WO2019065523A1 - ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム - Google Patents

ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム Download PDF

Info

Publication number
WO2019065523A1
WO2019065523A1 PCT/JP2018/035129 JP2018035129W WO2019065523A1 WO 2019065523 A1 WO2019065523 A1 WO 2019065523A1 JP 2018035129 W JP2018035129 W JP 2018035129W WO 2019065523 A1 WO2019065523 A1 WO 2019065523A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural unit
mol
polyimide
derived
formula
Prior art date
Application number
PCT/JP2018/035129
Other languages
English (en)
French (fr)
Inventor
洋平 安孫子
紗恵子 佐藤
葵 大東
慎司 関口
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020207008744A priority Critical patent/KR20200052308A/ko
Priority to CN201880062391.6A priority patent/CN111133033B/zh
Priority to JP2019545072A priority patent/JPWO2019065523A1/ja
Publication of WO2019065523A1 publication Critical patent/WO2019065523A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09J179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyimide resin, a polyimide varnish and a polyimide film.
  • polyimide resin Since polyimide resin has excellent mechanical properties and heat resistance, various applications are being considered in the field of electric and electronic parts and the like. For example, it is desirable to replace a glass substrate used in an image display device such as a liquid crystal display or an OLED display with a plastic substrate for the purpose of reducing the weight and flexibility of the device, and polyimide resin suitable as the plastic material Research is also in progress. For polyimide resins for such applications, transparency is also required, and high dimensional stability (that is, low coefficient of linear thermal expansion) to heat is also required to be compatible with the high temperature process of the manufacturing process of image display devices. Be
  • Patent Document 1 discloses a first tetracarboxylic acid component such as pyromellitic anhydride, and 2,3 ', 4,4'-diphenyl sulfone tetracarboxylic acid.
  • a polyimide resin synthesized from a second tetracarboxylic acid component such as an anhydride and a tolidine sulfone skeleton diamine component is described.
  • Patent Document 2 discloses a diamine compound containing a benzoxazole group and an aromatic tetracarboxylic acid Polyimide resins synthesized from anhydrides are described.
  • the polyimide film is also required to have laser peeling properties.
  • the polyimide film is required to be excellent in the property of absorbing light having a wavelength of 308 nm (that is, having a low light transmittance at a wavelength of 308 nm).
  • polyimide resins are excellent in mechanical properties and heat resistance, but as a result of changing the structure of polyimide resins for the purpose of improving transparency and further improving dimensional stability against heat and laser releasability, The development of a polyimide resin having a good balance of mechanical properties, heat resistance, transparency, dimensional stability to heat, and laser releasability is not sufficient.
  • An object of the present invention is to provide a polyimide resin which has good mechanical properties, heat resistance and transparency and is excellent in dimensional stability to heat and laser releasability.
  • the present inventors have found that a polyimide resin containing a combination of specific structural units can solve the above-mentioned problems, and has completed the invention.
  • a polyimide resin comprising a structural unit A derived from tetracarboxylic acid dianhydride and a structural unit B derived from a diamine, Structural unit (A-1) derived from a compound represented by the following formula (a-1) and structural unit derived from a compound represented by the following formula (a-2) (A-2) Including and Structural unit (B-1) derived from a compound represented by the following formula (b-1) and structural unit (B-2) derived from a compound represented by the following formula (b-2) And polyimide resins.
  • L represents a single bond or a divalent linking group
  • each R independently represents a hydrogen atom, a fluorine atom or a methyl group.
  • the proportion of the structural unit (A-1) in the structural unit A is 50 to 95 mol%
  • the polyimide resin according to the above [1], wherein the proportion of the structural unit (A-2) in the structural unit A is 5 to 50 mol%.
  • the polyimide resin as described in said [1] or [2] which is one.
  • the proportion of the structural unit (B-1) in the structural unit B is 20 to 90 mol%
  • R represents a hydrogen atom.
  • a polyimide film comprising the polyimide resin according to any one of the above [1] to [5].
  • the polyimide resin of the present invention is excellent in mechanical properties, heat resistance and transparency, and excellent in dimensional stability to heat and laser releasability.
  • the polyimide resin of the present invention comprises a constituent unit A derived from tetracarboxylic acid dianhydride and a constituent unit B derived from a diamine, and the constituent unit A is represented by the following formula (a-1)
  • the structural unit B includes a structural unit (A-1) derived from the compound and a structural unit (A-2) derived from a compound represented by the following formula (a-2), and the structural unit B is represented by the following formula (b-1) It comprises a constitutional unit (B-1) derived from the compound to be represented and a constitutional unit (B-2) derived from a compound represented by the following formula (b-2).
  • L represents a single bond or a divalent linking group
  • each R independently represents a hydrogen atom, a fluorine atom or a methyl group.
  • the structural unit A is a structural unit derived from tetracarboxylic acid dianhydride, and is represented by a structural unit (A-1) derived from the compound represented by the formula (a-1) and a formula (a-2) And a structural unit (A-2) derived from the compound.
  • the structural unit (A-1) improves heat resistance, transparency and dimensional stability
  • the structural unit (A-2) improves dimensional stability and laser removability.
  • the compound represented by the formula (a-1) is norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′ ′-norbornane-5,5 ′ ′, 6,6 ′ ′-tetracarboxylic acid It is an acid dianhydride.
  • L is a single bond or a divalent linking group.
  • the divalent linking group is preferably a substituted or unsubstituted alkylene group, more preferably -CR 1 R 2- (wherein R 1 and R 2 are each independently a hydrogen atom or a substituted or substituted group. Or R 1 and R 2 combine with each other to form a ring).
  • L is preferably selected from the group consisting of a single bond, a group represented by the following formula (L-1) and a group represented by the following formula (L-2).
  • the structural unit (A-2) is preferably a structural unit (A-2-1) derived from a compound represented by the following formula (a-2-1), and is represented by the following formula (a-2-2) At least one selected from the group consisting of a structural unit (A-2-2) derived from a compound and a structural unit (A-2-3) derived from a compound represented by the following formula (a-2-3) And more preferably at least one selected from the group consisting of the structural unit (A-2-1) and the structural unit (A-2-2).
  • the compound represented by the formula (a-2-1) is biphenyltetracarboxylic acid dianhydride (BPDA), and as a specific example thereof, 3,3 represented by the following formula (a-2-1s) ', 4,4'-biphenyltetracarboxylic acid dianhydride (s-BPDA), 2,3,3', 4'-biphenyltetracarboxylic acid dianhydride represented by the following formula (a-2-1a) (A-BPDA), 2,2 ′, 3,3′-biphenyltetracarboxylic acid dianhydride (i-BPDA) represented by the following formula (a-2-1i).
  • BPDA biphenyltetracarboxylic acid dianhydride
  • s-BPDA 4,4'-biphenyltetracarboxylic acid dianhydride
  • i-BPDA 3,3′-biphenyltetracarboxylic acid dianhydride represented by the following formula (a-2-1
  • the compound represented by the formula (a-2-2) is 9,9′-bis (3,4-dicarboxyphenyl) fluorene dianhydride.
  • the compound represented by the formula (a-2-3) is 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride.
  • the proportion of the structural unit (A-1) in the structural unit A is preferably 50 to 95 mol%, more preferably 55 to 95 mol%, still more preferably 60 to 95 mol%, particularly preferably Is 75 to 95 mol%.
  • the proportion of the structural unit (A-2) in the structural unit A is preferably 5 to 50 mol%, more preferably 5 to 45 mol%, still more preferably 5 to 40 mol%, particularly preferably Is 5 to 25 mol%.
  • the content ratio of the total of the structural unit (A-1) and the structural unit (A-2) in the structural unit A is preferably 55 mol% or more, more preferably 60 mol% or more, and still more preferably 65 It is at least mol%, particularly preferably at least 80 mol%.
  • the upper limit of the content ratio of the total of the structural unit (A-1) and the structural unit (A-2) is not particularly limited, that is, 100 mol%.
  • the structural unit A may consist only of the structural unit (A-1) and the structural unit (
  • the structural unit A may include structural units other than the structural units (A-1) and (A-2).
  • the tetracarboxylic acid dianhydride that forms such a structural unit is not particularly limited, and is, for example, an aromatic tetracarboxylic acid dianhydride such as pyromellitic acid dianhydride (wherein formula (a-2) represents Cyclic tetracarboxylic acid dianhydride such as 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride and 1,2,4,5-cyclohexanetetracarboxylic acid dianhydride (except And aliphatic tetracarboxylic acid dianhydrides such as 1,2,3,4-butanetetracarboxylic acid dianhydride, etc., and compounds other than those represented by formula (a-1)).
  • aromatic tetracarboxylic acid dianhydride means tetracarboxylic acid dianhydride containing one or more aromatic rings
  • alicyclic tetracarboxylic acid dianhydride means one alicyclic ring.
  • the above means a tetracarboxylic dianhydride containing no aromatic ring
  • an aliphatic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing neither an aromatic ring nor an alicyclic ring.
  • the structural units that is, structural units other than the structural units (A-1) and (A-2)
  • optionally contained in the structural unit A may be of one type or of two or more types.
  • the structural unit B is a structural unit derived from a diamine and is derived from the structural unit (B-1) derived from the compound represented by the formula (b-1) and the compound represented by the formula (b-2) Component unit (B-2).
  • the mechanical property and dimensional stability are improved by the structural unit (B-1), and the heat resistance is improved by the structural unit (B-2).
  • the compound represented by the formula (b-1) is 2,2′-bis (trifluoromethyl) benzidine.
  • each R is independently selected from the group consisting of a hydrogen atom, a fluorine atom, and a methyl group, and is preferably a hydrogen atom.
  • the proportion of the structural unit (B-1) in the structural unit B is preferably 20 to 90 mol%, more preferably 45 to 85 mol%, and still more preferably 50 to 80 mol%.
  • the proportion of the structural unit (B-2) in the structural unit B is preferably 10 to 80 mol%, more preferably 15 to 55 mol%, and still more preferably 20 to 50 mol%.
  • the content ratio of the total of the structural unit (B-1) and the structural unit (B-2) in the structural unit B is preferably 30 mol% or more, more preferably 60 mol% or more, and still more preferably 70% or more.
  • the upper limit of the content ratio of the total of the structural unit (B-1) and the structural unit (B-2) is not particularly limited, that is, 100 mol%.
  • the structural unit B may consist only of the structural unit (B-1) and the structural unit (B-2).
  • the structural unit B may include structural units other than the structural units (B-1) and (B-2).
  • the diamine forming such a constitutional unit is not particularly limited, and 1,4-phenylenediamine, p-xylylenediamine, 3,5-diaminobenzoic acid, 2,2'-dimethylbiphenyl-4,4 ' -Diamine, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 2,2-bis (4-aminophenyl) hexafluoropropane, bis (4-aminophenyl) sulfone, 4,4'-diaminobenz Anilide, 1- (4-aminophenyl) -2,3-dihydro-1,3,3-trimethyl-1H-inden-5-amine, ⁇ , ⁇ '-bis (4-aminophenyl) -1,4- Diisopropylbenzene, N, N'-bis
  • an aromatic diamine means a diamine containing one or more aromatic rings
  • an alicyclic diamine means a diamine containing one or more alicyclic rings and containing no aromatic ring, a fat
  • the group diamine means a diamine containing neither an aromatic ring nor an alicyclic ring.
  • the structural units ie, structural units other than the structural units (B-1) and (B-2)) optionally contained in the structural unit B may be of one type or of two or more types.
  • the number average molecular weight of the polyimide resin of the present invention is preferably 5,000 to 100,000 from the viewpoint of the mechanical strength of the resulting polyimide film.
  • the number average molecular weight of a polyimide resin can be calculated
  • the polyimide resin of the present invention is excellent in mechanical properties, heat resistance and transparency, and excellent in dimensional stability against heat and laser releasability, and thus can have the following physical property values.
  • the tensile strength of the polyimide resin of the present invention is preferably 70 MPa or more, more preferably 85 MPa or more, still more preferably 90 MPa or more, and particularly preferably 105 MPa or more.
  • the tensile elastic modulus of the polyimide resin of the present invention is preferably 2.2 GPa or more, more preferably 2.4 GPa or more, still more preferably 2.8 GPa or more, and particularly preferably 3.0 GPa or more.
  • the glass transition temperature (Tg) of the polyimide resin of the present invention is preferably 350 ° C. or more, more preferably 380 ° C. or more, still more preferably 400 ° C. or more, and particularly preferably 430 ° C. or more.
  • the polyimide resin of the present invention has a total light transmittance of preferably 85% or more, more preferably 88% or more, still more preferably 90% or more, when it is formed into a polyimide film having a thickness of 10 ⁇ m. Preferably it is 91% or more.
  • the linear thermal expansion coefficient (CTE) of the polyimide resin of the present invention is preferably 30 ppm / ° C. or less, more preferably 20 ppm / ° C. or less, still more preferably 15 ppm / ° C. or less as CTE of 100 to 200 ° C. And particularly preferably 10 ppm / ° C. or less; CTE of 100 to 350 ° C. is preferably 35 ppm / ° C. or less, more preferably 30 ppm / ° C. or less, still more preferably 25 ppm / ° C. or less Particularly preferably, it is at most 20 ppm / ° C., most preferably at most 15 ppm / ° C.
  • the light transmittance at a wavelength of 308 nm is preferably 2.5% or less, more preferably 1.5% or less, and still more preferably 1 It is preferably at most 0%, particularly preferably at most 0.5%.
  • the tensile modulus, tensile strength, glass transition temperature (Tg), total light transmittance, linear thermal expansion coefficient (CTE) and light transmittance at a wavelength of 308 nm in the present invention are specifically the methods described in the Examples. It can be measured by
  • the polyimide resin of one embodiment of the present invention has a small yellow index (YI), that is, excellent in colorless transparency. Therefore, the yellow index (YI) is preferably 3.5 or less, more preferably 2.5 or less, still more preferably 2.0 or less, particularly preferably 10 ⁇ m thick polyimide film. Is 1.5 or less.
  • the yellow index (YI) in this invention can be specifically measured by the method as described in an Example.
  • the polyimide resin of the present invention comprises a tetracarboxylic acid component containing a compound giving the above-mentioned constitutional unit (A-1) and a compound giving the above-mentioned constitutional unit (A-2), and the above-mentioned constitutional unit (B-1) And a diamine component containing a compound giving the above-mentioned constituent unit (B-2).
  • Examples of the compound giving the structural unit (A-1) include the compounds represented by the formula (a-1), but the compound is not limited thereto, and may be a derivative thereof as long as the same structural unit can be formed.
  • a tetracarboxylic acid corresponding to the tetracarboxylic acid dianhydride represented by the formula (a-1) ie, norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′ ′ Novolane-5,5 ′ ′, 6,6 ′ ′-tetracarboxylic acid
  • alkyl esters of the tetracarboxylic acid ie, norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′ ′ Novolane-5,5 ′ ′, 6,6 ′ ′-tetracarboxylic acid
  • the compound (namely, dianhydride) represented by Formula (a-1) is preferable.
  • the compound giving the structural unit (A-2) include the compounds represented by the formula (a-2), but the compound is not limited thereto, and may be a derivative thereof as long as the same structural unit can be formed.
  • the derivative include tetracarboxylic acid corresponding to tetracarboxylic acid dianhydride represented by the formula (a-2) and alkyl ester of the tetracarboxylic acid.
  • the compound (namely, dianhydride) represented by Formula (a-2) is preferable.
  • Examples of the compound giving the structural unit (B-1) include the compounds represented by the formula (b-1), but the compound is not limited thereto, and may be a derivative thereof as long as the same structural unit can be formed.
  • Examples of the derivative include diisocyanates corresponding to the diamine represented by the formula (b-1).
  • the compound (namely, diamine) represented by Formula (b-1) is preferable.
  • the compound giving the structural unit (B-2) include the compounds represented by the formula (b-2), but the compound is not limited thereto, and may be a derivative thereof as long as the same structural unit can be formed.
  • Examples of the derivative include diisocyanates corresponding to the diamine represented by the formula (b-2).
  • the compound (namely, diamine) represented by Formula (b-2) is preferable.
  • the tetracarboxylic acid component preferably contains 50 to 95 mol%, more preferably 55 to 95 mol%, still more preferably 60 to 95 mol% of the compound giving the structural unit (A-1), particularly preferably Containing 75 to 95 mol%.
  • the tetracarboxylic acid component preferably contains 5 to 50 mol%, more preferably 5 to 45 mol%, still more preferably 5 to 40 mol%, of a compound giving the structural unit (A-2), particularly preferably Preferably, it contains 5 to 25 mol%.
  • the tetracarboxylic acid component preferably contains 55 mol% or more, more preferably 60 mol% or more, and further preferably 55 mol% or more in total of the compound giving the structural unit (A-1) and the compound giving the structural unit (A-2) Is contained at least 65 mol%, particularly preferably at least 80 mol%.
  • the upper limit of the content ratio of the total of the compound giving the structural unit (A-1) and the compound giving the structural unit (A-2) is not particularly limited, that is, 100 mol%.
  • the tetracarboxylic acid component may consist only of the compound giving the structural unit (A-1) and the compound giving the structural unit (A-2).
  • the tetracarboxylic acid component may contain a compound other than the compound giving the structural unit (A-1) and the compound giving the structural unit (A-2), and as the compound, the above-mentioned aromatic tetracarboxylic acid dianhydride And alicyclic tetracarboxylic acid dianhydride, and aliphatic tetracarboxylic acid dianhydride, and derivatives thereof (tetracarboxylic acid, alkyl ester of tetracarboxylic acid, etc.).
  • the compound optionally contained in the tetracarboxylic acid component may be of one type or two or more types. It may be.
  • the diamine component preferably contains 20 to 90 mol%, more preferably 45 to 85 mol%, still more preferably 50 to 80 mol% of a compound giving the structural unit (B-1).
  • the diamine component preferably contains 10 to 80 mol%, more preferably 15 to 55 mol%, and still more preferably 20 to 50 mol% of the compound giving the structural unit (B-2).
  • the diamine component preferably contains 30 mol% or more, more preferably 60 mol% or more, and more preferably 70 in total of the compound giving the structural unit (B-1) and the compound giving the structural unit (B-2). It contains mole% or more.
  • the upper limit of the content ratio of the total of the compound giving the structural unit (B-1) and the compound giving the structural unit (B-2) is not particularly limited, that is, 100 mol%.
  • the diamine component may consist only of the compound giving the structural unit (B-1) and the compound giving the structural unit (B-2).
  • the diamine component may contain compounds other than the compound which gives a structural unit (B-1), and the compound which gives a structural unit (B-2), As said compound, the above-mentioned aromatic diamine, the alicyclic diamine, and the fat are mentioned. Group diamines, as well as their derivatives (such as diisocyanates).
  • the compound optionally contained in the diamine component that is, the compound giving the structural unit (B-1) and the compound other than the compound giving the structural unit (B-2) may be one type or two or more types. It is also good.
  • the ratio by weight of the tetracarboxylic acid component to the diamine component used for producing the polyimide resin is preferably 0.9 to 1.1 moles of the diamine component to 1 mole of the tetracarboxylic acid component.
  • an end capping agent may be used for the production of the polyimide resin.
  • the end capping agent monoamines or dicarboxylic acids are preferable.
  • the preparation amount of the end capping agent to be introduced is preferably 0.0001 to 0.1 mol, particularly preferably 0.001 to 0.06 mol, per 1 mol of the tetracarboxylic acid component.
  • Examples of monoamines end capping agents include methylamine, ethylamine, propylamine, butylamine, benzylamine, 4-methylbenzylamine, 4-ethylbenzylamine, 4-dodecylbenzylamine, 3-methylbenzylamine, 3- Ethyl benzylamine, aniline, 3-methylaniline, 4-methylaniline and the like are recommended. Among these, benzylamine and aniline can be suitably used.
  • dicarboxylic acid end capping agent dicarboxylic acids are preferable, and some of them may be ring-closed.
  • phthalic acid, phthalic anhydride, 4-chlorophthalic acid, tetrafluorophthalic acid, 2,3-benzophenonedicarboxylic acid, 3,4-benzophenonedicarboxylic acid, cyclohexane-1,2-dicarboxylic acid, cyclopentane-1,2 -Dicarboxylic acid, 4-cyclohexene-1,2-dicarboxylic acid, etc. are recommended.
  • phthalic acid and phthalic anhydride can be suitably used.
  • tetracarboxylic acid component and a diamine component are made to react
  • a well-known method can be used.
  • a specific reaction method (1) a tetracarboxylic acid component, a diamine component, and a reaction solvent are charged in a reactor, and stirred at room temperature to 80 ° C. for 0.5 to 30 hours, and then heated to imidation Method for carrying out the reaction, (2) The diamine component and the reaction solvent are charged into the reactor and dissolved, and then the tetracarboxylic acid component is charged, and if necessary, stirred for 0.5 to 30 hours at room temperature to 80 ° C. (3) The tetracarboxylic acid component, the diamine component, and the reaction solvent are charged into a reactor, and the temperature is raised immediately to perform the imidization reaction.
  • the reaction solvent used for producing the polyimide resin may be any solvent which can dissolve the polyimide to be produced without inhibiting the imidization reaction.
  • aprotic solvents phenol solvents, ether solvents, carbonate solvents and the like can be mentioned.
  • aprotic solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 1,3-dimethylimidazolidinone, tetramethylurea and the like.
  • amido solvents lactone solvents such as ⁇ -butyrolactone and ⁇ -valerolactone, phosphorus-containing amide solvents such as hexamethylphosphoric amide and hexamethylphosphine triamide, and sulfur-containing solvents such as dimethylsulfone, dimethylsulfoxide and sulfolane
  • lactone solvents such as ⁇ -butyrolactone and ⁇ -valerolactone
  • phosphorus-containing amide solvents such as hexamethylphosphoric amide and hexamethylphosphine triamide
  • sulfur-containing solvents such as dimethylsulfone, dimethylsulfoxide and sulfolane
  • system solvents ketone solvents such as acetone, cyclohexanone and methylcyclohexanone
  • amine solvents such as picoline and pyridine
  • ester solvents such as acetic acid (2-methoxy-1-methylethyl).
  • phenolic solvents include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4 -Xylenol, 3,5-xylenol and the like.
  • ether solvents include 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, 1,2-bis (2-methoxyethoxy) ethane, bis [2- (2-methoxyethoxy) ethyl] Ether, tetrahydrofuran, 1,4-dioxane and the like can be mentioned.
  • reaction solvents diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, a propylene carbonate etc. are mentioned as a specific example of a carbonate type solvent.
  • amide solvents or lactone solvents are preferable.
  • the above reaction solvents may be used alone or in combination of two or more.
  • the imidization reaction it is preferable to carry out the reaction while removing water generated at the time of production using a Dean-Stark apparatus or the like. By performing such an operation, the degree of polymerization and the imidation ratio can be further increased.
  • the imidation catalyst includes a base catalyst or an acid catalyst.
  • a base catalyst pyridine, quinoline, isoquinoline, ⁇ -picoline, ⁇ -picoline, 2,4-lutidine, 2,6-lutidine, trimethylamine, triethylamine, tripropylamine, tributylamine, tributylamine, triethylenediamine, imidazole, N, N
  • organic base catalysts such as dimethylaniline and N, N-diethylaniline
  • inorganic base catalysts such as potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, potassium hydrogencarbonate and sodium hydrogencarbonate.
  • an acid catalyst crotonic acid, acrylic acid, trans-3-hexenoic acid, cinnamic acid, benzoic acid, methylbenzoic acid, oxybenzoic acid, terephthalic acid, benzenesulfonic acid, paratoluenesulfonic acid, naphthalenesulfonic acid, etc.
  • the above imidation catalysts may be used alone or in combination of two or more.
  • a base catalyst more preferably an organic base catalyst, still more preferably triethylamine, and particularly preferably a combination of triethylamine and triethylenediamine.
  • the temperature of the imidization reaction is preferably 120 to 250 ° C., more preferably 160 to 200 ° C., from the viewpoint of the reaction rate and suppression of gelation and the like.
  • the reaction time is preferably 0.5 to 10 hours after the start of distillation of the produced water.
  • the polyimide varnish of the present invention is obtained by dissolving the polyimide resin of the present invention in an organic solvent. That is, the polyimide varnish of the present invention contains the polyimide resin of the present invention and an organic solvent, and the polyimide resin is dissolved in the organic solvent.
  • the organic solvent is not particularly limited as long as it dissolves the polyimide resin, but it is preferable to use one or more of the compounds described above as the reaction solvent used for producing the polyimide resin. Since the polyimide resin of the present invention has solvent solubility, it can be made a stable high concentration varnish at room temperature.
  • the polyimide varnish of the present invention preferably contains 5 to 40% by mass, and more preferably 10 to 30% by mass of the polyimide resin of the present invention.
  • the viscosity of the polyimide varnish is preferably 1 to 200 Pa ⁇ s, more preferably 5 to 150 Pa ⁇ s.
  • the polyimide varnish of the present invention is an inorganic filler, an adhesion promoter, a release agent, a flame retardant, an ultraviolet light stabilizer, a surfactant, a leveling agent, an antifoaming agent, a fluorescent increase, as long as the required properties of the polyimide film are not impaired.
  • Various additives such as a whitening agent, a crosslinking agent, a polymerization initiator, and a photosensitizer may be included.
  • the manufacturing method of the polyimide varnish of this invention is not specifically limited, A well-known method is applicable.
  • the polyimide film of the present invention contains the polyimide resin of the present invention. Therefore, the polyimide film of the present invention is excellent in mechanical properties, heat resistance and transparency, and excellent in dimensional stability to heat and laser releasability.
  • limiting in particular in the preparation method of the polyimide film of this invention A well-known method can be used. For example, after apply
  • the polyimide film of the present invention is excellent in mechanical properties, heat resistance and transparency, and excellent in dimensional stability against heat and laser releasability. Therefore, color filters, flexible displays, semiconductor parts, optical members, etc. It is suitably used as a film for various members of the above.
  • the polyimide film of the present invention is particularly suitably used as a substrate of an image display device such as a liquid crystal display or an OLED display.
  • Solid Content Concentration The solid content concentration of the varnish was measured by heating the sample at 320 ° C. for 120 minutes in a small electric furnace “MMF-1” manufactured by As One Corporation, and calculated from the mass difference of the sample before and after heating.
  • Film thickness The film thickness was measured using a micrometer manufactured by Mitutoyo Corporation.
  • Tensile Strength, Tensile Elastic Modulus Measurement was carried out using a tensile tester “Strograph VG-1E” manufactured by Toyo Seiki Co., Ltd. in accordance with JIS K7127.
  • Tg Glass transition temperature
  • Example 1 Stainless steel half moon stirring blade, nitrogen introduction tube, Dean Stark fitted with cooling tube, thermometer, 500 mL 5-necked round bottom flask equipped with glass end cap, 2,2'-bis (trifluoromethyl) 18.012 g (0.050 mol) of benzidine (manufactured by Wakayama Seika Kogyo Co., Ltd.), 17.423 g (0.050 mol) of 9,9-bis (4-aminophenyl) fluorene (manufactured by Taoka Chemical Industry Co., Ltd.), 87.573 g of ⁇ -butyrolactone (manufactured by Mitsubishi Chemical Co., Ltd.) was added, and stirring was performed at a rotation speed of 200 rpm under a nitrogen atmosphere at a system temperature of 70 ° C.
  • Example 2 9,9'-bis (3,4-dicarboxyphenyl) fluorene dianhydride (manufactured by JFE Chemical Corporation) in the same molar amount of 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride (s)
  • a polyimide varnish was prepared in the same manner as in Example 1 except that the solution was changed to -BPDA) (manufactured by Mitsubishi Chemical Corporation), to obtain a polyimide varnish having a solid content concentration of 20% by mass.
  • a film was produced in the same manner as in Example 1 to obtain a film with a thickness of 11 ⁇ m. The results are shown in Table 1-1.
  • Example 3 The amount of 2,2'-bis (trifluoromethyl) benzidine (Wakayama Seika Kogyo Co., Ltd.) was changed from 16.012 g (0.050 mol) to 25.619 g (0.080 mol), 9,9 Similar to Example 1 except that the amount of bis (4-aminophenyl) fluorene (manufactured by Taoka Chemical Industry Co., Ltd.) was changed from 17.423 g (0.050 mol) to 6.699 g (0.020 mol)
  • the polyimide varnish was produced by the method of, and the polyimide varnish of 20 mass% of solid content concentration was obtained. Using the obtained polyimide varnish, a film was produced in the same manner as in Example 1 to obtain a film with a thickness of 10 ⁇ m. The results are shown in Table 1-1.
  • Example 4 9,9'-bis (3,4-dicarboxyphenyl) fluorene dianhydride (manufactured by JFE Chemical Corporation) in the same molar amount of 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride (s)
  • a polyimide varnish was prepared in the same manner as in Example 3 except that-BPDA) (made by Mitsubishi Chemical Corporation) was used, to obtain a polyimide varnish having a solid content concentration of 20% by mass.
  • a film was produced in the same manner as in Example 1 to obtain a film with a thickness of 10 ⁇ m. The results are shown in Table 1-1.
  • Example 5 Amount of norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′ ′-norbornane-5,5 ′ ′, 6,6 ′ ′-tetracarboxylic acid dianhydride (manufactured by JX Energy Co., Ltd.) was changed from 34.594 g (0.090 mol) to 30.750 g (0.080 mol), 9,9'-bis (3,4-dicarboxyphenyl) fluorene dianhydride (manufactured by JFE Chemical Co., Ltd.)
  • a polyimide varnish is prepared in the same manner as in Example 3 except that the amount of water is changed from 4.584 g (0.010 mol) to 9.169 g (0.020 mol), and a polyimide having a solid content concentration of 20% by mass I got a varnish.
  • a film was produced in the same manner as in Example 1 to obtain a film with a thickness of 10 ⁇ m.
  • Example 6 Except that 9,9'-bis (3,4-dicarboxyphenyl) fluorene dianhydride (manufactured by JFE Chemical Co., Ltd.) was changed to the same molar amount of 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride
  • the polyimide varnish was produced by the method similar to Example 5, and the polyimide varnish of 20 mass% of solid content concentration was obtained.
  • a film was produced in the same manner as in Example 1 to obtain a film with a thickness of 11 ⁇ m. The results are shown in Table 1-1.
  • Example 7 9,9'-bis (3,4-dicarboxyphenyl) fluorene dianhydride (manufactured by JFE Chemical Corporation) in the same molar amount of 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride (s
  • a polyimide varnish was prepared in the same manner as in Example 5 except that the solution was changed to -BPDA) (manufactured by Mitsubishi Chemical Corporation), to obtain a polyimide varnish having a solid content concentration of 20% by mass.
  • a film was produced in the same manner as in Example 1 to obtain a film with a thickness of 11 ⁇ m. The results are shown in Table 1-1.
  • Example 8 The amount of 2,2'-bis (trifluoromethyl) benzidine (Wakayama Seika Kogyo Co., Ltd.) was changed from 25.619 g (0.080 mol) to 19.214 g (0.060 mol), 9,9 Similar to Example 4 except that the amount of bis (4-aminophenyl) fluorene (manufactured by Taoka Chemical Industry Co., Ltd.) was changed from 6.969 g (0.020 mol) to 13.3938 g (0.040 mol)
  • the polyimide varnish was produced by the method of, and the polyimide varnish of 20 mass% of solid content concentration was obtained. Using the obtained polyimide varnish, a film was produced in the same manner as in Example 1 to obtain a 14 ⁇ m thick film. The results are shown in Table 1-1.
  • Example 9 Amount of norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′ ′-norbornane-5,5 ′ ′, 6,6 ′ ′-tetracarboxylic acid dianhydride (manufactured by JX Energy Co., Ltd.) was changed from 34.594 g (0.090 mol) to 30.750 g (0.080 mol), and 3,3 ', 4,4'-biphenyl tetracarboxylic acid dianhydride (s-BPDA) (Mitsubishi Chemical Co., Ltd.) A polyimide varnish was prepared in the same manner as in Example 8 except that the amount of the product manufactured by Co.
  • s-BPDA 3,3 ', 4,4'-biphenyl tetracarboxylic acid dianhydride
  • Example 10 Amount of norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′ ′-norbornane-5,5 ′ ′, 6,6 ′ ′-tetracarboxylic acid dianhydride (manufactured by JX Energy Co., Ltd.) was changed from 30.750 g (0.080 mol) to 23.063 g (0.060 mol), and 3,3 ', 4,4'-biphenyl tetracarboxylic acid dianhydride (s-BPDA) (Mitsubishi Chemical Co., Ltd.) A polyimide varnish is prepared in the same manner as in Example 9 except that the amount of product manufactured by Co.
  • s-BPDA 3,3 ', 4,4'-biphenyl tetracarboxylic acid dianhydride
  • Example 11 Amount of norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′ ′-norbornane-5,5 ′ ′, 6,6 ′ ′-tetracarboxylic acid dianhydride (manufactured by JX Energy Co., Ltd.) was changed from 34.594 g (0.090 mol) to 19.219 g (0.050 mol), and 3,3 ', 4,4'-biphenyl tetracarboxylic acid dianhydride (s-BPDA) (Mitsubishi Chemical Co., Ltd.) Company's amount was changed from 2.942 g (0.010 mol) to 14.711 g (0.050 mol), and 2,2'-bis (trifluoromethyl) benzidine (manufactured by Wakayama Seika Kogyo Co., Ltd.) The amount of 9,9-bis (4-aminophenyl) fluorene (Taoka Chemical Industry Co., Ltd
  • Example 12 Amount of norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′ ′-norbornane-5,5 ′ ′, 6,6 ′ ′-tetracarboxylic acid dianhydride (manufactured by JX Energy Co., Ltd.) was changed from 34.594 g (0.090 mol) to 26.906 g (0.070 mol), 9,9'-bis (3,4-dicarboxyphenyl) fluorene dianhydride (manufactured by JFE Chemical Co., Ltd.)
  • a polyimide varnish was prepared in the same manner as in Example 1 except that the amount of water was changed from 4.584 g (0.010 mol) to 13.753 g (0.030 mol), and a polyimide having a solid content concentration of 20 mass% was prepared. I got a varnish. Using the obtained polyimide varnish, a film was produced in the same manner as in Example 1 to obtain a film with
  • Example 13 Amount of norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′ ′-norbornane-5,5 ′ ′, 6,6 ′ ′-tetracarboxylic acid dianhydride (manufactured by JX Energy Co., Ltd.) was changed from 34.594 g (0.090 mol) to 19.219 g (0.050 mol), 9,9'-bis (3,4-dicarboxyphenyl) fluorene dianhydride (manufactured by JFE Chemical Co., Ltd.)
  • a polyimide varnish was prepared in the same manner as in Example 1 except that the amount of water was changed from 4.584 g (0.010 mol) to 22.922 g (0.050 mol), and a polyimide having a solid content concentration of 20 mass% was prepared. I got a varnish. Using the obtained polyimide varnish, a film was produced in the same manner as in Example 1 to obtain a film with a
  • Example 14 Amount of norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′ ′-norbornane-5,5 ′ ′, 6,6 ′ ′-tetracarboxylic acid dianhydride (manufactured by JX Energy Co., Ltd.) was changed from 34.594 g (0.090 mol) to 19.219 g (0.050 mol), and 3,3 ', 4,4'-biphenyl tetracarboxylic acid dianhydride (s-BPDA) (Mitsubishi Chemical Co., Ltd.) A polyimide varnish was prepared in the same manner as in Example 4 except that the amount of the product manufactured by Co.
  • s-BPDA 3,3 ', 4,4'-biphenyl tetracarboxylic acid dianhydride
  • Example 15 The amount of 2,2'-bis (trifluoromethyl) benzidine (manufactured by Wakayama Seika Kogyo Co., Ltd.) was changed from 25.619 g (0.080 mol) to 17.613 g (0.055 mol), 9,9 Similar to Example 3 except that the amount of bis (4-aminophenyl) fluorene (manufactured by Taoka Chemical Industry Co., Ltd.) was changed from 6.969 g (0.020 mol) to 15.680 g (0.045 mol)
  • the polyimide varnish was produced by the method of, and the polyimide varnish of 20 mass% of solid content concentration was obtained. Using the obtained polyimide varnish, a film was produced in the same manner as in Example 1 to obtain a film with a thickness of 10 ⁇ m. The results are shown in Table 1-2.
  • Comparative Example 1 9,500- bis (4-aminophenyl) in a 500 mL five-necked round-bottom flask equipped with stainless steel half-moon stirring blades, a nitrogen inlet tube, a Dean Stark fitted with a cooling tube, a thermometer, and a glass end cap 34.845 g (0.100 mol) of fluorene (Taoka Chemical Industry Co., Ltd.) and 88.395 g of ⁇ -butyrolactone (Mitsubishi Chemical Co., Ltd.) are added, and the temperature in the system is 70 ° C. under a nitrogen atmosphere, and the rotation speed is 200 rpm. Stir at to obtain a solution.
  • norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ ′-spiro-2 ′ ′-norbornane-5,5 ′ ′, 6,6 ′ ′-tetracarboxylic acid dianhydride JX Energy Co., Ltd.
  • Comparative Example 2 The amount of 9,9-bis (4-aminophenyl) fluorene (Taoka Chemical Industry Co., Ltd.) was changed from 34.845 g (0.100 mol) to 6.969 g (0.020 mol), -A polyimide varnish was prepared in the same manner as Comparative Example 1 except that 25.619 g (0.080 mol) of bis (trifluoromethyl) benzidine (manufactured by Wakayama Seika Kogyo Co., Ltd.) was added, and the solid concentration 20 A mass% polyimide varnish was obtained. Using the obtained polyimide varnish, a film was produced in the same manner as in Example 1 to obtain a film with a thickness of 10 ⁇ m. The results are shown in Table 2.
  • Comparative Example 3 The amount of 2,2'-bis (trifluoromethyl) benzidine (Wakayama Seika Kogyo Co., Ltd.) was changed from 25.619 g (0.080 mol) to 16.012 g (0.050 mol), 9,9 Similar to Comparative Example 2 except that the amount of bis (4-aminophenyl) fluorene (manufactured by Taoka Chemical Industry Co., Ltd.) is changed from 6.969 g (0.020 mol) to 17.423 g (0.050 mol)
  • the polyimide varnish was produced by the method of, and the polyimide varnish of 20 mass% of solid content concentration was obtained. Using the obtained polyimide varnish, a film was produced in the same manner as in Example 1 to obtain a film with a thickness of 10 ⁇ m. The results are shown in Table 2.
  • Comparative Example 4 9,500- bis (4-aminophenyl) in a 500 mL five-necked round-bottom flask equipped with stainless steel half-moon stirring blades, a nitrogen inlet tube, a Dean Stark fitted with a cooling tube, a thermometer, and a glass end cap 34.845 g (0.100 mol) of fluorene (Taoka Chemical Industry Co., Ltd.) and 77.404 g of N, N-dimethylformamide (Mitsubishi Gas Chemical Co., Ltd.) were added, and the system temperature was 50 ° C. under nitrogen atmosphere. The solution was obtained by stirring at a rotational speed of 200 rpm.
  • Comparative Example 5 Except that 9,9-bis (4-aminophenyl) fluorene (manufactured by Taoka Chemical Industry Co., Ltd.) was changed to the same molar amount of 2,2'-bis (trifluoromethyl) benzidine (manufactured by Wakayama Seika Kogyo Co., Ltd.)
  • the polyamic acid varnish was produced by the method similar to the comparative example 4, and the polyamic acid varnish of 20 mass% of solid content concentration was obtained.
  • a film was produced by the same method as in Comparative Example 4 to obtain a film with a thickness of 22 ⁇ m. The results are shown in Table 2.
  • the polyimide films of Examples 1 to 15 have good mechanical properties, heat resistance and transparency, and excellent dimensional stability to heat and laser releasability. ing. Moreover, the polyimide films of Examples 1 to 10, 12, 13 and 15 have small YI, that is, excellent in colorless transparency.
  • the polyimide film of Comparative Example 1 is significantly inferior in dimensional stability to heat
  • the polyimide films of Comparative Examples 2 and 3 are largely inferior in laser releasability
  • the polyimide film of Comparative Example 4 is against heat.
  • the polyimide film of Comparative Example 5 is not only inferior in dimensional stability to heat, but is also inferior in heat resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Paints Or Removers (AREA)
  • Wire Bonding (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

テトラカルボン酸二無水物に由来する構成単位Aと、ジアミンに由来する構成単位Bとを含むポリイミド樹脂であって、構成単位Aが下記式(a-1)で表される化合物に由来する構成単位(A-1)と、下記式(a-2)で表される化合物に由来する構成単位(A-2)とを含み、構成単位Bが下記式(b-1)で表される化合物に由来する構成単位(B-1)と、下記式(b-2)で表される化合物に由来する構成単位(B-2)とを含む、ポリイミド樹脂。 (式(a-2)中、Lは単結合又は二価の連結基であり、 式(b-2)中、Rはそれぞれ独立して、水素原子、フッ素原子又はメチル基である。)

Description

ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
 本発明はポリイミド樹脂、ポリイミドワニス及びポリイミドフィルムに関する。
 ポリイミド樹脂は、優れた機械的特性及び耐熱性を有することから、電気・電子部品等分野において様々な利用が検討されている。例えば、液晶ディスプレイやOLEDディスプレイ等の画像表示装置に用いられるガラス基板を、デバイスの軽量化やフレキシブル化を目的として、プラスチック基板へ代替することが望まれており、当該プラスチック材料として適するポリイミド樹脂の研究も進められている。そのような用途のポリイミド樹脂には、透明性も求められ、更に、画像表示装置の製造工程の高温プロセスに対応できるように、熱に対する高い寸法安定性(即ち、低い線熱膨張係数)も求められる。
 低い線熱膨張係数を有するポリイミド樹脂としては、例えば、特許文献1には無水ピロメリット酸等の第一のテトラカルボン酸成分と、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物等の第二のテトラカルボン酸成分と、トリジンスルホン骨格ジアミン成分とから合成されるポリイミド樹脂が記載されており、特許文献2にはベンゾオキサゾール基を含むジアミン化合物と芳香族テトラカルボン酸二無水物とから合成されるポリイミド樹脂が記載されている。
 また、近年、マイクロエレクトロニクスの分野において、樹脂フィルムが積層された支持体における当該支持体と当該樹脂フィルムを剥離する方法として、レーザーリフトオフ(LLO)と呼ばれるレーザー剥離加工が注目を浴びている。したがって、ポリイミドフィルムをレーザー剥離加工に対応可能とするためには、ポリイミドフィルムにはレーザー剥離性も要求される。波長308nmのXeClエキシマレーザーによる剥離加工に対応可能とするためには、ポリイミドフィルムは波長308nmの光を吸収する特性に優れること(即ち、波長308nmにおける光線透過率が小さいこと)が求められる。
特開2010-053336号公報 特開2015-093915号公報
 一般にポリイミド樹脂は、機械的特性及び耐熱性に優れるものであるが、透明性の向上、更には熱に対する寸法安定性及びレーザー剥離性の向上を目的としてポリイミド樹脂の構造を変更した結果として、それらの特性が損なれる可能性があり、機械的特性、耐熱性、透明性、熱に対する寸法安定性及びレーザー剥離性のバランスが良いポリイミド樹脂の開発は十分ではない。
 本発明の課題は、機械的特性、耐熱性及び透明性が良好であって、熱に対する寸法安定性及びレーザー剥離性に優れたポリイミド樹脂を提供することにある。
 本発明者らは、特定の構成単位の組み合わせを含むポリイミド樹脂が上記課題を解決できることを見出し、発明を完成させるに至った。
 即ち、本発明は、下記の[1]~[7]に関する。
[1]テトラカルボン酸二無水物に由来する構成単位Aと、ジアミンに由来する構成単位Bとを含むポリイミド樹脂であって、
 構成単位Aが下記式(a-1)で表される化合物に由来する構成単位(A-1)と、下記式(a-2)で表される化合物に由来する構成単位(A-2)とを含み、
 構成単位Bが下記式(b-1)で表される化合物に由来する構成単位(B-1)と、下記式(b-2)で表される化合物に由来する構成単位(B-2)とを含む、ポリイミド樹脂。
Figure JPOXMLDOC01-appb-C000003
(式(a-2)中、Lは単結合又は二価の連結基であり、
式(b-2)中、Rはそれぞれ独立して、水素原子、フッ素原子又はメチル基である。)
[2]構成単位A中における構成単位(A-1)の比率が50~95モル%であり、
 構成単位A中における構成単位(A-2)の比率が5~50モル%である、上記[1]に記載のポリイミド樹脂。
[3]構成単位(A-2)が、下記式(a-2-1)で表される化合物に由来する構成単位(A-2-1)、下記式(a-2-2)で表される化合物に由来する構成単位(A-2-2)及び下記式(a-2-3)で表される化合物に由来する構成単位(A-2-3)からなる群より選ばれる少なくとも一つである、上記[1]又は[2]に記載のポリイミド樹脂。
Figure JPOXMLDOC01-appb-C000004
[4]構成単位B中における構成単位(B-1)の比率が20~90モル%であり、
 構成単位B中における構成単位(B-2)の比率が10~80モル%である、上記[1]~[3]のいずれかにポリイミド樹脂。
[5]Rが水素原子を表わす、上記[1]~[4]のいずれかに記載のポリイミド樹脂。
[6]上記[1]~[5]のいずれかに記載のポリイミド樹脂が有機溶媒に溶解してなるポリイミドワニス。
[7]上記[1]~[5]のいずれかに記載のポリイミド樹脂を含む、ポリイミドフィルム。
 本発明のポリイミド樹脂は、機械的特性、耐熱性及び透明性が良好であって、熱に対する寸法安定性及びレーザー剥離性に優れる。
[ポリイミド樹脂]
 本発明のポリイミド樹脂は、テトラカルボン酸二無水物に由来する構成単位Aとジアミンに由来する構成単位Bとを含むものであって、構成単位Aが下記式(a-1)で表される化合物に由来する構成単位(A-1)と下記式(a-2)で表される化合物に由来する構成単位(A-2)とを含み、構成単位Bが下記式(b-1)で表される化合物に由来する構成単位(B-1)と下記式(b-2)で表される化合物に由来する構成単位(B-2)とを含む。
Figure JPOXMLDOC01-appb-C000005
(式(a-2)中、Lは単結合又は二価の連結基であり、
式(b-2)中、Rはそれぞれ独立して、水素原子、フッ素原子又はメチル基である。)
<構成単位A>
 構成単位Aは、テトラカルボン酸二無水物に由来する構成単位であり、式(a-1)で表される化合物に由来する構成単位(A-1)及び式(a-2)で表される化合物に由来する構成単位(A-2)を含む。構成単位(A-1)によって、耐熱性、透明性及び寸法安定性が向上し、構成単位(A-2)によって、寸法安定性及びレーザー剥離性が向上する。
 式(a-1)で表される化合物は、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物である。
 式(a-2)中において、Lは単結合又は二価の連結基である。前記二価の連結基は、好ましくは置換又は無置換のアルキレン基であり、より好ましくは-CR-(ここで、R及びRは、それぞれ独立して、水素原子又は置換若しくは無置換アルキル基であるか、あるいは、R及びRは互いに結合して環を形成する。)である。
 Lは、単結合、下記式(L-1)で表される基及び下記式(L-2)で表される基からなる群より選ばれることが好ましい。
Figure JPOXMLDOC01-appb-C000006
 構成単位(A-2)は、好ましくは下記式(a-2-1)で表される化合物に由来する構成単位(A-2-1)、下記式(a-2-2)で表される化合物に由来する構成単位(A-2-2)及び下記式(a-2-3)で表される化合物に由来する構成単位(A-2-3)からなる群より選ばれる少なくとも一つであり、より好ましくは構成単位(A-2-1)及び構成単位(A-2-2)からなる群より選ばれる少なくとも一つである。
Figure JPOXMLDOC01-appb-C000007
 式(a-2-1)で表される化合物は、ビフェニルテトラカルボン酸二無水物(BPDA)であり、その具体例としては、下記式(a-2-1s)で表される3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)、下記式(a-2-1a)で表される2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(a-BPDA)、下記式(a-2-1i)で表される2,2’,3,3’-ビフェニルテトラカルボン酸二無水物(i-BPDA)が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 式(a-2-2)で表される化合物は、9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物である。
 式(a-2-3)で表される化合物は、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物である。
 構成単位A中における構成単位(A-1)の比率は、好ましくは50~95モル%であり、より好ましくは55~95モル%であり、更に好ましくは60~95モル%であり、特に好ましくは75~95モル%である。
 構成単位A中における構成単位(A-2)の比率は、好ましくは5~50モル%であり、より好ましくは5~45モル%であり、更に好ましくは5~40モル%であり、特に好ましくは5~25モル%である。
 構成単位A中における構成単位(A-1)と構成単位(A-2)の合計の含有比率は、好ましくは55モル%以上であり、より好ましくは60モル%以上であり、更に好ましくは65モル%以上であり、特に好ましくは80モル%以上である。構成単位(A-1)と構成単位(A-2)の合計の含有比率の上限値は特に限定されず、即ち、100モル%である。構成単位Aは構成単位(A-1)と構成単位(A-2)とのみからなっていてもよい。
 構成単位Aは、構成単位(A-1)及び(A-2)以外の構成単位を含んでもよい。そのような構成単位を形成するテトラカルボン酸二無水物としては、特に限定されないが、ピロメリット酸二無水物等の芳香族テトラカルボン酸二無水物(ただし、式(a-2)で表される化合物を除く);1,2,3,4-シクロブタンテトラカルボン酸二無水物及び1,2,4,5-シクロヘキサンテトラカルボン酸二無水物等の脂環式テトラカルボン酸二無水物(ただし、式(a-1)で表される化合物を除く);並びに1,2,3,4-ブタンテトラカルボン酸二無水物等の脂肪族テトラカルボン酸二無水物が挙げられる。
 なお、本明細書において、芳香族テトラカルボン酸二無水物とは芳香環を1つ以上含むテトラカルボン酸二無水物を意味し、脂環式テトラカルボン酸二無水物とは脂環を1つ以上含み、かつ芳香環を含まないテトラカルボン酸二無水物を意味し、脂肪族テトラカルボン酸二無水物とは芳香環も脂環も含まないテトラカルボン酸二無水物を意味する。
 構成単位Aに任意に含まれる構成単位(即ち、構成単位(A-1)及び(A-2)以外の構成単位)は、1種でもよいし、2種以上であってもよい。
<構成単位B>
 構成単位Bは、ジアミンに由来する構成単位であって、式(b-1)で表される化合物に由来する構成単位(B-1)及び式(b-2)で表される化合物に由来する構成単位(B-2)を含む。構成単位(B-1)によって、機械的特性及び寸法安定性が向上し、構成単位(B-2)によって、耐熱性が向上する。
 式(b-1)で表される化合物は、2,2’-ビス(トリフルオロメチル)ベンジジンである。
 式(b-2)中において、Rは、それぞれ独立して、水素原子、フッ素原子、及びメチル基からなる群より選択され、水素原子であることが好ましい。式(b-2)で表される化合物としては、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(3-フルオロ-4-アミノフェニル)フルオレン、及び9,9-ビス(3-メチル-4-アミノフェニル)フルオレン等が挙げられ、9,9-ビス(4-アミノフェニル)フルオレンが好ましい。
 構成単位B中における構成単位(B-1)の比率は、好ましくは20~90モル%であり、より好ましくは45~85モル%であり、更に好ましくは50~80モル%である。
 構成単位B中における構成単位(B-2)の比率は、好ましくは10~80モル%であり、より好ましくは15~55モル%であり、更に好ましくは20~50モル%である。
 構成単位B中における構成単位(B-1)と構成単位(B-2)の合計の含有比率は、好ましくは30モル%以上であるが、より好ましくは60モル%以上であり、更に好ましくは70%以上である。構成単位(B-1)と構成単位(B-2)の合計の含有比率の上限値は特に限定されず、即ち、100モル%である。構成単位Bは構成単位(B-1)と構成単位(B-2)とのみからなっていてもよい。
 構成単位Bは構成単位(B-1)及び(B-2)以外の構成単位を含んでもよい。そのような構成単位を形成するジアミンとしては、特に限定されないが、1,4-フェニレンジアミン、p-キシリレンジアミン、3,5-ジアミノ安息香酸、2,2’-ジメチルビフェニル-4,4’-ジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、ビス(4-アミノフェニル)スルホン、4,4’-ジアミノベンズアニリド、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-5-アミン、α,α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、N,N’-ビス(4-アミノフェニル)テレフタルアミド、4,4’-ビス(4-アミノフェノキシ)ビフェニル、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、及び2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン等の芳香族ジアミン(ただし、式(b-1)で表される化合物及び式(b-2)で表される化合物を除く);1,3-ビス(アミノメチル)シクロヘキサン及び1,4-ビス(アミノメチル)シクロヘキサン等の脂環式ジアミン;並びにエチレンジアミン及びヘキサメチレンジアミン等の脂肪族ジアミンが挙げられる。
 なお、本明細書において、芳香族ジアミンとは芳香環を1つ以上含むジアミンを意味し、脂環式ジアミンとは脂環を1つ以上含み、かつ芳香環を含まないジアミンを意味し、脂肪族ジアミンとは芳香環も脂環も含まないジアミンを意味する。
 構成単位Bに任意に含まれる構成単位(即ち、構成単位(B-1)及び(B-2)以外の構成単位)は、1種でもよいし、2種以上であってもよい。
 本発明のポリイミド樹脂の数平均分子量は、得られるポリイミドフィルムの機械的強度の観点から、好ましくは5,000~100,000である。なお、ポリイミド樹脂の数平均分子量は、例えば、ゲルろ過クロマトグラフィー測定による標準ポリメチルメタクリレート(PMMA)換算値より求めることができる。
 本発明のポリイミド樹脂は、機械的特性、耐熱性及び透明性が良好であって、熱に対する寸法安定性及びレーザー剥離性に優れるものであるため、以下のような物性値を有することができる。
 本発明のポリイミド樹脂の引張強度は、好ましくは70MPa以上であり、より好ましくは85MPa以上であり、更に好ましくは90MPa以上であり、特に好ましく105MPa以上である。
 本発明のポリイミド樹脂の引張弾性率は、好ましくは2.2GPa以上であり、より好ましくは2.4GPa以上であり、更に好ましくは2.8GPa以上であり、特に好ましく3.0GPa以上である。
 本発明のポリイミド樹脂のガラス転移温度(Tg)は、好ましくは350℃以上であり、より好ましくは380℃以上であり、更に好ましくは400℃以上であり、特に好ましく430℃以上である。
 本発明のポリイミド樹脂は、厚さ10μmのポリイミドフィルムとした際に全光線透過率が、好ましくは85%以上であり、より好ましくは88%以上であり、更に好ましくは90%以上であり、特に好ましく91%以上である。
 本発明のポリイミド樹脂の線熱膨張係数(CTE)は、100~200℃のCTEとしては、好ましくは30ppm/℃以下であり、より好ましくは20ppm/℃以下であり、更に好ましくは15ppm/℃以下であり、特に好ましくは10ppm/℃以下であり;100~350℃のCTEとしては、好ましくは35ppm/℃以下であり、より好ましくは30ppm/℃以下であり、更に好ましくは25ppm/℃以下であり、特に好ましくは20ppm/℃以下であり、最も好ましくは15ppm/℃以下である。
 本発明のポリイミド樹脂は、厚さ10μmのポリイミドフィルムとした際に波長308nmにおける光線透過率が、好ましくは2.5%以下であり、より好ましくは1.5%以下であり、更に好ましくは1.0%以下であり、特に好ましく0.5%以下である。波長308nmにおける光線透過率が小さいほど、波長308nmのXeClエキシマレーザーによるレーザー剥離性に優れる。
 なお、本発明における引張弾性率、引張強度、ガラス転移温度(Tg)、全光線透過率、線熱膨張係数(CTE)、波長308nmにおける光線透過率は、具体的には実施例に記載の方法で測定することができる。
 また、本発明の一態様のポリイミド樹脂は、イエローインデックス(YI)が小さく、即ち、無色透明性に優れる。そのため、厚さ10μmのポリイミドフィルムとした際にイエローインデックス(YI)が、好ましくは3.5以下であり、より好ましくは2.5以下であり、更に好ましくは2.0以下であり、特に好ましくは1.5以下である。
 なお、本発明におけるイエローインデックス(YI)は、具体的には実施例に記載の方法で測定することができる。
[ポリイミド樹脂の製造方法]
 本発明のポリイミド樹脂は、上述の構成単位(A-1)を与える化合物及び上述の構成単位(A-2)を与える化合物を含有するテトラカルボン酸成分と、上述の構成単位(B-1)を与える化合物及び上述の構成単位(B-2)を与える化合物を含むジアミン成分とを反応させることにより製造することができる。
 構成単位(A-1)を与える化合物としては、式(a-1)で表される化合物が挙げられるが、それに限られず、同じ構成単位を形成できる範囲でその誘導体であってもよい。当該誘導体としては、式(a-1)で表されるテトラカルボン酸二無水物に対応するテトラカルボン酸(即ち、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸)、及び当該テトラカルボン酸のアルキルエステルが挙げられる。構成単位(A-1)を与える化合物としては、式(a-1)で表される化合物(即ち、二無水物)が好ましい。
 構成単位(A-2)を与える化合物としては、式(a-2)で表される化合物が挙げられるが、それに限られず、同じ構成単位を形成できる範囲でその誘導体であってもよい。当該誘導体としては、式(a-2)で表されるテトラカルボン酸二無水物に対応するテトラカルボン酸及び当該テトラカルボン酸のアルキルエステルが挙げられる。構成単位(A-2)を与える化合物としては、式(a-2)で表される化合物(即ち、二無水物)が好ましい。
 構成単位(B-1)を与える化合物としては、式(b-1)で表される化合物が挙げられるが、それに限られず、同じ構成単位を形成できる範囲でその誘導体であってもよい。当該誘導体としては、式(b-1)で表されるジアミンに対応するジイソシアネートが挙げられる。構成単位(B-1)を与える化合物としては、式(b-1)で表される化合物(即ち、ジアミン)が好ましい。
 構成単位(B-2)を与える化合物としては、式(b-2)で表される化合物が挙げられるが、それに限られず、同じ構成単位を形成できる範囲でその誘導体であってもよい。当該誘導体としては、式(b-2)で表されるジアミンに対応するジイソシアネートが挙げられる。構成単位(B-2)を与える化合物としては、式(b-2)で表される化合物(即ち、ジアミン)が好ましい。
 テトラカルボン酸成分は、構成単位(A-1)を与える化合物を、好ましくは50~95モル%含み、より好ましくは55~95モル%含み、更に好ましくは60~95モル%含み、特に好ましくは75~95モル%含む。また、テトラカルボン酸成分は、構成単位(A-2)を与える化合物を、好ましくは5~50モル%含み、より好ましくは5~45モル%含み、更に好ましくは5~40モル%含み、特に好ましくは5~25モル%含む。
 テトラカルボン酸成分は、構成単位(A-1)を与える化合物と構成単位(A-2)を与える化合物を合計で、好ましくは55モル%以上含み、より好ましくは60モル%以上含み、更に好ましくは65モル%以上含み、特に好ましくは80モル%以上含む。構成単位(A-1)を与える化合物と構成単位(A-2)を与える化合物の合計の含有比率の上限値は特に限定されず、即ち、100モル%である。テトラカルボン酸成分は構成単位(A-1)を与える化合物と構成単位(A-2)を与える化合物とのみからなっていてもよい。
 テトラカルボン酸成分は、構成単位(A-1)を与える化合物及び構成単位(A-2)を与える化合物以外の化合物を含んでもよく、当該化合物としては、上述の芳香族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、及び脂肪族テトラカルボン酸二無水物、並びにそれらの誘導体(テトラカルボン酸、テトラカルボン酸のアルキルエステル等)が挙げられる。
 テトラカルボン酸成分に任意に含まれる化合物(即ち、構成単位(A-1)を与える化合物及び構成単位(A-2)を与える化合物以外の化合物)は、1種でもよいし、2種以上であってもよい。
 ジアミン成分は、構成単位(B-1)を与える化合物を、好ましくは20~90モル%含み、より好ましくは45~85モル%含み、更に好ましくは50~80モル%含む。また、ジアミン成分は、構成単位(B-2)を与える化合物を、好ましくは10~80モル%含み、より好ましくは15~55モル%含み、更に好ましくは20~50モル%含む。
 ジアミン成分は、構成単位(B-1)を与える化合物と構成単位(B-2)を与える化合物を合計で、好ましくは30モル%以上含み、より好ましくは60モル%以上含み、更に好ましくは70モル%以上含む。構成単位(B-1)を与える化合物と構成単位(B-2)を与える化合物の合計の含有比率の上限値は特に限定されず、即ち、100モル%である。ジアミン成分は構成単位(B-1)を与える化合物と構成単位(B-2)を与える化合物とのみからなっていてもよい。
 ジアミン成分は構成単位(B-1)を与える化合物及び構成単位(B-2)を与える化合物以外の化合物を含んでもよく、当該化合物としては、上述の芳香族ジアミン、脂環式ジアミン、及び脂肪族ジアミン、並びにそれらの誘導体(ジイソシアネート等)が挙げられる。
 ジアミン成分に任意に含まれる化合物(即ち、構成単位(B-1)を与える化合物及び構成単位(B-2)を与える化合物以外の化合物)は、1種でもよいし、2種以上であってもよい。
 本発明において、ポリイミド樹脂の製造に用いるテトラカルボン酸成分とジアミン成分の仕込み量比は、テトラカルボン酸成分1モルに対してジアミン成分が0.9~1.1モルであることが好ましい。
 また、本発明において、ポリイミド樹脂の製造には、前述のテトラカルボン酸成分及びジアミン成分の他に、末端封止剤を用いてもよい。末端封止剤としてはモノアミン類あるいはジカルボン酸類が好ましい。導入される末端封止剤の仕込み量としては、テトラカルボン酸成分1モルに対して0.0001~0.1モルが好ましく、特に0.001~0.06モルが好ましい。モノアミン類末端封止剤としては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ベンジルアミン、4-メチルベンジルアミン、4-エチルベンジルアミン、4-ドデシルベンジルアミン、3-メチルベンジルアミン、3-エチルベンジルアミン、アニリン、3-メチルアニリン、4-メチルアニリン等が推奨される。これらのうち、ベンジルアミン、アニリンが好適に使用できる。ジカルボン酸類末端封止剤としては、ジカルボン酸類が好ましく、その一部を閉環していてもよい。例えば、フタル酸、無水フタル酸、4-クロロフタル酸、テトラフルオロフタル酸、2,3-ベンゾフェノンジカルボン酸、3,4-ベンゾフェノンジカルボン酸、シクロヘキサン-1,2-ジカルボン酸、シクロペンタン-1,2-ジカルボン酸、4-シクロヘキセン-1,2-ジカルボン酸等が推奨される。これらのうち、フタル酸、無水フタル酸が好適に使用できる。
 前述のテトラカルボン酸成分とジアミン成分とを反応させる方法には特に制限はなく、公知の方法を用いることができる。
 具体的な反応方法としては、(1)テトラカルボン酸成分、ジアミン成分、及び反応溶剤を反応器に仕込み、室温~80℃で0.5~30時間撹拌し、その後に昇温してイミド化反応を行う方法、(2)ジアミン成分及び反応溶剤を反応器に仕込んで溶解させた後、テトラカルボン酸成分を仕込み、必要に応じて室温~80℃で0.5~30時間撹拌し、その後に昇温してイミド化反応を行う方法、(3)テトラカルボン酸成分、ジアミン成分、及び反応溶剤を反応器に仕込み、直ちに昇温してイミド化反応を行う方法等が挙げられる。
 ポリイミド樹脂の製造に用いられる反応溶剤は、イミド化反応を阻害せず、生成するポリイミドを溶解できるものであればよい。例えば、非プロトン性溶剤、フェノール系溶剤、エーテル系溶剤、カーボネート系溶剤等が挙げられる。
 非プロトン性溶剤の具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、1,3-ジメチルイミダゾリジノン、テトラメチル尿素等のアミド系溶剤、γ-ブチロラクトン、γ-バレロラクトン等のラクトン系溶剤、ヘキサメチルホスホリックアミド、ヘキサメチルホスフィントリアミド等の含リン系アミド系溶剤、ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶剤、アセトン、シクロヘキサノン、メチルシクロヘキサノン等のケトン系溶剤、ピコリン、ピリジン等のアミン系溶剤、酢酸(2-メトキシ-1-メチルエチル)等のエステル系溶剤等が挙げられる。
 フェノール系溶剤の具体例としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール等が挙げられる。
 エーテル系溶剤の具体例としては、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エーテル、1,2-ビス(2-メトキシエトキシ)エタン、ビス〔2-(2-メトキシエトキシ)エチル〕エーテル、テトラヒドロフラン、1,4-ジオキサン等が挙げられる。
 また、カーボネート系溶剤の具体的な例としては、ジエチルカーボネート、メチルエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等が挙げられる。
 上記反応溶剤の中でも、アミド系溶剤又はラクトン系溶剤が好ましい。また、上記の反応溶剤は単独で又は2種以上混合して用いてもよい。
 イミド化反応では、ディーンスターク装置などを用いて、製造時に生成する水を除去しながら反応を行うことが好ましい。このような操作を行うことで、重合度及びイミド化率をより上昇させることができる。
 上記のイミド化反応においては、公知のイミド化触媒を用いることができる。イミド化触媒としては、塩基触媒又は酸触媒が挙げられる。
 塩基触媒としては、ピリジン、キノリン、イソキノリン、α-ピコリン、β-ピコリン、2,4-ルチジン、2,6-ルチジン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリエチレンジアミン、イミダゾール、N,N-ジメチルアニリン、N,N-ジエチルアニリン等の有機塩基触媒、水酸化カリウムや水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム等の無機塩基触媒が挙げられる。
 また、酸触媒としては、クロトン酸、アクリル酸、トランス-3-ヘキセノイック酸、桂皮酸、安息香酸、メチル安息香酸、オキシ安息香酸、テレフタル酸、ベンゼンスルホン酸、パラトルエンスルホン酸、ナフタレンスルホン酸等が挙げられる。上記のイミド化触媒は単独で又は2種以上を組み合わせて用いてもよい。
 上記のうち、取り扱い性の観点から、塩基触媒を用いることが好ましく、有機塩基触媒を用いることがより好ましく、トリエチルアミンを用いることが更に好ましく、トリエチルアミンとトリエチレンジアミンを組み合わせて用いること特に好ましい。
 イミド化反応の温度は、反応率及びゲル化等の抑制の観点から、好ましくは120~250℃、より好ましくは160~200℃である。また、反応時間は、生成水の留出開始後、好ましくは0.5~10時間である。
[ポリイミドワニス]
 本発明のポリイミドワニスは、本発明のポリイミド樹脂が有機溶媒に溶解してなるものである。即ち、本発明のポリイミドワニスは、本発明のポリイミド樹脂及び有機溶媒を含み、当該ポリイミド樹脂は当該有機溶媒に溶解している。
 有機溶媒はポリイミド樹脂が溶解するものであればよく、特に限定されないが、ポリイミド樹脂の製造に用いられる反応溶剤として上述した化合物を、単独又は2種以上を混合して用いることが好ましい。
 本発明のポリイミド樹脂は溶媒溶解性を有しているため、室温で安定な高濃度のワニスとすることができる。本発明のポリイミドワニスは、本発明のポリイミド樹脂を5~40質量%含むことが好ましく、10~30質量%含むことがより好ましい。ポリイミドワニスの粘度は1~200Pa・sが好ましく、5~150Pa・sがより好ましい。
 また、本発明のポリイミドワニスは、ポリイミドフィルムの要求特性を損なわない範囲で、無機フィラー、接着促進剤、剥離剤、難燃剤、紫外線安定剤、界面活性剤、レベリング剤、消泡剤、蛍光増白剤、架橋剤、重合開始剤、感光剤等各種添加剤を含んでもよい。
 本発明のポリイミドワニスの製造方法は特に限定されず、公知の方法を適用することができる。
[ポリイミドフィルム]
 本発明のポリイミドフィルムは、本発明のポリイミド樹脂を含む。したがって、本発明のポリイミドフィルムは、機械的特性、耐熱性及び透明性が良好であって、熱に対する寸法安定性及びレーザー剥離性に優れる。
 本発明のポリイミドフィルムの作製方法には特に制限はなく、公知の方法を用いることができる。例えば、本発明のポリイミドワニスをフィルム状に塗布又は成形した後、有機溶媒を除去する方法等が挙げられる。
 本発明のポリイミドフィルムは、機械的特性、耐熱性及び透明性が良好であって、熱に対する寸法安定性及びレーザー剥離性に優れるものであるため、カラーフィルター、フレキシブルディスプレイ、半導体部品、光学部材等の各種部材用のフィルムとして好適に用いられる。本発明のポリイミドフィルムは、液晶ディスプレイやOLEDディスプレイ等の画像表示装置の基板として、特に好適に用いられる。
 以下に、実施例により本発明を具体的に説明する。但し、本発明はこれらの実施例により何ら制限されるものではない。
 実施例及び比較例で得たワニスの固形分濃度及びポリイミドフィルムの各物性は以下に示す方法によって測定した。
(1)固形分濃度
 ワニスの固形分濃度の測定は、アズワン株式会社製の小型電気炉「MMF-1」で試料を320℃×120minで加熱し、加熱前後の試料の質量差から算出した。
(2)フィルム厚さ
 フィルム厚さは、株式会社ミツトヨ製のマイクロメーターを用いて測定した。
(3)引張強度、引張弾性率
 測定はJIS K7127に準拠し、東洋精機株式会社製の引張試験機「ストログラフVG-1E」を用いて行った。
(4)ガラス転移温度(Tg)
 株式会社日立ハイテクサイエンス製の熱機械的分析装置「TMA/SS6100」を用いて、引張モードで試料サイズ2mm×20mm、荷重0.1N、昇温速度10℃/minの条件でTg以上まで昇温して残留応力を取り除き、その後同条件で50℃から500℃までTMA測定を行い、Tgを求めた。
(5)全光線透過率、イエローインデックス(YI)
 測定はJIS K7361-1準拠し、日本電色工業株式会社製の色彩・濁度同時測定器「COH400」を用いて行った。
(6)線熱膨張係数(CTE)
 株式会社日立ハイテクサイエンス製の熱機械的分析装置「TMA/SS6100」を用いて、引張モードで試料サイズ2mm×20mm、荷重0.1N、昇温速度10℃/minの条件でTMA測定を行い、100~200℃のCTE及び100~350℃のCTEを求めた。
(7)波長308nmにおける光線透過率
 株式会社島津製作所製の紫外可視近赤外分光光度計「UV-3100PC」を用いて測定した。
<実施例1>
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた500mLの5つ口丸底フラスコに、2,2’-ビス(トリフルオロメチル)ベンジジン(和歌山精化工業株式会社製)16.012g(0.050モル)、9,9-ビス(4-アミノフェニル)フルオレン(田岡化学工業株式会社製)17.423g(0.050モル)、γ-ブチロラクトン(三菱化学株式会社製)87.573g、を投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物(JXエネルギー株式会社製)34.594g(0.090モル)、9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物(JFEケミカル株式会社製)4.584g(0.010モル)、及びγ-ブチロラクトン(三菱化学株式会社製)21.893gを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)0.506g及びトリエチレンジアミン(東京化成工業株式会社製)0.056gを投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
 その後、γ-ブチロラクトン(三菱化学株式会社製)193.524gを添加して、反応系内温度を120℃まで冷却した後、更に約3時間撹拌して均一化し、固形分濃度20質量%のポリイミドワニスを得た。続いてガラス板上へ、得られたポリイミドワニスを塗布し、ホットプレートで80℃、20分間保持し、その後、窒素雰囲気下、熱風乾燥機中400℃で30分加熱し溶媒を蒸発させ、厚み10μmのフィルムを得た。結果を表1-1に示す。
<実施例2>
 9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物(JFEケミカル株式会社製)を同じモル量の3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)(三菱化学株式会社製)に変更した以外は、実施例1と同様の方法によりポリイミドワニスを作製し、固形分濃度20質量%のポリイミドワニスを得た。得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを作製し、厚み11μmのフィルムを得た。結果を表1-1に示す。
<実施例3>
 2,2’-ビス(トリフルオロメチル)ベンジジン(和歌山精化工業株式会社製)の量を16.012g(0.050モル)から25.619g(0.080モル)に変更し、9,9-ビス(4-アミノフェニル)フルオレン(田岡化学工業株式会社製)の量を17.423g(0.050モル)から6.969g(0.020モル)に変更した以外は、実施例1と同様の方法によりポリイミドワニスを作製し、固形分濃度20質量%のポリイミドワニスを得た。得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを作製し、厚み10μmのフィルムを得た。結果を表1-1に示す。
<実施例4>
 9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物(JFEケミカル株式会社製)を同じモル量の3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)(三菱化学株式会社製)に変更した以外は、実施例3と同様の方法によりポリイミドワニスを作製し、固形分濃度20質量%のポリイミドワニスを得た。得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを作製し、厚み10μmのフィルムを得た。結果を表1-1に示す。
<実施例5>
 ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物(JXエネルギー株式会社製)の量を34.594g(0.090モル)から30.750g(0.080モル)に変更し、9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物(JFEケミカル株式会社製)の量を4.584g(0.010モル)から9.169g(0.020モル)に変更した以外は、実施例3と同様の方法によりポリイミドワニスを作製し、固形分濃度20質量%のポリイミドワニスを得た。得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを作製し、厚み10μmのフィルムを得た。結果を表1-1に示す。
<実施例6>
 9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物(JFEケミカル株式会社製)を同じモル量の4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物に変更した以外は、実施例5と同様の方法によりポリイミドワニスを作製し、固形分濃度20質量%のポリイミドワニスを得た。得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを作製し、厚み11μmのフィルムを得た。結果を表1-1に示す。
<実施例7>
 9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物(JFEケミカル株式会社製)を同じモル量の3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)(三菱化学株式会社製)に変更した以外は、実施例5と同様の方法によりポリイミドワニスを作製し、固形分濃度20質量%のポリイミドワニスを得た。得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを作製し、厚み11μmのフィルムを得た。結果を表1-1に示す。
<実施例8>
 2,2’-ビス(トリフルオロメチル)ベンジジン(和歌山精化工業株式会社製)の量を25.619g(0.080モル)から19.214g(0.060モル)に変更し、9,9-ビス(4-アミノフェニル)フルオレン(田岡化学工業株式会社製)の量を6.969g(0.020モル)から13.938g(0.040モル)に変更した以外は、実施例4と同様の方法によりポリイミドワニスを作製し、固形分濃度20質量%のポリイミドワニスを得た。得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを作製し、厚み14μmのフィルムを得た。結果を表1-1に示す。
<実施例9>
 ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物(JXエネルギー株式会社製)の量を34.594g(0.090モル)から30.750g(0.080モル)に変更し、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)(三菱化学株式会社製)の量を2.942g(0.010モル)を5.884g(0.020モル)に変更した以外は、実施例8と同様の方法によりポリイミドワニスを作製し、固形分濃度20質量%のポリイミドワニスを得た。得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを作製し、厚み10μmのフィルムを得た。結果を表1-2に示す。
<実施例10>
 ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物(JXエネルギー株式会社製)の量を30.750g(0.080モル)から23.063g(0.060モル)に変更し、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)(三菱化学株式会社製)の量を5.884g(0.020モル)から11.768g(0.040モル)に変更した以外は、実施例9と同様の方法によりポリイミドワニスを作製し、固形分濃度20質量%のポリイミドワニスを得た。得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを作製し、厚み11μmのフィルムを得た。結果を表1-2に示す。
<実施例11>
 ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物(JXエネルギー株式会社製)の量を34.594g(0.090モル)から19.219g(0.050モル)に変更し、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)(三菱化学株式会社製)の量を2.942g(0.010モル)から14.711g(0.050モル)に変更し、2,2’-ビス(トリフルオロメチル)ベンジジン(和歌山精化工業株式会社製)の量を16.012g(0.050モル)から6.405g(0.020モル)に変更し、9,9-ビス(4-アミノフェニル)フルオレン(田岡化学工業株式会社製)の量を17.423g(0.050モル)から27.876g(0.080モル)に変更した以外は、実施例2と同様の方法によりポリイミドワニスを作製し、固形分濃度20質量%のポリイミドワニスを得た。得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを作製し、厚み10μmのフィルムを得た。結果を表1-2に示す。
<実施例12>
 ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物(JXエネルギー株式会社製)の量を34.594g(0.090モル)から26.906g(0.070モル)に変更し、9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物(JFEケミカル株式会社製)の量を4.584g(0.010モル)から13.753g(0.030モル)に変更した以外は、実施例1と同様の方法によりポリイミドワニスを作製し、固形分濃度20質量%のポリイミドワニスを得た。得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを作製し、厚み10μmのフィルムを得た。結果を表1-2に示す。
<実施例13>
 ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物(JXエネルギー株式会社製)の量を34.594g(0.090モル)から19.219g(0.050モル)に変更し、9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物(JFEケミカル株式会社製)の量を4.584g(0.010モル)から22.922g(0.050モル)に変更した以外は、実施例1と同様の方法によりポリイミドワニスを作製し、固形分濃度20質量%のポリイミドワニスを得た。得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを作製し、厚み10μmのフィルムを得た。結果を表1-2に示す。
<実施例14>
 ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物(JXエネルギー株式会社製)の量を34.594g(0.090モル)から19.219g(0.050モル)に変更し、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)(三菱化学株式会社製)の量を2.942g(0.010モル)から14.711g(0.050モル)に変更した以外は、実施例4と同様の方法によりポリイミドワニスを作製し、固形分濃度20質量%のポリイミドワニスを得た。得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを作製し、厚み10μmのフィルムを得た。結果を表1-2に示す。
<実施例15>
 2,2’-ビス(トリフルオロメチル)ベンジジン(和歌山精化工業株式会社製)の量を25.619g(0.080モル)から17.613g(0.055モル)に変更し、9,9-ビス(4-アミノフェニル)フルオレン(田岡化学工業株式会社製)の量を6.969g(0.020モル)から15.680g(0.045モル)に変更した以外は、実施例3と同様の方法によりポリイミドワニスを作製し、固形分濃度20質量%のポリイミドワニスを得た。得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを作製し、厚み10μmのフィルムを得た。結果を表1-2に示す。
<比較例1>
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた500mLの5つ口丸底フラスコに、9,9-ビス(4-アミノフェニル)フルオレン(田岡化学工業株式会社製)34.845g(0.100モル)、γ-ブチロラクトン(三菱化学株式会社製)88.395g、を投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物(JXエネルギー株式会社製)38.438g(0.100モル)及びγ-ブチロラクトン(三菱化学株式会社製)22.099gを一括で添加した後、イミド化触媒としてトリエチルアミン(関東化学株式会社製)0.506g及びトリエチレンジアミン(東京化成工業株式会社製)0.056gを投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して5時間還流した。
 その後、γ-ブチロラクトン(三菱化学株式会社製)191.840gを添加して、反応系内温度を120℃まで冷却した後、更に約3時間撹拌して均一化し、固形分濃度20質量%のポリイミドワニスを得た。続いてガラス板上へ、得られたポリイミドワニスを塗布し、ホットプレートで80℃、20分間保持し、その後、窒素雰囲気下、熱風乾燥機中400℃で30分加熱し溶媒を蒸発させ、厚み10μmのフィルムを得た。結果を表2に示す。
<比較例2>
 9,9-ビス(4-アミノフェニル)フルオレン(田岡化学工業株式会社製)の量を34.845g(0.100モル)から6.969g(0.020モル)に変更し、2,2’-ビス(トリフルオロメチル)ベンジジン(和歌山精化工業株式会社製)を25.619g(0.080モル)追加した以外は、比較例1と同様の方法によりポリイミドワニスを作製し、固形分濃度20質量%のポリイミドワニスを得た。得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを作製し、厚み10μmのフィルムを得た。結果を表2に示す。
<比較例3>
 2,2’-ビス(トリフルオロメチル)ベンジジン(和歌山精化工業株式会社製)の量を25.619g(0.080モル)から16.012g(0.050モル)に変更し、9,9-ビス(4-アミノフェニル)フルオレン(田岡化学工業株式会社製)の量を6.969g(0.020モル)から17.423g(0.050モル)に変更した以外は、比較例2と同様の方法によりポリイミドワニスを作製し、固形分濃度20質量%のポリイミドワニスを得た。得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを作製し、厚み10μmのフィルムを得た。結果を表2に示す。
<比較例4>
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた500mLの5つ口丸底フラスコに、9,9-ビス(4-アミノフェニル)フルオレン(田岡化学工業株式会社製)34.845g(0.100モル)、N,N-ジメチルホルムアミド(三菱ガス化学株式会社製)77.404g、を投入し、系内温度50℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)(三菱化学株式会社製)29.420g(0.100モル)及びN,N-ジメチルホルムアミド(三菱ガス化学株式会社製)19.351gを一括で添加した後、約20分かけて溶解し、回転数を粘度上昇に合わせて調整しつつ、室温で5時間撹拌した。
 その後、N,N-ジメチルホルムアミド(三菱ガス化学株式会社製)166.194gを添加して、約1時間撹拌して均一化し、固形分濃度20質量%のポリアミック酸ワニスを得た。続いてガラス板上へ、得られたポリアミック酸ワニスを塗布し、ホットプレートで80℃、20分間保持し、その後、窒素雰囲気下、熱風乾燥機中400℃で30分加熱することで、ポリアミック酸をイミド化するとともに、ワニス中の溶媒を蒸発させ、厚み8μmのフィルムを得た。結果を表2に示す。
<比較例5>
 9,9-ビス(4-アミノフェニル)フルオレン(田岡化学工業株式会社製)を同じモル量の2,2’-ビス(トリフルオロメチル)ベンジジン(和歌山精化工業株式会社製)に変更した以外は、比較例4と同様の方法によりポリアミック酸ワニスを作製し、固形分濃度20質量%のポリアミック酸ワニスを得た。得られたポリアミック酸ワニスを用いて、比較例4と同様の方法によりフィルムを作製し、厚み22μmのフィルムを得た。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表1-1、表1-2及び表2中の略号は以下のとおりである。
CpODA:ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物(式(a-1)で表される化合物)
BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(式(a-2)で表される化合物)
BPAF:9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物(式(a-2)で表される化合物)
6FDA:4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(式(a-2)で表される化合物)
TFMB:2,2’-ビス(トリフルオロメチル)ベンジジン(式(b-1)で表される化合物)
BAFL:9,9-ビス(4-アミノフェニル)フルオレン(式(b-2)で表される化合物)
 表1-1及び表1-2に示すように、実施例1~15のポリイミドフィルムは、機械的特性、耐熱性及び透明性が良好であって、熱に対する寸法安定性及びレーザー剥離性に優れている。また、実施例1~10、12、13、及び15のポリイミドフィルムは、YIが小さく、即ち、無色透明性に優れている。
 一方、表2に示すように、比較例1のポリイミドフィルムは熱に対する寸法安定性が大きく劣り、比較例2及び3のポリイミドフィルムはレーザー剥離性が大きく劣り、比較例4のポリイミドフィルムは熱に対する寸法安定性が大きく劣るだけでなく、さらに機械的特性も劣り、比較例5のポリイミドフィルムは熱に対する寸法安定性が大きく劣るだけでなく、さらに耐熱性も劣る。

Claims (7)

  1.  テトラカルボン酸二無水物に由来する構成単位Aと、ジアミンに由来する構成単位Bとを含むポリイミド樹脂であって、
     構成単位Aが下記式(a-1)で表される化合物に由来する構成単位(A-1)と、下記式(a-2)で表される化合物に由来する構成単位(A-2)とを含み、
     構成単位Bが下記式(b-1)で表される化合物に由来する構成単位(B-1)と、下記式(b-2)で表される化合物に由来する構成単位(B-2)とを含む、ポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000001

    (式(a-2)中、Lは単結合又は二価の連結基であり、
    式(b-2)中、Rはそれぞれ独立して、水素原子、フッ素原子又はメチル基である。)
  2.  構成単位A中における構成単位(A-1)の比率が50~95モル%であり、
     構成単位A中における構成単位(A-2)の比率が5~50モル%である、請求項1に記載のポリイミド樹脂。
  3.  構成単位(A-2)が、下記式(a-2-1)で表される化合物に由来する構成単位(A-2-1)、下記式(a-2-2)で表される化合物に由来する構成単位(A-2-2)及び下記式(a-2-3)で表される化合物に由来する構成単位(A-2-3)からなる群より選ばれる少なくとも一つである、請求項1又は2に記載のポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000002
  4.  構成単位B中における構成単位(B-1)の比率が20~90モル%であり、
     構成単位B中における構成単位(B-2)の比率が10~80モル%である、請求項1~3のいずれかにポリイミド樹脂。
  5.  Rが水素原子を表わす、請求項1~4のいずれかに記載のポリイミド樹脂。
  6.  請求項1~5のいずれかに記載のポリイミド樹脂が有機溶媒に溶解してなるポリイミドワニス。
  7.  請求項1~5のいずれかに記載のポリイミド樹脂を含む、ポリイミドフィルム。
PCT/JP2018/035129 2017-09-29 2018-09-21 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム WO2019065523A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207008744A KR20200052308A (ko) 2017-09-29 2018-09-21 폴리이미드 수지, 폴리이미드 바니시 및 폴리이미드 필름
CN201880062391.6A CN111133033B (zh) 2017-09-29 2018-09-21 聚酰亚胺树脂、聚酰亚胺清漆和聚酰亚胺薄膜
JP2019545072A JPWO2019065523A1 (ja) 2017-09-29 2018-09-21 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017191918 2017-09-29
JP2017-191918 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019065523A1 true WO2019065523A1 (ja) 2019-04-04

Family

ID=65903310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035129 WO2019065523A1 (ja) 2017-09-29 2018-09-21 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム

Country Status (5)

Country Link
JP (2) JPWO2019065523A1 (ja)
KR (1) KR20200052308A (ja)
CN (1) CN111133033B (ja)
TW (1) TWI784056B (ja)
WO (1) WO2019065523A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188265A1 (ja) * 2018-03-30 2019-10-03 株式会社カネカ ポリアミド酸、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびフレキシブルデバイス、ならびにポリイミド膜の製造方法
WO2019198709A1 (ja) * 2018-04-10 2019-10-17 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2021193568A1 (ja) * 2020-03-27 2021-09-30 三菱瓦斯化学株式会社 ポリイミドフィルム及び積層体
WO2022091814A1 (ja) * 2020-10-26 2022-05-05 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
KR20220075327A (ko) 2019-09-30 2022-06-08 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지 조성물, 폴리이미드 바니시 및 폴리이미드 필름

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112646183A (zh) * 2020-12-22 2021-04-13 宁波长阳科技股份有限公司 聚酰亚胺材料及其制备方法和应用
WO2022133722A1 (zh) * 2020-12-22 2022-06-30 宁波长阳科技股份有限公司 聚酰亚胺材料及其制备方法和应用
CN113429785B (zh) * 2021-06-16 2022-05-20 浙江中科玖源新材料有限公司 一种低双折射聚酰亚胺薄膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179727A1 (ja) * 2012-05-28 2013-12-05 宇部興産株式会社 ポリイミド前駆体及びポリイミド
WO2015053312A1 (ja) * 2013-10-11 2015-04-16 宇部興産株式会社 ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
WO2015152178A1 (ja) * 2014-03-31 2015-10-08 日産化学工業株式会社 樹脂薄膜の製造方法および樹脂薄膜形成用組成物
WO2016084777A1 (ja) * 2014-11-27 2016-06-02 Jx日鉱日石エネルギー株式会社 ポリイミドフィルム、それを用いた基板、及び、ポリイミドフィルムの製造方法
JP2016204568A (ja) * 2015-04-27 2016-12-08 宇部興産株式会社 ポリアミック酸溶液組成物およびポリイミドフィルム
JP2016204569A (ja) * 2015-04-27 2016-12-08 宇部興産株式会社 ポリアミック酸溶液組成物およびポリイミドフィルム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2248843A4 (en) 2008-02-25 2013-07-24 Hitachi Chem Dupont Microsys POLYIMIDE PREPARATION COMPOSITION, POLYIMIDE COATING AND TRANSPARENT FLEXIBLE COATING
JP5412933B2 (ja) 2008-08-01 2014-02-12 新日本理化株式会社 ポリイミド樹脂
WO2011033751A1 (ja) 2009-09-18 2011-03-24 三井化学株式会社 透明熱可塑性ポリイミド、およびそれを含む透明基板
EP2535341B1 (en) 2010-02-09 2015-08-26 JX Nippon Oil & Energy Corporation Norbornane-2-spiro- a-cycloalkanone-a '-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic dianhydride, norbornane-2-spiro- a-cycloalkanone-a '-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic acid and ester thereof, method for producing norbornane-2-spiro- a-cycloalkanone-a '-spiro-2''-norbornane-5,5'',6,6''-tetracarboxylic dianhydride, polyimide obtained using same, and method for producing polyimide
WO2014046064A1 (ja) 2012-09-18 2014-03-27 宇部興産株式会社 ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
KR20140139367A (ko) * 2013-05-27 2014-12-05 삼성전자주식회사 광학 필름의 제조 방법, 및 상기 제조 방법에 의해 제조되는 광학 필름
JP6293457B2 (ja) 2013-11-12 2018-03-14 学校法人東邦大学 ポリイミドおよび耐熱性フィルム
US9718033B2 (en) * 2014-12-23 2017-08-01 Chevron U.S.A. Inc. Uncrosslinked, high molecular weight, polyimide polymer containing a small amount of bulky diamine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179727A1 (ja) * 2012-05-28 2013-12-05 宇部興産株式会社 ポリイミド前駆体及びポリイミド
WO2015053312A1 (ja) * 2013-10-11 2015-04-16 宇部興産株式会社 ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
WO2015152178A1 (ja) * 2014-03-31 2015-10-08 日産化学工業株式会社 樹脂薄膜の製造方法および樹脂薄膜形成用組成物
WO2016084777A1 (ja) * 2014-11-27 2016-06-02 Jx日鉱日石エネルギー株式会社 ポリイミドフィルム、それを用いた基板、及び、ポリイミドフィルムの製造方法
JP2016204568A (ja) * 2015-04-27 2016-12-08 宇部興産株式会社 ポリアミック酸溶液組成物およびポリイミドフィルム
JP2016204569A (ja) * 2015-04-27 2016-12-08 宇部興産株式会社 ポリアミック酸溶液組成物およびポリイミドフィルム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188265A1 (ja) * 2018-03-30 2019-10-03 株式会社カネカ ポリアミド酸、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびフレキシブルデバイス、ならびにポリイミド膜の製造方法
US11993678B2 (en) 2018-03-30 2024-05-28 Kaneka Corporation Polyamic acid, polyamic acid solution, polyimide, polyimide film, laminate and flexible device, and method for producing polyimide film
WO2019198709A1 (ja) * 2018-04-10 2019-10-17 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
KR20220075327A (ko) 2019-09-30 2022-06-08 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리이미드 수지 조성물, 폴리이미드 바니시 및 폴리이미드 필름
WO2021193568A1 (ja) * 2020-03-27 2021-09-30 三菱瓦斯化学株式会社 ポリイミドフィルム及び積層体
CN115348987A (zh) * 2020-03-27 2022-11-15 三菱瓦斯化学株式会社 聚酰亚胺薄膜和层叠体
WO2022091814A1 (ja) * 2020-10-26 2022-05-05 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム

Also Published As

Publication number Publication date
JP6996609B2 (ja) 2022-01-17
TW201920371A (zh) 2019-06-01
CN111133033B (zh) 2022-06-28
KR20200052308A (ko) 2020-05-14
TWI784056B (zh) 2022-11-21
JP2021059731A (ja) 2021-04-15
CN111133033A (zh) 2020-05-08
JPWO2019065523A1 (ja) 2020-04-30

Similar Documents

Publication Publication Date Title
JP6996609B2 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP7302595B2 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP7205491B2 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP7424284B2 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP7215428B2 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP7463964B2 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2020138360A1 (ja) イミド-アミド酸共重合体及びその製造方法、ワニス、並びにポリイミドフィルム
WO2019188306A1 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2019151336A1 (ja) ポリイミド樹脂組成物及びポリイミドフィルム
WO2020110948A1 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2020110947A1 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2021100727A1 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2021132196A1 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP7255489B2 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP7371621B2 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2022019226A1 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2021230199A1 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2021177145A1 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2022091814A1 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2022091813A1 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2021153379A1 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863048

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019545072

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207008744

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863048

Country of ref document: EP

Kind code of ref document: A1