WO2021060803A1 - 전지 시스템, 이의 사용방법, 및 이를 포함하는 전지 팩 - Google Patents

전지 시스템, 이의 사용방법, 및 이를 포함하는 전지 팩 Download PDF

Info

Publication number
WO2021060803A1
WO2021060803A1 PCT/KR2020/012772 KR2020012772W WO2021060803A1 WO 2021060803 A1 WO2021060803 A1 WO 2021060803A1 KR 2020012772 W KR2020012772 W KR 2020012772W WO 2021060803 A1 WO2021060803 A1 WO 2021060803A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
secondary battery
positive electrode
battery
Prior art date
Application number
PCT/KR2020/012772
Other languages
English (en)
French (fr)
Inventor
김영재
유정우
김예린
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP20869705.2A priority Critical patent/EP4002546A4/en
Priority to US17/635,254 priority patent/US20220285744A1/en
Priority to CN202080057376.XA priority patent/CN114270571A/zh
Priority to JP2022514578A priority patent/JP7507849B2/ja
Publication of WO2021060803A1 publication Critical patent/WO2021060803A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery system, a method of using the same, and a battery pack including the same.
  • Batteries are widely used not only in mobile devices such as mobile phones, laptop computers, smart phones, and smart pads, but also in various fields such as electric vehicles (EV, HEV, PHEV) and large-capacity power storage devices (ESS).
  • EV electric vehicles
  • HEV HEV
  • PHEV PHEV
  • ESS large-capacity power storage devices
  • a battery can be mounted in an appliance or device, typically as one or more battery modules or battery packs.
  • One or more secondary batteries are provided in such a battery, and in addition to the secondary battery, electronic equipment such as a battery management system (BMS) or a case may be further provided.
  • BMS battery management system
  • the secondary battery refers to a battery capable of charging and discharging, unlike a primary battery that cannot be charged.
  • lithium secondary batteries are in the spotlight as a driving power source for portable devices because they are lightweight and have high energy density. Accordingly, research and development efforts for improving the performance of lithium secondary batteries are being actively conducted.
  • a lithium secondary battery includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, an electrolyte, an organic solvent, and the like.
  • an active material layer including a positive electrode active material or a negative electrode active material may be formed on the current collector.
  • lithium-containing metal oxides such as LiCoO 2 and LiMn 2 O 4 are generally used as a positive electrode active material. Accordingly, a carbon-based active material and a silicon-based active material not containing lithium are used as the negative electrode active material in the negative electrode.
  • a silicon-based active material is attracting attention because it has a capacity of about 10 times higher than that of a carbon-based active material, and due to its high capacity, a high energy density can be realized even with a thin electrode.
  • the silicon-based active material is not generally used due to the problem of volume expansion due to charging and discharging and thus deterioration of lifespan characteristics.
  • Korean Patent Laid-Open Publication No. 10-2017-0074030 relates to a negative active material for a lithium secondary battery, a method for manufacturing the same, and a lithium secondary battery including the same, and discloses a negative active material including a porous silicon-carbon composite. There is a limit to solving it.
  • An object of the present invention is to provide a battery system that exhibits improved capacity, energy density, and lifespan characteristics by controlling a driving voltage range of a secondary battery.
  • Another object of the present invention is to provide a method of using a battery system exhibiting improved capacity, energy density, and lifespan characteristics by adjusting the driving voltage range of a secondary battery.
  • Another object of the present invention is to provide a battery pack including the battery system.
  • the present invention includes at least one secondary battery including a negative electrode including a silicon-based active material, a positive electrode facing the negative electrode, a separator interposed between the negative electrode and the positive electrode, and an electrolyte; And a control unit for setting a driving voltage range during charging and discharging of the secondary battery, wherein the maximum driving voltage of the secondary battery set by the control unit is 4.00V to 4.08V, and the minimum driving of the secondary battery A battery system with a voltage of 2.98V to 3.07V is provided.
  • the present invention comprises the steps of manufacturing a battery system including at least one secondary battery and a control unit for setting a driving voltage range during charging and discharging of the secondary battery; And setting a driving voltage range such that the maximum driving voltage of the secondary battery is 4.00V to 4.08V and the minimum driving voltage is 2.98V to 3.07V through the control unit, thereby charging and discharging the secondary battery in at least one cycle.
  • the secondary battery provides a method of using a battery system including a negative electrode including a silicon-based active material, a positive electrode facing the negative electrode, a separator interposed between the negative electrode and the positive electrode, and an electrolyte.
  • the present invention provides a battery pack including the battery system described above.
  • the battery system of the present invention includes a secondary battery including a silicon-based active material, a control unit capable of setting the driving voltage range of the secondary battery to a specific range, and charging and discharging the secondary battery in the driving voltage range set by the control unit. I can make it. Accordingly, the battery system of the present invention can prevent volume expansion of the silicon-based active material to a desirable level, thereby improving lifespan performance and at the same time having a high energy density.
  • the degree of volume expansion of the silicon-based active material is reduced to an appropriate level, thereby improving life performance. It is possible to drive the battery system so that it can be remarkably improved and at the same time exhibit a high energy density.
  • the average particle diameter (D 50 ) may be defined as a particle diameter corresponding to 50% of the cumulative volume in the particle diameter distribution curve of the particles.
  • the average particle diameter (D 50 ) can be measured using, for example, a laser diffraction method.
  • the laser diffraction method can measure a particle diameter of about several mm from a submicron region, and high reproducibility and high resolution results can be obtained.
  • the present invention relates to a battery system, and specifically, to a battery system for a lithium secondary battery.
  • the battery system of the present invention includes at least one secondary battery including a negative electrode including a silicon-based active material, a positive electrode facing the negative electrode, a separator interposed between the negative electrode and the positive electrode, and an electrolyte; And a control unit for setting a driving voltage range during charging and discharging of the secondary battery, wherein the maximum driving voltage of the secondary battery set by the control unit is 4.00V to 4.08V, and the minimum driving of the secondary battery The voltage is 2.98V to 3.07V.
  • the secondary battery can be operated by charging and discharging in a voltage range of 4.3 ⁇ 2.5V.
  • a negative electrode and a secondary battery including a silicon-based active material when charging and discharging are performed within the above range, the degree of volume expansion/contraction of the silicon-based active material is excessive, resulting in a rapid deterioration in life performance. To prevent this, when the voltage range is narrowed during charging and discharging of the secondary battery, the required energy density cannot be satisfied.
  • the present invention sets the driving voltage range during charging and discharging of the secondary battery to a specific range, thereby preventing the volume expansion/contraction of the silicon-based active material to an appropriate level, thereby remarkably improving the lifespan of the battery and at the same time high energy density. Can achieve.
  • the secondary battery includes a negative electrode including a silicon-based active material, a positive electrode facing the negative electrode, a separator interposed between the negative electrode and the positive electrode, and an electrolyte.
  • the negative electrode includes a silicon-based active material, and the driving voltage range during charging and discharging, which will be described later, is adjusted, thereby preventing volume expansion/contraction of the silicon-based active material, and can preferably exhibit high capacity and energy density of the silicon-based active material.
  • the negative electrode may include a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector, and the negative electrode active material layer may include the silicon-based active material.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes to the battery.
  • the negative electrode current collector copper, stainless steel, aluminum, nickel, titanium, calcined carbon, surface-treated copper, nickel, titanium, silver, etc. on the surface of copper or stainless steel, aluminum-cadmium alloy, etc. may be used. I can.
  • the thickness of the negative electrode current collector may be 3 to 500 ⁇ m, preferably 5 to 50 ⁇ m, and preferably 7 to 20 ⁇ m to implement a thin film of a silicon-based active material-containing negative electrode.
  • the negative electrode current collector may increase the bonding strength of the negative electrode active material by forming fine irregularities on the surface.
  • the negative electrode current collector may be used in various forms such as a film, a sheet, a foil, a net, a porous material, a foam, and a nonwoven fabric.
  • the silicon-based active material may include a compound represented by SiO x (0 ⁇ x ⁇ 2).
  • SiO x is preferably within the above range.
  • the silicon-based active material may be Si.
  • Si is advantageous in that its capacity is about 2.5 to 3 times higher than that of silicon oxide (for example, SiO x (0 ⁇ x ⁇ 2)), but the degree of volume expansion/contraction due to charging and discharging of Si is Since it is much larger than the case, it is not easy to commercialize it.
  • the volume expansion/contraction of Si is minimized, so that the problem of deterioration in life characteristics can be effectively solved.
  • the advantage of the characteristic can be more preferably implemented.
  • the average particle diameter (D 50 ) of the silicon-based active material is structural stability of the active material during charging and discharging, and a conductive network for maintaining electrical conductivity can be formed more smoothly, or a binder for binding the active material and the current collector and In terms of making it easier to access, it may be 1 ⁇ m to 10 ⁇ m, preferably 1.5 ⁇ m to 4 ⁇ m.
  • the silicon-based active material minimizes the effect of volume expansion/contraction of the silicon-based active material on the battery, and in terms of sufficiently realizing the high capacity of the silicon-based active material in the secondary battery, it is preferably 60% to 90% by weight in the negative electrode active material layer. It may be included in 70% by weight to 80% by weight.
  • the negative active material layer may further include a conductive material and/or a binder together with the silicon-based active material.
  • the binder may be used to improve adhesion between the negative electrode active material layer and a negative electrode current collector, which will be described later, or to improve adhesion between the silicon-based active material.
  • the binder further improves electrode adhesion and provides sufficient resistance to volume expansion/contraction of a silicone-based active material, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber. ), acrylic rubber, butyl rubber, fluoro rubber, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinyl alcohol (PVA: polyvinyl alcohol), polyacrylic acid (PAA), polyethylene glycol (PEG), polyacrylonitrile (PAN), and at least one selected from the group consisting of polyacryl amide (PAM).
  • SBR styrene butadiene rubber
  • acrylic rubber butyl rubber, fluoro rubber
  • polyvinyl alcohol carboxymethylcellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose
  • PVA polyvinyl alcohol
  • PAA polyacrylic acid
  • PEG polyethylene glycol
  • PAN polyacrylonitrile
  • the binder has high strength, has excellent resistance to volume expansion/contraction of the silicone-based active material, and provides excellent flexibility to the binder to prevent distortion and warpage of the electrode. It may include at least one selected from the group consisting of acrylic acid, polyacrylonitrile and polyacrylamide, preferably polyvinyl alcohol and polyacrylic acid.
  • the binder contains polyvinyl alcohol and polyacrylic acid, polyvinyl alcohol and polyacrylic acid are in a weight ratio of 50:50 to 90:10, preferably 55:45 to 80:20 in terms of further improving the above-described effect. It may be included in the binder in a weight ratio of.
  • the binder is better dispersed in an aqueous solvent such as water when preparing the slurry for forming the negative active material layer, and in order to improve the binding strength by more smoothly covering the active material, hydrogen in the binder is converted into Li, Na, or Ca. It may include substituted ones.
  • the binder may be included in an amount of 5% to 30% by weight, preferably 10% to 20% by weight in the negative active material layer, and when within the above range, the silicone-based active material is better bound to minimize the problem of volume expansion of the active material. At the same time, it is possible to facilitate dispersion of the binder when preparing a slurry for forming a negative active material layer, and improve coating properties and phase stability of the slurry.
  • the conductive material may be used to assist and improve the conductivity of the secondary battery, and is not particularly limited as long as it has conductivity without causing a chemical change.
  • the conductive material may include graphite such as natural graphite or artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, Parnes black, lamp black, and thermal black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; And at least one selected from the group consisting of polyphenylene derivatives, and preferably carbon black in terms of implementing high conductivity.
  • the conductive material facilitates dispersion of the conductive material when preparing a slurry for forming a negative electrode active material layer, and in terms of further improving electrical conductivity, the specific surface area of the conductive material is 80 m 2 /g to 200 m 2 /g, preferably 100 m 2 /g to 150m 2 /g may be.
  • the conductive material may be included in 5% to 20% by weight, preferably 7% to 15% by weight, in the negative active material layer, and in the above range, it is possible to form an excellent conductive network while mitigating the increase in resistance due to the binder. It is preferable in that there is.
  • the thickness of the negative active material layer may be 35 ⁇ m to 50 ⁇ m, preferably 36 ⁇ m to 45 ⁇ m, in terms of implementing a thin film electrode and implementing a high energy density.
  • the energy density of the negative electrode may be 575Wh/L or more, preferably 600Wh/L.
  • the battery system of the present invention solves the problem of volume expansion/contraction of the silicon-based active material through the adjustment of the above-described maximum driving voltage and minimum driving voltage, while realizing high energy density.
  • the negative electrode may be prepared by coating a negative electrode slurry including a negative electrode active material and optionally a binder, a conductive material, and a solvent for forming a negative electrode slurry on the negative electrode current collector, followed by drying and rolling.
  • the solvent for forming the negative electrode slurry is, for example, in terms of facilitating dispersion of the negative electrode active material, the binder and/or the conductive material, at least one selected from the group consisting of distilled water, ethanol, methanol, and isopropyl alcohol, preferably distilled water.
  • the negative electrode slurry-forming solvent has a negative electrode active material and, optionally, a solid content including a binder and a conductive material, in consideration of the viscosity, coatability, and dispersibility of the negative electrode slurry, 15% to 45% by weight, preferably 20 It may be included in the negative electrode slurry so that it may be in the range of from 24% to 27% by weight, more preferably from 24% to 27% by weight.
  • the positive electrode faces the negative electrode.
  • the positive electrode may include a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector.
  • the positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the negative electrode current collector may be copper, stainless steel, aluminum, nickel, titanium, calcined carbon, a surface-treated copper or stainless steel surface with carbon, nickel, titanium, silver, etc., aluminum-cadmium alloy, etc. have.
  • the positive electrode current collector may generally have a thickness of 3 to 500 ⁇ m.
  • the positive electrode current collector may form fine irregularities on the surface to enhance the bonding strength of the negative active material.
  • the negative electrode current collector may be used in various forms such as a film, a sheet, a foil, a net, a porous material, a foam, and a nonwoven fabric.
  • the positive active material layer may include a positive active material.
  • the positive electrode active material is a compound capable of reversible intercalation and deintercalation of lithium, specifically, a lithium transition metal composite oxide containing lithium and at least one kind of transition metal consisting of nickel, cobalt, manganese, and aluminum. Can include.
  • lithium-manganese-based oxides eg, LiMnO 2 , LiMn 2 O 4, etc.
  • lithium-cobalt-based oxides eg, LiCoO 2, etc.
  • lithium-nickel-based oxides Oxide e.g., LiNiO 2
  • lithium-nickel-manganese oxide e.g., LiNi 1-Y Mn Y O 2 (here, 0 ⁇ Y ⁇ 1), LiMn 2-z Ni z O 4 (Here, 0 ⁇ Z ⁇ 2), etc.
  • lithium-nickel-cobalt oxide e.g., LiNi 1-Y1 Co Y1 O 2 (here, 0 ⁇ Y1 ⁇ 1), etc.
  • lithium-manganese- Cobalt oxide e.g., LiCo 1-Y2 Mn Y2 O 2 (here, 0 ⁇ Y2 ⁇ 1), LiMn 2-z1 Co z1 O 4 (here, 0 ⁇ Z1 ⁇
  • the lithium transition metal composite oxide is LiCoO 2 , LiMnO 2 , LiNiO 2 , lithium nickel-manganese-cobalt oxide (e.g., Li(Ni 0.6 Mn 0.2 Co 0.2 )O 2 , Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 , Li(Ni 0.7 Mn 0.15 Co 0.15 )O 2 or Li(Ni 0.8 Mn 0.1 Co 0.1 )O 2 etc.), or lithium nickel cobalt aluminum oxide (e.g.
  • the lithium transition metal is the remarkable improvement effect by controlling the type and content ratio of the constituent elements forming the lithium transition metal complex oxide.
  • Complex oxides are Li(Ni 0.6 Mn 0.2 Co 0.2 )O 2 , Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 , Li(Ni 0.7 Mn 0.15 Co 0.15 )O 2 or Li(Ni 0.8 Mn 0.1 Co 0.1 )O 2 And the like, and any one or a mixture of two or more of them may be used.
  • the lithium transition metal composite oxide may include a transition metal including nickel, cobalt, and manganese and lithium, and in this case, life characteristics and energy density may be remarkably improved in the driving voltage range of a battery system to be described later. .
  • the positive electrode active material may be included in an amount of 80% to 99% by weight, preferably 92% to 98.5% by weight, in the positive electrode active material layer in consideration of exhibiting sufficient capacity of the positive electrode active material.
  • the positive active material layer may further include a binder and/or a conductive material together with the above-described positive active material.
  • the binder is a component that aids in the binding of the active material and the conductive material to the binding of the current collector, and specifically, polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose. Woods, recycled cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber and fluorine rubber It may include at least one selected, preferably polyvinylidene fluoride.
  • the binder may be included in an amount of 1% to 20% by weight, preferably 1.2% to 10% by weight, in the positive electrode active material layer in terms of sufficiently securing binding strength between components such as a positive electrode active material.
  • the conductive material may be used to assist and improve the conductivity of the secondary battery, and is not particularly limited as long as it has conductivity without causing a chemical change.
  • the conductive material may include graphite such as natural graphite or artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, Parnes black, lamp black, and thermal black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; And at least one selected from the group consisting of polyphenylene derivatives, and preferably carbon black in terms of improving conductivity.
  • the conductive material facilitates dispersion of the conductive material when preparing a slurry for forming a positive electrode active material layer, and in terms of further improving electrical conductivity, the specific surface area of the conductive material is 80 m 2 /g to 200 m 2 /g, preferably 100 m 2 /g to 150m 2 /g may be.
  • the conductive material may be included in an amount of 1% to 20% by weight, preferably 1.2% to 10% by weight, in the positive electrode active material layer in terms of sufficiently securing electrical conductivity.
  • the thickness of the positive electrode active material layer is 30 ⁇ m to 400 ⁇ m, preferably 50 ⁇ m to 110 ⁇ m in terms of minimizing the effect of volume expansion/contraction of the silicon-based active material in the negative electrode, taking into account the balance of capacity between the negative electrode and the positive electrode. I can.
  • the positive electrode may be prepared by coating a positive electrode slurry including a positive electrode active material and optionally a binder, a conductive material, and a solvent for forming a positive electrode slurry on the positive electrode current collector, followed by drying and rolling.
  • the solvent for forming the positive electrode slurry may include an organic solvent such as NMP (N-methyl-2-pyrrolidone), and is used in an amount having a desirable viscosity when the positive electrode active material and optionally a binder and a conductive material are included.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode slurry forming solvent is the positive electrode slurry so that the concentration of the solid content including the positive electrode active material, and optionally a binder and a conductive material is 50% to 95% by weight, preferably 70% to 90% by weight.
  • the secondary battery may have an N/P ratio calculated by Equation 1 below of 1.5 to 3.5, more preferably 1.8 to 2.3.
  • N/P ratio Discharge capacity per unit area of cathode/Discharge capacity per unit area of anode.
  • the "discharge capacity per unit area” means the discharge capacity per unit area in the first cycle of the cathode or anode.
  • the discharge capacity per unit area of the negative electrode can be obtained by the following method. Specifically, a half-cell is manufactured with a negative electrode sample including a negative electrode active material and a counter electrode (for example, a lithium metal electrode) facing the negative electrode sample. The discharge capacity measured by charging and discharging the half-cell is divided by the weight of the negative electrode active material to obtain “discharge capacity of the negative electrode sample per unit weight of the negative electrode active material”.
  • a secondary battery is manufactured with a negative electrode containing the same negative electrode active material as the negative electrode active material used in the half-cell and a positive electrode including the positive electrode active material.
  • the discharge capacity per unit area of the negative electrode can be obtained by multiplying the “discharge capacity of the negative electrode sample per unit weight of the negative electrode active material” by the weight of the negative electrode active material included in the secondary battery and dividing this by the area of the negative electrode included in the secondary battery. have.
  • the discharge capacity per unit area of the positive electrode can be obtained by the following method. Specifically, a half-cell is manufactured with a positive electrode sample including a positive electrode active material and a counter electrode (for example, a lithium metal electrode) facing the negative electrode sample. The discharge capacity measured by charging and discharging the half-cell is divided by the weight of the positive electrode active material to obtain “discharge capacity of the positive electrode sample per unit weight of the positive electrode active material”.
  • a secondary battery is manufactured with a positive electrode containing the same positive electrode active material as the positive electrode active material used in the half-cell and a negative electrode including the negative electrode active material.
  • the discharge capacity per unit area of the positive electrode can be obtained by multiplying the “discharge capacity of the positive electrode sample per unit weight of the positive electrode active material” by the weight of the positive electrode active material included in the secondary battery and dividing this by the area of the positive electrode included in the secondary battery. have.
  • the discharge capacity of the negative electrode is designed to be greater than the discharge capacity of the positive electrode to a certain level.
  • the ratio of the lithium to the total silicon-based active material in the negative electrode may be reduced. Accordingly, the use ratio of the silicon-based active material in the negative electrode is reduced to a specific level, and accordingly, deterioration of lifespan characteristics due to volume expansion in the negative electrode at the overall battery level can be minimized.
  • the N/P ratio to the above-described level, the deterioration of the life characteristics of the battery due to the above-described volume expansion is minimized, and the secondary battery having high energy density, rate characteristics, and capacity characteristics due to the silicon-based active material. It can be implemented.
  • the separator separates the negative electrode and the positive electrode and provides a path for lithium ions to move, and can be used without particular limitation as long as it is used as a separator in a general lithium secondary battery. It is desirable to be excellent.
  • a porous polymer film for example, a porous polymer film made of polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these A laminate structure of two or more layers of may be used.
  • a conventional porous nonwoven fabric for example, a nonwoven fabric made of a high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used, and optionally, a single layer or a multilayer structure may be used.
  • electrolytes used in the present invention include organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel polymer electrolytes, solid inorganic electrolytes, molten inorganic electrolytes, etc. that can be used in the manufacture of secondary batteries, and are limited thereto. It is not.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of a battery can move.
  • examples of the organic solvent include ester solvents such as methyl acetate, ethyl acetate, gamma-butyrolactone, and ⁇ -caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Carbonate solvents such as dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), ethylene carbonate (EC), and propylene carbonate (PC); Alcohol solvents such as ethyl alcohol and isopropyl alcohol; Nitriles such as R-CN (R is a C2 to C20 linear, branched or cyclic hydrocarbon group, and may contain a double bonded aromatic
  • carbonate-based solvents are preferable, and cyclic carbonates having high ionic conductivity and high dielectric constant (e.g., ethylene carbonate or propylene carbonate, etc.), which can increase the charging/discharging performance of the battery, and low-viscosity linear carbonate-based compounds (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • cyclic carbonate and the chain carbonate are mixed in a volume ratio of about 1:1 to about 1:9, the electrolyte may exhibit excellent performance.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 , LiCl, LiI, or LiB(C 2 O 4 ) 2 and the like may be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is within the above range, since the electrolyte has an appropriate conductivity and viscosity, excellent electrolyte performance can be exhibited, and lithium ions can move effectively.
  • One or more secondary batteries may be included in the battery system.
  • the secondary battery may be included in the battery system in the form of a secondary battery cell made of one secondary battery or a secondary battery module that is an assembly of a plurality of secondary batteries.
  • the secondary battery may be manufactured by interposing a separator between the negative electrode and the positive electrode, and then injecting an electrolyte solution according to a conventional method of manufacturing a secondary battery.
  • the control unit may set a driving voltage range during charging and discharging of the secondary battery. Accordingly, charging and discharging of the secondary battery may be performed in the range of the driving voltage of the secondary battery set by the control unit.
  • the control unit is not particularly limited as long as it can control a driving voltage range during charging and discharging of the secondary battery, and may be, for example, an electrochemical charge/discharger.
  • the control unit may be embedded in a battery management system (BMS) included in a battery pack.
  • BMS battery management system
  • the maximum driving voltage of the secondary battery set by the control unit is 4.00V to 4.08V, and the minimum driving voltage of the secondary battery is 2.98V to 3.07V. Charging and discharging of the secondary battery may be performed in a range from the set maximum driving voltage to the minimum driving voltage.
  • the maximum driving voltage is less than 4.00V
  • the energy density may not be achieved at the required level as the driving voltage range is narrowed.
  • the maximum driving voltage is more than 4.08V
  • the volume of the silicon-based active material increases as the capacity exerted to the active material increases. Since the expansion is not sufficiently controlled, the life performance can be drastically deteriorated.
  • the minimum driving voltage is less than 2.98V, separation between particles occurs due to shrinkage of the active material, and there is a fear that the conductive connection between the active materials may be disconnected, so life performance may be rapidly deteriorated, and when the minimum driving voltage is more than 3.07V As the drive voltage range narrows, the energy density may not be achieved at the required level.
  • the maximum driving voltage of the secondary battery set by the control unit may be 4.03V to 4.07V, and the minimum driving voltage of the secondary battery may be 3.03V to 3.06V, and in the above range, the above-described life characteristics and energy
  • the effect of simultaneously improving the density may be more preferably implemented.
  • the present invention provides a method of using a battery system, more specifically, a method of using the aforementioned battery system.
  • the method of using the battery system may be a method of using a battery system for a lithium secondary battery.
  • the method of using the battery system of the present invention comprises the steps of: manufacturing a battery system including at least one secondary battery and a control unit for setting a driving voltage range during charging and discharging of the secondary battery; And setting a driving voltage range such that the maximum driving voltage of the secondary battery is 4.00V to 4.08V and the minimum driving voltage is 2.98V to 3.07V through the control unit, thereby charging and discharging the secondary battery in at least one cycle.
  • the secondary battery includes a negative electrode including a silicon-based active material, a positive electrode facing the negative electrode, a separator interposed between the negative electrode and the positive electrode, and an electrolyte.
  • the method of using the battery system of the present invention sets the maximum driving voltage and the minimum driving voltage to the above-described levels through a control unit, and operates the battery system by charging and discharging the secondary battery from the set maximum driving voltage to the minimum driving voltage. .
  • the secondary battery in which charging and discharging is performed by adjusting the driving voltage range to the above-described level, minimizes volume expansion/contraction of the silicon-based active material, thereby improving life performance and achieving high energy density.
  • the secondary battery and the control unit may be the same as the secondary battery and the control unit described above.
  • the present invention provides a battery pack including the battery system described above.
  • the battery pack may further include a configuration known in the art, for example, a battery management system (BMS), a cooling system, and the like.
  • BMS battery management system
  • the battery system or battery pack according to the present invention is useful in the field of portable devices such as mobile phones, notebook computers, and digital cameras, and electric vehicles such as hybrid electric vehicles (HEVs).
  • the battery system or battery pack may be preferably applied to a power source requiring high output and large capacity, such as an electric vehicle, a hybrid electric vehicle, and a power storage device.
  • a silicon-based active material Si (average particle diameter (D 50 ): 3.5 ⁇ m) as a negative electrode active material, carbon black (product name: Super C65, manufacturer: Timcal) as a conductive material, and polyvinyl alcohol and polyacrylic acid as a binder in a weight ratio of 66:34.
  • a mixture (weight average molecular weight: about 360,000 g/mol) was added to distilled water as a solvent for forming a negative electrode slurry in a weight ratio of 75:10:15 to prepare a negative electrode slurry (solid content concentration: 25% by weight).
  • the negative electrode slurry was coated on one surface of a copper current collector (thickness: 8 ⁇ m) with a loading amount of 68.4 mg/25 cm 2 , rolled, and dried in a vacuum oven at 130° C. for 10 hours.
  • a negative electrode active material layer (thickness: 44 ⁇ m) was formed to prepare a negative electrode (negative electrode thickness: 52 ⁇ m).
  • LiNi 0.6 Co 0.2 Mn 0.2 O 2 (average particle diameter (D 50 ): 10 ⁇ m) as a positive electrode active material, carbon black (product name: Super C65, manufacturer: Timcal) as a conductive material, and polyvinylidene fluoride (PVdF) as a binder.
  • a positive electrode slurry was prepared by adding to N-methyl-2-pyrrolidone (NMP) as a solvent for forming a positive electrode slurry in a weight ratio of 97:1.5:1.5 (solid content concentration 72% by weight).
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode slurry was coated on one surface of an aluminum current collector (thickness: 12 ⁇ m) with a loading amount of 459.4 mg/25 cm 2 , rolled, and dried in a vacuum oven at 130° C. for 10 hours.
  • a positive electrode active material layer (thickness: 110 ⁇ m) was formed to prepare a positive electrode (anode thickness: 122 ⁇ m).
  • a polyethylene/polypropylene/polyethylene separator was interposed between the negative electrode and the positive electrode prepared above, and an electrolyte was injected to prepare a secondary battery of Preparation Example 1.
  • vinylene carbonate was added to an organic solvent in which fluoroethylene carbonate (FEC) and diethyl carbonate (DMC) were mixed in a volume ratio of 30:70 in an amount of 3% by weight based on the total weight of the electrolyte, and LiPF 6 as a lithium salt What was added at a concentration of 1M was used.
  • FEC fluoroethylene carbonate
  • DMC diethyl carbonate
  • the negative electrode prepared above was cut into a predetermined size to prepare a negative electrode sample.
  • a lithium metal electrode having the same size as that of the negative electrode sample was prepared, and it was opposed to the negative electrode sample.
  • an electrolyte was injected to prepare a coin-type half-cell.
  • an organic solvent in which ethylene carbonate and ethyl methyl carbonate were mixed in a volume ratio of 50:50 was added with LiPF 6 as a lithium salt at a concentration of 1 M.
  • the discharge capacity obtained by charging/discharging the coin-type half-cell at 0.1 C was divided by the weight of the negative active material included in the negative electrode sample, and the discharge capacity of the negative electrode sample per unit weight of the negative active material was obtained.
  • the positive electrode prepared above was cut into a predetermined size to prepare a positive electrode sample.
  • a lithium metal electrode having the same size as the positive electrode sample was prepared, and it was opposed to the positive electrode sample.
  • an electrolyte was injected to prepare a coin-type half-cell.
  • an organic solvent in which ethylene carbonate and ethyl methyl carbonate were mixed in a volume ratio of 50:50 was added with LiPF 6 as a lithium salt at a concentration of 1 M.
  • the discharge capacity obtained by charging/discharging the coin-type half-cell at 0.1C was divided by the weight of the positive electrode active material included in the positive electrode sample, and the discharge capacity of the positive electrode sample per unit weight of the positive electrode active material was obtained.
  • the discharge capacity of the negative electrode sample per unit weight of the negative electrode active material measured above is multiplied by the weight of the negative electrode active material of the secondary battery prepared in Preparation Example 1 and divided by the negative electrode area to obtain the discharge capacity per unit area of the negative electrode of Preparation Example 1. I did.
  • the discharge capacity per unit area of the positive electrode of Preparation Example 1 was obtained by multiplying the discharge capacity of the positive electrode sample per unit weight of the positive electrode active material by the weight of the positive electrode active material of the secondary battery prepared in Preparation Example 1, and dividing by the area of the positive electrode.
  • the discharge capacity per unit area of the negative electrode was divided by the discharge capacity per unit area of the positive electrode to obtain an N/P ratio of 2.0.
  • the negative electrode slurry in Preparation Example 1 was coated on one surface of a copper current collector (thickness: 8 ⁇ m) as a negative electrode current collector with a loading amount of 88.8 mg/25 cm 2 , rolled, and 10 in a vacuum oven at 130°C. After drying for a period of time, a negative electrode active material layer (thickness: 57 ⁇ m) was formed to prepare a negative electrode (the thickness of the negative electrode: 65 ⁇ m).
  • the positive electrode prepared in Preparation Example 1 was used.
  • a secondary battery of Preparation Example 2 was manufactured in the same manner as in Preparation Example 1, except that the negative electrode and the positive electrode prepared above were used.
  • the battery systems of Examples 1 to 3 and Comparative Examples 1 to 7 were manufactured by adjusting the type of secondary battery, the maximum driving voltage and the minimum driving voltage set in the control unit as follows.
  • the battery systems prepared in Examples 1 to 3 and Comparative Examples 1 to 7 were charged at 0.5C to the maximum voltage in Table 1 in CC/CV mode (maximum voltage in Table 1, current cut-off at 0.05C), and the following The negative electrode thickness expansion rate at the time of full charge according to Equation 2 was measured.
  • Equation 2 d a2 is the thickness of the negative active material layer when fully charged, and d a1 is the thickness of the negative active material layer before charging.
  • Discharge Discharge in CC mode at 0.5C to the minimum voltage in Table 1 (cut-off at the minimum voltage in Table 1)
  • Equation 3 d b2 is the thickness of the negative active material layer when fully charged, and d b1 is the thickness of the negative active material layer when fully discharged.
  • Table 2 The results are shown in Table 2 below.
  • the secondary battery was charged and discharged up to the 200th cycle under the following charging and discharging conditions.
  • the capacity retention rate was evaluated according to Equation 4 below. The results are shown in Fig. 1 and Table 2 below.
  • Discharge Discharge in CC mode at 0.5C to the minimum voltage in Table 1 (cut-off at the minimum voltage in Table 1)
  • Capacity retention (%) ⁇ (discharge capacity in the 200th cycle)/(discharge capacity in the first cycle) ⁇ ⁇ 100
  • the battery systems prepared in Examples 1 to 3 and Comparative Examples 1 to 7 were charged and discharged once under the following charging and discharging conditions.
  • Discharge Discharge in CC mode at 0.5C to the minimum voltage in Table 1 (cut-off at the minimum voltage in Table 1)
  • Equation 5 the average voltage is obtained by multiplying the voltage, current, and discharge execution time at the point when the discharge is finished by reaching the minimum voltage to obtain Wh (Watt-hour), and dividing this by the discharge capacity in the first cycle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 실리콘계 활물질을 포함하는 음극, 상기 음극에 대향하는 양극, 상기 음극 및 상기 양극 사이에 개재되는 분리막, 및 전해질을 포함하는 하나 이상의 이차전지; 및 상기 이차전지의 충전 및 방전 시의 구동 전압 범위를 설정하는 제어 유닛;을 포함하며, 상기 제어 유닛에 의해 설정된 상기 이차전지의 최대 구동 전압은 4.00V 내지 4.08V이고, 상기 이차전지의 최소 구동 전압은 2.98V 내지 3.07V인 전지 시스템을 제공한다.

Description

전지 시스템, 이의 사용방법, 및 이를 포함하는 전지 팩
관련출원과의 상호인용
본 출원은 2019년 9월 23일 자 한국 특허 출원 제10-2019-0117068호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 전지 시스템, 이의 사용방법, 및 이를 포함하는 전지 팩에 관한 것이다.
전지는, 휴대폰, 랩탑 컴퓨터, 스마트폰, 스마트 패드 등의 모바일 디바이스뿐만 아니라 전기로 구동되는 자동차(EV, HEV, PHEV)나 대용량 전력 저장 장치(ESS) 등, 다양한 분야에 널리 활용되고 있다.
전지는 통상적으로 하나 또는 그 이상의 전지 모듈 또는 전지 팩으로서 기기나 장치에 장착될 수 있다. 이러한 전지에는 하나 이상의 이차전지가 구비되며, 이차전지 이외에 BMS(Battery Management system) 등의 전장품이나 케이스를 더 구비할 수 있다. 상기 이차전지는 충전이 불가능한 일차전지와 달리, 충방전이 가능한 전지를 의미한다. 특히, 여러 이차전지 중에서 리튬 이차전지는 경량이고 고에너지 밀도를 가지고 있어 휴대 기기의 구동 전원으로서 각광을 받고 있다. 이에 따라, 리튬 이차전지의 성능 향상을 위한 연구개발 노력이 활발하게 진행되고 있다.
일반적으로 리튬 이차전지는 양극, 음극, 상기 양극 및 음극 사이에 개재되는 분리막, 전해질, 유기 용매 등을 포함한다. 또한, 양극 및 음극은 집전체 상에 양극 활물질 또는 음극 활물질을 포함하는 활물질층이 형성될 수 있다. 상기 양극에는 일반적으로 LiCoO2, LiMn2O4 등의 리튬 함유 금속 산화물이 양극 활물질로 사용되며, 이에 따라 음극에는 리튬을 함유하지 않는 탄소계 활물질, 실리콘계 활물질이 음극 활물질로 사용되고 있다.
특히, 음극 활물질 중 실리콘계 활물질은 탄소계 활물질에 비해 약 10배 정도의 높은 용량을 갖는 점에서 주목되고 있으며, 높은 용량으로 인해 얇은 전극으로도 높은 에너지 밀도를 구현할 수 있다는 장점이 있다. 그러나, 실리콘계 활물질은 충방전에 따른 부피 팽창, 이에 의한 수명 특성 저하의 문제로 인해 범용적으로 사용되지는 못하고 있다.
따라서, 실리콘계 활물질의 높은 용량, 에너지 밀도를 구현하면서도, 수명 특성을 향상시킬 수 있는 이차전지의 개발이 요구되는 실정이다.
한국공개특허 제10-2017-0074030호는 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차전지에 관한 것이며, 다공성 실리콘-탄소 복합체를 포함하는 음극 활물질을 개시하지만, 전술한 문제점을 해결하기에는 한계가 있다.
[선행기술문헌]
[특허문헌]
한국공개특허 제10-2017-0074030호
본 발명의 일 과제는 이차전지의 구동 전압 범위를 조절하여 향상된 용량, 에너지 밀도, 수명 특성을 나타내는 전지 시스템을 제공하는 것이다.
또한, 본 발명의 다른 과제는 이차전지의 구동 전압 범위를 조절하여 향상된 용량, 에너지 밀도, 수명 특성을 나타내는 전지 시스템 사용 방법을 제공하는 것이다.
또한, 본 발명의 또 다른 과제는 상기 전지 시스템을 포함하는 전지 팩을 제공하는 것이다.
본 발명은 실리콘계 활물질을 포함하는 음극, 상기 음극에 대향하는 양극, 상기 음극 및 상기 양극 사이에 개재되는 분리막, 및 전해질을 포함하는 하나 이상의 이차전지; 및 상기 이차전지의 충전 및 방전 시의 구동 전압 범위를 설정하는 제어 유닛;을 포함하며, 상기 제어 유닛에 의해 설정된 상기 이차전지의 최대 구동 전압은 4.00V 내지 4.08V이고, 상기 이차전지의 최소 구동 전압은 2.98V 내지 3.07V인 전지 시스템을 제공한다.
또한, 본 발명은 하나 이상의 이차전지, 및 상기 이차전지의 충전 및 방전 시의 구동 전압 범위를 설정하는 제어 유닛을 포함하는 전지 시스템을 제조하는 단계; 및 상기 제어 유닛을 통해 상기 이차전지의 최대 구동 전압이 4.00V 내지 4.08V이고 최소 구동 전압이 2.98V 내지 3.07V가 되도록 구동 전압 범위를 설정하여, 상기 이차전지를 적어도 하나의 사이클로 충전 및 방전을 수행하는 단계;를 포함하고, 상기 이차전지는 실리콘계 활물질을 포함하는 음극, 상기 음극에 대향하는 양극, 상기 음극 및 상기 양극 사이에 개재되는 분리막 및 전해질을 포함하는 전지 시스템 사용방법을 제공한다.
또한, 본 발명은 전술한 전지 시스템을 포함하는 전지 팩을 제공한다.
본 발명의 전지 시스템은 실리콘계 활물질을 포함하는 이차전지, 상기 이차전지의 구동 전압 범위를 특정 범위로 설정할 수 있는 제어 유닛을 포함하며, 상기 제어 유닛에 의해 설정된 구동 전압 범위로 이차전지를 충전 및 방전시킬 수 있다. 이에 따라 본 발명의 전지 시스템은 실리콘계 활물질의 부피 팽창을 바람직한 수준으로 방지하여 수명 성능이 향상됨과 동시에, 동시에 높은 에너지 밀도를 가질 수 있다.
또한, 본 발명의 전지 시스템 사용방법에 따르면, 실리콘계 활물질을 포함하는 이차전지의 충전 및 방전 시의 구동 전압 범위를 특정 수준으로 조절함으로써, 실리콘계 활물질의 부피 팽창 정도를 적절한 수준으로 저감시켜 수명 성능이 현저히 향상됨과 동시에 높은 에너지 밀도를 발휘할 수 있도록 전지 시스템의 구동이 가능하다.
도 1은 실시예 1~3 및 비교예 1~7의 이차전지의 용량 유지율을 평가한 그래프이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서 평균 입경(D50)은 입자의 입경 분포 곡선에 있어서, 체적 누적량의 50%에 해당하는 입경으로 정의할 수 있다. 상기 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다.
이하, 본 발명에 대해 구체적으로 설명한다.
<전지 시스템>
본 발명은 전지 시스템에 관한 것이며, 구체적으로는 리튬 이차전지용 전지 시스템에 관한 것이다.
구체적으로, 본 발명의 전지 시스템은 실리콘계 활물질을 포함하는 음극, 상기 음극에 대향하는 양극, 상기 음극 및 상기 양극 사이에 개재되는 분리막, 및 전해질을 포함하는 하나 이상의 이차전지; 및 상기 이차전지의 충전 및 방전 시의 구동 전압 범위를 설정하는 제어 유닛;을 포함하며, 상기 제어 유닛에 의해 설정된 상기 이차전지의 최대 구동 전압은 4.00V 내지 4.08V이고, 상기 이차전지의 최소 구동 전압은 2.98V 내지 3.07V이다.
일반적으로 이차전지는 4.3~2.5V 영역에서의 전압 범위로 충전 및 방전됨으로써 작동될 수 있다. 그러나, 실리콘계 활물질을 포함하는 음극 및 이차전지의 사용에 있어, 상기 범위로 충전 및 방전을 수행할 경우 실리콘계 활물질의 부피 팽창/수축 정도가 과다하여 급격한 수명 성능 저하를 초래할 수 있다. 이를 방지하기 위해 이차전지의 충전 및 방전 시 전압 범위를 좁힐 경우에는 요구되는 에너지 밀도가 충족될 수 없다.
이에, 본 발명은 이차전지의 충전 및 방전 시의 구동 전압 범위를 특정 범위로 설정함에 따라, 실리콘계 활물질의 부피 팽창/수축을 적절한 수준으로 방지하여 전지의 수명 성능을 현저히 향상시킴과 동시에 높은 에너지 밀도를 달성할 수 있다.
상기 이차전지는 실리콘계 활물질을 포함하는 음극, 상기 음극에 대향하는 양극, 상기 음극 및 상기 양극 사이에 개재되는 분리막, 및 전해질을 포함한다.
상기 음극은 실리콘계 활물질을 포함하며, 후술하는 충전 및 방전 시의 구동 전압 범위가 조절됨으로써 실리콘계 활물질의 부피 팽창/수축을 방지하면서도 실리콘계 활물질이 갖는 높은 용량 및 에너지 밀도를 바람직하게 발휘할 수 있다.
상기 음극은 음극 집전체, 및 상기 음극 집전체 상에 형성된 음극 활물질층을 포함할 수 있으며, 상기 음극 활물질층은 상기 실리콘계 활물질을 포함할 수 있다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않는다. 구체적으로 상기 음극 집전체로는 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.
상기 음극 집전체의 두께는 3 내지 500㎛, 바람직하게는 실리콘계 활물질 함유 음극의 박막 구현을 위해 5 내지 50㎛, 바람직하게는 7 내지 20㎛일 수 있다.
상기 음극 집전체는 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 상기 음극 집전체는 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 실리콘계 활물질은 SiOx(0≤x<2)로 표시되는 화합물을 포함할 수 있다. SiO2의 경우 리튬 이온과 반응하지 않아 리튬을 저장할 수 없으므로, x는 상기 범위 내인 것이 바람직하다.
구체적으로, 상기 실리콘계 활물질은 Si일 수 있다. 종래, Si는 실리콘 산화물(예를 들어 SiOx(0<x<2))에 비해 용량이 약 2.5~3배 높다는 측면에서 유리하지만, Si의 충방전에 따른 부피 팽창/수축 정도가 실리콘 산화물의 경우보다 매우 크므로 더욱 상용화가 쉽지 않다. 그러나, 본 발명의 경우 이차전지의 구동 전압 범위가 상술한 범위로 조절됨에 따라 Si의 부피 팽창/수축이 최소화되어 수명 특성 열화 문제가 효과적으로 해소될 수 있으며, Si가 갖는 높은 용량, 에너지 밀도, 율 특성의 장점이 보다 바람직하게 구현될 수 있다.
상기 실리콘계 활물질의 평균 입경(D50)은 충방전 시의 활물질의 구조적 안정을 기하고, 전기 전도성을 유지하기 위한 전도성 네트워크를 보다 원활하게 형성할 수 있거나, 활물질 및 집전체를 결착시키기 위한 바인더와의 접근성을 보다 용이하도록 하는 측면에서 1㎛ 내지 10㎛, 바람직하게는 1.5㎛ 내지 4㎛일 수 있다.
상기 실리콘계 활물질은 실리콘계 활물질의 부피 팽창/수축이 전지에 미치는 영향을 최소화하면서, 실리콘계 활물질이 갖는 높은 용량을 이차전지에 충분히 구현하기 위한 측면에서 상기 음극 활물질층 내에 60중량% 내지 90중량%, 바람직하게는 70중량% 내지 80중량%로 포함될 수 있다.
상기 음극 활물질층은 상기 실리콘계 활물질과 함께 도전재 및/또는 바인더를 더 포함할 수 있다.
상기 바인더는 상기 음극 활물질층과 후술할 음극 집전체와의 접착력을 향상시키거나, 실리콘계 활물질 간의 결착력을 향상시키기 위해 사용될 수 있다.
구체적으로, 상기 바인더는 전극 접착력을 더욱 향상시키고 실리콘계 활물질의 부피 팽창/수축에 충분한 저항력을 부여할 수 있다는 측면에서, 스티렌부타디엔 고무(SBR: styrene butadiene rubber), 아크릴로니트릴부타디엔 고무(acrylonitrile butadiene rubber), 아크릴 고무(acrylic rubber), 부틸 고무(butyl rubber), 플루오르 고무(fluoro rubber), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐알코올(PVA: polyvinyl alcohol), 폴리아크릴산(PAA: polyacrylic acid), 폴리에틸렌 글리콜(PEG: polyethylene glycol), 폴리아크릴로니트릴(PAN: polyacrylonitrile) 및 폴리아크릴 아미드(PAM: polyacryl amide)로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있다.
바람직하게, 상기 바인더는 높은 강도를 가지며, 실리콘계 활물질의 부피 팽창/수축에 대한 우수한 저항성을 가지고, 우수한 유연성을 바인더에 부여하여 전극의 뒤틀림, 휘어짐 등을 방지할 수 있다는 측면에서 폴리비닐알코올, 폴리아크릴산, 폴리아크릴로니트릴 및 폴리아크릴 아미드로 이루어진 군에서 선택된 적어도 1종, 바람직하게는 폴리비닐알코올 및 폴리아크릴산을 포함할 수 있다. 상기 바인더가 폴리비닐알코올 및 폴리아크릴산을 포함할 경우, 폴리비닐알코올 및 폴리아크릴산은 전술한 효과를 더욱 향상시키는 측면에서 50:50 내지 90:10의 중량비, 바람직하게는 55:45 내지 80:20의 중량비로 상기 바인더에 포함될 수 있다.
상기 바인더는 음극 활물질층 형성을 위한 슬러리 제조 시에 물 등 수계 용매에 더욱 잘 분산되도록 하고, 활물질을 보다 원활하게 피복하여 결착력을 향상시키기 위한 측면에서, 바인더 내의 수소를 Li, Na 또는 Ca 등으로 치환된 것을 포함할 수 있다.
상기 바인더는 상기 음극 활물질층 내에 5중량% 내지 30중량%, 바람직하게는 10중량% 내지 20중량%로 포함될 수 있으며, 상기 범위에 있을 때 실리콘계 활물질을 보다 잘 결착시켜 활물질의 부피 팽창 문제를 최소화할 수 있음과 동시에 음극 활물질층 형성을 위한 슬러리 제조 시에 바인더의 분산이 용이하도록 하고 코팅성 및 슬러리의 상 안정성을 향상시킬 수 있다.
상기 도전재는 이차전지에 도전성을 보조 및 향상시키기 위해 사용될 수 있고, 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니다. 구체적으로 상기 도전재는 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 및 폴리페닐렌 유도체로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있으며, 바람직하게는 높은 도전성을 구현하기 위한 측면에서 카본 블랙을 포함할 수 있다.
상기 도전재는 음극 활물질층 형성을 위한 슬러리 제조 시에 도전재의 분산을 용이하게 하고, 전기 전도도를 더욱 향상시키는 측면에서, 도전재의 비표면적이 80m2/g 내지 200m2/g, 바람직하게는 100m2/g 내지 150m2/g일 수 있다.
상기 도전재는 상기 음극 활물질층 내에 5중량% 내지 20중량%, 바람직하게는 7중량% 내지 15중량%로 포함될 수 있으며, 상기 범위일 때 바인더로 인한 저항 증가를 완화시키면서도 우수한 도전성 네트워크를 형성할 수 있다는 측면에서 바람직하다.
상기 음극 활물질층의 두께는 박막 전극의 구현, 높은 에너지 밀도의 구현 측면에서, 35㎛ 내지 50㎛, 바람직하게는 36㎛ 내지 45㎛일 수 있다.
상기 음극의 에너지 밀도는 575Wh/L 이상, 바람직하게는 600Wh/L일 수 있다. 본 발명의 전지 시스템은 전술한 최대 구동 전압 및 최소 구동 전압의 조절을 통해 실리콘계 활물질이 갖는 부피 팽창/수축 문제를 해결하면서, 높은 에너지 밀도 구현이 가능하다.
상기 음극은 상기 음극 집전체 상에 음극 활물질 및 선택적으로 바인더, 도전재 및 음극 슬러리 형성용 용매를 포함하는 음극 슬러리를 코팅한 다음, 건조 및 압연하여 제조될 수 있다.
상기 음극 슬러리 형성용 용매는 예를 들어 음극 활물질, 바인더 및/또는 도전재의 분산을 용이하게 하는 측면에서, 증류수, 에탄올, 메탄올 및 이소프로필 알코올로 이루어진 군에서 선택된 적어도 1종, 바람직하게는 증류수를 포함할 수 있다.
상기 음극 슬러리 형성용 용매는 음극 슬러리의 점도, 코팅성, 분산성 등을 고려하여, 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 고형분의 농도가 15중량% 내지 45 중량%, 바람직하게 20중량% 내지 30중량%, 보다 바람직하게는 24중량% 내지 27중량%가 되도록 상기 음극 슬러리에 포함될 수 있다.
상기 양극은 상기 음극에 대향한다.
상기 양극은 양극 집전체, 및 상기 양극 집전체 상에 형성된 양극 활물질층을 포함할 수 있다.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않는다. 구체적으로 상기 음극 집전체는 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.
상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있다.
상기 양극 집전체는 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 상기 음극 집전체는 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질층은 양극 활물질을 포함할 수 있다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 니켈, 코발트, 망간 및 알루미늄으로 이루어진 적어도 1종의 전이금속과 리튬을 포함하는 리튬 전이금속 복합 산화물을 포함할 수 있다.
구체적으로, 상기 리튬 전이금속 복합 산화물로는 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-YMnYO2(여기에서, 0<Y<1), LiMn2-zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y1CoY1O2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y2MnY2O2(여기에서, 0<Y2<1), LiMn2-z1Coz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr1)O2(여기에서, 0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) 또는 Li(Nip1Coq1Mnr2)O4(여기에서, 0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r2=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물 (예를 들면, Li(Nip2Coq2Mnr3MS2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r3 및 s2는 각각 독립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다) 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다. 이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 전이금속 복합 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈-망간-코발트 산화물(예를 들면, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 또는 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, Li(Ni0.8Co0.15Al0.05)O2 등) 등일 수 있으며, 리튬 전이금속 복합 산화물을 형성하는 구성원소의 종류 및 함량비 제어에 따른 개선 효과의 현저함을 고려할 때 상기 리튬 전이금속 복합 산화물은 Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 또는 Li(Ni0.8Mn0.1Co0.1)O2 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
보다 구체적으로 상기 리튬 전이금속 복합 산화물은 니켈, 코발트 및 망간을 포함하는 전이금속과 리튬을 포함할 수 있으며, 이 경우 후술하는 전지 시스템의 구동 전압 범위에서 수명 특성 및 에너지 밀도가 현저히 향상될 수 있다.
상기 양극 활물질은 양극 활물질의 충분한 용량 발휘 등을 고려하여 양극 활물질층 내에 80중량% 내지 99중량%, 바람직하게는 92중량% 내지 98.5중량%로 포함될 수 있다.
상기 양극 활물질층은 전술한 양극 활물질과 함께 바인더 및/또는 도전재를 더 포함할 수 있다.
상기 바인더는 활물질과 도전재 등의 결착과 집전체에 대한 결착에 조력하는 성분이며, 구체적으로 폴리비닐리덴플루오라이드, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무 및 불소 고무로 이루어진 군에서 선택된 적어도 1종, 바람직하게는 폴리비닐리덴플루오라이드를 포함할 수 있다.
상기 바인더는 양극 활물질 등 성분 간 결착력을 충분히 확보하는 측면에서 양극 활물질층 내에 1중량% 내지 20중량%, 바람직하게는 1.2중량% 내지 10중량%로 포함될 수 있다.
상기 도전재는 이차전지에 도전성을 보조 및 향상시키기 위해 사용될 수 있고, 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니다. 구체적으로 상기 도전재는 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 및 폴리페닐렌 유도체로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있으며, 바람직하게는 도전성 향상 측면에서 카본 블랙을 포함할 수 있다.
상기 도전재는 양극 활물질층 형성을 위한 슬러리 제조 시에 도전재의 분산을 용이하게 하고, 전기 전도도를 더욱 향상시키는 측면에서, 도전재의 비표면적이 80m2/g 내지 200m2/g, 바람직하게는 100m2/g 내지 150m2/g일 수 있다.
상기 도전재는 전기 전도성을 충분히 확보하는 측면에서 양극 활물질층 내에 1중량% 내지 20중량%, 바람직하게는 1.2중량% 내지 10중량%로 포함될 수 있다.
상기 양극 활물질층의 두께는 음극과 양극의 용량 균형을 고려하고, 음극 내의 실리콘계 활물질의 부피 팽창/수축에 의한 영향을 최소화하기 위한 측면에서 30㎛ 내지 400㎛, 바람직하게는 50㎛ 내지 110㎛일 수 있다.
상기 양극은 상기 양극 집전체 상에 양극 활물질 및 선택적으로 바인더, 도전재 및 양극 슬러리 형성용 용매를 포함하는 양극 슬러리를 코팅한 다음, 건조 및 압연하여 제조될 수 있다.
상기 양극 슬러리 형성용 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기 용매를 포함할 수 있으며, 상기 양극 활물질, 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 상기 양극 슬러리 형성용 용매는 양극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 고형분의 농도가 50 중량% 내지 95 중량%, 바람직하게 70 중량% 내지 90 중량%가 되도록 상기 양극 슬러리에 포함될 수 있다.
상기 이차전지는 하기 수학식 1에 의해 계산된 N/P ratio가 1.5 내지 3.5, 보다 바람직하게는 1.8 내지 2.3일 수 있다.
[수학식 1]
N/P ratio = 음극의 단위 면적당 방전 용량/양극의 단위 면적당 방전 용량.
본 발명에 있어서, 상기 “단위 면적당 방전 용량”은 음극 또는 양극의 첫 번째 사이클에서의 단위 면적당 방전 용량을 의미한다.
상기 음극의 단위 면적당 방전 용량은 다음과 같은 방법에 의해 얻어질 수 있다. 구체적으로, 음극 활물질을 포함하는 음극 샘플과 상기 음극 샘플에 대향하는 대극(예를 들면 리튬 금속 전극)으로 하프-셀(half-cell)을 제조한다. 상기 하프-셀을 충전 및 방전하여 측정된 방전 용량을 음극 활물질의 무게로 나누어 “음극 활물질의 단위 무게당 음극 샘플의 방전 용량”을 구한다. 상기 하프-셀에서 사용된 음극 활물질과 동일한 음극 활물질을 포함하는 음극과 양극 활물질을 포함하는 양극으로 이차전지를 제조한다. 상기 “음극 활물질의 단위 무게당 음극 샘플의 방전 용량”에 상기 이차전지에 포함된 음극 활물질의 무게를 곱하고, 이를 상기 이차전지에 포함된 음극의 면적으로 나누어 상기 음극의 단위 면적당 방전 용량을 얻을 수 있다.
상기 양극의 단위 면적당 방전 용량은 다음과 같은 방법에 의해 얻어질 수 있다. 구체적으로, 양극 활물질을 포함하는 양극 샘플과 상기 음극 샘플에 대향하는 대극(예를 들면 리튬 금속 전극)으로 하프-셀(half-cell)을 제조한다. 상기 하프-셀을 충전 및 방전하여 측정된 방전 용량을 양극 활물질의 무게로 나누어 “양극 활물질의 단위 무게당 양극 샘플의 방전 용량”을 구한다. 상기 하프-셀에서 사용된 양극 활물질과 동일한 양극 활물질을 포함하는 양극과 음극 활물질을 포함하는 음극으로 이차전지를 제조한다. 상기 “양극 활물질의 단위 무게당 양극 샘플의 방전 용량”에 상기 이차전지에 포함된 양극 활물질의 무게를 곱하고, 이를 상기 이차전지에 포함된 양극의 면적으로 나누어 상기 양극의 단위 면적당 방전 용량을 얻을 수 있다.
본 발명의 이차전지의 N/P ratio(양극과 음극의 방전 용량의 비율)가 상기 범위로 조절될 경우, 음극의 방전 용량이 양극의 방전 용량보다 특정 수준으로 더 크게 설계되는 것이며, 양극으로부터의 리튬이 음극으로 주입될 때, 상기 리튬이 음극 내의 전체 실리콘계 활물질에 차지하는 비율을 감소시킬 수 있다. 이에, 음극 내에서의 실리콘계 활물질의 사용 비율을 특정 수준으로 감소시키고, 이에 따라 전체 전지 수준에서 음극에서의 부피 팽창에 의한 수명 특성 열화를 최소화할 수 있다. 또한, N/P ratio를 상술한 수준으로 조절함에 따라, 상술한 부피 팽창에 의한 전지의 수명 특성 열화를 최소함과 동시에, 실리콘계 활물질에 의한 높은 에너지 밀도, 율 특성 및 용량 특성을 가지는 이차전지의 구현이 가능하다.
상기 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용 가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또한, 본 발명에서 사용되는 전해질로는 이차전지 제조 시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트, 에틸 아세테이트, 감마-부티로락톤, ε-카프로락톤 등의 에스테르계 용매; 디부틸 에테르 또는 테트라히드로퓨란 등의 에테르계 용매; 시클로헥사논 등의 케톤계 용매; 벤젠, 플루오로벤젠 등의 방향족 탄화수소계 용매; 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 에틸메틸카보네이트(EMC), 에틸렌카보네이트(EC), 프로필렌카보네이트(PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAlO4, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2, LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 이차전지는 하나 이상으로 상기 전지 시스템에 포함될 수 있다.
예를 들면, 상기 이차전지는 하나의 이차전지로 이루어진 이차전지 셀 또는 복수의 이차전지들의 집합체인 이차전지 모듈의 형태로 상기 전지 시스템에 포함될 수 있다.
상기 이차전지는 통상의 이차전지의 제조방법에 따라, 상술한 음극과 양극 사이에 분리막을 개재시킨 후, 전해액을 주입하여 제조될 수 있다.
상기 제어 유닛은 상기 이차전지의 충전 및 방전 시의 구동 전압 범위를 설정할 수 있다. 이에 따라, 상기 제어 유닛에 의해 설정된 이차전지의 구동 전압 범위로, 이차전지의 충전 및 방전이 수행될 수 있다.
상기 제어 유닛은 이차전지의 충전 및 방전 시의 구동 전압 범위를 제어할 수 있는 것이라면 특별히 제한되지 않으며, 예를 들면 전기화학 충방전기일 수 있다. 구체적으로 상기 제어 유닛은 전지 팩 내에 포함되는 BMS(Battery Management System) 내에 내장될 수 있다.
상기 제어 유닛에 의해 설정된 상기 이차전지의 최대 구동 전압은 4.00V 내지 4.08V이고, 상기 이차전지의 최소 구동 전압은 2.98V 내지 3.07V이다. 상기 설정된 최대 구동 전압에서 최소 구동 전압까지의 범위로 이차전지의 충전 및 방전이 수행될 수 있다.
상기 최대 구동 전압이 4.00V 미만일 경우 구동 전압 범위가 좁아지면서 에너지 밀도가 요구되는 수준으로 달성되지 않을 수 있으며, 상기 최대 구동 전압이 4.08V 초과일 경우 활물질에 발휘되는 용량이 많아지면서 실리콘계 활물질의 부피 팽창이 충분히 제어되지 않아 수명 성능이 급격히 저하될 수 있다.
상기 최소 구동 전압이 2.98V 미만일 경우 활물질의 수축에 따른 입자 간 탈리가 발생하고, 활물질 간의 도전성 연결이 끊어질 우려가 있어 수명 성능이 급격히 저하될 수 있고, 상기 최소 구동 전압이 3.07V 초과일 경우 구동 전압 범위가 좁아지면서 에너지 밀도가 요구되는 수준으로 달성되지 않을 수 있다.
구체적으로, 상기 제어 유닛에 의해 설정된 상기 이차전지의 최대 구동 전압은 4.03V 내지 4.07V이고 상기 이차전지의 최소 구동 전압은 3.03V 내지 3.06V일 수 있으며, 상기 범위일 때 전술한 수명 특성 및 에너지 밀도 동시 향상 효과가 더욱 바람직하게 구현될 수 있다.
<전지 시스템의 사용방법>
본 발명은 전지 시스템의 사용방법, 보다 구체적으로는 전술한 전지 시스템의 사용방법을 제공한다. 구체적으로 상기 전지 시스템의 사용방법은 리튬 이차전지용 전지 시스템의 사용방법일 수 있다.
구체적으로, 본 발명의 전지 시스템의 사용방법은 하나 이상의 이차전지, 및 상기 이차전지의 충전 및 방전 시의 구동 전압 범위를 설정하는 제어 유닛을 포함하는 전지 시스템을 제조하는 단계; 및 상기 제어 유닛을 통해 상기 이차전지의 최대 구동 전압이 4.00V 내지 4.08V이고 최소 구동 전압이 2.98V 내지 3.07V가 되도록 구동 전압 범위를 설정하여, 상기 이차전지를 적어도 하나의 사이클로 충전 및 방전을 수행하는 단계;를 포함하고, 상기 이차전지는 실리콘계 활물질을 포함하는 음극, 상기 음극에 대향하는 양극, 상기 음극 및 상기 양극 사이에 개재되는 분리막, 및 전해질을 포함한다.
본 발명의 전지 시스템의 사용방법은 제어 유닛을 통해 최대 구동 전압과 최소 구동 전압을 상술한 수준으로 설정하고, 설정된 최대 구동 전압부터 최소 구동 전압까지 이차전지를 충전 및 방전함에 따라 전지 시스템을 작동시킨다. 상술한 수준으로 구동 전압 범위를 조절하여 충전 및 방전이 수행된 이차전지는 실리콘계 활물질의 부피 팽창/수축을 최소화하여 수명 성능을 향상시키면서도 높은 에너지 밀도를 달성할 수 있다.
상기 이차전지, 상기 제어 유닛은 전술한 이차전지, 제어 유닛과 동일할 수 있다.
<전지 팩>
또한, 본 발명은 전술한 전지 시스템을 포함하는 전지 팩을 제공한다.
상기 전지 팩은 전술한 이차전지, 제어 유닛 외에도, 당분야에 공지된 구성 예를 들면 BMS(Battery Management System), 냉각 시스템 등을 더 포함할 수 있다.
본 발명에 따른 전지 시스템 또는 전지 팩은 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다. 상기 전지 시스템 또는 전지 팩은 전기자동차, 하이브리드 전기자동차, 전력저장장치 등과 같이 고출력, 대용량이 요구되는 동력원에 바람직하게 적용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
<제조예>
제조예 1: 이차전지의 제조
<음극의 제조>
음극 활물질로서 실리콘계 활물질 Si(평균 입경(D50): 3.5㎛), 도전재로서 카본블랙(제품명: Super C65, 제조사: Timcal), 바인더로서 폴리비닐알코올 및 폴리아크릴산을 중량비 66:34로 혼합한 혼합물(중량평균분자량: 약 360,000g/mol)을 75:10:15의 중량비로 음극 슬러리 형성용 용매로서 증류수에 첨가하여 음극 슬러리를 제조하였다(고형분 농도 25중량%).
음극 집전체로서 구리 집전체(두께: 8㎛)의 일면에 상기 음극 슬러리를 68.4mg/25cm2의 로딩량으로 코팅하고, 압연(roll press)하고, 130℃의 진공 오븐에서 10시간 동안 건조하여 음극 활물질층(두께: 44㎛)을 형성하여, 음극을 제조하였다(음극의 두께: 52㎛).
<양극의 제조>
양극 활물질로서 LiNi0.6Co0.2Mn0.2O2(평균 입경(D50): 10㎛), 도전재로서 카본블랙(제품명: Super C65, 제조사: Timcal), 바인더로서 폴리비닐리덴플루오라이드(PVdF)를 97:1.5:1.5의 중량비로 양극 슬러리 형성용 용매로서 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 슬러리를 제조하였다(고형분 농도 72중량%).
양극 집전체로서 알루미늄 집전체(두께: 12㎛)의 일면에 상기 양극 슬러리를 459.4mg/25cm2의 로딩량으로 코팅하고, 압연(roll press)하고, 130℃의 진공 오븐에서 10시간 동안 건조하여 양극 활물질층(두께: 110㎛)을 형성하여, 양극을 제조하였다(양극의 두께: 122㎛).
<이차전지의 제조>
상기에서 제조된 음극 및 양극 사이에 폴리에틸렌/폴리프로필렌/폴리에틸렌 분리막을 개재하고, 전해질을 주입하여 제조예 1의 이차전지를 제조하였다. 전해질은 플루오로에틸렌 카보네이트(FEC), 디에틸 카보네이트(DMC)를 30:70의 부피비로 혼합한 유기 용매에 비닐렌 카보네이트를 전해질 전체 중량을 기준으로 3중량%로 첨가하고, 리튬염으로서 LiPF6을 1M 농도로 첨가한 것을 사용하였다.
<N/P ratio의 측정>
상기에서 제조된 음극을 일정 크기로 절단하여 음극 샘플을 제조하였다. 상기 음극 샘플과 동일한 크기의 리튬 금속 전극을 준비하고, 이를 상기 음극 샘플에 대향시켰다. 상기 음극 샘플 및 상기 리튬 금속 전극 사이에 폴리에틸렌 분리막을 개재한 후, 전해액을 주입하여 코인형 하프-셀을 제조하였다. 상기 전해액으로는 에틸렌 카보네이트 및 에틸메틸카보네이트를 50:50의 부피비로 혼합한 유기 용매에 리튬염으로서 LiPF6을 1M 농도로 첨가한 것을 사용하였다. 상기 코인형 하프-셀을 0.1C로 충/방전하여 얻은 방전 용량을 음극 샘플에 포함된 음극 활물질의 무게로 나누어, 음극 활물질의 단위 무게당 음극 샘플의 방전 용량을 구하였다.
또한, 상기에서 제조된 양극을 일정 크기로 절단하여 양극 샘플을 제조하였다. 상기 양극 샘플과 동일한 크기의 리튬 금속 전극을 준비하고, 이를 상기 양극 샘플에 대향시켰다. 상기 양극 샘플 및 상기 리튬 금속 전극 사이에 폴리에틸렌 분리막을 개재한 후, 전해액을 주입하여 코인형 하프-셀을 제조하였다. 상기 전해액으로는 에틸렌 카보네이트 및 에틸메틸카보네이트를 50:50의 부피비로 혼합한 유기 용매에 리튬염으로서 LiPF6을 1M 농도로 첨가한 것을 사용하였다. 상기 코인형 하프-셀을 0.1C로 충/방전하여 얻은 방전 용량을 양극 샘플에 포함된 양극 활물질의 무게로 나누어, 양극 활물질의 단위 무게당 양극 샘플의 방전 용량을 구하였다.
상기에서 측정된, 음극 활물질의 단위 무게당 음극 샘플의 방전 용량에 제조예 1에서 제조된 이차전지의 음극 활물질의 무게를 곱하고, 음극의 면적으로 나누어 제조예 1의 음극의 단위 면적당 방전 용량을 구하였다. 또한, 양극 활물질의 단위 무게당 양극 샘플의 방전 용량에 제조예 1에서 제조된 이차전지의 양극 활물질의 무게를 곱하고, 양극의 면적으로 나누어 제조예 1의 양극의 단위 면적당 방전 용량을 구하였다.
상기 음극의 단위 면적당 방전 용량을 상기 양극의 단위 면적당 방전 용량으로 나누어 2.0의 N/P ratio를 구하였다.
제조예 2: 이차전지의 제조
<음극의 제조>
제조예 1에서의 음극 슬러리를 음극 집전체로서 구리 집전체(두께: 8㎛)의 일면에 88.8mg/25cm2의 로딩량으로 코팅하고, 압연(roll press)하고, 130℃의 진공 오븐에서 10시간 동안 건조하여 음극 활물질층(두께: 57㎛)을 형성하여, 음극을 제조하였다(음극의 두께: 65㎛).
<양극의 제조>
제조예 1에서 제조된 양극을 사용하였다.
<이차전지의 제조>
상기에서 제조된 음극 및 양극을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 제조예 2의 이차전지를 제조하였다.
<N/P ratio>
제조예 1과 동일한 방법으로 제조예 2의 이차전지의 N/P ratio(=2.6)를 측정하였다.
<실시예>
실시예 1~3 및 비교예 1~7
<전지 시스템의 제조>
상기에서 제조된 제조예 1 및 제조예 2의 이차전지를 전기화학 충방전기에 연결하였다.
하기 표 1과 같이 이차전지의 종류, 제어 유닛에 설정된 최대 구동 전압 및 최소 구동 전압을 하기와 같이 조절하여 실시예 1~3 및 비교예 1~7의 전지 시스템을 제조하였다.
Figure PCTKR2020012772-appb-T000001
실험예
실험예 1: 만충전 시의 두께 팽창률
실시예 1~3, 비교예 1~7에서 제조된 전지 시스템을 0.5C로 상기 표 1의 최대 전압까지 CC/CV 모드로 충전(표 1의 최대 전압, 0.05C 전류 cut-off)하여, 하기 수학식 2에 따른 만충전 시의 음극 두께 팽창률을 측정하였다.
[수학식 2]
만충전 시의 음극 두께 팽창률(%) = {(da2-da1)/da1} × 100
상기 수학식 2에서 da2는 만충전 시의 음극 활물질층의 두께이고, da1은 충전 전의 음극 활물질층의 두께이다. 그 결과를 하기 표 2에 나타내었다.
실험예 2: 만충전/만방전의 두께 변화 차이
실시예 1~3, 비교예 1~7에서 제조된 전지 시스템을 하기 조건으로 충전 및 방전하여 하기 수학식 3에 따른 만충전/만방전의 두께 변화 차이(%)를 계산하였다.
<충전 및 방전 조건>
충전: 0.5C로 상기 표 1의 최대 전압까지 CC/CV 모드로 충전(표 1의 최대 전압, 0.05C 전류 cut-off)
방전: 0.5C로 상기 표 1의 최소 전압까지 CC 모드로 방전(표 1의 최소 전압에서 cut-off)
[수학식 3]
만충전/만방전의 두께 변화 차이(%) = {(db2-db1)/db1} × 100
상기 수학식 3에서 db2는 만충전 시의 음극 활물질층의 두께이고, db1은 만방전 시의 음극 활물질층의 두께이다. 그 결과를 하기 표 2에 나타내었다.
실험예 3: 용량 유지율
실시예 1~3 및 비교예 1~7에서 제조한 전지 시스템의 용량 유지율을 평가하였다.
이차전지를 아래 충전 및 방전 조건으로 200번째 사이클까지 충전 및 방전을 수행하였다. 하기 수학식 4에 의해 용량 유지율을 평가하였다. 그 결과를 하기 도 1 및 표 2에 나타낸다.
<충전 및 방전 조건>
충전: 0.5C로 상기 표 1의 최대 전압까지 CC/CV 모드로 충전(표 1의 최대 전압, 0.05C 전류 cut-off)
방전: 0.5C로 상기 표 1의 최소 전압까지 CC 모드로 방전(표 1의 최소 전압에서 cut-off)
[수학식 4]
용량 유지율(%) = {(200번째 사이클에서의 방전 용량)/(첫 번째 사이클에서의 방전 용량)} × 100
실험예 4: 에너지 밀도
실시예 1~3 및 비교예 1~7에서 제조한 전지 시스템으로 아래 충전 및 방전 조건으로 1회의 충전 및 방전을 수행하였다.
<충전 및 방전 조건>
충전: 0.5C로 상기 표 1의 최대 전압까지 CC/CV 모드로 충전(표 1의 최대 전압, 0.05C 전류 cut-off)
방전: 0.5C로 상기 표 1의 최소 전압까지 CC 모드로 방전(표 1의 최소 전압에서 cut-off)
이후, 실시예 1~3 및 비교예 1~7의 전지 시스템 내의 음극의 에너지 밀도를 하기 수학식 5로 측정 및 계산하였다.
[수학식 5]
에너지 밀도(Wh/L) = {첫 번째 사이클에서의 방전 용량(Ah) × 평균 전압(V)}/(첫 번째 사이클에서 충전 완료 시의 음극의 부피(L))
상기 수학식 5에서, 평균 전압은 최소 전압에 도달하여 방전이 끝난 시점에서의 전압, 전류 및 방전 수행 시간을 곱하여 Wh(Watt-hour)를 구하고, 이를 첫 번째 사이클에서의 방전 용량으로 나누어 얻었다.
Figure PCTKR2020012772-appb-T000002
표 2를 참조하면, 본 발명에 따른 전지 시스템을 사용한 실시예 1~3의 경우 수명 특성과 에너지 밀도가 동시에 향상되고 있음을 확인할 수 있다.
반면, 본 발명의 최대 및 최소 구동 전압으로 충방전이 수행되지 않은 비교예 1~7의 경우, 실리콘계 활물질의 충분한 용량 발휘가 어려워 에너지 밀도가 지나치게 낮아지거나, 실리콘계 활물질의 부피 팽창을 제어하기 어려워 수명 특성이 지나치게 낮아지는 것을 확인할 수 있다.

Claims (10)

  1. 실리콘계 활물질을 포함하는 음극, 상기 음극에 대향하는 양극, 상기 음극 및 상기 양극 사이에 개재되는 분리막, 및 전해질을 포함하는 하나 이상의 이차전지; 및
    상기 이차전지의 충전 및 방전 시의 구동 전압 범위를 설정하는 제어 유닛;을 포함하며,
    상기 제어 유닛에 의해 설정된 상기 이차전지의 최대 구동 전압은 4.00V 내지 4.08V이고, 상기 이차전지의 최소 구동 전압은 2.98V 내지 3.07V인 전지 시스템.
  2. 청구항 1에 있어서,
    상기 실리콘계 활물질은 Si인 전지 시스템.
  3. 청구항 1에 있어서,
    상기 음극은 음극 집전체, 및 상기 음극 집전체 상에 형성된 음극 활물질층을 포함하며,
    상기 음극 활물질층은 상기 실리콘계 활물질, 바인더 및 도전재를 포함하는 전지 시스템.
  4. 청구항 3에 있어서,
    상기 바인더는 스티렌부타디엔 고무, 아크릴로니트릴부타디엔 고무, 아크릴 고무, 부틸 고무, 플루오르 고무, 폴리비닐알코올, 카르복시메틸셀룰로오스, 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐알코올, 폴리아크릴산, 폴리에틸렌 글리콜, 폴리아크릴로니트릴 및 폴리아크릴 아미드로 이루어진 군에서 선택된 적어도 1종을 포함하는 전지 시스템.
  5. 청구항 3에 있어서,
    상기 실리콘계 활물질은 상기 음극 활물질층 내에 60중량% 내지 90중량%로 포함되고,
    상기 바인더는 상기 음극 활물질층 내에 5중량% 내지 30중량%로 포함되고,
    상기 도전재는 상기 음극 활물질층 내에 5중량% 내지 20중량%로 포함되는 전지 시스템.
  6. 청구항 3에 있어서,
    상기 음극 활물질층의 두께는 35㎛ 내지 50㎛인 전지 시스템.
  7. 청구항 1에 있어서,
    상기 이차전지의 하기 수학식 1로 계산되는 N/P ratio는 1.5 내지 3.5인 전지 시스템:
    [수학식 1]
    N/P ratio = 음극의 단위 면적당 방전 용량/양극의 단위 면적당 방전 용량.
  8. 청구항 1에 있어서,
    상기 양극 활물질은 리튬 전이금속 복합 산화물을 포함하고,
    상기 리튬 전이금속 복합 산화물은 니켈, 코발트, 망간 및 알루미늄으로 이루어진 적어도 1종의 전이금속과 리튬을 포함하는 전지 시스템.
  9. 하나 이상의 이차전지, 및 상기 이차전지의 충전 및 방전 시의 구동 전압 범위를 설정하는 제어 유닛을 포함하는 전지 시스템을 제조하는 단계; 및
    상기 제어 유닛을 통해 상기 이차전지의 최대 구동 전압이 4.00V 내지 4.08V이고 최소 구동 전압이 2.98V 내지 3.07V가 되도록 구동 전압 범위를 설정하여, 상기 이차전지를 적어도 하나의 사이클로 충전 및 방전을 수행하는 단계;를 포함하고,
    상기 이차전지는 실리콘계 활물질을 포함하는 음극, 상기 음극에 대향하는 양극, 상기 음극 및 상기 양극 사이에 개재되는 분리막, 및 전해질을 포함하는 전지 시스템 사용방법.
  10. 청구항 1에 따른 전지 시스템을 포함하는 전지 팩.
PCT/KR2020/012772 2019-09-23 2020-09-22 전지 시스템, 이의 사용방법, 및 이를 포함하는 전지 팩 WO2021060803A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20869705.2A EP4002546A4 (en) 2019-09-23 2020-09-22 BATTERY SYSTEM, METHOD OF MAKING SAME AND BATTERY PACK THEREOF
US17/635,254 US20220285744A1 (en) 2019-09-23 2020-09-22 Battery system, and method of using the same and battery pack including the same
CN202080057376.XA CN114270571A (zh) 2019-09-23 2020-09-22 电池系统以及使用其的方法和包含其的电池组
JP2022514578A JP7507849B2 (ja) 2019-09-23 2020-09-22 電池システム、その使用方法、およびそれを含む電池パック

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190117068A KR20210034984A (ko) 2019-09-23 2019-09-23 전지 시스템, 이의 사용방법, 및 이를 포함하는 전지 팩
KR10-2019-0117068 2019-09-23

Publications (1)

Publication Number Publication Date
WO2021060803A1 true WO2021060803A1 (ko) 2021-04-01

Family

ID=75165892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012772 WO2021060803A1 (ko) 2019-09-23 2020-09-22 전지 시스템, 이의 사용방법, 및 이를 포함하는 전지 팩

Country Status (6)

Country Link
US (1) US20220285744A1 (ko)
EP (1) EP4002546A4 (ko)
JP (1) JP7507849B2 (ko)
KR (1) KR20210034984A (ko)
CN (1) CN114270571A (ko)
WO (1) WO2021060803A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117716533A (zh) * 2021-12-22 2024-03-15 株式会社Lg新能源 负极组合物、包含负极组合物的锂二次电池负极及包含负极的锂二次电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315860A (ja) * 1995-05-23 1996-11-29 Fuji Photo Film Co Ltd 非水電解質二次電池
KR101702406B1 (ko) * 2015-09-18 2017-02-03 울산과학기술원 리튬 이차 전지
KR20170074030A (ko) 2015-12-21 2017-06-29 주식회사 포스코 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20180039001A (ko) * 2016-10-07 2018-04-17 주식회사 엘지화학 리튬이온 이차전지용 분리막 및 이를 포함하는 리튬이온 이차전지
WO2018201427A1 (en) * 2017-05-05 2018-11-08 Robert Bosch Gmbh Lithium ion battery and prelithiation method of anode
KR102010015B1 (ko) * 2015-08-31 2019-08-12 주식회사 엘지화학 리튬 이차전지 및 그의 구동방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4212458B2 (ja) * 2003-11-19 2009-01-21 三洋電機株式会社 リチウム二次電池
JP4516359B2 (ja) * 2004-05-28 2010-08-04 三井金属鉱業株式会社 非水電解液二次電池用負極
KR101114498B1 (ko) * 2008-07-21 2012-02-24 신현길 혈중 콜레스테롤 저하와 항비만 활성을 동시에 갖는 락토바실러스 존소니 hfi 108 균주
CN106463707A (zh) * 2014-02-21 2017-02-22 克雷多斯公司 官能化iv a族颗粒框架的纳米硅材料制备
EP3142174B1 (en) * 2015-09-14 2021-02-17 Toyota Jidosha Kabushiki Kaisha All-solid-state battery system and method of manufacturing the same
WO2018029907A1 (ja) * 2016-08-08 2018-02-15 株式会社豊田自動織機 リチウムイオン二次電池
EP3611818B1 (en) 2017-04-14 2024-09-25 Murata Manufacturing Co., Ltd. Charging device, charging method, secondary battery, battery pack, electric vehicle, electricity storage device, electronic device, and electricity storage system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315860A (ja) * 1995-05-23 1996-11-29 Fuji Photo Film Co Ltd 非水電解質二次電池
KR102010015B1 (ko) * 2015-08-31 2019-08-12 주식회사 엘지화학 리튬 이차전지 및 그의 구동방법
KR101702406B1 (ko) * 2015-09-18 2017-02-03 울산과학기술원 리튬 이차 전지
KR20170074030A (ko) 2015-12-21 2017-06-29 주식회사 포스코 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20180039001A (ko) * 2016-10-07 2018-04-17 주식회사 엘지화학 리튬이온 이차전지용 분리막 및 이를 포함하는 리튬이온 이차전지
WO2018201427A1 (en) * 2017-05-05 2018-11-08 Robert Bosch Gmbh Lithium ion battery and prelithiation method of anode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4002546A4

Also Published As

Publication number Publication date
JP7507849B2 (ja) 2024-06-28
EP4002546A4 (en) 2024-07-24
EP4002546A1 (en) 2022-05-25
KR20210034984A (ko) 2021-03-31
JP2022547282A (ja) 2022-11-11
CN114270571A (zh) 2022-04-01
US20220285744A1 (en) 2022-09-08

Similar Documents

Publication Publication Date Title
WO2021029652A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2019103463A1 (ko) 리튬이차전지용 양극재, 이를 포함하는 양극 및 리튬이차전지
WO2020122497A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2019164319A1 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 상기 리튬 이차전지용 음극을 포함하는 리튬 이차전지
WO2020145639A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2021101188A1 (ko) 음극 및 이를 포함하는 이차전지
WO2020185014A1 (ko) 음극 및 이를 포함하는 이차전지
WO2020262890A1 (ko) 음극 및 이를 포함하는 이차전지
WO2021040386A1 (ko) 리튬 이차전지 및 이의 제조 방법
WO2022154309A1 (ko) 이차전지의 충방전 방법
WO2021049918A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2019194554A1 (ko) 리튬 이차전지용 음극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 음극, 및 리튬 이차전지
WO2020149679A1 (ko) 리튬 이차전지 및 이의 제조방법
WO2021060811A1 (ko) 이차전지의 제조방법
WO2019059647A2 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021187907A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2021025349A1 (ko) 음극, 이의 제조방법 및 이를 포함하는 이차전지
WO2021235818A1 (ko) 이차전지의 제조방법
WO2021125873A1 (ko) 리튬 이차전지용 양극, 상기 양극을 포함하는 리튬 이차전지
WO2021101281A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조 방법에 의해 제조된 양극 활물질
WO2022055308A1 (ko) 음극재, 이를 포함하는 음극 및 이차전지
WO2022060138A1 (ko) 음극 및 이를 포함하는 이차전지
WO2020149683A1 (ko) 이차전지용 음극 활물질, 이의 제조방법, 이를 포함하는 이차전지용 음극 및 리튬 이차전지
WO2021172857A1 (ko) 이차전지의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869705

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020869705

Country of ref document: EP

Effective date: 20220217

ENP Entry into the national phase

Ref document number: 2022514578

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE