WO2013179727A1 - ポリイミド前駆体及びポリイミド - Google Patents

ポリイミド前駆体及びポリイミド Download PDF

Info

Publication number
WO2013179727A1
WO2013179727A1 PCT/JP2013/057563 JP2013057563W WO2013179727A1 WO 2013179727 A1 WO2013179727 A1 WO 2013179727A1 JP 2013057563 W JP2013057563 W JP 2013057563W WO 2013179727 A1 WO2013179727 A1 WO 2013179727A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
polyimide precursor
chemical formula
film
repeating unit
Prior art date
Application number
PCT/JP2013/057563
Other languages
English (en)
French (fr)
Inventor
卓也 岡
幸徳 小濱
祥行 渡辺
久野 信治
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to US14/402,553 priority Critical patent/US10781288B2/en
Priority to JP2014518309A priority patent/JP6431369B2/ja
Priority to KR1020197022143A priority patent/KR102125660B1/ko
Priority to CN201380040087.9A priority patent/CN104508009B/zh
Priority to KR20147035881A priority patent/KR20150021527A/ko
Publication of WO2013179727A1 publication Critical patent/WO2013179727A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/70Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups and doubly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/82Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups and doubly-bound oxygen atoms bound to the same carbon skeleton with the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C69/757Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/08Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a carbon chain containing alicyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • the present invention relates to a polyimide having excellent properties such as transparency, bending resistance and high heat resistance, and having a very low linear thermal expansion coefficient up to a high temperature, and a precursor thereof.
  • Aromatic polyimide is essentially yellowish brown due to intramolecular conjugation and the formation of charge transfer complexes. For this reason, as a means to suppress coloration, for example, introduction of fluorine atoms into the molecule, imparting flexibility to the main chain, introduction of bulky groups as side chains, etc. inhibits intramolecular conjugation and charge transfer complex formation. Thus, a method for expressing transparency has been proposed. In addition, a method for expressing transparency by using a semi-alicyclic or fully alicyclic polyimide that does not form a charge transfer complex in principle has been proposed.
  • Patent Document 1 in order to obtain a thin, light, and hard-to-break active matrix display device, a normal film forming process is used on a transparent polyimide film substrate in which a tetracarboxylic acid component residue is an aliphatic group. It is disclosed that a thin film transistor is formed to obtain a thin film transistor substrate.
  • the polyimide specifically used here was prepared from tetracarboxylic acid component 1,2,4,5-cyclohexanetetracarboxylic dianhydride and diamine component 4,4′-diaminodiphenyl ether. Is.
  • Patent Document 2 discloses a colorless transparent resin film made of polyimide that is excellent in colorless transparency, heat resistance, and flatness, which is used for transparent substrates, thin film transistor substrates, flexible wiring substrates, and the like of liquid crystal display elements and organic EL display elements.
  • a production method obtained by a solution casting method using a specific drying step is disclosed.
  • the polyimide used here is composed of 1,2,4,5-cyclohexanetetracarboxylic dianhydride as a tetracarboxylic acid component and ⁇ , ⁇ ′-bis (4-aminophenyl) -1, a diamine component. And those prepared from 4-diisopropylbenzene and 4,4′-bis (4-aminophenoxy) biphenyl.
  • Patent Documents 3 and 4 include dicyclohexyltetracarboxylic acid as a tetracarboxylic acid component, and diaminodiphenyl ether, diaminodiphenylmethane, 1,4-bis (4-aminophenoxy) benzene, 1,3- Bis (4-aminophenoxy) benzene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) ) Phenyl] ether, a polyimide soluble in an organic solvent using metaphenylenediamine is described.
  • Such a semi-alicyclic polyimide using an alicyclic tetracarboxylic dianhydride as a tetracarboxylic acid component and an aromatic diamine as a diamine component has both transparency, bending resistance and high heat resistance.
  • a semi-alicyclic polyimide generally has a large linear thermal expansion coefficient of 50 ppm / K or more, the difference in the linear thermal expansion coefficient from a conductor such as a metal is large. Problems such as increased warping may occur, and in particular, there is a problem that a fine circuit forming process such as a display application is not easy.
  • Patent Document 5 discloses a polyimide obtained from an alicyclic acid dianhydride containing an ester bond and various aromatic diamines.
  • the polyimide of Example 4 has a linear temperature of 100 to 200 ° C.
  • the thermal expansion coefficient is 50 ppm / K or less.
  • the glass transition temperature of this polyimide is about 300 ° C., and it is considered that the film softens at higher temperatures and the linear thermal expansion coefficient becomes very large. There is a risk of problems in the required circuit formation process.
  • Patent Document 6 discloses norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic dianhydride and 4, Polyimides and the like using 4′-oxydianiline are described. However, it does not describe transparency, an extremely low linear thermal expansion coefficient up to a high temperature, and the like.
  • JP 2003-168800 A International Publication No. 2008/146737 JP 2002-69179 A JP 2002-146021 A JP 2008-31406 A International Publication No. 2011/099518
  • the present invention has been made in view of the above situation, and in a semi-alicyclic polyimide using an alicyclic tetracarboxylic dianhydride as a tetracarboxylic acid component and an aromatic diamine as a diamine component, In addition to improving the linear thermal expansion coefficient up to a high temperature, preferably the linear thermal expansion coefficient while maintaining excellent transparency.
  • an object of the present invention is to provide a polyimide having excellent properties such as high transparency, bending resistance, and high heat resistance, and having a very low linear thermal expansion coefficient up to a high temperature, and a precursor thereof. .
  • the present invention relates to the following items.
  • a polyimide precursor comprising at least one repeating unit represented by the following chemical formula (1), A polyimide precursor characterized in that a polyimide obtained from this polyimide precursor has a linear thermal expansion coefficient of 50 ppm to 400 ° C. or less at 50 to 400 ° C.
  • A is an arylene group
  • X 1 and X 2 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or an alkylsilyl group having 3 to 9 carbon atoms.
  • polyimide precursor according to Item 1 wherein the polyimide obtained from the polyimide precursor has a light transmittance of a wavelength of 400 nm of a film having a thickness of 10 ⁇ m exceeding 72%.
  • Item 3 The polyimide precursor according to Item 2, wherein the polyimide obtained from the polyimide precursor has a light transmittance of a wavelength of 400 nm in a 10 ⁇ m-thick film exceeding 75%.
  • Item 4 The polyimide precursor according to any one of Items 1 to 3, wherein A contains at least one repeating unit of the chemical formula (1), which is represented by the following chemical formula (2).
  • B 1 , B 2 and B 3 are each independently selected from the group consisting of a hydrogen atom, a methyl group and a trifluoromethyl group.
  • X and Y are each independently a direct bond, or one selected from the group consisting of groups represented by the formula: —NHCO—, —CONH—, —COO—, —OCO— .
  • Item 5 is characterized in that the total content of repeating units of the chemical formula (1) in which A is represented by the chemical formula (2) is 30 mol% or more based on all repeating units.
  • A is m and / or n is 1 to 3, and X and / or Y are each independently any one of —NHCO—, —CONH—, —COO—, or —OCO— 2) containing at least one repeating unit (1-1) of the chemical formula (1) having the structure of A is the structure of the chemical formula (2) in which m and n are 0, or the structure of the chemical formula (2) in which m and / or n is 1 to 3 and X and Y are direct bonds Item 7.
  • the repeating unit (1-1) includes at least one repeating unit of the chemical formula (1) in which A is represented by any one of the following chemical formulas (3-1) to (3-3).
  • Item 8 The polyimide precursor according to Item 7, wherein the polyimide precursor is characterized.
  • the repeating unit (1-2) includes at least one repeating unit of the chemical formula (1) in which A is represented by any one of the following chemical formulas (3-4) to (3-6).
  • Item 9 The polyimide precursor according to Item 7 or 8 above.
  • the total content of the repeating unit (1-1) is 30 mol% or more and 70 mol% or less with respect to all the repeating units, Item 10.
  • Item 5 The polyimide according to Item 4, wherein A contains at least one repeating unit of the chemical formula (1), which is represented by any one of the following chemical formulas (3-1) to (3-6): precursor.
  • A includes at least one repeating unit of the chemical formula (1) in which A is represented by any one of the chemical formulas (3-1), (3-2), (3-4), or (3-5) Item 12.
  • the total content of repeating units of the chemical formula (1) in which A is represented by any one of the chemical formulas (3-1), (3-2), (3-4) or (3-5) is Item 13.
  • a polyimide comprising at least one repeating unit represented by the following chemical formula (5) and having a linear thermal expansion coefficient of 50 to 400 ° C. of 100 ppm / K or less.
  • A is an arylene group.
  • Item 15 The polyimide according to Item 14, wherein the light transmittance at a wavelength of 400 nm in a film having a thickness of 10 ⁇ m is 72% or more.
  • Item 16 The polyimide according to Item 15, wherein the light transmittance at a wavelength of 400 nm in a film having a thickness of 10 ⁇ m exceeds 75%.
  • Item 18 A polyimide precursor according to any one of Items 1 to 13, or a varnish containing the polyimide according to any one of Items 14 to 17.
  • Item 14 A display, a touch panel, or a solar cell, which is formed from a polyimide obtained from the polyimide precursor according to any one of Items 1 to 13 or the polyimide according to any one of Items 14 to 17. Circuit board.
  • the present invention it is possible to provide a polyimide having excellent properties such as high transparency, bending resistance, and high heat resistance, and an extremely low linear thermal expansion coefficient up to a high temperature, and a precursor thereof.
  • the polyimide obtained from the polyimide precursor of the present invention and the polyimide of the present invention are highly transparent, have a low linear thermal expansion coefficient up to a high temperature, and can easily form a fine circuit. It can be suitably used to form.
  • the polyimide of this invention can be used suitably also in order to form the board
  • the polyimide precursor of the present invention is a polyimide precursor containing at least one repeating unit represented by the chemical formula (1).
  • a in the chemical formula (1) is an arylene group, preferably an arylene group having 6 to 40 carbon atoms.
  • one acid group at the 5-position or 6-position of two norbornane rings (bicyclo [2.2.1] heptane) reacts with an amino group to form an amide bond (—CONH—).
  • —CONH— a group represented by —COOX 1 or a group represented by —COOX 2 which does not form an amide bond.
  • the chemical formula (1) has four structural isomers (I) a group represented by -COOX 1 at the 5-position, a group represented by -CONH- at the 6-position, and a group represented by -COOX 2 at the 5 ''-position, Having a group represented by -CONH-A- at the ''-position; (ii) having a group represented by -COOX 1 at the 6-position and a group represented by -CONH- at the 5-position; 'the group represented by -COOX 2-position, 6''has a group represented by -CONH-A- in' position, (iii 5-position group represented by -COOX 1, having a group represented by -CONH- position 6 'a group represented by -COOX 2-position, 5' 6 '-CONH on' position Having a group represented by -A-, (iv) a group represented by -COOX 1 at the 6-position, a group represented by -CONH- at the
  • the polyimide precursor of the present invention contains norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic acids.
  • the polyimide obtained from the polyimide precursor has a linear thermal expansion coefficient of 50 ppm to 400 ° C.
  • a polyimide precursor characterized by exceeding 72%, more preferably exceeding 75%.
  • norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′ -tetracarboxylic acids are used alone. It is also possible to use a combination of multiple types.
  • the diamine component used in the present invention is a diamine component having at least one aromatic ring in the chemical structure, and preferably a diamine component containing an aromatic diamine having 6 to 40 carbon atoms.
  • the diamine component used in the present invention is not particularly limited, but for example, 4,4′-diaminobenzanilide, 3,4′-diaminobenzanilide, 2,2′-bis (trifluoromethyl) benzidine, 9,9-bis (4-aminophenyl) fluorene, 3,3′-diamino-biphenyl, 3,3′-bis (trifluoromethyl) benzidine, 4, 4′-oxydianiline, 3,4′-oxydianiline, 3,3′-oxydianiline, p-methylenebis (phenylenediamine), 1,3-bis (4-aminophenoxy) benzene, 1,3- Bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 2,2-bis [4- (4-amino Enoxy) phenyl] hexafluoropropane, 2,2-bis [4- (4-amino Enoxy) phenyl]
  • p-phenylenediamine, m-tolidine, 4,4′-diaminobenzanilide, 4-aminophenyl-4-aminobenzoate, 2,2′-bis (trifluoromethyl) benzidine, and benzidine are preferable. More preferred are -phenylenediamine, m-tolidine, 4,4'-diaminobenzanilide, 4-aminophenyl-4-aminobenzoate, and 2,2'-bis (trifluoromethyl) benzidine. Note that o-tolidine is not preferred because of its high risk.
  • the diamine component As the diamine component, the diamine components as described above may be used alone, or a plurality of types may be used in combination.
  • the polyimide precursor of the present invention preferably contains at least one repeating unit of the chemical formula (1) in which A is represented by the chemical formula (2).
  • the diamine component which gives the repeating unit of the chemical formula (1) in which A is the structure of the chemical formula (2) has an aromatic ring, and when there are a plurality of aromatic rings, the aromatic rings are independently directly bonded to each other, an amide These are linked by a bond or an ester bond.
  • the connection position of the aromatic rings is not particularly limited, but it may form a linear structure by bonding at the 4-position to the amino group or the connection group of the aromatic rings, and the resulting polyimide may have low linear thermal expansion. .
  • a methyl group or a trifluoromethyl group may be substituted on the aromatic ring.
  • the substitution position is not particularly limited.
  • the diamine component that gives the repeating unit of the chemical formula (1) in which A is the structure of the chemical formula (2) is not particularly limited, but examples thereof include p-phenylenediamine, m-phenylenediamine, benzidine, 3, 3'-diamino-biphenyl, 2,2'-bis (trifluoromethyl) benzidine, 3,3'-bis (trifluoromethyl) benzidine, m-tolidine, 4,4'-diaminobenzanilide, 3,4 ' -Diaminobenzanilide, N, N'-bis (4-aminophenyl) terephthalamide, N, N'-p-phenylenebis (p-aminobenzamide), 4-aminophenoxy-4-diaminobenzoate, bis (4- Aminophenyl) terephthalate, biphenyl-4,4′-dicarboxylic acid bis (4-aminophenyl) ester P-phenylenebis (p-amin
  • the resulting polyimide has both high heat resistance and high transmittance.
  • these diamines may be used alone or in combination of two or more. In some embodiments, one in which the diamine component is only one of 4,4'-diaminobenzanilide can be excluded. In one embodiment, the diamine component is 4,4′-diaminobenzanilide and the diamine component (A is the chemical formula (2) giving the repeating unit of the chemical formula (1) in which A is a structure other than the chemical formula (2). ) Other than the diamine component that gives the structure of) can be excluded. Note that o-tolidine is not preferred because of its high risk.
  • the polyimide precursor of the present invention preferably contains at least one repeating unit of the chemical formula (1) in which A is represented by the chemical formula (2).
  • the diamine component that provides the repeating unit of the chemical formula (1) preferably includes a diamine component that provides the repeating unit of the chemical formula (1) in which A has the structure of the chemical formula (2).
  • the heat resistance of the polyimide obtained improves because the diamine component which gives A in the said Chemical formula (1) is a diamine component which gives the thing of the structure of the said Chemical formula (2).
  • the ratio of one or more repeating units of the chemical formula (1) in which A is the structure of the chemical formula (2) is 30 mol% or more, more preferably in the total repeating units. It is preferably 50 mol% or more, more preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, and particularly preferably 100 mol%.
  • the ratio of the repeating unit of the chemical formula (1) in which A is the structure of the chemical formula (2) is smaller than 30 mol% in all the repeating units, the linear thermal expansion coefficient of the resulting polyimide may be increased.
  • the proportion of the diamine component giving the structure of the chemical formula (2) in 100 mol% of the diamine component giving the repeating unit of the chemical formula (1) is In some cases, it is preferably 80 mol% or less, more preferably 90 mol% or less, or less than 90 mol%.
  • other diamines such as 4,4′-oxydianiline are preferably less than 20 mol%, more preferably 10 mol% or less, in 100 mol% of the diamine component giving the repeating unit of the chemical formula (1). More preferably, it can be used at less than 10 mol%.
  • A is preferably represented by any one of the chemical formulas (3-1) to (3-6), and the chemical formulas (3-1), (3-2), (3 -4) or (3-5) is more preferred.
  • the total content of repeating units of the chemical formula (1) in which A is represented by any one of the chemical formulas (3-1), (3-2), (3-4) or (3-5) is , 30 mol% or more, more preferably 50 mol% or more, more preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, and particularly preferably 100 mol%, based on all repeating units. % Is preferred.
  • the polyimide precursor of the present invention preferably contains at least two repeating units of the chemical formula (1) in which A is represented by the chemical formula (2).
  • the diamine component that gives the repeating unit of the chemical formula (1) preferably contains at least two diamine components that give the repeating unit of the chemical formula (1) in which A has the structure of the chemical formula (2).
  • the diamine component that gives A in the chemical formula (1) contains at least two kinds of diamine components that give the structure of the chemical formula (2), so that the balance between high transparency and low linear thermal expansion of the resulting polyimide is obtained. (That is, a polyimide having high transparency and a low linear thermal expansion coefficient is obtained).
  • A is a repeating of the chemical formula (1) that is represented by the chemical formula (2).
  • the total content of units is 30 mol% or more, more preferably 50 mol% or more, more preferably 60 mol% or more, more preferably 70 mol% or more, more preferably 80 mol% or more, based on all repeating units. More preferably, it is 90 mol% or more, and particularly preferably 100 mol%.
  • the polyimide precursor of the present invention is (I) A is m and / or n is 1 to 3, and X and / or Y is each independently any of —NHCO—, —CONH—, —COO—, or —OCO—.
  • the repeating unit (1-1) is preferably a repeating unit of the chemical formula (1) in which A is represented by any one of the chemical formulas (3-1) to (3-3).
  • the repeating unit represented by the chemical formula (1) represented by any one of the chemical formulas (3-1) to (3-2) is more preferable.
  • the diamine component giving the repeating unit of the chemical formula (1) in which A is represented by the chemical formula (3-1) or the chemical formula (3-2) is 4,4′-diaminobenzanilide,
  • the diamine component giving the repeating unit of the chemical formula (1) in which A is represented by the chemical formula (3-3) is bis (4-aminophenyl) terephthalate, and these diamines are used alone. It can also be used in combination.
  • the repeating unit (1-2) is preferably a repeating unit of the chemical formula (1) in which A is represented by any one of the chemical formulas (3-4) to (3-6).
  • the repeating unit of the chemical formula (1) that is represented by any one of the chemical formulas (3-4) to (3-5) is more preferable.
  • the diamine component that gives the repeating unit of the chemical formula (1) in which A is represented by the chemical formula (3-4) is p-phenylenediamine, and A is represented by the chemical formula (3-5).
  • the diamine component that provides the repeating unit of the chemical formula (1) is 2,2′-bis (trifluoromethyl) benzidine, and A is the chemical formula represented by the chemical formula (3-6).
  • the diamine component that gives the repeating unit of (1) is m-tolidine, and these diamines may be used alone or in combination of two or more.
  • the ratio of one or more of the repeating units (1-1) is 30 mol% or more and 70 mol% or less in the total repeating units, and the repeating units (1-2)
  • the ratio of one or more types is preferably 30 mol% or more and 70 mol% or less in total in all repeating units, and the ratio of one or more types of repeating units (1-1) in total is all repeating units.
  • it is 40 mol% or more and 60 mol% or less
  • the ratio of one or more of the repeating units (1-2) is particularly preferably 40 mol% or more and 60 mol% or less in all repeating units. .
  • the ratio of the repeating units (1-1) is more preferably less than 60 mol%, more preferably 50 mol% or less, and more preferably 40 mol% in the repeating units. It is particularly preferred that in one embodiment, the repeating unit represented by the chemical formula (1) other than the repeating unit (1-1) and the repeating unit (1-2) (for example, A is a plurality of aromatic rings). And having aromatic rings linked by an ether bond (—O—)) is preferably less than 20 mol%, more preferably 10 mol% or less, particularly preferably 10 mol% in all repeating units. It may be preferred to include less than.
  • the diamine component that gives A in the chemical formula (1) has at least two types of diamine components that give the structure of the chemical formula (2). And one of them is preferably 4,4′-diaminobenzanilide.
  • the diamine component giving A in the chemical formula (1) includes at least two kinds of diamine components giving the structure of the chemical formula (2), and one of them is 4,4′-diaminobenzanilide, In addition to transparency and low linear thermal expansion, a polyimide having high heat resistance can be obtained.
  • the diamine component giving A in the chemical formula (1) is 2,2′-bis (trifluoromethyl) benzidine and p- It is particularly preferable that at least one selected from phenylenediamine and 4,4′-diaminobenzanilide are included.
  • the diamine component that gives A in the chemical formula (1) is preferably 4,4′-diaminobenzanilide in an amount of 30 mol% to 70 mol%.
  • the diamine component giving A in the chemical formula (1) contains 4,4′-diaminobenzanilide in an amount of 30 mol% to 70 mol%, and includes p-phenylenediamine and 2,2′-bis (tri By including 30 mol% or more and 70 mol% or less of either or both of (fluoromethyl) benzidine, a polyimide having high transparency, low linear thermal expansion, and heat resistance can be obtained.
  • the diamine component that gives A in the chemical formula (1) contains less than 60 mol% of 4,4′-diaminobenzanilide. More preferably, it is more preferably contained at 50 mol% or less, particularly preferably 40 mol% or less.
  • the polyimide precursor of the present invention may be a polyimide precursor obtained by using other tetracarboxylic acid components and / or diamine components.
  • the chemical formula (1) A tetracarboxylic acid component giving a repeating unit represented by the formula (ie, norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′′ -norbornane-5,5 ′′, 6,6 ′′-
  • the tetracarboxylic acids are preferably contained in an amount of 70 mol% or more and other tetracarboxylic acid components in an amount of 30 mol% or less.
  • aromatic or aliphatic tetracarboxylic acid components generally used in polyimide are used in a small amount (preferably 30 mol% or less, more preferably 10 mol%) within the range in which the characteristics of the polyimide of the present invention can be expressed.
  • more preferably less than 10 mol%) can be used in combination.
  • the polyimide precursor of the present invention may contain other repeating units other than the repeating unit represented by the chemical formula (1), and the ratio is in total in all repeating units. Preferably, it is 30 mol% or less, more preferably 10 mol% or less, and more preferably less than 10 mol%.
  • aromatic or aliphatic tetracarboxylic acid components that give other repeating units
  • aromatic or aliphatic tetracarboxylic acid components that can be used in the present invention include, for example, (4arH, 8acH) -decahydro-1t, 4t: 5c, 8c-dimethananaphthalene-2t, 3t, 6c, 7c-tetracarboxylic dianhydride, (4arH, 8acH) -decahydro-1t, 4t: 5c, 8c-dimethananaphthalene-2c, 3c, 6c, 7c-tetra Carboxylic dianhydride, cyclohexane-1,2,4,5-tetracarboxylic acid, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, [1,1′-bi (cyclohexane)]-3, 3 ′, 4,4′-tetracarboxylic acid, [1,1′-b
  • bicyclo [2.2.1] heptane-2,3,5,6-tetracarboxylic acid bicyclo [2.2.2] octane-2,3,5,6-tetracarboxylic acid, ( 4arH, 8acH) -decahydro-1t, 4t: 5c, 8c-dimethanonaphthalene-2t, 3t, 6c, 7c-tetracarboxylic dianhydride, (4arH, 8acH) -decahydro-1t, 4t: 5c, 8c- Dimethanonaphthalene-2c, 3c, 6c, 7c-tetracarboxylic dianhydride derivatives and the like, and these acid dianhydrides are easy to produce polyimide, and the resulting polyimide has excellent heat resistance and transparency. Therefore, it is more preferable. These may be used alone or in combination of two or more.
  • other aromatic or aliphatic diamines other than the diamine component that gives the repeating unit of the chemical formula (1) in which A has the structure of the chemical formula (2) can be used.
  • diamine components include 4,4′-oxydianiline, 3,4′-oxydianiline, 3,3′-oxydianiline, p-methylenebis (phenylenediamine), 1,3-bis (4 -Aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoro Propane, 2,2-bis (4-aminophenyl) hexafluoropropane, bis (4-aminophenyl) sulfone, 3,3-bis ((aminophenoxy) phenyl) propane, 2,2-bis (3-amino- 4-hydroxyphenyl) hexafluor
  • the tetracarboxylic acid component used in the present invention is not particularly limited, but the purity (in the case where a plurality of structural isomers are included, the purity is regarded as the same component without distinguishing them)
  • the value of the highest purity tetracarboxylic acid component or the purity of all tetracarboxylic acid components used is determined individually, and the average value of the purity weighted by the mass ratio used, for example, purity 100 99% or more of the tetracarboxylic acid component is used, and when 30 parts by mass of the 90% pure tetracarboxylic acid component is used, the purity of the tetracarboxylic acid component used is calculated to be 97%).
  • the purity is 99.5% or more.
  • the purity is less than 98%, the molecular weight of the polyimide precursor is not sufficient, and the heat resistance of the resulting polyimide may be inferior.
  • the purity is a value obtained from gas chromatography analysis or 1 H-NMR analysis. In the case of tetracarboxylic dianhydride, the purity can be obtained as a tetracarboxylic acid by performing a hydrolysis treatment.
  • the diamine component used in the present invention is not particularly limited, but the purity (in the case of using a plurality of types of diamine components, the value of the highest purity diamine component or the purity of all the diamine components used is individually determined and used.
  • the average value of the purity weighted by the ratio for example, when 70 parts by mass of a diamine component having a purity of 100% and 30 parts by mass of a diamine component having a purity of 90% are used, the purity of the diamine component used is 97% Calculated) is 99% or more, more preferably 99.5% or more.
  • the purity is less than 98%, the molecular weight of the polyimide precursor is not sufficient, and the heat resistance of the resulting polyimide may be inferior.
  • Purity is a value determined from gas chromatography analysis.
  • X 1 and X 2 in the chemical formula (1) are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, or an alkyl group having 3 to 9 carbon atoms.
  • One of the silyl groups. X 1 and X 2 can change the type of functional group and the introduction rate of the functional group by the production method described later.
  • X 1 and X 2 are alkyl groups having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, the polyimide precursor tends to be excellent in storage stability.
  • X 1 and X 2 are more preferably a methyl group or an ethyl group.
  • X 1 and X 2 are alkylsilyl groups having 3 to 9 carbon atoms, the solubility of the polyimide precursor tends to be excellent.
  • X 1 and X 2 are more preferably a trimethylsilyl group or a t-butyldimethylsilyl group.
  • each of X 1 and X 2 is 25% or more, preferably 50% or more, more preferably 75% or more.
  • it can be an alkylsilyl group.
  • the polyimide precursor of the present invention has a chemical structure taken by X 1 and X 2.
  • the polyimide precursor of this invention can be easily manufactured with the following manufacturing methods for every classification.
  • the manufacturing method of the polyimide precursor of this invention is not limited to the following manufacturing methods.
  • the polyimide precursor of the present invention comprises a tetracarboxylic dianhydride as a tetracarboxylic acid component and a diamine component in a solvent in an approximately equimolar amount, preferably a molar ratio of the diamine component to the tetracarboxylic acid component [diamine.
  • the number of moles of the component / the number of moles of the tetracarboxylic acid component] is preferably 0.90 to 1.10, more preferably 0.95 to 1.05 at a relatively low temperature of, for example, 120 ° C. It can obtain suitably as a polyimide precursor solution composition by reacting, suppressing.
  • the method for synthesizing the polyimide precursor of the present invention is not limited, but more specifically, diamine is dissolved in an organic solvent, and tetracarboxylic dianhydride is gradually added to this solution while stirring.
  • the polyimide precursor is obtained by stirring at 0 to 120 ° C., preferably 5 to 80 ° C. for 1 to 72 hours.
  • the reaction is carried out at 80 ° C. or higher, the molecular weight varies depending on the temperature history at the time of polymerization, and imidization proceeds due to heat, so there is a possibility that the polyimide precursor cannot be produced stably.
  • the order of addition of diamine and tetracarboxylic dianhydride in the above production method is preferable because the molecular weight of the polyimide precursor is likely to increase. Moreover, it is also possible to reverse the order of addition of the diamine and tetracarboxylic dianhydride in the above production method, and this is preferable because precipitates are reduced.
  • the molar ratio of the tetracarboxylic acid component and the diamine component is an excess of the diamine component, if necessary, an amount of a carboxylic acid derivative substantially corresponding to the excess mole number of the diamine component is added, and the tetracarboxylic acid component and the diamine are added.
  • the molar ratio of the components can be approximated to the equivalent.
  • the carboxylic acid derivative herein, a tetracarboxylic acid that does not substantially increase the viscosity of the polyimide precursor solution, that is, substantially does not participate in molecular chain extension, or a tricarboxylic acid that functions as a terminal terminator and its anhydride, Dicarboxylic acid and its anhydride are preferred.
  • a polyimide precursor can be easily obtained by dehydrating and condensing diester dicarboxylic acid and diamine using a phosphorus condensing agent or a carbodiimide condensing agent.
  • the polyimide precursor obtained by this method is stable, it can be purified by reprecipitation by adding a solvent such as water or alcohol.
  • silylating agent that does not contain chlorine as the silylating agent used here, because it is not necessary to purify the silylated diamine.
  • the silylating agent not containing a chlorine atom include N, O-bis (trimethylsilyl) trifluoroacetamide, N, O-bis (trimethylsilyl) acetamide, and hexamethyldisilazane.
  • N, O-bis (trimethylsilyl) acetamide and hexamethyldisilazane are particularly preferred because they do not contain fluorine atoms and are low in cost.
  • an amine catalyst such as pyridine, piperidine or triethylamine can be used to accelerate the reaction.
  • This catalyst can be used as it is as a polymerization catalyst for the polyimide precursor.
  • a polyimide precursor is obtained by mixing the polyamic acid solution obtained by the method 1) and a silylating agent and stirring at 0 to 120 ° C., preferably 5 to 80 ° C. for 1 to 72 hours.
  • the reaction is carried out at 80 ° C. or higher, the molecular weight varies depending on the temperature history at the time of polymerization, and imidization proceeds due to heat, so there is a possibility that the polyimide precursor cannot be produced stably.
  • silylating agent used here it is preferable to use a silylating agent not containing chlorine because it is not necessary to purify the silylated polyamic acid or the obtained polyimide.
  • examples of the silylating agent not containing a chlorine atom include N, O-bis (trimethylsilyl) trifluoroacetamide, N, O-bis (trimethylsilyl) acetamide, and hexamethyldisilazane.
  • N, O-bis (trimethylsilyl) acetamide and hexamethyldisilazane are particularly preferred because they do not contain fluorine atoms and are low in cost.
  • any of the above production methods can be suitably carried out in an organic solvent, and as a result, the polyimide precursor varnish of the present invention can be easily obtained.
  • Solvents used in preparing the polyimide precursor are, for example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, 1-ethyl-2-pyrrolidone, 1,1,3, Aprotic solvents such as 3-tetramethylurea, 1,3-dimethyl-2-imidazolidinone, dimethyl sulfoxide are preferable, and N, N-dimethylacetamide and N-methyl-2-pyrrolidone are particularly preferable. If the component and the polyimide precursor to be generated are dissolved, any type of solvent can be used without any problem, and the structure is not particularly limited.
  • amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone, ⁇ - Cyclic ester solvents such as methyl- ⁇ -butyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as triethylene glycol, phenols such as m-cresol, p-cresol, 3-chlorophenol and 4-chlorophenol A system solvent, acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide and the like are preferably employed.
  • the logarithmic viscosity of the polyimide precursor is not particularly limited, but the logarithmic viscosity in an N, N-dimethylacetamide solution having a concentration of 0.5 g / dL at 30 ° C. is 0.2 dL / g or more, more preferably 0. 0.5 dL / g or more is preferable.
  • the logarithmic viscosity is 0.2 dL / g or more, the molecular weight of the polyimide precursor is high, and the mechanical strength and heat resistance of the resulting polyimide are excellent.
  • the polyimide precursor varnish contains at least the polyimide precursor of the present invention and a solvent, and the total amount of the solvent, the tetracarboxylic acid component, and the diamine component includes the tetracarboxylic acid component and the diamine component.
  • the total amount is preferably 5% by mass or more, preferably 10% by mass or more, more preferably 15% by mass or more.
  • the content is preferably 60% by mass or less, and preferably 50% by mass or less. This concentration is a concentration approximately approximate to the solid content concentration resulting from the polyimide precursor, but if this concentration is too low, it becomes difficult to control the film thickness of the polyimide film obtained, for example, when producing a polyimide film. Sometimes.
  • amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone , Cyclic ester solvents such as ⁇ -methyl- ⁇ -butyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as triethylene glycol, m-cresol, p-cresol, 3-chlorophenol, 4-chlorophenol Phenol solvents such as acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide and the like are preferably employed.
  • the viscosity (rotational viscosity) of the varnish of the polyimide precursor is not particularly limited, but the rotational viscosity measured using an E-type rotational viscometer at a temperature of 25 ° C. and a shear rate of 20 sec ⁇ 1 is 0.01 to 1000 Pa ⁇ sec is preferable, and 0.1 to 100 Pa ⁇ sec is more preferable. Moreover, thixotropy can also be provided as needed. When the viscosity is in the above range, it is easy to handle when coating or forming a film, and the repelling is suppressed and the leveling property is excellent, so that a good film can be obtained.
  • the varnish of the polyimide precursor of the present invention may contain chemical imidizing agents (acid anhydrides such as acetic anhydride, amine compounds such as pyridine and isoquinoline), antioxidants, fillers, dyes, pigments, and silane cups as necessary.
  • chemical imidizing agents such as ring agents, primers, flame retardants, antifoaming agents, leveling agents, rheology control agents (flow aids), release agents and the like can be added.
  • inorganic particles such as silica can be mixed as required.
  • the method of mixing is not particularly limited, but a method of dispersing inorganic particles in a polymerization solvent and polymerizing a polyimide precursor in the solvent, a method of mixing a polyimide precursor solution and inorganic particles, a polyimide precursor
  • a method of mixing a solution and an inorganic particle dispersion solution a method of adding and mixing inorganic particles into a polyimide precursor solution, and the like.
  • silica particles or a silica particle dispersion solution can be added to the varnish of the polyimide precursor of the present invention.
  • the silica particles to be added preferably have a particle size of 100 nm or less, more preferably 50 nm or less, and particularly preferably 30 nm or less. If the particle diameter of the silica particles to be added exceeds 100 nm, the polyimide may become cloudy.
  • a silica particle dispersion solution for example, “organosilica sol DMAc-ST (primary particle size: 10 to 15 nm, dispersion solvent: N, N-dimethylacetamide)” manufactured by Nissan Chemical Co., Ltd .: 20 to 21% Can be used.
  • the amount of silica added to the polyimide precursor is preferably 50% by volume or less, more preferably less than 50% by volume, and particularly preferably less than 40% by volume with respect to the polyimide after imidization of the polyimide precursor. is there. If the silica content is greater than 50% by volume with respect to the polyimide, the polyimide may become brittle.
  • the polyimide of the present invention contains at least one repeating unit represented by the chemical formula (5), has a linear thermal expansion coefficient of 50 ppm to 400 ° C. or less at 50 to 400 ° C., and has a wavelength of 400 nm in a 10 ⁇ m-thick film.
  • the light transmittance is preferably more than 72%, more preferably more than 75%.
  • the polyimide of the present invention can be preferably produced by subjecting the polyimide precursor of the present invention as described above to a dehydration ring-closing reaction (imidation reaction).
  • the imidization method is not particularly limited, and a known thermal imidation or chemical imidization method can be suitably applied.
  • a film, a laminate of the polyimide film and another substrate, a coating film, powder, beads, a molded body, a foam, a varnish, and the like can be preferably exemplified.
  • the chemical formula (5) of the polyimide of the present invention corresponds to the chemical formula (1) of the polyimide precursor of the present invention.
  • the logarithmic viscosity of polyimide is not particularly limited, but the logarithmic viscosity in an N, N-dimethylacetamide solution having a concentration of 0.5 g / dL at 30 ° C. is 0.2 dL / g or more, more preferably 0.4 dL. / G or more, particularly preferably 0.5 dL / g or more.
  • the logarithmic viscosity is 0.2 dL / g or more, the resulting polyimide has excellent mechanical strength and heat resistance.
  • the polyimide varnish contains at least the polyimide of the present invention and a solvent, and the polyimide is 5% by mass or more, preferably 10% by mass or more, more preferably 15% by mass with respect to the total amount of the solvent and the polyimide. As described above, a ratio of 20% by mass or more is particularly preferable. When this density
  • the solvent used in the polyimide varnish of the present invention is not a problem as long as the polyimide dissolves, and the structure is not particularly limited.
  • the solvent used for the varnish of the polyimide precursor of the present invention can be similarly used.
  • the viscosity (rotational viscosity) of the polyimide varnish is not particularly limited, but the rotational viscosity measured using an E-type rotational viscometer at a temperature of 25 ° C. and a shear rate of 20 sec ⁇ 1 is 0.01 to 1000 Pa ⁇ sec is preferable, and 0.1 to 100 Pa ⁇ sec is more preferable. Moreover, thixotropy can also be provided as needed.
  • the viscosity is in the above range, it is easy to handle when coating or forming a film, and the repelling is suppressed and the leveling property is excellent, so that a good film can be obtained.
  • the polyimide varnish of the present invention may contain, as necessary, coupling agents such as antioxidants, fillers, dyes, pigments, silane coupling agents, primers, flame retardants, antifoaming agents, leveling agents, rheology control agents ( Flow aids), release agents and the like can be added.
  • coupling agents such as antioxidants, fillers, dyes, pigments, silane coupling agents, primers, flame retardants, antifoaming agents, leveling agents, rheology control agents ( Flow aids), release agents and the like can be added.
  • the polyimide of the present invention (polyimide obtained from the polyimide precursor of the present invention) can be mixed with inorganic particles such as silica, if necessary.
  • the method of mixing is not particularly limited, but a method of dispersing inorganic particles in a polymerization solvent and polymerizing a polyimide precursor in the solvent, a method of mixing a polyimide precursor solution and inorganic particles, a polyimide precursor There are a method of mixing a solution and an inorganic particle dispersion solution, a method of mixing inorganic particles in a polyimide solution, a method of mixing an inorganic particle dispersion solution in a polyimide solution, and the like.
  • silica-containing polyimide By imidizing the polyimide precursor in the silica-dispersed polyimide precursor solution dispersed by those methods, or by mixing the polyimide solution with silica particles or silica-dispersed solution and drying by heating to remove the solvent A silica-containing polyimide is obtained.
  • Silica particles can be added as the inorganic particles dispersed in the polyimide.
  • the silica particles to be added preferably have a particle size of 100 nm or less, more preferably 50 nm or less, and particularly preferably 30 nm or less. If the particle diameter of the silica particles to be added exceeds 100 nm, the polyimide may become cloudy.
  • silica particle dispersion solution for example, “organosilica sol DMAc-ST (primary particle size: 10 to 15 nm, dispersion solvent: N, N-dimethylacetamide)” manufactured by Nissan Chemical Co., Ltd .: 20 to 21% Can be used.
  • the addition amount of silica is preferably 50% by volume or less, more preferably less than 50% by volume, and particularly preferably less than 40% by volume with respect to polyimide. If the silica content is greater than 50% by volume with respect to the polyimide, the polyimide may become brittle.
  • the polyimide of the present invention is not particularly limited, but the linear thermal expansion coefficient at 50 ° C. to 400 ° C. when formed into a film is preferably 100 ppm / K or less, more preferably 50 ppm / K or less, more preferably 40 ppm / K or less. Particularly preferably, it is 30 ppm / K or less and has a very low coefficient of linear thermal expansion.
  • the polyimide of the present invention is not particularly limited, but the total light transmittance (average light transmittance at a wavelength of 380 nm to 780 nm) in a film having a thickness of 10 ⁇ m is preferably 80% or more, more preferably 85% or more, and more preferably Is 86% or more, particularly preferably 87% or more, and has excellent light transmittance.
  • the polyimide of the present invention is not particularly limited, but when the film has a thickness of 10 ⁇ m, the light transmittance at a wavelength of 400 nm is preferably 70% or more, more preferably 72% or more, more preferably more than 72%. More preferably, it is 75% or more, more preferably more than 75%, more preferably 76% or more, more preferably 77% or more, particularly preferably 80% or more, and has excellent transparency.
  • the film made of the polyimide of the present invention is preferably about 1 ⁇ m to 250 ⁇ m, more preferably about 1 ⁇ m to 150 ⁇ m, although it depends on the application.
  • the polyimide of the present invention is not particularly limited, but the 5% weight loss temperature is preferably 470 ° C. or higher, more preferably 480 ° C. or higher, and particularly preferably 490 ° C. or higher.
  • the polyimide of the present invention has excellent properties such as transparency, bending resistance, and high heat resistance, and has a very low linear thermal expansion coefficient up to a high temperature. Therefore, the transparent substrate for display, the transparent substrate for touch panel, or the sun It can be suitably used in the application of a battery substrate.
  • the polyimide precursor varnish of the present invention is cast on a substrate such as ceramic (glass, silicon, alumina), metal (copper, aluminum, stainless steel), heat resistant plastic film (polyimide), etc. Drying is performed in an inert gas or in air using hot air or infrared rays at a temperature of 20 to 180 ° C., preferably 20 to 150 ° C.
  • a polyimide film / substrate laminate or a polyimide film can be produced by heating imidization in air at a temperature of about 200 to 500 ° C., more preferably about 250 to 450 ° C. using hot air or infrared rays. .
  • the thickness of the polyimide film here is preferably 1 to 250 ⁇ m, more preferably 1 to 150 ⁇ m, because of the transportability in the subsequent steps.
  • the imidization reaction of the polyimide precursor instead of the heat imidation by the heat treatment as described above, contains a dehydration cyclization reagent such as acetic anhydride in the presence of a tertiary amine such as pyridine or triethylamine. It is also possible to carry out by chemical treatment such as immersion in a solution.
  • a partially imidized polyimide precursor is prepared by previously charging and stirring these dehydration cyclization reagents in a varnish of a polyimide precursor, and casting and drying it on a base material. It is also possible to obtain a polyimide film / substrate laminate or a polyimide film by further heat-treating it as described above.
  • a flexible conductive substrate can be obtained by forming a conductive layer on one side or both sides of the polyimide film / base laminate or the polyimide film obtained in this way.
  • a flexible conductive substrate can be obtained, for example, by the following method. That is, as a first method, the polyimide film / substrate laminate is not peeled off from the substrate, and the surface of the polyimide film is sputtered, vapor-deposited, printed, etc. by a conductive substance (metal or metal oxide). A conductive layer of conductive layer / polyimide film / base material is produced. Then, if necessary, a transparent and flexible conductive substrate comprising the conductive layer / polyimide film laminate can be obtained by peeling the conductive layer / polyimide film laminate from the substrate.
  • a transparent and flexible conductive substrate comprising the conductive layer / polyimide film laminate can be obtained by peeling the conductive layer / polyimide film laminate from the substrate.
  • the polyimide film is peeled off from the substrate of the polyimide film / substrate laminate to obtain a polyimide film, and a conductive substance (metal or metal oxide, conductive organic substance, A conductive layer of conductive carbon or the like can be formed in the same manner as in the first method, and a transparent and flexible conductive substrate comprising a conductive layer / polyimide film laminate can be obtained.
  • a conductive substance metal or metal oxide, conductive organic substance, A conductive layer of conductive carbon or the like can be formed in the same manner as in the first method, and a transparent and flexible conductive substrate comprising a conductive layer / polyimide film laminate can be obtained.
  • a gas barrier layer such as water vapor or oxygen, light adjustment by sputtering, vapor deposition or gel-sol method, etc.
  • An inorganic layer such as a layer may be formed.
  • the conductive layer is preferably formed with a circuit by a method such as a photolithography method, various printing methods, or an ink jet method.
  • the substrate of the present invention has a conductive layer circuit on the surface of a polyimide film composed of the polyimide of the present invention with a gas barrier layer or an inorganic layer as required.
  • This substrate is flexible, excellent in transparency, bendability, and heat resistance, and has an extremely low linear thermal expansion coefficient and excellent solvent resistance, so that a fine circuit can be easily formed. Therefore, this board
  • a transistor inorganic transistor, organic transistor
  • a transistor is further formed on this substrate by vapor deposition, various printing methods, an ink jet method or the like to manufacture a flexible thin film transistor, and a liquid crystal element, an EL element, a photoelectric transistor for a display device are manufactured. It is suitably used as an element.
  • Linear thermal expansion coefficient (CTE) A polyimide film having a thickness of about 10 ⁇ m is cut into a strip having a width of 4 mm to form a test piece, and TMA / SS6100 (manufactured by SII Nano Technology Co., Ltd.) is used. The temperature was raised to 500 ° C. in minutes. The linear thermal expansion coefficient from 50 ° C. to 400 ° C. was determined from the obtained TMA curve.
  • [5% weight loss temperature] A polyimide film having a film thickness of about 10 ⁇ m was used as a test piece, and the temperature was raised from 25 ° C. to 600 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen stream using a calorimeter measuring device (Q5000IR) manufactured by TA Instruments. From the obtained weight curve, a 5% weight loss temperature was determined.
  • Table 1 shows the structural formulas of the tetracarboxylic acid component and the diamine component used in Examples and Comparative Examples.
  • Example 1 In a reaction vessel substituted with nitrogen gas, 2.27 g (10 mmol) of DABAN was placed, and N, N-dimethylacetamide was charged in such an amount that the total monomer weight (total of diamine component and carboxylic acid component) was 26% by mass. 17.41 g was added and stirred at room temperature for 1 hour. To this solution, 3.84 g (10 mmol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution. The logarithmic viscosity of the obtained polyimide precursor was 1.0 dL / g.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • T 1 of the obtained polyimide was 75%, and T 2 was 90%.
  • Example 2 In a reaction vessel substituted with nitrogen gas, 3.20 g (10 mmol) of TFMB was charged, and N, N-dimethylacetamide was charged in such an amount that the total monomer weight (total of diamine component and carboxylic acid component) was 28% by mass. 18.12 g was added and stirred at room temperature for 1 hour. To this solution, 3.84 g (10 mmol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution. The logarithmic viscosity of the obtained polyimide precursor was 0.6 dL / g.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • T 1 of the obtained polyimide was 91%, and T 2 was 94%.
  • Example 3 In a reaction vessel substituted with nitrogen gas, 1.08 g (10 mmol) of PPD was added, and N, N-dimethylacetamide was charged in such an amount that the total mass of monomers (total of diamine component and carboxylic acid component) was 17% by mass. 24.05g was added and it stirred at room temperature for 1 hour. To this solution, 3.84 g (10 mmol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution. The resulting polyimide precursor had a logarithmic viscosity of 1.2 dL / g.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • T 1 85% of the obtained polyimide, T 2 was 90%.
  • Example 4 2.12 g (10 mmol) of m-TD is placed in a reaction vessel substituted with nitrogen gas, N, N-dimethylacetamide is charged, and the total mass of monomers (total of diamine component and carboxylic acid component) is 18% by mass. An amount of 27.18 g was added and stirred at room temperature for 1 hour. To this solution, 3.84 g (10 mmol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution. The logarithmic viscosity of the obtained polyimide precursor was 1.9 dL / g.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • the obtained polyimide had a T 1 of 89% and a T 2 of 92%.
  • Example 5 In a reaction vessel substituted with nitrogen gas, 3.48 g (10 mmol) of BAPT was added, and N, N-dimethylacetamide was charged in such an amount that the total monomer weight (total of diamine component and carboxylic acid component) was 16% by mass. 38.47 g was added and stirred at room temperature for 1 hour. To this solution, 3.84 g (10 mmol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution. The logarithmic viscosity of the obtained polyimide precursor was 2.5 dL / g.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • T 1 is 74% of the obtained polyimide
  • T 2 was 86%.
  • Example 6 In a reaction vessel substituted with nitrogen gas, 1.14 g (5 mmol) of DABAN and 1.60 g (5 mmol) of TFMB were charged, and N, N-dimethylacetamide was charged, and the total mass of monomers (total of diamine component and carboxylic acid component). ) was added in an amount of 25% by mass, and stirred at room temperature for 1 hour. To this solution, 3.84 g (10 mmol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution. The logarithmic viscosity of the obtained polyimide precursor was 0.2 dL / g.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • T 1 of the obtained polyimide was 85%, and T 2 was 91%.
  • Example 7 In a reaction vessel purged with nitrogen gas, 1.59 g (7 mmol) of DABAN and 0.96 g (3 mmol) of TFMB were charged, N, N-dimethylacetamide was charged, and the total mass of monomers (total of diamine component and carboxylic acid component) ) was added in an amount of 21% by mass, and the mixture was stirred at room temperature for 1 hour. To this solution, 3.84 g (10 mmol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution. The logarithmic viscosity of the obtained polyimide precursor was 0.4 dL / g.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • T 1 is 86% of the obtained polyimide
  • T 2 was 92%.
  • Example 8 In a reaction vessel substituted with nitrogen gas, DABAN (1.59 g, 7 mmol) and PPD (0.32 g, 3 mmol) were placed, N, N-dimethylacetamide was charged, and the total mass of monomers (total of diamine component and carboxylic acid component). ) was added in an amount of 26% by mass, and the mixture was stirred at room temperature for 1 hour. To this solution, 3.84 g (10 mmol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution. The resulting polyimide precursor had a logarithmic viscosity of 1.2 dL / g.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • the obtained polyimide had a T 1 of 84% and a T 2 of 92%.
  • Example 9 In a reaction vessel substituted with nitrogen gas, 1.14 g (5 mmol) of DABAN and 0.54 g (5 mmol) of PPD were charged, and N, N-dimethylacetamide was charged, and the total mass of monomers (total of diamine component and carboxylic acid component) ) was added in an amount of 25% by mass, and stirred at room temperature for 1 hour. To this solution, 3.84 g (10 mmol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution. The logarithmic viscosity of the obtained polyimide precursor was 1.1 dL / g.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • T 1 85% of the obtained polyimide, T 2 was 92%.
  • Example 10 In a reaction vessel purged with nitrogen gas, 0.68 g (3 mmol) of DABAN and 0.76 g (7 mmol) of PPD were added, N, N-dimethylacetamide was charged, and the total mass of monomers (total of diamine component and carboxylic acid component) ) was added in an amount of 19% by mass, and the mixture was stirred at room temperature for 1 hour. To this solution, 3.84 g (10 mmol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution. The logarithmic viscosity of the obtained polyimide precursor was 1.1 dL / g.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • T 1 is 86% of the obtained polyimide
  • T 2 was 92%.
  • Example 11 In a reaction vessel substituted with nitrogen gas, 3.46 g (10 mmol) of 4-APTP was placed, N-methyl-2-pyrrolidone was charged, and the total amount of monomers (total of diamine component and carboxylic acid component) was 13% by mass. A quantity of 48.85 g was added and stirred at room temperature for 1 hour. To this solution, 3.84 g (10 mmol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 12 In a reaction vessel substituted with nitrogen gas, 1.14 g (5 mmol) of DABAN and 0.54 g (5 mmol) of PPD were charged, N-methyl-2-pyrrolidone was charged, and the total mass of monomers (diamine component and carboxylic acid component) was charged. An amount of 22.08 g in a total amount of 20% by mass was added and stirred at room temperature for 1 hour. To this solution, 3.84 g (10 mmol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution.
  • a polyimide solution filtered through a PTFE membrane filter is applied to a glass substrate and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. as it is to form a colorless and transparent polyimide film / glass laminate. Obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 13 In a reaction vessel substituted with nitrogen gas, 1.60 g (5 mmol) of TFMB and 0.54 g (5 mmol) of PPD were placed, and N, N-dimethylacetamide was charged, and the total mass of monomers (total of diamine component and carboxylic acid component). ) was added in an amount of 23% by mass, and the mixture was stirred at room temperature for 1 hour. To this solution, 3.84 g (10 mmol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution.
  • a polyimide solution filtered through a PTFE membrane filter is applied to a glass substrate and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. as it is to form a colorless and transparent polyimide film / glass laminate. Obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 14 In a reaction vessel substituted with nitrogen gas, 0.96 g (3 mmol) of TFMB and 0.76 g (7 mmol) of PPD were placed, and N, N-dimethylacetamide was charged, and the total mass of monomers (total of diamine component and carboxylic acid component). ) was added in an amount of 23% by mass, and stirred at room temperature for 1 hour. To this solution, 3.84 g (10 mmol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution.
  • a polyimide solution filtered through a PTFE membrane filter is applied to a glass substrate and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. as it is to form a colorless and transparent polyimide film / glass laminate. Obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 15 In a reaction vessel substituted with nitrogen gas, 0.91 g (4 mmol) of DABAN, 0.22 g (2 mmol) of PPD and 1.28 g (4 mmol) of TFMB were charged, N, N-dimethylacetamide was charged, and the total monomer mass was charged. 25.00 g of an amount that (the total of the diamine component and the carboxylic acid component) is 20% by weight was added and stirred at room temperature for 1 hour. To this solution, 3.84 g (10 mmol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution.
  • a polyimide solution filtered through a PTFE membrane filter is applied to a glass substrate and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. as it is to form a colorless and transparent polyimide film / glass laminate. Obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 16 In a reaction vessel purged with nitrogen gas, 0.68 g (3 mmol) of DABAN, 0.22 g (2 mmol) of PPD and 1.60 g (5 mmol) of TFMB were charged, N, N-dimethylacetamide was charged, and the total mass of monomers was charged. 25.36 g of an amount that (the total of the diamine component and the carboxylic acid component) is 20% by weight was added, and the mixture was stirred at room temperature for 1 hour. To this solution, 3.84 g (10 mmol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution.
  • a polyimide solution filtered through a PTFE membrane filter is applied to a glass substrate and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. as it is to form a colorless and transparent polyimide film / glass laminate. Obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 17 In a reaction vessel substituted with nitrogen gas, 0.91 g (4 mmol) of DABAN, 0.35 g (1 mmol) of FDA and 1.60 g (5 mmol) of TFMB were charged, N-methyl-2-pyrrolidone was charged, 30.52 g in an amount such that the mass (the total of the diamine component and the carboxylic acid component) was 18% by mass was added, and the mixture was stirred at room temperature for 1 hour. To this solution, 3.84 g (10 mmol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution.
  • a polyimide solution filtered through a PTFE membrane filter is applied to a glass substrate and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. as it is to form a colorless and transparent polyimide film / glass laminate. Obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 18 In a reaction vessel substituted with nitrogen gas, 2.05 g (9 mmol) of DABAN and 0.35 g (1 mmol) of FDA were placed, N-methyl-2-pyrrolidone was charged, and the total mass of monomers (diamine component and carboxylic acid component) was charged. 28.43 g of a total amount of 18% by mass was added and stirred at room temperature for 1 hour. To this solution, 3.84 g (10 mmol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution.
  • a polyimide solution filtered through a PTFE membrane filter is applied to a glass substrate and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. as it is to form a colorless and transparent polyimide film / glass laminate. Obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 19 In a reaction vessel purged with nitrogen gas, 3.12 g (9 mmol) of 4-APTP and 0.35 g (1 mmol) of FDA were charged, N-methyl-2-pyrrolidone was charged, and the total mass of the monomer (diamine component and carboxylic acid) was added. 48.92 g of an amount such that the sum of the components was 13% by mass was added and stirred at room temperature for 1 hour. To this solution, 3.84 g (10 mmol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution.
  • a polyimide solution filtered through a PTFE membrane filter is applied to a glass substrate and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. as it is to form a colorless and transparent polyimide film / glass laminate. Obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 20 In a reaction vessel substituted with nitrogen gas, 2.27 g (10 mmol) of DABAN was added, and 5.88 g of organosilica sol DMAc-ST manufactured by Nissan Chemical Industries, Ltd. and 19.83 g of N, N-dimethylacetamide were added at room temperature. Stir for 1 hour. To this solution, 3.84 g (10 mmol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • T 1 is 79% of the obtained polyimide
  • T 2 was 90%.
  • Example 21 In a reaction vessel substituted with nitrogen gas, 2.27 g (10 mmol) of DABAN was added, and 11.32 g of organosilica sol DMAc-ST manufactured by Nissan Chemical Industries, Ltd. and 15.55 g of N, N-dimethylacetamide were added at room temperature. Stir for 1 hour. To this solution, 3.84 g (10 mmol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • T 1 is 83% of the obtained polyimide
  • T 2 was 92%.
  • Example 22 3.20 g (10 mmol) of TFMB was put in a reaction vessel substituted with nitrogen gas, and 3.60 g of organosilica sol DMAc-ST manufactured by Nissan Chemical Industries, Ltd. and 25.35 g of N, N-dimethylacetamide were added at room temperature. Stir for 1 hour. To this solution, 3.84 g (10 mmol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • the obtained polyimide had a T 1 of 89% and a T 2 of 94%.
  • Example 23 In a reaction vessel substituted with nitrogen gas, 3.20 g (10 mmol) of TFMB was added, and 7.61 g of organosilica sol DMAc-ST manufactured by Nissan Chemical Industries, Ltd. and 22.20 g of N, N-dimethylacetamide were added at room temperature. Stir for 1 hour. To this solution, 3.84 g (10 mmol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • T 1 of the obtained polyimide was 86%, and T 2 was 94%.
  • Example 24 Into a reaction vessel substituted with nitrogen gas, 5.00 g of the polyimide precursor solution obtained in Example 8 was placed, 0.93 g of N, O-bis (trimethylsilyl) acetamide was placed, and the mixture was stirred at room temperature for 12 hours and stirred uniformly. A viscous polyimide precursor solution was obtained.
  • a polyimide solution filtered through a PTFE membrane filter is applied to a glass substrate and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. as it is to form a colorless and transparent polyimide film / glass laminate. Obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • T 1 of the obtained polyimide was 78%, and T 2 was 87%.
  • Example 25 In a reaction vessel purged with nitrogen gas, 0.91 g (4 mmol) of DABAN, 0.54 g (5 mmol) of PPD and 0.32 g (1 mmol) of TFMB were charged, N-methyl-2-pyrrolidone was charged, An amount of 25.56 g in which the mass (the total of the diamine component and the carboxylic acid component) was 18% by mass was added, and the mixture was stirred at room temperature for 1 hour. To this solution, 3.84 g (10 mmol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution.
  • a polyimide solution filtered through a PTFE membrane filter is applied to a glass substrate and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. as it is to form a colorless and transparent polyimide film / glass laminate. Obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 26 In a reaction vessel purged with nitrogen gas, 0.68 g (3 mmol) of DABAN, 0.65 g (6 mmol) of PPD and 0.32 g (1 mmol) of TFMB were charged, N-methyl-2-pyrrolidone was charged, An amount of 25.01 g in which the mass (the total of the diamine component and the carboxylic acid component) was 18% by mass was added, and the mixture was stirred at room temperature for 1 hour. To this solution, 3.84 g (10 mmol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution.
  • a polyimide solution filtered through a PTFE membrane filter is applied to a glass substrate and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. as it is to form a colorless and transparent polyimide film / glass laminate. Obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 27 In a reaction vessel purged with nitrogen gas, 0.91 g (4 mmol) of DABAN, 0.54 g (5 mmol) of PPD and 0.20 g (1 mmol) of ODA were charged, N-methyl-2-pyrrolidone was charged, An amount of 25.01 g in which the mass (the total of the diamine component and the carboxylic acid component) was 18% by mass was added, and the mixture was stirred at room temperature for 1 hour. To this solution, 3.84 g (10 mmol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution.
  • a polyimide solution filtered through a PTFE membrane filter is applied to a glass substrate and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. as it is to form a colorless and transparent polyimide film / glass laminate. Obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 28 In a reaction vessel purged with nitrogen gas, 0.68 g (3 mmol) of DABAN, 0.65 g (6 mmol) of PPD, and 0.20 g (1 mmol) of ODA were charged, and N-methyl-2-pyrrolidone was charged. 24.46 g of a mass (total of diamine component and carboxylic acid component) of 18% by mass was added and stirred at room temperature for 1 hour. To this solution, 3.84 g (10 mmol) of CpODA was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution.
  • a polyimide solution filtered through a PTFE membrane filter is applied to a glass substrate and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. as it is to form a colorless and transparent polyimide film / glass laminate. Obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • T 1 is 82% of the obtained polyimide
  • T 2 was 89%.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • T 1 is 86% of the obtained polyimide
  • T 2 was 89%.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated in a nitrogen atmosphere (oxygen concentration of 200 ppm or less) from room temperature to 420 ° C. on the glass substrate to thermally imidize it.
  • a transparent polyimide film / glass laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled off and dried to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • T 1 is 84% of the obtained polyimide
  • T 2 was 88%.
  • the polyimide obtained from the polyimide precursor of the present invention has excellent light transmittance and bending resistance, and has a low linear thermal expansion coefficient up to a high temperature. It can be suitably used as a transparent substrate capable of forming a colorless and transparent and fine circuit for display applications and the like.
  • the present invention it is possible to provide a polyimide having excellent characteristics such as transparency, bending resistance, and high heat resistance, and an extremely low linear thermal expansion coefficient, and a precursor thereof.
  • the polyimide obtained from this polyimide precursor and the polyimide are highly transparent, have a low linear thermal expansion coefficient, can easily form a fine circuit, and also have solvent resistance. It can be suitably used for forming a substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Liquid Crystal (AREA)

Abstract

 本発明は、下記化学式(1)で表される繰り返し単位を少なくとも1種含むポリイミド前駆体であって、このポリイミド前駆体から得られるポリイミドが、50~400℃の線熱膨張係数が100ppm/K以下であることを特徴とするポリイミド前駆体に関する。(式中、Aはアリーレン基であり、X、Xはそれぞれ独立に水素、炭素数1~6のアルキル基、または炭素数3~9のアルキルシリル基である。)

Description

ポリイミド前駆体及びポリイミド
 本発明は、透明性、折り曲げ耐性、高耐熱性などの優れた特性を有し、さらに高温まで極めて低い線熱膨張係数を有するポリイミド、及びその前駆体に関する。
 近年、高度情報化社会の到来に伴い、光通信分野の光ファイバーや光導波路等、表示装置分野の液晶配向膜やカラーフィルター用保護膜等の光学材料の開発が進んでいる。特に表示装置分野で、ガラス基板の代替として軽量でフレキシブル性に優れたプラスチック基板の検討が行なわれたり、曲げたり丸めたりすることが可能なディスプレイの開発が盛んに行われている。このため、その様な用途に用いることができる、より高性能の光学材料が求められている。
 芳香族ポリイミドは、分子内共役や電荷移動錯体の形成により、本質的に黄褐色に着色する。このため着色を抑制する手段として、例えば分子内へのフッ素原子の導入、主鎖への屈曲性の付与、側鎖として嵩高い基の導入などによって、分子内共役や電荷移動錯体の形成を阻害して、透明性を発現させる方法が提案されている。また、原理的に電荷移動錯体を形成しない半脂環式または全脂環式ポリイミドを用いることにより透明性を発現させる方法も提案されている。
 特許文献1には、薄く、軽く、割れ難いアクティブマトリックス表示装置を得るために、テトラカルボン酸成分残基が脂肪族基である透明なポリイミドのフィルムの基板上に通常の成膜プロセスを用いて薄膜トランジスタを形成して薄膜トランジスタ基板を得ることが開示されている。ここで具体的に用いられたポリイミドは、テトラカルボン酸成分の1,2,4,5-シクロへキサンテトラカルボン酸二無水物と、ジアミン成分の4,4’-ジアミノジフェニルエーテルとから調製されたものである。
 特許文献2には、液晶表示素子、有機EL表示素子の透明基板や薄膜トランジスタ基板、フレキシブル配線基板などに利用される、無色透明性、耐熱性及び平坦性に優れるポリイミドからなる無色透明樹脂フィルムを、特定の乾燥工程を用いた溶液流延法によって得る製造方法が開示されている。ここで用いられたポリイミドは、テトラカルボン酸成分の1,2,4,5-シクロへキサンテトラカルボン酸二無水物と、ジアミン成分のα,α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼンと4,4’-ビス(4-アミノフェノキシ)ビフェニルとから調製されたもの等である。
 特許文献3,4には、テトラカルボン酸成分として、ジシクロヘキシルテトラカルボン酸と、ジアミン成分として、ジアミノジフェニルエ-テル、ジアミノジフェニルメタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]エ-テル、メタフェニレンジアミンを用いた有機溶剤に可溶なポリイミドが記載されている。
 この様なテトラカルボン酸成分として脂環式テトラカルボン酸二無水物、ジアミン成分として芳香族ジアミンを用いた半脂環式ポリイミドは、透明性、折り曲げ耐性、高耐熱性を兼ね備えている。しかしながら、この様な半脂環式ポリイミドは、一般に、線熱膨張係数が50ppm/K以上と大きいために、金属などの導体との線熱膨張係数の差が大きく、回路基板を形成する際に反りが増大するなどの不具合が生じることがあり、特にディスプレイ用途などの微細な回路形成プロセスが容易ではないという問題があった。
 特許文献5には、エステル結合を含有した脂環式酸二無水物と種々の芳香族ジアミンとから得られるポリイミドが開示されており、例えば、実施例4のポリイミドは、100-200℃の線熱膨張係数が50ppm/K以下である。しかしながら、このポリイミドのガラス転移温度は300℃程度であり、それ以上の高温ではフィルムが軟化し、線熱膨張係数が非常に大きくなることが考えられ、低温のみならず高温での低熱膨張性が求められる回路形成プロセスにおいて不具合を生じる恐れがあった。
 特許文献6には、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物と4,4’-オキシジアニリンを用いたポリイミド等が記載されている。しかしながら、透明性や高温までの極めて低い線熱膨張係数などについては記載されていない。
特開2003-168800号公報 国際公開第2008/146637号 特開2002-69179号公報 特開2002-146021号公報 特開2008-31406号公報 国際公開第2011/099518号
 本発明は、以上のような状況に鑑みてなされたものであり、テトラカルボン酸成分として脂環式テトラカルボン酸二無水物、ジアミン成分として芳香族ジアミンを用いた半脂環式ポリイミドにおいて、低温のみならず高温までの線熱膨張係数を改良すること、好ましくは優れた透明性を維持しながら、線熱膨張係数を改良することを目的とする。
 すなわち、本発明は、高い透明性、折り曲げ耐性、高耐熱性などの優れた特性を有し、さらに高温まで極めて低い線熱膨張係数を有するポリイミド、及びその前駆体を提供することを目的とする。
 本発明は、以下の各項に関する。
 1. 下記化学式(1)で表される繰り返し単位を少なくとも1種含むポリイミド前駆体であって、
 このポリイミド前駆体から得られるポリイミドが、50~400℃の線熱膨張係数が100ppm/K以下であることを特徴とするポリイミド前駆体。
Figure JPOXMLDOC01-appb-C000007
 
(式中、Aはアリーレン基であり、X、Xはそれぞれ独立に水素、炭素数1~6のアルキル基、または炭素数3~9のアルキルシリル基である。)
 2. このポリイミド前駆体から得られるポリイミドが、厚さ10μmのフィルムでの波長400nmの光透過率が72%を超えることを特徴とする前記項1に記載のポリイミド前駆体。
 3. このポリイミド前駆体から得られるポリイミドが、厚さ10μmのフィルムでの波長400nmの光透過率が75%を超えることを特徴とする前記項2に記載のポリイミド前駆体。
 4. Aが下記化学式(2)で表されるものである前記化学式(1)の繰り返し単位を少なくとも1種含むことを特徴とする前記項1~3のいずれかに記載のポリイミド前駆体。
Figure JPOXMLDOC01-appb-C000008
(式中、mは0~3を、nは0~3をそれぞれ独立に示す。B、B、Bはそれぞれ独立に水素原子、メチル基、トリフルオロメチル基よりなる群から選択される1種を示し、X、Yはそれぞれ独立に直接結合、または 式:-NHCO-、-CONH-、-COO-、-OCO-で表される基よりなる群から選択される1種を示す。)
 5. Aが前記化学式(2)で表されるものである前記化学式(1)の繰り返し単位を少なくとも2種含むことを特徴とする前記項4に記載のポリイミド前駆体。
 6. Aが前記化学式(2)で表されるものである前記化学式(1)の繰り返し単位の合計含有量が、全繰り返し単位に対して、30モル%以上であることを特徴とする前記項5に記載のポリイミド前駆体。
 7. Aが、mおよび/またはnが1~3であり、Xおよび/またはYが、それぞれ独立に、-NHCO-、-CONH-、-COO-、または-OCO-のいずれかである前記化学式(2)の構造である前記化学式(1)の繰り返し単位(1-1)を少なくとも1種含み、
 Aが、mおよびnが0である前記化学式(2)の構造であるか、または、mおよび/またはnが1~3であり、XおよびYが直接結合である前記化学式(2)の構造である前記化学式(1)の繰り返し単位(1-2)を少なくとも1種含むことを特徴とする前記項5または6に記載のポリイミド前駆体。
 8. 前記繰り返し単位(1-1)として、Aが下記化学式(3-1)~(3-3)のいずれかで表されるものである前記化学式(1)の繰り返し単位を少なくとも1種含むことを特徴とする前記項7に記載のポリイミド前駆体。
Figure JPOXMLDOC01-appb-C000009
 9. 前記繰り返し単位(1-2)として、Aが下記化学式(3-4)~(3-6)のいずれかで表されるものである前記化学式(1)の繰り返し単位を少なくとも1種含むことを特徴とする前記項7または8に記載のポリイミド前駆体。
Figure JPOXMLDOC01-appb-C000010
 10. 前記繰り返し単位(1-1)の合計含有量が、全繰り返し単位に対して、30モル%以上70モル%以下であり、
 前記繰り返し単位(1-2)の合計含有量が、全繰り返し単位に対して、30モル%以上70モル%以下であることを特徴とする前記項7~9のいずれかに記載のポリイミド前駆体。
 11. Aが下記化学式(3-1)~(3-6)のいずれかで表されるものである前記化学式(1)の繰り返し単位を少なくとも1種含むことを特徴とする前記項4に記載のポリイミド前駆体。
Figure JPOXMLDOC01-appb-C000011
 12. Aが前記化学式(3-1)、(3-2)、(3-4)または(3-5)のいずれかで表されるものである前記化学式(1)の繰り返し単位を少なくとも1種含むことを特徴とする前記項11に記載のポリイミド前駆体。
 13. Aが前記化学式(3-1)、(3-2)、(3-4)または(3-5)のいずれかで表されるものである前記化学式(1)の繰り返し単位の合計含有量が、全繰り返し単位に対して、30モル%以上であることを特徴とする前記項12に記載のポリイミド前駆体。
 14. 下記化学式(5)で表される繰り返し単位を少なくとも1種含み、50~400℃の線熱膨張係数が100ppm/K以下であることを特徴とするポリイミド。
Figure JPOXMLDOC01-appb-C000012
(式中、Aはアリーレン基である。)
 15. 厚さ10μmのフィルムでの波長400nmの光透過率が72%以上であることを特徴とする前記項14に記載のポリイミド。
 16. 厚さ10μmのフィルムでの波長400nmの光透過率が75%を超えることを特徴とする前記項15に記載のポリイミド。
 17. 前記項1~13のいずれかに記載のポリイミド前駆体から得られるポリイミド。
 18. 前記項1~13のいずれかに記載のポリイミド前駆体から得られるポリイミドフィルム。
 19. 前記項1~13のいずれかに記載のポリイミド前駆体、又は前記項14~17のいずれかに記載のポリイミドを含むワニス。
 20. 前記項1~13のいずれかに記載のポリイミド前駆体、又は前記項14~17のいずれかに記載のポリイミドを含むワニスを用いて得られたポリイミドフィルム。
 21. 前記項1~13のいずれかに記載のポリイミド前駆体から得られるポリイミド、又は前記項14~17のいずれかに記載のポリイミドによって形成されたことを特徴とするディスプレイ用、タッチパネル用、または太陽電池用の基板。
 本発明によって、高い透明性、折り曲げ耐性、高耐熱性などの優れた特性を有し、さらに高温まで極めて低い線熱膨張係数を有するポリイミド、及びその前駆体を提供することができる。この本発明のポリイミド前駆体から得られるポリイミド、及び本発明のポリイミドは、透明性が高く、且つ高温まで低線熱膨張係数であって微細な回路の形成が容易であり、ディスプレイ用途などの基板を形成するために好適に用いることができる。また、本発明のポリイミドは、タッチパネル用、太陽電池用の基板を形成するためにも好適に用いることができる。
 本発明のポリイミド前駆体は、前記化学式(1)で表される繰り返し単位を少なくとも1種含むポリイミド前駆体である。化学式(1)中のAはアリーレン基であり、好ましくは炭素数6~40のアリーレン基である。ただし、前記化学式(1)は、2つのノルボルナン環(ビシクロ[2.2.1]ヘプタン)の5位または6位の一方の酸基がアミノ基と反応してアミド結合(-CONH-)を形成しており、一方がアミド結合を形成していない-COOXで表される基、または-COOXで表される基であることを示し、前記化学式(1)には、4つの構造異性体、すなわち(i)5位に-COOXで表される基を、6位に-CONH-で表される基を有し、5’’位に-COOXで表される基を、6’’位に-CONH-A-で表される基を有するもの、(ii)6位に-COOXで表される基を、5位に-CONH-で表される基を有し、5’’位に-COOXで表される基を、6’’位に-CONH-A-で表される基を有するもの、(iii)5位に-COOXで表される基を、6位に-CONH-で表される基を有し、6’’位に-COOXで表される基を、5’’位に-CONH-A-で表される基を有するもの、(iv)6位に-COOXで表される基を、5位に-CONH-で表される基を有し、6’’位に-COOXで表される基を、5’’位に-CONH-A-で表される基を有するもの全てが含まれる。換言すれば、本発明のポリイミド前駆体は、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸類等(テトラカルボン酸類等とは、テトラカルボン酸と、テトラカルボン酸二無水物、テトラカルボン酸シリルエステル、テトラカルボン酸エステル、テトラカルボン酸クロライド等のテトラカルボン酸誘導体を表す)を含むテトラカルボン酸成分と、化学構造中に少なくとも一つの芳香族環を有する、好ましくは炭素数6~40の芳香族ジアミンを含むジアミン成分から得られるポリイミド前駆体である。そして、本発明のポリイミド前駆体は、このポリイミド前駆体から得られるポリイミドが、50~400℃の線熱膨張係数が100ppm/K以下であり、厚さ10μmのフィルムでの波長400nmの光透過率が好ましくは72%を超え、より好ましくは75%を超えることを特徴とするポリイミド前駆体である。
 テトラカルボン酸成分は、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸類等を、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 本発明において用いるジアミン成分は、化学構造中に少なくとも一つ芳香族環を有するジアミン成分であり、好ましくは炭素数6~40の芳香族ジアミンを含むジアミン成分である。
 本発明において用いるジアミン成分(前記化学式(1)の繰り返し単位を与えるジアミン成分)としては、特に限定するものではないが、例えば4,4’-ジアミノベンズアニリド、3,4’-ジアミノベンズアニリド、2,2’-ビス(トリフルオロメチル)ベンジジン、9,9-ビス(4-アミノフェニル)フルオレン、3,3’-ジアミノ-ビフェニル、3,3’-ビス(トリフルオロメチル)ベンジジン、4,4’-オキシジアニリン、3,4’-オキシジアニリン、3,3’-オキシジアニリン、p-メチレンビス(フェニレンジアミン)、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、ビス(4-アミノフェニル)スルホン、3,3-ビス((アミノフェノキシ)フェニル)プロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(4-(4-アミノフェノキシ)ジフェニル)スルホン、ビス(4-(3-アミノフェノキシ)ジフェニル)スルホン、オクタフルオロベンジジン、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジクロロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、1,4-ジアミノシクロへキサン、1,4-ジアミノ-2-メチルシクロヘキサン、1,4-ジアミノ-2-エチルシクロヘキサン、1,4-ジアミノ-2-n-プロピルシクロヘキサン、1,4-ジアミノ-2-イソプロピルシクロヘキサン、1,4-ジアミノ-2-n-ブチルシクロヘキサン、1,4-ジアミノ-2-イソブチルシクロヘキサン、1,4-ジアミノ-2-sec-ブチルシクロヘキサン、1,4-ジアミノ-2-tert-ブチルシクロヘキサン、1,2-ジアミノシクロへキサン、1,4-ジアミノシクロへキサン、p-フェニレンジアミン、m-フェニレンジアミン、ベンジジン、m-トリジン、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジクロロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、3,3’-ジアミノ-ビフェニル、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-p-フェニレンビス(p-アミノベンズアミド)、4-アミノフェニル-4-アミノベンゾエート、ビス(4-アミノフェニル)テレフタレート、ビフェニル-4,4’-ジカルボン酸ビス(4-アミノフェニル)エステル、p-フェニレンビス(p-アミノベンゾエート)、ビス(4-アミノフェニル)-[1,1’-ビフェニル]-4,4’-ジカルボキシレート、[1,1’-ビフェニル]-4,4’-ジイルビス(4-アミノベンゾエート)、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル等やこれらの誘導体が挙げられる。これらのうち、p-フェニレンジアミン、m-トリジン、4,4’-ジアミノベンズアニリド、4-アミノフェニル-4-アミノベンゾエート、2,2’-ビス(トリフルオロメチル)ベンジジン、ベンジジンが好ましく、p-フェニレンジアミン、m-トリジン、4,4’-ジアミノベンズアニリド、4-アミノフェニル-4-アミノベンゾエート、2,2’-ビス(トリフルオロメチル)ベンジジンがより好ましい。なお、o-トリジンは危険性が高いことから好ましくない。
 ジアミン成分は、前記のようなジアミン成分を、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 複数種を組み合わせて使用する場合は、下記化学式(4)の少なくとも1種類を30モル%以上含むことが好ましい。
Figure JPOXMLDOC01-appb-C000013
 
 本発明のポリイミド前駆体は、Aが前記化学式(2)で表されるものである前記化学式(1)の繰り返し単位を少なくとも1種含むことが好ましい。Aが前記化学式(2)の構造である前記化学式(1)の繰り返し単位を与えるジアミン成分は、芳香環を有し、芳香環を複数有する場合は芳香環同士をそれぞれ独立に、直接結合、アミド結合、またはエステル結合で連結したものである。芳香環同士の連結位置は特に限定されないが、アミノ基もしくは芳香環同士の連結基に対して4位で結合することで直線的な構造となり、得られるポリイミドが低線熱膨張になることがある。また、芳香環にメチル基やトリフルオロメチル基が置換されていてもよい。なお、置換位置は特に限定されない。
 Aが前記化学式(2)の構造である前記化学式(1)の繰り返し単位を与えるジアミン成分としては、特に限定するものではないが、例えば、p-フェニレンジアミン、m-フェニレンジアミン、ベンジジン、3,3’-ジアミノ-ビフェニル、2,2’-ビス(トリフルオロメチル)ベンジジン、3,3’-ビス(トリフルオロメチル)ベンジジン、m-トリジン、4,4’-ジアミノベンズアニリド、3,4’-ジアミノベンズアニリド、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-p-フェニレンビス(p-アミノベンズアミド)、4-アミノフェノキシ-4-ジアミノベンゾエート、ビス(4-アミノフェニル)テレフタレート、ビフェニル-4,4’-ジカルボン酸ビス(4-アミノフェニル)エステル、p-フェニレンビス(p-アミノベンゾエート)、ビス(4-アミノフェニル)-[1,1’-ビフェニル]-4,4’-ジカルボキシレート、[1,1’-ビフェニル]-4,4’-ジイルビス(4-アミノベンゾエート)等が挙げられ、単独で使用してもよく、また複数種を組み合わせて使用することもできる。これらのうち、p-フェニレンジアミン、m-トリジン、4,4’-ジアミノベンズアニリド、4-アミノフェノキシ-4-ジアミノベンゾエート、2,2’-ビス(トリフルオロメチル)ベンジジン、ベンジジン、N,N’-ビス(4-アミノフェニル)テレフタルアミド、ビフェニル-4,4’-ジカルボン酸ビス(4-アミノフェニル)エステルが好ましく、p-フェニレンジアミン、4,4’-ジアミノベンズアニリド、2,2’-ビス(トリフルオロメチル)ベンジジンがより好ましい。ジアミン成分として、p-フェニレンジアミン、4,4’-ジアミノベンズアニリド、2,2’-ビス(トリフルオロメチル)ベンジジンを使用することで、得られるポリイミドが高耐熱性と高透過率を両立する。これらのジアミンは、単独で使用してもよく、また複数種を組み合わせて使用することもできる。ある実施態様においては、ジアミン成分が4,4’-ジアミノベンズアニリドの1種のみであるものは除くことができる。ある実施態様においては、ジアミン成分が4,4’-ジアミノベンズアニリドと、Aが前記化学式(2)以外の構造である前記化学式(1)の繰り返し単位を与えるジアミン成分(Aが前記化学式(2)の構造のものを与えるジアミン成分以外の、他のジアミン)との組み合わせであるものは除くことができる。なお、o-トリジンは危険性が高いことから好ましくない。
 本発明のポリイミド前駆体は、Aが前記化学式(2)で表されるものである前記化学式(1)の繰り返し単位を少なくとも1種含むことが好ましい。換言すれば、前記化学式(1)の繰り返し単位を与えるジアミン成分が、Aが前記化学式(2)の構造である前記化学式(1)の繰り返し単位を与えるジアミン成分を含むことが好ましい。前記化学式(1)中のAを与えるジアミン成分が前記化学式(2)の構造のものを与えるジアミン成分であることで、得られるポリイミドの耐熱性が向上する。
 本発明のポリイミド前駆体は、Aが前記化学式(2)の構造である前記化学式(1)の繰り返し単位1種以上の割合が、合計で、全繰り返し単位中、30モル%以上、より好ましくは50モル%以上、より好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、特に好ましくは100モル%であることが好ましい。Aが前記化学式(2)の構造である前記化学式(1)の繰り返し単位の割合が、全繰り返し単位中、30モル%より小さい場合、得られるポリイミドの線熱膨張係数が大きくなることがある。ある実施態様においては、得られるポリイミドの機械的特性の点から、前記化学式(1)の繰り返し単位を与えるジアミン成分100モル%中、前記化学式(2)の構造を与えるジアミン成分の割合が、合計で、好ましくは80モル%以下、より好ましくは90モル%以下または90モル%未満であることが好ましいことがある。例えば、4,4’-オキシジアニリン等の他のジアミン類を、前記化学式(1)の繰り返し単位を与えるジアミン成分100モル%中、好ましくは20モル%未満、より好ましくは10モル%以下、より好ましくは10モル%未満で使用することができる。
 本発明のポリイミド前駆体において、Aは前記化学式(3-1)~(3-6)のいずれかで表されるものが好ましく、前記化学式(3-1)、(3-2)、(3-4)または(3-5)のいずれかで表されるものがより好ましい。
 Aが前記化学式(3-1)、(3-2)、(3-4)または(3-5)のいずれかで表されるものである前記化学式(1)の繰り返し単位の合計含有量が、全繰り返し単位に対して、30モル%以上、より好ましくは50モル%以上、より好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、特に好ましくは100モル%であることが好ましい。
 本発明のポリイミド前駆体は、Aが前記化学式(2)で表されるものである前記化学式(1)の繰り返し単位を少なくとも2種含むことが好ましい。換言すれば、前記化学式(1)の繰り返し単位を与えるジアミン成分が、Aが前記化学式(2)の構造である前記化学式(1)の繰り返し単位を与えるジアミン成分を少なくとも2種含むことが好ましい。前記化学式(1)中のAを与えるジアミン成分が前記化学式(2)の構造のものを与えるジアミン成分の少なくとも2種類を含むことで、得られるポリイミドの高透明性と低線熱膨張性のバランスが取れる(すなわち、透明性が高く、且つ、低線熱膨張係数であるポリイミドが得られる)。
 Aが前記化学式(2)で表されるものである前記化学式(1)の繰り返し単位を少なくとも2種含む場合、Aが前記化学式(2)で表されるものである前記化学式(1)の繰り返し単位の合計含有量が、全繰り返し単位に対して、30モル%以上、より好ましくは50モル%以上、より好ましくは60モル%以上、より好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、特に好ましくは100モル%であることが好ましい。
 本発明のポリイミド前駆体は、
(i)Aが、mおよび/またはnが1~3であり、Xおよび/またはYが、それぞれ独立に、-NHCO-、-CONH-、-COO-、または-OCO-のいずれかである前記化学式(2)の構造である前記化学式(1)の繰り返し単位(1-1)を少なくとも1種含み、
(ii)Aが、mおよびnが0である前記化学式(2)の構造であるか、または、mおよび/またはnが1~3であり、XおよびYが直接結合である前記化学式(2)の構造である前記化学式(1)の繰り返し単位(1-2)を少なくとも1種含むことがより好ましい。
 前記繰り返し単位(1-1)としては、Aが前記化学式(3-1)~(3-3)のいずれかで表されるものである前記化学式(1)の繰り返し単位が好ましく、Aが前記化学式(3-1)~(3-2)のいずれかで表されるものである前記化学式(1)の繰り返し単位がより好ましい。なお、Aが前記化学式(3-1)または前記化学式(3-2)で表されるものである前記化学式(1)の繰り返し単位を与えるジアミン成分は4,4’-ジアミノベンズアニリドであり、Aが前記化学式(3-3)で表されるものである前記化学式(1)の繰り返し単位を与えるジアミン成分はビス(4-アミノフェニル)テレフタレートであり、これらのジアミンは、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 前記繰り返し単位(1-2)としては、Aが前記化学式(3-4)~(3-6)のいずれかで表されるものである前記化学式(1)の繰り返し単位が好ましく、Aが前記化学式(3-4)~(3-5)のいずれかで表されるものである前記化学式(1)の繰り返し単位がより好ましい。なお、Aが前記化学式(3-4)で表されるものである前記化学式(1)の繰り返し単位を与えるジアミン成分はp-フェニレンジアミンであり、Aが前記化学式(3-5)で表されるものである前記化学式(1)の繰り返し単位を与えるジアミン成分は2,2’-ビス(トリフルオロメチル)ベンジジンであり、Aが前記化学式(3-6)で表されるものである前記化学式(1)の繰り返し単位を与えるジアミン成分はm-トリジンであり、これらのジアミンは、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 本発明のポリイミド前駆体において、前記繰り返し単位(1-1)1種以上の割合が、合計で、全繰り返し単位中、30モル%以上70モル%以下であり、前記繰り返し単位(1-2)1種以上の割合が、合計で、全繰り返し単位中、30モル%以上70モル%以下であることが好ましく、前記繰り返し単位(1-1)1種以上の割合が、合計で、全繰り返し単位中、40モル%以上60モル%以下であり、前記繰り返し単位(1-2)1種以上の割合が、合計で、全繰り返し単位中、40モル%以上60モル%以下であることが特に好ましい。ある実施態様においては、前記繰り返し単位(1-1)の割合が、合計で、繰り返し単位中、60モル%未満であることがより好ましく、50モル%以下であることがより好ましく、40モル%以下であることが特に好ましい。また、ある実施態様においては、前記繰り返し単位(1-1)及び前記繰り返し単位(1-2)以外の、他の前記化学式(1)で表される繰り返し単位(例えば、Aが複数の芳香環を有し、芳香環同士がエーテル結合(-O-)で連結されているもの)を、全繰り返し単位中、好ましくは20モル%未満、より好ましくは10モル%以下、特に好ましくは10モル%未満で含むことが好ましいことがある。
 本発明のポリイミド前駆体は、前記化学式(1)中のAを与えるジアミン成分(前記化学式(1)の繰り返し単位を与えるジアミン成分)が前記化学式(2)の構造を与えるジアミン成分の少なくとも2種類を含み、そのうちの1種が4,4’-ジアミノベンズアニリドであることが好ましい。前記化学式(1)中のAを与えるジアミン成分が前記化学式(2)の構造を与えるジアミン成分の少なくとも2種類を含み、そのうちの1種が4,4’-ジアミノベンズアニリドであることで、高透明性と低線熱膨張性に加え、高い耐熱性も兼ね備えたポリイミドが得られる。
 本発明のポリイミド前駆体は、前記化学式(1)中のAを与えるジアミン成分(前記化学式(1)の繰り返し単位を与えるジアミン成分)が2,2’-ビス(トリフルオロメチル)ベンジジン及びp-フェニレンジアミンから選択される少なくとも1種類と、4,4’-ジアミノベンズアニリドを含むことが特に好ましい。これらのジアミン成分を組み合わせることで、高い透明性と低線熱膨張性、耐熱性を兼ね備えたポリイミドが得られる。
 前記化学式(1)中のAを与えるジアミン成分(前記化学式(1)の繰り返し単位を与えるジアミン成分)としては、好ましくは4,4’-ジアミノベンズアニリドを30モル%以上、70モル%以下で含み、且つ、p-フェニレンジアミンと2,2’-ビス(トリフルオロメチル)ベンジジンのどちらか一方、又は両方で30モル%以上、70モル%以下で含むことが好ましく、特に好ましくは4,4’-ジアミノベンズアニリドを40モル%以上、60モル%以下で含み、且つ、p-フェニレンジアミンと2,2’-ビス(トリフルオロメチル)ベンジジンのどちらか一方、又は両方で40モル%以上、60モル%以下で含むことがより好ましい。前記化学式(1)中のAを与えるジアミン成分として、4,4’-ジアミノベンズアニリドを30モル%以上、70モル%以下で含み、且つ、p-フェニレンジアミンと2,2’-ビス(トリフルオロメチル)ベンジジンのどちらか一方、又は両方で30モル%以上、70モル%以下で含むことにより、高い透明性と低線熱膨張性、耐熱性を兼ね備えたポリイミドが得られる。ある実施態様においては、前記化学式(1)中のAを与えるジアミン成分(前記化学式(1)の繰り返し単位を与えるジアミン成分)としては、4,4’-ジアミノベンズアニリドを60モル%未満で含むことがより好ましく、50モル%以下で含むことがより好ましく、40モル%以下で含むことが特に好ましい。
 本発明のポリイミド前駆体は、他のテトラカルボン酸成分および/またはジアミン成分を使用して得られるポリイミド前駆体であってもよく、例えば、全テトラカルボン酸成分100モル%中、化学式(1)で表される繰り返し単位を与えるテトラカルボン酸成分(すなわち、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸類)を70モル%以上、それ以外のテトラカルボン酸成分を30モル%以下で含むことが好ましい。
 また、一般的にポリイミドで使用される他の芳香族または脂肪族テトラカルボン酸成分を、本発明のポリイミドの特性が発現できる範囲内で少量(好ましくは30モル%以下、より好ましくは10モル%以下、より好ましくは10モル%未満)併用することもできる。
 換言すれば、本発明のポリイミド前駆体は、前記化学式(1)で表される繰り返し単位以外の、他の繰り返し単位を含むものであってもよく、その割合は、合計で、全繰り返し単位中、好ましくは30モル%以下、より好ましくは10モル%以下、より好ましくは10モル%未満であることが好ましい。
 本発明で使用することができる他の芳香族または脂肪族テトラカルボン酸成分(他の繰り返し単位を与えるテトラカルボン酸成分)としては、例えば、(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2t,3t,6c,7c-テトラカルボン酸二無水物、(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2c,3c,6c,7c-テトラカルボン酸二無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸、1,2,3,4-シクロブタンテトラカルボン酸二無水物、[1,1’-ビ(シクロヘキサン)]-3,3’,4,4’-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-2,3,3’,4’-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-2,2’,3,3’-テトラカルボン酸、4,4’-メチレンビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-(プロパン-2,2-ジイル)ビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-オキシビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-チオビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-スルホニルビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-(ジメチルシランジイル)ビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-(テトラフルオロプロパン-2,2-ジイル)ビス(シクロヘキサン-1,2-ジカルボン酸)、オクタヒドロペンタレン-1,3,4,6-テトラカルボン酸、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸、6-(カルボキシメチル)ビシクロ[2.2.1]ヘプタン-2,3,5-トリカルボン酸、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸、ビシクロ[2.2.2]オクタ-5-エン-2,3,7,8-テトラカルボン酸、トリシクロ[4.2.2.02,5]デカン-3,4,7,8-テトラカルボン酸、トリシクロ[4.2.2.02,5]デカ-7-エン-3,4,9,10-テトラカルボン酸、9-オキサトリシクロ[4.2.1.02,5]ノナン-3,4,7,8-テトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、4,4’-オキシジフタル酸無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、m-ターフェニル-3,4,3’,4’-テトラカルボン酸二無水物、p-ターフェニル-3,4,3’,4’-テトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)スルフィド二無水物、p-フェニレンビス(トリメリット酸モノエステル酸無水物)、エチレンビス(トリメリット酸モノエステル酸無水物)、ビスフェノールAビス(トリメリット酸モノエステル酸無水物)、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,2-ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}プロパン二無水物、2,2-ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}プロパン二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、4,4’-ビス〔4-(1,2-ジカルボキシ)フェノキシ〕ビフェニル二無水物、4,4’-ビス〔3-(1,2-ジカルボキシ)フェノキシ〕ビフェニル二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}ケトン二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルホン二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルホン二無水物、ビス{4-〔4-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルフィド二無水物、ビス{4-〔3-(1,2-ジカルボキシ)フェノキシ〕フェニル}スルフィド二無水物等の誘導体や、これらの酸二無水物が挙げられる。これらのうちでは、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸、(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2t,3t,6c,7c-テトラカルボン酸二無水物、(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2c,3c,6c,7c-テトラカルボン酸二無水物等の誘導体や、これらの酸二無水物が、ポリイミドの製造が容易であり、得られるポリイミドの耐熱性、透明性に優れることから、より好ましい。これらは、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 本発明では、前記のようなAが前記化学式(2)の構造である前記化学式(1)の繰り返し単位を与えるジアミン成分以外の、他の芳香族または脂肪族ジアミン類を使用することもできる。他のジアミン成分として、例えば、4,4’-オキシジアニリン、3,4’-オキシジアニリン、3,3’-オキシジアニリン、p-メチレンビス(フェニレンジアミン)、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、ビス(4-アミノフェニル)スルホン、3,3-ビス((アミノフェノキシ)フェニル)プロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(4-(4-アミノフェノキシ)ジフェニル)スルホン、ビス(4-(3-アミノフェノキシ)ジフェニル)スルホン、オクタフルオロベンジジン、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジクロロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、9,9-ビス(4-アミノフェニル)フルオレン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、1,4-ジアミノシクロへキサン、1,4-ジアミノ-2-メチルシクロヘキサン、1,4-ジアミノ-2-エチルシクロヘキサン、1,4-ジアミノ-2-n-プロピルシクロヘキサン、1,4-ジアミノ-2-イソプロピルシクロヘキサン、1,4-ジアミノ-2-n-ブチルシクロヘキサン、1,4-ジアミノ-2-イソブチルシクロヘキサン、1,4-ジアミノ-2-sec-ブチルシクロヘキサン、1,4-ジアミノ-2-tert-ブチルシクロヘキサン、1,2-ジアミノシクロへキサン、1,4-ジアミノシクロへキサン等やこれらの誘導体が挙げられ、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 本発明で用いるテトラカルボン酸成分は、特に限定されないが、純度(複数の構造異性体を含む場合は、それらを区別せず同一成分と見なした場合の純度であり、複数種のテトラカルボン酸成分を用いる場合には、最も純度の高いテトラカルボン酸成分の値、もしくは用いるすべてのテトラカルボン酸成分の純度を個別に求め、用いる質量比で重みをつけた純度の平均値、例えば、純度100%のテトラカルボン酸成分を70質量部、純度90%のテトラカルボン酸成分を30質量部使用したとき、使用されるテトラカルボン酸成分の純度は、97%と計算される。)が99%以上、好ましくは99.5%以上であることが好ましい。純度が98%未満の場合、ポリイミド前駆体の分子量が十分にあがらず、得られるポリイミドの耐熱性が劣ることがある。純度は、ガスクロマトグラフィー分析やH-NMR分析から求められる値であり、テトラカルボン酸二無水物の場合、加水分解の処理を行い、テトラカルボン酸として、その純度を求めることもできる。
 本発明で用いるジアミン成分は、特に限定されないが、純度(複数種のジアミン成分を用いる場合には、最も純度の高いジアミン成分の値、もしくは用いるすべてのジアミン成分の純度を個別に求め、用いる質量比で重みをつけた純度の平均値、例えば、純度100%のジアミン成分を70質量部、純度90%のジアミン成分を30質量部使用したとき、使用されるジアミン成分の純度は、97%と計算される。)が99%以上、更に好ましくは99.5%以上であることが好ましい。純度が98%未満の場合、ポリイミド前駆体の分子量が十分にあがらず、得られるポリイミドの耐熱性が劣ることがある。純度は、ガスクロマトグラフィー分析から求められる値である。
 本発明のポリイミド前駆体において、前記化学式(1)のX、Xはそれぞれ独立に水素、炭素数1~6、好ましくは炭素数1~3のアルキル基、または炭素数3~9のアルキルシリル基のいずれかである。X、Xは、後述する製造方法によって、その官能基の種類、及び、官能基の導入率を変化させることができる。
 X、Xが水素である場合、ポリイミドの製造が容易である傾向がある。
 また、X、Xが炭素数1~6、好ましくは炭素数1~3のアルキル基である場合、ポリイミド前駆体の保存安定性に優れる傾向がある。この場合、X、Xはメチル基もしくはエチル基であることがより好ましい。
 更に、X、Xが炭素数3~9のアルキルシリル基である場合、ポリイミド前駆体の溶解性が優れる傾向がある。この場合、X、Xはトリメチルシリル基もしくはt-ブチルジメチルシリル基であることがより好ましい。
 官能基の導入率は、特に限定されないが、アルキル基もしくはアルキルシリル基を導入する場合、X、Xはそれぞれ、25%以上、好ましくは50%以上、より好ましくは75%以上をアルキル基もしくはアルキルシリル基にすることができる。
 本発明のポリイミド前駆体は、X及びXが取る化学構造によって、1)ポリアミド酸(X、Xが水素)、2)ポリアミド酸エステル(X、Xの少なくとも一部がアルキル基)、3)4)ポリアミド酸シリルエステル(X、Xの少なくとも一部がアルキルシリル基)に分類することができる。そして、本発明のポリイミド前駆体は、この分類ごとに、以下の製造方法により容易に製造することができる。ただし、本発明のポリイミド前駆体の製造方法は、以下の製造方法に限定されるものではない。
1)ポリアミド酸
 本発明のポリイミド前駆体は、溶媒中でテトラカルボン酸成分としてのテトラカルボン酸二無水物とジアミン成分とを略等モル、好ましくはテトラカルボン酸成分に対するジアミン成分のモル比[ジアミン成分のモル数/テトラカルボン酸成分のモル数]が好ましくは0.90~1.10、より好ましくは0.95~1.05の割合で、例えば120℃以下の比較的低温度でイミド化を抑制しながら反応することによって、ポリイミド前駆体溶液組成物として好適に得ることができる。
 本発明のポリイミド前駆体の合成方法は、限定するものではないが、より具体的には、有機溶剤にジアミンを溶解し、この溶液に攪拌しながら、テトラカルボン酸二無水物を徐々に添加し、0~120℃、好ましくは5~80℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。上記製造方法でのジアミンとテトラカルボン酸二無水物の添加順序は、ポリイミド前駆体の分子量が上がりやすいため、好ましい。また、上記製造方法のジアミンとテトラカルボン酸二無水物の添加順序を逆にすることも可能であり、析出物が低減することから、好ましい。
 また、テトラカルボン酸成分とジアミン成分のモル比がジアミン成分過剰である場合、必要に応じて、ジアミン成分の過剰モル数に略相当する量のカルボン酸誘導体を添加し、テトラカルボン酸成分とジアミン成分のモル比を略当量に近づけることができる。ここでのカルボン酸誘導体としては、実質的にポリイミド前駆体溶液の粘度を増加させない、つまり実質的に分子鎖延長に関与しないテトラカルボン酸、もしくは末端停止剤として機能するトリカルボン酸とその無水物、ジカルボン酸とその無水物などが好適である。
2)ポリアミド酸エステル
 テトラカルボン酸二無水物を任意のアルコールと反応させ、ジエステルジカルボン酸を得た後、塩素化試薬(チオニルクロライド、オキサリルクロライドなど)と反応させ、ジエステルジカルボン酸クロライドを得る。このジエステルジカルボン酸クロライドとジアミンを-20~120℃、好ましくは-5~80℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。また、ジエステルジカルボン酸とジアミンを、リン系縮合剤や、カルボジイミド縮合剤などを用いて脱水縮合することでも、簡便にポリイミド前駆体が得られる。
 この方法で得られるポリイミド前駆体は、安定なため、水やアルコールなどの溶剤を加えて再沈殿などの精製を行うこともできる。
3)ポリアミド酸シリルエステル(間接法)
 あらかじめ、ジアミンとシリル化剤を反応させ、シリル化されたジアミンを得る。必要に応じて、蒸留等により、シリル化されたジアミンの精製を行う。そして、脱水された溶剤中にシリル化されたジアミンを溶解させておき、攪拌しながら、テトラカルボン酸二無水物を徐々に添加し、0~120℃、好ましくは5~80℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。
 ここで用いるシリル化剤として、塩素を含有しないシリル化剤を用いることは、シリル化されたジアミンを精製する必要がないため、好適である。塩素原子を含まないシリル化剤としては、N,O-ビス(トリメチルシリル)トリフルオロアセトアミド、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが挙げられる。フッ素原子を含まず低コストであることから、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが特に好ましい。
 また、ジアミンのシリル化反応には、反応を促進するために、ピリジン、ピペリジン、トリエチルアミンなどのアミン系触媒を用いることができる。この触媒はポリイミド前駆体の重合触媒として、そのまま使用することができる。
4)ポリアミド酸シリルエステル(直接法)
 1)の方法で得られたポリアミド酸溶液とシリル化剤を混合し、0~120℃、好ましくは5~80℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。
 ここで用いるシリル化剤として、塩素を含有しないシリル化剤を用いることは、シリル化されたポリアミド酸、もしくは、得られたポリイミドを精製する必要がないため、好適である。塩素原子を含まないシリル化剤としては、N,O-ビス(トリメチルシリル)トリフルオロアセトアミド、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが挙げられる。フッ素原子を含まず低コストであることから、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが特に好ましい。
 前記製造方法は、いずれも有機溶媒中で好適に行なうことができるので、その結果として、本発明のポリイミド前駆体のワニスを容易に得ることができる。
 ポリイミド前駆体を調製する際に使用する溶媒は、例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、1-エチル-2-ピロリドン、1,1,3,3-テトラメチル尿素、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド等の非プロトン性溶媒が好ましく、特にN,N-ジメチルアセトアミド、N-メチル-2-ピロリドンが好ましいが、原料モノマー成分と生成するポリイミド前駆体が溶解すれば、どんな種類の溶媒であっても問題はなく使用できるので、特にその構造には限定されない。溶媒として、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド溶媒、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトン等の環状エステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、トリエチレングリコール等のグリコール系溶媒、m-クレゾール、p-クレゾール、3-クロロフェノール、4-クロロフェノール等のフェノール系溶媒、アセトフェノン、1,3-ジメチル-2-イミダゾリジノン、スルホラン、ジメチルスルホキシドなどが好ましく採用される。さらに、その他の一般的な有機溶剤、即ちフェノール、o-クレゾール、酢酸ブチル、酢酸エチル、酢酸イソブチル、プロピレングリコールメチルアセテート、エチルセロソルブ、ブチルセロソルブ、2-メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル、ジエチレングリコールジメチルエーテル、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロへキサノン、メチルエチルケトン、アセトン、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒なども使用できる。なお、溶媒は、複数種を組み合わせて使用することもできる。
 本発明において、ポリイミド前駆体の対数粘度は、特に限定されないが、30℃での濃度0.5g/dLのN,N-ジメチルアセトアミド溶液における対数粘度が0.2dL/g以上、より好ましくは0.5dL/g以上であることが好ましい。対数粘度が0.2dL/g以上では、ポリイミド前駆体の分子量が高く、得られるポリイミドの機械強度や耐熱性に優れる。
 本発明において、ポリイミド前駆体のワニスは、少なくとも本発明のポリイミド前駆体と溶媒とを含み、溶媒とテトラカルボン酸成分とジアミン成分との合計量に対して、テトラカルボン酸成分とジアミン成分との合計量が5質量%以上、好ましくは10質量%以上、より好ましくは15質量%以上の割合であることが好適である。なお、通常は60質量%以下、好ましくは50質量%以下であることが好適である。この濃度は、ポリイミド前駆体に起因する固形分濃度にほぼ近似される濃度であるが、この濃度が低すぎると、例えばポリイミドフィルムを製造する際に得られるポリイミドフィルムの膜厚の制御が難しくなることがある。
 本発明のポリイミド前駆体のワニスに用いる溶媒としては、ポリイミド前駆体が溶解すれば問題はなく、特にその構造は限定されない。溶媒として、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド溶媒、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトン等の環状エステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、トリエチレングリコール等のグリコール系溶媒、m-クレゾール、p-クレゾール、3-クロロフェノール、4-クロロフェノール等のフェノール系溶媒、アセトフェノン、1,3-ジメチル-2-イミダゾリジノン、スルホラン、ジメチルスルホキシドなどが好ましく採用される。さらに、その他の一般的な有機溶剤、即ちフェノール、o-クレゾール、酢酸ブチル、酢酸エチル、酢酸イソブチル、プロピレングリコールメチルアセテート、エチルセロソルブ、ブチルセロソルブ、2-メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル、ジエチレングリコールジメチルエーテル、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロへキサノン、メチルエチルケトン、アセトン、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒なども使用できる。また、これらを複数種組み合わせて使用することもできる。
 本発明において、ポリイミド前駆体のワニスの粘度(回転粘度)は、特に限定されないが、E型回転粘度計を用い、温度25℃、せん断速度20sec-1で測定した回転粘度が、0.01~1000Pa・secが好ましく、0.1~100Pa・secがより好ましい。また、必要に応じて、チキソ性を付与することもできる。上記範囲の粘度では、コーティングや製膜を行う際、ハンドリングしやすく、また、はじきが抑制され、レベリング性に優れるため、良好な被膜が得られる。
 本発明のポリイミド前駆体のワニスは、必要に応じて、化学イミド化剤(無水酢酸などの酸無水物や、ピリジン、イソキノリンなどのアミン化合物)、酸化防止剤、フィラー、染料、顔料、シランカップリング剤などのカップリング剤、プライマー、難燃材、消泡剤、レベリング剤、レオロジーコントロール剤(流動補助剤)、剥離剤などを添加することができる。
 本発明のポリイミド前駆体のワニスには、必要に応じて、シリカ等の無機粒子を混合することもできる。混合のさせ方としては特に限定されるものではないが、重合溶媒に無機粒子を分散させその溶媒中でポリイミド前駆体を重合する方法、ポリイミド前駆体溶液と無機粒子を混合する方法、ポリイミド前駆体溶液と無機粒子分散溶液を混合する方法、ポリイミド前駆体溶液に無機粒子を添加し混合する方法等がある。本発明のポリイミド前駆体のワニスには、例えば、シリカ粒子やシリカ粒子分散溶液を添加することが出来る。添加するシリカ粒子としては、粒子径が好ましくは100nm以下、より好ましくは50nm以下、特に好ましくは30nm以下であることが好ましい。添加するシリカ粒子の粒子径が100nmを超えるとポリイミドが白濁することがある。また、シリカ粒子分散溶液を添加する場合は、例えば、日産化学社製「オルガノシリカゾル DMAc-ST(一次粒子径:10~15nm、分散溶媒:N,N-ジメチルアセトアミド)固形分:20~21%」等を使用することができる。ポリイミド前駆体へのシリカの添加量としては、そのポリイミド前駆体をイミド化した後のポリイミドに対して、好ましくは50体積%以下、さらに好ましくは50体積%未満、特に好ましくは40体積%未満である。ポリイミドに対してシリカ含有量が50体積%より大きい場合、ポリイミドが脆くなることがある。
 本発明のポリイミドは、前記化学式(5)で表される繰り返し単位を少なくとも1種含み、50~400℃の線熱膨張係数が100ppm/K以下であり、厚さ10μmのフィルムでの波長400nmの光透過率が好ましくは72%を超え、より好ましくは75%を超えることを特徴とする。この本発明のポリイミドは、前記のような本発明のポリイミド前駆体を脱水閉環反応(イミド化反応)することで好適に製造することができる。イミド化の方法は特に限定されず、公知の熱イミド化、または化学イミド化の方法を好適に適用することができる。得られるポリイミドの形態は、フィルム、ポリイミドフィルムと他の基材との積層体、コーティング膜、粉末、ビーズ、成型体、発泡体およびワニスなどを好適に挙げることができる。
 なお、本発明のポリイミドの前記化学式(5)は本発明のポリイミド前駆体の前記化学式(1)に対応する。
 本発明において、ポリイミドの対数粘度は、特に限定されないが、30℃での濃度0.5g/dLのN,N-ジメチルアセトアミド溶液における対数粘度が0.2dL/g以上、より好ましくは0.4dL/g以上、特に好ましくは0.5dL/g以上であることが好ましい。対数粘度が0.2dL/g以上では、得られるポリイミドの機械強度や耐熱性に優れる。
 本発明において、ポリイミドのワニスは、少なくとも本発明のポリイミドと溶媒とを含み、溶媒とポリイミドの合計量に対して、ポリイミドが5質量%以上、好ましくは10質量%以上、より好ましくは15質量%以上、特に好ましくは20質量%以上の割合であることが好適である。この濃度が低すぎると、例えばポリイミドフィルムを製造する際に得られるポリイミドフィルムの膜厚の制御が難しくなることがある。
 本発明のポリイミドのワニスに用いる溶媒としては、ポリイミドが溶解すれば問題はなく、特にその構造は限定されない。溶媒としては、前記の本発明のポリイミド前駆体のワニスに用いる溶媒を同様に用いることができる。
 本発明において、ポリイミドのワニスの粘度(回転粘度)は、特に限定されないが、E型回転粘度計を用い、温度25℃、せん断速度20sec-1で測定した回転粘度が、0.01~1000Pa・secが好ましく、0.1~100Pa・secがより好ましい。また、必要に応じて、チキソ性を付与することもできる。上記範囲の粘度では、コーティングや製膜を行う際、ハンドリングしやすく、また、はじきが抑制され、レベリング性に優れるため、良好な被膜が得られる。
 本発明のポリイミドのワニスは、必要に応じて、酸化防止剤、フィラー、染料、顔料、シランカップリング剤などのカップリング剤、プライマー、難燃材、消泡剤、レベリング剤、レオロジーコントロール剤(流動補助剤)、剥離剤などを添加することができる。
 本発明のポリイミド(本発明のポリイミド前駆体から得られるポリイミド)は、必要に応じて、シリカ等の無機粒子を混合することもできる。混合のさせ方としては特に限定されるものではないが、重合溶媒に無機粒子を分散させその溶媒中でポリイミド前駆体を重合する方法、ポリイミド前駆体溶液と無機粒子を混合する方法、ポリイミド前駆体溶液と無機粒子分散溶液を混合する方法、ポリイミド溶液に無機粒子を混合する方法、ポリイミド溶液に無機粒子分散溶液を混合する方法等がある。それらの方法で分散させたシリカ分散ポリイミド前駆体溶液中のポリイミド前駆体をイミド化することで、または、ポリイミド溶液とシリカ粒子やシリカ分散溶液を混合させた後に加熱乾燥し溶媒を除去することで、シリカ含有ポリイミドが得られる。ポリイミドに分散させる無機粒子としては、シリカ粒子を添加することが出来る。添加するシリカ粒子としては、粒子径が好ましくは100nm以下、より好ましくは50nm以下、特に好ましくは30nm以下であることが好ましい。添加するシリカ粒子の粒子径が100nmを超えるとポリイミドが白濁することがある。また、シリカ粒子分散溶液を使用する場合は、例えば、日産化学社製「オルガノシリカゾル DMAc-ST(一次粒子径:10~15nm、分散溶媒:N,N-ジメチルアセトアミド)固形分:20~21%」等を使用することができる。シリカの添加量としては、ポリイミドに対して、好ましくは50体積%以下、さらに好ましくは50体積%未満、特に好ましくは40体積%未満である。ポリイミドに対してシリカ含有量が50体積%より大きい場合、ポリイミドが脆くなることがある。
 本発明のポリイミドは、特に限定されないが、フィルムにしたときの50℃~400℃における線熱膨張係数が、好ましくは100ppm/K以下、より好ましくは50ppm/K以下、より好ましくは40ppm/K以下、特に好ましくは30ppm/K以下であり、極めて低い線熱膨張係数を有する。
 本発明のポリイミドは、特に限定されないが、厚さ10μmのフィルムでの全光透過率(波長380nm~780nmの平均光透過率)は、好ましくは80%以上、より好ましくは85%以上、より好ましくは86%以上、特に好ましくは87%以上であり、優れた光透過性を有する。
 本発明のポリイミドは、特に限定されないが、膜厚10μmのフィルムにしたとき、波長400nmにおける光透過率が、好ましくは70%以上、より好ましくは72%以上であり、より好ましくは72%を超え、より好ましくは75%以上であり、より好ましくは75%を超え、より好ましくは76%以上、より好ましくは77%以上、特に好ましくは80%以上であり、優れた透明性を有する。
 なお、本発明のポリイミドからなるフィルムは、用途にもよるが、フィルムの厚みとしては、好ましくは1μm~250μm程度、さらに好ましくは1μm~150μm程度である。
 本発明のポリイミドは、特に限定されないが、5%重量減少温度は、好ましくは470℃以上であり、より好ましくは480℃以上、特に好ましくは490℃以上である。
 本発明のポリイミドは、透明性、折り曲げ耐性、高耐熱性などの優れた特性を有し、さらに高温まで極めて低い線熱膨張係数を有することから、ディスプレイ用透明基板、タッチパネル用透明基板、或いは太陽電池用基板の用途において、好適に用いることができる。
 以下では、本発明のポリイミド前駆体を用いた、ポリイミドフィルム/基材積層体、もしくはポリイミドフィルムの製造方法の一例について述べる。ただし、以下の方法に限定されるものではない。
 例えばセラミック(ガラス、シリコン、アルミナ)、金属(銅、アルミニウム、ステンレス)、耐熱プラスチックフィルム(ポリイミド)などの基材に、本発明のポリイミド前駆体のワニスを流延し、真空中、窒素等の不活性ガス中、或いは空気中で、熱風もしくは赤外線を用いて、20~180℃、好ましくは20~150℃の温度範囲で乾燥する。次いで、得られたポリイミド前駆体フィルムを基材上で、もしくはポリイミド前駆体フィルムを基材上から剥離し、そのフィルムの端部を固定した状態で、真空中、窒素等の不活性ガス中、或いは空気中で、熱風もしくは赤外線を用い、200~500℃、より好ましくは250~450℃程度の温度で加熱イミド化することでポリイミドフィルム/基材積層体、もしくはポリイミドフィルムを製造することができる。なお、得られるポリイミドフィルムが酸化劣化するのを防ぐため、加熱イミド化は、真空中、或いは不活性ガス中で行うことが望ましい。加熱イミド化の温度が高すぎなければ空気中で行なっても差し支えない。ここでのポリイミドフィルム(ポリイミドフィルム/基材積層体の場合は、ポリイミドフィルム層)の厚さは、以後の工程の搬送性のため、好ましくは1~250μm、より好ましくは1~150μmである。
 また、ポリイミド前駆体のイミド化反応は、前記のような加熱処理による加熱イミド化に代えて、ポリイミド前駆体をピリジンやトリエチルアミン等の3級アミン存在下、無水酢酸等の脱水環化試薬を含有する溶液に浸漬するなどの化学的処理によって行うことも可能である。また、これらの脱水環化試薬をあらかじめ、ポリイミド前駆体のワニス中に投入・攪拌し、それを基材上に流延・乾燥することで、部分的にイミド化したポリイミド前駆体を作製することもでき、これを更に前記のような加熱処理することで、ポリイミドフィルム/基材積層体、もしくはポリイミドフィルムを得ることができる。
 この様にして得られたポリイミドフィルム/基材積層体、もしくはポリイミドフィルムは、その片面もしくは両面に導電性層を形成することによって、フレキシブルな導電性基板を得ることができる。
 フレキシブルな導電性基板は、例えば次の方法によって得ることができる。すなわち、第一の方法としては、ポリイミドフィルム/基材積層体を基材からポリイミドフィルムを剥離せずに、そのポリイミドフィルム表面に、スパッタ、蒸着、印刷などによって、導電性物質(金属もしくは金属酸化物、導電性有機物、導電性炭素など)の導電層を形成させ、導電性層/ポリイミドフィルム/基材の導電性積層体を製造する。その後必要に応じて、基材より導電性層/ポリイミドフィルム積層体を剥離することによって、導電性層/ポリイミドフィルム積層体からなる透明でフレキシブルな導電性基板を得ることができる。
 第二の方法としては、ポリイミドフィルム/基材積層体の基材からポリイミドフィルムを剥離して、ポリイミドフィルムを得、そのポリイミドフィルム表面に、導電性物質(金属もしくは金属酸化物、導電性有機物、導電性炭素など)の導電層を、第一の方法と同様にして形成させ、導電性層/ポリイミドフィルム積層体からなる透明でフレキシブルな導電性基板を得ることができる。
 なお、第一、第二の方法において、必要に応じて、ポリイミドフィルムの表面に導電層を形成する前に、スパッタ、蒸着やゲル-ゾル法などによって、水蒸気、酸素などのガスバリヤ層、光調整層などの無機層を形成しても構わない。
 また、導電層は、フォトリソグラフィ法や各種印刷法、インクジェット法などの方法によって、回路が好適に形成される。
 本発明の基板は、本発明のポリイミドによって構成されたポリイミドフィルムの表面に、必要に応じてガスバリヤ層や無機層を介し、導電層の回路を有するものである。この基板は、フレキシブルであり、透明性、折り曲げ性、耐熱性が優れ、さらに極めて低い線熱膨張係数や優れた耐溶剤性を併せ有するので微細な回路の形成が容易である。したがって、この基板は、ディスプレイ用、タッチパネル用、または太陽電池用の基板として好適に用いることができる。
 すなわち、この基板に、蒸着、各種印刷法、或いはインクジェット法などによって、さらにトランジスタ(無機トランジスタ、有機トランジスタ)が形成されてフレキシブル薄膜トランジスタが製造され、そして、表示デバイス用の液晶素子、EL素子、光電素子として好適に用いられる。
 以下、実施例及び比較例によって本発明を更に説明する。尚、本発明は以下の実施例に限定されるものではない。
 以下の各例において評価は次の方法で行った。
<ポリイミド前駆体のワニスの評価>
 [対数粘度]
 重合に用いた溶媒で希釈し、濃度0.5g/dLのポリイミド前駆体溶液を調製し、ウベローデ粘度計を用いて、30℃で測定し、対数粘度を求めた。
<ポリイミドフィルムの評価>
 [400nm光透過率、全光透過率]
 大塚電子製MCPD-300を用いて、膜厚約10μmのポリイミド膜の400nmにおける光透過率と、全光透過率(380nm~780nmにおける平均透過率)を測定した。測定した400nmにおける光透過率と、全光透過率をランベルト・ベール式を用いて、10μm厚の400nmにおける光透過率と、全光透過率を算出した。算出式を下記に示す。
 Log10(T/100)=10/L×(Log10(T’/100))
 Log10(T/100)=10/L×(Log10(T’/100))
:10μm厚のポリイミドフィルムの400nmにおける光透過率(%)
’:測定した400nmにおける光透過率(%)
:10μm厚のポリイミドフィルムの全光透過率(%)
’:測定した全光透過率(%)
L:測定したポリイミドフィルムの膜厚(μm)
 また、反射率を10%としてランベルト・ベール式を用いて、10μm厚の400nmにおける光透過率と、全光透過率を算出した。算出式を下記に示す。
 Log10((T+10)/100)=10/L×(Log10((T’+10)/100))
 Log10((T+10)/100)=10/L×(Log10((T’+10)/100))
:反射率を10%としたときの10μm厚のポリイミドフィルムの400nmにおける光透過率(%)
’:測定した400nmにおける光透過率(%)
:反射率を10%としたときの10μm厚のポリイミドフィルムの全光透過率(%)
’:測定した全光透過率(%)
L:測定したポリイミドフィルムの膜厚(μm)
 [弾性率、破断伸度]
 膜厚約10μmのポリイミドフィルムをIEC450規格のダンベル形状に打ち抜いて試験片とし、ORIENTEC社製TENSILONを用いて、チャック間長30mm、引張速度2mm/分で、初期の弾性率、破断伸度を測定した。
 [線熱膨張係数(CTE)]
 膜厚約10μmのポリイミドフィルムを幅4mmの短冊状に切り取って試験片とし、TMA/SS6100 (エスアイアイ・ナノテクノロジー株式会社製)を用い、チャック間長15mm、荷重2g、昇温速度20℃/分で500℃まで昇温した。得られたTMA曲線から、50℃から400℃までの線熱膨張係数を求めた。
 [5%重量減少温度]
 膜厚約10μmのポリイミドフィルムを試験片とし、TAインスツルメント社製 熱量計測定装置(Q5000IR)を用い、窒素気流中、昇温速度10℃/分で25℃から600℃まで昇温した。得られた重量曲線から、5%重量減少温度を求めた。
 以下の各例で使用した原材料の略称、純度等は、次のとおりである。
 [ジアミン成分]
DABAN: 4,4’-ジアミノベンズアニリド〔純度:99.90%(GC分析)〕
TFMB: 2,2’-ビス(トリフルオロメチル)ベンジジン〔純度:99.83%(GC分析)〕
PPD: p-フェニレンジアミン〔純度:99.9%(GC分析)〕
m-TD: m-トリジン〔純度:99.84%(GC分析)〕
BAPT: ビス(4-アミノフェニル)テレフタレート〔純度:99.56%(LC分析)〕
FDA: 9,9-ビス(4-アミノフェニル)フルオレン
4-APTP: N,N’-ビス(4-アミノフェニル)テレフタルアミド〔純度:99.95%(GC分析)〕
ODA: 4,4’-オキシジアニリン〔純度:99.9%(GC分析)〕
 [テトラカルボン酸成分]
CpODA:ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物
PMDA-HS: 1R,2S,4S,5R-シクロヘキサンテトラカルボン酸二無水物〔PMDA-HSとしての純度:92.7%(GC分析),水素化ピロメリット酸二無水物(立体異性体の混合物)としての純度:99.9%(GC分析)〕
cis/cis-BTA-H: 1rC7-ビシクロ[2.2.2]オクタン-2c,3c,5c,6c-テトラカルボン酸-2,3:5,6-二無水物〔cis/cis-BTA-Hとしての純度:99.9%(GC分析)〕
 [シリル化剤]
BSA: N,O-ビス(トリメチルシリル)アセトアミド
 [シリカ分散溶液]
オルガノシリカ DMAc-ST シリカ固形分 21.3質量%
 [溶媒]
DMAc: N,N-ジメチルアセトアミド
NMP: N-メチル-2-ピロリドン
 [溶媒の純度]
GC分析:
 主成分の保持時間(min) 14.28
 主成分の面積% 99.9929
 短保持時間不純物のピーク面積% 0.0000
 長保持時間不純物のピーク面積% 0.0071
 
不揮発分(質量%) <0.001
光透過率:
 400nm光透過率(%) 92
 還流後の400nm光透過率(%) 92
金属分:
 Na(ppb) 150
 Fe(ppb) <2
 Cu(ppb) <2
 Mo(ppb) <1
 表1に実施例、比較例で使用したテトラカルボン酸成分、ジアミン成分の構造式を記す。
Figure JPOXMLDOC01-appb-T000014
 
 〔実施例1〕
 窒素ガスで置換した反応容器中にDABAN 2.27g(10ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 26質量%となる量の17.41gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は1.0dL/gであった。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは75%、Tは90%であった。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例2〕
 窒素ガスで置換した反応容器中にTFMB 3.20g(10ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 28質量%となる量の18.12gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.6dL/gであった。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは91%、Tは94%であった。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例3〕
 窒素ガスで置換した反応容器中にPPD 1.08g(10ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 17質量%となる量の24.05gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は1.2dL/gであった。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは85%、Tは90%であった。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例4〕
 窒素ガスで置換した反応容器中にm-TD 2.12g(10ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 18質量%となる量の27.18gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は1.9dL/gであった。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは89%、Tは92%であった。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例5〕
 窒素ガスで置換した反応容器中にBAPT 3.48g(10ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 16質量%となる量の38.47gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は2.5dL/gであった。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは74%、Tは86%であった。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例6〕
 窒素ガスで置換した反応容器中にDABAN 1.14g(5ミリモル)とTFMB 1.60g(5ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 25質量%となる量の16.34gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.2dL/gであった。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは85%、Tは91%であった。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例7〕
 窒素ガスで置換した反応容器中にDABAN 1.59g(7ミリモル)とTFMB 0.96g(3ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 21質量%となる量の18.07gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.4dL/gであった。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは86%、Tは92%であった。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例8〕
 窒素ガスで置換した反応容器中にDABAN 1.59g(7ミリモル)とPPD 0.32g(3ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 26質量%となる量の11.86gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は1.2dL/gであった。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは84%、Tは92%であった。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例9〕
 窒素ガスで置換した反応容器中にDABAN 1.14g(5ミリモル)とPPD 0.54g(5ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 25質量%となる量の13.15gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は1.1dL/gであった。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは85%、Tは92%であった。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例10〕
 窒素ガスで置換した反応容器中にDABAN 0.68g(3ミリモル)とPPD 0.76g(7ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 19質量%となる量の19.61gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は1.1dL/gであった。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは86%、Tは92%であった。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例11〕
 窒素ガスで置換した反応容器中に4-APTP 3.46g(10ミリモル)を入れ、N-メチル-2-ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 13質量%となる量の48.85gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例12〕
 窒素ガスで置換した反応容器中にDABAN 1.14g(5ミリモル)とPPD 0.54g(5ミリモル)を入れ、N-メチル-2-ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の22.08gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例13〕
 窒素ガスで置換した反応容器中にTFMB 1.60g(5ミリモル)とPPD 0.54g(5ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 23質量%となる量の20.02gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例14〕
 窒素ガスで置換した反応容器中にTFMB 0.96g(3ミリモル)とPPD 0.76g(7ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 23質量%となる量の18.61gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-1に示す。
 〔実施例15〕
 窒素ガスで置換した反応容器中にDABAN 0.91g(4ミリモル)とPPD 0.22g(2ミリモル)とTFMB 1.28g(4ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20量%となる量の25.00gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔実施例16〕
 窒素ガスで置換した反応容器中にDABAN 0.68g(3ミリモル)とPPD 0.22g(2ミリモル)とTFMB 1.60g(5ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20量%となる量の25.36gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔実施例17〕
 窒素ガスで置換した反応容器中にDABAN 0.91g(4ミリモル)とFDA 0.35g(1ミリモル)とTFMB 1.60g(5ミリモル)を入れ、N-メチル-2-ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 18質量%となる量の30.52gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔実施例18〕
 窒素ガスで置換した反応容器中にDABAN 2.05g(9ミリモル)とFDA 0.35g(1ミリモル)を入れ、N-メチル-2-ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 18質量%となる量の28.43gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔実施例19〕
 窒素ガスで置換した反応容器中に4-APTP 3.12g(9ミリモル)とFDA 0.35g(1ミリモル)を入れ、N-メチル-2-ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 13質量%となる量の48.92gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔実施例20〕
 窒素ガスで置換した反応容器中にDABAN 2.27g(10ミリモル)を入れ、日産化学工業株式会社製のオルガノシリカゾル DMAc-ST 5.88gとN,N-ジメチルアセトアミド 19.83gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは79%、Tは90%であった。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔実施例21〕
 窒素ガスで置換した反応容器中にDABAN 2.27g(10ミリモル)を入れ、日産化学工業株式会社製のオルガノシリカゾルDMAc-ST 11.32gとN,N-ジメチルアセトアミド 15.55gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは83%、Tは92%であった。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔実施例22〕
 窒素ガスで置換した反応容器中にTFMB 3.20g(10ミリモル)を入れ、日産化学工業株式会社製のオルガノシリカゾルDMAc-ST 3.60gとN,N-ジメチルアセトアミド 25.35gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは89%、Tは94%であった。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔実施例23〕
 窒素ガスで置換した反応容器中にTFMB 3.20g(10ミリモル)を入れ、日産化学工業株式会社製のオルガノシリカゾルDMAc-ST 7.61gとN,N-ジメチルアセトアミド 22.20gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは86%、Tは94%であった。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔実施例24〕
 窒素ガスで置換した反応容器中に実施例8で得られたポリイミド前駆体溶液 5.00gを入れ、N,O-ビス(トリメチルシリル)アセトアミド 0.93gを入れ、室温で12時間攪拌し均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは78%、Tは87%であった。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔実施例25〕
 窒素ガスで置換した反応容器中にDABAN 0.91g(4ミリモル)とPPD 0.54g(5ミリモル)とTFMB 0.32g(1ミリモル)を入れ、N-メチル-2-ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 18量%となる量の25.56gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔実施例26〕
 窒素ガスで置換した反応容器中にDABAN 0.68g(3ミリモル)とPPD 0.65g(6ミリモル)とTFMB 0.32g(1ミリモル)を入れ、N-メチル-2-ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 18量%となる量の25.01gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔実施例27〕
 窒素ガスで置換した反応容器中にDABAN 0.91g(4ミリモル)とPPD 0.54g(5ミリモル)とODA 0.20g(1ミリモル)を入れ、N-メチル-2-ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 18量%となる量の25.01gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔実施例28〕
 窒素ガスで置換した反応容器中にDABAN 0.68g(3ミリモル)とPPD 0.65g(6ミリモル)とODA 0.20g(1ミリモル)を入れ、N-メチル-2-ピロリドンを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 18量%となる量の24.46gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 PTFE製メンブレンフィルターでろ過したポリイミド溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表2-2に示す。
 〔比較例1〕
 窒素ガスで置換した反応容器中にODA 2.00g(10ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の23.39gを加え、室温で1時間攪拌した。この溶液にCpODA 3.84g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は1.6dL/gであった。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは82%、Tは89%であった。
 このポリイミドフィルムの特性を測定した結果を表2-3に示す。
 〔比較例2〕
 窒素ガスで置換した反応容器中にODA 2.00g(10ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 17質量%となる量の20.70gを加え、室温で1時間攪拌した。この溶液にPMDA-HS 2.24g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は1.0dL/gであった。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは86%、Tは89%であった。
 このポリイミドフィルムの特性を測定した結果を表2-3に示す。
 〔比較例3〕
 窒素ガスで置換した反応容器中にODA 2.00g(10ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 18質量%となる量の20.50gを加え、室温で1時間攪拌した。この溶液にcis/cisBTA-H 2.50g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の対数粘度は0.6dL/gであった。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で室温から420℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が約10μmのポリイミドフィルムを得た。得られたポリイミドのTは84%、Tは88%であった。
 このポリイミドフィルムの特性を測定した結果を表2-3に示す。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 表2-1~2-3に示した結果から、比較例1~3に比べ、本発明のポリイミド(実施例1~28)は、50℃から400℃という高温までの線熱膨張係数が小さくなることが分かる。
 特に、ジアミン成分としてDABAN、PPD、BAPTを用いると線熱膨張係数が極めて小さくなる(実施例1,3,5)。また、TFMB、PPD、m-TDを用いることで透明性が高くなる(実施例2,3,4)。これらを共重合することで高温まで極めて低熱膨張でかつ、高透明性を示す(実施例6-10、12-16)。また、シリカ入りのポリイミドフィルムとすることで、DABANを用いたポリイミドでは透過率と耐熱性が向上しており(実施例1、20および21)、TFMBを用いたポリイミドでは、耐熱性が向上し線熱膨張率が低下していることが分かる(実施例2、22および23)。
 前記のとおり、本発明のポリイミド前駆体から得られたポリイミドは、優れた光透過性、折り曲げ耐性を有すると共に、高温までの低線熱膨張係数を有しており、本発明のポリイミドフィルムは、ディスプレイ用途などの無色透明で微細な回路形成可能な透明基板として好適に用いることができる。
 本発明によって、透明性、折り曲げ耐性、高耐熱性などの優れた特性を有し、さらに極めて低い線熱膨張係数を有するポリイミド、及びその前駆体を提供することができる。このポリイミド前駆体から得られるポリイミド、及びポリイミドは、透明性が高く、且つ低線熱膨張係数であって微細な回路の形成が容易であり、耐溶剤性も併せ有するので、特にディスプレイ用途などの基板を形成するために好適に用いることができる。
 

Claims (21)

  1.  下記化学式(1)で表される繰り返し単位を少なくとも1種含むポリイミド前駆体であって、
     このポリイミド前駆体から得られるポリイミドが、50~400℃の線熱膨張係数が100ppm/K以下であることを特徴とするポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Aはアリーレン基であり、X、Xはそれぞれ独立に水素、炭素数1~6のアルキル基、または炭素数3~9のアルキルシリル基である。)
  2.  このポリイミド前駆体から得られるポリイミドが、厚さ10μmのフィルムでの波長400nmの光透過率が72%を超えることを特徴とする請求項1に記載のポリイミド前駆体。
  3.  このポリイミド前駆体から得られるポリイミドが、厚さ10μmのフィルムでの波長400nmの光透過率が75%を超えることを特徴とする請求項2に記載のポリイミド前駆体。
  4.  Aが下記化学式(2)で表されるものである前記化学式(1)の繰り返し単位を少なくとも1種含むことを特徴とする請求項1~3のいずれかに記載のポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000002
    (式中、mは0~3を、nは0~3をそれぞれ独立に示す。B、B、Bはそれぞれ独立に水素原子、メチル基、トリフルオロメチル基よりなる群から選択される1種を示し、X、Yはそれぞれ独立に直接結合、または 式:-NHCO-、-CONH-、-COO-、-OCO-で表される基よりなる群から選択される1種を示す。)
  5.  Aが前記化学式(2)で表されるものである前記化学式(1)の繰り返し単位を少なくとも2種含むことを特徴とする請求項4に記載のポリイミド前駆体。
  6.  Aが前記化学式(2)で表されるものである前記化学式(1)の繰り返し単位の合計含有量が、全繰り返し単位に対して、30モル%以上であることを特徴とする請求項5に記載のポリイミド前駆体。
  7.  Aが、mおよび/またはnが1~3であり、Xおよび/またはYが、それぞれ独立に、-NHCO-、-CONH-、-COO-、または-OCO-のいずれかである前記化学式(2)の構造である前記化学式(1)の繰り返し単位(1-1)を少なくとも1種含み、
     Aが、mおよびnが0である前記化学式(2)の構造であるか、または、mおよび/またはnが1~3であり、XおよびYが直接結合である前記化学式(2)の構造である前記化学式(1)の繰り返し単位(1-2)を少なくとも1種含むことを特徴とする請求項5または6に記載のポリイミド前駆体。
  8.  前記繰り返し単位(1-1)として、Aが下記化学式(3-1)~(3-3)のいずれかで表されるものである前記化学式(1)の繰り返し単位を少なくとも1種含むことを特徴とする請求項7に記載のポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000003
  9.  前記繰り返し単位(1-2)として、Aが下記化学式(3-4)~(3-6)のいずれかで表されるものである前記化学式(1)の繰り返し単位を少なくとも1種含むことを特徴とする請求項7または8に記載のポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000004
  10.  前記繰り返し単位(1-1)の合計含有量が、全繰り返し単位に対して、30モル%以上70モル%以下であり、
     前記繰り返し単位(1-2)の合計含有量が、全繰り返し単位に対して、30モル%以上70モル%以下であることを特徴とする請求項7~9のいずれかに記載のポリイミド前駆体。
  11.  Aが下記化学式(3-1)~(3-6)のいずれかで表されるものである前記化学式(1)の繰り返し単位を少なくとも1種含むことを特徴とする請求項4に記載のポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000005
  12.  Aが前記化学式(3-1)、(3-2)、(3-4)または(3-5)のいずれかで表されるものである前記化学式(1)の繰り返し単位を少なくとも1種含むことを特徴とする請求項11に記載のポリイミド前駆体。
  13.  Aが前記化学式(3-1)、(3-2)、(3-4)または(3-5)のいずれかで表されるものである前記化学式(1)の繰り返し単位の合計含有量が、全繰り返し単位に対して、30モル%以上であることを特徴とする請求項12に記載のポリイミド前駆体。
  14.  下記化学式(5)で表される繰り返し単位を少なくとも1種含み、50~400℃の線熱膨張係数が100ppm/K以下であることを特徴とするポリイミド。
    Figure JPOXMLDOC01-appb-C000006
    (式中、Aはアリーレン基である。)
  15.  厚さ10μmのフィルムでの波長400nmの光透過率が72%以上であることを特徴とする請求項14に記載のポリイミド。
  16.  厚さ10μmのフィルムでの波長400nmの光透過率が75%を超えることを特徴とする請求項15に記載のポリイミド。
  17.  請求項1~13のいずれかに記載のポリイミド前駆体から得られるポリイミド。
  18.  請求項1~13のいずれかに記載のポリイミド前駆体から得られるポリイミドフィルム。
  19.  請求項1~13のいずれかに記載のポリイミド前駆体、又は請求項14~17のいずれかに記載のポリイミドを含むワニス。
  20.  請求項1~13のいずれかに記載のポリイミド前駆体、又は請求項14~17のいずれかに記載のポリイミドを含むワニスを用いて得られたポリイミドフィルム。
  21.  請求項1~13のいずれかに記載のポリイミド前駆体から得られるポリイミド、又は請求項14~17のいずれかに記載のポリイミドによって形成されたことを特徴とするディスプレイ用、タッチパネル用、または太陽電池用の基板。
     
PCT/JP2013/057563 2012-05-28 2013-03-15 ポリイミド前駆体及びポリイミド WO2013179727A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/402,553 US10781288B2 (en) 2012-05-28 2013-03-15 Polyimide precursor and polyimide
JP2014518309A JP6431369B2 (ja) 2012-05-28 2013-03-15 ポリイミド前駆体及びポリイミド
KR1020197022143A KR102125660B1 (ko) 2012-05-28 2013-03-15 폴리이미드 전구체 및 폴리이미드
CN201380040087.9A CN104508009B (zh) 2012-05-28 2013-03-15 聚酰亚胺前体和聚酰亚胺
KR20147035881A KR20150021527A (ko) 2012-05-28 2013-03-15 폴리이미드 전구체 및 폴리이미드

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012121417 2012-05-28
JP2012-121417 2012-05-28

Publications (1)

Publication Number Publication Date
WO2013179727A1 true WO2013179727A1 (ja) 2013-12-05

Family

ID=49672935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057563 WO2013179727A1 (ja) 2012-05-28 2013-03-15 ポリイミド前駆体及びポリイミド

Country Status (6)

Country Link
US (1) US10781288B2 (ja)
JP (2) JP6431369B2 (ja)
KR (2) KR102125660B1 (ja)
CN (1) CN104508009B (ja)
TW (1) TWI583721B (ja)
WO (1) WO2013179727A1 (ja)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053312A1 (ja) * 2013-10-11 2015-04-16 宇部興産株式会社 ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
WO2015152178A1 (ja) * 2014-03-31 2015-10-08 日産化学工業株式会社 樹脂薄膜の製造方法および樹脂薄膜形成用組成物
JP2016011418A (ja) * 2014-06-04 2016-01-21 宇部興産株式会社 ポリイミド膜の製造方法
WO2016063993A1 (ja) * 2014-10-23 2016-04-28 宇部興産株式会社 ポリイミドフィルム、ポリイミド前駆体、及びポリイミド
WO2016084777A1 (ja) * 2014-11-27 2016-06-02 Jx日鉱日石エネルギー株式会社 ポリイミドフィルム、それを用いた基板、及び、ポリイミドフィルムの製造方法
JP2016150998A (ja) * 2015-02-18 2016-08-22 Jxエネルギー株式会社 ポリイミドフィルム並びにそれを用いた有機エレクトロルミネッセンス素子
JP2016204569A (ja) * 2015-04-27 2016-12-08 宇部興産株式会社 ポリアミック酸溶液組成物およびポリイミドフィルム
KR20170072930A (ko) 2014-10-23 2017-06-27 우베 고산 가부시키가이샤 폴리이미드 전구체, 폴리이미드 및 폴리이미드 필름
JPWO2016117636A1 (ja) * 2015-01-22 2017-11-02 ユニチカ株式会社 積層体およびその製造方法および使用方法ならびにガラス基板積層用ポリイミド前駆体溶液
WO2017191822A1 (ja) * 2016-05-06 2017-11-09 三菱瓦斯化学株式会社 ポリイミド樹脂
KR20180016950A (ko) * 2016-08-08 2018-02-20 제이엑스티지 에네루기 가부시키가이샤 폴리이미드, 폴리아미드산, 폴리아미드산 용액 및 폴리이미드 필름
WO2018051888A1 (ja) * 2016-09-13 2018-03-22 Jxtgエネルギー株式会社 ポリイミド、ポリアミド酸、それらの溶液及びポリイミドを用いたフィルム
KR20180031004A (ko) 2015-07-16 2018-03-27 우베 고산 가부시키가이샤 폴리아미드산 용액 조성물 및 폴리이미드 필름
WO2018097143A1 (ja) * 2016-11-24 2018-05-31 日産化学工業株式会社 フレキシブルデバイス基板形成用組成物
JP2018123297A (ja) * 2017-02-03 2018-08-09 東京応化工業株式会社 ポリイミド前駆体組成物
WO2018143314A1 (ja) * 2017-02-03 2018-08-09 東京応化工業株式会社 ポリイミド前駆体組成物
KR20180093007A (ko) 2015-12-09 2018-08-20 가부시키가이샤 가네카 폴리아미드산, 폴리이미드, 폴리아미드산 용액, 폴리이미드 적층체, 플렉시블 디바이스 기판 및 그들의 제조 방법
JP2019011452A (ja) * 2017-07-03 2019-01-24 Jxtgエネルギー株式会社 ポリイミドフィルム及びその製造方法
WO2019065523A1 (ja) * 2017-09-29 2019-04-04 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2019065522A1 (ja) * 2017-09-29 2019-04-04 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
KR20190077015A (ko) 2016-10-27 2019-07-02 우베 고산 가부시키가이샤 폴리이미드 및 그것을 사용한 플렉시블 디바이스
WO2019131894A1 (ja) * 2017-12-28 2019-07-04 宇部興産株式会社 ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
KR20200093078A (ko) 2017-12-28 2020-08-04 우베 고산 가부시키가이샤 폴리이미드, 폴리이미드 용액 조성물, 폴리이미드 필름 및 기판
KR20210098376A (ko) 2020-01-31 2021-08-10 우베 고산 가부시키가이샤 폴리이미드 전구체 조성물 및 폴리이미드 필름/기재 적층체
KR20220066319A (ko) 2019-09-20 2022-05-24 우베 고산 가부시키가이샤 폴리이미드 전구체 조성물 및 플렉시블 전자 디바이스의 제조 방법
KR20220158783A (ko) 2020-03-27 2022-12-01 유비이 가부시키가이샤 폴리이미드 전구체 조성물 및 폴리이미드 필름/기재 적층체
KR20230106702A (ko) 2020-11-27 2023-07-13 유비이 가부시키가이샤 폴리이미드 전구체 조성물, 폴리이미드 필름 및 폴리이미드 필름/기재 적층체
KR20230146067A (ko) 2021-02-19 2023-10-18 유비이 가부시키가이샤 폴리이미드 전구체 조성물 및 폴리이미드 필름
KR20240070585A (ko) 2021-09-21 2024-05-21 유비이 가부시키가이샤 폴리이미드 전구체 조성물 및 폴리이미드 필름

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9768328B2 (en) 2011-08-08 2017-09-19 Jx Nippon Oil & Energy Corporation Transparent film, transparent electro-conductive laminate, and touch panel, solar cell, and display device using the same
CN107573506B (zh) * 2012-09-18 2020-06-30 宇部兴产株式会社 聚酰亚胺前体,聚酰亚胺,聚酰亚胺膜,清漆以及基板
US9456495B2 (en) 2012-09-26 2016-09-27 Jx Nippon Oil & Energy Corporation Norbornane-2-spiro-α-cycloalkanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride, norbornane-2-spiro-α-cycloalkanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic acid and ester thereof, method for producing norbornane-2-spiro-α-cycloalkanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride, polyimide obtained by using the same, and method for producing polyimide
CN103788393B (zh) * 2014-02-17 2017-06-13 江苏亚宝绝缘材料股份有限公司 一种导电聚酰亚胺薄膜制备方法
CN103927054B (zh) * 2014-04-15 2017-02-01 华为终端有限公司 一种显示操作界面的方法、装置及触摸屏终端
TWI769157B (zh) * 2016-05-10 2022-07-01 日商住友化學股份有限公司 光學膜、具備該光學膜之可撓性裝置構件、及樹脂組成物
KR102178216B1 (ko) 2017-09-28 2020-11-12 주식회사 엘지화학 폴리이미드 수지의 접착성을 증진시키는 화합물 및 이를 이용하여 제조된 폴리이미드 공중합체
CN112204086B (zh) * 2019-02-01 2023-04-14 株式会社Lg化学 基于聚酰亚胺的聚合物膜、使用其的显示装置用基底和光学装置
US20210230368A1 (en) 2019-02-01 2021-07-29 Lg Chem, Ltd. Polyimide-based polymer film, substrate for display device, and optical device using the same
CN110922594B (zh) * 2019-12-06 2022-05-06 吉林奥来德光电材料股份有限公司 一种高透光可溶性聚酰亚胺及其薄膜的制备方法
WO2021153379A1 (ja) * 2020-01-31 2021-08-05 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
CN112080005A (zh) * 2020-08-26 2020-12-15 浙江中科玖源新材料有限公司 一种聚酰亚胺及聚酰亚胺薄膜
JPWO2022091814A1 (ja) 2020-10-26 2022-05-05
WO2024111131A1 (ja) * 2022-11-25 2024-05-30 Hdマイクロシステムズ株式会社 ポリアミック酸エステル及び樹脂組成物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001028767A1 (fr) * 1999-10-21 2001-04-26 Nippon Steel Chemical Co., Ltd. Lamelle et procede de production
JP2006321229A (ja) * 2005-04-19 2006-11-30 Ube Ind Ltd ポリイミドフィルム積層体
JP2009286967A (ja) * 2008-05-30 2009-12-10 Asahi Kasei E-Materials Corp ポリアミド酸ワニス組成物及びそれを用いた金属−ポリイミド複合体
WO2011099518A1 (ja) * 2010-02-09 2011-08-18 Jx日鉱日石エネルギー株式会社 ノルボルナン-2-スピロ-α-シクロアルカノン-α'-スピロ-2''-ノルボルナン-5,5'',6,6''-テトラカルボン酸二無水物類、ノルボルナン-2-スピロ-α-シクロアルカノン-α'-スピロ-2''-ノルボルナン-5,5'',6,6''-テトラカルボン酸及びそのエステル類、ノルボルナン-2-スピロ-α-シクロアルカノン-α'-スピロ-2''-ノルボルナン-5,5'',6,6''-テトラカルボン酸二無水物類の製造方法、それを用いて得られるポリイミド、並びに、ポリイミドの製造方法
WO2013021942A1 (ja) * 2011-08-08 2013-02-14 Jx日鉱日石エネルギー株式会社 透明フィルム、透明導電性積層体、並びに、それを用いたタッチパネル、太陽電池及び表示装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160081A (en) 1997-10-31 2000-12-12 Nippon Zeon Co., Ltd. Photosensitive polyimide resin composition
JPH11282157A (ja) 1997-10-31 1999-10-15 Nippon Zeon Co Ltd ポリイミド系感光性樹脂組成物
CA2406534A1 (en) * 2000-04-21 2002-10-17 Kaneka Corporation Curable composition, composition for optical material, optical material, liquid-crystal display, transparent conductive film, and process for producing the same
JP2002069179A (ja) 2000-08-29 2002-03-08 Ube Ind Ltd 可溶性、透明なポリイミドおよびその製造法
JP2002146021A (ja) 2000-11-10 2002-05-22 Ube Ind Ltd 可溶性、透明なポリイミドおよびその製造法
US6962756B2 (en) 2001-11-02 2005-11-08 Mitsubishi Gas Chemical Company, Inc. Transparent electrically-conductive film and its use
JP2003168800A (ja) 2001-11-30 2003-06-13 Mitsubishi Gas Chem Co Inc 薄膜トランジスタ基板
US8043697B2 (en) 2005-04-19 2011-10-25 Ube Industries, Ltd. Polyimide film-laminated body
US7572878B2 (en) * 2005-09-16 2009-08-11 E. I. Du Pont De Nemours And Company Polycyclic polyimides and compositions and methods relating thereto
JP4794981B2 (ja) * 2005-10-27 2011-10-19 新日鐵化学株式会社 低誘電性ポリイミドフィルム及びその製造方法並びに配線基板用積層体
JP5320668B2 (ja) 2005-11-15 2013-10-23 三菱化学株式会社 テトラカルボン酸系化合物及びそのポリイミド、ならびにその製造方法
US7795370B2 (en) 2005-11-15 2010-09-14 Mitsubishi Chemical Corporation Tetracarboxylic acid compound, polyimide thereof, and production method thereof
CN101674923B (zh) 2007-05-24 2013-01-09 三菱瓦斯化学株式会社 无色透明树脂薄膜的制备方法及制备装置
JP5262030B2 (ja) 2007-09-12 2013-08-14 東レ・デュポン株式会社 ポリイミドフィルムおよびそれを基材とした銅張り積層体
JP5133724B2 (ja) * 2008-02-04 2013-01-30 新日鉄住金化学株式会社 ポリイミド樹脂積層体の製造方法及び金属張積層板の製造方法
TWI427098B (zh) * 2008-02-05 2014-02-21 Basf Se 由芮-(π-受體)共聚物製備之半導體材料
JP2011021072A (ja) * 2009-07-14 2011-02-03 Asahi Kasei E-Materials Corp ポリエステルイミド前駆体及びポリエステルイミド
US8574720B2 (en) * 2009-08-03 2013-11-05 E.I. Du Pont De Nemours & Company Matte finish polyimide films and methods relating thereto
US9229402B2 (en) * 2009-10-23 2016-01-05 Seiko Epson Corporation Recording device and control method
JP5585133B2 (ja) * 2010-03-15 2014-09-10 富士電機株式会社 半導体素子及び半導体素子の製造方法
CN103228704B (zh) 2010-07-22 2016-10-05 宇部兴产株式会社 聚酰亚胺前体、聚酰亚胺及其制备中所用的材料
KR102190722B1 (ko) * 2013-06-27 2020-12-14 우베 고산 가부시키가이샤 폴리이미드 전구체, 및 폴리이미드
JPWO2015053312A1 (ja) * 2013-10-11 2017-03-09 宇部興産株式会社 ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001028767A1 (fr) * 1999-10-21 2001-04-26 Nippon Steel Chemical Co., Ltd. Lamelle et procede de production
JP2006321229A (ja) * 2005-04-19 2006-11-30 Ube Ind Ltd ポリイミドフィルム積層体
JP2009286967A (ja) * 2008-05-30 2009-12-10 Asahi Kasei E-Materials Corp ポリアミド酸ワニス組成物及びそれを用いた金属−ポリイミド複合体
WO2011099518A1 (ja) * 2010-02-09 2011-08-18 Jx日鉱日石エネルギー株式会社 ノルボルナン-2-スピロ-α-シクロアルカノン-α'-スピロ-2''-ノルボルナン-5,5'',6,6''-テトラカルボン酸二無水物類、ノルボルナン-2-スピロ-α-シクロアルカノン-α'-スピロ-2''-ノルボルナン-5,5'',6,6''-テトラカルボン酸及びそのエステル類、ノルボルナン-2-スピロ-α-シクロアルカノン-α'-スピロ-2''-ノルボルナン-5,5'',6,6''-テトラカルボン酸二無水物類の製造方法、それを用いて得られるポリイミド、並びに、ポリイミドの製造方法
WO2013021942A1 (ja) * 2011-08-08 2013-02-14 Jx日鉱日石エネルギー株式会社 透明フィルム、透明導電性積層体、並びに、それを用いたタッチパネル、太陽電池及び表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Yakushin suru Polyimide no Saishin Doko II - Tayoka suru Shurui.Tokusei.Kakosei to Yoto Kakudai no Jittai", SUMIBE TECHNO RESEARCH KABUSHIKI KAISHA, 2000, pages 102 *

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016074915A (ja) * 2013-10-11 2016-05-12 宇部興産株式会社 ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
WO2015053312A1 (ja) * 2013-10-11 2015-04-16 宇部興産株式会社 ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
JPWO2015053312A1 (ja) * 2013-10-11 2017-03-09 宇部興産株式会社 ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
JPWO2015152178A1 (ja) * 2014-03-31 2017-04-13 日産化学工業株式会社 樹脂薄膜の製造方法および樹脂薄膜形成用組成物
WO2015152178A1 (ja) * 2014-03-31 2015-10-08 日産化学工業株式会社 樹脂薄膜の製造方法および樹脂薄膜形成用組成物
KR102345844B1 (ko) * 2014-03-31 2021-12-31 닛산 가가쿠 가부시키가이샤 수지 박막의 제조방법 및 수지 박막형성용 조성물
CN106164178B (zh) * 2014-03-31 2019-07-26 日产化学工业株式会社 树脂薄膜的制造方法和树脂薄膜形成用组合物
TWI705993B (zh) * 2014-03-31 2020-10-01 日商日產化學工業股份有限公司 樹脂薄膜之製造方法及樹脂薄膜形成用組成物
CN106164178A (zh) * 2014-03-31 2016-11-23 日产化学工业株式会社 树脂薄膜的制造方法和树脂薄膜形成用组合物
KR20160138980A (ko) * 2014-03-31 2016-12-06 닛산 가가쿠 고교 가부시키 가이샤 수지 박막의 제조방법 및 수지 박막형성용 조성물
JP2016011418A (ja) * 2014-06-04 2016-01-21 宇部興産株式会社 ポリイミド膜の製造方法
EP3153539A4 (en) * 2014-06-04 2018-02-28 UBE Industries, Ltd. Method for producing polyimide film
JPWO2016063993A1 (ja) * 2014-10-23 2017-09-14 宇部興産株式会社 ポリイミドフィルム、ポリイミド前駆体、及びポリイミド
KR20170072929A (ko) 2014-10-23 2017-06-27 우베 고산 가부시키가이샤 폴리이미드 필름, 폴리이미드 전구체 및 폴리이미드
KR20170072930A (ko) 2014-10-23 2017-06-27 우베 고산 가부시키가이샤 폴리이미드 전구체, 폴리이미드 및 폴리이미드 필름
WO2016063993A1 (ja) * 2014-10-23 2016-04-28 宇部興産株式会社 ポリイミドフィルム、ポリイミド前駆体、及びポリイミド
KR102482608B1 (ko) * 2014-10-23 2022-12-30 유비이 가부시키가이샤 폴리이미드 필름, 폴리이미드 전구체 및 폴리이미드
KR102519088B1 (ko) * 2014-10-23 2023-04-07 유비이 가부시키가이샤 폴리이미드 전구체, 폴리이미드 및 폴리이미드 필름
WO2016084777A1 (ja) * 2014-11-27 2016-06-02 Jx日鉱日石エネルギー株式会社 ポリイミドフィルム、それを用いた基板、及び、ポリイミドフィルムの製造方法
JPWO2016117636A1 (ja) * 2015-01-22 2017-11-02 ユニチカ株式会社 積層体およびその製造方法および使用方法ならびにガラス基板積層用ポリイミド前駆体溶液
JP2016150998A (ja) * 2015-02-18 2016-08-22 Jxエネルギー株式会社 ポリイミドフィルム並びにそれを用いた有機エレクトロルミネッセンス素子
KR20170118138A (ko) * 2015-02-18 2017-10-24 제이엑스티지 에네루기 가부시키가이샤 폴리이미드 필름, 그리고 그것을 사용한 유기 전계발광 소자 및 유기 전계발광 디스플레이
WO2016133019A1 (ja) * 2015-02-18 2016-08-25 Jx日鉱日石エネルギー株式会社 ポリイミドフィルム、並びに、それを用いた有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンスディスプレイ
JP2016204569A (ja) * 2015-04-27 2016-12-08 宇部興産株式会社 ポリアミック酸溶液組成物およびポリイミドフィルム
KR20180031004A (ko) 2015-07-16 2018-03-27 우베 고산 가부시키가이샤 폴리아미드산 용액 조성물 및 폴리이미드 필름
KR20180093007A (ko) 2015-12-09 2018-08-20 가부시키가이샤 가네카 폴리아미드산, 폴리이미드, 폴리아미드산 용액, 폴리이미드 적층체, 플렉시블 디바이스 기판 및 그들의 제조 방법
WO2017191822A1 (ja) * 2016-05-06 2017-11-09 三菱瓦斯化学株式会社 ポリイミド樹脂
KR102338564B1 (ko) * 2016-08-08 2021-12-14 에네오스 가부시키가이샤 폴리이미드, 폴리아미드산, 폴리아미드산 용액 및 폴리이미드 필름
TWI709591B (zh) * 2016-08-08 2020-11-11 日商Jxtg能源股份有限公司 聚醯亞胺、聚醯胺酸、聚醯胺酸溶液、及聚醯亞胺薄膜
KR20180016950A (ko) * 2016-08-08 2018-02-20 제이엑스티지 에네루기 가부시키가이샤 폴리이미드, 폴리아미드산, 폴리아미드산 용액 및 폴리이미드 필름
KR20190053869A (ko) * 2016-09-13 2019-05-20 제이엑스티지 에네루기 가부시키가이샤 폴리이미드, 폴리아미드산, 그들의 용액 및 폴리이미드를 사용한 필름
JPWO2018051888A1 (ja) * 2016-09-13 2019-06-24 Jxtgエネルギー株式会社 ポリイミド、ポリアミド酸、それらの溶液及びポリイミドを用いたフィルム
WO2018051888A1 (ja) * 2016-09-13 2018-03-22 Jxtgエネルギー株式会社 ポリイミド、ポリアミド酸、それらの溶液及びポリイミドを用いたフィルム
KR102413489B1 (ko) * 2016-09-13 2022-06-27 에네오스 가부시키가이샤 폴리이미드, 폴리아미드산, 그들의 용액 및 폴리이미드를 사용한 필름
KR20190077015A (ko) 2016-10-27 2019-07-02 우베 고산 가부시키가이샤 폴리이미드 및 그것을 사용한 플렉시블 디바이스
JP7011231B2 (ja) 2016-11-24 2022-01-26 日産化学株式会社 フレキシブルデバイス基板形成用組成物
JPWO2018097143A1 (ja) * 2016-11-24 2019-10-17 日産化学株式会社 フレキシブルデバイス基板形成用組成物
WO2018097143A1 (ja) * 2016-11-24 2018-05-31 日産化学工業株式会社 フレキシブルデバイス基板形成用組成物
JP2022094356A (ja) * 2017-02-03 2022-06-24 東京応化工業株式会社 ポリイミド前駆体組成物
KR102303437B1 (ko) 2017-02-03 2021-09-23 도쿄 오카 고교 가부시키가이샤 폴리이미드 전구체 조성물
JP7402398B2 (ja) 2017-02-03 2023-12-21 東京応化工業株式会社 ポリイミド前駆体組成物
WO2018143314A1 (ja) * 2017-02-03 2018-08-09 東京応化工業株式会社 ポリイミド前駆体組成物
JP7039214B2 (ja) 2017-02-03 2022-03-22 東京応化工業株式会社 ポリイミド前駆体組成物
KR20190102299A (ko) * 2017-02-03 2019-09-03 도쿄 오카 고교 가부시키가이샤 폴리이미드 전구체 조성물
JP2018123297A (ja) * 2017-02-03 2018-08-09 東京応化工業株式会社 ポリイミド前駆体組成物
JP7050382B2 (ja) 2017-07-03 2022-04-08 Eneos株式会社 ポリイミドフィルム及びその製造方法
JP2019011452A (ja) * 2017-07-03 2019-01-24 Jxtgエネルギー株式会社 ポリイミドフィルム及びその製造方法
WO2019065522A1 (ja) * 2017-09-29 2019-04-04 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JPWO2019065523A1 (ja) * 2017-09-29 2020-04-30 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP6996609B2 (ja) 2017-09-29 2022-01-17 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2019065523A1 (ja) * 2017-09-29 2019-04-04 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JPWO2019065522A1 (ja) * 2017-09-29 2020-09-10 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP2021059731A (ja) * 2017-09-29 2021-04-15 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP7255489B2 (ja) 2017-09-29 2023-04-11 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2019131894A1 (ja) * 2017-12-28 2019-07-04 宇部興産株式会社 ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
KR20220124824A (ko) 2017-12-28 2022-09-14 유비이 가부시키가이샤 폴리이미드, 폴리이미드 용액 조성물, 폴리이미드 필름 및 기판
KR102422464B1 (ko) * 2017-12-28 2022-07-20 우베 가부시키가이샤 폴리이미드 전구체, 폴리이미드, 폴리이미드 필름, 바니시 및 기판
KR20200093685A (ko) 2017-12-28 2020-08-05 우베 고산 가부시키가이샤 폴리이미드 전구체, 폴리이미드, 폴리이미드 필름, 바니시 및 기판
JP7047852B2 (ja) 2017-12-28 2022-04-05 宇部興産株式会社 ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
KR20200093078A (ko) 2017-12-28 2020-08-04 우베 고산 가부시키가이샤 폴리이미드, 폴리이미드 용액 조성물, 폴리이미드 필름 및 기판
JPWO2019131894A1 (ja) * 2017-12-28 2021-01-14 宇部興産株式会社 ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
KR20220066319A (ko) 2019-09-20 2022-05-24 우베 고산 가부시키가이샤 폴리이미드 전구체 조성물 및 플렉시블 전자 디바이스의 제조 방법
KR20210098376A (ko) 2020-01-31 2021-08-10 우베 고산 가부시키가이샤 폴리이미드 전구체 조성물 및 폴리이미드 필름/기재 적층체
KR20220158783A (ko) 2020-03-27 2022-12-01 유비이 가부시키가이샤 폴리이미드 전구체 조성물 및 폴리이미드 필름/기재 적층체
KR20230106702A (ko) 2020-11-27 2023-07-13 유비이 가부시키가이샤 폴리이미드 전구체 조성물, 폴리이미드 필름 및 폴리이미드 필름/기재 적층체
KR20230146067A (ko) 2021-02-19 2023-10-18 유비이 가부시키가이샤 폴리이미드 전구체 조성물 및 폴리이미드 필름
KR20240070585A (ko) 2021-09-21 2024-05-21 유비이 가부시키가이샤 폴리이미드 전구체 조성물 및 폴리이미드 필름

Also Published As

Publication number Publication date
TW201348295A (zh) 2013-12-01
CN104508009B (zh) 2016-09-07
JP2018066017A (ja) 2018-04-26
TWI583721B (zh) 2017-05-21
JPWO2013179727A1 (ja) 2016-01-18
US10781288B2 (en) 2020-09-22
US20150158980A1 (en) 2015-06-11
KR20150021527A (ko) 2015-03-02
JP6531812B2 (ja) 2019-06-19
CN104508009A (zh) 2015-04-08
KR102125660B1 (ko) 2020-06-22
JP6431369B2 (ja) 2018-11-28
KR20190092599A (ko) 2019-08-07

Similar Documents

Publication Publication Date Title
JP6531812B2 (ja) ポリイミド前駆体及びポリイミド
JP6721070B2 (ja) ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
JP5978288B2 (ja) ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
JP6283954B2 (ja) ポリイミド前駆体、ポリイミド、ワニス、ポリイミドフィルム、及び基板
JP6669074B2 (ja) ポリイミドフィルム、ポリイミド前駆体、及びポリイミド
JP6607193B2 (ja) ポリイミド前駆体、ポリイミド、及びポリイミドフィルム
WO2015053312A1 (ja) ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
JP6350526B2 (ja) ポリイミド前駆体、及びポリイミド
JP6627510B2 (ja) ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
JP6283953B2 (ja) ポリイミド前駆体、ポリイミド、ワニス、ポリイミドフィルム、および基板
WO2012124664A1 (ja) ポリイミド前駆体及びポリイミド
JP7047852B2 (ja) ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
JP6461470B2 (ja) ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
JP2017197631A (ja) ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ポリイミド積層体、ポリイミド/ハードコート積層体
WO2015080156A1 (ja) ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797286

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014518309

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147035881

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14402553

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13797286

Country of ref document: EP

Kind code of ref document: A1