WO2023063787A1 - 리튬 이차 전지 - Google Patents

리튬 이차 전지 Download PDF

Info

Publication number
WO2023063787A1
WO2023063787A1 PCT/KR2022/015630 KR2022015630W WO2023063787A1 WO 2023063787 A1 WO2023063787 A1 WO 2023063787A1 KR 2022015630 W KR2022015630 W KR 2022015630W WO 2023063787 A1 WO2023063787 A1 WO 2023063787A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
battery
secondary battery
lithium secondary
Prior art date
Application number
PCT/KR2022/015630
Other languages
English (en)
French (fr)
Inventor
김수진
류덕현
이관희
장진수
이윤주
박근호
손승연
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220121171A external-priority patent/KR20230054601A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202280067978.2A priority Critical patent/CN118077081A/zh
Priority to CA3234432A priority patent/CA3234432A1/en
Publication of WO2023063787A1 publication Critical patent/WO2023063787A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium secondary battery, and more particularly, improves battery stability, resistance characteristics, and charge/discharge efficiency by applying a cathode active material layer including a single-particle and/or quasi-single-particle cathode active material and flaky graphite. It relates to a lithium secondary battery.
  • Lithium secondary batteries can be classified into can-type batteries, such as cylindrical or prismatic, and pouch-type batteries, depending on the shape of the battery case.
  • the can-type battery sequentially stacks a sheet-shaped positive plate, separator, and negative electrode plate on a battery can, and then After storing the jelly-roll type electrode assembly manufactured by winding in the direction, the top of the battery can is covered with a cap plate and sealed.
  • a positive electrode tab and a negative electrode tab in the form of a strip are respectively provided on the positive electrode plate and the negative electrode plate, and the positive electrode tab and the negative electrode tab are connected to electrode terminals to electrically connect to an external power source.
  • the positive electrode terminal is a cap plate
  • the negative electrode terminal is a battery can.
  • current is concentrated on the strip-shaped electrode tab, resulting in high resistance, high heat generation, and poor current collection efficiency.
  • the amount of heat and gas generated inside the battery also increases. This is because the temperature and pressure inside the battery rise due to such heat and gas, which can cause the battery to ignite or explode.
  • heat and gas inside the battery must be properly discharged to the outside, and for this, the cross-sectional area of the battery, which serves as a passage for discharging heat to the outside of the battery, must increase to match the increase in volume.
  • the increase in cross-sectional area does not reach the increase in volume, as the size of the battery increases, the amount of heat generated inside the battery increases, resulting in problems such as increased risk of explosion and reduced output.
  • rapid charging is performed at a high voltage, a large amount of heat is generated around the electrode tab for a short period of time, and the battery may ignite.
  • a positive electrode active material in the form of a single particle or quasi-single particle having a relatively large primary particle size has been developed.
  • the electrode was broken in a state where the porosity was not achieved to a target level, and there was a problem in that the resistance characteristics and charge/discharge efficiency of the lithium secondary battery were not good.
  • the present invention is to solve the above problems, by applying a positive electrode active material layer including flaky graphite and a positive electrode active material powder including single particles and / or quasi-single particles to improve battery stability, resistance characteristics, and charge It is intended to provide a lithium secondary battery with improved discharge efficiency.
  • the negative electrode plate may include a silicon-based negative electrode active material.
  • the negative electrode plate may include a silicon-based negative active material and a carbon-based negative active material, and in this case, the silicon-based negative active material and the carbon-based negative active material may be included in a weight ratio of 1:99 to 20:80.
  • the secondary battery according to the present invention may be a battery in which a positive electrode plate and a negative electrode plate each include a non-coated portion on which an active material layer is not formed, and at least a portion of the positive electrode or negative electrode plate of the uncoated portion defines an electrode tab.
  • the positive electrode uncoated portion and the negative electrode uncoated portion are located along ends of one side of the positive and negative electrode plates parallel to the winding direction of the electrode assembly, and a current collecting plate is coupled to each of the positive and negative electrode uncoated portions, and the current collecting plate is an electrode. It may be connected to the terminal.
  • the lithium secondary battery according to the present invention by applying a positive electrode active material powder having properly adjusted D 50 , D max , and particle size distribution (PSD), minimizes the increase in resistance due to the application of single particles, thereby providing excellent Capacitance characteristics and output characteristics can be realized.
  • a positive electrode active material powder having properly adjusted D 50 , D max , and particle size distribution (PSD) minimizes the increase in resistance due to the application of single particles, thereby providing excellent Capacitance characteristics and output characteristics can be realized.
  • the porosity of the positive electrode plate can be reduced to a target value without damaging the positive electrode plate due to the sliding effect of the flaky graphite during rolling. .
  • the lithium secondary battery according to the present invention may have a structure in which uncoated portions of the positive electrode plate and the negative electrode plate serve as electrode tabs, for example, a tab-less structure.
  • a conventional can-type battery has a structure in which an electrode plate and an electrode lead are connected through an electrode tab. In this case, as a large amount of current is concentrated on the electrode tab during charging, a lot of heat is generated around the electrode tab. In particular, during rapid charging, this phenomenon intensifies and there is a risk of battery ignition or explosion.
  • FIG. 6 is a diagram for explaining a battery pack according to the present invention.
  • the insulating layer 24 may be provided on at least one side of the current collector of the positive electrode plate 10, and preferably, may be provided on both sides of the positive electrode plate 10.
  • the positive electrode active material in the form of a single particle composed of one primary particle or a quasi-single particle form in which 10 or less primary particles are aggregated is the conventional secondary particle form in which dozens to hundreds of primary particles are aggregated. Since the particle strength is higher than that of the cathode active material, particle breakage hardly occurs during rolling. In addition, in the case of a single-particle or quasi-single-particle type cathode active material, since the number of primary particles constituting the particles is small, the change due to volume expansion and contraction of the primary particles during charging and discharging is small, and accordingly, the inside of the particle Crack generation is also significantly reduced.
  • the cathode active material composed of single particles and/or quasi-single particles is used as in the present invention, the amount of gas generated due to particle breakage and internal cracks can be significantly reduced, and thus excellent safety even in large-sized cylindrical batteries. can be implemented.
  • the positive electrode active material powder has the above particle size distribution, the electrode density of the positive electrode can be properly maintained, and particle breakage and resistance increase can be effectively suppressed.
  • the cathode active material may include lithium nickel-based oxide, and specifically, may include lithium nickel-based oxide containing 80 mol% or more of Ni based on the total number of moles of transition metal.
  • the lithium nickel-based oxide may include 80 mol% or more and less than 100 mol%, 82 mol% or more and less than 100 mol%, or 83 mol% or more and less than 100 mol% of Ni. As described above, when the lithium nickel-based oxide having a high Ni content is used, high capacity can be realized.
  • M 1 may be Mn, Al or a combination thereof, preferably Mn or Mn and Al.
  • the a represents the molar ratio of lithium in the lithium nickel-based oxide, and may be 0.8 ⁇ a ⁇ 1.2, 0.85 ⁇ a ⁇ 1.15, or 0.9 ⁇ a ⁇ 1.2.
  • the crystal structure of the lithium nickel-based oxide may be stably formed.
  • d represents the molar ratio of M 1 element in all metals except lithium in lithium nickel-based oxide, 0 ⁇ d ⁇ 0.2, 0 ⁇ d ⁇ 0.18, 0.01 ⁇ d ⁇ 0.17, 0.01 ⁇ d ⁇ 0.15, 0.01 ⁇ d ⁇ 0.12, or 0.01 ⁇ d ⁇ 0.10.
  • the positive electrode active material exhibits excellent structural stability.
  • a cathode active material layer including the single-particle and/or pseudo-single-particle cathode active material and flaky graphite is used.
  • Flake graphite refers to graphite having a structure in which graphite layers having a plate-like structure are stacked in multiple layers.
  • the flaky graphite provides a sliding effect to the cathode active material, thereby improving rolling characteristics of the electrode and reducing the porosity of the electrode to a target level. Accordingly, the lithium secondary battery according to the present invention can improve battery stability, resistance characteristics, and charge/discharge efficiency.
  • the flaky graphite may be included in the cathode active material layer in an amount of 0.05% to 5% by weight, preferably 0.1% to 3% by weight.
  • anode rolling characteristics are improved and excellent electrode density may be implemented. If the content of flaky graphite is too small, the effect of improving rolling properties is insignificant, and if too much, the slurry viscosity may increase and phase stability may decrease, and resistance may increase due to electrode uniformity deterioration through combination with a conductive material.
  • the flaky graphite has a density of 2.0 g/cm 3 to 2.5 g/cm 3 , preferably 2.1 g/cm 3 to 2.4 g/cm 3 , more preferably 2.2 g/cm 3 to 2.3 g/cm can be 3
  • the porosity of the positive electrode active material layer may be achieved by i) the positive electrode active material is in the form of single particles or quasi-single particles and ii) adding flaky graphite to the positive electrode active material.
  • the flaky graphite when added to the cathode active material as in the present invention, the flaky graphite provides a sliding effect during rolling to improve rolling characteristics, so that the porosity of the cathode active material layer can be reduced to the above numerical range.
  • the positive electrode may have a loading amount of 570 mg/25 cm 2 or more, preferably 600 mg/25 cm 2 to 800 g/25 cm 2 , and more preferably 600 mg/25 cm 2 to 750 mg/25 cm 2 .
  • a relatively high loading amount of the cathode can be secured. And, through this, it is possible to implement high-capacity characteristics.
  • the conductive material is used to impart conductivity to the electrode, and in the battery, any material that does not cause chemical change and has electronic conductivity can be used without particular limitation.
  • Specific examples include graphite such as natural graphite or artificial graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, carbon fiber, and carbon nanotube; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one of these may be used alone or in a mixture of two or more.
  • the conductive material may be typically included in an amount of 1 to 30 wt%, preferably 1 to 20 wt%, and more preferably 1 to 10 wt%, based on the total weight of the cathode active material layer.
  • the binder serves to improve the adhesion between the particles of the positive electrode active material and the adhesion between the positive electrode active material and the positive electrode current collector, and specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene Polymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene monomer rubber (EPDM rubber), sulfonated-EPDM, styrene butadiene rubber (SBR), fluoro rubber, or various copolymers thereof, and the like, One of these alone or a mixture of two or more may be used.
  • the binder may be included in an amount of 1 to 30 wt%, preferably 1 to 20 wt%, and more
  • an insulating layer covering a portion of the positive electrode active material layer and a portion of the uncoated portion may be further formed.
  • the insulating layer may be formed along a direction parallel to the winding direction of the electrode assembly.
  • the negative electrode plate may have a structure in which a negative electrode active material layer is formed on one or both surfaces of a sheet-shaped negative current collector, and the negative electrode active material layer may include a negative electrode active material, a conductive material, and a binder.
  • the negative electrode plate includes a negative electrode active material, a conductive material, and a binder on one side or both sides of a sheet-shaped negative electrode current collector, dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone (acetone), it can be prepared by a method of applying a negative electrode slurry prepared by dispersing in a solvent such as water, removing the solvent of the negative electrode slurry through a drying process, and then rolling. Meanwhile, when the negative electrode slurry is applied, a negative electrode plate including a non-coated portion may be manufactured by not applying the negative electrode slurry to a partial region of the negative electrode current collector, for example, one end of the negative electrode current collector.
  • DMSO dimethyl sulfoxide
  • NMP N-methylpyrrolidone
  • acetone acetone
  • the anode active material may be a compound capable of reversible intercalation and deintercalation of lithium.
  • the negative electrode active material include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; Si, Si-Me alloy (where Me is at least one selected from the group consisting of Al, Sn, Mg, Cu, Fe, Pb, Zn, Mn, Cr, Ti, and Ni), SiOy (where 0 ⁇ silicon-based materials such as y ⁇ 2), Si—C composites, and the like; lithium metal thin film; metal materials capable of being alloyed with lithium, such as Sn and Al; and the like, and any one or a mixture of two or more of them may be used.
  • the negative electrode plate according to the present invention may include a silicon-based negative electrode active material.
  • the silicon-based negative electrode active material is Si, a Si-Me alloy (where Me is at least one selected from the group consisting of Al, Sn, Mg, Cu, Fe, Pb, Zn, Mn, Cr, Ti, and Ni), SiOy (Here, 0 ⁇ y ⁇ 2), it may be a Si—C complex, or a combination thereof, preferably SiOy (here, 0 ⁇ y ⁇ 2). Since the silicon-based negative active material has a high theoretical capacity, capacity characteristics may be improved when the silicon-based negative active material is included.
  • the silicon-based negative electrode active material may be doped with Mb metal, and in this case, the Mb metal may be a Group 1 metal element or a Group 2 metal element, and specifically, may be Li, Mg, or the like.
  • the silicon anode active material may be Si, SiOy (where 0 ⁇ y ⁇ 2), Si—C composite doped with M b metal, or the like.
  • the active material capacity is somewhat lowered due to the doping element, but since it has high efficiency, high energy density can be implemented.
  • the silicon-based negative electrode active material may further include a carbon coating layer on the particle surface.
  • the carbon coating amount may be 20% by weight or less, preferably 1 to 20% by weight based on the total weight of the silicon-based negative electrode active material.
  • the negative electrode plate may further include a carbon-based negative electrode active material as the negative electrode active material.
  • the carbon-based negative electrode active material may be, for example, artificial graphite, natural graphite, graphitized carbon fiber, amorphous carbon, soft carbon, or hard carbon, but is not limited thereto.
  • the mixing ratio of the silicon-based negative active material and the carbon-based negative active material is 1:99 to 20:80, preferably 1:99 to 15 : 85, more preferably 1:99 to 10:90.
  • the negative active material may be included in an amount of 80 to 99% by weight, preferably 85 to 99% by weight, and more preferably 90 to 99% by weight, based on the total weight of the negative active material layer.
  • the conductive material is used to impart conductivity to the negative electrode, and any material having electronic conductivity without causing chemical change in the battery may be used without particular limitation.
  • Specific examples include graphite such as natural graphite or artificial graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, carbon fiber, and carbon nanotube; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one of them alone or a mixture of two or more may be used.
  • the conductive material may be typically included in an amount of 1 to 30 wt%, preferably 1 to 20 wt%, and more preferably 1 to 10 wt%, based on the total weight of the negative electrode active material layer.
  • the binder serves to improve adhesion between particles of the anode active material and adhesion between the anode active material and the anode current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethylcellulose (CMC) ), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene monomer rubber (EPDM rubber), sulfonated-EPDM, styrene-butadiene rubber (SBR), fluororubber, or various copolymers thereof, and the like, and one type alone or a mixture of two or more types thereof may be used.
  • the binder may be included in an amount of 1 to 30 wt%, preferably 1
  • the separator separates the negative electrode and the positive electrode and provides a passage for lithium ions to move, and can be used without particular limitation as long as it is normally used as a separator in a lithium secondary battery.
  • the separator is a porous polymer film, for example, a porous film made of polyolefin polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer.
  • a polymer film or a laminated structure of two or more layers thereof may be used.
  • porous non-woven fabrics for example, non-woven fabrics made of high-melting glass fibers, polyethylene terephthalate fibers, and the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength.
  • a lithium secondary battery according to the present invention includes an electrode assembly having a structure in which a positive electrode plate, a negative electrode plate, and a separator interposed between the positive electrode plate and the negative electrode plate are wound in one direction; a battery can in which the electrode assembly is accommodated; and a sealing body sealing the open end of the battery can.
  • the lithium secondary battery according to the present invention may be a cylindrical battery, more preferably a form factor ratio (defined as a value obtained by dividing the diameter of a cylindrical battery by the height, that is, the ratio of the height (H) to the diameter ( ⁇ )) ) may be a large cylindrical battery with 0.4 or more.
  • the form factor means a value representing the diameter and height of a cylindrical battery.
  • the cylindrical battery according to the present invention includes, for example, 46110 cells (diameter 46 mm, height 110 mm, form factor ratio 0.418), 4875 cells (diameter 48 mm, height 75 mm, form factor ratio 0.640), 48110 cells (diameter 48 mm, height 110 mm). , form factor ratio 0.436), 4880 cells (diameter 48mm, height 80mm, form factor ratio 0.600), 4680 cells (diameter 46mm, height 80mm, form factor ratio 0.575). The two represent the diameter of the cell, and the next two or three numbers represent the height of the cell.
  • the lithium secondary battery according to the present invention by applying a single-particle and/or quasi-single-particle cathode active material, significantly reduces gas generation compared to the prior art, and thus has excellent safety even in a large-sized cylindrical battery having a form factor ratio of 0.4 or more. can be implemented
  • the lithium secondary battery according to the present invention may preferably be a battery having a tab-less structure that does not include an electrode tab, but is not limited thereto.
  • a positive electrode plate and a negative electrode plate each include a non-coated portion on which an active material layer is not formed, a positive electrode uncoated portion and a negative electrode uncoated portion are located at the top and bottom of the electrode assembly, respectively, and the positive electrode uncoated portion and a structure in which a current collecting plate is coupled to the uncoated portion of the negative electrode plate, and the current collecting plate is connected to an electrode terminal.
  • FIG. 3 is a cross-sectional view of a battery having a tab-less structure according to an embodiment of the present invention.
  • a battery according to an embodiment of the present invention will be described with reference to FIG. 3 .
  • FIG. 3 only shows one embodiment of the present invention, and the structure of the battery of the present invention is not limited to the range disclosed in FIG. 3 .
  • the battery 140 includes a jelly-roll type electrode assembly 141, a battery can 142 in which the electrode assembly 141 is accommodated, and an open end of the battery can 142 It includes a sealing body 143 for sealing.
  • the positive electrode plate and the negative electrode plate of the electrode assembly may each include a non-coated portion on which an active material layer is not formed, and may be stacked and wound so that the positive electrode uncoated portion and the negative electrode uncoated portion are located at the upper and lower ends of the electrode assembly, respectively. Since the electrode assembly has been described above, only components other than the electrode assembly will be described below.
  • the battery can 142 is a container having an opening formed thereon, and is made of a conductive metal material such as aluminum or steel.
  • the battery can accommodates the electrode assembly 141 in the inner space through the upper opening and also accommodates the electrolyte.
  • electrolyte used in the present invention various electrolytes that can be used in lithium secondary batteries, such as organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel-type polymer electrolytes, solid inorganic electrolytes, molten inorganic electrolytes, and the like can be used. And the type is not particularly limited.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent includes ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, and ⁇ -caprolactone; ether solvents such as dibutyl ether or tetrahydrofuran; ketone solvents such as cyclohexanone; aromatic hydrocarbon-based solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate, PC) and other carbonate-based solvents; alcohol solvents such as ethyl alcohol and isopropyl alcohol; nitriles such as R-CN (R is a C2 to C20 straight-chain, branched or cyclic
  • carbonate-based solvents are preferred, and cyclic carbonates (eg, ethylene carbonate or propylene carbonate, etc.) having high ion conductivity and high dielectric constant capable of increasing the charge and discharge performance of batteries, and low-viscosity linear carbonate-based compounds ( For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • cyclic carbonates eg, ethylene carbonate or propylene carbonate, etc.
  • low-viscosity linear carbonate-based compounds For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate is more preferable.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB(C 2 O 4 ) 2 or the like may be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 5.0M, preferably 0.1 to 3,0M.
  • concentration of the lithium salt is within the above range, the electrolyte has appropriate conductivity and viscosity, so excellent electrolyte performance can be exhibited, and lithium ions can move effectively.
  • the electrolyte may further include an additive for the purpose of improving lifespan characteristics of a battery, suppressing a decrease in battery capacity, and improving a discharge capacity of a battery.
  • the additives include haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexamethyl phosphate tria Mead, nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N,N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol or aluminum trichloride alone Alternatively, it may be mixed and used, but is not limited thereto.
  • the additive may be included in an amount of 0.1 to 10% by weight, preferably
  • the battery can 142 is electrically connected to the non-coated portion 146b of the negative plate and functions as a negative electrode terminal that contacts an external power source and transfers current applied from the external power source to the negative electrode plate.
  • a beading part 147 and a crimping part 148 may be provided at the top of the battery can 142 .
  • the beading part 147 may be formed by press-fitting the outer circumference of the battery can 142 to a distance of D1.
  • the beading part 147 prevents the electrode assembly 141 accommodated inside the battery can 142 from escaping through the upper opening of the battery can 142, and may function as a support on which the sealing body 143 is seated. .
  • the crimping part 148 may be formed above the beading part 147 and extend to cover the outer circumferential surface of the cap plate 143a disposed on the beading part 147 and a part of the top surface of the cap plate 143a. and has a bent shape.
  • the sealing body 143 is for sealing the open end of the battery can 142, and provides airtightness between the cap plate 143a, the cap plate 143a and the battery can 142, and insulation.
  • the branch includes a first gasket 143b, as needed.
  • a connection plate 143c electrically and mechanically coupled to the cap plate 143a may be further included.
  • the cap plate 143a may be pressed onto the beading portion 147 formed in the battery can 142 and fixed by a crimping portion 148 .
  • the cap plate 143a is a component made of a conductive metal material and covers an upper opening of the battery can 142 .
  • the cap plate 143a is electrically connected to the positive plate of the electrode assembly 141 and electrically insulated from the battery can 142 through the first gasket 143b.
  • the cap plate 143a can function as a positive terminal of the secondary battery.
  • the cap plate 143a may have a protruding portion 143ding upward from the central portion C, and the protruding portion 143d may contact an external power source to allow current to be applied from the external power source.
  • a first gasket 143b may be interposed between the cap plate 143a and the crimping portion 148 to secure airtightness of the battery can 142 and to electrically insulate the battery can 142 and the cap plate 143a.
  • the battery 140 according to the present invention may further include current collecting plates 144 and 145 as needed.
  • the current collecting plate is coupled to the uncoated portion 146a of the positive electrode plate and the uncoated portion 146b of the negative electrode plate, and is connected to electrode terminals (ie, the positive electrode terminal and the negative electrode terminal).
  • the battery 140 may include a first collector plate 144 coupled to the upper portion of the electrode assembly 141 and a second collector plate 145 coupled to the lower portion of the electrode assembly 141.
  • a first current collecting plate 144 and/or a second current collecting plate 145 may be further included.
  • the first current collecting plate 144 is coupled to an upper portion of the electrode assembly 141 .
  • the first current collecting plate 144 is made of a conductive metal material such as aluminum, copper, or nickel, and is electrically connected to the uncoated portion 146a of the positive electrode plate.
  • a lead 149 may be connected to the first current collecting plate 144 .
  • the lead 149 may extend upward from the electrode assembly 141 and be coupled to the connection plate 143c or directly coupled to the lower surface of the cap plate 143a.
  • the lead 149 and other components may be coupled through welding.
  • the first collector plate 144 may be integrally formed with the lead 149 .
  • the lead 149 may have a long plate shape extending outward from the center of the first current collecting plate 144 .
  • the first current collecting plate 144 is coupled to the end of the uncoated portion 146a of the positive electrode plate, and the coupling may be performed by, for example, laser welding, resistance welding, ultrasonic welding, or soldering.
  • the second current collecting plate 145 is coupled to the lower portion of the electrode assembly 141 .
  • the second current collecting plate 145 is made of a conductive metal material such as aluminum, copper, or nickel, and is electrically connected to the uncoated portion 146b of the negative electrode plate.
  • One surface of the second current collecting plate 145 may be coupled to the uncoated portion 146b of the negative electrode plate, and the opposite surface may be coupled to the inner bottom surface of the battery can 142 .
  • the bonding may be performed by a method such as laser welding, resistance welding, ultrasonic welding, or soldering.
  • the battery 140 according to the present invention may further include an insulator 146, if necessary.
  • the insulator 146 may be disposed to cover the upper surface of the first current collecting plate 144 . Since the insulator 146 covers the first current collecting plate 144 , direct contact between the first current collecting plate 144 and the inner circumferential surface of the battery can 142 may be prevented.
  • the insulator 146 has a lead hole 151 through which a lead 149 extending upward from the first current collecting plate 144 can be drawn out.
  • the lead 149 is drawn upward through the lead hole 151 and coupled to the lower surface of the connection plate 143c or the lower surface of the cap plate 143a.
  • the insulator 146 may be made of an insulating polymer resin material, such as polyethylene, polypropylene, polyimide, or polybutylene terephthalate.
  • the battery 140 according to the present invention may further include a venting portion 152 formed on the lower surface of the battery can 142, if necessary.
  • the venting portion 152 corresponds to an area having a thinner thickness than the surrounding area among the lower surfaces of the battery can 142 . Since the venting portion 152 is thin, it is structurally weak compared to the surrounding area. Therefore, when the pressure inside the battery 140 increases above a certain level, the vent 152 is ruptured and the gas inside the battery can 152 is discharged to the outside to prevent the battery from exploding.
  • FIG. 4 is a cross-sectional view of a battery having a tab-less structure according to another embodiment of the present invention.
  • a battery according to another embodiment of the present invention will be described with reference to FIG. 4 .
  • FIG. 4 only shows one embodiment of the present invention, and the structure of the battery of the present invention is not limited to the range disclosed in FIG. 4 .
  • a battery 170 according to another embodiment of the present invention has a different structure of a battery can and a sealing body compared to the battery 140 shown in FIG. 3, and a structure of an electrode assembly and an electrolyte are substantially different. is the same as
  • the battery 170 includes a battery can 171 through which a rivet terminal 172 is installed.
  • the rivet terminal 172 is installed on a partially closed closed surface (upper surface in the drawing) of one end of the battery can 171.
  • the rivet terminal 172 is riveted to the through hole (first opening of the first end) of the battery can 171 in a state where the insulating second gasket 173 is interposed therebetween.
  • the rivet terminal 172 is exposed to the outside in a direction opposite to the direction of gravity.
  • the rivet terminal 172 includes a terminal exposed portion 172a and a terminal inserted portion 172b.
  • the terminal exposed portion 172a is exposed to the outside of the closed surface of the battery can 171 .
  • the terminal exposed portion 172a may be located at approximately the center of the partially closed surface of the battery can 171 .
  • the maximum diameter of the terminal exposed portion 172a may be greater than the maximum diameter of the through hole formed in the battery can 171 .
  • the terminal insertion portion 172b may be electrically connected to the non-coated portion 146a of the positive electrode plate through a substantially central portion of the partially closed closure surface of the battery can 171 .
  • the terminal insertion portion 172b may be rivet-coupled on the inner surface of the battery can 171 .
  • the end of the terminal insertion portion 172b may have a curved shape toward the inner surface of the battery can 171 .
  • the maximum diameter of the end of the terminal insertion portion 172b may be larger than the maximum diameter of the through hole of the battery can 171 .
  • a lower surface of the terminal insertion portion 172b may be welded to the first current collecting plate 144 connected to the uncoated portion 146a of the positive electrode plate.
  • An insulating cap 174 made of an insulating material may be interposed between the first current collecting plate 144 and the inner surface of the battery can 171 .
  • the insulating cap 174 covers an upper portion of the first current collecting plate 144 and an upper edge portion of the electrode assembly 141 . Accordingly, it is possible to prevent a short circuit from being caused by contacting the outer circumferential uncoated portion of the electrode assembly 141 with the inner surface of the battery can 171 having a different polarity.
  • the terminal insertion portion 172b of the rivet terminal 172 may pass through the insulating cap 174 and be welded to the first collector plate 144 .
  • the second gasket 173 is interposed between the battery can 171 and the rivet terminal 172 to prevent electrical contact between the battery can 171 and the rivet terminal 172 having opposite polarities.
  • the upper surface of the rivet terminal 172 having a substantially flat shape can function as a positive electrode terminal of the battery 170 .
  • the second gasket 173 includes a gasket exposed portion 173a and a gasket insertion portion 173b.
  • the gasket exposed portion 173a is interposed between the terminal exposed portion 172a of the rivet terminal 172 and the battery can 171 .
  • the gasket insertion portion 173b is interposed between the terminal insertion portion 172b of the rivet terminal 172 and the battery can 171 .
  • the gasket insertion portion 173b may be deformed together during riveting of the terminal insertion portion 172b and adhered to the inner surface of the battery can 171 .
  • the second gasket 173 may be made of, for example, a polymer resin having insulating properties.
  • the gasket exposed portion 173a of the second gasket 173 may have an extended shape to cover the outer circumferential surface of the terminal exposed portion 172a of the rivet terminal 172 .
  • a short circuit occurs in the process of coupling an electrical connection component such as a bus bar to the upper surface of the battery can 171 and/or to the rivet terminal 172. can prevent it from happening.
  • the gasket exposed portion 173a may have an extended shape to cover not only the outer circumferential surface of the terminal exposed portion 172a but also a portion of the upper surface thereof.
  • the second gasket 173 may be coupled to the battery can 171 and the rivet terminal 172 by thermal fusion. In this case, airtightness at the bonding interface between the second gasket 173 and the rivet terminal 172 and at the bonding interface between the second gasket 173 and the battery can 171 may be enhanced. Meanwhile, in the case where the gasket exposed portion 173a of the second gasket 173 has a shape extending to the upper surface of the terminal exposed portion 172a, the rivet terminal 172 is inserted into the second gasket 173 by insert injection. and can be integrally combined with.
  • the area 175 other than the area occupied by the rivet terminal 172 and the second gasket 173 corresponds to a negative terminal having a polarity opposite to that of the rivet terminal 172.
  • the second current collecting plate 176 is coupled to the lower portion of the electrode assembly 141 .
  • the second current collector plate 176 is made of a conductive metal material such as aluminum, steel, copper, or nickel, and is electrically connected to the uncoated portion 146b of the negative electrode plate.
  • the second current collecting plate 176 is electrically connected to the battery can 171 .
  • at least a portion of an edge portion of the second current collecting plate 176 may be interposed and fixed between the inner surface of the battery can 171 and the first gasket 178b.
  • at least a portion of the edge portion of the second current collecting plate 176 is attached to the beading portion 180 by welding while being supported on the bottom surface of the beading portion 180 formed at the bottom of the battery can 171.
  • can be fixed at least a portion of an edge portion of the second current collector plate 176 may be directly welded to the inner wall surface of the battery can 171 .
  • the second current collecting plate 176 may include a plurality of irregularities (not shown) formed radially on a surface facing the uncoated portion 146b. When the unevenness is formed, the second current collecting plate 176 may be pressed to press-fit the unevenness into the uncoated portion 146b.
  • the second current collecting plate 176 and the end of the uncoated portion 146b may be coupled by welding, for example, laser welding.
  • the sealing body 178 sealing the lower open end of the battery can 171 includes a cap plate 178a and a first gasket 178b.
  • the first gasket 178b electrically separates the cap plate 178a and the battery can 171 from each other.
  • the crimping part 181 fixes the edge of the cap plate 178a and the first gasket 178b together.
  • a vent portion 179 is provided on the cap plate 178a. The configuration of the vent portion 179 is substantially the same as that of the above-described embodiment.
  • the cap plate 178a is made of a conductive metal material.
  • the first gasket 178b is interposed between the cap plate 178a and the battery can 171, the cap plate 178a has no electrical polarity.
  • the sealing body 178 functions to seal the open end of the lower portion of the battery can 171 and to discharge gas when the internal pressure of the battery cell 170 increases above a critical value.
  • the rivet terminal 172 electrically connected to the uncoated portion 146a of the positive electrode plate is used as the positive electrode terminal.
  • the portion 175 excluding the rivet terminal 172 of the upper surface of the battery can 171 electrically connected to the uncoated portion 146b of the negative electrode plate through the second current collector plate 176 is used as the negative electrode terminal.
  • electrical connection components such as bus bars
  • the portion 175 used as the negative terminal has a substantially flat shape, a sufficient bonding area can be secured for bonding electrical connection components such as bus bars. Accordingly, the battery 170 can lower the resistance at the junction of the electrical connection parts to a desirable level.
  • the lithium secondary battery is formed in a tab-less structure as described above, since current concentration is less than that of a conventional battery having electrode tabs, heat generation inside the battery can be effectively reduced, and thus thermal safety of the battery is improved. improvement effect can be obtained.
  • a battery pack 3 according to an embodiment of the present invention includes an assembly to which secondary batteries 1 are electrically connected and a pack housing 2 accommodating them.
  • the secondary battery 1 is a battery cell according to the above-described embodiment.
  • parts such as a bus bar, a cooling unit, and external terminals for electrically connecting the secondary batteries 1 are omitted.
  • the battery pack 3 may be mounted in a vehicle.
  • the vehicle may be, for example, an electric vehicle, a hybrid vehicle, or a plug-in hybrid vehicle. Vehicles include four-wheeled vehicles or two-wheeled vehicles.
  • a vehicle 5 according to an embodiment of the present invention includes a battery pack 3 according to an embodiment of the present invention and operates by receiving power from the battery pack 3 .
  • a separator was interposed between the positive electrode plate and the negative electrode according to Example 1, Example 3, and Comparative Example 1, and the separator/anode plate/separator/negative electrode plate was laminated in the order, and then wound up to prepare a jelly-roll type electrode assembly.
  • a 4680 cylindrical cell was manufactured by inserting the electrode assembly prepared as described above into a cylindrical battery can and then injecting an electrolyte solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은, 양극판, 음극판, 상기 양극판과 음극판 사이에 개재된 분리막이 일 방향으로 권취된 전극 조립체; 상기 전극 조립체가 수납되는 전지 캔; 및 상기 전지 캔의 개방 단부를 밀봉하는 밀봉체를 포함하는 리튬 이차 전지에 관한 것으로, 상기 양극판은 양극 활물질층을 포함하고, 상기 양극 활물질층은, 단입자, 유사-단입자 또는 이들의 조합으로 이루어진 양극 활물질 분말 및 인편상 흑연을 포함한다.

Description

리튬 이차 전지
본 출원은 2021년 10월 15일에 출원된 한국특허출원 제10-2021-0137360호 및 2022년 9월 23일에 출원된 한국특허출원 제10-2022-0121171호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 리튬 이차 전지에 관한 것으로, 보다 구체적으로는 단입자 및/또는 유사-단입자 양극 활물질과 인편상 흑연을 포함하는 양극 활물질층을 적용하여 전지 안정성, 저항 특성, 및 충방전 효율이 개선된 리튬 이차 전지에 관한 것이다.
전기 자동차, 휴대용 전자 장치 등의 기술 발전에 따라 에너지원으로 리튬 이차 전지의 수요가 급격하게 증가하고 있다.
리튬 이차 전지는 전지 케이스 형태에 따라 원통형 또는 각형과 같은 캔형 전지와, 파우치형 전지로 분류될 수 있는데, 이 중 캔형 전지는 전지 캔에 시트 형상의 양극판, 분리막 및 음극판을 순차적으로 적층한 후 일 방향으로 권취하여 제조되는 젤리-롤형 전극 조립체를 수납한 후, 전지 캔 상부에 캡 플레이트를 덮어 밀봉한 형태로 이루어진다. 양극판과 음극판에는 각각 스트립 형태의 양극탭과 음극탭이 구비되며, 상기 양극탭과 음극탭이 전극 단자와 연결되어 외부 전원과 전기적으로 연결된다. 참고로 양극 전극 단자는 캡 플레이트이고, 음극 전극 단자는 전지 캔이다. 그러나, 이와 같은 구조를 갖는 종래의 캔형 전지의 경우, 스트립 형태의 전극 탭에 전류가 집중되어 저항이 크고, 열이 많이 발생하며, 집전 효율이 좋지 않다는 문제점이 있다.
한편, 최근 전기 자동차 기술의 발전에 따라 고용량 전지에 대한 요구가 증가함에 따라 부피가 큰 대형 전지 개발이 요구되고 있다. 종래에 일반적으로 사용되던 소형 원통형 전지, 즉, 1865이나 2170의 폼 팩터를 갖는 원통형 전지의 경우, 용량이 작기 때문에 저항이나 발열이 전지 성능에 심각한 영향을 미치지 않았다. 그러나, 종래의 소형 원통형 전지의 사양을 대형 전지에 그대로 적용할 경우, 전지 안전성에 심각한 문제가 발생할 수 있다.
전지의 크기가 커지면 전지 내부에서 발생하는 열과 가스의 양도 증가하게 되는데, 이러한 열과 가스로 인해 전지 내부의 온도 및 압력이 상승하여 전지가 발화하거나 폭발할 수 있기 때문이다. 이를 방지하기 위해서는 전지 내부의 열과 가스가 외부로 적절하게 배출되어야 하며, 이를 위해서는 전지 외부로 열을 배출하는 통로가 되는 전지의 단면적이 부피 증가에 맞게 증가하여야 한다. 그러나 통상 단면적의 증가분은 부피 증가분에 미치지 못하기 때문에 전지가 대형화될수록 전지 내부의 발열량이 증가하고 이로 인해 폭발 위험성이 커지고, 출력이 저하되는 등의 문제가 발생하게 된다. 또한, 고전압에서 급속 충전을 수행할 경우, 짧은 시간 동안 전극 탭 주변에서 많은 열이 발생하면서 전지가 발화되는 문제도 발생할 수 있다.
다른 한편으로, 종래의 2차 입자를 포함하는 양극 활물질을 적용하여 전극 제조 시 입자 깨짐이 발생하고 충방전 시의 내부 크랙 발생으로 인한 가스 발생량이 증가하여 전지 안정성에 문제가 발생할 수 있다.
이를 해결하기 위해 1차 입자의 크기가 비교적 큰 단입자 또는 유사-단입자 형태의 양극 활물질이 개발되었으나, 상기 단입자 또는 유사-단입자 형태의 양극 활물질을 고로딩 전극에 적용하고 압연하는 경우 전극 공극률이 목표한 수준까지 달성되지 않은 상태에서 전극이 깨져버리는 문제점이 있었으며, 리튬 이차 전지의 저항 특성과 충방전 효율이 좋지 않은 문제가 있었다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 전지의 부피가 증가하여도 우수한 열 안정성을 구현할 수 있는 리튬 이차 전지를 제공하고자 한다.
또한, 본 발명은 상술한 문제점을 해결하기 위한 것으로서, 인편상 흑연 및 단입자 및/또는 유사-단입자를 포함하는 양극 활물질 분말을 포함하는 양극 활물질층을 적용하여 전지 안정성, 저항 특성, 및 충방전 효율이 개선된 리튬 이차 전지를 제공하고자 한다.
일 구체예에 따르면, 본 발명은, 양극판, 음극판, 상기 양극판과 음극판 사이에 개재된 분리막이 일 방향으로 권취된 구조를 가지는 전극 조립체; 상기 전극 조립체가 수납되는 전지 캔; 및 상기 전지 캔의 개방 단부를 밀봉하는 밀봉체를 포함하는 이차 전지이며, 상기 양극판은 집전체 및 양극 활물질층을 포함하고, 상기 양극 활물질층은 양극 활물질 분말 및 인편상 흑연을 포함하는 것인, 리튬 이차 전지를 제공한다. 상기 양극 활물질 분말은 단입자 및/또는 유사-단입자를 포함한다.
한편, 상기 음극판은 실리콘계 음극 활물질을 포함할 수 있다.
또한, 상기 음극판은 실리콘계 음극 활물질 및 탄소계 음극 활물질을 포함할 수 있으며, 이때, 상기 실리콘계 음극 활물질 및 탄소계 음극 활물질은 1 : 99 내지 20 : 80의 중량비로 포함될 수 있다.
한편, 상기 이차 전지는 폼 팩터의 비가 0.4 이상인 원통형 전지일 수 있으며, 예를 들면, 46110 셀, 4875 셀, 48110 셀, 4880 셀 또는 4680 셀일 수 있다. 이때, 상기 폼 팩터의 비는 원통형 전지의 직경을 높이로 나눈 값, 즉, 높이(H)에 대한 직경(Φ)의 비를 의미한다.
또한, 본 발명에 따른 이차 전지는, 양극판 및 음극판이 각각 활물질층이 형성되지 않은 무지부를 포함하고, 상기 무지부의 양극판 또는 음극판의 적어도 일부가 전극 탭을 정의하는 전지일 수 있다.
상기 양극판 무지부 및 음극판 무지부는 각각 상기 전극 조립체의 권취 방향과 평행한 양극판 및 음극판의 일변 단부를 따라 위치하고, 상기 양극판 무지부 및 음극판 무지부 각각에 집전 플레이트가 결합되어 있고, 상기 집전 플레이트가 전극 단자와 연결되는 것일 수 있다.
한편, 상기 양극판 무지부 및 음극판 무지부는 독립적으로 절곡 가능한 복수의 분절편 형태로 가공되어 있고, 상기 복수의 분절편 중 적어도 일부가 상기 전극 탭을 정의하고, 상기 전극 조립체의 권취 중심(C)을 향하여 절곡되어 있을 수 있다. 또한, 상기 절곡된 복수의 분절편 중 적어도 일부는 상기 전극 조립체의 상단 및 하단 상에서 중첩되어 있고, 상기 중접된 복수의 분절편 상에 상기 집전 플레이트가 결합되어 있을 수 있다.
한편, 상기 양극판 상에는, 상기 권취 방향과 평행한 방향을 따라 양극 활물질층의 일부와 무지부의 일부를 덮고 있는 절연층이 더 형성될 수 있다.
다른 구현예에 따르면, 본 발명은 상기 본 발명에 따른 리튬 이차 전지를 포함하는 전지 팩과, 상기 전지 팩을 포함하는 자동차를 제공한다.
본 발명에 따른 리튬 이차 전지는, 양극 활물질로 단입자 및/또는 유사-단입자을 포함하는 양극 활물질을 적용하여, 전극 제조 시의 입자 깨짐 및 충방전 시의 내부 크랙 발생으로 인한 가스 발생을 최소화할 수 있도록 함으로써, 부피가 증가된 대형 전지에서도 우수한 안전성을 구현할 수 있도록 하였다.
또한, 본 발명에 따른 리튬 이차 전지는, Dmin이 1.0㎛ 이상인 양극 활물질 분말을 사용함으로써, 전지의 열 안전성을 더욱 개선할 수 있도록 하였다. 본 발명자들의 연구에 따르면, 양극 활물질로 단입자 및/또는 유사-단입자를 적용하더라도, 양극 활물질 분말의 입도에 따라 압연 후 입자 깨짐 억제 및 열 안전성 개선 효과가 상이한 것으로 나타났다. 특히, 양극 활물질 분말 내에 입경이 1.0㎛ 미만인 입자들이 포함될 경우, 압연 공정에서 선압이 증가하여 입자 깨짐이 증가하고 열 안정성이 저하되어 대형 원통형 전지 적용 시에 열 안전성을 충분히 확보할 수 없었다. 따라서, 본 발명에서는 최소 입자 크기(Dmin)가 1.0㎛ 이상으로 제어된 양극 활물질 분말을 사용함으로써, 열 안전성 개선 효과를 극대화할 수 있도록 하였다.
또한, 본 발명에 따른 리튬 이차 전지는, D50, Dmax, 및 입도 분포(PSD)가 적절하게 조절된 양극 활물질 분말을 적용함으로써, 단입자 적용으로 인한 저항 증가를 최소화할 수 있도록 함으로써, 우수한 용량 특성 및 출력 특성을 구현할 수 있도록 하였다.
또한, 본 발명에 따르면, 양극 활물질층이 양극 활물질 및 인편상 흑연을 포함함으로써, 압연 시에 상기 인편상 흑연의 미끄러짐 효과로 인해 양극판이 손상되지 않으면서 상기 양극판의 공극률을 목표 수치까지 낮출 수 있다.
또한, 본 발명에 따른 리튬 이차 전지는, 음극 활물질로 용량이 큰 실리콘계 음극 활물질을 포함할 수 있으며, 이 경우, 더 높은 에너지 밀도를 구현할 수 있다.
또한, 본 발명에 따른 리튬 이차 전지는, 양극판 및 음극판의 무지부가 전극 탭의 역할을 수행하는 구조, 예를 들면, 탭-리스(Tab-less) 구조를 가질 수 있다. 종래의 캔형 전지는 전극 탭을 통해 전극판과 전극 리드를 연결하는 구조로 이루어져 있는데, 이 경우, 충전 시에 전극 탭으로 많은 양의 전류가 집중됨에 따라 전극 탭 주변에서 많은 열이 발생된다. 특히, 급속 충전 시에는 이러한 현상이 심화되어 전지 발화나 폭발이 발생할 위험성이 있다. 이에 비해, 본 발명에 따른 리튬 이차 전지는, 양극판과 음극판의 단부에 활물질층이 형성되지 않은 무지부를 형성하고, 상기 무지부를 넓은 단면적을 갖는 집전 플레이트와 용접 등의 방법으로 부착시키는 방법으로 전극 단자와 연결시킨 구조로 형성될 수 있다. 이러한 구조의 전지는, 전극 탭을 구비한 종래의 전지에 비해 전류 집중이 덜하기 때문에 전지 내부의 발열을 효과적으로 감소시킬 수 있고, 이에 따라 전지의 열 안전성이 개선되는 효과를 얻을 수 있다.
도 1은 본 발명에 따른 전극 조립체의 권취 전 적층 상태를 나타낸 도면이다.
도 2는 본 발명의 일 실시예에 따른 전극 조립체의 전극판의 구조를 나타낸 단면도이다.
도 3은 본 발명의 일 실시예에 따른 탭-리스 구조의 전지의 구조를 나타낸 단면도이다.
도 4는 본 발명의 다른 실시예에 따른 탭-리스 구조의 전지의 구조를 나타낸 단면도이다.
도 5은 본 발명의 일 구현예에 따른 전극 조립체의 구조를 설명하기 위한 도면이다.
도 6은 본 발명에 따른 배터리 팩을 설명하기 위한 도면이다.
도 7는 본 발명에 따른 배터리 팩을 포함하는 자동차를 설명하기 위한 도면이다.
도 8은 본 발명의 실시예 3, 비교예 1, 및 비교예 2의 양극판을 포함하는 코인 하프 셀의 SOC값에 따른 저항 값을 나타낸 그래프이다.
도 9는 본 발명의 실시예 1, 실시예 3, 및 비교예 1의 양극판을 포함하는 코인 하프 셀의 사이클 수에 따른 용량 유지율과 저항 증가율을 나타낸 그래프이다.
이하, 본 발명을 보다 구체적으로 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
본 발명에서 "1차 입자"는 주사전자현미경 또는 후방산란전자 회절 패턴분석기(Electron BackScatter Diffraction)을 이용하여 5000배 내지 20000배의 시야에서 관찰했을 때 외관상 입계가 존재하지 않는 입자 단위를 의미한다. "1차 입자의 평균 입경"은 주사전자현미경 이미지에서 관찰되는 1차 입자들의 입경을 측정한 후 계산된 이들의 산술평균 값을 의미한다.
본 발명에서 "2차 입자"는 복수개의 1차 입자들이 응집되어 형성된 입자이다. 본 발명에서는 1차 입자가 수십 ~ 수백 개 응집되어 형성되는 종래의 2차 입자와 구별하기 위해 1차 입자가 10개 이하로 응집된 2차 입자를 유사-단입자로 지칭하기로 한다.
본 발명에서 “Dmin”, “D50” 및 “Dmax”는 레이저 회절법(laser diffraction method)를 이용하여 측정된 양극 활물질 분말의 체적 누적 분포의 입도 값이다. 구체적으로는 Dmin은 체적 누적 분포에서 나타나는 최소 입자 크기이며, D50은 체적 누적량이 50%일 때의 입자 크기이고, Dmax는 체적 누적 분포에서 나타나는 최대 입자 크기이다. 상기 체적 누적 분포의 입도 값은, 예를 들면, 양극 활물질 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들면, Microtrac MT 3000)에 도입하여 약 28kHz의 초음파를 출력 60W로 조사한 후, 체적 누적 입도 분포 그래프를 얻어 측정될 수 있다.
본 발명자들은 높은 용량을 구현하면서도 안전성이 우수한 대형 전지를 개발하기 위해 연구를 거듭한 결과, 양극 활물질로 1개의 1차 입자로 이루어진 단입자 및/또는 10개 이하의 1차 입자들의 응집체인 유사-단입자로 이루어진 양극 활물질을 사용함으로써, 대형 전지의 안전성을 획기적으로 향상시킬 수 있음을 알아내고 본 발명을 완성하였다.
구체적으로는, 본 발명에 따른 리튬 이차 전지는, 양극판, 음극판, 상기 양극판과 음극판 사이에 개재된 분리막이 일 방향으로 권취된 전극 조립체와, 상기 전극 조립체가 수납되는 전지 캔; 및 상기 전지 캔의 개방 단부를 밀봉하는 밀봉체를 포함한다.
이하, 본 발명의 리튬 이차 전지의 구성을 구체적으로 설명한다.
전극 조립체
상기 전극 조립체는 양극판, 음극판, 상기 양극판과 음극판 사이에 개재된 분리막이 일 방향으로 권취된 구조를 가지며, 예를 들면, 젤리-롤 타입의 전극 조립체일 수 있다.
도 1에는 본 발명에 따른 전극 조립체의 권취 전 적층 구조가 도시되어 있으며, 도 2에는 본 발명에 따른 전극판(양극판 또는 음극판)의 단면 구조가 도시되어 있다.
도 1 및 도 2를 참조하면, 본 발명의 전극 조립체는 분리막(12), 양극판(10), 분리막(12), 음극판(11)이 순차적으로 적어도 1회 적층하여 형성된 적층체를 일 방향(X)으로 권취시킴으로써 제조될 수 있다.
이때, 상기 양극판(10)과 음극판(11)은 긴 시트 형상의 집전체(20)에 활물질층(21)이 형성된 구조를 가지며, 집전체(20)의 일부 영역에 활물질층(21)이 형성되지 않은 무지부(22)를 포함할 수 있다.
상기와 같이 무지부(22)를 포함하는 양극판(10) 및 음극판(11)을 이용하면 별도의 전극 탭을 구비하지 않고, 양극판(10) 및 음극판(11)의 무지부의 적어도 일부가 전극 탭을 정의하는 구조의 전지를 구현할 수 있다.
구체적으로는, 상기 무지부(22)는 집전체(20)의 일변 단부에 권취 방향(X)을 따라 길게 형성될 수 있으며, 상기 양극판 무지부와 음극판 무지부 각각에 집전 플레이트를 결합하고, 상기 집전 플레이트를 전극 단자와 연결함으로써, 탭-리스(Tab-less) 구조의 전지를 구현할 수 있다.
예를 들면, 다음과 같은 방법을 통해 탭-리스 구조의 전지를 제조할 수 있다. 먼저, 양극판(10)과 음극판(11)의 무지부(22)가 서로 반대 방향에 위치하도록 분리막, 양극판, 분리막, 음극판을 순차적으로 적층한 다음 일 방향으로 권취하여 전극 조립체를 제조한다. 그런 다음, 양극판 및 음극판의 무지부(22)를 권취 중심(C) 방향으로 절곡시킨 후, 양극판의 무지부와 음극판의 무지부에 집전 플레이트를 각각 용접시켜 결합시키고, 상기 집전 플레이트를 전극 단자와 연결함으로써, 탭-리스(Tab-less) 구조의 전지를 제조할 수 있다. 한편, 상기 집전 플레이트는 스트립 타입의 전극 탭에 비해 큰 단면적을 가지며, 저항은 전류가 흐르는 통로의 단면적에 반비례하기 때문에, 이차 전지를 상기와 같은 구조로 형성할 경우, 셀 저항을 크게 낮출 수 있다.
한편, 상기 양극판 및 음극판 무지부는 독립적으로 절곡 가능한 복수의 분절편 형태로 가공되어 있을 수 있으며, 상기 복수의 분절편 중 적어도 일부가 전극 조립체의 권취 중심(C)을 향해 절곡되어 있을 수 있다.
상기 분절편은 양극판 및 음극판의 집전체를 레이저 노칭, 초음파 커팅, 타발 등과 같은 금속박 커팅 공정을 통해 가공함으로써 형성될 수 있다.
양극판 및 음극판의 무지부가 복수의 분절편 형태로 가공되어 있을 경우, 절곡 시 무지부에 가해지는 응력 스트레스를 감소시켜 무지부 변형이나 손상을 방지할 수 있으며, 집전 플레이트와의 용접 특성을 개선할 수 있다.
집전 플레이트와 무지부는 예를 들어, 용접 등에 의해 접합되는데, 용접 특성을 향상시키기 위해서는 무지부의 용접 영역에 강한 압력을 가하여 무지부를 최대한 평평하게 절곡시켜야 한다. 그러나 이러한 절곡 과정에서 무지부의 모양이 불규칙하게 일그러지면서 변형될 수 있으며, 변형된 부위가 반대 극성의 전극과 접촉하여 내부 단락을 일으키거나 무지부에 미세한 크랙을 유발할 수 있다. 그러나, 양극판 및 음극판의 무지부가 독립적으로 절곡 가능한 복수의 분절편 형태로 가공되어 있으면, 절곡 시에 무지부에 가해지는 응력 스트레스가 완화되어 무지부 변형 및 손상을 최소화할 수 있다.
또한, 무지부가 상기와 같이 분절편 형태로 가공되어 있을 경우, 절곡 시에 복수의 분절편들 간에 중첩이 발생하며, 이로 인해 집전 플레이트와의 용접 강도가 증가하고, 레이저 용접 등의 최신 기술을 사용할 경우에 레이저가 전극 조립체 내부로 침투하여 분리막이나 활물질을 융발시키는 문제를 방지할 수 있다. 바람직하게는, 상기 절곡된 복수의 분절편 중 적어도 일부가 상기 전극 조립체의 상단 및 하단 상에서 중첩되어 있을 수 있으며, 중접된 복수의 분절편 상에 집전 플레이트가 결합될 수 있다.
한편, 본 발명에 따른 전극 조립체는, 도 5에 도시된 바와 같이, 양극판(10) 상에는 절연층(24)이 추가로 형성된 구조로 형성될 수 있다. 구체적으로는, 상기 절연층(24)은 전극 조립체의 권취 방향과 평행한 방향을 따라, 양극 활물질층의 일부와 무지부의 일부를 덮도록 형성될 수 있다.
양극판(10)의 무지부(22c)와 음극판(11)의 무지부(22a)를 전극 탭으로 사용하는 탭-리스 구조의 전지의 경우, 양극판(10)이 분리막(12) 상부로 돌출되고, 음극판(11)이 분리막(12) 하부로 돌출될 수 있도록 전극 조립체를 형성하고, 돌출된 양극판(10) 및/또는 음극판(11)을 절곡시킨 후 집전 플레이트와 결합시킨다. 그런데, 상기와 같이 양극판(10) 또는 음극판(11)을 절곡시킬 경우, 양극판(10) 또는 음극판(11)의 집전체가 분리막을 넘어 반대 극성의 전극과 근접하게 위치하게 되며, 이로 인해 양극판과 음극판이 전기적으로 접촉되어 내부 단락을 유발할 가능성이 있다. 그러나, 도 5에 도시된 바와 같이, 양극 활물질층과 무지부의 일부를 덮는 절연층(24)을 형성할 경우, 절연층(24)에 의해 양극판(10)과 음극판(11)이 전기적으로 접촉되는 것을 방지할 수 있어, 전지 내부에서 단락이 발생하는 것을 방지할 수 있다.
바람직하게는, 상기 절연층(24)은, 양극판(10) 집전체의 적어도 일면에 구비될 수 있으며, 바람직하게는, 양극판(10)의 양면에 구비될 수 있다.
또한, 상기 절연층(24)는 양극판(10)의 영역 중에서 음극판(11)의 활물질층(21a)와 대면할 가능성이 있는 영역에 형성될 수 있다. 예를 들면, 상기 양극판(10)의 무지부(22c) 중 절곡된 후에 음극판(11)과 대면하는 면에서는 절연층(24)이 무지부(22c)의 말단까지 연장되어 형성될 수 있다. 다만, 절곡된 후에 음극판(11)과 대면하는 면의 반대면의 경우, 절연층(24)이 무지부(22c)의 일부, 예를 들면, 무지부(22c)의 절곡 지점 전까지만 형성되는 것이 바람직하다. 음극판(11)과 대면하는 면의 반대면의 무지부 전체 영역에 절연층(24)이 형성될 경우, 집전 플레이트와의 전기적 접촉이 불가능하여 전극 탭으로 기능할 수 없기 때문이다.
한편, 상기 절연층(24)은 절연 성능을 확보하면서 양극판에 부착될 수 있는 것이며 되고, 그 소재나 성분이 특별히 한정되는 것은 아니다. 예를 들면, 상기 절연층은 절연 코팅층 또는 절연 테이프일 수 있으며, 상기 절연 코팅층은 유기 바인더 및 무기 입자를 포함하는 것일 수 있다. 이때, 상기 유기 바인더는, 예를 들면, 스티렌-부타디엔 고무(SBR)일 수 있으며, 상기 무기 입자는 알루미나 산화물일 수 있으나, 이에 한정되는 것은 아니다.
다음으로, 본 발명의 전극 조립체의 각 구성요소에 대해 보다 자세히 설명한다.
(1) 양극판
상기 양극판은, 예를 들면, 시트 형상의 양극 집전체의 일면 또는 양면에 양극 활물질층이 형성된 구조로 이루어질 수 있으며, 상기 양극 활물질층은 양극 활물질 분말 및 인편상 흑연을 포함할 수 있고, 선택적으로, 도전재 및/또는 바인더를 포함할 수 있다.
구체적으로는 상기 양극판은 시트 형상의 양극 집전체의 일면 또는 양면에 양극 활물질 분말, 인편상 흑연, 도전재, 및/또는 바인더를 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone), 물 등과 같은 용매에 분산시켜 제조된 양극 슬러리를 도포하고, 건조 공정을 통해 양극 슬러리의 용매를 제거한 후, 압연시키는 방법으로 제조될 수 있다. 한편, 상기 양극 슬러리 도포 시에 양극 집전체의 일부 영역, 예를 들면 양극 집전체의 일 단부에 양극 슬러리를 도포하지 않는 방법으로 무지부를 포함하는 양극판을 제조할 수 있다.
상기 양극 집전체로는, 당해 기술 분야에서 사용되는 다양한 양극 집전체들이 사용될 수 있다. 예를 들어, 상기 양극 집전체로는, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 상기 양극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 상기 양극 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 상기 양극 집전체는 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
본 발명에 있어서, 상기 양극판은 1개의 1차 단일 입자로 이루어진 단입자 및/또는 10개 이하의 1차 입자들의 응집체인 유사-단입자로 이루어진 양극 활물질 분말을 포함한다.
종래에는 리튬 이차 전지의 양극 활물질로 수십 ~ 수백개의 1차 입자들이 응집된 구형의 2차 입자를 사용하는 것이 일반적이었다. 그러나 이와 같이 많은 1차 입자들이 응집된 2차 입자 형태의 양극 활물질의 경우, 양극 제조 시에 압연 공정에서 1차 입자들이 떨어져나가는 입자 깨짐이 발생하기 쉽고, 충방전 과정에서 입자 내부에 크랙이 발생한다는 문제점이 있다. 양극 활물질의 입자 깨짐이나 입자 내부의 크랙이 발생할 경우, 전해액과의 접촉 면적이 증가하게 되기 때문에 전해액과의 부반응으로 인한 가스 발생이 증가한다는 문제점이 있다. 전지 내부에서 가스 발생이 증가하면 전지 내부의 압력이 증가하여 전지 폭발이 발생될 위험이 있다. 특히, 원통형 전지의 부피를 증가시킬 경우, 부피 증가에 따라 전지 내부의 활물질 양이 증가하고, 이로 인해 가스 발생량도 현저하게 증가하기 때문에 전지의 발화 및/또는 폭발 위험성이 더 커지게 된다.
이에 비해, 1개의 1차 입자로 이루어진 단입자나 1차 입자가 10개 이하로 응집된 유사-단입자 형태의 양극 활물질은 1차 입자가 수십~수백개 응집되어 있는 기존의 2차 입자 형태의 양극 활물질에 비해 입자 강도가 높기 때문에 압연 시의 입자 깨짐이 거의 발생하지 않는다. 또한, 단입자 또는 유사-단입자 형태의 양극 활물질의 경우, 입자를 구성하는 1차 입자들의 개수가 적기 때문에 충방전 시에 1차 입자들의 부피 팽창, 수축에 따른 변화가 적고, 이에 따라 입자 내부의 크랙 발생도 현저하게 감소한다.
따라서, 본 발명과 같이 단입자 및/또는 유사-단입자로 이루어진 양극 활물질을 사용할 경우, 입자 깨짐 및 내부 크랙 발생으로 인한 가스 발생량을 현저하게 감소시킬 수 있으며, 이에 따라, 대형 원통형 전지에서도 우수한 안전성을 구현할 수 있다.
한편, 상기 단입자 및/또는 유사-단입자는 양극판에 포함되는 전체 양극 활물질 분말의 중량을 기준으로 95중량% 내지 100중량%, 바람직하게는 98중량% 내지 100중량%, 더 바람직하게는 99중량% 내지 100중량%, 보다 더 바람직하게는 100중량%의 양으로 포함되는 것이 바람직하다. 단입자 및/또는 유사-단입자의 함량이 상기 범위를 만족할 때, 대형 원통형 전지 적용 시에 충분한 안전성을 얻을 수 있다. 2차 입자 형태의 양극 활물질이 전체 양극 활물질 중 5중량%를 초과하는 양으로 포함될 경우, 전극 제조 및 충방전 시에 2차 입자로부터 발생한 미분으로 인해 전해액과의 부반응이 증가하여 가스 발생 억제 효과가 떨어지고, 이로 인해 대형 원통형 전지에 적용 시에 안정성 개선 효과가 저하될 수 있기 때문이다.
한편, 본 발명에 따른 단입자 및/또는 유사-단입자 형태의 양극 활물질 분말은 Dmin이 1.0㎛ 이상, 1.1㎛ 이상, 1.15㎛ 이상, 1.2㎛ 이상, 1.25㎛ 이상, 1.3㎛ 이상, 1.35㎛ 이상, 1.4㎛ 이상, 1.45㎛ 이상, 또는 1.5㎛ 이상일 수 있다. 양극 활물질 분말의 Dmin이 1.0㎛ 미만일 경우, 양극판 압연 공정에서 선압이 증가하여 입자 깨짐이 발생하기 쉽고, 열 안정성이 저하되어 대형 원통형 전지 적용 시에 열 안전성을 충분히 확보할 수 없다.
한편, 출력 및 저항 특성의 측면에서, 본 발명에 따른 단입자 및/또는 유사-단입자 형태의 양극 활물질 분말의 Dmin은 3㎛ 이하, 2.5㎛ 이하 또는 2.0㎛ 이하일 수 있다. Dmin이 너무 크면, 입자 내부에서의 리튬 확산 경로가 증가하여 출력 및 저항 특성이 저하될 수 있기 때문이다.
구체적으로는, 본 발명에 따른 단입자 및/또는 유사-단입자 형태의 양극 활물질 분말의 Dmin은 1.0㎛ 내지 3㎛, 1.0㎛ 내지 2.5㎛, 또는 1.3㎛ 내지 2.0㎛일 수 있다.
한편, 상기 양극 활물질 분말은, D50이 5㎛ 이하, 4㎛ 이하, 또는 3㎛ 이하일 수 있으며, 예를 들면, 0.5㎛ 내지 5㎛, 바람직하게는 1㎛ 내지 5㎛, 더 바람직하게는 2㎛ 내지 5㎛일 수 있다. 단입자 및/또는 유사-단입자 형태의 양극 활물질은 입자 내부에서 리튬 이온의 확산 경로가 되는 1차 입자들 사이의 계면이 적기 때문에 2차 입자 형태의 양극 활물질보다 리튬 이동성이 떨어지고, 이로 인해 저항이 증가한다는 문제점이 있다. 이러한 저항 증가는 입자의 크기가 커질수록 더욱 심화되며, 저항이 증가하면 용량 및 출력 특성이 악영향을 미친다. 따라서, 양극 활물질 분말의 D50을 5㎛ 이하로 조절함으로써 양극 활물질 입자 내부에서의 리튬 이온 확산 거리를 최소화함으로써 저항 증가를 억제할 수 있다.
또한, 상기 양극 활물질 분말은 Dmax가 12㎛ 내지 17㎛, 바람직하게는 12㎛ 내지 16㎛, 더 바람직하게는 12㎛ 내지 15㎛일 수 있다. 양극 활물질 분말의 Dmax가 상기 범위를 만족할 때, 저항 특성 및 용량 특성이 더욱 우수하게 나타난다. 양극 활물질 분말의 Dmax가 너무 큰 경우는 단입자들 간의 응집이 발생한 것으로, 응집된 입자 내부에서의 리튬 이동 경로가 길어져 리튬 이동성이 떨어지고, 이로 인해 저항이 증가할 수 있다. 한편, 양극 활물질 분말의 Dmax가 너무 작은 경우는 과도한 해쇄 공정이 이루어진 경우로, 과도한 해쇄로 인해 Dmin이 1㎛ 미만으로 작아질 수 있어 압연 시 입자 깨짐이 유발되고 열 안정성이 저하될 수 있다. 한편, 상기 양극 활물질 분말은, 하기 식 (1)로 표시되는 입도 분포(PSD, Particle Size Distribution)이 3 이하, 바람직하게는 2 내지 3, 더 바람직하게는 2.3 내지 3일 수 있다.
식 (1): 입도 분포(PSD) = (Dmax - Dmin)/D50
양극 활물질 분말이 상기와 같은 입도 분포를 가질 때, 양극의 전극 밀도를 적절하게 유지할 수 있고, 입자 깨짐 및 저항 증가를 효과적으로 억제할 수 있다.
한편, 상기 양극 활물질은 1차 입자의 평균 입경은 5㎛ 이하, 4㎛ 이하, 3㎛ 이하, 또는 2㎛ 이하일 수 있으며, 예를 들면, 0.5㎛ 내지 5㎛, 바람직하게는 1㎛ 내지 5㎛, 더 바람직하게는 2㎛ 내지 5㎛일 수 있다. 1차 입자의 평균 입경이 상기 범위를 만족할 경우, 전기 화학적 특성이 우수한 단입자 및/또는 유사-단입자 형태의 양극 활물질을 형성할 수 있다. 1차 입자의 평균 입경이 너무 작으면, 양극 활물질을 형성하는 1차 입자의 응집 개수가 많아져 압연 시에 입자 깨짐 발생 억제 효과가 떨어지고, 1차 입자의 평균 입경이 너무 크면 1차 입자 내부에서의 리튬 확산 경로가 길어져 저항이 증가하고 출력 특성이 떨어질 수 있다.
본 발명에 있어서, 상기 양극 활물질 분말은 유니모달 입도 분포를 갖는 것이 바람직하다. 종래에는 양극 활물질층의 전극 밀도를 향상시키기 위해 평균 입경이 큰 대입경 양극 활물질과 평균 입경이 작은 소입경 양극 활물질을 혼합하여 사용하는 바이모달 양극 활물질이 많이 사용되어 왔다. 그러나, 단입자 및/또는 유사-단입자 양극 활물질의 경우, 입경이 증가하면 리튬 이동 경로가 길어져 저항이 현저하게 증가하기 때문에 대입경 입자를 혼합하여 사용할 경우, 용량 및 출력 특성이 저하되는 문제점이 발생할 수 있다. 따라서, 본 발명에서는 유니모달 분포를 갖는 양극 활물질을 사용함으로써, 저항 증가를 최소화할 수 있도록 하였다.
한편, 상기 양극 활물질은 리튬 니켈계 산화물을 포함하는 것일 수 있으며, 구체적으로는, 전이금속 전체 몰수를 기준으로 Ni을 80몰% 이상으로 포함하는 리튬 니켈계 산화물을 포함하는 것일 수 있다. 바람직하게는, 상기 리튬 니켈계 산화물은 Ni을 80몰% 이상 100몰% 미만, 82몰% 이상 100몰% 미만, 또는 83몰% 이상 100몰% 미만으로 포함할 수 있다. 상기와 같이 Ni 함량이 높은 리튬 니켈계 산화물을 사용할 경우, 높은 용량을 구현할 수 있다.
더 구체적으로는, 상기 양극 활물질은, 하기 [화학식 1]로 표시되는 리튬 니켈계 산화물을 포함하는 것일 수 있다.
[화학식 1]
LiaNibCocM1 dM2 eO2
상기 화학식 1에서, M1은 Mn, Al 또는 이들의 조합일 수 있으며, 바람직하게는 Mn 또는 Mn 및 Al일 수 있다.
상기 M2는 Zr, W, Y, Ba, Ca, Ti, Mg, Ta 및 Nb로 이루어진 군에서 선택되는 1종 이상이며, 바람직하게는 Zr, Y, Mg, 및 Ti로 이루어진 군에서 선택된 1종 이상일 수 있고, 더 바람직하게는 Zr, Y 또는 이들의 조합일 수 있다. M2 원소는 필수적으로 포함되는 것은 아니나, 적절한 양으로 포함될 경우, 소성 시의 입 성장을 촉진하거나, 결정 구조 안정성을 향상시키는 역할을 수행할 수 있다.
상기 a는 리튬 니켈계 산화물 내의 리튬 몰비를 나타내는 것으로, 0.8≤a ≤1.2, 0.85≤a ≤1.15, 또는 0.9≤a≤1.2일 수 있다. 리튬의 몰비가 상기 범위를 만족할 때, 리튬 니켈계 산화물의 결정 구조가 안정적으로 형성될 수 있다.
상기 b는 리튬 니켈계 산화물 내 리튬을 제외한 전체 금속 중 니켈의 몰비를 나타내는 것으로, 0.8≤b<1, 0.82≤b<1, 0.83≤b<1, 0.85≤b<1, 0.88≤b<1 또는 0.90≤b<1일 수 있다. 니켈의 몰비가 상기 범위를 만족할 때, 높은 에너지 밀도를 나타내어 고용량 구현이 가능하다.
상기 c는 리튬 니켈계 산화물 내의 리튬을 제외한 전체 금속 중 코발트 몰비를 나타내는 것으로, 0<c<0.2, 0<c<0.18, 0.01≤c≤0.17, 0.01≤c≤0.15, 0.01≤c≤0.12 또는 0.01≤c≤0.10일 수 있다. 코발트의 몰비가 상기 범위를 만족할 때, 양호한 저항 특성 및 출력 특성을 구현할 수 있다.
상기 d는 리튬 니켈계 산화물 내의 리튬을 제외한 전체 금속 중 M1 원소의 몰비를 나타내는 것으로, 0<d<0.2, 0<d<0.18, 0.01≤d≤0.17, 0.01≤d≤0.15, 0.01≤d≤0.12, 또는 0.01≤d≤0.10일 수 있다. M1 원소의 몰비가 상기 범위를 만족할 때, 양극 활물질의 구조 안정성이 우수하게 나타난다.
상기 e는 리튬 니켈계 산화물 내의 리튬을 제외한 전체 금속 중 M2 원소의 몰비를 나타내는 것으로, 0≤e≤0.1, 또는 0≤e≤0.05일 수 있다.
한편, 본 발명에 따른 양극 활물질은, 필요에 따라, 상기 리튬 니켈계 산화물 입자 표면에, Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb. Mo, Sr, Sb, Bi, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상의 코팅 원소를 포함하는 코팅층을 더 포함할 수 있다. 바람직하게는 상기 코팅 원소는 Al, B, Co 또는 이들의 조합일 수 있다.
리튬 니켈계 산화물 입자 표면에 코팅층이 존재할 경우, 코팅층에 의해 전해질과 리튬 복합전이금속 산화물의 접촉이 억제되며, 이로 인해 전해질과의 부반응으로 인한 전이금속 용출이나 가스 발생을 감소시키는 효과를 얻을 수 있다.
상기 양극 활물질은 양극 활물질층 총 중량에 대하여 80 내지 99중량%, 바람직하게는 85 내지 99중량%, 더 바람직하게는 90 내지 99중량%로 포함될 수 있다.
또한, 본 발명에서는 상기 단입자 및/또는 유사-단입자 양극 활물질 및 인편상 흑연을 포함하는 양극 활물질층을 사용한다.
인편상 흑연은 판상의 구조의 흑연층이 여러 겹으로 적층되어 있는 구조의 흑연을 의미하는 것으로, 단입자 또는 유사-단입자 양극 활물질에 인편상 흑연을 첨가한 양극 활물질층을 압연하는 경우, 상기 인편상 흑연이 상기 양극 활물질에 미끄러짐 효과를 제공하여 전극의 압연 특성이 향상되고, 전극 공극률을 목표하는 수준까지 낮출 수 있다. 이에 따라, 본 발명에 따른 리튬 이차 전지는 전지 안정성, 저항 특성, 및 충방전 효율이 개선될 수 있다.
한편, 상기 인편상 흑연은 상기 양극 활물질층에 0.05 중량% 내지 5중량%로 포함될 수 있으며, 바람직하게는 0.1중량% 내지 3중량%로 포함될 수 있다. 인편상 흑연의 함량이 상기 범위를 만족할 때, 양극 압연 특성이 개선되어 우수한 전극 밀도를 구현할 수 있다. 인편상 흑연 함량이 너무 적으면 압연 특성 개선 효과가 미미하고, 너무 많으면 슬러리 점도 상승 및 상안정성 저하를 유발할 수 있고, 도전재와의 결합을 통해 전극 균일성 저하로 저항이 증가할 가능성이 있다.
한편, 본 발명에서 사용되는 인편상 흑연은, 이로써 제한되는 것은 아니나, 평균 입경이 1㎛ 내지 20㎛, 바람직하게는 2㎛ 내지 10㎛, 더 바람직하게는 3㎛ 내지 5㎛일 수 있다. 인편상 흑연의 크기가 너무 작으면, 원하는 공극률을 구현하기 어렵고, 전류 밀도를 낮춰 용량이 낮아질 수 있다. 이때, 상기 인편상 흑연의 평균 입경은 레이저 회절 방법(ISO 13320)으로 측정될 수 있다.
또한, 상기 인편상 흑연은 종횡비가 0.1 내지 500, 바람직하게는, 1 내지 100, 더 바람직하게는 1 내지 30일 수 있다. 인편상 흑연의 종횡비가 상기 범위를 만족할 경우, 전도성을 개선하여 전극 저항을 낮추는 효과가 발생한다.
또한, 상기 인편상 흑연은 밀도가 2.0g/cm3 내지 2.5g/cm3, 바람직하게는 2.1g/cm3 내지 2.4g/cm3, 더 바람직하게는 2.2g/cm3 내지 2.3g/cm3일 수 있다.
한편, 본 발명에 있어서, 상기 양극 활물질층의 공극률은 15% 내지 23%, 바람직하게는 17% 내지 23%, 더 바람직하게는 18% 내지 23%일 수 있다. 양극 활물질층의 공극률이 상기 범위를 만족할 때, 전극 밀도가 증가하여 우수한 용량을 구현할 수 있으며, 저항이 감소한다. 공극률이 너무 낮으면 전해액 함침성이 떨어져 전해액 미함침에 의한 리튬 석출이 발생할 수 있고, 너무 높으면 전극간의 접촉이 좋지 않아 저항이 증가되고 에너지 밀도가 감소하여 용량 개선 효과가 미미하다.
상기 양극 활물질층의 공극률은 i) 상기 양극 활물질이 단입자 또는 유사-단입자 형태인 것과 ii) 상기 양극 활물질에 인편상 흑연을 첨가하는 것으로써 달성될 수 있다.
양극 활물질층의 로딩량이 비교적 높은 고로딩 전극을 구현함에 있어서, 본 발명과 같이 단입자 또는 유사-단입자 형태의 양극 활물질을 사용하는 경우, 종래 2차 입자 형태의 양극 활물질에 비해 압연 시의 활물질의 입자 깨짐이 현저히 감소되고, 양극 집전체(Al Foil)의 손상이 줄어들기 때문에 상대적으로 높은 선압으로 압연이 가능하여 양극 활물질층의 공극률은 상기와 같은 수치범위까지 감소하여 에너지밀도를 높일 수 있다.
또한, 본 발명과 같이 양극 활물질에 인편상 흑연을 첨가하는 경우 압연 시 상기 인편상 흑연이 미끄러짐 효과를 제공하여 압연 특성이 개선되어 양극 활물질층의 공극률은 상기와 같은 수치범위까지 감소될 수 있다.
또한, 상기 양극은, 로딩량이 570mg/25cm2 이상, 바람직하게는 600mg/25cm2 내지 800g/25m2, 더 바람직하게는 600mg/25cm2 내지 750mg/25cm2일 수 있다. 구체적으로, 본 발명에 따른 리튬 이차 전지의 경우 단입자 및/또는 유사-단입자 양극 활물질 및 인편상 흑연을 적용함으로써 전극의 압연 특성이 향상되기 때문에 상기 양극의 로딩량이 비교적 높은 수준으로 확보될 수 있으며, 이를 통해 고용량 특성을 구현할 수 있다.
다음으로, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유, 탄소나노튜브 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 양극 활물질층 총 중량에 대하여 1 내지 30 중량%, 바람직하게는 1 내지 20중량%, 더 바람직하게는 1 내지 10중량%로 포함될 수 있다.
상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 수행하는 것으로, 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머 고무(EPDM rubber), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 1 내지 30 중량%, 바람직하게는 1 내지 20중량%, 더 바람직하게는 1 내지 10중량%로 포함될 수 있다.
한편, 본 발명에 따른 양극판 상에는, 필요에 따라, 양극 활물질층의 일부와 무지부의 일부를 덮고 있는 절연층이 더 형성될 수 있다. 상기 절연층은 전극 조립체의 권취 방향과 평행한 방향을 따라 형성될 수 있다.
(2) 음극판
상기 음극판은 시트 형상의 음극 집전체의 일면 또는 양면에 음극 활물질층이 형성된 구조로 이루어질 수 있으며, 상기 음극 활물질층은 음극 활물질, 도전재 및 바인더를 포함할 수 있다.
구체적으로는 상기 음극판은 시트 형상의 음극 집전체의 일면 또는 양면에 음극 활물질, 도전재, 및 바인더를 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone), 물 등과 같은 용매에 분산시켜 제조된 음극 슬러리를 도포하고, 건조 공정을 통해 음극 슬러리의 용매를 제거한 후, 압연시키는 방법으로 제조될 수 있다. 한편, 상기 음극 슬러리 도포 시에 음극 집전체의 일부 영역, 예를 들면 음극 집전체의 일 단부에 음극 슬러리를 도포하지 않는 방법으로 무지부를 포함하는 음극판을 제조할 수 있다.
상기 음극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 음극 활물질의 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질 탄소 등의 탄소질 재료; Si, Si-Me 합금(여기서, Me은 Al, Sn, Mg, Cu, Fe, Pb, Zn, Mn, Cr, Ti, 및 Ni로 이루어진 군에서 선택되는 1종 이상), SiOy(여기서, 0<y<2), Si-C 복합체 등과 같은 실리콘계 물질; 리튬 금속 박막; Sn, Al 등과 같이 리튬과 합금화가 가능한 금속 물질; 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
바람직하게는, 본 발명에 따른 음극판은 실리콘계 음극 활물질을 포함할 수 있다. 상기 실리콘계 음극 활물질은 Si, Si-Me 합금(여기서, Me은 Al, Sn, Mg, Cu, Fe, Pb, Zn, Mn, Cr, Ti, 및 Ni로 이루어진 군에서 선택되는 1종 이상), SiOy(여기서, 0<y<2), Si-C 복합체 또는 이들의 조합일 수 있으며, 바람직하게는 SiOy(여기서, 0<y<2)일 수 있다. 실리콘계 음극 활물질은 높은 이론 용량을 가지기 때문에 실리콘계 음극 활물질을 포함할 경우, 용량 특성을 향상시킬 수 있다.
한편, 상기 실리콘계 음극 활물질은, Mb 금속으로 도핑된 것일 수 있으며, 이때, 상기 Mb 금속은 1족 금속 원소, 2족 금속 원소일 수 있으며, 구체적으로는, Li, Mg 등일 수 있다. 구체적으로는 상기 실리콘 음극 활물질은 Mb 금속으로 도핑된 Si, SiOy(여기서, 0<y<2), Si-C 복합체 등일 수 있다. 금속 도핑된 실리콘계 음극 활물질의 경우, 도핑 원소로 인해 활물질 용량은 다소 저하되나 높은 효율을 갖기 때문에, 높은 에너지 밀도를 구현할 수 있다.
또한, 상기 실리콘계 음극 활물질은 입자 표면에 탄소 코팅층을 더 포함할 수 있다. 이때, 상기 탄소 코팅량은 실리콘계 음극 활물질 전체 중량을 기준으로 20중량% 이하, 바람직하게는 1 ~ 20중량%일 수 있다.
또한, 상기 음극판은, 필요에 따라, 음극 활물질로 탄소계 음극 활물질을 더 포함할 수 있다. 상기 탄소계 음극 활물질은, 예를 들면, 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소, 연화탄소 (soft carbon), 경화탄소 (hard carbon) 등일 수 있으나, 이에 한정되는 것은 아니다.
한편, 음극 활물질로 실리콘계 음극 활물질과 탄소계 음극 활물질의 혼합물을 사용할 경우, 상기 실리콘계 음극 활물질 및 탄소계 음극 활물질의 혼합비는 중량 비율로 1 : 99 내지 20 : 80, 바람직하게는 1 : 99 내지 15 : 85, 더 바람직하게는 1 : 99 내지 10 : 90일 수 있다.
상기 음극 활물질은 음극 활물질층 총 중량에 대하여 80 내지 99중량%, 바람직하게는 85 내지 99중량%, 더 바람직하게는 90 내지 99중량%로 포함될 수 있다.
한편, 상기 음극 집전체로는, 당해 기술 분야에서 일반적으로 사용되는 음극 집전체들이 사용될 수 있으며, 예를 들면, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 도전재는 음극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유, 탄소나노튜브 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 음극 활물질층 총 중량에 대하여 1 내지 30 중량%, 바람직하게는 1 내지 20중량%, 더 바람직하게는 1 내지 10중량%로 포함될 수 있다.
상기 바인더는 음극 활물질 입자들 간의 부착 및 음극 활물질과 음극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머 고무(EPDM rubber), 술폰화-EPDM, 스티렌-부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 음극 활물질층 총 중량에 대하여 1 내지 30 중량%, 바람직하게는 1 내지 20중량%, 더 바람직하게는 1 내지 10중량%로 포함될 수 있다.
(3) 분리막
상기 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한 없이 사용가능하다. 구체적으로는 상기 분리막으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있다.
리튬 이차 전지
다음으로 본 발명에 따른 리튬 이차 전지에 대해 설명한다.
본 발명에 따른 리튬 이차 전지는 양극판, 음극판, 상기 양극판과 음극판 사이에 개재된 분리막이 일 방향으로 권취된 구조를 가지는 전극 조립체; 상기 전극 조립체가 수납되는 전지 캔; 및 상기 전지 캔의 개방 단부를 밀봉하는 밀봉체를 포함할 수 있다.
바람직하게는, 본 발명에 따른 리튬 이차 전지는 원통형 전지일 수 있으며, 더 바람직하게는 폼 팩터의 비(원통형 전지의 직경을 높이로 나눈 값, 즉 높이(H) 대비 직경(Ф)의 비로 정의됨)가 0.4 이상인 대형 원통형 전지일 수 있다. 여기서, 폼 팩터란, 원통형 전지의 직경 및 높이를 나타내는 값을 의미한다.
본 발명에 따른 원통형 전지는, 예를 들면, 46110 셀(직경 46mm, 높이 110mm, 폼 팩터 비 0.418), 4875 셀(직경 48mm, 높이 75mm, 폼 팩터 비 0.640), 48110 셀(직경 48mm, 높이 110mm, 폼 팩터 비 0.436), 4880 셀(직경 48mm, 높이 80mm, 폼 팩터 비 0.600), 4680셀((직경 46mm, 높이 80mm, 폼 팩터 비 0.575)일 수 있다. 폼 팩터를 나타내는 수치에서 앞의 숫자 2개는 셀의 직경을 나타내고, 그 다음 숫자 2개 또는 3개는 셀의 높이를 나타낸다.
본 발명에 따른 리튬 이차 전지는, 단입자 및/또는 유사-단입자 양극 활물질을 적용하여 종래에 비해 가스 발생량을 현저하게 감소시켰으며, 이에 따라 폼 팩터의 비가 0.4 이상인 대형 원통형 전지에서도 우수한 안전성을 구현할 수 있다.
한편, 본 발명에 따른 리튬 이차 전지는, 바람직하게는, 전극 탭을 포함하지 않는 탭-리스(Tab-less) 구조의 전지일 수 있으나, 이에 한정되는 것은 아니다.
상기 탭-리스 구조의 전지는, 예를 들면, 양극판 및 음극판이 각각 활물질층이 형성되지 않은 무지부를 포함하고, 전극 조립체의 상단 및 하단에 각각 양극판 무지부 및 음극판 무지부가 위치하고, 상기 양극판 무지부 및 음극판 무지부에 집전 플레이트가 결합되어 있고, 상기 집전 플레이트가 전극 단자와 연결되는 있는 구조일 수 있다.
도 3에는 본 발명의 일 실시예에 따른 탭-리스 구조의 전지의 단면도가 도시되어 있다. 이하, 도 3을 참조하여, 본 발명의 일 실시예에 따른 전지에 대해 설명한다. 다만, 도 3은 본 발명의 일 실시예를 보여주는 것일 뿐, 본 발명의 전지의 구조가 도 3에 개시된 범위로 한정되는 것은 아니다.
본 발명의 일 실시예에 따른 전지(140)는 젤리-롤 타입의 전극 조립체(141)와, 상기 전극 조립체(141)가 수납되는 전지 캔(142), 및 상기 전지 캔(142)의 개방 단부를 밀봉하는 밀봉체(143)를 포함한다.
이때, 상기 전극 조립체의 양극판 및 음극판은 각각 활물질층이 형성되지 않은 무지부를 포함하는 것일 수 있으며, 상기 전극 조립체의 상단 및 하단에 각각 양극 무지부 및 음극 무지부가 위치하도록 적층되고 권취될 수 있다. 전극 조립체에 대해서는 상술하였으므로 이하에서는 전극 조립체를 제외한 나머지 구성 요소들에 대해서만 설명하기로 한다.
전지 캔(142)은 상방에 개구부가 형성된 용기로, 알루미늄이나 스틸과 같은 도전성을 갖는 금속 재질로 이루어진다. 전지 캔은 상단 개구부를 통해 내측 공간에 전극 조립체(141)를 수용하며, 전해질도 함께 수용한다.
본 발명에서 사용되는 전해질로는 리튬 이차전지에 사용 가능한 다양한 전해질들, 예를 들면, 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등이 사용될 수 있으며, 그 종류가 특별히 한정되는 것은 아니다.
구체적으로는, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 5.0M, 바람직하게는 0.1 내지 3,0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명 특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 첨가제를 추가로 포함할 수 있다. 예를 들어, 상기 첨가제로는 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사메틸인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등을 단독 또는 혼합하여 사용할 수 있으나, 이에 한정되는 것은 아니다. 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 10중량%, 바람직하게는 0.1 내지 5 중량%로 포함될 수 있다.
전지 캔(142)은 음극판의 무지부(146b)와 전기적으로 연결되며, 외부 전원과 접촉하여 외부 전원으로부터 인가된 전류를 음극판으로 전달하는 음극 단자로 기능한다.
필요에 따라, 상기 전지 캔(142)의 상단에 비딩부(147) 및 크림핑부(148)가 구비될 수 있다. 상기 비딩부(147)는 전지 캔(142)의 외주면 둘레를 D1의 거리까지 압입하여 형성될 수 있다. 비딩부(147)는 전지 캔(142)의 내부에 수용된 전극 조립체(141)가 전지캔(142)의 상단 개구부를 통해 빠져나오지 못하도록 하며, 밀봉체(143)가 안착되는 지지부로 기능할 수 있다.
상기 크림핑부(148)는 상기 비딩부(147)의 상부에 형성될 수 있으며, 비딩부(147) 상에 배치되는 캡 플레이트(143a)의 외주면과 캡 플레이트(143a)의 상면 일부를 감싸도록 연장 및 절곡된 형태를 갖는다.
다음으로, 상기 밀봉체(143)는, 전지 캔(142)의 개방 단부를 밀봉하기 위한 것으로, 캡 플레이트(143a), 캡 플레이트(143a)와 전지 캔(142) 사이에 기밀성을 제공하며 절연성을 가지는 제1가스켓(143b)을 포함하며, 필요에 따라. 캡 플레이트(143a)와 전기적 및 기계적으로 결합된 연결 플레이트(143c)을 더 포함할 수 있다. 상기 캡 플레이트(143a)는 전지 캔(142)에 형성된 비딩부(147) 상에 압착되며, 크림핑부(148)에 의해 고정될 수 있다.
캡 플레이트(143a)는 전도성을 갖는 금속 재질로 이루어진 부품으로, 전지 캔(142)의 상단 개구부를 커버한다. 캡 플레이트(143a)는 전극 조립체(141)의 양극판과 전기적으로 연결되며, 전지 캔(142)과는 제1가스켓(143b)을 통해 전기적으로 절연된다. 따라서, 캡 플레이트(143a)는 이차 전지의 양극 단자로서 기능할 수 있다. 캡 플레이트(143a)는 그 중심부 C로부터 상방으로 돌출된 형성된 돌출부(143d)를 구비할 수 있으며, 상기 돌출부(143d)가 외부 전원과 접촉하여 외부 전원으로부터 전류가 인가되도록 할 수 있다.
캡 플레이트(143a)와 크림핑부(148) 사이에는 전지 캔(142)의 기밀성을 확보하고, 전지 캔(142)과 캡 플레이트(143a) 사이의 전기적 절연을 위해 제1가스켓(143b)이 개재될 수 있다.
한편, 본 발명에 따른 전지(140)는, 필요에 따라, 집전 플레이트(144, 145)를 더 포함할 수 있다. 상기 집전 플레이트는 양극판 무지부(146a)와 음극판의 무지부(146b)에 결합되며, 전극 단자(즉, 양극 단자 및 음극 단자)와 연결된다.
구체적으로는, 본 발명에 따른 전지(140)는 전극 조립체(141) 상부에 결합되는 제1집전 플레이트(144) 및 전극 조립체(141)의 하부에 결합되는 제2집전 플레이트(145)를 포함할 수 있다.
제1집전 플레이트(144) 및/또는 제2집전 플레이트(145)를 더 포함할 수 있다.
제1집전 플레이트(144)는 전극 조립체(141)의 상부에 결합된다. 제1집전 플레이트(144)는 알루미늄, 구리, 니켈 등과 같은 도전성 금속 재질로 이루어지며, 양극판의 무지부(146a)와 전기적으로 연결된다. 제1집전 플레이트(144)에는 리드(149)가 연결될 수 있다. 리드(149)는 전극 조립체(141)의 상방으로 연장되어 연결 플레이트(143c)에 결합되거나 캡 플레이트(143a)의 하면에 직접 결합될 수 있다. 리드(149)와 다른 부품의 결합은 용접을 통해 이루어질 수 있다. 바람직하게는 제1집전 플레이트(144)는 리드(149)와 일체로 형성될 수 있다. 이 경우, 리드(149)는 제1집전 플레이트(144)의 중심부로부터 외측으로 연장된 길다란 플레이트 형상을 가질 수 있다.
한편, 상기 제1집전 플레이트(144)는 양극판의 무지부(146a)의 단부에 결합되며, 상기 결합은, 예를 들면, 레이저 용접, 저항 용접, 초음파 용접, 솔더링 등의 방법으로 이루어질 수 있다.
제2집전 플레이트(145)는 전극 조립체(141)의 하부에 결합된다. 제2집전 플레이트(145)는 알루미늄, 구리, 니켈 등과 같은 도전성 금속 재질로 이루어지며, 음극판의 무지부(146b)와 전기적으로 연결된다. 제2집전 플레이트(145)의 일면은 음극판의 무지부(146b)와 결합될 수 있으며, 반대쪽 면은 전지 캔(142)의 내측 바닥 면과 결합될 수 있다. 이때, 상기 결합은 레이저 용접, 저항 용접, 초음파 용접, 솔더링 등의 방법으로 이루어질 수 있다.
한편, 본 발명에 따른 전지(140)는, 필요에 따라, 인슐레이터(146)를 더 포함할 수 있다. 인슐레이터(146)는, 제1집전 플레이트(144)의 상면을 커버하도록 배치될 수 있다. 인슐레이터(146)가 제1집전 플레이트(144)을 커버함으로써, 제1집전 플레이트(144)와 전지 캔(142)의 내주면이 직접 접촉되는 것을 방지할 수 있다.
인슐레이터(146)는 제1집전 플레이트(144)로부터 상방으로 연장되는 리드(149)가 인출될 수 있도록 리드 홀(151)을 구비한다. 리드(149)는 리드 홀(151)을 통해 상방으로 인출되어 연결 플레이트(143c)의 하면 또는 캡 플레이트(143a)의 하면에 결합된다.
인슐레이터(146)는 절연성이 있는 고분자 수지, 예를 들면, 폴리에틸렌, 폴리프로필렌, 폴리이미드 또는 폴리부틸렌테레프탈레이트 등과 같은 고분자 수지 재질로 이루어질 수 있다.
한편, 본 발명에 따른 전지(140)는, 필요에 따라, 전지 캔(142)의 하면에 형성된 벤팅부(152)를 더 구비할 수 있다. 벤팅부(152)는 전지 캔(142)의 하면 중 주변 영역과 비교하여 더 얇은 두께를 갖는 영역에 해당한다. 벤팅부(152)는 두께가 얇기 때문에 주변 영역과 비교하여 구조적으로 취약하다. 따라서, 전지(140) 내부의 압력이 일정 수준 이상으로 증가하면 벤팅부(152)가 파열되면서 전지 캔(152) 내부의 가스가 외부로 배출되어 전지가 폭발하는 것을 방지할 수 있도록 해준다.
도 4에는 본 발명의 다른 실시예에 따른 탭-리스 구조의 전지의 단면도가 도시되어 있다. 이하, 도 4을 참조하여, 본 발명의 다른 실시예에 따른 전지에 대해 설명한다. 다만, 도 4는 본 발명의 일 실시예를 보여주는 것일 뿐, 본 발명의 전지의 구조가 도 4에 개시된 범위로 한정되는 것은 아니다.
도 4를 참조하면, 본 발명의 다른 실시예에 따른 전지(170)는 도 3에 도시된 전지(140)와 비교하여 전지 캔 및 밀봉체의 구조가 상이하며, 전극 조립체 및 전해질의 구성은 실질적으로 동일하다.
구체적으로, 상기 전지(170)는 리벳 단자(172)가 관통 설치된 전지 캔(171) 을 포함한다. 리벳 단자(172)는 전지 캔 (171)의 일 말단의 부분적으로 폐쇄된 폐쇄면(도면의 상부면)에 설치된다. 리벳 단자(172)는 절연성이 있는 제2가스켓(173)이 개재된 상태에서 전지 캔 (171)의 관통 홀(제1말단의 제1 개구)에 리벳팅된다. 리벳 단자(172)는 중력 방형과 반대 방향을 향해 외부로 노출된다.
리벳 단자(172)는, 단자 노출부(172a) 및 단자 삽입부(172b)를 포함한다. 단자 노출부(172a)는, 전지 캔(171)의 폐쇄면의 외측으로 노출된다. 단자 노출부(172a)는, 전지 캔(171)의 부분적으로 폐쇄된 면의 대략 중심부에 위치할 수 있다. 단자 노출부(172a)의 최대 지름은 전지 캔(171)에 형성된 관통 홀의 최대 지름보다 더 크게 형성될 수 있다. 단자 삽입부(172b)는, 전지 캔(171)의 부분적으로 폐쇄된 폐쇄면의 대략 중심부를 관통하여 양극판의 무지부(146a)와 전기적으로 연결될 수 있다. 단자 삽입부(172b)는, 전지 캔(171)의 내측 면 상에 리벳(rivet) 결합될 수 있다. 즉, 단자 삽입부(172b)의 단부는, 전지 캔(171)의 내측 면을 향해 휘어진 형태를 가질 수 있다. 단자 삽입부(172b)의 단부의 최대 지름은 전지 캔(171)의 관통 홀의 최대 지름보다 더 클 수 있다.
단자 삽입부(172b)의 하단면은 양극판의 무지부(146a)에 연결된 제1집전 플레이트(144)와 용접될 수 있다. 제1집전 플레이트(144)와 전지 캔(171)의 내측면 사이에는 절연 물질로 이루어진 절연 캡(174)이 개재될 수 있다. 절연 캡(174)은 제1집전 플레이트(144)의 상부와 전극 조립체(141)의 상단 가장 자리 부분을 커버한다. 이로써, 전극 조립체(141)의 외주측 무지부가 다른 극성을 가진 전지 캔(171)의 내측면과 접촉하여 단락을 일으키는 것을 방지할 수 있다. 리벳 단자(172)의 단자 삽입부(172b)는 절연 캡(174)을 관통하여 제1집전 플레이트(144)에 용접될 수 있다.
제2가스켓(173)은 전지 캔(171)과 리벳 단자(172) 사이에 개재되어 서로 반대 극성을 갖는 전지 캔(171)과 리벳 단자(172)가 전기적으로 접촉되는 것을 방지한다. 이로써 대략 플랫(flat)한 형상을 갖는 리벳 단자(172)의 상면이 전지(170)의 양극 단자로 기능할 수 있다.
제2가스켓(173)은, 가스켓 노출부(173a) 및 가스켓 삽입부(173b)를 포함한다. 가스켓 노출부(173a)는 리벳 단자(172)의 단자 노출부(172a)와 전지 캔(171) 사이에 개재된다. 가스켓 삽입부(173b)는 리벳 단자(172)의 단자 삽입부(172b)와 전지 캔(171) 사이에 개재된다. 가스켓 삽입부(173b)는, 단자 삽입부(172b)의 리벳팅(reveting) 시에 함께 변형되어 전지 캔(171)의 내측 면에 밀착될 수 있다. 제2가스켓(173)은, 예를 들어 절연성을 갖는 고분자 수지로 이루어질 수 있다.
제2가스켓(173)의 가스켓 노출부(173a)는, 리벳 단자(172)의 단자 노출부(172a)의 외주면을 커버하도록 연장된 형태를 가질 수 있다. 제2가스켓(173)이 리벳 단자(172)의 외주면을 커버하는 경우, 버스바 등의 전기적 연결 부품을 전지 캔(171)의 상면 및/또는 리벳 단자(172)에 결합시키는 과정에서 단락이 발생되는 것을 방지할 수 있다. 도면에 도시되어 있지는 않으나, 가스켓 노출부(173a)는, 단자 노출부(172a)의 외주면뿐만 아니라 상면의 일부도 함께 커버하도록 연장된 형태를 가질 수 있다.
제2가스켓(173)이 고분자 수지로 이루어지는 경우에 있어서, 제2가스켓(173)은 열 융착에 의해 전지 캔(171) 및 리벳 단자(172)와 결합될 수 있다. 이 경우, 제2가스켓(173)과 리벳 단자(172)의 결합 계면 및 제2가스켓(173)과 전지 캔(171)의 결합 계면에서의 기밀성이 강화될 수 있다. 한편, 제2가스켓(173)의 가스켓 노출부(173a)가 단자 노출부(172a)의 상면까지 연장된 형태를 갖는 경우에 있어서, 리벳 단자(172)는 인서트 사출에 의해 제2가스켓(173)과 일체로 결합될 수 있다.
전지 캔(171)의 상면 중에서 리벳 단자(172) 및 제2가스켓(173)이 차지하는 영역을 제외한 나머지 영역(175)이 리벳 단자(172)와 반대 극성을 갖는 음극 단자에 해당한다.
제2집전 플레이트(176)는, 전극 조립체(141)의 하부에 결합된다. 제2집전 플레이트(176)는 알루미늄, 스틸, 구리, 니켈 등의 도전성을 갖는 금속 재질로 이루어지며, 음극판의 무지부(146b)와 전기적으로 연결된다.
바람직하게는, 제2집전 플레이트(176)는, 전지 캔(171)과 전기적으로 연결된다. 이를 위해, 제2집전 플레이트(176)는 가장 자리 부분의 적어도 일부가 전지 캔(171)의 내측면과 제1가스켓(178b) 사이에 개재되어 고정될 수 있다. 일 예에서, 제2집전 플레이트(176)의 가장 자리 부분의 적어도 일부는 전지 캔(171)의 하단에 형성된 비딩부(180)의 하단면에 지지된 상태에서 용접에 의해 비딩부(180)에 고정될 수 있다. 변형예에서, 제2집전 플레이트(176)의 가장자리 부분의 적어도 일부는 전지 캔(171)의 내벽 면에 직접적으로 용접될 수 있다.
제2집전 플레이트(176)는, 무지부(146b)와 대향하는 면 상에 방사상으로 형성된 복수의 요철(미도시)을 구비할 수 있다. 요철이 형성된 경우, 제2집전 플레이트(176)을 눌러서 요철을 무지부(146b)에 압입시킬 수 있다.
바람직하게, 제2집전 플레이트(176)와 무지부(146b)의 단부는 용접, 예컨대 레이저 용접에 의해 결합될 수 있다.
전지 캔(171)의 하부 개방단을 밀봉하는 밀봉체(178)는 캡 플레이트(178a)와 제1가스켓(178b)을 포함한다. 제1가스켓(178b)은 캡 플레이트(178a)와 전지 캔(171)을 전기적으로 분리시킨다. 크림핑부(181)는 캡 플레이트(178a)의 가장자리와 제1가스켓(178b)을 함께 고정시킨다. 캡 플레이트(178a)에는 벤트부(179)가 구비된다. 벤트부(179)의 구성은 상술한 실시예와 실질적으로 동일하다.
바람직하게, 캡 플레이트(178a)는 도전성이 있는 금속 재질로 이루어진다. 하지만, 캡 플레이트(178a)와 전지 캔(171) 사이에 제1가스켓(178b)이 개재되어 있으므로, 캡 플레이트(178a)는 전기적 극성을 띠지 않는다. 밀봉체(178)는 전지 캔(171) 하부의 개방단을 밀봉시키고 배터리 셀(170)의 내부 압력이 임계치 이상 증가하였을 때 가스를 배출시키는 기능을 한다.
바람직하게, 양극판의 무지부(146a)와 전기적으로 연결된 리벳 단자(172)는 양극 단자로 사용된다. 또한, 제2집전 플레이트(176)를 통해 음극판의 무지부(146b)와 전기적으로 연결된 전지 캔(171)의 상부 표면 중에서 리벳 단자(172)를 제외한 부분(175)는 음극 단자로 사용된다. 이처럼, 2개의 전극 단자가 전지의 상부에 위치할 경우, 버스바 등의 전기적 연결 부품을 전지(170)의 일 측에만 배치시키는 것이 가능한다. 이는, 배터리 팩 구조의 단순화 및 에너지 밀도의 향상을 가져올 수 있다. 또한, 음극 단자로 사용되는 부분(175)은 대략 플랫한 형태를 가지므로 버스바 등의 전기적 연결 부품을 접합시키는데 있어서 충분한 접합 면적을 확보할 수 있다. 이에 따라, 전지(170)는 전기적 연결 부품의 접합 부위에서의 저항을 바람직한 수준으로 낮출 수 있다.
리튬 이차 전지를 상기와 같이 탭-리스 구조로 형성할 경우, 전극 탭을 구비한 종래의 전지에 비해 전류 집중이 덜하기 때문에 전지 내부의 발열을 효과적으로 감소시킬 수 있고, 이에 따라 전지의 열 안전성이 개선되는 효과를 얻을 수 있다.
상기와 같은 본 발명의 리튬 이차 전지는 배터리 팩을 제조하는데 사용될 수 있다. 도 6에는 본 발명의 실시예에 따른 배터리 팩의 구성이 개략적으로 도시되어 있다. 도 6을 참조하면, 본 발명의 실시예에 따른 배터리 팩(3)은 이차전지(1)가 전기적으로 연결된 집합체 및 이를 수용하는 팩 하우징(2)을 포함한다. 이차전지(1)는 상술한 실시예에 따른 배터리 셀이다. 도면에서는, 도면 도시의 편의상 이차전지(1)들의 전기적 연결을 위한 버스바, 냉각 유닛, 외부 단자 등의 부품의 도시는 생략되었다.
배터리 팩(3)은 자동차에 탑재될 수 있다. 자동차는 일 예로 전기 자동차, 하이브리드 자동차 또는 플러그인 하이브리드 자동차일 수 있다. 자동차는 4륜 자동차 또는 2륜 자동차를 포함한다.
도 7는 도 6의 배터리 팩(3)을 포함하는 자동차를 설명하기 위한 도면이다.
도 7를 참조하면, 본 발명의 일 실시예에 따른 자동차(5)는 본 발명의 일 실시예에 따른 배터리 팩(3)을 포함하며, 상기 배터리 팩(3)으로부터 전력을 공급받아 동작한다.
이하, 구체적인 실시예를 통해 본 발명을 보다 자세히 설명한다.
실시예 1
유니모달 입도 분포를 가지며, Dmin = 1.78㎛, D50 = 4.23㎛, Dmax=13.1㎛이고, 단입자 및 유사-단입자가 혼합되어 있는 양극 활물질 분말(조성: Li[Ni0.9Co0.06Mn0.03Al0.01]O2), 인편상 흑연(SFG6L), 도전재(다중벽 탄소나노튜브), 및 PVDF 바인더를 96.3 : 1.5 : 0.4 : 1.8의 중량비로 N-메틸피롤리돈 중에서 혼합하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 알루미늄 집전체 시트의 일면에 도포한 후 건조하고 3.0ton/cm의 선압으로 압연하여 양극판을 제조하였다. 상기와 같이 제조된 양극판의 양극 활물질층 공극률을 측정하였고, 공극률은 17.5%로 측정되었다.
실시예 2
양극 활물질, 인편상 흑연, 도전재, 및 바인더를 97.2 : 0.6 : 0.4 : 1.8의 중량비로 혼합한 점을 제외하고는 실시예 1과 동일하게 양극판을 제조하고, 양극 활물질층의 공극률을 측정하였다. 상기 양극 활물질층의 공극률은 19%로 측정되었다.
실시예 3
양극 활물질, 인편상 흑연, 도전재, 및 바인더를 97.4 : 0.4 : 0.4 : 1.8의 중량비로 혼합한 점을 제외하고는 실시예 1과 동일하게 양극판을 제조하고, 양극 활물질층의 공극률을 측정하였다. 상기 양극 활물질층의 공극률은 20%로 측정되었다.
실시예 4
양극 활물질, 인편상 흑연, 도전재, 및 바인더를 97.6 : 0.2 : 0.4 : 1.8의 중량비로 혼합한 점을 제외하고는 실시예 1과 동일하게 양극판을 제조하고, 양극 활물질층의 공극률을 측정하였다. 상기 양극 활물질층의 공극률은 21%로 측정되었다.
비교예 1
인편상 흑연을 첨가하지 않고, 양극 활물질, 도전재, 및 바인더를 97.8 : 0.4 : 1.8의 중량비로 N-메틸피롤리돈 중에서 혼합하여 양극 슬러리를 제조한 점을 제외하고는 실시예 1과 동일하게 양극판을 제조하고, 양극 활물질층의 공극률을 측정하였다. 상기 양극 활물질층의 공극률은 24%로 측정되었다.
비교예 2
인편상 흑연을 첨가하지 않고, 양극 활물질, 도전재, 및 바인더를 97.8 : 0.4 : 1.8의 중량비로 N-메틸피롤리돈 중에서 혼합하여 양극 슬러리를 제조하고, 2.0ton/cm의 선압으로 압연한 점을 제외하고는 실시예 1과 동일하게 양극판을 제조하고, 양극 활물질층의 공극률을 측정하였다. 상기 양극 활물질층의 공극률은 30%로 측정되었다.
실험예 1 - 충방전 용량 및 충방전 효율 측정
실시예 1 내지 4 및 비교예 1 및 2에 따른 양극판을 포함하는 코인 하프 셀을 제조하였고, 0.2C 전류 조건으로 4.25V까지 충전한 후, 0.2C 전류조건으로 2.5V까지 방전하여 각 코인 하프 셀의 충전 용량(mAh/g) 및 방전 용량(mAh/g)측정하였다. 측정 결과는 아래 표 1에 나타내었다.
인편상 흑연 첨가량(중량%) 공극률(%) 충전용량
(mAh/g)
방전용량
(mAh/g)
충방전 효율(%)
실시예1 1.5 17.5 230.3 209.3 90.9
실시예2 0.6 19 229.4 206.9 90.2
실시예3 0.4 20 230.4 207.3 90.0
실시예4 0.2 21 229.1 205.5 89.7
비교예1 0 24 229.1 204.2 89.1
비교예 2 0 30 225.4 199.7 88.6
[표 1]을 통해, 인편상 흑연을 첨가한 양극판을 사용한 실시예 1 ~ 4의 경우, 비교예 1 ~ 2에 비해 낮은 공극률을 나타냈으며, 우수한 용량 특성을 나타냄을 확인할 수 있다.
실험예 2 -저항 특성 확인
실시예 3, 비교예 1, 및 비교예 2에 따른 양극판을 포함하는 코인 하프 셀을 4.2V까지 충전하면서, SOC에 따른 저항 특성을 측정하였다. 측정 결과를 도 8에 나타내었다.
도 8을 참조하면, SOC10% 기준으로 양극 활물질층에 인편상 흑연을 첨가한 실시예 3의 저항 값이 인편상 흑연을 포함하지 않은 비교예 1 및 비교예 2보다 낮음을 확인할 수 있다. 이는 양극 활물질층에 인편상 흑연을 첨가할 경우, 낮은 SOC 에서의 저항 특성이 개선되는 효과가 있음을 보여준다.
실험예 3 - 고온 수명 특성 및 저항 증가율 측정
실시예 1, 실시예 3, 및 비교예 1에 따른 양극판과 음극판 사이에 분리막을 개재하여 분리막/양극판/분리막/음극판 순서로 적층한 후 권취하여 젤리-롤 타입의 전극 조립체를 제조하였다. 상기와 같이 제조된 전극 조립체를 원통형 전지 캔에 삽입한 후 전해액을 주입하여 4680 원통형 셀을 제조하였다.
이때, 상기 음극판은, 음극 활물질 (graphite : SiO = 95 : 5 중량비 혼합물) : 도전재( super C), : 스티렌-부타디엔 고무(SBR) : 카르복시메틸 셀룰로오스(CMC)를 96 : 2 : 1.5 : 0.5의 중량비로 물 중에서 혼합하여 음극 슬러리를 제조한 후. 상기 음극 슬러리를 구리 집전체 시트의 일면에 도포한 후 150℃에서 건조 후 압연하여 제조하였다.
상기와 같이 제조된 4680 셀을 40℃에서 0.5C으로 4.2V까지 충전한 후, 0.5C으로 2.5V까지 방전하는 것을 1 사이클로 하여 50사이클을 충방전을 수행한 후 용량 유지율(Capacity Retention) 및 저항 증가율(DCIR increase)을 측정하였다. 측정 결과는 도 9에 나타내었다.
도 9를 참조하면, 실시예 1 및 3의 이차 전지의 경우, 비교예 1의 이차 전지에 비하여 사이클 수에 따른 용량 유지율의 변화가 작고, 사이클 수에 따른 저항 증가율의 변화도 작게 나타났다.
<부호의 설명>
10: 양극판, 11: 음극판
12: 분리막, 20: 집전체
21, 21a: 활물질층 , 22, 22a, 22c, 146b: 무지부
24: 절연층,
140, 170: 전지, 141: 전극 조립체
142, 171: 전지 캔 , 143, 178: 밀봉체
144: 제1집전 플레이트, 145, 176: 제2집전 플레이트
146: 인슐레이터, 152: 벤팅부
172: 리벳 단자, 173: 제2가스켓
147: 비딩부 , 148: 크림핑부
149: 리드

Claims (26)

  1. 양극판, 음극판, 상기 양극판과 음극판 사이에 개재된 분리막이 일 방향으로 권취된 전극 조립체; 상기 전극 조립체가 수납되는 전지 캔; 및 상기 전지 캔의 개방 단부를 밀봉하는 밀봉체를 포함하는 이차 전지이며,
    상기 양극판은 양극 활물질층을 포함하고,
    상기 양극 활물질층은, 단입자, 유사-단입자 또는 이들의 조합을 포함하는 양극 활물질 및 인편상 흑연을 포함하는 것인 리튬 이차 전지.
  2. 제1항에 있어서,
    상기 양극 활물질층의 공극률은 15% 내지 23%인, 리튬 이차 전지.
  3. 제1항에 있어서,
    상기 인편상 흑연은 상기 양극 활물질층에 0.05중량% 내지 5중량%로 포함되는, 리튬 이차 전지.
  4. 제1항에 있어서,
    상기 양극 활물질층은 탄소나노튜브를 더 포함하는, 리튬 이차 전지.
  5. 제1항에 있어서,
    상기 양극 활물질층의 로딩량은 570mg/25cm2 이상인, 리튬 이차 전지.
  6. 제1항에 있어서,
    상기 양극 활물질의 Dmin이 1.0㎛ 이상인 리튬 이차 전지.
  7. 제1항에 있어서,
    상기 양극 활물질은 D50이 5㎛ 이하인 리튬 이차 전지.
  8. 제1항에 있어서,
    상기 양극 활물질은 Dmax가 12㎛ 내지 17㎛인 리튬 이차 전지.
  9. 제1항에 있어서,
    상기 양극 활물질은 하기 식 (1)로 표시되는 입도 분포(PSD, Particle Size Distribution)이 3 이하인 리튬 이차 전지.
    식 (1): 입도 분포(PSD) = (Dmax - Dmin)/D50
  10. 제1항에 있어서,
    상기 양극 활물질은 체적 누적 입도 분포 그래프에서 단일 피크(single peak)를 나타내는 유니모달 입도 분포를 갖는 것인 리튬 이차 전지.
  11. 제1항에 있어서,
    상기 단입자, 유사-단입자 또는 이들의 조합은 상기 양극판에 포함된 양극 활물질의 전체 중량을 기준으로 95중량% 내지 100중량%의 양으로 포함되는 리튬 이차 전지.
  12. 제1항에 있어서,
    상기 양극 활물질은 전이금속 전체 몰수를 기준으로 Ni을 80몰% 이상으로 포함하는 리튬 니켈계 산화물을 포함하는 것인 리튬 이차 전지.
  13. 제1항에 있어서,
    상기 양극 활물질은 하기 [화학식 1]로 표시되는 리튬 니켈계 산화물을 포함하는 것인 리튬 이차 전지.
    [화학식 1]
    LiaNibCocM1 dM2 eO2
    상기 화학식 1에서, M1은 Mn, Al 또는 이들의 조합이고, M2는 Zr, W, Ti, Mg, Ca, Sr, 및 Ba이며, 0.8≤a ≤1.2, 0.83≤b<1, 0<c<0.17, 0<d<0.17, 0≤e≤0.1임
  14. 제1항에 있어서,
    상기 양극 활물질은 1차 입자 입경의 평균 입경이 0.5㎛ 내지 5㎛인 리튬 이차 전지.
  15. 제1항에 있어서,
    상기 음극판은 실리콘계 음극 활물질을 포함하는 것인 리튬 이차 전지.
  16. 제1항에 있어서,
    상기 음극판은 실리콘계 음극 활물질 및 탄소계 음극 활물질을 포함하는 것인 리튬 이차 전지.
  17. 제16항에 있어서,
    상기 실리콘계 음극 활물질 및 탄소계 음극 활물질은 1 : 99 내지 20 : 80의 중량비로 포함되는 것인 리튬 이차 전지.
  18. 제1항에 있어서,
    상기 리튬 이차 전지는 폼 팩터의 비가 0.4 이상인 원통형 전지인 리튬 이차 전지.
  19. 제18항에 있어서,
    상기 원통형 전지는 46110 셀, 4875 셀, 48110 셀, 4880 셀 또는 4680 셀인 리튬 이차 전지.
  20. 제1항에 있어서,
    상기 상기 양극판 및 음극판은 각각 활물질층이 형성되지 않은 무지부를 포함하고,
    상기 양극판 또는 음극판의 무지부의 적어도 일부가 전극 탭을 정의하는 것인 리튬 이차 전지.
  21. 제20항에 있어서,
    상기 양극판 무지부 및 음극판 무지부는 각각 상기 양극판 및 음극판의 일변 단부에 상기 전극 조립체가 권취되는 방향을 따라 형성되며,
    상기 양극판 무지부 및 음극판 무지부 각각에 집전 플레이트가 결합되어 있고,
    상기 집전 플레이트가 전극 단자와 연결되는 것인 리튬 이차 전지.
  22. 제21항에 있어서,
    상기 양극판 무지부 및 음극판 무지부는 독립적으로 절곡 가능한 복수의 분절편 형태로 가공되고,
    상기 복수의 분절편 중 적어도 일부가 상기 전극 조립체의 권취 중심을 향하여 절곡되어 있는 리튬 이차 전지.
  23. 제22항에 있어서,
    상기 절곡된 복수의 분절편 중 적어도 일부는 상기 전극 조립체의 상단 및 하단 상에서 중첩되어 있고,
    상기 중접된 복수의 분절편 상에 상기 집전 플레이트가 결합되어 있는 리튬 이차 전지.
  24. 제20항에 있어서,
    상기 양극판 상에는, 상기 권취 방향과 평행한 방향을 따라, 양극 활물질층의 일부와 무지부의 일부를 덮고 있는 절연층이 더 형성되어 있는 리튬 이차 전지.
  25. 제1항 내지 제24항 중 어느 한 항의 리튬 이차 전지를 포함하는 전지 팩.
  26. 제25항의 전지 팩을 포함하는 자동차
PCT/KR2022/015630 2021-10-15 2022-10-14 리튬 이차 전지 WO2023063787A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280067978.2A CN118077081A (zh) 2021-10-15 2022-10-14 锂二次电池
CA3234432A CA3234432A1 (en) 2021-10-15 2022-10-14 Lithium secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0137360 2021-10-15
KR20210137360 2021-10-15
KR1020220121171A KR20230054601A (ko) 2021-10-15 2022-09-23 리튬 이차 전지
KR10-2022-0121171 2022-09-23

Publications (1)

Publication Number Publication Date
WO2023063787A1 true WO2023063787A1 (ko) 2023-04-20

Family

ID=85981123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015630 WO2023063787A1 (ko) 2021-10-15 2022-10-14 리튬 이차 전지

Country Status (3)

Country Link
US (1) US20230121815A1 (ko)
CA (1) CA3234432A1 (ko)
WO (1) WO2023063787A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190139033A (ko) * 2018-06-07 2019-12-17 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20200041625A (ko) * 2018-10-12 2020-04-22 삼성에스디아이 주식회사 이차전지
KR20200059164A (ko) * 2018-11-20 2020-05-28 주식회사 엘지화학 리튬 이차전지용 양극 활물질 및 이의 제조 방법
KR20210067735A (ko) * 2019-11-29 2021-06-08 주식회사 엘지에너지솔루션 인편상 흑연을 포함하는 이차전지용 양극 및 이를 포함하는 이차전지
KR20210093173A (ko) * 2020-01-17 2021-07-27 스미또모 가가꾸 가부시끼가이샤 전고체 리튬 이온 전지용 정극 활물질, 전극 및 전고체 리튬 이온 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190139033A (ko) * 2018-06-07 2019-12-17 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20200041625A (ko) * 2018-10-12 2020-04-22 삼성에스디아이 주식회사 이차전지
KR20200059164A (ko) * 2018-11-20 2020-05-28 주식회사 엘지화학 리튬 이차전지용 양극 활물질 및 이의 제조 방법
KR20210067735A (ko) * 2019-11-29 2021-06-08 주식회사 엘지에너지솔루션 인편상 흑연을 포함하는 이차전지용 양극 및 이를 포함하는 이차전지
KR20210093173A (ko) * 2020-01-17 2021-07-27 스미또모 가가꾸 가부시끼가이샤 전고체 리튬 이온 전지용 정극 활물질, 전극 및 전고체 리튬 이온 전지

Also Published As

Publication number Publication date
US20230121815A1 (en) 2023-04-20
CA3234432A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
WO2017111542A1 (ko) 리튬 이차전지용 음극활물질 및 이를 포함하는 리튬 이차전지용 음극
WO2021235794A1 (ko) 이차전지
WO2021101188A1 (ko) 음극 및 이를 포함하는 이차전지
WO2019117531A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2022158951A2 (ko) 리튬 이차전지용 세퍼레이터 및 이를 구비한 리튬 이차전지
WO2022055308A1 (ko) 음극재, 이를 포함하는 음극 및 이차전지
WO2021049918A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2021194260A1 (ko) 음극의 제조방법
WO2022149951A1 (ko) 양극 활물질의 제조방법 및 양극 활물질
WO2022119313A1 (ko) 양극 활물질 전구체, 이의 제조방법 및 양극 활물질
WO2023063787A1 (ko) 리튬 이차 전지
WO2022182162A1 (ko) 양극 활물질, 이를 포함하는 양극 및 이차 전지
WO2021029650A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2023063783A1 (ko) 리튬 이차 전지
WO2023063779A1 (ko) 리튬 이차 전지
WO2024063616A1 (ko) 리튬 이차 전지
WO2023063785A1 (ko) 리튬 이차 전지
WO2024136482A1 (ko) 리튬 이차 전지
WO2021118144A1 (ko) 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
WO2024005559A1 (ko) 원통형 리튬 이차 전지
WO2024136580A1 (ko) 리튬 이차 전지
WO2024136549A1 (ko) 원통형 리튬 이차전지
WO2023229300A1 (ko) 리튬 이차 전지용 전극, 및 이를 포함하는 리튬 이차 전지
WO2024136617A1 (ko) 원통형 이차전지 및 이의 제조 방법
WO2021235818A1 (ko) 이차전지의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22881414

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3234432

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022881414

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022881414

Country of ref document: EP

Effective date: 20240515