consisting of Zr, Y, Mg, and Ti. or more, more preferably Zr, Y, or a combination thereof.
  • the M 2 element is not necessarily included, but when included in an appropriate amount, it may play a role of promoting grain growth during firing or improving crystal structure stability.
  • the a represents the molar ratio of lithium in the lithium nickel-based oxide, and may be 0.8 ⁇ a ⁇ 1.2, 0.85 ⁇ a ⁇ 1.15, or 0.9 ⁇ a ⁇ 1.2.
  • the crystal structure of the lithium nickel-based oxide may be stably formed.
  • b represents the molar ratio of nickel to all metals except lithium in the lithium nickel-based oxide, and may be 0.8 ⁇ b ⁇ 1, 0.82 ⁇ b ⁇ 1, or 0.83 ⁇ b ⁇ 1.
  • c represents the molar ratio of cobalt in all metals except for lithium in the lithium nickel-based oxide, it may be 0 ⁇ c ⁇ 0.2, 0 ⁇ c ⁇ 0.18, or 0.01 ⁇ c ⁇ 0.17.
  • the molar ratio of cobalt satisfies the above range, good resistance characteristics and output characteristics may be implemented.
  • d represents the molar ratio of element M 1 in all metals except for lithium in the lithium nickel-based oxide, and may be 0 ⁇ d ⁇ 0.2, 0 ⁇ d ⁇ 0.18, or 0.01 ⁇ d ⁇ 0.17.
  • the positive electrode active material exhibits excellent structural stability.
  • e represents the molar ratio of M 2 element in all metals except for lithium in the lithium nickel-based oxide, it may be 0 ⁇ e ⁇ 0.1 or 0 ⁇ e ⁇ 0.05.
  • the core may further include a coating layer formed on the surface of the lithium nickel-based oxide particle, if necessary.
  • the coating layer is Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb. It may contain one or more elements selected from the group consisting of Mo, Sr, Sb, Bi, Si and S.
  • the element of the coating layer may be Al, B, Co or a combination thereof.
  • the contact between the electrolyte and the lithium complex transition metal oxide is suppressed by the coating layer, thereby reducing transition metal elution or gas generation due to side reactions with the electrolyte. .
  • a coating layer containing a conductive nanomaterial is formed on the core.
  • the coating layer is for improving the electrical conductivity of the single-particle or quasi-single-particle core.
  • the present invention coats the surface of a single particle or quasi-single particle with a conductive nanomaterial, so that excellent electrical conductivity can be realized without adding a separate conductive material to the cathode slurry.
  • a cathode active material coated with a conductive nanomaterial is applied to the surface of a single particle or quasi-single particle as in the present invention, the viscosity of the cathode slurry is reduced and the solid content is reduced because there is no need to use a conductive material that causes aggregation of the cathode slurry. can be increased, and the effect of improving electrode coating processability and electrode adhesiveness can be obtained.
  • the conductive nanomaterial may be a conductive material having a nano-sized size so as to be smoothly coated on the core, and the type is not particularly limited.
  • the conductive nanomaterial may be a carbon nanotube or carbon nanoparticle.
  • the conductive nanomaterial may have various shapes, and may be, for example, spherical, scaly, or fibrous.
  • the coating layer may be formed through various coating methods known in the art, for example, wet coating, spray coating, dry coating, and the like.
  • the coating layer is obtained by coating a nanometer-level polymer layer on the surface of a single particle or quasi-single particle as a core, and then mixing the core coated with the polymer layer and the conductive nanoparticles in a solvent. After stirring at high speed, it may be formed by a method of carbonization and drying at high temperature, but is not limited thereto.
  • the positive electrode active material in which the core is composed of single particles or quasi-single particles is present in an amount of 95% to 100% by weight, preferably 98% to 100% by weight, more preferably 98% to 100% by weight based on the total weight of the positive electrode active material included in the positive electrode plate. It is preferably included in an amount of 99% to 100% by weight, more preferably 100% by weight.
  • secondary particle type positive electrode active material When secondary particle type positive electrode active material is included in an amount exceeding 5% by weight of the total positive electrode active material, the side reaction with the electrolyte increases due to the fine powder generated from secondary particles during electrode manufacturing and charging/discharging, resulting in an effect of suppressing gas generation. This is because the stability improvement effect may be deteriorated when applied to a large cylindrical battery.
  • the cathode active material according to the present invention may have D min of 1.0 ⁇ m or more, 1.1 ⁇ m or more, 1.15 ⁇ m or more, 1.2 ⁇ m or more, 1.25 ⁇ m or more, 1.3 ⁇ m or more, or 1.5 ⁇ m or more.
  • D min of the positive electrode active material is less than 1.0 ⁇ m, the linear pressure increases in the positive electrode rolling process, which can easily cause particle breakage, and the thermal stability deteriorates, so that thermal stability cannot be sufficiently secured when applied to a large battery.
  • D min of the cathode active material may be 3 ⁇ m or less, 2.5 ⁇ m or less, or 2 ⁇ m or less. If D min is too large, the lithium ion diffusion distance within the particles increases, and resistance and output characteristics may deteriorate.
  • D min of the cathode active material may be 1.0 ⁇ m to 3 ⁇ m, 1.0 ⁇ m to 2.5 ⁇ m, or 1.3 ⁇ m to 2.0 ⁇ m.
  • the cathode active material according to the present invention may have D 50 of 5 ⁇ m or less, 4 ⁇ m or less, or 3 ⁇ m or less, for example, 0.5 ⁇ m to 5 ⁇ m, preferably 1 ⁇ m to 5 ⁇ m, more preferably It may be 2 ⁇ m to 5 ⁇ m.
  • Single-particle and/or quasi-single-particle lithium nickel-based oxide has less lithium mobility than secondary particle type positive electrode active materials because there are few interfaces between primary particles, which serve as a diffusion path for lithium ions inside the particles.
  • the resistance increases as a result. This increase in resistance intensifies as the size of the particles increases, and when the resistance increases, capacity and output characteristics are adversely affected. Accordingly, by adjusting the D 50 of the positive electrode active material to 5 ⁇ m or less, the diffusion distance of lithium ions inside the positive electrode active material particles is minimized, thereby suppressing an increase in resistance.
  • the cathode active material may have a D max of 12 ⁇ m to 17 ⁇ m, preferably 12 ⁇ m to 16 ⁇ m, and more preferably 12 ⁇ m to 15 ⁇ m.
  • D max of the cathode active material satisfies the above range, resistance characteristics and capacity characteristics are more excellent. If the D max of the cathode active material is too large, the lithium movement path inside the particle becomes long, resulting in poor lithium mobility, which may increase resistance. On the other hand, if D max of the positive electrode active material is too small, the energy density of the positive electrode may decrease due to a decrease in electrode density.
  • the positive electrode active material may have a particle size distribution (PSD) of 3 or less, preferably 2 to 3, more preferably 2.3 to 3, represented by the following formula (1).
  • PSD particle size distribution
  • Particle size distribution (PSD) (D max - D min )/D 50
  • the positive electrode active material has the above particle size distribution, the electrode density of the positive electrode can be appropriately maintained, and particle breakage and resistance increase can be effectively suppressed.
  • the cathode active material may have an average particle diameter of primary particles of 5 ⁇ m or less, 4 ⁇ m or less, 3 ⁇ m or less, or 3 ⁇ m or less, for example, 0.5 ⁇ m to 5 ⁇ m, preferably 1 ⁇ m to 5 ⁇ m, More preferably, it may be 2 ⁇ m to 5 ⁇ m.
  • the average particle diameter of the primary particles satisfies the above range, a single particle and/or quasi-single particle positive electrode active material having excellent electrochemical properties may be formed. If the average particle diameter of the primary particles is too small, the number of agglomerations of the primary particles forming the positive electrode active material increases, reducing the effect of suppressing particle breakage during rolling.
  • the diffusion path of lithium may be elongated, increasing resistance and degrading output characteristics.
  • the cathode active material preferably has a unimodal particle size distribution.
  • a bimodal positive electrode active material in which a large particle size positive electrode active material having a large average particle diameter and a small particle size positive electrode active material having a small average particle diameter are mixed and used has been widely used.
  • the increase in resistance can be minimized by using a cathode active material having a unimodal distribution.
  • the cathode active material may be included in an amount of 80 to 99 wt%, preferably 85 to 99 wt%, and more preferably 90 to 99 wt%, based on the total weight of the cathode active material layer.
  • the binder serves to improve the adhesion between the particles of the positive electrode active material and the adhesion between the positive electrode active material and the positive electrode current collector.
  • specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoro Low propylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinyl film Rolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene monomer rubber (EPDM rubber), sulfonated-EPDM, styrene butadiene rubber (SBR), fluoro rubber, or various copolymers thereof, and the like.
  • PVDF polyvinylidene fluoride
  • PVDF-co-HFP vinylidene fluoride-hexafluoro Low propylene copoly
  • the binder may be included in an amount of 1 to 30 wt%, preferably 1 to 20 wt%, and more preferably 1 to 10 wt%, based on the total weight of the positive electrode active material layer.
  • a small amount of a conductive material may be additionally included in the cathode active material layer. Since the surface of the cathode active material according to the present invention is coated with a conductive material, conductivity can be realized without a conductive material, but conductivity can be further improved by additionally including a small amount of a conductive material.
  • the conductive material is used to impart conductivity to the electrode, and in the battery, any material that does not cause chemical change and has electronic conductivity may be used without particular limitation.
  • Specific examples include graphite such as natural graphite or artificial graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, carbon fiber, and carbon nanotube; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one of them alone or a mixture of two or more may be used.
  • the conductive material may be typically included in an amount of 0.1 to 10% by weight, preferably 0.1 to 5% by weight, and more preferably 0.1 to 3% by weight, based on the total weight of the positive electrode active material layer.
  • an insulating layer covering a portion of the positive electrode active material layer and a portion of the uncoated portion may be further formed.
  • the insulating layer may be formed along a direction parallel to the winding direction of the electrode assembly.
  • the negative electrode plate may have a structure in which a negative electrode active material layer is formed on one or both surfaces of a sheet-shaped negative current collector, and the negative electrode active material layer may include a negative electrode active material, a conductive material, and a binder.
  • the negative electrode plate includes a negative electrode active material, a conductive material, and a binder on one side or both sides of a sheet-shaped negative electrode current collector, dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone (acetone), it can be prepared by a method of applying a negative electrode slurry prepared by dispersing in a solvent such as water, removing the solvent of the negative electrode slurry through a drying process, and then rolling. Meanwhile, when the negative electrode slurry is applied, a negative electrode plate including a non-coated portion may be manufactured by not applying the negative electrode slurry to a partial region of the negative electrode current collector, for example, one end of the negative electrode current collector.
  • DMSO dimethyl sulfoxide
  • NMP N-methylpyrrolidone
  • acetone acetone
  • the anode active material may be a compound capable of reversible intercalation and deintercalation of lithium.
  • the negative electrode active material include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; Si, Si-Me alloy (where Me is at least one selected from the group consisting of Al, Sn, Mg, Cu, Fe, Pb, Zn, Mn, Cr, Ti, and Ni), SiOy (where 0 ⁇ silicon-based materials such as y ⁇ 2), Si—C composites, and the like; lithium metal thin film; metal materials capable of being alloyed with lithium, such as Sn and Al; and the like, and any one or a mixture of two or more of them may be used.
  • the negative electrode plate according to the present invention may include a silicon-based negative electrode active material.
  • the silicon-based negative electrode active material is Si, a Si-Me alloy (where Me is at least one selected from the group consisting of Al, Sn, Mg, Cu, Fe, Pb, Zn, Mn, Cr, Ti, and Ni), SiOy (Here, 0 ⁇ y ⁇ 2), it may be a Si—C complex, or a combination thereof, preferably SiOy (here, 0 ⁇ y ⁇ 2). Since the silicon-based negative active material has a high theoretical capacity, capacity characteristics may be improved when the silicon-based negative active material is included.
  • the silicon-based negative electrode active material may be doped with Mb metal, and in this case, the Mb metal may be a Group 1 metal element or a Group 2 metal element, and specifically, may be Li, Mg, or the like.
  • the silicon anode active material may be Si, SiOy (where 0 ⁇ y ⁇ 2), Si—C composite doped with M b metal, or the like.
  • the active material capacity is somewhat lowered due to the doping element, but since it has high efficiency, high energy density can be implemented.
  • the silicon-based negative electrode active material may further include a carbon coating layer on the particle surface.
  • the carbon coating amount may be 20% by weight or less, preferably 1 to 20% by weight based on the total weight of the silicon-based negative electrode active material.
  • the negative electrode plate may further include a carbon-based negative electrode active material as the negative electrode active material.
  • the carbon-based negative electrode active material may be, for example, artificial graphite, natural graphite, graphitized carbon fiber, amorphous carbon, soft carbon, or hard carbon, but is not limited thereto.
  • the mixing ratio of the silicon-based negative active material and the carbon-based negative active material is 1:99 to 20:80, preferably 1:99 to 15 : 85, more preferably 1:99 to 10:90.
  • the negative active material may be included in an amount of 80 to 99% by weight, preferably 85 to 99% by weight, and more preferably 90 to 99% by weight, based on the total weight of the negative active material layer.
  • negative electrode current collector negative electrode current collectors commonly used in the art may be used, and for example, copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless steel may be used on the surface. A surface treated with carbon, nickel, titanium, silver, or the like, an aluminum-cadmium alloy, or the like may be used.
  • the negative electrode current collector may have a thickness of typically 3 to 500 ⁇ m, and like the positive electrode current collector, fine irregularities may be formed on the surface of the current collector to enhance bonding strength of the negative electrode active material. For example, it may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
  • the conductive material is used to impart conductivity to the negative electrode, and any material having electronic conductivity without causing chemical change in the battery may be used without particular limitation.
  • Specific examples include graphite such as natural graphite or artificial graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, carbon fiber, and carbon nanotube; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one of them alone or a mixture of two or more may be used.
  • the conductive material may be typically included in an amount of 1 to 30 wt%, preferably 1 to 20 wt%, and more preferably 1 to 10 wt%, based on the total weight of the negative electrode active material layer.
  • the binder serves to improve adhesion between particles of the anode active material and adhesion between the anode active material and the anode current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethylcellulose (CMC) ), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene monomer rubber (EPDM rubber), sulfonated-EPDM, styrene-butadiene rubber (SBR), fluororubber, or various copolymers thereof, and the like, and one type alone or a mixture of two or more types thereof may be used.
  • the binder may be included in an amount of 1 to 30 wt%, preferably 1
  • the separator separates the negative electrode and the positive electrode and provides a passage for lithium ions to move, and can be used without particular limitation as long as it is normally used as a separator in a lithium secondary battery.
  • the separator is a porous polymer film, for example, a porous film made of polyolefin polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer.
  • a polymer film or a laminated structure of two or more layers thereof may be used.
  • porous non-woven fabrics for example, non-woven fabrics made of high-melting glass fibers, polyethylene terephthalate fibers, and the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength.
  • a lithium secondary battery according to the present invention includes an electrode assembly in which a positive electrode plate, a negative electrode plate, and a separator interposed between the positive electrode plate and the negative electrode plate are wound in one direction; a battery can in which the electrode assembly is accommodated; and a sealing body sealing the open end of the battery can.
  • the lithium secondary battery according to the present invention may be a cylindrical battery, more preferably a form factor ratio (defined as a value obtained by dividing the diameter of a cylindrical battery by the height, that is, the ratio of the height (H) to the diameter ( ⁇ )) ) may be a large cylindrical battery with 0.4 or more.
  • the form factor means a value representing the diameter and height of a cylindrical battery.
  • the cylindrical battery according to the present invention includes, for example, 46110 cells (diameter 46 mm, height 110 mm, form factor ratio 0.418), 4875 cells (diameter 48 mm, height 75 mm, form factor ratio 0.640), 48110 cells (diameter 48 mm, height 110 mm). , form factor ratio 0.436), 4880 cells (diameter 48mm, height 80mm, form factor ratio 0.600), 4680 cells (diameter 46mm, height 80mm, form factor ratio 0.575). The two represent the diameter of the cell, and the next two or three numbers represent the height of the cell.
  • the lithium secondary battery according to the present invention uses a cathode active material having a single-particle or quasi-single-particle core to significantly reduce gas generation compared to the prior art, and accordingly, even in a large-sized cylindrical battery having a form factor ratio of 0.4 or more. Excellent safety can be realized.
  • the lithium secondary battery according to the present invention may preferably be a battery having a tab-less structure that does not include an electrode tab, but is not limited thereto.
  • a positive electrode plate and a negative electrode plate each include a non-coated portion on which an active material layer is not formed, a positive electrode uncoated portion and a negative electrode uncoated portion are located at the top and bottom of the electrode assembly, respectively, and the positive electrode uncoated portion and a structure in which a current collecting plate is coupled to the uncoated portion of the negative electrode plate, and the current collecting plate is connected to an electrode terminal.
  • FIG. 3 is a cross-sectional view of a battery having a tab-less structure according to an embodiment of the present invention.
  • a lithium secondary battery according to an embodiment of the present invention will be described with reference to FIG. 3 .
  • FIG. 3 only shows one embodiment of the present invention, and the structure of the cylindrical battery of the present invention is not limited to the scope disclosed in FIG. 3 .
  • the battery 140 includes a jelly-roll type electrode assembly 141, a battery can 142 in which the electrode assembly 141 is accommodated, and an open end of the battery can 142 It includes a sealing body 143 for sealing.
  • the positive electrode plate and the negative electrode plate of the electrode assembly may each include a non-coated portion on which an active material layer is not formed, and may be stacked and wound so that the positive electrode uncoated portion and the negative electrode uncoated portion are located at the upper and lower ends of the electrode assembly, respectively. Since the electrode assembly has been described above, only components other than the electrode assembly will be described below.
  • the battery can 142 is a container having an opening formed thereon, and is made of a conductive metal material such as aluminum or steel.
  • the battery can accommodates the electrode assembly 141 in the inner space through the upper opening and also accommodates the electrolyte.
  • electrolyte used in the present invention various electrolytes that can be used in lithium secondary batteries, such as organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel-type polymer electrolytes, solid inorganic electrolytes, molten inorganic electrolytes, and the like can be used. And the type is not particularly limited.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent includes ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, and ⁇ -caprolactone; ether solvents such as dibutyl ether or tetrahydrofuran; ketone solvents such as cyclohexanone; aromatic hydrocarbon-based solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate, PC) and other carbonate-based solvents; alcohol solvents such as ethyl alcohol and isopropyl alcohol; nitriles such as R-CN (R is a C2 to C20 straight-chain, branched or cyclic
  • carbonate-based solvents are preferred, and cyclic carbonates (eg, ethylene carbonate or propylene carbonate, etc.) having high ion conductivity and high dielectric constant capable of increasing the charge and discharge performance of batteries, and low-viscosity linear carbonate-based compounds ( For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • cyclic carbonates eg, ethylene carbonate or propylene carbonate, etc.
  • low-viscosity linear carbonate-based compounds For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate is more preferable.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB(C 2 O 4 ) 2 or the like may be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 5.0M, preferably 0.1 to 3,0M.
  • concentration of the lithium salt is within the above range, the electrolyte has appropriate conductivity and viscosity, so excellent electrolyte performance can be exhibited, and lithium ions can move effectively.
  • the electrolyte may further include an additive for the purpose of improving lifespan characteristics of a battery, suppressing a decrease in battery capacity, and improving a discharge capacity of a battery.
  • the additives include haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexamethyl phosphate tria Mead, nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N,N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol or aluminum trichloride alone Alternatively, it may be mixed and used, but is not limited thereto.
  • the additive may be included in an amount of 0.1 to 10% by weight, preferably
  • the battery can 142 is electrically connected to the non-coated portion 146b of the negative plate and functions as a negative electrode terminal that contacts an external power source and transfers current applied from the external power source to the negative electrode plate.
  • a beading part 147 and a crimping part 148 may be provided at the top of the battery can 142 .
  • the beading part 147 may be formed by press-fitting the outer circumference of the battery can 142 to a distance of D1.
  • the beading part 147 prevents the electrode assembly 141 accommodated inside the battery can 142 from escaping through the upper opening of the battery can 142, and may function as a support on which the sealing body 143 is seated. .
  • the crimping part 148 may be formed above the beading part 147 and extend to cover the outer circumferential surface of the cap plate 143a disposed on the beading part 147 and a part of the top surface of the cap plate 143a. and has a bent shape.
  • the sealing body 143 is for sealing the open end of the battery can 142, and provides airtightness between the cap plate 143a, the cap plate 143a and the battery can 142, and insulation.
  • the branch includes a first gasket 143b, as needed.
  • a connection plate 143c electrically and mechanically coupled to the cap plate 143a may be further included.
  • the cap plate 143a may be pressed onto the beading portion 147 formed in the battery can 142 and fixed by a crimping portion 148 .
  • the cap plate 143a is a component made of a conductive metal material and covers an upper opening of the battery can 142 .
  • the cap plate 143a is electrically connected to the positive plate of the electrode assembly 141 and electrically insulated from the battery can 142 through the first gasket 143b.
  • the cap plate 143a can function as a positive terminal of the secondary battery.
  • the cap plate 143a may have a protruding portion 143ding upward from the central portion C, and the protruding portion 143d may contact an external power source to allow current to be applied from the external power source.
  • a first gasket 143b may be interposed between the cap plate 143a and the crimping portion 148 to secure airtightness of the battery can 142 and to electrically insulate the battery can 142 and the cap plate 143a.
  • the battery 140 according to the present invention may further include current collecting plates 144 and 145 as needed.
  • the current collecting plate is coupled to the uncoated portion 146a of the positive electrode plate and the uncoated portion 146b of the negative electrode plate, and is connected to electrode terminals (ie, the positive electrode terminal and the negative electrode terminal).
  • the battery 140 may include a first collector plate 144 coupled to the upper portion of the electrode assembly 141 and a second collector plate 145 coupled to the lower portion of the electrode assembly 141.
  • a first current collecting plate 144 and/or a second current collecting plate 145 may be further included.
  • the first current collecting plate 144 is coupled to an upper portion of the electrode assembly 141 .
  • the first current collecting plate 144 is made of a conductive metal material such as aluminum, copper, or nickel, and is electrically connected to the uncoated portion 146a of the positive electrode plate.
  • a lead 149 may be connected to the first current collecting plate 144 .
  • the lead 149 may extend upward from the electrode assembly 141 and be coupled to the connection plate 143c or directly coupled to the lower surface of the cap plate 143a.
  • the lead 149 and other components may be coupled through welding.
  • the first collector plate 144 may be integrally formed with the lead 149 .
  • the lead 149 may have a long plate shape extending outward from the center of the first current collecting plate 144 .
  • the first current collecting plate 144 is coupled to the end of the uncoated portion 146a of the positive electrode plate, and the coupling may be performed by, for example, laser welding, resistance welding, ultrasonic welding, or soldering.
  • the second current collecting plate 145 is coupled to the lower portion of the electrode assembly 141 .
  • the second current collecting plate 145 is made of a conductive metal material such as aluminum, copper, or nickel, and is electrically connected to the uncoated portion 146b of the negative electrode plate.
  • One surface of the second current collecting plate 145 may be coupled to the uncoated portion 146b of the negative electrode plate, and the opposite surface may be coupled to the inner bottom surface of the battery can 142 .
  • the bonding may be performed by a method such as laser welding, resistance welding, ultrasonic welding, or soldering.
  • the battery 140 according to the present invention may further include an insulator 146, if necessary.
  • the insulator 146 may be disposed to cover the upper surface of the first current collecting plate 144 . Since the insulator 146 covers the first current collecting plate 144 , direct contact between the first current collecting plate 144 and the inner circumferential surface of the battery can 142 may be prevented.
  • the insulator 146 has a lead hole 151 through which a lead 149 extending upward from the first current collecting plate 144 can be drawn out.
  • the lead 149 is drawn upward through the lead hole 151 and coupled to the lower surface of the connection plate 143c or the lower surface of the cap plate 143a.
  • the insulator 146 may be made of an insulating polymer resin material, such as polyethylene, polypropylene, polyimide, or polybutylene terephthalate.
  • the battery 140 according to the present invention may further include a venting portion 152 formed on the lower surface of the battery can 142, if necessary.
  • the venting portion 152 corresponds to an area having a thinner thickness than the surrounding area among the lower surfaces of the battery can 142 . Since the venting portion 152 is thin, it is structurally weak compared to the surrounding area. Therefore, when the pressure inside the battery 140 increases above a certain level, the vent 152 is ruptured and the gas inside the battery can 152 is discharged to the outside to prevent the battery from exploding.
  • FIG. 4 is a cross-sectional view of a battery having a tab-less structure according to another embodiment of the present invention.
  • FIG. 4 only shows one embodiment of the present invention, and the structure of the battery of the present invention is not limited to the range disclosed in FIG. 4 .
  • a battery 170 according to another embodiment of the present invention has a different structure of a battery can and a sealing body compared to the battery 140 shown in FIG. 3, and a structure of an electrode assembly and an electrolyte are substantially different. is the same as
  • the battery 170 includes a battery can 171 through which a rivet terminal 172 is installed.
  • the rivet terminal 172 is installed on a partially closed closed surface (upper surface in the drawing) of one end of the battery can 171.
  • the rivet terminal 172 is riveted to the through hole (first opening of the first end) of the battery can 171 in a state where the insulating second gasket 173 is interposed therebetween.
  • the rivet terminal 172 is exposed to the outside in a direction opposite to the direction of gravity.
  • the rivet terminal 172 includes a terminal exposed portion 172a and a terminal inserted portion 172b.
  • the terminal exposed portion 172a is exposed to the outside of the closed surface of the battery can 171 .
  • the terminal exposed portion 172a may be located at approximately the center of the partially closed surface of the battery can 171 .
  • the maximum diameter of the terminal exposed portion 172a may be greater than the maximum diameter of the through hole formed in the battery can 171 .
  • the terminal insertion portion 172b may be electrically connected to the uncoated portion 146a of the positive electrode plate through a substantially central portion of the closed surface of the battery can 171 .
  • the terminal insertion portion 172b may be rivet-coupled on the inner surface of the battery can 171 .
  • the end of the terminal insertion portion 172b may have a curved shape toward the inner surface of the battery can 171 .
  • the maximum diameter of the end of the terminal insertion portion 172b may be larger than the maximum diameter of the through hole of the battery can 171 .
  • a lower surface of the terminal insertion portion 172b may be welded to the first current collector plate 144 connected to the uncoated portion 146a of the positive electrode plate.
  • An insulating cap 174 made of an insulating material may be interposed between the first current collecting plate 144 and the inner surface of the battery can 171 .
  • the insulating cap 174 covers an upper portion of the first current collecting plate 144 and an upper edge portion of the electrode assembly 141 . Accordingly, it is possible to prevent a short circuit from being caused by contacting the outer circumferential uncoated portion B3 of the electrode assembly 141 with the inner surface of the battery can 171 having a different polarity.
  • the terminal insertion portion 172b of the rivet terminal 172 may pass through the insulating cap 174 and be welded to the first collector plate 144 .
  • the second gasket 173 is interposed between the battery can 171 and the rivet terminal 172 to prevent electrical contact between the battery can 171 and the rivet terminal 172 having opposite polarities.
  • the upper surface of the battery can 171 having a substantially flat shape can function as a positive electrode terminal of the battery 170 .
  • the second gasket 173 includes a gasket exposed portion 173a and a gasket insertion portion 173b.
  • the gasket exposed portion 173a is interposed between the terminal exposed portion 172a of the rivet terminal 172 and the battery can 171 .
  • the gasket insertion portion 173b is interposed between the terminal insertion portion 172b of the rivet terminal 172 and the battery can 171 .
  • the gasket insertion portion 173b may be deformed together during riveting of the terminal insertion portion 172b and adhered to the inner surface of the battery can 171 .
  • the second gasket 173 may be made of, for example, a polymer resin having insulating properties.
  • the gasket exposed portion 173a of the second gasket 173 may have an extended shape to cover the outer circumferential surface of the terminal exposed portion 172a of the rivet terminal 172 .
  • a short circuit occurs in the process of coupling an electrical connection component such as a bus bar to the upper surface of the battery can 171 and/or to the rivet terminal 172. can prevent it from happening.
  • the gasket exposed portion 173a may have an extended shape to cover not only the outer circumferential surface of the terminal exposed portion 172a but also a portion of the upper surface thereof.
  • the second gasket 173 may be coupled to the battery can 171 and the rivet terminal 172 by thermal fusion. In this case, airtightness at the bonding interface between the second gasket 173 and the rivet terminal 172 and at the bonding interface between the second gasket 173 and the battery can 171 may be enhanced. Meanwhile, in the case where the gasket exposed portion 173a of the second gasket 173 has a shape extending to the upper surface of the terminal exposed portion 172a, the rivet terminal 172 is inserted into the second gasket 173 by insert injection. and can be integrally combined with.
  • the area 175 other than the area occupied by the rivet terminal 172 and the second gasket 173 corresponds to a negative terminal having a polarity opposite to that of the rivet terminal 172.
  • the second current collecting plate 176 is coupled to the lower portion of the electrode assembly 141 .
  • the second current collector plate 176 is made of a conductive metal material such as aluminum, steel, copper, or nickel, and is electrically connected to the uncoated portion 146b of the negative electrode plate.
  • the second current collecting plate 176 is electrically connected to the battery can 171 .
  • at least a portion of an edge portion of the second current collecting plate 176 may be interposed and fixed between the inner surface of the battery can 171 and the first gasket 178b.
  • at least a portion of the edge portion of the second current collecting plate 176 is attached to the beading portion 180 by welding while being supported on the bottom surface of the beading portion 180 formed at the bottom of the battery can 171.
  • can be fixed at least a portion of an edge portion of the second current collector plate 176 may be directly welded to the inner wall surface of the battery can 171 .
  • the second current collecting plate 176 may include a plurality of irregularities (not shown) formed radially on a surface facing the uncoated portion 146b. When the unevenness is formed, the second current collecting plate 176 may be pressed to press-fit the unevenness into the uncoated portion 146b.
  • the second current collecting plate 176 and the end of the uncoated portion 146b may be coupled by welding, for example, laser welding.
  • the sealing body 178 sealing the lower open end of the battery can 171 includes a cap plate 178a and a first gasket 178b.
  • the first gasket 178b electrically separates the cap plate 178a and the battery can 171 from each other.
  • the crimping part 181 fixes the edge of the cap plate 178a and the first gasket 178b together.
  • a vent portion 179 is provided on the cap plate 178a. The configuration of the vent portion 179 is substantially the same as that of the above-described embodiment.
  • the cap plate 178a is made of a conductive metal material.
  • the first gasket 178b is interposed between the cap plate 178a and the battery can 171, the cap plate 178a has no electrical polarity.
  • the sealing body 178 functions to seal the open end of the lower portion of the battery can 171 and to discharge gas when the internal pressure of the battery cell 170 increases above a critical value.
  • the rivet terminal 172 electrically connected to the uncoated portion 146a of the positive electrode plate is used as the positive electrode terminal.
  • the portion 175 excluding the rivet terminal 172 of the upper surface of the battery can 171 electrically connected to the uncoated portion 146b of the negative electrode plate through the second current collector plate 176 is used as the negative electrode terminal.
  • electrical connection components such as bus bars
  • the portion 175 used as the negative terminal has a substantially flat shape, a sufficient bonding area can be secured for bonding electrical connection components such as bus bars. Accordingly, the battery 170 can lower the resistance at the junction of the electrical connection parts to a desirable level.
  • the lithium secondary battery is formed in a tab-less structure as described above, since current concentration is less than that of a conventional battery having electrode tabs, heat generation inside the battery can be effectively reduced, and thus thermal safety of the battery is improved. improvement effect can be obtained.
  • a battery pack 3 according to an embodiment of the present invention includes an assembly to which secondary batteries 1 are electrically connected and a pack housing 2 accommodating them.
  • the secondary battery 1 is a battery cell according to the above-described embodiment.
  • parts such as a bus bar, a cooling unit, and external terminals for electrically connecting the secondary batteries 1 are omitted.
  • the battery pack 3 may be mounted in a vehicle.
  • the vehicle may be, for example, an electric vehicle, a hybrid vehicle, or a plug-in hybrid vehicle. Vehicles include four-wheeled vehicles or two-wheeled vehicles.
  • FIG. 7 is a diagram for explaining a vehicle including the battery pack 3 of FIG. 6 .
  • a vehicle 5 according to an embodiment of the present invention includes a battery pack 3 according to an embodiment of the present invention and operates by receiving power from the battery pack 3 .
  • Distilled water-based buffer solution (10 mM tris buffer solution, pH8.5) and methanol were mixed in a weight ratio of 1: 1 to form a mixed solution, and dopamine hydrochloride (Sigma-Aldrich) was added to the mixed solution After dissolving in an amount of 2mg per 1mL, the mixture was stirred for 10 minutes to prepare a coating solution.
  • dopamine hydrochloride Sigma-Aldrich
  • a cathode active material was added to the coating solution and stirred at 500 rpm for 30 minutes to form a self-polymerized polydopamine coating layer on the surface of the cathode active material. Then, the positive electrode active material on which the polydopamine coating layer was formed was washed with acetone through a filtering process and dried in an oven at 60° C. for 12 hours.
  • a cathode active material prepared as described above and a PVDF binder were mixed in N-methylpyrrolidone at a weight ratio of 98:2.0 to prepare a cathode slurry having a solid content of 72%.
  • the positive electrode slurry was coated on one surface of an aluminum current collector sheet at a coating speed of 60 m/min, dried at 120° C., and then rolled with a linear pressure of 2.9 ton to prepare a positive electrode plate.
  • a positive electrode plate was manufactured in the same manner as in Example 1, except that the solid content of the positive electrode slurry was prepared to be 74%, the coating speed of the positive electrode slurry was changed to 80 m/min, and the linear pressure during rolling was changed to 2.8 ton.
  • the cathode active material:carbon nanotube:PVDF binder was mixed in N-methylpyrrolidone at a weight ratio of 97.3:0.7:2.0 to prepare a cathode slurry having a solid content of 68%.
  • the positive electrode slurry was coated on one surface of an aluminum current collector sheet at a speed of 40 m/min, dried at 120° C., and then rolled at a linear pressure of 4.3 ton to prepare a positive electrode plate.
  • a positive electrode plate was manufactured in the same manner as in Comparative Example 1, except that the coating speed of the slurry was changed to 60 m/min.
  • the electrode adhesive strength of the positive electrode plates prepared in Examples 1 to 2 and Comparative Examples 1 to 2 was measured in the following manner.
  • a separator was interposed between the positive electrode plate and the negative electrode prepared in Examples 1 and 2 and Comparative Example 1, and the separator/anode plate/separator/negative electrode plate was laminated in the order, and then wound up to prepare a jelly-roll type electrode assembly.
  • a 4680 cell was manufactured by inserting the electrode assembly prepared as described above into a cylindrical battery can and then injecting an electrolyte solution. In the case of the positive electrode plate of Comparative Example 2, it was impossible to manufacture a cell due to undrying and detachment of the active material.
  • conductive material super C
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • Example 1 72 60 2.9 33 87

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은, 양극판, 음극판, 상기 양극판과 음극판 사이에 개재된 분리막이 일 방향으로 권취된 전극 조립체; 상기 전극 조립체가 수납되는 전지 캔; 및 상기 전지 캔의 개방 단부를 밀봉하는 밀봉체를 포함하는 이차 전지에 관한 것으로, 상기 양극판은, 단입자 또는 유사-단입자 형태의 코어 및 상기 코어 상에 형성되고, 전도성 나노 물질을 포함하는 코팅층을 포함하는 양극 활물질을 포함한다.

Description

리튬 이차 전지
본 출원은 2021년 10월 14일에 출원된 한국특허출원 제10-2021-0136710호 및 2022년 10월 13일에 출원된 한국특허출원 제10-2022-0131651호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 리튬 이차 전지에 관한 것으로, 보다 구체적으로는 나노 사이즈의 전도성 물질이 코팅된 단입자 또는 유사-단입자 양극 활물질을 적용한 리튬 이차 전지에 관한 것이다.
전기 자동차, 휴대용 전자 장치 등의 기술 발전에 따라 에너지원으로 리튬 이차 전지의 수요가 급격하게 증가하고 있다.
리튬 이차 전지는 전지 케이스 형태에 따라 원통형 또는 각형 전지와 같은 캔형 전지와, 파우치형 전지로 분류될 수 있는데, 이 중 캔형 전지는 전지 캔에 시트 형상의 양극판, 분리막 및 음극판을 순차적으로 적층한 후 일 방향으로 권취하여 제조되는 젤리-롤형 전극 조립체를 수납한 후, 전지 캔 상부에 캡 플레이트를 덮어 밀봉한 형태로 이루어진다. 양극판과 음극판에는 각각 스트립 형태의 양극탭과 음극탭이 구비되며, 상기 양극탭과 음극탭이 전극 단자와 연결되어 외부 전원과 전기적으로 연결된다. 참고로 양극 전극 단자는 캡 플레이트이고, 음극 전극 단자는 전지 캔이다. 그러나, 이와 같은 구조를 갖는 종래의 캔형 전지의 경우, 스트립 형태의 전극 탭에 전류가 집중되어 저항이 크고, 열이 많이 발생하며, 집전 효율이 좋지 않다는 문제점이 있다.
한편, 최근 전기 자동차 기술의 발전에 따라 고용량 전지에 대한 요구가 증가함에 따라 부피가 큰 대형 전지 개발이 요구되고 있다. 종래에 일반적으로 사용되던 소형 원통형 전지, 즉, 1865이나 2170의 폼 팩터를 갖는 원통형 전지의 경우, 용량이 작기 때문에 저항이나 발열이 전지 성능에 심각한 영향을 미치지 않았다. 그러나, 종래의 소형 원통형 전지의 사양을 대형 전지에 그대로 적용할 경우, 전지 안전성에 심각한 문제가 발생할 수 있다.
전지의 크기가 커지면 전지 내부에서 발생하는 열과 가스의 양도 함께 증가하게 되는데, 이러한 열과 가스로 인해 전지 내부의 온도 및 압력이 상승하여 전지가 발화하거나 폭발할 수 있기 때문이다. 이를 방지하기 위해서는 전지 내부의 열과 가스가 외부로 적절하게 배출되어야 하며, 이를 위해서는 전지 외부로 열을 배출하는 통로가 되는 전지의 단면적이 부피 증가에 맞게 증가하여야 한다. 그러나 통상 단면적의 증가분은 부피 증가분에 미치지 못하기 때문에 전지가 대형화될수록 전지 내부의 발열량이 증가하고 이로 인해 폭발 위험성이 커지고, 출력이 저하되는 등의 문제가 발생하게 된다. 또한, 고전압에서 급속 충전을 수행할 경우, 짧은 시간 동안 전극 탭 주변에서 많은 열이 발생하면서 전지가 발화되는 문제도 발생할 수 있다.
따라서, 고용량을 구현할 수 있도록 큰 부피를 가지면서도 높은 안전성을 갖는 전지의 개발이 요구되고 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 양극 활물질로 전도성 나노 물질이 코팅된 단입자 및/또는 유사-단입자를 적용함으로써, 전지의 부피가 증가하여도 우수한 고온 안정성 및 전기 화학 특성을 갖는 리튬 이차 전지를 제공하고자 한다.
일 구현예에 따르면, 본 발명은, 양극판, 음극판, 상기 양극판과 음극판 사이에 개재된 분리막이 일 방향으로 권취된 전극 조립체; 상기 전극 조립체가 수납되는 전지 캔; 및 상기 전지 캔의 개방 단부를 밀봉하는 밀봉체를 포함하고, 상기 양극판은, 단입자 또는 유사-단입자 형태의 코어 및 상기 코어 상에 형성되고, 전도성 나노 물질을 포함하는 코팅층을 포함하는 양극 활물질을 포함하는 것인 리튬 이차 전지를 제공한다.
또한, 상기 양극 활물질은 전이금속 전체 몰수를 기준으로 Ni을 80몰% 이상으로 포함하는 리튬 니켈계 산화물을 포함할 수 있으며, 예를 들면, 하기 [화학식 1]로 표시되는 리튬 니켈계 산화물을 포함하는 것일 수 있다.
[화학식 1]
LiaNibCocM1 dM2 eO2
상기 화학식 1에서, M1은 Mn, Al 또는 이들의 조합이고, M2는 Zr, W, Ti, Mg, Ca, Sr, 및 Ba이며, 0.8≤a ≤1.2, 0.83≤b<1, 0<c<0.17, 0<d<0.17, 0≤e≤0.1임
한편, 상기 음극판은 실리콘계 음극 활물질을 포함할 수 있다.
또한, 상기 음극판은 실리콘계 음극 활물질 및 탄소계 음극 활물질을 포함할 수 있으며, 이때, 상기 실리콘계 음극 활물질 및 탄소계 음극 활물질은 1 : 99 내지 20 : 80의 중량비로 포함될 수 있다.
상기 이차 전지는 폼 팩터의 비가 0.4 이상인 원통형 전지일 수 있으며, 예를 들면, 46110 셀, 4875 셀, 48110 셀, 4880 셀 또는 4680 셀일 수 있다. 이때, 상기 폼 팩터의 비는 원통형 전지의 직경을 높이로 나눈 값이다.
또한, 본 발명에 따른 이차 전지는, 양극판 및 음극판이 각각 활물질층이 형성되지 않은 무지부를 포함하고, 상기 무지부의 양극판 또는 음극판의 적어도 일부가 전극 탭을 정의하는 전지일 수 있다. 상기 양극판 무지부 및 음극판 무지부는 각각 상기 전극 조립체의 권취 방향과 평행한 양극판 및 음극판의 일변 단부를 따라 위치하고, 상기 양극판 무지부 및 음극판 무지부 각각에 집전 플레이트가 결합되어 있고, 상기 집전 플레이트가 전극 단자와 연결되는 것일 수 있다.
한편, 상기 양극판 무지부 및 음극판 무지부는 독립적으로 절곡 가능한 복수의 분절편 형태로 가공되어 있고, 상기 복수의 분절편 중 적어도 일부가 상기 전극 탭을 정의하고, 상기 전극 조립체의 권취 중심(C)을 향하여 절곡되어 있을 수 있다. 또한, 상기 절곡된 복수의 분절편 중 적어도 일부는 상기 전극 조립체의 상단 및 하단 상에서 중첩되어 있고, 상기 중접된 복수의 분절편 상에 상기 집전 플레이트가 결합되어 있을 수 있다.
한편, 상기 양극판 상에는, 상기 권취 방향과 평행한 방향을 따라 양극 활물질층의 일부와 무지부의 일부를 덮고 있는 절연층이 더 형성될 수 있다.
다른 구현예에 따르면, 본 발명은 상기 본 발명에 따른 원통형 리튬 이차 전지를 포함하는 전지 팩과, 상기 전지 팩을 포함하는 자동차를 제공한다.
본 발명에 따른 리튬 이차 전지는, 입자 강도가 높은 단입자 또는 유사-단입자 형태의 코어를 포함하는 양극 활물질을 적용하여, 전극 제조 시의 입자 깨짐 및 충방전 시의 내부 크랙 발생으로 인한 가스 발생을 최소화할 수 있도록 함으로써, 부피가 증가된 대형 원통형 전지에서도 우수한 고온 안정성을 구현할 수 있다.
또한, 본 발명은 단입자 또는 유사-단입자 형태의 코어 상에 전도성 나노 물질을 포함하는 코팅층을 형성함으로써, 양극 슬러리에 별도의 도전재를 첨가하지 않더라도 우수한 전기 전도성을 구현할 수 있도록 하였다. 본 발명과 같이 단입자 또는 유사-단입자 표면에 전도성 나노 물질을 코팅한 양극 활물질을 적용할 경우, 양극 슬러리의 응집을 유발하는 도전재를 사용하지 않아도 되기 때문에 양극 슬러리의 점도가 감소하고 고형분 함량을 증가시킬 수 있으며, 전극 코팅 공정성 및 전극 접착력이 개선되는 효과를 얻을 수 있다.
또한, 본 발명에 따른 원통형 리튬 이차 전지는, Dmin이 1.0㎛ 이상인 양극 활물질을 사용함으로써, 원통형 전지의 열 안전성을 더욱 개선할 수 있도록 하였다. 본 발명자들의 연구에 따르면, 양극 활물질로 단입자 및/또는 유사-단입자를 적용하더라도, 양극 활물질 분말의 입도에 따라 압연 후 입자 깨짐 억제 및 열 안전성 개선 효과가 상이한 것으로 나타났다. 특히, 양극 활물질의 최소 입경이 1.0㎛ 이하인 경우, 압연 공정에서 선압이 증가하여 입자 깨짐이 증가하고 열 안정성이 저하되어 대형 전지 적용 시에 열 안전성을 충분히 확보할 수 없었다. 따라서, 본 발명에서는 최소 입자 크기(Dmin)가 1.0㎛ 이상으로 제어된 양극 활물질을 사용함으로써, 열 안전성 개선 효과를 극대화할 수 있도록 하였다.
또한, 본 발명에 따른 리튬 이차 전지는, D50, Dmax, 및 입도 분포(PSD)가 적절하게 조절된 양극 활물질을 적용함으로써, 단입자 적용으로 인한 저항 증가를 최소화할 수 있도록 함으로써, 우수한 용량 특성 및 출력 특성을 구현할 수 있도록 하였다.
또한, 본 발명에 따른 리튬 이차 전지는, 음극 활물질로 용량이 큰 실리콘계 음극 활물질을 포함할 수 있으며, 이 경우, 더 높은 에너지 밀도를 구현할 수 있다.
또한, 본 발명에 따른 리튬 이차 전지는, 양극판 및 음극판의 무지부가 전극 탭의 역할을 수행하는 구조, 예를 들면, 탭-리스(Tab-less) 구조를 가질 수 있다. 종래의 캔형 전지는 전극 탭을 통해 전극판과 전극 리드를 연결하는 구조로 이루어져 있는데, 이 경우, 충전 시에 전극 탭으로 많은 양의 전류가 집중됨에 따라 전극 탭 주변에서 많은 열이 발생된다. 특히, 급속 충전 시에는 이러한 현상이 심화되어 전지 발화나 폭발이 발생할 위험성이 있다. 이에 비해, 본 발명에 따른 리튬 이차 전지는, 양극판과 음극판의 단부에 활물질층이 형성되지 않은 무지부를 형성하고, 상기 무지부를 넓은 단면적을 갖는 집전 플레이트와 용접시키는 방법으로 전극 단자와 연결시킨 구조로 형성될 수 있다. 이러한 구조의 전지는, 전극 탭을 구비한 종래의 전지에 비해 전류 집중이 덜하기 때문에 전지 내부의 발열을 효과적으로 감소시킬 수 있고, 이에 따라 전지의 열 안전성이 개선되는 효과를 얻을 수 있다.
도 1은 본 발명에 따른 전극 조립체의 권취 전 적층 상태를 나타낸 도면이다.
도 2는 본 발명의 일 실시예에 따른 전극 조립체의 전극판의 구조를 나타낸 단면도이다.
도 3은 본 발명의 일 실시예에 따른 탭-리스 구조의 전지의 구조를 나타낸 단면도이다.
도 4는 본 발명의 다른 실시예에 따른 탭-리스 구조의 전지의 구조를 나타낸 단면도이다.
도 5은 본 발명의 일 구현예에 따른 전극 조립체의 구조를 설명하기 위한 도면이다.
도 6은 본 발명에 따른 배터리 팩을 설명하기 위한 도면이다.
도 7는 본 발명에 따른 배터리 팩을 포함하는 자동차를 설명하기 위한 도면이다.
이하, 본 발명을 보다 구체적으로 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
본 발명에서 "1차 입자"는 주사전자현미경 또는 후방산란전자 회절패턴 분석기(Electron Back Scatter Diffraction; EBSD)를 이용하여 5000배 내지 20000배의 시야에서 관찰했을 때 외관상 입계가 존재하지 않는 입자 단위를 의미한다. "1차 입자의 평균 입경"은 주사전자현미경 이미지에서 관찰되는 1차 입자들의 입경을 측정한 후 계산된 이들의 산술평균 값을 의미한다.
본 발명에서 "2차 입자"는 복수개의 1차 입자들이 응집되어 형성된 입자이다. 본 발명에서는 1차 입자가 수십 ~ 수백 개 응집되어 형성되는 종래의 2차 입자와 구별하기 위해 1차 입자가 10개 이하로 응집된 2차 입자를 유사-단입자로 지칭하기로 한다.
본 발명에서 "Dmin", "D50" 및 "Dmax"는 레이저 회절법(laser diffraction method)를 이용하여 측정된 양극 활물질의 체적 누적 분포의 입도 값이다. 구체적으로는 Dmin은 체적 누적 분포에서 나타나는 최소 입자 크기이며, D50은 체적 누적량이 50%일 때의 입자 크기이고, Dmax는 체적 누적 분포에서 나타나는 최대 입자 크기이다. 상기 체적 누적 분포의 입도 값은, 예를 들면, 양극 활물질을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들면, Microtrac MT 3000)에 도입하여 약 28kHz의 초음파를 출력 60W로 조사한 후, 체적 누적 입도 분포 그래프를 얻어 측정될 수 있다.
본 발명자들은 높은 용량을 구현하면서도 안전성 및 전기적 특성이 우수한 대형 원통형 전지를 개발하기 위해 연구를 거듭한 결과, 양극 활물질로 1개의 1차 입자로 이루어진 단입자 또는 10개 이하의 1차 입자들의 응집체인 유사-단입자 형태의 코어에 전도성 나노 물질을 코팅한 양극 활물질을 사용함으로써, 대형 전지의 안전성 및 전기 전도성을 획기적으로 향상시킬 수 있음을 알아내고 본 발명을 완성하였다.
구체적으로는, 본 발명에 따른 원통형 리튬 이차 전지는, 양극판, 음극판, 상기 양극판과 음극판 사이에 개재된 분리막이 일 방향으로 권취된 전극 조립체와, 상기 전극 조립체가 수납되는 전지 캔; 및 상기 전지 캔의 개방 단부를 밀봉하는 밀봉체를 포함한다.
이하, 본 발명의 원통형 리튬 이차 전지의 구성을 구체적으로 설명한다.
전극 조립체
상기 전극 조립체는 양극판, 음극판, 상기 양극판과 음극판 사이에 개재된 분리막이 일 방향으로 권취된 구조를 가지는 것으로, 예를 들면, 젤리-롤 타입의 전극 조립체일 수 있다.
도 1에는 본 발명에 따른 전극 조립체의 권취 전 적층 구조가 도시되어 있으며, 도 2에는 본 발명에 따른 전극판(양극판 또는 음극판)의 단면 구조가 도시되어 있다.
도 1 및 도 2를 참조하면, 본 발명의 전극 조립체는 분리막(12), 양극판(10), 분리막(12), 음극판(11)이 순차적으로 적어도 1회 적층하여 형성된 적층체를 일 방향(X)으로 권취시킴으로써 제조될 수 있다.
이때, 상기 양극판(10)과 음극판(11)은 시트 형상의 집전체(20)에 활물질층(21)이 형성된 구조를 가지며, 집전체(20)의 일부 영역에 활물질층(21)이 형성되지 않은 무지부(22)를 포함할 수 있다.
상기와 같이 무지부(22)를 포함하는 양극판(10) 및 음극판(11)을 이용하면 별도의 전극 탭을 구비하지 않고, 양극판(10) 및 음극판(11)의 무지부의 적어도 일부가 전극 탭을 정의하는 탭-리스 구조의 전지를 구현할 수 있다.
구체적으로는, 상기 무지부(22)는 집전체(20)의 일변 단부에 권취 방향(X)을 따라 길게 형성될 수 있으며, 상기 양극판 무지부와 음극판 무지부 각각에 집전 플레이트를 결합하고, 상기 집전 플레이트를 전극 단자와 연결함으로써, 탭-리스(Tab-less) 구조의 전지를 구현할 수 있다.
예를 들면, 다음과 같은 방법을 통해 탭-리스 구조의 전지를 제조할 수 있다. 먼저, 양극판(10)과 음극판(11)의 무지부(22)가 서로 반대 방향에 위치하도록 분리막, 양극판, 분리막, 음극판을 순차적으로 적층한 다음 일 방향으로 권취하여 전극 조립체를 제조한다. 그런 다음, 양극판 및 음극판의 무지부(22)를 권취 중심(C) 방향으로 절곡시킨 후, 양극판의 무지부와 음극판의 무지부에 집전 플레이트를 각각 용접시켜 결합시키고, 상기 집전 플레이트를 전극 단자와 연결함으로써, 탭-리스(Tab-less) 구조의 전지를 제조할 수 있다. 한편, 상기 집전 플레이트는 스트립 타입의 전극 탭에 비해 큰 단면적을 가지며, 저항은 전류가 흐르는 통로의 단면적에 반비례하기 때문에, 이차 전지를 상기와 같은 구조로 형성할 경우, 셀 저항을 크게 낮출 수 있다.
한편, 상기 양극판 및 음극판 무지부는 독립적으로 절곡 가능한 복수의 분절편 형태로 가공되어 있을 수 있으며, 상기 복수의 분절편 중 적어도 일부가 전극 조립체의 권취 중심(C)을 향해 절곡되어 있을 수 있다.
상기 분절편은 양극판 및 음극판의 집전체를 레이저 노칭, 초음파 커팅, 타발 등과 같은 금속박 커팅 공정을 통해 가공함으로써 형성될 수 있다.
양극판 및 음극판의 무지부가 복수의 분절편 형태로 가공되어 있을 경우, 절곡 시 무지부에 가해지는 응력 스트레스를 감소시켜 무지부 변형이나 손상을 방지할 수 있으며, 집전 플레이트와의 용접 특성을 개선할 수 있다.
집전 플레이트와 무지부는 예를 들면 용접에 의해 접합되는데, 용접 특성을 향상시키기 위해서는 무지부의 용접 영역에 강한 압력을 가하여 무지부를 최대한 평평하게 절곡시켜야 한다. 그러나 이러한 절곡 과정에서 무지부의 모양이 불규하게 일그러지면서 변형될 수 있으며, 변형된 부위가 반대 극성의 전극과 접촉하여 내부 단락을 일으키거나 무지부에 미세한 크랙을 유발할 수 있다. 그러나, 양극판 및 음극판의 무지부가 독립적으로 절곡 가능한 복수의 분절편 형태로 가공되어 있으면, 절곡 시에 무지부에 가해지는 응력 스트레스가 완화되어 무지부 변형 및 손상을 최소화할 수 있다.
또한, 무지부가 상기와 같이 분절편 형태로 가공되어 있을 경우, 절곡 시에 복수의 분절편들 간에 중첩이 발생하며, 이로 인해 집전 플레이트와의 용접 강도가 증가하고, 레이저 용접 등의 최신 기술을 사용할 경우에 레이저가 전극 조립체 내부로 침투하여 분리막이나 활물질을 융발시키는 문제를 방지할 수 있다. 바람직하게는, 상기 절곡된 복수의 분절편 중 적어도 일부가 상기 전극 조립체의 상단 및 하단 상에서 중첩되어 있을 수 있으며, 중접된 복수의 분절편 상에 집전 플레이트가 결합될 수 있다.
한편, 본 발명에 따른 전극 조립체는, 도 5에 도시된 바와 같이, 양극판(10) 상에 절연층(24)이 추가로 형성된 구조로 형성될 수 있다. 구체적으로는, 상기 절연층(24)은 전극 조립체의 권취 방향과 평행한 방향을 따라, 양극 활물질층의 일부와 무지부의 일부를 덮도록 형성될 수 있다.
양극판(10)의 무지부(22c)와 음극판(11)의 무지부(22a)를 전극 탭으로 사용하는 탭-리스 구조의 전지의 경우, 양극판(10)이 분리막(12) 상부로 돌출되고, 음극판(11)이 분리막(12) 하부로 돌출될 수 있도록 전극 조립체를 형성하고, 돌출된 양극판(10) 및/또는 음극판(11)을 절곡시킨 후 집전 플레이트와 결합시킨다. 그런데, 상기와 같이 양극판(10) 또는 음극판(11)을 절곡시킬 경우, 양극판(10) 또는 음극판(11)의 집전체가 분리막을 넘어 반대 극성의 전극과 근접하게 위치하게 되며, 이로 인해 양극판과 음극판이 전기적으로 접촉되어 내부 단락을 유발할 가능성이 있다. 그러나, 도 5에 도시된 바와 같이, 양극 활물질층과 무지부의 일부를 덮는 절연층(24)을 형성할 경우, 절연층(24)에 의해 양극판(10)과 음극판(11)이 전기적으로 접촉되는 것을 방지할 수 있어, 전지 내부에서 단락이 발생하는 것을 방지할 수 있다.
바람직하게는, 상기 절연층(24)은, 양극판(10) 집전체의 적어도 일면에 구비될 수 있으며, 바람직하게는, 양극판(10)의 양면에 구비될 수 있다.
또한, 상기 절연층(24)는 양극판(10)의 영역 중에서 음극판(11)의 활물질층(21a)와 대면할 가능성이 있는 영역에 형성될 수 있다. 예를 들면, 상기 양극판(10)의 무지부(22c) 중 절곡된 후에 음극판(11)과 대면하는 면에서는 절연층(24)이 무지부(22c)의 말단까지 연장되어 형성될 수 있다. 다만, 절곡된 후에 음극판(11)과 대면하는 면의 반대면의 경우, 절연층(24)이 무지부(22c)의 일부, 예를 들면, 무지부(22c)의 절곡 지점 전까지만 형성되는 것이 바람직하다. 음극판(11)과 대면하는 면의 반대면의 무지부 전체 영역에 절연층(24)이 형성될 경우, 집전 플레이트와의 전기적 접촉이 불가능하여 전극 탭으로 기능할 수 없기 때문이다.
한편, 상기 절연층(24)은 절연 성능을 확보하면서 양극판에 부착될 수 있는 것이며 되고, 그 소재나 성분이 특별히 한정되는 것은 아니다. 예를 들면, 상기 절연층은 절연 코팅층 또는 절연 테이프일 수 있으며, 상기 절연 코팅층은 유기 바인더 및 무기 입자를 포함하는 것일 수 있다. 이때, 상기 유기 바인더는, 예를 들면, 스티렌-부타디엔 고무(SBR)일 수 있으며, 상기 무기 입자는 알루미나 산화물일 수 있으나, 이에 한정되는 것은 아니다.
다음으로, 본 발명의 전극 조립체의 각 구성요소에 대해 보다 자세히 설명한다.
(1) 양극판
상기 양극판은, 예를 들면, 시트 형상의 양극 집전체의 일면 또는 양면에 양극 활물질층이 형성된 구조로 이루어질 수 있으며, 상기 양극 활물질층은 양극 활물질을 포함할 수 있고, 필요에 따라 바인더를 더 포함할 수 있다.
구체적으로는 상기 양극판은 시트 형상의 양극 집전체의 일면 또는 양면에 양극 활물질, 및 바인더를 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone), 물 등과 같은 용매에 분산시켜 제조된 양극 슬러리를 도포하고, 건조 공정을 통해 양극 슬러리의 용매를 제거한 후, 압연시키는 방법으로 제조될 수 있다. 한편, 상기 양극 슬러리 도포 시에 양극 집전체의 일부 영역, 예를 들면 양극 집전체의 일 단부에 양극 슬러리를 도포하지 않는 방법으로 무지부를 포함하는 양극판을 제조할 수 있다.
상기 양극 집전체로는, 당해 기술 분야에서 사용되는 다양한 양극 집전체들이 사용될 수 있다. 예를 들어, 상기 양극 집전체로는, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 양극 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 상기 양극 집전체는 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
본 발명에 있어서, 상기 양극 활물질은 1개의 1차 입자로 이루어진 단입자 또는 10개 이하의 1차 입자들의 응집체인 유사-단입자 형태의 코어; 및 상기 코어 상에 형성되고 전도성 나노 물질을 포함하는 코팅층을 포함한다.
종래에는 리튬 이차 전지의 양극 활물질로 수십 ~ 수백개의 1차 입자들이 응집된 구형의 2차 입자를 사용하는 것이 일반적이었다. 그러나 이와 같이 많은 1차 입자들이 응집된 2차 입자 형태의 양극 활물질의 경우, 양극 제조 시에 압연 공정에서 1차 입자들이 떨어져나가는 입자 깨짐이 발생하기 쉽고, 충방전 과정에서 입자 내부에 크랙이 발생한다는 문제점이 있다. 양극 활물질의 입자 깨짐이나 입자 내부의 크랙이 발생할 경우, 전해액과의 접촉 면적이 증가하게 되기 때문에 전해액과의 부반응으로 인한 가스 발생이 증가한다는 문제점이 있다. 전지 내부에서 가스 발생이 증가하면 전지 내부의 압력이 증가하여 전지 폭발이 발생될 위험이 있다. 특히, 원통형 전지의 부피를 증가시킬 경우, 부피 증가에 따라 전지 내부의 활물질 양이 증가하고, 이로 인해 가스 발생량도 현저하게 증가하기 때문에 전지의 발화 및/또는 폭발 위험성이 더 커지게 된다.
이에 비해, 코어가 1개의 1차 입자로 이루어진 단입자나 1차 입자가 10개 이하로 응집된 유사-단입자 형태인 양극 활물질은 1차 입자가 수십~수백개 응집되어 있는 기존의 2차 입자 형태의 양극 활물질에 비해 입자 강도가 높기 때문에 압연 시의 입자 깨짐이 거의 발생하지 않는다. 또한, 코어가 단입자 또는 유사-단입자 형태인 양극 활물질의 경우, 입자를 구성하는 1차 입자들의 개수가 적기 때문에 충방전 시에 1차 입자들의 부피 팽창, 수축에 따른 변화가 적고, 이에 따라 입자 내부의 크랙 발생도 현저하게 감소한다.
따라서, 본 발명과 같이 코어가 단입자 또는 유사-단입자로 이루어진 양극 활물질을 사용할 경우, 입자 깨짐 및 내부 크랙 발생으로 인한 전지 퇴화 및 가스 발생을 현저하게 감소시킬 수 있으며, 이에 따라, 대형 전지에서도 우수한 안전성 및 수명 특성을 구현할 수 있다.
한편, 상기 코어는 리튬 니켈계 산화물일 수 있으며, 구체적으로는, 전이금속 전체 몰수를 기준으로 Ni을 80몰% 이상으로 포함하는 리튬 니켈계 산화물을 포함하는 것일 수 있다. 바람직하게는, 상기 리튬 니켈계 산화물은 Ni을 80몰% 이상 100몰% 미만, 82몰% 이상 100몰% 미만, 또는 83몰% 이상 100몰% 미만으로 포함할 수 있다. 상기와 같이 Ni 함량이 높은 리튬 니켈계 산화물을 사용할 경우, 높은 용량을 구현할 수 있다.
보다 더 구체적으로는, 상기 코어는, 하기 [화학식 1]로 표시되는 리튬 니켈계 산화물일 수 있다.
[화학식 1]
LiaNibCocM1 dM2 eO2
상기 화학식 1에서, M1은 Mn, Al 또는 이들의 조합일 수 있으며, 바람직하게는 Mn 또는 Mn 및 Al일 수 있다.
상기 M2는 Zr, W, Y, Ba, Ca, Ti, Mg, Ta 및 Nb로 이루어진 군에서 선택되는 1종 이상이며, 바람직하게는 Zr, Y, Mg, 및 Ti로 이루어진 군에서 선택된 1종 이상일 수 있고, 더 바람직하게는 Zr, Y 또는 이들의 조합일 수 있다. M2 원소는 필수적으로 포함되는 것은 아니나, 적절한 양으로 포함될 경우, 소성 시의 입 성장을 촉진하거나, 결정 구조 안정성을 향상시키는 역할을 수행할 수 있다.
상기 a는 리튬 니켈계 산화물 내의 리튬 몰비를 나타내는 것으로, 0.8≤a ≤1.2, 0.85≤a ≤1.15, 또는 0.9≤a ≤1.2일 수 있다. 리튬의 몰비가 상기 범위를 만족할 때, 리튬 니켈계 산화물의 결정 구조가 안정적으로 형성될 수 있다.
상기 b는 리튬 니켈계 산화물 내 리튬을 제외한 전체 금속 중 니켈의 몰비를 나타내는 것으로, 0.8≤b<1, 0.82≤b<1, 또는 0.83≤b<1일 수 있다. 니켈의 몰비가 상기 범위를 만족할 때, 높은 에너지 밀도를 나타내어 고용량 구현이 가능하다.
상기 c는 리튬 니켈계 산화물 내의 리튬을 제외한 전체 금속 중 코발트 몰비를 나타내는 것으로, 0<c<0.2, 0<c<0.18, 또는 0.01≤c≤0.17일 수 있다. 코발트의 몰비가 상기 범위를 만족할 때, 양호한 저항 특성 및 출력 특성을 구현할 수 있다.
상기 d는 리튬 니켈계 산화물 내의 리튬을 제외한 전체 금속 중 M1 원소의 몰비를 나타내는 것으로, 0<d<0.2, 0<d<0.18, 또는 0.01≤d≤0.17일 수 있다. M1 원소의 몰비가 상기 범위를 만족할 때, 양극 활물질의 구조 안정성이 우수하게 나타난다.
상기 e는 리튬 니켈계 산화물 내의 리튬을 제외한 전체 금속 중 M2 원소의 몰비를 나타내는 것으로, 0≤e≤0.1, 또는 0≤e≤0.05일 수 있다.
한편, 상기 코어는, 필요에 따라, 상기 리튬 니켈계 산화물 입자 표면에 형성된 피복층을 더 포함할 수 있다. 이때, 상기 피복층은 Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb. Mo, Sr, Sb, Bi, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상의 원소를 포함할 수 있다. 바람직하게는 상기 피복층의 원소는 Al, B, Co 또는 이들의 조합일 수 있다.
리튬 니켈계 산화물 입자 표면에 피복층이 존재할 경우, 피복층에 의해 전해질과 리튬 복합전이금속 산화물의 접촉이 억제되며, 이로 인해 전해질과의 부반응으로 인한 전이금속 용출이나 가스 발생을 감소시키는 효과를 얻을 수 있다.
다음으로, 상기 코어 상에는 전도성 나노 물질을 포함하는 코팅층이 형성된다. 상기 코팅층은 단입자 또는 유사-단입자 형태의 코어의 전기 전도성을 개선하기 위한 것이다.
코어가 단입자 또는 유사-단입자인 양극 활물질의 경우, 종래의 2차 입자 형태의 양극 활물질에 비해 저항이 높고, 도전재와의 접촉 면적이 작기 때문에 전기 전도도가 떨어진다는 문제점이 있다. 전기 전도도를 개선하기 위해 도전재를 과량으로 투입할 경우, 양극 슬러리 내에서 응집이 발생하여 점도가 증가하고, 이로 인해 코팅성이 떨어지는 문제가 발생한다. 따라서, 원활한 코팅성을 구현하기 위해서는 고형분 함량을 감소시켜 양극 슬러리의 점도를 낮춰야 하는데, 양극 슬러리 내 고형분 함량이 감소하면 활물질 함량이 감소하여 용량 특성이 떨어질 수 있다. 본 발명은 이러한 문제점을 해결하기 위해 단입자 또는 유사-단입자 표면을 전도성 나노 물질로 코팅함으로써, 양극 슬러리에 별도의 도전재를 첨가하지 않더라도 우수한 전기 전도성을 구현할 수 있도록 하였다. 본 발명과 같이 단입자 또는 유사-단입자 표면에 전도성 나노 물질을 코팅한 양극 활물질을 적용할 경우, 양극 슬러리의 응집을 유발하는 도전재를 사용하지 않아도 되기 때문에 양극 슬러리의 점도가 감소하고 고형분 함량을 증가시킬 수 있으며, 전극 코팅 공정성 및 전극 접착력이 개선되는 효과를 얻을 수 있다.
본 발명에서 상기 전도성 나노 물질은, 코어 상에 원활하게 코팅될 수 있도록 나노 사이즈의 크기를 가지고, 전도성이 있는 물질이면 되고, 그 종류가 특별히 한정되는 것은 아니다. 예를 들면, 상기 전도성 나노 물질은 탄소나노튜브, 탄소나노입자 등일 수 있다. 상기 전도성 나노 물질은 다양한 형태를 가질 수 있으며, 예를 들면, 구상, 인편상, 또는 섬유상 등일 수 있다.
한편, 상기 코팅층은, 당해 기술 분야에 알려진 다양한 코팅 방법, 예를 들면, 습식 코팅, 분무 코팅, 건식 코팅 등을 통해 형성할 수 있다. 예를 들면, 상기 코팅층은, 코어인 단입자 또는 유사-단입자의 표면에 나노미터(nanometer) 수준의 폴리머층을 코팅한 후, 상기 폴리머층이 코팅된 코어와 전도성 나노 입자를 용매 중에서 혼합한 후 고속 교반한 뒤 고온에서 탄화(Carbonisation)하고 건조시키는 방법으로 형성될 수 있으나, 이에 한정되는 것은 아니다.
한편, 상기 코어가 단입자 또는 유사-단입자로 이루어진 양극 활물질은 양극판에 포함되는 전체 양극 활물질의 중량을 기준으로 95중량% 내지 100중량%, 바람직하게는 98중량% 내지 100중량%, 더 바람직하게는 99중량% 내지 100중량%, 보다 더 바람직하게는 100중량%의 양으로 포함되는 것이 바람직하다. 단입자 및/또는 유사-단입자 코어를 포함하는 양극 활물질의 함량이 상기 범위를 만족할 때, 대형 원통형 전지 적용 시에 충분한 안전성을 얻을 수 있다. 2차 입자 형태의 양극 활물질이 전체 양극 활물질 중 5중량%를 초과하는 양으로 포함될 경우, 전극 제조 및 충방전 시에 2차 입자로부터 발생한 미분으로 인해 전해액과의 부반응이 증가하여 가스 발생 억제 효과가 떨어지고, 이로 인해 대형 원통형 전지에 적용 시에 안정성 개선 효과가 저하될 수 있기 때문이다.
한편, 본 발명에 따른 양극 활물질은 Dmin이 1.0㎛ 이상, 1.1㎛ 이상, 1.15㎛ 이상, 1.2㎛ 이상, 1.25㎛ 이상, 1.3㎛ 이상 또는 1.5㎛ 이상일 수 있다. 양극 활물질의 Dmin이 1.0㎛ 미만일 경우, 양극판 압연 공정에서 선압이 증가하여 입자 깨짐이 발생하기 쉽고, 열 안정성이 저하되어 대형 전지 적용 시에 열 안전성을 충분히 확보할 수 없다.
한편, 저항 및 출력 특성을 고려할 때, 상기 양극 활물질의 Dmin은 3㎛ 이하, 2.5㎛ 이하 또는 2㎛ 이하일 수 있다. Dmin이 너무 크면, 입자 내 리튬 이온 확산 거리가 증가하여 저항 및 출력 특성이 저하될 수 있다. 예를 들면, 상기 양극 활물질의 Dmin은 1.0㎛ 내지 3㎛, 1.0㎛ 내지 2.5㎛, 또는 1.3㎛ 내지 2.0㎛일 수 있다.
한편, 본 발명에 따른 상기 양극 활물질은, D50이 5㎛ 이하, 4㎛ 이하, 또는 3㎛ 이하일 수 있으며, 예를 들면, 0.5㎛ 내지 5㎛, 바람직하게는 1㎛ 내지 5㎛, 더 바람직하게는 2㎛ 내지 5㎛일 수 있다. 단입자 및/또는 유사-단입자 형태의 리튬 니켈계 산화물은 입자 내부에서 리튬 이온의 확산 경로가 되는 1차 입자들 사이의 계면이 적기 때문에 2차 입자 형태의 양극 활물질보다 리튬 이동성이 떨어지고, 이로 인해 저항이 증가한다는 문제점이 있다. 이러한 저항 증가는 입자의 크기가 커질수록 더욱 심화되며, 저항이 증가하면 용량 및 출력 특성이 악영향을 미친다. 따라서, 양극 활물질의 D50을 5㎛ 이하로 조절함으로써 양극 활물질 입자 내부에서의 리튬 이온 확산 거리를 최소화함으로써 저항 증가를 억제할 수 있다.
또한, 상기 양극 활물질은 Dmax가 12㎛ 내지 17㎛, 바람직하게는 12㎛ 내지 16㎛, 더 바람직하게는 12㎛ 내지 15㎛일 수 있다. 양극 활물질의 Dmax가 상기 범위를 만족할 때, 저항 특성 및 용량 특성이 더욱 우수하게 나타난다. 양극 활물질의 Dmax가 너무 커지면 입자 내부에서의 리튬 이동 경로가 길어져 리튬 이동성이 떨어지고, 이로 인해 저항이 증가할 수 있다. 한편, 양극 활물질의 Dmax가 너무 작으면, 양극의 전극 밀도가 떨어져 에너지 밀도가 저하될 수 있다.
한편, 상기 양극 활물질은, 하기 식 (1)로 표시되는 입도 분포(PSD, Particle Size Distribution)이 3 이하, 바람직하게는 2 내지 3, 더 바람직하게는 2.3 내지 3일 수 있다.
식 (1): 입도 분포(PSD) = (Dmax - Dmin)/D50
양극 활물질이 상기와 같은 입도 분포를 가질 때, 양극의 전극 밀도를 적절하게 유지할 수 있고, 입자 깨짐 및 저항 증가를 효과적으로 억제할 수 있다.
한편, 상기 양극 활물질은 1차 입자의 평균 입경이 5㎛ 이하, 4㎛ 이하, 3㎛ 이하, 또는 ㎛ 이하일 수 있으며, 예를 들면, 0.5㎛ 내지 5㎛, 바람직하게는 1㎛ 내지 5㎛, 더 바람직하게는 2㎛ 내지 5㎛일 수 있다. 1차 입자의 평균 입경이 상기 범위를 만족할 경우, 전기 화학적 특성이 우수한 단입자 및/또는 유사-단입자 형태의 양극 활물질을 형성할 수 있다. 1차 입자의 평균 입경이 너무 작으면, 양극 활물질을 형성하는 1차 입자의 응집 개수가 많아져 압연 시에 입자 깨짐 발생 억제 효과가 떨어지고, 1차 입자의 평균 입경이 너무 크면 1차 입자 내부에서의 리튬 확산 경로가 길어져 저항이 증가하고 출력 특성이 떨어질 수 있다.
본 발명에 있어서, 상기 양극 활물질은 유니모달 입도 분포를 갖는 것이 바람직하다. 종래에는 양극 활물질층의 전극 밀도를 향상시키기 위해 평균 입경이 큰 대입경 양극 활물질과 평균 입경이 작은 소입경 양극 활물질을 혼합하여 사용하는 바이모달 양극 활물질이 많이 사용되어 왔다. 그러나, 단입자 또는 유사-단입자 형태의 양극 활물질의 경우, 입경이 증가하면 리튬 이동 경로가 길어져 저항이 현저하게 증가하기 때문에 대입경 입자를 혼합하여 사용할 경우, 용량 및 출력 특성이 저하되는 문제점이 발생할 수 있다. 따라서, 본 발명에서는 유니모달 분포를 갖는 양극 활물질을 사용함으로써, 저항 증가를 최소화할 수 있도록 하였다.
상기 양극 활물질은 양극 활물질층 총 중량에 대하여 80 내지 99중량%, 바람직하게는 85 내지 99중량%, 더 바람직하게는 90 내지 99중량%로 포함될 수 있다.
다음으로, 상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 수행하는 것으로, 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머 고무(EPDM rubber), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 1 내지 30 중량%, 바람직하게는 1 내지 20중량%, 더 바람직하게는 1 내지 10중량%로 포함될 수 있다.
한편, 필요에 따라, 상기 양극 활물질층에는 소량의 도전재가 추가로 포함될 수 있다. 본 발명에 따른 양극 활물질은 표면에 전도성 물질이 코팅되어 있기 때문에 도전재 없이도 전도성을 구현할 수 있으나, 소량의 도전재를 추가로 포함시킴으로써, 도전성을 보다 더 향상시킬 수 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유, 탄소나노튜브 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 양극 활물질층 총 중량에 대하여 0.1 내지 10 중량%, 바람직하게는 0.1 내지 5중량%, 더 바람직하게는 0.1 내지 3중량%로 포함될 수 있다.
한편, 본 발명에 따른 양극판 상에는, 필요에 따라, 양극 활물질층의 일부와 무지부의 일부를 덮고 있는 절연층이 더 형성될 수 있다. 상기 절연층은 전극 조립체의 권취 방향과 평행한 방향을 따라 형성될 수 있다.
(2) 음극판
상기 음극판은 시트 형상의 음극 집전체의 일면 또는 양면에 음극 활물질층이 형성된 구조로 이루어질 수 있으며, 상기 음극 활물질층은 음극 활물질, 도전재 및 바인더를 포함할 수 있다.
구체적으로는 상기 음극판은 시트 형상의 음극 집전체의 일면 또는 양면에 음극 활물질, 도전재, 및 바인더를 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone), 물 등과 같은 용매에 분산시켜 제조된 음극 슬러리를 도포하고, 건조 공정을 통해 음극 슬러리의 용매를 제거한 후, 압연시키는 방법으로 제조될 수 있다. 한편, 상기 음극 슬러리 도포 시에 음극 집전체의 일부 영역, 예를 들면 음극 집전체의 일 단부에 음극 슬러리를 도포하지 않는 방법으로 무지부를 포함하는 음극판을 제조할 수 있다.
상기 음극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 음극 활물질의 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질 탄소 등의 탄소질 재료; Si, Si-Me 합금(여기서, Me은 Al, Sn, Mg, Cu, Fe, Pb, Zn, Mn, Cr, Ti, 및 Ni로 이루어진 군에서 선택되는 1종 이상), SiOy(여기서, 0<y<2), Si-C 복합체 등과 같은 실리콘계 물질; 리튬 금속 박막; Sn, Al 등과 같이 리튬과 합금화가 가능한 금속 물질; 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
바람직하게는, 본 발명에 따른 음극판은 실리콘계 음극 활물질을 포함할 수 있다. 상기 실리콘계 음극 활물질은 Si, Si-Me 합금(여기서, Me은 Al, Sn, Mg, Cu, Fe, Pb, Zn, Mn, Cr, Ti, 및 Ni로 이루어진 군에서 선택되는 1종 이상), SiOy(여기서, 0<y<2), Si-C 복합체 또는 이들의 조합일 수 있으며, 바람직하게는 SiOy(여기서, 0<y<2)일 수 있다. 실리콘계 음극 활물질은 높은 이론 용량을 가지기 때문에 실리콘계 음극 활물질을 포함할 경우, 용량 특성을 향상시킬 수 있다.
한편, 상기 실리콘계 음극 활물질은, Mb 금속으로 도핑된 것일 수 있으며, 이때, 상기 Mb 금속은 1족 금속 원소, 2족 금속 원소일 수 있으며, 구체적으로는, Li, Mg 등일 수 있다. 구체적으로는 상기 실리콘 음극 활물질은 Mb 금속으로 도핑된 Si, SiOy(여기서, 0<y<2), Si-C 복합체 등일 수 있다. 금속 도핑된 실리콘계 음극 활물질의 경우, 도핑 원소로 인해 활물질 용량은 다소 저하되나 높은 효율을 갖기 때문에, 높은 에너지 밀도를 구현할 수 있다.
또한, 상기 실리콘계 음극 활물질은 입자 표면에 탄소 코팅층을 더 포함할 수 있다. 이때, 상기 탄소 코팅량은 실리콘계 음극 활물질 전체 중량을 기준으로 20중량% 이하, 바람직하게는 1 ~ 20중량%일 수 있다.
또한, 상기 음극판은, 필요에 따라, 음극 활물질로 탄소계 음극 활물질을 더 포함할 수 있다. 상기 탄소계 음극 활물질은, 예를 들면, 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소, 연화탄소 (soft carbon), 경화탄소 (hard carbon) 등일 수 있으나, 이에 한정되는 것은 아니다.
한편, 음극 활물질로 실리콘계 음극 활물질과 탄소계 음극 활물질의 혼합물을 사용할 경우, 상기 실리콘계 음극 활물질 및 탄소계 음극 활물질의 혼합비는 중량 비율로 1 : 99 내지 20 : 80, 바람직하게는 1 : 99 내지 15 : 85, 더 바람직하게는 1 : 99 내지 10 : 90일 수 있다.
상기 음극 활물질은 음극 활물질층 총 중량에 대하여 80 내지 99중량%, 바람직하게는 85 내지 99중량%, 더 바람직하게는 90 내지 99중량%로 포함될 수 있다.
한편, 상기 음극 집전체로는, 당해 기술 분야에서 일반적으로 사용되는 음극 집전체들이 사용될 수 있으며, 예를 들면, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 도전재는 음극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유, 탄소나노튜브 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 음극 활물질층 총 중량에 대하여 1 내지 30 중량%, 바람직하게는 1 내지 20중량%, 더 바람직하게는 1 내지 10중량%로 포함될 수 있다.
상기 바인더는 음극 활물질 입자들 간의 부착 및 음극 활물질과 음극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머 고무(EPDM rubber), 술폰화-EPDM, 스티렌-부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 음극 활물질층 총 중량에 대하여 1 내지 30 중량%, 바람직하게는 1 내지 20중량%, 더 바람직하게는 1 내지 10중량%로 포함될 수 있다.
(3) 분리막
상기 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한 없이 사용가능하다. 구체적으로는 상기 분리막으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있다.
리튬 이차 전지
다음으로 본 발명에 따른 리튬 이차 전지에 대해 설명한다.
본 발명에 따른 리튬 이차 전지는 양극판, 음극판, 상기 양극판과 음극판 사이에 개재된 분리막이 일 방향으로 권취된 전극 조립체; 상기 전극 조립체가 수납되는 전지 캔; 및 상기 전지 캔의 개방 단부를 밀봉하는 밀봉체를 포함할 수 있다.
바람직하게는, 본 발명에 따른 리튬 이차 전지는 원통형 전지일 수 있으며, 더 바람직하게는 폼 팩터의 비(원통형전지의 직경을 높이로 나눈 값, 즉 높이(H) 대비 직경(Ф)의 비로 정의됨)가 0.4 이상인 대형 원통형 전지일 수 있다. 여기서, 폼 팩터란, 원통형 전지의 직경 및 높이를 나타내는 값을 의미한다.
본 발명에 따른 원통형 전지는, 예를 들면, 46110 셀(직경 46mm, 높이 110mm, 폼 팩터 비 0.418), 4875 셀(직경 48mm, 높이 75mm, 폼 팩터 비 0.640), 48110 셀(직경 48mm, 높이 110mm, 폼 팩터 비 0.436), 4880 셀(직경 48mm, 높이 80mm, 폼 팩터 비 0.600), 4680셀((직경 46mm, 높이 80mm, 폼 팩터 비 0.575)일 수 있다. 폼 팩터를 나타내는 수치에서 앞의 숫자 2개는 셀의 직경을 나타내고, 그 다음 숫자 2개 또는 3개는 셀의 높이를 나타낸다.
본 발명에 따른 리튬 이차 전지는, 단입자 또는 유사-단입자 형태의 코어를 갖는 양극 활물질을 적용하여 종래에 비해 가스 발생량을 현저하게 감소시켰으며, 이에 따라 폼 팩터의 비가 0.4 이상인 대형 원통형 전지에서도 우수한 안전성을 구현할 수 있다.
한편, 본 발명에 따른 리튬 이차 전지는, 바람직하게는, 전극 탭을 포함하지 않는 탭-리스(Tab-less) 구조의 전지일 수 있으나, 이에 한정되는 것은 아니다.
상기 탭-리스 구조의 전지는, 예를 들면, 양극판 및 음극판이 각각 활물질층이 형성되지 않은 무지부를 포함하고, 전극 조립체의 상단 및 하단에 각각 양극판 무지부 및 음극판 무지부가 위치하고, 상기 양극판 무지부 및 음극판 무지부에 집전 플레이트가 결합되어 있고, 상기 집전 플레이트가 전극 단자와 연결되는 있는 구조일 수 있다.
도 3에는 본 발명의 일 실시예에 따른 탭-리스 구조의 전지의 단면도가 도시되어 있다. 이하, 도 3을 참조하여, 본 발명의 일 실시예에 따른 리튬 이차 전지에 대해 설명한다. 다만, 도 3은 본 발명의 일 실시예를 보여주는 것일 뿐, 본 발명의 원통형 전지의 구조가 도 3에 개시된 범위로 한정되는 것은 아니다.
본 발명의 일 실시예에 따른 전지(140)는 젤리-롤 타입의 전극 조립체(141)와, 상기 전극 조립체(141)가 수납되는 전지 캔(142), 및 상기 전지 캔(142)의 개방 단부를 밀봉하는 밀봉체(143)를 포함한다.
이때, 상기 전극 조립체의 양극판 및 음극판은 각각 활물질층이 형성되지 않은 무지부를 포함하는 것일 수 있으며, 상기 전극 조립체의 상단 및 하단에 각각 양극 무지부 및 음극 무지부가 위치하도록 적층되고 권취될 수 있다. 전극 조립체에 대해서는 상술하였으므로 이하에서는 전극 조립체를 제외한 나머지 구성 요소들에 대해서만 설명하기로 한다.
전지 캔(142)은 상방에 개구부가 형성된 용기로, 알루미늄이나 스틸과 같은 도전성을 갖는 금속 재질로 이루어진다. 전지 캔은 상단 개구부를 통해 내측 공간에 전극 조립체(141)를 수용하며, 전해질도 함께 수용한다.
본 발명에서 사용되는 전해질로는 리튬 이차전지에 사용 가능한 다양한 전해질들, 예를 들면, 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등이 사용될 수 있으며, 그 종류가 특별히 한정되는 것은 아니다.
구체적으로는, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 5.0M, 바람직하게는 0.1 내지 3,0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명 특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 첨가제를 추가로 포함할 수 있다. 예를 들어, 상기 첨가제로는 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사메틸인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등을 단독 또는 혼합하여 사용할 수 있으나, 이에 한정되는 것은 아니다. 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 10중량%, 바람직하게는 0.1 내지 5 중량%로 포함될 수 있다.
전지 캔(142)은 음극판의 무지부(146b)와 전기적으로 연결되며, 외부 전원과 접촉하여 외부 전원으로부터 인가된 전류를 음극판으로 전달하는 음극 단자로 기능한다.
필요에 따라, 상기 전지 캔(142)의 상단에 비딩부(147) 및 크림핑부(148)가 구비될 수 있다. 상기 비딩부(147)는 전지 캔(142)의 외주면 둘레를 D1의 거리까지 압입하여 형성될 수 있다. 비딩부(147)는 전지 캔(142)의 내부에 수용된 전극 조립체(141)가 전지캔(142)의 상단 개구부를 통해 빠져 나오지 못하도록 하며, 밀봉체(143)가 안착되는 지지부로 기능할 수 있다.
상기 크림핑부(148)는 상기 비딩부(147)의 상부에 형성될 수 있으며, 비딩부(147) 상에 배치되는 캡 플레이트(143a)의 외주면과 캡 플레이트(143a)의 상면 일부를 감싸도록 연장 및 절곡된 형태를 갖는다.
다음으로, 상기 밀봉체(143)는, 전지 캔(142)의 개방 단부를 밀봉하기 위한 것으로, 캡 플레이트(143a), 캡 플레이트(143a)와 전지 캔(142) 사이에 기밀성을 제공하며 절연성을 가지는 제1가스켓(143b)을 포함하며, 필요에 따라. 캡 플레이트(143a)와 전기적 및 기계적으로 결합된 연결 플레이트(143c)을 더 포함할 수 있다. 상기 캡 플레이트(143a)는 전지 캔(142)에 형성된 비딩부(147) 상에 압착되며, 크림핑부(148)에 의해 고정될 수 있다.
캡 플레이트(143a)는 전도성을 갖는 금속 재질로 이루어진 부품으로, 전지 캔(142)의 상단 개구부를 커버한다. 캡 플레이트(143a)는 전극 조립체(141)의 양극판과 전기적으로 연결되며, 전지 캔(142)과는 제1가스켓(143b)을 통해 전기적으로 절연된다. 따라서, 캡 플레이트(143a)는 이차 전지의 양극 단자로서 기능할 수 있다. 캡 플레이트(143a)는 그 중심부 C로부터 상방으로 돌출된 형성된 돌출부(143d)를 구비할 수 있으며, 상기 돌출부(143d)가 외부 전원과 접촉하여 외부 전원으로부터 전류가 인가되도록 할 수 있다.
캡 플레이트(143a)와 크림핑부(148) 사이에는 전지 캔(142)의 기밀성을 확보하고, 전지 캔(142)과 캡 플레이트(143a) 사이의 전기적 절연을 위해 제1가스켓(143b)이 개재될 수 있다.
한편, 본 발명에 따른 전지(140)는, 필요에 따라, 집전 플레이트(144, 145)를 더 포함할 수 있다. 상기 집전 플레이트는 양극판 무지부(146a)와 음극판의 무지부(146b)에 결합되며, 전극 단자(즉, 양극 단자 및 음극 단자)와 연결된다.
구체적으로는, 본 발명에 따른 전지(140)는 전극 조립체(141) 상부에 결합되는 제1집전 플레이트(144) 및 전극 조립체(141)의 하부에 결합되는 제2집전 플레이트(145)를 포함할 수 있다.
제1집전 플레이트(144) 및/또는 제2집전 플레이트(145)를 더 포함할 수 있다.
제1집전 플레이트(144)는 전극 조립체(141)의 상부에 결합된다. 제1집전 플레이트(144)는 알루미늄, 구리, 니켈 등과 같은 도전성 금속 재질로 이루어지며, 양극판의 무지부(146a)와 전기적으로 연결된다. 제1집전 플레이트(144)에는 리드(149)가 연결될 수 있다. 리드(149)는 전극 조립체(141)의 상방으로 연장되어 연결 플레이트(143c)에 결합되거나 캡 플레이트(143a)의 하면에 직접 결합될 수 있다. 리드(149)와 다른 부품의 결합은 용접을 통해 이루어질 수 있다. 바람직하게는 제1집전 플레이트(144)는 리드(149)와 일체로 형성될 수 있다. 이 경우, 리드(149)는 제1집전 플레이트(144)의 중심부로부터 외측으로 연장된 길다란 플레이트 형상을 가질 수 있다.
한편, 상기 제1집전 플레이트(144)는 양극판의 무지부(146a)의 단부에 결합되며, 상기 결합은, 예를 들면, 레이저 용접, 저항 용접, 초음파 용접, 솔더링 등의 방법으로 이루어질 수 있다.
제2집전 플레이트(145)는 전극 조립체(141)의 하부에 결합된다. 제2집전 플레이트(145)는 알루미늄, 구리, 니켈 등과 같은 도전성 금속 재질로 이루어지며, 음극판의 무지부(146b)와 전기적으로 연결된다. 제2집전 플레이트(145)의 일면은 음극판의 무지부(146b)와 결합될 수 있으며, 반대쪽 면은 전지 캔(142)의 내측 바닥 면과 결합될 수 있다. 이때, 상기 결합은 레이저 용접, 저항 용접, 초음파 용접, 솔더링 등의 방법으로 이루어질 수 있다.
한편, 본 발명에 따른 전지(140)는, 필요에 따라, 인슐레이터(146)를 더 포함할 수 있다. 인슐레이터(146)는, 제1집전 플레이트(144)의 상면을 커버하도록 배치될 수 있다. 인슐레이터(146)가 제1집전 플레이트(144)을 커버함으로써, 제1집전 플레이트(144)와 전지 캔(142)의 내주면이 직접 접촉되는 것을 방지할 수 있다.
인슐레이터(146)는 제1집전 플레이트(144)로부터 상방으로 연장되는 리드(149)가 인출될 수 있도록 리드 홀(151)을 구비한다. 리드(149)는 리드 홀(151)을 통해 상방으로 인출되어 연결 플레이트(143c)의 하면 또는 캡 플레이트(143a)의 하면에 결합된다.
인슐레이터(146)는 절연성이 있는 고분자 수지, 예를 들면, 폴리에틸렌, 폴리프로필렌, 폴리이미드 또는 폴리부틸렌테레프탈레이트 등과 같은 고분자 수지 재질로 이루어질 수 있다.
한편, 본 발명에 따른 전지(140)는, 필요에 따라, 전지 캔(142)의 하면에 형성된 벤팅부(152)를 더 구비할 수 있다. 벤팅부(152)는 전지 캔(142)의 하면 중 주변 영역과 비교하여 더 얇은 두께를 갖는 영역에 해당한다. 벤팅부(152)는 두께가 얇기 때문에 주변 영역과 비교하여 구조적으로 취약하다. 따라서, 전지(140) 내부의 압력이 일정 수준 이상으로 증가하면 벤팅부(152)가 파열되면서 전지 캔(152) 내부의 가스가 외부로 배출되어 전지가 폭발하는 것을 방지할 수 있도록 해준다.
도 4에는 본 발명의 다른 실시예에 따른 탭-리스 구조의 전지의 단면도가 도시되어 있다. 이하, 도 4을 참조하여, 본 발명의 다른 실시예에 전지에 대해 설명한다. 다만, 도 4는 본 발명의 일 실시예를 보여주는 것일 뿐, 본 발명의 전지의 구조가 도 4에 개시된 범위로 한정되는 것은 아니다.
도 4를 참조하면, 본 발명의 다른 실시예에 따른 전지(170)는 도 3에 도시된 전지(140)와 비교하여 전지 캔 및 밀봉체의 구조가 상이하며, 전극 조립체 및 전해질의 구성은 실질적으로 동일하다.
구체적으로, 상기 전지(170)는 리벳 단자(172)가 관통 설치된 전지 캔(171) 을 포함한다. 리벳 단자(172)는 전지 캔 (171)의 일 말단의 부분적으로 폐쇄된 폐쇄면(도면의 상부면)에 설치된다. 리벳 단자(172)는 절연성이 있는 제2가스켓(173)이 개재된 상태에서 전지 캔 (171)의 관통 홀(제1말단의 제1 개구)에 리벳팅된다. 리벳 단자(172)는 중력 방형과 반대 방향을 향해 외부로 노출된다.
리벳 단자(172)는, 단자 노출부(172a) 및 단자 삽입부(172b)를 포함한다. 단자 노출부(172a)는, 전지 캔(171)의 폐쇄면의 외측으로 노출된다. 단자 노출부(172a)는, 전지 캔(171)의 부분적으로 폐쇄된 면의 대략 중심부에 위치할 수 있다. 단자 노출부(172a)의 최대 지름은 전지 캔(171)에 형성된 관통 홀의 최대 지름보다 더 크게 형성될 수 있다. 단자 삽입부(172b)는, 전지 캔(171)의 폐쇄면의 대략 중심부를 관통하여 양극판의 무지부(146a)와 전기적으로 연결될 수 있다. 단자 삽입부(172b)는, 전지 캔(171)의 내측 면 상에 리벳(rivet) 결합될 수 있다. 즉, 단자 삽입부(172b)의 단부는, 전지 캔(171)의 내측 면을 향해 휘어진 형태를 가질 수 있다. 단자 삽입부(172b)의 단부의 최대 지름은 전지 캔(171)의 관통 홀의 최대 지름보다 더 클 수 있다.
단자 삽입부(172b)의 하단면은 양극판의 무지부(146a)에 연결된 제1집전 플레이트(144)와 용접될 수 있다. 제1집전 플레이트(144)와 전지 캔(171)의 내측면 사이에는 절연 물질로 이루어진 절연 캡(174)이 개재될 수 있다. 절연 캡(174)은 제1집전 플레이트(144)의 상부와 전극 조립체(141)의 상단 가장 자리 부분을 커버한다. 이로써, 전극 조립체(141)의 외주측 무지부(B3)가 다른 극성을 가진 전지 캔(171)의 내측면과 접촉하여 단락을 일으키는 것을 방지할 수 있다. 리벳 단자(172)의 단자 삽입부(172b)는 절연 캡(174)을 관통하여 제1집전 플레이트(144)에 용접될 수 있다.
제2가스켓(173)은 전지 캔(171)과 리벳 단자(172) 사이에 개재되어 서로 반대 극성을 갖는 전지 캔(171)과 리벳 단자(172)가 전기적으로 접촉되는 것을 방지한다. 이로써 대략 플랫(flat)한 형상을 갖는 전지 캔(171)의 상면이 전지(170)의 양극 단자로 기능할 수 있다.
제2가스켓(173)은, 가스켓 노출부(173a) 및 가스켓 삽입부(173b)를 포함한다. 가스켓 노출부(173a)는 리벳 단자(172)의 단자 노출부(172a)와 전지 캔(171) 사이에 개재된다. 가스켓 삽입부(173b)는 리벳 단자(172)의 단자 삽입부(172b)와 전지 캔(171) 사이에 개재된다. 가스켓 삽입부(173b)는, 단자 삽입부(172b)의 리벳팅(reveting) 시에 함께 변형되어 전지 캔(171)의 내측 면에 밀착될 수 있다. 제2가스켓(173)은, 예를 들어 절연성을 갖는 고분자 수지로 이루어질 수 있다.
제2가스켓(173)의 가스켓 노출부(173a)는, 리벳 단자(172)의 단자 노출부(172a)의 외주면을 커버하도록 연장된 형태를 가질 수 있다. 제2가스켓(173)이 리벳 단자(172)의 외주면을 커버하는 경우, 버스바 등의 전기적 연결 부품을 전지 캔(171)의 상면 및/또는 리벳 단자(172)에 결합시키는 과정에서 단락이 발생되는 것을 방지할 수 있다. 도면에 도시되어 있지는 않으나, 가스켓 노출부(173a)는, 단자 노출부(172a)의 외주면뿐만 아니라 상면의 일부도 함께 커버하도록 연장된 형태를 가질 수 있다.
제2가스켓(173)이 고분자 수지로 이루어지는 경우에 있어서, 제2가스켓(173)은 열 융착에 의해 전지 캔(171) 및 리벳 단자(172)와 결합될 수 있다. 이 경우, 제2가스켓(173)과 리벳 단자(172)의 결합 계면 및 제2가스켓(173)과 전지 캔(171)의 결합 계면에서의 기밀성이 강화될 수 있다. 한편, 제2가스켓(173)의 가스켓 노출부(173a)가 단자 노출부(172a)의 상면까지 연장된 형태를 갖는 경우에 있어서, 리벳 단자(172)는 인서트 사출에 의해 제2가스켓(173)과 일체로 결합될 수 있다.
전지 캔(171)의 상면 중에서 리벳 단자(172) 및 제2가스켓(173)이 차지하는 영역을 제외한 나머지 영역(175)이 리벳 단자(172)와 반대 극성을 갖는 음극 단자에 해당한다.
제2집전 플레이트(176)는, 전극 조립체(141)의 하부에 결합된다. 제2집전 플레이트(176)는 알루미늄, 스틸, 구리, 니켈 등의 도전성을 갖는 금속 재질로 이루어지며, 음극판의 무지부(146b)와 전기적으로 연결된다.
바람직하게는, 제2집전 플레이트(176)는, 전지 캔(171)과 전기적으로 연결된다. 이를 위해, 제2집전 플레이트(176)는 가장 자리 부분의 적어도 일부가 전지 캔(171)의 내측면과 제1가스켓(178b) 사이에 개재되어 고정될 수 있다. 일 예에서, 제2집전 플레이트(176)의 가장 자리 부분의 적어도 일부는 전지 캔(171)의 하단에 형성된 비딩부(180)의 하단면에 지지된 상태에서 용접에 의해 비딩부(180)에 고정될 수 있다. 변형예에서, 제2집전 플레이트(176)의 가장자리 부분의 적어도 일부는 전지 캔(171)의 내벽 면에 직접적으로 용접될 수 있다.
제2집전 플레이트(176)는, 무지부(146b)와 대향하는 면 상에 방사상으로 형성된 복수의 요철(미도시)을 구비할 수 있다. 요철이 형성된 경우, 제2집전 플레이트(176)을 눌러서 요철을 무지부(146b)에 압입시킬 수 있다.
바람직하게, 제2집전 플레이트(176)와 무지부(146b)의 단부는 용접, 예컨대 레이저 용접에 의해 결합될 수 있다.
전지 캔(171)의 하부 개방단을 밀봉하는 밀봉체(178)는 캡 플레이트(178a)와 제1가스켓(178b)을 포함한다. 제1가스켓(178b)은 캡 플레이트(178a)와 전지 캔(171)을 전기적으로 분리시킨다. 크림핑부(181)는 캡 플레이트(178a)의 가장자리와 제1가스켓(178b)을 함께 고정시킨다. 캡 플레이트(178a)에는 벤트부(179)가 구비된다. 벤트부(179)의 구성은 상술한 실시예와 실질적으로 동일하다.
바람직하게, 캡 플레이트(178a)는 도전성이 있는 금속 재질로 이루어진다. 하지만, 캡 플레이트(178a)와 전지 캔(171) 사이에 제1가스켓(178b)이 개재되어 있으므로, 캡 플레이트(178a)는 전기적 극성을 띠지 않는다. 밀봉체(178)는 전지 캔(171) 하부의 개방단을 밀봉시키고 배터리 셀(170)의 내부 압력이 임계치 이상 증가하였을 때 가스를 배출시키는 기능을 한다.
바람직하게, 양극판의 무지부(146a)와 전기적으로 연결된 리벳 단자(172)는 양극 단자로 사용된다. 또한, 제2집전 플레이트(176)를 통해 음극판의 무지부(146b)와 전기적으로 연결된 전지 캔(171)의 상부 표면 중에서 리벳 단자(172)를 제외한 부분(175)는 음극 단자로 사용된다. 이처럼, 2개의 전극 단자가 전지의 상부에 위치할 경우, 버스바 등의 전기적 연결 부품을 전지(170)의 일 측에만 배치시키는 것이 가능한다. 이는, 배터리 팩 구조의 단순화 및 에너지 밀도의 향상을 가져올 수 있다. 또한, 음극 단자로 사용되는 부분(175)은 대략 플랫한 형태를 가지므로 버스바 등의 전기적 연결 부품을 접합시키는데 있어서 충분한 접합 면적을 확보할 수 있다. 이에 따라, 전지(170)는 전기적 연결 부품의 접합 부위에서의 저항을 바람직한 수준으로 낮출 수 있다.
리튬 이차 전지를 상기와 같이 탭-리스 구조로 형성할 경우, 전극 탭을 구비한 종래의 전지에 비해 전류 집중이 덜하기 때문에 전지 내부의 발열을 효과적으로 감소시킬 수 있고, 이에 따라 전지의 열 안전성이 개선되는 효과를 얻을 수 있다.
상기와 같은 본 발명의 리튬 이차 전지는 배터리 팩을 제조하는데 사용될 수 있다. 도 6에는 본 발명의 실시예에 따른 배터리 팩의 구성이 개략적으로 도시되어 있다. 도 6을 참조하면, 본 발명의 실시예에 따른 배터리 팩(3)은 이차전지(1)가 전기적으로 연결된 집합체 및 이를 수용하는 팩 하우징(2)을 포함한다. 이차전지(1)는 상술한 실시예에 따른 배터리 셀이다. 도면에서는, 도면 도시의 편의상 이차전지(1)들의 전기적 연결을 위한 버스바, 냉각 유닛, 외부 단자 등의 부품의 도시는 생략되었다.
배터리 팩(3)은 자동차에 탑재될 수 있다. 자동차는 일 예로 전기 자동차, 하이브리드 자동차 또는 플러그인 하이브리드 자동차일 수 있다. 자동차는 4륜 자동차 또는 2륜 자동차를 포함한다.
도 7는 도 6의 배터리 팩(3)을 포함하는 자동차를 설명하기 위한 도면이다.
도 7를 참조하면, 본 발명의 일 실시예에 따른 자동차(5)는 본 발명의 일 실시예에 따른 배터리 팩(3)을 포함하며, 상기 배터리 팩(3)으로부터 전력을 공급받아 동작한다.
이하, 구체적인 실시예를 통해 본 발명을 보다 자세히 설명한다.
실시예 1
유니모달 입도 분포를 가지며, Dmin = 1.78㎛, D50 = 4.23㎛, Dmax=13.1㎛이고, 단입자 및 유사-단입자가 혼합되어 있는 양극 활물질(조성: Li[Ni0.9Co0.06Mn0.03Al0.01]O2 )을 준비하였다.
증류수 기반의 완충 용액(10mM tris buffer solution, pH8.5)와 메탄올을 1:1의 중량 비율로 혼합하여 혼합 용액을 형성하고, 여기에 도파민 하이드로클로라이드(dopamine hydrochloride, Sigma-Aldrich)를 상기 혼합 용액 1mL 당 2mg의 양으로 용해시킨 후 10분동안 교반하여 코팅액을 제조하였다.
상기 코팅액에 양극 활물질을 투입하고 500rpm으로 30분 동안 교반하여 상기 양극 활물질 표면에 자가 중합된 폴리도파민 코팅층을 형성하였다. 그런 다음, 상기 폴리도파민 코팅층이 형성된 양극 활물질을 필터 과정을 통해 아세톤으로 세척하고 60℃ 오븐에서 12시간 건조하였다.
다음으로, 단일벽 탄소나노튜브(TUBALL, OCSiAl) 0.4중량%, 폴리비닐 피롤리돈(분산제) 0.45중량%, 타닌산(분산 안정제) 0.15중량%를 물에 혼합하고, 상기 용액에 폴리도파민 코팅층이 형성된 양극 활물질을 투입하였다. 그런 다음, 상기 용액을 10,000rpm 조건으로 30분간 교반한 뒤, 500℃에서 건조 및 탄화시켜 전도성 나노 물질의 코팅된 양극 활물질을 제조하였다.
상기와 같이 제조된 양극 활물질과, PVDF 바인더를 98 : 2.0의 중량비로 N-메틸피롤리돈 중에서 혼합하여 고형분 함량이 72%인 양극 슬러리를 제조하였다. 상기 양극 슬러리를 60m/min의 코팅 속도로 알루미늄 집전체 시트의 일면에 코팅한 후, 120℃에서 건조한 다음, 2.9ton 선압으로 압연하여 양극판을 제조하였다.
실시예 2
양극 슬러리의 고형분 함량을 74%가 되도록 제조하고, 양극 슬러리의 코팅 속도를 80m/min, 압연 시 선압을 2.8ton으로 변경한 점을 제외하고는, 실시예 1과 동일한 방법으로 양극판을 제조하였다.
비교예 1
유니모달 입도 분포를 가지며, Dmin = 1.78㎛, D50 = 4.23㎛, Dmax=13.1㎛이고, 단입자 및 유사-단입자가 혼합되어 있는 양극 활물질(조성: Li[Ni0.9Co0.06Mn0.03Al0.01]O2 )을 준비하였다.
상기 양극 활물질 : 탄소나노튜브 : PVDF 바인더를 97.3 : 0.7 : 2.0의 중량비로 N-메틸피롤리돈 중에서 혼합하여 고형분 함량이 68%인 양극 슬러리를 제조하였다. 상기 양극 슬러리를 40m/min의 속도로 알루미늄 집전체 시트의 일면에 코팅한 후, 120℃에서 건조한 다음, 4.3ton 선압으로 압연하여 양극판을 제조하였다.
비교예 2
슬러리의 코팅 속도를 60m/min으로 변경한 점을 제외하고는, 비교예 1과 동일한 방법으로 양극판을 제조하였다.
실험예 1: 전극 접착력
실시예 1 ~ 2 및 비교예 1 ~ 2에 의해 제조된 양극판의 전극 접착력을 하기와 같은 방법으로 측정하였다.
양극판을 20 mm X 2.0 mm로 재단한 후, 슬라이드 글라스에 양면 테이프를 붙이고 그 위에 재단된 양극판을 올려 3kg 롤러로 5회 왕복하여 접착시킨 후, UTM(TA 社) 기기를 이용하여 100mm/min으로 당겨 슬라이드 글라스로부터 박리되는 힘을 측정하였다. 이때, 슬라이드 글라스와 전극의 박리 각도는 90°였다. 측정 결과는 표 1에 나타내었다.
실험예 2: 사이클 특성
상기 실시예 1 및 2, 비교예 1에 의해 제조된 양극판과 음극판 사이에 분리막을 개재하여 분리막/양극판/분리막/음극판 순서로 적층한 후 권취하여 젤리-롤 타입의 전극 조립체를 제조하였다. 상기와 같이 제조된 전극 조립체를 원통형 전지 캔에 삽입한 후 전해액을 주입하여 4680 셀을 제조하였다. 비교예 2의 양극판의 경우, 미건조 및 활물질 탈리가 발생하여 셀 제조가 불가능하였다.
이때, 상기 음극판은, 음극 활물질 (graphite : SiO = 95 : 5 중량비 혼합물) : 도전재( super C), : 스티렌-부타디엔 고무(SBR) : 카르복시메틸 셀룰로오스(CMC)를 96 : 2 : 1.5 : 0.5의 중량비로 물 중에서 혼합하여 음극 슬러리를 제조한 후. 상기 음극 슬러리를 구리 집전체 시트의 일면에 도포한 후 150℃에서 건조 후 압연하여 제조하였다.
상기와 같이 제조된 4680 셀을 0.3C으로 4.2V까지 충전한 후, 0.3C으로 2.5V까지 방전하는 것을 1 사이클로 하여 500사이클을 충방전을 수행한 후 용량 유지율을 측정하였다. 측정 결과는 표 1에 나타내었다.
슬러리 고형분
(중량%)
코팅 속도
(m/min)
압연 공정 선압
(ton)
전극 접착력
(gf/20mm)
용량 유지율(%)
실시예 1 72 60 2.9 33 87
실시예 2 74 80 2.8 35 86
비교예 1 68 40 4.3 30 86
비교예 2 68 60 4.3 17 -
상기 표 1에 나타난 바와 같이, 단입자 또는 유사-단입자 형태의 코어 상에 전도성 나노 물질을 포함하는 코팅층이 형성된 양극 활물질을 적용한 실시예 1 및 2의 경우, 양극 슬러리 고형분 함량이 비교예 1 및 2에 비해 높으면서도, 전극 코팅 공정성 및 전극 접착력이 우수하게 나타남을 확인할 수 있다.
<부호의 설명>
10: 양극판, 11: 음극판, 12: 분리막, 20: 집전체, 21, 21a: 활물질층 22, 22a, 22c, 146b: 무지부, 24: 절연층, 140, 170: 전지, 141: 전극 조립체, 142, 171: 전지 캔, 143, 178: 밀봉체, 144: 제1집전 플레이트, 145, 176: 제2집전 플레이트, 146: 인슐레이터, 152: 벤팅부, 172: 리벳 단자, 173: 제2가스켓, 147: 비딩부, 148: 트림핑부, 149: 리드

Claims (21)

  1. 양극판, 음극판, 상기 양극판과 음극판 사이에 개재된 분리막이 일 방향으로 권취된 전극 조립체; 상기 전극 조립체가 수납되는 전지 캔; 및 상기 전지 캔의 개방 단부를 밀봉하는 밀봉체를 포함하는 리튬 이차 전지이며,
    상기 양극판은, 단입자 또는 유사-단입자 형태의 코어 및 상기 코어 상에 형성되고, 전도성 나노 물질을 포함하는 코팅층을 포함하는 양극 활물질을 포함하는 것인 리튬 이차 전지.
  2. 제1항에 있어서,
    상기 코어는 하기 [화학식 1]로 표시되는 리튬 니켈계 산화물인 리튬 이차 전지.
    [화학식 1]
    LiaNibCocM1 dM2 eO2
    상기 화학식 1에서, M1은 Mn, Al 또는 이들의 조합이고, M2는 Zr, W, Ti, Mg, Ca, Sr, 및 Ba이며, 0.8≤a ≤1.2, 0.83≤b<1, 0<c<0.17, 0<d<0.17, 0≤e≤0.1임.
  3. 제1항에 있어서,
    상기 전도성 나노 물질은 탄소나노튜브, 및 탄소나노입자로 이루어진 군으로부터 선택되는 1종 이상인 리튬 이차 전지.
  4. 제1항에 있어서,
    상기 양극 활물질은 Dmin이 1.0㎛ 이상인 리튬 이차 전지.
  5. 제1항에 있어서,
    상기 양극 활물질은 D50이 5㎛ 이하인 리튬 이차 전지.
  6. 제1항에 있어서,
    상기 양극 활물질은 Dmax가 12㎛ 내지 17㎛인 리튬 이차 전지.
  7. 제1항에 있어서,
    상기 양극 활물질은 하기 식 (1)로 표시되는 입도 분포(PSD, Particle Size Distribution)이 3 이하인 리튬 이차 전지.
    식 (1): 입도 분포(PSD) = (Dmax - Dmin)/D50
  8. 제1항에 있어서,
    상기 양극 활물질은 체적 누적 입도 분포 그래프에서 단일 피크(single peak)를 나타내는 유니모달 입도 분포를 갖는 것인 리튬 이차 전지.
  9. 제1항에 있어서,
    상기 양극 활물질은 1차 입자 입경이 0.5㎛ 내지 5㎛인 리튬 이차 전지.
  10. 제1항에 있어서,
    상기 음극판은 실리콘계 음극 활물질을 포함하는 것인 리튬 이차 전지.
  11. 제1항에 있어서,
    상기 음극판은 실리콘계 음극 활물질 및 탄소계 음극 활물질을 포함하는 것인 리튬 이차 전지.
  12. 제11항에 있어서,
    상기 실리콘계 음극 활물질 및 탄소계 음극 활물질은 1 : 99 내지 20 : 80의 중량비로 포함되는 것인 리튬 이차 전지.
  13. 제1항에 있어서,
    상기 리튬 이차 전지는 폼 팩터의 비가 0.4 이상인 원통형 전지인 리튬 이차 전지.
  14. 제13항에 있어서,
    상기 원통형 전지는 46110 셀, 4875 셀, 48110 셀, 4880 셀 또는 4680 셀인 리튬 이차 전지.
  15. 제1항에 있어서,
    상기 양극판 및 음극판은 각각 활물질층이 형성되지 않은 무지부를 포함하고,
    상기 양극판 또는 음극판의 무지부의 적어도 일부가 전극 탭을 정의하는 것인 리튬 이차 전지.
  16. 제15항에 있어서,
    상기 양극판 무지부 및 음극판 무지부는 각각 상기 양극판 및 음극판의 일변 단부에 상기 전극 조립체가 권취되는 방향을 따라 형성되며,
    상기 양극판 무지부 및 음극판 무지부 각각에 집전 플레이트가 결합되어 있고,
    상기 집전 플레이트가 전극 단자와 연결되는 것인 리튬 이차 전지.
  17. 제16항에 있어서,
    상기 양극판 무지부 및 음극판 무지부는 독립적으로 절곡 가능한 복수의 분절편 형태로 가공되고,
    상기 복수의 분절편 중 적어도 일부가 상기 전극 조립체의 권취 중심을 향하여 절곡되어 있는 리튬 이차 전지.
  18. 제17항에 있어서,
    상기 절곡된 복수의 분절편 중 적어도 일부는 상기 전극 조립체의 상단 및 하단 상에서 중첩되어 있고,
    상기 중접된 복수의 분절편 상에 상기 집전 플레이트가 결합되어 있는 리튬 이차 전지.
  19. 제15항에 있어서,
    상기 양극판 상에는, 상기 권취 방향과 평행한 방향을 따라, 양극 활물질층의 일부와 무지부의 일부를 덮고 있는 절연층이 더 형성되어 있는 리튬 이차 전지.
  20. 제1항 내지 제19항 중 어느 한 항의 리튬 이차 전지를 포함하는 전지 팩.
  21. 제20항의 전지 팩을 포함하는 자동차.
PCT/KR2022/015610 2021-10-14 2022-10-14 리튬 이차 전지 WO2023063779A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0136710 2021-10-14
KR20210136710 2021-10-14
KR1020220131651A KR20230053534A (ko) 2021-10-14 2022-10-13 리튬 이차 전지
KR10-2022-0131651 2022-10-13

Publications (1)

Publication Number Publication Date
WO2023063779A1 true WO2023063779A1 (ko) 2023-04-20

Family

ID=85987588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015610 WO2023063779A1 (ko) 2021-10-14 2022-10-14 리튬 이차 전지

Country Status (1)

Country Link
WO (1) WO2023063779A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101637983B1 (ko) * 2014-01-28 2016-07-12 주식회사 엘지화학 표면 코팅된 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
KR20190139033A (ko) * 2018-06-07 2019-12-17 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20200041625A (ko) * 2018-10-12 2020-04-22 삼성에스디아이 주식회사 이차전지
KR20200059164A (ko) * 2018-11-20 2020-05-28 주식회사 엘지화학 리튬 이차전지용 양극 활물질 및 이의 제조 방법
KR20210093173A (ko) * 2020-01-17 2021-07-27 스미또모 가가꾸 가부시끼가이샤 전고체 리튬 이온 전지용 정극 활물질, 전극 및 전고체 리튬 이온 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101637983B1 (ko) * 2014-01-28 2016-07-12 주식회사 엘지화학 표면 코팅된 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
KR20190139033A (ko) * 2018-06-07 2019-12-17 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20200041625A (ko) * 2018-10-12 2020-04-22 삼성에스디아이 주식회사 이차전지
KR20200059164A (ko) * 2018-11-20 2020-05-28 주식회사 엘지화학 리튬 이차전지용 양극 활물질 및 이의 제조 방법
KR20210093173A (ko) * 2020-01-17 2021-07-27 스미또모 가가꾸 가부시끼가이샤 전고체 리튬 이온 전지용 정극 활물질, 전극 및 전고체 리튬 이온 전지

Similar Documents

Publication Publication Date Title
WO2021029652A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019151831A1 (ko) 리튬 이차전지용 절연층 형성용 조성물 및 이를 이용한 리튬 이차전지용 전극의 제조방법
WO2019164319A1 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 상기 리튬 이차전지용 음극을 포함하는 리튬 이차전지
WO2021101188A1 (ko) 음극 및 이를 포함하는 이차전지
WO2020116858A1 (ko) 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 이차전지용 양극
WO2019117531A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2020262890A1 (ko) 음극 및 이를 포함하는 이차전지
WO2020149679A1 (ko) 리튬 이차전지 및 이의 제조방법
WO2021187907A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2021015511A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 제조 방법에 의해 제조된 양극 활물질
WO2021049918A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2021172857A1 (ko) 이차전지의 제조방법
WO2021107684A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 방법에 의해 제조된 리튬 이차전지용 양극 활물질
WO2022055308A1 (ko) 음극재, 이를 포함하는 음극 및 이차전지
WO2021060811A1 (ko) 이차전지의 제조방법
WO2021194260A1 (ko) 음극의 제조방법
WO2022149951A1 (ko) 양극 활물질의 제조방법 및 양극 활물질
WO2021029650A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2021015488A1 (ko) 이차전지의 제조방법
WO2023063779A1 (ko) 리튬 이차 전지
WO2022182162A1 (ko) 양극 활물질, 이를 포함하는 양극 및 이차 전지
WO2021060803A1 (ko) 전지 시스템, 이의 사용방법, 및 이를 포함하는 전지 팩
WO2022010225A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2023063783A1 (ko) 리튬 이차 전지
WO2023063787A1 (ko) 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22881406

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022881406

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022881406

Country of ref document: EP

Effective date: 20240514