WO2012124664A1 - ポリイミド前駆体及びポリイミド - Google Patents

ポリイミド前駆体及びポリイミド Download PDF

Info

Publication number
WO2012124664A1
WO2012124664A1 PCT/JP2012/056310 JP2012056310W WO2012124664A1 WO 2012124664 A1 WO2012124664 A1 WO 2012124664A1 JP 2012056310 W JP2012056310 W JP 2012056310W WO 2012124664 A1 WO2012124664 A1 WO 2012124664A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyimide
polyimide precursor
tetracarboxylic acid
component
Prior art date
Application number
PCT/JP2012/056310
Other languages
English (en)
French (fr)
Inventor
亮一 高澤
卓也 岡
幸徳 小濱
美晴 中川
圭司 岩本
弘津 健二
祥行 渡辺
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46830733&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012124664(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to CN201280022772.4A priority Critical patent/CN103534294B/zh
Priority to JP2013504724A priority patent/JP5920337B2/ja
Priority to KR1020137026687A priority patent/KR101850174B1/ko
Priority to US14/004,362 priority patent/US20140066571A1/en
Priority to KR1020187003440A priority patent/KR101941413B1/ko
Publication of WO2012124664A1 publication Critical patent/WO2012124664A1/ja
Priority to US14/821,380 priority patent/US9758623B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/30Processes for applying liquids or other fluent materials performed by gravity only, i.e. flow coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0406Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases the gas being air
    • B05D3/0413Heating with air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/0644Poly(1,3,5)triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1085Polyimides with diamino moieties or tetracarboxylic segments containing heterocyclic moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • B29K2079/08PI, i.e. polyimides or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0016Non-flammable or resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0082Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a polyimide having excellent characteristics such as transparency, bending resistance, and high heat resistance, and also having an extremely low linear expansion coefficient and excellent solvent resistance, and a precursor thereof.
  • the present invention has excellent properties such as transparency, bending resistance, and high heat resistance, and further includes a polyimide having a very low linear expansion coefficient, excellent solvent resistance, and flame retardancy, and a precursor thereof. Also related.
  • Aromatic polyimide is essentially yellowish brown due to intramolecular conjugation and the formation of charge transfer complexes. For this reason, as a means to suppress coloration, for example, introduction of fluorine atoms into the molecule, imparting flexibility to the main chain, introduction of bulky groups as side chains, etc. inhibits intramolecular conjugation and charge transfer complex formation. Thus, a method for expressing transparency has been proposed. In addition, a method for expressing transparency by using a semi-alicyclic or fully alicyclic polyimide that does not form a charge transfer complex in principle has been proposed.
  • Patent Document 1 in order to obtain a thin, light, and hard-to-break active matrix display device, a normal film forming process is used on a transparent polyimide film substrate in which a tetracarboxylic acid component residue is an aliphatic group. It is disclosed that a thin film transistor is formed to obtain a thin film transistor substrate.
  • the polyimide specifically used here was prepared from tetracarboxylic acid component 1,2,4,5-cyclohexanetetracarboxylic dianhydride and diamine component 4,4′-diaminodiphenyl ether. Is.
  • Patent Document 2 discloses a colorless transparent resin film made of polyimide that is excellent in colorless transparency, heat resistance, and flatness, which is used for transparent substrates, thin film transistor substrates, flexible wiring substrates, and the like of liquid crystal display elements and organic EL display elements.
  • a production method obtained by a solution casting method using a specific drying step is disclosed.
  • the polyimide used here is composed of 1,2,4,5-cyclohexanetetracarboxylic dianhydride as a tetracarboxylic acid component and ⁇ , ⁇ ′-bis (4-aminophenyl) -1, a diamine component. And those prepared from 4-diisopropylbenzene and 4,4′-bis (4-aminophenoxy) biphenyl.
  • Patent Documents 3 and 4 include dicyclohexyltetracarboxylic acid as a tetracarboxylic acid component, and diaminodiphenyl ether, diaminodiphenylmethane, 1,4-bis (4-aminophenoxy) benzene, 1,3- Bis (4-aminophenoxy) benzene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) ) Phenyl] ether, a polyimide soluble in an organic solvent using metaphenylenediamine is described.
  • Such a semi-alicyclic polyimide using an alicyclic tetracarboxylic dianhydride as a tetracarboxylic acid component and an aromatic diamine as a diamine component has both transparency, bending resistance and high heat resistance.
  • a semi-alicyclic polyimide generally has a large linear expansion coefficient of 50 ppm / K or more, the difference in linear expansion coefficient from a conductor such as metal is large, and warping occurs when a circuit board is formed. There is a problem that a problem such as an increase may occur, and there is a problem that a fine circuit forming process such as a display application is not easy.
  • Such semi-alicyclic polyimides tend to have insufficient solvent resistance, which may cause problems in the circuit formation process. Moreover, it may be inferior to a flame retardance and the safety
  • security of an electronic device may fall.
  • the present invention has been made in view of the above situation, and in a semi-alicyclic polyimide using an alicyclic tetracarboxylic dianhydride as a tetracarboxylic acid component and an aromatic diamine as a diamine component,
  • the purpose is to improve the expansion coefficient and solvent resistance.
  • Another object of the present invention is to improve the linear expansion coefficient, solvent resistance, and flame retardance in polyimides using aliphatic tetracarboxylic dianhydrides as tetracarboxylic acid components.
  • the present invention provides a polyimide having excellent characteristics such as transparency, bending resistance, and high heat resistance, and also having a very low linear expansion coefficient and excellent solvent resistance, and a precursor thereof. Objective.
  • the present invention provides a polyimide having excellent properties such as transparency, bending resistance, and high heat resistance, and also having an extremely low linear expansion coefficient, excellent solvent resistance, and flame retardancy, and a precursor thereof. It is also intended to provide.
  • the present invention relates to the following items. 1.
  • the polyimide precursor characterized by including the repeating unit represented by following Chemical formula (1).
  • A is a tetravalent group having at least one aliphatic 6-membered ring in the chemical structure and no aromatic ring
  • B is at least one amide bond and aromatic group in the chemical structure.
  • a divalent group having an aromatic ring, or A is an aliphatic tetravalent group
  • B is a divalent group having at least one chemical structure of the following chemical formula (2) in the chemical structure: It is the basis of.
  • X 1 and X 2 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or an alkylsilyl group having 3 to 9 carbon atoms.
  • R 1 is a direct bond, a CH 2 group, a C (CH 3 ) 2 group, a SO 2 group, a Si (CH 3 ) 2 group, a C (CF 3 ) 2 group, an oxygen atom, or a sulfur atom.
  • R 2 represents a CH 2 group, a CH 2 CH 2 group, an oxygen atom, or a sulfur atom.
  • R 3 and R 4 are each independently a CH 2 group, a CH 2 CH 2 group, an oxygen atom, or a sulfur atom.
  • Ar 1 , Ar 2 and Ar 3 are each independently a divalent group having an aromatic ring having 6 to 18 carbon atoms, and n1 is an integer of 0 to 5)
  • Ar 4 , Ar 5 , Ar 6 , Ar 7 and Ar 8 are each independently a divalent group having an aromatic ring having 6 to 18 carbon atoms, and n2 is 0 to 5) (It is an integer.)
  • Ar 9 , Ar 10 , Ar 11 , Ar 12, and Ar 13 are each independently a divalent group having an aromatic ring having 6 to 18 carbon atoms, and n3 is 0 to 5 (It is an integer.)
  • Ar 14 and Ar 15 are each independently a divalent aromatic group having 6 to 18 carbon atoms, and R 5 is a hydrogen atom or a monovalent organic group.
  • a diamine component containing 70 mol% or more of a diamine component giving a repeating unit represented by the chemical formula (1) and 30 mol% or less of other diamine components in 100 mol% of all diamine components Item 4. The polyimide precursor according to any one of Items 1 to 3, wherein 5.
  • p-phenylenediamine benzidine, 2,2′-bis (trifluoromethyl) benzidine, 3,3′-dimethylbenzidine, Item 5.
  • the polyimide precursor according to Item 4 comprising at least 30 mol% of at least one of 2,2'-dimethylbenzidine and trans-cyclohexanediamine. 6). Any of Items 1 to 5 above, wherein the polyimide precursor has a logarithmic viscosity (temperature: 30 ° C., concentration: 0.5 g / dL, solvent: N, N-dimethylacetamide) of 0.2 dL / g or more.
  • Tetracarboxylic acid component having a light transmittance of 70% or more (however, the light transmittance of the tetracarboxylic acid component is a wavelength of 400 nm with respect to a solution obtained by dissolving in a 2N sodium hydroxide solution at a concentration of 10% by mass, optical path)
  • a diamine component having a light transmittance of 30% or more (however, the light transmittance of the diamine component is measured in methanol, water, N, N-dimethylacetamide, acetic acid or a hydrochloric acid solution thereof).
  • a polyimide precursor solution composition in which the polyimide precursor according to any one of Items 1 to 9 is dissolved in a solvent, A polyimide precursor solution composition, wherein the solvent has a light transmittance of 89% or more at a wavelength of 400 nm and an optical path length of 1 cm.
  • Polyimide comprising a repeating unit represented by the following chemical formula (5).
  • A is a tetravalent group having at least one aliphatic 6-membered ring in the chemical structure and no aromatic ring
  • B is at least one amide bond and aromatic group in the chemical structure.
  • a divalent group having an aromatic ring, or A is an aliphatic tetravalent group
  • B is a divalent group having at least one chemical structure of the chemical formula (2) in the chemical structure.
  • the base of 12 Item 11 is characterized in that the total light transmittance (average light transmittance at a wavelength of 380 nm to 780 nm) in a film having a thickness of 10 ⁇ m is 70% or more, preferably 80% or more, more preferably 85% or more.
  • Item 11 or 12 above, wherein the light transmittance at a wavelength of 400 nm in a film having a thickness of 10 ⁇ m is 50% or more, preferably 60% or more, more preferably 70% or more, particularly preferably 75% or more.
  • An average linear expansion coefficient at 50 to 200 ° C. in a film having a thickness of 10 ⁇ m is 50 ppm / K or less, preferably 45 ppm / K or less, more preferably 40 ppm / K or less, and particularly preferably 20 ppm / K or less.
  • Item 14 The polyimide according to any one of Items 11 to 13.
  • a in the chemical formula (5) is an aliphatic tetravalent group
  • B is a divalent group having at least one chemical structure in the chemical formula (2) in the chemical structure, Item 15.
  • the polyimide according to any one of Items 11 to 14, wherein the polyimide is 22% (volume fraction) or more.
  • a polyimide obtained by reacting an aliphatic tetracarboxylic acid component and a diamine component, and having an oxygen index of 22% (volume fraction) or more.
  • Item 15 A display, a touch panel, or a sun, which is formed using a polyimide obtained by using the polyimide precursor solution composition according to Item 10 or the polyimide according to any one of Items 11 to 16. Battery substrate.
  • the present invention it is possible to provide a polyimide having excellent characteristics such as transparency, bending resistance, and high heat resistance, and also having a very low linear expansion coefficient and excellent solvent resistance, and a precursor thereof. Since the polyimide obtained from the polyimide precursor of the present invention and the polyimide of the present invention are highly transparent and have a low linear expansion coefficient, it is easy to form a fine circuit, and also has solvent resistance. It can be suitably used to form a substrate for display applications. Moreover, the polyimide of this invention can be used suitably also in order to form the board
  • a polyimide having excellent characteristics such as transparency, bending resistance, and high heat resistance, and also having a very low linear expansion coefficient, excellent solvent resistance, and flame retardancy, and a precursor thereof. can be provided.
  • the polyimide obtained from the polyimide precursor of the present invention and the polyimide of the present invention are highly transparent, have a low linear expansion coefficient, and can easily form a fine circuit, and also have solvent resistance and flame resistance. Since it has together, it can use suitably in order to form the board
  • the polyimide precursor of the present invention is a polyimide precursor configured to include a repeating unit represented by the chemical formula (1).
  • the polyimide precursor of the present invention comprises an alicyclic tetracarboxylic acid component having at least one aliphatic 6-membered ring in the chemical structure and no aromatic ring, and at least one in the chemical structure.
  • It is a polyimide precursor (B) obtained from the diamine component which has a chemical structure.
  • the polyimide precursor of the present invention may be a polyimide precursor obtained by using other tetracarboxylic acid components and / or diamine components.
  • the chemical formula (1) A tetracarboxylic acid component that gives a repeating unit represented by the formula (that is, in the case of a polyimide precursor (A), an alicyclic compound having at least one aliphatic 6-membered ring in its chemical structure and no aromatic ring.
  • a tetracarboxylic acid component which is an aliphatic tetracarboxylic acid component in the case of the polyimide precursor (B)), and a tetracarboxylic acid containing 30 mol% or less of the other tetracarboxylic acid component.
  • Component and diamine component giving a repeating unit represented by chemical formula (1) in 100 mol% of all diamine components (that is, in the case of polyimide precursor (A))
  • an aromatic diamine component having at least one amide bond and an aromatic ring in the chemical structure.
  • at least one chemical structure of the following chemical formula (2) is included in the chemical structure. It may be a polyimide precursor obtained from a diamine component containing 70 mol% or more and other diamine components at 30 mol% or less.
  • the tetracarboxylic acid component used in the polyimide precursor (A) of the present invention is an alicyclic tetracarboxylic acid component having at least one aliphatic 6-membered ring and no aromatic ring in the chemical structure.
  • the 6-membered ring may be a bridged ring type in which carbon atoms constituting the ring (inside the 6-membered ring) further form a ring by a chemical bond.
  • a tetracarboxylic acid component having a highly symmetric 6-membered ring structure is preferable because it enables dense packing of polymer chains and is excellent in solvent resistance, heat resistance and mechanical strength of polyimide.
  • the tetracarboxylic acid component is a polyalicyclic type in which a plurality of 6-membered rings are constituted by two or more common carbon atoms, and the carbon atoms in which the 6-membered rings form a ring further form a ring by a chemical bond.
  • the formed crosslinked ring type is more preferable because good heat resistance, solvent resistance, and low linear expansion coefficient of polyimide are easily achieved.
  • the tetravalent group derived from the tetracarboxylic acid component represented by A in the chemical formula (1) for example, groups of the chemical formulas (3-1) to (3-4) are preferable, and the chemical formula (3 -3) or (3-4) is more preferable, and the group represented by the chemical formula (3-4) is particularly preferable.
  • the groups represented by the chemical formulas (3-1) and (3-2) are cross-linked, so that the polyimide has excellent heat resistance and linear Since the expansion coefficient is small, it is more preferable.
  • the group of the chemical formula (3-4) is particularly preferable because it has a polyalicyclic / bridged ring type and is more excellent in heat resistance of polyimide.
  • Examples of the tetracarboxylic acid component that introduces the chemical structure of the chemical formula (3-1) or (3-2) include cyclohexane-1,2,4,5-tetracarboxylic acid and [1,1′-bi (cyclohexane).
  • acid dianhydrides are preferable because they have excellent solvent resistance and mechanical strength of polyimide.
  • tetracarboxylic acid components are not particularly limited, however, by performing separation and purification, the ratio of specific stereoisomers is 80% or more, more preferably 90% or more, and particularly preferably 95% or more. Improves the heat resistance and solvent resistance.
  • Specific stereoisomers of such tetracarboxylic acid components include 1R, 2S, 4S, 5R-cyclohexanetetracarboxylic acid (hereinafter sometimes abbreviated as PMTA-HS, and its acid dianhydride may be abbreviated as PMDA-HS), 1S, 2S, 4R, 5R-cyclohexanetetracarboxylic acid (hereinafter sometimes abbreviated as PMTA-HH, and its acid dianhydride may be abbreviated as PMDA-HH), (1R, 1 ′S, 3R, 3 ′S, 4R, 4 ′S) dicyclohexyl-3,3 ′, 4,4′-tetracarboxylic acid (hereinafter sometimes abbreviated as trans-DCTA, and further its acid dianhydride Things may be abbreviated as trans-DCDA) (1R, 1 ′S, 3R, 3 ′S, 4S, 4′R) dicyclohexyl-3,3
  • Examples of the bridged ring type or polyalicyclic / bridged ring type tetracarboxylic acid component that introduces the chemical structure of the chemical formula (3-3) or (3-4) include, for example, octahydropentalene-1,3,4, 6-tetracarboxylic acid, bicyclo [2.2.1] heptane-2,3,5,6-tetracarboxylic acid, 6- (carboxymethyl) bicyclo [2.2.1] heptane-2,3,5- Tricarboxylic acid, bicyclo [2.2.2] octane-2,3,5,6-tetracarboxylic acid, bicyclo [2.2.2] oct-5-ene-2,3,7,8-tetracarboxylic acid , Tricyclo [4.2.2.02,5] decane-3,4,7,8-tetracarboxylic acid, tricyclo [4.2.2.02,5] dec-7-ene-3,4,9 , 10-tetracarboxylic acid
  • tetracarboxylic acid components are not particularly limited, but they are low by performing separation and purification and the ratio of a specific stereoisomer is 70% or more, more preferably 90% or more, and particularly preferably 95% or more.
  • a polyimide having a linear expansion coefficient can be obtained.
  • Specific stereoisomers of such tetracarboxylic acid components include 1rC7-bicyclo [2.2.2] octane-2t, 3t, 5c, 6c-tetracarboxylic acid (hereinafter sometimes abbreviated as cis / trans-BTTA-H, and its anhydride is further referred to as cis / trans-BTA-H.
  • the above-described tetracarboxylic acid components may be used alone or in combination of two or more.
  • aromatic or aliphatic tetracarboxylic acid components generally used in polyimide are used in a small amount (preferably 30 mol% or less, more preferably 10 mol%) within the range in which the characteristics of the polyimide of the present invention can be expressed.
  • more preferably less than 10 mol%) can be used in combination.
  • aromatic or aliphatic tetracarboxylic acid components that can be used in the present invention include, for example, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane, 4- (2,5-dioxy).
  • the tetracarboxylic acid component used in the present invention is not particularly limited, but the purity (in the case of containing a plurality of stereoisomers, the purity is regarded as the same component without distinguishing them)
  • the value of the highest purity tetracarboxylic acid component or the purity of all tetracarboxylic acid components used is determined individually, and the average value of the purity weighted by the mass ratio used, for example, purity 100 99% or more of the tetracarboxylic acid component is used, and when 30 parts by mass of the 90% pure tetracarboxylic acid component is used, the purity of the tetracarboxylic acid component used is calculated to be 97%).
  • the purity is 99.5% or more.
  • the purity is less than 98%, the molecular weight of the polyimide precursor is not sufficient, and the heat resistance of the resulting polyimide may be inferior.
  • the purity is a value obtained from gas chromatography analysis or 1 H-NMR analysis. In the case of tetracarboxylic dianhydride, the purity can be obtained as a tetracarboxylic acid by performing a hydrolysis treatment.
  • the tetracarboxylic acid component used in the present invention is not particularly limited, but the light transmittance (in the case of using a plurality of types of tetracarboxylic acid components, the value of the tetracarboxylic acid component having the best light transmittance or all of the used values.
  • the purity of the tetracarboxylic acid component is individually determined, and an average value of the light transmittance weighted by the mass ratio to be used, for example, 70 parts by weight of a tetracarboxylic acid component having a light transmittance of 100% and a light transmittance of 90%.
  • the light transmittance of the tetracarboxylic acid component used is calculated as 97%.) Is 70% or more, preferably 80% or more, more preferably 90% or more. It is preferable that However, the light transmittance here is a transmittance of a wavelength of 400 nm and an optical path length of 1 cm with respect to a solution obtained by dissolving in a 2N sodium hydroxide solution at a concentration of 10% by mass.
  • the light transmittance of the tetracarboxylic acid component is 70% or more, coloring of the resulting polyimide is reduced, which is favorable.
  • the diamine component used in the polyimide precursor (A) of the present invention is a diamine component having at least one amide bond and an aromatic ring in the chemical structure.
  • the diamine component preferably has one or more amide bonds, preferably a plurality of amide bonds, in the chemical structure.
  • the solubility of a polyimide precursor may fall.
  • the divalent group derived from the diamine component represented by B in the chemical formula (1) for example, the groups of the chemical formulas (4-1) to (4-3) are preferable.
  • Ar 1 to Ar 13 in the chemical formulas (4-1) to (4-3) are each independently a divalent group having an aromatic ring having 6 to 18 carbon atoms.
  • the aromatic ring is a divalent aromatic compound such as benzene, biphenyl, terphenyl, naphthalene, anthracene, etc.
  • a part of the hydrogen is an alkyl group having 1 to 3 carbon atoms, a halogen group, a nitro group, It may be substituted with a group, a hydroxyl group, a carboxylic acid group or the like.
  • the divalent aromatic compound benzene and biphenyl are preferable since the light transmittance of polyimide is excellent.
  • the bonding position of the divalent aromatic compound (bonding position forming the polyimide main chain) is para-position in benzene, biphenylene and terphenyl, and is 2,6-position in naphthalene and anthracene. Is preferable because the linear expansion coefficient of polyimide can be lowered.
  • Examples of the diamine component that introduces the chemical structure of the chemical formulas (4-1) to (4-3) include 4,4′-diaminobenzanilide, 3′-chloro-4,4′-diaminobenzanilide, 2 ′ -Chloro-4,4'-diaminobenzanilide, 2 ', 6'-dichloro-4,4'-diaminobenzanilide, 3'-methyl-4,4'-diaminobenzanilide, 2'-methyl-4, 4'-diaminobenzanilide, 2 ', 6'-dimethyl-4,4'-diaminobenzanilide, 3'-trifluoromethyl-4,4'-diaminobenzanilide, 2'-trifluoromethyl-4,4 '-Diaminobenzanilide, 3-chloro-4,4'-diaminobenzanilide, 3-bromo-4,4'-diaminobenzanilide
  • the diamine component As the diamine component, the diamine components as described above may be used alone, or a plurality of types may be used in combination.
  • diamine components generally used in polyimide are contained in a small amount (preferably 30 mol% or less, more preferably 10 mol% or less, more preferably 10 mol) within the range in which the characteristics of the polyimide of the present invention can be expressed. %)) Can also be used together.
  • diamine components used in combination include p-phenylenediamine, benzidine, 3,3′-dimethylbenzidine, 2,2′-dimethylbenzidine, 2,2′-bis (trifluoromethyl) benzidine, bis (aminophenoxy), in particular. ) Benzene or trans-cyclohexanediamine is preferred because the linear expansion coefficient of polyimide can be lowered.
  • the diamine component used in the present invention is not particularly limited, but the purity (in the case of using a plurality of types of diamine components, the value of the highest purity diamine component or the purity of all the diamine components used is individually determined and used.
  • the average value of the purity weighted by the ratio for example, when 70 parts by mass of a diamine component having a purity of 100% and 30 parts by mass of a diamine component having a purity of 90% are used, the purity of the diamine component used is 97% Calculated) is 99% or more, more preferably 99.5% or more.
  • the purity is less than 98%, the molecular weight of the polyimide precursor is not sufficient, and the heat resistance of the resulting polyimide may be inferior.
  • the purity is a value obtained from gas chromatography analysis or liquid chromatography analysis.
  • the diamine component used in the present invention is not particularly limited, but the light transmittance (in the case of using plural kinds of diamine components, the value of the diamine component having the best light transmittance, or the purity of all the diamine components used). Obtained individually, and the average value of the light transmittance weighted by the mass ratio to be used, for example, 70 parts by weight of a diamine component having a light transmittance of 100%, and 30 parts by weight of a diamine component having a light transmittance of 90%, The light transmittance of the diamine component used is calculated to be 97%.) Is preferably 30% or more.
  • the light transmittance here is a transmission having a wavelength of 400 nm and an optical path length of 1 cm with respect to a solution obtained by dissolving 8% by mass in methanol, water, N, N-dimethylacetamide, acetic acid or a hydrochloric acid solution thereof. Rate.
  • the light transmittance of the diamine component is 30% or more, coloring of the resulting polyimide is reduced, which is favorable.
  • the tetracarboxylic acid component used in the polyimide precursor (B) of the present invention is not particularly limited as long as it is an aliphatic tetracarboxylic acid component.
  • the chemical structure has at least one aliphatic 6-membered ring and an aromatic ring. It is preferable that it is an alicyclic tetracarboxylic acid component that is not present, and the six-membered ring in the tetracarboxylic acid component may be plural, and the plural six-membered rings are constituted by two or more common carbon atoms. It doesn't matter.
  • the 6-membered ring may be a bridged ring type in which carbon atoms constituting the ring (inside the 6-membered ring) further form a ring by a chemical bond.
  • a tetracarboxylic acid component having a six-membered ring structure that is not asymmetrical and highly symmetric is preferable because it enables high-density packing of polymer chains and is excellent in solvent resistance, heat resistance, and mechanical strength of polyimide.
  • the tetracarboxylic acid component is a polyalicyclic type in which a plurality of 6-membered rings are constituted by two or more common carbon atoms, and the carbon atoms in which the 6-membered rings form a ring further form a ring by a chemical bond.
  • the formed crosslinked ring type is more preferable because good heat resistance, solvent resistance, and low linear expansion coefficient of polyimide are easily achieved.
  • the tetravalent group derived from the tetracarboxylic acid component represented by A in the chemical formula (1) for example, groups of the chemical formulas (3-1) to (3-4) are preferable, and the chemical formula (3 -3) or (3-4) is more preferable, and the group represented by the chemical formula (3-4) is particularly preferable.
  • the groups represented by the chemical formulas (3-1) and (3-2) are cross-linked, so that the polyimide has excellent heat resistance and linear Since the expansion coefficient is small, it is more preferable.
  • the group of the chemical formula (3-4) is particularly preferable because it has a polyalicyclic / bridged ring type and is more excellent in heat resistance of polyimide.
  • Examples of the tetracarboxylic acid component into which the chemical structure of the chemical formula (3-1) or (3-2) is introduced include the same as those mentioned for the polyimide precursor (A), and preferable ones are also the same. .
  • the crosslinked ring-type or polyalicyclic / bridged-ring type tetracarboxylic acid component into which the chemical structure of the above formula (3-3) or (3-4) is introduced is the same as that mentioned for the polyimide precursor (A). The preferable thing is also the same.
  • the above-described tetracarboxylic acid components may be used alone or in combination of two or more.
  • aromatic or aliphatic tetracarboxylic acid components generally used in polyimide are used in a small amount (preferably 30 mol% or less, more preferably 10 mol%) within the range in which the characteristics of the polyimide of the present invention can be expressed.
  • more preferably less than 10 mol%) can be used in combination.
  • the tetracarboxylic acid component used in the present invention is not particularly limited, but the purity (in the case of containing a plurality of stereoisomers, the purity is regarded as the same component without distinguishing them)
  • the value of the highest purity tetracarboxylic acid component or the purity of all tetracarboxylic acid components used is determined individually, and the average value of the purity weighted by the mass ratio used, for example, purity 100 99% or more of the tetracarboxylic acid component is used, and when 30 parts by mass of the 90% pure tetracarboxylic acid component is used, the purity of the tetracarboxylic acid component used is calculated to be 97%).
  • the purity is 99.5% or more.
  • the purity is less than 98%, the molecular weight of the polyimide precursor is not sufficient, and the heat resistance of the resulting polyimide may be inferior.
  • the purity is a value obtained from gas chromatography analysis or 1 H-NMR analysis. In the case of tetracarboxylic dianhydride, the purity can be obtained as a tetracarboxylic acid by performing a hydrolysis treatment.
  • the tetracarboxylic acid component used in the present invention is not particularly limited, but the light transmittance (in the case of using a plurality of types of tetracarboxylic acid components, the value of the tetracarboxylic acid component having the best light transmittance or all of the used values.
  • the purity of the tetracarboxylic acid component is individually determined, and an average value of the light transmittance weighted by the mass ratio to be used, for example, 70 parts by weight of a tetracarboxylic acid component having a light transmittance of 100% and a light transmittance of 90%.
  • the light transmittance of the tetracarboxylic acid component used is calculated as 97%.) Is 70% or more, preferably 80% or more, more preferably 90% or more. It is preferable that However, the light transmittance here is a transmittance of a wavelength of 400 nm and an optical path length of 1 cm with respect to a solution obtained by dissolving in a 2N sodium hydroxide solution at a concentration of 10% by mass.
  • the light transmittance of the tetracarboxylic acid component is 70% or more, coloring of the resulting polyimide is reduced, which is favorable.
  • the diamine component used in the polyimide precursor (B) of the present invention is a diamine component having at least one chemical structure of the chemical formula (2) in the chemical structure.
  • the chemical structure of the chemical formula (2) is introduced into the structure by the diamine component.
  • the intermolecular interaction is increased by the introduced chemical structure of the chemical formula (2). Etc. are considered to be improved.
  • the chemical structure of the chemical formula (2) has two nitrogen atoms, it is possible to efficiently introduce nitrogen atoms into the resulting polyimide, and therefore flame retardancy (oxygen index as an index thereof) It is considered that the adhesiveness and the like are improved. Therefore, the diamine component preferably has one or more chemical structures of the chemical formula (2) in the chemical structure, preferably a plurality of chemical structures of the chemical formula (2).
  • the divalent group derived from the diamine component represented by B in the chemical formula (1) for example, the group of the chemical formula (4-4) is preferable. That is, as the diamine component, a diamine represented by the following chemical formula (4-5) can be preferably used.
  • Ar 14 and Ar 15 are each independently a divalent aromatic group having 6 to 18 carbon atoms, and R 5 is a hydrogen atom or a monovalent organic group.
  • Examples of the diamine of the chemical formula (4-5) include 2,4-bis (4-aminoanilino) -1,3,5-triazine, 2,4-bis (4-aminoanilino) -6-methyl-1, 3,5-triazine, 2,4-bis (4-aminoanilino) -6-ethyl-1,3,5-triazine, 2,4-bis (4-aminoanilino) -6-phenyl-1,3,5- Triazine, 2,4-bis (4-aminoanilino) -6-amino-1,3,5-triazine, 2,4-bis (4-aminoanilino) -6-methylamino-1,3,5-triazine, 2 , 4-bis (4-aminoanilino) -6-dimethylamino-1,3,5-triazine, 2,4-bis (4-aminoanilino) -6-ethylamino-1,3,5-triazine,
  • the diamine component As the diamine component, the diamine components as described above may be used alone, or a plurality of types may be used in combination.
  • diamine components generally used in polyimide are contained in a small amount (preferably 30 mol% or less, more preferably 10 mol% or less, more preferably 10 mol) within the range in which the characteristics of the polyimide of the present invention can be expressed. %)) Can also be used together.
  • the diamine component used in the present invention is not particularly limited, but the purity (in the case of using a plurality of types of diamine components, the value of the highest purity diamine component or the purity of all the diamine components used is individually determined and used.
  • the average value of the purity weighted by the ratio for example, when 70 parts by mass of a diamine component having a purity of 100% and 30 parts by mass of a diamine component having a purity of 90% are used, the purity of the diamine component used is 97% Calculated) is 99% or more, more preferably 99.5% or more.
  • the purity is less than 98%, the molecular weight of the polyimide precursor is not sufficient, and the heat resistance of the resulting polyimide may be inferior.
  • Purity is a value determined from gas chromatography analysis.
  • the diamine component used in the present invention is not particularly limited, but the light transmittance (in the case of using plural kinds of diamine components, the value of the diamine component having the best light transmittance, or the purity of all the diamine components used). Obtained individually, and the average value of the light transmittance weighted by the mass ratio to be used, for example, 70 parts by weight of a diamine component having a light transmittance of 100%, and 30 parts by weight of a diamine component having a light transmittance of 90%, The light transmittance of the diamine component used is calculated to be 97%.) Is preferably 30% or more.
  • the light transmittance here is a transmission having a wavelength of 400 nm and an optical path length of 1 cm with respect to a solution obtained by dissolving 8% by mass in methanol, water, N, N-dimethylacetamide, acetic acid or a hydrochloric acid solution thereof. Rate.
  • the light transmittance of the diamine component is 30% or more, coloring of the resulting polyimide is reduced, which is favorable.
  • X 1 and X 2 in the chemical formula (1) are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, or 3 to 9 carbon atoms. Or an alkylsilyl group. X 1 and X 2 can change the type of functional group and the introduction rate of the functional group by the production method described later.
  • X 1 and X 2 are alkyl groups having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, the polyimide precursor tends to be excellent in storage stability.
  • X 1 and X 2 are more preferably a methyl group or an ethyl group.
  • X 1 and X 2 are alkylsilyl groups having 3 to 9 carbon atoms
  • the solubility of the polyimide precursor tends to be excellent.
  • X 1 and X 2 are alkylsilyl groups having 3 to 9 carbon atoms (that is, when a silylating agent is used), a tetracarboxylic acid component and a diamine component (that is, A and B in the chemical formula (1)) ).
  • the linear expansion coefficient usually tends to be further reduced.
  • X 1 and X 2 are more preferably a trimethylsilyl group or a t-butyldimethylsilyl group.
  • each of X 1 and X 2 is 25% or more, preferably 50% or more, more preferably 75% or more.
  • it can be an alkylsilyl group.
  • the polyimide precursor of the present invention has a chemical structure taken by X 1 and X 2.
  • the polyimide precursor of this invention can be easily manufactured with the following manufacturing methods for every classification.
  • the manufacturing method of the polyimide precursor of this invention is not limited to the following manufacturing methods.
  • a plurality of structures of the above classification can be introduced into the same molecular chain of a polyimide precursor, or a plurality of types of polyimide precursors of the above classification can be mixed and used.
  • the polyimide precursor of the present invention comprises a tetracarboxylic acid component (preferably tetracarboxylic dianhydride) and a diamine component in a solvent in an approximately equimolar amount, preferably a molar ratio of the diamine component to the tetracarboxylic acid component.
  • a tetracarboxylic acid component preferably tetracarboxylic dianhydride
  • a diamine component in a solvent in an approximately equimolar amount, preferably a molar ratio of the diamine component to the tetracarboxylic acid component.
  • Numberer of moles of diamine component / number of moles of tetracarboxylic acid component is preferably 0.90 to 1.10, more preferably 0.95 to 1.05, for example, at a relatively low temperature of 120 ° C. or less.
  • diamine is dissolved in a solvent, and tetracarboxylic dianhydride is gradually added to this solution while stirring, and 0 to 120 ° C., preferably 5 to 80 ° C.
  • the polyimide precursor solution composition is obtained by stirring for 1 to 72 hours in the above temperature range.
  • the order of addition of diamine and tetracarboxylic dianhydride in the above production method is preferable because the molecular weight of the polyimide precursor is likely to increase.
  • the molar ratio of the tetracarboxylic acid component and the diamine component is an excess of the diamine component, if necessary, an amount of a carboxylic acid derivative substantially corresponding to the excess mole number of the diamine component is added, and the tetracarboxylic acid component and the diamine are added.
  • the molar ratio of the components can be approximated to the equivalent.
  • the carboxylic acid derivative herein, a tetracarboxylic acid that does not substantially increase the viscosity of the polyimide precursor solution, that is, substantially does not participate in molecular chain extension, or a tricarboxylic acid that functions as a terminal terminator and its anhydride, Dicarboxylic acid and its anhydride are preferred.
  • a polyimide precursor can be easily obtained by dehydrating and condensing diester dicarboxylic acid and diamine using a phosphorus condensing agent or a carbodiimide condensing agent.
  • the polyimide precursor obtained by this method is stable, it can be purified by reprecipitation by adding a solvent such as water or alcohol.
  • a polyimide precursor is obtained by adding a silylating agent to the polyamic acid obtained by the above-mentioned 1) polyamic acid production method and stirring at 0 to 180 ° C., preferably 5 to 150 ° C. for 1 to 72 hours.
  • the body is obtained.
  • the reaction is performed at 150 ° C. or lower, the imidization reaction can be suppressed, and the polyimide precursor can be stably produced, which is preferable.
  • the silylating agent used here is not particularly limited as long as it is an alkylsilyl compound having 3 to 9 carbon atoms.
  • a trialkylsilyl halide or a silylating agent containing no halogen can be used.
  • the trialkylsilyl halide trimethylsilyl chloride, triethylsilyl chloride, isopropyldimethylsilyl chloride, t-butyldimethylsilyl chloride, triisopropylsilyl chloride and the like are preferable, and trimethylsilyl chloride and t-butyldimethylsilyl chloride are particularly preferable. It is preferable because of its high reactivity and low cost.
  • silylating agent not containing halogen such as chlorine atom examples include N, O-bis (trimethylsilyl) trifluoroacetamide, N, O-bis (trimethylsilyl) acetamide, and hexamethyldisilazane.
  • the use of a silylating agent containing no halogen such as chlorine is preferable because it is not necessary to purify the silylated diamine.
  • N, O-bis (trimethylsilyl) acetamide and hexamethyldisilazane are particularly preferred because they do not contain fluorine atoms and are low in cost.
  • an amine catalyst such as pyridine, piperidine or triethylamine can be used to accelerate the reaction.
  • This catalyst can be used as it is as a polymerization catalyst for the polyimide precursor.
  • any of the above production methods can be suitably performed in a solvent, and as a result, the polyimide precursor solution composition of the present invention can be easily obtained.
  • Solvents used in preparing the polyimide precursor are, for example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 1,3-dimethyl- Aprotic solvents such as 2-imidazolidinone and dimethyl sulfoxide and water are preferable, and N, N-dimethylacetamide is particularly preferable.
  • any type of solvent can be used as long as the raw material monomer component and the polyimide precursor to be formed are dissolved.
  • the structure is not particularly limited.
  • amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone, ⁇ - Cyclic ester solvents such as methyl- ⁇ -butyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as triethylene glycol, phenols such as m-cresol, p-cresol, 3-chlorophenol and 4-chlorophenol A system solvent, acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide, water and the like are preferably employed.
  • solvent used have the following purity.
  • A As a solvent to be used, a solvent having an optical path length of 1 cm and a light transmittance at a wavelength of 400 nm of 89% or more, more preferably 90% or more, particularly preferably 91% or more.
  • B Nitrogen as a solvent to be used. A solvent having an optical path length of 1 cm and a light transmittance at a wavelength of 400 nm of not less than 20%, more preferably not less than 40%, particularly preferably not less than 80% after being heated and refluxed for 3 hours in the above
  • D The solvent used is determined by gas chromatography analysis.
  • the total amount of impurity peaks appearing on the long time side with respect to the retention time of the main component peak is less than 0.2%, more preferably 0.1% or less, particularly Preferably the solvent is 0.05% or less
  • the amount of the non-volatile component at 250 ° C. of the solvent used is 0.1% or less, more preferably 0.05% or less, particularly preferably 0.01%.
  • Metal components of the solvent used for example, Li, Na, Mg, Ca, Al, K, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd ) Content of 10 ppm or less, more preferably 1 ppm or less, particularly preferably 500 ppb or less, more particularly preferably 300 ppb or less.
  • the conditions in these properties are based on the sum of the solvents used. That is, the solvent used is not limited to one type, and may be two or more types. Two or more types of solvents are used both when a mixed solvent is used in a specific process and when a different solvent is used depending on the process, for example, when the polymerization solvent and the diluent solvent for the additive are different. means.
  • mixed solvents two or more types of solvents are used (hereinafter referred to as mixed solvents)
  • the conditions of each characteristic relating to purity are applied to the entire mixed solvent, and when the solvent is used in multiple steps, the final In particular, the condition of each characteristic relating to purity is applied to a mixed solvent obtained by mixing all the solvents to be contained in the varnish.
  • Each property may be measured by actually mixing the solvent, or the properties of the individual solvents may be obtained and the properties of the entire mixture may be obtained by calculation. For example, when 70 parts of 100% pure solvent A and 30 parts 90% pure solvent B are used, the purity of the solvent used is calculated as 97%.
  • the logarithmic viscosity of the polyimide precursor is not particularly limited, but the logarithmic viscosity in an N, N-dimethylacetamide solution at a concentration of 0.5 g / dL at 30 ° C. is 0.2 dL / g or more, preferably 0.8. It is preferably 5 dL / g or more.
  • the logarithmic viscosity is 0.2 dL / g or more, the molecular weight of the polyimide precursor is high, and the mechanical strength and heat resistance of the resulting polyimide are excellent.
  • the polyimide precursor of the present invention is not particularly limited, but N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 1,3-dimethyl-2
  • a solvent selected from imidazolidinone, dimethyl sulfoxide and water at a concentration of 10% by mass, preferably 30% or more, more preferably 40% or more.
  • the resulting polyimide has excellent light transmittance.
  • the polyimide precursor solution composition includes at least the polyimide precursor of the present invention and a solvent, and the tetracarboxylic acid component and the diamine component with respect to the total amount of the solvent, the tetracarboxylic acid component and the diamine component.
  • the total amount of is preferably 5% by mass or more, preferably 10% by mass or more, more preferably 15% by mass or more.
  • the content is preferably 60% by mass or less, and preferably 50% by mass or less. This concentration is a concentration approximately approximate to the solid content concentration resulting from the polyimide precursor, but if this concentration is too low, it becomes difficult to control the film thickness of the polyimide film obtained, for example, when producing a polyimide film. Sometimes.
  • the solvent used in the polyimide precursor solution composition of the present invention is not a problem as long as the polyimide precursor is dissolved, and is not particularly limited to its structure.
  • solvents amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone, ⁇ - Cyclic ester solvents such as methyl- ⁇ -butyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as triethylene glycol, phenols such as m-cresol, p-cresol, 3-chlorophenol and 4-chlorophenol A system solvent, acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide, water and the like are preferably employed.
  • the viscosity (rotational viscosity) of the polyimide precursor solution composition is not particularly limited, but the rotational viscosity measured using an E-type rotational viscometer at a temperature of 25 ° C. and a shear rate of 20 sec ⁇ 1 is 0.01. To 1000 Pa ⁇ sec is preferable, and 0.1 to 100 Pa ⁇ sec is more preferable. Moreover, thixotropy can also be provided as needed. When the viscosity is in the above range, it is easy to handle when coating or forming a film, and the repelling is suppressed and the leveling property is excellent, so that a good film can be obtained.
  • the polyimide precursor solution composition of the present invention may contain chemical imidizing agents (acid anhydrides such as acetic anhydride, amine compounds such as pyridine and isoquinoline), antioxidants, fillers, dyes, pigments, silanes as necessary.
  • chemical imidizing agents such as acetic anhydride, amine compounds such as pyridine and isoquinoline
  • antioxidants such as pyridine and isoquinoline
  • fillers such as coupling agents, primers, flame retardants, antifoaming agents, leveling agents, rheology control agents (flow aids), release agents and the like can be added.
  • the polyimide of the present invention is characterized by comprising a repeating unit represented by the chemical formula (5).
  • This polyimide of the present invention can be suitably produced by subjecting the polyimide precursor of the present invention as described above to a ring-closing reaction (imidation reaction).
  • the imidization method is not particularly limited, and a known thermal imidation or chemical imidization method can be suitably applied.
  • a film, a laminate of the polyimide film and another substrate, a coating film, powder, beads, a molded body, a foam, a varnish, and the like can be preferably exemplified.
  • the polyimide of the present invention is not particularly limited, but the total light transmittance (average light transmittance at a wavelength of 380 nm to 780 nm) in a film having a thickness of 10 ⁇ m is preferably 70% or more, more preferably 80% or more, and particularly preferably Is 85% or more and has excellent light transmittance.
  • the polyimide of the present invention is not particularly limited, but when a film having a thickness of 10 ⁇ m is used, the light transmittance at a wavelength of 400 nm is preferably 50% or more, more preferably 60% or more, more preferably 70% or more, particularly preferably. Is 75% or more and has excellent transparency.
  • the polyimide of the present invention is not particularly limited, but the average linear expansion coefficient at 50 ° C. to 200 ° C. when formed into a film is preferably 50 ppm / K or less, more preferably 40 ppm / K or less, particularly preferably 20 ppm / K or less and has a very low linear expansion coefficient.
  • the polyimide of the present invention usually has an oxygen index of 22% (volume fraction) or more, more preferably 24% (volume fraction) or more when used as a film obtained in accordance with JIS K7201, and as a result, excellent. Has flame retardancy.
  • the polyimide of the present invention having high flame retardancy is obtained from the polyimide precursor (B), A in the chemical formula (5) is an aliphatic tetravalent group, and B is It is preferably a divalent group having at least one chemical structure of the chemical formula (2) in the chemical structure.
  • the film made of the polyimide of the present invention is preferably about 1 ⁇ m to 250 ⁇ m, more preferably about 1 ⁇ m to 150 ⁇ m, although it depends on the application.
  • the polyimide of the present invention has excellent properties such as transparency, bending resistance, and high heat resistance, and also has an extremely low linear expansion coefficient and excellent solvent resistance, or excellent solvent resistance and flame resistance. Since it has, it can use suitably in the use of the transparent substrate for a display, the transparent substrate for touch panels, or the board
  • the polyimide precursor solution composition of the present invention is cast on a base material such as ceramic (glass, silicon, alumina), metal (copper, aluminum, stainless steel), heat-resistant plastic film (polyimide), nitrogen, etc.
  • a base material such as ceramic (glass, silicon, alumina), metal (copper, aluminum, stainless steel), heat-resistant plastic film (polyimide), nitrogen, etc.
  • a base material such as ceramic (glass, silicon, alumina), metal (copper, aluminum, stainless steel), heat-resistant plastic film (polyimide), nitrogen, etc.
  • a base material such as ceramic (glass, silicon, alumina), metal (copper, aluminum, stainless steel), heat-resistant plastic film (polyimide), nitrogen, etc.
  • inert gas or in the air using hot air or infrared rays at a temperature of 20 to 180 ° C., preferably 20 to 150 ° C.
  • a polyimide film / substrate laminate or a polyimide film can be produced by heating imidization in air at a temperature of about 200 to 500 ° C., more preferably about 250 to 450 ° C. using hot air or infrared rays. .
  • the thickness of the polyimide film here is preferably 1 to 250 ⁇ m, more preferably 1 to 150 ⁇ m, because of the transportability in the subsequent steps.
  • the imidization reaction of the polyimide precursor instead of the heat imidation by the heat treatment as described above, contains a dehydration cyclization reagent such as acetic anhydride in the presence of a tertiary amine such as pyridine or triethylamine. It is also possible to carry out by chemical treatment such as immersion in a solution. Also, a partially imidized polyimide precursor is prepared by previously charging and stirring these dehydrating cyclization reagents in a polyimide precursor solution composition, and casting and drying them on a substrate. In addition, a polyimide film / substrate laminate or a polyimide film can be obtained by further heat-treating this as described above.
  • a dehydration cyclization reagent such as acetic anhydride in the presence of a tertiary amine such as pyridine or triethylamine. It is also possible to carry out by chemical treatment such as immersion in a solution.
  • a partially imidized polyimide precursor is prepared by
  • a flexible conductive substrate can be obtained by forming a conductive layer on one side or both sides of the polyimide film / base laminate or the polyimide film obtained in this way.
  • a flexible conductive substrate can be obtained, for example, by the following method. That is, as a first method, a conductive material (metal or metal oxide) is formed on the polyimide film surface by sputtering deposition, printing or the like without peeling the polyimide film / substrate laminate from the substrate. , Conductive organic material, conductive carbon, etc.) are formed to produce a conductive layer / polyimide film / substrate laminate. Thereafter, if necessary, a transparent and flexible conductive substrate composed of the conductive layer / polyimide film laminate can be obtained by peeling the electric conductive layer / polyimide film laminate from the base material.
  • a conductive material metal or metal oxide
  • the polyimide film is peeled off from the substrate of the polyimide film / substrate laminate to obtain a polyimide film, and a conductive substance (metal or metal oxide, conductive organic substance, A conductive layer of conductive carbon or the like can be formed in the same manner as in the first method, and a transparent and flexible conductive substrate composed of a conductive layer / polyimide film laminate can be obtained.
  • a conductive substance metal or metal oxide, conductive organic substance, A conductive layer of conductive carbon or the like can be formed in the same manner as in the first method, and a transparent and flexible conductive substrate composed of a conductive layer / polyimide film laminate can be obtained.
  • a gas barrier layer such as water vapor or oxygen, a light adjusting layer, or the like by sputtering vapor deposition or gel-sol method.
  • An inorganic layer such as may be formed.
  • the conductive layer is preferably formed with a circuit by a method such as a photolithography method, various printing methods, or an ink jet method.
  • the substrate of the present invention has a conductive layer circuit on the surface of a polyimide film composed of the polyimide of the present invention with a gas barrier layer or an inorganic layer as required.
  • This substrate is flexible, excellent in transparency, bendability, and heat resistance, and has an extremely low linear expansion coefficient and excellent solvent resistance, so that a fine circuit can be easily formed. Therefore, this board
  • a transistor inorganic transistor, organic transistor
  • a transistor is further formed on this substrate by vapor deposition, various printing methods, an ink jet method, etc., and a flexible thin film transistor is manufactured. It is suitably used as an element.
  • ⁇ Evaluation of tetracarboxylic acid component and diamine component> [Light transmittance]
  • a predetermined amount of the tetracarboxylic acid component was dissolved in a solvent (2N aqueous sodium hydroxide solution) to obtain a 10% by mass solution.
  • a predetermined amount of the diamine component was dissolved in a solvent (methanol) to obtain an 8% by mass solution.
  • the light transmittance at a wavelength of 400 nm of the tetracarboxylic acid component and the diamine component was measured using MCPD-300 manufactured by Otsuka Electronics Co., Ltd. and a standard cell with an optical path length of 1 cm, using the solvent as a blank.
  • Non-volatile content A glass container was weighed with 5 g of solvent and heated in a hot air circulating oven at 250 ° C. for 30 minutes. It was cooled to room temperature and the residue was weighed. From the mass, the non-volatile content (% by mass) of the solvent was determined.
  • the light transmittance after reflux the light transmittance at a wavelength of 400 nm of a solvent heated under reflux for 3 hours in a nitrogen atmosphere having an oxygen concentration of 200 ppm or less was measured.
  • the metal component contained in the solvent was quantified using ElanDRC II inductively coupled plasma mass spectrometry (ICP-MS) manufactured by Perkin Elmer.
  • ICP-MS inductively coupled plasma mass spectrometry
  • the polyimide precursor was diluted with N, N-dimethylacetamide so that a 10% by mass polyimide precursor solution was obtained.
  • N, N-dimethylacetamide was used as a blank, and the light transmittance at a wavelength of 400 nm of a 10% by weight polyimide precursor solution was measured. did.
  • Linear expansion coefficient (CTE) A polyimide film having a thickness of about 10 ⁇ m is cut into a strip with a width of 4 mm to form a test piece. The temperature is increased to 300 ° C. using a TMA-50 manufactured by Shimadzu Corporation with a length between chucks of 15 mm, a load of 2 g, and a heating rate of 20 ° C./min. did. The average linear expansion coefficient from 50 ° C. to 200 ° C. was determined from the obtained TMA curve.
  • a polyimide film having a thickness of about 10 ⁇ m was cut into a strip having a width of 4 mm to form a test piece, which was bent at a radius of curvature of 1 mm under conditions of a temperature of 25 ° C. and a humidity of 50% RH. Subsequent test pieces were visually confirmed, and those having no abnormality were indicated by ⁇ , and those having cracks were indicated by ⁇ .
  • Table 3 shows the structural formulas of the tetracarboxylic acid component and the diamine component used in Examples and Comparative Examples.
  • Example 1 In a reaction vessel substituted with nitrogen gas, 2.27 g (10 mmol) of DABAN was charged, and N, N-dimethylacetamide was charged in such an amount that the total monomer weight (total of diamine component and carboxylic acid component) was 15% by mass. 25.55g was added and it stirred at 50 degreeC for 2 hours. To this solution, PMDA-HS (2.33 g, 10 mmol) was gradually added. The mixture was stirred at 50 ° C. for 6 hours to obtain a uniform and viscous polyimide precursor solution.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and then directly on the glass substrate at 120 ° C. for 1 hour, 150 ° C. for 30 minutes, and 200 ° C. for 30 minutes in a nitrogen atmosphere (oxygen concentration of 200 ppm or less).
  • the mixture was heated to 350 ° C. and heated for 5 minutes to thermally imidize to obtain a colorless and transparent polyimide film / glass laminate.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Examples 2 to 5 The diamine component and the carboxylic acid component have the chemical compositions shown in Table 4-1, and the solvent N, N-dimethylacetamide has a total monomer weight (total of diamine component and carboxylic acid component) of 15% by mass. Except having used the quantity, it carried out similarly to Example 1, and obtained the polyimide precursor solution and the polyimide film.
  • Example 6 In a reaction vessel substituted with nitrogen gas, 2.27 g (10 mmol) of DABAN was added, and N, N-dimethylacetamide was charged in such an amount that the total monomer mass (total of diamine component and carboxylic acid component) was 20% by mass. 21.16g was added and it stirred at 50 degreeC for 2 hours. To this solution, 2.11 g (7 mmol) of DNDAxx and 0.91 g (3 mmol) of DNDAdx were gradually added. The mixture was stirred at 50 ° C. for 6 hours to obtain a uniform and viscous polyimide precursor solution. And it carried out similarly to Example 1 and formed into a film, and obtained the polyimide film.
  • Example 7 In a reaction vessel substituted with nitrogen gas, 2.27 g (10 mmol) of DABAN was added, and N, N-dimethylacetamide was charged in such an amount that the total monomer mass (total of diamine component and carboxylic acid component) was 20% by mass. 21.16g was added and it stirred at 50 degreeC for 2 hours. To this solution, 3.02 g (10 mmol) of DNDAxx was gradually added. The mixture was stirred at 50 ° C. for 6 hours to obtain a uniform and viscous polyimide precursor solution. And it carried out similarly to Example 1 and formed into a film, and obtained the polyimide film.
  • Example 8 In a reaction vessel substituted with nitrogen gas, 2.27 g (10 mmol) of DABAN was added, and N, N-dimethylacetamide was charged in such an amount that the total monomer mass (total of diamine component and carboxylic acid component) was 20% by mass. 18.06 g was added and stirred at room temperature for 1 hour. To this solution, 4.07 g (20 mmol) of BSA was added and stirred at room temperature for 3 hours. Next, 2.24 g (10 mmol) of PMDA-HS was gradually added to this solution. The mixture was stirred at room temperature for 6 hours to obtain a uniform and viscous polyimide precursor solution. And it carried out similarly to Example 1 and formed into a film, and obtained the polyimide film.
  • Example 9 In a reaction vessel substituted with nitrogen gas, 2.05 g (9 mmol) of DABAN and 0.11 g (1 mmol) of PPD were added, and N, N-dimethylacetamide was charged, and the total mass of monomers (total of diamine component and carboxylic acid component). ) was added in an amount of 20% by mass, and stirred at room temperature for 1 hour. To this solution, 2.24 g (10 mmol) of PMDA-HS was gradually added. The mixture was stirred at room temperature for 6 hours to obtain a uniform and viscous polyimide precursor solution. And it carried out similarly to Example 1 and formed into a film, and obtained the polyimide film.
  • Example 10 In a reaction vessel substituted with nitrogen gas, 2.05 g (9 mmol) of DABAN and 0.32 g (1 mmol) of TFMB were charged, N, N-dimethylacetamide was charged, and the total mass of monomers (total of diamine component and carboxylic acid component) ) was added in an amount of 20% by mass, and the mixture was stirred at room temperature for 1 hour. To this solution, 2.24 g (10 mmol) of PMDA-HS was gradually added. The mixture was stirred at room temperature for 6 hours to obtain a uniform and viscous polyimide precursor solution. And it carried out similarly to Example 1 and formed into a film, and obtained the polyimide film.
  • Example 11 In a reaction vessel substituted with nitrogen gas, 3.46 g (10 mmol) of 4-APTP is placed, N, N-dimethylacetamide is charged, and the total mass of monomers (total of diamine component and carboxylic acid component) is 20 mass%. An amount of 25.29 g was added and stirred at 50 ° C. for 2 hours. To this solution, 3.02 g (10 mmol) of DNDAxx was gradually added. The mixture was stirred at 50 ° C. for 6 hours to obtain a uniform and viscous polyimide precursor solution. And it carried out similarly to Example 1 and formed into a film, and obtained the polyimide film.
  • Example 12 In a reaction vessel substituted with nitrogen gas, 2.27 g (10 mmol) of DABAN was added, and N, N-dimethylacetamide was charged in such an amount that the total monomer mass (total of diamine component and carboxylic acid component) was 20% by mass. 21.16g was added and it stirred at 50 degreeC for 2 hours. To this solution, 3.02 g (10 mmol) of DNDAxx was gradually added. The mixture was stirred at 50 ° C. for 6 hours to obtain a uniform and viscous polyimide precursor solution. To the solution, 4.07 g (20 mmol) of BSA was added and stirred for 12 hours. And it carried out similarly to Example 1 and formed into a film, and obtained the polyimide film.
  • Example 13 In a reaction vessel substituted with nitrogen gas, 3.46 g (10 mmol) of 4-APTP is charged, N, N-dimethylacetamide is charged, and the total mass of monomers (total of diamine component and carboxylic acid component) is 15% by mass. An amount of 36.72 g was added and stirred at 50 ° C. for 2 hours. To this solution, 3.02 g (10 mmol) of DNDAxx was gradually added. The mixture was stirred at 50 ° C. for 6 hours to obtain a uniform and viscous polyimide precursor solution. To the solution, 2.03 g (10 mmol) of BSA was added and stirred for 12 hours. And it carried out similarly to Example 1 and formed into a film, and obtained the polyimide film.
  • Example 14 In a reaction vessel substituted with nitrogen gas, DABAN (1.59 g, 7 mmol) and PPD (0.32 g, 3 mmol) were placed, N, N-dimethylacetamide was charged, and the total mass of monomers (total of diamine component and carboxylic acid component). ) was added in an amount of 20% by mass, and the mixture was stirred at room temperature for 1 hour. To this solution, 3.02 g (10 mmol) of DNDAxx was gradually added. The mixture was stirred at room temperature for 6 hours to obtain a uniform and viscous polyimide precursor solution. And it carried out similarly to Example 1 and formed into a film, and obtained the polyimide film.
  • Example 15 In a reaction vessel purged with nitrogen gas, 1.59 g (7 mmol) of DABAN and 0.96 g (3 mmol) of TFMB were charged, N, N-dimethylacetamide was charged, and the total mass of monomers (total of diamine component and carboxylic acid component) ) was added in an amount of 20% by mass, and the mixture was stirred at room temperature for 1 hour. To this solution, 3.02 g (10 mmol) of DNDAxx was gradually added. The mixture was stirred at room temperature for 6 hours to obtain a uniform and viscous polyimide precursor solution. And it carried out similarly to Example 1 and formed into a film, and obtained the polyimide film.
  • Example 16 In a reaction vessel substituted with nitrogen gas, 2.42 g (7 mmol) of 4-APTP and 0.32 g (3 mmol) of PPD were added, and N, N-dimethylacetamide was charged, and the total mass of monomers (diamine component and carboxylic acid component) was added. 21.79 g in such an amount that 20% by mass was obtained, and the mixture was stirred at room temperature for 1 hour. To this solution, 3.02 g (10 mmol) of DNDAxx was gradually added. The mixture was stirred at room temperature for 6 hours to obtain a uniform and viscous polyimide precursor solution. And it carried out similarly to Example 1 and formed into a film, and obtained the polyimide film.
  • Example 17 In a reaction vessel substituted with nitrogen gas, DABAN (1.59 g, 7 mmol) and PPD (0.32 g, 3 mmol) were placed, N, N-dimethylacetamide was charged, and the total mass of monomers (total of diamine component and carboxylic acid component). ) was added in an amount of 20% by mass, and the mixture was stirred at room temperature for 1 hour. To this solution, 3.02 g (10 mmol) of DNDAxx was gradually added. The mixture was stirred at room temperature for 6 hours to obtain a uniform and viscous polyimide precursor solution. To the solution, 4.07 g (20 mmol) of BSA was added and stirred for 12 hours. And it carried out similarly to Example 1 and formed into a film, and obtained the polyimide film.
  • Example 18 In a reaction vessel substituted with nitrogen gas, 3.46 g (10 mmol) of BABA was placed, and N, N-dimethylacetamide was charged in such an amount that the total monomer weight (total of diamine component and carboxylic acid component) was 20% by mass. 25.94g was added and it stirred at room temperature for 1 hour. To this solution, 3.02 g (10 mmol) of DNDAxx was gradually added. The mixture was stirred at room temperature for 6 hours to obtain a uniform and viscous polyimide precursor solution. And it carried out similarly to Example 1 and formed into a film, and obtained the polyimide film.
  • the diamine component and the carboxylic acid component have the chemical compositions shown in Table 4-2, and the solvent N, N-dimethylacetamide has a total monomer weight (total of diamine component and carboxylic acid component) of each of Comparative Examples 1 and 2 Then, in the same manner as in Example 1 except that an amount of 15% by mass and an amount of 20% by mass in Comparative Examples 3 and 4 were used, a polyimide precursor solution and a polyimide film were obtained.
  • the polyimide obtained from the polyimide precursor of the present invention has excellent light transmittance and bending resistance, and has a low linear expansion coefficient and solvent resistance. It can be suitably used as a transparent substrate capable of forming a colorless and transparent and fine circuit for display applications and the like.
  • Example 19 In a reaction vessel substituted with nitrogen gas, 3.84 g (10 mmol) of AZDA was charged, N, N-dimethylacetamide was charged, and 34.49 g of monomer (total of diamine component and carboxylic acid component) was 15% by mass. And stirred at 50 ° C. for 2 hours.
  • a polyimide precursor solution filtered through a PTFE membrane filter was applied to a glass substrate, and the nitrogen atmosphere (oxygen concentration of 200 ppm or less) was maintained as it was on a glass substrate at 120 ° C. for 1 hour, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, The temperature was raised to 350 ° C. and heated for 5 minutes to thermally imidize to obtain a colorless and transparent polyimide film / glass laminate. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled to obtain a polyimide film having a film thickness of about 10 ⁇ m.
  • Example 20 In a reaction vessel substituted with nitrogen gas, 3.84 g (10 mmol) of AZDA was charged, N, N-dimethylacetamide was charged, and 27.44 g of monomer (total of diamine component and carboxylic acid component) was 20% by mass. And stirred at 50 ° C. for 2 hours.
  • Example 21 In a reaction vessel substituted with nitrogen gas, 3.84 g (10 mmol) of AZDA was charged, N, N-dimethylacetamide was charged, and 27.44 g of monomer (total of diamine component and carboxylic acid component) was 20% by mass. And stirred at 50 ° C. for 2 hours.
  • the polyimide obtained from the polyimide precursor of the present invention has excellent light transmittance and bending resistance, and has a low linear expansion coefficient, solvent resistance, and flame resistance, and is colorless for display applications and the like. It can be suitably used as a transparent substrate capable of forming a transparent and fine circuit.
  • a polyimide having excellent characteristics such as transparency, bending resistance, and high heat resistance, and also having a very low linear expansion coefficient and excellent solvent resistance, and a precursor thereof Further, according to the present invention, a polyimide having excellent characteristics such as transparency, bending resistance, and high heat resistance, and also having an extremely low linear expansion coefficient, excellent solvent resistance, and flame retardancy, and a precursor thereof are also provided. Can be provided.
  • the polyimide obtained from this polyimide precursor, and the polyimide are highly transparent, have a low linear expansion coefficient, can easily form a fine circuit, and have a solvent resistance. It can be suitably used to form.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、下記化学式(1)で表される繰り返し単位を含むことを特徴とするポリイミド前駆体に関する。(式中、Aは、化学構造中に少なくとも一つの脂肪族6員環を有し芳香族環を有さない4価の基であり、Bは、化学構造中に少なくとも一つのアミド結合と芳香族環とを有する2価の基であるか、または、Aは、脂肪族の4価の基であり、Bは、化学構造中に少なくとも一つの下記化学式(2)の化学構造を有する2価の基である。X、Xはそれぞれ独立に水素、炭素数1~6のアルキル基、または炭素数3~9のアルキルシリル基である。)

Description

ポリイミド前駆体及びポリイミド
 本発明は、透明性、折り曲げ耐性、高耐熱性などの優れた特性を有し、さらに極めて低い線膨張係数や優れた耐溶剤性を併せ有するポリイミド、及びその前駆体に関する。また、本発明は、透明性、折り曲げ耐性、高耐熱性などの優れた特性を有し、さらに極めて低い線膨張係数や優れた耐溶剤性、難燃性を併せ有するポリイミド、及びその前駆体にも関する。
 近年、高度情報化社会の到来に伴い、光通信分野の光ファイバーや光導波路等、表示装置分野の液晶配向膜やカラーフィルター用保護膜等の光学材料の開発が進んでいる。特に表示装置分野で、ガラス基板の代替として軽量でフレキシブル性に優れたプラスチック基板の検討が行なわれたり、曲げたり丸めたりすることが可能なディスプレイの開発が盛んに行われている。このため、その様な用途に用いることができる、より高性能の光学材料が求められている。
 芳香族ポリイミドは、分子内共役や電荷移動錯体の形成により、本質的に黄褐色に着色する。このため着色を抑制する手段として、例えば分子内へのフッ素原子の導入、主鎖への屈曲性の付与、側鎖として嵩高い基の導入などによって、分子内共役や電荷移動錯体の形成を阻害して、透明性を発現させる方法が提案されている。また、原理的に電荷移動錯体を形成しない半脂環式または全脂環式ポリイミドを用いることにより透明性を発現させる方法も提案されている。
 特許文献1には、薄く、軽く、割れ難いアクティブマトリックス表示装置を得るために、テトラカルボン酸成分残基が脂肪族基である透明なポリイミドのフィルムの基板上に通常の成膜プロセスを用いて薄膜トランジスタを形成して薄膜トランジスタ基板を得ることが開示されている。ここで具体的に用いられたポリイミドは、テトラカルボン酸成分の1,2,4,5-シクロへキサンテトラカルボン酸二無水物と、ジアミン成分の4,4’-ジアミノジフェニルエーテルとから調製されたものである。
 特許文献2には、液晶表示素子、有機EL表示素子の透明基板や薄膜トランジスタ基板、フレキシブル配線基板などに利用される、無色透明性、耐熱性及び平坦性に優れるポリイミドからなる無色透明樹脂フィルムを、特定の乾燥工程を用いた溶液流延法によって得る製造方法が開示されている。ここで用いられたポリイミドは、テトラカルボン酸成分の1,2,4,5-シクロへキサンテトラカルボン酸二無水物と、ジアミン成分のα,α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼンと4,4’-ビス(4-アミノフェノキシ)ビフェニルとから調製されたもの等である。
 特許文献3,4には、テトラカルボン酸成分として、ジシクロヘキシルテトラカルボン酸と、ジアミン成分として、ジアミノジフェニルエ-テル、ジアミノジフェニルメタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]エ-テル、メタフェニレンジアミンを用いた有機溶剤に可溶なポリイミドが記載されている。
 この様なテトラカルボン酸成分として脂環式テトラカルボン酸二無水物、ジアミン成分として芳香族ジアミンを用いた半脂環式ポリイミドは、透明性、折り曲げ耐性、高耐熱性を兼ね備えている。しかしながら、この様な半脂環式ポリイミドは、一般に、線膨張係数が50ppm/K以上と大きいために、金属などの導体との線膨張係数の差が大きく、回路基板を形成する際に反りが増大するなどの不具合が生じることがあり、特にディスプレイ用途などの微細な回路形成プロセスが容易ではないという問題があった。
 さらに、この様な半脂環式ポリイミドは、耐溶剤性が十分でない傾向があり、回路形成プロセスにおいて不具合を生じる恐れがあった。また、難燃性に劣る場合があり、電子機器の安全性が低下する場合があった。
特開2003-168800号公報 国際公開第2008/146637号 特開2002-69179号公報 特開2002-146021号公報
 本発明は、以上のような状況に鑑みてなされたものであり、テトラカルボン酸成分として脂環式テトラカルボン酸二無水物、ジアミン成分として芳香族ジアミンを用いた半脂環式ポリイミドにおいて、線膨張係数や耐溶剤性を改良することを目的とする。また、テトラカルボン酸成分として脂肪族系テトラカルボン酸二無水物を用いたポリイミドにおいて、線膨張係数や耐溶剤性、難燃性を改良することを目的とする。
 すなわち、本発明は、透明性、折り曲げ耐性、高耐熱性などの優れた特性を有し、さらに極めて低い線膨張係数や優れた耐溶剤性を併せ有するポリイミド、及びその前駆体を提供することを目的とする。また、本発明は、透明性、折り曲げ耐性、高耐熱性などの優れた特性を有し、さらに極めて低い線膨張係数や優れた耐溶剤性、難燃性を併せ有するポリイミド、及びその前駆体を提供することも目的とする。
 本発明は、以下の各項に関する。
1. 下記化学式(1)で表される繰り返し単位を含むことを特徴とするポリイミド前駆体。
Figure JPOXMLDOC01-appb-C000012
(式中、Aは、化学構造中に少なくとも一つの脂肪族6員環を有し芳香族環を有さない4価の基であり、Bは、化学構造中に少なくとも一つのアミド結合と芳香族環とを有する2価の基であるか、または、Aは、脂肪族の4価の基であり、Bは、化学構造中に少なくとも一つの下記化学式(2)の化学構造を有する2価の基である。
Figure JPOXMLDOC01-appb-C000013
、Xはそれぞれ独立に水素、炭素数1~6のアルキル基、または炭素数3~9のアルキルシリル基である。)
2. Aが、下記化学式(3-1)~(3-4)からなる群から選択される1種以上であることを特徴とする前記項1に記載のポリイミド前駆体。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
(式中、R1は直接結合、CH基、C(CH基、SO基、Si(CH基、C(CF基、酸素原子、または硫黄原子である。)
Figure JPOXMLDOC01-appb-C000016

(式中、R2は、CH基、CHCH基、酸素原子、または硫黄原子である。)
Figure JPOXMLDOC01-appb-C000017
(式中、R3及びR4は、それぞれ独立に、CH基、CHCH基、酸素原子、または硫黄原子である。)
3. Bが、下記化学式(4-1)~(4-4)からなる群から選択される1種以上であることを特徴とする前記項1または2に記載のポリイミド前駆体。
Figure JPOXMLDOC01-appb-C000018
(式中、Ar、Ar及びArは、それぞれ独立に、炭素数が6~18の芳香族環を有する2価の基であり、n1は、0~5の整数である。)
Figure JPOXMLDOC01-appb-C000019
(式中、Ar、Ar、Ar、Ar及びArは、それぞれ独立に、炭素数が6~18の芳香族環を有する2価の基であり、n2は、0~5の整数である。)
Figure JPOXMLDOC01-appb-C000020
(式中、Ar、Ar10、Ar11、Ar12及びAr13は、それぞれ独立に、炭素数が6~18の芳香族環を有する2価の基であり、n3は、0~5の整数である。)
Figure JPOXMLDOC01-appb-C000021
(式中、Ar14及びAr15は、それぞれ独立に、炭素数6~18の2価の芳香族基であり、R5は、水素原子または一価の有機基である。)
4. 全テトラカルボン酸成分100モル%中、化学式(1)で表される繰り返し単位を与えるテトラカルボン酸成分を70モル%以上、それ以外のテトラカルボン酸成分を30モル%以下で含むテトラカルボン酸成分と、全ジアミン成分100モル%中、化学式(1)で表される繰り返し単位を与えるジアミン成分を70モル%以上、それ以外のジアミン成分を30モル%以下で含むジアミン成分とから得られることを特徴とする前記項1~3のいずれかに記載のポリイミド前駆体。
5. ジアミン成分が、化学式(1)で表される繰り返し単位を与えるジアミン成分に加えて、p-フェニレンジアミン、ベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、3,3’-ジメチルベンジジン、2,2’-ジメチルベンジジンまたはトランス-シクロヘキサンジアミンのいずれか1種以上を30モル%以下で含むことを特徴とする前記項4に記載のポリイミド前駆体。
6. ポリイミド前駆体の対数粘度(温度:30℃、濃度:0.5g/dL、溶媒:N,N-ジメチルアセトアミド)が0.2dL/g以上であることを特徴とする前記項1~5のいずれかに記載のポリイミド前駆体。
7. 純度(複数の立体異性体を含む場合は、それらを区別せず同一成分と見なした場合の純度)が99%以上のテトラカルボン酸成分と、純度が99%以上のジアミン成分とから得られることを特徴とする前記項1~6のいずれかに記載のポリイミド前駆体。
8. 光透過率が70%以上のテトラカルボン酸成分(但し、テトラカルボン酸成分の光透過率は、2規定水酸化ナトリウム溶液に10質量%の濃度に溶解して得られた溶液に対する波長400nm、光路長1cmの透過率を表す。)と、光透過率が30%以上のジアミン成分(但し、ジアミン成分の光透過率は、メタノール、水、N,N-ジメチルアセトアミド、酢酸もしくはこれらの塩酸溶液に、8質量%の濃度に溶解して得られた溶液に対する波長400nm、光路長1cmの透過率を表す。)とから得られることを特徴とする前記項1~7のいずれかに記載のポリイミド前駆体。
9. N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホオキシド、水より選ばれる溶媒に10質量%の濃度に溶解して得られた溶液に対する波長400nm、光路長1cmの光透過率が40%以上であることを特徴とする前記項1~8のいずれかに記載のポリイミド前駆体。
10. 前記項1~9のいずれかに記載のポリイミド前駆体が溶媒中に溶解しているポリイミド前駆体溶液組成物であって、
 前記溶媒の波長400nm、光路長1cmの光透過率が89%以上であることを特徴とするポリイミド前駆体溶液組成物。
11. 下記化学式(5)で表される繰り返し単位を含むことを特徴とするポリイミド。
Figure JPOXMLDOC01-appb-C000022
(式中、Aは、化学構造中に少なくとも一つの脂肪族6員環を有し芳香族環を有さない4価の基であり、Bは、化学構造中に少なくとも一つのアミド結合と芳香族環とを有する2価の基であるか、または、Aは、脂肪族の4価の基であり、Bは、化学構造中に少なくとも一つの前記化学式(2)の化学構造を有する2価の基である。)
12. 厚さ10μmのフィルムでの全光透過率(波長380nm~780nmの平均光透過率)が70%以上、好ましくは80%以上、より好ましくは85%以上であることを特徴とする前記項11に記載のポリイミド。
13. 厚さ10μmのフィルムでの波長400nmの光透過率が50%以上、好ましくは60%以上、より好ましくは70%以上、特に好ましくは75%以上であることを特徴とする前記項11または12に記載のポリイミド。
14. 厚さ10μmのフィルムでの50~200℃における平均線膨張係数が50ppm/K以下、好ましくは45ppm/K以下、より好ましくは40ppm/K以下、特に好ましくは20ppm/K以下であることを特徴とする前記項11~13のいずれかに記載のポリイミド。
15. 前記化学式(5)中のAは、脂肪族の4価の基であり、Bは、化学構造中に少なくとも一つの前記化学式(2)の化学構造を有する2価の基であって、酸素指数が22%(体積分率)以上であることを特徴とする前記項11~14のいずれかに記載のポリイミド。
16. 脂肪族テトラカルボン酸成分とジアミン成分とを反応して得られたポリイミドであって、酸素指数が22%(体積分率)以上であることを特徴とするポリイミド。
17. 前記項10に記載のポリイミド前駆体溶液組成物を用いて得られたポリイミド、又は前記項11~16のいずれかに記載のポリイミドによって形成されたことを特徴とするディスプレイ用、タッチパネル用、または太陽電池用の基板。
 本発明によって、透明性、折り曲げ耐性、高耐熱性などの優れた特性を有し、さらに極めて低い線膨張係数や優れた耐溶剤性を併せ有するポリイミド、及びその前駆体を提供することができる。この本発明のポリイミド前駆体から得られるポリイミド、及び本発明のポリイミドは、透明性が高く、且つ低線膨張係数であって微細な回路の形成が容易であり、耐溶剤性も併せ有するので、ディスプレイ用途などの基板を形成するために好適に用いることができる。また、本発明のポリイミドは、タッチパネル用、太陽電池用の基板を形成するためにも好適に用いることができる。
 また、本発明によって、透明性、折り曲げ耐性、高耐熱性などの優れた特性を有し、さらに極めて低い線膨張係数や優れた耐溶剤性、難燃性を併せ有するポリイミド、及びその前駆体を提供することができる。この本発明のポリイミド前駆体から得られるポリイミド、及び本発明のポリイミドは、透明性が高く、且つ低線膨張係数であって微細な回路の形成が容易であり、耐溶剤性、難燃性も併せ有するので、ディスプレイ用途などの基板、タッチパネル用、太陽電池用の基板を形成するために好適に用いることができる。
 本発明のポリイミド前駆体は、前記化学式(1)で表される繰り返し単位を含んで構成されたポリイミド前駆体である。換言すれば、本発明のポリイミド前駆体は、化学構造中に少なくとも一つの脂肪族6員環を有し芳香族環を有さない脂環式テトラカルボン酸成分と、化学構造中に少なくとも一つのアミド結合と芳香族環とを有する芳香族ジアミン成分から得られる半脂環式ポリイミド前駆体(A)、または、脂肪族テトラカルボン酸成分と、化学構造中に少なくとも一つの前記化学式(2)の化学構造を有するジアミン成分から得られるポリイミド前駆体(B)である。
 本発明のポリイミド前駆体は、他のテトラカルボン酸成分および/またはジアミン成分を使用して得られるポリイミド前駆体であってもよく、例えば、全テトラカルボン酸成分100モル%中、化学式(1)で表される繰り返し単位を与えるテトラカルボン酸成分(すなわち、ポリイミド前駆体(A)の場合は、化学構造中に少なくとも一つの脂肪族6員環を有し芳香族環を有さない脂環式テトラカルボン酸成分であり、ポリイミド前駆体(B)の場合は、脂肪族テトラカルボン酸成分である。)を70モル%以上、それ以外のテトラカルボン酸成分を30モル%以下で含むテトラカルボン酸成分と、全ジアミン成分100モル%中、化学式(1)で表される繰り返し単位を与えるジアミン成分(すなわち、ポリイミド前駆体(A)の場合は、化学構造中に少なくとも一つのアミド結合と芳香族環とを有する芳香族ジアミン成分であり、ポリイミド前駆体(B)の場合は、化学構造中に少なくとも一つの下記化学式(2)の化学構造を有するジアミン成分である。)を70モル%以上、それ以外のジアミン成分を30モル%以下で含むジアミン成分とから得られるポリイミド前駆体であってもよい。
 本発明のポリイミド前駆体(A)のテトラカルボン酸成分およびジアミン成分について説明する。
 本発明のポリイミド前駆体(A)において用いるテトラカルボン酸成分は、化学構造中に少なくとも一つの脂肪族6員環を有し芳香族環を有さない脂環式テトラカルボン酸成分であり、テトラカルボン酸成分中の6員環は複数であってよく、複数の6員環が二つ以上の共通の炭素原子によって構成されていても構わない。また、6員環は環を構成する(6員環の内部の)炭素原子同士が化学結合によって更に環を形成した架橋環型であっても構わない。
 テトラカルボン酸成分は、対称性が高い6員環構造を有するものが、高分子鎖の密なパッキングが可能となり、ポリイミドの耐溶剤性、耐熱性、機械強度に優れるため好ましい。さらに、テトラカルボン酸成分は、複数の6員環が二つ以上の共通の炭素原子によって構成された多脂環型、及び6員環が環を構成する炭素原子同士が化学結合によって更に環を形成した架橋環型であることが、ポリイミドの良好な耐熱性、耐溶剤性、低線膨張係数を達成し易いのでより好ましい。
 前記化学式(1)中のAで表されるテトラカルボン酸成分に由来する4価の基としては、例えば、前記化学式(3-1)~(3-4)の基が好ましく、前記化学式(3-3)又は(3-4)の基がより好ましく、前記化学式(3-4)の基が特に好ましい。前記化学式(3-1)及び(3-2)の基に比べ、前記化学式(3-3)及び(3-4)の基は、架橋環型であるため、ポリイミドの耐熱性に優れ且つ線膨張係数が小さいため、より好ましい。さらに前記化学式(3-4)の基は、多脂環・架橋環型であるため、よりポリイミドの耐熱性に優れることから、特に好ましい。
 前記化学式(3-1)又は(3-2)の化学構造を導入するテトラカルボン酸成分としては、例えばシクロヘキサン-1,2,4,5-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-3,3’,4,4’-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-2,3,3’,4’-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-2,2’,3,3’-テトラカルボン酸、4,4’-メチレンビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-(プロパン-2,2-ジイル)ビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-オキシビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-チオビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-スルホニルビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-(ジメチルシランジイル)ビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-(テトラフルオロプロパン-2,2-ジイル)ビス(シクロヘキサン-1,2-ジカルボン酸)等の誘導体や、これらの酸二無水物が挙げられる。これらのうちでは、シクロヘキサン-1,2,4,5-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-3,3’,4,4’-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-2,3,3’,4’-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-2,2’,3,3’-テトラカルボン酸の誘導体や、これらの酸二無水物が、ポリイミドの耐溶剤性、機械強度に優れるため好ましい。
 これらのテトラカルボン酸成分は、特に限定されないが、分離精製等を行い、特定の立体異性体の比率を80%以上、より好ましくは90%以上、特に好ましくは95%以上にすることで、ポリイミドの耐熱性や耐溶剤性が向上する。そのようなテトラカルボン酸成分の特定の立体異性体としては、
1R,2S,4S,5R-シクロヘキサンテトラカルボン酸(以下PMTA-HSと略すことがあり、更にその酸二無水物をPMDA-HSと略すことがある。)、
1S,2S,4R,5R-シクロヘキサンテトラカルボン酸(以下PMTA-HHと略すことがあり、更にその酸二無水物をPMDA-HHと略すことがある。)、
(1R,1’S,3R,3’S,4R,4’S)ジシクロヘキシル-3,3’,4,4’-テトラカルボン酸(以下trans-DCTAと略すことがあり、更にその酸二無水物をtrans-DCDAと略すことがある。)、
(1R,1’S,3R,3’S,4S,4’R)ジシクロヘキシル-3,3’,4,4’-テトラカルボン酸(以下cis-DCTAと略すことがあり、更にその酸二無水物をcis-DCDAと略すことがある。)
が好ましく、PMTA-HS、trans-DCTA、cis-DCTAは、酸二無水物とした場合の反応性に優れるため、より好ましい。
 前記化学式(3-3)又は(3-4)の化学構造を導入する架橋環型又は多脂環・架橋環型のテトラカルボン酸成分としては、例えばオクタヒドロペンタレン-1,3,4,6-テトラカルボン酸、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸、6-(カルボキシメチル)ビシクロ[2.2.1]ヘプタン-2,3,5-トリカルボン酸、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸、ビシクロ[2.2.2]オクタ-5-エン-2,3,7,8-テトラカルボン酸、トリシクロ[4.2.2.02,5]デカン-3,4,7,8-テトラカルボン酸、トリシクロ[4.2.2.02,5]デカ-7-エン-3,4,9,10-テトラカルボン酸、9-オキサトリシクロ[4.2.1.02,5]ノナン-3,4,7,8-テトラカルボン酸、デカヒドロ-1,4:5,8-ジメタノナフタレン-2,3,6,7-テトラカルボン酸等の誘導体や、これらの酸二無水物が挙げられる。これらのうちでは、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸、デカヒドロ-1,4:5,8-ジメタノナフタレン-2,3,6,7-テトラカルボン酸等の誘導体や、これらの酸二無水物が、ポリイミドの製造が容易であり、得られるポリイミドの耐熱性に優れることから、より好ましい。
 これらのテトラカルボン酸成分は、特に限定されないが、分離精製等を行い、特定の立体異性体の比率を70%以上、より好ましくは90%以上、特に好ましくは95%以上にすることで、低い線膨張係数を有するポリイミドを得ることができる。そのようなテトラカルボン酸成分の特定の立体異性体としては、
1rC7-ビシクロ[2.2.2]オクタン-2t,3t,5c,6c-テトラカルボン酸(以下cis/trans-BTTA-Hと略すことがあり、更にその無水物をcis/trans-BTA-Hと略すことがある。)
1rC7-ビシクロ[2.2.2]オクタン-2c,3c,5c,6c-テトラカルボン酸(以下cis/cis-BTTA-Hと略すことがあり、更にその酸二無水物をcis/cis-BTA-Hと略すことがある。)
(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2t,3t,6c,7c-テトラカルボン酸(以下DNTAxxと略すことがあり、更にその酸二無水物をDNDAxxと略すことがある。)
(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2c,3c,6c,7c-テトラカルボン酸(以下DNTAdxと略すことがあり、更にその酸二無水物をDNDAdxと略すことがある。)
が好ましい。
 前記のテトラカルボン酸成分の構造式を以下に示す。
Figure JPOXMLDOC01-appb-T000023
 テトラカルボン酸成分は、前記のようなテトラカルボン酸成分を、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 また、一般的にポリイミドで使用される他の芳香族または脂肪族テトラカルボン酸成分を、本発明のポリイミドの特性が発現できる範囲内で少量(好ましくは30モル%以下、より好ましくは10モル%以下、さらに好ましくは10モル%未満)併用することもできる。
 本発明で使用することができる他の芳香族または脂肪族テトラカルボン酸成分としては、例えば、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸、ビフェニルテトラカルボン酸、オキシジフタル酸、ビスカルボキシフェニルジメチルシラン、ビスジカルボキシフェノキシジフェニルスルフィド、スルホニルジフタル酸、シクロブタンテトラカルボン酸、イソプロピリデンジフェノキシビスフタル酸等の誘導体や、これらの酸二無水物が挙げられる。
 本発明で用いるテトラカルボン酸成分は、特に限定されないが、純度(複数の立体異性体を含む場合は、それらを区別せず同一成分と見なした場合の純度であり、複数種のテトラカルボン酸成分を用いる場合には、最も純度の高いテトラカルボン酸成分の値、もしくは用いるすべてのテトラカルボン酸成分の純度を個別に求め、用いる質量比で重みをつけた純度の平均値、例えば、純度100%のテトラカルボン酸成分を70質量部、純度90%のテトラカルボン酸成分を30質量部使用したとき、使用されるテトラカルボン酸成分の純度は、97%と計算される。)が99%以上、好ましくは99.5%以上であることが好ましい。純度が98%未満の場合、ポリイミド前駆体の分子量が十分にあがらず、得られるポリイミドの耐熱性が劣ることがある。純度は、ガスクロマトグラフィー分析やH-NMR分析から求められる値であり、テトラカルボン酸二無水物の場合、加水分解の処理を行い、テトラカルボン酸として、その純度を求めることもできる。
 また、本発明で用いるテトラカルボン酸成分は、特に限定されないが、光透過率(複数種のテトラカルボン酸成分を用いる場合には、最も光透過率が優れるテトラカルボン酸成分の値、もしくは用いるすべてのテトラカルボン酸成分の純度を個別に求め、用いる質量比で重みをつけた光透過率の平均値、例えば、光透過率100%のテトラカルボン酸成分を70質量部、光透過率90%のテトラカルボン酸成分を30質量部使用したとき、使用されるテトラカルボン酸成分の光透過率は、97%と計算される。)が70%以上、好ましくは80%以上、より好ましくは90%以上であることが好ましい。但し、ここでの光透過率は、2規定水酸化ナトリウム溶液に10質量%の濃度に溶解して得られた溶液に対する波長400nm、光路長1cmの透過率である。テトラカルボン酸成分の光透過率が70%以上の場合、得られるポリイミドの着色が低減されるため、良好である。
 本発明のポリイミド前駆体(A)において用いるジアミン成分は、化学構造中に少なくとも一つのアミド結合と芳香族環とを有するジアミン成分である。
 本発明のポリイミド前駆体(A)は、ジアミン成分によってアミド結合がその化学構造中に導入される。アミド結合が導入されたポリイミド前駆体から得られるポリイミドは、アミド結合によって分子間相互作用が増大されるので、線膨張係数や耐溶剤性などが改良される。したがって、ジアミン成分は、化学構造中に一つ以上のアミド結合、好ましくは複数個のアミド結合を有することが好適である。なお、ジアミン成分中のアミド結合が多過ぎると、ポリイミド前駆体の溶解性が低下することがある。
 前記化学式(1)中のBで表されるジアミン成分に由来する2価の基としては、例えば、前記化学式(4-1)~(4-3)の基が好ましい。
 前記化学式(4-1)~(4-3)中のAr~Ar13は、それぞれ独立に、炭素数が6~18の芳香族環を有する2価の基である。ここでの芳香族環とは、例えばベンゼン、ビフェニル、ターフェニル、ナフタレン、アントラセンなどの2価の芳香族化合物であり、その水素の一部が炭素数1~3のアルキル基、ハロゲン基、ニトロ基、水酸基、カルボン酸基等で置換されていてもよい。2価の芳香族化合物としては、ベンゼン、ビフェニルがポリイミドの光透過性が優れるため、好ましい。また、特にその限りではないが、2価の芳香族化合物の結合位置(ポリイミド主鎖を形成する結合位置)は、ベンゼン、ビフェニレン、ターフェニルではパラ位、ナフタレン、アントラセンでは2,6位であることが、ポリイミドの線膨張係数を低く出来るため好ましい。
 前記化学式(4-1)~(4-3)の化学構造を導入するジアミン成分としては、例えば4,4’-ジアミノベンズアニリド、3’-クロロ-4,4’-ジアミノベンズアニリド、2’-クロロ-4,4’-ジアミノベンズアニリド、2’,6’-ジクロロ-4,4’-ジアミノベンズアニリド、3’-メチル-4,4’-ジアミノベンズアニリド、2’-メチル-4,4’-ジアミノベンズアニリド、2’,6’-ジメチル-4,4’-ジアミノベンズアニリド、3’-トリフルオロメチル-4,4’-ジアミノベンズアニリド、2’-トリフルオロメチル-4,4’-ジアミノベンズアニリド、3-クロロ-4,4’-ジアミノベンズアニリド、3-ブロモ-4,4’-ジアミノベンズアニリド、3-メチル-4,4’-ジアミノベンズアニリド、2-クロロ-4,4’-ジアミノベンズアニリド、2-ブロモ-4,4’-ジアミノベンズアニリド、2-メチル-4,4’-ジアミノベンズアニリド、4,3’-ジアミノベンズアニリド、4’-フルオロ-4,3’-ジアミノベンズアニリド、4’-クロロ-4,3’-ジアミノベンズアニリド、4’-ブロモ-4,3’-ジアミノベンズアニリド、3,4’-ジアミノベンズアニリド、4-クロロ-3,4’-ジアミノベンズアニリド、4-メチル-3,4’-ジアミノベンズアニリド、N,N’-ビス(4-アミノフェニル)テレフタルアミド(4-APTP)、N,N’-ビス(4-アミノフェニル)-2,5-ジクロロテレフタルアミド、N,N’-ビス(4-アミノフェニル)-2,5-ジメチルテレフタルアミド、N,N’-ビス(4-アミノフェニル)-2,3,5,6-テトラフルオロテレフタルアミド、N,N’-ビス(4-アミノフェニル)-2,3,5,6-テトラフルオロテレフタルアミド、N,N’-ビス(4-アミノフェニル)-2,3,5,6-テトラクロロテレフタルアミド、N,N’-ビス(4-アミノフェニル)-2,3,5,6-テトラブロモテレフタルアミド、N,N’-ビス(4-アミノフェニル)-4-ブロモイソフタルアミド、N,N’-ビス(4-アミノフェニル)-5-tert-ブチルイソフタルアミド、N,N’-p-フェニレンビス(p-アミノベンズアミド)、N,N’-m-フェニレンビス(p-アミノベンズアミド)等や、これらの誘導体が挙げられる。これらのうち、ポリイミドの線膨張係数を低く出来るため、4,4’-ジアミノベンズアニリド、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-p-フェニレンビス(p-アミノベンズアミド)が好ましく、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-p-フェニレンビス(p-アミノベンズアミド)がより好ましい。
 ジアミン成分は、前記のようなジアミン成分を、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 また、一般的にポリイミドで使用される他のジアミン成分を、本発明のポリイミドの特性が発現できる範囲内で少量(好ましくは30モル%以下、より好ましくは10モル%以下、さらに好ましくは10モル%未満)併用することもできる。
 本発明で使用することができる他のジアミン成分としては、例えば、オキシジアニリン、p-フェニレンジアミン、m-フェニレンジアミン、ベンジジン、3,3’-ジメチルベンジジン、2,2’-ジメチルベンジジン、p-メチレンビス(フェニレンジアミン)、ビス(アミノフェノキシ)ベンゼン、ビス[(アミノフェノキシ)フェニル]ヘキサフルオロプロパン、ビス(アミノフェニル)ヘキサフルオロプロパン、ビス(アミノフェニル)スルホン、ビス(トリフルオロメチル)ベンジジン、シクロヘキサンジアミン、ビス[(アミノフェノキシ)フェニル]プロパン、ビス(アミノヒドロキシフェニル)ヘキサフルオロプロパン、ビス[(アミノフェノキシ)ジフェニル]スルホン等が挙げられる。併用する他のジアミン成分として、特に、p-フェニレンジアミン、ベンジジン、3,3’-ジメチルベンジジン、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、ビス(アミノフェノキシ)ベンゼン、またはトランス-シクロヘキサンジアミンが、ポリイミドの線膨張係数を低く出来るため、好ましい。
 本発明で用いるジアミン成分は、特に限定されないが、純度(複数種のジアミン成分を用いる場合には、最も純度の高いジアミン成分の値、もしくは用いるすべてのジアミン成分の純度を個別に求め、用いる質量比で重みをつけた純度の平均値、例えば、純度100%のジアミン成分を70質量部、純度90%のジアミン成分を30質量部使用したとき、使用されるジアミン成分の純度は、97%と計算される。)が99%以上、更に好ましくは99.5%以上であることが好ましい。純度が98%未満の場合、ポリイミド前駆体の分子量が十分にあがらず、得られるポリイミドの耐熱性が劣ることがある。純度は、ガスクロマトグラフィー分析や液体クロマトグラフィー分析から求められる値である。
 また、本発明で用いるジアミン成分は、特に限定されないが、光透過率(複数種のジアミン成分を用いる場合には、最も光透過率が優れるジアミン成分の値、もしくは用いるすべてのジアミン成分の純度を個別に求め、用いる質量比で重みをつけた光透過率の平均値、例えば、光透過率100%のジアミン成分を70質量部、光透過率90%のジアミン成分を30質量部使用したとき、使用されるジアミン成分の光透過率は、97%と計算される。)が30%以上であることが好ましい。但し、ここでの光透過率は、メタノール、水、N,N-ジメチルアセトアミド、酢酸もしくはこれらの塩酸溶液に8質量%の濃度に溶解して得られた溶液に対する波長400nm、光路長1cmの透過率である。ジアミン成分の光透過率が30%以上の場合、得られるポリイミドの着色が低減されるため、良好である。
 次に、本発明のポリイミド前駆体(B)のテトラカルボン酸成分およびジアミン成分について説明する。
 本発明のポリイミド前駆体(B)において用いるテトラカルボン酸成分は、脂肪族テトラカルボン酸成分であれば特に限定されないが、化学構造中に少なくとも一つの脂肪族6員環を有し芳香族環を有さない脂環式テトラカルボン酸成分であることが好ましく、テトラカルボン酸成分中の6員環は複数であってよく、複数の6員環が二つ以上の共通の炭素原子によって構成されていても構わない。また、6員環は環を構成する(6員環の内部の)炭素原子同士が化学結合によって更に環を形成した架橋環型であっても構わない。
 テトラカルボン酸成分は、非対称性ではなく、対称性が高い6員環構造を有するものが、高分子鎖の密なパッキングが可能となり、ポリイミドの耐溶剤性、耐熱性、機械強度に優れるため好ましい。さらに、テトラカルボン酸成分は、複数の6員環が二つ以上の共通の炭素原子によって構成された多脂環型、及び6員環が環を構成する炭素原子同士が化学結合によって更に環を形成した架橋環型であることが、ポリイミドの良好な耐熱性、耐溶剤性、低線膨張係数を達成し易いのでより好ましい。
 前記化学式(1)中のAで表されるテトラカルボン酸成分に由来する4価の基としては、例えば、前記化学式(3-1)~(3-4)の基が好ましく、前記化学式(3-3)又は(3-4)の基がより好ましく、前記化学式(3-4)の基が特に好ましい。前記化学式(3-1)及び(3-2)の基に比べ、前記化学式(3-3)及び(3-4)の基は、架橋環型であるため、ポリイミドの耐熱性に優れ且つ線膨張係数が小さいため、より好ましい。さらに前記化学式(3-4)の基は、多脂環・架橋環型であるため、よりポリイミドの耐熱性に優れることから、特に好ましい。
 前記化学式(3-1)又は(3-2)の化学構造を導入するテトラカルボン酸成分としては、ポリイミド前駆体(A)で挙げたものと同様のものが挙げられ、好ましいものも同様である。
 前記化学式(3-3)又は(3-4)の化学構造を導入する架橋環型又は多脂環・架橋環型のテトラカルボン酸成分としては、ポリイミド前駆体(A)で挙げたものと同様のものが挙げられ、好ましいものも同様である。
 テトラカルボン酸成分は、前記のようなテトラカルボン酸成分を、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 また、一般的にポリイミドで使用される他の芳香族または脂肪族テトラカルボン酸成分を、本発明のポリイミドの特性が発現できる範囲内で少量(好ましくは30モル%以下、より好ましくは10モル%以下、さらに好ましくは10モル%未満)併用することもできる。
 本発明で用いるテトラカルボン酸成分は、特に限定されないが、純度(複数の立体異性体を含む場合は、それらを区別せず同一成分と見なした場合の純度であり、複数種のテトラカルボン酸成分を用いる場合には、最も純度の高いテトラカルボン酸成分の値、もしくは用いるすべてのテトラカルボン酸成分の純度を個別に求め、用いる質量比で重みをつけた純度の平均値、例えば、純度100%のテトラカルボン酸成分を70質量部、純度90%のテトラカルボン酸成分を30質量部使用したとき、使用されるテトラカルボン酸成分の純度は、97%と計算される。)が99%以上、好ましくは99.5%以上であることが好ましい。純度が98%未満の場合、ポリイミド前駆体の分子量が十分にあがらず、得られるポリイミドの耐熱性が劣ることがある。純度は、ガスクロマトグラフィー分析やH-NMR分析から求められる値であり、テトラカルボン酸二無水物の場合、加水分解の処理を行い、テトラカルボン酸として、その純度を求めることもできる。
 また、本発明で用いるテトラカルボン酸成分は、特に限定されないが、光透過率(複数種のテトラカルボン酸成分を用いる場合には、最も光透過率が優れるテトラカルボン酸成分の値、もしくは用いるすべてのテトラカルボン酸成分の純度を個別に求め、用いる質量比で重みをつけた光透過率の平均値、例えば、光透過率100%のテトラカルボン酸成分を70質量部、光透過率90%のテトラカルボン酸成分を30質量部使用したとき、使用されるテトラカルボン酸成分の光透過率は、97%と計算される。)が70%以上、好ましくは80%以上、より好ましくは90%以上であることが好ましい。但し、ここでの光透過率は、2規定水酸化ナトリウム溶液に10質量%の濃度に溶解して得られた溶液に対する波長400nm、光路長1cmの透過率である。テトラカルボン酸成分の光透過率が70%以上の場合、得られるポリイミドの着色が低減されるため、良好である。
 本発明のポリイミド前駆体(B)において用いるジアミン成分は、化学構造中に少なくとも一つの前記化学式(2)の化学構造を有するジアミン成分である。
 本発明のポリイミド前駆体(B)は、ジアミン成分によって前記化学式(2)の化学構造がその構造中に導入される。前記化学式(2)の化学構造が導入されたポリイミド前駆体から得られるポリイミドは、導入された前記化学式(2)の化学構造によって分子間相互作用が増大されるので、線膨張係数や耐溶剤性などが改良されると考えられる。さらに、前記化学式(2)の化学構造は2つの窒素原子を有することから、得られるポリイミド中に効率よく窒素原子を導入することが可能となるため、難燃性(その指標としての酸素指数)や接着性などが改良されると考えられる。したがって、ジアミン成分は、化学構造中に一つ以上の前記化学式(2)の化学構造、好ましくは複数個の前記化学式(2)の化学構造を有することが好ましい。
 前記化学式(1)中のBで表されるジアミン成分に由来する2価の基としては、例えば、前記化学式(4-4)の基が好ましい。即ち、ジアミン成分としては、下記化学式(4-5)で表されるジアミンを好適に用いることができる。
Figure JPOXMLDOC01-appb-C000024

(式中、Ar14及びAr15は、それぞれ独立に、炭素数6~18の2価の芳香族基であり、R5は、水素原子または一価の有機基である。)
 前記の化学式(4-5)のジアミンとしては、例えば2,4-ビス(4-アミノアニリノ)-1,3,5-トリアジン、2,4-ビス(4-アミノアニリノ)-6-メチル-1,3,5-トリアジン、2,4-ビス(4-アミノアニリノ)-6-エチル-1,3,5-トリアジン、2,4-ビス(4-アミノアニリノ)-6-フェニル-1,3,5-トリアジン、2,4-ビス(4-アミノアニリノ)-6-アミノ-1,3,5-トリアジン、2,4-ビス(4-アミノアニリノ)-6-メチルアミノ-1,3,5-トリアジン、2,4-ビス(4-アミノアニリノ)-6-ジメチルアミノ-1,3,5-トリアジン、2,4-ビス(4-アミノアニリノ)-6-エチルアミノ-1,3,5-トリアジン、2,4-ビス(4-アミノアニリノ)-6-ジエチルアミノ-1,3,5-トリアジン、2,4-ビス(4-アミノアニリノ)-6-アニリノ-1,3,5-トリアジン、2,4-ビス(4-アミノアニリノ)-6-ジフェニルアミノ-1,3,5-トリアジン等や、これらの誘導体が挙げられる。これらのうち、2,4-ビス(4-アミノアニリノ)-6-アミノ-1,3,5-トリアジン、2,4-ビス(4-アミノアニリノ)-6-メチルアミノ-1,3,5-トリアジン、2,4-ビス(4-アミノアニリノ)-6-エチルアミノ-1,3,5-トリアジン、2,4-ビス(4-アミノアニリノ)-6-アニリノ-1,3,5-トリアジンが好ましく、2,4-ビス(4-アミノアニリノ)-6-アニリノ-1,3,5-トリアジンがより好ましい。
 ジアミン成分は、前記のようなジアミン成分を、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 また、一般的にポリイミドで使用される他のジアミン成分を、本発明のポリイミドの特性が発現できる範囲内で少量(好ましくは30モル%以下、より好ましくは10モル%以下、さらに好ましくは10モル%未満)併用することもできる。
 本発明で用いるジアミン成分は、特に限定されないが、純度(複数種のジアミン成分を用いる場合には、最も純度の高いジアミン成分の値、もしくは用いるすべてのジアミン成分の純度を個別に求め、用いる質量比で重みをつけた純度の平均値、例えば、純度100%のジアミン成分を70質量部、純度90%のジアミン成分を30質量部使用したとき、使用されるジアミン成分の純度は、97%と計算される。)が99%以上、更に好ましくは99.5%以上であることが好ましい。純度が98%未満の場合、ポリイミド前駆体の分子量が十分にあがらず、得られるポリイミドの耐熱性が劣ることがある。純度は、ガスクロマトグラフィー分析から求められる値である。
 また、本発明で用いるジアミン成分は、特に限定されないが、光透過率(複数種のジアミン成分を用いる場合には、最も光透過率が優れるジアミン成分の値、もしくは用いるすべてのジアミン成分の純度を個別に求め、用いる質量比で重みをつけた光透過率の平均値、例えば、光透過率100%のジアミン成分を70質量部、光透過率90%のジアミン成分を30質量部使用したとき、使用されるジアミン成分の光透過率は、97%と計算される。)が30%以上であることが好ましい。但し、ここでの光透過率は、メタノール、水、N,N-ジメチルアセトアミド、酢酸もしくはこれらの塩酸溶液に8質量%の濃度に溶解して得られた溶液に対する波長400nm、光路長1cmの透過率である。ジアミン成分の光透過率が30%以上の場合、得られるポリイミドの着色が低減されるため、良好である。
 本発明のポリイミド前駆体において、前記化学式(1)のX、Xは、それぞれ独立に、水素、炭素数1~6、好ましくは炭素数1~3のアルキル基、または炭素数3~9のアルキルシリル基のいずれかである。X、Xは、後述する製造方法によって、その官能基の種類、及び、官能基の導入率を変化させることができる。
 X、Xが水素である場合、ポリイミドの製造が容易である傾向がある。
 また、X、Xが炭素数1~6、好ましくは炭素数1~3のアルキル基である場合、ポリイミド前駆体の保存安定性に優れる傾向がある。この場合、X、Xはメチル基もしくはエチル基であることがより好ましい。
 更に、X、Xが炭素数3~9のアルキルシリル基である場合、ポリイミド前駆体の溶解性が優れる傾向がある。また、X、Xが炭素数3~9のアルキルシリル基である場合(即ち、シリル化剤を用いた場合)、テトラカルボン酸成分とジアミン成分(即ち、化学式(1)のA、B)にもよるが、通常、線膨張係数が更に小さくなる傾向がある。この場合、X、Xはトリメチルシリル基もしくはt-ブチルジメチルシリル基であることがより好ましい。
 官能基の導入率は、特に限定されないが、アルキル基もしくはアルキルシリル基を導入する場合、X、Xはそれぞれ、25%以上、好ましくは50%以上、より好ましくは75%以上をアルキル基もしくはアルキルシリル基にすることができる。
 本発明のポリイミド前駆体は、X及びXが取る化学構造によって、1)ポリアミド酸(X、Xが水素)、2)ポリアミド酸エステル(X、Xの少なくとも一部がアルキル基)、3)ポリアミド酸シリルエステル(X、Xの少なくとも一部がアルキルシリル基)に分類することができる。そして、本発明のポリイミド前駆体は、この分類ごとに、以下の製造方法により容易に製造することができる。ただし、本発明のポリイミド前駆体の製造方法は、以下の製造方法に限定されるものではない。また、前記分類の構造を、ポリイミド前駆体の同一分子鎖中に複数導入することや、複数種の前記分類のポリイミド前駆体を混合して使用することもできる。
1)ポリアミド酸
 本発明のポリイミド前駆体は、溶媒中でテトラカルボン酸成分(好ましくはテトラカルボン酸二無水物)とジアミン成分とを略等モル、好ましくはテトラカルボン酸成分に対するジアミン成分のモル比[ジアミン成分のモル数/テトラカルボン酸成分のモル数]が好ましくは0.90~1.10、より好ましくは0.95~1.05の割合で、例えば120℃以下の比較的低温度でイミド化を抑制しながら反応することによって、ポリイミド前駆体溶液組成物として好適に得ることができる。
 限定するものではないが、より具体的には、溶媒にジアミンを溶解し、この溶液に攪拌しながら、テトラカルボン酸二無水物を徐々に添加し、0~120℃、好ましくは5~80℃の温度範囲で1~72時間攪拌することで、ポリイミド前駆体溶液組成物が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。上記製造方法でのジアミンとテトラカルボン酸二無水物の添加順序は、ポリイミド前駆体の分子量が上がりやすいため、好ましい。また、上記製造方法のジアミンとテトラカルボン酸二無水物の添加順序を逆にすることも可能であり、析出物が低減することから、好ましい。
 また、テトラカルボン酸成分とジアミン成分のモル比がジアミン成分過剰である場合、必要に応じて、ジアミン成分の過剰モル数に略相当する量のカルボン酸誘導体を添加し、テトラカルボン酸成分とジアミン成分のモル比を略当量に近づけることができる。ここでのカルボン酸誘導体としては、実質的にポリイミド前駆体溶液の粘度を増加させない、つまり実質的に分子鎖延長に関与しないテトラカルボン酸、もしくは末端停止剤として機能するトリカルボン酸とその無水物、ジカルボン酸とその無水物などが好適である。
2)ポリアミド酸エステル
 テトラカルボン酸二無水物を任意のアルコールと反応させ、ジエステルジカルボン酸を得た後、塩素化試薬(チオニルクロライド、オキサリルクロライドなど)と反応させ、ジエステルジカルボン酸クロライドを得る。このジエステルジカルボン酸クロライドとジアミンを-20~120℃、好ましくは-5~80℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。また、ジエステルジカルボン酸とジアミンを、リン系縮合剤や、カルボジイミド縮合剤などを用いて脱水縮合することでも、簡便にポリイミド前駆体が得られる。
 この方法で得られるポリイミド前駆体は、安定なため、水やアルコールなどの溶剤を加えて再沈殿などの精製を行うこともできる。
3)ポリアミド酸シリルエステル
 あらかじめ、ジアミンとシリル化剤を反応させ、シリル化されたジアミンを得る。必要に応じて、蒸留等により、シリル化されたジアミンの精製を行う。そして、脱水された溶媒中にシリル化されたジアミンを溶解させておき、攪拌しながら、テトラカルボン酸二無水物を徐々に添加し、0~120℃、好ましくは5~80℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。80℃以上で反応させる場合、分子量が重合時の温度履歴に依存して変動し、また熱によりイミド化が進行することから、ポリイミド前駆体を安定して製造できなくなる可能性がある。
 また、前記の1)ポリアミド酸の製造方法で得たポリアミド酸に、シリル化剤を添加し、0~180℃、好ましくは5~150℃の範囲で1~72時間攪拌することで、ポリイミド前駆体が得られる。特に150℃以下で反応させる場合、イミド化反応を抑制でき、ポリイミド前駆体を安定して製造できるため、好ましい。
 ここで用いるシリル化剤は、炭素数3~9のアルキルシリル化合物であれば、特に制限はなく、例えばハロゲン化トリアルキルシリルや、ハロゲンを含有しないシリル化剤を用いることができる。ハロゲン化トリアルキルシリルとしては、トリメチルシリルクロライド、トリエチルシリルクロライド、イソプロピルジメチルシリルクロライド、t-ブチルジメチルシリルクロライド、トリイソプロピルシリルクロライドなどが好ましく、特に好ましくは、トリメチルシリルクロライド及びt-ブチルジメチルシリルクロライドが、反応性が高く、安価であることから好ましい。塩素原子等のハロゲンを含まないシリル化剤としては、N,O-ビス(トリメチルシリル)トリフルオロアセトアミド、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが挙げられる。塩素等のハロゲンを含有しないシリル化剤を用いることは、シリル化されたジアミンを精製する必要がないため、好適である。さらに、フッ素原子を含まず低コストであることから、N,O-ビス(トリメチルシリル)アセトアミド、ヘキサメチルジシラザンが特に好ましい。
 また、ジアミンのシリル化反応には、反応を促進するために、ピリジン、ピペリジン、トリエチルアミンなどのアミン系触媒を用いることができる。この触媒はポリイミド前駆体の重合触媒として、そのまま使用することができる。
 前記製造方法は、いずれも溶媒中で好適に行なうことができるので、その結果として、本発明のポリイミド前駆体溶液組成物を容易に得ることができる。
 ポリイミド前駆体を調製する際に使用する溶媒は、例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド等の非プロトン性溶媒や水が好ましく、特にN,N-ジメチルアセトアミドが好ましいが、原料モノマー成分と生成するポリイミド前駆体が溶解すれば、どんな種類の溶媒であっても問題はなく使用できるので、特にその構造には限定されない。溶媒として、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド溶媒、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトン等の環状エステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、トリエチレングリコール等のグリコール系溶媒、m-クレゾール、p-クレゾール、3-クロロフェノール、4-クロロフェノール等のフェノール系溶媒、アセトフェノン、1,3-ジメチル-2-イミダゾリジノン、スルホラン、ジメチルスルホキシド、水などが好ましく採用される。さらに、その他の一般的な有機溶剤、即ちフェノール、o-クレゾール、酢酸ブチル、酢酸エチル、酢酸イソブチル、プロピレングリコールメチルアセテート、エチルセロソルブ、ブチルセロソルブ、2-メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル、ジエチレングリコールジメチルエーテル、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロへキサノン、メチルエチルケトン、アセトン、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒なども使用できる。
 ポリイミド前駆体を調製する際に使用する溶媒、及び、後記のポリイミド前駆体溶液組成物に用いる溶媒(以降、これらを併せて「使用される溶媒」と記すことがある。)は、下記の純度に関する特性、即ち、(a)光透過率、(b)加熱還流処理後の光透過率、(c)ガスクロマトグラフィー分析による純度、(d)ガスクロマトグラフィー分析による不純物ピークの割合、(e)不揮発成分の量、及び(f)金属成分の含有率からなる特性の少なくとも1つに関して、下に規定される条件を満たすことが好ましく、通常、より多くの条件を満たすことがより好ましい。
 (a)使用される溶媒として、光路長1cm、波長400nmにおける光透過率が89%以上、より好ましくは90%以上、特に好ましくは91%以上である溶媒
 (b)使用される溶媒として、窒素中で3時間加熱還流した後の光路長1cm、波長400nmにおける光透過率が20%以上、より好ましくは40%以上、特に好ましくは80%以上である溶媒
 (c)使用される溶媒として、ガスクロマトグラフィー分析より求められた純度が99.8%以上、より好ましくは99.9%以上、さらに好ましくは99.99%以上である溶媒
 (d)使用される溶媒として、ガスクロマトグラフィー分析で求められる主成分ピークの保持時間に対し、長時間側に現れる不純物ピークの総量が、0.2%未満、より好ましくは0.1%以下、特に好ましくは0.05%以下である溶媒
 (e)使用される溶媒の250℃での不揮発成分の量が0.1%以下、より好ましくは0.05%以下、特に好ましくは0.01%以下であること
 (f)使用される溶媒の金属成分(例えば、Li,Na,Mg,Ca,Al,K,Ca,Ti,Cr,Mn,Fe,Co,Ni,Cu,Zn,Mo,Cd)の含有率が、10ppm以下、より好ましくは1ppm以下、特に好ましくは500ppb以下、より特に好ましくは300ppb以下であること
 これらの特性における条件は、使用される溶媒の総和に基づくものである。即ち、使用される溶媒は、1種類に限らず、2種類以上であってもよい。使用される溶媒が2種類以上とは、特定の工程において混合溶媒が使用される場合と、例えば重合溶媒と添加剤の希釈溶媒が異なる場合のように工程により異なる溶媒を使用する場合のどちらも意味する。使用される溶媒が2種類以上のときは(以下、混合溶媒という)、混合溶媒全体に対して純度に関わる各特性の条件が適用され、複数の工程で溶媒が使用される場合には、最終的にワニス中に含まれることになる全ての溶媒を混合した混合溶媒に対して、純度に関わる各特性の条件が適用される。実際に溶媒を混合して、各特性を測定してもよいし、個別の溶媒について特性を求め、計算により混合物全体の特性を求めてもよい。例えば、純度100%の溶媒Aを70部、純度90%の溶媒Bを30部使用したとき、使用される溶媒の純度は、97%と計算される。
 本発明において、ポリイミド前駆体の対数粘度は、特に限定されないが、30℃での濃度0.5g/dLのN,N-ジメチルアセトアミド溶液における対数粘度が0.2dL/g以上、好ましくは0.5dL/g以上であることが好ましい。対数粘度が0.2dL/g以上では、ポリイミド前駆体の分子量が高く、得られるポリイミドの機械強度や耐熱性に優れる。
 本発明のポリイミド前駆体は、特に限定されないが、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホオキシド、水より選ばれる溶媒に10質量%の濃度に溶解して得られた溶液に対する波長400nm、光路長1cmの光透過率が、好ましくは30%以上、より好ましくは40%以上である。波長400nmの光透過率が、30%以上の場合、得られるポリイミドの光透過性に優れる。
 本発明において、ポリイミド前駆体溶液組成物は、少なくとも本発明のポリイミド前駆体と溶媒とを含み、溶媒とテトラカルボン酸成分とジアミン成分との合計量に対して、テトラカルボン酸成分とジアミン成分との合計量が5質量%以上、好ましくは10質量%以上、より好ましくは15質量%以上の割合であることが好適である。なお、通常は60質量%以下、好ましくは50質量%以下であることが好適である。この濃度は、ポリイミド前駆体に起因する固形分濃度にほぼ近似される濃度であるが、この濃度が低すぎると、例えばポリイミドフィルムを製造する際に得られるポリイミドフィルムの膜厚の制御が難しくなることがある。
 本発明のポリイミド前駆体溶液組成物に用いる溶媒としては、ポリイミド前駆体が溶解すれば問題はなく、特にその構造には限定されない。溶媒として、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド溶媒、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトン等の環状エステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、トリエチレングリコール等のグリコール系溶媒、m-クレゾール、p-クレゾール、3-クロロフェノール、4-クロロフェノール等のフェノール系溶媒、アセトフェノン、1,3-ジメチル-2-イミダゾリジノン、スルホラン、ジメチルスルホキシド、水などが好ましく採用される。さらに、その他の一般的な有機溶剤、即ちフェノール、o-クレゾール、酢酸ブチル、酢酸エチル、酢酸イソブチル、プロピレングリコールメチルアセテート、エチルセロソルブ、ブチルセロソルブ、2-メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル、ジエチレングリコールジメチルエーテル、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロへキサノン、メチルエチルケトン、アセトン、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒なども使用できる。また、これらを複数種組み合わせて使用することもできる。
 本発明において、ポリイミド前駆体溶液組成物の粘度(回転粘度)は、特に限定されないが、E型回転粘度計を用い、温度25℃、せん断速度20sec-1で測定した回転粘度が、0.01~1000Pa・secが好ましく、0.1~100Pa・secがより好ましい。また、必要に応じて、チキソ性を付与することもできる。上記範囲の粘度では、コーティングや製膜を行う際、ハンドリングしやすく、また、はじきが抑制され、レベリング性に優れるため、良好な被膜が得られる。
 本発明のポリイミド前駆体溶液組成物は、必要に応じて、化学イミド化剤(無水酢酸などの酸無水物や、ピリジン、イソキノリンなどのアミン化合物)、酸化防止剤、フィラー、染料、顔料、シランカップリング剤などのカップリング剤、プライマー、難燃材、消泡剤、レベリング剤、レオロジーコントロール剤(流動補助剤)、剥離剤などを添加することができる。
 本発明のポリイミドは、前記化学式(5)で表される繰り返し単位を含んで構成されたことを特徴とする。この本発明のポリイミドは、前記のような本発明のポリイミド前駆体を閉環反応(イミド化反応)することで好適に製造することができる。イミド化の方法は特に限定されず、公知の熱イミド化、または化学イミド化の方法を好適に適用することができる。得られるポリイミドの形態は、フィルム、ポリイミドフィルムと他の基材との積層体、コーティング膜、粉末、ビーズ、成型体、発泡体およびワニスなどを好適に挙げることができる。
 本発明のポリイミドは、特に限定されないが、厚さ10μmのフィルムでの全光透過率(波長380nm~780nmの平均光透過率)は、好ましくは70%以上、より好ましくは80%以上、特に好ましくは85%以上であり、優れた光透過性を有する。
 本発明のポリイミドは、特に限定されないが、膜厚10μmのフィルムにしたとき、波長400nmにおける光透過率が、好ましくは50%以上、より好ましくは60%以上、より好ましくは70%以上、特に好ましくは75%以上であり、優れた透明性を有する。
 さらに、本発明のポリイミドは、特に限定されないが、フィルムにしたときの50℃~200℃における平均線膨張係数が、好ましくは50ppm/K以下、より好ましくは40ppm/K以下、特に好ましくは20ppm/K以下であり、極めて低い線膨張係数を有する。
 本発明のポリイミドは、通常、JIS K7201に準拠して求めたフィルムとしたときの酸素指数が22%(体積分率)以上、より好ましくは24%(体積分率)以上となり、その結果として優れた難燃性を有する。特に限定されないが、高い難燃性を有する本発明のポリイミドは、ポリイミド前駆体(B)から得られ、前記化学式(5)中のAは、脂肪族の4価の基であり、Bは、化学構造中に少なくとも一つの前記化学式(2)の化学構造を有する2価の基であることが好ましい。
 なお、本発明のポリイミドからなるフィルムは、用途にもよるが、フィルムの厚みとしては、好ましくは1μm~250μm程度、さらに好ましくは1μm~150μm程度である。
 本発明のポリイミドは、透明性、折り曲げ耐性、高耐熱性などの優れた特性を有し、さらに極めて低い線膨張係数や優れた耐溶剤性、あるいは、優れた耐溶剤性と難燃性を併せ有することから、ディスプレイ用透明基板、タッチパネル用透明基板、或いは太陽電池用基板の用途において、好適に用いることができる。
 以下では、本発明のポリイミド前駆体を用いた、ポリイミドフィルム/基材積層体、もしくはポリイミドフィルムの製造方法の一例について述べる。ただし、以下の方法に限定されるものではない。
 例えばセラミック(ガラス、シリコン、アルミナ)、金属(銅、アルミニウム、ステンレス)、耐熱プラスチックフィルム(ポリイミド)などの基材に、本発明のポリイミド前駆体溶液組成物を流延し、真空中、窒素等の不活性ガス中、或いは空気中で、熱風もしくは赤外線を用いて、20~180℃、好ましくは20~150℃の温度範囲で乾燥する。次いで、得られたポリイミド前駆体フィルムを基材上で、もしくはポリイミド前駆体フィルムを基材上から剥離し、そのフィルムの端部を固定した状態で、真空中、窒素等の不活性ガス中、或いは空気中で、熱風もしくは赤外線を用い、200~500℃、より好ましくは250~450℃程度の温度で加熱イミド化することでポリイミドフィルム/基材積層体、もしくはポリイミドフィルムを製造することができる。なお、得られるポリイミドフィルムが酸化劣化するのを防ぐため、加熱イミド化は、真空中、或いは不活性ガス中で行うことが望ましい。加熱イミド化の温度が高すぎなければ空気中で行なっても差し支えない。ここでのポリイミドフィルム(ポリイミドフィルム/基材積層体の場合は、ポリイミドフィルム層)の厚さは、以後の工程の搬送性のため、好ましくは1~250μm、より好ましくは1~150μmである。
 また、ポリイミド前駆体のイミド化反応は、前記のような加熱処理による加熱イミド化に代えて、ポリイミド前駆体をピリジンやトリエチルアミン等の3級アミン存在下、無水酢酸等の脱水環化試薬を含有する溶液に浸漬するなどの化学的処理によって行うことも可能である。また、これらの脱水環化試薬をあらかじめ、ポリイミド前駆体溶液組成物中に投入・攪拌し、それを基材上に流延・乾燥することで、部分的にイミド化したポリイミド前駆体を作製することもでき、これを更に前記のような加熱処理することで、ポリイミドフィルム/基材積層体、もしくはポリイミドフィルムを得ることができる。
 この様にして得られたポリイミドフィルム/基材積層体、もしくはポリイミドフィルムは、その片面もしくは両面に導電性層を形成することによって、フレキシブルな導電性基板を得ることができる。
 フレキシブルな導電性基板は、例えば次の方法によって得ることができる。すなわち、第一の方法としては、ポリイミドフィルム/基材積層体を基材からポリイミドフィルムを剥離せずに、そのポリイミドフィルム表面に、スパッタ蒸着、印刷などによって、導電性物質(金属もしくは金属酸化物、導電性有機物、導電性炭素など)の導電層を形成させ、導電性層/ポリイミドフィルム/基材の導電性積層体を製造する。その後必要に応じて、基材より電気導電層/ポリイミドフィルム積層体を剥離することによって、導電性層/ポリイミドフィルム積層体からなる透明でフレキシブルな導電性基板を得ることができる。
 第二の方法としては、ポリイミドフィルム/基材積層体の基材からポリイミドフィルムを剥離して、ポリイミドフィルムを得、そのポリイミドフィルム表面に、導電性物質(金属もしくは金属酸化物、導電性有機物、導電性炭素など)の導電層を、第一の方法と同様にして形成させ、導電性層/ポリイミドフィルム積層体からなる透明でフレキシブルな導電性基板を得ることができる。
 なお、第一、第二の方法において、必要に応じて、ポリイミドフィルムの表面に導電層を形成する前に、スパッタ蒸着やゲル-ゾル法などによって、水蒸気、酸素などのガスバリヤ層、光調整層などの無機層を形成しても構わない。
 また、導電層は、フォトリソグラフィ法や各種印刷法、インクジェット法などの方法によって、回路が好適に形成される。
 本発明の基板は、本発明のポリイミドによって構成されたポリイミドフィルムの表面に、必要に応じてガスバリヤ層や無機層を介し、導電層の回路を有するものである。この基板は、フレキシブルであり、透明性、折り曲げ性、耐熱性が優れ、さらに極めて低い線膨張係数や優れた耐溶剤性を併せ有するので微細な回路の形成が容易である。したがって、この基板は、ディスプレイ用、タッチパネル用、または太陽電池用の基板として好適に用いることができる。
 すなわち、この基板に、蒸着、各種印刷法、或いはインクジェット法などによって、さらにトランジスタ(無機トランジスタ、有機トランジスタ)が形成されてフレキシブル薄膜トランジスタが製造され、そして、表示デバイス用の液晶素子、EL素子、光電素子として好適に用いられる。
 以下、実施例及び比較例によって本発明を更に説明する。尚、本発明は以下の実施例に限定されるものではない。
 以下の各例において評価は次の方法で行った。
<テトラカルボン酸成分、ジアミン成分の評価>
 [光透過率]
 テトラカルボン酸成分では、所定量のテトラカルボン酸成分を溶媒(2N水酸化ナトリウム水溶液)に溶解し、10質量%溶液を得た。ジアミン成分では、所定量のジアミン成分を溶媒(メタノール)に溶解し、8質量%溶液を得た。調製した溶液を用い、大塚電子製MCPD-300、光路長1cmの標準セルを用いて、溶媒をブランクとし、テトラカルボン酸成分、ジアミン成分の波長400nmにおける光透過率を測定した。
<溶媒の評価>
 [GC分析:溶媒の純度]
 島津製作所製GC-2010を用い、以下の条件で測定した。純度(GC)はピーク面積分率より求めた。
カラム: J&W社製DB-FFAP 0.53mmID×30m
カラム温度: 40℃(5分保持)+40℃~250℃(10℃/分)+250℃(9分保持)
注入口温度: 240℃
検出器温度: 260℃
キャリアガス: ヘリウム 10ml/分
注入量: 1μL
 [不揮発分]
 ガラス製容器に溶媒5gを秤量し、250℃の熱風循環オーブン中で30分加熱した。室温に冷却し、その残分を秤量した。その質量より、溶媒の不揮発分(質量%)を求めた。
 [光透過率、還流後の光透過率]
 大塚電子製MCPD-300、光路長1cmの石英標準セルを用いて、超純水をブランクとして、溶媒の波長400nmにおける光透過率を測定した。
 また、還流後の光透過率として、酸素濃度200ppm以下の窒素雰囲気下、3時間加熱還流した溶媒の波長400nmにおける光透過率を測定した。
 [金属分の定量]
 パーキン・エルマー製ElanDRC II 誘導結合プラズマ質量分析(ICP-MS)を用い、溶媒に含まれる金属成分を定量した。
<ポリイミド前駆体溶液組成物の評価>
 [固形分濃度]
 アルミシャーレにポリイミド前駆体組成物1gを量り取り、200℃の熱風循環オーブン中で2時間加熱して固形分以外を除去し、その残分の質量より固形分濃度(質量%)を求めた。
 [回転粘度]
 東機産業製TV-22 E型回転粘度計を用い、温度25℃、せん断速度20sec-1でのポリイミド前駆体溶液の粘度を求めた。
 [対数粘度]
 濃度0.5g/dLのポリイミド前駆体のN,N-ジメチルアセトアミド溶液を、ウベローデ粘度計を用いて、30℃で測定し、対数粘度を求めた。
 [光透過率]
 10質量%のポリイミド前駆体溶液となる様に、ポリイミド前駆体をN,N-ジメチルアセトアミドで希釈した。調製した溶液を用い、大塚電子製MCPD-300、光路長1cmの標準セルを用いて、N,N-ジメチルアセトアミドをブランクとし、10質量%のポリイミド前駆体溶液の波長400nmにおける光透過率を測定した。
<ポリイミドフィルムの評価>
 [400nm光透過率、全光透過率]
 大塚電子製MCPD-300を用いて、膜厚10μmのポリイミド膜の400nmにおける光透過率と、全光透過率(380nm~780nmにおける平均透過率)を測定した。
 [弾性率、破断伸度]
 膜厚10μmのポリイミドフィルムをIEC450規格のダンベル形状に打ち抜いて試験片とし、ORIENTEC社製TENSILONを用いて、チャック間長30mm、引張速度2mm/minで、初期の弾性率、破断伸度を測定した。
 [線膨張係数(CTE)]
 膜厚約10μmのポリイミドフィルムを幅4mmの短冊状に切り取って試験片とし、島津製作所製TMA-50を用い、チャック間長15mm、荷重2g、昇温速度20℃/minで300℃まで昇温した。得られたTMA曲線から、50℃から200℃までの平均線膨張係数を求めた。
 [折り曲げ耐性]
 膜厚約10μmのポリイミドフィルムを幅4mmの短冊状に切り取って試験片とし、温度25℃、湿度50%RHの条件下、曲率半径1mmで折り曲げた。その後の試験片を目視で確認し、異常がないものを○、クラックが生じたものを×で示した。
 [耐溶剤性]
 膜厚約10μmのポリイミド膜を温度25℃の条件下、N,N-ジメチルアセトアミドに1時間浸漬した後、膜の状態を目視で確認した。異常がないものを○、しわや一部形状が変化したものを△、溶解したり、顕著に形状が変化したものを×で示した。
 [5%重量減少温度]
 膜厚10μmのポリイミドフィルムを試験片とし、エスアイアイ・ナノテクノロジー製 示差熱熱重量同時測定装置(TG/DTA6300)を用い、窒素気流中、昇温速度10℃/minで25℃から600℃まで昇温した。得られた重量曲線から、5%重量減少温度を求めた。
 [酸素指数]
 膜厚約30μmのポリイミドフィルムを試験片とし、東洋精機製作所製 キャンドル燃焼試験機D型を用い、JIS K7201に準拠した方法(試験片形状:V型 140mm×52mm×約30μm)で求めた。
 以下の各例で使用した原材料の略称、純度等は、次のとおりである。
 [ジアミン成分]
DABAN: 4,4’-ジアミノベンズアニリド〔純度:99.90%(GC分析)〕
4-APTP: N,N’-ビス(4-アミノフェニル)テレフタルアミド〔純度:99.95%(GC分析)〕
ODA: 4,4’-オキシジアニリン〔純度:99.9%(GC分析)〕
PPD: p-フェニレンジアミン〔純度:99.9%(GC分析)〕
TFMB: 2,2’-ビス(トリフルオロメチル)ベンジジン〔純度:99.83%(GC分析)〕
BABA: N,N’-p-フェニレンビス(p-アミノベンズアミド)〔純度:99%(LC分析)〕
AZDA: 2,4-ビス(4-アミノアニリノ)-6-アニリノ-1,3,5-トリアジン〔純度:99.9%(GC分析)〕
 [テトラカルボン酸成分]
PMDA-HS: 1R,2S,4S,5R-シクロヘキサンテトラカルボン酸二無水物〔PMDA-HSとしての純度:92.7%(GC分析),水素化ピロメリット酸二無水物(立体異性体の混合物)としての純度:99.9%(GC分析)〕
BPDA-H: 3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物(立体異性体の混合物)〔純度:99.9%(GC分析)〕
cis/cis-BTA-H: 1rC7-ビシクロ[2.2.2]オクタン-2c,3c,5c,6c-テトラカルボン酸-2,3:5,6-二無水物〔cis/cis-BTA-Hとしての純度:99.9%(GC分析)〕
DNDAxx:(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2t,3t,6c,7c-テトラカルボン酸二無水物〔DNDAxxとしての純度:99.2%(GC分析)〕
DNDAdx:(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2c,3c,6c,7c-テトラカルボン酸二無水物〔DNDAdxとしての純度:99.7%(GC分析)〕
 [ジアミン、酸二無水物溶液の透過率]
Figure JPOXMLDOC01-appb-T000025
 [シリル化剤]
BSA: N,O-ビス(トリメチルシリル)アセトアミド
 [溶媒]
DMAc: N,N-ジメチルアセトアミド
 [溶媒(N,N-ジメチルアセトアミド)の純度]
GC分析:
 主成分の保持時間(min) 14.28
 主成分の面積% 99.9929
 短保持時間不純物のピーク面積% 0.0000
 長保持時間不純物のピーク面積% 0.0071
 不揮発分(質量%) <0.001
光透過率:
 400nm光透過率(%) 92
 還流後の400nm光透過率(%) 92
金属分:
 Na(ppb) 150
 Fe(ppb) <2
 Cu(ppb) <2
 Mo(ppb) <1
 表3に実施例、比較例で使用したテトラカルボン酸成分、ジアミン成分の構造式を記す。
Figure JPOXMLDOC01-appb-T000026
 〔実施例1〕
 窒素ガスで置換した反応容器中にDABAN 2.27g(10ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が15質量%となる量の25.55gを加え、50℃で2時間攪拌した。この溶液にPMDA-HS 2.23g(10ミリモル)を徐々に加えた。50℃で6時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 このポリイミド前駆体溶液の特性を測定した結果を表4-1に示す。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)、そのままガラス基板上で120℃で1時間、150℃で30分間、200℃で30分間、350℃まで昇温して5分間、加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表4-1に示す。
 〔実施例2~5〕
 ジアミン成分、カルボン酸成分を表4-1に記載した化学組成とし、溶媒のN,N-ジメチルアセトアミドは、それぞれ仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が、15質量%となる量を用いた以外は、実施例1と同様にして、ポリイミド前駆体溶液、ポリイミドフィルムを得た。
 このポリイミド前駆体溶液、ポリイミドフィルムの特性を測定した結果を表4-1に示す。
 〔実施例6〕
 窒素ガスで置換した反応容器中にDABAN 2.27g(10ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の21.16gを加え、50℃で2時間攪拌した。この溶液にDNDAxx 2.11g(7ミリモル)とDNDAdx 0.91g(3ミリモル)を徐々に加えた。50℃で6時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。そして、実施例1と同様にしてフィルム化を行い、ポリイミドフィルムを得た。
 このポリイミド前駆体溶液、ポリイミドフィルムの特性を測定した結果を表4-1に示す。
 〔実施例7〕
 窒素ガスで置換した反応容器中にDABAN 2.27g(10ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の21.16gを加え、50℃で2時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。50℃で6時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。そして、実施例1と同様にしてフィルム化を行い、ポリイミドフィルムを得た。
 このポリイミド前駆体溶液、ポリイミドフィルムの特性を測定した結果を表4-1に示す。
 〔実施例8〕
 窒素ガスで置換した反応容器中にDABAN 2.27g(10ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の18.06gを加え、室温で1時間攪拌した。この溶液にBSA 4.07g(20ミリモル)を加え、室温で3時間攪拌した。次いで、この溶液にPMDA-HS 2.24g(10ミリモル)を徐々に加えた。室温で6時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。そして、実施例1と同様にしてフィルム化を行い、ポリイミドフィルムを得た。
 このポリイミド前駆体溶液、ポリイミドフィルムの特性を測定した結果を表4-1に示す。
 〔実施例9〕
 窒素ガスで置換した反応容器中にDABAN 2.05g(9ミリモル)とPPD 0.11g(1ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の17.45gを加え、室温で1時間攪拌した。この溶液にPMDA-HS 2.24g(10ミリモル)を徐々に加えた。室温で6時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。そして、実施例1と同様にしてフィルム化を行い、ポリイミドフィルムを得た。
 このポリイミド前駆体溶液、ポリイミドフィルムの特性を測定した結果を表4-1に示す。
 〔実施例10〕
 窒素ガスで置換した反応容器中にDABAN 2.05g(9ミリモル)とTFMB 0.32g(1ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の18.04gを加え、室温で1時間攪拌した。この溶液にPMDA-HS 2.24g(10ミリモル)を徐々に加えた。室温で6時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。そして、実施例1と同様にしてフィルム化を行い、ポリイミドフィルムを得た。
 このポリイミド前駆体溶液、ポリイミドフィルムの特性を測定した結果を表4-1に示す。
 〔実施例11〕
 窒素ガスで置換した反応容器中に4-APTP 3.46g(10ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の25.29gを加え、50℃で2時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。50℃で6時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。そして、実施例1と同様にしてフィルム化を行い、ポリイミドフィルムを得た。
 このポリイミド前駆体溶液、ポリイミドフィルムの特性を測定した結果を表4-2に示す。
 〔実施例12〕
 窒素ガスで置換した反応容器中にDABAN 2.27g(10ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の21.16gを加え、50℃で2時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。50℃で6時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。その溶液にBSA 4.07g(20ミリモル)を加え、12時間攪拌した。そして、実施例1と同様にしてフィルム化を行い、ポリイミドフィルムを得た。
 このポリイミド前駆体溶液、ポリイミドフィルムの特性を測定した結果を表4-2に示す。
 〔実施例13〕
 窒素ガスで置換した反応容器中に4-APTP 3.46g(10ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が15質量%となる量の36.72gを加え、50℃で2時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。50℃で6時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。その溶液にBSA 2.03g(10ミリモル)を加え、12時間攪拌した。そして、実施例1と同様にしてフィルム化を行い、ポリイミドフィルムを得た。
 このポリイミド前駆体溶液、ポリイミドフィルムの特性を測定した結果を表4-2に示す。
 〔実施例14〕
 窒素ガスで置換した反応容器中にDABAN 1.59g(7ミリモル)とPPD 0.32g(3ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の19.85gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で6時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。そして、実施例1と同様にしてフィルム化を行い、ポリイミドフィルムを得た。
 このポリイミド前駆体溶液、ポリイミドフィルムの特性を測定した結果を表4-2に示す。
 〔実施例15〕
 窒素ガスで置換した反応容器中にDABAN 1.59g(7ミリモル)とTFMB 0.96g(3ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の22.59gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で6時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。そして、実施例1と同様にしてフィルム化を行い、ポリイミドフィルムを得た。
 このポリイミド前駆体溶液、ポリイミドフィルムの特性を測定した結果を表4-2に示す。
 〔実施例16〕
 窒素ガスで置換した反応容器中に4-APTP 2.42g(7ミリモル)とPPD 0.32g(3ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の21.79gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で6時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。そして、実施例1と同様にしてフィルム化を行い、ポリイミドフィルムを得た。
 このポリイミド前駆体溶液、ポリイミドフィルムの特性を測定した結果を表4-2に示す。
 〔実施例17〕
 窒素ガスで置換した反応容器中にDABAN 1.59g(7ミリモル)とPPD 0.32g(3ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の19.75gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で6時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。その溶液にBSA 4.07g(20ミリモル)を加え、12時間攪拌した。そして、実施例1と同様にしてフィルム化を行い、ポリイミドフィルムを得た。
 このポリイミド前駆体溶液、ポリイミドフィルムの特性を測定した結果を表4-2に示す。
 〔実施例18〕
 窒素ガスで置換した反応容器中にBABA 3.46g(10ミリモル)を入れ、N,N-ジメチルアセトアミドを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の25.94gを加え、室温で1時間攪拌した。この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。室温で6時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。そして、実施例1と同様にしてフィルム化を行い、ポリイミドフィルムを得た。
 このポリイミド前駆体溶液、ポリイミドフィルムの特性を測定した結果を表4-2に示す。
 〔比較例1~4〕
 ジアミン成分、カルボン酸成分を表4-2に記載した化学組成とし、溶媒のN,N-ジメチルアセトアミドは、それぞれ仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が、比較例1,2では15質量%となる量、比較例3,4では20質量%となる量を用いた以外は、実施例1と同様にして、ポリイミド前駆体溶液、ポリイミドフィルムを得た。
 このポリイミド前駆体溶液、ポリイミドフィルムの特性を測定した結果を表4-2に示す。
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
 表4に示した結果から、比較例1~4に比べ、本発明のアミド結合を有するジアミンを用いた実施例1~18では線膨張係数が小さくなり、また耐溶剤性に優れることが分かる。
 また、6員環構造を2つ有するテトラカルボン酸成分を用いた場合(実施例3)や、6員環の炭素原子が化学結合によって更に環を形成した架橋環型テトラカルボン酸成分を用いた場合(実施例4,5)には、6員環構造を1つ有するテトラカルボン酸成分を用いた場合(実施例1,2)に比べ、さらに5%重量減少温度が高く、より耐熱性に優れることが分かる。
 さらに、DNDAxxやDNDAdxの様な多脂環・架橋環型のテトラカルボン酸成分を用いた場合(実施例6,7)には、6員環構造を2つ有するテトラカルボン酸成分を用いた場合(実施例3)や、6員環の炭素原子が化学結合によって更に環を形成した架橋環型テトラカルボン酸成分を用いた場合(実施例4,5)に比べ、さらに5%重量減少温度が高く、より耐熱性に優れることが分かる。
 シリル化剤を用いた場合、破断伸度が増加したり、線膨張係数が小さくなることが分かる(実施例8,12,13,17)
 前記のとおり、本発明のポリイミド前駆体から得られたポリイミドは、優れた光透過性、折り曲げ耐性を有すると共に、低線膨張係数、耐溶剤性を有しており、本発明のポリイミドフィルムは、ディスプレイ用途などの無色透明で微細な回路形成可能な透明基板として好適に用いることができる。
〔実施例19〕
 窒素ガスで置換した反応容器中にAZDA 3.84g(10ミリモル)を入れ、N,N-ジメチルアセトアミドを仕込みモノマー(ジアミン成分とカルボン酸成分の総和)が15質量%となる量の34.49gを加え、50℃で2時間攪拌した。
 この溶液にPMDA-HS 2.24g(10ミリモル)を徐々に加えた。50℃で6時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 このポリイミド前駆体溶液の特性を測定した結果を表5に示す。
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下(酸素濃度200ppm以下)そのままガラス基板上で120℃で1時間、150℃で30分間、200℃で30分間、350℃まで昇温して5分間、加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、膜厚が約10μmのポリイミドフィルムを得た。
 このポリイミドフィルムの特性を測定した結果を表5に示す。
〔実施例20〕
 窒素ガスで置換した反応容器中にAZDA 3.84g(10ミリモル)を入れ、N,N-ジメチルアセトアミドを仕込みモノマー(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の27.44gを加え、50℃で2時間攪拌した。
 この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。50℃で6時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 このポリイミド前駆体溶液、ポリイミドフィルムの特性を測定した結果を表5に示す。 
〔実施例21〕
 窒素ガスで置換した反応容器中にAZDA 3.84g(10ミリモル)を入れ、N,N-ジメチルアセトアミドを仕込みモノマー(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の27.44gを加え、50℃で2時間攪拌した。
 この溶液にDNDAdx 3.02g(10ミリモル)を徐々に加えた。50℃で6時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 このポリイミド前駆体溶液、ポリイミドフィルムの特性を測定した結果を表5に示す。
〔比較例5〕
 窒素ガスで置換した反応容器中にODA 2.00g(10ミリモル)を入れ、N,N-ジメチルアセトアミドを仕込みモノマー(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の16.98gを加え、50℃で2時間攪拌した。
 この溶液にPMDA-HS 2.24g(10ミリモル)を徐々に加えた。50℃で6時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 このポリイミド前駆体溶液、ポリイミドフィルムの特性を測定した結果を表5に示す。
〔比較例6〕
 窒素ガスで置換した反応容器中にODA 2.00g(10ミリモル)を入れ、N,N-ジメチルアセトアミドを仕込みモノマー(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の20.08gを加え、50℃で2時間攪拌した。
 この溶液にDNDAxx 3.02g(10ミリモル)を徐々に加えた。50℃で6時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 このポリイミド前駆体溶液、ポリイミドフィルムの特性を測定した結果を表5に示す。
〔比較例7〕
 窒素ガスで置換した反応容器中にODA 2.00g(10ミリモル)を入れ、N,N-ジメチルアセトアミドを仕込みモノマー(ジアミン成分とカルボン酸成分の総和)が20質量%となる量の20.08gを加え、50℃で2時間攪拌した。
 この溶液にDNDAdx 3.02g(10ミリモル)を徐々に加えた。50℃で6時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
 このポリイミド前駆体溶液、ポリイミドフィルムの特性を測定した結果を表5に示す。
Figure JPOXMLDOC01-appb-T000029
 表5に示した結果から、比較例5~7に比べ、前記化学式(2)の化学構造を有するジアミンを用いた本発明の実施例19~21は、線膨張係数が小さくなり、また耐溶剤性、耐熱性、難燃性(高い酸素指数)に優れることが分かる。
 また、テトラカルボン酸成分に多脂環・架橋環型を用いることで、400nm光透過率が向上していることが分かる。(実施例20,21)
 すなわち、本発明のポリイミド前駆体から得られたポリイミドは、優れた光透過性、折り曲げ耐性を有すると共に、低線膨張係数、耐溶剤性、難燃性を有しており、ディスプレイ用途などの無色透明で微細な回路形成可能な透明基板として好適に用いることができる。
 本発明によって、透明性、折り曲げ耐性、高耐熱性などの優れた特性を有し、さらに極めて低い線膨張係数や優れた耐溶剤性を併せ有するポリイミド、及びその前駆体を提供することができる。また、本発明によって、透明性、折り曲げ耐性、高耐熱性などの優れた特性を有し、さらに極めて低い線膨張係数や優れた耐溶剤性、難燃性を併せ有するポリイミド、及びその前駆体も提供することができる。このポリイミド前駆体から得られるポリイミド、及びポリイミドは、透明性が高く、且つ低線膨張係数であって微細な回路の形成が容易であり、耐溶剤性も併せ有するので、特にディスプレイ用途などの基板を形成するために好適に用いることができる。

Claims (12)

  1.  下記化学式(1)で表される繰り返し単位を含むことを特徴とするポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Aは、化学構造中に少なくとも一つの脂肪族6員環を有し芳香族環を有さない4価の基であり、Bは、化学構造中に少なくとも一つのアミド結合と芳香族環とを有する2価の基であるか、または、Aは、脂肪族の4価の基であり、Bは、化学構造中に少なくとも一つの下記化学式(2)の化学構造を有する2価の基である。
    Figure JPOXMLDOC01-appb-C000002
    、Xはそれぞれ独立に水素、炭素数1~6のアルキル基、または炭素数3~9のアルキルシリル基である。)
  2.  Aが、下記化学式(3-1)~(3-4)からなる群から選択される1種以上であることを特徴とする請求項1に記載のポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    (式中、R1は直接結合、CH基、C(CH基、SO基、Si(CH基、C(CF基、酸素原子、または硫黄原子である。)
    Figure JPOXMLDOC01-appb-C000005
    (式中、R2は、CH基、CHCH基、酸素原子、または硫黄原子である。)
    Figure JPOXMLDOC01-appb-C000006
    (式中、R3及びR4は、それぞれ独立に、CH基、CHCH基、酸素原子、または硫黄原子である。)
  3.  Bが、下記化学式(4-1)~(4-4)からなる群から選択される1種以上であることを特徴とする請求項1または2に記載のポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000007
    (式中、Ar、Ar及びArは、それぞれ独立に、炭素数が6~18の芳香族環を有する2価の基であり、n1は、0~5の整数である。)
    Figure JPOXMLDOC01-appb-C000008
    (式中、Ar、Ar、Ar、Ar及びArは、それぞれ独立に、炭素数が6~18の芳香族環を有する2価の基であり、n2は、0~5の整数である。)
    Figure JPOXMLDOC01-appb-C000009
    (式中、Ar、Ar10、Ar11、Ar12及びAr13は、それぞれ独立に、炭素数が6~18の芳香族環を有する2価の基であり、n3は、0~5の整数である。)
    Figure JPOXMLDOC01-appb-C000010
    (式中、Ar14及びAr15は、それぞれ独立に、炭素数6~18の2価の芳香族基であり、R5は、水素原子または一価の有機基である。)
  4.  全テトラカルボン酸成分100モル%中、化学式(1)で表される繰り返し単位を与えるテトラカルボン酸成分を70モル%以上、それ以外のテトラカルボン酸成分を30モル%以下で含むテトラカルボン酸成分と、全ジアミン成分100モル%中、化学式(1)で表される繰り返し単位を与えるジアミン成分を70モル%以上、それ以外のジアミン成分を30モル%以下で含むジアミン成分とから得られることを特徴とする請求項1~3のいずれかに記載のポリイミド前駆体。
  5.  純度(複数の立体異性体を含む場合は、それらを区別せず同一成分と見なした場合の純度)が99%以上のテトラカルボン酸成分と、純度が99%以上のジアミン成分とから得られることを特徴とする請求項1~4のいずれかに記載のポリイミド前駆体。
  6.  光透過率が70%以上のテトラカルボン酸成分(但し、テトラカルボン酸成分の光透過率は、2規定水酸化ナトリウム溶液に10質量%の濃度に溶解して得られた溶液に対する波長400nm、光路長1cmの透過率を表す。)と、光透過率が30%以上のジアミン成分(但し、ジアミン成分の光透過率は、メタノール、水、N,N-ジメチルアセトアミド、酢酸もしくはこれらの塩酸溶液に、8質量%の濃度に溶解して得られた溶液に対する波長400nm、光路長1cmの透過率を表す。)とから得られることを特徴とする請求項1~5のいずれかに記載のポリイミド前駆体。
  7.  N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホオキシド及び水より選ばれる溶媒に10質量%の濃度に溶解して得られた溶液に対する波長400nm、光路長1cmの光透過率が40%以上であることを特徴とする請求項1~6のいずれかに記載のポリイミド前駆体。
  8.  請求項1~7のいずれかに記載のポリイミド前駆体が溶媒中に溶解しているポリイミド前駆体溶液組成物であって、
     前記溶媒の波長400nm、光路長1cmの光透過率が89%以上であることを特徴とするポリイミド前駆体溶液組成物。
  9.  下記化学式(5)で表される繰り返し単位を含むことを特徴とするポリイミド。
    Figure JPOXMLDOC01-appb-C000011

    (式中、Aは、化学構造中に少なくとも一つの脂肪族6員環を有し芳香族環を有さない4価の基であり、Bは、化学構造中に少なくとも一つのアミド結合と芳香族環とを有する2価の基であるか、または、Aは、脂肪族の4価の基であり、Bは、化学構造中に少なくとも一つの前記化学式(2)の化学構造を有する2価の基である。)
  10.  前記化学式(5)中のAは、脂肪族の4価の基であり、Bは、化学構造中に少なくとも一つの前記化学式(2)の化学構造を有する2価の基であって、酸素指数が22%(体積分率)以上であることを特徴とする請求項9に記載のポリイミド。
  11.  脂肪族テトラカルボン酸成分とジアミン成分とを反応して得られたポリイミドであって、酸素指数が22%(体積分率)以上であることを特徴とするポリイミド。
  12.  請求項8に記載のポリイミド前駆体溶液組成物を用いて得られたポリイミド、又は請求項9~11のいずれかに記載のポリイミドによって形成されたことを特徴とするディスプレイ用、タッチパネル用、または太陽電池用の基板。
PCT/JP2012/056310 2011-03-11 2012-03-12 ポリイミド前駆体及びポリイミド WO2012124664A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201280022772.4A CN103534294B (zh) 2011-03-11 2012-03-12 聚酰亚胺前体和聚酰亚胺
JP2013504724A JP5920337B2 (ja) 2011-03-11 2012-03-12 ポリイミド前駆体及びポリイミド
KR1020137026687A KR101850174B1 (ko) 2011-03-11 2012-03-12 폴리이미드 전구체 및 폴리이미드
US14/004,362 US20140066571A1 (en) 2011-03-11 2012-03-12 Polyimide precursor and polyimide
KR1020187003440A KR101941413B1 (ko) 2011-03-11 2012-03-12 폴리이미드 전구체 및 폴리이미드
US14/821,380 US9758623B2 (en) 2011-03-11 2015-08-07 Polyimide precursor and polyimide

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011054845 2011-03-11
JP2011-054845 2011-03-11
JP2011-079396 2011-03-31
JP2011079396 2011-03-31
JP2012-010540 2012-01-20
JP2012010529 2012-01-20
JP2012010540 2012-01-20
JP2012-010529 2012-01-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/004,362 A-371-Of-International US20140066571A1 (en) 2011-03-11 2012-03-12 Polyimide precursor and polyimide
US14/821,380 Continuation US9758623B2 (en) 2011-03-11 2015-08-07 Polyimide precursor and polyimide

Publications (1)

Publication Number Publication Date
WO2012124664A1 true WO2012124664A1 (ja) 2012-09-20

Family

ID=46830733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056310 WO2012124664A1 (ja) 2011-03-11 2012-03-12 ポリイミド前駆体及びポリイミド

Country Status (6)

Country Link
US (2) US20140066571A1 (ja)
JP (2) JP5920337B2 (ja)
KR (2) KR101941413B1 (ja)
CN (4) CN103534294B (ja)
TW (2) TWI534177B (ja)
WO (1) WO2012124664A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024820A1 (ja) * 2011-08-12 2013-02-21 宇部興産株式会社 ポリイミド前駆体、ポリイミド、ポリイミドフィルム、およびこれらの製造に使用されるトリアジン化合物の製造方法
WO2013172331A1 (ja) * 2012-05-14 2013-11-21 国立大学法人岩手大学 ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ポリイミド金属積層体およびポリイミド溶液
JPWO2013024849A1 (ja) * 2011-08-18 2015-03-05 東レ株式会社 ポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物ならびにそれらを含有するフレキシブル基板
WO2015080156A1 (ja) * 2013-11-27 2015-06-04 宇部興産株式会社 ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
JP2016521405A (ja) * 2013-04-10 2016-07-21 コーロン インダストリーズ インク ポリイミドカバー基板
CN106189226A (zh) * 2014-12-25 2016-12-07 富士施乐株式会社 聚酰亚胺前体组合物、聚酰亚胺成形体、以及聚酰亚胺成形体的制备方法
JPWO2014208704A1 (ja) * 2013-06-27 2017-02-23 宇部興産株式会社 ポリイミド前駆体、及びポリイミド
WO2017051783A1 (ja) * 2015-09-25 2017-03-30 三菱瓦斯化学株式会社 ポリイミド樹脂、およびポリイミドフィルム
JP2017202981A (ja) * 2016-05-09 2017-11-16 三菱瓦斯化学株式会社 ポリイミド及びポリイミドフィルム
WO2018097143A1 (ja) * 2016-11-24 2018-05-31 日産化学工業株式会社 フレキシブルデバイス基板形成用組成物
JP2019012165A (ja) * 2017-06-30 2019-01-24 大日本印刷株式会社 表示装置用部材
KR20190014518A (ko) 2016-05-31 2019-02-12 우베 고산 가부시키가이샤 폴리이미드 전구체, 폴리이미드, 폴리이미드 필름 및 기판, 그리고 폴리이미드의 제조에 사용되는 테트라카르복실산 이무수물
JP2019151719A (ja) * 2018-03-02 2019-09-12 三菱ケミカル株式会社 ポリイミドフィルム、その製造方法および光硬化樹脂層付きポリイミドフィルム
JP7549100B2 (ja) 2019-08-06 2024-09-10 三菱瓦斯化学株式会社 ポリイミド及びポリイミドフィルム

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI612077B (zh) 2012-09-10 2018-01-21 宇部興產股份有限公司 聚醯亞胺前驅體、聚醯亞胺、清漆、聚醯亞胺薄膜及基板
US20150284513A1 (en) * 2012-09-10 2015-10-08 Ube Industries, Ltd. Polyimide precursor, polyimide, varnish, polyimide film, and substrate
TWI473838B (zh) 2013-11-13 2015-02-21 財團法人工業技術研究院 聚醯胺酸、聚亞醯胺、及石墨片的製作方法
KR102410839B1 (ko) * 2014-04-23 2022-06-21 에네오스 가부시키가이샤 테트라카르복실산 이무수물, 폴리아미드산, 폴리이미드 및 그들의 제조 방법, 및 폴리아미드산 용액
CN106463706B (zh) * 2014-06-05 2019-06-18 宇部兴产株式会社 电极的制造方法
CN110684195B (zh) * 2014-10-23 2022-09-27 宇部兴产株式会社 聚酰亚胺膜、聚酰亚胺前体和聚酰亚胺
US10011903B2 (en) * 2015-12-31 2018-07-03 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Manganese-containing film forming compositions, their synthesis, and use in film deposition
US10370495B2 (en) * 2016-08-11 2019-08-06 Sk Innovation Co., Ltd. Polyamic acid resin, polyamideimide film, and method for preparing the same
CN106589415B (zh) * 2016-11-21 2019-03-08 无锡高拓新材料股份有限公司 一种聚酰胺酸溶液的制备方法
TWI788364B (zh) 2017-06-23 2023-01-01 美商陶氏科技投資有限公司 氫甲醯化反應製程
TWI661022B (zh) * 2018-05-30 2019-06-01 律勝科技股份有限公司 接著劑組成物及其接著劑與硬化物
CN108753244A (zh) * 2018-06-27 2018-11-06 中国地质大学(北京) 一种高固体含量聚酰亚胺涂层胶及其制备方法和用途
KR102505739B1 (ko) * 2018-09-27 2023-03-03 주식회사 엘지화학 이무수물 분석 방법
CN109627438A (zh) * 2018-11-05 2019-04-16 广东丹邦科技有限公司 聚酰胺酸溶液的制备方法及透明聚酰亚胺薄膜的制备方法
JP2020158744A (ja) * 2019-03-19 2020-10-01 三菱ケミカル株式会社 ポリイミド及びポリイミドフィルム
KR102097431B1 (ko) * 2019-05-13 2020-04-07 에스케이씨코오롱피아이 주식회사 폴리이미드 및 이의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023778A (ja) * 1997-09-05 2001-01-26 Ness Co Ltd ポリイミドを含む有機薄膜層を有する電気発光素子
JP2002003454A (ja) * 2000-04-07 2002-01-09 Chisso Corp 新規なジアミノ化合物、該ジアミノ化合物を用いて合成された重合体、並びに該重合体を用いたワニス、配向膜及び液晶表示素子
JP2009263570A (ja) * 2008-04-28 2009-11-12 Japan Aerospace Exploration Agency 末端変性イミドオリゴマーおよびワニス並びにその高弾性率硬化物
JP2010031102A (ja) * 2008-07-28 2010-02-12 Iwate Univ ポリイミドおよびその製造法
JP2011037818A (ja) * 2009-07-14 2011-02-24 Iwate Univ 芳香族ジアミン及びその製造方法並びに樹脂

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723339B2 (ja) * 1987-10-08 1995-03-15 日立化成工業株式会社 新規なジシクロヘキシル―3,4,3′,4′―テトラカルボン酸二無水物及びその製造法
JPH081497B2 (ja) * 1988-02-23 1996-01-10 日産化学工業株式会社 液晶セル用配向処理剤
JPH0813886B2 (ja) * 1988-03-01 1996-02-14 三菱化学株式会社 アゾ基含有重合体の製造法
JPH05203952A (ja) 1992-01-23 1993-08-13 Japan Synthetic Rubber Co Ltd 液晶配向剤
JPH05313169A (ja) * 1992-05-08 1993-11-26 Fuji Photo Film Co Ltd 液晶配向膜
JP3138993B2 (ja) 1992-07-30 2001-02-26 ジェイエスアール株式会社 液晶配向剤および液晶表示素子
JPH06282071A (ja) 1993-01-27 1994-10-07 Japan Synthetic Rubber Co Ltd 感放射線性樹脂組成物
JPH07304868A (ja) 1994-05-09 1995-11-21 Maruzen Petrochem Co Ltd ポリイミド
JP2000289167A (ja) * 1999-02-03 2000-10-17 Ube Ind Ltd 化学メッキ用ベ−スフィルム及びメッキフィルム
JP2001072770A (ja) * 1999-06-30 2001-03-21 Nissan Chem Ind Ltd ジアミノベンゼン誘導体及びそれを用いたポリイミド並びに液晶配向膜
US6740371B1 (en) 1999-06-30 2004-05-25 Nissan Chemical Industries, Ltd. Diaminobenzene derivative, polyimide obtained therefrom, and liquid-crystal alignment film
JP2002114907A (ja) 2000-08-04 2002-04-16 Toray Ind Inc 熱硬化性樹脂溶液組成物、その製造方法およびカラーフィルターならびに液晶表示装置
JP2002069179A (ja) 2000-08-29 2002-03-08 Ube Ind Ltd 可溶性、透明なポリイミドおよびその製造法
JP2002146021A (ja) 2000-11-10 2002-05-22 Ube Ind Ltd 可溶性、透明なポリイミドおよびその製造法
JP2003168800A (ja) 2001-11-30 2003-06-13 Mitsubishi Gas Chem Co Inc 薄膜トランジスタ基板
US6962756B2 (en) 2001-11-02 2005-11-08 Mitsubishi Gas Chemical Company, Inc. Transparent electrically-conductive film and its use
US7687113B2 (en) * 2004-09-10 2010-03-30 Ube Industries, Inc. Modified polyimide resin and curable resin composition
JP2007002023A (ja) 2005-06-21 2007-01-11 Fujifilm Holdings Corp フィルムおよび画像表示装置
CN101674923B (zh) * 2007-05-24 2013-01-09 三菱瓦斯化学株式会社 无色透明树脂薄膜的制备方法及制备装置
JP5407261B2 (ja) * 2007-12-11 2014-02-05 Jnc株式会社 液晶配向剤、液晶配向膜および液晶表示素子
JP2009167235A (ja) * 2008-01-11 2009-07-30 Ube Ind Ltd ポリイミドフィルムの製造方法
US8796411B2 (en) 2008-02-25 2014-08-05 Hitachi Chemical Dupont Microsystems, Ltd. Polyimide precursor composition, polyimide film, and transparent flexible film
JP2009263654A (ja) 2008-03-31 2009-11-12 Jsr Corp ポリイミド、ポリイミドフィルム、及びそれらの製造方法
JP5325460B2 (ja) 2008-05-27 2013-10-23 和光純薬工業株式会社 新規な(1r,2s,4s,5r)‐シクロヘキサンテトラカルボン酸二無水物及びその利用
JP2010085615A (ja) 2008-09-30 2010-04-15 Fujifilm Corp 液晶表示装置用基板
JP2010150379A (ja) 2008-12-25 2010-07-08 Jsr Corp ポリイミド系材料、フィルム及び組成物、並びにその製造方法
JP2010267691A (ja) * 2009-05-13 2010-11-25 Ube Ind Ltd メタライジング用ポリイミドフィルムおよび金属積層ポリイミドフィルム
CN101831175A (zh) * 2010-04-01 2010-09-15 辽宁科技大学 一种无色透明的聚酰亚胺纳米复合材料膜及其制备方法
JP2011257731A (ja) * 2010-05-10 2011-12-22 Jnc Corp ジアミン、液晶配向剤および液晶表示素子
CN105754098B (zh) * 2010-10-06 2018-05-18 株式会社日本显示器 取向膜形成用组合物
WO2013024849A1 (ja) * 2011-08-18 2013-02-21 東レ株式会社 ポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物ならびにそれらを含有するフレキシブル基板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001023778A (ja) * 1997-09-05 2001-01-26 Ness Co Ltd ポリイミドを含む有機薄膜層を有する電気発光素子
JP2002003454A (ja) * 2000-04-07 2002-01-09 Chisso Corp 新規なジアミノ化合物、該ジアミノ化合物を用いて合成された重合体、並びに該重合体を用いたワニス、配向膜及び液晶表示素子
JP2009263570A (ja) * 2008-04-28 2009-11-12 Japan Aerospace Exploration Agency 末端変性イミドオリゴマーおよびワニス並びにその高弾性率硬化物
JP2010031102A (ja) * 2008-07-28 2010-02-12 Iwate Univ ポリイミドおよびその製造法
JP2011037818A (ja) * 2009-07-14 2011-02-24 Iwate Univ 芳香族ジアミン及びその製造方法並びに樹脂

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013024820A1 (ja) * 2011-08-12 2015-03-05 宇部興産株式会社 ポリイミド前駆体、ポリイミド、ポリイミドフィルム、およびこれらの製造に使用されるトリアジン化合物の製造方法
US9511565B2 (en) 2011-08-12 2016-12-06 Ube Industries, Ltd. Polyimide precursor, polyimide, polyimide film, and method for manufacturing triazine compound used for manufacturing same
WO2013024820A1 (ja) * 2011-08-12 2013-02-21 宇部興産株式会社 ポリイミド前駆体、ポリイミド、ポリイミドフィルム、およびこれらの製造に使用されるトリアジン化合物の製造方法
JPWO2013024849A1 (ja) * 2011-08-18 2015-03-05 東レ株式会社 ポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物ならびにそれらを含有するフレキシブル基板
WO2013172331A1 (ja) * 2012-05-14 2013-11-21 国立大学法人岩手大学 ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ポリイミド金属積層体およびポリイミド溶液
US9556312B2 (en) 2012-05-14 2017-01-31 National University Corporation Iwate University Polyimide precursor, polyimide, polyimide film, polyimide metal laminate, and polyimide solution
JP2016521405A (ja) * 2013-04-10 2016-07-21 コーロン インダストリーズ インク ポリイミドカバー基板
JP2018172685A (ja) * 2013-06-27 2018-11-08 宇部興産株式会社 ポリイミド前駆体、及びポリイミド
JPWO2014208704A1 (ja) * 2013-06-27 2017-02-23 宇部興産株式会社 ポリイミド前駆体、及びポリイミド
WO2015080156A1 (ja) * 2013-11-27 2015-06-04 宇部興産株式会社 ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
CN106189226A (zh) * 2014-12-25 2016-12-07 富士施乐株式会社 聚酰亚胺前体组合物、聚酰亚胺成形体、以及聚酰亚胺成形体的制备方法
US10968316B2 (en) 2015-09-25 2021-04-06 Mitsubishi Gas Chemical Company, Inc. Polyimide resin and polyimide film
JPWO2017051783A1 (ja) * 2015-09-25 2018-07-12 三菱瓦斯化学株式会社 ポリイミド樹脂、およびポリイミドフィルム
WO2017051783A1 (ja) * 2015-09-25 2017-03-30 三菱瓦斯化学株式会社 ポリイミド樹脂、およびポリイミドフィルム
JP2017202981A (ja) * 2016-05-09 2017-11-16 三菱瓦斯化学株式会社 ポリイミド及びポリイミドフィルム
JP2022116052A (ja) * 2016-05-31 2022-08-09 Ube株式会社 ポリイミド前駆体、ポリイミド、ポリイミドフィルム、及び基板、並びにポリイミドの製造に使用されるテトラカルボン酸二無水物
KR20190014518A (ko) 2016-05-31 2019-02-12 우베 고산 가부시키가이샤 폴리이미드 전구체, 폴리이미드, 폴리이미드 필름 및 기판, 그리고 폴리이미드의 제조에 사용되는 테트라카르복실산 이무수물
JP2021138952A (ja) * 2016-05-31 2021-09-16 宇部興産株式会社 ポリイミド前駆体、ポリイミド、ポリイミドフィルム、及び基板、並びにポリイミドの製造に使用されるテトラカルボン酸二無水物
KR102347037B1 (ko) 2016-05-31 2022-01-05 우베 고산 가부시키가이샤 폴리이미드 전구체, 폴리이미드, 폴리이미드 필름 및 기판, 그리고 폴리이미드의 제조에 사용되는 테트라카르복실산 이무수물
JP7173204B2 (ja) 2016-05-31 2022-11-16 Ube株式会社 ポリイミド前駆体、ポリイミド、ポリイミドフィルム、及び基板、並びにポリイミドの製造に使用されるテトラカルボン酸二無水物
JP7327573B2 (ja) 2016-05-31 2023-08-16 Ube株式会社 ポリイミド前駆体、ポリイミド、ポリイミドフィルム、及び基板、並びにポリイミドの製造に使用されるテトラカルボン酸二無水物
JPWO2018097143A1 (ja) * 2016-11-24 2019-10-17 日産化学株式会社 フレキシブルデバイス基板形成用組成物
JP7011231B2 (ja) 2016-11-24 2022-01-26 日産化学株式会社 フレキシブルデバイス基板形成用組成物
WO2018097143A1 (ja) * 2016-11-24 2018-05-31 日産化学工業株式会社 フレキシブルデバイス基板形成用組成物
JP2019012165A (ja) * 2017-06-30 2019-01-24 大日本印刷株式会社 表示装置用部材
JP2019151719A (ja) * 2018-03-02 2019-09-12 三菱ケミカル株式会社 ポリイミドフィルム、その製造方法および光硬化樹脂層付きポリイミドフィルム
JP7549100B2 (ja) 2019-08-06 2024-09-10 三菱瓦斯化学株式会社 ポリイミド及びポリイミドフィルム
JP7549099B2 (ja) 2019-08-06 2024-09-10 三菱瓦斯化学株式会社 ポリイミド及びポリイミドフィルム

Also Published As

Publication number Publication date
TWI563017B (en) 2016-12-21
KR20180017212A (ko) 2018-02-20
CN105254885A (zh) 2016-01-20
CN105254884B (zh) 2018-05-29
TWI534177B (zh) 2016-05-21
KR101941413B1 (ko) 2019-01-22
KR20140016322A (ko) 2014-02-07
CN103534294B (zh) 2015-09-30
US20140066571A1 (en) 2014-03-06
CN105254883B (zh) 2018-02-02
CN105254884A (zh) 2016-01-20
KR101850174B1 (ko) 2018-04-18
JP5920337B2 (ja) 2016-05-18
US9758623B2 (en) 2017-09-12
CN103534294A (zh) 2014-01-22
JP6164331B2 (ja) 2017-07-19
US20160032056A1 (en) 2016-02-04
TW201300440A (zh) 2013-01-01
TW201623373A (zh) 2016-07-01
CN105254883A (zh) 2016-01-20
JP2016164271A (ja) 2016-09-08
JPWO2012124664A1 (ja) 2014-07-24

Similar Documents

Publication Publication Date Title
JP6164331B2 (ja) ポリイミド前駆体及びポリイミド
JP6531812B2 (ja) ポリイミド前駆体及びポリイミド
JP6721070B2 (ja) ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
JP6283954B2 (ja) ポリイミド前駆体、ポリイミド、ワニス、ポリイミドフィルム、及び基板
JP6060695B2 (ja) ポリイミド前駆体及びポリイミド
JP5978288B2 (ja) ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
JP6607193B2 (ja) ポリイミド前駆体、ポリイミド、及びポリイミドフィルム
WO2015053312A1 (ja) ポリイミド前駆体、ポリイミド、ポリイミドフィルム、ワニス、及び基板
JP6283953B2 (ja) ポリイミド前駆体、ポリイミド、ワニス、ポリイミドフィルム、および基板
JP6086139B2 (ja) ポリイミド前駆体及びポリイミド
WO2015080139A1 (ja) ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板
JP5845918B2 (ja) ポリイミド前駆体及びポリイミド
JP2013023597A (ja) ポリイミド前駆体ワニス、およびポリイミドワニスの製造方法
WO2015080156A1 (ja) ポリイミド前駆体組成物、ポリイミドの製造方法、ポリイミド、ポリイミドフィルム、及び基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757989

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013504724

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137026687

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14004362

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12757989

Country of ref document: EP

Kind code of ref document: A1