WO2013024849A1 - ポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物ならびにそれらを含有するフレキシブル基板 - Google Patents

ポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物ならびにそれらを含有するフレキシブル基板 Download PDF

Info

Publication number
WO2013024849A1
WO2013024849A1 PCT/JP2012/070679 JP2012070679W WO2013024849A1 WO 2013024849 A1 WO2013024849 A1 WO 2013024849A1 JP 2012070679 W JP2012070679 W JP 2012070679W WO 2013024849 A1 WO2013024849 A1 WO 2013024849A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
organic group
general formula
resin composition
polyimide
Prior art date
Application number
PCT/JP2012/070679
Other languages
English (en)
French (fr)
Inventor
潤史 脇田
大地 宮崎
三好 一登
富川 真佐夫
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020147007050A priority Critical patent/KR101921919B1/ko
Priority to JP2013506404A priority patent/JP5928447B2/ja
Priority to CN201280040267.2A priority patent/CN103842408B/zh
Priority to SG2014013874A priority patent/SG2014013874A/en
Publication of WO2013024849A1 publication Critical patent/WO2013024849A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/22Polybenzoxazoles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0108Transparent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide

Definitions

  • the present invention relates to a polyamic acid resin composition, a polyimide resin composition, a polyimide oxazole resin composition, and a flexible substrate containing them. More specifically, a polyamic acid resin composition, a polyimide resin composition, and a polyimide oxazole resin composition that are suitably used for flat panel displays, touch panels, electronic paper, color filter substrates, flexible substrates such as solar cells, flexible printed substrates, and the like, The present invention relates to a flexible substrate containing them.
  • Organic film is more flexible than glass, has the characteristics of being hard to break and lightweight. Recently, the movement to make the display flexible by replacing the substrate of the flat panel display with an organic film has been activated.
  • polyimide is suitable as a display substrate as a high heat resistance resin.
  • polyimide resin has high mechanical strength such as high mechanical strength, wear resistance, dimensional stability, chemical resistance, and excellent electrical properties such as insulation, in addition to high heat resistance. Widely used in industrial fields.
  • a method is used in which a solution containing a precursor polyamic acid is coated and cured to convert to polyimide.
  • polyamic acid can be easily synthesized by reacting an acid anhydride with a diamine in a solvent.
  • the light transmittance at 400 nm is generally 80% or more at a film thickness of 10 micrometers, the glass transition temperature (Tg) and the thermal decomposition start temperature are 300 degrees or more, visible. It is required that the birefringence in the light wavelength region (400 nm to 800 nm) has a low birefringence of 0.01 or less.
  • Patent Document 3 discloses that polyimides obtained from alicyclic acid dianhydrides and various aromatic or alicyclic diamines have high transparency and low birefringence.
  • Patent Document 4 polyimide obtained from 1S, 2S, 4R, 5R-cyclohexanetetracarboxylic dianhydride and 2,2′-bis (trifluoromethyl) benzidine (TFMB) has high transparency and high Tg. Is disclosed. Patent Document 4 discloses a polyimide film using 2,2′-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane (HFBAPP) instead of 2,2′-bis (trifluoromethyl) benzidine. Are described as having high transparency.
  • the polyimide group described in Patent Document 3 does not have a sufficiently high Tg. Further, in the polyimide group described in Patent Document 4, Tg and birefringence do not satisfy general required characteristics.
  • the present invention includes a polyamic acid resin composition, a polyimide resin composition, a polyimide oxazole resin composition, and a polyamic acid resin composition having excellent heat resistance, light transmittance, and low birefringence after heat treatment.
  • An object is to provide a flexible substrate.
  • the polyamic acid resin composition according to the present invention comprises (a) a polyamic acid containing as a main component a structural unit represented by the general formula (1), (b) It contains a solvent.
  • X 1 and X 2 each independently represent a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms.
  • R 1 represents a monocyclic or condensed polycyclic alicyclic structure.
  • R 2 represents a divalent organic group having 2 to 40 carbon atoms and having at least two hydroxyl groups.
  • the polyimide resin composition concerning this invention contains the polyimide which has (a ') the structural unit represented by General formula (2) as a main component, and (b) solvent.
  • R 1 is directly a tetravalent organic group having 4 to 40 carbon atoms having a monocyclic or condensed polycyclic alicyclic structure or an organic group having a monocyclic alicyclic structure. Or a tetravalent organic group having 4 to 40 carbon atoms connected to each other via a crosslinked structure, and R 2 represents a divalent organic group having 2 to 40 carbon atoms and having at least two hydroxyl groups.
  • the polyimide oxazole resin composition concerning this invention contains the polyimide oxazole which has a structural unit represented by (a '') General formula (3) as a main component, and (b) solvent, It is characterized by the above-mentioned.
  • R 1 is directly a tetravalent organic group having 4 to 40 carbon atoms having a monocyclic or condensed polycyclic alicyclic structure or an organic group having a monocyclic alicyclic structure. Or a tetravalent organic group having 4 to 40 carbon atoms connected to each other via a cross-linked structure, and R 3 represents a tetravalent organic group having 2 to 40 carbon atoms.
  • the heat-treated film has excellent heat resistance, high light transmittance in the visible light region, low birefringence, a polyamic acid resin composition, a polyimide resin composition, a polyimide oxazole resin composition, and those Can be obtained.
  • a first aspect of the present invention is a polyamic acid resin composition
  • a polyamic acid resin composition comprising (a) a polyamic acid mainly comprising a structural unit represented by the general formula (1) and (b) a solvent.
  • a polyimide resin composition comprising (a ′) a polyimide mainly comprising a structural unit represented by the general formula (2) and (b) a solvent.
  • a polyimide oxazole resin composition comprising (a '') a polyimide oxazole having a structural unit represented by the general formula (3) as a main component and (b) a solvent. It is.
  • X 1 and X 2 each independently represent a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms.
  • R 1 is a monocyclic or condensed polycyclic alicyclic structure having a C 4-40 tetravalent organic group or a monocyclic alicyclic structure. A tetravalent organic group having 4 to 40 carbon atoms in which groups are connected to each other directly or via a crosslinked structure.
  • R 2 represents a divalent organic group having 2 to 40 carbon atoms and having at least two hydroxyl groups.
  • R 3 represents a tetravalent organic group having 2 to 40 carbon atoms.
  • the polyamic acid of the present invention may contain other structural units as long as the main component is the structural unit represented by the general formula (1).
  • Other structural units include polyamic acid which is a polycondensate of acid dianhydride and diamine compound, polyhydroxyamide which is a polycondensate of dicarboxylic acid derivative and hydroxydiamine, polyimide which is a polycyclic dehydration ring of polyamic acid, poly Examples include dehydrated ring-closed polybenzoxazole of hydroxyamide, and the like, for example, the structural unit represented by the general formula (2), the structural unit represented by the general formula (3), and the general formula (1) polyamic acid R 1 is an aromatic ring, polyimides R 1 is an aromatic ring in the general formula (2), R 1 in formula (3) may comprise a polyimide benzoxazole is an aromatic ring.
  • the structural unit represented by the general formula (1) is preferably contained in an amount of 50% or more, more preferably 70% or more, and further preferably 90% or more.
  • the polyamic acid can be synthesized by a reaction between a diamine compound and an acid dianhydride or a derivative thereof.
  • the derivatives include tetracarboxylic acids of the acid dianhydrides, mono, di, tri, or tetra esters of the tetracarboxylic acids, and acid chlorides.
  • the polyimide of the present invention may contain other structural units as long as the main component is the structural unit represented by the general formula (2).
  • Other structural units include polyamic acid, polyhydroxyamide, polyimide, polybenzoxazole and the like.
  • the structural unit represented by the general formula (1), the structural unit represented by the general formula (3), the polyamic acid in which R 1 in the general formula (1) is an aromatic ring, 2) R 1 in R 1 may be an aromatic ring, and polyimide benzoxazole in which R 1 in General Formula (3) is an aromatic ring may be included.
  • the structural unit represented by the general formula (2) is preferably included in an amount of 50% or more, more preferably 70% or more, and further preferably 90% or more.
  • the polyimide can be synthesized by heat dehydration ring closure or chemical dehydration ring closure reaction of polyamic acid synthesized by reaction of a diamine compound and acid dianhydride or a derivative thereof.
  • the polyimide oxazole of the present invention may contain other structural units as long as the structural unit represented by the general formula (3) is a main component.
  • other structural units include polyamic acid, polyhydroxyamide, polyimide, polybenzoxazole, and the like.
  • polyamic acid R 1 is an aromatic ring in the general formula (1)
  • polyimide R 1 is an aromatic ring in the general formula (2)
  • R 1 is an aromatic ring in the general formula (3)
  • Certain polyimide benzoxazoles may be included.
  • the structural unit represented by the general formula (3) is preferably contained in an amount of 50% or more, more preferably 70% or more, and further preferably 90% or more.
  • Polyimide oxazole can be synthesized by heat dehydration ring closure and chemical dehydration ring closure reaction of polyamic acid synthesized by reaction of a diamine compound having a hydroxyamide group and an acid dianhydride or a derivative thereof as described later. It can be synthesized by heat dehydration ring closure or chemical dehydration ring closure reaction of polyamic acid synthesized by reaction of a diamine compound having an oxazole ring and an acid dianhydride or a derivative thereof.
  • R 1 in the general formulas (1) to (3) represents the structure of the acid component, and is a monocyclic or condensed polycyclic alicyclic structure having 4 to 40 carbon atoms or a monocyclic ring. It represents a tetravalent organic group having 4 to 40 carbon atoms in which organic groups having an alicyclic structure of the formula are connected to each other directly or via a crosslinked structure.
  • some hydrogen atoms may be substituted with halogen.
  • acid dianhydrides having an alicyclic structure examples include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic acid dianhydride.
  • R 1 in the general formulas (1) to (3) are, for example, structures represented by the following general formulas (4) to (10).
  • R 4 to R 79 each independently represents a hydrogen atom, a halogen atom or a monovalent organic group having 1 to 3 carbon atoms in which the hydrogen atom may be substituted with a halogen atom.
  • X 3 represents an oxygen atom, a sulfur atom, a sulfonyl group, a divalent organic group having 1 to 3 carbon atoms in which a hydrogen atom may be substituted with a halogen atom, or a combination of two or more thereof.
  • a divalent crosslinked structure examples include bicyclo [2.2.1] heptane, bicyclo [2.2.1] oct-2-ene, 7-oxabicyclo [2.2.1] heptane.
  • Examples of the alicyclic structures of the general formulas (8) and (9) include decahydronaphthalene and tetradecahydroanthracene, respectively.
  • X 4 is a direct bond, an oxygen atom, a sulfur atom, a sulfonyl group, a divalent organic group having 1 to 3 carbon atoms in which a hydrogen atom may be substituted by a halogen atom, or a hydrogen atom.
  • An arylene group which may be substituted with an atom or an oxygen atom, a sulfur atom, a sulfonyl group, a divalent organic group having 1 to 3 carbon atoms with which a hydrogen atom may be substituted with a halogen atom, and a hydrogen atom with a halogen atom; It is a divalent crosslinked structure formed by linking two or more selected from an optionally substituted arylene group. Examples of such an alicyclic structure include 1,1-bicyclohexane, oxydicyclohexane, and the like.
  • Examples of the acid dianhydride include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,3,4 -Cyclohexanetetracarboxylic dianhydride, 1,2,4,5-cyclopentanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride Anhydride, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2 , 3,4-cycloheptanetetracarboxylic dianhydride, bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, bicyclo [2.2.1 ] Heptanete
  • R 1 in the general formula (1) is represented by the following chemical formulas (11) to (13): 1S, 2S, 4R, 5R-cyclohexanetetracarboxylic dianhydride, 1R, 2S, 4S, 5R-cyclohexanetetracarboxylic dianhydride, 3,3 ′, 4,4′-dicyclohexanetetracarboxylic dianhydride Things are preferred.
  • These acid dianhydrides are commercially available from Iwatani Gas Co., Ltd. under the product names “PMDA-HH”, “PMDA-HS”, and “BPDA-H”. In addition, these acid dianhydrides can be used individually or in combination of 2 or more types.
  • acid dianhydride can be replaced with another acid dianhydride as long as the effect of the present invention is not hindered.
  • Other acid dianhydrides include aromatic acid dianhydrides or aliphatic acid dianhydrides.
  • aromatic acid dianhydride pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic acid Dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-terphenyltetracarboxylic dianhydride, 3,3 ′, 4,4 ′ -Oxyphthalic dianhydride, 2,3,3 ', 4'-oxyphthalic dianhydride, 2,3,2', 3'-oxyphthalic dianhydride, diphenylsulfone-3,3 '
  • aliphatic dianhydride examples include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-pentanetetracarboxylic dianhydride, and derivatives thereof. It is not limited to these. Moreover, these other acid dianhydrides can be used individually or in combination of 2 or more types.
  • R 2 in the general formulas (1) and (2) is a divalent organic group having 2 to 40 carbon atoms and having at least two hydroxyl groups.
  • R 2 in the general formulas (1) and (2) is a divalent organic group having 2 to 40 carbon atoms and having at least two hydroxyl groups.
  • the structures represented by the chemical formulas (14) to (23) Can be mentioned.
  • the structure of the chemical formula (14) is preferable, and it is preferable to use a diamine represented by the following chemical formula (24).
  • R 3 in the general formula (3) represents a tetravalent organic group having 2 to 40 carbon atoms, and examples thereof include structures represented by chemical formulas (25) to (34). Of these, the structure represented by the chemical formula (25) is preferable from the viewpoint of transparency.
  • polyimide oxazole in which R 3 in the general formula (3) is represented by the chemical formula (25) is a polyamic acid represented by the general formula (1) synthesized from the diamine represented by the chemical formula (24), And a dehydrated ring-closed body of polyimide represented by the general formula (2).
  • diamine compound can be replaced with another diamine compound.
  • diamine compounds include aromatic diamine compounds, alicyclic diamine compounds, and aliphatic diamine compounds.
  • aromatic diamine compounds include 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, 2,2-bis (4-aminophenyl) hexafluoropropane, 2,2-bis (3-amino-4-methylphenyl) hexafluoropropane, 2,2-bis (3 -Amino-4-hydroxyphenyl) hexafluoropropane, 3,3'-di
  • alicyclic diamine compound examples include cyclobutanediamine, isophoronediamine, bicyclo [2.2.1] heptanebismethylamine, tricyclo [3.3.1.13,7] decane-1,3-diamine, 1,2 -Cyclohexyldiamine, 1,3-cyclohexyldiamine, 1,4-cyclohexyldiamine, 4,4'-diaminodicyclohexylmethane, 3,3'-dimethyl-4,4'-diaminodicyclohexylmethane, 3,3'-diethyl- 4,4'-diaminodicyclohexylmethane, 3,3 ', 5,5'-tetramethyl-4,4'-diaminodicyclohexylmethane, 3,3', 5,5'-tetraethyl-4,4'-diaminodicyclohexyl Methane, 3,5-dieth
  • Aliphatic diamine compounds include ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, and 1,8-diaminooctane.
  • Alkylene diamines such as 1,9-diaminononane and 1,10-diaminodecane, ethylene glycol diamines such as bis (aminomethyl) ether, bis (2-aminoethyl) ether, bis (3-aminopropyl) ether, And siloxanes such as 1,3-bis (3-aminopropyl) tetramethyldisiloxane, 1,3-bis (4-aminobutyl) tetramethyldisiloxane, ⁇ , ⁇ -bis (3-aminopropyl) polydimethylsiloxane
  • diamine is mentioned, it is not limited to these.
  • aromatic diamine compounds alicyclic diamine compounds, or aliphatic diamine compounds can be used alone or in combination of two or more.
  • 9,9-bis (4-aminophenyl) fluorenediamine represented by the following chemical formula (35) is preferably used, and the glass transition temperature is increased while maintaining the transparency and mechanical properties of the fired film. And found that birefringence can be reduced.
  • the structural unit represented by the following general formula (36) or the following general formula (37) can be introduced into the molecular chain by using the diamine represented by the chemical formula (35).
  • X 1 and X 2 each independently represent a hydrogen atom or a monovalent organic group having 1 to 10 carbon atoms.
  • R 1 is a monocyclic ring.
  • Carbon number in which a tetravalent organic group having 4 to 40 carbon atoms having a cyclic or condensed polycyclic alicyclic structure or an organic group having a monocyclic alicyclic structure is linked to each other directly or via a crosslinked structure Represents a tetravalent organic group of 4 to 40.
  • coloring is often seen in a polyimide film using a diamine represented by the chemical formula (35).
  • a diamine represented by the chemical formula (35) 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride used as a raw material monomer for transparent PI, diamine represented by the above chemical formula (35), and the like were used.
  • transparency is deteriorated as compared with the polyimide of the present invention and the polyimide oxazole film.
  • the polyimide and polyimide oxazole film of the present invention since alicyclic acid dianhydride is used, coloring can be suppressed.
  • the diamine represented by the chemical formula (35) is preferably included in the range of 10% to 50% of the total diamine residues, more preferably in the range of 30% to 50%, and more preferably 40% to 50%. More preferably, it is contained in the range of% or less.
  • the structural unit represented by the general formula (36) or the general formula (37) is included by 10% to 50%.
  • the polyamic acid, polyimide and polyimide oxazole of the present invention may be sealed at both ends with a terminal blocking agent in order to adjust the molecular weight to a preferred range.
  • a terminal blocking agent that reacts with the acid dianhydride include monoamines and monohydric alcohols.
  • the terminal blocking agent that reacts with the diamine compound include acid anhydrides, monocarboxylic acids, monoacid chloride compounds, and monoactive ester compounds.
  • various organic groups can be introduce
  • Monoamines used for the end-capping agent include 5-amino-8-hydroxyquinoline, 4-amino-8-hydroxyquinoline, 1-hydroxy-8-aminonaphthalene, 1-hydroxy-7-aminonaphthalene, 1-hydroxy -6-aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1-hydroxy-4-aminonaphthalene, 1-hydroxy-3-aminonaphthalene, 1-hydroxy-2-aminonaphthalene, 1-amino-7-hydroxynaphthalene 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-aminonaphthalene, 2-hydroxy-4-aminonaphthalene, 2-hydroxy-3-aminonaphthalene, 1-amino- 2-hydroxynaphthalene, 1-carboxy-8 Aminonaphthalene, 1-carboxy-7-aminonaphthalene, 1-carboxy-6-aminonaphthalene, 1-carboxy-5-aminonaphthal
  • Examples of the monohydric alcohol used as the end-capping agent include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, and 3-pentanol.
  • Acid anhydrides, monocarboxylic acids, monoacid chloride compounds and monoactive ester compounds used as end-capping agents include phthalic anhydride, maleic anhydride, nadic anhydride, cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic acid Acid anhydrides such as anhydrides, 2-carboxyphenol, 3-carboxyphenol, 4-carboxyphenol, 2-carboxythiophenol, 3-carboxythiophenol, 4-carboxythiophenol, 1-hydroxy-8-carboxynaphthalene, 1-hydroxy-7-carboxynaphthalene, 1-hydroxy-6-carboxynaphthalene, 1-hydroxy-5-carboxynaphthalene, 1-hydroxy-4-carboxynaphthalene, 1-hydroxy-3-carboxynaphthalene, 1-hydroxy -2-carboxynaphthalene, 1-mercapto-8-carboxynaphthalene, 1-mercapto-7-carboxynaphthalene, 1-mercapto-6-
  • the introduction ratio of monoamine and monohydric alcohol used for the end-capping agent is preferably in the range of 0.1 to 60 mol%, particularly preferably 5 to 50 mol%, based on the total amine component.
  • the introduction ratio of the acid anhydride, monocarboxylic acid, monoacid chloride compound and monoactive ester compound used as the end-capping agent is preferably in the range of 0.1 to 100 mol%, particularly preferably 5 with respect to the diamine component. ⁇ 90 mol%.
  • a plurality of different end groups may be introduced by reacting a plurality of end-capping agents.
  • the end-capping agent introduced into the polyamic acid, polyimide and polyimide oxazole can be easily detected by the following method. For example, by dissolving a polymer having an end-capping agent in an acidic solution and decomposing it into an amine component and an acid anhydride component, which are constituent units of the polymer, this is measured by gas chromatography (GC) or NMR measurement.
  • GC gas chromatography
  • NMR nuclear magnetic resonance
  • the polyamic acid resin composition, polyimide resin composition, and polyimide oxazole resin composition of the present invention contain (b) a solvent.
  • Solvents include polar aprotic solvents such as N-methyl-2-pyrrolidone, gamma butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran, dioxane, propylene glycol monomethyl ether, etc.
  • Ethers acetone, methyl ethyl ketone, diisobutyl ketone, diacetone alcohol and other ketones, ethyl acetate, propylene glycol monomethyl ether acetate, esters such as ethyl lactate, aromatic hydrocarbons such as toluene, xylene, etc. alone or 2 More than seeds can be used.
  • the content of the solvent is preferably 50 parts by weight or more, more preferably 100 parts by weight or more, preferably 2,000 parts by weight or less, based on 100 parts by weight of the polyamic acid, polyimide or polyimide oxazole. Preferably it is 1,500 parts by weight or less. If it is in the range of 50 to 2,000 parts by weight, the viscosity is suitable for coating, and the film thickness after coating can be easily adjusted.
  • reaction method of the polymerization reaction is not particularly limited as long as the target polyamic acid can be produced, and a known reaction method can be used.
  • a predetermined amount of all the diamine component and the reaction solvent are charged and dissolved in a reactor, and then a predetermined amount of acid dianhydride component is charged and the mixture is charged at room temperature to 80 ° C. for 0.5 to 30 hours.
  • Examples include a stirring method.
  • the structural units of the polyamic acid obtained from 3 ′, 4,4′-dicyclohexanetetracarboxylic dianhydride include the following chemical formulas (38) to (42).
  • Specific reaction methods include a method of stirring the polyamic acid solution obtained as described above at room temperature to 200 ° C. for 0.5 to 30 hours.
  • Examples of the structural unit of polyimide obtained from 3 ′, 4,4′-dicyclohexanetetracarboxylic dianhydride include the following chemical formulas (43) to (45).
  • the first method includes dehydrating and ring-closing the polyimide represented by the general formula (2) obtained by the known reaction method described above.
  • a well-known reaction method can be used.
  • polyimide powder is heat-treated at 300 to 400 ° C. for 0.5 to 30 hours, an acid catalyst such as a thermal acid generator is added to the polyimide solution, and 0.5 to 30 at room temperature to 250 ° C. The method of stirring for a time is mentioned.
  • the second method includes imidizing a polyamic acid obtained from a diamine containing an oxazole ring represented by the following general formula (46) and an acid dianhydride.
  • a specific reaction method there is a method in which a predetermined amount of an acid dianhydride component is charged and stirred at room temperature to 80 ° C. for 0.5 to 30 hours and then stirred at room temperature to 200 ° C. for 0.5 to 30 hours. Can be mentioned.
  • R 3 represents a tetravalent organic group having 2 to 40 carbon atoms.
  • the structural units of polyimide oxazole obtained when dehydrating and ring-closing include the following chemical formulas (48) to (
  • the polyamic acid resin composition, polyimide resin composition and polyimide oxazole resin composition of the present invention can contain a surfactant.
  • the surfactant include fluorine-based surfactants such as Fluorard (trade name, manufactured by Sumitomo 3M Co., Ltd.), Megafuck (trade name, manufactured by DIC Corporation), Sulflon (trade name, manufactured by Asahi Glass Co., Ltd.), and the like. .
  • KP341 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), DBE (trade name, manufactured by Chisso Corporation), Polyflow, Granol (trade name, manufactured by Kyoeisha Chemical Co., Ltd.), BYK (manufactured by Big Chemie Corporation), etc.
  • organosiloxane surfactants are included.
  • acrylic polymer surfactants such as polyflow (trade name, manufactured by Kyoeisha Chemical Co., Ltd.) can be mentioned.
  • the surfactant is preferably contained in an amount of 0.01 to 10 parts by weight with respect to 100 parts by weight of polyamic acid, polyimide or polyimide oxazole.
  • the polyamic acid resin composition, polyimide resin composition and polyimide oxazole resin composition of the present invention can contain an internal release agent.
  • the internal mold release agent include long chain fatty acids.
  • the polyamic acid resin composition, polyimide resin composition and polyimide oxazole resin composition of the present invention can contain a thermal crosslinking agent.
  • a thermal crosslinking agent an epoxy compound, a compound having at least two alkoxymethyl groups or methylol groups are preferable. By having at least two of these groups, a cross-linked structure is formed by a condensation reaction with the resin and the same type molecule, and mechanical strength and chemical resistance can be improved.
  • Preferred examples of the epoxy compound include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, polymethyl (glycidyloxypropyl), epoxy group-containing silicone such as siloxane, etc.
  • the present invention is not limited to these at all.
  • Epicron 850-S Epicron HP-4032, Epicron HP-7200, Epicron HP-820, Epicron HP-4700, Epicron EXA-4710, Epicron HP-4770, Epicron EXA-859CRP, Epicron EXA-1514, Epicron EXA-4880, Epicron EXA-4850-150, Epicron EXA-4850-1000, Epicron EXA-4816, Epicron EXA-4822 (trade name, manufactured by Dainippon Ink & Chemicals, Inc.), Rica Resin BEO-60E, Jamaica Resin BPO -20E, Rica Resin HBE-100, Jamaica Resin DME-100 (above trade name, Shin Nippon Rika Co., Ltd.), EP-4003S, EP-4000S (above trade name, Adeka Corporation), PG-1 0, CG-500, EG-200 (above trade name, Osaka Gas Chemical Co., Ltd.), NC-3000, NC-6000 (above trade name, Nippon Kayaku Co., Ltd
  • Examples of the compound having at least two alkoxymethyl groups or methylol groups include DML-PC, DML-PEP, DML-OC, DML-OEP, DML-34X, DML-PTBP, DML-PCHP, DML-OCHP, and DML.
  • the polyamic acid resin composition, polyimide resin composition and polyimide oxazole resin composition of the present invention can contain a colorant. By adding a colorant, the color of the polyamic acid, polyimide, or polyimide oxazole film can be adjusted.
  • organic pigments are preferable from the viewpoint of heat resistance and transparency. Among them, those having high transparency and excellent light resistance, heat resistance, and chemical resistance are preferable. Specific examples of typical organic pigments are represented by the color index (CI) number, and the following are preferably used, but are not limited thereto.
  • yellow pigments examples include pigment yellow (hereinafter abbreviated as PY) 12, 13, 17, 20, 24, 83, 86, 93, 95, 109, 110, 117, 125, 129, 137, 138, 139, 147, 148, 150, 153, 154, 166, 168, 185, etc. are used.
  • orange pigments examples include pigment orange (hereinafter abbreviated as PO) 13, 36, 38, 43, 51, 55, 59, 61, 64, 65, 71, and the like.
  • red pigments examples include pigment red (hereinafter abbreviated as PR) 9, 48, 97, 122, 123, 144, 149, 166, 168, 177, 179, 180, 192, 209, 215, 216, 217. 220, 223, 224, 226, 227, 228, 240, 254, etc. are used.
  • purple pigments include pigment violet (hereinafter abbreviated as PV) 19, 23, 29, 30, 32, 37, 40, 50, and the like.
  • blue pigments examples include pigment blue (hereinafter abbreviated as PB) 15, 15: 3, 15: 4, 15: 6, 22, 60, 64, and the like.
  • green pigments examples include pigment green (hereinafter abbreviated as PG) 7, 10, 36, 58, and the like. These pigments may be subjected to surface treatment such as rosin treatment, acidic group treatment, basic treatment and the like, if necessary.
  • surface treatment such as rosin treatment, acidic group treatment, basic treatment and the like, if necessary.
  • the polyamic acid resin composition, polyimide resin composition and polyimide oxazole resin composition of the present invention can contain an inorganic filler.
  • the inorganic filler include silica fine particles, alumina fine particles, titania fine particles, zirconia fine particles, and the like.
  • the shape of the inorganic filler is not particularly limited, and examples thereof include a spherical shape, an elliptical shape, a flat shape, a lot shape, and a fiber shape.
  • the inorganic filler contained has a small particle size in order to prevent light scattering.
  • the average particle size is 0.5 to 100 nm, preferably in the range of 0.5 to 30 nm.
  • the content of the inorganic filler is preferably 1 to 50% by weight, more preferably 10 to 30% by weight, based on the polyamic acid, polyimide or polyimide oxazole. As the content increases, flexibility and folding resistance decrease.
  • Organo inorganic filler sol can be mixed with polyamic acid, polyimide or polyimide oxazole.
  • Organo inorganic filler sol is an organic solvent in which an inorganic filler is dispersed at a ratio of about 30% by weight.
  • organic solvents examples include methanol, isopropanol, normal butanol, ethylene glycol, methyl ethyl ketone, methyl isobutyl ketone, propylene glycol monomethyl acetate, Examples include propylene glycol monomethyl ether, N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, 1,3-dimethylimidazolidinone, and gamma butyl lactone.
  • the organoinorganic filler sol may be treated with a silane coupling agent. If the terminal functional group of the silane coupling agent has an epoxy group or an amino group, the affinity with polyamic acid, polyimide or polyimide oxazole is increased by bonding with the carboxylic acid of the polyamic acid, making it more effective. Can be dispersed.
  • Examples of those having an epoxy group include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycidoxypropylmethyl. Examples thereof include diethoxysilane and 3-glycidoxypropyltriethoxysilane.
  • the treatment can be performed by adding a silane coupling agent to an organoinorganic filler sol having a controlled concentration and stirring at room temperature to 80 ° C. for 0.5 to 2 hours.
  • the polyamic acid resin composition, polyimide resin composition and polyimide oxazole resin composition of the present invention can contain a photoacid generator.
  • a photoacid generator when light is irradiated through a mask on which an exposure pattern is drawn, an acid is generated in the exposed portion and the solubility of the exposed portion in an alkaline aqueous solution is increased. It can be used as a composition.
  • Examples of the photoacid generator used in the present invention include quinonediazide compounds, sulfonium salts, phosphonium salts, diazonium salts and iodonium salts.
  • a quinonediazide compound is preferably used from the standpoint that a positive photosensitive resin composition exhibiting an excellent dissolution inhibiting effect and having a high sensitivity and a low film thickness can be obtained.
  • the quinonediazide compound includes a polyhydroxy compound in which a sulfonic acid of quinonediazide is bonded with an ester, a polyamino compound in which a sulfonic acid of quinonediazide is bonded to a sulfonamide, and a sulfonic acid of quinonediazide in an ester bond and / or sulfone.
  • Examples include amide-bonded ones.
  • a positive photosensitive resin composition that reacts with i-ray (wavelength 365 nm), h-ray (wavelength 405 nm), and g-ray (wavelength 436 nm) of a mercury lamp, which is a general ultraviolet ray, is obtained. be able to.
  • the quinonediazide compound is preferably a 5-naphthoquinonediazidesulfonyl group or a 4-naphthoquinonediazidesulfonyl group.
  • a compound having both of these groups in the same molecule may be used, or a compound using different groups may be used in combination.
  • the quinonediazide compound used in the present invention is synthesized from a specific phenol compound by the following method. For example, there is a method in which 5-naphthoquinonediazide sulfonyl chloride and a phenol compound are reacted in the presence of triethylamine.
  • Examples of the method for synthesizing a phenol compound include a method of reacting an ⁇ - (hydroxyphenyl) styrene derivative with a polyhydric phenol compound under an acid catalyst.
  • the content of the photoacid generator is preferably 3 to 40 parts by weight with respect to 100 parts by weight of polyamic acid, polyimide or polyimide oxazole. By setting the content of the photoacid generator within this range, higher sensitivity can be achieved. Furthermore, you may contain a sensitizer etc. as needed.
  • a varnish of positive photosensitive resin is applied on a substrate, and after exposure, the exposed portion is removed using a developer.
  • Developers include tetramethylammonium hydroxide, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, dimethylaminoethyl acetate, dimethylaminoethanol, dimethyl
  • An aqueous solution of a compound showing alkalinity such as aminoethyl methacrylate, cyclohexylamine, ethylenediamine, hexamethylenediamine and the like is preferable.
  • these alkaline aqueous solutions are mixed with polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, gamma butyrolactone, dimethylacrylamide, methanol, ethanol, isopropanol.
  • Alcohols such as ethyl lactate, esters such as propylene glycol monomethyl ether acetate, ketones such as cyclopentanone, cyclohexanone, isobutyl ketone, and methyl isobutyl ketone may be added singly or in combination.
  • alcohols such as ethanol and isopropyl alcohol, and esters such as ethyl lactate and propylene glycol monomethyl ether acetate may be added to water for rinsing treatment.
  • a polyamic acid resin composition, a polyimide resin composition or a polyimide oxazole resin composition is applied on a substrate.
  • a substrate for example, a silicon wafer, ceramics, gallium arsenide, soda lime glass, non-alkali glass or the like is used, but is not limited thereto.
  • the coating method include a slit die coating method, a spin coating method, a spray coating method, a roll coating method, and a bar coating method, and these methods may be used in combination.
  • the substrate coated with the polyamic acid resin composition, the polyimide resin composition or the polyimide oxazole resin composition is dried to obtain a polyamic acid resin composition, a polyimide resin composition or a polyimide oxazole resin composition film.
  • a hot plate an oven, an infrared ray, a vacuum chamber or the like is used.
  • the object to be heated is heated by holding it directly on the plate or on a jig such as a proxy pin installed on the plate.
  • the proxy pin As a material of the proxy pin, there are a metal material such as aluminum or sterylene, or a synthetic resin such as polyimide resin or “Teflon (registered trademark)”, and any proxy pin may be used.
  • the height of the proxy pin varies depending on the size of the substrate, the type of the resin layer to be heated, the purpose of heating, etc. For example, the resin layer coated on a 300 mm ⁇ 350 mm ⁇ 0.7 mm glass substrate is heated. In this case, the height of the proxy pin is preferably about 2 to 12 mm.
  • the heating temperature varies depending on the type and purpose of the object to be heated, and it is preferably performed in the range of room temperature to 180 ° C. for 1 minute to several hours.
  • a temperature is applied in the range of 180 ° C. or higher and 400 ° C. or lower to convert it into a heat resistant resin film.
  • the heat-resistant resin film can be peeled from the substrate by dipping in a chemical solution such as hydrofluoric acid, or by irradiating the laser to the interface between the heat-resistant resin film and the substrate. I do not care.
  • the polyamic acid of this invention which has a structural unit represented by General formula (1), (2) as a main component, and the polyimide are heat-processed as mentioned above, The structural unit represented by General formula (2) is changed.
  • a polyimide having a main component or a polyimide oxazole having a structural unit represented by the general formula (3) as a main component is obtained.
  • the heat-resistant resin film obtained as described above has high transparency, high heat resistance, low birefringence, and flexibility, and can be suitably used as a flexible substrate.
  • the transmittance at a wavelength of 400 nm is preferably 85% or more, more preferably 90% or more, and further preferably 95% or more.
  • the glass transition temperature is preferably 250 ° C. or higher, more preferably 300 ° C. or higher, and further preferably 350 ° C. or higher.
  • the birefringence is preferably 0.01 or less, more preferably 0.005 or less, and further preferably 0.003 or less.
  • the flexible substrate containing the resin composition of the present invention can be used for a flexible device such as a liquid crystal display, an organic EL display, a touch panel, electronic paper, a display device such as a color filter, a light receiving device such as a solar cell, or CMOS.
  • a flexible device such as a liquid crystal display, an organic EL display, a touch panel, electronic paper, a display device such as a color filter, a light receiving device such as a solar cell, or CMOS.
  • the manufacturing process of the flexible device includes a step of forming circuits necessary for the display device and the light receiving device on the heat resistant resin film formed on the substrate.
  • an amorphous silicon TFT can be formed on a flexible substrate.
  • a structure necessary for the device can be formed thereon by a known method.
  • a solid heat-resistant resin film having a circuit or the like formed on the surface thereof is peeled from the substrate using a known method such as laser irradiation to obtain a flexible device.
  • the prebaked film was heated to 300 ° C or 350 ° C at 3.5 ° C / min under a nitrogen stream (oxygen concentration 20 ppm or less) and held for 30 minutes. It cooled to 50 degreeC at 5 degree-C / min, and produced the heat resistant resin film (on a glass substrate).
  • the prebaked film was heated to 300 ° C or 350 ° C at 3.5 ° C / min under a nitrogen stream (oxygen concentration 20 ppm or less) and held for 30 minutes. It cooled to 50 degreeC at 5 degree-C / min, and produced the heat resistant resin film (on a silicon substrate).
  • T The light transmittance at 400 nm was measured using an ultraviolet-visible spectrophotometer (MultiSpec 1500 manufactured by Shimadzu Corporation). In addition, the heat resistant resin film produced by (2) was used for the measurement.
  • Tt total light transmittance
  • HGM2DP direct reading haze computer
  • n (TE) and TM) are refractive indexes in parallel and perpendicular directions to the polyimide film surface, respectively.
  • the average refractive index n (AV) is calculated from ((2 ⁇ n (TE) 2 + n (TM) 2 ) / 3) ⁇ 0.5, and the in-plane / out-of-plane birefringence is n (TE) and n (TM ) Difference (n (TE) ⁇ n (TM)).
  • the heat resistant resin film produced by (3) was used for the measurement.
  • Tg glass transition temperature
  • CTE coefficient of linear expansion
  • the temperature raising method was performed under the following conditions. In the first stage, the temperature was raised to 150 ° C. at a temperature rising rate of 5 ° C./min to remove the adsorbed water of the sample, and in the second stage, it was air cooled to room temperature at a temperature lowering rate of 5 ° C./min. In the third stage, this measurement was performed at a temperature elevation rate of 5 ° C./min to determine the glass transition temperature. Further, the linear expansion coefficient (CTE) was determined from the average of the linear expansion coefficients at 50 to 200 ° C. in the third stage. In addition, the heat resistant resin film produced by (1) was used for the measurement.
  • EXSTAR 6000 TMA / SS6000 thermomechanical analyzer
  • Td1 Measurement of 1% weight loss temperature (Td1) Measurement was performed under a nitrogen stream using a thermogravimetric apparatus (TGA-50 manufactured by Shimadzu Corporation). The temperature raising method was performed under the following conditions. In the first stage, the temperature was raised to 350 ° C. at a temperature rising rate of 3.5 ° C./min to remove adsorbed water from the sample, and in the second stage, the temperature was lowered to a temperature lowering rate of 10 ° C./min at room temperature. In the third stage, the main measurement was performed at a temperature rising rate of 10 ° C./min to obtain a 1% thermogravimetric decrease temperature. In addition, the heat resistant resin film produced by (1) was used for the measurement.
  • the photosensitive resin composition (varnish) produced in the examples was spin-coated on an 8-inch silicon wafer, and then a hot plate (manufactured by Tokyo Electron Ltd., coating and developing apparatus Mark-7) was used. Then, heat treatment (pre-baking) was performed at 120 ° C. for 3 minutes to prepare a pre-baked film having a thickness of 2 to 4 ⁇ m. The obtained pre-baked film was exposed at 10 mJ / cm 2 steps using an i-line stepper (DSC-8000, manufactured by GCA) at an exposure amount of 20 to 320 mJ / cm 2 .
  • the line & space pattern used for exposure is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 50, 100 ⁇ m.
  • TMAH tetramethylammonium
  • ELM-D 2.38 wt% tetramethylammonium aqueous solution
  • ELM-D 2.38 wt% tetramethylammonium aqueous solution
  • the film thickness after pre-baking and after development was measured using a light interference type film thickness measuring device Lambda Ace STM-602 manufactured by Dainippon Screen Mfg. Co., Ltd., with a refractive index of 1.63.
  • PMDA-HH 1S, 2S, 4R, 5R-cyclohexanetetracarboxylic dianhydride
  • PMDA-HS 1R, 2S, 4S, 5R-cyclohexanetetracarboxylic dianhydride
  • BPDA-H 3,3 ′ , 4,4′-dicyclohexanetetracarboxylic dianhydride
  • PMDA pyromellitic dianhydride BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride
  • ODPA 3,3 ′, 4 , 4′-oxydiphthalic dianhydride
  • 6FDA 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride
  • HFHA 2,2-bis [3- (3-aminobenzamido) -4-hydroxyphenyl] hexafluoro Propane FDA: 9,9
  • Example 1 Under a dry nitrogen stream, PMDA-HH 2.7704 g (12 mmol), HFHA 7.4706 g (12 mmol), and NMP 50 g were placed in a 100 mL four-necked flask and heated and stirred at 80 ° C. After 8 hours, it was cooled to obtain a varnish.
  • Example 2 Under a dry nitrogen stream, PMDA-HS 2.7704 g (12 mmol), HFHA 7.4706 g (12 mmol), and NMP 50 g were placed in a 100 mL four-necked flask and heated and stirred at 80 ° C. After 8 hours, it was cooled to obtain a varnish.
  • Example 3 Under a dry nitrogen flow, BPDA-H 3.4441 g (11 mmol), HFHA 6.7969 g (11 mmol), and NMP 50 g were placed in a 100 mL four-necked flask and heated and stirred at 80 ° C. After 8 hours, it was cooled to obtain a varnish.
  • Example 4 Under a dry nitrogen stream, PMDA-HH2.7704 g (12 mmol), HFHA 6.5286 g (10.8 mmol), FDA 0.4181 g (1.2 mmol) and NMP 50 g were placed in a 100 mL four-necked flask and heated and stirred at 80 ° C. After 8 hours, it was cooled to obtain a varnish.
  • Example 5 Under a dry nitrogen stream, BPDA 1.0238 g (3.48 mmol), PMDA-HH 1.90999 g (8.52 mmol), CHDA 0.4110 g (3.60 mmol), HFHA 5.0778 g (8.40 mmol), and NMP 50 g were added to a 100 mL four-necked flask. The mixture was heated and stirred at 80 ° C. After 8 hours, it was cooled to obtain a varnish.
  • Example 6 Under a dry nitrogen stream, PMDA-HS 3.4345 g (15.3 mmol), HFHA 8.7985 g (14.5 mmol), FDA 0.2669 g (0.8 mmol), and NMP 50 g were placed in a 100 mL four-necked flask and heated and stirred at 30 ° C. After 6 hours, it was cooled to obtain a varnish.
  • Example 7 Under a dry nitrogen stream, PMDA-HS 3.4893 g (15.6 mmol), HFHA 8.4683 g (14.0 mmol), FDA 0.5424 g (1.6 mmol), and NMP 50 g were placed in a 100 mL four-necked flask and heated and stirred at 30 ° C. After 8 hours, it was cooled to obtain a varnish.
  • Example 8 Under a dry nitrogen stream, PMDA-HS 3.66042 g (16.1 mmol), HFHA 7.7753 g (12.9 mmol), FDA 1.1204 g (3.2 mmol), and NMP 50 g were placed in a 100 mL four-necked flask and stirred at 30 ° C. After 6 hours, it was cooled to obtain a varnish.
  • Example 9 Under a dry nitrogen stream, PMDA-HS 3.7270 g (16.6 mmol), HFHA 7.0351 g (11.6 mmol), FDA 1.7379 g (5.0 mmol), and NMP 50 g were placed in a 100 mL four-necked flask and heated and stirred at 30 ° C. After 6 hours, it was cooled to obtain a varnish.
  • Example 10 Under a dry nitrogen stream, PMDA-HS 3.884 g (17.2 mmol), HFHA 6.2427 g (10.3 mmol), FDA 2.3389 g (6.9 mmol), and NMP 50 g were placed in a 100 mL four-necked flask and heated and stirred at 30 ° C. After 6 hours, it was cooled to obtain a varnish.
  • Example 11 Under a dry nitrogen stream, PMDA-HS 3.9994 g (17.8 mmol), HFHA 5.3924 g (8.9 mmol), FDA 3.1082 g (8.9 mmol) and NMP 50 g were placed in a 100 mL four-necked flask and heated and stirred at 30 ° C. After 6 hours, it was cooled to obtain a varnish.
  • Table 1 shows the compositions of the varnishes synthesized in Examples 1 to 11 and Comparative Examples 1 to 12. Moreover, the light transmittance (T), total light transmittance (Tt), TE refractive index (n (TE)), TM refractive index of the heat resistant resin film obtained by baking at 350 ° C. using these varnishes. (N (TM)), average refractive index (n (AV)), in-plane / out-of-plane birefringence, glass transition temperature (Tg), linear expansion coefficient (CTE), 1% thermogravimetric decrease temperature (Td1) The results are shown in Table 1.
  • Example 12 Under a dry nitrogen stream, 121.5804 g (0.201 mol) of HFHA was dissolved in 400 g of NMP. PMDA-HS 45.5372 g (0.203 mol) was added thereto together with 100 g of NMP, and the mixture was stirred at 30 ° C. for 6 hours. Then, it stirred at room temperature for 12 hours. Then, it stirred at 180 degreeC for 4 hours. After completion of the stirring, the solution was poured into 3 L of water, and a polymer solid precipitate was collected by filtration. Further, washing was performed 5 times with 3 L of water, and the collected polymer solid was dried with a dryer at 50 ° C. for 72 hours to obtain a polyimide powder. 47.5 g of GBL was added to 15 g of the obtained polyimide powder to obtain a polyimide varnish.
  • Example 13 Under a dry nitrogen stream, 62.4272 g (0.103 mol) of HFHA and 23.9891 g (0.069 mol) of FDA were dissolved in 400 g of NMP. PMDA-HS38.9695g (0.174mol) was added here with NMP100g, and it stirred at 30 degreeC for 6 hours. Then, it stirred at room temperature for 12 hours. Then, it stirred at 180 degreeC for 4 hours. After completion of the stirring, the solution was poured into 3 L of water, and a polymer solid precipitate was collected by filtration. Further, washing was performed 5 times with 3 L of water, and the collected polymer solid was dried with a dryer at 50 ° C. for 72 hours to obtain a polyimide powder. 47.5 g of GBL was added to 15 g of the obtained polyimide powder to obtain a polyimide varnish.
  • T Light transmittance
  • Tt total light transmittance
  • Tt total light transmittance
  • TM TE refractive index
  • TM heat resistant resin film obtained by baking at 350 ° C. using the varnishes of Examples 12 and 13.
  • Refractive index (n (TM)) average refractive index (n (AV)), in-plane / out-of-plane birefringence, glass transition temperature (Tg), linear expansion coefficient (CTE), 1% thermogravimetric reduction temperature (Td1)
  • Td1 thermogravimetric reduction temperature
  • Example 14 Under a dry nitrogen stream, 121.5804 g (0.201 mol) of HFHA was dissolved in 400 g of NMP. PMDA-HS 45.5372 g (0.203 mol) was added thereto together with 100 g of NMP, and the mixture was stirred at 30 ° C. for 6 hours. Then, it stirred at room temperature for 12 hours. Then, it stirred at 180 degreeC for 4 hours. After completion of the stirring, the solution was poured into 3 L of water, and a polymer solid precipitate was collected by filtration. Further, washing was performed 5 times with 3 L of water, and the collected polymer solid was dried with a dryer at 50 ° C. for 72 hours to obtain a polyimide powder.
  • the obtained polyimide powder was heat-treated in an oven at 350 ° C. for 30 minutes under a nitrogen stream to obtain a polyimide oxazole powder. 47.5 g of NMP was added to 15 g of the obtained polyimide oxazole powder to obtain a polyimide oxazole varnish.
  • Example 15 Under a dry nitrogen stream, 62.4272 g (0.103 mol) of HFHA and 23.9891 g (0.069 mol) of FDA were dissolved in 400 g of NMP. PMDA-HS38.9695g (0.174mol) was added here with NMP100g, and it stirred at 30 degreeC for 6 hours. Then, it stirred at room temperature for 12 hours. Then, it stirred at 180 degreeC for 4 hours. After completion of the stirring, the solution was poured into 3 L of water, and a polymer solid precipitate was collected by filtration. Further, washing was performed 5 times with 3 L of water, and the collected polymer solid was dried with a dryer at 50 ° C. for 72 hours to obtain a polyimide powder.
  • the obtained polyimide powder was heat-treated in an oven at 350 ° C. for 30 minutes under a nitrogen stream to obtain a polyimide oxazole powder. 47.5 g of NMP was added to 15 g of the obtained polyimide oxazole powder to obtain a polyimide oxazole varnish.
  • Refractive index (n (TM)), average refractive index (n (AV)), in-plane / out-of-plane birefringence, glass transition temperature (Tg), linear expansion coefficient (CTE), 1% thermogravimetric reduction temperature (Td1) The results of measuring are shown in Table 3.
  • Example 16 Organosilica sol (manufactured by Nissan Chemical Industries Ltd., trade name: PMA-ST, particle size: 10-30 nm) so that the silica fine particles are 10 parts by weight with respect to 100 parts by weight of the varnish obtained in Example 1. Was added to obtain a polyamic acid-silica nanoparticle varnish.
  • Example 17 Organosilica sol (manufactured by Nissan Chemical Industries Ltd., trade name: PMA-ST, particle size: 10-30 nm) so that the silica fine particles are 20 parts by weight with respect to 100 parts by weight of the varnish obtained in Example 1. Was added to obtain a polyamic acid-silica nanoparticle varnish.
  • Example 18 Organosilica sol (manufactured by Nissan Chemical Industries Ltd., trade name: PMA-ST, particle size: 10-30 nm) so that the silica fine particles are 30 parts by weight with respect to 100 parts by weight of the varnish obtained in Example 1. Was added to obtain a polyamic acid-silica nanoparticle varnish.
  • Table 4 shows the compositions of the varnishes prepared in Examples 16 to 18. Further, using these varnishes, the light transmittance (T), total light transmittance (Tt), TE refractive index (n (TE)), TM refractive index (n (TM)), average refractive index (n (AV)), in-plane / out-of-plane birefringence, glass transition temperature (Tg), coefficient of linear expansion (CTE), 1% thermogravimetric decrease temperature (Td1) Is shown in Table 4.
  • Example 19 Surfactant polyflow 77 (trade name, manufactured by Kyoeisha Chemical Co., Ltd.) 0.044 g and GBL 13.47 g were added to 4 g of the polyimide powder obtained in Example 13 to obtain a polyimide varnish.
  • Example 20 To 4 g of the polyimide powder obtained in Example 13, 0.044 g of a surfactant Polyflow 77 (trade name, manufactured by Kyoeisha Chemical Co., Ltd.), 0.2 g of Epicron 850-S (trade name, Dainippon Ink & Chemicals, Inc.), GBL13 .47 g was added to obtain a polyimide varnish.
  • a surfactant Polyflow 77 trade name, manufactured by Kyoeisha Chemical Co., Ltd.
  • Epicron 850-S trade name, Dainippon Ink & Chemicals, Inc.
  • Example 21 To 4 g of the polyimide powder obtained in Example 13, 0.044 g of a surfactant polyflow 77 (trade name, manufactured by Kyoeisha Chemical Co., Ltd.), 0.4 g of Epicron 850-S (trade name, Dainippon Ink and Chemicals, Inc.), GBL13 .47 g was added to obtain a polyimide varnish.
  • a surfactant polyflow 77 trade name, manufactured by Kyoeisha Chemical Co., Ltd.
  • Epicron 850-S trade name, Dainippon Ink and Chemicals, Inc.
  • Example 22 To 4 g of the polyimide powder obtained in Example 13, 0.044 g of a surfactant polyflow 77 (trade name, manufactured by Kyoeisha Chemical Co., Ltd.), 0.8 g of Epicron 850-S (trade name, Dainippon Ink and Chemicals, Inc.), GBL13 .47 g was added to obtain a polyimide varnish.
  • a surfactant polyflow 77 trade name, manufactured by Kyoeisha Chemical Co., Ltd.
  • Epicron 850-S trade name, Dainippon Ink and Chemicals, Inc.
  • Reference example 1 117 g of PB15: 6 (average primary particle size 30 nm), 140 g of Ajinomoto Fine-Techno “Asper” PB821 in propylene glycol monomethyl ether acetate solution (30% by weight), 93 g of “Cyclomer” ACA250 manufactured by Daicel Chemical Industries, Ltd. 45 wt% solution) and 627 g of propylene glycol monomethyl ether acetate were stirred with a homodisper to prepare a slurry.
  • the beaker containing the slurry was connected with a circulating bead mill disperser ("Dynomill" KDL-A manufactured by Willy et Bacofen) and a tube, and using zirconia beads having a diameter of 0.3 mm as a medium, 3200 rpm, 3 hours A blue pigment dispersion was obtained.
  • GBL49.5833 g was added to 0.4167 g of the obtained blue pigment dispersion to obtain a diluted solution.
  • Example 23 Surfactant polyflow 77 (trade name, manufactured by Kyoeisha Chemical Co., Ltd.) 0.013 g and GBL 36.3 g were added to 13 g of the polyimide powder obtained in Example 13 to obtain a polyimide varnish.
  • Example 24 Surfactant polyflow 77 (trade name, manufactured by Kyoeisha Chemical Co., Ltd.) 0.013 g, the blue pigment dispersion 0.325 g obtained in Reference Example 1, and GBL 36.3 g were added to 13 g of the polyimide powder obtained in Example 13, and polyimide. A varnish was obtained.
  • Surfactant polyflow 77 (trade name, manufactured by Kyoeisha Chemical Co., Ltd.) 0.013 g, the blue pigment dispersion 0.325 g obtained in Reference Example 1, and GBL 36.3 g were added to 13 g of the polyimide powder obtained in Example 13, and polyimide. A varnish was obtained.
  • Example 25 Surfactant polyflow 77 (trade name, manufactured by Kyoeisha Chemical Co., Ltd.) 0.013 g, blue pigment dispersion 0.650 g obtained in Reference Example 1, and GBL 36.3 g were added to 13 g of the polyimide powder obtained in Example 13, and polyimide. A varnish was obtained.
  • Surfactant polyflow 77 (trade name, manufactured by Kyoeisha Chemical Co., Ltd.) 0.013 g, blue pigment dispersion 0.650 g obtained in Reference Example 1, and GBL 36.3 g were added to 13 g of the polyimide powder obtained in Example 13, and polyimide. A varnish was obtained.
  • Example 26 0.013 g of surfactant polyflow 77 (trade name, manufactured by Kyoeisha Chemical Co., Ltd.) and 0.975 g of the blue pigment dispersion obtained in Reference Example 1 and 36.3 g of GBL were added to 13 g of the polyimide powder obtained in Example 13, and polyimide. A varnish was obtained.
  • surfactant polyflow 77 trade name, manufactured by Kyoeisha Chemical Co., Ltd.
  • Example 27 0.013 g of surfactant polyflow 77 (trade name, manufactured by Kyoeisha Chemical Co., Ltd.) and 1.300 g of the blue pigment dispersion obtained in Reference Example 1 and 36.3 g of GBL were added to 13 g of the polyimide powder obtained in Example 13, and polyimide. A varnish was obtained.
  • surfactant polyflow 77 trade name, manufactured by Kyoeisha Chemical Co., Ltd.
  • Example 28 0.013 g of surfactant polyflow 77 (trade name, manufactured by Kyoeisha Chemical Co., Ltd.) and 1.625 g of the blue pigment dispersion obtained in Reference Example 1 and 36.3 g of GBL were added to 13 g of the polyimide powder obtained in Example 13, and polyimide. A varnish was obtained.
  • Example 29 0.013 g of surfactant polyflow 77 (trade name, manufactured by Kyoeisha Chemical Co., Ltd.) and 2.600 g of the blue pigment dispersion obtained in Reference Example 1 and 36.3 g of GBL were added to 13 g of the polyimide powder obtained in Example 13, and polyimide. A varnish was obtained.
  • T Light transmittance
  • b * value TE refractive index (n (TE)
  • Example 30 Under a dry nitrogen stream, 22.4 g (0.037 mol) of HFHA and 0.58 g (0.0023 mol) of SiDA were dissolved in 105 g of NMP. ODPA 5.75g (0.018mol) was added here with NMP20g, and it stirred at 40 degreeC for 1 hour. Thereafter, 6.23 g of PMDA-HH was added together with 20 g of NMP, and the mixture was stirred at 80 ° C. for 8 hours and then at room temperature for 11 hours. Then, MAP1.011g was added with NMP15g, and it stirred at 60 degreeC for 1 hour.
  • Example 31 To 4.646 g of the polyimide powder obtained in Example 12, 0.929 g of quinonediazide compound HAP-170 (manufactured by Toyo Gosei Co., Ltd.), 0.664 g of thermal crosslinking agent HMOM (manufactured by Honshu Chemical Co., Ltd.), surfactant polyflow 77 (product) Name, manufactured by Kyoeisha Chemical Co., Ltd.) 0.011 g and GBL 18.75 g were added to obtain a varnish of a photosensitive resin composition. When the relief pattern was produced by the method of said (9) using the obtained varnish and photosensitivity evaluation was performed, the amount of development film reduction
  • the film after the heat treatment includes a flat panel display, a touch panel, electronic paper, a color filter substrate, a flexible substrate such as a solar cell, a surface protective film of a semiconductor element, an interlayer insulating film, an insulating layer of an organic electroluminescence element (organic EL element) It can be suitably used for a spacer layer, a planarization film of a thin film transistor substrate, an insulating layer of an organic transistor, a flexible printed circuit board, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

 熱処理後の膜が優れた耐熱性、光透過性、低複屈折性を有するポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物ならびにそれらを含有するフレキシブル基板を提供すること。(a)一般式(1)で表される構造単位を主成分とするポリアミド酸および(b)溶剤を含有することを特徴とするポリアミド酸樹脂組成物。 (一般式(1)中、X、Xは各々独立に水素原子または炭素数1~10の1価の有機基を示す。Rは単環式もしくは縮合多環式の脂環構造を有する炭素数4~40の4価の有機基または単環式の脂環構造を有する有機基が直接もしくは架橋構造を介して相互に連結された炭素数4~40の4価の有機基を示す。Rは少なくとも2つの水酸基を有する炭素数2~40の2価の有機基を示す。)

Description

ポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物ならびにそれらを含有するフレキシブル基板
 本発明は、ポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物ならびにそれらを含有するフレキシブル基板に関するものである。さらに詳しくは、フラットパネルディスプレイ、タッチパネル、電子ペーパー、カラーフィルター基板、太陽電池等のフレキシブル基板、フレキシブルプリント基板などに好適に用いられるポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物ならびにそれらを含有するフレキシブル基板に関するものである。
 有機フィルムはガラスに比べて屈曲性に富み、割れにくく、軽量といった特長を有する。最近では、フラットパネルディスプレイの基板を、有機フィルムに替えることで、ディスプレイをフレキシブル化する動きが活発化している。
 有機フィルム上でディスプレイを作製する場合、有機フィルムを支持基板に成膜し、デバイス作製後に、支持基板から剥離するといったプロセスが一般的である。有機フィルムを支持基板に成膜するには、以下の方法がある。例えば、有機フィルムをガラス基板上に粘着材などを用いて貼り付ける方法がある(例えば、特許文献1)。あるいは、フィルムの原料となる樹脂などを含む溶液を、支持基板にコーティングし、熱などで硬化させて作製する方法がある(例えば、特許文献2)。前者は、支持基板とフィルムとの間に粘着材を設けることが必要であり、粘着剤の耐熱性によって以降のプロセス温度が制限されることがある。一方、後者は粘着剤を使用しないこと、製膜した膜の表面平滑性が高いことなどの点で優れる。
 有機フィルムに用いられる樹脂としては、ポリエステル、ポリアミド、ポリイミド、ポリカーボネート、ポリエーテルスルホン、アクリル、エポキシなどが挙げられる。このうち、ポリイミドは高耐熱性樹脂としてディスプレイ基板として適している。特にポリイミド樹脂は、高い耐熱性に加え、高機械強度、耐磨耗性、寸法安定性、耐薬品性などの優れた機械特性、絶縁性などの優れた電気特性を併せ持つことから、電気・電子産業分野で広く用いられている。上述のコーティング法にてポリイミドを成膜する場合は、前駆体のポリアミド酸を含む溶液をコーティングし、硬化させてポリイミドに変換する方法が用いられている。一般にポリアミド酸は、溶媒中で酸無水物とジアミンを反応させることで容易に合成することができる。
 芳香族酸二無水物と芳香族ジアミンから誘導される全芳香族ポリイミドは高い耐熱性を持つものの、分子内・分子間電荷移動錯体に由来する可視光波長域の吸収帯が存在するため、得られたポリイミド膜が黄~茶褐色に着色してしまう。また、一般に大きな複屈折性を持つ。そのため、高透明性、低複屈折性が求められるディスプレイ基板として使用できないことが課題であった。ガラス基板の代替材料として使用するには、一般的に膜厚10マイクロメートルで400nmの光透過率が80%以上であること、ガラス転移温度(Tg)や熱分解開始温度が300度以上、可視光波長域(400nmから800nm)における複屈折が0.01以下という低複屈折性を有することが求められる。
 ポリイミドの電荷移動相互作用を抑制し、光透過性を向上させる方法としては、酸二無水物およびジアミンのうち、少なくともどちらか一方の成分に脂環式モノマーを使用する方法が挙げられる。
 例えば、特許文献3には脂環式酸二無水物と種々の芳香族又は脂環式ジアミンから得られるポリイミドが高透明性、低複屈折を有することが開示されている。
 特許文献4には、1S,2S,4R,5R-シクロへキサンテトラカルボン酸二無水物と2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)から得られるポリイミドが高透明性、高Tgを有することが開示されている。また特許文献4には、2,2’-ビス(トリフルオロメチル)ベンジジンの代わりに2,2’-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン(HFBAPP)を用いたポリイミド膜が、高透明性を有することが記載されている。
特開2006-091822号公報 特表2007-512568号公報 特開平11-080350号公報 特開2010-085992号公報
 しかし、特許文献3に記載のポリイミド群はTgが十分高くない。また、特許文献4に記載のポリイミド群においては、Tg及び複屈折が一般的な要求特性を満たさない。
 このように、高透明性、高耐熱性、低複屈折性の全ての要求特性を満たすポリイミド材料は知られていないのが現状である。
 本発明は、上記課題に鑑み、熱処理後の膜が優れた耐熱性,光透過性,低複屈折性を有するポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物ならびにそれらを含有するフレキシブル基板を提供することをその課題とする。
 上述した課題を解決し、目的を達成するために、本発明にかかるポリアミド酸樹脂組成物は、(a)一般式(1)で表される構造単位を主成分とするポリアミド酸、(b)溶剤を含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000033
(一般式(1)中、X、Xは各々独立に水素原子または炭素数1~10の1価の有機基を示す。Rは単環式もしくは縮合多環式の脂環構造を有する炭素数4~40の4価の有機基または単環式の脂環構造を有する有機基が直接もしくは架橋構造を介して相互に連結された炭素数4~40の4価の有機基を示す。Rは少なくとも2つの水酸基を有する炭素数2~40の2価の有機基を示す。)
 また、本発明にかかるポリイミド樹脂組成物は、(a’)一般式(2)で表される構造単位を主成分とするポリイミドおよび(b)溶剤を含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000034
(一般式(2)中、Rは単環式もしくは縮合多環式の脂環構造を有する炭素数4~40の4価の有機基または単環式の脂環構造を有する有機基が直接もしくは架橋構造を介して相互に連結された炭素数4~40の4価の有機基を示す。Rは少なくとも2つの水酸基を有する炭素数2~40の2価の有機基を示す。)
 また、本発明にかかるポリイミドオキサゾール樹脂組成物は、(a’’)一般式(3)で表される構造単位を主成分とするポリイミドオキサゾールおよび(b)溶剤を含有することを特徴とする。
(一般式(3)中、Rは単環式もしくは縮合多環式の脂環構造を有する炭素数4~40の4価の有機基または単環式の脂環構造を有する有機基が直接もしくは架橋構造を介して相互に連結された炭素数4~40の4価の有機基を示す。Rは炭素数2~40の4価の有機基を示す。)
 本発明によれば、熱処理後の膜が優れた耐熱性、可視光領域での高い光透過性、低複屈折性を有するポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物ならびにそれらを含有するフレキシブル基板を得ることができる。
 以下、本発明を実施するための形態を図面と共に詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。また、以下の説明において参照する各図は、本発明の内容を理解でき得る程度に形状、大きさ、および位置関係を概略的に示してあるに過ぎない。すなわち、本発明は各図で例示された形状、大きさ、および位置関係のみに限定されるものではない。
 本発明の第1の形態は,(a)一般式(1)で表される構造単位を主成分とするポリアミド酸および(b)溶剤を含有することを特徴とするポリアミド酸樹脂組成物である。本発明の第2の形態は、(a’)一般式(2)で表される構造単位を主成分とするポリイミドおよび(b)溶剤を含有することを特徴とするポリイミド樹脂組成物である。本発明の第3の形態は、(a’’)一般式(3)で表される構造単位を主成分とするポリイミドオキサゾールおよび(b)溶剤を含有することを特徴とするポリイミドオキサゾール樹脂組成物である。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 一般式(1)中、X、Xは各々独立に水素原子または炭素数1~10の1価の有機基を示す。一般式(1)~(3)中、Rは単環式もしくは縮合多環式の脂環構造を有する炭素数4~40の4価の有機基または単環式の脂環構造を有する有機基が直接もしくは架橋構造を介して相互に連結された炭素数4~40の4価の有機基を示す。一般式(1)、(2)中、Rは少なくとも2つの水酸基を有する炭素数2~40の2価の有機基を示す。一般式(3)中、Rは炭素数2~40の4価の有機基を示す。
 本発明のポリアミド酸は、前記一般式(1)で表される構造単位を主成分とするものであれば、他の構造単位を含んでもよい。他の構造単位としては、酸二無水物とジアミン化合物の重縮合体であるポリアミド酸、ジカルボン酸誘導体とヒドロキシジアミンの重縮合体であるポリヒドロキシアミド、ポリアミド酸の脱水閉環体であるポリイミド、ポリヒドロキシアミドの脱水閉環体ポリベンゾオキサゾール等が挙げられ、例えば、前記一般式(2)で表される構造単位、前記一般式(3)で表される構造単位、前記一般式(1)中のRが芳香環であるポリアミド酸、前記一般式(2)中のRが芳香環であるポリイミド、前記一般式(3)中のRが芳香環であるポリイミドベンゾオキサゾールを含んでもよい。前記一般式(1)で表される構造単位を、全体の50%以上含むことが好ましく、70%以上含むことがより好ましく、90%以上含むことがさらに好ましい。
 ポリアミド酸は後述の通り、ジアミン化合物と酸二無水物又はその誘導体との反応により合成することができる。誘導体としては、該酸二無水物のテトラカルボン酸、そのテトラカルボン酸のモノ、ジ、トリ、又はテトラエステル、酸塩化物などが挙げられる。
 本発明のポリイミドは、前記一般式(2)で表される構造単位を主成分とするものであれば、他の構造単位を含んでもよい。他の構造単位としては、ポリアミド酸、ポリヒドロキシアミド、ポリイミド、ポリベンゾオキサゾール等が挙げられる。例えば、前記一般式(1)で表される構造単位、前記一般式(3)で表される構造単位、前記一般式(1)中のRが芳香環であるポリアミド酸、前記一般式(2)中のRが芳香環であるポリイミド、前記一般式(3)中のRが芳香環であるポリイミドベンゾオキサゾールを含んでもよい。前記一般式(2)で表される構造単位を、全体の50%以上含むことが好ましく、70%以上含むことがより好ましく、90%以上含むことがさらに好ましい。
 ポリイミドは後述の通り、ジアミン化合物と酸二無水物又はその誘導体との反応により合成されるポリアミド酸の加熱脱水閉環、化学的脱水閉環反応により合成することができる。
 本発明のポリイミドオキサゾールは、前記一般式(3)で表される構造単位を主成分とするものであれば、他の構造単位を含んでもよい。他の構造単位としては、ポリアミド酸、ポリヒドロキシアミド、ポリイミド、ポリベンゾオキサゾール等が挙げられ、例えば、前記一般式(1)で表される構造単位、一般式(2)で表される構造単位、前記一般式(1)中のRが芳香環であるポリアミド酸、前記一般式(2)中のRが芳香環であるポリイミド、前記一般式(3)中のRが芳香環であるポリイミドベンゾオキサゾールを含んでもよい。前記一般式(3)で表される構造単位を、全体の50%以上含むことが好ましく、70%以上含むことがより好ましく、90%以上含むことがさらに好ましい。
 ポリイミドオキサゾールは後述の通り、ヒドロキシアミド基を有するジアミン化合物と酸二無水物又はその誘導体との反応により合成されるポリアミド酸の加熱脱水閉環、化学的脱水閉環反応により合成することができる。オキサゾール環を有するジアミン化合物と酸二無水物又はその誘導体との反応により合成されるポリアミド酸の加熱脱水閉環、化学的脱水閉環反応により合成することができる。
 一般式(1)~(3)におけるRは酸成分の構造を表しており、単環式もしくは縮合多環式の脂環構造を有する炭素数4~40の4価の有機基または単環式の脂環構造を有する有機基が直接もしくは架橋構造を介して相互に連結された炭素数4~40の4価の有機基を示す。ここで、前記脂環構造は一部の水素原子がハロゲンで置換されていてもよい。また、酸成分としてこれらの酸成分を単独で又は複数を組み合わせて用いてもよい。
 本発明に用いることができる脂環構造を有する酸二無水物を例示すると、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,3,4-シクロヘキサンテトラカルボン酸二無水物、1,2,4,5-シクロペンタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロヘプタンテトラカルボン酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、3,4-ジカルボキシ-1-シクロヘキシルコハク酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、ビシクロ[3.3.0]オクタン-2,4,6,8-テトラカルボン酸二無水物、ビシクロ[4.3.0]ノナン-2,4,7,9-テトラカルボン酸二無水物、ビシクロ[4.4.0]デカン-2,4,7,9-テトラカルボン酸二無水物、ビシクロ[4.4.0]デカン-2,4,8,10-テトラカルボン酸二無水物、トリシクロ[6.3.0.0<2,6>]ウンデカン-3,5,9,11-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.1]ヘプタンテトラカルボン酸二無水物、ビシクロ[2.2.1]ヘプタン-5-カルボキシメチル-2,3,6-トリカルボン酸二無水物、7-オキサビシクロ[2.2.1]ヘプタン-2,4,6,8-テトラカルボン酸二無水物、オクタヒドロナフタレン-1,2,6,7-テトラカルボン酸二無水物、テトラデカヒドロアントラセン-1,2,8,9-テトラカルボン酸二無水物、3,3’、4,4’-ジシクロへキサンテトラカルボン酸二無水物、3,3’、4,4’-オキシジシクロヘキサンテトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボンサン無水物、及び“リカシッド”(登録商標)BT-100(以上、商品名、新日本理化株式会社製)及びそれらの誘導体などが例示される。
 上記の構造の中で、一般式(1)~(3)におけるRとして好ましいものは、例えば、下記一般式(4)~(10)で表される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
 一般式(4)~(10)中、R~R79は各々独立に水素原子、ハロゲン原子またはハロゲン原子で水素原子が置換されていてもよい炭素数1~3の1価の有機基を示す。一般式(4)~(6)の脂環構造としては、それぞれシクロブタン、シクロペンタン、シクロヘキサン等が挙げられる。一般式(7)中、Xは、酸素原子、硫黄原子、スルホニル基もしくはハロゲン原子で水素原子が置換されていてもよい炭素数1~3の2価の有機基またはそれらが2以上連結してなる2価の架橋構造である。そのような脂環構造としては、ビシクロ[2.2.1]ヘプタン、ビシクロ[2.2.1]オクタ-2-エン、7-オキサビシクロ[2.2.1]ヘプタン等が挙げられる。一般式(8)、(9)の脂環構造としては、それぞれデカヒドロナフタレン、テトラデカヒドロアントラセンが挙げられる。一般式(10)中、Xは直接結合、酸素原子、硫黄原子、スルホニル基、ハロゲン原子で水素原子が置換されていてもよい炭素数1~3の2価の有機基もしくはハロゲン原子で水素原子が置換されていてもよいアリーレン基または酸素原子、硫黄原子、スルホニル基、ハロゲン原子で水素原子が置換されていてもよい炭素数1~3の2価の有機基およびハロゲン原子で水素原子が置換されていてもよいアリーレン基から選ばれた2以上が連結してなる2価の架橋構造である。そのような脂環構造としては、1,1-ビシクロへキサン、オキシジシクロへキサン等が挙げられる。
 上記の酸二無水物を例示すると、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,3,4-シクロヘキサンテトラカルボン酸二無水物、1,2,4,5-シクロペンタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロヘプタンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.1]ヘプタンテトラカルボン酸二無水物、7-オキサビシクロ[2.2.1]ヘプタン-2,4,6,8-テトラカルボン酸二無水物、オクタヒドロナフタレン-1,2,6,7-テトラカルボン酸二無水物、テトラデカヒドロアントラセン-1,2,8,9-テトラカルボン酸二無水物、3,3’,4,4’-ジシクロへキサンテトラカルボン酸二無水物、3,3’,4,4’-オキシジシクロヘキサンテトラカルボン酸二無水物などが挙げられる。
 このうち、市販され手に入れやすい観点、及びジアミン化合物との反応性の観点から、一般式(1)中のRが下記化学式(11)~(13)で表される、1S,2S,4R,5R-シクロへキサンテトラカルボン酸二無水物、1R,2S,4S,5R-シクロへキサンテトラカルボン酸二無水物、3,3’,4,4’-ジシクロへキサンテトラカルボン酸二無水物が好ましい。これらの酸二無水物は、岩谷瓦斯株式会社より製品名「PMDA-HH」、「PMDA-HS」、「BPDA-H」として市販されている。なお、これらの酸二無水物は単独、または2種以上を組み合わせて使用することができる。
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
 また、本発明の効果を妨げない範囲で、該酸二無水物の一部を他の酸二無水物に置き換えて使用することができる。他の酸二無水物としては、芳香族酸二無水物又は、脂肪族酸二無水物が挙げられる。例えば、芳香族酸二無水物としては、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ターフェニルテトラカルボン酸二無水物、3,3’,4,4’-オキシフタル酸二無水物、2,3,3’,4’-オキシフタル酸二無水物、2,3,2’,3’-オキシフタル酸二無水物、ジフェニルスルホン-3,3’,4,4’-テトラカルボン酸二無水物、ベンゾフェノン-3,3’,4,4’-テトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(1,3-ジオキソ-1,3-ジヒドロイソベンズフラン-5-カルボン酸)1,4-フェニレン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパンニ無水物、2,2-ビス(4-(3,4-ジカルボキシフェノキシ)フェニル)ヘキサフルオロプロパン二無水物、2,2-ビス(4-(3,4-ジカルボキシベンゾイルオキシ)フェニル)ヘキサフルオロプロパン二無水物、1,6-ジフルオロプロメリット酸二無水物、1-トリフルオロメチルピロメリット酸二無水物、1,6-ジトリフルオロメチルピロメリット酸二無水物、2,2’-ビス(トリフルオロメチル)-4,4’-ビス(3,4-ジカルボキシフェノキシ)ビフェニル二無水物、“リカシッド”(登録商標)TMEG-100(商品名、新日本理化株式会社製)などの芳香族テトラカルボン酸二無水物及びそれらの誘導体などが挙げられる。脂肪族酸二無水物としては、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-ペンタンテトラカルボン酸二無水物及びそれらの誘導体などが挙げられるが、これらに限定されるものではない。また、これらの他の酸二無水物は、単独で又は2種以上を組み合わせて使用することができる。
 一般式(1)、(2)中のRは少なくとも2つの水酸基を有する炭素数2~40の2価の有機基であり、例えば、化学式(14)~(23)で表される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
 これらのうち、透明性の観点から、化学式(14)の構造が好ましく、下記化学式(24)で表されるジアミンを用いることが好ましい。
Figure JPOXMLDOC01-appb-C000059
 一般式(3)中のRは炭素数2~40の4価の有機基を示すであり、例えば、化学式(25)~(34)で表される構造が挙げられる。これらのうち、透明性の観点から、化学式(25)の構造が好ましい。
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
 なお、一般式(3)中のRが化学式(25)で表されるポリイミドオキサゾールは、上記化学式(24)で表されるジアミンから合成される一般式(1)で表されるポリアミド酸、及び一般式(2)で表されるポリイミドの脱水閉環体である。
 また、本発明の効果を妨げない範囲で、該ジアミン化合物の一部を他のジアミン化合物に置き換えて使用することができる。他のジアミン化合物としては、芳香族ジアミン化合物、脂環式ジアミン化合物、又は脂肪族ジアミン化合物が挙げられる。例えば、芳香族ジアミン化合物としては、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、3,3’-ジアミノジフェニルスルヒド、4,4’-ジアミノジフェニルスルヒド、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、3,3’-ビス(トリフルオロメチル)ベンジジン、2,2’-ジメチルベンジジン、3,3’-ジメチルベンジジン、2,2’,3,3’-テトラメチルベンジジン、m-フェニレンジアミン、p-フェニレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ビス{4-(4-アミノフェノキシフェニル)}スルホン、ビス{4-(3-アミノフェノキシフェニル)}スルホン、ビス(4-アミノフェノキシ)ビフェニル、ビス{4-(4-アミノフェノキシ)フェニル}エーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、9,9-ビス(4-アミノフェニル)フルオレン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、4,4-ジアミノベンズアニリド、3,4-ジアミノベンズアニリド、4,4-ジアミノベンゾフェノン、3,3-ジアミノベンゾフェノンあるいはこれらの芳香族環にアルキル基、アルコキシ基、ハロゲン原子などで置換したジアミン化合物が挙げられるが、これらに限定されるものではない。
 脂環式ジアミン化合物としては、シクロブタンジアミン、イソホロンジアミン、ビシクロ[2.2.1]ヘプタンビスメチルアミン、トリシクロ[3.3.1.13,7]デカン-1,3-ジアミン、1,2-シクロヘキシルジアミン、1,3-シクロヘキシルジアミン、1,4-シクロヘキシルジアミン、4,4’-ジアミノジシクロヘキシルメタン、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、3,3’-ジエチル-4,4’-ジアミノジシクロヘキシルメタン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジシクロヘキシルメタン、3,3’,5,5’-テトラエチル-4,4’-ジアミノジシクロヘキシルメタン、3,5-ジエチル-3’,5’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノジシクロヘキシルエーテル、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルエーテル、3,3’-ジエチル-4,4’-ジアミノジシクロヘキシルエーテル、3,3’,5,5’-テトラメチル-4,4’-ジアミノジシクロヘキシルエーテル、3,3’,5,5’-テトラエチル-4,4’-ジアミノジシクロヘキシルエーテル、3,5-ジエチル-3’,5’-ジメチル-4,4’-ジアミノジシクロヘキシルエーテル、2,2-ビス(4-アミノシクロヘキシル)プロパン、2,2-ビス(3-メチル-4-アミノシクロヘキシル)プロパン、2,2-ビス(3-エチル-4-アミノシクロヘキシル)プロパン、2,2-ビス(3,5-ジメチル-4-アミノシクロヘキシル)プロパン、2,2-ビス(3,5-ジエチル-4-アミノシクロヘキシル)プロパン、2,2-(3,5-ジエチル-3’,5’-ジメチル-4,4’-ジアミノジシクロヘキシル)プロパン、2,2’-ビス(4-アミノシクロヘキシル)ヘキサフルオロプロパン、2,2’-ジメチル-4,4’-ジアミノビシクロへキサン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビシクロへキサン、あるいはこれらの脂環にアルキル基、アルコキシ基、ハロゲン原子などで置換したジアミン化合物が挙げられるが、これらに限定されるものではない。
 脂肪族ジアミン化合物としては、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカンなどのアルキレンジアミン類、ビス(アミノメチル)エーテル、ビス(2-アミノエチル)エーテル、ビス(3-アミノプロピル)エーテルなどのエチレングリコールジアミン類、及び1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、1,3-ビス(4-アミノブチル)テトラメチルジシロキサン、α,ω-ビス(3-アミノプロピル)ポリジメチルシロキサンなどのシロキサンジアミン類が挙げられるが、これらに限定されるものではない。
 これらの芳香族ジアミン化合物、脂環式ジアミン化合物、又は脂肪族ジアミン化合物は、単独で又は2種以上を組み合わせて使用することができる。
 これらのうち、下記化学式(35)で表される9,9-ビス(4-アミノフェニル)フルオレンジアミンを用いることが好ましく、焼成膜の透明性や機械特性は維持したまま、ガラス転移温度を上昇させ、複屈折を低減することができることを見出した。
Figure JPOXMLDOC01-appb-C000070
 化学式(35)で表されるジアミンを用いることで、分子鎖中に下記一般式(36)、又は下記一般式(37)で表される構造単位を導入することができる。
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
(一般式(36)中、X、Xは各々独立に水素原子または炭素数1~10の1価の有機基を示す。一般式(36)、(37)中、Rは単環式もしくは縮合多環式の脂環構造を有する炭素数4~40の4価の有機基または単環式の脂環構造を有する有機基が直接もしくは架橋構造を介して相互に連結された炭素数4~40の4価の有機基を示す。)
 一般的に、化学式(35)で表されるジアミンを用いたポリイミド膜では着色が見られることが多い。後述するように(比較例8)、透明PIの原料モノマーとして用いられている4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物および上記化学式(35)で表されるジアミンなどを用いたポリイミド膜では、本発明のポリイミド、及びポリイミドオキサゾール膜と比較して透明性が悪化する。本発明のポリイミド及びポリイミドオキサゾール膜に関しては、脂環式酸二無水物を用いているため着色を抑制することができる。
 前記化学式(35)で表されるジアミンを、全ジアミン残基の10%以上50%以下の範囲で含むことが好ましく、30%以上50%以下の範囲で含むことがより好ましく、40%以上50%以下の範囲で含むことがさらに好ましい。これにより、本発明のポリアミド酸、ポリイミドおよびポリイミドオキサゾールにおいて、一般式(36)または一般式(37)で表される構造単位が、10%~50%含まれる。
 本発明のポリアミド酸、ポリイミドおよびポリイミドオキサゾールは、分子量を好ましい範囲に調整するために末端封止剤により両末端を封止してもよい。酸二無水物と反応する末端封止剤としては、モノアミンや一価のアルコールなどが挙げられる。また、ジアミン化合物と反応する末端封止剤としては、酸無水物、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物などが挙げられる。また、末端封止剤を反応させることにより、末端基として種々の有機基を導入することができる。
 末端封止剤に用いられるモノアミンとしては、5-アミノ-8-ヒドロキシキノリン、4-アミノ-8-ヒドロキシキノリン、1-ヒドロキシ-8-アミノナフタレン、1-ヒドロキシ-7-アミノナフタレン、1-ヒドロキシ-6-アミノナフタレン、1-ヒドロキシ-5-アミノナフタレン、1-ヒドロキシ-4-アミノナフタレン、1-ヒドロキシ-3-アミノナフタレン、1-ヒドロキシ-2-アミノナフタレン、1-アミノ-7-ヒドロキシナフタレン、2-ヒドロキシ-7-アミノナフタレン、2-ヒドロキシ-6-アミノナフタレン、2-ヒドロキシ-5-アミノナフタレン、2-ヒドロキシ-4-アミノナフタレン、2-ヒドロキシ-3-アミノナフタレン、1-アミノ-2-ヒドロキシナフタレン、1-カルボキシ-8-アミノナフタレン、1-カルボキシ-7-アミノナフタレン、1-カルボキシ-6-アミノナフタレン、1-カルボキシ-5-アミノナフタレン、1-カルボキシ-4-アミノナフタレン、1-カルボキシ-3-アミノナフタレン、1-カルボキシ-2-アミノナフタレン、1-アミノ-7-カルボキシナフタレン、2-カルボキシ-7-アミノナフタレン、2-カルボキシ-6-アミノナフタレン、2-カルボキシ-5-アミノナフタレン、2-カルボキシ-4-アミノナフタレン、2-カルボキシ-3-アミノナフタレン、1-アミノ-2-カルボキシナフタレン、2-アミノニコチン酸、4-アミノニコチン酸、5-アミノニコチン酸、6-アミノニコチン酸、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、アメライド、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、2-アミノベンゼンスルホン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸、3-アミノ-4,6-ジヒドロキシピリミジン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、5-アミノ-8-メルカプトキノリン、4-アミノ-8-メルカプトキノリン、1-メルカプト-8-アミノナフタレン、1-メルカプト-7-アミノナフタレン、1-メルカプト-6-アミノナフタレン、1-メルカプト-5-アミノナフタレン、1-メルカプト-4-アミノナフタレン、1-メルカプト-3-アミノナフタレン、1-メルカプト-2-アミノナフタレン、1-アミノ-7-メルカプトナフタレン、2-メルカプト-7-アミノナフタレン、2-メルカプト-6-アミノナフタレン、2-メルカプト-5-アミノナフタレン、2-メルカプト-4-アミノナフタレン、2-メルカプト-3-アミノナフタレン、1-アミノ-2-メルカプトナフタレン、3-アミノ-4,6-ジメルカプトピリミジン、2-アミノチオフェノール、3-アミノチオフェノール、4-アミノチオフェノール、2-エチニルアニリン、3-エチニルアニリン、4-エチニルアニリン、2,4-ジエチニルアニリン、2,5-ジエチニルアニリン、2,6-ジエチニルアニリン、3,4-ジエチニルアニリン、3,5-ジエチニルアニリン、1-エチニル-2-アミノナフタレン、1-エチニル-3-アミノナフタレン、1-エチニル-4-アミノナフタレン、1-エチニル-5-アミノナフタレン、1-エチニル-6-アミノナフタレン、1-エチニル-7-アミノナフタレン、1-エチニル-8-アミノナフタレン、2-エチニル-1-アミノナフタレン、2-エチニル-3-アミノナフタレン、2-エチニル-4-アミノナフタレン、2-エチニル-5-アミノナフタレン、2-エチニル-6-アミノナフタレン、2-エチニル-7-アミノナフタレン、2-エチニル-8-アミノナフタレン、3,5-ジエチニル-1-アミノナフタレン、3,5-ジエチニル-2-アミノナフタレン、3,6-ジエチニル-1-アミノナフタレン、3,6-ジエチニル-2-アミノナフタレン、3,7-ジエチニル-1-アミノナフタレン、3,7-ジエチニル-2-アミノナフタレン、4,8-ジエチニル-1-アミノナフタレン、4,8-ジエチニル-2-アミノナフタレン等が挙げられるが、これらに限定されるものではない。
 また、末端封止剤として用いられる一価のアルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、3-オクタノール、1-ノナノール、2-ノナノール、1-デカノール、2-デカノール、1-ウンデカノール、2-ウンデカノール、1-ドデカノール、2-ドデカノール、1-トリデカノール、2-トリデカノール、1-テトラデカノール、2-テトラデカノール、1-ペンタデカノール、2-ペンタデカノール、1-ヘキサデカノール、2-ヘキサデカノール、1-へプタデカノール、2-ヘプタデカノール、1-オクタデカノール、2-オクタデカノール、1-ノナデカノール、2-ノナデカノール、1-イコサノール、2-メチル-1-プロパノール、2-メチル-2-プロパノール、2-メチル-1-ブタノール、3-メチル-1-ブタノール、2-メチル-2-ブタノール、3-メチル-2-ブタノール、2-プロピル-1-ペンタノール、2-エチル-1-ヘキサノール、4-メチル-3-ヘプタノール、6-メチル-2-ヘプタノール、2,4,4-トリメチル-1-ヘキサノール、2,6-ジメチル-4-ヘプタノール、イソノニルアルコール、3,7ジメチル-3-オクタノール、2,4ジメチル-1-ヘプタノール、2-ヘプチルウンデカノール、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール1-メチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテルシクロペンタノール、シクロヘキサノール、シクロペンタンモノメチロール、ジシクロペンタンモノメチロール、トリシクロデカンモノメチロール、ノルボネオール、テルピネオール等が挙げられるが、これらに限定されるものではない。
 末端封止剤として用いられる酸無水物、モノカルボン酸、モノ酸クロリド化合物およびモノ活性エステル化合物としては、無水フタル酸、無水マレイン酸、無水ナジック酸、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物等の酸無水物、2-カルボキシフェノール、3-カルボキシフェノール、4-カルボキシフェノール、2-カルボキシチオフェノール、3-カルボキシチオフェノール、4-カルボキシチオフェノール、1-ヒドロキシ-8-カルボキシナフタレン、1-ヒドロキシ-7-カルボキシナフタレン、1-ヒドロキシ-6-カルボキシナフタレン、1-ヒドロキシ-5-カルボキシナフタレン、1-ヒドロキシ-4-カルボキシナフタレン、1-ヒドロキシ-3-カルボキシナフタレン、1-ヒドロキシ-2-カルボキシナフタレン、1-メルカプト-8-カルボキシナフタレン、1-メルカプト-7-カルボキシナフタレン、1-メルカプト-6-カルボキシナフタレン、1-メルカプト-5-カルボキシナフタレン、1-メルカプト-4-カルボキシナフタレン、1-メルカプト-3-カルボキシナフタレン、1-メルカプト-2-カルボキシナフタレン、2-カルボキシベンゼンスルホン酸、3-カルボキシベンゼンスルホン酸、4-カルボキシベンゼンスルホン酸、2-エチニル安息香酸、3-エチニル安息香酸、4-エチニル安息香酸、2,4-ジエチニル安息香酸、2,5-ジエチニル安息香酸、2,6-ジエチニル安息香酸、3,4-ジエチニル安息香酸、3,5-ジエチニル安息香酸、2-エチニル-1-ナフトエ酸、3-エチニル-1-ナフトエ酸、4-エチニル-1-ナフトエ酸、5-エチニル-1-ナフトエ酸、6-エチニル-1-ナフトエ酸、7-エチニル-1-ナフトエ酸、8-エチニル-1-ナフトエ酸、2-エチニル-2-ナフトエ酸、3-エチニル-2-ナフトエ酸、4-エチニル-2-ナフトエ酸、5-エチニル-2-ナフトエ酸、6-エチニル-2-ナフトエ酸、7-エチニル-2-ナフトエ酸、8-エチニル-2-ナフトエ酸等のモノカルボン酸類およびこれらのカルボキシル基が酸クロリド化したモノ酸クロリド化合物、およびテレフタル酸、フタル酸、マレイン酸、シクロヘキサンジカルボン酸、3-ヒドロキシフタル酸、5-ノルボルネン-2,3-ジカルボン酸、1,2-ジカルボキシナフタレン、1,3-ジカルボキシナフタレン、1,4-ジカルボキシナフタレン、1,5-ジカルボキシナフタレン、1,6-ジカルボキシナフタレン、1,7-ジカルボキシナフタレン、1,8-ジカルボキシナフタレン、2,3-ジカルボキシナフタレン、2,6-ジカルボキシナフタレン、2,7-ジカルボキシナフタレン等のジカルボン酸類のモノカルボキシル基だけが酸クロリド化したモノ酸クロリド化合物、モノ酸クロリド化合物とN-ヒドロキシベンゾトリアゾールやN-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドとの反応により得られる活性エステル化合物が挙げられる。
 末端封止剤に用いられるモノアミン、一価のアルコールの導入割合は、全アミン成分に対して、0.1~60モル%の範囲が好ましく、特に好ましくは5~50モル%である。末端封止剤として用いられる酸無水物、モノカルボン酸、モノ酸クロリド化合物およびモノ活性エステル化合物導入割合は、ジアミン成分に対して、0.1~100モル%の範囲が好ましく、特に好ましくは5~90モル%である。複数の末端封止剤を反応させることにより、複数の異なる末端基を導入してもよい。
 ポリアミド酸、ポリイミドおよびポリイミドオキサゾール中に導入された末端封止剤は、以下の方法で容易に検出できる。例えば、末端封止剤が導入されたポリマーを酸性溶液に溶解し、ポリマーの構成単位であるアミン成分と酸無水成分とに分解し、これをガスクロマトグラフィー(GC)や、NMR測定することにより、末端封止剤を容易に検出できる。その他に、末端封止剤が導入されたポリマーを直接、熱分解ガスクロマトグラフ(PGC)や赤外スペクトルおよび13C NMRスペクトル測定でも、容易に検出可能である。
 本発明のポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物は、(b)溶剤を含有する。溶剤としては、N-メチル-2-ピロリドン、ガンマブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシドなどの極性の非プロトン性溶媒、テトラヒドロフラン、ジオキサン、プロピレングリコールモノメチルエーテルなどのエーテル類、アセトン、メチルエチルケトン、ジイソブチルケトン、ジアセトンアルコールなどのケトン類、酢酸エチル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチルなどのエステル類、トルエン、キシレンなどの芳香族炭化水素類などを単独、または2種以上使用することができる。
 (b)溶剤の含有量は、ポリアミド酸、ポリイミドまたはポリイミドオキサゾール100重量部に対して、好ましくは50重量部以上、より好ましくは100重量部以上であり、好ましくは2,000重量部以下、より好ましくは1,500重量部以下である。50~2,000重量部の範囲であれば、塗布に適した粘度となり、塗布後の膜厚を容易に調節することができる。
 以下では、(a)一般式(1)で表される構造単位を主成分とするポリアミド酸の製造方法について説明する。重合反応の反応方法は、目的のポリアミド酸が製造できれば特に制限はなく、公知の反応方法を用いることができる。
 具体的な反応方法としては、所定量の全てのジアミン成分および反応溶媒を反応器に仕込み溶解させた後、所定量の酸二無水物成分を仕込み、室温~80℃で0.5~30時間撹拌する方法などが挙げられる。
 化学式(24)で表されるジアミン化合物と、1S,2S,4R,5R-シクロへキサンテトラカルボン酸二無水物、1R,2S,4S,5R-シクロへキサンテトラカルボン酸二無水物,3,3’,4,4’-ジシクロへキサンテトラカルボン酸二無水物から得られるポリアミド酸の構造単位としては、下記化学式(38)~(42)が挙げられる。
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
 次に、(a’)一般式(2)で表される構造単位を主成分とするポリイミドの製造方法について説明する。上記の公知の反応方法によって得られた一般式(1)で表されるポリアミド酸をイミド化できる製造方法であれば特に制限はなく、公知の反応方法を用いることができる。
 具体的な反応方法としては、前述のようにして得たポリアミド酸溶液を室温~200℃で0.5~30時間撹拌する方法などが挙げられる。
 化学式(24)で表されるジアミン化合物と、1S,2S,4R,5R-シクロへキサンテトラカルボン酸二無水物、1R,2S,4S,5R-シクロへキサンテトラカルボン酸二無水物,3,3’,4,4’-ジシクロへキサンテトラカルボン酸二無水物から得られるポリイミドの構造単位としては、下記化学式(43)~(45)が挙げられる。
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
 次に、(a’’)一般式(3)で表される構造単位を主成分とするポリイミドオキサゾールの製造方法について説明する。第1の方法としては、前述した公知の反応方法によって得られた一般式(2)で表されるポリイミドを脱水閉環することが挙げられる。反応方法には特に制限はなく、公知の反応方法を用いることができる。具体的な反応方法としては、ポリイミド粉末を300~400℃で0.5~30時間熱処理する方法、ポリイミド溶液に熱酸発生剤などの酸触媒を加え、室温~250℃で0.5~30時間撹拌する方法などが挙げられる。
 第2の方法としては、下記一般式(46)で表されるオキサゾール環を含むジアミンと酸二無水物から得たポリアミド酸をイミド化することが挙げられる。具体的な反応方法としては、所定量の酸二無水物成分を仕込み、室温~80℃で0.5~30時間撹拌した後、室温~200℃で0.5~30時間撹拌する方法などが挙げられる。
Figure JPOXMLDOC01-appb-C000081
(一般式(46)中、Rは炭素数2~40の4価の有機基を示す。)
 化学式(24)で表されるジアミン化合物と、1S,2S,4R,5R-シクロへキサンテトラカルボン酸二無水物、1R,2S,4S,5R-シクロへキサンテトラカルボン酸二無水物,3,3’,4,4’-ジシクロへキサンテトラカルボン酸二無水物から得られるポリアミド酸を脱水閉環した場合、又は化学式(47)で表されるジアミンと1S,2S,4R,5R-シクロへキサンテトラカルボン酸二無水物、1R,2S,4S,5R-シクロへキサンテトラカルボン酸二無水物,3,3’,4,4’-ジシクロへキサンテトラカルボン酸二無水物から得られるポリアミド酸を脱水閉環した場合に得られるポリイミドオキサゾールの構造単位としては、下記化学式(48)~(50)が挙げられる。
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
 本発明のポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物は、界面活性剤を含有することができる。界面活性剤としては、フロラード(商品名、住友3M株式会社製)、メガファック(商品名、DIC株式会社製)、スルフロン(商品名、旭硝子株式会社製)等のフッ素系界面活性剤があげられる。また、KP341(商品名、信越化学工業株式会社製)、DBE(商品名、チッソ株式会社製)、ポリフロー、グラノール(商品名、共栄社化学株式会社製)、BYK(ビック・ケミー株式会社製)等の有機シロキサン界面活性剤が挙げられる。さらに、ポリフロー(商品名、共栄社化学株式会社製)等のアクリル重合物界面活性剤が挙げられる。
 界面活性剤は、ポリアミド酸、ポリイミドまたはポリイミドオキサゾール100重量部に対し、0.01~10重量部含有することが好ましい。
 本発明のポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物は、内部離型剤を含有することができる。内部離型剤としては、長鎖脂肪酸等が挙げられる。
 本発明のポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物は、熱架橋剤を含有することができる。熱架橋剤としては、エポキシ化合物やアルコキシメチル基またはメチロール基を少なくとも2つ有する化合物が好ましい。これらの基を少なくとも2つ有することで、樹脂および同種分子と縮合反応して架橋構造体が形成され、機械強度や耐薬品性を向上させることができる。
 エポキシ化合物の好ましい例としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリメチル(グリシジロキシプロピル)、シロキサン等のエポキシ基含有シリコーンなどを挙げることができるが、本発明は何らこれらに限定されない。具体的には、エピクロン850-S、エピクロンHP-4032、エピクロンHP-7200、エピクロンHP-820、エピクロンHP-4700、エピクロンEXA-4710、エピクロンHP-4770、エピクロンEXA-859CRP、エピクロンEXA-1514、エピクロンEXA-4880、エピクロンEXA-4850-150、エピクロンEXA-4850-1000、エピクロンEXA-4816、エピクロンEXA-4822(以上商品名、大日本インキ化学工業株式会社製)、リカレジンBEO-60E、リカレジンBPO-20E、リカレジンHBE-100、リカレジンDME-100(以上商品名、新日本理化株式会社)、EP-4003S,EP-4000S(以上商品名、株式会社アデカ)、PG-100、CG-500、EG-200(以上商品名、大阪ガスケミカル株式会社)、NC-3000、NC-6000(以上商品名、日本化薬株式会社)、EPOX-MK R508、EPOX-MK R540、EPOX-MK R710、EPOX-MK R1710、VG3101L、VG3101M80(以上商品名、株式会社プリンテック)、セロキサイド2021P、セロキサイド2081、セロキサイド2083、セロキサイド2085(以上商品名、ダイセル化学工業株式会社)などが挙げられる。
 アルコキシメチル基またはメチロール基を少なくとも2つ有する化合物としては、例えば、DML-PC、DML-PEP、DML-OC、DML-OEP、DML-34X、DML-PTBP、DML-PCHP、DML-OCHP、DML-PFP、DML-PSBP、DML-POP、DML-MBOC、DML-MBPC、DML-MTrisPC、DML-BisOC-Z、DML-BisOCHP-Z、DML-BPC、DML-BisOC-P、DMOM-PC、DMOM-PTBP、DMOM-MBPC、TriML-P、TriML-35XL、TML-HQ、TML-BP、TML-pp-BPF、TML-BPE、TML-BPA、TML-BPAF、TML-BPAP、TMOM-BP、TMOM-BPE、TMOM-BPA、TMOM-BPAF、TMOM-BPAP、HML-TPPHBA、HML-TPHAP、HMOM-TPPHBA、HMOM-TPHAP(以上、商品名、本州化学工業株式会社製)、NIKALAC(登録商標) MX-290、NIKALAC MX-280、NIKALAC MX-270、NIKALAC MX-279、NIKALAC MW-100LM、NIKALAC MX-750LM(以上、商品名、株式会社三和ケミカル製)が挙げられる。これらを2種以上含有してもよい。
 本発明のポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物は、着色剤を含有することができる。着色剤を添加することで、ポリアミド酸、ポリイミド、ポリイミドオキサゾール膜の色味を調節することができる。
 着色剤としては、染料、有機顔料、無機顔料等を用いることができるが、耐熱性、透明性の面から有機顔料が好ましい。中でも透明性が高く、耐光性、耐熱性、耐薬品性に優れたものが好ましい。代表的な有機顔料の具体的な例をカラ-インデックス(CI)ナンバ-で示すと、次のようなものが好ましく使用されるが、いずれもこれらに限定されるものではない。
 黄色顔料の例としては、ピグメントイエロ-(以下PYと略す)12、13、17、20、24、83、86、93、95、109、110、117、125、129、137、138、139、147、148、150、153、154、166、168、185などが使用される。また、オレンジ色顔料の例としては、ピグメントオレンジ(以下POと略す)13、36、38、43、51、55、59、61、64、65、71などが使用される。また、赤色顔料の例としては、ピグメントレッド(以下PRと略す)9、48、97、122、123、144、149、166、168、177、179、180、192、209、215、216、217、220、223、224、226、227、228、240、254などが使用される。また、紫色顔料の例としては、ピグメントバイオレット(以下PVと略す)19、23、29、30、32、37、40、50などが使用される。また、青色顔料の例としては、ピグメントブル-(以下PBと略す)15、15:3、15:4、15:6、22、60、64などが使用される。また、緑色顔料の例としては、ピグメントグリ-ン(以下PGと略す)7、10、36、58などが使用される。これらの顔料は、必要に応じて、ロジン処理、酸性基処理、塩基性処理などの表面処理をされていてもかまわない。
 本発明のポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物は、無機フィラーを含有することができる。無機フィラーとしては、シリカ微粒子、アルミナ微粒子、チタニア微粒子、ジルコニア微粒子などが挙げられる。
 無機フィラーの形状は特に限定されず、球状、楕円形状、偏平状、ロット状、繊維状などが挙げられる。
 含有させた無機フィラーは光の散乱を防ぐため粒径が小さいことが好ましい。平均粒径は0.5~100nmであり、0.5~30nmの範囲が好ましい。
 無機フィラーの含有量は、ポリアミド酸、ポリイミドまたはポリイミドオキサゾールに対し、好ましくは1~50重量%、より好ましくは10~30重量%である。含有量の増加に伴い、可とう性や耐折性が低下する。
 ポリアミド酸樹脂組成物、ポリイミド樹脂組成物またはポリイミドオキサゾール樹脂組成物に無機フィラーを含有させる方法としては、種々公知の方法を用いることができる。例えば、オルガノ無機フィラーゾルをポリアミド酸、ポリイミドまたはポリイミドオキサゾールと混合させることが挙げられる。オルガノ無機フィラーゾルは、有機溶剤に無機フィラーを30重量%程度の割合で分散させたもので、有機溶剤としては、メタノール、イソプロパノール、ノルマルブタノール、エチレングリコール、メチルエチルケトン、メチルイソブチルケトン、プロピレングリコールモノメチルアセテート、プロピレングリコールモノメチルエーテル、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、1,3-ジメチルイミダゾリジノン、ガンマブチルラクトンなどが挙げられる。
 無機フィラーのポリアミド酸、ポリイミドまたはポリイミドオキサゾールに対する分散性を向上させるために、オルガノ無機フィラーゾルをシランカップリング剤で処理してもよい。シランカップリング剤の末端官能基に、エポキシ基やアミノ基を有していると、ポリアミド酸のカルボン酸と結合することで、ポリアミド酸、ポリイミドまたはポリイミドオキサゾールとの親和性が高まり、より効果的な分散を行うことができる。
 エポキシ基を有するものとしては、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランなどが挙げられる。
 アミノ基を有するものとしては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシランなどが挙げられる。
 オルガノ無機フィラーゾルのシランカップリング剤による処理方法としては、種々公知の方法を用いることができる。例えば、濃度を調整したオルガノ無機フィラーゾルにシランカップリング剤を添加し、室温~80℃で0.5~2時間、撹拌することにより処理することができる。
 本発明のポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物は、光酸発生剤を含有することができる。光酸発生剤を含有することにより、露光パターンが描かれたマスクを介して光を照射すると露光部に酸が発生し、露光部のアルカリ水溶液に対する溶解性が増大するため、ポジ型感光性樹脂組成物として用いることができる。
 本発明に用いられる光酸発生剤としては、キノンジアジド化合物、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩、ヨードニウム塩などが挙げられる。中でも優れた溶解抑止効果を発現し、高感度かつ低膜減りのポジ型感光性樹脂組成物を得られるという点から、キノンジアジド化合物が好ましく用いられる。また、光酸発生剤を2種以上含有してもよい。これにより、露光部と未露光部の溶解速度の比をより大きくすることができ、高感度なポジ型感光性樹脂組成物を得ることができる。
 キノンジアジド化合物としては、ポリヒドロキシ化合物にキノンジアジドのスルホン酸がエステルで結合したもの、ポリアミノ化合物にキノンジアジドのスルホン酸がスルホンアミド結合したもの、ポリヒドロキシポリアミノ化合物にキノンジアジドのスルホン酸がエステル結合および/またはスルホンアミド結合したものなどが挙げられる。これらポリヒドロキシ化合物やポリアミノ化合物の全ての官能基がキノンジアジドで置換されていなくても良いが、官能基全体の50モル%以上がキノンジアジドで置換されていることが好ましい。このようなキノンジアジド化合物を用いることで、一般的な紫外線である水銀灯のi線(波長365nm)、h線(波長405nm)、g線(波長436nm)により反応するポジ型感光性樹脂組成物を得ることができる。
 本発明において、キノンジアジド化合物は5-ナフトキノンジアジドスルホニル基、4-ナフトキノンジアジドスルホニル基のいずれも好ましく用いられる。同一分子中にこれらの基を両方有する化合物を用いてもよいし、異なる基を用いた化合物を併用してもよい。
 本発明に用いられるキノンジアジド化合物は、特定のフェノール化合物から、次の方法により合成される。例えば5-ナフトキノンジアジドスルホニルクロライドとフェノール化合物をトリエチルアミン存在下で反応させる方法が挙げられる。フェノール化合物の合成方法は、酸触媒下で、α-(ヒドロキシフェニル)スチレン誘導体を多価フェノール化合物と反応させる方法などが挙げられる。
 光酸発生剤の含有量は、ポリアミド酸、ポリイミドまたはポリイミドオキサゾール100重量部に対して、好ましくは3~40重量部である。光酸発生剤の含有量をこの範囲とすることにより、より高感度化を図ることができる。さらに増感剤などを必要に応じて含有してもよい。
 ポジ型感光性樹脂のパターンを形成するには、ポジ型感光性樹脂のワニスを基板上に塗布し、露光後、現像液を用いて露光部を除去する。現像液としては、テトラメチルアンモニウムヒドロキシド、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミンなどのアルカリ性を示す化合物の水溶液が好ましい。また場合によっては、これらのアルカリ水溶液にN-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ガンマブチロラクトン、ジメチルアクリルアミドなどの極性溶媒、メタノール、エタノール、イソプロパノールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類などを単独あるいは数種を組み合わせたものを添加してもよい。現像後は水にてリンス処理をすることが好ましい。ここでもエタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類などを水に加えてリンス処理をしてもよい。
 以下では、本発明のポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物を用いて耐熱性樹脂膜を製造する方法について説明する。
 まず、ポリアミド酸樹脂組成物、ポリイミド樹脂組成物またはポリイミドオキサゾール樹脂組成物を基板上に塗布する。基板としては例えばシリコンウエハ、セラミックス類、ガリウムヒ素、ソーダ石灰硝子、無アルカリ硝子などが用いられるが、これらに限定されない。塗布方法は、例えば、スリットダイコート法、スピンコート法、スプレーコート法、ロールコート法、バーコート法などの方法があり、これらの手法を組み合わせて塗布してもかまわない。
 次に、ポリアミド酸樹脂組成物、ポリイミド樹脂組成物またはポリイミドオキサゾール樹脂組成物を塗布した基板を乾燥して、ポリアミド酸樹脂組成物、ポリイミド樹脂組成物またはポリイミドオキサゾール樹脂組成物被膜を得る。乾燥はホットプレート、オーブン、赤外線、真空チャンバーなどを使用する。ホットプレートを用いる場合、プレート上に直接、もしくは、プレート上に設置したプロキシピン等の治具上に被加熱体を保持して加熱する。プロキシピンの材質としては、アルミニウムやステレンレス等の金属材料、あるいはポリイミド樹脂や“テフロン(登録商標)”等の合成樹脂があり、いずれの材質のプロキシピンを用いてもかまわない。プロキシピンの高さは、基板のサイズ、被加熱体である樹脂層の種類、加熱の目的等により様々であるが、例えば300mm×350mm×0.7mmのガラス基板上に塗布した樹脂層を加熱する場合、プロキシピンの高さは2~12mm程度が好ましい。加熱温度は被加熱体の種類や目的により様々であり、室温から180℃の範囲で1分から数時間行うことが好ましい。
 次に、180℃以上400℃以下の範囲で温度を加えて耐熱性樹脂被膜に変換する。この耐熱性樹脂被膜を基板から剥離するには、フッ酸などの薬液に浸漬する方法や、レーザーを耐熱性樹脂被膜と基板の界面に照射する方法などが挙げられるがいずれの方法を用いても構わない。
 なお、一般式(1)、(2)で表される構造単位を主成分とする本発明のポリアミド酸、ポリイミドを上記の通り熱処理することで、一般式(2)で表される構造単位を主成分とするポリイミド、又は一般式(3)で表される構造単位を主成分とするポリイミドオキサゾールが得られる。
 上記のように得られた耐熱性樹脂膜は高透明性、高耐熱性、低複屈折性、可とう性を有しており、フレキシブル基板として好適に用いることができる。透明性に関しては、波長400nmでの透過率が85%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることがさらに好ましい。ガラス転移温度に関しては、250℃以上であることが好ましく、300℃以上であることがより好ましく、350℃以上であることがさらに好ましい。複屈折に関しては、0.01以下であることが好ましく、0.005以下であることがより好ましく、0.003以下であることがさらに好ましい。
 本発明の樹脂組成物を含有するフレキシブル基板は、液晶ディスプレイ、有機ELディスプレイ、タッチパネル、電子ペーパー、カラーフィルターといった表示デバイス、太陽電池、CMOSなどの受光デバイス等のフレキシブルデバイスに使用することができる。
 フレキシブルデバイスの製造工程においては、基板上に形成した耐熱性樹脂膜の上に、表示デバイス、受光デバイスに必要な回路を形成する工程を含む。例えば、アモルファスシリコンのTFTをフレキシブル基板上に形成することが出来る。さらにこの上にデバイスに必要な構造を、公知の方法によって形成することも出来る。以上のようにして、回路等が表面に形成された固体状の耐熱性樹脂膜をレーザー照射等の公知の方法を用いて基板から剥離し、フレキシブルデバイスを得ることができる。
 以下実施例等をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。
 (1)耐熱性樹脂膜の作製
 6インチのミラーシリコンウェハーに、東京エレクトロン株式会社製の塗布現像装置 Mark-7を用いて、140℃×4分のプリベーク後の膜厚が15±0.5μmになるようにワニスをスピン塗布した。その後、同じくMark-7のホットプレートを用いて140℃×4分のプリベーク処理を行った。プリベーク膜をイナートオーブン(光洋サーモシステム株式会社製 INH-21CD)を用いて窒素気流下(酸素濃度20ppm以下)、3.5℃/minで300℃又は350℃まで昇温し、30分間保持し、5℃/minで50℃まで冷却し耐熱性樹脂膜を作製した。続いてフッ酸に1~4分間浸漬して耐熱性樹脂膜を基板から剥離し、風乾して耐熱性樹脂膜を得た。
 (2)耐熱性樹脂膜(ガラス基板上)の作製
 50mm×50mm×1.1mm厚のガラス基板(テンパックス)に、ミカサ株式会社製のスピンコーターMS-A200を用いて140℃×4分のプリベーク後の膜厚が15±0.5μmになるようにワニスをスピン塗布した。その後、大日本スクリーン株式会社製ホットプレートD-SPINを用いて140℃×4分のプリベーク処理を行った。プリベーク膜をイナートオーブン(光洋サーモシステム株式会社製 INH-21CD)を用いて窒素気流下(酸素濃度20ppm以下)、3.5℃/minで300℃又は350℃まで昇温し、30分間保持し、5℃/minで50℃まで冷却し耐熱性樹脂膜(ガラス基板上)を作製した。
 (3)耐熱性樹脂膜(シリコン基板上)の作製
 1/4に切断した4インチシリコン基板に、ミカサ株式会社製のスピンコーターMS-A200を用いて140℃×4分のプリベーク後の膜厚が5±0.5μmになるようにワニスをスピン塗布した。その後、大日本スクリーン株式会社製ホットプレートD-SPINを用いて140℃×4分のプリベーク処理を行った。プリベーク膜をイナートオーブン(光洋サーモシステム株式会社製 INH-21CD)を用いて窒素気流下(酸素濃度20ppm以下)、3.5℃/minで300℃又は350℃まで昇温し、30分間保持し、5℃/minで50℃まで冷却し耐熱性樹脂膜(シリコン基板上)を作製した。
 (4)光透過率(T)の測定
 紫外可視分光光度計(株式会社島津製作所製 MultiSpec1500)を用い、400nmにおける光透過率を測定した。なお、測定には(2)で作製した耐熱性樹脂膜を用いた。
 (5)全光線透過率(Tt)の測定
 直読ヘーズコンピュータ(スガ試験機株式会社製 HGM2DP、C光源)を用い、(1)で作製した耐熱性樹脂膜の全光線透過率を測定した。なお、Ttとしては1回測定の値を用いた。なお、測定には(1)で作製した耐熱性樹脂膜を用いた。
 (6)屈折率、面内/面外複屈折の測定
 プリズムカプラー(METRICON社製、PC2010)を用い、波長632.8nmのTE屈折率(n(TE))およびTM屈折率(n(TM))を測定した。n(TE)、n(TM)は、それぞれポリイミド膜面に対して、平行、垂直方向の屈折率である。平均屈折率n(AV)は((2×n(TE)+n(TM))/3)^0.5から算出し、面内/面外複屈折はn(TE)とn(TM)の差(n(TE)-n(TM))として計算した。なお、測定には(3)で作製した耐熱性樹脂膜を用いた。
 (7)ガラス転移温度(Tg)、線膨張係数(CTE)の測定
 熱機械分析装置(エスアイアイ・ナノテクノロジー株式会社製 EXSTAR6000 TMA/SS6000)を用いて、窒素気流下で測定を行った。昇温方法は、以下の条件にて行った。第1段階で昇温レート5℃/minで150度まで昇温して試料の吸着水を除去し、第2段階で降温レート5℃/minで室温まで空冷した。第3段階で、昇温レート5℃/minで本測定を行い、ガラス転移温度を求めた。また第3段階における50~200℃の線膨張係数の平均から線膨張係数(CTE)を求めた。なお、測定には(1)で作製した耐熱性樹脂膜を用いた。
 (8)1%重量減少温度(Td1)の測定
 熱重量測定装置(株式会社島津製作所製 TGA-50)を用いて窒素気流下で測定を行った。昇温方法は、以下の条件にて行った。第1段階で、昇温レート3.5℃/minで350度まで昇温して試料の吸着水を除去し、第2段階で、降温レート10℃/min室温まで冷却した。第3段階で、昇温レート10℃/minで本測定を行い、1%熱重量減少温度を求めた。なお、測定には(1)で作製した耐熱性樹脂膜を用いた。
 (9)破断応力、破断伸度、ヤング率の測定
 テンシロン(株式会社オリエンテック RTM-100)を用いて測定を行った。各試料につき10サンプル以上測定を行い、JIS個数平均(JIS K-6301)を用いてJIS平均値を算出した。なお、測定には(1)で作製した耐熱性樹脂膜を用いた。
 (10)b値の測定
 代表的な色空間であるCIELABのb値の測定をSMカラーコンピューター(スガ試験機株式会社 SM-7-CH)を用いて行った。光源にはC光源を用い、測定は透過光モードで行った。なお、CIELABにおいてb値は黄色と青色の座標であり、b>0では黄色寄り、b<0では青色寄りに対応する。なお、測定には(1)で作製した耐熱性樹脂膜を用いた。
 (11)レリーフパターンの作製
 実施例で作製した感光性樹脂組成物(ワニス)を8インチシリコンウエハ上に回転塗布し、次いで、ホットプレート(東京エレクトロン株式会社製、塗布現像装置Mark-7)を用いて、120℃で3分間熱処理(プリベーク)し、厚さ2~4μmのプリベーク膜を作製した。得られたプリベーク膜を、i線ステッパー(GCA社製、DSW-8000)を用いて20~320mJ/cmの露光量にて10mJ/cmステップで露光した。露光に用いたライン&スペースパターンは1、2、3、4、5、6、7、8、9、10、15、20、30、50、100μmである。露光後、2.38重量%のテトラメチルアンモニウム(TMAH)水溶液(三菱ガス化学株式会社製、ELM-D)で60秒間現像し、次いで純水でリンスし、レリーフパターンを得た。なお、プリベーク後および現像後の膜厚は、大日本スクリーン製造株式会社製光干渉式膜厚測定装置ラムダエースSTM-602を使用し、屈折率1.63として測定した。
 (12)現像膜減り量の算出
 現像膜減り量は以下の式に従って算出した。
 現像膜減り量(μm)=プリベーク後の膜厚-現像後の膜厚
 (13)感度の算出
 露光、現像後、10μm及び20μmのライン&スペースパターン(1L/1S)が1対1に形成される最小の露光量を感度とした。
 以下、実施例で使用する化合物の略号を記載する。
PMDA-HH:1S,2S,4R,5R-シクロへキサンテトラカルボン酸二無水物
PMDA-HS:1R,2S,4S,5R-シクロへキサンテトラカルボン酸二無水物
BPDA-H:3,3’,4,4’-ジシクロへキサンテトラカルボン酸二無水物
PMDA:ピロメリット酸二無水物
BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
ODPA:3,3’,4,4’-オキシジフタル酸二無水物
6FDA:4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物
HFHA:2,2-ビス[3-(3-アミノベンズアミド)-4-ヒドロキシフェニル]ヘキサフルオロプロパン
FDA:9,9-ビス(4-アミノフェニル)フルオレン
CHDA:trans-1,4-ジアミノシクロへキサン
PDA:p-フェニレンジアミン
m-TB:2,2’-ジメチル-4,4’-ジアミノビフェニル
TFMB:2,2’-ビス(トリフルオロメチル)ベンジジン
m-BAPS:ビス[4-(3-アミノフェノキシ)フェニル]スルホン
SiDA:1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン
MAP:m-アミノフェノール
NMP:N-メチル-2-ピロリドン
GBL:ガンマブチロラクトン
EL:乳酸エチル
DFA:ジメチルホルムアミドジメチルアセタール
 実施例1
 乾燥窒素気流下、100mL4つ口フラスコにPMDA-HH2.7704g(12mmol)、HFHA7.4706g(12mmol)、NMP50gを入れて80℃で加熱撹拌した。8時間後、冷却してワニスとした。
 実施例2
 乾燥窒素気流下、100mL4つ口フラスコにPMDA-HS2.7704g(12mmol)、HFHA7.4706g(12mmol)、NMP50gを入れて80℃で加熱撹拌した。8時間後、冷却してワニスとした。
 実施例3
 乾燥窒素気流下、100mL4つ口フラスコにBPDA-H3.4441g(11mmol)、HFHA6.7969g(11mmol)、NMP50gを入れて80℃で加熱撹拌した。8時間後、冷却してワニスとした。
 実施例4
 乾燥窒素気流下、100mL4つ口フラスコにPMDA-HH2.7704g(12mmol)、HFHA6.5286g(10.8mmol)、FDA0.4181g(1.2mmol)NMP50gを入れて80℃で加熱撹拌した。8時間後、冷却してワニスとした。
 実施例5
 乾燥窒素気流下、100mL4つ口フラスコにBPDA1.0238g(3.48mmol)、PMDA-HH1.9099g(8.52mmol)、CHDA0.4110g(3.60mmol)、HFHA5.0778g(8.40mmol)、NMP50gを入れて80℃で加熱撹拌した。8時間後、冷却してワニスとした。
 実施例6
 乾燥窒素気流下、100mL4つ口フラスコにPMDA-HS3.4345g(15.3mmol)、HFHA8.7985g(14.5mmol)、FDA0.2669g(0.8mmol)、NMP50gを入れて30℃で加熱撹拌した。6時間後、冷却してワニスとした。
 実施例7
 乾燥窒素気流下、100mL4つ口フラスコにPMDA-HS3.4893g(15.6mmol)、HFHA8.4683g(14.0mmol)、FDA0.5424g(1.6mmol)、NMP50gを入れて30℃で加熱撹拌した。8時間後、冷却してワニスとした。
 実施例8
 乾燥窒素気流下、100mL4つ口フラスコにPMDA-HS3.6042g(16.1mmol)、HFHA7.7753g(12.9mmol)、FDA1.1204g(3.2mmol)、NMP50gを入れて30℃で加熱撹拌した。6時間後、冷却してワニスとした。
 実施例9
 乾燥窒素気流下、100mL4つ口フラスコにPMDA-HS3.7270g(16.6mmol)、HFHA7.0351g(11.6mmol)、FDA1.7379g(5.0mmol)、NMP50gを入れて30℃で加熱撹拌した。6時間後、冷却してワニスとした。
 実施例10
 乾燥窒素気流下、100mL4つ口フラスコにPMDA-HS3.8584g(17.2mmol)、HFHA6.2427g(10.3mmol)、FDA2.3989g(6.9mmol)、NMP50gを入れて30℃で加熱撹拌した。6時間後、冷却してワニスとした。
 実施例11
 乾燥窒素気流下、100mL4つ口フラスコにPMDA-HS3.9994g(17.8mmol)、HFHA5.3924g(8.9mmol)、FDA3.1082g(8.9mmol)、NMP50gを入れて30℃で加熱撹拌した。6時間後、冷却してワニスとした。
 比較例1
 乾燥窒素気流下、100mL4つ口フラスコにPMDA2.7154g(12mmol)、HFHA7.5255g(12mmol)、NMP50gを入れて50℃で加熱撹拌した。2時間後、冷却してワニスとした。
 比較例2
 乾燥窒素気流下、100mL4つ口フラスコにBPDA3.3527g(11mmol)、HFHA6.8883g(11mmol)、NMP50gを入れて50℃で加熱撹拌した。2時間後、冷却してワニスとした。
 比較例3
 乾燥窒素気流下、100mL4つ口フラスコにODPA3.4731g(11mmol)、HFHA6.7679g(11mmol)、NMP50gを入れて50℃で加熱撹拌した。2時間後、冷却してワニスとした。
 比較例4
 乾燥窒素気流下、100mL4つ口フラスコにPMDA-HH5.2599g(23mmol)、m-TB4.9811g(23mmol)、NMP50gを入れて50℃で加熱撹拌した。2時間後、冷却してワニスとした。
 比較例5
 乾燥窒素気流下、100mL4つ口フラスコに6FDA7.0599g(15.9mmol)、HFHA9.6068g(15.9mmol)、NMP50gを入れて30℃で加熱撹拌した。6時間後、冷却してワニスとした。
 比較例6
 乾燥窒素気流下、100mL4つ口フラスコに6FDA7.2639g(16.4mmol)、TFMB5.2361g(16.4mmol)、NMP50gを入れて30℃で加熱撹拌した。6時間後、冷却してワニスとした。
 比較例7
 乾燥窒素気流下、100mL4つ口フラスコに6FDA8.4450g(19.0mmol)、m-BAPS8.2216g(19.0mmol)、NMP50gを入れて30℃で加熱撹拌した。6時間後、冷却してワニスとした。
 比較例8
 乾燥窒素気流下、100mL4つ口フラスコに6FDA7.824g(17.6mmol)、FDA2.4547g(7.0mmol)、HFHA6・3879g(10.6mmol)、NMP50gを入れて30℃で加熱撹拌した。6時間後、冷却してワニスとした。
 比較例9
 乾燥窒素気流下、100mL4つ口フラスコにPMDA-HH5.1472g(23mmol)、TFMB7.3528g(23mmol)、NMP50gを入れて50℃で加熱撹拌した。6時間後、冷却してワニスとした。
 比較例10
 乾燥窒素気流下、100mL4つ口フラスコにPMDA-HS5.6897g(25.4mmol)、m-BAPS10.9770g(25.4mmol)、NMP50gを入れて50℃で加熱撹拌した。6時間後、冷却してワニスとした。
 比較例11
 乾燥窒素気流下、100mL4つ口フラスコにBPDA-H9.2384g(30.2mmol)、PDA3.2616g(30.2mmol)、NMP50gを入れて50℃で加熱撹拌した。6時間後、冷却してワニスとした。
 比較例12
 乾燥窒素気流下、100mL4つ口フラスコにPMDA-HS4.1511g(18.5mmol)、HFHA4.4776g(7.4mmol)、FDA3.8714g(11.1mmol)、NMP50gを入れて30℃で加熱撹拌した。6時間後、冷却してワニスとした。
 実施例1~11、および比較例1~12で合成したワニスの組成を表1に示す。また、それらのワニスを用いて、350℃での焼成によって得た耐熱性樹脂膜の光透過率(T)、全光線透過率(Tt)、TE屈折率(n(TE))、TM屈折率(n(TM))、平均屈折率(n(AV))、面内/面外複屈折、ガラス転移温度(Tg)、線膨張係数(CTE)、1%熱重量減少温度(Td1)を測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000086
 実施例12
 乾燥窒素気流下、HFHA121.5804g(0.201mol)をNMP400gに溶解した。ここにPMDA-HS45.5372g(0.203mol)をNMP100gとともに加えて、30℃で6時間撹拌した。その後、室温で12時間撹拌した。その後、180℃で4時間撹拌した。撹拌終了後、溶液を水3Lに投入して、ポリマー固体の沈殿をろ過で集めた。さらに水3Lで5回洗浄を行い、集めたポリマー固体を50℃の乾燥機で72時間乾燥し、ポリイミド粉末を得た。得られたポリイミド粉末15gにGBL47.5gを加えてポリイミドワニスを得た。
 実施例13
 乾燥窒素気流下、HFHA62.4272g(0.103mol)、FDA23.9891g(0.069mol)をNMP400gに溶解した。ここにPMDA-HS38.9695g(0.174mol)をNMP100gとともに加えて、30℃で6時間撹拌した。その後、室温で12時間撹拌した。その後、180℃で4時間撹拌した。撹拌終了後、溶液を水3Lに投入して、ポリマー固体の沈殿をろ過で集めた。さらに水3Lで5回洗浄を行い、集めたポリマー固体を50℃の乾燥機で72時間乾燥し、ポリイミド粉末を得た。得られたポリイミド粉末15gにGBL47.5gを加えてポリイミドワニスを得た。
 実施例12、13のワニスを用いて、350℃での焼成によって得た耐熱性樹脂膜の光透過率(T)、全光線透過率(Tt)、TE屈折率(n(TE))、TM屈折率(n(TM))、平均屈折率(n(AV))、面内/面外複屈折、ガラス転移温度(Tg)、線膨張係数(CTE)、1%熱重量減少温度(Td1)を測定した結果を表2に示す。
Figure JPOXMLDOC01-appb-T000087
 実施例14
 乾燥窒素気流下、HFHA121.5804g(0.201mol)をNMP400gに溶解した。ここにPMDA-HS45.5372g(0.203mol)をNMP100gとともに加えて、30℃で6時間撹拌した。その後、室温で12時間撹拌した。その後、180℃で4時間撹拌した。撹拌終了後、溶液を水3Lに投入して、ポリマー固体の沈殿をろ過で集めた。さらに水3Lで5回洗浄を行い、集めたポリマー固体を50℃の乾燥機で72時間乾燥し、ポリイミド粉末を得た。得られたポリイミド粉末を窒素気流下350℃のオーブンで30分間熱処理し、ポリイミドオキサゾール粉末を得た。得られたポリイミドオキサゾール粉末15gにNMP47.5gを加えてポリイミドオキサゾールワニスを得た。
 実施例15
 乾燥窒素気流下、HFHA62.4272g(0.103mol)、FDA23.9891g(0.069mol)をNMP400gに溶解した。ここにPMDA-HS38.9695g(0.174mol)をNMP100gとともに加えて、30℃で6時間撹拌した。その後、室温で12時間撹拌した。その後、180℃で4時間撹拌した。撹拌終了後、溶液を水3Lに投入して、ポリマー固体の沈殿をろ過で集めた。さらに水3Lで5回洗浄を行い、集めたポリマー固体を50℃の乾燥機で72時間乾燥し、ポリイミド粉末を得た。得られたポリイミド粉末を窒素気流下350℃のオーブンで30分間熱処理し、ポリイミドオキサゾール粉末を得た。得られたポリイミドオキサゾール粉末15gにNMP47.5gを加えてポリイミドオキサゾールワニスを得た。
 実施例14、15のワニスを用いて、350℃での焼成によって得た耐熱性樹脂膜の光透過率(T)、全光線透過率(Tt)、TE屈折率(n(TE))、TM屈折率(n(TM))、平均屈折率(n(AV))、面内/面外複屈折、ガラス転移温度(Tg)、線膨張係数(CTE)、1%熱重量減少温度(Td1)を測定した結果を表3に示す。
Figure JPOXMLDOC01-appb-T000088
 実施例16
 実施例1で得たワニス100重量部に対してシリカ微粒子が10重量部となるように、ポリアミド酸ワニスにオルガノシリカゾル(日産化学工業株式会社製、商品名PMA-ST、粒子径10-30nm)を添加し、ポリアミド酸-シリカナノ粒子ワニスを得た。
 実施例17
 実施例1で得たワニス100重量部に対してシリカ微粒子が20重量部となるように、ポリアミド酸ワニスにオルガノシリカゾル(日産化学工業株式会社製、商品名PMA-ST、粒子径10-30nm)を添加し、ポリアミド酸-シリカナノ粒子ワニスを得た。
 実施例18
 実施例1で得たワニス100重量部に対してシリカ微粒子が30重量部となるように、ポリアミド酸ワニスにオルガノシリカゾル(日産化学工業株式会社製、商品名PMA-ST、粒子径10-30nm)を添加し、ポリアミド酸-シリカナノ粒子ワニスを得た。
 実施例16~18で調製したワニスの組成を表4に示す。また、それらのワニスを用いて、350℃焼成によって得た耐熱性樹脂膜の光透過率(T)、全光線透過率(Tt)、TE屈折率(n(TE))、TM屈折率(n(TM))、平均屈折率(n(AV))、面内/面外複屈折、ガラス転移温度(Tg)、線膨張係数(CTE)、1%熱重量減少温度(Td1)を測定した結果を表4に示す。
Figure JPOXMLDOC01-appb-T000089
 実施例19
 実施例13で得たポリイミド粉末4gに界面活性剤ポリフロー77(商品名、共栄社化学株式会社製)0.044g、GBL13.47gを加えてポリイミドワニスを得た。
 実施例20
 実施例13で得たポリイミド粉末4gに界面活性剤ポリフロー77(商品名、共栄社化学株式会社製)0.044g、エピクロン850-S(商品名、大日本インキ化学工業株式会社)0.2g、GBL13.47gを加えてポリイミドワニスを得た。
 実施例21
 実施例13で得たポリイミド粉末4gに界面活性剤ポリフロー77(商品名、共栄社化学株式会社製)0.044g、エピクロン850-S(商品名、大日本インキ化学工業株式会社)0.4g、GBL13.47gを加えてポリイミドワニスを得た。
 実施例22
 実施例13で得たポリイミド粉末4gに界面活性剤ポリフロー77(商品名、共栄社化学株式会社製)0.044g、エピクロン850-S(商品名、大日本インキ化学工業株式会社)0.8g、GBL13.47gを加えてポリイミドワニスを得た。
 実施例19~22のワニスを用いて、300℃での焼成によって得た耐熱性樹脂膜の光透過率(T)、全光線透過率(Tt)、TE屈折率(n(TE))、TM屈折率(n(TM))、平均屈折率(n(AV))、面内/面外複屈折、ガラス転移温度(Tg)、線膨張係数(CTE)、1%熱重量減少温度(Td1)、破断応力、破断伸度、ヤング率を測定した結果を表5に示す。
Figure JPOXMLDOC01-appb-T000090
 参考例1
 117gのPB15:6(平均一次粒径30nm)、140gの味の素ファインテクノ製“アジスパー”PB821のプロピレングリコールモノメチルエーテルアセテート溶液(30重量%)、93gのダイセル化学工業株式会社製“サイクロマー”ACA250(45重量%溶液)、および627gのプロピレングリコールモノメチルエーテルアセテートをホモディスパーで攪拌してスラリーを作製した。このスラリーを入れたビーカーを循環式ビーズミル分散機(ウイリー・エ・バッコーフェン社製“ダイノーミル”KDL-A)とチューブでつなぎ、メディアとして直径0.3mmのジルコニアビーズを使用して、3200rpm、3時間の分散処理を行い、青色顔料分散液を得た。得られた青色顔料分散液0.4167gにGBL49.5833gを加え希釈溶液を得た。
 実施例23
 実施例13で得たポリイミド粉末13gに界面活性剤ポリフロー77(商品名、共栄社化学株式会社製)0.013g、GBL36.3gを加えてポリイミドワニスを得た。
 実施例24
 実施例13で得たポリイミド粉末13gに界面活性剤ポリフロー77(商品名、共栄社化学株式会社製)0.013g、参考例1で得た青色顔料分散液0.325g、GBL36.3gを加えてポリイミドワニスを得た。
 実施例25
 実施例13で得たポリイミド粉末13gに界面活性剤ポリフロー77(商品名、共栄社化学株式会社製)0.013g、参考例1で得た青色顔料分散液0.650g、GBL36.3gを加えてポリイミドワニスを得た。
 実施例26
 実施例13で得たポリイミド粉末13gに界面活性剤ポリフロー77(商品名、共栄社化学株式会社製)0.013g、参考例1で得た青色顔料分散液0.975g、GBL36.3gを加えてポリイミドワニスを得た。
 実施例27
 実施例13で得たポリイミド粉末13gに界面活性剤ポリフロー77(商品名、共栄社化学株式会社製)0.013g、参考例1で得た青色顔料分散液1.300g、GBL36.3gを加えてポリイミドワニスを得た。
 実施例28
 実施例13で得たポリイミド粉末13gに界面活性剤ポリフロー77(商品名、共栄社化学株式会社製)0.013g、参考例1で得た青色顔料分散液1.625g、GBL36.3gを加えてポリイミドワニスを得た。
 実施例29
 実施例13で得たポリイミド粉末13gに界面活性剤ポリフロー77(商品名、共栄社化学株式会社製)0.013g、参考例1で得た青色顔料分散液2.600g、GBL36.3gを加えてポリイミドワニスを得た。
 実施例23~29のワニスを用いて、350℃での焼成によって得た耐熱性樹脂膜の光透過率(T)、b値、TE屈折率(n(TE))、TM屈折率(n(TM))、平均屈折率(n(AV))、面内/面外複屈折を測定した結果を表6に示す。
Figure JPOXMLDOC01-appb-T000091
 実施例30
 乾燥窒素気流下、HFHA22.4g(0.037モル)、SiDA0.58g(0.0023モル)をNMP105gに溶解した。ここにODPA5.75g(0.018モル)をNMP20gとともに加えて、40℃で1時間撹拌した。その後、PMDA-HH6.23gをNMP20gとともに加え、80℃で8時間撹拌し、続いて室温で11時間撹拌した。その後、MAP1.011gをNMP15gとともに加えて、60℃で1時間撹拌した。その後、DFA4.60g(0.038モル)をNMP10gで希釈した溶液を滴下し、滴下後、60℃で1時間撹拌を続けた。その後、同様の操作を2回行った。その後、室温下で酢酸16.69gを加え、1時間撹拌した。撹拌終了後、溶液を水2Lに投入して、ポリマー固体の沈殿をろ過で集めた。さらに水2Lで5回洗浄を行い、集めたポリマー固体を50℃の乾燥機で72時間乾燥し、ポリアミド酸エステル粉末を得た。
 得られたポリアミド酸エステル粉末4gにキノンジアジド化合物TP-250(東洋合成株式会社製)0.455g、HAP-170(東洋合成株式会社製)0.455g、溶解促進剤Tris-HAP(本州化学株式会社製)0.421g、熱架橋剤HMOM(本州化学株式会社製)0.682g、界面活性剤ポリフロー77(商品名、共栄社化学株式会社製)0.182g、EL9.3g、GBL6.9gを加えて感光性樹脂組成物のワニスを得た。得られたワニスを用いて上記(9)の方法でレリーフパターンを作製し感光性評価を行ったところ、現像膜減り量は0.17μmと少なく、感度は300mJ/cmであった。
 実施例31
 実施例12で得たポリイミド粉末4.646gにキノンジアジド化合物HAP-170(東洋合成株式会社製)0.929g、熱架橋剤HMOM(本州化学株式会社製)0.664g、界面活性剤ポリフロー77(商品名、共栄社化学株式会社製)0.011g、GBL18.75gを加えて感光性樹脂組成物のワニスを得た。得られたワニスを用いて上記(9)の方法でレリーフパターンを作製し感光性評価を行ったところ、現像膜減り量は1.27μm、感度は125mJ/cmであった。
 本発明によれば、熱処理後の膜が優れた耐熱性、光透過性、低複屈折性を有するポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物を提供することができる。熱処理後の膜は、フラットパネルディスプレイ、タッチパネル、電子ペーパー、カラーフィルター基板、太陽電池等のフレキシブル基板、半導体素子の表面保護膜、層間絶縁膜、有機エレクトロルミネッセンス素子(有機EL素子)の絶縁層やスペーサー層、薄膜トランジスタ基板の平坦化膜、有機トランジスタの絶縁層、フレキシブルプリント基板などに好適に用いることができる。

Claims (17)

  1.  (a)一般式(1)で表される構造単位を主成分とするポリアミド酸および(b)溶剤を含有することを特徴とするポリアミド酸樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、X、Xは各々独立に水素原子または炭素数1~10の1価の有機基を示す。Rは単環式もしくは縮合多環式の脂環構造を有する炭素数4~40の4価の有機基または単環式の脂環構造を有する有機基が直接もしくは架橋構造を介して相互に連結された炭素数4~40の4価の有機基を示す。Rは少なくとも2つの水酸基を有する炭素数2~40の2価の有機基を示す。)
  2.  一般式(1)中のRが、下記一般式(4)~(10)から選ばれた1以上であることを特徴とする請求項1に記載のポリアミド酸樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    (一般式(4)~(10)中、R~R79は各々独立に水素原子、ハロゲン原子またはハロゲン原子で水素原子が置換されていてもよい炭素数1~3の1価の有機基を示す。一般式(7)中、Xは、酸素原子、硫黄原子、スルホニル基もしくはハロゲン原子で水素原子が置換されていてもよい炭素数1~3の2価の有機基またはそれらが2以上連結してなる2価の架橋構造である。一般式(10)中、Xは直接結合、酸素原子、硫黄原子、スルホニル基、ハロゲン原子で水素原子が置換されていてもよい炭素数1~3の2価の有機基もしくはハロゲン原子で水素原子が置換されていてもよいアリーレン基または酸素原子、硫黄原子、スルホニル基、ハロゲン原子で水素原子が置換されていてもよい炭素数1~3の2価の有機基およびハロゲン原子で水素原子が置換されていてもよいアリーレン基から選ばれた2以上が連結してなる2価の架橋構造である。)
  3.  一般式(1)中のRが下記式(14)で表されることを特徴とする請求項1または2に記載のポリアミド酸樹脂組成物。
    Figure JPOXMLDOC01-appb-C000009
  4.  (a)一般式(1)で表される構造単位を主成分とするポリアミド酸が、一般式(36)で表される構造単位を10%~50%含むことを特徴とする請求項1~3のいずれかに記載のポリアミド酸樹脂組成物。
    Figure JPOXMLDOC01-appb-C000010
    (一般式(36)中、X、Xは各々独立に水素原子または炭素数1~10の1価の有機基を示す。Rは単環式もしくは縮合多環式の脂環構造を有する炭素数4~40の4価の有機基または単環式の脂環構造を有する有機基が直接もしくは架橋構造を介して相互に連結された炭素数4~40の4価の有機基を示す。)
  5.  熱処理によって得られる膜の面内/面外複屈折が0.01以下であることを特徴とする請求項1~4のいずれかに記載のポリアミド酸樹脂組成物。
  6.  (a’)一般式(2)で表される構造単位を主成分とするポリイミドおよび(b)溶剤を含有することを特徴とするポリイミド樹脂組成物。
    Figure JPOXMLDOC01-appb-C000011
    (一般式(2)中、Rは単環式もしくは縮合多環式の脂環構造を有する炭素数4~40の4価の有機基または単環式の脂環構造を有する有機基が直接もしくは架橋構造を介して相互に連結された炭素数4~40の4価の有機基を示す。Rは少なくとも2つの水酸基を有する炭素数2~40の2価の有機基を示す。)
  7.  一般式(2)中のRが、下記一般式(4)~(10)から選ばれた1以上であることを特徴とする請求項6に記載のポリイミド樹脂組成物。
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
    (一般式(4)~(10)中、R~R79は各々独立に水素原子、ハロゲン原子またはハロゲン原子で水素原子が置換されていてもよい炭素数1~3の1価の有機基を示す。一般式(7)中、Xは、酸素原子、硫黄原子、スルホニル基もしくはハロゲン原子で水素原子が置換されていてもよい炭素数1~3の2価の有機基またはそれらが2以上連結してなる2価の架橋構造である。一般式(10)中、Xは直接結合、酸素原子、硫黄原子、スルホニル基、ハロゲン原子で水素原子が置換されていてもよい炭素数1~3の2価の有機基もしくはハロゲン原子で水素原子が置換されていてもよいアリーレン基または酸素原子、硫黄原子、スルホニル基、ハロゲン原子で水素原子が置換されていてもよい炭素数1~3の2価の有機基およびハロゲン原子で水素原子が置換されていてもよいアリーレン基から選ばれた2以上が連結してなる2価の架橋構造である。)
  8.  一般式(2)中のRが下記式(14)で表されることを特徴とする請求項6または7に記載のポリイミド樹脂組成物。
    Figure JPOXMLDOC01-appb-C000019
  9.  (a’)一般式(2)で表される構造単位を主成分とするポリイミドが、一般式(37)で表される構造単位を10%~50%含むことを特徴とする請求項6~8のいずれかに記載のポリイミド樹脂組成物。
    Figure JPOXMLDOC01-appb-C000020
    (一般式(37)中、Rは単環式もしくは縮合多環式の脂環構造を有する炭素数4~40の4価の有機基または単環式の脂環構造を有する有機基が直接もしくは架橋構造を介して相互に連結された炭素数4~40の4価の有機基を示す。)
  10.  熱処理によって得られる膜の面内/面外複屈折が0.01以下であることを特徴とする請求項6~9のいずれかに記載のポリイミド樹脂組成物。
  11.  (a’’)一般式(3)で表される構造単位を主成分とするポリイミドオキサゾールおよび(b)溶剤を含有することを特徴とするポリイミドオキサゾール樹脂組成物。
    Figure JPOXMLDOC01-appb-C000021
    (一般式(3)中、Rは単環式もしくは縮合多環式の脂環構造を有する炭素数4~40の4価の有機基または単環式の脂環構造を有する有機基が直接もしくは架橋構造を介して相互に連結された炭素数4~40の4価の有機基を示す。Rは炭素数2~40の4価の有機基を示す。)
  12.  一般式(3)中のRが、下記一般式(4)~(10)から選ばれた1以上であることを特徴とする請求項11に記載のポリイミドオキサゾール樹脂組成物。
    Figure JPOXMLDOC01-appb-C000022
    Figure JPOXMLDOC01-appb-C000023
    Figure JPOXMLDOC01-appb-C000024
    Figure JPOXMLDOC01-appb-C000025
    Figure JPOXMLDOC01-appb-C000026
    Figure JPOXMLDOC01-appb-C000027
    Figure JPOXMLDOC01-appb-C000028
    (一般式(4)~(10)中、R~R79は各々独立に水素原子、ハロゲン原子またはハロゲン原子で水素原子が置換されていてもよい炭素数1~3の1価の有機基を示す。一般式(7)中、Xは、酸素原子、硫黄原子、スルホニル基もしくはハロゲン原子で水素原子が置換されていてもよい炭素数1~3の2価の有機基またはそれらが2以上連結してなる2価の架橋構造である。一般式(10)中、Xは直接結合、酸素原子、硫黄原子、スルホニル基、ハロゲン原子で水素原子が置換されていてもよい炭素数1~3の2価の有機基もしくはハロゲン原子で水素原子が置換されていてもよいアリーレン基または酸素原子、硫黄原子、スルホニル基、ハロゲン原子で水素原子が置換されていてもよい炭素数1~3の2価の有機基およびハロゲン原子で水素原子が置換されていてもよいアリーレン基から選ばれた2以上が連結してなる2価の架橋構造である。)
  13.  一般式(3)中のRが下記式(25)で表されることを特徴とする請求項11または12に記載のポリイミドオキサゾール樹脂組成物。
    Figure JPOXMLDOC01-appb-C000029
  14.  (a’’)一般式(3)で表される構造単位を主成分とするポリイミドオキサゾールが、一般式(37)で表される構造単位を10%~50%含むことを特徴とする請求項11~13のいずれかに記載のポリイミドオキサゾール樹脂組成物。
    Figure JPOXMLDOC01-appb-C000030
    (一般式(37)中、Rは単環式もしくは縮合多環式の脂環構造を有する炭素数4~40の4価の有機基または単環式の脂環構造を有する有機基が直接もしくは架橋構造を介して相互に連結された炭素数4~40の4価の有機基を示す。)
  15.  熱処理によって得られる膜の面内/面外複屈折が0.01以下であることを特徴とする請求項11~14のいずれかに記載のポリイミドオキサゾール樹脂組成物。
  16.  一般式(2)で表されるポリイミドから成る樹脂組成物を含有することを特徴とするフレキシブル基板。
    Figure JPOXMLDOC01-appb-C000031
    (一般式(2)中、Rは単環式もしくは縮合多環式の脂環構造を有する炭素数4~40の4価の有機基または単環式の脂環構造を有する有機基が直接もしくは架橋構造を介して相互に連結された炭素数4~40の4価の有機基を示す。Rは少なくとも2つの水酸基を有する炭素数2~40の2価の有機基を示す。)
  17.  一般式(3)で表されるポリイミドオキサゾールから成る樹脂組成物を含有することを特徴とするフレキシブル基板。
    Figure JPOXMLDOC01-appb-C000032
    (一般式(3)中、Rは単環式もしくは縮合多環式の脂環構造を有する炭素数4~40の4価の有機基または単環式の脂環構造を有する有機基が直接もしくは架橋構造を介して相互に連結された炭素数4~40の4価の有機基を示す。Rは炭素数2~40の4価の有機基を示す。)
PCT/JP2012/070679 2011-08-18 2012-08-14 ポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物ならびにそれらを含有するフレキシブル基板 WO2013024849A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147007050A KR101921919B1 (ko) 2011-08-18 2012-08-14 폴리아미드산 수지 조성물, 폴리이미드 수지 조성물, 폴리이미드 옥사졸 수지 조성물 및 그것들을 함유하는 플렉시블 기판
JP2013506404A JP5928447B2 (ja) 2011-08-18 2012-08-14 フレキシブル基板、表示デバイスおよび受光デバイス
CN201280040267.2A CN103842408B (zh) 2011-08-18 2012-08-14 聚酰胺酸树脂组合物、聚酰亚胺树脂组合物和聚酰亚胺噁唑树脂组合物以及含有它们的柔性基板
SG2014013874A SG2014013874A (en) 2011-08-18 2012-08-14 Polyamic acid resin composition, polyimide resin composition, polyimide oxazole resin composition, and flexible substrate containing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011178853 2011-08-18
JP2011-178853 2011-08-18

Publications (1)

Publication Number Publication Date
WO2013024849A1 true WO2013024849A1 (ja) 2013-02-21

Family

ID=47715166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070679 WO2013024849A1 (ja) 2011-08-18 2012-08-14 ポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物ならびにそれらを含有するフレキシブル基板

Country Status (6)

Country Link
JP (1) JP5928447B2 (ja)
KR (1) KR101921919B1 (ja)
CN (1) CN103842408B (ja)
SG (1) SG2014013874A (ja)
TW (1) TWI570156B (ja)
WO (1) WO2013024849A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105283487A (zh) * 2013-07-05 2016-01-27 三菱瓦斯化学株式会社 聚酰亚胺树脂
JP2016164271A (ja) * 2011-03-11 2016-09-08 宇部興産株式会社 ポリイミド前駆体及びポリイミド
WO2016152906A1 (ja) * 2015-03-26 2016-09-29 東レ株式会社 樹脂積層膜、それを含む積層体、tft基板、有機el素子カラーフィルターならびにそれらの製造方法。
WO2016158672A1 (ja) * 2015-03-30 2016-10-06 東レ株式会社 着色樹脂組成物、着色膜、加飾基板及びタッチパネル
JP2017115098A (ja) * 2015-12-25 2017-06-29 ソマール株式会社 ポリイミド共重合体及びそれを用いた成形体
JP2017202981A (ja) * 2016-05-09 2017-11-16 三菱瓦斯化学株式会社 ポリイミド及びポリイミドフィルム
WO2017221776A1 (ja) * 2016-06-24 2017-12-28 東レ株式会社 ポリイミド樹脂、ポリイミド樹脂組成物、それを用いたタッチパネルおよびその製造方法、カラーフィルタおよびその製造方法、液晶素子およびその製造方法、有機el素子およびその製造方法
WO2018029766A1 (ja) * 2016-08-09 2018-02-15 東レ株式会社 樹脂積層膜、それを含む積層体、tft基板、有機el素子カラーフィルターならびにそれらの製造方法
JPWO2018012609A1 (ja) * 2016-07-15 2019-05-09 宇部興産株式会社 ポリイミド積層体の製造方法及びフレキシブル回路基板の製造方法
WO2020071415A1 (ja) * 2018-10-03 2020-04-09 コニカミノルタ株式会社 樹脂組成物及び電子デバイス
KR20210088551A (ko) 2018-11-09 2021-07-14 도레이 카부시키가이샤 폴리이미드 전구체, 폴리이미드, 폴리이미드 수지막 및 플렉시블 디바이스
US11171309B2 (en) 2016-12-09 2021-11-09 Lg Chem, Ltd. Encapsulating composition

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI504641B (zh) * 2013-12-16 2015-10-21 Taimide Technology Inc 白色聚醯亞胺膜
WO2016035593A1 (ja) * 2014-09-02 2016-03-10 東レ株式会社 樹脂および感光性樹脂組成物
CN104830169A (zh) * 2015-05-11 2015-08-12 黄强 用于汽车发动机的耐磨涂料
WO2017068936A1 (ja) * 2015-10-23 2017-04-27 東レ株式会社 ディスプレイ基板用樹脂組成物、並びに、それを用いた耐熱性樹脂フィルム、有機elディスプレイ基板及び有機elディスプレイの製造方法
KR102503173B1 (ko) * 2016-03-31 2023-02-23 동우 화인켐 주식회사 플렉서블 컬러필터
KR102127033B1 (ko) * 2016-04-26 2020-06-25 주식회사 엘지화학 네가티브 타입 감광성 수지 조성물 및 이를 포함하는 유기 발광 소자 블랙 매트릭스
EP3453732A4 (en) * 2016-05-06 2019-06-05 Mitsubishi Gas Chemical Company, Inc. POLYIMIDE RESIN
WO2018062296A1 (ja) * 2016-09-30 2018-04-05 住友化学株式会社 ポリイミド系高分子ワニスの製造方法、ポリイミド系高分子フィルムの製造方法、及び、透明ポリイミド系高分子フィルム
TWI600168B (zh) 2016-11-02 2017-09-21 律勝科技股份有限公司 薄膜電晶體的積層體結構
WO2019086963A2 (zh) * 2017-09-18 2019-05-09 嘉兴山蒲照明电器有限公司 一种有机硅改性聚酰亚胺树脂组合物及其应用
JP7248394B2 (ja) * 2017-09-29 2023-03-29 日鉄ケミカル&マテリアル株式会社 ポリイミドフィルム及び金属張積層体
CN111133034B (zh) * 2017-09-29 2022-08-09 三菱瓦斯化学株式会社 聚酰亚胺树脂、聚酰亚胺清漆和聚酰亚胺薄膜
CN113227222A (zh) * 2018-12-28 2021-08-06 住友化学株式会社 光学膜、柔性显示装置及聚酰胺酰亚胺系树脂
CN111621260B (zh) * 2020-06-18 2022-01-25 株洲时代新材料科技股份有限公司 一种聚酰胺酸涂层胶及其制备方法
CN112708134B (zh) * 2020-12-28 2021-08-03 深圳瑞华泰薄膜科技股份有限公司 一种无色透明共聚酰胺-酰亚胺膜及其制备方法
WO2023286955A1 (ko) * 2021-07-14 2023-01-19 코오롱인더스트리 주식회사 선명도가 우수한 광학 필름 및 이를 포함하는 표시장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316294A (ja) * 1994-05-20 1995-12-05 Shin Etsu Chem Co Ltd ポリイミド共重合体及びその製造方法
JP2004134487A (ja) * 2002-10-09 2004-04-30 Toray Ind Inc 半導体装置の製造方法および半導体装置
JP2010054872A (ja) * 2008-08-29 2010-03-11 Chisso Corp 液晶配向剤、液晶配向膜及び液晶表示素子
WO2010087238A1 (ja) * 2009-01-29 2010-08-05 東レ株式会社 樹脂組成物およびこれを用いた表示装置
JP2011020399A (ja) * 2009-07-17 2011-02-03 Toyobo Co Ltd 剥離性ポリイミドフィルム積層体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4846609B2 (ja) 2007-01-30 2011-12-28 旭化成イーマテリアルズ株式会社 エステル基及びオキサゾール構造を有するポリイミド前駆体、ポリイミド及びその製造方法
WO2011030744A1 (ja) 2009-09-10 2011-03-17 東レ株式会社 感光性樹脂組成物および感光性樹脂膜の製造方法
JP5556482B2 (ja) * 2009-09-15 2014-07-23 Jnc株式会社 液晶配向剤、液晶配向膜および液晶表示素子
CN105254884B (zh) * 2011-03-11 2018-05-29 宇部兴产株式会社 聚酰亚胺前体和聚酰亚胺
JP6792358B2 (ja) * 2016-07-07 2020-11-25 サッポロビール株式会社 ビールテイスト飲料の混濁性予測方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316294A (ja) * 1994-05-20 1995-12-05 Shin Etsu Chem Co Ltd ポリイミド共重合体及びその製造方法
JP2004134487A (ja) * 2002-10-09 2004-04-30 Toray Ind Inc 半導体装置の製造方法および半導体装置
JP2010054872A (ja) * 2008-08-29 2010-03-11 Chisso Corp 液晶配向剤、液晶配向膜及び液晶表示素子
WO2010087238A1 (ja) * 2009-01-29 2010-08-05 東レ株式会社 樹脂組成物およびこれを用いた表示装置
JP2011020399A (ja) * 2009-07-17 2011-02-03 Toyobo Co Ltd 剥離性ポリイミドフィルム積層体

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164271A (ja) * 2011-03-11 2016-09-08 宇部興産株式会社 ポリイミド前駆体及びポリイミド
CN105283487A (zh) * 2013-07-05 2016-01-27 三菱瓦斯化学株式会社 聚酰亚胺树脂
CN105283487B (zh) * 2013-07-05 2017-12-19 三菱瓦斯化学株式会社 聚酰亚胺树脂
US10066058B2 (en) 2013-07-05 2018-09-04 Mitsubishi Gas Chemical Company, Inc. Polyimide resin
WO2016152906A1 (ja) * 2015-03-26 2016-09-29 東レ株式会社 樹脂積層膜、それを含む積層体、tft基板、有機el素子カラーフィルターならびにそれらの製造方法。
JPWO2016152906A1 (ja) * 2015-03-26 2018-02-15 東レ株式会社 樹脂積層膜、それを含む積層体、tft基板、有機el素子カラーフィルターならびにそれらの製造方法。
WO2016158672A1 (ja) * 2015-03-30 2016-10-06 東レ株式会社 着色樹脂組成物、着色膜、加飾基板及びタッチパネル
JPWO2016158672A1 (ja) * 2015-03-30 2017-04-27 東レ株式会社 着色樹脂組成物、着色膜、加飾基板及びタッチパネル
JP2017115098A (ja) * 2015-12-25 2017-06-29 ソマール株式会社 ポリイミド共重合体及びそれを用いた成形体
WO2017111134A1 (ja) * 2015-12-25 2017-06-29 ソマール株式会社 ポリイミド共重合体及びそれを用いた成形体
JP2017202981A (ja) * 2016-05-09 2017-11-16 三菱瓦斯化学株式会社 ポリイミド及びポリイミドフィルム
JP6292351B1 (ja) * 2016-06-24 2018-03-14 東レ株式会社 ポリイミド樹脂、ポリイミド樹脂組成物、それを用いたタッチパネルおよびその製造方法、カラーフィルタおよびその製造方法、液晶素子およびその製造方法、有機el素子およびその製造方法
KR102134263B1 (ko) 2016-06-24 2020-07-15 도레이 카부시키가이샤 폴리이미드 수지, 폴리이미드 수지 조성물, 그것을 사용한 터치 패널 및 그의 제조 방법, 컬러 필터 및 그의 제조 방법, 액정 소자 및 그의 제조 방법, 유기 el 소자 및 그의 제조 방법
WO2017221776A1 (ja) * 2016-06-24 2017-12-28 東レ株式会社 ポリイミド樹脂、ポリイミド樹脂組成物、それを用いたタッチパネルおよびその製造方法、カラーフィルタおよびその製造方法、液晶素子およびその製造方法、有機el素子およびその製造方法
KR20190022487A (ko) 2016-06-24 2019-03-06 도레이 카부시키가이샤 폴리이미드 수지, 폴리이미드 수지 조성물, 그것을 사용한 터치 패널 및 그의 제조 방법, 컬러 필터 및 그의 제조 방법, 액정 소자 및 그의 제조 방법, 유기 el 소자 및 그의 제조 방법
JPWO2018012609A1 (ja) * 2016-07-15 2019-05-09 宇部興産株式会社 ポリイミド積層体の製造方法及びフレキシブル回路基板の製造方法
WO2018029766A1 (ja) * 2016-08-09 2018-02-15 東レ株式会社 樹脂積層膜、それを含む積層体、tft基板、有機el素子カラーフィルターならびにそれらの製造方法
US11171309B2 (en) 2016-12-09 2021-11-09 Lg Chem, Ltd. Encapsulating composition
JPWO2020071415A1 (ja) * 2018-10-03 2021-09-24 コニカミノルタ株式会社 樹脂組成物及び電子デバイス
WO2020071415A1 (ja) * 2018-10-03 2020-04-09 コニカミノルタ株式会社 樹脂組成物及び電子デバイス
US11920019B2 (en) 2018-10-03 2024-03-05 Konica Minolta, Inc. Resin composition and electronic device
JP7444066B2 (ja) 2018-10-03 2024-03-06 コニカミノルタ株式会社 樹脂組成物及び電子デバイス
KR20210088551A (ko) 2018-11-09 2021-07-14 도레이 카부시키가이샤 폴리이미드 전구체, 폴리이미드, 폴리이미드 수지막 및 플렉시블 디바이스
CN113166409A (zh) * 2018-11-09 2021-07-23 东丽株式会社 聚酰亚胺前体、聚酰亚胺、聚酰亚胺树脂膜、及柔性器件
CN113166409B (zh) * 2018-11-09 2023-07-28 东丽株式会社 聚酰亚胺前体、聚酰亚胺、聚酰亚胺树脂膜、及柔性器件

Also Published As

Publication number Publication date
TW201313781A (zh) 2013-04-01
CN103842408B (zh) 2016-09-21
KR20140051430A (ko) 2014-04-30
TWI570156B (zh) 2017-02-11
SG2014013874A (en) 2014-05-29
CN103842408A (zh) 2014-06-04
KR101921919B1 (ko) 2018-11-26
JP5928447B2 (ja) 2016-06-01
JPWO2013024849A1 (ja) 2015-03-05

Similar Documents

Publication Publication Date Title
JP5928447B2 (ja) フレキシブル基板、表示デバイスおよび受光デバイス
TWI710584B (zh) 聚醯亞胺樹脂、聚醯亞胺樹脂組成物、使用其的觸控面板及其製造方法、彩色濾光片及其製造方法、液晶元件及其製造方法、有機el元件及其製造方法
KR102207439B1 (ko) 폴리이미드 전구체, 그것으로부터 얻어지는 폴리이미드 수지막, 및 그것을 포함하는 표시 소자, 광학 소자, 수광 소자, 터치 패널, 회로 기판, 유기 el 디스플레이, 및 유기 el 소자 및 컬러 필터의 제조 방법
JP6787124B2 (ja) 樹脂積層膜、それを含む積層体、tft基板、有機el素子カラーフィルターならびにそれらの製造方法。
US9493614B2 (en) Polyimide precursor, polyimide, flexible substrate prepared therewith, color filter and production method thereof, and flexible display device
JP6206071B2 (ja) 樹脂組成物、それを用いたポリイミド樹脂膜、それを含むカラーフィルタ、tft基板、表示デバイスおよびそれらの製造方法
JP2009020246A (ja) 感光性樹脂組成物、これを用いた絶縁性樹脂パターンの製造方法および有機電界発光素子
JP2015078254A (ja) 樹脂組成物、それを用いたポリイミド樹脂膜、それを含むカラーフィルタ、tft基板、表示デバイスおよびそれらの製造方法
JP5472540B1 (ja) ポリアミド酸およびそれを含有する樹脂組成物
CN111133054B (zh) 聚酰亚胺前体树脂组合物、聚酰亚胺树脂组合物、聚酰亚胺树脂膜
CN111522201A (zh) 一种正型感光性树脂组合物及其制备的固化膜与电子元件
CN114230792A (zh) 一种正性光敏聚酰亚胺树脂、树脂组合物及其制备方法与应用
KR20200121253A (ko) 포지티브형 감광성 수지 조성물, 패턴 형성 방법, 경화 피막 형성 방법, 층간 절연막, 표면 보호막, 및 전자 부품
JP6331314B2 (ja) フレキシブルカラーフィルター、その製造方法ならびにそれを用いたフレキシブル発光デバイス
WO2018029766A1 (ja) 樹脂積層膜、それを含む積層体、tft基板、有機el素子カラーフィルターならびにそれらの製造方法
CN112876679A (zh) 一种正型感光性聚酰胺类化合物及其应用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013506404

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12824520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147007050

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12824520

Country of ref document: EP

Kind code of ref document: A1