WO2022133722A1 - 聚酰亚胺材料及其制备方法和应用 - Google Patents

聚酰亚胺材料及其制备方法和应用 Download PDF

Info

Publication number
WO2022133722A1
WO2022133722A1 PCT/CN2020/138283 CN2020138283W WO2022133722A1 WO 2022133722 A1 WO2022133722 A1 WO 2022133722A1 CN 2020138283 W CN2020138283 W CN 2020138283W WO 2022133722 A1 WO2022133722 A1 WO 2022133722A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide material
dianhydride
polyimide
material according
spiro
Prior art date
Application number
PCT/CN2020/138283
Other languages
English (en)
French (fr)
Inventor
金亚东
李智文
周玉波
刘洋
朱正平
Original Assignee
宁波长阳科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波长阳科技股份有限公司 filed Critical 宁波长阳科技股份有限公司
Priority to PCT/CN2020/138283 priority Critical patent/WO2022133722A1/zh
Publication of WO2022133722A1 publication Critical patent/WO2022133722A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to the technical field of materials, in particular, to a polyimide material and a preparation method and application thereof.
  • PEN polyethylene naphthalate
  • COP poly(cycloolefin)
  • Polyimide is a polymer containing an imide ring (-CO-N-CO) repeating unit structure on the main chain. According to chemical structure, it is usually divided into three types: aliphatic, aromatic and semi-aromatic. Its product forms mainly include polyimide films, plastics, fibers and adhesives. Due to its excellent high temperature resistance and high insulation, polyimide is widely used in aerospace, microelectronics, liquid crystal and other fields. However, traditional polyimide materials also have defects such as high retardation and poor thermal stability, which limit their application in the display field.
  • a polyimide material is provided, wherein the polyimide material has a structure represented by formula (I):
  • R is selected from the group remaining after the bulky diamine of relative molecular mass>260 or the aromatic diamine of benzene ring quantity>2 to remove the terminal amino group;
  • Ar is selected from the group remaining after aliphatic dianhydride removes the terminal oxygen group or the group remaining after the aromatic dianhydride removes the terminal oxygen group;
  • n and n are each independently selected from a natural number of 100 to 300.
  • R in formula (I) is selected from one of the groups of the structures shown in formula 1 to formula 13:
  • Ar in the formula (I) is selected from one of the groups of the structures represented by the formulas 14 to 29:
  • the present invention also provides a preparation method of the above-mentioned polyimide material, which comprises the following steps:
  • norbornane-2-spiro-2'-cyclopentanone-5'-spiro-2'-norbornan-5,5',6,6'-tetracarboxylic dianhydride The weight percentage in the mixed dianhydride is 20% to 95%; and/or
  • the capping agent is selected from at least one of maleic anhydride, phenylacetylene phthalic anhydride, norbornene dianhydride and ethynyl dianhydride.
  • the solvent is selected from N,N-dimethylformamide, N,N-dimethylacetamide, ⁇ -butyrolactone, propylene glycol methyl ether acetate, sulfolane, m-cresol, At least one of methyl sulfoxide, N-methylpyrrolidone and diphenyl sulfone.
  • the method of imidization in step (2) is at least one of thermal imidization and chemical imidization.
  • the heating temperature of the imidization in step (2) is 180° C. ⁇ 380° C., and the heating time is 5 min ⁇ 60 min.
  • it also includes the step of adding a catalyst and a dehydrating agent to the polyamic acid solution, and the catalyst is carbonate, bicarbonate, hydroxide, organic base, alkali metal salt of alcohol, metal hydrogenation At least one of compound, pyridine, isoquinoline, methylpiperidine and triethylamine, and the dehydrating agent is at least one of acetic anhydride and trifluoroacetic anhydride.
  • the step of reheating the material obtained by the imidization treatment is also included, and the reheating temperature is 300° C. ⁇ 380° C. and the time is 0.5 min ⁇ 3 min.
  • a capping agent that can be cross-linked at high temperature is introduced, thereby enhancing the entanglement between molecular chains, thereby improving the solvent resistance of polyimide materials, and reducing Its coefficient of thermal expansion (CTE) gives it good thermal stability.
  • CTE Its coefficient of thermal expansion
  • the mutual coordination of each monomer makes the final polyimide film have excellent solvent resistance, thermal stability, high light transmittance and low retardation.
  • the prepared polyimide material also has excellent properties such as transparency, high glass transition temperature (Tg) and low yellowness index.
  • R is selected from bulky diamine with relative molecular mass>260 or aromatic diamine with benzene ring number>2, the remaining group after removing the terminal amino group;
  • Ar is selected from the group remaining after aliphatic dianhydride removes the terminal oxygen group or the group remaining after the aromatic dianhydride removes the terminal oxygen group;
  • n and n are each independently selected from a natural number of 100 to 300.
  • the bulky diamine with relative molecular mass>260 or the aromatic diamine with benzene ring number>2 is selected from 1,3-bis(4-aminophenoxy)benzene (TPE-R ), 1,3-bis(3-aminophenoxy)benzene (1,3,3-APB), 1,4-bis(4-aminophenoxy)benzene (TPE-Q), 4,4' -Bis(4-aminophenoxy)biphenyl (BAPB), 4,4'-bis(3-aminophenoxy)biphenyl (m-BAPB), 5(6)-1-(4-aminobenzene base)-1,3,3-trimethylindane (PIDA), 9,9-bis(4-aminophenyl)fluorene (BAFL), 9,9-bis(3-fluoro-4-aminophenyl) ) Fluorene (FFDA), 2,2'-bis(4-aminophenoxyphen
  • the present invention also provides a preparation method of the above-mentioned polyimide material, which comprises the following steps:
  • norbornane-2-spiro-2'-cyclopentanone-5'-spiro-2'-norbornan-5,5',6,6'-tetracarboxylic dianhydride The weight percentage in the mixed dianhydride is 20% to 95%; and/or
  • the weight percentage of 4,4'-diamino-2,2'-bistrifluoromethyl biphenyl in the mixed diamine is 20% to 95%.
  • the weight percentage of 4,4'-diamino-2,2'-bistrifluoromethyl biphenyl in the mixed diamine is 30% to 50%.
  • the capping agent is selected from at least one of maleic anhydride (MAH), phenylacetylene phthalic anhydride (PEPA), norbornene dianhydride (NA) and ethynyl dianhydride (EPA).
  • MAH maleic anhydride
  • PEPA phenylacetylene phthalic anhydride
  • NA norbornene dianhydride
  • EPA ethynyl dianhydride
  • the weight percentage content of the added end-capping agent is 0.01% to 2%. In a preferred embodiment, the weight percentage of the added end-capping agent is 0.2%.
  • the solvent is selected from N,N-dimethylformamide, N,N-dimethylacetamide, ⁇ -butyrolactone, propylene glycol methyl ether acetate, sulfolane, m-cresol, At least one of methyl sulfoxide, N-methylpyrrolidone and diphenyl sulfone.
  • the solvent is selected from N,N-dimethylformamide.
  • the heating temperature of the imidization in step (2) is 180°C to 380°C, and the heating time is 5 min to 60 min. In a preferred embodiment, the heating temperature for imidization is 300° C., and the heating time is 20 min.
  • the present invention also includes the step of adding a catalyst and a dehydrating agent to the polyamic acid solution, and the catalyst is carbonate, bicarbonate, hydroxide, organic base, alkali metal salt of alcohol, metal hydrogenation At least one of compound, pyridine, isoquinoline, methylpiperidine and triethylamine, and the dehydrating agent is at least one of acetic anhydride and trifluoroacetic anhydride.
  • the catalyst is pyridine
  • the dehydrating agent is acetic anhydride.
  • the present invention also includes the step of reheating the material obtained by the imidization treatment.
  • the reheating temperature is 360° C. and the time is 1 min.
  • Thermal imidization At room temperature, take 25 g of the above polyamic acid solution and degassing it in a vacuum drying oven for 3 hours, coat the defoamed solution on a glass plate into a thin film, and then put it in a nitrogen oven and heat up to 80°C Heating for 30 minutes, then heating to 180°C for 10 minutes, then heating to 260°C for 10 minutes, then heating to 300°C for 5 minutes, and finally heating to 320°C for 5 minutes. The nitrogen oven was turned off, the film was taken out and cooled naturally, and the film was removed from the glass plate by soaking in hot water to obtain a polyimide film. And perform performance test, as shown in Table 1.
  • Chemical imidization take 25g of the above-mentioned polyamic acid solution, add 2.04g (20mmol) of acetic anhydride and 0.79g (10mmol) of pyridine, and stir for 12h in an ice-water bath, then add 120g of N,N-dimethylacetamide Dilute. Slowly pour the diluted solution into 1L of methanol with high-speed stirring to obtain a white flocculent resin, filter it with a sand core funnel with a pore size of 30 ⁇ m, and place it in a blast drying oven at 100°C for 5 hours to obtain 5g of white flocculent resin. resin.
  • Thermal imidization At room temperature, take 25 g of the above polyamic acid solution and degassing it in a vacuum drying oven for 3 hours, coat the defoamed solution on a glass plate into a thin film, and then put it in a nitrogen oven and heat up to 80°C Heated for 30 min at low temperature, then heated to 150 °C for 10 min, then heated to 250 °C for 10 min, then heated to 280 °C for 5 min, and finally heated to 300 °C for 5 min.
  • the nitrogen oven was turned off, the film was taken out and cooled naturally, and the film was removed from the glass plate by soaking in hot water to prepare a polyimide film. And perform performance test, as shown in Table 1.
  • Thermal imidization At room temperature, take 25 g of the above polyamic acid solution and degassing it in a vacuum drying oven for 5 hours, coat the defoamed solution on a glass plate into a thin film, and then put it in a nitrogen oven and heat up to 80°C Heated for 40 min at low temperature, then heated to 160 °C for 10 min, then heated to 220 °C for 10 min, then heated to 280 °C for 5 min, then heated to 300 °C for 5 min, and finally heated to 380 °C for 5 min.
  • the nitrogen oven was turned off, the film was taken out and cooled naturally, and the film was removed from the glass plate by soaking in hot water to prepare a polyimide film. And perform performance test, as shown in Table 1.
  • Thermal imidization At room temperature, take 25 g of the above polyamic acid solution and degassing it in a vacuum drying oven for 3 hours, coat the defoamed solution on a glass plate into a thin film, and then put it in a nitrogen oven and heat up to 80°C Heated for 40 min at low temperature, then heated to 120 °C for 10 min, then heated to 220 °C for 10 min, then heated to 280 °C for 5 min, then heated to 300 °C for 5 min, and finally heated to 340 °C for 5 min.
  • the nitrogen oven was turned off, the film was taken out and cooled naturally, and the film was removed from the glass plate by soaking in hot water to prepare a polyimide film. And perform performance test, as shown in Table 1.
  • Thermal imidization At room temperature, take 25 g of the above polyamic acid solution and degassing it in a vacuum drying oven for 3 hours, coat the defoamed solution on a glass plate into a thin film, and then put it in a nitrogen oven and heat up to 80°C Heating for 30 minutes, then heating to 180°C for 10 minutes, then heating to 260°C for 10 minutes, then heating to 300°C for 5 minutes, and finally heating to 320°C for 5 minutes. The nitrogen oven was turned off, the film was taken out and cooled naturally, and the film was removed from the glass plate by soaking in hot water to obtain a polyimide film. And perform performance test, as shown in Table 1.
  • Thermal imidization At room temperature, take 25 g of the above polyamic acid solution and degassing it in a vacuum drying oven for 3 hours, coat the defoamed solution on a glass plate into a thin film, and then put it in a nitrogen oven and heat up to 80°C Heated for 40 min at low temperature, then heated to 120 °C for 10 min, then heated to 220 °C for 10 min, then heated to 280 °C for 5 min, then heated to 300 °C for 5 min, and finally heated to 340 °C for 5 min.
  • the nitrogen oven was turned off, the film was taken out and cooled naturally, and the film was removed from the glass plate by soaking in hot water to prepare a polyimide film. And perform performance test, as shown in Table 1.
  • Thermal imidization At room temperature, take 25 g of the above polyamic acid solution and degassing it in a vacuum drying oven for 3 hours, coat the defoamed solution on a glass plate into a thin film, and then put it in a nitrogen oven and heat up to 80°C Heated for 40 min at low temperature, then heated to 120 °C for 10 min, then heated to 220 °C for 10 min, then heated to 280 °C for 5 min, then heated to 300 °C for 5 min, and finally heated to 320 °C for 5 min.
  • the nitrogen oven was turned off, the film was taken out and cooled naturally, and the film was removed from the glass plate by soaking in hot water to prepare a polyimide film. And perform performance test, as shown in Table 1.
  • Thermal imidization At room temperature, take 25 g of the above polyamic acid solution and degassing it in a vacuum drying oven for 3 hours, coat the defoamed solution on a glass plate into a thin film, and then put it in a nitrogen oven and heat up to 80°C Heated for 40 min at low temperature, then heated to 120 °C for 10 min, then heated to 220 °C for 10 min, then heated to 280 °C for 5 min, then heated to 300 °C for 5 min, and finally heated to 340 °C for 5 min.
  • the nitrogen oven was turned off, the film was taken out and cooled naturally, and the film was removed from the glass plate by soaking in hot water to prepare a polyimide film. And perform performance test, as shown in Table 1.
  • the phase difference of the polyimide film was tested using the phase difference measuring device of Japan's Otsuka Electronics model RETS-100X; the glass transition temperature (Tg) was tested using the differential scanning calorimeter of the American TA company model Q20.
  • the range is: 50°C-400°C, the heating rate is 3K/min; the coefficient of thermal expansion (CTE) is measured using a thermomechanical analyzer of the American TA company model TMA 450EM, the temperature range is 25°C ⁇ 350°C, the heating rate is 5K/min, and the load 50mN, marked with the CTE value of 100 °C ⁇ 200 °C; use the apparent viscosity meter of Brookfield model DV2T to test the apparent viscosity of polyamic acid and polyimide solution at 20 °C; use UV-visible light spectrometer ( Shimadzu UV2450) measured the light transmittance and yellowness index of polyimide films at 400nm to 750nm; polyimide films of equal mass and
  • the experimental results show that by adjusting the structure of the polyimide material, the phase difference can be reduced and the solvent resistance can be improved, and the selection of the appropriate end-capping agent can further reduce the thermal expansion coefficient of the polyimide material and improve its thermal stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本发明涉及一种聚酰亚胺材料及其制备方法和应用。本发明制备的聚酰亚胺材料具有式(I)所示结构,其中,R选自相对分子质量>260的大体积二胺或苯环数量>2的芳香族二胺去除端氨基后剩余的基团;Ar选自脂肪族二酐去除端氧基后剩余的基团或芳香族二酐去除端氧基后剩余的基团;m、n各自独立地选自100~300的自然数。本发明制备的聚酰亚胺材料具有优异的耐溶剂性、热稳定性和高的玻璃化转变温度、透光率及低的位相差和热膨胀系数。

Description

聚酰亚胺材料及其制备方法和应用 技术领域
本发明涉及材料技术领域,具体而言,涉及一种聚酰亚胺材料及其制备方法和应用。
背景技术
在显示器领域,柔性和可卷式的液晶显示器(LCD)和有机发光二极管显示器(OLED)已经成为技术发展的方向。目前制备OLED和LCD显示基板和盖板最常用的材料是玻璃,但是由于玻璃存在厚、重、硬且容易碎的问题而不能满足新一代柔性显示屏的需求。与玻璃相比,具有质轻、薄等特点的柔性聚合物材料表现出内在的优势,这使聚合物材料能够替代玻璃用于柔性显示领域。例如,聚萘二甲酸乙二醇酯(PEN)聚合物材料以及聚(环烯烃)(COP)膜均有应用于显示器领域的前景,但由于其具有热稳定性差、高的位相差、不耐弯折等缺陷而不能广泛应用于柔性显示器领域。因此,提供适合于显示器领域的聚合物材料具有重要意义。
聚酰亚胺是主链上含有酰亚胺环(-CO-N-CO)重复单元结构的聚合物。按化学结构通常将其分为脂肪族、芳香族和半芳香族三种类型。其产品形式主要有聚酰亚胺薄膜、塑料、纤维和胶粘剂等。由于聚酰亚胺具有优异的耐高温、高绝缘性而广泛应用于航空航天、微电子、液晶等领域。然而,传统的聚酰亚胺材料同样具有位相差高、热稳定性差等缺陷而限制了其在显示器领域的应用。
发明内容
根据本申请的各种实施例,提供一种聚酰亚胺材料,其中聚酰亚胺材料具有式(I)所示结构:
Figure PCTCN2020138283-appb-000001
其中,R选自相对分子质量>260的大体积二胺或苯环数量>2的芳香族二胺去除端氨基 后剩余的基团;
Ar选自脂肪族二酐去除端氧基后剩余的基团或芳香族二酐去除端氧基后剩余的基团;
m、n各自独立地选自100~300的自然数。
在其中一个具体的实施例中,式(I)中R选自式1~式13所示结构的基团中的一种:
Figure PCTCN2020138283-appb-000002
在其中一个具体的实施例中,式(I)中Ar选自式14~式29所示结构的基团中的一种:
Figure PCTCN2020138283-appb-000003
Figure PCTCN2020138283-appb-000004
本发明另一方面,还提供一种上述聚酰亚胺材料的制备方法,其包括以下步骤:
(1)将降冰片烷-2-螺-2'-环戊酮-5'-螺-2'-降冰片-5,5',6,6'-四羧酸二酐与其他二酐组成的混合二酐、4,4'-二氨基-2,2'-双三氟甲基联苯与其他二胺组成的混合二胺及封端剂混于溶剂中,制备聚酰胺酸溶液,所述降冰片烷-2-螺-2'-环戊酮-5'-螺-2'-降冰片-5,5',6,6'-四羧酸二酐的结构式为
Figure PCTCN2020138283-appb-000005
所述4,4'-二氨基-2,2'-双三氟甲基联苯的结构式为
Figure PCTCN2020138283-appb-000006
所述其他二酐为结构中含有Ar基团的二酐,所述其他二胺为结构中含有R基团的二胺;及
(2)对所述聚酰胺酸溶液进行亚胺化处理。
在其中一个具体的实施例中,降冰片烷-2-螺-2'-环戊酮-5'-螺-2'-降冰片-5,5',6,6'-四羧酸二酐在混合二酐中的重量百分含量为20%~95%;和/或
4,4'-二氨基-2,2'-双三氟甲基联苯在混合二胺中的重量百分含量为20%~95%。
在其中一个具体的实施例中,封端剂选自马来酸酐、苯乙炔苯酐、降冰片烯二酸酐及乙炔基二酸酐中的至少一种。
在其中一个具体的实施例中,溶剂选自N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、γ-丁内酯、丙二醇甲醚醋酸酯、环丁砜、间甲酚、甲基亚砜、N-甲基吡咯烷酮及二苯砜中的至少一种。
在其中一个具体的实施例中,步骤(2)中亚胺化的方法为热亚胺化及化学亚胺化中的至少一种。
在其中一个具体的实施例中,步骤(2)中亚胺化的加热温度为180℃~380℃,加热时间为5min~60min。
在其中一个具体的实施例中,还包括在聚酰胺酸溶液中加入催化剂和脱水剂的步骤,催化剂为碳酸盐、碳酸氢盐、氢氧化物、有机碱、醇的碱金属盐、金属氢化物、吡啶、异喹啉、甲基哌啶及三乙胺中的至少一种,脱水剂为乙酸酐及三氟乙酸酐中的至少一种。
在其中一个具体的实施例中,还包括对亚胺化处理得到的材料进行再加热的步骤,再加热的温度为300℃~380℃,时间为0.5min~3min。
本发明再一方面,进一步提供一种上述聚酰亚胺材料在作为显示器基板或盖板,或在制作触控屏中的应用。
本发明通过在聚酰亚胺分子结构中引入具有刚性脂环结构的降冰片烷-2-螺-2'-环戊酮-5'-螺-2'-降冰片-5,5',6,6'-四羧酸二酐及苯环数量较多的二胺,破坏了聚酰亚胺分子结构的有序性,降低了聚酰亚胺材料的位相差,且有利于提高其热稳定性和光透过率。
进一步在制备聚酰亚胺材料的过程中引入能够在高温下发生交联的封端剂,从而增强了分子链间的缠结作用,进而提高了聚酰亚胺材料的耐溶剂性,且降低其热膨胀系数(CTE),使其具有良好的热稳定性。各个单体的相互配合使得最终制得的聚酰亚胺薄膜具有优异的耐溶剂性、热稳定性,高的透光率和低位相差。而且制备的聚酰亚胺材料还具有透明、高的玻璃化转变温度(Tg)及低的黄度指数等优异性能。
具体实施方式
为了便于理解本发明,下面将对本发明进行更全面的描述。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明一方面,提供一种聚酰亚胺材料,其中聚酰亚胺材料具有式(I)所示结构:
Figure PCTCN2020138283-appb-000007
其中,R选自相对分子质量>260的大体积二胺或苯环数量>2的芳香族二胺去除端氨基后剩余的基团;
Ar选自脂肪族二酐去除端氧基后剩余的基团或芳香族二酐去除端氧基后剩余的基团;
m、n各自独立地选自100~300的自然数。
本发明通过研究发现,在聚酰亚胺聚合物结构中引入刚性脂环结构的二酸酐和苯环数量较多的二胺破坏了聚酰亚胺聚合物分子结构有序性,从而有效提高了聚酰亚胺薄膜的光透过率及热稳定性,降低了位相差。
在本发明中,作为进一步说明,相对分子质量>260的大体积二胺或苯环数量>2的芳香族二胺选自1,3-双(4-氨基苯氧基)苯(TPE-R)、1,3-双(3-氨基苯氧基)苯(1,3,3-APB)、1,4-双(4-氨基苯氧基)苯(TPE-Q)、4,4'-双(4-氨基苯氧基)联苯(BAPB)、4,4'-双(3-氨基苯氧基)联苯(m-BAPB)、5(6)-1-(4-氨基苯基)-1,3,3-三甲基茚满(PIDA)、9,9-双(4-氨基苯基)芴(BAFL)、9,9-双(3-氟-4-氨基苯基)芴(FFDA)、2,2'-双(4-氨基苯氧基苯基)丙烷(BAPP)、2,2-双[4-(4-氨基苯氧基)苯基]六氟丙烷(HF-BAPP)、4,4'-双(3-氨基苯氧基)二苯基砜(m-BAPS)、4,4'-双(4-氨基苯氧基)二苯基砜(BAPS)及4,4'-双(3-六氟丙基-4-氨基苯氧基)二苯基砜(6F-BAPS)中的至少一种。具体地,各物质的结构式如下:
Figure PCTCN2020138283-appb-000008
Figure PCTCN2020138283-appb-000009
在本发明中,作为进一步说明,脂肪族二酐或芳香族二酐选自3,3,4',4'-联苯四甲酸二酐(BPDA)、2,3,3',4'-联苯四甲酸二酐(a-BPDA)、4,4’-六氟异丙基邻苯二甲酸酐(6FDA)、4,4’-氧联六氟异丙基邻苯二甲酸酐(6F-CDA)、3,3,4',4'-二苯基砜四甲酸二酸酐(DSDA)、3,3,4',4'-二苯基醚四甲酸二酸酐(ODPA)、2,3,3',4'-二苯基醚四甲酸二酸酐(a-ODPA)、2,2-双[4-(3,4-二羧基苯氧基)苯基]丙二酐(BPADA)、2,2-双[4-(3,4-二羧基苯氧基)苯基]六氟二酐(6F-BPADA)、氢化均苯四甲酸二酐(HPMDA)、环丁烷四甲酸二酐(CBDA)、2,2',3,3'-三苯二醚二酐(3,3'-HQDPA)、2,3',3,4'-三苯二醚二酐(3,4'-HQDPA)、3,3',4,4'-三苯二醚二酐(4,4'-HQDPA)、1,2,3,4-丁烷四羧酸二酐(BDA)及4-(2,5-二氧四氢呋喃)-1,2,3,4-四氢萘-1,2-二甲酸酐(TDA)中的至少一种。具体地,各物质的结构式如下:
Figure PCTCN2020138283-appb-000010
Figure PCTCN2020138283-appb-000011
本发明另一方面,还提供了一种上述聚酰亚胺材料的制备方法,其包括以下步骤:
(1)将降冰片烷-2-螺-2'-环戊酮-5'-螺-2'-降冰片-5,5',6,6'-四羧酸二酐与其他二酐组成的混合二酐、4,4'-二氨基-2,2'-双三氟甲基联苯与其他二胺组成的混合二胺及封端剂混于溶剂中,制备聚酰胺酸溶液所述降冰片烷-2-螺-2'-环戊酮-5'-螺-2'-降冰片-5,5',6,6'-四羧酸二酐的结构式为
Figure PCTCN2020138283-appb-000012
所述4,4'-二氨基-2,2'-双三氟甲基联苯的结构式 为
Figure PCTCN2020138283-appb-000013
所述其他二酐为结构中含有Ar基团的二酐,所述其他二胺为结构中含有R基团的二胺;及
(2)对所述聚酰胺酸溶液进行亚胺化处理。
本发明在制备聚酰亚胺薄膜的过程中,通过引入封端剂增强了分子链间的缠结作用,从而降低了其热膨胀系数(CTE),提高了聚酰亚胺薄膜的热稳定性及耐溶剂性。各个单体的相互配合使得最终制得的聚酰亚胺薄膜具有优异的耐溶剂性、热稳定性,高的玻璃化转变温度(Tg)及透光率,低位相差。
在本发明中,作为进一步说明,降冰片烷-2-螺-2'-环戊酮-5'-螺-2'-降冰片-5,5',6,6'-四羧酸二酐在混合二酐中的重量百分含量为20%~95%;和/或
4,4'-二氨基-2,2'-双三氟甲基联苯在混合二胺中的重量百分含量为20%~95%。
在本发明中,作为进一步说明,降冰片烷-2-螺-2'-环戊酮-5'-螺-2'-降冰片-5,5',6,6'-四羧酸二酐在混合二酐中的重量百分含量为50%~70%;和/或
4,4'-二氨基-2,2'-双三氟甲基联苯在混合二胺中的重量百分含量为30%~50%。
在本发明中,作为进一步说明,封端剂选自马来酸酐(MAH)、苯乙炔苯酐(PEPA)、降冰片烯二酸酐(NA)及乙炔基二酸酐(EPA)中的至少一种。具体地,各物质的结构式如下:
Figure PCTCN2020138283-appb-000014
在本发明中,作为进一步说明,加入封端剂的重量百分含量为0.01%~2%。在一个优选的具体实施方式中,加入封端剂的重量百分含量为0.2%。
在本发明中,作为进一步说明,溶剂选自N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、γ-丁内酯、丙二醇甲醚醋酸酯、环丁砜、间甲酚、甲基亚砜、N-甲基吡咯烷酮及二苯砜中的至少一种。在一个优选的具体实施方式中,溶剂选自N,N-二甲基甲酰胺。
在本发明中,作为进一步说明,步骤(2)中亚胺化的方法为热亚胺化及化学亚胺 化中的至少一种。
在本发明中,作为进一步说明,步骤(2)中亚胺化的加热温度为180℃~380℃,加热时间为5min~60min。在一个优选的具体实施方式中,亚胺化的加热温度为300℃,加热时间为20min。
在本发明中,作为进一步说明,还包括在聚酰胺酸溶液中加入催化剂和脱水剂的步骤,催化剂为碳酸盐、碳酸氢盐、氢氧化物、有机碱、醇的碱金属盐、金属氢化物、吡啶、异喹啉、甲基哌啶及三乙胺中的至少一种,脱水剂为乙酸酐及三氟乙酸酐中的至少一种。在一个优选的具体实施方式中,催化剂为吡啶,脱水剂为乙酸酐。
在本发明中,作为进一步说明,还包括对亚胺化处理得到的材料进行再加热的步骤,再加热的温度为300℃~380℃,时间为0.5min~3min。在一个优选的具体实施方式中,再加热的温度为360℃,时间为1min。
本发明再一方面,进一步提供一种上述聚酰亚胺材料在作为显示器基板或盖板,或在制作触控屏中的应用。
以下结合具体实施例和对比例对本发明的聚酰亚胺薄膜及其制备方法和应用作进一步详细的说明。
实施例1聚酰亚胺材料的制备
将60g N,N-二甲基乙酰胺、3.2023g(10mmol)4,4'-二氨基-2,2'-双三氟甲基联苯以及4.3249g(10mmol)4,4'-双(3-氨基苯氧基)二苯基砜加入配备有氮气保护和机械搅拌的250mL的三颈烧瓶中,并在30℃条件下搅拌至完全溶解,制备二胺溶液。然后在二胺溶液中加入5.3813g(14mmol)降冰片烷-2-螺-2'-环戊酮-5'-螺-2'-降冰片-5,5',6,6'-四羧酸二酐、1.7506g(5.95mmol)2,3,3',4'-联苯四甲酸二酐及0.1721g(0.1mmol)乙炔基二酸酐,并在冰水浴的条件下搅拌20h,制得表观粘度为3.5×10 4cPs,固含量为20%的聚酰胺酸溶液。
热亚胺化:在室温下,取25g上述聚酰胺酸溶液在真空干燥箱中脱泡3h,将脱泡后的溶液在玻璃板上涂布成薄膜,随后放入氮气烘箱中升温至80℃加热30min,随后升温至180℃加热10min,然后升温至260℃加热10min,随后升温至300℃加热5min,最后升温至320℃加热5min。关闭氮气烘箱,取出薄膜自然冷却,在热水中浸泡将薄膜从玻璃板上取下来,制得聚酰亚胺薄膜。并进行性能测试,如表1所示。
化学亚胺化:取25g上述聚酰胺酸溶液加入2.04g(20mmol)乙酸酐及0.79g(10mmol)吡啶,并在冰水浴的条件下搅拌8h,然后加入120g N,N-二甲基乙酰胺进行稀释。将稀释后的溶液缓慢倒入高速搅拌的1L甲醇中,得到白色絮状树脂,并用孔径为30μm 的砂芯漏斗过滤后,放置于100℃的鼓风干燥箱中干燥5h,得到5g白色絮状树脂。然后将其溶解在20g N,N-二甲基乙酰胺中,得到粘度为3.6×10 4cPs,固含量为20%的聚酰亚胺溶液。在室温下,将上述聚酰亚胺溶液在真空干燥箱中脱泡3h,将脱泡后的溶液在玻璃板上涂布成薄膜,随后放入氮气烘箱中升温至80℃加热30min,随后升温至150℃加热10min,然后升温至200℃加热10min,随后升温至300℃加热3min,最后升温至340℃加热3min。关闭氮气烘箱,取出薄膜自然冷却,在热水中浸泡将薄膜从玻璃板上取下来,制得聚酰亚胺薄膜。并进行性能测试,如表1所示。
实施例2聚酰亚胺材料的制备
将66g N,N-二甲基乙酰胺、1.9214g(6mmol)4,4'-二氨基-2,2'-双三氟甲基联苯以及7.2583g(14mmol)2,2-双[4-(4-氨基苯氧基)苯基]六氟丙烷加入配备氮气保护和机械搅拌的250mL的三颈烧瓶中,并在30℃条件下搅拌至完全溶解,制备二胺溶液。然后在二胺溶液中加入5.3813g(10mmol)降冰片烷-2-螺-2'-环戊酮-5'-螺-2'-降冰片-5,5',6,6'-四羧酸二酐、1.9415g(9.9mmol)环丁烷四甲酸二酐及0.1961g(0.2mmol)马来酸酐,并在冰水浴的条件下搅拌20h,制得表观粘度为2.3×10 4cPs,固含量为20%的聚酰胺酸溶液。
热亚胺化:在室温下,取25g上述聚酰胺酸溶液在真空干燥箱中脱泡3h,将脱泡后的溶液在玻璃板上涂布成薄膜,随后放入氮气烘箱中升温至80℃下加热30min,随后升温至150℃加热10min,然后升温至250℃加热10min,随后升温至300℃加热5min,最后升温至340℃加热5min。关闭氮气烘箱,取出薄膜自然冷却,在热水中浸泡将薄膜从玻璃板上取下来,制备聚酰亚胺薄膜。并进行性能测试,如表1所示。
化学亚胺化:取25g上述聚酰胺酸溶液加入2.04g(20mmol)乙酸酐及0.79g(10mmol)吡啶,并在冰水浴的条件下搅拌12h,然后加入120g N,N-二甲基乙酰胺进行稀释。将稀释后的溶液缓慢倒入高速搅拌的1L甲醇中,得到白色絮状树脂,并用孔径为30μm的砂芯漏斗过滤后,放置于100℃的鼓风干燥箱中干燥5h,得到5g白色絮状树脂。然后将其溶解在20g N,N-二甲基乙酰胺中,得到粘度为2.6×10 4cPs,固含量为20%的聚酰亚胺溶液。在室温下,将上述聚酰亚胺溶液在真空干燥箱中脱泡2h,将脱泡后的溶液在玻璃板上涂布成薄膜,随后放入氮气烘箱中升温至80℃加热30min,随后升温至120℃加热10min,然后升温至180℃加热10min,随后升温至250℃加热3min,最后升温至340℃加热3min。关闭氮气烘箱,取出薄膜自然冷却,在热水中浸泡将薄膜从玻璃板上取下来,制得聚酰亚胺薄膜。并进行性能测试,如表1所示。
实施例3聚酰亚胺材料的制备
将58g N,N-二甲基乙酰胺、3.2023g(10mmol)4,4'-二氨基-2,2'-双三氟甲基联苯 以及3.4844g(10mmol)9,9-双(4-氨基苯基)芴加入配备有氮气保护和机械搅拌的250mL三颈烧瓶中,并在30℃条件下搅拌至完全溶解,制备二胺溶液。然后在二胺溶液中加入6.9189g(18mmol)降冰片烷-2-螺-2'-环戊酮-5'-螺-2'-降冰片-5,5',6,6'-四羧酸二酐、0.8663g(1.95mmol)4,4'-六氟异丙基邻苯二甲酸酐及0.1642g(0.1mmol)降冰片烯二酸酐,并在冰水浴的条件下搅拌30h,制得表观粘度为4.2×10 4cPs,固含量为20%的聚酰胺酸溶液。
热亚胺化:在室温下,取25g上述聚酰胺酸溶液在真空干燥箱中脱泡3h,将脱泡后的溶液在玻璃板上涂布成薄膜,随后放入氮气烘箱中升温至80℃下加热30min,随后升温至150℃加热10min,然后升温至250℃加热10min,随后升温至280℃加热5min,最后升温至300℃加热5min。关闭氮气烘箱,取出薄膜自然冷却,在热水中浸泡将薄膜从玻璃板上取下来,制备聚酰亚胺薄膜。并进行性能测试,如表1所示。
化学亚胺化:取25g上述聚酰胺酸溶液加入2.04g(20mmol)乙酸酐及0.79g(10mmol)吡啶,并在冰水浴的条件下搅拌12h,然后加入140g N,N-二甲基乙酰胺进行稀释。将稀释后的溶液缓慢倒入高速搅拌的1L甲醇中,得到白色絮状树脂,并用孔径为30μm的砂芯漏斗过滤后,放置于100℃的鼓风干燥箱中干燥5h,得到6g白色絮状树脂。然后将其溶解在24g N,N-二甲基乙酰胺中,得到粘度为4.6×10 4cPs,固含量为20%的聚酰亚胺溶液。在室温下,将上述聚酰亚胺溶液在真空干燥箱中脱泡5h,将脱泡后的溶液在玻璃板上涂布成薄膜,随后放入氮气烘箱中升温至80℃加热30min,随后升温至120℃加热10min,然后升温至180℃加热10min,随后升温至250℃加热3min,最后升温至300℃加热5min。关闭氮气烘箱,取出薄膜自然冷却,在热水中浸泡将薄膜从玻璃板上取下来,制得聚酰亚胺薄膜。并进行性能测试,如表1所示。
实施例4聚酰亚胺材料的制备
将54g N,N-二甲基乙酰胺、5.1237g(16mmol)4,4'-二氨基-2,2'-双三氟甲基联苯以及1.7133g(4mmol)1,4-双(4-氨基-2-三氟甲基苯氧基)苯加入配备有氮气保护和机械搅拌的250mL三颈烧瓶中,并在30℃条件下搅拌至完全溶解,制备二胺溶液。然后在二胺溶液中加入1.5375g(4mmol)降冰片烷-2-螺-2'-环戊酮-5'-螺-2'-降冰片-5,5',6,6'-四羧酸二酐、4.9018g(15.8mmol)2,3,3',4'-二苯基醚四甲酸二酸酐及0.0993g(0.4mmol)苯乙炔苯酐,并在冰水浴的条件下搅拌24h,制得表观粘度为5.2×10 4cPs,固含量为20%的聚酰胺酸溶液。
热亚胺化:在室温下,取25g上述聚酰胺酸溶液在真空干燥箱中脱泡5h,将脱泡后的溶液在玻璃板上涂布成薄膜,随后放入氮气烘箱中升温至80℃下加热40min,随后升温至160℃加热10min,然后升温至220℃加热10min,随后升温至280℃加热5min,然 后升温至300℃加热5min,最后升温至380℃加热5min。关闭氮气烘箱,取出薄膜自然冷却,在热水中浸泡将薄膜从玻璃板上取下来,制备聚酰亚胺薄膜。并进行性能测试,如表1所示。
化学亚胺化:取25g上述聚酰胺酸溶液加入2.04g(20mmol)乙酸酐及0.79g(10mmol)吡啶,并在冰水浴的条件下搅拌16h,然后加入160g N,N-二甲基乙酰胺进行稀释。将稀释后的溶液缓慢倒入高速搅拌的1.5L甲醇中,得到白色絮状树脂,并用孔径为30μm的砂芯漏斗过滤后,放置于100℃的鼓风干燥箱中干燥5h,得到6g白色絮状树脂。然后将其溶解在24g N,N-二甲基乙酰胺中,得到粘度为5.6×10 4cPs,固含量为20%的聚酰亚胺溶液。在室温下,将上述聚酰亚胺溶液在真空干燥箱中脱泡5h,将脱泡后的溶液在玻璃板上涂布成薄膜,随后放入氮气烘箱中升温至80℃加热30min,随后升温至120℃加热10min,然后升温至180℃加热10min,随后升温至250℃加热3min,然后升温至300℃加热5min,最后升温至380℃加热5min。关闭氮气烘箱,取出薄膜自然冷却,在热水中浸泡将薄膜从玻璃板上取下来,制得聚酰亚胺薄膜。并进行性能测试,如表1所示。
实施例5聚酰亚胺材料的制备
将58g N,N-二甲基乙酰胺、1.92143g(6mmol)4,4'-二氨基-2,2'-双三氟甲基联苯以及4.0926g(14mmol)1,3-双(4-氨基苯氧基)苯加入配备有氮气保护和机械搅拌的250mL三颈烧瓶中,并在30℃条件下搅拌至完全溶解,制备二胺溶液。然后在二胺溶液中加入5.3813g(14mmol)降冰片烷-2-螺-2'-环戊酮-5'-螺-2'-降冰片-5,5',6,6'-四羧酸二酐、2.3334g(5.8mmol)3,3',4,4'-三苯二醚二酐及0.0689g(0.4mmol)乙炔基二酸酐,并在冰水浴的条件下搅拌20h,制得表观粘度为2.5×10 4cPs,固含量为20%的聚酰胺酸溶液。
热亚胺化:在室温下,取25g上述聚酰胺酸溶液在真空干燥箱中脱泡3h,将脱泡后的溶液在玻璃板上涂布成薄膜,随后放入氮气烘箱中升温至80℃下加热40min,随后升温至120℃加热10min,然后升温至220℃加热10min,随后升温至280℃加热5min,然后升温至300℃加热5min,最后升温至340℃加热5min。关闭氮气烘箱,取出薄膜自然冷却,在热水中浸泡将薄膜从玻璃板上取下来,制备聚酰亚胺薄膜。并进行性能测试,如表1所示。
化学亚胺化:取25g上述聚酰胺酸溶液加入2.04g(20mmol)乙酸酐及0.79g(10mmol)吡啶,并在冰水浴的条件下搅拌8h,然后加入120g N,N-二甲基乙酰胺进行稀释。将稀释后的溶液缓慢倒入高速搅拌的1.5L甲醇中,得到白色絮状树脂,并用孔径为30μm的砂芯漏斗过滤后,放置于100℃的鼓风干燥箱中干燥5h,得到6g白色絮状树脂。然后将其溶解在24g N,N-二甲基乙酰胺中,得到粘度为2.6×10 4cPs,固含量为20%的聚酰亚胺 溶液。在室温下,将上述聚酰亚胺溶液在真空干燥箱中脱泡5h,将脱泡后的溶液在玻璃板上涂布成薄膜,随后放入氮气烘箱中升温至80℃加热30min,随后升温至120℃加热10min,然后升温至180℃加热10min,随后升温至250℃加热3min,然后升温至300℃加热5min,最后升温至340℃加热5min。关闭氮气烘箱,取出薄膜自然冷却,在热水中浸泡将薄膜从玻璃板上取下来,制得聚酰亚胺薄膜。并进行性能测试,如表1所示。
对比例1聚酰亚胺材料的制备
将60g N,N-二甲基乙酰胺、3.2023g(10mmol)4,4'-二氨基-2,2'-双三氟甲基联苯以及4.3249g(10mmol)4,4'-双(3-氨基苯氧基)二苯基砜加入配备有氮气保护和机械搅拌的250mL的三颈烧瓶中,并在30℃条件下搅拌至完全溶解,制备二胺溶液。然后在二胺溶液中加入5.3813g(14mmol)降冰片烷-2-螺-2'-环戊酮-5'-螺-2'-降冰片-5,5',6,6'-四羧酸二酐及1.7653g(6mmol)2,3,3',4'-联苯四甲酸二酐,并在冰水浴的条件下搅拌20h,制得表观粘度为3.5×10 4cPs,固含量为20%的聚酰胺酸溶液。
热亚胺化:在室温下,取25g上述聚酰胺酸溶液在真空干燥箱中脱泡3h,将脱泡后的溶液在玻璃板上涂布成薄膜,随后放入氮气烘箱中升温至80℃加热30min,随后升温至180℃加热10min,然后升温至260℃加热10min,随后升温至300℃加热5min,最后升温至320℃加热5min。关闭氮气烘箱,取出薄膜自然冷却,在热水中浸泡将薄膜从玻璃板上取下来,制得聚酰亚胺薄膜。并进行性能测试,如表1所示。
化学亚胺化:取25g上述聚酰胺酸溶液加入2.04g(20mmol)乙酸酐及0.79g(10mmol)吡啶,并在冰水浴的条件下搅拌8h,然后加入120g N,N-二甲基乙酰胺进行稀释。将稀释后的溶液缓慢倒入高速搅拌的1L甲醇中,得到白色絮状树脂,并用孔径为30μm的砂芯漏斗过滤后,放置于100℃的鼓风干燥箱中干燥5h,得到5g白色絮状树脂。然后将其溶解在20g N,N-二甲基乙酰胺中,得到粘度为3.6×10 4cPs,固含量为20%的聚酰亚胺溶液。在室温下,将上述聚酰亚胺溶液在真空干燥箱中脱泡3h,将脱泡后的溶液在玻璃板上涂布成薄膜,随后放入氮气烘箱中升温至80℃加热30min,随后升温至150℃加热10min,然后升温至200℃加热10min,最后升温至300℃加热3min。关闭氮气烘箱,取出薄膜自然冷却,在热水中浸泡将薄膜从玻璃板上取下来,制得聚酰亚胺薄膜。并进行性能测试,如表1所示。
对比例2聚酰亚胺材料的制备
将56g N,N-二甲基乙酰胺二胺溶液、6.4046g(20mmol)4,4'-二氨基-2,2'-双三氟甲基联苯加入配备有氮气保护和机械搅拌的250mL三颈烧瓶中,并在30℃条件下搅拌至完全溶解,制备二胺溶液。在二胺溶液中加入7.6876g(20mmol)降冰片烷-2-螺-2'-环戊 酮-5'-螺-2'-降冰片-5,5',6,6'-四羧酸二酐,在冰水浴的条件下搅拌30h,制得表观粘度为2.8×10 4cPs,固含量为20%的聚酰胺酸溶液。
热亚胺化:在室温下,取25g上述聚酰胺酸溶液在真空干燥箱中脱泡3h,将脱泡后的溶液在玻璃板上涂布成薄膜,随后放入氮气烘箱中升温至80℃下加热40min,随后升温至120℃加热10min,然后升温至220℃加热10min,随后升温至280℃加热5min,然后升温至300℃加热5min,最后升温至340℃加热5min。关闭氮气烘箱,取出薄膜自然冷却,在热水中浸泡将薄膜从玻璃板上取下来,制备聚酰亚胺薄膜。并进行性能测试,如表1所示。
化学亚胺化:取25g上述聚酰胺酸溶液加入2.04g(20mmol)乙酸酐及0.79g(10mmol)吡啶,并在冰水浴的条件下搅拌18h,然后加入120g N,N-二甲基乙酰胺进行稀释。将稀释后的溶液缓慢倒入高速搅拌的1.5L甲醇中,得到白色絮状树脂,并用孔径为30μm的砂芯漏斗过滤后,放置于100℃的鼓风干燥箱中干燥5h,得到6g白色絮状树脂。然后将其溶解在24g N,N-二甲基乙酰胺中,得到粘度为3.1×10 4cPs,固含量为20%的聚酰亚胺溶液。在室温下,将上述聚酰亚胺溶液在真空干燥箱中脱泡5h,将脱泡后的溶液在玻璃板上涂布成薄膜,随后放入氮气烘箱中升温至80℃加热30min,随后升温至120℃加热10min,然后升温至180℃加热10min,随后升温至250℃加热3min,随后升温至300℃加热5min,最后升温至340℃加热5min。关闭氮气烘箱,取出薄膜自然冷却,在热水中浸泡将薄膜从玻璃板上取下来,制得聚酰亚胺薄膜。并进行性能测试,如表1所示。
对比例3聚酰亚胺材料的制备
将50g N,N-二甲基乙酰胺、4.0046g(20mmol)4,4'-二氨基二苯醚加入配备有氮气保护和机械搅拌的250mL三颈烧瓶中,并在30℃条件下搅拌至完全溶解,制备二胺溶液。然后在二胺溶液中加入7.6876g(20mmol)降冰片烷-2-螺-2'-环戊酮-5'-螺-2'-降冰片-5,5',6,6'-四羧酸二酐,并在冰水浴的条件下搅拌30h,制得表观粘度为2.8×10 4cPs,固含量为20%的聚酰胺酸溶液。
热亚胺化:在室温下,取25g上述聚酰胺酸溶液在真空干燥箱中脱泡3h,将脱泡后的溶液在玻璃板上涂布成薄膜,随后放入氮气烘箱中升温至80℃下加热40min,随后升温至120℃加热10min,然后升温至220℃加热10min,随后升温至280℃加热5min,然后升温至300℃加热5min,最后升温至320℃加热5min。关闭氮气烘箱,取出薄膜自然冷却,在热水中浸泡将薄膜从玻璃板上取下来,制备聚酰亚胺薄膜。并进行性能测试,如表1所示。
化学亚胺化:取25g上述聚酰胺酸溶液加入2.04g(20mmol)乙酸酐及0.79g(10 mmol)吡啶,并在冰水浴的条件下搅拌18h,然后加入120g N,N-二甲基乙酰胺进行稀释。将稀释后的溶液缓慢倒入高速搅拌的1.5L甲醇中,得到白色絮状树脂,并用孔径为30μm的砂芯漏斗过滤后,放置于100℃的鼓风干燥箱中干燥5h,得到6g白色絮状树脂。然后将其溶解在24g N,N-二甲基乙酰胺中,得到粘度为3.1×10 4cPs,固含量为20%的聚酰亚胺溶液。在室温下,将上述聚酰亚胺溶液在真空干燥箱中脱泡5h,将脱泡后的溶液在玻璃板上涂布成薄膜,随后放入氮气烘箱中升温至80℃加热30min,随后升温至120℃加热10min,然后升温至180℃加热10min,随后升温至250℃加热3min,然后升温至300℃加热5min,最后升温至320℃加热5min。关闭氮气烘箱,取出薄膜自然冷却,在热水中浸泡将薄膜从玻璃板上取下来,制得聚酰亚胺薄膜。并进行性能测试,如表1所示。
对比例4聚酰亚胺材料的制备
将50g N,N-二甲基乙酰胺和6.4046g(20mmol)4,4'-二氨基-2,2'-双三氟甲基联苯加入配备有氮气保护和机械搅拌的250mL的三颈烧瓶中,并在30℃条件下搅拌至完全溶解,制备二胺溶液。然后在二胺溶液中加入6.2048g(20mmol)3,3,4',4'-二苯基醚四甲酸二酸酐,并在冰水浴的条件下搅拌24h,制得表观粘度为5.8×10 4cPs,固含量为20%的聚酰胺酸溶液。
热亚胺化:在室温下,取25g上述聚酰胺酸溶液在真空干燥箱中脱泡3h,将脱泡后的溶液在玻璃板上涂布成薄膜,随后放入氮气烘箱中升温至80℃下加热40min,随后升温至120℃加热10min,然后升温至220℃加热10min,随后升温至280℃加热5min,随后升温至300℃加热5min,最后升温至340℃加热5min。关闭氮气烘箱,取出薄膜自然冷却,在热水中浸泡将薄膜从玻璃板上取下来,制备聚酰亚胺薄膜。并进行性能测试,如表1所示。
化学亚胺化:取25g上述聚酰胺酸溶液加入2.04g(20mmol)乙酸酐及0.79g(10mmol)吡啶,并在冰水浴的条件下搅拌12h,然后加入120g N,N-二甲基乙酰胺进行稀释。将稀释后的溶液缓慢倒入高速搅拌的1.5L甲醇中,得到白色絮状树脂,并用孔径为30μm的砂芯漏斗过滤后,放置于100℃的鼓风干燥箱中干燥5h,得到6g白色絮状树脂。然后将其溶解在24g N,N-二甲基乙酰胺中,得到粘度为2.6×10 4cPs,固含量为20%的聚酰亚胺溶液。在室温下,将上述聚酰亚胺溶液在真空干燥箱中脱泡5h,将脱泡后的溶液在玻璃板上涂布成薄膜,随后放入氮气烘箱中升温至80℃加热30min,随后升温至120℃加热10min,然后升温至180℃加热10min,随后升温至250℃加热3min,随后升温至300℃加热5min,最后升温至340℃加热5min。关闭氮气烘箱,取出薄膜自然冷却,在热水中浸泡将薄膜从玻璃板上取下来,制得聚酰亚胺薄膜。并进行性能测试,如表1所示。
性能测试
聚酰亚胺薄膜的位相差使用日本大塚电子型号为RETS-100X的位相差测量装置进行测试;玻璃化转变温度(Tg)使用美国TA公司型号为Q20的差式扫描量热仪进行测试,测试范围为:50℃-400℃,升温速率3K/min;使用美国TA公司型号为TMA 450EM的热机械分析仪测试热膨胀系数(CTE),温范围25℃~350℃,升温速率5K/min,载荷50mN,标注100℃~200℃的CTE值;使用博勒飞型号为DV2T的表观粘度计,在20℃下测试聚酰胺酸及聚酰亚胺溶液的表观粘度;使用UV-可见光光谱仪(Shimadzu UV2450)在400nm~750nm下测定聚酰亚胺薄膜的透光率及黄度指数;将等质量、等体积的聚酰亚胺薄膜在室温下,分别在等体积的丙二醇甲醚醋酸酯、异丙醇、二丙酮醇、三氯化铁、盐酸、氯化钾、硝酸、乙二醇甲醚、乙二醇乙醚、二乙二醇甲醚、二乙二醇乙醚、乙二胺及N-甲基吡咯烷酮溶剂中浸泡10min进行耐溶剂性能测试。
实验结果表明,通过调控聚酰亚胺材料的结构,能够达到降低位相差和提高耐溶剂性能,而选用合适的封端剂可进一步降低聚酰亚胺材料的热膨胀系数,提高其热稳定性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
表1聚酰亚胺薄膜性能测试统计表
Figure PCTCN2020138283-appb-000015

Claims (12)

  1. 一种聚酰亚胺材料,其特征在于,所述聚酰亚胺材料具有式(I)所示结构:
    Figure PCTCN2020138283-appb-100001
    其中,R选自相对分子质量>260的大体积二胺或苯环数量>2的芳香族二胺去除端氨基后剩余的基团;
    Ar选自脂肪族二酐去除端氧基后剩余的基团或芳香族二酐去除端氧基后剩余的基团;
    m、n各自独立地选自100~300的自然数。
  2. 根据权利要求1所述的聚酰亚胺材料,其特征在于,式(I)中R选自式1~式13所示结构的基团中的一种:
    Figure PCTCN2020138283-appb-100002
  3. 根据权利要求1或2所述的聚酰亚胺材料,其特征在于,式(I)中Ar选自式14~式29所示结构的基团中的一种:
    Figure PCTCN2020138283-appb-100003
  4. 权利要求1~3任一项所述的聚酰亚胺材料的制备方法,其特征在于,包括以下步骤:
    (1)将降冰片烷-2-螺-2'-环戊酮-5'-螺-2'-降冰片-5,5',6,6'-四羧酸二酐与其他二酐组成的混合二酐、4,4'-二氨基-2,2'-双三氟甲基联苯与其他二胺组成的混合二胺及封端剂混于溶剂中,制备聚酰胺酸溶液,所述降冰片烷-2-螺-2'-环戊酮-5'-螺-2'-降冰片-5,5',6,6'-四羧酸二酐的结构式为
    Figure PCTCN2020138283-appb-100004
    所述4,4'-二氨基-2,2'-双三氟甲基联苯的结构式为
    Figure PCTCN2020138283-appb-100005
    所述其他二酐为结构中含有Ar基团的二酐,所 述其他二胺为结构中含有R基团的二胺;及
    (2)对所述聚酰胺酸溶液进行亚胺化处理。
  5. 根据权利要求4所述的聚酰亚胺材料的制备方法,其特征在于,所述降冰片烷-2-螺-2'-环戊酮-5'-螺-2'-降冰片-5,5',6,6'-四羧酸二酐在混合二酐中的重量百分含量为20%~95%;和/或
    所述4,4'-二氨基-2,2'-双三氟甲基联苯在混合二胺中的重量百分含量为20%~95%。
  6. 根据权利要求4所述的聚酰亚胺材料的制备方法,其特征在于,所述封端剂选自马来酸酐、苯乙炔苯酐、降冰片烯二酸酐及乙炔基二酸酐中的至少一种。
  7. 根据权利要求6所述的聚酰亚胺材料的制备方法,其特征在于,所述溶剂选自N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、γ-丁内酯、丙二醇甲醚醋酸酯、环丁砜、间甲酚、甲基亚砜、N-甲基吡咯烷酮及二苯砜中的至少一种。
  8. 根据权利要求7所述的聚酰亚胺材料的制备方法,其特征在于,步骤(2)中亚胺化的方法为热亚胺化及化学亚胺化中的至少一种。
  9. 根据权利要求8所述的聚酰亚胺材料的制备方法,其特征在于,步骤(2)中亚胺化的加热温度为180℃~380℃,加热时间为5min~60min。
  10. 根据权利要求5~9任一项所述的聚酰亚胺材料的制备方法,其特征在于,还包括在所述聚酰胺酸溶液中加入催化剂和脱水剂的步骤,所述催化剂为碳酸盐、碳酸氢盐、氢氧化物、有机碱、醇的碱金属盐、金属氢化物、吡啶、异喹啉、甲基哌啶及三乙胺中的至少一种,所述脱水剂为乙酸酐及三氟乙酸酐中的至少一种。
  11. 根据权利要求5~9任一项所述的聚酰亚胺材料的制备方法,其特征在于,还包括对亚胺化处理得到的材料进行再加热的步骤,所述再加热的温度为300℃~380℃,时间为0.5min~3min。
  12. 权利要求1~3任一项所述的聚酰亚胺材料在作为显示器基板或盖板,或在制作触控屏中的应用。
PCT/CN2020/138283 2020-12-22 2020-12-22 聚酰亚胺材料及其制备方法和应用 WO2022133722A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/138283 WO2022133722A1 (zh) 2020-12-22 2020-12-22 聚酰亚胺材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/138283 WO2022133722A1 (zh) 2020-12-22 2020-12-22 聚酰亚胺材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022133722A1 true WO2022133722A1 (zh) 2022-06-30

Family

ID=82157296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138283 WO2022133722A1 (zh) 2020-12-22 2020-12-22 聚酰亚胺材料及其制备方法和应用

Country Status (1)

Country Link
WO (1) WO2022133722A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115445579A (zh) * 2022-10-08 2022-12-09 扬州工业职业技术学院 一种磁性淀粉基吸附剂及其制备方法
CN115850699A (zh) * 2022-09-05 2023-03-28 江西有泽新材料科技有限公司 一种低介电共混聚酰亚胺及制备方法和应用
US11814394B2 (en) 2021-11-16 2023-11-14 Genequantum Healthcare (Suzhou) Co., Ltd. Exatecan derivatives, linker-payloads, and conjugates and thereof
US11999748B2 (en) 2021-11-16 2024-06-04 Genequantum Healthcare (Suzhou) Co., Ltd. Exatecan derivatives, linker-payloads, and conjugates and thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104530429A (zh) * 2014-12-31 2015-04-22 东华大学 一种高流动性和宽加工窗口的聚酰亚胺预聚体及其制备方法
CN107001662A (zh) * 2014-10-23 2017-08-01 宇部兴产株式会社 聚酰亚胺膜、聚酰亚胺前体和聚酰亚胺
CN107108886A (zh) * 2014-10-23 2017-08-29 宇部兴产株式会社 聚酰亚胺前体、聚酰亚胺和聚酰亚胺膜
CN107250225A (zh) * 2015-02-18 2017-10-13 Jxtg能源株式会社 聚酰亚胺薄膜、使用该聚酰亚胺薄膜的有机电致发光元件以及有机电致发光显示器
CN107849352A (zh) * 2015-06-12 2018-03-27 宇部兴产株式会社 聚酰亚胺前体组合物和聚酰亚胺组合物
CN108463454A (zh) * 2016-01-14 2018-08-28 日产化学工业株式会社 二胺及其利用
JP2019059959A (ja) * 2018-08-03 2019-04-18 Jxtgエネルギー株式会社 テトラカルボン酸二無水物、ポリイミド前駆体樹脂、ポリイミド、ポリイミド前駆体樹脂溶液、ポリイミド溶液及びポリイミドフィルム
CN109922956A (zh) * 2016-11-11 2019-06-21 宇部兴产株式会社 包含聚酰亚胺膜和硬涂层的层积体
CN110177794A (zh) * 2017-04-28 2019-08-27 Jxtg能源株式会社 四羧酸二酐、聚酰亚胺前驱物树脂及其溶液,以及聚酰亚胺及其溶液
CN111133033A (zh) * 2017-09-29 2020-05-08 三菱瓦斯化学株式会社 聚酰亚胺树脂、聚酰亚胺清漆和聚酰亚胺薄膜
CN111303424A (zh) * 2020-04-15 2020-06-19 江阴骏驰新材料科技有限公司 一种透明的高分子材料组合物及其应用
CN111757904A (zh) * 2017-12-28 2020-10-09 宇部兴产株式会社 聚酰亚胺前体、聚酰亚胺、聚酰亚胺膜、清漆和基板

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107001662A (zh) * 2014-10-23 2017-08-01 宇部兴产株式会社 聚酰亚胺膜、聚酰亚胺前体和聚酰亚胺
CN107108886A (zh) * 2014-10-23 2017-08-29 宇部兴产株式会社 聚酰亚胺前体、聚酰亚胺和聚酰亚胺膜
CN104530429A (zh) * 2014-12-31 2015-04-22 东华大学 一种高流动性和宽加工窗口的聚酰亚胺预聚体及其制备方法
CN107250225A (zh) * 2015-02-18 2017-10-13 Jxtg能源株式会社 聚酰亚胺薄膜、使用该聚酰亚胺薄膜的有机电致发光元件以及有机电致发光显示器
CN107849352A (zh) * 2015-06-12 2018-03-27 宇部兴产株式会社 聚酰亚胺前体组合物和聚酰亚胺组合物
CN108463454A (zh) * 2016-01-14 2018-08-28 日产化学工业株式会社 二胺及其利用
CN109922956A (zh) * 2016-11-11 2019-06-21 宇部兴产株式会社 包含聚酰亚胺膜和硬涂层的层积体
CN110177794A (zh) * 2017-04-28 2019-08-27 Jxtg能源株式会社 四羧酸二酐、聚酰亚胺前驱物树脂及其溶液,以及聚酰亚胺及其溶液
CN111133033A (zh) * 2017-09-29 2020-05-08 三菱瓦斯化学株式会社 聚酰亚胺树脂、聚酰亚胺清漆和聚酰亚胺薄膜
CN111757904A (zh) * 2017-12-28 2020-10-09 宇部兴产株式会社 聚酰亚胺前体、聚酰亚胺、聚酰亚胺膜、清漆和基板
JP2019059959A (ja) * 2018-08-03 2019-04-18 Jxtgエネルギー株式会社 テトラカルボン酸二無水物、ポリイミド前駆体樹脂、ポリイミド、ポリイミド前駆体樹脂溶液、ポリイミド溶液及びポリイミドフィルム
CN111303424A (zh) * 2020-04-15 2020-06-19 江阴骏驰新材料科技有限公司 一种透明的高分子材料组合物及其应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11814394B2 (en) 2021-11-16 2023-11-14 Genequantum Healthcare (Suzhou) Co., Ltd. Exatecan derivatives, linker-payloads, and conjugates and thereof
US11999748B2 (en) 2021-11-16 2024-06-04 Genequantum Healthcare (Suzhou) Co., Ltd. Exatecan derivatives, linker-payloads, and conjugates and thereof
CN115850699A (zh) * 2022-09-05 2023-03-28 江西有泽新材料科技有限公司 一种低介电共混聚酰亚胺及制备方法和应用
CN115850699B (zh) * 2022-09-05 2024-04-26 江西有泽新材料科技有限公司 一种低介电共混聚酰亚胺及制备方法和应用
CN115445579A (zh) * 2022-10-08 2022-12-09 扬州工业职业技术学院 一种磁性淀粉基吸附剂及其制备方法
CN115445579B (zh) * 2022-10-08 2023-08-01 扬州工业职业技术学院 一种磁性淀粉基吸附剂及其制备方法

Similar Documents

Publication Publication Date Title
TWI695855B (zh) 聚醯亞胺前驅體、樹脂組合物及樹脂膜之製造方法
TWI537315B (zh) 聚亞醯胺膜
JP6165153B2 (ja) ポリイミド及びその成形体
CN102634022B (zh) 无色高透明聚酰亚胺薄膜及其制备方法与应用
WO2022133722A1 (zh) 聚酰亚胺材料及其制备方法和应用
JP5845911B2 (ja) ポリイミド前駆体水溶液組成物、及びポリイミド前駆体水溶液組成物の製造方法
JP2019090047A (ja) ポリイミド前駆体樹脂組成物
JP2020090681A (ja) ポリアミド−イミド前駆体、ポリアミド−イミドフィルム、およびこれを含む表示素子
KR102529151B1 (ko) 폴리이미드 또는 폴리(아미드-이미드) 코폴리머를 포함하는 성형품 제조용 조성물, 상기 조성물로부터 얻어지는 성형품, 및 상기 성형품을 포함하는 디스플레이 장치
TWI602854B (zh) 聚醯胺-醯亞胺前驅物組成物、聚醯胺-醯亞胺薄膜及顯示裝置
CN112646183A (zh) 聚酰亚胺材料及其制备方法和应用
TW201734132A (zh) 聚醯胺酸、聚醯亞胺、聚醯胺酸溶液、聚醯亞胺積層體、可饒性裝置基板、及彼等之製造方法
CN113227206B (zh) 酰亚胺-酰胺酸共聚物和其制造方法、清漆以及聚酰亚胺薄膜
TW201525026A (zh) 聚醯亞胺前驅體組成物、聚醯亞胺之製造方法、聚醯亞胺、聚醯亞胺膜及基板
WO2008072915A1 (en) Polyimide resin and liquid crystal alignment layer and polyimide film using the same
JP6940507B2 (ja) ポリアミド酸、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびフレキシブルデバイス、ならびにポリイミド膜の製造方法
TWI792303B (zh) 一種聚醯亞胺薄膜及其製備方法與應用
JP7292260B2 (ja) ポリアミド酸およびその製造方法、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびその製造方法、ならびにフレキシブルデバイスおよびその製造方法
Hasegawa et al. Thermal-and solution-processable polyimides based on mellophanic dianhydride and their applications as heat-resistant adhesives for copper-clad laminates
JP2008297360A (ja) 溶剤可溶性ポリイミド樹脂
CN110760062A (zh) 一种光学膜、透明基板、图像显示装置以及太阳能电池
JP7349253B2 (ja) ポリアミド酸、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびフレキシブルデバイス、ならびにポリイミド膜の製造方法。
JP7172981B2 (ja) 透明電極用基材フィルムおよびその製造方法
CN112961349B (zh) 一种高性能透明聚酰亚胺、聚酰亚胺薄膜及其制备方法
WO2021132196A1 (ja) ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966303

Country of ref document: EP

Kind code of ref document: A1