WO2019086963A2 - 一种有机硅改性聚酰亚胺树脂组合物及其应用 - Google Patents

一种有机硅改性聚酰亚胺树脂组合物及其应用 Download PDF

Info

Publication number
WO2019086963A2
WO2019086963A2 PCT/IB2018/001560 IB2018001560W WO2019086963A2 WO 2019086963 A2 WO2019086963 A2 WO 2019086963A2 IB 2018001560 W IB2018001560 W IB 2018001560W WO 2019086963 A2 WO2019086963 A2 WO 2019086963A2
Authority
WO
WIPO (PCT)
Prior art keywords
silicone
modified polyimide
substrate according
group
filament
Prior art date
Application number
PCT/IB2018/001560
Other languages
English (en)
French (fr)
Other versions
WO2019086963A3 (zh
Inventor
斋藤幸广
鳗池勇re
Original Assignee
嘉兴山蒲照明电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 嘉兴山蒲照明电器有限公司 filed Critical 嘉兴山蒲照明电器有限公司
Publication of WO2019086963A2 publication Critical patent/WO2019086963A2/zh
Publication of WO2019086963A3 publication Critical patent/WO2019086963A3/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1021Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Definitions

  • the present invention relates to the field of illumination, and more particularly to a silicone modified polyimide resin composition. Background technique
  • Patent Publication No. CN103994349A discloses a high-efficiency LED lamp in which a plurality of LED chips are fixed on a transparent substrate having filament electrodes at both ends, and the transparent substrate is made of transparent glass, glass ceramic, transparent ceramic, yttrium aluminum garnet.
  • Patent Publication No. CN204289439U discloses a full-circumferential LED filament comprising a substrate mixed with phosphor, an electrode disposed on the substrate, at least one LED chip mounted on the substrate, and covering the The encapsulant on the LED chip.
  • the substrate formed by the phosphor-containing silicone resin eliminates the cost of glass or sapphire as the substrate, and the filament made using the substrate avoids the influence of glass or sapphire on the light output of the chip, and realizes 360-degree light output, light uniformity and light efficiency. Greatly improve.
  • the substrate is formed of a silicone resin, there is a disadvantage that heat resistance is not good. This application is to further optimize the above application to further correspond to various systems. Process requirements. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a silicone-modified polyimide resin composition, which can be used as a filament substrate or a light conversion layer, and can solve the problem that the existing substrate has poor heat resistance and filament The problem of unstable product performance.
  • a silicone modified polyimide comprising a repeating unit represented by the formula u):
  • Ar 1 is a tetravalent organic group having a benzene ring or an alicyclic hydrocarbon structure
  • Ar 2 is a divalent organic group
  • R is independently selected from a methyl group or a phenyl group
  • is 1 ⁇ 5.
  • the Ar 1 is a tetravalent organic group having a monocyclic alicyclic hydrocarbon structure or an alicyclic hydrocarbon structure containing a bridged ring.
  • the Ar 2 is a divalent organic group having a monocyclic system of an alicyclic hydrocarbon structure.
  • the Ar 1 is a tetravalent organic group having a benzene ring structure or an alicyclic hydrocarbon structure containing an active hydrogen functional group, and the active hydrogen functional group is a hydroxyl group, an amino group, a carboxyl group or a sulfur group. Any of the alcohol groups.
  • the Ar 2 is a divalent organic group containing an active hydrogen functional group, and the active hydrogen functional group is any one of a hydroxyl group, an amino group, a carboxyl group or a thiol group.
  • the Ar 1 is derived from a dianhydride
  • the Ar 2 is derived from a diamine.
  • the diamine having an active hydrogen functional group in the diamine accounts for 5 to 25% by mole of the entire diamine.
  • the silicone-modified polyimide has a siloxane content of from 20 to 75 wt%.
  • the silicone-modified polyimide has a silicon oxyhydrazine content of 30 to 70% by weight and a glass transition temperature of 150 ° C or less.
  • the silicone-modified polyimide has a number average molecular weight of 5,000 to 60,000, preferably 10,000 to 40,000.
  • a silicone-modified polyimide resin composition comprising a silicone-modified polyimide and a heat curing agent, wherein the heat curing agent is an epoxy resin, an isocyanate or a bisoxazoline compound.
  • the heat curing agent is used in an amount of 5 to 12% by weight based on the weight of the silicone-modified polyimide.
  • the molar ratio of the heat curing agent to the active hydrogen functional group in the silicone-modified polyimide is 1:1.
  • the composition further comprises heat dissipating particles.
  • the heat dissipating particles are selected from one or more of the group consisting of silica, alumina, magnesia, magnesium carbonate, aluminum nitride, boron nitride, and diamond.
  • the heat dissipating particles have an average particle diameter of from ⁇ . ⁇ to ⁇ , preferably ⁇ to 50 ⁇ .
  • the composition further comprises a phosphor according to another embodiment of the present invention, wherein the phosphor is at least one of a red phosphor, a yellow phosphor, and a green phosphor.
  • the phosphor has a spherical shape, a plate shape or a needle shape.
  • the phosphor has an average particle diameter of ⁇ . ⁇ or more; preferably 1 ⁇ to 100 ⁇ ; more preferably 1 to 50 ⁇ .
  • the weight ratio of the phosphor to the silicone-modified polyimide is 50 to 800:100, preferably 100 to 700:100.
  • the composition further comprises one or more of an antifoaming agent, a leveling agent, and a binder.
  • Another aspect of the present invention also provides a filament substrate or a light conversion layer formed of the above composition. The present invention includes any of the following effects or any combination thereof as compared with the prior art:
  • the silicone-modified polyimide resin composition obtained by adding a thermosetting agent to the silicone-modified polyimide has excellent heat resistance, mechanical strength and light transmittance;
  • the filament has good resilience, so that the filament exhibits various shapes and realizes 360° full-circumference illumination; (3) vacuum removal a bubble method or amidation reaction under a nitrogen atmosphere to make organic
  • the volume percentage of the cells in the silicon-modified polyimide is 5 to 20%, and the light emitted from the LED chip is refracted by the bubble, and the light is more uniform.
  • Figure 1 is a TMA analysis diagram of polyimide before and after the addition of a thermosetting agent
  • 2A is an SEM image of an embodiment of a silicone-modified polyimide resin composition composite film (substrate);
  • 2B is an SEM image of another embodiment of a silicone-modified polyimide resin composition composite film (substrate);
  • Figure 3 is a cross-sectional view showing a composite film (substrate) of a silicone-modified polyimide resin composition
  • FIG. 4 is a schematic partial cross-sectional view of an embodiment of an LED filament according to the present invention
  • FIG. 5 is a schematic cross-sectional view showing an embodiment of a filament layer structure according to the present invention
  • Figure 6 is a perspective view of the LED bulb of the present invention. Detailed ways
  • the present invention provides a silicone-modified polyimide comprising the compound represented by the following formula (I)
  • Ar 1 is a tetravalent organic group.
  • the organic group has a benzene ring or an alicyclic hydrocarbon structure, and the alicyclic hydrocarbon structure may be a monocyclic alicyclic hydrocarbon structure or an alicyclic hydrocarbon structure containing a bridged ring. Ring alicyclic hydrocarbon structure, can The alicyclic hydrocarbon structure of the two-ring system may also be a tricyclic alicyclic hydrocarbon structure.
  • the organic group may also be a benzene ring structure or an alicyclic hydrocarbon structure containing an active hydrogen functional group, and the active hydrogen functional group may be any one or more of a light group, an amino group, a carboxyl group or a thiol group. In other embodiments, the active hydrogen functional group can also be an amide group.
  • Ar 2 is a divalent organic group, and the organic group may have, for example, a monocyclic alicyclic hydrocarbon structure, preferably a divalent organic group containing an active hydrogen functional group, and the active hydrogen functional group is a hydroxyl group, an amino group, a carboxyl group or a sulfur group. Any one or more of the alcohol groups. In other embodiments, the active hydrogen functional group can also be an amide group.
  • R is independently selected from methyl or phenyl.
  • n is 1 to 5, preferably n is 1 or 2 or 3 or 5.
  • the number average molecular weight of the formula (I) is from 5,000 to 100,000, preferably from 10,000 to 60,000, more preferably from 20,000 to 40,000.
  • the number average molecular weight is a polystyrene-converted value based on a calibration curve prepared by a gel permeation chromatography (GPC) apparatus using standard polystyrene.
  • Ar 1 is a component derived from a dianhydride
  • the dianhydride may include an aromatic acid anhydride and an aliphatic acid anhydride
  • the aromatic acid anhydride includes an aromatic acid anhydride containing only a benzene ring, a fluorinated aromatic acid anhydride, an aromatic acid anhydride containing an amide group, An ester group-containing aromatic acid anhydride, an ether group-containing aromatic acid anhydride, a sulfur group-containing aromatic acid anhydride, a sulfone group-containing aromatic acid anhydride, and a carbonyl group-containing aromatic acid anhydride.
  • aromatic acid anhydride containing only a benzene ring examples include pyromellitic anhydride (PMDA), 2, 3, 3', 4'-biphenyltetracarboxylic dianhydride (aBPDA), 3, 3', 4, 4'. -biphenyltetracarboxylic dianhydride (sBPDA),
  • PMDA pyromellitic anhydride
  • aBPDA 2, 3, 3', 4'-biphenyltetracarboxylic dianhydride
  • sBPDA 3, 3', 4, 4'. -biphenyltetracarboxylic dianhydride
  • 1,2,3,4-butanetetracarboxylic dianhydride BDA
  • TCA tetrahydro-1 ⁇ -5,9-methylpyrano[3,4-d]oxin-1,3,6,8 (4H)-tetraketone
  • TCA tetrahydro-1 ⁇ -5,9-methylpyrano[3,4-d]oxin-1,3,6,8 (4H)-tetraketone
  • BDA tetrahydro-4,8-ethylene-1H, 3H-benzo[1,2-C: 4,5-C] difuran-1,3,5,7 - tetraketone
  • CBDA cyclobutane tetracarboxylic dianhydride
  • CpDA 1,2,3,4-cyclopentanetetracarboxylic dianhydride
  • COeDA 1,2,3,4-butanetetracarboxylic dianhydride having an olefin structure, such as Bicyclo [2.2.2] oct-7-ene-2,3,5,
  • acetylene group-containing acid anhydride such as 4,4'-(acetylene-1,2-diyl)diphthalic anhydride (EBPA)
  • EBPA 4,4'-(acetylene-1,2-diyl)diphthalic anhydride
  • the film strength of the light conversion layer can be further ensured by post-hardening.
  • 4,4'-oxydiphthalic anhydride sODPA
  • BTDA 3,3',4,4'-benzophenonetetracarboxylic dianhydride
  • CBDA 4,4'-(hexafluoroisopropene) bismuth bismuthate
  • the above dianhydrides may be used singly or in combination of two or more.
  • Ar 2 is a component derived from a diamine, which may be classified into an aromatic diamine and an aliphatic diamine, and the aromatic diamine includes an aromatic diamine having only a benzene ring structure, a fluorinated aromatic diamine, and the like.
  • Aromatic diamines containing only a benzene ring structure include m-phenylenediamine, p-phenylenediamine, 2,4-diamino Toluene, 2,6-diamino-3,5-diethyltoluene, 4,4'-diamino-3,3'-dimethylbiphenyl, 9,9-bis(4-aminophenyl)anthracene (FDA), 9,9-bis(4-amino-3-methylphenyl)anthracene, 2,2-bis(4-aminophenyl)propane, 2,2-bis(3-methyl-4-aminobenzene Propane, 4,4'-diamino-2,2'-dimethylbiphenyl (APB); fluorinated aromatic diamines including 2,2'-bis(trifluoromethyl)diaminobiphenyl ( TFMB), 2,2-bis(4-aminophenyl)hex
  • the aliphatic diamine is a diamine having no aromatic structure (such as a benzene ring), the alicyclic diamine includes a monocyclic alicyclic diamine, a linear aliphatic diamine, and the linear aliphatic diamine includes silicon.
  • the aliphatic diamine includes ethylene glycol bis(3-aminopropyl) ether and the like
  • the diamine may also be a diamine containing a mercapto group having a bulky free volume and a rigid fused ring structure, which enables the polyimide to have good heat resistance, thermal oxidation stability, mechanical properties, optical transparency and Good solubility in organic solvents, thiol-containing diamines, such as 9,9-bis(3,5-difluoro-4-aminophenyl) fluorene, which can be derived from 9-fluorenone and 2,6- Dichloroaniline is obtained by reaction.
  • thiol-containing diamines such as 9,9-bis(3,5-difluoro-4-aminophenyl) fluorene, which can be derived from 9-fluorenone and 2,6- Dichloroaniline is obtained by reaction.
  • the fluorinated diamine may also be selected from 1,4-bis(3'-amino-5,-trifluoromethylphenoxy)biphenyl, which is a meta-substituted fluorine-containing diamine having a rigid biphenyl structure.
  • the meta-substitution structure can block the charge flow along the molecular chain direction, reduce the intermolecular conjugation, and thus reduce the absorption of light by visible light.
  • the asymmetric structure of the diamine or acid anhydride can improve the transparency of the composite film to some extent. Sex.
  • the above diamines may be used singly or in combination of two or more.
  • diamine having an active hydrogen examples include a hydroxyl group-containing diamine such as 3,3'-diamino-4,4'-dihydroxybiphenyl, 4,4'-diamino-3,3'-dihydroxy-1.
  • 1'-biphenyl (or 3,3'-dihydroxybenzidine) HAB
  • 2,2-bis(3-amino-4-hydroxyphenyl)propanthene BAP
  • 2,2- Bis(3-amino-4-hydroxyphenyl)hexafluoropropane 6FAP
  • 1,3-bis(3-hydroxy-4-aminophenoxy)benzene 1,4-bis(3-hydroxy-4- Aminophenyl)benzene
  • 3,3'-diamino-4,4'-dihydroxydiphenyl sulfone ABPS
  • ABPS 3,3'-diamino-4,4'-dihydroxydiphenyl sulfone
  • a diamine having an amino group such as 4,4'-diaminobenzoanilide (DABA), 2-(4-aminophenyl)-5-aminobenzimidazole, diethylenetriamine, 3,3' -diaminodipropylamine, triethylenetetramine, N, ⁇ '-bis(3-aminopropyl)ethylenediamine (or ⁇ , ⁇ -bis(3-aminopropyl)ethylethylamine), etc. .
  • a thiol group-containing diamine such as 3,4-diaminobenzenethiol.
  • the above diamines may be used singly or in combination of two or more.
  • the silicone-modified polyimide can be synthesized by a known synthesis method.
  • the dianhydride and the diamine can be produced by dissolving them in an organic solvent in the presence of a catalyst, and examples of the catalyst include acetic anhydride/triethylamine type, valerolactone/pyridine type, etc., preferably,
  • the water produced by the azeotropic process in the imidization reaction uses a dehydrating agent such as toluene to promote the removal of water. It is also possible to carry out an equilibrium reaction of an acid anhydride with a diamine to obtain an amic acid, followed by dehydration by heating to obtain a polyimide.
  • a solutionized polyimide by directly heating and dehydrating an alicyclic acid anhydride and a diamine, thereby dissolving the polyimide as a rubber material, and the light transmittance is more preferable, and is itself It is in a liquid state, so that other solid substances (for example, inorganic heat dissipating particles and phosphors) can be more uniformly dispersed in the rubber material.
  • the silicone-modified polyimide when the silicone-modified polyimide is prepared, the polyimide obtained by heating and dehydrating the diamine and the acid anhydride and the silicon-oxygen diamine are dissolved in a solvent to prepare a silicone-modified polyimide. .
  • the reaction is carried out with an siloxane-type diamine in the amic-acid state before the polyimide is obtained.
  • an acid anhydride and a diamine may be used to dehydrate the ring-closing and polycondensed imide compound, for example, an acid anhydride having a molecular weight ratio of 1:1 and a diamine.
  • 200 mmol (mmol) of 4,4'-(hexafluoroisopropene) diacetic anhydride (6FDA), 20 mmol (mmol) of 2,2-bis(3-amino-4-) was used.
  • a polyimide compound having an amino group as a terminal group can be obtained by the above method, but a polyimide compound having a carboxyl group as a terminal group can also be used in another manner.
  • the bonding strength of the carbon-carbon triple bond enhances the molecular structure thereof; or a diamine having a vinyl siloxane structure.
  • the molar ratio of dianhydride to diamine is 1:1.
  • the diamine containing an active hydrogen functional group The molar fraction of diamines is 5 to 25%.
  • the reaction temperature for synthesizing the polyimide is preferably 80 250 V, more preferably 100 200 ° C, and the reaction time can be adjusted according to the size of the batch, for example, a reaction time of obtaining 10 to 30 g of polyimide is 6 to 10 hours.
  • the silicone-modified polyimide includes a fluorinated aromatic silicone-modified polyimide and an aliphatic silicone-modified polyimide.
  • the fluorinated aromatic silicone-modified polyimide is composed of a silicon-oxygen diamine, an aromatic diamine containing fluorine (F) groups (or a F-aromatic aromatic diamine), and a fluorine-containing (F) group.
  • An aromatic dianhydride (or F-aromatic anhydride) is synthesized;
  • an aliphatic silicone-modified polyimide is composed of a dianhydride, a siloxane-type diamine, and at least one aromatic-free structure (such as benzene).
  • the raw material required for the synthesis of the silicone-modified polyimide and the silicon-oxygen content of the silicone-modified polyimide have a certain degree of transmittance, discoloration performance, mechanical properties, warpage and refractive index of the substrate. influences.
  • the silicone-modified polyimide of the present invention has a siloxane content of 20 to 75 wt%, preferably 30 to 70 wt%, and a glass transition temperature of 150 ° C or less.
  • the content of the siloxane is a weight ratio of the silicon oxydiamine (the structural formula is represented by the formula (A)) to the silicone modified polyimide, and the weight of the silicone modified polyimide is synthetic organic.
  • R is selected from methyl or phenyl; R is preferably methyl, and 1 is from 1 to 5, preferably 1, 2, 3, 5.
  • the organic solvent required for synthesizing the silicone-modified polyimide can dissolve the silicone-modified polyimide and ensure affinity (wettability) with the phosphor or filler to be added, but avoid More solvent remains in the product, the molar number of the solvent is usually the same as the diamine and acid. The number of moles of water formed by the anhydride is equal. For example, if 1 mol of water is formed by 1 mol of diamine and 1 mol of the anhydride, the solvent is used in an amount of 1 mol.
  • the organic solvent selected has a boiling point of 80 ° C or more and less than 300 ° C at a standard atmospheric pressure, more preferably 120 ° C or more and less than 250 ° C. Since it is required to dry and solidify at a low temperature after coating, if the temperature is lower than 120 ° C, it may not be well coated because the drying speed is too fast during the coating process. If the boiling temperature of the organic solvent selected is higher than 250 ° C, drying at low temperatures may be delayed.
  • the organic solvent is an ether organic solvent, an ester organic solvent, a dimethyl ether, a ketone organic solvent, an alcohol organic solvent, an aromatic hydrocarbon solvent or the like.
  • the ether organic solvent includes ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether (or Ethylene glycol dibutyl ether), diglyme, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether (or diethylene glycol methyl ether), dipropylene glycol dimethyl ether or two Glycol dibutyl ether (diethylene glycol dibutyl ether), diethylene glycol butyl methyl ether; ester organic solvents include acetates, acetates including ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl Ether acetate, propylene glycol monomethyl ether acetate, propyl acetate, propylene glycol diacetate,
  • the present invention provides a silicone-modified polyimide resin composition
  • a silicone-modified polyimide resin composition comprising the above-mentioned silicone-modified polyimide and a heat curing agent
  • the heat curing agent is an epoxy resin, an isocyanate or a bisoxazoline compound.
  • the amount of the thermosetting agent is from 5 to 12% by weight based on the weight of the silicone-modified polyimide.
  • the addition of a thermal curing agent increases the heat resistance and the glass transition temperature.
  • A1 and A2 represent the curves before and after the addition of the thermosetting agent.
  • the D1 and D2 curves are the values of the A1 and A2 curves respectively calculated by differential, representing the degree of change of the A1 and A2 curves.
  • thermosetting agent thermomechanical analysis
  • the thermosetting agent has an organic group capable of reacting with an active hydrogen functional group in the polyimide, and the amount and type of the thermosetting agent are The color change performance, mechanical properties and refractive index of the substrate have a certain influence, so that some heat curing agents having better heat resistance and transmittance can be selected.
  • the heat curing agent include epoxy resin, isocyanate, and bismalel. An imine or a bisoxazoline compound.
  • the epoxy resin may be a bisphenol A type epoxy resin such as BPA, or a silicon oxide type epoxy resin such as KF105, X22-163 X22-163A, or an alicyclic epoxy resin such as 3, 4-epoxycyclohexylmethyl 3,4-epoxycyclohexylformate (2021P), EHPE 3150, EHPE 3150CE.
  • BPA bisphenol A type epoxy resin
  • a silicon oxide type epoxy resin such as KF105, X22-163 X22-163A
  • an alicyclic epoxy resin such as 3, 4-epoxycyclohexylmethyl 3,4-epoxycyclohexylformate (2021P), EHPE 3150, EHPE 3150CE.
  • the amount of the thermal curing agent may also be determined according to the molar amount of the reaction between the thermal curing agent and the active hydrogen functional group in the silicone-modified polyimide.
  • the active hydrogen reacted with the thermal curing agent is equal to the molar amount of the thermosetting agent, for example, the molar amount of the active hydrogen functional group reacted with the thermosetting agent is 1 mol, and the molar amount of the thermosetting agent is 1 mol.
  • EHPE3150 and EHPE3150CE are shown in Table 3:
  • the silicone-modified polyimide resin composition may further contain a desired luminescence for obtaining A characteristic phosphor that converts the wavelength of light emitted by a light-emitting semiconductor. For example, a yellow phosphor converts blue light into yellow light, and a red phosphor converts blue light into red light.
  • Yellow phosphor such as (Ba, Sr, Ca) 2 SiO 4: Eu, (Sr, Ba) 2 Si0 4: Eu ( barium orthosilicate (the BOS)) transparent phosphor, Y 3 Al 5 O 12: Ce (YAG (yttrium aluminum garnet): Ce), Tb 3 Al 3 O 12 : Ce (YAG ( ⁇ * aluminum * garnet): Ce) and other silicate-type phosphors having a silicate structure, Ca Nitrogen oxide phosphor such as -a-SiAlON.
  • the red phosphor includes a nitride phosphor such as CaAlSiN 3 :Eu, CaSiN 2 :Eu.
  • Green phosphors such as rare earth-halide phosphors, silicate phosphors, and the like.
  • the content ratio of the phosphor in the silicone-modified polyimide resin composition can be arbitrarily set according to the desired luminescent property, and when the silicone-modified polyimide resin composition is used as the filament substrate, the silicone is modified.
  • the content, shape and particle size of the phosphor in the polyimide resin composition have a certain influence on the mechanical properties (such as elastic modulus, elongation, tensile strength), warpage and thermal conductivity of the substrate. .
  • the phosphor contained in the silicone modified polyimide resin composition is granular, and the shape of the phosphor may be spherical or plate.
  • the shape of the phosphor is spherical; the maximum average length of the phosphor (average particle diameter in the case of a spherical shape) is ⁇ . ⁇ or more, preferably ⁇ or more, more preferably 1 to 100 ⁇ m, more preferably 1 to 1.
  • phosphor is used in an amount of not less than 0.05 times, preferably not less than 0.1 times, and not more than 8 times, preferably not more than 7 times, such as silicone-modified polyimide, of the weight of the silicone-modified polyimide.
  • the weight is 100 parts by weight, and the content of the phosphor is not less than 5 parts by weight, preferably not less than 10 parts by weight, and not more than 800 parts by weight, preferably not more than 700 parts by weight.
  • the addition ratio of the red phosphor to the green phosphor is 1:5-8, preferably the red phosphor and the green phosphor.
  • the addition ratio is 1:6 ⁇ 7.
  • the addition ratio of the red phosphor to the yellow phosphor is 1:5 to 8, preferably a red phosphor and a yellow phosphor. Powder addition ratio is
  • the heat-dissipating particles may further be included in the silicone-modified polyimide resin composition.
  • the heat-dissipating particles in the silicone-modified polyimide resin composition of the present invention are preferably transparent powder, or particles having a high transmittance, or particles having a high light reflectance, because the LED flexible lamp
  • the filament is mainly used for illuminating, so the filament substrate needs to have good light transmittance.
  • particles having a high transmittance and particles having a low transmittance may be used in combination, and a ratio of particles having a high transmittance is larger than a case having a low transmittance. particle.
  • the weight ratio of the particles having a high transmittance to the particles having a low transmittance is 3 to 5:1.
  • the particle size distribution and the mixing ratio may be appropriately selected so as to have an average particle diameter of ⁇ . ⁇ to ⁇ . Within the range, it is preferably in the range of ⁇ to 50 ⁇ .
  • the heat dissipating particles include silica, alumina, magnesia, magnesium carbonate, aluminum nitride, boron nitride or diamond, etc., from the viewpoint of dispersibility, preferably silica, alumina or a combination of both.
  • the particle shape of the heat dissipating particles may be a spherical shape, a block shape or the like, and the spherical shape includes a shape similar to a spherical shape.
  • spherical and non-spherical heat dissipating particles may be used to ensure dispersibility of the heat dissipating particles and heat conduction of the substrate.
  • the ratio of the spherical and non-spherical heat dissipating particles is 1:0.15 to 0.35.
  • the particle diameter of the heat dissipating particles for example, alumina having a particle diameter distribution of 0.1 to 100 ⁇ m, an average particle diameter of 12 ⁇ m, or an alumina having a particle size distribution of 0.1 to 20 ⁇ m and an average particle diameter of 4.1 ⁇ m is used, and the particle size distribution is alumina.
  • the average particle diameter may be selected from 1/5 to 2/5, preferably 1/5 to 1/3 of the thickness of the substrate.
  • the amount of the heat dissipating particles is 1 to 12 times the weight (amount) of the silicone modified polyimide, for example, 100 parts by weight of the silicone modified polyimide, and the content of the heat dissipating particles is 100 to 1200 parts by weight, preferably 400. ⁇ 900 parts by weight, at the same time adding two kinds of heat dissipating particles, for example, adding silica, alumina, and the weight ratio of alumina to silica is 0.4 to 25:1, preferably 1 to 10:1.
  • a coupling agent for example, a silane coupling agent
  • a solid substance such as a phosphor, a heat-dissipating particle
  • a rubber material for example, a silicone-modified poly-polymer.
  • the adhesion between the imide increases the uniformity of dispersion of the solid material, thereby improving the heat dissipation of the light conversion layer and the strength of the film.
  • the coupling agent may also be a titanate coupling agent, preferably an epoxy-based titanic acid. Ester coupling agent.
  • the amount of coupling agent is related to the amount of heat-dissipating particles added and its specific surface area.
  • the amount of coupling agent (the amount of heat-dissipating particles * the specific surface area of the heat-dissipating particles) / the minimum coating area of the coupling agent, such as epoxy-based titanium
  • the amount of the coupling agent used in the acid ester coupling agent (the amount of heat-dissipating particles * the specific surface area of the heat-dissipating particles) / 331.5.
  • the process of synthesizing the silicone-modified polyimide resin composition may be selectively performed.
  • An additive such as an antifoaming agent, a leveling agent or a binder may be added as long as it does not affect the light resistance, mechanical strength, heat resistance and discoloration of the product.
  • Defoamers are used to eliminate bubbles generated during printing, coating, and curing, such as the use of surfactants such as acrylics or silicones as defoamers.
  • the leveling agent is used to eliminate irregularities on the surface of the coating film which are produced during printing and coating. Specifically, it is preferable to contain 0.01 to 2% by weight of a surfactant component, which can suppress bubbles, and can be made smooth by using a leveling agent such as acrylic or silicone, preferably a nonionic surfactant containing no ionic impurities. .
  • the binder examples include an imidazole compound, a thiazole compound, a triazole compound, an organoaluminum compound, an organotitanium compound, and a silane coupling agent.
  • these additives are used in an amount of not more than 10% by weight based on the weight of the silicone-modified polyimide.
  • the compounding amount of the additive exceeds 10% by weight, the physical properties of the resulting coating film tend to decrease, and the problem of deterioration of light resistance caused by the volatile component may also occur.
  • the silicone-modified polyimide resin composition of the present invention can be used as a substrate together in a film form or attached to a carrier.
  • the film formation process includes three steps, (a) a coating step: developing the above-mentioned silicone-modified polyimide resin composition on a release body to form a film; (b) drying and heating process: film and The stripper is heated together to remove the solvent in the film;
  • the above-mentioned exfoliated body may be a centrifugal film or other material which does not chemically react with the silicone-modified polyimide resin composition, and for example, a PET centrifugal film may be used.
  • the silicone-modified polyimide resin composition is attached to a carrier to obtain a constituent film, and the constituent film can be used as a substrate.
  • the formation process of the constituent film includes two steps: (a) coating step: modifying the above-mentioned silicone The polyimide resin composition is spread on a carrier and coated to form a composition film; (b) Drying and heating process: The composition film is heated and dried to remove the solvent in the film.
  • a coating method in the coating step a roll-to-roll coating device such as a roll coater, a die coater, or a knife coater, or a printing method, an inkjet method, a dispensing method, a spray method, or the like can be used. Simple coating method.
  • a vacuum drying method, a heating drying method, or the like can be selected.
  • the heating method may be performed by heating a heat source such as an electric heater or a heat medium to generate heat energy, causing indirect convection, or using a heat radiation method heated by infrared rays emitted from a heat source.
  • the above silicone-modified polyimide resin composition can be obtained by drying and curing after coating to obtain a highly thermally conductive film to obtain characteristics having any one or a combination of the following: excellent light transmittance, chemical resistance, heat resistance Properties, thermal conductivity, mechanical properties of the film and light resistance.
  • the temperature and time used in the drying and curing process can be appropriately selected according to the solvent and the applied film thickness in the silicone-modified polyimide resin composition, and can be cured according to the silicone-modified polyimide resin composition.
  • the weight change before and after and the peak change of the thermosetting agent functional group on the infrared spectrum to determine whether the dry curing is complete for example, when the epoxy resin is used as a heat curing agent, the weight of the silicone modified polyimide resin composition before and after drying and curing The difference is equal to the weight of the added solvent and the increase or decrease in the peak of the epoxy group before and after the dry curing to determine whether the curing is complete.
  • the amidation reaction is carried out under a nitrogen atmosphere or the vacuum defoaming method or both methods are employed in synthesizing the silicone modified polyimide resin composition, so that the silicone modified polyamide can be made.
  • the volume percentage of cells in the composite film of the amine resin composition or the silicone-modified polyimide resin composition is 5 to 20%, preferably 5 to 10%.
  • a silicone-modified polyimide resin composition composite film is used as a substrate of the LED flexible filament, and the substrate 420b has an upper surface 420b1 and an opposite lower surface 420b2, and FIGS. 2A to 2B show SEM images of different substrate surfaces. As shown in FIG. 2A to FIG. 2B, there are cells 4d in the substrate, and the volume percentage of the cells 4d in the substrate 420b is 5-20%, preferably 5-10%, and the cross section of the cell 4d is irregular.
  • 3 is a schematic cross-sectional view of the substrate 420b, the broken line in FIG.
  • the upper surface 420b1 of the substrate includes a first region 4a and a second region 4b,
  • the two regions 4b include cells 4d, the surface roughness of the first region 4a is smaller than the surface roughness of the second region 4b, and the light emitted by the LED chip is scattered by the cells of the second region, and the light is more uniform;
  • the lower surface of the substrate 420b2 includes a third region 4c, the surface roughness of the third region 4c is greater than the surface roughness of the first region 4a.
  • the contact area of the solid crystal glue with the substrate during the solid crystal is large, and the bonding strength between the solid crystal glue and the substrate can be increased, thereby placing the LED chip.
  • the bonding strength of the solid crystal bonding and the bonding adhesive to the substrate can be ensured at the same time.
  • the silicone modified polyimide resin composition film or the silicone modified polyimide resin composition composite film is used as the LED flexible filament substrate, the light emitted by the LED chip is scattered by the bubbles in the substrate, and the light is emitted. More uniform, while further improving glare.
  • the degree of vacuum during vacuum defoaming is -0.5 to -0.09 MPa, preferably -0.2 to -0.09 MPa.
  • the revolution speed is 1200 to 2000 rpm
  • the rotation speed is 1200 to 2000 rpm
  • the vacuum defoaming time is 3 to 8 minutes. It can keep a certain bubble in the film to increase the uniformity of light and maintain better mechanical properties.
  • the total weight of the raw materials required for preparing the silicone-modified polyimide resin composition can be appropriately adjusted.
  • the higher the total weight, the lower the degree of vacuum, the stirring time and the stirring speed can be appropriately increased.
  • the highly thermally conductive resin film can be formed by a simple coating method such as a printing method, an inkjet method, or a dispensing method.
  • the aliphatic silicone-modified polyimide resin composition comprises an aliphatic silicone-modified polyimide and a heat curing agent
  • the F-modified aromatic silicone-modified polyimide resin composition comprises a F-aromatic organic Silicon modified polyimide and heat curing agent.
  • the aliphatic silicone-modified polyimide has an alicyclic structure
  • the aliphatic silicone-modified polyimide resin composition film The light transmittance is higher.
  • the elongation at break of the composite film should be greater than 0.5%, preferably 1 to 5%, in order to impart better bending properties to the substrate. Most preferably 1.5 to 5%.
  • the LED chip and the electrode are generally fixed on the base layer by the solid crystal glue, and then the adjacent LED chip, the LED chip and the electrode are electrically connected by the wire, so as to ensure the quality of the solid crystal wire and improve the product.
  • the modulus of elasticity of the composite film should be greater than 2.0 Gpa, preferably 2 to 6 GPa, and most preferably 4 to 6 GPa.
  • the refractive index of the silicone-modified polyimide composite film is 1.4 to 1.7, preferably 1.4 to 1.55.
  • the silicone-modified polyimide resin composition is used for a filament substrate, and the silicone-modified polyimide resin composition is required to have good light transmittance at the peak wavelength of InGaN of the blue-excited white LED.
  • the raw material of the synthetic silicone-modified polyimide, the heat curing agent, and the heat-dissipating particles can be changed, because the phosphor in the silicone-modified polyimide resin composition will pass through The rate test has a certain influence, so the silicone-modified polyimide resin composition for measuring the transmittance does not contain the phosphor, and the transmittance of the silicone-modified polyimide resin composition It is 86 to 93%, preferably 88 to 91% or preferably 89 to 92% or preferably 90 to 93%.
  • the LED chip When the silicone-modified polyimide resin composition composite film is used as a filament substrate (or a base layer), the LED chip is a six-sided illuminator. When the LED filament is produced, at least two sides of the LED chip are wrapped by the top layer, and the existing LED filament When it is lit, there is a phenomenon in which the color temperature of the top layer and the base layer is uneven, or the base layer is grainy, so that the composite film as the filament substrate needs to have excellent transparency. In other embodiments, a sulfone group, a non-coplanar structure, a meta-substituted diamine, or the like may be introduced on the main chain of the silicone-modified polyimide to enhance the silicone-modified polyimide resin composition. Transparency.
  • the composite film as the substrate needs to have a certain flexibility, so that an ether group can be introduced into the main chain of the silicone-modified polyimide (for example)
  • a flexible structure such as 4,4'-4-amino-2-trifluoromethylphenoxy)diphenyl ether), carbonyl or methylene.
  • a diamine or a dianhydride containing a pyridine ring may also be selected.
  • the rigid structure of the pyridine ring may improve the mechanical properties of the composite film, and may be used in combination with a strong polar group (for example, -F) to form a composite film.
  • the LED filament 100 includes a plurality of LED chips 102, 104, at least two electrodes 110, 112, and a light conversion layer 120.
  • the light conversion layer 120 includes a glue 122 and wavelength converting particles 124, and the glue 122 can be used for polymerization.
  • the LED filament 400a has a light conversion layer 420, LED chips 402, 404, electrodes 410, 412, and a gold wire 440 for electrically connecting the LED chip and the LED chip (or electrode).
  • the light conversion layer 420 is coated on at least two sides of the LED chip/electrode. Light conversion layer 420 exposes a portion of electrodes 410, 412.
  • the light conversion layer 420 can have at least a top layer 420a and a base layer 420b as the upper layer and the lower layer of the filament, respectively. In this embodiment, the top layer 420a and the base layer 420b are respectively located on both sides of the LED chip/electrode.
  • the top layer 420a is a layered structure of at least one layer. The layered structure may be selected from the group consisting of: a highly formable phosphor powder, a low moldable phosphor film, a transparent layer or any layered combination of the three.
  • the phosphor paste/phosphor film comprises the following components: glue 422, phosphor 424, and inorganic oxide nanoparticles 426.
  • the glue 422 can be, but is not limited to, a silica gel.
  • the glue 422 may comprise 10% Wt or less of polyimide (Polyimide, hereinafter referred to as PI) to increase the overall hardness, insulation, thermal stability and mechanical strength of the filament, PI solid content. It can be 5-40°/oWt and the rotational viscosity can be 5-20 Pa.S.
  • the inorganic oxidized nanoparticles 426 can be, but are not limited to, aluminum oxide and aluminum nitride particles, and the particles may have a particle diameter of 100-600 nm or 0.1 to 100 micrometers, and the functions thereof are to promote heat dissipation of the filament and incorporate inorganic heat-dissipating particles. It can have particle sizes in a variety of sizes.
  • the glue of the phosphor film and the phosphor glue can be adjusted to be greater than 20%, 50%, or 70%.
  • the Shore hardness of the phosphor can be D40-70; the thickness of the phosphor can be 0.2-1.5 mm; and the Shore hardness of the phosphor film can be D20-70.
  • the film may have a thickness of 0.1 to 0.5 mm; a refractive index of 1.4 or higher; and a light transmittance of 40% to 95%.
  • the transparent layer (glue layer, insulating layer) may be composed of a high light transmissive resin such as silica gel, PI, or a combination thereof. In one embodiment, the transparent layer can function as an index matching layer with the effect of adjusting the light output efficiency of the filament.
  • the base layer 420b is a layered structure of at least one layer, and the layered structure may be selected from the group consisting of: a high-shape phosphor powder, a low-shaped phosphor film, a transparent layer or any layered combination of the three.
  • the phosphor paste/phosphor film comprises the following components: a silicone-modified polyimide 422', a phosphor 424', and an inorganic oxide nanoparticle 426'.
  • the silicone modified polyimide may be replaced with the silicone modified polyimide resin composition described above.
  • the inorganic oxidized nanoparticles 426 can be, but are not limited to, aluminum oxide and aluminum nitride particles.
  • the particle size of the particles can be 100-600 nm or 0.1 to 100 micrometers, and the effect is to promote the heat dissipation of the filament as a whole, and the incorporated inorganic
  • the heat dissipating particles can have particle sizes of various sizes.
  • the transparent layer may be composed of a high light transmissive resin such as silica gel, silicone polyimide, or a combination thereof.
  • the transparent layer can function as an index matching layer with the effect of adjusting the light output efficiency of the filament.
  • the base layer may be a composite film of PI or the above-described silicone-modified polyimide resin composition.
  • the LED bulb 10c includes a lamp housing 12, a lamp cap 16 connecting the lamp housing 12, at least two conductive brackets 14a, 14b disposed in the lamp housing 12, a driving circuit 18, and a cantilever
  • a stem 19 and a single LED filament 100 The conductive brackets 14a, 14b are used to electrically connect the two electrodes 110, 112 of the LED filament 100, and can also be used to support the weight of the LED filament 100; the LED filament 100 is connected to the stem 19 via the conductive brackets 14a, 14b, and the stem 19 can be used
  • the gas in the LED bulb 10b is exchanged and provides a function of heat conduction; the stem 19 further has a pole 19a extending perpendicularly to the center of the lamp housing 12, and a first end of each cantilever 15 is connected to the pole 19a, A second end of each cantilever 15 is connected to the LED filament;
  • the driving circuit 18 is electrically connected to the conductive brackets 14a, 14b and the lamp cap 16, and when the lamp cap 16 is connected to the lamp holder of the conventional bulb lamp, the lamp socket is A lamp 16 power supply is provided, and the drive circuit 18 is configured to drive the LED filament 100 to emit light after receiving power from the lamp cap 16.
  • LED filament 100 can emit light over the entire circumference, the entire LED bulb can generate full illumination.
  • LED filament 100 can be any one of the LED filaments described in Figures 4 to 5.
  • the definition of full-circumference light as described herein depends on the specifications of the specific bulbs in each country. This definition also changes with time. Therefore, the example of full-circumference light described in this disclosure is not intended to be limited. The scope of the invention. Definition of full-circumference, such as the US Energy Star Program (US).
  • Lamps Light Bulbs
  • the JEL 801 specification in Japan requires that the LED lamp be in the range of 120 degrees, and its luminous flux should be less than 70% of the total luminous flux.
  • Example 1 Preparation of silicone-modified polyimide Al (silicone content: 41%)
  • a reaction vessel equipped with a stirrer and a Deans Stark trap
  • sODPA 32.84 g 80 mmol
  • BAPP 67.2 g 80 mmol
  • ⁇ - (3 -aminopropyl)polysiloxane KF8010 8.64g (40 mmol) 3,3'-diamino-4,4'-dihydroxybiphenyl, 0.5 g pyridine, 300 g Y -butyrolactone (GBL) and 30 g
  • Toluene was added to the reaction vessel, and after stirring at 20 rpm for 30 min under a nitrogen atmosphere, the temperature was raised to 180 ° C, and then stirred at 180 rpm
  • Example 2 Preparation of silicone-modified polyimide A-2 (silicone content: 64%) was carried out in the same manner as in Example 1.
  • Reaction vessel 62.04 g (200 mmol) sODPA, 8.21 g (20 mmol) 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP 126 g (150 mmol) a, ⁇ - (3-aminopropyl) polysiloxane (KF8010 6.48g (30 mmol) 3,3'-two _ 4-amino, 4'-dihydroxy biphenyl, 0.5g of pyridine, 350gY--butyrolactone (GBL), and 30g of toluene was added to the reaction vessel.
  • BAPP 126 g (150 mmol) a 2,2-bis[4-(4-aminophenoxy)phenyl]propane
  • KF8010 6.48g (30 mmol) 3,3'-two _ 4-amino, 4'-dihydroxy biphenyl, 0.5g of pyridine, 350gY--butyrolactone (GB
  • Example 3 Preparation of Silicone Modified Polyimide A-3 (Sitron Oxide Content: 73%) Using the same reaction vessel as in Example 1, 62.04 g (200 mmol) of sODPA, 2.05 g (5 mmol) was used.
  • BAPP 2,2-bis[4-(4-aminophenoxy)phenyl]propane
  • 6.48 g (30 mmol) 3,3'-di Amino-4,4'-dihydroxybiphenyl, 0.5 g of B-pyridine, 350 g of Y -butyrolactone (GBL) and 30 g of toluene were added to the reaction vessel. After stirring at 20 rpm for 30 min under a nitrogen atmosphere, the temperature was raised to 180 ° C and stirred at 180 rpm for 4 h. During the reaction, the azeotropic portion of toluene-water was removed.
  • Example 4 Preparation of Silicone Modified Polyimide A-4 (siloxane content 37%) Using the same reaction vessel as in Example 1, 62.04 g (200 mmol) sODPA, 36.84 g (90 mmol) PACM, 58.8 g (70 mmol) KF8010 (amino-modified silicone), 9.08 g (40 mmol) 4,4'-diaminobenzoanilide (DABA), 0.5 g pyridine, 300 g Y -butyrolactone (GBL) And 30 g of toluene.
  • DABA 4,4'-diaminobenzoanilide
  • Example 5 Preparation of Silicone Modified Polyimide A-5 (siloxane content 45%) Using the same reaction vessel as in Example 1, 39.26 g (200 mmol) of cyclobutanetetracarboxylic dianhydride ( CBDA), 34.26g (80 mmol) 4,4'-[l,4-phenylbis(oxy)]bis[3-(trifluoromethyl)aniline] (6FAPB), 67.2 g (80 mmol) KF8010, 14.66 g (40 mmol) of 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (6FAP), 0.5 g of pyridine, 300 g of Y -butyrolactone (GBL) and 30 g of toluene were added to the reaction vessel.
  • CBDA cyclobutanetetracarboxylic dianhydride
  • 6FAPB 4,4'-[l,4-phenylbis(oxy)]bis[
  • Example 6 Preparation of Silicone Modified Polyimide A-6 (44% Silicone Content) Using the same reaction vessel as in Example 1, 62.04 g (200 mmol) of sODPA,
  • Example 7 Preparation of Silicone Modified Polyimide A-7 (47% Silicone Content) Using the same reaction vessel as in Example 1, 19.62 g (100 mmol) of cyclobutane tetracarboxylic dianhydride ( CBDA), 31.0 g (100 mmol) sODPA, 16.82 g (80 mmol) PACM,
  • Example 8 Preparation of Silicone Modified Polyimide A-8 (44% Silicone Content) Using the same reaction vessel as in Example 1, 88.86 g (200 mmol) of 4,4'- (hexafluoro) was used. Isopropene) Diacetic anhydride (6FDA), 21.42g (50 mmol) 4,4'-[l,4-Phenylbis(oxy)]bis[3-(trifluoromethyl)aniline] (6FAPB), 92.4 g (110 mmol) KF8010, 14.66 g (40 mmol) 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (6FAP), 0.5 g pyridine, 300 g Y -butyrolactone (GBL) and 30 g of toluene was added to the reaction vessel.
  • GBL Y -butyrolactone
  • Example 9 Preparation of silicone-modified polyimide A-9 (silicon oxynitride content: 76%) Using the same reaction vessel as in Example 1, 62.04 g (200 mmol) of sODPA, 0.82 g (2 mmol) was used.
  • BAPP 2,2-bis[4-(4-aminophenoxy)phenyl]propane
  • 0.5 g of pyridine, 350 8 ⁇ -butyrolactone (GBL) and 30 g of toluene were added to the reaction vessel. After stirring at 30 rpm for 30 mmin in a nitrogen atmosphere, the temperature was raised to 180 Torr and stirred at 180 rpm for 4 hours. During the reaction, the azeotropic portion of toluene-water was removed.
  • Example 10 Preparation of Silicone Modified Polyimide A-10 (siloxane content: 29%) The same reaction vessel as in Example 1 was used. Reaction vessel, 62.04 g (200 mmol) sODPA, 39.38 g (110 mmol) 2,2-bis[4-(4-aminophenoxy)phenyl]propanthene (BAPP), 42.0 g (50 mmol) KF8010 8.64 g (40 mmol) of 3,3'-diamino-4,4'-dihydroxybiphenyl, 0.5 g of pyridine, 300 g of Y -butyrolactone (GBL) and 30 g of toluene were charged into the reaction vessel.
  • BAPP 2,2-bis[4-(4-aminophenoxy)phenyl]propanthene
  • Example 11 Preparation of Silicone Modified Polyimide Resin Composition Film
  • the silicone-modified polyimides obtained in Examples 1 to 10 were each mixed with an epoxy resin, and vacuum defoamed to obtain a silicone-modified polyimide resin composition.
  • the parameters of the defoaming method were as follows: vacuum degree was -0.095 MPa, the revolution speed is 1500 rpm, and the rotation speed is 1500 rpm; The vacuum defoaming time was 3 min.
  • the silicone-modified polyimide resin composition was spread on a release body using a doctor blade having a gap of 300 ⁇ m, and coated to form a film, and then the film was dried at 100 Torr for 30 m iii to remove residual solvent, and then the temperature was adjusted. To 160'C, continue to dry for 90min to cause a curing reaction.
  • Example 12 Preparation of Silicone Modified Polyimide Resin Composition Composite Film
  • the silicone modified polyimides obtained in Examples 1 to 10 were respectively prepared with an epoxy resin, a phosphor, and a particle size distribution of 0.2 to 30. ⁇ ⁇ , alumina mixed with an average particle size of 9.6 ⁇ . Based on the silicone-modified polyimide, the content ratio of the phosphor is 240% (2.4 times the weight of the silicone-modified polyimide), wherein (Ba, Sr, Ca) 2Si04: Eu and CaAlSiN3: The addition ratio of Eu is 7:1.
  • Example 13 Preparation of Silicone Modified Polyimide Al1 (44% Silicone Oxide) Using the same reaction vessel as in Example 1, 100 mmol, 2,4,5-cyclohexanetetracarboxylic acid was used.
  • Example 14 Preparation of Silicone Modified Polyimide A-12 (42% Silicone Oxide) Using the same reaction vessel as in Example 1, 100 mmol of HPMDA, 40 mmol of HFBAPP, 40 mmol of KF8010, and 20 mmol of 6FAP were used. 0.25 g of pyridine, 350 g of y-butyrolactone (GBL) and 45 g of methyl benzoate were added to the reaction vessel. After stirring under nitrogen atmosphere 30mmin speed 20rp m, the temperature was raised to 170 ° C, a rotation speed of 185rpm stirring 4h.
  • GBL y-butyrolactone
  • Example 15 Preparation of Silicone Modified Polyimide A-13 (50% Silicone Content) Using the same reaction vessel as in Example 1, 100 mmol of HPMDA, 40 mmol was used.
  • PACM 40 mmol KF8010, 20 mmol ABPS, 0.25 g pyridine, 350 g Y-butyrolactone (GBL) and 45 g methyl benzoate were added to the reaction vessel. After stirring at 30 rpm for 30 mmin under a nitrogen atmosphere, the temperature was raised to 170 Torr and stirred at 185 rpm for 3.5 hours. During the reaction, the azeotropic portion of methyl benzoate-water was removed. By removing the reflux, a silicone-modified polyimide having a solid content of 32% was obtained.
  • Example 17 Preparation of silicone-modified polyimide A-15 (silicon oxymethane content: 51%) Using the same reaction vessel as in Example 1, 100 mmol of HPMDA, 40 mmol of PACM, and 40 mmol of KF8010 20 mmol of DAB were used. A, 0.25 g of pyridine, 350 g of y-butyrolactone (GBL) and 45 g of methyl benzoate were added to the reaction vessel. After stirring at 30 rpm for 30 mmin under a nitrogen atmosphere, the temperature was raised to 170 ° C and stirred at 185 rpm for 4 h. During the reaction, the azeotropic portion of methyl benzoate-water was removed.
  • GBL y-butyrolactone
  • Example 18 Preparation of Silicone Modified Polyimide A-16 (40% Silicone Oxide) Using the same reaction vessel as in Example 1, 50 mmol of HPMDA, 50 mmol of 6FDA, 40 mmol of PACM, and 40 mmol were used. KF8010, 20 mmol 6FAP, 0.25 g pyridine, 350 g of y-butyrolactone (GBL) and 45 g of methyl benzoate were added to the reaction vessel. After stirring at 30 rpm for 30 mmin under a nitrogen atmosphere, the temperature was raised to 170 ° C and stirred at 185 rpm for 4 h.
  • GBL y-butyrolactone
  • Example 19 Preparation of silicone-modified polyimide A-17 (silicone content: 44%) Using the same reaction vessel as in Example 1, 200 mmol of 6FDA, 50 mmol was used.
  • Example 20 Preparation of silicone-modified polyimide A-18 (silicone content: 44%) Using the same reaction vessel as in Example 1, 200 mmol of 6FDA, 50 mmol was used.
  • Example 21 Preparation of Silicone Modified Polyimide A-19 (70% Silicone Content) Using the same reaction vessel as in Example 1, 50 mmol 6FDA, 50 mmol sBPDA, 5 mmol TFMB, 85 mmol NH15D, 10 mmol 6 FAP, 0.5 g of hydrazine, 50 g of methyl benzoate and 150 g of Y-butyrolactone (GBL) were added to the reaction vessel. After stirring at 30 rpm for 30 mmin under a nitrogen atmosphere, the temperature was raised to 180 ° C and stirred at a speed of 1 SO rpm for 4 hours. During the reaction, the azeotropic portion of toluene-water was removed.
  • GBL Y-butyrolactone
  • Example 22 Preparation of Silicone Modified Polyimide A-20 (48% Silicon Oxide Content) Using the same reaction vessel as in Example 1, 100 mmol DSDA, 25 mmol p-6 FAPB, 55 mmol NH15D > 20 mmol 6 FAP, 0.5 g hydrazine, 43.5 g diethylene glycol butyl methyl ether and 101.5 g Y-butyl Lactone (GBL) is added to the reaction vessel. After stirring at 30 rpm for 30 mmin in a nitrogen atmosphere, the temperature was raised to 180 ° C and stirred at 180 rpm for 4 hours.
  • GBL Y-butyl Lactone
  • Example 23 Preparation of silicone-modified polyimide A-21 (silicon oxide content: 69%) Using the same reaction vessel as in Example 1, 100 mmol of CBDA, 5 mmol of PACM, 60 mmol of NH15D, and 35 mmol were used. 6FAP, 0.5g pyridine, lOlg Y-butyrolactone
  • the silicone-modified polyimides obtained in Examples 13 to 20 were each mixed with an epoxy resin, and vacuum defoamed to obtain a silicone-modified polyimide resin composition.
  • the parameters of the defoaming method were as follows: vacuum degree was -0.095 MPa, revolution speed of 1500 rpm, rotation speed of 1500 rpm; vacuum defoaming time of 3 min.
  • the silicone-modified polyimide resin composition was spread on a release body using a doctor blade having a gap of 300 ⁇ m, and coated to form a film, and then the film was dried at 100 ° C for 30 minutes to remove residual solvent, and then The temperature was adjusted to 160 ° C and drying was continued for 90 min to cause a curing reaction.
  • Example 25 Preparation of Silicone Modified Polyimide Resin Composition Composite Film
  • the silicone modified polyimides obtained in Examples 1 to 18 and 21-22 were respectively prepared with an epoxy resin, a phosphor, and a particle size distribution.
  • Alumina mixed with an average particle diameter of 9.6 ⁇ m is 0.2 to 30 ⁇ m.
  • the content ratio of the phosphor is 240% (2.4 times the weight of the silicone-modified polyimide), where (Ba, Sr, Ca) 2 SiO 4 : Eu and The addition ratio of CaAlSiN3:Eu is 7:1.
  • Example 26 Preparation of Composite Film of Silicone Modified Polyimide Resin Composition
  • the silicone-modified polyimide obtained in Example 19 was mixed with an epoxy resin, alumina having a particle size of 0.2 to 30 ⁇ m, and an average particle diameter of 9.6 ⁇ m, and a phosphor.
  • the content ratio of the phosphor is 240% (2.4 times the weight of the silicone-modified polyimide), wherein (Ba, Sr, Ca) 2Si04: Eu and CaAlSiN3: The addition ratio of Eu is 7:1.
  • the alumina content ratio is 760% (760 PHR) (ie, 7.6 times the weight of the silicone-modified polyimide), and then the method described in Example 24 is employed. The method produces a composite film.
  • Example 27 Preparation of Composite Film of Silicone Modified Polyimide Resin Composition
  • the silicone-modified polyimide obtained in Example 20 was mixed with an epoxy resin, an alumina having a particle diameter distribution of 0.2 to 30 m, and an average particle diameter of 9.6 ⁇ m, and a phosphor.
  • the content ratio of the phosphor is 240% (2.4 times the weight of the silicone-modified polyimide), wherein (Ba, Sr, Ca) 2Si04: Eu and CaAlSiN3: The addition ratio of Eu is 7:1.
  • the alumina content ratio is 960% (960 PHR) (ie, 9.6 times the weight of the silicone-modified polyimide), and then the method described in Example 24 is employed.
  • Example 28 Preparation of Silicone Modified Polyimide Resin Composition Composite Film
  • the silicone modified polyimide obtained in Example 23 was mixed with an epoxy resin, a heat dissipating particle, and a phosphor, respectively, and the heat dissipating particles included alumina.
  • the alumina has a particle size distribution of 0.2 to 30 ⁇ ⁇ , an average particle diameter of 9.6 ⁇ ; and an average particle diameter of silica of 2 ⁇ m.
  • the content ratio of the phosphor is 600% (that is, 6.0 times the weight of the silicone-modified polyimide), wherein (Ba, Sr, Ca) 2Si04: Eu and CaAlSiN3: The addition ratio of Eu is 6:1.
  • the content ratio of the heat-dissipating particles is 400% (400 PHR) (that is, 4.0 times the weight of the silicone-modified polyimide).
  • the addition ratio of alumina to silica was 1:1, and then a composite film was prepared by the method described in Example 24. Silicone-modified polyimide resin composition film (film thickness: 50 ⁇ m) performance test 1.
  • Tg The glass transition temperature (Tg) was measured using ⁇ -60 manufactured by Shimadzu Corporation. Test conditions: Load: 5 g; Heating rate: 10 ° C / min ; ; Measurement atmosphere: Nitrogen atmosphere; Nitrogen flow rate: 20 ml / min; Measuring temperature range: -40 to 300 ° C.
  • Light transmission The light transmission test was carried out using a Shimadzu UV-Vis spectrophotometer UV-1800. It is based on the luminescence of a white LED at a wavelength of 460 nm.
  • 460 nm is the peak wavelength of InGaN for blue-excited white LEDs.
  • the film used for the test was the same as that used for the light transmittance test, and the film was allowed to stand at 200 ° C (air atmosphere) for 24 hours, and the transmittance of the film after leaving at a wavelength of 460 nm was measured.
  • Thermal conductivity The obtained film was cut into a film having a film thickness of 300 ⁇ m and a diameter of 30 mm as a test piece, and the thermal conductivity was measured by a thermal conductivity measuring device DRL-III manufactured by Xiangke. Test conditions: Hot electrode temperature: 90 ⁇ Cold junction temperature: 20 ⁇ ; Load: 350N. 2. Warpage phenomenon: Put a film with a thickness of 100um and a length and width of 100mm into 160°C. Place it in the incubator for 5 minutes, remove it from the incubator, and warp at the edge of the film at room temperature. The warp height is below 0mm for 0, lmm ⁇ 5mm is to be determined ⁇ , and 5mm or more is unqualified x.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Paints Or Removers (AREA)

Abstract

本发明公开了一种有机硅改性聚酰亚胺。还公开了一种灯丝基材,所述灯丝基材由有机硅改性聚酰亚胺树脂组合物涂布千燥后形成,所述组合物包括所述有机硅改性聚酰亚胺、热固化剂、荧光粉及散热粒子,所述热固化剂为环氧树脂、异氰酸酯或双噁唑啉化合物。本发明以有机硅改性聚酰亚胺作为主体,添加热固化剂后所得的有机硅改性聚酰亚胺树脂组合物具有优异的耐热性能、机械强度和透光性,采用有机硅改性聚酰亚胺树脂组合物作为灯丝基材,灯丝具有良好的可饶性,使灯丝呈现出多样的形状,实现360°全周光照明。

Description

一种有机硅改性聚酰亚胺树脂组合物及其应用 技术领域
本发明涉及照明领域, 尤其涉及一种有机硅改性聚酰亚胺树脂组 合物。 背景技术
LED因具有环保、 节能、 高效率与长寿命的优势, 正逐渐取代传 统照明灯具的地位。 然而传统 LED光源的发光具有指向性, 不像传统 灯具能做出大广角范围的照明。 近年来能让 LED光源类似传统钨丝灯 发光达成 360°全角度照明的灯丝受到业界的重视。 专利公开号为 CN103994349A公开了一种高光效 LED灯,其中多 个 LED芯片固定在两端含有灯丝电极的透明基板上, 透明基板的材料 为透明玻璃、 微晶玻璃、 透明陶瓷、 钇铝石榴石、 氧化铝 (蓝宝石) 、 氮氧化氯、 氧化钇陶瓷、 氧化钙陶瓷或透明的耐热 PC/PS/PMMA,虽然 釆用此透明基板可以避免 LED 芯片发出的向下的蓝光发射回来经过 P-N结导致的蓝光损失, 但此基板为硬基板, 不能进行弯折, 因而存在 发光角度小的缺点。 专利公开号为 CN204289439U公开了一种全周发光的 LED灯丝, 包括混有荧光粉的基板, 设置于所述基板上的电极, 安装在所述基板 上的至少一个 LED 芯片, 以及覆盖于所述 LED芯片上的封装胶。 通 过含有荧光粉的硅树脂形成的基板, 免除了玻璃或蓝宝石作为基板的 成本, 使用所述基板制作的灯丝避免了玻璃或蓝宝石对芯片出光的影 响, 实现了 360 度出光, 出光均匀性和光效大大提高。 但基板因采用 硅树脂形成, 存在耐热性不佳的缺点。 本申请是对上述申请案进一步优化, 以进一步对应各种不同的制 程需求。 发明内容
本发明主要解决的技术问题是提供一种有机硅改性聚酰亚胺树脂 组合物, 将此组合物用做灯丝基材或光转换层, 能够解决现有基材耐 热性不佳及灯丝制品性能不稳定的问题。 一种有机硅改性聚酰亚胺, 包括通式 u )所表示的重复单元:
Figure imgf000003_0001
( I )
通式(I )中, Ar1为具有苯环或脂环式烃结构的 4价有机基团, Ar2 为 2价有机基团, R分别独立地选自甲基或苯基, η为 1〜5。 根据本发明的一实施方式, 其中所述 Ar1是具有单环系脂环式烃 结构或含有桥环的脂环式烃结构的 4价有机基团。 根据本发明的另一实施方式, 其中所述 Ar2为具有单环系的脂环 式烃结构的 2价有机基团。 根据本发明的另一实施方式, 其中所述 Ar1为具有含有活泼氢官 能团的苯环结构或脂环式烃结构的 4价有机基团, 所述活泼氢官能团 为羟基、 氨基、 羧基或硫醇基中的任意一种。 根据本发明的另一实施方式, 其中所述 Ar2为含有活泼氢官能团 的 2价有机基团, 所述活泼氢官能团为羟基、 氨基、 羧基或硫醇基中 的任意一种。 根据本发明的另一实施方式, 其中所述有机硅改性聚酰亚胺中所 述 Ar1来自二酸酐, 所述 Ar2来自二胺。 根据本发明的另一实施方式, 其中所述二胺中含有活泼氢官能团 的二胺占整个所述二胺的摩尔分数为 5~25 %。 根据本发明的另一实施方式, 其中所述有机硅改性聚酰亚胺中硅 氧烷含量为 20— 75wt%。 根据本发明的另一实施方式, 其中所述有机硅改性聚酰亚胺中硅 氧垸含量为 30〜70wt%, 玻璃化转变温度为 150°C以下。 根据本发明的另一实施方式, 其中所述有机硅改性聚酰亚胺的数 均分子量为 5000~60000, 优选为 10000— 40000。 本发明另一方面还提供一种有机硅改性聚酰亚胺树脂组合物, 包 括有机硅改性聚酰亚胺和热固化剂, 热固化剂为环氧树脂、 异氰酸酯 或双恶唑啉化合物。 根据本发明的另一种实施方式, 以所述有机硅改性聚酰亚胺的重 量为基准, 所述热固化剂的用量为有机硅改性聚酰亚胺的重量的 5~12%。 根据本发明的另一实施方式, 其中所述热固化剂与所述有机硅改 性聚酰亚胺中的活泼氢官能团的摩尔比为 1 : 1。 根据本发明的另一实施方式, 其中所述组合物还包括散热粒子。 根据本发明的另一实施方式, 其中所述散热粒子选自二氧化硅、 氧化铝、 氧化镁、 碳酸镁、 氮化铝、 氮化硼和金刚石中的一种或多种。 根据本发明的另一实施方式,其中所述散热粒子平均粒径为 Ο.ΐμιη 至 ΙΟΟμιη, 优选 Ιμπι至 50μηι。 根据本发明的另一实施方式, 其中所述组合物还包括荧光粉 根据本发明的另一实施方式, 其中所述荧光粉是红色荧光粉、 黄 色荧光粉、 绿色荧光粉中的至少一种。 根据本发明的另一实施方式, 其中所述荧光粉的形状为球状、 板 状或针状。 根据本发明的另一实施方式,其中所述荧光粉的平均粒径为 Ο.ΐμπι 以上; 优选 1μηι ~100μηι; 更优选 1~50μηι。 根据本发明的另一实施方式, 其中所述荧光粉与所述有机硅改性 聚酰亚胺的重量比为 50〜800: 100, 优选 100〜700: 100。 根据本发明的另一实施方式, 其中所述组合物还包括消泡剂、 流 平剂、 粘合剂中的一种或多种。 本发明另一方面还提供一种由上述组合物形成的灯丝基材或光转 换层。 与现有技术相比, 本发明包括以下任一效果或其任意组合:
(1)以有机硅改性聚酰亚胺作为主体, 添加热固化剂后所得的有机 硅改性聚酰亚胺树脂组合物具有优异的耐热性能、 机械强度和透光性;
(2)采用有机硅改性聚酰亚胺树脂组合物作为灯丝基材, 灯丝具有 良好的可饶性, 使灯丝呈现出多样的形状, 实现 360°全周光照明; (3)采用真空脱泡方法或在氮气气氛下进行酰胺化反应, 使得有机 硅改性聚酰亚胺中泡孔的体积含量百分比为 5〜20%, LED芯片发出的 光经气泡折射后, 出光更加均匀。 附图说明
图 1为加入热固化剂前后的聚酰亚胺 TMA分析图;
图 2A为有机硅改性聚酰亚胺树脂组合物复合膜(基材)一实施例 的 SEM图;
图 2B为有机硅改性聚酰亚胺树脂组合物复合膜(基材)另一实施 例的 SEM图;
图 3为有机硅改性聚酰亚胺树脂组合物复合膜 (基材) 的截面示 意图;
图 4为本发明 LED灯丝一实施例的立体局部剖面示意图; 图 5为本发明灯丝层状结构实施例的截面示意图;
图 6为本发明 LED球泡灯的的立体示意图。 具体实施方式
为使本发明的上述目的、 特征和优点能够更为明显易懂, 下面结 合附图对本发明的具体实施例做详细的说明。 本发明提供一种有机硅改性聚酰亚胺,包括下述通式(I )所表示的 复
Figure imgf000006_0001
( I )
通式(I )中, Ar1为 4价有机基团。 所述有机基团具有苯环或脂环 式烃结构, 所述脂环式烃结构可以为单环系的脂环式烃结构, 也可以 具有含有桥环的脂环式烃结构, 作为含有桥环的脂环式烃结构, 可以 为两环系的脂环式烃结构, 也可以为三环系的脂环式烃结构。 有机基 团也可以是含有活泼氢官能团的苯环结构或脂环式烃结构, 活泼氢官 能团为轻基、 氨基、 羧基或硫醇基中的任意一种或一种以上。 其它实 施例中, 活泼氢官能团也可为酰胺基。
Ar2为 2价有机基团,所述有机基团可以具有例如单环系的脂环式 烃结构, 优选含有活泼氢官能团的 2 价有机基团, 活泼氢官能团为羟 基、 氨基、 羧基或硫醇基中的任意一种或一种以上。 其它实施例中, 活泼氢官能团也可为酰胺基。
R分别独立地选自甲基或苯基。 n为 1~5, 优选 n为 1或 2或 3或 5。 通式( I )的数均分子量为 5000〜100000,优选为 10000—60000,更 优选为 20000〜40000。 数均分子量是基于通过凝胶渗透色谱 (GPC)装置 使用标准聚苯乙烯制备的校准曲线的聚苯乙烯换算值。
Ar1是来自二酸酐的成分,所述二酸酐可包含芳香族酸酐和脂肪族 酸酐, 芳香族酸酐包括只含苯环的芳香族酸酐、 氟化芳香族酸酐、 含 酰胺基的芳香族酸酐、 含酯基的芳香族酸酐、 含醚基的芳香族酸酐、 含硫基的芳香族酸酐、 含砜基的芳香族酸酐及含羰基的芳香族酸酐等。 只含苯环的芳香族酸酐例如可以举出均苯四甲酸酐 (PMDA)、 2, 3, 3',4'-联苯四甲酸二酐 (aBPDA)、 3,3', 4,4'-联苯四羧酸二酐 (sBPDA)、
4-(2,5-二氧代四氢呋喃 -3-基) -1,2,3,4-四氢萘 -1,2-二甲酸酐 (TDA) 等; 氟化芳香族酸酐例如简称 6FDA的 4,4'- (六氟异丙烯)二酞酸酐;含酰胺 基的芳香族酸酐包括 Ν, Ν' - ( 5,5' - (全氟丙基 - 2,2-二基) 双 (2-羟基 -5,1-亚苯基) ) 双 (1,3-二氧代 -1,3-二氢异苯并呋喃) -5-甲酰胺) ( 6FAP-ATA) 、 Ν,Ν'-(9Η-芴 -9-亚基二 -4,1-亚苯基)二 [1,3-二氢 -1,3-二 氧代 _5_异苯并呋喃甲酰胺] (FDA-ATA)等; 含酯基的芳香族酸酐包括 对苯基二 (偏苯三酸酯)二酸酐 (TAHQ) 等; 含醚基的芳香族酸酐包括 4,4'-(4,4'-异丙基二苯氧基)双 (邻苯二甲酸酐) (BPADA) 、 4,4'-氧双邻 苯二甲酸酐 (sODPA)、 2,3,3',4'-二苯醚四甲酸二酐 (aODPA)、 4,4'-(4,4'- 异丙基二苯氧基)双 (邻苯二甲酸酐) (BPADA)等; 含硫基的芳香族酸酐 包括 4,4'-双 (邻苯二甲酸酐) 硫化物 (TPDA) 等; 含砜基的芳香族酸 酐包括 3,3',4,4'-二苯基砜四羧酸二酸酐 (DSDA)等; 含羰基的芳香族酸 酐包括 3,3',4,4'-二苯酮四酸二酐 (BTDA)等。 脂环族酸酐包括简称 HPMDA 的 1,2,4,5-环己烷四甲酸二酐、
1,2,3,4-丁垸四羧酸二酐 (BDA) 、 四氢 -1Η-5,9-甲垸吡喃并 [3,4-d]噁英 -1,3,6,8(4H)-四酮(TCA)、六氢 -4,8-亚乙基 -1H, 3H-苯并 [1,2-C: 4,5-C] 二呋喃 -1,3,5,7-四酮 ( BODA) 、 环丁烷四甲酸二酐 (CBDA)、 1,2,3,4- 环戊四羧酸二酐 (CpDA) 等, 或是具有烯烃结构的脂环族酸酐, 如双 环 [2.2.2]辛 -7-烯 -2,3,5,6-四羧酸二酐 (COeDA) 。 若使用具有乙炔基的 酸酐如 4,4'- (乙炔 -1,2-二基)二酞酸酐 (EBPA) , 可进一步地通过后硬 化来确保光转换层的皮膜强度。 从溶解性的角度考虑, 优选 4,4'-氧双邻苯二甲酸酐 (sODPA)、 3,3',4,4'-二苯酮四酸二酐 (BTDA)、 环丁烷四甲酸二酐 (CBDA)、 4,4'- (六 氟异丙烯)二酞酸酑 (6FDA)。 上述二酸酐可以单独使用或两种以上组合 使用。
Ar2是来自二胺的成分, 所述二胺可分为芳香族二胺和脂肪族二 胺, 芳香族二胺包括只含苯环结构的芳香族二胺、 氟化芳香族二胺、 含酯基的芳香族二胺、 含醚基的芳香族二胺、 含酰胺基的芳香族二胺、 含羰基的芳香族二胺、 含羟基的芳香族二胺、 含羧基的芳香族二胺、 含砜基的芳香族二胺、 含硫基的芳香族二胺等。 只含苯环结构的芳香族二胺包括间苯二胺、对苯二胺、 2,4-二氨基 甲苯、 2,6-二氨基 -3,5-二乙基甲苯、 4,4'-二氨基 -3,3'-二甲基联苯、 9,9- 双 (4-氨基苯基)芴 (FDA)、 9,9-二 (4-氨基 -3-甲苯基)芴、 2,2-双 (4-氨基苯 基)丙烷、 2,2-双 (3-甲基 -4-氨基苯基)丙烷、 4,4'-二氨基 -2,2'-二甲基联苯 (APB); 氟化芳香族二胺包括 2,2'-二 (三氟甲基)二氨基联苯 (TFMB) 、 2,2-双 (4-氨基苯基)六氟丙烷(6FDAM)、 2,2-双 [4-(4-氨基苯氧基)苯基] 六氟丙垸 (HFBAPP ) 、 2,2-双(3-氨基 -4-甲苯基)六氟丙烷等) (BIS-AF-AF )等; 含酯基的芳香族二胺包括 [4- ( 4-氨基苯甲酰基)氧 基苯基 ]-4-氨基苯甲酸酯( ABHQ)、对苯二甲酸二对氨基苯酯(BPTP)、 对氨基苯甲酸对氨基苯酯 (APAB) 等; 含醚基的芳香族二胺包括 2,2- 双 [4-(4-氨基苯氧基)苯基]丙烷) (BAPP)、 2,2'-双 [4-(4-氨基苯氧基苯基)] 丙垸 (ET-BDM) 、 2,7-双 (4-氨基苯氧基) -萘 (ET-2,7-Na) 、 1,3-双 (3-氨基苯氧基)苯 (TPE-M) 、 4,4'-[1,4-苯基双 (氧 )]双 [3- (三氟甲基)苯 胺] (p-6FAPB ) 、 3,4'-二氨基二苯醚、 4,4'-二氨基二苯醚 (ODA)、 1,3- 双 (4-氨基苯氧基)苯 (TPE-R)、 1,4-双 (4-氨基苯氧基)苯 (TPE-Q)、 4,4'-双 (4- 氨基苯氧基)联苯 (BAPB)等; 含酰胺基的芳香族二胺包括 Ν, Ν'-双
( 4-氨基苯基) 苯 -1,4-二甲酰胺 (ΒΡΤΡΑ ) 、 3,4'-二氨基苯酰替苯胺 (m-APABA) 、 4,4'-二氨基苯酰替苯胺 (DABA) 等; 含羰基的芳香 族二胺包括 4,4'-二氨基二苯甲酮(4,4'-DABP)、双 (4-氨基 -3-羧基苯基) 甲垸 (或称为 6,6'-双氨基 -3,3'-甲叉基二苯甲酸) 等; 含羟基的芳香族 二胺包括 3,3'-二羟基联苯胺 (HAB) 、 2,2-双 (3-氨基 -4-羟基苯基)六氟 丙垸 (6FAP) 等; 含羧基的芳香族二胺包括 6,6'-双氨基 -3,3'-甲叉基二 苯甲酸 (MBAA) 、 3,5-二氨基苯甲酸 (DBA) 等; 含砜基的芳香族二 胺包括 3,3'-二氨基二苯砜 (DDS)、 4,4'-二氨基二苯砜、双 [4-(4-氨基苯氧 基)苯基]砜 (BAPS) (或称为 4,4'-双 (4-氨基苯氧基)二苯砜) 、 3,3'-二氨 基 -4,4'-二羟基二苯砜(ABPS) ; 含硫基的芳香族二胺包括 4,4'-二氨基 二苯硫醚。 脂肪族二胺为不含芳香族结构 (如苯环) 的二胺, 脂环族二胺包 括单环脂环式二胺、 直链型脂肪族二胺, 直链型脂肪族二胺包括硅氧 型二胺、 直链烷基二胺、 含醚基的直链脂肪族二胺, 单环脂环式二胺 包括 4,4'-二氨基二环己基甲烷 (PACM)、 3,3-二甲基 -4,4-二氨基二环己 基甲烷 (DMDC); 硅氧型二胺 (或称为氨基改性有机硅) 包括 α, ω-(3- 氨基丙基)聚硅氧垸 (KF8010), X22-161A、 X22-161B, NH15D、 1,3-双 (3-氨基丙基) -1 ,1 ,3,3-四甲基二硅氧垸 (PAME)等; 直链烷基二胺的碳原 子个数为 6〜12, 优选无取代基的直链烷基二胺; 含醚基的直链脂肪族 二胺包括乙二醇二 (3-氨丙基) 醚等。 二胺还可选用含有芴基的二胺, 芴基具有庞大的自由体积和刚性 稠环结构, 能使聚酰亚胺具有良好的耐热、 热氧化稳定性、 机械性能、 光学透明性及在有机溶剂中具有良好的溶解性, 含有芴基的二胺, 比 如 9,9-双 (3,5-二氟 -4-胺基苯基) 芴, 其可由 9-芴酮和 2,6-二氯苯胺反 应得到。 氟化二胺还可选用 1,4-双(3 ' -氨基 -5, -三氟甲基苯氧基)联 苯, 此二胺为具有刚性联苯结构的间位取代含氟二胺, 间位取代结构 可以阻碍沿着分子链方向的电荷流动, 减少分子间共轭作用, 从而减 少可见光对光的吸收, 选用不对称结构的二胺或酸酐在一定程度上会 提髙复合膜的透明性。 上述二胺可以单独使用或者两种以上组合使用。 具有活性氢的二胺的实例包括含羟基的二胺如 3,3'-二氨基 -4,4'-二 羟基联苯、 4,4'-二氨基 -3,3'-二羟基 -1 ,1'-联苯 (或称为 3,3'-二羟基联苯 胺) (HAB)、 2,2-双 (3-氨基 -4-羟基苯基)丙垸 (BAP)、 2,2-双 (3-氨基 -4- 羟基苯基)六氟丙烷 (6FAP)、 1,3-双 (3-羟基 -4-氨基苯氧基)苯、 1,4-双 (3- 羟基 -4-氨基苯基)苯、 3,3'-二氨基 -4,4'-二羟基二苯基砜 (ABPS)可以列 举, 作为具有羧基的二胺如 3,5-二氨基苯甲酸、 双 (4-氨基 -3-羧基苯基) 甲垸 (或称为 6,6'-双氨基 -3,3'-甲叉基二苯甲酸) 、 3,5-双 (4-氨基苯氧 基)苯甲酸, 1,3-双 (4-氨基 -2-羧基苯氧基)苯。具有氨基的二胺,例如 4,4'- 二氨基苯酰替苯胺 (DABA)、 2-(4-氨基苯基) -5-氨基苯并咪唑、 二亚乙 基三胺, 3,3'-二氨基二丙胺、 三亚乙基四胺、 N , Ν'-双 (3-氨基丙基) 乙二胺(或称为 Ν,Ν-二 (3-氨丙基)乙基乙胺)等。 含硫醇基的二胺, 例 如 3,4-二氨基苯硫醇。 上述二胺可以单独使用或者两种以上组合使用。 有机硅改性聚酰亚胺可以通过公知的合成方法合成。 二酸酐和二 胺可以在催化剂存在下通过将它们溶解在有机溶剂中进行酰亚胺化来 制备, 催化剂的实例包括乙酸酐 /三乙胺型, 戊内酯 /吡啶型等, 优选的 是, 酰亚胺化反应中共沸过程产生的水, 使用脱水剂 (如甲苯)促进水的 脱除。 也可以将酸酐与二胺进行平衡反应得到酰胺酸, 然后再经过加热 脱水得到聚酰亚胺。 此外, 也可利用脂环族酸酐与二胺直接加热脱水 的方式来得到溶液化聚酰亚胺, 以此溶液化聚酰亚胺做为胶材材料, 透光性更加更佳, 且本身即为液态, 因此可使其它固态物质 (例如无机 散热粒子与荧光粉)能够更均一地分散在胶材中。 于一实施例, 制备有机硅改性聚酰亚胺时可将二胺与酸酐加热脱 水后得到的聚酰亚胺与硅氧型二胺溶于溶剂中制成有机硅改性聚酰亚 胺。于另一实施例中则是在得到聚酰亚胺前的酰胺酸 (amic-acid)状态下 即与硅氧型二胺进行反应。 此外也可使用酸酐及二胺, 使其脱水闭环并且缩聚的酰亚胺化合 物, 例如分子量比为 1 : 1的酸酐与二胺。于一实施例中使用 200毫摩尔 (mmol)的 4,4'- (六氟异丙烯)二酞酸酐 (6FDA)、 20毫摩尔 (mmol)的 2,2- 双 (3-氨基 -4-羟基苯基)六氟丙烷 (6FAP)、 50毫摩尔 (mmol)的 2,2'-二 (三 氟甲基)二氨基联苯 (TFMB)、 130毫摩尔 (mmol)的氨基丙基封端的聚 (二 甲基硅氧烷), 以得到 PI合成溶液。 通过上述方法可得到端基为氨基的聚酰亚胺化合物, 但亦可使用 以其他方式来制成以羧基为端基的聚酰亚胺化合物。 此外, 上述酸酐 及二胺的反应中, 酸酐主链上含有碳碳三键时, 碳碳三键的结合力可 加强其分子结构; 或是采用含有乙烯基硅氧垸结构的二胺。 二酸酐与二胺的摩尔比为 1 :1。其中含有活泼氢官能团的二胺占整 个二胺的摩尔分数为 5~25 %。合成聚酰亚胺的反应温度优选为 80 250 V , 更优选为 100 200°C, 反应时间可以根据批量的大小调节, 比如 得到 10~30g聚酰亚胺的反应时间为 6〜10小时。 有机硅改性聚酰亚胺包括氟化芳香族有机硅改性聚酰亚胺和脂肪 族有机硅改性聚酰亚胺。 氟化芳香族有机硅改性聚酰亚胺是由硅氧型 二胺、 含有氟 (F) 基团的芳香族二胺 (或称为 F化芳香族二胺) 与含 有氟 (F ) 基团的芳香族二酸酐 (或称为 F化芳香族酸酐) 合成; 脂肪 族有机硅改性聚酰亚胺是由二酸酐、 硅氧型二胺和至少一种不含芳香 族结构 (如苯环) 的二胺 (或称为脂肪族二胺) 合成, 或二胺 (其中 一种二胺为硅氧型二胺) 和至少一种不含芳香族结构 (如苯环) 的二 酸酐 (或称为脂肪族酸酐) 合成。 合成有机硅改性聚酰亚胺所需的原 料与有机硅改性聚酰亚胺的硅氧含量会对基材的透过率、 变色性能、 机械性能、 翘曲程度及折射率均具有一定影响。 本发明的有机硅改性聚酰亚胺的硅氧烷含量为 20— 75wt% , 优选 30-70 wt %, 玻璃化转变温度为 150°C以下。 本发明中硅氧垸的含量为 硅氧型二胺 (结构式如式 (A)所示)与有机硅改性聚酰亚胺的重量比, 有 机硅改性聚酰亚胺的重量为合成有机硅改性聚酰亚胺所用的二胺与二 酸酐重量之和减去合成过程中产生的水的重量。
Figure imgf000012_0001
式 (A)
其中 R选自甲基或苯基; R优选为甲基, 1 为 1~5, 优选 1,2,3,5。 合成有机硅改性聚酰亚胺时所需要的有机溶剂只要能够溶解有机 硅改性聚酰亚胺且确保与要添加的荧光粉或填料具有亲和性 (润湿性) 即可, 但避免产物中残留较多的溶剂, 一般溶剂的摩尔数与二胺和酸 酐生成的水的摩尔数相等,例如 Imol二胺与 Imol酸酐生成的水为 Imol, 则溶剂的用量为 lmol。 此外, 所选用的有机溶剂在标准大气压下的沸 点为 80°C以上且小于 300°C, 更优选为 120°C以上且小于 250°C。 因为 涂布后需要在低温下干燥和固化, 如果温度低于 120°C , 则在涂布工艺 实施的过程中, 可能因为干燥的速度太快而无法很好地涂布。 如果选 用的有机溶剂沸点温度高于 250°C时, 低温下的干燥可能会延迟。 具 体而言, 有机溶剂为醚类有机溶剂、 酯类有机溶剂、 二甲醚类、 酮类 有机溶剂、 醇类有机溶剂、 芳香烃类溶剂或其它。 醚类有机溶剂包括 乙二醇单甲醚、 乙二醇单乙醚、 丙二醇单甲醚、 丙二醇单乙醚、 乙二 醇二甲醚、 乙二醇二乙醚、 乙二醇二丁基醚 (或称为乙二醇二丁醚) 、 二甘醇二甲醚、 二甘醇二乙醚、 二乙二醇甲基乙基醚 (或称为二乙二 醇甲乙醚) 、 二丙二醇二甲醚或二甘醇二丁基醚 (二甘醇二丁醚) 、 二乙二醇丁基甲醚; 酯类有机溶剂包括乙酸酯类, 乙酸酯类包括乙二 醇单乙醚乙酸酯、 二乙二醇单丁醚乙酸酯、 丙二醇单甲醚乙酸酯、 乙 酸丙酯、 丙二醇二乙酸酯、 乙酸丁酯、 乙酸异丁酯、 3-甲氧基丁基乙酸 酯、 3-甲基 -3-甲氧基丁基乙酸酯、 乙酸苄酯或丁基卡必醇乙酸酯, 酯 类溶剂还可为乳酸甲酯、 乳酸乙酯、 丁酯、 苯甲酸甲酯或苯甲酸乙酯; 二甲醚类溶剂包括三甘醇二甲醚或四甘醇二甲醚; 酮类溶剂包括乙酰 丙酮、 甲基丙基酮、 甲基丁基酮、 甲基异丁基酮、 环戊酮、 乙酰丙酮、 甲基丙基酮、 甲基丁基酮、 甲基异丁基酮、 环戊酮或 2-庚酮; 醇类溶 剂包括丁醇、 异丁醇、 戊醇、 4-甲基 -2-戊醇、 3-甲基 -2-丁醇、 3-甲基 -3- 甲氧基丁醇或双丙酮醇; 芳香烃类溶剂包括甲苯或二甲苯; 其它溶剂 包括 γ-丁内酯、 Ν-甲基吡咯烷酮、 Ν, Ν-二甲基甲酰胺、 Ν, Ν-二甲基 乙酰胺或二甲基亚砜。 本发明提供一种有机硅改性聚酰亚胺树脂组合物, 包括上述有机 硅改性聚酰亚胺和热固化剂, 热固化剂为环氧树脂、 异氰酸酯或双恶 唑啉化合物。 在一实施例中, 以有机硅改性聚酰亚胺的重量为基准, 热固化剂的用量为有机硅改性聚酰亚胺的重量的 5~12%。 加入热固化剂可提高耐热性和玻璃化转换温度。 如图 1 所示, A1,A2分别代表加入热固化剂前后的曲线, D1,D2曲线则是分别以微分 计算 A1,A2曲线数值后的值, 代表 A1,A2曲线的变化程度, 从图 1所 示的 TMA ( thermomechanical analysis) 的分析结果来看, 当加入热固 化剂后, 产生受热变形的曲线减缓的趋势。 因此, 可得知加入热固化 剂, 可具有提高其耐热性的效果。 有机硅改性聚酰亚胺与热固化剂进行交联反应时, 热固化剂中具 有能与聚酰亚胺中的活泼氢官能团反应的有机基团即可, 热固化剂的 用量及种类对基材的变色性能、 机械性能及折射率具有一定的影响, 因而可选择一些耐热性、 透过率较佳的热固化剂, 热固化剂的实例包 括环氧树脂、 异氰酸酯、 双马来酰亚胺或双恶唑啉化合物。 环氧树脂 可为双酚 A 型环氧树脂, 例如 BPA, 还可为硅氧型的环氧树脂, 如 KF105、 X22-163 X22-163A, 还可为脂环族环氧树脂, 如 3,4-环氧环 己基甲基 3,4-环氧环己基甲酸酯 (2021P)、 EHPE3150, EHPE3150CE。 通过环氧树脂的架桥反应, 使得有机硅改性聚酰亚胺与环氧树脂之间 形成三维的架桥结构, 提高了胶材本身的结构强度。 一实施例中, 热 固化剂的用量还可根据热固化剂与有机硅改性聚酰亚胺中的活泼氢官 能团反应的摩尔量决定, 于一实施例中, 与热固化剂反应的活泼氢官 能团的摩尔量等于热固化剂的摩尔量, 例如与热固化剂反应的活泼氢 官能团的摩尔量为 lmol, 则热固化剂的摩尔量为 lmol。
BPA的具体信息如表 1所示:
表 1
Figure imgf000014_0001
2021P的具体信息如表 2所示: 制品名 粘度 25 °C 比重 (25/25 熔点 沸点 水分 环氧当量 色相
(mPa.s) 。C ) rc) (°C/4hPa) (%) (g/mol) APHA
202 IP 250 1.17 -20 188 0.01 130 10
EHPE3150、 EHPE3150CE的具体信息如表 3所示:
表 3
Figure imgf000015_0001
PAME、 KF8010 , X22-161A , X22-161B , NH15D , X22-163 , X22-163A, KF-105的具体信息如表 4所示, 表 4中的屈折率又可称为 折射率。 表 4
Figure imgf000015_0002
有机硅改性聚酰亚胺树脂组合物中还可以含有用于获得所需发光 特性的荧光粉, 荧光粉可以将发光半导体发出的光的波长进行变换, 例如黄色荧光粉能将蓝光转换成黄光, 红色荧光粉能够将蓝光转换成 红光。 黄色荧光粉, 例如 (Ba,Sr,Ca)2SiO4:Eu、 (Sr, Ba)2 Si04:Eu (原硅酸 钡(BOS))等透明荧光粉, Y3Al5O12:Ce(YAG(钇 ·铝 ·石榴石):Ce)、 Tb3Al3O12:Ce(YAG (铽 *铝*石榴石): Ce) 等具有硅酸盐结构的硅酸盐型 荧光粉, Ca-a-SiAlON等氮氧化物荧光粉。红色荧光粉包括氮化物荧光 粉, 例如 CaAlSiN3:Eu、 CaSiN2:Eu。 绿色荧光粉, 例如稀土-卤酸盐荧 光粉、 硅酸盐荧光粉等。 荧光体在有机硅改性聚酰亚胺树脂组合物中 的含有比例可以根据所期望的发光特性任意设定, 另有机硅改性聚酰 亚胺树脂组合物作为灯丝基材时, 有机硅改性聚酰亚胺树脂组合物中 荧光粉的含量、 形状、 粒径会对基材的机械性能 (例如弹性模量、 伸 长率、 拉伸强度) 、 翘曲程度及热传导率有一定的影响。 为使基材具 有较优的机械性能、 热传导率及翘曲程度小, 有机硅改性聚酰亚胺树 脂组合物中所含有的荧光粉是颗粒状的, 荧光粉的形状可为球状、 板 状或针状, 优选荧光粉的形状为球状; 荧光粉的最大平均长度 (球状时 的平均粒径)为 Ο.ΐμιη以上,优选为 Ιμιη以上,进一步优选为 1〜100μπι, 更优选为 1〜50μιη; 荧光粉的用量为不小于有机硅改性聚酰亚胺重量的 0.05倍, 优选不小于 0.1倍, 且不大于 8倍, 优选不大于 7倍, 例如有 机硅改性聚酰亚胺的重量为 100重量份, 荧光粉的含量为不小于 5重 量份, 优选不小于 10重量份, 且不大于 800重量份, 优选不大于 700 重量份。 于一实施例中, 同时添加两种荧光粉, 比如同时添加红色荧 光粉、 绿荧光粉时, 红荧光粉与绿荧光粉的添加比为 1 :5~8, 优选红荧 光粉与绿荧光粉的添加比为 1 :6~7。 于另一实施例中, 同时添加两种荧 光粉, 比如同时添加红色荧光粉、 黄色荧光粉时, 红色荧光粉与黄色 荧光粉的添加比为 1 :5〜8, 优选红色荧光粉与黄色荧光粉的添加比为
1:6〜7。 有机硅改性聚酰亚胺树脂组合物中还可以进一步包括散热粒子。 本发明的有机硅改性聚酰亚胺树脂组合物中的散热粒子首选采用透明 粉末, 或是透光度髙的粒子, 或是光反射率高的粒子, 因为 LED软灯 丝主要用以发光, 因此灯丝基材需要具有良好的透光性。 另外, 在混 合两种以上类型的散热粒子的情况下, 可采用透光度高的粒子和透光 度低的粒子组合使用, 并且使透光度高的粒子所占比例大于透光度低 的粒子。 例如在一实施例中, 透光度高的粒子与透光度低的粒子的重 量比为 3~5: 1。 为使基材具有较优的拉伸强度、 弹性模量、 伸长率及热 传导率, 关于散热粒子的粒径, 可以适当选择粒度分布和混合比例, 使得平均粒径在 Ο.ΐμπι至 ΙΟΟμιη的范围内, 优选 Ιμπι至 50μηι的范围 内。 散热粒子的实例包括二氧化硅、 氧化铝、 氧化镁、 碳酸镁、 氮化 铝、 氮化硼或金刚石等, 从分散性考虑, 优选二氧化硅、 氧化铝或其 两者组合使用。 关于散热粒子的颗粒形状, 可以为球状、 块状等, 此 球状包括与球状相似的形状, 一实施例中, 可以采用球状与非球状散 热粒子, 以保证散热粒子的分散性和基材的热传导率, 球状与非球状 散热粒子的含量比为 1 :0.15〜0.35。 关于散热粒子的粒径, 例如采用粒 径分布为 0.1〜100μιη , 平均粒径为 12μπι 的氧化铝或粒度分布为 0.1~20μιη, 平均粒径为 4.1μιη的氧化铝, 此粒度分布为氧化铝的粒径 范围, 一实施例中, 从基材的平滑性考虑, 可以选取平均粒径为基材 厚度的 1/5~2/5 , 优选 1/5〜1/3。散热粒子的用量为有机硅改性聚酰亚胺 重量 (用量) 的 1~12倍, 例如有机硅改性聚酰亚胺为 100重量份, 散 热粒子的含量为 100~1200重量份, 优选 400〜900重量份, 同时添加两 种散热粒子, 例如同时添加二氧化硅、 氧化铝, 氧化铝与二氧化硅的 重量比为 0.4~25:1, 优选 1〜10: 1。 在合成有机硅改性聚酰亚胺树脂组合物时, 可以通过添加偶联剂 (例如硅烷偶联剂) 以提升固态物质 (如荧光粉、 散热粒子) 与胶材 (例如有机硅改性聚酰亚胺) 之间的密着性且提高整体固态物质的分 散均匀度, 进而提高光转换层的散热性以及皮膜强度, 偶联剂还可采 用钛酸酯偶联剂, 优选环氧类钛酸酯偶联剂。 偶联剂的用量与散热粒 子的添加量及其比表面积有关, 偶联剂的用量 = (散热粒子用量 *散热粒 子的比表面积 )/偶联剂最小包覆面积, 例如釆用环氧类钛酸酯偶联剂, 偶联剂的用量 = (散热粒子用量 *散热粒子的比表面积 )/331.5。 在本发明其他具体实施例中, 为了进一步改善有机硅改性聚酰亚 胺树脂组合物在合成工艺中的性质, 可以选择性地在有机硅改性聚酰 亚胺树脂组合物合成工艺的过程中添加消泡剂、 流平剂或粘合剂等添 加剂, 只要其不影响产品的耐光性、 机械强度、 耐热性及变色性即可。 消泡剂用于消除在印刷、 涂布和固化时产生的气泡, 比如使用丙烯酸 类或有机硅类等表面活性剂作为消泡剂。 流平剂用于消除在印刷和涂 布过程中产生的涂膜表面上的凹凸。 具体而言, 优选含有 0.01— 2wt% 的表面活性剂成分, 可以抑制气泡, 可以通过使用如丙烯酸类或有机 硅类的流平剂使涂膜平滑, 优选不含离子杂质的非离子表面活性剂。 粘合剂的实例包括咪唑类化合物、 噻唑类化合物、 三唑类化合物、 有 机铝化合物、 有机钛化合物和硅烷偶联剂。 优选的, 这些添加剂的用 量为不大于有机硅改性聚酰亚胺重量的 10%。 当添加剂的混合量超过 10wt%时, 所得涂膜的物理性质倾向于降低, 并且还会产生由挥发性成 分引起的耐光性劣化的问题。 本发明的有机硅改性聚酰亚胺树脂组合物可以以膜形态或者附在 载体上一起作为基材使用。 膜的形成过程包括三道工序, (a)涂布工序: 将上述有机硅改性聚酰亚胺树脂组合物在剥离体上展开、 涂布形成膜; (b)干燥加热工序:将膜与剥离体一起进行加热千燥以除去膜中的溶剂;
(c)剥离: 干燥完成之后将膜从剥离体上进行剥离得到膜形态的有机硅 改性聚酰亚胺树脂组合物。 上述剥离体可采用离心膜或其它与有机硅 改性聚酰亚胺树脂组合物不发生化学反应的材料, 例如可以采用 PET 离心膜。 有机硅改性聚酰亚胺树脂组合物附在载体上得到组成膜, 组成膜 可作为基材使用, 组成膜的形成过程包括两道工序: (a)涂布工序: 将 上述有机硅改性聚酰亚胺树脂组合物在载体上展开、 涂布形成组成膜; (b)干燥加热工序: 将组成膜进行加热千燥以除去膜中的溶剂。 作为涂布工序中的涂布方式, 可以使用辊涂机、 模涂布机、 刮刀 涂层机等卷对卷方式的涂布装置, 或者印刷法、 喷墨法、 点胶法、 喷 涂法等简便的涂布方式。 上述加热千燥工序对应的千燥方法, 可以选择真空千燥法, 加热 干燥法等。 加热方法可采用电加热器等热源或热媒加热产生热能, 并 使其产生间接对流, 或者使用从热源发出的红外线来加热的热辐射方 式。 上述有机硅改性聚酰亚胺树脂组合物可通过涂布后干燥固化而获 得高导热性膜, 以获得具有以下任一或其组合的特性: 优异的透光性、 耐化学性、 耐热性、 导热性、 膜机械性能和耐光性。 干燥固化工艺所 采用的温度和时间可以根据有机硅改性聚酰亚胺树脂组合物中的溶剂 和涂布的膜厚适当选择, 可根据有机硅改性聚酰亚胺树脂组合物千燥 固化前后的重量变化以及红外谱图上热固化剂官能团的峰值变化来确 定是否干燥固化完全, 例如以环氧树脂作为热固化剂时, 有机硅改性 聚酰亚胺树脂组合物干燥固化前后的重量差值等于所添加溶剂的重量 和干燥固化前后环氧基团峰值的变大或变小来确定是否千燥固化完 全。 于一实施例中, 在氮气气氛下进行酰胺化反应或在合成有机硅改 性聚酰亚胺树脂组合物时采用真空脱泡方法或两种方法均采用, 可使 得有机硅改性聚酰亚胺树脂组合物皮膜或有机硅改性聚酰亚胺树脂组 合物复合膜中泡孔的体积百分比为 5〜20%, 优选 5〜10%。 采用有机硅 改性聚酰亚胺树脂组合物复合膜作为 LED 软灯丝的基材, 基材 420b 具有上表面 420bl及相对的下表面 420b2, 图 2A~2B所示为不同基材 表面的 SEM图, 如图 2A~2B所示, 基材中存在泡孔 4d, 泡孔 4d占基 材 420b的体积含量百分比为 5~20%, 优选 5~10%, 泡孔 4d的横截面 为无规则形状, 如图 3所示为基材 420b的横截面示意图, 图 3中的虚 线为基准线, 基材的上表面 420bl包括第一区域 4a和第二区域 4b, 第 二区域 4b包括泡孔 4d,第一区域 4a的表面粗糙度小于第二区域 4b的 表面粗糙度, LED 芯片发出的光经第二区域的泡孔进行散射, 出光更 加均匀; 基材的下表面 420b2包括第三区域 4c, 第三区域 4c的表面粗 糙度大于第一区域 4a的表面粗糙度,当 LED芯片放置第一区域 4a时, 因第一区域 4a较平整, 因而有利于后续的固定打线, 当 LED芯片放置 在第二区域 4b、 第三区域 4c时, 固晶时固晶胶与基材的接触面积大, 能增加固晶胶与基材的结合强度, 因而, 将 LED 芯片放置在上表面 420bl上, 能同时保证固晶打线及固晶胶与基材的结合强度。采用有机 硅改性聚酰亚胺树脂组合物皮膜或有机硅改性聚酰亚胺树脂组合物复 合膜作为 LED软灯丝基材时, LED芯片发出的光经基材中的气泡进行 散射, 出光更加均匀, 同时能进一步改善眩光现象。 采用真空脱泡方法制备有机硅改性聚酰亚胺树脂组合物时, 真空 脱泡时的真空度为 -0.5~-0.09MPa, 优选 -0.2~-0.09MPa。 制备有机硅改 性聚酰亚胺树脂组合物所用原料重量总和小于等于 250g时, 公转速度 为 1200〜2000rpm,自转速度为 1200~2000rpm,真空脱泡时间为 3~8min。 既能保持膜中保留一定的气泡以增加出光均匀性, 又能保持较佳的力 学性能。 根据制备有机硅改性聚酰亚胺树脂组合物所需原料的总重量 可做适当调整, 一般总重量越高, 真空度可降低、 搅拌时间和搅拌速 度可适当增加。 根据本发明, 可以获得作为 LED软灯丝基材所需的透光率, 耐化 学性, 耐热变色性, 导热性, 膜机械性能和耐光性优异的树脂。 此外, 可以通过诸如印刷法涂布法、 喷墨法或点胶法等的简便涂布方法来形 成高导热性树脂膜。 脂肪族有机硅改性聚酰亚胺树脂组合物包括脂肪族有机硅改性聚 酰亚胺和热固化剂, F化芳香族有机硅改性聚酰亚胺树脂组合物包括 F 化芳香族有机硅改性聚酰亚胺和热固化剂。 因脂肪族有机硅改性聚酰 亚胺具有脂环结构, 所以脂肪族有机硅改性聚酰亚胺树脂组合物皮膜 的透光率较高。 当采用有机硅改性聚酰亚胺树脂组合物复合膜作为灯 丝基材时, 为使基材具有较佳的弯折性能, 复合膜的断裂伸长率应大 于 0.5%, 优选 1~5%, 最优选 1.5〜5%。 灯丝制作时一般先通过固晶胶 将 LED芯片、 电极固定在基层上, 后再用导线对相邻 LED芯片、 LED 芯片与电极之间进行电性连接, 为保证固晶打线质量, 提高产品质量, 复合膜的弹性模量应大于 2.0Gpa, 优选 2~6Gpa, 最优选 4~6Gpa。 此 外 LED芯片发出的光穿越两种物质的界面时, 两种物质的折射率越接 近, 出光效率越高, 为接近与基材 (或基层) 接触的物质 (例如固晶 胶) 的折射率, 因而有机硅改性聚酰亚胺复合膜的折射率为 1.4~1.7, 优选 1.4~1.55。将有机硅改性聚酰亚胺树脂组合物用于灯丝基材, 需有 机硅改性聚酰亚胺树脂组合物在蓝色激发白色 LED的 InGaN的峰值波 长处具有良好的透光率。 为得到良好的透过率, 可以通过改变合成有 机硅改性聚酰亚胺的原料、 热固化剂及散热粒子, 因有机硅改性聚酰 亚胺树脂组合物中的荧光粉会对透过率的测试会有一定影响, 因此用 于测透过率时的有机硅改性聚酰亚胺树脂组合物中不含有荧光粉, 此 有机硅改性聚酰亚胺树脂组合物的透过率为 86~93%, 优选 88~91%或 者优选 89~92%或者优选 90~93%。 有机硅改性聚酰亚胺树脂组合物复合膜作为灯丝基材 (或基层) 时, LED芯片为六面发光体, LED灯丝制作时, LED芯片的至少二面 被顶层包裹, 现有 LED灯丝在点亮时, 会出现顶层与基层色温不均匀 的现象, 或基层会出现颗粒感, 因而作为灯丝基材的复合膜需要具备 优异的透明性。 在其它实施例中, 可在有机硅改性聚酰亚胺的主链上 引入砜基、 非共平面结构、 间位取代二胺等手段以提高有机硅改性聚 酰亚胺树脂组合物的透明性。 此外为使釆用该灯丝的球泡灯实现全周 光发光效果, 作为基材的复合膜需具备一定的柔性, 因此可在有机硅 改性聚酰亚胺的主链中引入醚基 (如 4,4'-4-氨基 -2-三氟甲基苯氧基) 二苯醚) 、 羰基、 亚甲基等柔性结构。 在其它实施例中, 也可选用含 有吡啶环的二胺或二酐, 吡啶环的刚性结构可提高复合膜的机械性能, 同时与强极性基团 (例如 -F) 连用, 可使复合膜具有优异的透光性能, 具有吡啶结构的酸酐如 2,6-双(3',4'-二羧基苯基) -4- ( 3",5"-双三氟甲 基苯基) 吡啶二酐。 如图 4所示, LED灯丝 100包括多个 LED芯片 102、 104、 至少 两个电极 110、 112、 以及光转换层 120, 光转换层 120包括胶 122与 波长转换粒子 124, 胶 122可以用聚酰亚胺 (Polyimide)或前述的有机硅 改性聚酰亚胺 (Polyimide)取代, 以具有更好的韧性, 降低龟裂或脆化机 率, 光转换层 120中的光转换粒子 (可为荧光粉、 染料等任何光转换性 质材料, 以下以荧光粉 124 为例说明)能吸收某些辐射 (如光)而发出光 线。 光转换层 120并可进一步具有无机散热粒子以增加散热能力。 如图 5所示, LED灯丝 400a具有:光转换层 420; LED芯片 402,404; 电极 410,412; 以及用于电连接 LED芯片与 LED芯片 (或电极)的金线 440。光转换层 420涂布于 LED芯片 /电极的至少两侧上。光转换层 420 暴露出电极 410,412的一部分。 光转换层 420可至少具有一顶层 420a 及一基层 420b, 分别作为灯丝的上位层以及下位层, 于此实施例中顶 层 420a及基层 420b分别位于 LED芯片 /电极的两侧。 顶层 420a为至少一层的层状结构。所述层状结构可选自: 可塑形 性高的荧光粉胶、 可塑形性低的荧光粉膜、 透明层或是此三者的任意 层状组合。所述荧光粉胶 /荧光粉膜包含以下成分:胶 422、荧光粉 424、 无机氧化物纳米粒子 426。胶 422可为但不限定为硅胶。于一实施例中, 胶 422中可包含 10%Wt或更低的聚酰亚胺 (Polyimide, 以下简称 PI), 以增加灯丝整体的硬度、 绝缘性、 热稳定性以及机械强度, PI 固含量 可为 5-40°/oWt, 旋转黏度可为 5-20 Pa.S。 无机氧化纳米粒子 426可为 但不限定为氧化铝、 氮化铝粒子, 颗粒的粒径可为 100-600 纳米或是 0.1至 100微米, 其作用为促进灯丝的散热, 掺入的无机散热粒子可具 有多种尺寸的粒径。 又如荧光粉膜与荧光粉胶的胶可视需要调整为大 于 20%、 50%, 或 70%。 荧光粉胶的邵氏硬度可为 D40-70; 荧光粉胶 的厚度可为 0.2-1.5公厘; 而荧光粉膜的邵氏硬度可为 D20-70。 荧光粉 膜的厚度可为 0.1-0.5公厘; 折射率为 1.4或更高; 透光率为 40%-95%。 透明层 (胶层、 绝缘层)可由高透光树脂例如硅胶、 PI或其组合而构成。 于一实施例中, 透明层可为作为折射率匹配层, 具有调整灯丝出光效 率的作用。 基层 420b为至少一层的层状结构, 所述层状结构可选自: 可塑形 性高的荧光粉胶、 可塑形性低的荧光粉膜、 透明层或是此三者的任意 层状组合; 所述荧光粉胶 /荧光粉膜包含以下成分: 有机硅改性聚酰亚 胺 422' 、 荧光粉 424' 、 无机氧化物纳米粒子 426 ' 。 于一实施例中, 有机硅改性聚酰亚胺可用上述所述的有机硅改性聚酰亚胺树脂组合物 替代。 无机氧化纳米粒子 426 可为但不限定为氧化铝、 氮化铝粒子, 颗粒的粒径可为 100-600纳米或是 0.1至 100微米, 其作用为促进灯丝 整体的散热性,掺入的无机散热粒子可具有多种尺寸的粒径。透明层 (胶 层、 绝缘层)可由高透光树脂例如硅胶、 有机硅聚酰亚胺或其组合而构 成。 于一实施例中, 透明层可为作为折射率匹配层, 具有调整灯丝出 光效率的作用。 于一实施例中, 基层可采用 PI或上述所述的有机硅改 性聚酰亚胺树脂组合物复合膜。 如图 6所示, LED球泡灯 10c包括灯壳 12、 连接灯壳 12的灯头 16、 设于灯壳 12内的至少二导电支架 14a、 14b、 驱动电路 18、 悬臂
15、 芯柱 19、 及单根 LED灯丝 100。 导电支架 14a、 14b用以电性连 接 LED灯丝 100的两个电极 110、 112, 亦可用于支撑 LED灯丝 100 的重量; LED灯丝 100经由导电支架 14a、 14b连接芯柱 19, 芯柱 19 可用来抽换 LED球泡灯 10b中的气体并提供导热的功能;芯柱 19另具 有一垂直延伸至灯壳 12中心的立杆 19a,每一悬臂 15的一第一端连接 至该立杆 19a, 而每一悬臂 15的一第二端连接至该 LED灯丝; 驱动电 路 18为电性连接该导电支架 14a、 14b与灯头 16, 灯头 16接于传统 的球泡灯的灯座时, 灯座为提供灯头 16电源, 驱动电路 18为从灯头 16取得电源后用以驱动该 LED灯丝 100发光。 由于该 LED灯丝 100 能全周面的发光, 因此, 整个 LED球泡灯即能产生全周光。 LED灯丝 100可为图 4~图 5所述的任意一条 LED灯丝。 此处所述的全周光的定义, 视各个国家对特定灯泡的规范而定, 此定义亦会随着时间而变动, 因此, 本揭露所述的全周光的举例, 并 非用以限缩本发明的范围。 全周光的定义, 例如美国能源之星计划 (US
Energy Star Program Requirements for Lamps (Light Bulbs))对球泡 '灯 (全 周光灯泡)的光形即有相对应定义, 以基座在上, 灯泡朝下方式配置球 泡灯时, 铅垂上面为 180度, 铅垂下方为 0度, 其要求在 0-135度之间 各角位的亮度 (luminous intensity (cd))不应与平均亮度有超过 25%的差 异, 而在 135至 180度之间的总光通量 (total flux (lm))至少要占整灯的
5%。 再例如, 日本的 JEL 801规范对 LED灯要求在 120度范围的区间 内, 其光通量需小于总光通量的 70%。 下面实施例是对本发明进一步详细描述, 但不是限制本发明的范 围。 实施例 1 有机硅改性聚酰亚胺 A-l(硅氧烷含量为 41%)的制备 在装有搅拌器和 Deans Stark分水器的反应容器中, 将 62.04g(200 ol)4,4'-氧双邻苯二甲酸酐 (sODPA 32.84g(80 mmol)2,2-双 [4-(4-氨 基苯氧基)苯基]丙烷 (BAPP 67.2g(80 mmol)a, ω— (3—氨基丙基)聚硅 氧烷 (KF8010 8.64g(40 mmol)3,3'-二氨基 -4,4'-二羟基联苯、 0.5g吡啶、 300gY-丁内酯 (GBL)和 30g甲苯加入反应容器中。在氮气气氛下以 20rpm 的转速搅拌 30min后, 升温至 180°C, 再以 180rpm的转速搅拌 4h。 在 反应过程中, 甲苯-水的共沸部分被除去。 通过去除回流物, 获得了固 含量为 35 %的有机硅改性聚酰亚胺。 实施例 2 有机硅改性聚酰亚胺 A-2(硅氧烷含量为 64%)的制备 使用与实施例 1相同的反应容器, 将 62.04g(200 mmol)sODPA、 8.21g(20 mmol)2,2-双 [4-(4-氨基苯氧基)苯基]丙烷 (BAPP 126g(150 mmol)a, ω— (3—氨基丙基)聚硅氧垸 (KF8010 6.48g(30 mmol)3,3'-二 氨基 _4,4'-二羟基联苯、 0.5g吡啶、 350gY-丁内酯 (GBL)和 30g甲苯加入 反应容器中。在氮气气氛下以 20rpm的转速搅拌 30min后,升温至 180 V, 以 ISOrpm的转速搅拌 4h。 在反应过程中, 甲苯-水的共沸部分被 除去。通过去除回流物, 获得了固含量为 37%的有机硅改性聚酰亚胺。 实施例 3 有机硅改性聚酰亚胺 A-3(硅氧垸含量为 73%)的制备 使用与实施例 1相同的反应容器, 将 62.04g(200 mmol)sODPA, 2.05g(5 mmol)2,2-双 [4-(4-氨基苯氧基)苯基]丙烷 (BAPP)、 171.6g(165 mmol)NH15D (氨基改性有机硅)、 6.48g(30mmol)3,3'-二氨基 -4,4'-二羟基 联苯、 0.5g B比啶、 350gY-丁内酯 (GBL)和 30g甲苯加入反应容器中。 在 氮气气氛下以 20rpm的转速搅拌 30min后, 升温至 180°C, 以 180rpm 的转速搅拌 4h。 在反应过程中, 甲苯-水的共沸部分被除去。 通过去除 回流物, 获得了固含量为 40%的有机硅改性聚酰亚胺。 实施例 4有机硅改性聚酰亚胺 A-4(硅氧烷含量为 37%)的制备 使用与实施例 1相同的反应容器, 将 62.04g(200 mmol)sODPA、 36.84g(90 mmol)PACM、 58.8g(70 mmol)KF8010(氨基改性有机硅)、 9.08g(40 mmol)4,4'-二氨基苯酰替苯胺 (DABA)、 0.5g吡啶、 300gY-丁内 酯 (GBL)和 30g的甲苯。 在氮气气氛下以 20rpm的转速搅拌 30min后, 升温至 180°C, 以 180rpm的转速搅拌 4h。 在反应过程中, 甲苯 -水的 共沸部分被除去。 通过去除回流物, 获得了固含量为 44%的有机硅改 性聚酰亚胺。 实施例 5有机硅改性聚酰亚胺 A-5(硅氧烷含量为 45%)的制备 使用与实施例 1相同的反应容器, 将 39.26g(200 mmol)环丁垸四 甲酸二酐 (CBDA)、 34.26g(80 mmol)4,4'-[l,4-苯基双 (氧) ]双[3- (三氟甲基) 苯胺] (6FAPB)、 67.2g(80 mmol)KF8010、 14.66g(40 mmol)2,2-双 (3-氨基 -4-羟基苯基)六氟丙烷 (6FAP)、 0.5g 吡啶、 300gY-丁内酯 (GBL)和 30g 甲苯加入反应容器中。 在氮气气氛下以 20rpm的转速搅拌 30min后, 升温至 180°C, 以 ISOrpm的转速搅拌 4h。 在反应过程中, 甲苯 -水的 共沸部分被除去。 通过去除回流物, 获得了固含量为 45%的有机硅改 性聚酰亚胺。 实施例 6有机硅改性聚酰亚胺 A-6(硅氧烷含量为 44%)的制备 使用与实施例 1相同的反应容器, 将 62.04g(200 mmol)sODPA、
16.82g(80 mmol)4,4'-二氨基二环己基甲垸(PACM)、 67.2g(80 mmol)KF8010> 14.66g(40 mmol)2,2-双 (3-氨基 -4-羟基苯基)六氟丙垸 (6FAP)、 0.5g吡啶、 300gY-丁内酯 (GBL)和 30g甲苯加入反应容器中。 在氮气气氛下以 20rpm的转速搅拌 30min后,升温至 180°C,以 180rpm 的转速搅拌 4h。 在反应过程中, 甲苯 -水的共沸部分被除去。 通过去 除回流物, 获得了固含量为 35 %的有机硅改性聚酰亚胺。 实施例 7有机硅改性聚酰亚胺 A-7(硅氧烷含量为 47%)的制备 使用与实施例 1相同的反应容器, 将 19.62g(100 mmol)环丁烷四 甲酸二酐 (CBDA)、 31.0g(100 mmol)sODPA、 16.82g(80 mmol)PACM 、
67.2g(80 mmol)KF8010、 14.66g(40 mmol)4,4'-二氨基苯酰替苯胺 (DABA) 、 0.5g吡啶、 300gY-丁内酯 (GBL)和 30g甲苯加入反应容器 中。 在氮气气氛下以 20rpm的转速搅拌 30min后, 升温至 180°C, 以 ISOipm的转速搅拌 4h。 在反应过程中, 甲苯 -水的共沸部分被除去。 通过去除回流物, 获得了固含量为 33 %的有机硅改性聚酰亚胺。 实施例 8有机硅改性聚酰亚胺 A-8(硅氧烷含量为 44%)的制备 使用与实施例 1相同的反应容器, 将 88.86g(200 mmol)4,4'- (六氟 异丙烯)二酞酸酐 (6FDA)、 21.42g(50 mmol)4,4'-[l,4-笨基双 (氧) ]双[3- (三 氟甲基)苯胺] (6FAPB)、 92.4g(110 mmol)KF8010、 14.66g(40 mmol)2,2- 双 (3-氨基 -4-羟基苯基)六氟丙烷 (6FAP)、 0.5g吡啶、 300gY-丁内酯 (GBL) 和 30g甲苯加入反应容器中。在氮气气氛下以 20rpm的转速搅拌 30min 后, 升温至 180°C, 以 180rpm的转速搅拌 4h。 在反应过程中, 甲苯 - 水的共沸部分被除去。 通过去除回流物, 获得了固含量为 34%的有机 硅改性聚酰亚胺。 实施例 9 有机硅改性聚酰亚胺 A-9(硅氧垸含量为 76%)的制备 使用与实施例 1相同的反应容器, 将 62.04g(200 mmol)sODPA、 0.82g(2 mmol)2,2-双 [4-(4-氨基苯氧基)苯基]丙烷 (BAPP)、 185.12g(178 mmol)NH15D (氨基改性有机硅)、4.32g(20 mmol)3,3'-二氨基 -4,4'-二羟基 联苯、 0.5g吡啶、 3508γ-丁内酯 (GBL)和 30g甲苯加入反应容器中。 在 氮气气氛下以 20rpm的转速搅拌 30mmin后,升温至 180Ό , 以 180rpm 的转速搅拌 4h。 在反应过程中, 甲苯-水的共沸部分被除去。 通过去除 回流物, 获得了固含量为 41 %的有机硅改性聚酰亚胺。 实施例 10 有机硅改性聚酰亚胺 A-10(硅氧烷含量为 29%)的制备 使用与实施例 1 相同的反应容器。 反应容器, 将 62.04g(200 mmol)sODPA、 39.38g(110 mmol)2,2-双 [4-(4-氨基苯氧基)苯基]丙垸 (BAPP)、 42.0g(50 mmol)KF8010、 8.64g(40 mmol)3,3'-二氨基 -4,4'-二羟 基联苯、 0.5g吡啶、 300gY-丁内酯 (GBL)和 30g甲苯加入反应容器中。 在氮气气氛下以 20rpm的转速搅拌 30min后,升温至 180Ό ,以 180rpm 的转速搅拌 4h。 在反应过程中, 甲苯 -水的共沸部分被除去。 通过去 除回流物, 获得了固含量为 33 %的有机硅改性聚酰亚胺。 比较例 1 有机硅改性聚酰亚胺树脂组合物皮膜的制备
将实施例 1 所得的有机硅改性聚酰亚胺使用间隙为 300 μ ιη的刮 刀将有机硅改性聚酰亚胺树脂组合物在剥离体上展开、 涂布形成膜, 之后将膜在 100Ό下千燥 30min,以除去残留溶剂,然后将温度调至 160 °C , 继续干燥 90min, 以引起固化反应。 千燥完成后, 将其从剥离体上 剥离, 得到有机硅改性亚胺树脂组合物皮膜。 实施例 11有机硅改性聚酰亚胺树脂组合物皮膜的制备
将实施例 1〜10 所得的有机硅改性聚酰亚胺分别与环氧树脂混合 后进行真空脱泡得到有机硅改性聚酰亚胺树脂组合物, 脱泡方法的参 数为:真空度为 -0.095MPa,公转速度为 1500rpm,自转速度为 1500rpm; 真空脱泡时间为 3min。 使用间隙为 300 μ ηι的刮刀将有机硅改性聚酰 亚胺树脂组合物在剥离体上展开、涂布形成膜, 之后将膜在 100Ό下千 燥 30miii, 以除去残留溶剂, 然后将温度调至 160'C, 继续千燥 90min, 以引起固化反应。 干燥完成后, 将其从剥离体上剥离, 得到有机硅改 性亚胺树脂组合物皮膜。 实施例 12 有机硅改聚酰性亚胺树脂组合物复合膜的制备 将实施例 1~10所得的有机硅改性聚酰亚胺分别与环氧树脂、荧光 粉、 粒径分布为 0.2〜30 μ πι, 平均粒径为 9.6 μ πι的氧化铝混合。 以有 机硅改性聚酰亚胺为基准, 荧光粉的含量比为 240% (即有机硅改性聚 酰亚胺重量的 2.4倍) , 其中 (Ba,Sr,Ca)2Si04:Eu与 CaAlSiN3:Eu的添 加比例为 7:1。 以有机硅改性聚酰亚胺的重量为基准, 氧化铝的含量比 分比为 560%(560PHR) (即有机硅改性聚酰亚胺重量的 5.6倍) , 然 后采用实施例 11所述的方法制备得到复合膜。 实施例 13 有机硅改性聚酰亚胺 A-l l(硅氧垸含量为 44%)的制备 使用与实施例 1相同的反应容器,将 100 mmoll,2,4,5-环己垸四甲 酸二酐 (HPMDA) 、 40 mmol 4,4'-[1,4-苯基双 (氧) ]双[3- (三氟甲基)苯 胺] ( 6FAPB)、 40 mmolKF8010、 20 mmol 2,2-双( 3-氨基 -4-羟基苯基) 六氟丙烷(6FAP)、 0.25g吡啶、 100g Y -丁内酯 (GBL)和 45g苯甲酸甲 酯加入反应容器中。在氮气气氛下以 20rpm的转速搅拌 30mmin后,升 温至 185Ό , 以 170rpm的转速搅拌 4h。 在反应过程中, 苯甲酸甲酯- 水的共沸部分被除去。 通过去除回流物, 获得了固含量为 35%的有机 硅改性聚酰亚胺。 实施例 14 有机硅改性聚酰亚胺 A-12(硅氧垸含量为 42%)的制备 使用与实施例 1相同的反应容器, 将 100 mmol HPMDA、 40mmol HFBAPP、 40 mmol KF8010、 20 mmol 6FAP、 0.25g吡啶、 350g y -丁内 酯 (GBL)和 45g苯甲酸甲酯加入反应容器中。在氮气气氛下以 20rpm的 转速搅拌 30mmin后, 升温至 170°C, 以 185rpm的转速搅拌 4h。 在反 应过程中, 苯甲酸甲酯-水的共沸部分被除去。 通过去除回流物, 获得 了固含量为 36%的有机硅改性聚酰亚胺。 实施例 15 有机硅改性聚酰亚胺 A-13(硅氧烷含量为 50%)的制备 使用与实施例 1相同的反应容器, 将 100 mmol HPMDA、 40mmol
PACM、 40 mmol KF8010 20 mmol 6FAP、 0.25g U比啶、 350g Y -丁内酉旨 (GBL)和 45g苯甲酸甲酯加入反应容器中。在氮气气氛下以 20rpm的转 速搅拌 30mmin后, 升温至 170°C , 以 185rpm的转速搅拌 4h。 在反应 过程中, 苯甲酸甲酯-水的共沸部分被除去。 通过去除回流物, 获得了 固含量为 32%的有机硅改性聚酰亚胺。 实施例 16 有机硅改性聚酰亚胺 A-14(硅氧烷含量为 51%)的制备 使用与实施例 1相同的反应容器,将 100 mmol HPMDA、 40 mmol
PACM、 40 mmol KF8010、 20 mmolABPS、 0.25g吡啶、 350g Y -丁内酯 (GBL)和 45g苯甲酸甲酯加入反应容器中。在氮气气氛下以 20rpm的转 速搅拌 30mmin后, 升温至 170Ό, 以 185rpm的转速搅拌 3.5h。 在反 应过程中, 苯甲酸甲酯-水的共沸部分被除去。 通过去除回流物, 获得 了固含量为 32%的有机硅改性聚酰亚胺。 实施例 17 有机硅改性聚酰亚胺 A-15(硅氧垸含量为 51%)的制备 使用与实施例 1相同的反应容器,将 100 mmol HPMDA、 40 mmol PACM、 40 mmol KF8010 20 mmol DAB A、 0.25g吡啶、 350g y -丁内 酯 (GBL)和 45g苯甲酸甲酯加入反应容器中。在氮气气氛下以 20rpm的 转速搅拌 30mmin后, 升温至 170°C, 以 185rpm的转速搅拌 4h。 在反 应过程中, 苯甲酸甲酯-水的共沸部分被除去。 通过去除回流物, 获得 了固含量为 31 %的有机硅改性聚酰亚胺。 实施例 18 有机硅改性聚酰亚胺 A-16(硅氧垸含量为 40%)的制备 使用与实施例 1相同的反应容器, 将 50 mmol HPMDA、 50 mmol 6FDA、 40 mmol PACM、 40 mmol KF8010、 20 mmol 6FAP、 0.25g吡啶、 350g y -丁内酯 (GBL)和 45g苯甲酸甲酯加入反应容器中。 在氮气气氛 下以 20rpm的转速搅拌 30mmin后, 升温至 170°C, 以 185rpm的转速 搅拌 4h。 在反应过程中, 苯甲酸甲酯-水的共沸部分被除去。 通过去除 回流物, 获得了固含量为 35 %的有机硅改性聚酰亚胺。 实施例 19 有机硅改性聚酰亚胺 A-17(硅氧烷含量为 44%)的制备 使用与实施例 1相同的反应容器, 将 200 mmol 6FDA、 50 mmol
6FABP、 110 mmol KF8010、 40 mmol 6FAP、 0.5g吡啶、 40g Y -丁内酉旨
(GBL)和 30g甲苯加入反应容器中。在氮气气氛下以 20rpm的转速搅拌 30mmin后, 升温至 180°C, 以 180rpm的转速搅拌 4h。 在反应过程中, 甲苯-水的共沸部分被除去。 通过去除回流物, 获得了固含量为 34%的 有机硅改性聚酰亚胺。 实施例 20 有机硅改性聚酰亚胺 A-18(硅氧烷含量为 44%)的制备 使用与实施例 1相同的反应容器, 将 200 mmol 6FDA、 50 mmol
6FABP、 110 mmol KF8010、 40 mmol 6FAP、 0.5g卩比啶、 40g Y -丁内酉旨 (GBL)和 30g甲苯加入反应容器中。在氮气气氛下以 20rpm的转速搅拌 30mmin后, 升温至 180°C, 以 180rpm的转速搅拌 4h。 在反应过程中, 甲苯-水的共沸部分被除去。 通过去除回流物, 获得了固含量为 34%的 有机硅改性聚酰亚胺。 实施例 21有机硅改性聚酰亚胺 A-19(硅氧烷含量为 70%)的制备 使用与实施例 1相同的反应容器, 将 50 mmol 6FDA、 50 mmol sBPDA、 5 mmol TFMB, 85 mmol NH15D、 10 mmol 6FAP、 0.5g卩比啶、 50g 苯甲酸甲酯和 150g Y -丁内酯 (GBL)加入反应容器中。 在氮气气氛 下以 20rpm的转速搅拌 30mmin后, 升温至 180°C, 以 I SOrpm的转速 搅拌 4h。在反应过程中, 甲苯-水的共沸部分被除去。通过去除回流物, 获得了固含量为 39 %的有机硅改性聚酰亚胺。 实施例 22有机硅改性聚酰亚胺 A-20(硅氧垸含量为 48%)的制备 使用与实施例 1相同的反应容器, 将 100 mmol DSDA、 25 mmol p-6FAPB、 55 mmol NH15D> 20 mmol 6FAP、 0.5g卩比卩定、 43.5g二乙二 醇丁基甲醚和 101.5g Y -丁内酯 (GBL)加入反应容器中。 在氮气气氛下 以 20rpm的转速搅拌 30mmin后, 升温至 180°C, 以 180rpm的转速搅 拌 4h。 在反应过程中, 甲苯-水的共沸部分被除去。 通过去除回流物, 获得了固含量为 40 %的有机硅改性聚酰亚胺。 实施例 23 有机硅改性聚酰亚胺 A-21(硅氧垸含量为 69%)的制备 使用与实施例 1相同的反应容器, 将 100 mmol CBDA、 5 mmol PACM、 60 mmol NH15D、 35 mmol 6FAP、 0.5g吡啶、 lOlg Y -丁内酯
(GBL)和 43g 二乙二醇丁基甲醚加入反应容器中。 在氮气气氛下以 20rpm的转速搅拌 30mmin后, 升温至 180°C, 以 180rpm的转速搅拌 4hc 在反应过程中, 甲苯-水的共沸部分被除去。 通过去除回流物, 获 得了固含量为 40%的有机硅改性聚酰亚胺。 实施例 24有机硅改性聚酰亚胺树脂组合物皮膜的制备
将实施例 13〜20所得的有机硅改性聚酰亚胺分别与环氧树脂混合 后进行真空脱泡得到有机硅改性聚酰亚胺树脂组合物, 脱泡方法的参 数为:真空度为 -0.095MPa,公转速度为 1500rpm,自转速度为 1500rpm; 真空脱泡时间为 3min。 使用间隙为 300 μ ιη的刮刀将有机硅改性聚酰 亚胺树脂组合物在剥离体上展开、涂布形成膜, 之后将膜在 100'C下千 燥 30min, 以除去残留溶剂, 然后将温度调至 160°C, 继续干燥 90min, 以引起固化反应。 干燥完成后, 将其从剥离体上剥离, 得到有机硅改 性亚胺树脂组合物皮膜。 实施例 25有机硅改聚酰性亚胺树脂组合物复合膜的制备 将实施例 1〜18、 21-22所得的有机硅改性聚酰亚胺分别与环氧树 脂、 荧光粉、 粒径分布为 0.2〜30 μ πι, 平均粒径为 9.6 μ ιη的氧化铝混 合。 以有机硅改性聚酰亚胺为基准, 荧光粉的含量比为 240% (即有机 硅改性聚酰亚胺重量的 2.4 倍) , 其中(Ba,Sr,Ca)2SiO4:Eu 与 CaAlSiN3:Eu的添加比例为 7:1。以有机硅改性聚酰亚胺的重量为基准, 氧化铝的含量比分比为 560%(560PHR) (即有机硅改性聚酰亚胺重量 的 5.6倍) , 然后采用实施例 24所述的方法制备得到复合膜。 实施例 26有机硅改聚酰性亚胺树脂组合物复合膜的制备
将实施例 19所得的有机硅改性聚酰亚胺分别与环氧树脂、粒径分 布为 0.2〜30 μ ιη, 平均粒径为 9.6 μ m的氧化铝、 荧光粉混合。 以有机 硅改性聚酰亚胺为基准, 荧光粉的含量比为 240% (即有机硅改性聚酰 亚胺重量的 2.4倍) , 其中 (Ba,Sr,Ca)2Si04:Eu与 CaAlSiN3:Eu的添加 比例为 7:1。 以有机硅改性聚酰亚胺的重量为基准, 氧化铝的含量比分 比为 760%(760PHR) (即有机硅改性聚酰亚胺重量的 7.6倍) , 然后 采用实施例 24所述的方法制备得到复合膜。 实施例 27有机硅改聚酰性亚胺树脂组合物复合膜的制备
将实施例 20所得的有机硅改性聚酰亚胺分别与环氧树脂、粒径分 布为 0.2〜30 m, 平均粒径为 9.6 μ ιη的氧化铝、 荧光粉混合。 以有机 硅改性聚酰亚胺为基准, 荧光粉的含量比为 240% (即有机硅改性聚酰 亚胺重量的 2.4倍) , 其中 (Ba,Sr,Ca)2Si04:Eu与 CaAlSiN3:Eu的添加 比例为 7:1。 以有机硅改性聚酰亚胺的重量为基准, 氧化铝的含量比分 比为 960%(960PHR) (即有机硅改性聚酰亚胺重量的 9.6倍) , 然后 采用实施例 24所述的方法制备得到复合膜。 实施例 28有机硅改聚酰性亚胺树脂组合物复合膜的制备 将实施例 23所得的有机硅改性聚酰亚胺分别与环氧树脂、散热粒 子、 荧光粉混合, 散热粒子包括氧化铝和二氧化硅, 氧化铝的粒径分 布为 0.2〜30 μ ηι, 平均粒径为 9.6 μ πι; 二氧化硅的平均粒径为 2 μ m。 以有机硅改性聚酰亚胺为基准, 荧光粉的含量比为 600% (即有机硅改 性聚酰亚胺重量的 6.0倍) , 其中 (Ba,Sr,Ca)2Si04:Eu与 CaAlSiN3:Eu 的添加比例为 6: 1。 以有机硅改性聚酰亚胺的重量为基准, 散热粒子的 含量比分比为 400%(400PHR) (即有机硅改性聚酰亚胺重量的 4.0倍), 其中氧化铝与二氧化硅的添加比例为 1: 1, 然后采用实施例 24所述的 方法制备得到复合膜。 有机硅改性聚酰亚胺树脂组合物皮膜 (膜厚为 50μπι)性能测试 1.耐热性: 使用株式会社岛津制作所制 ΤΜΑ-60 测定玻璃转变温 度 (Tg)。 测试条件: 负荷: 5克; 升温速度: 10°C/ min; ; 测量气氛: 氮气氛; 氮气流速: 20毫升 /分钟; 测量温度范围: -40至 300° C。
2.耐化学品性: 室温条件 (25Ό)下, 将浸渍有各种化学品的棉放置 在涂膜上静置 30 分钟。 评估的化学品是乙醇、 丙酮、 二甲基甲酰胺
(DMF)。 评估结果的形式为: o : 无异常; Δ: 膨胀和轻微变形; X: 表 面异常或溶解。
3.透光性 (透过率):用岛津紫外可见分光光度计 UV-1800进行对其 进行透光性测试。它根据白色 LED的发光,在波长为 460nm的透过率,
460nm是用于蓝色激发白色 LED的 InGaN的峰值波长。
4.耐热变色性: 测试所用膜与透光性测试所用膜相同, 将膜在 200 °C (空气气氛下)放置 24小时, 测定放置后的膜在波长为 460nm处的透 过率。
5.机械性能: 膜宽为 10mm, 采用 IS0527-3:1995标准进行膜的拉 伸性能测试, 拉伸速度为 10mm/min。 有机硅改性亚胺树脂组合物复合膜性能测试
1.热传导性: 将所得的膜切成膜厚为 300um, 直径为 30mm的圆 作为试验片, 通过湘科制作的热导率测量装置 DRL-III测量导热率, 测 试条件: 热极温度: 90Ό ; 冷极温度: 20Ό ; 负载: 350N。 2.翘曲现象: 将厚度为 100um、 长宽均为 100mm的膜放入 160°C 恒温箱中放置 5 分钟, 从恒温箱中取出, 在室温下膜边缘会出现翘曲 现象, 翘曲高度在 1mm以下为合格 0, lmm〜5mm为待定△, 5mm以 上为不合格 x。
3.扫描电子显微镜 (SEM) 分析: 在复合膜表面喷金, 在 Tescan 公司的 Vega3电镜下观察复合膜的表面形态。
4.机械性能: 膜厚为 50 m、 膜宽为 10mm, 釆用 IS0527-3: 1995 标准进行膜的拉伸性能测试, 拉伸速度为 10mm/min。 所得有机硅改性聚酰亚胺树脂组合物皮膜的测试结果如表 5、表 7 所示, 有机硅改性聚酰亚胺树脂组合物复合膜的性能测试结果如表 6、 表 8所示
Figure imgf000034_0001
表 6
Figure imgf000035_0001
表 7
Figure imgf000035_0002
表 8
Figure imgf000036_0001
本发明在上文中已以较佳实施例揭露, 然熟悉本项技术者应理解 的是, 该实施例仅用于描绘本发明的其中一些实施方式, 而不应解读 为限制。 应注意的是, 举凡与该实施例等效的变化 ^置换或实施例之 间的合理组合, 均应设为涵盖于本发明说明书支持的范畴内。 因此, 本发明的保护范围当以所附的权利要求书所界定的范围为准。

Claims

1. 一种有机硅改性聚酰亚胺, 其中所述有机硅改性聚酰亚胺含有 下述通式 ( I ) 所表示的重复单元:
Figure imgf000037_0001
通式 ( I ) 中, Ar1为具有苯环或脂环式烃结构的 4价有机基团: Ar2为 2价有机基团, R分别独立地选自甲基或苯基, n为 1~5;
所述热固化剂为环氧树脂、 异氰酸酯或双噁唑啉化合物。
2. 根据权利要求
所述 Ar1为具有含有活泼氢官能团的苯环结构或脂环式烃结构的 4价有 机基团, 所述活泼氢官能团为羟基、 氮基、 羧基或硫醇基中的任意一 种。
3. 根据权利要求 2所述的一种有机硅改性聚酰亚胺,其特征在于, 所述 Ar1来自二酸酐。
4. 根据权利要求 1所述的一种有机硅改性聚酰亚胺,其特征在于, 所述 Ar2为含有活泼氢官能团的 2价有机基团,所述活泼氢官能团为 基、 氨基、 羧基或硫醇基中的任意一种。
5. 根据权利要求 4所述的一种有机硅改性聚酰亚胺,其特征在于, 所述 Ar2来自二胺。
6. 根据权利要求 5所述的一种有机硅改性聚酰亚胺,其特征在于, 二胺中含有活泼氢官能团的二胺占所述二胺的摩尔分数为 5〜25%。
7. 根据权利要求 1所述的一种有机硅改性聚酰亚胺,其特征在于, 所述有机硅改性聚酰亚胺的硅氧烷含量为 20 75wt%。
8. 根据权利要求 7所述的一种有机硅改性聚酰亚胺,其特征在于, 所述有机硅改性聚酰亚胺的硅氧烷含量为 30~70wt%, 玻璃化转变温度 小于 150°C。
9. 根据权利要求 1所述的一种有机硅改性聚酰亚胺,其特征在于, 所述有机硅改性聚酰亚胺的数均分子量为 5000~100000。
10. 一种灯丝基材, 由有机硅改性聚酰亚胺树脂组合物涂布千燥 后形成, 所述组合物包括权利要求 1~9任一项所述的有机硅改性聚酰 亚胺、 热固化剂、 荧光粉及散热粒子, 所述热固化剂为环氧树脂、 异 氰酸酯或双噁唑啉化合物。
1 1. 根据权利要求 10所述的一种灯丝基材, 其特征在于, 所述荧 光粉与所述有机硅改性聚酰亚胺的用量比为 0.05〜8:1。
12. 根据权利要求 11所述的一种灯丝基材, 其特征在于, 所述荧 光粉与所述有机硅改性聚酰亚胺的用量比为 1~7: 1。
13. 根据权利要求 11或 12所述的一种灯丝基材, 其特征在于, 所述荧光粉为红色荧光粉、 蓝色荧光粉、 绿色荧光粉中一种或多种。
14. 根据权利要求 13所述的一种灯丝基材, 其特征在于, 所述荧 光粉的形状为球状、 板状或针状。
15. 根据权利要求 14所述的一种灯丝基材, 其特征在于, 所述荧 光粉的平均粒径为 l~100 u m。
16. 根据权利要求 15所述的一种灯丝基材, 其特征在于, 所述荧 光粉的平均粒径为 1~50 μ πΐ。
17. 根据权利要求 10所述的一种灯丝基材, 其特征在于, 所述散 热粒子与有机硅改性聚酰亚胺的用量比为 1~12:1。
18. 根据权利要求 17所述的一种灯丝基材, 其特征在于, 所述散 热粒子与有机硅改性聚酰亚胺的用量比为 4~9:1。
19. 根据权利要求 17或 18所述的一种灯丝基材, 其特征在于, 所述散热粒子选自二氧化硅、 氧化铝、 氧化镁、 碳酸镁、 氮化铝、 氮 化硼和金刚石中的一种或多种。
20. 根据权利要求 19所述的一种灯丝基材, 其特征在于, 所述荧 光粉的平均粒径为 0.1〜100 μ m。
21. 根据权利要求 20所述的一种灯丝基材, 其特征在于, 所述荧 光粉的平均粒径为 1〜50 μ m。
22. 根据权利要求 10所述的一种灯丝基材, 其特征在于, 所述有 机硅改性聚酰亚胺树脂组合物还包括偶联剂。
23. 根据权利要求 22所述的一种灯丝基材, 其特征在于, 所述偶 联剂为硅垸偶联剂或钛酸酯偶联剂。
24. 根据权利要求 23所述的一种灯丝基材, 其特征在于, 所述钛 酸酯偶联剂为硅氧类钛酸酯偶联剂。
25. 根据权利要求 10所述的一种灯丝基材, 其特征在于, 所述有 机硅改性聚酰亚胺树脂组合物还包括添加剂, 所述添加剂为消泡剂、 流平剂、 粘合剂中的一种或多种。
26. 根据权利要求 25所述的一种灯丝基材, 其特征在于, 所述添 加剂的用量为不大于有机硅改性聚酰亚胺重量的 10%。
27. 根据权利要求 10所述的一种灯丝基材, 其特征在于, 所述基 材的断裂伸长率大于 0.5%, 其弹性模量大于 2Gpa。
28. 根据权利要求 27所述的一种灯丝基材, 其特征在于, 所述基 材的断裂伸长率为 1〜5%, 其弹性模量为 2~6Gpa。
29. 根据权利要求 27所述的一种灯丝基材, 其特征在于, 所述基 材的断裂伸长率为 1.5~5%, 其弹性模量为 4~6Gpa。
30. 根据权利要求 10所述的一种灯丝基材, 其特征在于, 所述基 材的折射率为 1.4〜1.7。
31. 根据权利要求 30所述的一种灯丝基材, 其特征在于, 所述基 材的折射率为 1.4~1.5。
32. 根据权利要求 10所述的一种灯丝基材, 其特征在于, 所述基 材的翘曲高度不大于 5mm。
PCT/IB2018/001560 2017-09-18 2018-09-18 一种有机硅改性聚酰亚胺树脂组合物及其应用 WO2019086963A2 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN201710839083.7 2017-09-18
CN201710839083 2017-09-18
CN201810344630 2018-04-17
CN201810344630.9 2018-04-17
CN201810498980.0 2018-05-23
CN201810498980 2018-05-23
CN201811005536 2018-08-30
CN201811005145 2018-08-30
CN201811005536.7 2018-08-30
CN201811005145.5 2018-08-30
CN201811079889 2018-09-17
CN201811079889.1 2018-09-17

Publications (2)

Publication Number Publication Date
WO2019086963A2 true WO2019086963A2 (zh) 2019-05-09
WO2019086963A3 WO2019086963A3 (zh) 2019-07-25

Family

ID=65722354

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/IB2018/001560 WO2019086963A2 (zh) 2017-09-18 2018-09-18 一种有机硅改性聚酰亚胺树脂组合物及其应用
PCT/CN2018/000335 WO2019052093A1 (zh) 2017-09-18 2018-09-19 一种有机硅改性聚酰亚胺树脂组合物及其应用

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/000335 WO2019052093A1 (zh) 2017-09-18 2018-09-19 一种有机硅改性聚酰亚胺树脂组合物及其应用

Country Status (2)

Country Link
CN (2) CN109517172B (zh)
WO (2) WO2019086963A2 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110242877A (zh) * 2019-04-12 2019-09-17 华芯半导体研究中心(广州)有限公司 一种高散热大功率led灯珠及其制作方法
JP7283441B2 (ja) * 2019-05-31 2023-05-30 荒川化学工業株式会社 組成物、反応物、接着剤、フィルム状接着材、接着層、接着シート、樹脂付銅箔、銅張積層板、プリント配線板、並びに多層配線板及びその製造方法
CN112391125A (zh) * 2020-11-19 2021-02-23 铠博新材料(天津)有限公司 一种导电胶膜
CN115305046B (zh) * 2022-08-10 2023-08-18 黑龙江省科学院石油化学研究院 一种耐高温高可溶性聚酰亚胺芯条胶及制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4969706A (en) * 1989-04-25 1990-11-13 At&T Bell Laboratories Plenum cable which includes halogenated and non-halogenated plastic materials
TW332827B (en) * 1994-02-24 1998-06-01 Ciba Sc Holding Ag UV absorber
JP4390028B2 (ja) * 2000-10-04 2009-12-24 日産化学工業株式会社 ポジ型感光性ポリイミド樹脂組成物
EP1473329A4 (en) * 2002-02-06 2006-05-31 Sekisui Chemical Co Ltd Resin composition
CN101208195A (zh) * 2005-04-19 2008-06-25 株式会社钟化 纤维-树脂复合体、叠层体、和印刷线路板以及印刷线路板的制造方法
US7674857B2 (en) * 2005-11-18 2010-03-09 Momentive Performance Materials Inc. Room temperature-cured siloxane sealant compositions of reduced gas permeability
US10228093B2 (en) * 2015-08-17 2019-03-12 Jiaxing Super Lighting Electric Appliance Co., Ltd LED light bulb and LED filament thereof
KR101110938B1 (ko) * 2007-10-26 2012-03-14 아사히 가세이 가부시키가이샤 폴리이미드 전구체 및 폴리이미드 전구체를 포함하는 감광성 수지 조성물
JP5332456B2 (ja) * 2008-09-29 2013-11-06 デクセリアルズ株式会社 プリント配線板およびその製造方法
CN101914357A (zh) * 2010-08-06 2010-12-15 东华大学 环氧-有机硅聚酰亚胺粘合剂及其制备方法
WO2013024849A1 (ja) * 2011-08-18 2013-02-21 東レ株式会社 ポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物ならびにそれらを含有するフレキシブル基板
TWI468482B (zh) * 2013-06-19 2015-01-11 Polytronics Technology Corp 黏合材料
CN105295792B (zh) * 2015-08-26 2017-12-29 北京化工大学 一种高性能聚酰亚胺交联改性环氧树脂及其制备方法
CN105301902B (zh) * 2015-11-10 2020-01-10 杭州福斯特应用材料股份有限公司 一种具有酯键相连芴单元及硅氧烷的正型感光性聚酰亚胺树脂组合物
CN105301906B (zh) * 2015-11-10 2019-12-24 杭州福斯特应用材料股份有限公司 正型感光性聚酰亚胺树脂组合物
CN206918712U (zh) * 2015-12-19 2018-01-23 嘉兴山蒲照明电器有限公司 Led球泡灯
CN105542693A (zh) * 2016-03-15 2016-05-04 重庆信德电子有限公司 Led灯丝的封装材料

Also Published As

Publication number Publication date
WO2019086963A3 (zh) 2019-07-25
CN109517172B (zh) 2023-08-29
CN109517172A (zh) 2019-03-26
WO2019052093A1 (zh) 2019-03-21
CN116891571A (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
CN214332357U (zh) 发光二极管灯丝及发光二极管球泡灯
US10982048B2 (en) Organosilicon-modified polyimide resin composition and use thereof
US10982819B2 (en) LED light bulb with bendable LED filament
US11015764B2 (en) LED light bulb with flexible LED filament having perpendicular connecting wires
US10982816B2 (en) LED light bulb having uniform light emmision
CN109517172B (zh) 一种有机硅改性聚酰亚胺树脂组合物及其应用
US20190242532A1 (en) Led filament light bulb having different surface roughness filament base layer
US11168844B2 (en) LED light bulb having filament with segmented light conversion layer
TWI525860B (zh) 發光二極體
TWI577737B (zh) 可固化組成物
TWI627223B (zh) 環氧樹脂組成物及發光裝置
JP2019019279A (ja) 樹脂組成物、樹脂膜および発光装置
CN110145698B (zh) 有机硅改性聚酰亚胺树脂组合物为灯丝基层的led球泡灯
CN214147468U (zh) Led灯丝及led球泡灯
CN213452940U (zh) Led灯丝及led球泡灯
CN211010831U (zh) 一种led球泡灯
CN211475542U (zh) Led灯丝及led球泡灯
JP2010103171A (ja) 光電変換素子及び光半導体素子コート用組成物
CN1693367A (zh) 聚酰亚胺/氧化硅复合材料的前驱溶液、其制法及制得的复合材料

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873767

Country of ref document: EP

Kind code of ref document: A2