WO2014157618A1 - 有機エレクトロルミネッセンス素子、それを具備した照明装置及び表示装置 - Google Patents

有機エレクトロルミネッセンス素子、それを具備した照明装置及び表示装置 Download PDF

Info

Publication number
WO2014157618A1
WO2014157618A1 PCT/JP2014/059118 JP2014059118W WO2014157618A1 WO 2014157618 A1 WO2014157618 A1 WO 2014157618A1 JP 2014059118 W JP2014059118 W JP 2014059118W WO 2014157618 A1 WO2014157618 A1 WO 2014157618A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
general formula
organic
compound
Prior art date
Application number
PCT/JP2014/059118
Other languages
English (en)
French (fr)
Inventor
大野 香織
三浦 紀生
貴宗 服部
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to US14/780,865 priority Critical patent/US10135002B2/en
Priority to EP14775671.2A priority patent/EP2980878B1/en
Priority to JP2015508758A priority patent/JP6350518B2/ja
Priority to KR1020157026217A priority patent/KR101798308B1/ko
Publication of WO2014157618A1 publication Critical patent/WO2014157618A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6558Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system
    • C07F9/65583Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system each of the hetero rings containing nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6558Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system
    • C07F9/65586Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system at least one of the hetero rings does not contain nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6561Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
    • C07F9/65613Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings containing the ring system (X = CH2, O, S, NH) optionally with an additional double bond and/or substituents, e.g. cephalosporins and analogs
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Definitions

  • the present invention relates to an organic electroluminescence element, a display device including the same, and an illumination device. More specifically, it realizes an organic electroluminescence element (hereinafter also referred to as an organic EL element) in which the resistance value of the light-emitting layer changes little over time, and as a secondary effect, the chromaticity of the emission spectrum is
  • the present invention relates to an organic electroluminescence element that is favorable and has little change in light emission characteristics over time, and an illumination device and a display device including the organic electroluminescence element.
  • An organic electroluminescence device has a structure in which a light emitting layer containing a light emitting organic compound is sandwiched between a cathode and an anode, and emits holes injected from the anode and electrons injected from the cathode by applying an electric field.
  • This is a light-emitting element utilizing excitons (excitons) generated by recombination within a layer and light emission (fluorescence / phosphorescence) when the excitons are deactivated.
  • the organic EL element is an all-solid-state element composed of a film of an organic material having a thickness of only a submicron between the electrodes, and can emit light at a voltage of several volts to several tens of volts. It is expected to be used for next-generation flat displays and lighting.
  • Non-Patent Document 1 As a development of an organic EL element for practical use, since Princeton University has reported an organic EL element using phosphorescence emission from an excited triplet (see, for example, Non-Patent Document 1), phosphorous is used at room temperature. Research on materials that exhibit light has become active (see, for example, Patent Document 1 and Non-Patent Document 2). Furthermore, organic EL elements that utilize phosphorescence emission can in principle achieve a luminous efficiency that is about four times that of elements that utilize previous fluorescence emission. Research and development of layer structure and electrodes are conducted all over the world.
  • the present invention has been made in view of the above problems and situations, and its solution is to realize an organic EL element in which the resistance value of the light emitting layer is less changed over time, and its secondary effects are as follows.
  • Another object of the present invention is to provide an organic EL device having good emission spectrum chromaticity and little change in emission characteristics over time. Moreover, it is providing the illuminating device and display apparatus using this organic electroluminescent element.
  • the present inventor has examined the cause of the above-mentioned problems and the like, and has conducted energization over time for compounds for organic electroluminescence devices including a number of newly designed host compounds including existing host compounds.
  • studies were made on a compound that reduces the change in resistance value of at least one of the organic compound films, particularly the light emitting layer, during the non-emission storage time. As a result, the following action mechanism was found and the present invention was achieved.
  • a compound contained in the layer can take a plurality of electronic states such as a neutral state, an anion or cation radical state, and an excited state.
  • radical states and excited states in which charge is localized in the molecule are thought to easily interact with surrounding compounds via charge, and at the same time are susceptible to changes in the surrounding environment.
  • the change in the resistance value of the organic compound layer is a change in charge mobility in the layer, and the influence of the above interaction and environmental change greatly affects the resistance value of the film.
  • a technique for stabilizing such a radical state a compound having a specific structure and having a charge neutral site (neutral site) has been found.
  • the compound according to the present invention has two or more aromatic heterocycles having 14 or more ⁇ electrons.
  • aromatic heterocycles include condensed rings such as carbazole and dibenzofuran. These fused rings are advantageous for carrier delivery because of their wider ⁇ -conjugated surface compared to a single ring, while charges are more likely to be localized in radical and excited states, and they interact with each other because of the wider ⁇ -conjugated surface. It is a site that is easily affected, i.e., easily affected by surroundings.
  • a feature in addition to an aromatic heterocycle having 14 or more ⁇ electrons, a feature is that a sterically bulky and neutral site as a charge is introduced into the molecule.
  • a sterically bulky site By introducing a sterically bulky site, it is possible to adjust the interaction between the aromatic heterocycles and the influence of the surroundings to an appropriate range.
  • the three-dimensional bulky site is a neutral site, even if the neutral sites or the neutral site and the charge localization site approach each other, it is difficult to interact, is not easily affected, and is greatly affected by changes in charge mobility.
  • the design philosophy includes a point that does not affect the design.
  • An organic electroluminescence device comprising a pair of electrodes and one or a plurality of organic layers between the pair of electrodes, wherein a compound having a structure represented by the following general formula (1) is added to the organic layer:
  • An organic electroluminescence device comprising one or more layers.
  • R 1 to R 8 are each a hydrogen atom, a deuterium atom, a halogen atom, a cyano group, an alkyl group, an alkenyl group, or an alkynyl group.
  • R 1 ⁇ R 8 is [pi electrons have 14 or more aromatic heterocyclic rings, at least another one of R 1 ⁇ R 8 is It represents the following general formula (2):
  • R 9 is a hydrogen atom, a deuterium atom, an alkyl group, an alkenyl group, Alkynyl group, arylalkyl group, aromatic hydrocarbon ring group, aromatic Heterocyclic group, an aromatic hydrocarbon ring group or a non-aromatic heterocyclic group.
  • L is a linking group and represents an alkylene group, an alkenylene group, an m-phenylene group or a monocyclic aromatic heterocyclic group, and may further have a substituent.
  • C, Si, Ge, P or P O.
  • R represents an alkyl group having 1 to 20 carbon atoms in total, an aromatic hydrocarbon ring group or an aromatic heterocyclic group, and further having a substituent.
  • N represents an integer of 2 to 8.
  • m represents an integer of 2 to 3.
  • Z represents Si, or the organic electroluminescent element according to the first or second item.
  • R, n, m and X are respectively synonymous with R, n, m and X in general formula (1) or general formula (2).
  • R 10 , R 11 and R 12 represents a hydrogen atom, deuterium atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, carbonyl group, amino group, silyl group, phosphine oxide group, aromatic hydrocarbon ring group, respectively.
  • the compound having the structure represented by the general formula (1) is a compound having a structure represented by the following general formula (4) or general formula (5): The organic electroluminescent element as described in any one of the above.
  • R, n, m, and X are synonymous with R, n, m, and X in general formula (1) or general formula (2), respectively.
  • R 10 to R 14 are hydrogen atom, deuterium atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, carbonyl group, amino group, silyl group, phosphine oxide group, aromatic carbonization, respectively.
  • R 15 represents a hydrogen ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, which may further have a substituent, and may be the same or different.
  • the compound having the structure represented by the general formula (1) is a compound having a structure represented by the following general formula (6), any one of items 1 to 4
  • the organic electroluminescent element of description is a compound having a structure represented by the following general formula (6), any one of items 1 to 4 The organic electroluminescent element of description.
  • R, n, m and X are each the general formula (1) or general formula (2) in the R, is synonymous with n, m and X .
  • R 10 ⁇ R 14 is , Respectively, hydrogen atom, deuterium atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, carbonyl group, amino group, silyl group, phosphine oxide group, aromatic hydrocarbon ring group, aromatic It represents a heterocyclic group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, and may further have a substituent, which may be the same or different. 7).
  • One of the organic layers is a light emitting layer, and the organic electroluminescence compound is contained in the light emitting layer as a host compound.
  • the organic electroluminescent element of description is a light emitting layer, and the organic electroluminescence compound is contained in the light emitting layer as a host compound
  • organic electroluminescence element according to any one of items 1 to 8, wherein the organic electroluminescence element emits white light.
  • An organic electroluminescence device according to any one of items 1 to 9 is provided.
  • a display device comprising the organic electroluminescence element according to any one of items 1 to 9.
  • the above-described means of the present invention realizes an organic EL element in which the resistance value of the light emitting layer changes little over time, and as a secondary effect thereof, the chromaticity (color purity) of the emission spectrum is good, Another object of the present invention is to provide an organic EL device with little change in light emission characteristics over time.
  • an illumination device and a display device using the organic electroluminescence element can be provided.
  • Schematic diagram showing an example of a display device composed of organic EL elements Schematic diagram of the display unit Pixel circuit diagram Schematic diagram of passive matrix type full color display device Schematic of lighting device Cross section of the lighting device Example of M plot with different thickness of electron transport layer An example showing the relationship between film thickness and resistance An example of an equivalent circuit model of an organic electroluminescence device Example of analysis results showing resistance-voltage relationship of each layer An example of analysis results of organic EL elements after deterioration
  • the organic electroluminescent element of the present invention is an organic electroluminescent element in which one or a plurality of organic layers are provided between a pair of electrodes and the pair of electrodes, and is represented by the general formula (1).
  • a compound having a structure is contained in any one or more of the organic layers.
  • L in the general formula (2) represents an m-phenylene group from the viewpoint of manifesting the effects of the present invention.
  • Z represents Si.
  • the compound represented by the said General formula (1) is a compound represented by the said General formula (3).
  • the compound having a structure represented by the general formula (1) is preferably a compound having a structure represented by the general formula (4) or the general formula (5). Moreover, it is preferable that the compound which has a structure represented by the said General formula (1) is a compound which has a structure represented by the said General formula (6).
  • one of the organic layers is a light emitting layer, and the light emitting layer contains the organic electroluminescence compound as a host compound.
  • the light emitting layer preferably contains an iridium or platinum complex, and the complex emits phosphorescence when energized.
  • the organic EL element of the present invention emits white light.
  • the organic EL element of the present invention can be suitably included in a lighting device and a display device.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the compound having the structure represented by the general formula (1) is a compound having a neutral site where the electron density of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) is low when calculated by the molecular orbital method. is there.
  • the neutral site in the present invention means a site in which the electron density of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) is low and is in a neutral or near neutral state. More specifically, when the compound structure is calculated by molecular orbital calculation, there are a portion where a HOMO electron cloud is distributed and a portion where a LUMO electron cloud is distributed. A site where the electron distribution is 10% or less is called a neutral site.
  • the molecular orbital calculation mentioned here means a molecular orbital calculation method including calculation of the Hartree-Fock approximation called ab initio method to calculation called the density functional (DFT) method.
  • the molecular orbital method according to the present invention will be described.
  • the molecular orbital calculation method in the present invention is preferably calculated by a density functional method (DFT method).
  • DFT method density functional method
  • keywords such as B3LYP and B3PW91 are used.
  • 3-21G *, 6-31G, 6-31G *, cc-pVDZ, cc-pVTZ, LanL2DZ, LanL2MB, or the like can be used.
  • Gaussian 03 Gaussian 03, Revision D.01, MJ Frisch, GW Trucks, H.S., which is inexperienced molecular orbital calculation software manufactured by Gaussian, USA.
  • Gaussian 03 Gaussian 03, Revision D.01, MJ Frisch, GW Trucks, H.S., which is inexperienced molecular orbital calculation software manufactured by Gaussian, USA.
  • the neutral site in the present application is defined as a site in which the electron density distribution of HOMO and the electron density distribution of LUMO are substantially small and in a neutral or near neutral state.
  • This value is defined in this application as the LUMO electron density distribution of the carbazole ring.
  • the LUMO electron density distribution at a site other than the carbazole ring can be calculated, and the HOMO electron density distribution can be calculated from the HOMO data in the same manner as described above.
  • the LUMO electron density distribution of the carbazole ring of SH-1 was 2.4%, and the electron density distribution of HOMO was 85.1%.
  • the neutral site was composed of four benzene rings bonded to silicon atoms and silicon atoms. I found out that
  • the electron density distribution at the neutral site is 10% or less, more preferably 5% or less, and even more preferably 3% or less in both HOMO and LUMO.
  • part with high electron density distribution it can define using an electron density distribution similarly to a neutral site
  • a site where the HOMO electron density distribution is larger than the LUMO electron density distribution can be used as the HOMO site, and a site where the HOMO electron density distribution is a certain value or more can be used as the HOMO site.
  • a site where the LUMO electron density distribution is larger than the HOMO electron density distribution can be used as the LUMO site, and a site where the LUMO electron density distribution is a certain value or more can be used as the LUMO site.
  • the abundance ratio is preferably 50% or more, preferably 65% or more, and preferably 80% or more. More preferred.
  • the compound having the structure represented by the general formula (1) contains an atom having an atomic radius of 75 pm or more and a valence of 3 or more at the neutral site.
  • the atom having an atomic radius of 75 pm or more and having a valence of 3 or more includes, for example, a carbon atom, a nitrogen atom, a boron atom, a silicon atom, a phosphorus atom, a germanium atom, etc., preferably a carbon atom, silicon Is an atom.
  • the compound according to the present invention is characterized by containing two or more aromatic heterocycles of 14 ⁇ or more.
  • the aromatic heterocycle of 14 ⁇ or more include a dibenzofuran ring, a dibenzothiophene ring, a carbazole ring, and a xanthene.
  • Ring acridine ring, phenanthridine ring, perimidine ring, 1,10-phenanthroline ring, phenazine ring, phenalsazine ring, tetrathiafulvalene ring, thianthrene ring, phenoxathiin ring, phenoxazine ring, phenothiazine ring, benzofurine doll Ring, indoloindole ring, indolocarbazole ring and the like.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the organic electroluminescence device of the present invention is an organic electroluminescence device in which one or a plurality of organic layers are provided between a pair of electrodes and the pair of electrodes, and is represented by the following general formula (1).
  • a compound having a structure is contained in any one or more of the organic layers.
  • the light emitting layer contains a compound represented by the following general formula (1) as an organic EL element material.
  • the organic layer refers to a layer containing an organic substance.
  • the compound contained as the organic EL element material in the organic EL element of the present invention will be described.
  • the compound according to the present invention is represented by the following general formula (1).
  • X represents O, S, or NR 9 , preferably O or S.
  • R 9 represents a hydrogen atom, a deuterium atom, an alkyl group, an alkenyl group, an alkynyl group, an aromatic hydrocarbon ring group, an aromatic heterocyclic group, a non-aromatic hydrocarbon ring group or a non-aromatic heterocyclic group, An alkyl group and an aromatic hydrocarbon ring group are preferable, an aromatic hydrocarbon ring group is more preferable, and a benzene ring is more preferable.
  • alkyl group examples include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, 1-ethyl-propyl group, 2-methylhexyl group, pentyl group, adamantyl group, Examples thereof include an n-decyl group and an n-dodecyl group, and a methyl group, an ethyl group, an n-propyl group, and an isopropyl group are preferable.
  • aromatic hydrocarbon ring group examples include a benzene ring, biphenyl ring, biphenylene ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, pyrene ring, pyranthrene ring, anthraanthrene
  • the ring examples include a benzene ring.
  • R 1 to R 8 are hydrogen atom, deuterium atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, carbonyl group, amino group, silyl group, phosphine oxide.
  • R 1 to R 8 in the general formula (1) are preferably a hydrogen atom, an alkyl group, an aromatic hydrocarbon ring group, or an aromatic heterocyclic group, more preferably a hydrogen atom, an aromatic hydrocarbon ring group, An aromatic heterocyclic group.
  • aromatic hydrocarbon ring group examples include benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-ter Phenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, pyrene ring, pyranthrene ring, anthraanthrene ring, etc.
  • a benzene ring is preferable.
  • Examples of the aromatic heterocyclic group include a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, an oxadiazole ring, a triazole ring, an imidazole ring, and a pyrazole ring.
  • L is a linking group and represents an alkylene group, an alkenylene group, an m-phenylene group, or a monocyclic aromatic heterocyclic group, and may further have a substituent, an m-phenylene group;
  • examples of the alkylene group represented by L include methylene, methylmethylene, dimethylmethylene, ethylene, propylene, butylene, hexylene, octylene, dodecanylene, 2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group, 1,3-cyclohexylene group, 1,4-cyclohexylene group, cyclohexylidene group, etc.
  • a divalent cycloalkylene group (including a cycloalkylidene group) is preferable, and a methylene group is preferable.
  • alkenylene group examples include an ethynylene group, a propenylene group, and a butenylene group, and an ethynylene group is preferable.
  • Examples of the monocyclic aromatic heterocyclic group include a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, an oxadiazole ring, a triazole ring, and an imidazole ring.
  • Pyrazole ring, thiazole ring, etc. preferably furan ring, thiophene ring, pyridine ring, pyrimidine ring, pyrazine ring, triazine ring, and more preferably thiophene ring, pyridine ring, pyrimidine ring, pyrazine. It is a ring.
  • each R represents an alkyl group having 1 to 20 carbon atoms in total, an aromatic hydrocarbon ring group, or an aromatic heterocyclic group, and may further have a substituent.
  • the total number of carbons here means the total number of carbons including substitution.
  • examples of the alkyl group represented by R include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a t-butyl group, 1- Examples include ethyl-propyl group, 2-methylhexyl group, pentyl group, adamantyl group, n-decyl group, n-dodecyl group and the like.
  • a methyl group, an ethyl group, an n-propyl group, and an isopropyl group are preferable.
  • aromatic hydrocarbon ring group examples include a benzene ring, biphenyl ring, biphenylene ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, pyrene ring, pyranthrene ring, anthraanthrene
  • the ring examples include a benzene ring.
  • Examples of the aromatic heterocyclic group include a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, an oxadiazole ring, a triazole ring, an imidazole ring, and a pyrazole ring.
  • n represents an integer of 2 to 8, preferably an integer of 2 to 4.
  • m represents an integer of 2 to 3, and is preferably 3.
  • X is synonymous with X in General formula (1)
  • R, n, and m are synonymous with R, n, and m in General formula (2).
  • R 10 to R 12 are hydrogen atom, deuterium atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, carbonyl group, amino group, silyl group, phosphine oxide.
  • aromatic hydrocarbon ring group, aromatic heterocyclic group, non-aromatic hydrocarbon ring group or non-aromatic heterocyclic group preferably a hydrogen atom, alkyl group, aromatic hydrocarbon ring group, aromatic A heterocyclic group, more preferably a hydrogen atom, an aromatic hydrocarbon ring group, or an aromatic heterocyclic group.
  • At least one of R 10 and R 11 is a substituent having an aromatic heterocycle having 14 or more ⁇ electrons, and more preferably at least one of R 10 is an aromatic heterocycle having 14 or more ⁇ electrons. It is a group having a ring.
  • aromatic hydrocarbon ring group examples include a benzene ring, biphenyl ring, biphenylene ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, pyrene ring, pyranthrene ring, anthraanthrene
  • the ring examples include a benzene ring.
  • Examples of the aromatic heterocyclic group include a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, an oxadiazole ring, a triazole ring, an imidazole ring, and a pyrazole ring.
  • R 10 to R 12 may further have a substituent, and may be the same or different from each other.
  • X, R, n, and m are synonymous with R, X, n, and m in general formula (3).
  • R 10 to R 14 are a hydrogen atom, deuterium atom, halogen atom, cyano group, alkyl group, alkenyl group, alkynyl group, alkoxy group, carbonyl group, amino group, silyl group
  • An aromatic heterocyclic group more preferably a hydrogen atom, an aromatic hydrocarbon ring group, or an aromatic heterocyclic group.
  • Examples of the aromatic hydrocarbon ring group include those exemplified as R 10 to R 12 in the general formula (3), and a benzene ring is preferable.
  • aromatic heterocyclic group examples include those exemplified as R 10 to R 12 in the general formula (3), preferably a dibenzofuran ring, a dibenzothiophene ring, and a carbazole ring, and more preferably a carbazole ring. is there.
  • R 10 to R 14 may further have a substituent, and may be the same or different from each other.
  • R 15 represents a hydrogen atom, deuterium atom, alkyl group, alkenyl group, alkynyl group, aromatic hydrocarbon ring group, aromatic heterocyclic group, non-aromatic hydrocarbon ring group or non-aromatic group.
  • alkyl group examples include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, 1-ethyl-propyl group, 2-methylhexyl group, pentyl group, adamantyl group, Examples thereof include an n-decyl group and an n-dodecyl group, and a methyl group, an ethyl group, an n-propyl group, and an isopropyl group are preferable.
  • aromatic hydrocarbon ring group examples include a benzene ring, biphenyl ring, biphenylene ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, pyrene ring, pyranthrene ring, anthraanthrene
  • the ring examples include a benzene ring.
  • L 1, L 2 represents a single bond or a divalent linking group.
  • Divalent linking groups include alkylene groups, alkenylene groups, ether groups, ester groups, carbonyl groups, amino groups, amide groups, silyl groups, phosphine oxide groups, benzene ring groups, carbazole ring groups, dibenzofuran ring groups, dibenzothiophenes. Examples thereof include a ring group, a pyridine ring group, a pyrazine ring group, an indoloindole ring group, an indole ring group, a benzofuran ring group, a benzothiophene ring group, and an imidazole ring group.
  • a single bond, a benzene ring group, a carbazole ring group, a dibenzofuran ring group, and a dibenzothiophene ring group are preferable, and a single bond is more preferable.
  • divalent linking groups examples include but not limited to these examples.
  • R, n, m, and X are synonymous with R, n, m, and X in General formula (1) or General formula (2), respectively.
  • R 10 ⁇ R 14 are each the same meaning as in formula (4) R 10 ⁇ R 14 in.
  • SH-1 can be synthesized according to the following scheme.
  • a 200 ml four-necked flask is charged with 11.0 g of 2-bromo-8-iododibenzofuran, 4.9 g of carbazole, 5.6 g of copper powder, 6.1 g of potassium carbonate, and 100 ml of dimethylacetamide, a nitrogen blowing tube, a thermometer, a condenser And set on an oil bath stirrer.
  • the reaction was terminated by heating under reflux at an internal temperature of about 130 ° C. for 36 hours under a nitrogen stream.
  • a 200 ml four-necked flask is charged with 4.9 g of intermediate B, 6.0 g of 1,3-iodobromobenzene, 0.25 g of tetrakistriphenylphosphine palladium, 100 ml of dimethoxyethane, and 15 ml of 2M aqueous sodium carbonate solution.
  • a meter and a condenser were attached and set on an oil bath stirrer. The reaction was terminated by heating under reflux at an internal temperature of about 75 ° C. for 14 hours under a nitrogen stream.
  • a hole blocking layer also referred to as a hole blocking layer
  • an electron injection layer also referred to as a cathode buffer layer
  • An electron blocking layer also referred to as an electron barrier layer
  • a hole injection layer also referred to as an anode buffer layer
  • the electron transport layer according to the present invention is a layer having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. Moreover, you may be comprised by multiple layers.
  • the hole transport layer according to the present invention is a layer having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. Moreover, you may be comprised by multiple layers.
  • the layer excluding the anode and the cathode is also referred to as “organic layer”.
  • the organic EL element according to the present invention may be an element having a so-called tandem structure in which a plurality of light emitting units including at least one light emitting layer are stacked.
  • tandem structure As typical element configurations of the tandem structure, for example, the following configurations can be given.
  • first light emitting unit is all the same, May be different.
  • Two light emitting units may be the same, and the remaining one may be different.
  • a plurality of light emitting units may be laminated directly or via an intermediate layer, and the intermediate layer is generally an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, an intermediate layer.
  • a known material structure can be used as long as it is also called an insulating layer and has a function of supplying electrons to the anode-side adjacent layer and holes to the cathode-side adjacent layer.
  • Examples of the material used for the intermediate layer include ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiOx, VOx, CuI, InN, GaN, and CuAlO 2. , CuGaO 2 , SrCu 2 O 2 , LaB 6 , RuO 2 , Al, etc., conductive inorganic compound layers, Au / Bi 2 O 3 etc.
  • bilayer films SnO 2 / Ag / SnO 2 , ZnO / Ag / ZnO, Bi 2 O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , TiO 2 / ZrN / TiO 2 and other multilayer films, C60 and other fullerenes, conductive organic layers such as oligothiophene, Examples include conductive organic compound layers such as metal phthalocyanines, metal-free phthalocyanines, metal porphyrins and metal-free porphyrins, but the present invention is not limited thereto. .
  • Preferred examples of the structure within the light emitting unit include those obtained by removing the anode and the cathode from the structures (1) to (7) mentioned in the above representative element structures, but the present invention is not limited to these. Not.
  • tandem organic EL element examples include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872, No. 472, US Pat. No. 6,107,734, US Pat. No. 6,337,492, International Publication No. 2005/009087, JP-A 2006-228712, JP-A 2006-24791, JP-A 2006-49393.
  • the light emitting layer according to the present invention is a layer that provides a field in which electrons and holes injected from an electrode or an adjacent layer are recombined to emit light via excitons, and the light emitting portion is a layer of the light emitting layer. Even within, it may be the interface between the light emitting layer and the adjacent layer.
  • the structure of the light emitting layer according to the present invention is not particularly limited as long as it satisfies the requirements defined in the present invention.
  • the total thickness of the light emitting layer is not particularly limited, but it prevents the uniformity of the film to be formed, the application of unnecessary high voltage during light emission, and the improvement of the stability of the emission color with respect to the driving current. From the viewpoint, it is preferable to adjust to a range of 2 nm to 5 ⁇ m, more preferably to a range of 2 nm to 500 nm, and further preferably to a range of 5 nm to 200 nm.
  • each light emitting layer of the present invention is preferably adjusted to a range of 2 nm to 1 ⁇ m, more preferably adjusted to a range of 2 nm to 200 nm, and further preferably adjusted to a range of 3 nm to 150 nm.
  • the light emitting layer of the present invention preferably contains a light emitting dopant (a light emitting dopant compound, a dopant compound, also simply referred to as a dopant) and a host compound (a matrix material, a light emitting host compound, also simply referred to as a host).
  • a light emitting dopant a light emitting dopant compound, a dopant compound, also simply referred to as a dopant
  • a host compound a matrix material, a light emitting host compound, also simply referred to as a host
  • a fluorescent luminescent dopant also referred to as a fluorescent dopant or a fluorescent compound
  • a phosphorescent dopant also referred to as a phosphorescent dopant or a phosphorescent compound
  • the concentration of the light-emitting dopant in the light-emitting layer can be arbitrarily determined based on the specific dopant used and the requirements of the device, and is contained at a uniform concentration in the film thickness direction of the light-emitting layer. It may also have an arbitrary concentration distribution.
  • the light emitting dopant according to the present invention may be used in combination of two or more kinds, a combination of dopants having different structures, or a combination of a fluorescent light emitting dopant and a phosphorescent light emitting dopant. Thereby, arbitrary luminescent colors can be obtained.
  • the light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total of CS-1000 (manufactured by Konica Minolta Sensing Co., Ltd.) is applied to the CIE chromaticity coordinates.
  • one or a plurality of light-emitting layers contain a plurality of light-emitting dopants having different emission colors and emit white light.
  • Fluorescent luminescent dopant (1.1) Fluorescent luminescent dopant The fluorescent luminescent dopant (henceforth "fluorescent dopant") concerning this invention is demonstrated.
  • the fluorescent dopant according to the present invention is a compound that can emit light from an excited singlet, and is not particularly limited as long as light emission from the excited singlet is observed.
  • Examples of the fluorescent dopant according to the present invention include anthracene derivatives, pyrene derivatives, chrysene derivatives, fluoranthene derivatives, perylene derivatives, fluorene derivatives, arylacetylene derivatives, styrylarylene derivatives, styrylamine derivatives, arylamine derivatives, boron complexes, coumarin derivatives.
  • luminescent dopants using delayed fluorescence have been developed, and these may be used.
  • luminescent dopant using delayed fluorescence examples include compounds described in, for example, International Publication No. 2011/156793, Japanese Patent Application Laid-Open No. 2011-213643, Japanese Patent Application Laid-Open No. 2010-93181, and the like. It is not limited to.
  • Phosphorescent dopant (1.2) Phosphorescent dopant
  • phosphorescent dopant The phosphorescent dopant according to the present invention (hereinafter also referred to as “phosphorescent dopant”) will be described.
  • the phosphorescent dopant according to the present invention is a compound in which light emission from an excited triplet is observed.
  • the phosphorescent dopant is a compound that emits phosphorescence at room temperature (25 ° C.) and has a phosphorescence quantum yield of 25. Although it is defined as a compound of 0.01 or more at ° C., a preferable phosphorescence quantum yield is 0.1 or more.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence dopant according to the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. That's fine.
  • phosphorescent dopants There are two types of light emission of phosphorescent dopants in principle. One is the recombination of carriers on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent dopant. It is an energy transfer type to obtain light emission from a phosphorescent dopant. The other is a carrier trap type in which a phosphorescent dopant serves as a carrier trap, and carrier recombination occurs on the phosphorescent dopant to emit light from the phosphorescent dopant. In any case, it is a condition that the excited state energy of the phosphorescent dopant is lower than the excited state energy of the host compound.
  • the phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic EL element.
  • a preferable phosphorescent dopant includes an organometallic complex having Ir as a central metal. More preferably, a complex containing at least one coordination mode of metal-carbon bond, metal-nitrogen bond, metal-oxygen bond, and metal-sulfur bond is preferable.
  • the host compound according to the present invention is a compound mainly responsible for charge injection and transport in the light-emitting layer, and its own light emission is not substantially observed in the organic EL device.
  • it is a compound having a phosphorescence quantum yield of phosphorescence emission of less than 0.1 at room temperature (25 ° C.), more preferably a compound having a phosphorescence quantum yield of less than 0.01. Moreover, it is preferable that the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.
  • the excited state energy of the host compound is preferably higher than the excited state energy of the light-emitting dopant contained in the same layer.
  • the host compounds may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient.
  • the host compound that can be used in the present invention is not particularly limited, and compounds conventionally used in organic EL devices can be used. It may be a low molecular compound or a high molecular compound having a repeating unit, or a compound having a reactive group such as a vinyl group or an epoxy group.
  • Tg glass transition temperature
  • the glass transition point (Tg) is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
  • the electron transport layer is made of a material having a function of transporting electrons, and may have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • the total film thickness of the electron transport layer according to the present invention is not particularly limited, but is usually in the range of 2 nm to 5 ⁇ m, more preferably 2 to 500 nm, and further preferably 5 to 200 nm.
  • the organic EL element when the light generated in the light emitting layer is extracted from the electrode, the light extracted directly from the light emitting layer interferes with the light extracted after being reflected by the electrode from which the light is extracted and the electrode located at the counter electrode. It is known to wake up. When light is reflected by the cathode, this interference effect can be efficiently utilized by appropriately adjusting the total film thickness of the electron transport layer between several nanometers and several micrometers.
  • the electron mobility of the electron transport layer is preferably 10 ⁇ 5 cm 2 / Vs or more, particularly when the thickness is large. .
  • the material used for the electron transport layer may be any of electron injecting or transporting properties and hole blocking properties, and can be selected from conventionally known compounds. Can be selected and used.
  • nitrogen-containing aromatic heterocyclic derivatives (carbazole derivatives, azacarbazole derivatives (one or more carbon atoms constituting the carbazole ring are substituted with nitrogen atoms), pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, pyridazine derivatives, Triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, azatriphenylene derivatives, oxazole derivatives, thiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, etc.), dibenzofuran derivatives, And dibenzothiophene derivatives, silole derivatives, aromatic hydrocarbon ring derivatives (naphthalene derivatives, anthracene derivatives, triphenylene, etc.)
  • a metal complex having a quinolinol skeleton or a dibenzoquinolinol skeleton as a ligand such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7- Dibromo-8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • a metal complex in which the central metal is replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials as a polymer main chain can be used.
  • the electron transport layer may be doped with a doping material as a guest material to form an electron transport layer having a high n property (electron rich).
  • the doping material include n-type dopants such as metal complexes and metal compounds such as metal halides.
  • Specific examples of the electron transport layer having such a structure include, for example, JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J. Pat. Appl. Phys. , 95, 5773 (2004) and the like.
  • More preferable electron transport materials in the present invention include pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, triazine derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, carbazole derivatives, azacarbazole derivatives, and benzimidazole derivatives.
  • the electron transport material may be used alone or in combination of two or more.
  • the hole blocking layer is a layer having a function of an electron transport layer in a broad sense, and is preferably made of a material having a function of transporting electrons while having a small ability to transport holes, and transporting electrons while transporting holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the structure of the electron transport layer described above can be used as a hole blocking layer according to the present invention, if necessary.
  • the hole blocking layer provided in the organic EL device of the present invention is preferably provided adjacent to the cathode side of the light emitting layer.
  • the film thickness of the hole blocking layer according to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • the material used for the hole blocking layer As the material used for the hole blocking layer, the material used for the above-described electron transport layer is preferably used, and the material used as the above-described host compound is also preferably used for the hole blocking layer.
  • the electron injection layer (also referred to as “cathode buffer layer”) according to the present invention is a layer provided between the cathode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. It is described in detail in Chapter 2 “Electrode Materials” (pages 123 to 166) of the second edition of “The Forefront of Industrialization (issued by NTT Corporation on November 30, 1998)”.
  • the electron injection layer may be provided as necessary, and may be present between the cathode and the light emitting layer or between the cathode and the electron transport layer as described above.
  • the electron injection layer is preferably a very thin film, and although depending on the material, the film thickness is preferably in the range of 0.1 nm to 5 nm. Moreover, the nonuniform film
  • JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like Specific examples of materials preferably used for the electron injection layer are as follows. , Metals typified by strontium and aluminum, alkali metal compounds typified by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkaline earth metal compounds typified by magnesium fluoride, calcium fluoride, etc., oxidation Examples thereof include metal oxides typified by aluminum, metal complexes typified by lithium 8-hydroxyquinolate (Liq), and the like. Further, the above-described electron transport material can also be used.
  • the materials used for the electron injection layer may be used alone or in combination of two or more.
  • the hole transport layer is made of a material having a function of transporting holes and may have a function of transmitting holes injected from the anode to the light emitting layer.
  • the total thickness of the hole transport layer of the present invention is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, more preferably in the range of 2 to 500 nm, and still more preferably in the range of 5 to 200 nm.
  • a material used for the hole transport layer (hereinafter referred to as a hole transport material), any material that has either a hole injection property or a transport property or an electron barrier property may be used. Any one can be selected and used.
  • porphyrin derivatives for example, porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives , Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, and polyvinyl carbazole, polymer materials or oligomers in which aromatic amines are introduced into the main chain or side chain, polysilane, conductive And polymer (for example, PEDOT: PSS, aniline copolymer, polyaniline, polythiophene, etc.).
  • PEDOT PSS, aniline copolymer, poly
  • Examples of the triarylamine derivative include benzidine type represented by ⁇ -NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), and MTDATA (4,4 ′, 4 ′′).
  • Examples include a starburst type represented by -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine), a compound having fluorene or anthracene in the triarylamine-linked core.
  • hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as a hole transport material.
  • a hole transport layer having a high p property doped with impurities can also be used.
  • examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
  • JP-A-11-251067, J. Org. Huang et. al. It is also possible to use so-called p-type hole transport materials, inorganic compounds such as p-type-Si and p-type-SiC, as described in the literature (Applied Physics Letters 80 (2002), p. 139). Further, ortho-metalated organometallic complexes having Ir or Pt as the central metal represented by Ir (ppy) 3 are also preferably used.
  • the above-mentioned materials can be used as the hole transport material, a triarylamine derivative, a carbazole derivative, an indolocarbazole derivative, an azatriphenylene derivative, an organometallic complex, or an aromatic amine is introduced into the main chain or side chain.
  • the polymer materials or oligomers used are preferably used.
  • the hole transport material may be used alone or in combination of two or more.
  • the electron blocking layer is a layer having a function of a hole transport layer in a broad sense, and is preferably made of a material having a function of transporting holes and a small ability to transport electrons, and transporting electrons while transporting holes. The probability of recombination of electrons and holes can be improved by blocking. Moreover, the structure of the positive hole transport layer mentioned above can be used as an electron blocking layer according to the present invention, if necessary.
  • the electron blocking layer provided in the organic EL device of the present invention is preferably provided adjacent to the anode side of the light emitting layer.
  • the film thickness of the electron blocking layer according to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • the material used for the electron blocking layer is preferably used, and the material used for the host compound is also preferably used for the electron blocking layer.
  • the hole injection layer (also referred to as “anode buffer layer”) according to the present invention is a layer provided between the anode and the light emitting layer for the purpose of lowering the driving voltage and improving the light emission luminance. It is described in detail in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “The Forefront of Industrialization (issued by NTT Corporation on November 30, 1998)”.
  • the hole injection layer may be provided as necessary, and may be present between the anode and the light emitting layer or between the anode and the hole transport layer as described above.
  • the details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc.
  • Examples of materials used for the hole injection layer include: Examples thereof include materials used for the above-described hole transport layer.
  • phthalocyanine derivatives typified by copper phthalocyanine, hexaazatriphenylene derivatives as described in JP-T-2003-519432, JP-A-2006-135145, etc.
  • metal oxides typified by vanadium oxide, amorphous carbon, polyaniline (emeral) Din) and polythiophene conductive polymers
  • orthometalated complexes represented by tris (2-phenylpyridine) iridium complex 2,4-phenylpyridine
  • the materials used for the hole injection layer described above may be used alone or in combination of two or more.
  • Organic layer in the present invention described above may further contain other additives.
  • additives include halogen elements and halogenated compounds such as bromine, iodine and chlorine, alkali metals and alkaline earth metals such as Pd, Ca and Na, transition metal compounds, complexes and salts.
  • the content of the additive can be arbitrarily determined, but is preferably 1000 ppm or less, more preferably 500 ppm or less, and further preferably 50 ppm or less with respect to the total mass% of the contained layer. .
  • the formation method of the organic layer according to the present invention is not particularly limited, and a conventionally known formation method such as a vacuum deposition method or a wet method (also referred to as a wet process) can be used.
  • wet method examples include spin coating method, casting method, ink jet method, printing method, die coating method, blade coating method, roll coating method, spray coating method, curtain coating method, and LB method (Langmuir-Blodgett method). From the viewpoint of obtaining a homogeneous thin film easily and high productivity, a method with high roll-to-roll method suitability such as a die coating method, a roll coating method, an ink jet method and a spray coating method is preferable.
  • liquid medium for dissolving or dispersing the organic EL material according to the present invention examples include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene.
  • ketones such as methyl ethyl ketone and cyclohexanone
  • fatty acid esters such as ethyl acetate
  • halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene.
  • Aromatic hydrocarbons such as cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane
  • organic solvents such as DMF and DMSO
  • a dispersion method it can be dispersed by a dispersion method such as ultrasonic wave, high shearing force dispersion or media dispersion.
  • vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C., a vacuum degree of 10 ⁇ 6 to 10 ⁇ 2 Pa, a vapor deposition rate of 0.01 to It is desirable to select appropriately within a range of 50 nm / second, a substrate temperature of ⁇ 50 to 300 ° C., and a film thickness of 0.1 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the organic layer according to the present invention it is preferable to consistently produce from the hole injection layer to the cathode by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. In that case, it is preferable to perform the work in a dry inert gas atmosphere.
  • anode As the anode in the organic EL element, those having a work function (4 eV or more, preferably 4.5 V or more) of a metal, an alloy, an electrically conductive compound and a mixture thereof as an electrode material are preferably used.
  • electrode substances include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) that can form a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not so high (about 100 ⁇ m or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • a wet film forming method such as a printing method or a coating method can be used.
  • the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the anode depends on the material, but is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 to 200 nm.
  • cathode As the cathode, a metal having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, aluminum, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture
  • a magnesium / aluminum mixture a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the emission luminance is improved, which is convenient.
  • a transparent or translucent cathode can be produced by producing a conductive transparent material mentioned in the description of the anode on the cathode after producing the above metal with a thickness of 1 to 20 nm.
  • a support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention, there is no particular limitation on the type of glass, plastic, etc., and it is transparent. May be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by J
  • the surface of the resin film may be formed with an inorganic film, an organic film, or a hybrid film of both, and the water vapor permeability (25 ⁇ 0.5 ° C.) measured by a method according to JIS K 7129-1992. And a relative humidity of 90 ⁇ 2%) is preferably 0.01 g / (m 2 ⁇ 24 h) or less, and the oxygen permeability measured by a method according to JIS K 7126-1987 is also preferred. It is preferable that the film is a high barrier film having 1 ⁇ 10 ⁇ 3 cm 3 / (m 2 ⁇ 24 h ⁇ atm) or less and a water vapor permeability of 1 ⁇ 10 ⁇ 5 g / (m 2 ⁇ 24 h) or less.
  • the material for forming the barrier film may be any material that has a function of suppressing the entry of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, and the like can be used.
  • the method for forming the barrier film is not particularly limited.
  • the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the opaque support substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
  • the external extraction efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, and more preferably 5% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element ⁇ 100.
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
  • sealing means used for sealing the organic EL element of the present invention include a method of bonding a sealing member, an electrode, and a support substrate with an adhesive.
  • a sealing member it should just be arrange
  • transparency and electrical insulation are not particularly limited.
  • Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film and a metal film can be preferably used because the organic EL element can be thinned.
  • the polymer film was measured by the method of oxygen permeability measured by the method based on JIS K 7126-1987 is 1 ⁇ 10 -3 cm 3 / m 2 / 24h or less, in conformity with JIS K 7129-1992
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity 90 ⁇ 2%) is preferably 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • sealing member For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
  • the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable.
  • a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
  • the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film.
  • the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
  • the method for forming these films is not particularly limited.
  • vacuum deposition method sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma
  • a polymerization method a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase.
  • a vacuum can also be used.
  • a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • a protective film or a protective plate may be provided outside the sealing film or the sealing film on the side facing the support substrate with the organic layer interposed therebetween.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
  • An organic electroluminescent element emits light inside a layer having a refractive index higher than that of air (with a refractive index of about 1.6 to 2.1), and about 15% to 20% of light generated in the light emitting layer. It is generally said that only light can be extracted. This is because light incident on the interface (interface between the transparent substrate and air) at an angle ⁇ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the side surface of the device.
  • a technique for improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the transparent substrate and the air interface (for example, US Pat. No. 4,774,435), A method for improving efficiency by providing light condensing property (for example, Japanese Patent Laid-Open No. 63-134795), a method for forming a reflective surface on the side surface of an element (for example, Japanese Patent Laid-Open No. 1-220394), a substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate and the light emitter (for example, Japanese Patent Laid-Open No.
  • these methods can be used in combination with the organic electroluminescence device of the present invention, but a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, A method of forming a diffraction grating between any layers of the transparent electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower.
  • the low refractive index layer examples include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally in the range of about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Furthermore, it is preferable that it is 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.
  • the method of introducing a diffraction grating into an interface that causes total reflection or in any medium has a feature that the effect of improving the light extraction efficiency is high.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction, such as first-order diffraction or second-order diffraction.
  • the light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating into any layer or medium (in the transparent substrate or transparent electrode). , Trying to extract light out.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. The light extraction efficiency does not increase so much.
  • the refractive index distribution a two-dimensional distribution
  • the light traveling in all directions is diffracted, and the light extraction efficiency is increased.
  • the position where the diffraction grating is introduced may be in any layer or in the medium (in the transparent substrate or transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
  • the period of the diffraction grating is preferably in the range of about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic electroluminescence device of the present invention is processed to provide a structure on the microlens array, for example, on the light extraction side of the support substrate (substrate), or combined with a so-called condensing sheet, for example, in a specific direction, By condensing in the front direction with respect to the element light emitting surface, the luminance in a specific direction can be increased.
  • quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably within a range of 10 to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • the condensing sheet it is possible to use, for example, an LED backlight of a liquid crystal display device that has been put into practical use.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
  • BEF brightness enhancement film
  • a substrate may be formed with a ⁇ -shaped stripe having an apex angle of 90 degrees and a pitch of 50 ⁇ m, or the apex angle is rounded and the pitch is changed randomly. Other shapes may also be used.
  • a light diffusion plate / film may be used in combination with the light collecting sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • the organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
  • lighting devices home lighting, interior lighting
  • clock and liquid crystal backlights billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light
  • the light source of a sensor etc. are mentioned, It is not limited to this, It can use effectively for the use as a backlight of a liquid crystal display device, and an illumination light source especially.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned.
  • a conventionally known method is used. Can do.
  • FIG. 1 is a schematic view showing an example of a display device composed of organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
  • the display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
  • the control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside.
  • the image information is sequentially emitted to scan the image and display the image information on the display unit A.
  • FIG. 2 is a schematic diagram of the display unit A.
  • the display unit A has a wiring unit including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels 3 on the substrate.
  • the main members of the display unit A will be described below.
  • the light L emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
  • the scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are illustrated). Not)
  • the pixel 3 When the scanning signal is applied from the scanning line 5, the pixel 3 receives the image data signal from the data line 6 and emits light according to the received image data.
  • a full color display can be achieved by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
  • FIG. 3 is a circuit diagram of the pixel.
  • the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
  • a full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels, and juxtaposing them on the same substrate.
  • an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6.
  • a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is supplied to the capacitor 13 and the driving transistor 12. Is transmitted to the gate.
  • the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10.
  • the power supply line 7 connects the organic EL element 10 to the potential of the image data signal applied to the gate. Current is supplied.
  • the capacitor 13 holds the charged potential of the image data signal even when the driving of the switching transistor 11 is turned off, the driving of the driving transistor 12 is kept on and the next scanning signal is applied. Until then, the light emission of the organic EL element 10 continues.
  • the driving transistor 12 When the scanning signal is next applied by sequential scanning, the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
  • the organic EL element 10 emits light by the switching transistor 11 and the drive transistor 12 that are active elements for the organic EL elements 10 of the plurality of pixels, and the organic EL elements 10 of the plurality of pixels 3 emit light. It is carried out.
  • Such a light emitting method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Good.
  • the potential of the capacitor 13 may be held continuously until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
  • the present invention not only the active matrix method described above, but also a passive matrix light emission drive in which an organic EL element emits light according to a data signal only when a scanning signal is scanned.
  • FIG. 4 is a schematic view of a passive matrix display device.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
  • the pixel 3 connected to the applied scanning line 5 emits light according to the image data signal.
  • One aspect of the lighting device of the present invention One aspect of the lighting device of the present invention that includes the organic EL element of the present invention will be described.
  • the non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a 300 ⁇ m thick glass substrate is used as a sealing substrate, and an epoxy photocurable adhesive (LUX Track LC0629B) is applied, and this is overlaid on the cathode and adhered to the transparent support substrate, irradiated with UV light from the glass substrate side, cured and sealed, as shown in FIG. 5, R1 to R8 A lighting device can be formed.
  • LUX Track LC0629B epoxy photocurable adhesive
  • FIG. 5 shows a schematic diagram of a lighting device, and the organic EL element 101 of the present invention is covered with a glass cover 102 (in addition, the sealing operation with the glass cover is to bring the organic EL element 101 into contact with the atmosphere. And a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more).
  • FIG. 6 shows a cross-sectional view of the lighting device.
  • 105 denotes a cathode
  • 106 denotes an organic EL layer
  • 107 denotes a glass substrate with a transparent electrode.
  • the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • Impedance spectroscopy is a technique that can analyze subtle changes in physical properties of organic EL by converting or amplifying them into electrical signals, and has high sensitivity resistance (R) and electrostatic without destroying organic EL. It is characteristic that the capacity (C) can be measured.
  • R sensitivity resistance
  • C capacity
  • impedance spectroscopic analysis it is common to measure electrical characteristics using Z plot, M plot, and ⁇ plot, and the analysis method (“Thin Film Evaluation Handbook” published by Techno System, Inc., pages 423-425) etc. It is published in detail.
  • FIG. 7 is an example of an M plot with a different thickness of the electron transport layer. An example in which the film thickness is 30, 45, and 60 nm, respectively, is shown.
  • FIG. 8 shows resistance values (R) obtained from this plot plotted against the ETL film thickness.
  • FIG. 8 shows an example of the relationship between the ETL film thickness and the resistance value. From the relationship between the ETL film thickness and the resistance value (Resistance) in FIG. 8, the resistance value at each film thickness can be determined from being on a substantially straight line.
  • FIG. 10 shows the result of analyzing each layer using an organic EL element having an element configuration “ITO / HIL / HTL / EML / ETL / EIL / Al” as an example of an equivalent circuit model (FIG. 9).
  • FIG. 10 is an example showing the resistance-voltage relationship of each layer.
  • FIG. 9 shows an equivalent circuit model of an organic EL element having an element configuration “ITO / HIL / HTL / EML / ETL / EIL / Al”.
  • FIG. 10 is an example of an analysis result of an organic EL element having an element configuration “ITO / HIL / HTL / EML / ETL / EIL / Al”.
  • FIG. 11 shows the respective values at a voltage of 1V.
  • FIG. 11 is an example showing the analysis result of the organic EL element after deterioration.
  • HIL hole injection layer
  • ETL electron transport layer
  • HTL hole transport layer
  • Example 1 (Vapor deposition system) The structures of the compounds used in the examples described below are shown below.
  • the comparative compound A and the comparative compound B are the compounds described in International Publication No. 2007/142083 and International Publication No. 2012/087007, respectively.
  • polystyrene sulfonate PEDOT / PSS, Bayer, Baytron P Al 4083
  • a thin film was formed by spin coating under conditions of 30 seconds, and then dried at 200 ° C. for 1 hour to provide a first hole injection layer having a thickness of 20 nm.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while 200 mg of ⁇ -NPD is put into a molybdenum resistance heating boat, and CBP (4,4′-N, N ′ is put into another molybdenum resistance heating boat.
  • 200 mg of dicarbazole biphenyl), 200 mg of luminescent dopant D-9 in a separate molybdenum resistance heating boat, and BCP (2,9-dimethyl-4,7-diphenyl-1, 200 mg of 10-phenanthroline) was placed and attached to a vacuum deposition apparatus.
  • the vacuum chamber was then depressurized to 4 ⁇ 10 ⁇ 4 Pa, heated by energizing the heating boat containing ⁇ -NPD, and deposited on the hole injection layer at a deposition rate of 0.1 nm / sec.
  • the hole transport layer was provided.
  • the heating boat containing the comparative compound A and the heating boat containing the implementation DP were energized and heated, and the vapor deposition rates were 0.1 nm / second and 0.010 nm / second, respectively. Evaporation was performed to provide a 40 nm light emitting layer.
  • the heating boat containing BCP was energized and heated, and was deposited on the hole blocking layer at a deposition rate of 0.1 nm / second to provide an electron transport layer of 30 nm.
  • lithium fluoride 0.5 nm was vapor-deposited as a cathode buffer layer, and aluminum 110 nm was vapor-deposited to form a cathode, whereby an organic EL device 1-1 was produced.
  • Organic EL devices 1-2 to 1-30 were prepared in the same manner as in the production of the organic EL device 1-1 except that the light emitting dopant and the host compound were changed to the compounds shown in Table 2.
  • the resistance value of the light emitting layer was measured by an impedance spectrometer, and the change rate and chromaticity of the half width of the emission spectrum of the organic EL element were measured.
  • the organic EL device was measured for the resistance value of the light emitting layer before and after driving for 1000 hours under room temperature (about 23 ° C. to 25 ° C.) under a constant current condition of 2.5 mA / cm 2.
  • the change rate of the resistance value was calculated by the calculation formula shown.
  • Table 2 shows relative values when the rate of change in resistance value of the organic EL element 1-1 is 100.
  • Rate of change of half width before and after driving
  • a value closer to 0 indicates a smaller change rate before and after driving.
  • the luminescent color of the organic EL element is measured by using a spectral radiance meter CS-1000 (manufactured by Konica Minolta Optics), and the chromaticity (x, y) at a front luminance of 2 degrees.
  • the y value was used as an index. If the y value is low, it indicates that the purity of the blue-colored color is good.
  • the organic EL elements 1-5 to 1-30 of the present invention are compared with the organic EL elements 1-1, 1-2, 1-3, 1-4 of the comparative example and the resistance value of the light emitting layer and Since it was shown that the change rate of the half width of the emission spectrum was small, an organic EL device having a small change in physical properties of the thin film of the light emitting layer could be obtained. Furthermore, the organic EL elements 1-1, 1-2, and 1-4 of the comparative example have high y values and poor color purity, whereas the organic EL elements 1-5 to 1-30 of the present invention have chromaticity. It can be seen that (color purity) is also excellent.
  • Example 2 (Coating system) ⁇ Production of organic EL element 2-1 >> A transparent support substrate provided with this ITO transparent electrode after patterning a substrate (NA45 manufactured by NH Techno Glass Co., Ltd.) having a thickness of 100 nm formed on a glass substrate of 100 mm ⁇ 100 mm ⁇ 1.1 mm as an anode. was subjected to ultrasonic cleaning with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
  • a substrate NA45 manufactured by NH Techno Glass Co., Ltd.
  • PEDOT / PSS poly(3,4-ethylenedioxythiophene) -polystyrene sulfonate
  • a thin film was formed by spin coating under a condition of 30 seconds, and then dried at 200 ° C. for 1 hour to provide a first hole transport layer having a thickness of 20 nm.
  • the substrate was transferred to a nitrogen atmosphere, and a solution of 50 mg of ADS254BE (American Dye Source, Inc.) dissolved in 10 ml of monochlorobenzene was used on the first hole transport layer at 2500 rpm for 30 seconds.
  • a thin film was formed by spin coating. Furthermore, it vacuum-dried at 130 degreeC for 1 hour, and the 2nd positive hole transport layer was formed.
  • a thin film was formed by spin coating under a condition of 1000 rpm and 30 seconds using a solution in which 100 mg of comparative compound A and 13 mg of working DP were dissolved in 10 ml of butyl acetate. Furthermore, it vacuum-dried at 60 degreeC for 1 hour, and was set as the light emitting layer with a film thickness of about 45 nm.
  • a thin film was formed on the light emitting layer by spin coating under a condition of 1000 rpm for 30 seconds using a solution in which 50 mg of BCP was dissolved in 10 ml of hexafluoroisopropanol (HFIP). Furthermore, it vacuum-dried at 60 degreeC for 1 hour, and was set as the electron carrying layer with a film thickness of about 25 nm.
  • HFIP hexafluoroisopropanol
  • this substrate was fixed to a substrate holder of a vacuum deposition apparatus, and after the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, 0.4 nm of potassium fluoride was deposited as a cathode buffer layer, and further 110 nm of aluminum was deposited. Thus, a cathode was formed to produce an organic EL element 2-1.
  • Organic EL devices 2-2 to 2-20 were prepared in the same manner except that the light emitting dopant and the host compound were changed to the compounds shown in Table 3 in the production of the organic EL device 2-1.
  • the organic EL elements 2-5 to 2-20 of the present invention are compared with the organic EL elements 2-1 to 2-2 of the comparative example, Since it was shown that the change rate of the half width of the emission spectrum was small, an organic EL device having a small change in physical properties of the thin film of the light emitting layer could be obtained. Further, the organic EL elements 2-1, 2-2 and 2-4 of the comparative examples have high y values and poor color purity, whereas the organic EL elements 2-5 to 2-20 of the present invention have chromaticity. It can be seen that (color purity) is also excellent.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, 200 mg of TPD is put into a molybdenum resistance heating boat, 200 mg of Comparative Compound A is put into another molybdenum resistance heating boat, and the other resistance heating boat made of molybdenum Put 200 mg of DP, put 200 mg of D-15 in another molybdenum resistance heating boat, put 200 mg of D-6 in another molybdenum resistance heating boat, and put 200 mg of BCP in another molybdenum resistance heating boat And attached to a vacuum deposition apparatus.
  • the pressure in the vacuum chamber is reduced to 4 ⁇ 10 ⁇ 4 Pa, and then heated by energizing the heating boat containing TPD, and deposited on a transparent support substrate at a deposition rate of 0.1 nm / second to form a 10 nm hole transport layer.
  • the heating boat containing Comparative Compound A, Example DP, Example D-15, and Example D-6 was energized and heated, and the deposition rates were 0.1 nm / second, 0.025 nm / second, and 0.0007 nm / second, respectively.
  • the light emitting layer of 60 nm was provided by co-evaporation on the hole transport layer at 0.0002 nm / second.
  • the heating boat containing BCP was energized and heated, and deposited on the light emitting layer at a deposition rate of 0.1 nm / second to provide a 20 nm electron transport layer.
  • Organic EL devices 3-2 to 3-15 were prepared in the same manner as in the production of the organic EL device 3-1, except that the host compound was changed to the compounds shown in Table 4.
  • the organic EL elements 3-4 to 3-15 of the present invention have a rate of change of the half-value width of the resistance value of the light emitting layer compared to the organic EL elements 3-1 to 3-3 of the comparative example. As a result, it was possible to obtain an organic EL device having a small change in physical properties of the light emitting layer thin film.
  • Example 4 (Color) ⁇ Production of organic EL element 4-1 >> (Production of blue light emitting element)
  • the organic EL device 1-5 of Example 1 was used as a blue light emitting device.
  • a green light emitting device was produced in the same manner as in the organic EL device 1-5 of Example 1 except that the implementation DP was changed to the implementation D-15, and this was used as the green light emitting device.
  • the organic EL element 1-5 of Example 1 was produced in the same manner except that the implementation DP was changed to the implementation D-6, and this was used as a red light emitting element.
  • the red, green, and blue light emitting organic EL elements produced above were juxtaposed on the same substrate to produce an active matrix type full color display device having a configuration as shown in FIG. In FIG. 2, only the schematic diagram of the display part A of the produced display device is shown.
  • a plurality of pixels 3 (light emission color is a red region pixel, a green region pixel, a blue region pixel, etc.) juxtaposed with a wiring portion including a plurality of scanning lines 5 and data lines 6 on the same substrate.
  • the scanning lines 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a lattice shape and are connected to the pixels 3 at the orthogonal positions (for details, see Not shown).
  • the plurality of pixels 3 are driven by an active matrix system in which an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor are provided, and a scanning signal is applied from a scanning line 5.
  • the image data signal is received from the data line 6 and light is emitted according to the received image data.
  • a full color display device was produced by appropriately juxtaposing red, green, and blue pixels. It was found that the produced organic EL elements exhibited blue, green and red colors by applying a voltage to the electrodes, respectively, and could be used as a full color display device.
  • an organic EL element with little change in the resistance value of the light emitting layer with the passage of time is realized. As a secondary effect thereof, there is little change in the light emission characteristics over time, and It is possible to provide an organic electroluminescence element, a lighting device, and a display device having excellent chromaticity. Moreover, the organic EL element which has the said effect can be manufactured with a wet process.
  • the organic EL device of the present invention can realize an organic EL device with little change in the resistance value of the light emitting layer over time.
  • As a secondary effect it is possible to provide an organic EL element with good chromaticity (purity) of an emission spectrum and little change in emission characteristics over time, and an illumination device using the organic electroluminescence element, A display device can be provided.

Abstract

 本発明の課題は、通電経時での発光層の抵抗値変化が少ない有機EL素子を実現するものであり、その副次的効果として、発光スペクトルの色度が良好で、また、経時による発光特性の変化が少ない有機EL素子を提供することである。また、該有機EL素子を用いた照明装置及び表示装置を提供することである。 本発明の有機エレクトロルミネッセンス素子は、一対の電極と、前記一対の電極の間に、一又は複数の有機層が具備された有機エレクトロルミネッセンス素子であって、下記一般式(1)で表される構造を有する化合物を前記有機層のいずれか一層以上に含有することを特徴とする。 

Description

有機エレクトロルミネッセンス素子、それを具備した照明装置及び表示装置
 本発明は、有機エレクトロルミネッセンス素子、それを具備した表示装置及び照明装置に関する。より詳しくは、通電経時での発光層の抵抗値変化が少ない有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう。)を実現するものであり、その副次的効果として、発光スペクトルの色度が良好で、かつ、経時による発光特性の変化が少ない有機エレクトロルミネッセンス素子と、それを具備した照明装置及び表示装置に関する。
 有機エレクトロルミネッセンス素子は、発光する有機化合物を含有する発光層を陰極と陽極で挟んだ構成を有し、電界を印加することにより、陽極から注入された正孔と陰極から注入された電子を発光層内で再結合させることで励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・リン光)を利用した発光素子である。また、有機EL素子は、電極間を厚さわずかサブミクロン程度の有機材料の膜で構成する全固体素子であり、数V~数十V程度の電圧で発光が可能で可能であることから、次世代の平面ディスプレイや照明への利用が期待されている。
 実用化に向けた有機EL素子の開発としては、プリンストン大より、励起三重項からのリン光発光を用いる有機EL素子の報告がされて以来(例えば、非特許文献1参照。)、室温でリン光を示す材料の研究が活発になってきている(例えば、特許文献1及び非特許文献2参照。)。さらに、リン光発光を利用する有機EL素子は、以前の蛍光発光を利用する素子に比べ原理的に約4倍の発光効率が実現可能であることから、その材料開発を初めとし、発光素子の層構成や電極の研究開発が世界中で行われている。
 その研究開発過程で、近年、特に問題となっているのは、発光材料自身が有機化合物であるが故の耐久性の低さであり、耐久性を向上させるべく数多くの発光物質が開発されてきたが、同時に発光物質に電子や正孔(総称して電荷と呼ぶ)を受け渡すホスト化合物の重要性も明らかになり、その開発も盛んに行われている(例えば、特許文献2、3及び4参照。)。
 我々は、有機EL素子内の現象解明に注力し、特に発光層内に存在するホストの経時変化について、鋭意解析したところ、有機ELの様々な技術課題の根本的な要因となっているのが、発光層の通電(発光)経時、及び、非発光保存経時における膜の抵抗変化であることを究明するに至った。
 通常、発光素子の中に存在する厚さ数十nm程度の発光層の抵抗を非破壊で計測することは困難であったが、最近、インピーダンス分光法を用いることにより比較的容易に計測することができるようになってきた。
 この方法を用いることにより、有機EL素子を作製した直後の状態での発光層の抵抗値と、通電経時又は非発光保存経時の少なくともいずれかの発光層の抵抗値を計測することが可能となり、その抵抗値変化が小さいものほど、発光素子の電圧上昇が少なく、また、発光スペクトルの色度も良好であることがわかった。しかし、現状では発光層の抵抗値変化は、まだ大きく更なる改善が必要であることが分かってきた。
米国特許第6097147号明細書 特開2005-112765号公報 国際公開第2012/162325号 国際公開第2007/142083号
M.A.Baldo et al.,Nature、395巻、151~154頁(1998年) M.A.Baldo et al.,nature、403巻、17号、750~753頁(2000年)
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、通電経時での発光層の抵抗値変化が少ない有機EL素子を実現するものであり、その副次的効果として、発光スペクトルの色度が良好で、また、経時による発光特性の変化が少ない有機EL素子を提供することである。また、該有機エレクトロルミネッセンス素子を用いた照明装置及び表示装置を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討し、既存のホスト化合物を含め、新たに設計した数多くの新規なホスト化合物を含む有機エレクトロルミネッセンス素子用化合物について、通電経時又は非発光保存経時の少なくともいずれかの有機化合物膜、特に発光層の抵抗値変化を小さくする化合物を検討したところ、下記のような作用機構を見出し、本発明に至った。
 有機エレクトロルミネッセンス素子のように、電界を印加して駆動させる素子において、層中に含まれる化合物は中性状態、アニオン又はカチオンのラジカル状態や励起状態など、複数の電子状態を取りうる。この中でも、分子内で電荷が局在化しているラジカル状態や励起状態は、周囲の化合物と電荷を介した相互作用をしやすく、また同時に周囲の環境変化の影響を受けやすくなるものと考えられる。有機化合物層の抵抗値の変化は、すなわち、層内の電荷移動性の変化であり、上記の相互作用や環境変化の影響は膜の抵抗値に大きく影響する。そこで、このようなラジカル状態を安定化する技術として、特異的な構造を有し、かつ電荷的に中性な部位(ニュートラル部位)を有する化合物を見出した。
 本発明に係る化合物は、14個以上のπ電子を有する芳香族複素環を二つ以上有する。これらの芳香族複素環の例として、カルバゾールやジベンゾフランなどの縮合環がある。これら縮合環はπ共役面が単環に比較し、広いことからキャリアの受け渡しに有利である一方、ラジカル状態や励起状態において電荷が局在化しやすく、またπ共役面が広いために互いに相互作用しやすい、すなわち周囲の影響を受けやすい部位である。
 そこで、本発明においては、14個以上のπ電子を有する芳香族複素環に加え、立体的な嵩高さが大きく、かつ電荷として中性な部位を分子内に導入することが特徴である。立体的に嵩高い部位の導入によって、芳香族複素環同士の相互作用、及び周囲の影響を適切な範囲に調整することが可能となる。また、立体的な嵩高い部位は、ニュートラル部位であるため、ニュートラル部位同士、又はニュートラル部位と電荷局在化部位が近づいても相互作用しにくく、影響を受けにくく、電荷移動性の変化に大きな影響を与えない点も設計思想として含んでいる。
 さらには、ニュートラル部位に対して、電荷が局在化しやすい芳香族複素環を分子内の偏在させることにより、化合物の非対称性が向上し、膜中において分子が結晶化しやすい状態になることを抑制していることが特徴の一つである。
 以上の設計思想をもとに化合物を設計することによって、前述のような膜の抵抗値変化の小さい有機化合物層を有する有機エレクトロルミネッセンス素子を提供することが可能になった。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.一対の電極と、前記一対の電極の間に、一又は複数の有機層が具備された有機エレクトロルミネッセンス素子であって、下記一般式(1)で表される構造を有する化合物を前記有機層のいずれか一層以上に含有することを特徴とする有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000006
 (一般式(1)中、Xは、O、S又はNR9を表す。R1~R8は、それぞれ、水素原子、重水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、カルボニル基、アミノ基、シリル基、ホスフィンオキシド基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基、又は下記一般式(2)で表される置換基を表し、R1~R8の少なくとも一つは、π電子が14個以上の芳香族複素環を有し、R1~R8の他の少なくとも一つは、下記一般式(2)を表す。これらの基は、更に置換基を有しても良く、それぞれ同じでも異なっていても良い。R9は、水素原子、重水素原子、アルキル基、アルケニル基、アルキニル基、アリールアルキル基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表す。
Figure JPOXMLDOC01-appb-C000007
 (一般式(2)中、Lは連結基であり、アルキレン基、アルケニレン基、m-フェニレン基又は単環の芳香族複素環基を表し、更に置換基を有しても良い。Zは、C、Si、Ge、P又はP=Oを表す。Rは、それぞれ総炭素数1~20のアルキル基、芳香族炭化水素環基又は芳香族複素環基を表し、更に置換基を有しても良い。nは、2~8の整数を表す。mは、2~3の整数を表す。一般式(2)で表される置換基が複数個置換している場合、複数個存在するL、Z及びRは、同じでも異なっていても良いが、隣接するL同士及び隣接するR同士が連結し環を形成することはない。)
 2.前記一般式(2)において、Lがm-フェニレン基を表すことを特徴とする第1項に記載の有機エレクトロルミネッセンス素子。
 3.前記一般式(2)において、ZがSiを表すことを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子。
 4.前記一般式(1)で表される化合物が、下記一般式(3)で表される化合物であることを特徴とする第1項から第3項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000008
 (一般式(3)中、R、n、m及びXは、それぞれ、一般式(1)又は一般式(2)中のR、n、m及びXと同義である。R10、R11及びR12は、それぞれ、水素原子、重水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、カルボニル基、アミノ基、シリル基、ホスフィンオキシド基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表し、更に置換基を有しても良く、それぞれ同じでも異なっていても良い。)
 5.前記一般式(1)で表される構造を有する化合物が、下記一般式(4)又は一般式(5)で表される構造を有する化合物であることを特徴とする第1項から第4項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000009
 (一般式(4)及び一般式(5)中、R、n、m及びXは、それぞれ、一般式(1)又は一般式(2)中のR、n、m及びXと同義である。R10~R14は、それぞれ、水素原子、重水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、カルボニル基、アミノ基、シリル基、ホスフィンオキシド基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表し、更に置換基を有しても良く、それぞれ同じでも異なっていても良い。R15は、水素原子、重水素原子、アルキル基、アルケニル基、アルキニル基、アリールアルキル基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表す。L1及びL2は、それぞれ、単結合又は2価の連結基を表す。)
 6.前記一般式(1)で表される構造を有する化合物が、下記一般式(6)で表される構造を有する化合物であることを特徴とする第1項から第4項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000010
 (一般式(6)中、R、n、m及びXは、それぞれ、一般式(1)又は一般式(2)中のR、n、m及びXと同義である。R10~R14は、それぞれ、水素原子、重水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、カルボニル基、アミノ基、シリル基、ホスフィンオキシド基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表し、更に置換基を有しても良く、それぞれ同じでも異なっていても良い。)
 7.前記有機層のうちの一層が発光層であり、当該発光層に前記有機エレクトロルミネッセンス用化合物が、ホスト化合物として含有されていることを特徴とする第1項から第6項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
 8.前記発光層にイリジウム又は白金の錯体を含有し、当該錯体が通電によりリン光を発することを特徴とする第1項から第7項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
 9.白色に発光することを特徴とする第1項から第8項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
 10.第1項から第9項までのいずれか一項に記載の有機エレクトロルミネッセンス素子が具備されていることを特徴とする照明装置。
 11.第1項から第9項までのいずれか一項に記載の有機エレクトロルミネッセンス素子が具備されていることを特徴とする表示装置。
 本発明の上記手段により、通電経時での発光層の抵抗値変化が少ない有機EL素子を実現するものであり、その副次的効果として、発光スペクトルの色度(色純度)が良好で、また、経時による発光特性の変化が少ない有機EL素子を提供することである。また、該有機エレクトロルミネッセンス素子を用いた照明装置及び表示装置を提供することができる。
有機EL素子から構成される表示装置の一例を示した模式図 表示部の模式図 画素の回路図 パッシブマトリクス方式フルカラー表示装置の模式図 照明装置の概略図 照明装置の断面図 電子輸送層の膜厚違いのM plotの一例 膜厚と抵抗値の関係を示す一例 有機エレクトロルミネッセンス素子の等価回路モデルの一例 各層の抵抗-電圧の関係を示す解析結果の一例 劣化後の有機EL素子の解析結果を示す一例
 本発明の有機エレクトロルミネッセンス素子は、一対の電極と、前記一対の電極の間に、一又は複数の有機層が具備された有機エレクトロルミネッセンス素子であって、前記一般式(1)で表される構造を有する化合物を前記有機層のいずれか一層以上に含有することを特徴とする。この特徴は、請求項1から請求項11までの請求項に係る発明に共通する技術的特徴である。
 本発明の実施態様としては、本発明の効果発現の観点から、一般式(2)において、Lがm-フェニレン基を表すことが好ましい。また、前記一般式(2)において、ZがSiを表すことが好ましい。また、前記一般式(1)で表される化合物が、前記一般式(3)で表される化合物であることが、好ましい。
 さらに、前記一般式(1)で表される構造を有する化合物が、前記一般式(4)又は一般式(5)で表される構造を有する化合物であることが好ましい。また、前記一般式(1)で表される構造を有する化合物が、前記一般式(6)で表される構造を有する化合物であることが好ましい。
 さらに、前記有機層のうちの一層が発光層であり、当該発光層に前記有機エレクトロルミネッセンス用化合物が、ホスト化合物として含有されていることが好ましい。また、前記発光層にイリジウム又は白金の錯体を含有し、当該錯体が通電によりリン光を発することが好ましい。また、本発明の有機EL素子が白色に発光することが好ましい。
 本発明の有機EL素子は、照明装置及び表示装置に好適に具備され得る。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 〈分子軌道計算〉
 一般式(1)で表わされる構造を有する化合物は、分子軌道法により計算したときに、最高被占分子軌道(HOMO)及び最低空分子軌道(LUMO)の電子密度が低いニュートラル部位を有する化合物である。
 本発明におけるニュートラル部位とは、最高被占分子軌道(HOMO)及び最低空分子軌道(LUMO)の電子密度が低い、電荷的に中性もしくは中性に近い状態にある部位を意味する。より具体的には、化合物構造を分子軌道計算により計算した際に、HOMOの電子雲が分布している部位と、LUMOの電子雲が分布している部位とが存在し、さらにHOMOあるいはLUMOの電子分布が共に10%以下である部位をニュートラル部位という。ここで言う分子軌道計算とはab initio法と呼ばれるハートリーフォック近似の計算から密度汎関数(DFT)法と呼ばれる計算まで含む、分子軌道計算法を意味する。
 本発明に係る分子軌道法について説明する。本発明における分子軌道計算法は、密度汎関数法(DFT法)による計算が好ましく、この場合、例えばB3LYP、B3PW91等のキーワードが用いられる。計算を行う場合の基底関数としては、3-21G*、6-31G、6-31G*、cc-pVDZ、cc-pVTZ、LanL2DZ、LanL2MB等を用いることができる。
 これらの分子軌道計算法に用いられるソフトウェアとして、例えば、Gaussian03、QChem、Spartan等が挙げられる。本発明では、分子軌道計算法として、米国Gaussian社製の非経験的分子軌道計算法のソフトウェアであるGaussian03(Gaussian 03,Revision D.01,M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheeseman,J.A.Montgomery,Jr.,T.Vreven,K.N.Kudin,J.C.Burant,J.M.Millam,S.S.Iyengar,J.Tomasi,V.Barone,B.Mennucci,M.Cossi,G.Scalmani,N.Rega,G.A.Petersson,H.Nakatsuji,M.Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa,M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai,M.Klene,X.Li,J.E.Knox,H.P.Hratchian,J.B.Cross,V.Bakken,C.Adamo,J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski,P.Y.Ayala,K.Morokuma,G.A.Voth,P.Salvador,J.J.Dannenberg,V.G.Zakrzewski,S.Dapprich,A.D.Daniels,M.C.Strain,O.Farkas,D.K.Malick,A.D.Rabuck,K.Raghavachari,J.B.Foresman,J.V.Ortiz,Q.Cui,A.G.Baboul,S.Clifford,J.Cioslowski,B.B.Stefanov,G.Liu,A.Liashenko,P.Piskorz,I.Komaromi,R.L.Martin,D.J.Fox,T.Keith,M.A.Al-Laham,C.Y.Peng,A.Nanayakkara,M.Challacombe,P.M.W.Gill,B.Johnson,W.Chen,M.W.Wong,C.Gonzalez,and J.A.Pople,Gaussian,Inc.,Wallingford CT,2004)を用いて計算している。
 〈分子軌道計算の具体例〉
 ニュートラル部位について、本願で表される具体的な化合物、SH-1を用いて詳細に説明する。SH-1の構造は下記である。
Figure JPOXMLDOC01-appb-C000011
 まず分子軌道法により安定構造及び安定構造における分子軌道を求めた。具体的にはSH-1を分子モデリングツールを用いてモデル化した後、汎関数としてB3LYP、基底関数として6-31G*、スピン多重度を1、電荷はゼロとし、キーワードにopt及びpop=regを指定し、Gaussian03によって構造最適化及び分子軌道計算を実施した。計算終了後のログファイルにはHOMO及びLUMOに相当する軌道を含む複数の分子軌道の電子密度分布が各原子毎にそれぞれの波動関数における軌道エネルギーが記載されている。
 次にHOMOの電子密度分布及びLUMOの電子密度分布の計算を実施した。なお、本願におけるニュートラル部位は実質的にHOMOの電子密度分布及びLUMOの電子密度分布が少ない、電荷的に中性もしくは中性に近い状態にある部位と定義している。
 SH-1におけるカルバゾール環のLUMOの電子密度分布の算出を例にとって詳細に説明する。上記計算終了後のログファイルのLUMO軌道(SH-1の場合は196番)に相当する分子軌道から、まず窒素原子が有する複数の波動関数の軌道エネルギーをそれぞれ2乗した値を合算し、該窒素原子におけるLUMO存在比率とする。さらにカルバゾール環を形成する窒素原子以外の炭素原子及び水素原子のそれぞれにおいても、上記窒素原子と同様の計算を各原子毎に実施し、カルバゾール環を形成する全原子のLUMOの電子密度分布を合算した値をカルバゾール環のLUMOの電子密度分布と本願では定義する。同様にしてカルバゾール環以外の部位のLUMOの電子密度分布を算出し、さらにHOMOのデータから、上記と同様にしてHOMOの電子密度分布を算出することができる。参考までに、前記SH-1のカルバゾール環のLUMOの電子密度分布は2.4%、HOMOの電子密度分布は85.1%であった。他部位についても同様の計算をそれぞれ実施したところ、SH-1において、HOMOの電子雲及びLUMOの電子雲が実質存在しない部位、つまりニュートラル部位は、ケイ素原子及びケイ素原子と結合した4つのベンゼン環であることがわかった。
 ニュートラル部位の電子密度分布については、HOMO及びLUMOの両方において電子密度分布が10%以下であり、5%以下であることがより好ましい、3%以下であることが更に好ましい。
 なお、電子密度分布の高いHOMO部位及びLUMO部位については、ニュートラル部位と同様に電子密度分布を用いて定義することができる。このとき、HOMO電子密度分布がLUMO電子密度分布よりも大きい部位をHOMO部位とすることもできるし、HOMO電子密度分布がある一定値以上の部位をHOMO部位とすることもできる。同様にLUMO電子密度分布がHOMO電子密度分布よりも大きい部位をLUMO部位とすることもできるし、LUMO電子密度分布がある一定値以上の部位をLUMO部位とすることもできる。ある一定値以上電子雲が存在する部位をHOMO部位あるいはLUMO部位と特定する場合、存在比率としては50%以上であることが好ましく、65%以上であることが好ましく、80%以上であることがより好ましい。
 一般式(1)で表わされる構造を有する化合物は、該ニュートラル部位には原子半径が75pm以上で3価以上の価数を有する原子を含有する。原子半径が75pm以上で3価以上の価数を有する原子とは、例えば、炭素原子、窒素原子、ホウ素原子、ケイ素原子、リン原子、ゲルマニウム原子などが挙げられるが、好ましくは、炭素原子、ケイ素原子である。
 〈14π以上の芳香族複素環〉
 また本発明に係る化合物は、14π以上の芳香族複素環を二つ以上含有することが特徴であり、14π以上の芳香族複素環とは、例えば、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、キサンテン環、アクリジン環、フェナントリジン環、ぺリミジン環、1,10-フェナントロリン環、フェナジン環、フェナルサジン環、テトラチアフルバレン環、チアントレン環、フェノキサチイン環、フェノキサジン環、フェノチアジン環、ベンゾフラインドール環、インドロインドール環、インドロカルバゾール環などが挙げられる。好ましくは、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、インドロインドール環、インドロカルバゾール環が挙げられ、さらに好ましくはジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環である。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 《一般式(1)で表される化合物》
 本発明の有機エレクトロルミネッセンス素子は、一対の電極と、前記一対の電極の間に、一又は複数の有機層が具備された有機エレクトロルミネッセンス素子であって、下記一般式(1)で表される構造を有する化合物を前記有機層のいずれか一層以上に含有する。
 好ましくは、有機層のうち発光層に、下記一般式(1)で表される化合物が有機EL素子材料として含有されて構成されているものである。本発明において、有機層とは、有機物を含有する層をいう。
 本発明の有機EL素子に、有機EL素子材料として含有される化合物について説明する。本発明に係る化合物は下記一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000012
 一般式(1)において、Xは、O、S、NR9を表し、好ましくは、O、Sである。R9は、水素原子、重水素原子、アルキル基、アルケニル基、アルキニル基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表し、好ましくは、アルキル基、芳香族炭化水素環基であり、更に好ましくは、芳香族炭化水素環基であり、さらに好ましくはベンゼン環である。
 アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t‐ブチル基、1-エチル-プロピル基、2-メチルヘキシル基、ペンチル基、アダマンチル基、n-デシル基、n-ドデシル基等が挙げられ、好ましくは、メチル基、エチル基、n-プロピル基、イソプロピル基である。
 芳香族炭化水素環基としては、例えば、ベンゼン環、ビフェニル環、ビフェニレン環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられるが、好ましくは、ベンゼン環である。
 一般式(1)において、R1~R8は、水素原子、重水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、カルボニル基、アミノ基、シリル基、ホスフィンオキシド基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基、又は、下記一般式(2)で表され、少なくとも一つは、π電子が14個以上の芳香族複素環を有する基である。
Figure JPOXMLDOC01-appb-C000013
 一般式(1)におけるR1~R8として好ましくは、水素原子、アルキル基、芳香族炭化水素環基、芳香族複素環基であり、より好ましくは、水素原子、芳香族炭化水素環基、芳香族複素環基である。
 芳香族炭化水素環基としては、例えば、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられるが、好ましくは、ベンゼン環である。
 芳香族複素環基としては、例えば、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンズイミダゾール環、ベンズチアゾール環、ベンズオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、チエノチオフェン環、カルバゾール環、アザカルバゾール環(カルバゾール環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを表す)、ジベンゾフラン環、ジベンゾチオフェン環、ベンゾチオフェン環やジベンゾフラン環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わった環、ベンゾジフラン環、ベンゾジチオフェン環、アクリジン環、ベンゾキノリン環、フェナジン環、フェナントリジン環、フェナントロリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ナフトフラン環、ナフトチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、ジベンゾカルバゾール環、インドロカルバゾール環、ジチエノベンゼン環、インドロインドール環、ベンゾフロインドール環等が挙げられるが、好ましくは、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、インドロインドール環、ベンゾフロインドール環であり、より好ましくは、カルバゾール環である。
 一般式(2)において、Lは連結基であり、アルキレン基、アルケニレン基、m-フェニレン基、単環の芳香族複素環基を表し、更に置換基を有しても良いが、好ましくは、m-フェニレン基である。
 一般式(2)において、Lで表されるアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基、オクチレン基、ドデカニレン基、1,2-シクロペンチレン基、1,3-シクロペンチレン基、シクロペンチリデン基、1,2-シクロヘキシレン基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基、シクロヘキシリデン基等の2価のシクロアルキレン基(シクロアルキリデン基を含む)等が挙げられるが、好ましくは、メチレン基である。
 アルケニレン基としては、例えば、エチニレン基、プロペニレン基、ブテニレン基等が挙げられるが好ましくは、エチニレン基である。
 単環の芳香族複素環基としては、例えば、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、等が挙げられるが、好ましくは、フラン環、チオフェン環、ピリジン環、ピリミジン環、ピラジン環、トリアジン環であり、更に好ましくは、チオフェン環、ピリジン環、ピリミジン環、ピラジン環である。
 一般式(2)において、Zは、C、Si、Ge、P、P=Oを表し、好ましくは、C、Siであり、更に好ましくは、Siである。ZがC、Si、Ge、P、P=Oであることで、Z上の置換基を2~3個有することが可能となり、立体的に嵩高い置換基を持つために、分子が結晶化しやすい状態になることを抑制し、経時における安定性が向上すると推定される。
 一般式(2)において、Rは、それぞれ総炭素数1~20のアルキル基、芳香族炭化水素環基、芳香族複素環基を表し、更に置換基を有しても良い。ここで言う、総炭素数とは、置換を含めた総炭素数を表し、総炭素数が1~20となることで、薄膜のモルフォロジーと昇華性の両立が可能となり、蒸着による生産適性を保ちつつ、モルフォロジーを良化させることで長寿命化が達成される。
 一般式(2)において、Rで表されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t‐ブチル基、1-エチル-プロピル基、2-メチルヘキシル基、ペンチル基、アダマンチル基、n-デシル基、n-ドデシル基等が挙げられる。好ましくは、メチル基、エチル基、n-プロピル基、イソプロピル基である。
 芳香族炭化水素環基としては、例えば、ベンゼン環、ビフェニル環、ビフェニレン環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられるが、好ましくは、ベンゼン環である。
 芳香族複素環基としては、例えば、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンズイミダゾール環、ベンズチアゾール環、ベンズオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、チエノチオフェン環、カルバゾール環、アザカルバゾール環(カルバゾール環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを表す)、ジベンゾフラン環、ジベンゾチオフェン環、ベンゾチオフェン環やジベンゾフラン環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わった環、ベンゾジフラン環、ベンゾジチオフェン環、アクリジン環、ベンゾキノリン環、フェナジン環、フェナントリジン環、フェナントロリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ナフトフラン環、ナフトチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、ジベンゾカルバゾール環、インドロカルバゾール環、ジチエノベンゼン環等が挙げられるが、好ましくは、チオフェン環、ピリジン環である。
 一般式(2)において、nは2~8の整数を表し、好ましくは2~4の整数である。mは2~3の整数を表し、好ましくは3である。一般式(2)で表される置換基が複数個置換している場合、複数個存在するL、Z、及び、Rは同じでも異なっていても良いが、隣接するL同士、及び、隣接するR同士が連結し環を形成することはない。
 このように一般式(2)を適切に設計することによって、化合物同士の相互作用、及び周囲の影響を適切な範囲に調整することが可能となり、電荷移動性の変化に大きな影響を与えず、膜の抵抗値変化の小さい有機化合物層を有する有機エレクトロルミネッセンス素子を提供することが可能になる。
 《一般式(3)で表される化合物》
Figure JPOXMLDOC01-appb-C000014
 一般式(3)において、Xは一般式(1)中のXと同義であり、R、n、mは、一般式(2)中のR、n、mと同義である。
 一般式(3)において、R10~R12は、水素原子、重水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、カルボニル基、アミノ基、シリル基、ホスフィンオキシド基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表し、好ましくは、水素原子、アルキル基、芳香族炭化水素環基、芳香族複素環基であり、より好ましくは、水素原子、芳香族炭化水素環基、芳香族複素環基である。
 R10あるいはR11の少なくとも一つは、π電子が14個以上の芳香族複素環を有する置換基であり、より好ましくはR10の少なくとも一つは、π電子が14個以上の芳香族複素環を有する基であることである。
 芳香族炭化水素環基としては、例えば、ベンゼン環、ビフェニル環、ビフェニレン環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられるが、好ましくは、ベンゼン環である。
芳香族複素環基としては、例えば、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンズイミダゾール環、ベンズチアゾール環、ベンズオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、チエノチオフェン環、カルバゾール環、アザカルバゾール環(カルバゾール環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを表す)、ジベンゾフラン環、ジベンゾチオフェン環、ベンゾチオフェン環やジベンゾフラン環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わった環、ベンゾジフラン環、ベンゾジチオフェン環、アクリジン環、ベンゾキノリン環、フェナジン環、フェナントリジン環、フェナントロリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ナフトフラン環、ナフトチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、ジベンゾカルバゾール環、インドロカルバゾール環、ジチエノベンゼン環等が挙げられるが、好ましくは、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環であり、より好ましくは、カルバゾール環である。
 一般式(3)において、R10~R12は更に置換基を有しても良く、それぞれ同じでも異なっていても良い。
 《一般式(4)(5)で表される化合物》
Figure JPOXMLDOC01-appb-C000015
 一般式(4)及び一般式(5)において、X、R、n、mは、一般式(3)中のR、X、n、mと同義である。
 一般式(4)(5)において、R10~R14は、水素原子、重水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、カルボニル基、アミノ基、シリル基、ホスフィンオキシド基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表し、好ましくは、水素原子、アルキル基、芳香族炭化水素環基、芳香族複素環基であり、より好ましくは、水素原子、芳香族炭化水素環基、芳香族複素環基である。
 芳香族炭化水素環基としては、前記一般式(3)におけるR10~R12として挙げたものが挙げられ、好ましくは、ベンゼン環である。
 芳香族複素環基としては、前記一般式(3)におけるR10~R12として挙げたものが挙げられ、好ましくは、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環であり、より好ましくは、カルバゾール環である。
 一般式(4)及び(5)において、R10~R14は、更に置換基を有しても良く、それぞれ同じでも異なっていても良い。
 一般式(5)において、R15は、水素原子、重水素原子、アルキル基、アルケニル基、アルキニル基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表し、好ましくは、アルキル基、芳香族炭化水素環基であり、更に好ましくは、芳香族炭化水素環基であり、より好ましくはベンゼン環である。
 アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t‐ブチル基、1-エチル-プロピル基、2-メチルヘキシル基、ペンチル基、アダマンチル基、n-デシル基、n-ドデシル基等が挙げられ、好ましくは、メチル基、エチル基、n-プロピル基、イソプロピル基である。
 芳香族炭化水素環基としては、例えば、ベンゼン環、ビフェニル環、ビフェニレン環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられるが、好ましくは、ベンゼン環である。
 一般式(4)(5)において、L1、L2は、単結合、もしくは、2価の連結基を表す。
 2価の連結基としては、アルキレン基、アルケニレン基、エーテル基、エステル基、カルボニル基、アミノ基、アミド基、シリル基、ホスフィンオキシド基、ベンゼン環基、カルバゾール環基、ジベンゾフラン環基、ジベンゾチオフェン環基、ピリジン環基、ピラジン環基、インドロインドール環基、インドール環基、ベンゾフラン環基、ベンゾチオフェン環基、イミダゾール環基等が挙げられる。好ましくは、単結合、ベンゼン環基、カルバゾール環基、ジベンゾフラン環基、ジベンゾチオフェン環基であり、より好ましくは単結合である。
 以下に2価の連結基の例を示す。これらに例示された2価の連結基はさらに置換基によって置換基されていてもよい。本発明はこれらの例に限定されるものではない。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 《一般式(6)で表される化合物》
Figure JPOXMLDOC01-appb-C000020
 一般式(6)において、R、n、m及びXは、それぞれ、一般式(1)又は一般式(2)中のR、n、m及びXと同義である。
 一般式(6)において、R10~R14は、それぞれ、一般式(4)中のR10~R14と同義である。
 以下に、一般式(1)~(6)で表される化合物の具体例を挙げるが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
 ≪合成例≫
 以下に、一般式(1)、(2)及び(4)で表される化合物の合成例を説明するが、本発明はこれに限定されるものではない。上記した具体例のうちSH-1の合成方法を例にとって以下に説明する。
 SH-1は以下のスキームに従って合成できる。
Figure JPOXMLDOC01-appb-C000036
 200ml四つ口フラスコに、2-ブロモ-8-ヨードジベンゾフラン11.0g、カルバゾール4.9g、銅粉5.6g、炭酸カリウム6.1g、ジメチルアセトアミド100mlを入れ、窒素吹き込み管、温度計、コンデンサーを付けて油浴スターラー上にセットした。窒素気流下、内温130℃付近で36時間加熱還流して反応終了とした。
 反応終了後室温まで冷却した後、テトラヒドロフランを加え、ショートカラムにて不溶物と原点成分を除去した後、ジメチルアセトアミドが50ml程度になるまで減圧下濃縮を行った。残渣に、エタノールを加え析出した結晶を濾取し、得られた個体をトルエンにて再結晶を行うことによって、中間体Aを5.6g(45.6%)得た。
 100ml四つ口フラスコに、中間体A5.6g、ビスピナコラートジボロン4.6g、PdCl2(dppf)0.53g、酢酸カリウム3.9g、ジメチルアセトアミド50mlを入れ、窒素吹き込み管、温度計、コンデンサーを付けて油浴スターラー上にセットした。窒素気流下、内温90℃付近で48時間加熱還流して反応終了とした。
 反応終了後、トルエン中に注入し不溶物を濾過した後、市水、brineにて洗浄を行い、硫酸マグネシウムにて乾燥を行った。その溶液をショートカラムにて精製した後、ヘプタンにて再結晶を行うことによって中間体Bを4.9g(78.8%)得た。
 200ml四つ口フラスコに、中間体B4.9g、1,3-ヨードブロモベンゼン6.0g、テトラキストリフェニルホスフィンパラジウム0.25g、ジメトキシエタン100ml、2M炭酸ナトリウム水溶液15mlを入れ、窒素吹き込み管、温度計、コンデンサーを付けて油浴スターラー上にセットした。窒素気流下、内温75℃付近で14時間加熱還流して反応終了とした。
 反応終了後、トルエンで抽出し、減圧下濃縮を行った。残渣をシリカゲルカラムクロマトグラフィーにて精製を行うことによって中間体Cを3.3g(64.2%)得た。
 100ml四つ口フラスコに、中間体C3.3g、(3-(トリフェニルシリル)フェニル)ボロン酸3.1g、テトラキストリフェニルホスフィンパラジウム0.16g、ジオキサン50ml、2M炭酸ナトリウム水溶液9mlを入れ、窒素吹き込み管、温度計、コンデンサーを付けて油浴スターラー上にセットした。窒素気流下、内温80℃付近で15時間加熱還流して反応終了とした。
 反応終了後、室温まで放冷した後、市水200ml中に投入し、析出した結晶を濾過し、得られた結晶をシリカゲルカラムクロマトグラフィーにて精製した後、ヘプタンにて再結晶を行うことによってSH-1を3.7g(73.2%)。化合物SH-1の構造はマススペクトル及び1H-NMRで確認した。
 MASS spectrum(ESI):m/z=744[M+]
1H-NMR(THF-d8、400MHz): δ8.14(1H、d)、8.01(1H、d)、δ7.78(1H、d)、δ7.25-7.74(34H、m)
 本発明に係る一般式(1)で表される化合物、及び一般式(2)、(4)で表される化合物は、正孔阻止材料、電子阻止材料、ホストとして用いられることが好ましく、より好ましくはホストとして用いられることである。
 またホストとして後述する公知のホストを併用することができる。
 《有機EL素子の構成層》
 本発明の有機EL素子の構成層について説明する。本発明の有機EL素子における代表的な素子構成としては以下の構成を上げることができるが、これらに限定されるものではない。
(i)陽極/発光層/陰極
(ii)陽極/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/陰極
(iv)陽極/正孔輸送層/発光層/電子輸送層/陰極
(v)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(vi)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(vii)陽極/正孔注入層/正孔輸送層/(電子阻止層/)発光層/(正孔素子層/)電子輸送層/電子注入層/陰極
 上記の中で(vii)の構成が好ましく用いられるが、これに限定されるものではない。
 必要に応じて、発光層と陰極との間に正孔阻止層(正孔障壁層ともいう)や電子注入層(陰極バッファー層ともいう)を設けてもよく、また、発光層と陽極との間に電子阻止層(電子障壁層ともいう)や正孔注入層(陽極バッファー層ともいう)を設けてもよい。
 本発明に係る電子輸送層とは、電子を輸送する機能を有する層であり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。また、複数層で構成されていてもよい。
 本発明に係る正孔輸送層とは、正孔を輸送する機能を有する層であり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。また、複数層で構成されていてもよい。
 上記の代表的な素子構成において、陽極と陰極を除いた層を「有機層」ともいう。
 (タンデム構造)
 また、本発明に係る有機EL素子は、少なくとも1層の発光層を含む発光ユニットを複数積層した、いわゆるタンデム構造の素子であってもよい。タンデム構造の代表的な素子構成としては、例えば以下の構成を挙げることができる。
 陽極/第1発光ユニット/中間層/第2発光ユニット/中間層/第3発光ユニット/陰極
 ここで、上記第1発光ユニット、第2発光ユニット及び第3発光ユニットは全て同じであっても、異なっていてもよい。また二つの発光ユニットが同じであり、残る一つが異なっていてもよい。
 複数の発光ユニットは直接積層されていても、中間層を介して積層されていてもよく、中間層は、一般的に中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、陽極側の隣接層に電子を、陰極側の隣接層に正孔を供給する機能を持った層であれば、公知の材料構成を用いることができる。
 中間層に用いられる材料としては、例えば、ITO(インジウム・錫酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO2、TiN、ZrN、HfN、TiOx、VOx、CuI、InN、GaN、CuAlO2、CuGaO2、SrCu22、LaB6、RuO2、Al等の導電性無機化合物層や、Au/Bi23等の2層膜や、SnO2/Ag/SnO2、ZnO/Ag/ZnO、Bi23/Au/Bi23、TiO2/TiN/TiO2、TiO2/ZrN/TiO2等の多層膜、またC60等のフラーレン類、オリゴチオフェン等の導電性有機物層、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物層等が挙げられるが、本発明はこれらに限定されない。
 発光ユニット内の好ましい構成としては、例えば上記の代表的な素子構成で挙げた(1)~(7)の構成から、陽極と陰極を除いたもの等が挙げられるが、本発明はこれらに限定されない。
 タンデム型有機EL素子の具体例としては、例えば、米国特許第6,337,492号、米国特許第7,420,203号、米国特許第7,473,923号、米国特許第6,872,472号、米国特許第6,107,734号、米国特許第6,337,492号、国際公開第2005/009087号、特開2006-228712号、特開2006-24791号、特開2006-49393号、特開2006-49394号、特開2006-49396号、特開2011-96679号、特開2005-340187号、特許第4711424号、特許第3496681号、特許第3884564号、特許第4213169号、特開2010-192719号、特開2009-076929号、特開2008-078414号、特開2007-059848号、特開2003-272860号、特開2003-045676号、国際公開第2005/094130号等に記載の素子構成や構成材料等が挙げられるが、本発明はこれらに限定されない。
 以下、本発明の有機EL素子を構成する各層について説明する。
 《発光層》
 本発明に係る発光層は、電極又は隣接層から注入されてくる電子及び正孔が再結合し、励起子を経由して発光する場を提供する層であり、発光する部分は発光層の層内であっても、発光層と隣接層との界面であってもよい。本発明に係る発光層は、本発明で規定する要件を満たしていれば、その構成に特に制限はない。
 発光層の膜厚の総和は、特に制限はないが、形成する膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、且つ、駆動電流に対する発光色の安定性向上の観点から、2nm~5μmの範囲に調整することが好ましく、より好ましくは2nm~500nmの範囲に調整され、更に好ましくは5nm~200nmの範囲に調整される。
 また、本発明の個々の発光層の膜厚としては、2nm~1μmの範囲に調整することが好ましく、より好ましくは2nm~200nmnmの範囲に調整され、更に好ましくは3nm~150nmの範囲に調整される。
 本発明の発光層には、発光ドーパント(発光性ドーパント化合物、ドーパント化合物、単にドーパントともいう)と、ホスト化合物(マトリックス材料、発光ホスト化合物、単にホストともいう)とを含有することが好ましい。
 《発光ドーパント》
 本発明に係る発光ドーパントについて説明する。
 発光ドーパントとしては、蛍光発光性ドーパント(蛍光ドーパント、蛍光性化合物ともいう)と、リン光発光性ドーパント(リン光ドーパント、リン光性化合物ともいう)が好ましく用いられる。本発明においては、少なくとも1層の発光層がリン光発光ドーパントを含有することが好ましい。
 発光層中の発光ドーパントの濃度については、使用される特定のドーパント及びデバイスの必要条件に基づいて、任意に決定することができ、発光層の膜厚方向に対し、均一な濃度で含有されていてもよく、また任意の濃度分布を有していてもよい。
 また、本発明に係る発光ドーパントは、複数種を併用して用いてもよく、構造の異なるドーパント同士の組み合わせや、蛍光発光性ドーパントとリン光発光性ドーパントとを組み合わせて用いてもよい。これにより、任意の発光色を得ることができる。
 本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-1000(コニカミノルタセンシング(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
 本発明においては、1層又は複数層の発光層が、発光色の異なる複数の発光ドーパントを含有し、白色発光を示すことも好ましい。
 白色を示す発光ドーパントの組み合わせについては特に限定はないが、例えば青と橙や、青と緑と赤の組み合わせ等が挙げられる。
 本発明の有機EL素子における白色とは、2度視野角正面輝度を前述の方法により測定した際に、1000cd/m2でのCIE1931表色系における色度がx=0.39±0.09、y=0.38±0.08の領域内にあることが好ましい。
 (1.1)蛍光発光性ドーパント
 本発明に係る蛍光発光性ドーパント(以下、「蛍光ドーパント」ともいう)について説明する。
 本発明に係る蛍光ドーパントは、励起一重項からの発光が可能な化合物であり、励起一重項からの発光が観測される限り特に限定されない。
 本発明に係る蛍光ドーパントとしては、例えば、アントラセン誘導体、ピレン誘導体、クリセン誘導体、フルオランテン誘導体、ペリレン誘導体、フルオレン誘導体、アリールアセチレン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、アリールアミン誘導体、ホウ素錯体、クマリン誘導体、ピラン誘導体、シアニン誘導体、クロコニウム誘導体、スクアリウム誘導体、オキソベンツアントラセン誘導体、フルオレセイン誘導体、ローダミン誘導体、ピリリウム誘導体、ペリレン誘導体、ポリチオフェン誘導体、又は希土類錯体系化合物等が挙げられる。
 また、近年では遅延蛍光を利用した発光ドーパントも開発されており、これらを用いてもよい。
 遅延蛍光を利用した発光ドーパントの具体例としては、例えば、国際公開第2011/156793号、特開2011-213643号、特開2010-93181号等に記載の化合物が挙げられるが、本発明はこれらに限定されない。
 (1.2)リン光発光性ドーパント
 本発明に係るリン光発光性ドーパント(以下、「リン光ドーパント」ともいう)について説明する。
 本発明に係るリン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
 リン光ドーパントの発光は原理としては二種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得るというエネルギー移動型である。もう一つはリン光ドーパントがキャリアトラップとなり、リン光ドーパント上でキャリアの再結合が起こりリン光ドーパントからの発光が得られるというキャリアトラップ型である。いずれの場合においても、リン光ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。
 リン光ドーパントは、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。
 本発明に使用できる公知のリン光ドーパントの具体例としては、以下の文献に記載されている化合物等が挙げられる。
 Nature 395,151 (1998)、Appl.Phys.Lett.78,1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009100991号、国際公開第2008101842号、国際公開第2003040257号、米国特許公開第2006835469号、米国特許公開第20060202194号、米国特許公開第20070087321号、米国特許公開第20050244673号、Inorg.Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009050290号、国際公開第2002015645号、国際公開第2009000673号、米国特許公開第20020034656号、米国特許第7332232号、米国特許公開第20090108737号、米国特許公開第20090039776号、米国特許第6921915号、米国特許第6687266号、米国特許公開第20070190359号、米国特許公開第20060008670号、米国特許公開第20090165846号、米国特許公開第20080015355号、米国特許第7250226号、米国特許第7396598号、米国特許公開第20060263635号、米国特許公開第20030138657号、米国特許公開第20030152802号、米国特許第7090928号、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics 23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2002002714号、国際公開第2006009024号、国際公開第2006056418号、国際公開第2005019373号、国際公開第2005123873号、国際公開第2005123873号、国際公開第2007004380号、国際公開第2006082742号、米国特許公開第20060251923号、米国特許公開第20050260441号、米国特許第7393599号、米国特許第7534505号、米国特許第7445855号、米国特許公開第20070190359号、米国特許公開第20080297033号、米国特許第7338722号、米国特許公開第20020134984号、米国特許第7279704号、米国特許公開第2006098120号、米国特許公開第2006103874号、国際公開第2005076380号、国際公開第2010032663号、国際公開第第2008140115号、国際公開第2007052431号、国際公開第2011134013号、国際公開第2011157339号、国際公開第2010086089号、国際公開第2009113646号、国際公開第2012020327号、国際公開第2011051404号、国際公開第2011004639号、国際公開第2011073149号、特開2012-069737号公報、特願2011-181303号公報、特開2009-114086号公報、特開2003-81988号公報、特開2002-302671号、特開2002-363552号公報等である。
 中でも、好ましいリン光ドーパントとしてはIrを中心金属に有する有機金属錯体が挙げられる。さらに好ましくは、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも一つの配位様式を含む錯体が好ましい。
 ここで、本発明に使用できる公知のリン光ドーパントの具体例を挙げるが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
 (2)ホスト化合物
 本発明に係るホスト化合物は、発光層において主に電荷の注入及び輸送を担う化合物であり、有機EL素子においてそれ自体の発光は実質的に観測されない。
 好ましくは室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物であり、さらに好ましくはリン光量子収率が0.01未満の化合物である。また、発光層に含有される化合物の内で、その層中での質量比が20%以上であることが好ましい。
 また、ホスト化合物の励起状態エネルギーは、同一層内に含有される発光ドーパントの励起状態エネルギーよりも高いことが好ましい。
 ホスト化合物は、単独で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。
 本発明で用いることができるホスト化合物としては、特に制限はなく、従来有機EL素子で用いられる化合物を用いることができる。低分子化合物でも繰り返し単位を有する高分子化合物でもよく、また、ビニル基やエポキシ基のような反応性基を有する化合物でもよい。
 公知のホスト化合物としては、正孔輸送能又は電子輸送能を有しつつ、且つ、発光の長波長化を防ぎ、さらに、有機EL素子を高温駆動時や素子駆動中の発熱に対して安定して動作させる観点から、高いガラス転移温度(Tg)を有することが好まし。好ましくはTgが90℃以上であり、より好ましくは120℃以上である。
 ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS-K-7121に準拠した方法により求められる値である。
 本発明の有機EL素子に用いられる、公知のホスト化合物の具体例としては、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
 特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報、米国特許公開第20030175553号、米国特許公開第20060280965号、米国特許公開第20050112407号、米国特許公開第20090017330号、米国特許公開第20090030202号、米国特許公開第20050238919号、国際公開第2001039234号、国際公開第2009021126号、国際公開第2008056746号、国際公開第2004093207号、国際公開第2005089025号、国際公開第2007063796号、国際公開第2007063754号、国際公開第2004107822号、国際公開第2005030900号、国際公開第2006114966号、国際公開第2009086028号、国際公開第2009003898号、国際公開第2012023947号、特開2008-074939号、特開2007-254297号、EP2034538等である。
 《電子輸送層》
 本発明において電子輸送層とは、電子を輸送する機能を有する材料からなり、陰極より注入された電子を発光層に伝達する機能を有していればよい。
 本発明に係る電子輸送層の総膜厚については特に制限はないが、通常は2nm~5μmの範囲であり、より好ましくは2~500nmであり、さらに好ましくは5~200nmである。
 また、有機EL素子においては発光層で生じた光を電極から取り出す際、発光層から直接取り出される光と、光を取り出す電極と対極に位置する電極によって反射されてから取り出される光とが干渉を起こすことが知られている。光が陰極で反射される場合は、電子輸送層の総膜厚を数nm~数μmの間で適宜調整することにより、この干渉効果を効率的に利用することが可能である。
 一方で、電子輸送層の膜厚を厚くすると電圧が上昇しやすくなるため、特に膜厚が厚い場合においては、電子輸送層の電子移動度は10-5cm2/Vs以上であることが好ましい。
 電子輸送層に用いられる材料(以下、電子輸送材料という)としては、電子の注入性又は輸送性、正孔の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
 例えば、含窒素芳香族複素環誘導体(カルバゾール誘導体、アザカルバゾール誘導体(カルバゾール環を構成する炭素原子の一つ以上が窒素原子に置換されたもの)、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピリダジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、アザトリフェニレン誘導体、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体等)、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、シロール誘導体、芳香族炭化水素環誘導体(ナフタレン誘導体、アントラセン誘導体、トリフェニレン等)等が挙げられる。
 また、配位子にキノリノール骨格やジベンゾキノリノール骨格を有する金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
 その他、メタルフリーもしくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
 また、これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 本発明に係る電子輸送層においては、電子輸送層にドープ材をゲスト材料としてドープして、n性の高い(電子リッチ)電子輸送層を形成してもよい。ドープ材としては、金属錯体やハロゲン化金属など金属化合物等のn型ドーパントが挙げられる。このような構成の電子輸送層の具体例としては、例えば、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等の文献に記載されたものが挙げられる。
 本発明の有機EL素子に用いられる、公知の好ましい電子輸送材料の具体例としては、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
 米国特許第6528187号、米国特許第7230107号、米国特許公開第20050025993号、米国特許公開第20040036077号、米国特許公開第20090115316号、米国特許公開第20090101870号、米国特許公開第20090179554号、国際公開第2003060956号、国際公開第2008132085号、Appl.Phys.Lett.75,4(1999)、Appl.Phys.Lett.79,449(2001)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.79,156(2001)、米国特許第7964293号、米国特許公開第2009030202号、国際公開第2004080975号、国際公開第2004063159号、国際公開第2005085387号、国際公開第2006067931号、国際公開第2007086552号、国際公開第2008114690号、国際公開第2009069442号、国際公開第2009066779号、国際公開第2009054253号、国際公開第2011086935号、国際公開第2010150593号、国際公開第2010047707号、EP2311826号、特開2010-251675号、特開2009-209133号、特開2009-124114号、特開2008-277810号、特開2006-156445号、特開2005-340122号、特開2003-45662号、特開2003-31367号、特開2003-282270号、国際公開第2012115034号、等である。
 本発明におけるよりより好ましい電子輸送材料としては、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、トリアジン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、カルバゾール誘導体、アザカルバゾール誘導体、ベンズイミダゾール誘導体が挙げられる。
 電子輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。
 《正孔阻止層》
 正孔阻止層とは広い意味では電子輸送層の機能を有する層であり、好ましくは電子を輸送する機能を有しつつ正孔を輸送する能力が小さい材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
 また、前述する電子輸送層の構成を必要に応じて、本発明に係る正孔阻止層として用いることができる。
 本発明の有機EL素子に設ける正孔阻止層は、発光層の陰極側に隣接して設けられることが好ましい。
 本発明に係る正孔阻止層の膜厚としては、好ましくは3~100nmの範囲であり、更に好ましくは5~30nmの範囲である。
 正孔阻止層に用いられる材料としては、前述の電子輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物として用いられる材料も正孔阻止層に好ましく用いられる。
 《電子注入層》
 本発明に係る電子注入層(「陰極バッファー層」ともいう)とは、駆動電圧低下や発光輝度向上のために陰極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。
 本発明において電子注入層は必要に応じて設け、上記の如く陰極と発光層との間、又は陰極と電子輸送層との間に存在させてもよい。
 電子注入層はごく薄い膜であることが好ましく、素材にもよるがその膜厚は0.1nm~5nmの範囲が好ましい。また構成材料が断続的に存在する不均一な膜であってもよい。
 電子注入層は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ土類金属化合物、酸化アルミニウムに代表される金属酸化物、リチウム8-ヒドロキシキノレート(Liq)等に代表される金属錯体等が挙げられる。また、前述の電子輸送材料を用いることも可能である。
 また、上記の電子注入層に用いられる材料は単独で用いてもよく、複数種を併用して用いてもよい。
 《正孔輸送層》
 本発明において正孔輸送層とは、正孔を輸送する機能を有する材料からなり、陽極より注入された正孔を発光層に伝達する機能を有していればよい。
 本発明の正孔輸送層の総膜厚については特に制限はないが、通常は5nm~5μmの範囲であり、より好ましくは2~500nmであり、さらに好ましくは5~200nmの範囲内である。
 正孔輸送層に用いられる材料(以下、正孔輸送材料という)としては、正孔の注入性又は輸送性、電子の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
 例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、及びポリビニルカルバゾール、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えばPEDOT:PSS、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。
 トリアリールアミン誘導体としては、α-NPD(4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル)に代表されるベンジジン型や、MTDATA(4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン)に代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。
 また、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。
 さらに不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料やp型-Si、p型-SiC等の無機化合物を用いることもできる。さらにIr(ppy)3に代表されるような中心金属にIrやPtを有するオルトメタル化有機金属錯体も好ましく用いられる。
 正孔輸送材料としては、上記のものを使用することができるが、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、アザトリフェニレン誘導体、有機金属錯体、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー等が好ましく用いられる。
 本発明の有機EL素子に用いられる、公知の好ましい正孔輸送材料の具体例としては、上記で挙げた文献の他、以下の文献に記載の化合物等が挙げられるが、本発明はこれらに限定されない。
 例えば、Appl.Phys.Lett.69,2160(1996)、J.Lumin.72-74,985(1997)、Appl.Phys.Lett.78,673(2001)、Appl.Phys.Lett.90,183503(2007)、Appl.Phys.Lett.90,183503(2007)、Appl.Phys.Lett.51,913(1987)、Synth.Met.87,171(1997)、Synth.Met.91,209(1997)、Synth.Met.111,421(2000)、SID Symposium Digest,37,923(2006)、J.Mater.Chem.3,319(1993)、Adv.Mater.6,677(1994)、Chem.Mater.15,3148(2003)、米国特許公開第20030162053号、米国特許公開第20020158242号、米国特許公開第20060240279号、米国特許公開第20080220265号、米国特許第5061569号、国際公開第2007002683号、国際公開第2009018009号、EP650955、米国特許公開第20080124572号、米国特許公開第20070278938号、米国特許公開第20080106190号、米国特許公開第20080018221号、国際公開第2012115034号、特表2003-519432号公報、特開2006-135145号、米国特許出願番号13/585981号等である。
 正孔輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。
 《電子阻止層》
 電子阻止層とは広い意味では正孔輸送層の機能を有する層であり、好ましくは正孔を輸送する機能を有しつつ電子を輸送する能力が小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、前述する正孔輸送層の構成を必要に応じて、本発明に係る電子阻止層として用いることができる。
 本発明の有機EL素子に設ける電子阻止層は、発光層の陽極側に隣接して設けられることが好ましい。
 本発明に係る電子阻止層の膜厚としては、好ましくは3~100nmの範囲であり、更に好ましくは5~30nmの範囲である。
 電子阻止層に用いられる材料としては、前述の正孔輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物として用いられる材料も電子阻止層に好ましく用いられる。
 《正孔注入層》
 本発明に係る正孔注入層(「陽極バッファー層」ともいう)とは、駆動電圧低下や発光輝度向上のために陽極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。
 本発明において正孔注入層は必要に応じて設け、上記の如く陽極と発光層又は陽極と正孔輸送層との間に存在させてもよい。
 正孔注入層は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、正孔注入層に用いられる材料としては、例えば前述の正孔輸送層に用いられる材料等が挙げられる。
 中でも銅フタロシアニンに代表されるフタロシアニン誘導体、特表2003-519432や特開2006-135145等に記載されているようなヘキサアザトリフェニレン誘導体、酸化バナジウムに代表される金属酸化物、アモルファスカーボン、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子、トリス(2-フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体、トリアリールアミン誘導体等が好ましい。
 前述の正孔注入層に用いられる材料は単独で用いてもよく、また複数種を併用して用いてもよい。
 《添加剤》
 前述した本発明における有機層は、更に他の添加剤が含まれていてもよい。
 添加剤としては、例えば臭素、ヨウ素及び塩素等のハロゲン元素やハロゲン化化合物、Pd、Ca、Na等のアルカリ金属やアルカリ土類金属、遷移金属の化合物や錯体、塩等が挙げられる。
 添加剤の含有量は、任意に決定することができるが、含有される層の全質量%に対して1000ppm以下であることが好ましく、より好ましくは500ppm以下であり、さらに好ましくは50ppm以下である。
 ただし、電子や正孔の輸送性を向上させる目的や、励起子のエネルギー移動を有利にするための目的などによってはこの範囲内ではない。
 《有機層の形成方法》
 本発明に係る有機層(正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層等)の形成方法について説明する。
 本発明に係る有機層の形成方法は、特に制限はなく、従来公知の例えば真空蒸着法、湿式法(ウェットプロセスともいう)等による形成方法を用いることができる。
 湿式法としては、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア-ブロジェット法)等があるが、均質な薄膜が得られやすく、且つ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法などのロール・ツー・ロール方式適性の高い方法が好ましい。
 本発明に係る有機EL材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。
 また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
 更に層毎に異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度10-6~10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、膜厚0.1nm~5μm、好ましくは5~200nmの範囲で適宜選ぶことが望ましい。
 本発明に係る有機層の形成は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際は作業を乾燥不活性ガス雰囲気下で行うことが好ましい。
 《陽極》
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上、好ましくは4.5V以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In23-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
 陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
 あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。
 陽極の膜厚は材料にもよるが、通常10nm~1μm、好ましくは10~200nmの範囲で選ばれる。
 《陰極》
 陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、アルミニウム、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
 陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。
 なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度が向上し好都合である。
 また、陰極に上記金属を1~20nmの膜厚で作製した後に、陽極の説明で挙げる導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
 《支持基板》
 本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。
 樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度90±2%)が0.01g/(m2・24h)以下のバリア性フィルムであることが好ましく、更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3cm3/(m2・24h・atm)以下、水蒸気透過度が、1×10-5g/(m2・24h)以下の高バリア性フィルムであることが好ましい。
 バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
 本発明の有機EL素子の発光の室温における外部取り出し効率は、1%以上であることが好ましく、5%以上であるとより好ましい。
 ここで、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
 また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。
 《封止》
 本発明の有機EL素子の封止に用いられる封止手段としては、例えば、封止部材と、電極、支持基板とを接着剤で接着する方法を挙げることができる。封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよい。また、透明性、電気絶縁性は特に限定されない。
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属又は合金からなるものが挙げられる。
 本発明においては、有機EL素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。さらには、ポリマーフィルムはJIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3cm3/m2/24h以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度90±2%)が、1×10-3g/(m2・24h)以下のものであることが好ましい。
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
 なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
 また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。
 さらに該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム、ヨウ化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
 《保護膜、保護板》
 有機層を挟み支持基板と対向する側の前記封止膜あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために、保護膜あるいは保護板を設けてもよい。特に、封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
 《光取り出し》
 有機エレクトロルミネッセンス素子は、空気よりも屈折率の高い(屈折率1.6~2.1程度の範囲内)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として、光が素子側面方向に逃げるためである。
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(例えば、米国特許第4774435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(例えば、特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(例えば、特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(例えば、特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(例えば、特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報)などが挙げられる。
 本発明においては、これらの方法を本発明の有機エレクトロルミネッセンス素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
 本発明は、これらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子を得ることができる。
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚さで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど、外部への取り出し効率が高くなる。
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマーなどが挙げられる。透明基板の屈折率は一般に1.5~1.7程度の範囲内であるので、低屈折率層は、屈折率がおよそ1.5以下であることが好ましい。またさらに1.35以下であることが好ましい。
 また、低屈折率媒質の厚さは、媒質中の波長の2倍以上となるのが望ましい。これは、低屈折率媒質の厚さが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
 全反射を起こす界面又は、いずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は、回折格子が1次の回折や、2次の回折といった、いわゆるブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち、層間での全反射等により外に出ることができない光を、いずれかの層間もしくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは、発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な一次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。
 しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
 回折格子を導入する位置としては、いずれかの層間、もしくは媒質中(透明基板内や透明電極内)でも良いが、光が発生する場所である有機発光層の近傍が望ましい。このとき、回折格子の周期は、媒質中の光の波長の約1/2~3倍程度の範囲内が好ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状など、二次元的に配列が繰り返されることが好ましい。
 《集光シート》
 本発明の有機エレクトロルミネッセンス素子は、支持基板(基板)の光取出し側に、例えばマイクロレンズアレイ上の構造を設けるように加工したり、あるいは、所謂集光シートと組み合わせることにより、特定方向、例えば素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を二次元に配列する。一辺は10~100μmの範囲内が好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚さが厚くなり好ましくない。
 集光シートとしては、例えば液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして例えば、住友スリーエム社製輝度上昇フィルム(BEF)などを用いることができる。プリズムシートの形状としては、例えば基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であっても良い。
 また、有機EL素子からの光放射角を制御するために光拡散板・フィルムを、集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)などを用いることができる。
 《用途》
 本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。
 発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
 本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。
 以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。
 図1は有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。
 ディスプレイ1は複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。
 制御部Bは表示部Aと電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。
 図2は表示部Aの模式図である。
 表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部と複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。
 図においては、画素3の発光した光Lが白矢印方向(下方向)へ取り出される場合を示している。
 配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示していない)。
 画素3は走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。
 発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。
 次に、画素の発光プロセスを説明する。
 図3は画素の回路図である。
 画素は有機EL素子10、スイッチングトランジスター11、駆動トランジスター12、コンデンサー13等を備えている。複数の画素に有機EL素子10として、赤色、緑色、青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。
 図3において、制御部Bからデータ線6を介してスイッチングトランジスター11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスター11のゲートに走査信号が印加されると、スイッチングトランジスター11の駆動がオンし、ドレインに印加された画像データ信号がコンデンサー13と駆動トランジスター12のゲートに伝達される。
 画像データ信号の伝達により、コンデンサー13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスター12の駆動がオンする。駆動トランジスター12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機EL素子10に電流が供給される。
 制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスター11の駆動がオフする。
 しかし、スイッチングトランジスター11の駆動がオフしてもコンデンサー13は充電された画像データ信号の電位を保持するので、駆動トランジスター12の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。
 順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスター12が駆動して有機EL素子10が発光する。
 即ち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスター11と駆動トランジスター12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。
 ここで、有機EL素子10の発光は複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサー13の電位の保持は次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。
 図4はパッシブマトリクス方式による表示装置の模式図である。図4において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。
 順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。
 パッシブマトリクス方式では画素3にアクティブ素子が無く、製造コストの低減が計れる。
 (本発明の照明装置の一態様)
 本発明の有機EL素子を具備した、本発明の照明装置の一態様について説明する。
 本発明の有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図5、R1~R8に示すような照明装置を形成することができる。
 図5は、照明装置の概略図を示し、本発明の有機EL素子101はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。)。
 図6は、照明装置の断面図を示し、図6において、105は陰極、106は有機EL層、107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
 <インピーダンス分光測定よる薄膜抵抗値の測定例>
 インピーダンス分光法は、有機ELの微妙な物性変化を電気信号に変換又は増幅の少なくともいずれかを行って解析できる手法であり、有機ELを破壊すること無く高感度の抵抗値(R)及び静電容量(C)を計測できることが特徴である。インピーダンス分光解析にはZ plot、M plot、ε plotを使って電気特性を計測するのが一般的であり、その解析方法は(『薄膜の評価ハンドブック』テクノシステム社刊423ページ~425ページ)等に詳細に掲載されている。
 有機EL素子(素子構成「ITO/HIL(正孔注入層)/HTL(正孔輸送層)/EML(発光層)/ETL(電子輸送層)/EIL(電子注入層)/Al」)に対してインピーダンス分光法を適用し、特定の層の抵抗値を求める手法を説明する。例えば、電子輸送層(ETL)の抵抗値を計測する場合、ETLの厚さだけを変更した素子を作製し、それぞれのM plot(図7)を比較することで、該プロットにより描き出される曲線のどの部分がETLに相当するかを確定することができる。
 図7は電子輸送層の膜厚違いのM plotの一例である。膜厚が各々30、45及び60nmの場合の例を示す。
 このプロットから求めた抵抗値(R)をETLの膜厚に対してプロットしたのが図8である。図8はETLの膜厚と抵抗値の関係を示す一例である。図8のETL膜厚と抵抗値(Resistannce)との関係より、ほぼ直線上に乗ることから、各膜厚での抵抗値を決定することができる。
 素子構成「ITO/HIL/HTL/EML/ETL/EIL/Al」の有機EL素子を等価回路モデルの一例(図9)として各層を解析した結果が図10である。図10は各層の抵抗-電圧の関係を示す一例である。
 図9は素子構成「ITO/HIL/HTL/EML/ETL/EIL/Al」の有機EL素子の等価回路モデルを示している。
 図10は素子構成「ITO/HIL/HTL/EML/ETL/EIL/Al」の有機EL素子の解析結果の一例である。
 これに対し、同じ有機EL素子を長時間発光させて劣化させた後に、同じ条件で測定し、それらを重ね合わせたのが図11であり、電圧1Vにおけるそれぞれの値を表1にまとめた。
 図11は劣化後の有機EL素子の解析結果を示す一例である。
Figure JPOXMLDOC01-appb-T000045
 図11の有機EL素子の各層の抵抗値とDC電圧の解析結果から、劣化後の有機EL素子においては、HIL(正孔注入層)、ETL(電子輸送層)、HTL(正孔輸送層)、EML(発光層)のうちETL(電子輸送層)のみが劣化により抵抗値が大きく上昇し、DC電圧1Vにおいて、約30倍の抵抗値になっていることがわかる。
 以上の手法を用いることで、本発明の実施例に記載した通電前後での抵抗変化の計測が可能となる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
 [実施例1](蒸着系)
 以下に説明する実施例で用いられる化合物の構造を以下に示す。なお、比較化合物A及び比較化合物Bは、それぞれ国際公開第2007/142083号及び国際公開第2012/087007号に記載されている化合物である。
Figure JPOXMLDOC01-appb-C000046
 ≪有機EL素子1-1の作製≫
 陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムスズ酸化物)を100nmの厚さで成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を用いて3000rpm、30秒の条件下、スピンコート法により薄膜を形成した後、200℃にて1時間乾燥し、膜厚20nmの第1正孔注入層を設けた。
 この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方モリブデン製抵抗加熱ボートにα-NPDを200mg入れ、別のモリブデン製抵抗加熱ボートにCBP(4,4’-N,N’-ジカルバゾールビフェニル)を200mg入れ、別のモリブデン製抵抗加熱ボートに発光ドーパントD-9を200mg入れ、別のモリブデン製抵抗加熱ボートにBCP(2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン)を200mg入れ真空蒸着装置に取り付けた。
 次いで真空槽を4×10-4Paまで減圧した後、α-NPDの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、前記正孔注入層上に蒸着し30nmの正孔輸送層を設けた。
 更に比較化合物Aの入った前記加熱ボートと実施DPの入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.010nm/秒で、前記正孔輸送層上に共蒸着し40nmの発光層を設けた。
 更にBCPの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、前記正孔阻止層上に蒸着し30nmの電子輸送層を設けた。
 引き続き、陰極バッファー層としてフッ化リチウム0.5nmを蒸着し、更にアルミニウム110nmを蒸着して陰極を形成し、有機EL素子1-1を作製した。
 ≪有機EL素子1-2~1-30の作製≫
 有機EL素子1-1の作製において、発光ドーパントとホスト化合物を表2に記載の化合物に変えた以外は同様にして有機EL素子1-2~1-30を作製した。
 ≪有機EL素子1-1~1-30の評価≫
 得られた有機EL素子を評価するに際しては、作製後の各有機EL素子の非発光面をガラスカバーで覆い、ガラスカバーと有機EL素子が作製されたガラス基板とが接触するガラスカバー側の周囲にシール剤としてエポキシ系光硬化型接着剤(東亞合成社製ラクストラックLC0629B)を適用し、これを上記陰極側に重ねて前記透明支持基板と密着させ、ガラス基板側から有機EL素子を除いた部分にUV光を照射して硬化させて封止し、下記の図5、6に示すような照明装置を作製して評価した。
 インピーダンス分光測定装置よる発光層の抵抗値の測定及び有機EL素子の発光スペクトルの半値幅の変化率及び色度の測定を実施した。
 (1)有機EL素子駆動前後の抵抗値の変化率
 『薄膜の評価ハンドブック』テクノシステム社刊423ページ~425ページに記載の測定方法を参考に、Solartron社製1260型インピーダンスアナライザ及び1296型誘電体インターフェイスを使って、作成した有機EL素子の発光層のバイアス電圧1Vにおける抵抗値の測定を行った。
 有機EL素子を室温(約23℃~25℃)、2.5mA/cm2の定電流条件下により1000時間駆動した後の駆動前後の発光層の抵抗値を各々測定し、測定結果を下記に示した計算式により計算し抵抗値の変化率を求めた。表2には有機EL素子1-1の抵抗値の変化率を100としたときの相対値を記載した。
 駆動前後の抵抗値の変化率=|(駆動後の抵抗値/駆動前の抵抗値)-1|×100
 値が0に近い方が駆動前後の変化率が小さいことを示す。
 (2)有機EL素子駆動前後の発光スペクトルの半値幅の変化率
 有機EL素子を室温(約23℃~25℃)、2.5mA/cm2の定電流条件下により1000時間駆動した後の駆動前後の発光スペクトルをCS-1000(コニカミノルタオプティクス社製)を用いて測定し、ピーク波長の半値幅の変化率を下記に示した計算式により算出した。表2には有機EL素子1-1の半値幅の変化率を100としたときの相対値を記載した。
 駆動前後の半値幅の変化率=|(駆動後の半値幅/駆動前の半値幅)-1|×100
 なお、値が0に近い方が駆動前後の変化率が小さいことを示す。
 (3)有機EL素子の色度
 有機EL素子について、その発光色を分光放射輝度計CS-1000(コニカミノルタオプティクス社製)を用い、2度視野角正面輝度で色度(x、y)を測定し、y値をその指標とした。y値が低いと青発色した色の純度が良好であることを示す。
Figure JPOXMLDOC01-appb-T000047
 表2から、本発明の有機EL素子1-5~1-30は、比較例の有機EL素子1-1、1-2、1-3、1-4に対して、発光層の抵抗値及び発光スペクトルの半値幅の変化率が小さいことが示されたことにより、発光層の薄膜の物性の変化が小さい有機EL素子を得ることができた。更には、比較例の有機EL素子1-1、1-2、1-4はy値が高く色純度が悪いのに対して、本発明の有機EL素子1-5~1-30は色度(色純度)にも優れていることが分かる。
 [実施例2](塗布系)
 ≪有機EL素子2-1の作製≫
 陽極として100mm×100mm×1.1mmのガラス基板上にITOを100nmの厚さで成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を用いて3000rpm、30秒の条件下、スピンコート法により薄膜を形成した後、200℃にて1時間乾燥し、膜厚20nmの第1正孔輸送層を設けた。
 この基板を窒素雰囲気下に移し、前記第1正孔輸送層上に、50mgのADS254BE(American Dye Source, Inc製)を10mlのモノクロロベンゼンに溶解した溶液を用いて2500rpm、30秒の条件下、スピンコート法により薄膜を形成した。更に130℃で1時間真空乾燥し、第2正孔輸送層を形成した。
 この第2正孔輸送層上に、100mgの比較化合物Aと13mgの実施DPとを10mlの酢酸ブチルに溶解した溶液を用いて1000rpm、30秒の条件下、スピンコート法により薄膜を形成した。更に60℃で1時間真空乾燥し、膜厚約45nmの発光層とした。
 次に、この発光層上に、50mgのBCPを10mlのヘキサフルオロイソプロパノール(HFIP)に溶解した溶液を用いて1000rpm、30秒の条件下、スピンコート法により薄膜を形成した。更に60℃で1時間真空乾燥し、膜厚約25nmの電子輸送層とした。
 続いて、この基板を真空蒸着装置の基板ホルダーに固定し、真空槽を4×10-4Paまで減圧した後、陰極バッファー層としてフッ化カリウム0.4nmを蒸着し、更にアルミニウム110nmを蒸着して陰極を形成し、有機EL素子2-1を作製した。
 ≪有機EL素子2-2~2-20の作製≫
 有機EL素子2-1の作製において、発光ドーパントとホスト化合物を表3に記載の化合物に変えた以外は同様にして有機EL素子2-2~2-20を作製した。
 ≪有機EL素子2-1~2-20の評価≫
 得られた有機EL素子を評価するに際しては、実施例1の有機EL素子1-1と同様に封止し、図5、図6に示すような照明装置を形成して評価した。
 このようにして作製した各サンプルに対し、実施例1と同様に発光層の抵抗値の変化率及び発光スペクトルの半値幅の変化率及び色度について評価を行った。評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000048
 表3から、本発明の有機EL素子2-5~2-20は、比較例の有機EL素子2-1、2-2、2-3、2-4に対して、発光層の抵抗値及び発光スペクトルの半値幅の変化率が小さいことが示されたことにより、発光層の薄膜の物性の変化が小さい有機EL素子を得ることができた。更には、比較例の有機EL素子2-1、2-2、2-4はy値が高く色純度が悪いのに対して、本発明の有機EL素子2-5~2-20は色度(色純度)にも優れていることが分かる。
 [実施例3](白色系)
 ≪有機EL素子3-1の作製≫
 陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nmの厚さで成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
 この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、モリブデン抵抗加熱ボートにTPDを200mg入れ、別のモリブデン製抵抗加熱ボートに比較化合物Aを200mg入れ、別のモリブデン製抵抗加熱ボートに実施DPを200mg入れ、別のモリブデン製抵抗加熱ボートに実施D-15を200mg入れ、別のモリブデン製抵抗加熱ボートに実施D-6を200mg入れ、別のモリブデン製抵抗加熱ボートにBCPを200mg入れ、真空蒸着装置に取り付けた。
 次いで真空槽を4×10-4Paまで減圧した後、TPDの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、透明支持基板に蒸着し10nmの正孔輸送層を設けた。
 更に比較化合物Aと実施DPと実施D-15と実施D-6の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.025nm/秒、0.0007nm/秒、0.0002nm/秒で、前記正孔輸送層上に共蒸着し60nmの発光層を設けた。
 更にBCPの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、前記発光層上に蒸着し20nmの電子輸送層を設けた。
 引き続き、陰極バッファー層としてフッ化カリウム0.5nmを蒸着し、更にアルミニウム110nmを蒸着して陰極を形成し、有機EL素子3-1を作製した。
 作製した有機EL素子3-1に通電したところほぼ白色の光が得られ、照明装置として使用できることが分かった。なお、例示の他の化合物に置き換えても同様に白色の発光が得られることが分かった。
 ≪有機EL素子3-2~3-15の作製≫
 有機EL素子3-1の作製において、ホスト化合物を表4に記載の化合物に変えた以外は同様にして有機EL素子3-2~3-15を作製した。
 ≪有機EL素子3-1~3-15の評価≫
 実施例1と同様の方法により発光層の抵抗値の変化率を測定したところ、本発明の有機EL素子は比較の半分以下の値となることを確認した。
 (色度の測定)
 有機EL素子3-1~3-15の各試料について、その発光色を分光放射輝度計CS-1000(コニカミノルタオプティクス社製)を用い、2度視野角正面輝度を測定した際に、1000cd/m2でのCIE1931表色系における色度がx=0.33±0.07、y=0.33±0.1の領域内にあり、白色光であることを確認した。
Figure JPOXMLDOC01-appb-T000049
 表4から明らかな通り、本発明の有機EL素子3-4~3-15は、比較例の有機EL素子3-1~3-3に対して、発光層の抵抗値の半値幅の変化率が小さいことが示されたことにより、発光層の薄膜の物性の変化が小さい有機EL素子を得ることができた。
 [実施例4](カラー)
 ≪有機EL素子4-1の作製≫
 (青色発光素子の作製)
 実施例1の有機EL素子1-5を青色発光素子として用いた。
 (緑色発光素子の作製)
 実施例1の有機EL素子1-5において、実施DPを実施D-15に変更した以外は同様にして緑色発光素子を作製し、これを緑色発光素子として用いた。
 (赤色発光素子の作製)
 実施例1の有機EL素子1-5において、実施DPを実施D-6変更にした以外は同様にして作製し、これを赤色発光素子として用いた。
 上記で作製した赤色、緑色、青色発光有機EL素子を同一基板上に並置し、図1に記載のような形態を有するアクティブマトリクス方式フルカラー表示装置を作製した。図2には、作製した前記表示装置の表示部Aの模式図のみを示した。
 即ち、同一基板上に複数の走査線5及びデータ線6を含む配線部と並置した複数の画素3(発光の色が赤領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示せず)。
 前記複数画素3は、それぞれの発光色に対応した有機EL素子、アクティブ素子であるスイッチングトランジスターと駆動トランジスターそれぞれが設けられたアクティブマトリクス方式で駆動されており、走査線5から走査信号が印加されるとデータ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。このように赤、緑、青の画素を適宜、並置することによって、フルカラー表示装置を作製した。作製した有機EL素子はそれぞれ電極に電圧を印加することにより、青色、緑色及び赤色の発色を示し、フルカラー表示装置として利用できることが分かった。
 以上のように、本発明によれば、通電経時での発光層の抵抗値変化が少ない有機EL素子を実現するものであり、その副次的効果として、経時による発光特性の変化が少なく、かつ、色度に優れた有機エレクトロルミネッセンス素子、照明装置、表示装置を提供することができる。また、ウェットプロセスによって、上記効果を有する有機EL素子を製造することができる。
 本発明の有機EL素子により通電経時での発光層の抵抗値変化が少ない有機EL素子を実現することができる。その副次的効果として、発光スペクトルの色度(純度)が良好で、また、経時による発光特性の変化が少ない有機EL素子を提供することができ、該有機エレクトロルミネッセンス素子を用いた照明装置及び表示装置を提供することができる。
 1 ディスプレイ
 3 画素
 5 走査線
 6 データ線
 7 電源ライン
 10 有機EL素子
 11 スイッチングトランジスター
 12 駆動トランジスター
 13 コンデンサー
 101 有機EL素子
 102 ガラスカバー
 105 陰極
 106 有機EL層
 107 透明電極付きガラス基板
 108 窒素ガス
 109 捕水剤
 201 ガラス基板
 202 ITO透明電極
 203 隔壁
 204 正孔注入層
 205B、205G、205R 発光層
 206 陰極
 A 表示部
 B 制御部
 L 光

Claims (11)

  1.  一対の電極と、前記一対の電極の間に、一又は複数の有機層が具備された有機エレクトロルミネッセンス素子であって、下記一般式(1)で表される構造を有する化合物を前記有機層のいずれか一層以上に含有することを特徴とする有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
     (一般式(1)中、Xは、O、S又はNR9を表す。R1~R8は、それぞれ、水素原子、重水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、カルボニル基、アミノ基、シリル基、ホスフィンオキシド基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基、又は下記一般式(2)で表される置換基を表し、R1~R8の少なくとも一つは、π電子が14個以上の芳香族複素環を有し、R1~R8の他の少なくとも一つは、下記一般式(2)を表す。これらの基は、更に置換基を有しても良く、それぞれ同じでも異なっていても良い。R9は、水素原子、重水素原子、アルキル基、アルケニル基、アルキニル基、アリールアルキル基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表す。
    Figure JPOXMLDOC01-appb-C000002
     (一般式(2)中、Lは連結基であり、アルキレン基、アルケニレン基、m-フェニレン基又は単環の芳香族複素環基を表し、更に置換基を有しても良い。Zは、C、Si、Ge、P又はP=Oを表す。Rは、それぞれ総炭素数1~20のアルキル基、芳香族炭化水素環基又は芳香族複素環基を表し、更に置換基を有しても良い。nは、2~8の整数を表す。mは、2~3の整数を表す。一般式(2)で表される置換基が複数個置換している場合、複数個存在するL、Z及びRは、同じでも異なっていても良いが、隣接するL同士及び隣接するR同士が連結し環を形成することはない。)
  2.  前記一般式(2)において、Lがm-フェニレン基を表すことを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
  3.  前記一般式(2)において、ZがSiを表すことを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。
  4.  前記一般式(1)で表される化合物が、下記一般式(3)で表される化合物であることを特徴とする請求項1から請求項3までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000003
     (一般式(3)中、R、n、m及びXは、それぞれ、一般式(1)又は一般式(2)中のR、n、m及びXと同義である。R10、R11及びR12は、それぞれ、水素原子、重水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、カルボニル基、アミノ基、シリル基、ホスフィンオキシド基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表し、更に置換基を有しても良く、それぞれ同じでも異なっていても良い。)
  5.  前記一般式(1)で表される構造を有する化合物が、下記一般式(4)又は一般式(5)で表される構造を有する化合物であることを特徴とする請求項1から請求項4までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000004
     (一般式(4)及び一般式(5)中、R、n、m及びXは、それぞれ、一般式(1)又は一般式(2)中のR、n、m及びXと同義である。R10~R14は、それぞれ、水素原子、重水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、カルボニル基、アミノ基、シリル基、ホスフィンオキシド基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表し、更に置換基を有しても良く、それぞれ同じでも異なっていても良い。R15は、水素原子、重水素原子、アルキル基、アルケニル基、アルキニル基、アリールアルキル基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表す。L1及びL2は、それぞれ、単結合又は2価の連結基を表す。)
  6.  前記一般式(1)で表される構造を有する化合物が、下記一般式(6)で表される構造を有する化合物であることを特徴とする請求項1から請求項4までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000005
     (一般式(6)中、R、n、m及びXは、それぞれ、一般式(1)又は一般式(2)中のR、n、m及びXと同義である。R10~R14は、それぞれ、水素原子、重水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、カルボニル基、アミノ基、シリル基、ホスフィンオキシド基、芳香族炭化水素環基、芳香族複素環基、非芳香族炭化水素環基又は非芳香族複素環基を表し、更に置換基を有しても良く、それぞれ同じでも異なっていても良い。)
  7.  前記有機層のうちの一層が発光層であり、当該発光層に前記有機エレクトロルミネッセンス用化合物が、ホスト化合物として含有されていることを特徴とする請求項1から請求項6までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
  8.  前記発光層にイリジウム又は白金の錯体を含有し、当該錯体が通電によりリン光を発することを特徴とする請求項1から請求項7までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
  9.  白色に発光することを特徴とする請求項1から請求項8までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
  10.  請求項1から請求項9までのいずれか一項に記載の有機エレクトロルミネッセンス素子が具備されていることを特徴とする照明装置。
  11.  請求項1から請求項9までのいずれか一項に記載の有機エレクトロルミネッセンス素子が具備されていることを特徴とする表示装置。
PCT/JP2014/059118 2013-03-29 2014-03-28 有機エレクトロルミネッセンス素子、それを具備した照明装置及び表示装置 WO2014157618A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/780,865 US10135002B2 (en) 2013-03-29 2014-03-28 Organic electroluminescent element, and lighting device and display device which are provided with same
EP14775671.2A EP2980878B1 (en) 2013-03-29 2014-03-28 Organic electroluminescent element, and lighting device and display device which are provided with same
JP2015508758A JP6350518B2 (ja) 2013-03-29 2014-03-28 有機エレクトロルミネッセンス素子、それを具備した照明装置及び表示装置
KR1020157026217A KR101798308B1 (ko) 2013-03-29 2014-03-28 유기 일렉트로루미네센스 소자, 그것을 구비한 조명 장치 및 표시 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-072081 2013-03-29
JP2013072081 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014157618A1 true WO2014157618A1 (ja) 2014-10-02

Family

ID=51624574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059118 WO2014157618A1 (ja) 2013-03-29 2014-03-28 有機エレクトロルミネッセンス素子、それを具備した照明装置及び表示装置

Country Status (5)

Country Link
US (1) US10135002B2 (ja)
EP (1) EP2980878B1 (ja)
JP (2) JP6350518B2 (ja)
KR (1) KR101798308B1 (ja)
WO (1) WO2014157618A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11296281B2 (en) 2017-03-15 2022-04-05 Merck Patent Gmbh Materials for organic electroluminescent devices
US11450811B2 (en) 2018-08-10 2022-09-20 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9929353B2 (en) * 2014-04-02 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
US9761814B2 (en) * 2014-11-18 2017-09-12 Universal Display Corporation Organic light-emitting materials and devices
JP5831654B1 (ja) * 2015-02-13 2015-12-09 コニカミノルタ株式会社 芳香族複素環誘導体、それを用いた有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP6319230B2 (ja) * 2015-08-24 2018-05-09 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子用の芳香族複素環誘導体、それを用いた有機エレクトロルミネッセンス素子、照明装置及び表示装置
KR101915712B1 (ko) 2017-03-24 2018-11-06 희성소재 (주) 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
US11426818B2 (en) 2018-08-10 2022-08-30 The Research Foundation for the State University Additive manufacturing processes and additively manufactured products
KR20210037061A (ko) 2019-09-26 2021-04-06 삼성디스플레이 주식회사 헤테로시클릭 화합물 및 이를 포함한 유기 발광 소자

Citations (213)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172691A (ja) 1986-01-24 1987-07-29 株式会社小松製作所 薄膜el素子
US4774435A (en) 1987-12-22 1988-09-27 Gte Laboratories Incorporated Thin film electroluminescent device
JPS63314795A (ja) 1987-06-18 1988-12-22 Komatsu Ltd 薄膜el素子
JPH01220394A (ja) 1988-02-29 1989-09-04 Hitachi Ltd 高輝度el素子
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH04297076A (ja) 1991-01-31 1992-10-21 Toshiba Corp 有機el素子
JPH06325871A (ja) 1993-05-18 1994-11-25 Mitsubishi Kasei Corp 有機電界発光素子
EP0650955A1 (en) 1993-11-01 1995-05-03 Hodogaya Chemical Co., Ltd. Amine compound and electro-luminescence device comprising same
JPH08288069A (ja) 1995-04-07 1996-11-01 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子
JPH0917574A (ja) 1995-04-27 1997-01-17 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH0945479A (ja) 1995-07-27 1997-02-14 Hewlett Packard Co <Hp> 有機エレクトロルミネセンス装置及び有機エレクトロルミネセンス装置の製造方法
JPH09260062A (ja) 1996-03-25 1997-10-03 Tdk Corp 有機エレクトロルミネセンス素子
JPH1074586A (ja) 1996-07-29 1998-03-17 Eastman Kodak Co エレクトロルミネセンスデバイスで用いられる二層電子注入電極
JPH10270172A (ja) 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JPH11283751A (ja) 1998-03-27 1999-10-15 Nec Corp 有機エレクトロルミネッセンス素子
JP2000196140A (ja) 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
US6097147A (en) 1998-09-14 2000-08-01 The Trustees Of Princeton University Structure for high efficiency electroluminescent device
US6107734A (en) 1998-05-20 2000-08-22 Idemitsu Kosan Co., Ltd. Organic EL light emitting element with light emitting layers and intermediate conductive layer
JP2001102175A (ja) 1999-09-29 2001-04-13 Junji Kido 有機エレクトロルミネッセント素子、有機エレクトロルミネッセント素子群及びその発光スペクトルの制御方法
WO2001039234A2 (en) 1999-11-24 2001-05-31 The Trustees Of Princeton University Organic light emitting diode having a blue phosphorescent molecule as an emitter
JP2001202827A (ja) 1999-11-10 2001-07-27 Matsushita Electric Works Ltd 透明導電性基板、発光素子、平面発光板、平面発光板の製造方法、平面蛍光ランプ、プラズマディスプレイ
JP2001257076A (ja) 2000-03-13 2001-09-21 Tdk Corp 有機el素子
JP2001313179A (ja) 2000-05-01 2001-11-09 Mitsubishi Chemicals Corp 有機電界発光素子
JP2001357977A (ja) 2000-06-12 2001-12-26 Fuji Photo Film Co Ltd 有機電界発光素子
US6337492B1 (en) 1997-07-11 2002-01-08 Emagin Corporation Serially-connected organic light emitting diode stack having conductors sandwiching each light emitting layer
WO2002002714A2 (en) 2000-06-30 2002-01-10 E.I. Du Pont De Nemours And Company Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
JP2002008860A (ja) 2000-04-18 2002-01-11 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002015871A (ja) 2000-04-27 2002-01-18 Toray Ind Inc 発光素子
JP2002043056A (ja) 2000-07-19 2002-02-08 Canon Inc 発光素子
WO2002015645A1 (en) 2000-08-11 2002-02-21 The Trustees Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
JP2002075645A (ja) 2000-08-29 2002-03-15 Semiconductor Energy Lab Co Ltd 発光装置
US20020034656A1 (en) 1998-09-14 2002-03-21 Thompson Mark E. Organometallic complexes as phosphorescent emitters in organic LEDs
JP2002105445A (ja) 2000-09-29 2002-04-10 Fuji Photo Film Co Ltd 有機発光素子材料及びそれを用いた有機発光素子
JP2002141173A (ja) 2000-08-22 2002-05-17 Semiconductor Energy Lab Co Ltd 発光装置
JP2002203683A (ja) 2000-10-30 2002-07-19 Toyota Central Res & Dev Lab Inc 有機電界発光素子
JP2002231453A (ja) 2000-11-30 2002-08-16 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002234888A (ja) 2001-02-09 2002-08-23 Mitsui Chemicals Inc アミン化合物および該化合物を含有する有機電界発光素子
JP2002255934A (ja) 2000-12-25 2002-09-11 Fuji Photo Film Co Ltd 新規化合物、その重合体、それらを利用した発光素子材料およびその発光素子
JP2002260861A (ja) 2001-01-02 2002-09-13 Eastman Kodak Co 有機発光デバイス
US20020134984A1 (en) 2001-02-01 2002-09-26 Fuji Photo Film Co., Ltd. Transition metal complex and light-emitting device
JP2002280183A (ja) 2000-12-28 2002-09-27 Toshiba Corp 有機el素子および表示装置
JP2002299060A (ja) 2001-03-30 2002-10-11 Fuji Photo Film Co Ltd 有機発光素子
JP2002302516A (ja) 2001-04-03 2002-10-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
JP2002302671A (ja) 2000-02-10 2002-10-18 Fuji Photo Film Co Ltd イリジウム錯体からなる発光素子材料及び発光素子
JP2002305084A (ja) 2000-12-25 2002-10-18 Fuji Photo Film Co Ltd 新規インドール誘導体およびそれを利用した発光素子
JP2002305083A (ja) 2001-04-04 2002-10-18 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002308837A (ja) 2001-04-05 2002-10-23 Fuji Photo Film Co Ltd 新規化合物、およびそれを用いた発光素子
JP2002308855A (ja) 2001-04-05 2002-10-23 Fuji Photo Film Co Ltd 新規化合物、およびそれを用いた発光素子
JP2002319491A (ja) 2000-08-24 2002-10-31 Fuji Photo Film Co Ltd 発光素子及び新規重合体子
US20020158242A1 (en) 1999-12-31 2002-10-31 Se-Hwan Son Electronic device comprising organic compound having p-type semiconducting characteristics
JP2002334789A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334787A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334788A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334786A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002338579A (ja) 2001-03-16 2002-11-27 Fuji Photo Film Co Ltd ヘテロ環化合物及びそれを用いた発光素子
JP2002343568A (ja) 2001-05-10 2002-11-29 Sony Corp 有機電界発光素子
JP2002352957A (ja) 2001-05-23 2002-12-06 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
JP2002363227A (ja) 2001-04-03 2002-12-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
JP2002363552A (ja) 2001-03-08 2002-12-18 Univ Of Hong Kong 有機金属発光材料
JP2003003165A (ja) 2001-06-25 2003-01-08 Showa Denko Kk 有機発光素子および発光材料
JP2003027048A (ja) 2001-07-11 2003-01-29 Fuji Photo Film Co Ltd 発光素子
JP2003031367A (ja) 2001-07-11 2003-01-31 Konica Corp 有機エレクトロルミネッセンス素子及び表示装置
JP2003045676A (ja) 2001-07-26 2003-02-14 Junji Kido 有機エレクトロルミネッセント素子
JP2003045662A (ja) 2001-08-01 2003-02-14 Konica Corp 有機エレクトロルミネッセンス素子及び表示装置
US6528187B1 (en) 1998-09-08 2003-03-04 Fuji Photo Film Co., Ltd. Material for luminescence element and luminescence element using the same
JP2003081988A (ja) 2000-09-26 2003-03-19 Canon Inc 発光素子、表示装置及び発光素子用金属配位化合物
WO2003040257A1 (en) 2001-11-07 2003-05-15 E. I. Du Pont De Nemours And Company Electroluminescent platinum compounds and devices made with such compounds
WO2003060956A2 (en) 2002-01-18 2003-07-24 Lg Chem, Ltd. New material for transporting electrons and organic electroluminescent display using the same
US20030138657A1 (en) 2000-12-07 2003-07-24 Canon Kabushiki Kaisha Deuterated semi-conducting organic compounds used for opto-electronic devices
US20030152802A1 (en) 2001-06-19 2003-08-14 Akira Tsuboyama Metal coordination compound and organic liminescence device
US20030162053A1 (en) 1996-06-25 2003-08-28 Marks Tobin J. Organic light - emitting diodes and methods for assembly and enhanced charge injection
US20030175553A1 (en) 2001-12-28 2003-09-18 Thompson Mark E. White light emitting oleds from combined monomer and aggregate emission
JP2003272860A (ja) 2002-03-26 2003-09-26 Junji Kido 有機エレクトロルミネッセント素子
JP2003282270A (ja) 2002-03-25 2003-10-03 Konica Corp 有機エレクトロルミネッセンス素子及びそれを用いた表示装置
US6687266B1 (en) 2002-11-08 2004-02-03 Universal Display Corporation Organic light emitting materials and devices
JP3496681B2 (ja) 1994-12-13 2004-02-16 ザ、トラスティーズ オブ プリンストン ユニバーシティ 多色オーガニック発光素子
US20040036077A1 (en) 2002-08-22 2004-02-26 Fuji Photo Film Co., Ltd. Light emitting element
JP2004068143A (ja) 2002-06-10 2004-03-04 Konica Minolta Holdings Inc 薄膜形成方法並びに該薄膜形成方法により薄膜が形成された基材
WO2004063159A1 (ja) 2003-01-10 2004-07-29 Idemitsu Kosan Co., Ltd. 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2004080975A1 (ja) 2003-03-13 2004-09-23 Idemitsu Kosan Co., Ltd. 新規含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2004093207A2 (de) 2003-04-15 2004-10-28 Covion Organic Semiconductors Gmbh Mischungen von organischen zur emission befähigten halbleitern und matrixmaterialien, deren verwendung und elektronikbauteile enthaltend diese mischungen
WO2004107822A1 (ja) 2003-05-29 2004-12-09 Nippon Steel Chemical Co., Ltd. 有機電界発光素子
WO2005009087A1 (ja) 2003-07-02 2005-01-27 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子及びそれを用いた表示装置
US20050025993A1 (en) 2003-07-25 2005-02-03 Thompson Mark E. Materials and structures for enhancing the performance of organic light emitting devices
WO2005019373A2 (de) 2003-08-19 2005-03-03 Basf Aktiengesellschaft Übergangsmetallkomplexe mit carbenliganden als emitter für organische licht-emittierende dioden (oleds)
US6872472B2 (en) 2002-02-15 2005-03-29 Eastman Kodak Company Providing an organic electroluminescent device having stacked electroluminescent units
WO2005030900A1 (ja) 2003-09-25 2005-04-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子
JP2005112765A (ja) 2003-10-07 2005-04-28 Mitsui Chemicals Inc 複素環化合物および該化合物を含有する有機電界発光素子
US20050112407A1 (en) 2003-11-21 2005-05-26 Fuji Photo Film Co., Ltd. Organic electroluminescent device
US6921915B2 (en) 2001-03-08 2005-07-26 Canon Kabushiki Kaisha Metal coordination compound, luminescence device and display apparatus
WO2005076380A2 (en) 2004-02-03 2005-08-18 Universal Display Corporation Oleds utilizing multidentate ligand systems
WO2005085387A1 (ja) 2004-03-08 2005-09-15 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを利用した有機エレクトロルミネッセンス素子
WO2005089025A1 (ja) 2004-03-15 2005-09-22 Nippon Steel Chemical Co., Ltd. 有機電界発光素子
WO2005094130A1 (ja) 2004-03-26 2005-10-06 Matsushita Electric Works, Ltd. 有機発光素子
US20050238919A1 (en) 2004-04-23 2005-10-27 Fuji Photo Film Co., Ltd. Organic electroluminescent device
US20050244673A1 (en) 2002-08-27 2005-11-03 Fujitsu Limited Organometallic complex, organic EL element and organic EL display
US20050260441A1 (en) 2004-05-18 2005-11-24 Thompson Mark E Luminescent compounds with carbene ligands
JP2005340187A (ja) 2004-04-28 2005-12-08 Semiconductor Energy Lab Co Ltd 発光素子およびその作製方法、並びに前記発光素子を用いた発光装置
JP2005340122A (ja) 2004-05-31 2005-12-08 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2005123873A1 (ja) 2004-06-17 2005-12-29 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
US20060008670A1 (en) 2004-07-06 2006-01-12 Chun Lin Organic light emitting materials and devices
WO2006009024A1 (ja) 2004-07-23 2006-01-26 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2006024791A (ja) 2004-07-08 2006-01-26 International Manufacturing & Engineering Services Co Ltd 有機素子、有機エレクトロルミネッセント素子、及び有機太陽電池
JP2006049396A (ja) 2004-07-30 2006-02-16 Sanyo Electric Co Ltd 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置
JP2006049394A (ja) 2004-07-30 2006-02-16 Sanyo Electric Co Ltd 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置
JP2006049393A (ja) 2004-07-30 2006-02-16 Sanyo Electric Co Ltd 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置
US20060035469A1 (en) 2004-08-10 2006-02-16 Nugent Truong Methods for forming an undercut region and electronic devices incorporating the same
US20060098120A1 (en) 2002-09-16 2006-05-11 France Telecom Method for acquiring data describing audio-visual contents, system, broadcast server, description server, and reception terminal therefor
US20060103874A1 (en) 2004-11-05 2006-05-18 Brother Kogyo Kabushiki Kaisha System, device, server, and program for image processing
JP2006135145A (ja) 2004-11-08 2006-05-25 Sony Corp 表示素子用有機材料および表示素子
WO2006056418A2 (de) 2004-11-25 2006-06-01 Basf Aktiengesellschaft Verwendung von übergangsmetall-carbenkomplexen in organischen licht-emittierenden dioden (oleds)
JP2006156445A (ja) 2004-11-25 2006-06-15 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2006067931A1 (ja) 2004-12-22 2006-06-29 Idemitsu Kosan Co., Ltd. アントラセン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006082742A1 (ja) 2005-02-04 2006-08-10 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
US7090928B2 (en) 2003-04-01 2006-08-15 The University Of Southern California Binuclear compounds
JP2006228712A (ja) 2005-01-21 2006-08-31 Semiconductor Energy Lab Co Ltd 発光装置
US20060202194A1 (en) 2005-03-08 2006-09-14 Jeong Hyun C Red phosphorescene compounds and organic electroluminescence device using the same
US20060240279A1 (en) 2005-04-21 2006-10-26 Vadim Adamovich Non-blocked phosphorescent OLEDs
WO2006114966A1 (ja) 2005-04-18 2006-11-02 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US20060251923A1 (en) 2005-05-06 2006-11-09 Chun Lin Stability OLED materials and devices
US20060263635A1 (en) 2005-05-06 2006-11-23 Fuji Photo Film Co., Ltd. Organic electroluminescent device
US20060280965A1 (en) 2005-05-31 2006-12-14 Raymond Kwong Triphenylene hosts in phosphorescent light emitting diodes
WO2007002683A2 (en) 2005-06-27 2007-01-04 E. I. Du Pont De Nemours And Company Electrically conductive polymer compositions
WO2007004380A1 (ja) 2005-07-01 2007-01-11 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007059848A (ja) 2005-08-26 2007-03-08 Dainippon Printing Co Ltd 有機エレクトロルミネッセンス素子
US20070087321A1 (en) 2003-09-09 2007-04-19 Csaba Pribenszky Post-thaw survival of chryopreserved biological material by hydrostatic pressure challenge
WO2007052431A1 (ja) 2005-10-31 2007-05-10 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007063754A1 (ja) 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2007063796A1 (ja) 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子
US7230107B1 (en) 2004-12-29 2007-06-12 E. I. Du Pont De Nemours And Company Metal quinoline complexes
US7250226B2 (en) 2001-08-31 2007-07-31 Nippon Hoso Kyokai Phosphorescent compound, a phosphorescent composition and an organic light-emitting device
WO2007086552A1 (ja) 2006-01-30 2007-08-02 Chisso Corporation 新規化合物およびこれを用いた有機電界発光素子
US20070190359A1 (en) 2006-02-10 2007-08-16 Knowles David B Metal complexes of cyclometallated imidazo[1,2-ƒ]phenanthridine and diimidazo[1,2-a:1',2'-c]quinazoline ligands and isoelectronic and benzannulated analogs thereof
JP2007254297A (ja) 2006-03-20 2007-10-04 Nippon Steel Chem Co Ltd 発光層化合物及び有機電界発光素子
US7279704B2 (en) 2004-05-18 2007-10-09 The University Of Southern California Complexes with tridentate ligands
US20070278938A1 (en) 2006-04-26 2007-12-06 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and electroluminescence device using the same
WO2007142083A1 (ja) 2006-06-02 2007-12-13 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
US20080015355A1 (en) 2004-06-28 2008-01-17 Thomas Schafer Electroluminescent Metal Complexes With Triazoles And Benzotriazoles
US7338722B2 (en) 2003-03-24 2008-03-04 The University Of Southern California Phenyl and fluorenyl substituted phenyl-pyrazole complexes of Ir
JP2008074939A (ja) 2006-09-21 2008-04-03 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2008078414A (ja) 2006-09-21 2008-04-03 Matsushita Electric Works Ltd 有機エレクトロルミネッセンス素子
US20080106190A1 (en) 2006-08-23 2008-05-08 Idemitsu Kosan Co., Ltd. Aromatic amine derivatives and organic electroluminescent device using same
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
US20080124572A1 (en) 2006-11-24 2008-05-29 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence device using the same
US7393599B2 (en) 2004-05-18 2008-07-01 The University Of Southern California Luminescent compounds with carbene ligands
US7396598B2 (en) 2001-06-20 2008-07-08 Showa Denko K.K. Light emitting material and organic light-emitting device
WO2008101842A1 (en) 2007-02-23 2008-08-28 Basf Se Electroluminescent metal complexes with benzotriazoles
US7420203B2 (en) 2001-12-05 2008-09-02 Semiconductor Energy Laboratory Co., Ltd. Organic semiconductor element
US20080220265A1 (en) 2006-12-08 2008-09-11 Universal Display Corporation Cross-linkable Iridium Complexes and Organic Light-Emitting Devices Using the Same
WO2008114690A1 (ja) 2007-03-15 2008-09-25 Hodogaya Chemical Co., Ltd. 置換されたビピリジル基とピリドインドール環構造がフェニレン基を介して連結した化合物および有機エレクトロルミネッセンス素子
US7445855B2 (en) 2004-05-18 2008-11-04 The University Of Southern California Cationic metal-carbene complexes
WO2008132085A1 (de) 2007-04-26 2008-11-06 Basf Se Silane enthaltend phenothiazin-s-oxid oder phenothiazin-s,s-dioxid-gruppen und deren verwendung in oleds
JP2008277810A (ja) 2008-04-14 2008-11-13 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及び表示装置
WO2008140115A1 (ja) 2007-05-16 2008-11-20 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US20080297033A1 (en) 2006-02-10 2008-12-04 Knowles David B Blue phosphorescent imidazophenanthridine materials
WO2009000673A2 (en) 2007-06-22 2008-12-31 Basf Se Light emitting cu(i) complexes
WO2009003898A1 (de) 2007-07-05 2009-01-08 Basf Se Organische leuchtdioden enthaltend carben-übergangsmetall-komplex-emitter und mindestens eine verbindung ausgewählt aus disilylcarbazolen; disilyldibenzofuranen, disilyldibenzothiophenen, disilyldibenzophospholen, disilyldibenzothiophen-s-oxiden und disilyldibenzothiophen-s,s-dioxiden
US20090017330A1 (en) 2007-07-10 2009-01-15 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device utilizing the same
JP4213169B2 (ja) 2006-04-21 2009-01-21 出光興産株式会社 有機el発光素子およびそれを用いた発光装置
US20090030202A1 (en) 2007-07-10 2009-01-29 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent element and organic electroluminescent element employing the same
WO2009018009A1 (en) 2007-07-27 2009-02-05 E. I. Du Pont De Nemours And Company Aqueous dispersions of electrically conducting polymers containing inorganic nanoparticles
WO2009021126A2 (en) 2007-08-08 2009-02-12 Universal Display Corporation Benzo-fused thiophene or benzo-fused furan compounds comprising a triphenylene group
US20090039776A1 (en) 2007-08-09 2009-02-12 Canon Kabushiki Kaisha Organometallic complex and organic light-emitting element using same
JP2009076929A (ja) 2003-11-10 2009-04-09 Junji Kido 有機素子、及び、有機素子の製造方法
US20090101870A1 (en) 2007-10-22 2009-04-23 E. I. Du Pont De Nemours And Company Electron transport bi-layers and devices made with such bi-layers
WO2009050290A1 (de) 2007-10-17 2009-04-23 Basf Se Übergangsmetallkomplexe mit verbrückten carbenliganden und deren verwendung in oleds
US20090108737A1 (en) 2006-12-08 2009-04-30 Raymond Kwong Light-emitting organometallic complexes
WO2009054253A1 (ja) 2007-10-26 2009-04-30 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US20090115316A1 (en) 2007-11-02 2009-05-07 Shiying Zheng Organic electroluminescent device having an azatriphenylene derivative
US7534505B2 (en) 2004-05-18 2009-05-19 The University Of Southern California Organometallic compounds for use in electroluminescent devices
WO2009066779A1 (ja) 2007-11-22 2009-05-28 Idemitsu Kosan Co., Ltd. 有機el素子
JP2009114086A (ja) 2007-11-02 2009-05-28 Canon Inc 白金錯体及びこれを用いた有機発光素子
WO2009069442A1 (ja) 2007-11-26 2009-06-04 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2009124114A (ja) 2007-10-22 2009-06-04 Chisso Corp シロール誘導体化合物を用いた電子輸送・注入層用材料及び有機電界発光素子
US20090165846A1 (en) 2005-09-07 2009-07-02 Universitaet Braunschweig Triplet emitter having condensed five-membered rings
WO2009086028A2 (en) 2007-12-28 2009-07-09 Universal Display Corporation Carbazole-containing materials in phosphorescent light emitting diodes
US20090179554A1 (en) 2006-05-11 2009-07-16 Hitoshi Kuma Organic electroluminescent device
WO2009100991A1 (en) 2008-02-12 2009-08-20 Basf Se Electroluminescent metal complexes with dibenzo[f,h]quinoxalines
WO2009113646A1 (ja) 2008-03-13 2009-09-17 宇部興産株式会社 置換エチニル金-環状アルキルアミノカルベン錯体及び有機エレクトロルミネッセンス素子
JP2009209133A (ja) 2008-02-05 2009-09-17 Chisso Corp ピリジル基を有するアントラセン誘導体化合物及び有機電界発光素子
WO2010032663A1 (ja) 2008-09-17 2010-03-25 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料
JP2010093181A (ja) 2008-10-10 2010-04-22 Canon Inc 有機発光素子
WO2010047707A1 (en) 2008-10-23 2010-04-29 Universal Display Corporation Organic light emitting device and materials for use in same
WO2010086089A1 (de) 2009-02-02 2010-08-05 Merck Patent Gmbh Metallkomplexe
JP2010192719A (ja) 2009-02-19 2010-09-02 Yamagata Promotional Organization For Industrial Technology 有機エレクトロルミネッセンス素子
JP2010251675A (ja) 2008-05-13 2010-11-04 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2010126234A1 (en) * 2009-04-29 2010-11-04 Dow Advanced Display Materials,Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2010150593A1 (ja) 2009-06-24 2010-12-29 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置、照明装置及び縮合多環式複素環化合物
WO2011004639A1 (ja) 2009-07-07 2011-01-13 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、新規な化合物、照明装置及び表示装置
EP2311826A2 (en) 2008-11-03 2011-04-20 LG Chem, Ltd. Novel nitrogen-containing heterocyclic compound and organic electronic device using the same
WO2011051404A1 (de) 2009-10-28 2011-05-05 Basf Se Heteroleptische carben-komplexe und deren verwendung in der organischen elektronik
JP2011096679A (ja) 2005-09-22 2011-05-12 Panasonic Electric Works Co Ltd 有機発光素子及びその製造方法
US7964293B2 (en) 2005-09-05 2011-06-21 Jnc Corporation Electron transport material and organic electroluminescent device using the same
WO2011073149A1 (de) 2009-12-14 2011-06-23 Basf Se Metallkomplexe, enthaltend diazabenzimidazolcarben-liganden und deren verwendung in oleds
JP4711424B2 (ja) 2005-05-20 2011-06-29 エルジー ディスプレイ カンパニー リミテッド 積層型oled用中間電極
WO2011086935A1 (ja) 2010-01-15 2011-07-21 出光興産株式会社 含窒素複素環誘導体及びそれを含んでなる有機エレクトロルミネッセンス素子
JP2011181303A (ja) 2010-03-01 2011-09-15 Usc Corp 蓋体係止構造、電池収容構造及びカード型電子機器
JP2011213643A (ja) 2010-03-31 2011-10-27 Canon Inc 銅錯体化合物及びこれを用いた有機発光素子
WO2011134013A1 (en) 2010-04-28 2011-11-03 Commonwealth Scientific And Industrial Research Organisation Electroluminescent devices based on phosphorescent iridium and related group viii metal multicyclic compounds
WO2011156793A1 (en) 2010-06-11 2011-12-15 Universal Display Corporation Triplet-triplet annihilation up-conversion for display and lighting applications
WO2011157339A1 (de) 2010-06-15 2011-12-22 Merck Patent Gmbh Metallkomplexe
WO2012020327A1 (en) 2010-04-16 2012-02-16 Basf Se Bridged benzimidazole-carbene complexes and use thereof in oleds
WO2012023947A1 (en) 2010-08-20 2012-02-23 Universal Display Corporation Bicarbazole compounds for oleds
JP2012049518A (ja) * 2010-07-27 2012-03-08 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子材料、化合物、有機エレクトロルミネッセンス素子、表示装置、並びに照明装置
JP2012069737A (ja) 2010-09-24 2012-04-05 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2012087007A1 (en) 2010-12-21 2012-06-28 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2012115034A1 (ja) 2011-02-22 2012-08-30 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2012162325A1 (en) 2011-05-25 2012-11-29 Universal Display Corporation Host materials for oleds
JP2013028605A (ja) * 2011-07-28 2013-02-07 Universal Display Corp 燐光oledのためのホスト物質
JP2013093432A (ja) * 2011-10-26 2013-05-16 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2013100239A (ja) * 2011-11-08 2013-05-23 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2013103937A (ja) * 2011-11-14 2013-05-30 Universal Display Corp トリフェニレンシランホスト

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129702A1 (ja) 2006-05-09 2007-11-15 Idemitsu Kosan Co., Ltd. ケイ素含有化合物及びそれを利用した有機エレクトロルミネッセンス素子
KR20120020901A (ko) * 2010-08-31 2012-03-08 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
JP5973762B2 (ja) * 2011-03-31 2016-08-23 ユー・ディー・シー アイルランド リミテッド 電荷輸送材料、有機電界発光素子及び該素子を用いたことを特徴とする発光装置、表示装置または照明装置
JP5609761B2 (ja) * 2011-05-11 2014-10-22 コニカミノルタ株式会社 プチセン系化合物、有機エレクトロルミネッセンス素子および照明装置
US9184399B2 (en) * 2012-05-04 2015-11-10 Universal Display Corporation Asymmetric hosts with triaryl silane side chains

Patent Citations (219)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172691A (ja) 1986-01-24 1987-07-29 株式会社小松製作所 薄膜el素子
JPS63314795A (ja) 1987-06-18 1988-12-22 Komatsu Ltd 薄膜el素子
US4774435A (en) 1987-12-22 1988-09-27 Gte Laboratories Incorporated Thin film electroluminescent device
JPH01220394A (ja) 1988-02-29 1989-09-04 Hitachi Ltd 高輝度el素子
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH04297076A (ja) 1991-01-31 1992-10-21 Toshiba Corp 有機el素子
JPH06325871A (ja) 1993-05-18 1994-11-25 Mitsubishi Kasei Corp 有機電界発光素子
EP0650955A1 (en) 1993-11-01 1995-05-03 Hodogaya Chemical Co., Ltd. Amine compound and electro-luminescence device comprising same
JP3496681B2 (ja) 1994-12-13 2004-02-16 ザ、トラスティーズ オブ プリンストン ユニバーシティ 多色オーガニック発光素子
JPH08288069A (ja) 1995-04-07 1996-11-01 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子
JPH0917574A (ja) 1995-04-27 1997-01-17 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH0945479A (ja) 1995-07-27 1997-02-14 Hewlett Packard Co <Hp> 有機エレクトロルミネセンス装置及び有機エレクトロルミネセンス装置の製造方法
JPH09260062A (ja) 1996-03-25 1997-10-03 Tdk Corp 有機エレクトロルミネセンス素子
US20030162053A1 (en) 1996-06-25 2003-08-28 Marks Tobin J. Organic light - emitting diodes and methods for assembly and enhanced charge injection
JPH1074586A (ja) 1996-07-29 1998-03-17 Eastman Kodak Co エレクトロルミネセンスデバイスで用いられる二層電子注入電極
JPH10270172A (ja) 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
US6337492B1 (en) 1997-07-11 2002-01-08 Emagin Corporation Serially-connected organic light emitting diode stack having conductors sandwiching each light emitting layer
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JPH11283751A (ja) 1998-03-27 1999-10-15 Nec Corp 有機エレクトロルミネッセンス素子
US6107734A (en) 1998-05-20 2000-08-22 Idemitsu Kosan Co., Ltd. Organic EL light emitting element with light emitting layers and intermediate conductive layer
JP3884564B2 (ja) 1998-05-20 2007-02-21 出光興産株式会社 有機el発光素子およびそれを用いた発光装置
US6528187B1 (en) 1998-09-08 2003-03-04 Fuji Photo Film Co., Ltd. Material for luminescence element and luminescence element using the same
US6097147A (en) 1998-09-14 2000-08-01 The Trustees Of Princeton University Structure for high efficiency electroluminescent device
US20020034656A1 (en) 1998-09-14 2002-03-21 Thompson Mark E. Organometallic complexes as phosphorescent emitters in organic LEDs
JP2000196140A (ja) 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
JP2001102175A (ja) 1999-09-29 2001-04-13 Junji Kido 有機エレクトロルミネッセント素子、有機エレクトロルミネッセント素子群及びその発光スペクトルの制御方法
JP2001202827A (ja) 1999-11-10 2001-07-27 Matsushita Electric Works Ltd 透明導電性基板、発光素子、平面発光板、平面発光板の製造方法、平面蛍光ランプ、プラズマディスプレイ
WO2001039234A2 (en) 1999-11-24 2001-05-31 The Trustees Of Princeton University Organic light emitting diode having a blue phosphorescent molecule as an emitter
US20020158242A1 (en) 1999-12-31 2002-10-31 Se-Hwan Son Electronic device comprising organic compound having p-type semiconducting characteristics
JP2003519432A (ja) 1999-12-31 2003-06-17 エルジー・ケミカル・カンパニー・リミテッド p−型半導体性質を有する有機化合物を含む電子素子
JP2002302671A (ja) 2000-02-10 2002-10-18 Fuji Photo Film Co Ltd イリジウム錯体からなる発光素子材料及び発光素子
JP2001257076A (ja) 2000-03-13 2001-09-21 Tdk Corp 有機el素子
JP2002008860A (ja) 2000-04-18 2002-01-11 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002015871A (ja) 2000-04-27 2002-01-18 Toray Ind Inc 発光素子
JP2001313179A (ja) 2000-05-01 2001-11-09 Mitsubishi Chemicals Corp 有機電界発光素子
JP2001357977A (ja) 2000-06-12 2001-12-26 Fuji Photo Film Co Ltd 有機電界発光素子
WO2002002714A2 (en) 2000-06-30 2002-01-10 E.I. Du Pont De Nemours And Company Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
JP2002043056A (ja) 2000-07-19 2002-02-08 Canon Inc 発光素子
WO2002015645A1 (en) 2000-08-11 2002-02-21 The Trustees Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
JP2002141173A (ja) 2000-08-22 2002-05-17 Semiconductor Energy Lab Co Ltd 発光装置
JP2002319491A (ja) 2000-08-24 2002-10-31 Fuji Photo Film Co Ltd 発光素子及び新規重合体子
JP2002075645A (ja) 2000-08-29 2002-03-15 Semiconductor Energy Lab Co Ltd 発光装置
JP2003081988A (ja) 2000-09-26 2003-03-19 Canon Inc 発光素子、表示装置及び発光素子用金属配位化合物
JP2002105445A (ja) 2000-09-29 2002-04-10 Fuji Photo Film Co Ltd 有機発光素子材料及びそれを用いた有機発光素子
JP2002203683A (ja) 2000-10-30 2002-07-19 Toyota Central Res & Dev Lab Inc 有機電界発光素子
JP2002231453A (ja) 2000-11-30 2002-08-16 Mitsubishi Chemicals Corp 有機電界発光素子
US20030138657A1 (en) 2000-12-07 2003-07-24 Canon Kabushiki Kaisha Deuterated semi-conducting organic compounds used for opto-electronic devices
JP2002305084A (ja) 2000-12-25 2002-10-18 Fuji Photo Film Co Ltd 新規インドール誘導体およびそれを利用した発光素子
JP2002255934A (ja) 2000-12-25 2002-09-11 Fuji Photo Film Co Ltd 新規化合物、その重合体、それらを利用した発光素子材料およびその発光素子
JP2002280183A (ja) 2000-12-28 2002-09-27 Toshiba Corp 有機el素子および表示装置
JP2002260861A (ja) 2001-01-02 2002-09-13 Eastman Kodak Co 有機発光デバイス
US20020134984A1 (en) 2001-02-01 2002-09-26 Fuji Photo Film Co., Ltd. Transition metal complex and light-emitting device
JP2002234888A (ja) 2001-02-09 2002-08-23 Mitsui Chemicals Inc アミン化合物および該化合物を含有する有機電界発光素子
US6921915B2 (en) 2001-03-08 2005-07-26 Canon Kabushiki Kaisha Metal coordination compound, luminescence device and display apparatus
JP2002363552A (ja) 2001-03-08 2002-12-18 Univ Of Hong Kong 有機金属発光材料
JP2002334786A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334787A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334789A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002334788A (ja) 2001-03-09 2002-11-22 Sony Corp 有機電界発光素子
JP2002338579A (ja) 2001-03-16 2002-11-27 Fuji Photo Film Co Ltd ヘテロ環化合物及びそれを用いた発光素子
JP2002299060A (ja) 2001-03-30 2002-10-11 Fuji Photo Film Co Ltd 有機発光素子
JP2002302516A (ja) 2001-04-03 2002-10-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
JP2002363227A (ja) 2001-04-03 2002-12-18 Fuji Photo Film Co Ltd 新規ポリマーおよびそれを用いた発光素子
JP2002305083A (ja) 2001-04-04 2002-10-18 Mitsubishi Chemicals Corp 有機電界発光素子
JP2002308855A (ja) 2001-04-05 2002-10-23 Fuji Photo Film Co Ltd 新規化合物、およびそれを用いた発光素子
JP2002308837A (ja) 2001-04-05 2002-10-23 Fuji Photo Film Co Ltd 新規化合物、およびそれを用いた発光素子
JP2002343568A (ja) 2001-05-10 2002-11-29 Sony Corp 有機電界発光素子
JP2002352957A (ja) 2001-05-23 2002-12-06 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
US20030152802A1 (en) 2001-06-19 2003-08-14 Akira Tsuboyama Metal coordination compound and organic liminescence device
US7396598B2 (en) 2001-06-20 2008-07-08 Showa Denko K.K. Light emitting material and organic light-emitting device
JP2003003165A (ja) 2001-06-25 2003-01-08 Showa Denko Kk 有機発光素子および発光材料
JP2003031367A (ja) 2001-07-11 2003-01-31 Konica Corp 有機エレクトロルミネッセンス素子及び表示装置
JP2003027048A (ja) 2001-07-11 2003-01-29 Fuji Photo Film Co Ltd 発光素子
JP2003045676A (ja) 2001-07-26 2003-02-14 Junji Kido 有機エレクトロルミネッセント素子
JP2003045662A (ja) 2001-08-01 2003-02-14 Konica Corp 有機エレクトロルミネッセンス素子及び表示装置
US7250226B2 (en) 2001-08-31 2007-07-31 Nippon Hoso Kyokai Phosphorescent compound, a phosphorescent composition and an organic light-emitting device
WO2003040257A1 (en) 2001-11-07 2003-05-15 E. I. Du Pont De Nemours And Company Electroluminescent platinum compounds and devices made with such compounds
US7420203B2 (en) 2001-12-05 2008-09-02 Semiconductor Energy Laboratory Co., Ltd. Organic semiconductor element
US7473923B2 (en) 2001-12-05 2009-01-06 Semiconductor Energy Laboratory Co., Ltd. Organic semiconductor element
US20030175553A1 (en) 2001-12-28 2003-09-18 Thompson Mark E. White light emitting oleds from combined monomer and aggregate emission
WO2003060956A2 (en) 2002-01-18 2003-07-24 Lg Chem, Ltd. New material for transporting electrons and organic electroluminescent display using the same
US6872472B2 (en) 2002-02-15 2005-03-29 Eastman Kodak Company Providing an organic electroluminescent device having stacked electroluminescent units
JP2003282270A (ja) 2002-03-25 2003-10-03 Konica Corp 有機エレクトロルミネッセンス素子及びそれを用いた表示装置
JP2003272860A (ja) 2002-03-26 2003-09-26 Junji Kido 有機エレクトロルミネッセント素子
JP2004068143A (ja) 2002-06-10 2004-03-04 Konica Minolta Holdings Inc 薄膜形成方法並びに該薄膜形成方法により薄膜が形成された基材
US20040036077A1 (en) 2002-08-22 2004-02-26 Fuji Photo Film Co., Ltd. Light emitting element
US20050244673A1 (en) 2002-08-27 2005-11-03 Fujitsu Limited Organometallic complex, organic EL element and organic EL display
US20060098120A1 (en) 2002-09-16 2006-05-11 France Telecom Method for acquiring data describing audio-visual contents, system, broadcast server, description server, and reception terminal therefor
US6687266B1 (en) 2002-11-08 2004-02-03 Universal Display Corporation Organic light emitting materials and devices
WO2004063159A1 (ja) 2003-01-10 2004-07-29 Idemitsu Kosan Co., Ltd. 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2004080975A1 (ja) 2003-03-13 2004-09-23 Idemitsu Kosan Co., Ltd. 新規含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US7338722B2 (en) 2003-03-24 2008-03-04 The University Of Southern California Phenyl and fluorenyl substituted phenyl-pyrazole complexes of Ir
US7090928B2 (en) 2003-04-01 2006-08-15 The University Of Southern California Binuclear compounds
WO2004093207A2 (de) 2003-04-15 2004-10-28 Covion Organic Semiconductors Gmbh Mischungen von organischen zur emission befähigten halbleitern und matrixmaterialien, deren verwendung und elektronikbauteile enthaltend diese mischungen
WO2004107822A1 (ja) 2003-05-29 2004-12-09 Nippon Steel Chemical Co., Ltd. 有機電界発光素子
WO2005009087A1 (ja) 2003-07-02 2005-01-27 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子及びそれを用いた表示装置
US20050025993A1 (en) 2003-07-25 2005-02-03 Thompson Mark E. Materials and structures for enhancing the performance of organic light emitting devices
WO2005019373A2 (de) 2003-08-19 2005-03-03 Basf Aktiengesellschaft Übergangsmetallkomplexe mit carbenliganden als emitter für organische licht-emittierende dioden (oleds)
US20070087321A1 (en) 2003-09-09 2007-04-19 Csaba Pribenszky Post-thaw survival of chryopreserved biological material by hydrostatic pressure challenge
WO2005030900A1 (ja) 2003-09-25 2005-04-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子
JP2005112765A (ja) 2003-10-07 2005-04-28 Mitsui Chemicals Inc 複素環化合物および該化合物を含有する有機電界発光素子
JP2009076929A (ja) 2003-11-10 2009-04-09 Junji Kido 有機素子、及び、有機素子の製造方法
US20050112407A1 (en) 2003-11-21 2005-05-26 Fuji Photo Film Co., Ltd. Organic electroluminescent device
US7332232B2 (en) 2004-02-03 2008-02-19 Universal Display Corporation OLEDs utilizing multidentate ligand systems
WO2005076380A2 (en) 2004-02-03 2005-08-18 Universal Display Corporation Oleds utilizing multidentate ligand systems
WO2005085387A1 (ja) 2004-03-08 2005-09-15 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを利用した有機エレクトロルミネッセンス素子
WO2005089025A1 (ja) 2004-03-15 2005-09-22 Nippon Steel Chemical Co., Ltd. 有機電界発光素子
WO2005094130A1 (ja) 2004-03-26 2005-10-06 Matsushita Electric Works, Ltd. 有機発光素子
US20050238919A1 (en) 2004-04-23 2005-10-27 Fuji Photo Film Co., Ltd. Organic electroluminescent device
JP2005340187A (ja) 2004-04-28 2005-12-08 Semiconductor Energy Lab Co Ltd 発光素子およびその作製方法、並びに前記発光素子を用いた発光装置
US7393599B2 (en) 2004-05-18 2008-07-01 The University Of Southern California Luminescent compounds with carbene ligands
US7445855B2 (en) 2004-05-18 2008-11-04 The University Of Southern California Cationic metal-carbene complexes
US7534505B2 (en) 2004-05-18 2009-05-19 The University Of Southern California Organometallic compounds for use in electroluminescent devices
US7279704B2 (en) 2004-05-18 2007-10-09 The University Of Southern California Complexes with tridentate ligands
US20050260441A1 (en) 2004-05-18 2005-11-24 Thompson Mark E Luminescent compounds with carbene ligands
JP2005340122A (ja) 2004-05-31 2005-12-08 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2005123873A1 (ja) 2004-06-17 2005-12-29 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
US20080015355A1 (en) 2004-06-28 2008-01-17 Thomas Schafer Electroluminescent Metal Complexes With Triazoles And Benzotriazoles
US20060008670A1 (en) 2004-07-06 2006-01-12 Chun Lin Organic light emitting materials and devices
JP2006024791A (ja) 2004-07-08 2006-01-26 International Manufacturing & Engineering Services Co Ltd 有機素子、有機エレクトロルミネッセント素子、及び有機太陽電池
WO2006009024A1 (ja) 2004-07-23 2006-01-26 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2006049393A (ja) 2004-07-30 2006-02-16 Sanyo Electric Co Ltd 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置
JP2006049394A (ja) 2004-07-30 2006-02-16 Sanyo Electric Co Ltd 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置
JP2006049396A (ja) 2004-07-30 2006-02-16 Sanyo Electric Co Ltd 有機エレクトロルミネッセント素子及び有機エレクトロルミネッセント表示装置
US20060035469A1 (en) 2004-08-10 2006-02-16 Nugent Truong Methods for forming an undercut region and electronic devices incorporating the same
US20060103874A1 (en) 2004-11-05 2006-05-18 Brother Kogyo Kabushiki Kaisha System, device, server, and program for image processing
JP2006135145A (ja) 2004-11-08 2006-05-25 Sony Corp 表示素子用有機材料および表示素子
WO2006056418A2 (de) 2004-11-25 2006-06-01 Basf Aktiengesellschaft Verwendung von übergangsmetall-carbenkomplexen in organischen licht-emittierenden dioden (oleds)
JP2006156445A (ja) 2004-11-25 2006-06-15 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US20080018221A1 (en) 2004-11-25 2008-01-24 Basf Aktiengesellschaft Use Of Transition Metal Carbene Complexes In Organic Light-Emitting Diodes (Oleds)
WO2006067931A1 (ja) 2004-12-22 2006-06-29 Idemitsu Kosan Co., Ltd. アントラセン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US7230107B1 (en) 2004-12-29 2007-06-12 E. I. Du Pont De Nemours And Company Metal quinoline complexes
JP2006228712A (ja) 2005-01-21 2006-08-31 Semiconductor Energy Lab Co Ltd 発光装置
WO2006082742A1 (ja) 2005-02-04 2006-08-10 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
US20060202194A1 (en) 2005-03-08 2006-09-14 Jeong Hyun C Red phosphorescene compounds and organic electroluminescence device using the same
WO2006114966A1 (ja) 2005-04-18 2006-11-02 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US20060240279A1 (en) 2005-04-21 2006-10-26 Vadim Adamovich Non-blocked phosphorescent OLEDs
US20060251923A1 (en) 2005-05-06 2006-11-09 Chun Lin Stability OLED materials and devices
US20060263635A1 (en) 2005-05-06 2006-11-23 Fuji Photo Film Co., Ltd. Organic electroluminescent device
JP4711424B2 (ja) 2005-05-20 2011-06-29 エルジー ディスプレイ カンパニー リミテッド 積層型oled用中間電極
US20060280965A1 (en) 2005-05-31 2006-12-14 Raymond Kwong Triphenylene hosts in phosphorescent light emitting diodes
WO2007002683A2 (en) 2005-06-27 2007-01-04 E. I. Du Pont De Nemours And Company Electrically conductive polymer compositions
WO2007004380A1 (ja) 2005-07-01 2007-01-11 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007059848A (ja) 2005-08-26 2007-03-08 Dainippon Printing Co Ltd 有機エレクトロルミネッセンス素子
US7964293B2 (en) 2005-09-05 2011-06-21 Jnc Corporation Electron transport material and organic electroluminescent device using the same
US20090165846A1 (en) 2005-09-07 2009-07-02 Universitaet Braunschweig Triplet emitter having condensed five-membered rings
JP2011096679A (ja) 2005-09-22 2011-05-12 Panasonic Electric Works Co Ltd 有機発光素子及びその製造方法
WO2007052431A1 (ja) 2005-10-31 2007-05-10 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007063754A1 (ja) 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2007063796A1 (ja) 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子
WO2007086552A1 (ja) 2006-01-30 2007-08-02 Chisso Corporation 新規化合物およびこれを用いた有機電界発光素子
US20080297033A1 (en) 2006-02-10 2008-12-04 Knowles David B Blue phosphorescent imidazophenanthridine materials
US20070190359A1 (en) 2006-02-10 2007-08-16 Knowles David B Metal complexes of cyclometallated imidazo[1,2-ƒ]phenanthridine and diimidazo[1,2-a:1',2'-c]quinazoline ligands and isoelectronic and benzannulated analogs thereof
JP2007254297A (ja) 2006-03-20 2007-10-04 Nippon Steel Chem Co Ltd 発光層化合物及び有機電界発光素子
JP4213169B2 (ja) 2006-04-21 2009-01-21 出光興産株式会社 有機el発光素子およびそれを用いた発光装置
US20070278938A1 (en) 2006-04-26 2007-12-06 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and electroluminescence device using the same
US20090179554A1 (en) 2006-05-11 2009-07-16 Hitoshi Kuma Organic electroluminescent device
EP2034538A1 (en) 2006-06-02 2009-03-11 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence element, and organic electroluminescence element using the material
WO2007142083A1 (ja) 2006-06-02 2007-12-13 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
US20080106190A1 (en) 2006-08-23 2008-05-08 Idemitsu Kosan Co., Ltd. Aromatic amine derivatives and organic electroluminescent device using same
JP2008078414A (ja) 2006-09-21 2008-04-03 Matsushita Electric Works Ltd 有機エレクトロルミネッセンス素子
JP2008074939A (ja) 2006-09-21 2008-04-03 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
US20080124572A1 (en) 2006-11-24 2008-05-29 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence device using the same
US20080220265A1 (en) 2006-12-08 2008-09-11 Universal Display Corporation Cross-linkable Iridium Complexes and Organic Light-Emitting Devices Using the Same
US20090108737A1 (en) 2006-12-08 2009-04-30 Raymond Kwong Light-emitting organometallic complexes
WO2008101842A1 (en) 2007-02-23 2008-08-28 Basf Se Electroluminescent metal complexes with benzotriazoles
WO2008114690A1 (ja) 2007-03-15 2008-09-25 Hodogaya Chemical Co., Ltd. 置換されたビピリジル基とピリドインドール環構造がフェニレン基を介して連結した化合物および有機エレクトロルミネッセンス素子
WO2008132085A1 (de) 2007-04-26 2008-11-06 Basf Se Silane enthaltend phenothiazin-s-oxid oder phenothiazin-s,s-dioxid-gruppen und deren verwendung in oleds
WO2008140115A1 (ja) 2007-05-16 2008-11-20 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2009000673A2 (en) 2007-06-22 2008-12-31 Basf Se Light emitting cu(i) complexes
WO2009003898A1 (de) 2007-07-05 2009-01-08 Basf Se Organische leuchtdioden enthaltend carben-übergangsmetall-komplex-emitter und mindestens eine verbindung ausgewählt aus disilylcarbazolen; disilyldibenzofuranen, disilyldibenzothiophenen, disilyldibenzophospholen, disilyldibenzothiophen-s-oxiden und disilyldibenzothiophen-s,s-dioxiden
US20090030202A1 (en) 2007-07-10 2009-01-29 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent element and organic electroluminescent element employing the same
US20090017330A1 (en) 2007-07-10 2009-01-15 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device utilizing the same
WO2009018009A1 (en) 2007-07-27 2009-02-05 E. I. Du Pont De Nemours And Company Aqueous dispersions of electrically conducting polymers containing inorganic nanoparticles
WO2009021126A2 (en) 2007-08-08 2009-02-12 Universal Display Corporation Benzo-fused thiophene or benzo-fused furan compounds comprising a triphenylene group
US20090039776A1 (en) 2007-08-09 2009-02-12 Canon Kabushiki Kaisha Organometallic complex and organic light-emitting element using same
WO2009050290A1 (de) 2007-10-17 2009-04-23 Basf Se Übergangsmetallkomplexe mit verbrückten carbenliganden und deren verwendung in oleds
JP2009124114A (ja) 2007-10-22 2009-06-04 Chisso Corp シロール誘導体化合物を用いた電子輸送・注入層用材料及び有機電界発光素子
US20090101870A1 (en) 2007-10-22 2009-04-23 E. I. Du Pont De Nemours And Company Electron transport bi-layers and devices made with such bi-layers
WO2009054253A1 (ja) 2007-10-26 2009-04-30 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US20090115316A1 (en) 2007-11-02 2009-05-07 Shiying Zheng Organic electroluminescent device having an azatriphenylene derivative
JP2009114086A (ja) 2007-11-02 2009-05-28 Canon Inc 白金錯体及びこれを用いた有機発光素子
WO2009066779A1 (ja) 2007-11-22 2009-05-28 Idemitsu Kosan Co., Ltd. 有機el素子
WO2009069442A1 (ja) 2007-11-26 2009-06-04 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2009086028A2 (en) 2007-12-28 2009-07-09 Universal Display Corporation Carbazole-containing materials in phosphorescent light emitting diodes
JP2009209133A (ja) 2008-02-05 2009-09-17 Chisso Corp ピリジル基を有するアントラセン誘導体化合物及び有機電界発光素子
WO2009100991A1 (en) 2008-02-12 2009-08-20 Basf Se Electroluminescent metal complexes with dibenzo[f,h]quinoxalines
WO2009113646A1 (ja) 2008-03-13 2009-09-17 宇部興産株式会社 置換エチニル金-環状アルキルアミノカルベン錯体及び有機エレクトロルミネッセンス素子
JP2008277810A (ja) 2008-04-14 2008-11-13 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及び表示装置
JP2010251675A (ja) 2008-05-13 2010-11-04 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2010032663A1 (ja) 2008-09-17 2010-03-25 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料
JP2010093181A (ja) 2008-10-10 2010-04-22 Canon Inc 有機発光素子
WO2010047707A1 (en) 2008-10-23 2010-04-29 Universal Display Corporation Organic light emitting device and materials for use in same
EP2311826A2 (en) 2008-11-03 2011-04-20 LG Chem, Ltd. Novel nitrogen-containing heterocyclic compound and organic electronic device using the same
WO2010086089A1 (de) 2009-02-02 2010-08-05 Merck Patent Gmbh Metallkomplexe
JP2010192719A (ja) 2009-02-19 2010-09-02 Yamagata Promotional Organization For Industrial Technology 有機エレクトロルミネッセンス素子
WO2010126234A1 (en) * 2009-04-29 2010-11-04 Dow Advanced Display Materials,Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2010150593A1 (ja) 2009-06-24 2010-12-29 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置、照明装置及び縮合多環式複素環化合物
WO2011004639A1 (ja) 2009-07-07 2011-01-13 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、新規な化合物、照明装置及び表示装置
WO2011051404A1 (de) 2009-10-28 2011-05-05 Basf Se Heteroleptische carben-komplexe und deren verwendung in der organischen elektronik
WO2011073149A1 (de) 2009-12-14 2011-06-23 Basf Se Metallkomplexe, enthaltend diazabenzimidazolcarben-liganden und deren verwendung in oleds
WO2011086935A1 (ja) 2010-01-15 2011-07-21 出光興産株式会社 含窒素複素環誘導体及びそれを含んでなる有機エレクトロルミネッセンス素子
JP2011181303A (ja) 2010-03-01 2011-09-15 Usc Corp 蓋体係止構造、電池収容構造及びカード型電子機器
JP2011213643A (ja) 2010-03-31 2011-10-27 Canon Inc 銅錯体化合物及びこれを用いた有機発光素子
WO2012020327A1 (en) 2010-04-16 2012-02-16 Basf Se Bridged benzimidazole-carbene complexes and use thereof in oleds
WO2011134013A1 (en) 2010-04-28 2011-11-03 Commonwealth Scientific And Industrial Research Organisation Electroluminescent devices based on phosphorescent iridium and related group viii metal multicyclic compounds
WO2011156793A1 (en) 2010-06-11 2011-12-15 Universal Display Corporation Triplet-triplet annihilation up-conversion for display and lighting applications
WO2011157339A1 (de) 2010-06-15 2011-12-22 Merck Patent Gmbh Metallkomplexe
JP2012049518A (ja) * 2010-07-27 2012-03-08 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子材料、化合物、有機エレクトロルミネッセンス素子、表示装置、並びに照明装置
WO2012023947A1 (en) 2010-08-20 2012-02-23 Universal Display Corporation Bicarbazole compounds for oleds
JP2012069737A (ja) 2010-09-24 2012-04-05 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2012087007A1 (en) 2010-12-21 2012-06-28 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2012115034A1 (ja) 2011-02-22 2012-08-30 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2012162325A1 (en) 2011-05-25 2012-11-29 Universal Display Corporation Host materials for oleds
JP2013028605A (ja) * 2011-07-28 2013-02-07 Universal Display Corp 燐光oledのためのホスト物質
JP2013093432A (ja) * 2011-10-26 2013-05-16 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2013100239A (ja) * 2011-11-08 2013-05-23 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2013103937A (ja) * 2011-11-14 2013-05-30 Universal Display Corp トリフェニレンシランホスト

Non-Patent Citations (44)

* Cited by examiner, † Cited by third party
Title
"Bunko II of Dai 4 Han Jikken Kagaku Koza", vol. 7, 1992, MARUZEN CO. LTD., pages: 398
"Handbook of Thin film evaluation", TECHNO SYSTEM, CO. LTD, pages: 423 - 425
"Organic EL Elements and Industrialization Front thereof", vol. 2, 30 November 1998, N.T.S. CO. LTD, article "Electrode materials", pages: 123 - 166
"Organic EL Elements and Industrialization Front thereof", vol. 2, 30 November 1998, N.T.S. CO. LTD., article "Electrode materials", pages: 123 - 166
"Shinpen Shikisai Kagaku Handbook", 1985, TOKYO DAIGAKU SHUPPAN KAI
ADV. MATER., vol. 16, 2004, pages 2003
ADV. MATER., vol. 17, 2005, pages 1059
ADV. MATER., vol. 19, 2007, pages 739
ADV. MATER., vol. 6, 1994, pages 677
ANGEW. CHEM. INT. ED., vol. 45, 2006, pages 7800
ANGEW. CHEM. INT. ED., vol. 47, 2008, pages 1
APPL. PHYS. LETT., vol. 51, 1987, pages 913
APPL. PHYS. LETT., vol. 69, 1996, pages 2160
APPL. PHYS. LETT., vol. 74, 1999, pages 1361
APPL. PHYS. LETT., vol. 75, 1999, pages 4
APPL. PHYS. LETT., vol. 78, 2001, pages 1622
APPL. PHYS. LETT., vol. 78, 2001, pages 673
APPL. PHYS. LETT., vol. 79, 2001, pages 156
APPL. PHYS. LETT., vol. 79, 2001, pages 449
APPL. PHYS. LETT., vol. 81, 2002, pages 162
APPL. PHYS. LETT., vol. 86, 2005, pages 153505
APPL. PHYS. LETT., vol. 90, 2007, pages 183503
CHEM. COMMUN., 2005, pages 2906
CHEM. LETT., vol. 34, 2005, pages 592
CHEM. MATER., vol. 15, 2003, pages 3148
CHEM. MATER., vol. 16, 2004, pages 2480
CHEM. MATER., vol. 17, 2005, pages 3532
CHEM. MATER., vol. 18, 2006, pages 5119
INORG. CHEM., vol. 40, 2001, pages 1704
INORG. CHEM., vol. 42, 2003, pages 1248
INORG. CHEM., vol. 46, 2007, pages 4308
J. APPL. PHYS., vol. 95, 2004, pages 5773
J. HUANG ET AL., APPLIED PHYSICS LETTERS, vol. 80, 2002, pages 139
J. LUMIN., vol. 72-74, 1997, pages 985
J. MATER. CHEM., vol. 3, 1993, pages 319
M. A. BALDO ET AL., NATURE, vol. 395, 1998, pages 151 - 154
M. A. BALDO ET AL., NATURE, vol. 403, no. 17, 2000, pages 750 - 753
NATURE, vol. 395, 1998, pages 151
ORGANOMETALLICS, vol. 23, 2004, pages 3745
See also references of EP2980878A4
SID SYMPOSIUM DIGEST, vol. 37, 2006, pages 923
SYNTH. MET., vol. 111, 2000, pages 421
SYNTH. MET., vol. 87, 1997, pages 171
SYNTH. MET., vol. 91, 1997, pages 209

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11296281B2 (en) 2017-03-15 2022-04-05 Merck Patent Gmbh Materials for organic electroluminescent devices
US11450811B2 (en) 2018-08-10 2022-09-20 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same

Also Published As

Publication number Publication date
EP2980878B1 (en) 2019-05-01
US20160056392A1 (en) 2016-02-25
JPWO2014157618A1 (ja) 2017-02-16
EP2980878A4 (en) 2016-11-09
EP2980878A1 (en) 2016-02-03
US10135002B2 (en) 2018-11-20
JP6314599B2 (ja) 2018-04-25
KR101798308B1 (ko) 2017-11-15
JP6350518B2 (ja) 2018-07-04
JP2014209618A (ja) 2014-11-06
KR20150123283A (ko) 2015-11-03

Similar Documents

Publication Publication Date Title
WO2017195669A1 (ja) 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP6350518B2 (ja) 有機エレクトロルミネッセンス素子、それを具備した照明装置及び表示装置
WO2018186462A1 (ja) 蛍光発光性化合物、有機材料組成物、発光性膜、有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子
WO2017170812A1 (ja) 発光性薄膜及び有機エレクトロルミネッセンス素子
JP6319319B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2018097153A1 (ja) 発光性膜、有機エレクトロルミネッセンス素子、有機材料組成物及び有機エレクトロルミネッセンス素子の製造方法
JP2017107992A (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び電子デバイス用有機機能性材料
JP2017123460A (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置及び照明装置
JP6011542B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2016036022A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、電荷移動性薄膜、表示装置及び照明装置
JP2018006700A (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置、π共役系化合物
JP6593114B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び芳香族複素環誘導体
WO2015087795A1 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP5998989B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP6020473B2 (ja) イリジウム錯体化合物、有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2017103436A (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び芳香族複素環誘導体
WO2018168292A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置、照明装置及び化合物
JP6755261B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2016194865A1 (ja) 有機エレクトロルミネッセンス素子
JP6805133B2 (ja) 電荷移動性薄膜用材料及び電荷移動性薄膜
JP6606986B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び芳香族複素環誘導体
JP2017054972A (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置、π共役系化合物、及び発光性薄膜
JP2016103497A (ja) 発光性組成物、表示装置及び照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775671

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508758

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157026217

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14780865

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014775671

Country of ref document: EP