WO2010087238A1 - 樹脂組成物およびこれを用いた表示装置 - Google Patents

樹脂組成物およびこれを用いた表示装置 Download PDF

Info

Publication number
WO2010087238A1
WO2010087238A1 PCT/JP2010/050402 JP2010050402W WO2010087238A1 WO 2010087238 A1 WO2010087238 A1 WO 2010087238A1 JP 2010050402 W JP2010050402 W JP 2010050402W WO 2010087238 A1 WO2010087238 A1 WO 2010087238A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
acid
film
group
transmittance
Prior art date
Application number
PCT/JP2010/050402
Other languages
English (en)
French (fr)
Inventor
三好一登
越野美加
富川真佐夫
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to SG2011054848A priority Critical patent/SG173468A1/en
Priority to JP2010506056A priority patent/JP5699602B2/ja
Priority to US13/146,794 priority patent/US8709552B2/en
Priority to CN2010800032835A priority patent/CN102227474B/zh
Publication of WO2010087238A1 publication Critical patent/WO2010087238A1/ja
Priority to US14/202,595 priority patent/US8895676B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/22Polybenzoxazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • C09K2323/025Polyamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • C09K2323/027Polyimide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • C09K2323/035Ester polymer, e.g. polycarbonate, polyacrylate or polyester
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/06Substrate layer characterised by chemical composition
    • C09K2323/061Inorganic, e.g. ceramic, metallic or glass
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers

Definitions

  • the present invention relates to a resin composition. More specifically, a surface protective film and an interlayer insulating film of a semiconductor element, an insulating layer of an organic electroluminescence (EL) element, a thin film transistor for driving a display device using the organic EL element (Thin Film Transistor: hereinafter TFT) Resin composition suitable for applications such as substrate planarization film, circuit board wiring protective insulation film, solid-state image sensor on-chip microlens, flattening film for various displays and solid-state image sensors, and solder resist for circuit boards Related to things.
  • TFT Thin Film Transistor
  • a cured film obtained by curing a composition containing polyimide or polybenzoxazole is widely used for an insulating film, a protective film, a planarizing film, etc. of a semiconductor element or a display device.
  • a display device for example, in applications such as an insulating layer of an organic EL display and a black matrix of a liquid crystal display, it is required to lower the transmittance of the cured film in order to improve contrast.
  • the transmittance is also applied to the insulating layer of the organic EL display and the planarizing film provided on the TFT substrate of the organic EL display. Is required to be low.
  • Examples of techniques for reducing the transmittance of a cured film in a positive photosensitive resin composition include, for example, an alkali-soluble resin, a quinonediazide compound, and a positive radiation resin composition containing a coloring composition such as a leuco dye and a developer.
  • Products for example, see Patent Document 1
  • photosensitive resins to which a heat-sensitive material that becomes black when heated is added in advance for example, see Patent Document 2
  • alkali-soluble resins, quinonediazide compounds 350 nm in color when heated.
  • a positive photosensitive resin composition comprising a thermochromic compound exhibiting an absorption maximum at 700 nm or less and a compound having no absorption maximum at 350 nm or more and less than 500 nm and having an absorption maximum at 500 nm or more and 750 nm or less (see, for example, Patent Document 3) )and so on.
  • the chromogenic compound itself undergoes an intramolecular structural change due to heat and expresses absorption in a specific wavelength region.
  • a color-forming compound but also a resin composition that can exhibit absorption in the exposure wavelength region by other means is desired.
  • this invention aims at providing the resin composition which can reduce the transmittance
  • the present invention relates to (a) polyimide, polybenzoxazole, polyimide precursor or polybenzoxazole precursor, (b) 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene or 2, A resin comprising 3-dihydroxynaphthalene and (c) a thermal crosslinking agent having a structure represented by the following general formula (1) or a thermal crosslinking agent having a group represented by the following general formula (2) It is a composition.
  • R represents a divalent to tetravalent linking group.
  • R 1 represents a monovalent organic group having 1 to 20 carbon atoms, Cl, Br, I or F.
  • R 2 and R 3 represent CH 2 OR 5 (R 5 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms).
  • R 4 represents a hydrogen atom, a methyl group or an ethyl group.
  • s represents an integer of 0 to 2
  • u represents an integer of 2 to 4.
  • R 6 represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms.
  • t represents 1 or 2
  • v represents 0 or 1.
  • t + v is 1 or 2.
  • a resin composition capable of reducing the transmittance in the visible light region of the cured film while maintaining the transmittance of the resin film before curing can be obtained.
  • the resin composition of the present invention comprises (a) polyimide, polybenzoxazole, polyimide precursor or polybenzoxazole precursor, (b) 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene. Or 2,3-dihydroxynaphthalene and (c) a thermal crosslinking agent having a structure represented by the general formula (1) or a thermal crosslinking agent having a group represented by the general formula (2).
  • the resin composition of the present invention contains (a) polyimide, polybenzoxazole, a polyimide precursor or a polybenzoxazole precursor. Two or more of these may be contained, or a copolymer having two or more of these repeating units may be contained.
  • Polyimide and polybenzoxazole are resins having a cyclic structure of imide ring or oxazole ring in the main chain.
  • the number of repeating units is preferably 10 to 100,000.
  • Polyimide can be obtained by reacting tetracarboxylic acid, corresponding tetracarboxylic dianhydride, tetracarboxylic diester dichloride, etc. with diamine, corresponding diisocyanate compound, trimethylsilylated diamine, and tetracarboxylic acid residue.
  • a diamine residue For example, it can be obtained by dehydrating and ring-closing polyamic acid, which is one of polyimide precursors obtained by reacting tetracarboxylic dianhydride and diamine, by heat treatment or chemical treatment. During the heat treatment, a solvent azeotropic with water such as m-xylene may be added.
  • the ring-closing catalyst used for the chemical treatment include dehydrating condensing agents such as carboxylic acid anhydride and dicyclohexylcarbodiimide, and bases such as triethylamine.
  • dehydrating condensing agents such as carboxylic acid anhydride and dicyclohexylcarbodiimide
  • bases such as triethylamine.
  • the polyimide precursor will be described later.
  • Polybenzoxazole can be obtained by reacting a bisaminophenol compound with a dicarboxylic acid, a corresponding dicarboxylic acid chloride, a dicarboxylic acid active ester, etc., and has a dicarboxylic acid residue and a bisaminophenol residue.
  • polyhydroxyamide which is one of polybenzoxazole precursors obtained by reacting a bisaminophenol compound with a dicarboxylic acid
  • polyhydroxyamide which is one of polybenzoxazole precursors obtained by reacting a bisaminophenol compound with a dicarboxylic acid
  • a solvent azeotropic with water such as m-xylene may be added.
  • the ring-closing catalyst used for the chemical treatment include phosphoric anhydride, a base, a carbodiimide compound, and the like. The polybenzoxazole precursor will be described
  • the polyimide has a tetracarboxylic acid residue or a diamine residue such as OR 7 , SO 3 R 7 , CONR 7 R 8 , COOR 7 , SO 2 NR 7 R 8 and the like. It preferably has an acidic group or acidic group derivative, and more preferably has a hydroxyl group.
  • polybenzoxazole has an acidic group or an acidic group derivative such as OR 7 , SO 3 R 7 , CONR 7 R 8 , COOR 7 , SO 2 NR 7 R 8 on a dicarboxylic acid residue or a bisaminophenol residue. It is preferable to have a hydroxyl group.
  • R 7 and R 8 represent a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • the acidic group refers to the case where R 7 or R 8 are all hydrogen atoms
  • the acidic group derivative refers to the case where R 7 or R 8 contains a monovalent organic group having 1 to 20 carbon atoms.
  • the following structures, or these hydrogen atoms are carbon atoms: Examples thereof include structures substituted with 1 to 4 alkyl groups, fluoroalkyl groups, alkoxyl groups, ester groups, nitro groups, cyano groups, fluorine atoms, and chlorine atoms of formulas 1 to 20. Two or more of these may be used.
  • J is a direct bond, —COO—, —CONH—, —CH 2 —, —C 2 H 4 —, —O—, —C 3 H 6 —, —SO 2 —, —S—, —Si ( CH 3 ) 2 —, —O—Si (CH 3 ) 2 —O—, —C 6 H 4 —, —C 6 H 4 —O—C 6 H 4 —, —C 6 H 4 —C 3 H 6 —C 6 H 4 — or —C 6 H 4 —C 3 F 6 —C 6 H 4 — is shown.
  • a diamine residue of polyimide and a bisaminophenol residue of polybenzoxazole hereinafter, collectively referred to as an amine residue
  • the following structure, or a hydrogen atom thereof having a carbon number examples include a structure in which 1 to 4 alkyl groups, fluoroalkyl groups, alkoxyl groups, ester groups, nitro groups, cyano groups, fluorine atoms, and chlorine atoms are substituted with 1 to 4 alkyl groups. Two or more of these may be used.
  • J is a direct bond, —COO—, —CONH—, —CH 2 —, —C 2 H 4 —, —O—, —C 3 H 6 —, —SO 2 —, —S—, —Si ( CH 3 ) 2 —, —O—Si (CH 3 ) 2 —O—, —C 6 H 4 —, —C 6 H 4 —O—C 6 H 4 —, —C 6 H 4 —C 3 H 6 —C 6 H 4 — or —C 6 H 4 —C 3 F 6 —C 6 H 4 — is shown.
  • R 7 represents a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • the polyimide precursor and the polybenzoxazole precursor are resins having an amide bond in the main chain, and are subjected to dehydration and ring closure by heat treatment or chemical treatment, whereby the polyimide, It becomes polybenzoxazole.
  • the number of repeating units is preferably 10 to 100,000.
  • the polyimide precursor include polyamic acid, polyamic acid ester, polyamic acid amide, polyisoimide, and the like, and polyamic acid and polyamic acid ester are preferable.
  • the polybenzoxazole precursor include polyhydroxyamide, polyaminoamide, polyamide, polyamideimide and the like, and polyhydroxyamide is preferable.
  • the polyimide precursor and the polybenzoxazole precursor are OR 7 , SO 3 R 7 , CONR 7 R 8 , COOR 7 , SO 2 NR 7 R 8 in the acid residue or amine residue from the viewpoint of solubility in an alkaline aqueous solution. It is preferable to have an acidic group or acidic group derivative such as, and more preferably have a hydroxyl group.
  • R 7 and R 8 represent a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • the acidic group refers to the case where R 7 or R 8 are all hydrogen atoms
  • the acidic group derivative refers to the case where R 7 or R 8 contains a monovalent organic group having 1 to 20 carbon atoms.
  • Examples of the acid component constituting the acid residues of the polyimide precursor and the polybenzoxazole precursor include terephthalic acid, isophthalic acid, diphenyl ether dicarboxylic acid, bis (carboxyphenyl) hexafluoropropane, biphenyldicarboxylic acid, Examples thereof include benzophenone dicarboxylic acid and triphenyl dicarboxylic acid.
  • Examples of the tricarboxylic acid include trimellitic acid, trimesic acid, diphenyl ether tricarboxylic acid, biphenyltricarboxylic acid, and the like.
  • tetracarboxylic acid examples include pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, 2,2 ′, 3,3 ′ -Biphenyltetracarboxylic acid, 3,3 ', 4,4'-benzophenone tetracarboxylic acid, 2,2', 3,3'-benzophenone tetracarboxylic acid, 2,2-bis (3,4-dicarboxyphenyl) Hexafluoropropane, 2,2-bis (2,3-dicarboxyphenyl) hexafluoropropane, 1,1-bis (3,4-dicarboxyphenyl) ethane, 1,1-bis (2,3-dicarboxy) Phenyl) ethane, bis (3,4-dicarboxyphenyl) methane, bis (2,3-dicar
  • Heptanetetracarboxylic acid bicyclo [3.3.1. ] Tetracarboxylic acid, bicyclo [3.1.1. ] Hept-2-enetetracarboxylic acid, bicyclo [2.2.2.
  • An aliphatic tetracarboxylic acid such as octanetetracarboxylic acid or adamatanetetracarboxylic acid can be used. Two or more of these may be used.
  • the hydrogen atom of the dicarboxylic acid, tricarboxylic acid, or tetracarboxylic acid exemplified above is converted into an acidic group or acidic group derivative such as OR 7 , SO 3 R 7 , CONR 7 R 8 , COOR 7 , SO 2 NR 7 R 8, etc. More preferred are those substituted with 1 to 4 hydroxyl groups, sulfonic acid groups, sulfonic acid amide groups, sulfonic acid ester groups, and the like.
  • tetracarboxylic acids containing silicon atoms such as dimethylsilanediphthalic acid and 1,3-bis (phthalic acid) tetramethyldisiloxane
  • adhesion to the substrate oxygen plasma used for cleaning, UV ozone, etc. Resistance to processing can be increased.
  • silicon atom-containing tetracarboxylic acids are preferably used in an amount of 1 to 30 mol% of the total acid components.
  • diamine component constituting the amine residue of the polyimide precursor and the polybenzoxazole precursor examples include bis (3-amino-4-hydroxyphenyl) hexafluoropropane and bis (3-amino-4-hydroxyphenyl) sulfone Bis (3-amino-4-hydroxyphenyl) propane, bis (3-amino-4-hydroxyphenyl) methylene, bis (3-amino-4-hydroxyphenyl) ether, bis (3-amino-4-hydroxy) Hydroxyl group-containing diamines such as biphenyl and bis (3-amino-4-hydroxyphenyl) fluorene, carboxyl group-containing diamines such as 3,5-diaminobenzoic acid and 3-carboxy-4,4′-diaminodiphenyl ether, 3-sulfone Acid-4,4'-diaminodiphenyl ether Any sulfonic acid-containing diamine, dithiohydroxyphenylenediamine, 3,4'-(
  • these diamines are substituted with alkyl groups having 1 to 10 carbon atoms such as methyl and ethyl groups, fluoroalkyl groups having 1 to 10 carbon atoms such as trifluoromethyl groups, and groups such as F, Cl, Br, and I. May be. Two or more of these may be used. In applications where heat resistance is required, it is preferable to use an aromatic diamine in an amount of 50 mol% or more of the total diamine.
  • the diamine exemplified above preferably has an acidic group or an acidic group derivative such as OR 7 , SO 3 R 7 , CONR 7 R 8 , COOR 7 , SO 2 NR 7 R 8, and preferably has a hydroxyl group. More preferred.
  • diamines can be used as they are or as corresponding diisocyanate compounds or trimethylsilylated diamines.
  • silicon atom-containing diamine such as 1,3-bis (3-aminopropyl) tetramethyldisiloxane or 1,3-bis (4-anilino) tetramethyldisiloxane as the diamine component
  • adhesion to the substrate is achieved.
  • resistance to oxygen plasma used for cleaning and UV ozone treatment can be increased.
  • silicon atom-containing diamines are preferably used in an amount of 1 to 30 mol% of the total diamine component.
  • polyimide, polybenzoxazole, polyimide precursor, and polybenzoxazole precursor are sealed with monoamine, acid anhydride, acid chloride, or monocarboxylic acid having a hydroxyl group, carboxyl group, sulfonic acid group, or thiol group. It is preferable. Two or more of these may be used.
  • the dissolution rate of the resin in the alkaline aqueous solution can be easily adjusted to a preferred range.
  • Preferred examples of the monoamine include 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1-hydroxy-6-aminonaphthalene, 1-hydroxy-5-aminonaphthalene and 1-hydroxy-4-amino.
  • acid anhydrides examples include acid anhydrides such as phthalic anhydride, maleic anhydride, nadic acid, cyclohexanedicarboxylic anhydride, and 3-hydroxyphthalic anhydride.
  • the content of the end-capping agent such as monoamine, acid anhydride, acid chloride, monocarboxylic acid described above is 0 in terms of the number of moles charged of the acid component monomer constituting the acid residue or the diamine component monomer constituting the diamine residue.
  • the range of 1 to 60 mol% is preferable, and 5 to 50 mol% is more preferable. By setting it as such a range, the viscosity of the solution at the time of apply
  • polymerizable functional group at the terminal of resin.
  • the polymerizable functional group include an ethylenically unsaturated bond group, an acetylene group, a methylol group, and an alkoxymethyl group.
  • the end-capping agent introduced into the resin can be easily detected by the following method.
  • a resin having a terminal blocking agent introduced therein is dissolved in an acidic solution and decomposed into an amine component and an acid component, which are constituent units of the resin, and this is measured by gas chromatography (GC) or NMR measurement.
  • GC gas chromatography
  • NMR nuclear magnetic resonance
  • the component (a) is preferably a polyimide precursor or a polybenzoxazole precursor, and more preferably a polyimide precursor.
  • the polyimide precursor proceeds through an imidization reaction in which the amidic acid moiety is closed by curing and baking at about 200 ° C.
  • the polybenzoxazole precursor proceeds in an oxazolation reaction in which the hydroxyamide moiety is closed by curing and baking at about 300 ° C.
  • Chemical resistance is dramatically improved.
  • the polyimide precursor can obtain chemical resistance at a lower firing temperature than this.
  • the photosensitive resin composition using these precursor resins having the property of shrinking in volume upon curing and baking can obtain a forward tapered pattern by baking after obtaining a fine pattern by an exposure / development process. it can. This forward tapered pattern is excellent in the coverage of the upper electrode when used as an insulating film of an organic EL element, can prevent disconnection, and can increase the reliability of the element.
  • the resin composition of the present invention may contain an alkali-soluble resin other than the component (a).
  • the alkali-soluble resin refers to a resin having an acidic group that is soluble in alkali, and specifically includes a radical polymerizable polymer having acrylic acid, a phenol-novolak resin, polyhydroxystyrene, polysiloxane, and the like. Moreover, you may protect the acidic group of these resin and adjust alkali solubility.
  • Such a resin is soluble in an aqueous solution of alkali such as choline, triethylamine, dimethylaminopyridine, monoethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate in addition to tetramethylammonium hydroxide. .
  • alkali such as choline, triethylamine, dimethylaminopyridine, monoethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate in addition to tetramethylammonium hydroxide.
  • Two or more of these resins may be contained, but the proportion of the total amount of the resin including the component (a) is preferably 50% by weight or less.
  • the resin composition of the present invention contains (b) 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene or 2,3-dihydroxynaphthalene. Two or more of these may be contained. By having two hydroxyl groups, it is excellent in alkali developability and sensitivity can be improved as compared with the case of having one hydroxyl group.
  • the naphthalene structure which is a condensed polycyclic structure, has an electron density higher than that of a monocyclic compound, and has two hydroxyl groups, which further increases the electron density, and (c) electrophilic addition reaction of a thermal crosslinking agent described later. Can wake up effectively.
  • the transmittance in the visible light region of the cured film is significantly reduced by combining with (c) a thermal cross-linking agent described later. Can do. Such an effect is particularly remarkable when the hydroxyl group is in the 1,5-position, 1,6-position, 1,7-position, or 2,3-position.
  • (c) the crosslinking reaction between the thermal crosslinking agent and the component (a) can fix the compound of the component (b) to the component (a) having excellent heat resistance, and improve the chemical resistance of the cured film. Can be increased.
  • the resin composition of the present invention is a condensation product having two or more other hydroxyl groups.
  • a polycyclic aromatic compound can also be contained.
  • the skeleton structure of the condensed polycyclic aromatic compound having two or more hydroxyl groups includes carbon condensed bicyclic systems such as pentalene, indene, naphthalene, azulene, heptalene, and octalen, as-indacene, s-indacene, biphenylene, acenaphthylene, and fluorene.
  • Carbon condensed tricyclic systems such as phenanthrene and anthracene
  • carbon condensed tetracyclic systems such as torinden, fluoranthene, acephenanthrylene, acanthrylene, triphenylene, pyrene, chrysene, tetraphene, naphthacene, picene, perylene, pentaphen, pentacene
  • carbon condensed pentacyclic systems such as tetraphenylene.
  • it may be a heterocyclic structure containing nitrogen, sulfur or oxygen atoms in place of some carbon atoms of the carbon-fused polycyclic aromatic compound.
  • Condensed polycyclic aromatic hetero compounds include benzofuran, benzothiophene, indole, benzimidazole, benzothiazole, purine, quinoline, isoquinoline, sinoline, quinoxaline and other condensed heterobicyclic systems, dibenzofuran, carbazole, acridine, 1, And condensed heterotricyclic systems such as 10-phenanthroline.
  • condensed polycyclic aromatic compound having two or more hydroxyl groups those in which part of the hydrogen atoms of the compound having a skeleton exemplified above are substituted with two or more hydroxyl groups are preferable.
  • condensed polycyclic aromatic compound having two or more hydroxyl groups include 1,4-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,8-dihydroxynaphthalene, 2,4- Examples include dihydroxyquinoline, 2,6-dihydroxyquinoline, 2,3-dihydroxyquinoxaline, anthracene-1,2,10-triol, anthracene-1,8,9-triol.
  • the content of (b) 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene or 2,3-dihydroxynaphthalene is such that (a) component resin 100 5 parts by weight or more is preferable with respect to parts by weight, and 10 parts by weight or more is more preferable. Moreover, 120 weight part or less is preferable and 100 weight part or less is more preferable. If content of (b) component is 5 weight part or more, the transmittance
  • strength of a cured film can be maintained and a water absorption can be reduced.
  • it contains 2 or more types of (a) component or (b) component it is preferable that those total amount is the said range.
  • the resin composition of the present invention contains (c) a thermal crosslinking agent having a structure represented by the following general formula (1) or a thermal crosslinking agent having a group represented by the following general formula (2). Two or more of these may be contained.
  • Component (c) is a thermal crosslinking agent comprising: (a) polyimide, polybenzoxazole, polyimide precursor or polybenzoxazole precursor and (b) 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7- By cross-linking to each of dihydroxynaphthalene or 2,3-dihydroxynaphthalene and connecting the three components (a), (b) and (c), the transmittance in the visible light region can be greatly reduced. Moreover, the chemical resistance of the cured film can be enhanced by a crosslinking reaction.
  • R represents a divalent to tetravalent linking group.
  • R 1 represents a monovalent organic group having 1 to 20 carbon atoms, Cl, Br, I or F.
  • Examples of the monovalent organic group having 1 to 20 carbon atoms include monovalent hydrocarbons having 1 to 6 carbon atoms such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, cyclopentyl group, and cyclohexyl group. Groups are preferred.
  • R 2 and R 3 represent CH 2 OR 5 (R 5 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms).
  • R 4 represents a hydrogen atom, a methyl group or an ethyl group. s represents an integer of 0 to 2, and u represents an integer of 2 to 4. The plurality of R 1 to R 4 may be the same or different. Examples of the linking group R are shown below.
  • R 9 to R 27 represent a hydrogen atom, a monovalent organic group having 1 to 20 carbon atoms, Cl, Br, I or F.
  • a monovalent organic group having 1 to 20 carbon atoms a methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, cyclopentyl group, cyclohexyl group, benzyl group, naphthyl group and the like are preferable.
  • R 6 represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms.
  • t represents 1 or 2
  • v represents 0 or 1.
  • t + v is 1 or 2.
  • R 2 and R 3 represent a thermal crosslinking group CH 2 OR 5 (R 5 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms).
  • R 5 is preferably a monovalent hydrocarbon group having 1 to 4 carbon atoms because it retains moderate reactivity and is excellent in storage stability.
  • R 5 is more preferably a methyl group or an ethyl group.
  • the number of functional groups of the thermal crosslinking group in one molecule is 4 to 8.
  • the number of functional groups is less than 4, the cured resin composition cannot be appropriately colored, and the transmittance in the visible light region of the cured film cannot be reduced.
  • the number of functional groups exceeds 8, it is difficult to obtain a high-purity product, and the stability of the compound itself and the storage stability in the resin composition are lowered.
  • the purity of the compound having the structure represented by the general formula (1) is preferably 75% or more, and more preferably 85% or more. If the purity is 85% or more, the storage stability is excellent, the crosslinking reaction of the resin composition is sufficiently performed, the colorability after curing is excellent, and the transmittance in the visible light region of the cured film can be further reduced. Moreover, since the unreacted group used as a water absorbing group can be decreased, the water absorption of a resin composition can be made small. Examples of the method for obtaining a high-purity thermal crosslinking agent include recrystallization and distillation. The purity of the thermal crosslinking agent can be determined by a liquid chromatography method.
  • thermal crosslinking agent having the structure represented by the general formula (1) are shown below.
  • R 6 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms, preferably a monovalent hydrocarbon group having 1 to 4 carbon atoms. Further, from the viewpoint of the stability of the compound and the storage stability in the resin composition, in the photosensitive resin composition containing a photoacid generator, a photopolymerization initiator and the like, R 6 is preferably a methyl group or an ethyl group, The number of (CH 2 OR 6 ) groups contained therein is preferably 8 or less.
  • thermal crosslinking agent having a group represented by the general formula (2) are shown below.
  • the content of the thermal crosslinking agent having a structure represented by the general formula (1) or the thermal crosslinking agent having a group represented by the general formula (2) is based on 100 parts by weight of the resin of the component (a). 5 parts by weight or more is preferable, and 10 parts by weight or more is more preferable. Moreover, 120 weight part or less is preferable and 100 weight part or less is more preferable. If content of (c) component is 5 weight part or more, the transmittance
  • the resin composition of the present invention may further contain (d) a photoacid generator, (e) a photopolymerization initiator, and (f) a compound having two or more ethylenically unsaturated bonds. Negative photosensitivity can be imparted.
  • a photoacid generator in the resin composition of the present invention, an acid is generated in the light irradiation portion, the solubility of the light irradiation portion in an alkaline aqueous solution is increased, and the light irradiation portion is dissolved.
  • the relief pattern can be obtained.
  • a photoacid generator and an epoxy compound a negative relief pattern in which the acid generated in the light irradiation part promotes the reaction of the epoxy compound and the light irradiation part becomes insoluble can be obtained. .
  • Examples of the photoacid generator include quinonediazide compounds, sulfonium salts, phosphonium salts, diazonium salts, iodonium salts, and the like.
  • the quinonediazide compound includes a polyhydroxy compound in which a sulfonic acid of quinonediazide is bonded with an ester, a polyamino compound in which a sulfonic acid of quinonediazide is bonded to a sulfonamide, and a sulfonic acid of quinonediazide in an ester bond and / or sulfone.
  • Examples include amide-bonded ones. It is preferable that 50 mol% or more of the total functional groups of these polyhydroxy compounds and polyamino compounds are substituted with quinonediazide.
  • quinonediazide compound those having either a 5-naphthoquinonediazidosulfonyl group or a 4-naphthoquinonediazidesulfonyl group are preferably used.
  • the 4-naphthoquinonediazide sulfonyl ester compound has absorption in the i-line region of a mercury lamp and is suitable for i-line exposure.
  • the 5-naphthoquinonediazide sulfonyl ester compound has an absorption extending to the g-line region of a mercury lamp and is suitable for g-line exposure.
  • it may contain a naphthoquinone diazide sulfonyl ester compound having a 4-naphthoquinone diazide sulfonyl group and a 5-naphthoquinone diazide sulfonyl group in the same molecule, or a 4-naphthoquinone diazide sulfonyl ester compound and a 5-naphthoquinone diazide sulfonyl ester compound. You may contain.
  • sulfonium salts Of the photoacid generators, sulfonium salts, phosphonium salts, and diazonium salts are preferable because they moderately stabilize the acid component generated by exposure. Of these, sulfonium salts are preferred.
  • the content of the (d) photoacid generator is preferably 0.01 to 50 parts by weight with respect to 100 parts by weight of the resin of the component (a) from the viewpoint of increasing sensitivity.
  • the quinonediazide compound is preferably in the range of 3 to 40 parts by weight.
  • the total amount of sulfonium salt, phosphonium salt and diazonium salt is preferably in the range of 0.5 to 20 parts by weight. Furthermore, it can also contain a sensitizer etc. as needed. In addition, when 2 or more types of (d) component is contained, it is preferable that those total amount is the said range.
  • the photosensitive resin composition of the present invention can also contain (e) a photopolymerization initiator and (f) a compound having two or more ethylenically unsaturated bonds.
  • An active radical generated in the light irradiation part advances radical polymerization of ethylenically unsaturated bonds, and a negative relief pattern in which the light irradiation part becomes insoluble can be obtained.
  • Photopolymerization initiators include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2- Methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl-phenylketone, 1-phenyl-1,2-propanedione-2- ( o-ethoxycarbonyl) oxime, 2-methyl- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone -1, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin iso Lopyl ether, benzoin isobutyl ether, benzophenone,
  • the content of the (e) photopolymerization initiator is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the resin (a). If it is 0.1 parts by weight or more, sufficient radicals are generated by light irradiation, and the sensitivity is improved. Moreover, if it is 20 weight part or less, there will be no hardening of the light non-irradiation part by generation
  • the content of the compound (f) having two or more ethylenically unsaturated bonds is preferably 1 part by weight or more and more preferably 5 parts by weight or more with respect to 100 parts by weight of the resin of the component (a). Moreover, 100 weight part or less is preferable and 50 weight part or less is more preferable. In addition, when 2 or more types of (f) component is contained, it is preferable that those total amount is the said range.
  • a compound having only one ethylenically unsaturated bond may be contained in an amount of 1 to 50 parts by weight with respect to 100 parts by weight of the resin as component (a) for adjusting the solubility.
  • examples of such compounds are acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, butyl acrylate, hydroxyethyl acrylate, hydroxyethyl methacrylate, dimethylacrylamide, dimethylaminoethyl methacrylate, acryloyl morphophore, 1-hydroxyethyl ⁇ -chloroacrylate, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl ⁇ -chloroacrylate, 1-hydroxypropyl methacrylate, 1-hydroxypropyl acrylate, 1-hydroxypropyl acrylate, 1-hydroxypropyl ⁇ -chloroacrylate, 2-hydroxy Propyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxy
  • the resin composition of the present invention may further contain (g) a thermal acid generator.
  • the thermal acid generator generates an acid by heating after development, which will be described later, and promotes a crosslinking reaction between the resin of component (a) and the thermal crosslinking agent of component (c). Promotes cyclization of the imide ring and oxazole ring. For this reason, the chemical resistance of the cured film is improved, and film loss can be reduced.
  • the acid generated from the thermal acid generator is preferably a strong acid, for example, aryl sulfonic acids such as p-toluenesulfonic acid and benzenesulfonic acid, alkylsulfonic acids such as methanesulfonic acid, ethanesulfonic acid, and butanesulfonic acid. Is preferred.
  • the thermal acid generator is preferably an aliphatic sulfonic acid compound represented by the general formula (4) or (5), and may contain two or more of these.
  • R 30 to R 32 each represents an alkyl group having 1 to 10 carbon atoms or a monovalent aromatic group having 7 to 12 carbon atoms.
  • the alkyl group and the aromatic group may be substituted, and examples of the substituent include an alkyl group and a carbonyl group.
  • the content of the thermal acid generator is preferably 0.1 parts by weight or more, and 0.3 parts by weight or more with respect to 100 parts by weight of the resin of component (a). More preferably, 0.5 parts by weight or more is more preferable.
  • 20 parts by weight or less is preferable, 15 parts by weight or less is more preferable, and 10 parts by weight or less is more preferable.
  • 2 or more types of (g) component is contained, it is preferable that those total amount is the said range.
  • the resin composition of the present invention can contain (h) a filler.
  • a filler By containing a filler, when the resin composition of the present invention is used as a solder resist for a circuit board, it develops thixotropy in the process of coating and drying by screen printing and keeps the pattern at a predetermined size. There is an effect to. Furthermore, the effect which suppresses shrinkage
  • examples of the insulating filler include calcium carbonate, silica, alumina, aluminum nitride, titanium oxide, silica-titanium oxide composite particles, etc., and silica, titanium oxide, silica-titanium oxide composite particles.
  • examples of the conductive filler include gold, silver, copper, nickel, aluminum, carbon and the like, and silver is preferable. You may contain 2 or more types of these according to a use.
  • the content of (h) filler is preferably in the range of 5 to 500 parts by weight with respect to 100 parts by weight of component (a).
  • the number average particle diameter of the filler is preferably 10 ⁇ m or less, and more preferably 2 ⁇ m or less. It is also preferable to use a mixture of two or more fillers having different number average particle diameters from the viewpoint of imparting thixotropy and stress relaxation.
  • Suitable particles for the above purpose include tin oxide-aluminum oxide composite particles, zirconium oxide-aluminum oxide composite particles, zirconium oxide-silicon oxide composite particles, tin oxide particles, zirconium oxide-tin oxide composite particles, titanium oxide particles, tin oxide. -Titanium oxide composite particles, silicon oxide-titanium oxide composite particles, zirconium oxide-titanium oxide composite particles, zirconium oxide particles and the like. Moreover, you may coat
  • the particles may be in the form of powder or sol, but is more preferably in the form of sol from the viewpoint of ease of dispersion.
  • the number average particle diameter of the nanoparticles is preferably 50 nm or less, more preferably 30 nm or less from the viewpoint of transmittance.
  • the number average particle diameter of the filler can be measured with various particle counters.
  • the average particle diameter of the nanoparticles can be measured by a gas adsorption method, a dynamic light scattering method, an X-ray small angle scattering method, a method of directly measuring the particle size by a transmission electron microscope, or the like.
  • the particle diameter obtained by these measurement methods may be a volume average or a mass average, but can be converted to a number average molecular weight by assuming that the particle shape is spherical.
  • the resin composition of the present invention includes a thermochromic compound that develops color by heating and exhibits an absorption maximum at 350 nm to 700 nm, or an organic pigment that has no absorption maximum at 350 nm to less than 500 nm and has an absorption maximum at 500 nm to 750 nm. Or it can contain a dye.
  • the coloring temperature of the thermochromic compound is preferably 120 ° C. or higher, more preferably 150 ° C. or higher. The higher the coloring temperature of the thermochromic compound, the better the heat resistance under high temperature conditions, and the better the light resistance without fading due to prolonged ultraviolet-visible light irradiation.
  • thermochromic compounds include thermal dyes, pressure sensitive dyes, and hydroxyl group-containing compounds having a triarylmethane skeleton.
  • the resin composition of the present invention may contain an adhesion improving agent.
  • adhesion improvers vinyltrimethoxysilane, vinyltriethoxysilane, epoxycyclohexylethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, Silane coupling agents such as 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, titanium chelating agents, aluminum chelating agents, aromatic amine compounds and alkoxy groups Examples thereof include compounds obtained by reacting silicon compounds.
  • adhesion improving agents By containing these adhesion improving agents, adhesion to an underlying substrate such as a silicon wafer, ITO, SiO 2 , or silicon nitride can be enhanced when developing a photosensitive resin film. Further, resistance to oxygen plasma and UV ozone treatment used for cleaning or the like can be increased.
  • the content of the adhesion improving agent is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the component (a) resin.
  • the resin composition of the present invention may contain an adhesion improver.
  • the adhesion improving agent include an alkoxysilane-containing aromatic amine compound, an aromatic amide compound, or an aromatic non-containing silane compound. Two or more of these may be contained. By containing these compounds, the adhesiveness with the base material after curing can be improved. Specific examples of the alkoxysilane-containing aromatic amine compound and aromatic amide compound are shown below.
  • a compound obtained by reacting an aromatic amine compound and an alkoxy group-containing silicon compound may be used. For example, an aromatic amine compound and a group that reacts with an amino group such as an epoxy group or a chloromethyl group. The compound etc. which are obtained by making the alkoxysilane compound which has it react are mentioned.
  • Non-aromatic silane compounds include vinyl silane compounds such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltrichlorosilane, vinyltris ( ⁇ -methoxyethoxy) silane, 3-methacryloxypropyltrimethoxysilane, and 3-acryloxypropyl.
  • vinyl silane compounds such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltrichlorosilane, vinyltris ( ⁇ -methoxyethoxy) silane, 3-methacryloxypropyltrimethoxysilane, and 3-acryloxypropyl.
  • carbon-carbon unsaturated bond-containing silane compounds such as trimethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, and 3-methacryloxypropylmethyldiethoxysilane.
  • vinyltrimethoxysilane and vinyltriethoxysilane are preferable.
  • the total content of the alkoxysilane-containing aromatic amine compound, aromatic amide compound, or non-aromatic silane compound is preferably 0.01 to 15 parts by weight with respect to 100 parts by weight of the component (a) resin.
  • the resin composition of the present invention may contain a surfactant and can improve paintability with the substrate.
  • Fluorosurfactants such as Fluorard (trade name, manufactured by Sumitomo 3M Co., Ltd.), MegaFac (trade name, manufactured by DIC Corporation), Sulflon (trade name, manufactured by Asahi Glass Co., Ltd.), etc. , KP341 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), DBE (trade name, manufactured by Chisso Corp.), Polyflow, Granol (trade name, manufactured by Kyoeisha Chemical Co., Ltd.), BYK (Bic Chemie Corp.) And an acrylic polymer surfactant such as Polyflow (trade name, manufactured by Kyoeisha Chemical Co., Ltd.).
  • the resin composition of the present invention preferably contains a solvent.
  • Solvents include polar aprotic solvents such as N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran, dioxane, propylene glycol monomethyl ether, Ethers such as propylene glycol monoethyl ether, ketones such as acetone, methyl ethyl ketone, diisobutyl ketone, diacetone alcohol, ethyl acetate, butyl acetate, isobutyl acetate, propyl acetate, propylene glycol monomethyl ether acetate, 3-methyl-3-methoxy Esters such as butyl acetate, alcohols such as ethyl lactate, methyl lactate, diacetone alcohol, 3-methyl-3-methoxybutanol, to
  • the resin composition of the present invention preferably has a high transmittance of the resin film before curing and a low transmittance in the visible light region of the cured film. That is, the change in transmittance at a wavelength of 450 nm before and after curing in a 3.0 ⁇ m thick film is preferably 20% or more.
  • the transmittance at a wavelength of 450 nm is an index of the transmittance in the visible light region. More specifically, the transmittance at a wavelength of 450 nm of a 3.0 ⁇ m-thick film (before curing) obtained by applying the resin composition to a substrate and heat-treating at 120 ° C.
  • the transmittance change amount obtained by the following formula is 20% or more. Preferably there is. According to the present invention, such a change in transmittance can be easily realized.
  • Change in transmittance (%) transmittance before curing (%) ⁇ transmittance after curing (%)
  • the transmittance of the resin film before curing at a wavelength of 450 nm is preferably 70% or more, and more preferably 90% or more.
  • the transmittance of the cured film in the visible light region is desirably low.
  • the transmittance of the cured film at 450 nm is preferably 70% or less, more preferably 60% or less.
  • the resin composition can be obtained by dissolving the components (a) to (c) and, if necessary, the components (d) to (h), a thermochromic component, an adhesion improver, an adhesion improver or a surfactant in a solvent.
  • the dissolution method include stirring and heating. In the case of heating, the heating temperature is preferably set in a range that does not impair the performance of the resin composition, and is usually room temperature to 80 ° C.
  • the dissolution order of each component is not particularly limited, and for example, there is a method of sequentially dissolving compounds having low solubility.
  • components that tend to generate bubbles when stirring and dissolving such as surfactants and some adhesion improvers, by dissolving other components and adding them last, poor dissolution of other components due to the generation of bubbles Can be prevented.
  • the obtained resin composition is preferably filtered using a filtration filter to remove dust and particles.
  • a filtration filter to remove dust and particles.
  • the filter pore diameter include, but are not limited to, 0.5 ⁇ m, 0.2 ⁇ m, 0.1 ⁇ m, and 0.05 ⁇ m.
  • the material for the filter include polypropylene (PP), polyethylene (PE), nylon (NY), polytetrafluoroethylene (PTFE), and polyethylene and nylon are preferable.
  • PP polypropylene
  • PE polyethylene
  • nylon NY
  • PTFE polytetrafluoroethylene
  • polyethylene and nylon are preferable.
  • the resin composition of the present invention is applied by spin coating, slit coating, dip coating, spray coating, printing, or the like to obtain a resin composition film.
  • the substrate on which the resin composition is applied may be pretreated with the above-described adhesion improving agent in advance.
  • a solution obtained by dissolving 0.5 to 20% by weight of an adhesion improver in a solvent such as isopropanol, ethanol, methanol, water, tetrahydrofuran, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, ethyl lactate, diethyl adipate, etc.
  • the substrate surface treatment method include spin coating, slit die coating, bar coating, dip coating, spray coating, and steam treatment. If necessary, it can be dried under reduced pressure, and then the reaction between the base material and the adhesion improving agent can proceed by a heat treatment at 50 ° C. to 300 ° C.
  • a cured film can be obtained by heat-treating the obtained resin composition film.
  • a method of heat treatment at 230 ° C. for 60 minutes a method of heat treatment at 120 to 400 ° C. for 1 minute to 10 hours, a method of heat treatment at a low temperature of about room temperature to 100 ° C. with addition of a curing catalyst, ultrasonic waves or electromagnetic waves
  • a method of curing at a low temperature of about room temperature to 100 ° C. by treatment examples thereof include a method of curing at a low temperature of about room temperature to 100 ° C. by treatment.
  • a negative or positive relief is obtained by partially irradiating the resin composition film with actinic rays such as ultraviolet rays and developing with a developer. A pattern can be obtained.
  • the cured film obtained by curing the resin composition of the present invention is suitably used as an insulating film or protective film for wiring.
  • an insulating film or protective film for wiring for example, pudding that forms wiring with copper, aluminum, etc. on polyimide or ceramic film or substrate, and use of insulating film or protective film for wiring on substrate, protective film for partially soldering wiring Etc.
  • a resin composition contains a conductive filler, it can also be used as a wiring material.
  • the cured film obtained by curing the resin composition of the present invention is suitable as a planarized film or an insulating layer of a display device having a TFT-formed substrate, a planarized film, an insulating layer, and a display element in this order.
  • a display device include a liquid crystal display device and an organic EL display device.
  • An active matrix type display device has a TFT on a substrate such as glass and a wiring located on a side portion of the TFT and connected to the TFT, and has a flattening film so as to cover the unevenness thereon.
  • a display element is provided on the planarizing film. The display element and the wiring are connected through a contact hole formed in the planarization film.
  • FIG. 1 shows a cross-sectional view of a TFT substrate on which a planarizing film and an insulating layer are formed.
  • bottom-gate or top-gate TFTs 1 are provided in a matrix, and the insulating film 3 is formed so as to cover the TFTs 1.
  • a wiring 2 connected to the TFT 1 is provided under the insulating film 3.
  • a contact hole 7 opening the wiring 2 and a planarizing film 4 are provided so as to fill them.
  • An opening is provided in the planarizing film 4 so as to reach the contact hole 7 of the wiring 2.
  • An ITO (transparent electrode) 5 is formed on the planarizing film 4 while being connected to the wiring 2 through the contact hole 7.
  • ITO5 becomes an electrode of a display element (for example, organic EL element).
  • the insulating layer 8 is formed so that the periphery of ITO5 may be covered.
  • the organic EL element may be a top emission type that emits emitted light from the opposite side of the substrate 6 or a bottom emission type that extracts light from the substrate 6 side. In this manner, an active matrix organic EL display device in which each organic EL element is connected with the TFT 1 for driving the organic EL element is obtained.
  • the cured film obtained by curing the resin composition of the present invention is suitably used as an insulating layer of a display device having a TFT-formed substrate, an insulating layer, and a display element in this order.
  • the display device having such a configuration include an organic EL display device.
  • An active matrix type display device includes a TFT and a wiring located on a side portion of the TFT and connected to the TFT on a substrate such as glass. The display element and the wiring are connected through a contact hole formed in the insulating film.
  • FIG. 2 shows a cross-sectional view of a TFT substrate on which an insulating layer is formed.
  • bottom-gate or top-gate TFTs 1 are provided in a matrix, and the insulating film 3 is formed so as to cover the TFTs 1.
  • a wiring 2 connected to the TFT 1 is provided under the insulating film 3.
  • a contact hole 7 is provided on the insulating film 3 so as to open the wiring 2.
  • An ITO (transparent electrode) 5 is formed in a state of being connected to the wiring 2 through the contact hole 7.
  • ITO5 becomes an electrode of a display element (for example, organic EL element).
  • An insulating layer 8 is formed so as to cover the periphery of the ITO 5 and the steps of the TFT and the wiring.
  • the organic EL element may be a top emission type that emits emitted light from the opposite side of the substrate 6 or a bottom emission type that extracts light from the substrate 6 side. In this manner, an active matrix organic EL display device in which each organic EL element is connected with the TFT 1 for driving the organic EL element is obtained.
  • the cured film obtained from the resin composition of the present invention has an appropriate absorption around 450 nm, it can be used for an insulating layer, a flattening film, etc. in such an organic EL display device, thereby causing leakage current, photoinduced current, etc. Occurrence is prevented, and stable drive / light emission characteristics can be obtained.
  • the cured film obtained by curing the resin composition of the present invention is a surface protective film for semiconductor elements such as LSI, interlayer insulating films, adhesives and underfill agents for encapsulating devices in packages, and copper migration. It can be preferably used for applications such as a cap agent to prevent, an on-chip microlens for a solid-state image sensor, and a flattening film for various displays and solid-state image sensors.
  • varnish a resin composition (hereinafter referred to as varnish) was spin-coated on a 5 cm square glass substrate and heat-treated (prebaked) at 120 ° C. for 2 minutes to prepare a prebaked film having a thickness of 3.0 ⁇ m. .
  • the varnish was spin-coated so as to have a film thickness of 3.0 ⁇ m, and an inert oven INH-21CD manufactured by Koyo Thermo System Co., Ltd. was used for 30 minutes at 230 ° C. under a nitrogen stream (oxygen concentration 20 ppm or less).
  • a cured film was produced by heat treatment.
  • the film thickness of the prebaked film and the cured film was measured using Surfcom 1400D (manufactured by Tokyo Seimitsu Co., Ltd.).
  • the pre-baked film and the cured film thus obtained were measured for a transmission spectrum at a wavelength of 300 nm to 700 nm using an ultraviolet-visible spectrophotometer MultiSpec-1500 (manufactured by Shimadzu Corporation), and a transmittance at a wavelength of 450 nm. was measured.
  • Examples 10 to 11 were heated at 100 ° C. for 1 minute after exposure. Examples 4 to 9 were subjected to exposure, and Examples 10 to 11 were subjected to post-exposure heating, followed by a 2.38 wt% tetramethylammonium (TMAH) aqueous solution (manufactured by Mitsubishi Gas Chemical Co., Ltd., ELM-D) for 60 seconds.
  • TMAH tetramethylammonium
  • ELM-D tetramethylammonium
  • the film was developed and then rinsed with pure water to obtain a film after development.
  • the exposure amount at which the exposed portion was not completely eluted by development was defined as sensitivity.
  • the film thickness after development was measured, and the exposure amount that 90% of the prebaked film thickness remained after development was defined as sensitivity.
  • the film thickness after pre-baking and development was measured using a Lambda Ace STM-602 manufactured by Dainippon Screen Mfg. Co., Ltd. at a refractive index of 1.63
  • the obtained cured film was immersed in a stripping solution 106 manufactured by Tokyo Ohka Kogyo Co., Ltd. at 70 ° C. for 10 minutes.
  • the thickness of the cured film before and after the treatment with the stripping solution was measured at a refractive index of 1.64 using a Lambda Ace STM-602 manufactured by Dainippon Screen Mfg. Co., Ltd. to determine the amount of film reduction.
  • the amount of film reduction is preferably 0.25 ⁇ m or less, more preferably 0.15 ⁇ m or less, and still more preferably 0.10 ⁇ m or less.
  • a cured film was produced by the method described in (i) above using the varnishes produced in Examples 4 to 11 and Comparative Examples 5 to 6.
  • the obtained cured film was immersed in a stripping solution 106 manufactured by Tokyo Ohka Kogyo Co., Ltd. at 70 ° C. for 10 minutes.
  • the cured film after the stripping solution treatment was observed with a 20 ⁇ optical microscope, and the presence or absence of pattern peeling was evaluated.
  • the minimum pattern without pattern peeling was defined as the remaining pattern. Since a finer pattern is more easily peeled off, it can be judged that the remaining pattern is good if it is 20 ⁇ m or less, and very good if it is 5 ⁇ m or less.
  • Synthesis Example 1 Synthesis of hydroxyl group-containing diamine compound 18.3 g (0.05 mol) of 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (manufactured by Central Glass Co., Ltd., BAHF) in 100 mL of acetone Then, it was dissolved in 17.4 g (0.3 mol) of propylene oxide (manufactured by Tokyo Chemical Industry Co., Ltd.) and cooled to ⁇ 15 ° C. A solution prepared by dissolving 20.4 g (0.11 mol) of 3-nitrobenzoyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) in 100 mL of acetone was added dropwise thereto. After completion of dropping, the mixture was stirred at ⁇ 15 ° C. for 4 hours and then returned to room temperature. The precipitated white solid was filtered off and vacuum dried at 50 ° C.
  • Synthesis Example 2 Synthesis of quinonediazide compound Under a dry nitrogen stream, TrisP-PA (trade name, manufactured by Honshu Chemical Industry Co., Ltd.), 21.22 g (0.05 mol) and 5-naphthoquinonediazidesulfonic acid chloride (Toyo Gosei Co., Ltd.) ), 26.8 g (0.1 mol) of NAC-5) was dissolved in 450 g of 1,4-dioxane and brought to room temperature. To this, 12.65 g of triethylamine mixed with 50 g of 1,4-dioxane was added dropwise so that the temperature inside the system would not exceed 35 ° C. After dropping, the mixture was stirred at 40 ° C. for 2 hours.
  • the triethylamine salt was filtered and the filtrate was poured into water. Thereafter, the deposited precipitate was collected by filtration and further washed with 1 L of 1% aqueous hydrochloric acid. Thereafter, it was further washed twice with 2 L of water. This precipitate was dried with a vacuum dryer to obtain a quinonediazide compound represented by the following formula.
  • Needle-like white crystals formed in the solution after standing were collected by filtration and washed with 100 mL of water.
  • the white crystals were vacuum dried at 50 ° C. for 48 hours.
  • NMR manufactured by JEOL Ltd., GX-270
  • DMSO-d6 a heavy solvent
  • Synthesis Example 4 Synthesis of alkoxymethyl group-containing compound (A-2) (1) 1,1,1-tris (4-hydroxyphenyl) ethane (manufactured by Honshu Chemical Industry Co., Ltd., TrisP-HAP) 103.2 g (0 4,4 ′-[1- [4- [1- (4-hydroxyphenyl-1) -1-methylethyl] phenyl] ethylidene] bisphenol (manufactured by Honshu Chemical Industry Co., Ltd., TrisP -PA) Dry white crystals were obtained in the same manner as in Synthesis Example 3 (1) except that 169.6 g (0.4 mol) was used. This was analyzed by high performance liquid chromatography in the same manner as in Synthesis Example 3 (1).
  • Synthesis Example 5 Synthesis of alkoxymethyl group-containing compound (A-3) (1) In the same manner as in Synthesis Example 3 (1), hexamethylolated TrisP-HAP having a purity of 92% was obtained.
  • thermal crosslinking agents and acid generators used in Examples and Comparative Examples are as follows.
  • Example 1 Under a dry nitrogen stream, 32.9 g (0.09 mol) of BAHF was dissolved in 500 g of N-methylpyrrolidone (NMP). 31.0 g (0.1 mol) of 3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride (manac Co., Ltd., ODPA) was added thereto together with 50 g of NMP, and the mixture was stirred at 30 ° C. for 2 hours. . Thereafter, 2.18 g (0.02 mol) of 3-aminophenol (manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and stirring was continued at 40 ° C. for 2 hours.
  • NMP N-methylpyrrolidone
  • 31.0 g (0.1 mol) of 3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride (manac Co., Ltd., ODPA) was added thereto together with 50 g of NMP,
  • Comparative Example 1 Example 1 except that 5 g of 2,6-dimethoxymethyl-t-butylphenol (Honshu Chemical Industry Co., Ltd.) was added in place of the alkoxymethyl group-containing compound (A-1) obtained in Synthesis Example 3. Similarly, a varnish of a polyimide resin composition was obtained. The transmittance at 450 nm of the film before and after curing obtained using this varnish was 96% before curing and 85% after curing. Accordingly, the change in transmittance was 11%. Moreover, when the cured film chemical resistance was evaluated, the film was completely dissolved.
  • Comparative Example 2 A 500 ml flask was charged with 5 g of 2,2′-azobis (isobutyronitrile) and 200 g of tetrahydrofuran (THF). Thereafter, 35 g of methyl methacrylate (MM), 30 g of tert-butyl methacrylate (t-BM) and 35 g of methacrylic acid (MA) were charged and stirred for a while at room temperature. After the atmosphere in the flask was replaced with nitrogen, the mixture was stirred at room temperature for 40 hours. Here, 300 g of propylene glycol monomethyl ether was added and stirred. After the completion of stirring, the solution was poured into 2 L of water, and a precipitate of polymer solid was collected by filtration. Further, it was washed 3 times with 2 L of water, and the collected polymer solid was dried with a vacuum dryer at 50 ° C. for 72 hours to obtain an acrylic resin.
  • MM methyl methacrylate
  • t-BM tert-
  • Example 2 Under a dry nitrogen stream, 57.4 g (0.095 mol) of the hydroxyl group-containing diamine obtained in Synthesis Example 1 and 1.24 g of 1,3-bis (3-aminopropyl) tetramethyldisiloxane (SiDA) (0. 005 mol) was dissolved in 200 g of NMP. ODPA 31.0g (0.1mol) was added here, and it stirred at 40 degreeC for 2 hours. Thereafter, a solution obtained by diluting 7.14 g (0.06 mol) of dimethylformamide dimethyl acetal (manufactured by Mitsubishi Rayon Co., Ltd., DFA) with 5 g of NMP was added dropwise over 10 minutes.
  • SiDA 1,3-bis (3-aminopropyl) tetramethyldisiloxane
  • Example 3 A varnish of a polyimide resin composition was prepared and evaluated in the same manner as in Example 2 except that 10 g of the polyimide powder obtained in Example 1 was added instead of the polyamic acid.
  • the transmittance was 95% before curing and 45% after curing. Accordingly, the change in transmittance was 50%.
  • the amount of film loss was very good at 0.1 ⁇ m or less.
  • Comparative Example 3 A novolak resin composition varnish was prepared and evaluated in the same manner as in Example 2 except that 10 g of novolak resin PSF2808 (manufactured by Gunei Chemical Co., Ltd.) was used instead of the polyamic acid.
  • the transmittance at 450 nm was 97% before curing and 88% after curing. Accordingly, the change in transmittance was 9%.
  • the transmission spectrum before and after curing is shown in FIG. It was found that the transmittance hardly decreased in the region of 400 nm or more after curing and was not colored in the visible light region. Moreover, when the chemical resistance of the cured film was evaluated, the film was completely dissolved.
  • Comparative Example 4 A varnish of the polyhydroxystyrene resin composition was prepared in the same manner as in Example 2 except that 10 g of polyhydroxystyrene resin Marcalinker S-2 (trade name, manufactured by Maruzen Petrochemical Co., Ltd.) was used instead of the polyamic acid.
  • the transmittance at 450 nm of the film before and after curing was 97% before curing and 91% after curing.
  • the change in transmittance was 6%.
  • the chemical resistance of the cured film was evaluated, the film was completely dissolved.
  • Example 4 Further, 4 g of the quinonediazide compound obtained in Synthesis Example 2 was dissolved in the varnish of Example 1 to obtain a varnish of a positive photosensitive polyimide resin composition. Using the obtained varnish, the film transmittance evaluation, chemical resistance evaluation, and sensitivity evaluation before and after curing were performed as described above. The transmittance at 450 nm was 95% before curing and 60% after curing. As a result, the change in transmittance was 35%. The sensitivity was 150 mJ / cm 2 . The amount of film reduction was 0.10 ⁇ m or less. A pattern of 10 ⁇ m or more remained.
  • Example 5 10 g of the polyamic acid obtained in Example 2 was weighed, 4 g of 1,7-dihydroxynaphthalene (manufactured by Tokyo Chemical Industry Co., Ltd.), 5 g of the alkoxymethyl group-containing compound (A-2) obtained in Synthesis Example 4, and Synthesis Example 4 g of the quinonediazide compound obtained in 2 was dissolved in 20 g of EL and 20 g of GBL to obtain a varnish of a positive photosensitive polyimide precursor composition. Using the obtained varnish, the film transmittance evaluation, chemical resistance evaluation, and sensitivity evaluation before and after curing were performed as described above. The transmittance at 450 nm was 90% before curing and 59% after curing. Accordingly, the change in transmittance was 31%. The sensitivity was 150 mJ / cm 2 . The amount of film reduction was 0.15 ⁇ m. A pattern of 10 ⁇ m or more remained.
  • Comparative Example 5 A varnish of a positive photosensitive polyimide precursor composition was prepared and evaluated in the same manner as in Example 5 except that 1-naphthol was used instead of 1,7-dihydroxynaphthalene.
  • the transmittance at 450 nm was as follows. , 90% before curing, 77% after curing. Accordingly, the change in transmittance was 13%.
  • the amount of film reduction was 0.20 ⁇ m.
  • the sensitivity was 300 mJ / cm 2 . Further, a pattern of 20 ⁇ m or more remained.
  • Comparative Example 6 A varnish of a positive photosensitive polyimide precursor composition was prepared and evaluated in the same manner as in Example 5 except that 2,7-dihydroxynaphthalene was used instead of 1,7-dihydroxynaphthalene.
  • the transmittance was 90% before curing and 74% after curing. As a result, the change in transmittance was 16%.
  • the amount of film reduction was 0.15 ⁇ m.
  • the sensitivity was 150 mJ / cm 2 . A pattern of 10 ⁇ m or more remained.
  • Example 6 Further, 0.5 g of 5-propylsulfonyloxyimino-5H-thiophene-2-methylphenyl-acetonitrile (trade name PAG-103, manufactured by Ciba Specialty Chemicals Co., Ltd.) was dissolved in the varnish of Example 5 as a thermal acid generator. Thus, a varnish of a positive photosensitive polyimide precursor composition was obtained. Using the obtained varnish, the film transmittance evaluation, chemical resistance evaluation, and sensitivity evaluation before and after curing were performed as described above. The transmittance at 450 nm was 90% before curing and 59% after curing. As a result, the decrease in transmittance was 31%. The sensitivity was 150 mJ / cm 2 . The amount of film reduction was 0.10 ⁇ m or less. A pattern of 10 ⁇ m or more remained.
  • PAG-103 5-propylsulfonyloxyimino-5H-thiophene-2-methylphenyl-acetonitrile
  • Example 7 In the varnish of Example 5, 0.5 g of the adhesion improver (B-1) obtained in Synthesis Example 6 was further dissolved to obtain a varnish of a positive photosensitive polyimide precursor composition. Using the obtained varnish, the film transmittance evaluation, chemical resistance evaluation, and sensitivity evaluation before and after curing were performed as described above. The transmittance at 450 nm was 90% before curing and 59% after curing. Accordingly, the change in transmittance was 31%. The sensitivity was 150 mJ / cm 2 . The amount of film reduction was 0.15 ⁇ m. A pattern of 3 ⁇ m or more remained.
  • Example 8 10 g of the polyamic acid obtained in Example 2 was weighed, 4 g of 2,3-dihydroxynaphthalene (manufactured by Tokyo Chemical Industry Co., Ltd.), and 5 g of the alkoxymethyl group-containing compound (A-2) obtained in Synthesis Example 4 were synthesized. 4 g of the quinonediazide compound obtained in Example 2 was dissolved in 20 g of EL and 20 g of GBL to obtain a varnish of a positive photosensitive polyimide precursor composition. Using the obtained varnish, the film transmittance evaluation, chemical resistance evaluation, and sensitivity evaluation before and after curing were performed as described above. The transmittance at 450 nm was 93% before curing and 63% after curing. As a result, the change in transmittance was 30%. The amount of film reduction was 0.15 ⁇ m. The sensitivity was 200 mJ / cm 2 . A pattern of 10 ⁇ m or more remained.
  • Example 9 Under a dry nitrogen stream, 18.3 g (0.05 mol) of BAHF was dissolved in 50 g of NMP and 26.4 g (0.3 mol) of glycidyl methyl ether, and the temperature of the solution was cooled to ⁇ 15 ° C. 7.4 g (0.025 mol) of diphenyl ether dicarboxylic acid dichloride (manufactured by Nippon Agricultural Chemicals Co., Ltd.) and 5.1 g (0.025 mol) of isophthalic acid chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) were dissolved in 25 g of GBL. The solution was added dropwise so that the internal temperature did not exceed 0 ° C.
  • Example 10 10 g of polyhydroxyamide obtained in Example 9, 1.5 g of 1,7-dihydroxynaphthalene, 0.5 g of WPAG-314 (trade name, manufactured by Wako Pure Chemical Industries, Ltd.), 5-propyl as a thermal acid generator Negative photosensitive polybenzoxazole by dissolving 0.5 g of sulfonyloxyimino-5H-thiophene-2-methylphenyl-acetonitrile (trade name PAG-103, manufactured by Ciba Specialty Chemicals) and 2 g of MW-30HM in 40 g of GBL A varnish of the precursor composition was obtained. As described above, the obtained varnish was subjected to film transmittance evaluation, chemical resistance evaluation and photosensitivity evaluation before and after curing.
  • WPAG-314 trade name, manufactured by Wako Pure Chemical Industries, Ltd.
  • PAG-103 sulfonyloxyimino-5H-thiophene-2-methylphenyl-acetonitrile
  • the transmittance at 450 nm was 95% before curing and 57% after curing. Accordingly, the change in transmittance was 38%.
  • the amount of film loss was 0.25 ⁇ m, and the sensitivity was 200 mJ / cm 2 . Further, a pattern of 20 ⁇ m or more remained.
  • Example 11 10 g of the polyimide obtained in Example 1, 5 g of 1,7-dihydroxynaphthalene, 4 g of the alkoxymethyl group-containing compound (A-3) obtained in Synthesis Example 5, ethylene oxide-modified bisphenol A dimethacrylate (Shin Nakamura Chemical Co., Ltd.) NK ester BPE-100) 2 g, trimethylolpropane triacrylate 0.5 g, 1,2-octanedione-1- [4- (phenylthio) -2- (O-benzoyloxime)] (Ciba Specialty) -Chemicals Co., Ltd.) 0.1g, EL20g, and GBL20g were added, and the varnish of the negative photosensitive polyimide resin composition was obtained.
  • the film transmittance evaluation, chemical resistance evaluation, and sensitivity evaluation before and after curing were performed as described above.
  • the transmittance at 450 nm was 94% before curing and 66% after curing. Accordingly, the change in transmittance was 28%.
  • the amount of film loss was 0.1 ⁇ m, and the sensitivity was 200 mJ / cm 2 . A pattern of 10 ⁇ m or more remained.
  • Tables 1 to 3 show the compositions and evaluation results of Examples 1 to 11 and Comparative Examples 1 to 6.
  • Example 12 A bottom gate type TFT was formed on a glass substrate, and a wiring (height: 1.0 ⁇ m) connected to the TFT was formed. An insulating film made of Si 3 N 4 was formed so as to cover the TFT and the wiring. Next, a contact hole was formed in this insulating film.
  • a flattening film was formed on the insulating film.
  • the planarization film is formed on the insulating film by spin-coating the varnish of the photosensitive polyimide precursor composition obtained in Example 5 on a substrate, prebaking on a hot plate at 120 ° C. for 3 minutes, and then exposing. The film was developed and heat-fired at 250 ° C. for 60 minutes under an air flow. The applicability when applying the varnish was good, and no wrinkles or cracks were observed in the cured film obtained after exposure, development and baking. Further, the average step of the wiring was 500 nm, and the thickness of the prepared planarization film was 2000 nm.
  • a top emission type organic EL element was formed on the obtained flattened film.
  • a lower electrode made of ITO was formed by sputtering by connecting to a wiring through a contact hole. Thereafter, a resist was applied, prebaked, exposed through a mask having a desired pattern, and developed. Using this resist pattern as a mask, pattern processing was performed by wet etching using an ITO etchant. Thereafter, the resist pattern was stripped using a resist stripping solution (mixed solution of monoethanolamine and DMSO). The lower electrode thus obtained corresponds to the anode of the organic EL element.
  • an insulating layer having a shape covering the periphery of the lower electrode was formed.
  • the varnish of the photosensitive polyimide precursor composition similarly obtained in Example 5 was used for the insulating layer.
  • the insulating layer was patterned, and heat treatment was performed at 250 ° C. for 60 minutes to form an insulating layer having appropriate absorption near a wavelength of 450 nm.
  • a hole transport layer, red, green, and blue organic light emitting layers and an electron transport layer were sequentially deposited through a desired pattern mask in a vacuum deposition apparatus.
  • an upper electrode made of Al was formed on the entire surface above the substrate. This corresponds to the cathode of the organic EL element.
  • substrate was taken out from the vapor deposition machine, and it sealed by bonding together using the glass substrate for sealing, and an ultraviolet curable epoxy resin.
  • Example 13 A bottom gate type TFT was formed on a glass substrate, and a wiring (height: 1.0 ⁇ m) connected to the TFT was formed. An insulating film made of Si 3 N 4 was formed so as to cover the TFT and the wiring. Next, a contact hole was formed in this insulating film. This wiring is for connecting an organic EL element formed between TFTs or an organic EL element formed in a later process and the TFT.
  • a lower electrode made of ITO was formed by sputtering by connecting to a wiring through a contact hole. Thereafter, a resist was applied, prebaked, exposed through a mask having a desired pattern, and developed. Using this resist pattern as a mask, pattern processing was performed by wet etching using an ITO etchant. Thereafter, the resist pattern was stripped using a resist stripping solution (mixed solution of monoethanolamine and DMSO). The lower electrode thus obtained corresponds to the anode of the organic EL element.
  • an insulating layer having a shape covering the peripheral edge of the lower electrode, the TFT, and the step of the wiring was formed.
  • the varnish of the photosensitive polyimide precursor composition obtained in the same manner as in Example 5 was spin-coated on the substrate, followed by drying under reduced pressure, prebaking at 120 ° C. for 3 minutes on a hot plate, and exposure. Then, it was developed and subjected to a baking process at 250 ° C. for 60 minutes under a nitrogen flow. The coatability when spin-coating the varnish was good, and no wrinkles or cracks were observed in the cured film obtained after exposure, development and baking. Further, the average step of the wiring was 500 nm, and the thickness of the manufactured insulating layer was 2000 nm. By providing this insulating layer, it is possible to prevent a short circuit between the lower electrode and the upper electrode formed in the subsequent process. In this way, an insulating layer having an appropriate absorption was formed in the vicinity of a wavelength of 450 nm.
  • a hole transport layer, red, green, and blue organic light emitting layers and an electron transport layer were sequentially deposited through a desired pattern mask in a vacuum deposition apparatus.
  • an upper electrode made of Al was formed on the entire surface above the substrate. This corresponds to the cathode of the organic EL element.
  • substrate was taken out from the vapor deposition machine, and it sealed by bonding together using the glass substrate for sealing, and an ultraviolet curable epoxy resin.
  • the resin composition of the present invention includes a surface protective film and interlayer insulating film for semiconductor elements, an insulating layer for organic EL elements, a planarizing film for driving TFT substrates of display devices using organic EL elements, and wiring protective insulation for circuit boards. It can be preferably used for applications such as films, on-chip microlenses for solid-state imaging devices, flattening films for various displays and solid-state imaging devices, solder resists for circuit boards, underfill agents, and cap agents that prevent copper migration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials For Photolithography (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明の樹脂組成物は、(a)ポリイミド、ポリベンゾオキサゾール、ポリイミド前駆体またはポリベンゾオキサゾール前駆体、(b)1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレンまたは2,3-ジヒドロキシナフタレンおよび(c)特定の構造を有する熱架橋剤を含有することを特徴とする樹脂組成物である。本発明の樹脂組成物により、硬化前の樹脂膜の透過率を維持しながら、硬化膜の可視光領域における透過率を低減することができる。

Description

樹脂組成物およびこれを用いた表示装置
 本発明は、樹脂組成物に関する。さらに詳しくは、半導体素子の表面保護膜や層間絶縁膜、有機エレクトロルミネッセンス(Electroluminescence:以下ELと記す)素子の絶縁層、有機EL素子を用いた表示装置の駆動用薄膜トランジスタ(Thin Film Transistor:以下TFTと記す)基板の平坦化膜、回路基板の配線保護絶縁膜、固体撮像素子のオンチップマイクロレンズや各種ディスプレイ・固体撮像素子用平坦化膜、回路基板用ソルダーレジストなどの用途に適した樹脂組成物に関する。
 ポリイミドやポリベンゾオキサゾールを含む組成物を硬化させて得られる硬化膜は、半導体素子や表示装置の絶縁膜や保護膜、平坦化膜などに広く使用されている。特に表示装置では、例えば有機ELディスプレイの絶縁層や液晶ディスプレイのブラックマトリクスなどの用途において、コントラストを向上させるために硬化膜の透過率を低くすることが求められる。また、表示装置の駆動用TFTへの光の進入による誤作動や、リーク電流などを防ぐために、有機ELディスプレイの絶縁層や有機ELディスプレイのTFT基板上に設けられる平坦化膜にも、透過率を低くすることが求められる。硬化膜において波長400nmより大きい可視光領域の透過率を低減させる技術としては、例えば、液晶ディスプレイ用ブラックマトリクス材料やRGBペースト材料などにみられるように、樹脂組成物にカーボンブラックや有機・無機顔料、染料などの着色剤を添加する方法が挙げられる。これら着色剤を含有する樹脂組成物は400~450nmの露光波長域に吸収があるため、光を膜底部にまで到達させて感光化するポジ型感光性樹脂組成物として用いることは困難であり、膜を表面から光硬化させるネガ型感光性樹脂組成物としての使用が一般的である。
 ポジ型感光性樹脂組成物において硬化膜の透過率を低減させる技術としては、例えば、アルカリ可溶性樹脂、キノンジアジド化合物、およびロイコ色素と顕色剤などの発色組成物を含有するポジ型放射線性樹脂組成物(例えば、特許文献1参照)、熱を加えると黒色になる感熱性材料が予め添加されている感光性樹脂(例えば、特許文献2参照)、アルカリ可溶性樹脂、キノンジアジド化合物、加熱により発色し350nm以上700nm以下に吸収極大を示す熱発色性化合物および350nm以上500nm未満に吸収極大をもたず500nm以上750nm以下に吸収極大を持つ化合物を含むポジ型感光性樹脂組成物(例えば、特許文献3参照)などがある。これらは、熱などのエネルギーにより発色する発色性化合物を用いることにより、硬化前の樹脂膜の露光波長域における透過率を高く保ちながら、硬化膜の透過率を低減させる技術である。そのため樹脂組成物にポジ型、ネガ型両方の感光性を付与することができ、汎用性が高い。
特開2008-122501号公報 特開平10-170715号公報 米国特許出願公開第2004/197703号明細書
 発色性化合物は、それ自体が熱により分子内構造変化を起こして、特定波長領域に吸収を発現するものである。最近では、さらに汎用性を高めるため、発色性化合物だけでなく、他の手段によって露光波長域に吸収を発現できる樹脂組成物が望まれている。そこで本発明は、特定の化合物の組み合わせにより、硬化前の樹脂膜の透過率を維持しながら、硬化膜の可視光領域における透過率を低減することができる樹脂組成物を提供することを目的とする。
 すなわち本発明は、(a)ポリイミド、ポリベンゾオキサゾール、ポリイミド前駆体またはポリベンゾオキサゾール前駆体、(b)1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレンまたは2,3-ジヒドロキシナフタレンおよび(c)下記一般式(1)で表される構造を有する熱架橋剤または下記一般式(2)で表される基を有する熱架橋剤を含有することを特徴とする樹脂組成物である。
Figure JPOXMLDOC01-appb-C000002
 上記一般式(1)中、Rは2~4価の連結基を示す。Rは炭素数1~20の1価の有機基、Cl、Br、IまたはFを示す。RおよびRは、CHOR(Rは水素原子または炭素数1~6の1価の炭化水素基)を示す。Rは水素原子、メチル基またはエチル基を示す。sは0~2の整数、uは2~4の整数を示す。
  -N(CHOR(H) (2)
 上記一般式(2)中、Rは水素原子または炭素数1~6の1価の炭化水素基を示す。tは1または2、vは0または1を示す。ただし、t+vは1または2である。
 本発明によれば、硬化前の樹脂膜の透過率を維持しながら、硬化膜の可視光領域における透過率を低減させることのできる樹脂組成物を得ることができる。
平坦化膜と絶縁層を形成したTFT基板の断面図 絶縁層を形成したTFT基板の断面図 実施例2の樹脂組成物の硬化前後の透過スペクトル 比較例3の樹脂組成物の硬化前後の透過スペクトル
 本発明の樹脂組成物は、(a)ポリイミド、ポリベンゾオキサゾール、ポリイミド前駆体またはポリベンゾオキサゾール前駆体、(b)1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレンまたは2,3-ジヒドロキシナフタレンおよび(c)前記一般式(1)で表される構造を有する熱架橋剤または前記一般式(2)で表される基を有する熱架橋剤を含有する。(a)成分の樹脂に対して(b)成分と(c)成分を組み合わせることにより、硬化膜を400~450nmにおいて発色させ、可視光領域における透過率を大幅に低減することができる。(a)~(c)の3つの成分のうちいずれが欠けても、目的とする400~450nmにおける発色は困難である。以下に、各成分について説明する。
 本発明の樹脂組成物は、(a)ポリイミド、ポリベンゾオキサゾール、ポリイミド前駆体またはポリベンゾオキサゾール前駆体を含有する。これらを2種以上含有してもよいし、これらの2種以上の繰り返し単位を有する共重合体を含有してもよい。
 ポリイミドおよびポリベンゾオキサゾールは、主鎖にイミド環またはオキサゾール環の環状構造を有する樹脂である。繰り返し単位の繰り返し数は10~100000が好ましい。
 ポリイミドは、テトラカルボン酸や対応するテトラカルボン酸二無水物、テトラカルボン酸ジエステルジクロリドなどと、ジアミンや対応するジイソシアネート化合物、トリメチルシリル化ジアミンを反応させることにより得ることができ、テトラカルボン酸残基とジアミン残基を有する。例えば、テトラカルボン酸二無水物とジアミンを反応させて得られるポリイミド前駆体の1つであるポリアミド酸を、加熱処理や化学処理により脱水閉環することにより得ることができる。加熱処理時、m-キシレンなどの水と共沸する溶媒を加えてもよい。また、弱酸性のカルボン酸化合物を加えて100℃以下の低温で加熱処理してもよい。化学処理に用いられる閉環触媒としては、カルボン酸無水物やジシクロヘキシルカルボジイミド等の脱水縮合剤や、トリエチルアミン等の塩基などを挙げることができる。ポリイミド前駆体については後述する。
 ポリベンゾオキサゾールは、ビスアミノフェノール化合物と、ジカルボン酸や対応するジカルボン酸クロリド、ジカルボン酸活性エステルなどを反応させることにより得ることができ、ジカルボン酸残基とビスアミノフェノール残基を有する。例えば、ビスアミノフェノール化合物とジカルボン酸を反応させて得られるポリベンゾオキサゾール前駆体の1つであるポリヒドロキシアミドを、加熱処理や化学処理により脱水閉環することにより得ることができる。加熱処理時、m-キシレンなどの水と共沸する溶媒を加えてもよい。また、酸性化合物を加えて200℃以下の低温で加熱処理してもよい。化学処理に用いられる閉環触媒としては、無水リン酸、塩基、カルボジイミド化合物などを挙げることができる。ポリベンゾオキサゾール前駆体については後述する。
 本発明において、アルカリ水溶液に対する溶解性の観点から、ポリイミドは、テトラカルボン酸残基またはジアミン残基にOR、SO、CONR、COOR、SONRなどの酸性基または酸性基誘導体を有することが好ましく、水酸基を有することがより好ましい。また、ポリベンゾオキサゾールは、ジカルボン酸残基またはビスアミノフェノール残基にOR、SO、CONR、COOR、SONRなどの酸性基または酸性基誘導体を有することが好ましく、水酸基を有することがより好ましい。RおよびRは水素原子または炭素数1~20の1価の有機基を示す。なお、酸性基とはRまたはRが全て水素原子となる場合を指し、酸性基誘導体とはRまたはRに炭素数1~20の1価の有機基が含まれる場合を指す。
 本発明において、ポリイミドのテトラカルボン酸残基およびポリベンゾオキサゾールのジカルボン酸残基(以下、これらをあわせて酸残基という)の好ましい構造として、次のような構造、またはこれらの水素原子を炭素数1~20のアルキル基、フルオロアルキル基、アルコキシル基、エステル基、ニトロ基、シアノ基、フッ素原子、塩素原子により1~4個置換した構造などが挙げられる。これらを2種以上用いてもよい。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 ただし、Jは直接結合、-COO-、-CONH-、-CH-、-C-、-O-、-C-、-SO-、-S-、-Si(CH-、-O-Si(CH-O-、-C-、-C-O-C-、-C-C-C-または-C-C-C-を示す。
 本発明において、ポリイミドのジアミン残基およびポリベンゾオキサゾールのビスアミノフェノール残基(以下、これらをあわせてアミン残基という)の好ましい構造として、次のような構造、またはこれらの水素原子を炭素数1~20のアルキル基、フルオロアルキル基、アルコキシル基、エステル基、ニトロ基、シアノ基、フッ素原子、塩素原子により1~4個置換した構造などが挙げられる。これらを2種以上用いてもよい。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 ただし、Jは直接結合、-COO-、-CONH-、-CH-、-C-、-O-、-C-、-SO-、-S-、-Si(CH-、-O-Si(CH-O-、-C-、-C-O-C-、-C-C-C-または-C-C-C-を示す。Rは水素原子または炭素数1~20の1価の有機基を示す。
 本発明に用いられる(a)成分のうち、ポリイミド前駆体、ポリベンゾオキサゾール前駆体は、主鎖にアミド結合を有する樹脂であり、加熱処理や化学処理で脱水閉環することにより、前述のポリイミド、ポリベンゾオキサゾールとなる。繰り返し単位の繰り返し数は10~100000が好ましい。ポリイミド前駆体としては、ポリアミド酸、ポリアミド酸エステル、ポリアミド酸アミド、ポリイソイミドなどを挙げることができ、ポリアミド酸、ポリアミド酸エステルが好ましい。ポリベンゾオキサゾール前駆体としては、ポリヒドロキシアミド、ポリアミノアミド、ポリアミド、ポリアミドイミドなどを挙げることができ、ポリヒドロキシアミドが好ましい。ポリイミド前駆体およびポリベンゾオキサゾール前駆体は、アルカリ水溶液に対する溶解性の観点から、酸残基またはアミン残基にOR、SO、CONR、COOR、SONRなどの酸性基または酸性基誘導体を有することが好ましく、水酸基を有することがより好ましい。RおよびRは水素原子または炭素数1~20の1価の有機基を示す。なお、酸性基とはRまたはRが全て水素原子となる場合を指し、酸性基誘導体とはRまたはRに炭素数1~20の1価の有機基が含まれる場合を指す。
 ポリイミド前駆体およびポリベンゾオキサゾール前駆体の酸残基を構成する酸成分としては、ジカルボン酸の例として、テレフタル酸、イソフタル酸、ジフェニルエーテルジカルボン酸、ビス(カルボキシフェニル)ヘキサフルオロプロパン、ビフェニルジカルボン酸、ベンゾフェノンジカルボン酸、トリフェニルジカルボン酸などを挙げることができる。トリカルボン酸の例として、トリメリット酸、トリメシン酸、ジフェニルエーテルトリカルボン酸、ビフェニルトリカルボン酸などを挙げることができる。テトラカルボン酸の例として、ピロメリット酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、2,2’,3,3’-ビフェニルテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、2,2’,3,3’-ベンゾフェノンテトラカルボン酸、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン、2,2-ビス(2,3-ジカルボキシフェニル)ヘキサフルオロプロパン、1,1-ビス(3,4-ジカルボキシフェニル)エタン、1,1-ビス(2,3-ジカルボキシフェニル)エタン、ビス(3,4-ジカルボキシフェニル)メタン、ビス(2,3-ジカルボキシフェニル)メタン、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)エーテル、1,2,5,6-ナフタレンテトラカルボン酸、2,3,6,7-ナフタレンテトラカルボン酸、2,3,5,6-ピリジンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸などの芳香族テトラカルボン酸や、ブタンテトラカルボン酸、シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸、シクロヘキサンテトラカルボン酸、ビシクロ[2.2.1.]ヘプタンテトラカルボン酸、ビシクロ[3.3.1.]テトラカルボン酸、ビシクロ[3.1.1.]ヘプト-2-エンテトラカルボン酸、ビシクロ[2.2.2.]オクタンテトラカルボン酸、アダマタンテトラカルボン酸などの脂肪族テトラカルボン酸などを挙げることができる。これらを2種以上用いてもよい。また、上に例示したジカルボン酸、トリカルボン酸またはテトラカルボン酸の水素原子を、OR、SO、CONR、COOR、SONRなどの酸性基または酸性基誘導体、好ましくは水酸基やスルホン酸基、スルホン酸アミド基、スルホン酸エステル基などで1~4個置換したものがより好ましい。
 これらの酸は、そのまま、あるいは酸無水物や活性エステルとして使用できる。
 また、ジメチルシランジフタル酸、1,3-ビス(フタル酸)テトラメチルジシロキサンなどのシリコン原子含有テトラカルボン酸を用いることにより、基板に対する接着性や、洗浄などに用いられる酸素プラズマ、UVオゾン処理に対する耐性を高めることができる。これらシリコン原子含有テトラカルボン酸は、全酸成分の1~30モル%用いることが好ましい。
 ポリイミド前駆体およびポリベンゾオキサゾール前駆体のアミン残基を構成するジアミン成分の例としては、ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)メチレン、ビス(3-アミノ-4-ヒドロキシフェニル)エーテル、ビス(3-アミノ-4-ヒドロキシ)ビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)フルオレンなどのヒドロキシル基含有ジアミン、3,5-ジアミノ安息香酸、3-カルボキシ-4,4’-ジアミノジフェニルエーテルなどのカルボキシル基含有ジアミン、3-スルホン酸-4,4’-ジアミノジフェニルエーテルなどのスルホン酸含有ジアミン、ジチオヒドロキシフェニレンジアミン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルヒド、4,4’-ジアミノジフェニルスルヒド、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジン、m-フェニレンジアミン、p-フェニレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ビス(4-アミノフェノキシフェニル)スルホン、ビス(3-アミノフェノキシフェニル)スルホン、ビス(4-アミノフェノキシ)ビフェニル、ビス{4-(4-アミノフェノキシ)フェニル}エーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジエチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジエチル-4,4’-ジアミノビフェニル、2,2’,3,3’-テトラメチル-4,4’-ジアミノビフェニル、3,3’,4,4’-テトラメチル-4,4’-ジアミノビフェニル、2,2’-ジ(トリフルオロメチル)-4,4’-ジアミノビフェニル、あるいはこれらの芳香族環の水素原子の一部をアルキル基やハロゲン原子で置換した化合物や、シクロヘキシルジアミン、メチレンビスシクロヘキシルアミンなどの脂肪族ジアミンなどを挙げることができる。さらにこれらのジアミンは、メチル基、エチル基などの炭素数1~10のアルキル基、トリフルオロメチル基などの炭素数1~10のフルオロアルキル基、F、Cl、Br、Iなどの基で置換されていてもよい。これらを2種以上用いてもよい。耐熱性が要求される用途では、芳香族ジアミンをジアミン全体の50モル%以上使用することが好ましい。また、上に例示したジアミンは、OR、SO、CONR、COOR、SONRなどの酸性基または酸性基誘導体を有することが好ましく、水酸基を有することがより好ましい。
 これらのジアミンは、そのまま、あるいは対応するジイソシアネート化合物やトリメチルシリル化ジアミンとして使用できる。
 また、ジアミン成分として、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、1,3-ビス(4-アニリノ)テトラメチルジシロキサンなどのシリコン原子含有ジアミンを用いることにより、基板に対する接着性や、洗浄などに用いられる酸素プラズマ、UVオゾン処理に対する耐性を高めることができる。これらシリコン原子含有ジアミンは、全ジアミン成分の1~30モル%用いることが好ましい。
 また、ポリイミド、ポリベンゾオキサゾール、ポリイミド前駆体、ポリベンゾオキサゾール前駆体の末端を、水酸基、カルボキシル基、スルホン酸基またはチオール基を有するモノアミン、酸無水物、酸クロリドまたはモノカルボン酸により封止することが好ましい。これらを2種以上用いてもよい。樹脂末端に前述の基を有することにより、樹脂のアルカリ水溶液に対する溶解速度を好ましい範囲に容易に調整することができる。
 モノアミンの好ましい例としては、5-アミノ-8-ヒドロキシキノリン、1-ヒドロキシ-7-アミノナフタレン、1-ヒドロキシ-6-アミノナフタレン、1-ヒドロキシ-5-アミノナフタレン、1-ヒドロキシ-4-アミノナフタレン、2-ヒドロキシ-7-アミノナフタレン、2-ヒドロキシ-6-アミノナフタレン、2-ヒドロキシ-5-アミノナフタレン、1-カルボキシ-7-アミノナフタレン、1-カルボキシ-6-アミノナフタレン、1-カルボキシ-5-アミノナフタレン、2-カルボキシ-7-アミノナフタレン、2-カルボキシ-6-アミノナフタレン、2-カルボキシ-5-アミノナフタレン、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノベンゼンスルホン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸、3-アミノ-4,6-ジヒドロキシピリミジン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、2-アミノチオフェノール、3-アミノチオフェノール、4-アミノチオフェノールなどを挙げることができる。
 酸無水物、モノ酸クロリド、モノカルボン酸、モノ活性エステル化合物の好ましい例としては、無水フタル酸、無水マレイン酸、ナジック酸、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物などの酸無水物、3-カルボキシフェノール、4-カルボキシフェノール、3-カルボキシチオフェノール、4-カルボキシチオフェノール、1-ヒドロキシ-7-カルボキシナフタレン、1-ヒドロキシ-6-カルボキシナフタレン、1-ヒドロキシ-5-カルボキシナフタレン、1-メルカプト-7-カルボキシナフタレン、1-メルカプト-6-カルボキシナフタレン、1-メルカプト-5-カルボキシナフタレン、3-カルボキシベンゼンスルホン酸、4-カルボキシベンゼンスルホン酸などのモノカルボン酸類およびこれらのカルボキシル基が酸クロリド化したモノ酸クロリド化合物、テレフタル酸、フタル酸、マレイン酸、シクロヘキサンジカルボン酸、1,5-ジカルボキシナフタレン、1,6-ジカルボキシナフタレン、1,7-ジカルボキシナフタレン、2,6-ジカルボキシナフタレンなどのジカルボン酸類の1つのカルボキシル基だけが酸クロリド化したモノ酸クロリド化合物、モノ酸クロリド化合物とN-ヒドロキシベンゾトリアゾールやN-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドとの反応により得られるモノ活性エステル化合物などを挙げることができる。
 上記したモノアミン、酸無水物、酸クロリド、モノカルボン酸などの末端封止剤の含有量は、酸残基を構成する酸成分モノマーまたはジアミン残基を構成するジアミン成分モノマーの仕込みモル数の0.1~60モル%の範囲が好ましく、5~50モル%がより好ましい。このような範囲とすることで、樹脂組成物を塗布する際の溶液の粘性が適度で、かつ優れた膜物性を有した樹脂組成物を得ることができる。
 また、樹脂の末端に重合性官能基を有してもよい。重合性官能基の例としては、エチレン性不飽和結合基、アセチレン基、メチロール基、アルコキシメチル基などが挙げられる。
 樹脂中に導入された末端封止剤は、以下の方法で容易に検出できる。例えば、末端封止剤が導入された樹脂を、酸性溶液に溶解し、樹脂の構成単位であるアミン成分と酸成分に分解し、これをガスクロマトグラフィー(GC)や、NMR測定することにより、末端封止剤を容易に検出できる。これとは別に、末端封止剤が導入された樹脂を直接、熱分解ガスクロマトグラフ(PGC)や赤外スペクトルおよび13CNMRスペクトル測定で検出することが可能である。
 本発明において、(a)成分としてはポリイミド前駆体またはポリベンゾオキサゾール前駆体が好ましく、より好ましくはポリイミド前駆体である。ポリイミド前駆体は約200℃における硬化焼成によりアミド酸部位が閉環するイミド化反応を進行し、ポリベンゾオキサゾール前駆体は約300℃における硬化焼成によりヒドロキシアミド部位が閉環するオキサゾール化反応を進行し、耐薬品性が飛躍的に向上する。これよりポリイミド前駆体の方がより低温の焼成温度で耐薬品性を得ることができる。また硬化焼成時に体積収縮する性質を有するこれら前駆体樹脂を用いた感光性樹脂組成物は、露光・現像工程により微細パターンを得た後、焼成することにより、順テーパー形状のパターンを得ることができる。この順テーパー形状パターンは、有機EL素子の絶縁膜として用いる際に上部電極の被覆性に優れ、断線を防止し素子の信頼性を高めることができる。
 本発明の樹脂組成物は、(a)成分以外のアルカリ可溶性樹脂を含有してもよい。アルカリ可溶性樹脂とは、アルカリに可溶となる酸性基を有する樹脂を言い、具体的にはアクリル酸を有するラジカル重合性ポリマー、フェノール-ノボラック樹脂、ポリヒドロキシスチレン、ポリシロキサンなどが挙げられる。また、これら樹脂の酸性基を保護してアルカリ溶解性を調節してもよい。このような樹脂は、テトラメチルアンモニウムヒドロキシド以外に、コリン、トリエチルアミン、ジメチルアミノピリジン、モノエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムなどのアルカリの水溶液に溶解するものである。これらの樹脂を2種以上含有してもよいが、(a)成分を含む樹脂全体に占める割合は50重量%以下が好ましい。
 本発明の樹脂組成物は、(b)1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレンまたは2,3-ジヒドロキシナフタレンを含有する。これらを2種以上含有してもよい。水酸基を2個有することで、水酸基を1個有する場合に比べアルカリ現像性に優れ、感度を向上させることができる。また、縮合多環構造であるナフタレン構造は、単環化合物に比べ電子密度が高く、水酸基を2個有することで、さらに電子密度が高まり、後述する(c)熱架橋剤の求電子付加反応を効果的に起こすことができる。また、架橋反応形成後にπ電子の共役が2方向以上に広がり着色しやすいことから、後述する(c)熱架橋剤と組み合わせることにより、硬化膜の可視光領域における透過率を大幅に低減することができる。このような効果は、水酸基を1,5-位、1,6-位、1,7-位または2,3-位に有する場合に特に顕著となる。さらに、(c)熱架橋剤と前記(a)成分との架橋反応により、(b)成分の化合物を耐熱性に優れた(a)成分に定着させることができ、硬化膜の耐薬品性を高めることができる。
 本発明の樹脂組成物は(b)1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレンまたは2,3-ジヒドロキシナフタレンに加えて、他の水酸基を2個以上有する縮合多環芳香族化合物を含有することもできる。
 水酸基を2個以上有する縮合多環芳香族化合物の骨格構造としては、ペンタレン、インデン、ナフタレン、アズレン、ヘプタレン、オクタレンなどの炭素縮合二環系、as-インダセン、s-インダセン、ビフェニレン、アセナフチレン、フルオレン、フェナントレン、アントラセンなどの炭素縮合三環系、トリンデン、フルオランテン、アセフェナントリレン、アセアントリレン、トリフェニレン、ピレン、クリセン、テトラフェン、ナフタセンなどの炭素縮合四環系、ピセン、ペリレン、ペンタフェン、ペンタセン、テトラフェニレンなどの炭素縮合五環系などが挙げられる。また、前記炭素縮合多環芳香族化合物の一部の炭素原子に替えて窒素、硫黄または酸素原子を含むヘテロ環構造であってもよい。縮合多環芳香族ヘテロ化合物としては、ベンゾフラン、ベンゾチオフェン、インドール、ベンゾイミダソール、ベンゾチアゾール、プリン、キノリン、イソキノリン、シノリン、キノキサリンなどの縮合ヘテロ二環系、ジベンゾフラン、カルバゾール、アクリジン、1,10-フェナントロリンなどの縮合ヘテロ三環系などが挙げられる。水酸基を2個以上有する縮合多環芳香族化合物としては、上に例示する骨格を有する化合物の水素原子の一部を2個以上の水酸基で置換したものが好ましい。
 水酸基を2個以上有する縮合多環芳香族化合物の具体例としては、1,4-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、1,8-ジヒドロキシナフタレン、2,4-ジヒドロキシキノリン、2,6-ジヒドロキシキノリン、2,3-ジヒドロキシキノキサリン、アントラセン-1,2,10-トリオール、アントラセン-1,8,9-トリオールなどが挙げられる。
 本発明の樹脂組成物において、(b)1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレンまたは2,3-ジヒドロキシナフタレンの含有量は、(a)成分の樹脂100重量部に対して、5重量部以上が好ましく、10重量部以上がより好ましい。また、120重量部以下が好ましく、100重量部以下がより好ましい。(b)成分の含有量が5重量部以上であれば、硬化膜の可視光領域における透過率をより低減することができる。また、120重量部以下であれば、硬化膜の強度を維持し、吸水率を低減することができる。なお、(a)成分または(b)成分を2種以上含有する場合は、それらの総量が上記範囲であることが好ましい。
 本発明の樹脂組成物は、(c)下記一般式(1)で表される構造を有する熱架橋剤または下記一般式(2)で表される基を有する熱架橋剤を含有する。これらを2種以上含有してもよい。(c)成分の熱架橋剤は、(a)ポリイミド、ポリベンゾオキサゾール、ポリイミド前駆体またはポリベンゾオキサゾール前駆体と(b)1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレンまたは2,3-ジヒドロキシナフタレンのそれぞれに架橋し、(a)(b)(c)の3成分をつなぎ合わせることで可視光領域の透過率を大幅に低減することができる。また、架橋反応により硬化膜の耐薬品性を高めることができる。
Figure JPOXMLDOC01-appb-C000007
 上記一般式(1)中、Rは2~4価の連結基を示す。Rは炭素数1~20の1価の有機基、Cl、Br、IまたはFを示す。炭素数1~20の1価の有機基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基などの炭素数1~6の1価の炭化水素基が好ましい。RおよびRは、CHOR(Rは水素原子または炭素数1~6の1価の炭化水素基)を示す。Rは水素原子、メチル基またはエチル基を示す。sは0~2の整数、uは2~4の整数を示す。複数のR~Rはそれぞれ同じでも異なってもよい。連結基Rの例を下に示す。
Figure JPOXMLDOC01-appb-C000008
 上記式中、R~R27は水素原子、炭素数1~20の1価の有機基、Cl、Br、IまたはFを示す。炭素数1~20の1価の有機基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基、ベンジル基、ナフチル基などが好ましい。
 -N(CHOR(H)  (2)
 上記一般式(2)中、Rは水素原子または炭素数1~6の1価の炭化水素基を示す。tは1または2、vは0または1を示す。ただし、t+vは1または2である。
 上記一般式(1)中、RおよびRは、熱架橋基であるCHOR(Rは水素原子または炭素数1~6の1価の炭化水素基)を表している。適度な反応性を残し、保存安定性に優れることから、Rは炭素数1~4の1価の炭化水素基が好ましい。また、光酸発生剤や光重合開始剤などを含む感光性樹脂組成物においては、Rはメチル基またはエチル基がより好ましい。
 一般式(1)で表される熱架橋剤において、一分子中に占める熱架橋基の官能基数は4~8である。官能基数が4未満であると、硬化後の樹脂組成物を適度に着色することができず、硬化膜の可視光領域における透過率を低減することができない。一方、官能基数が8を超えると高純度のものを得ることが困難であり、また化合物自体の安定性や樹脂組成物における保存安定性が低下する。
 一般式(1)で表される構造を有する化合物の純度は、75%以上が好ましく、85%以上がより好ましい。純度が85%以上であれば、保存安定性に優れ、樹脂組成物の架橋反応を十分に行い硬化後の着色性に優れ、硬化膜の可視光領域における透過率をより低減することができる。また吸水性基となる未反応基を少なくすることができるため、樹脂組成物の吸水性を小さくすることができる。高純度の熱架橋剤を得る方法としては、再結晶、蒸留などが挙げられる。熱架橋剤の純度は液体クロマトグラフィー法により求めることができる。
 一般式(1)で表される構造を有する熱架橋剤の好ましい例を下記に示す。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 一般式(2)中、Rは水素原子または炭素数1~6の1価の炭化水素基であるが、炭素数1~4の1価の炭化水素基が好ましい。また、化合物の安定性や樹脂組成物における保存安定性の観点から、光酸発生剤や光重合開始剤などを含む感光性樹脂組成物においては、Rはメチル基またはエチル基が好ましく、化合物中に含まれる(CHOR)基の数が8以下であることが好ましい。
 一般式(2)で表される基を有する熱架橋剤の好ましい例を下記に示す。
Figure JPOXMLDOC01-appb-C000011
 (c)一般式(1)で表される構造を有する熱架橋剤または一般式(2)で表される基を有する熱架橋剤の含有量は、(a)成分の樹脂100重量部に対して5重量部以上が好ましく、10重量部以上がより好ましい。また、120重量部以下が好ましく、100重量部以下がより好ましい。(c)成分の含有量が5重量部以上であれば、硬化膜の可視光領域における透過率をより低減することができる。また、120重量部以下であれば、硬化膜の強度が高く、樹脂組成物の保存安定性にも優れる。なお、(a)成分または(c)成分を2種以上含有する場合は、それらの総量が上記範囲であることが好ましい。
 本発明の樹脂組成物は、さらに(d)光酸発生剤や、(e)光重合開始剤および(f)エチレン性不飽和結合を2個以上有する化合物を含有してもよく、ポジ型やネガ型の感光性を付与することができる。
 本発明の樹脂組成物に(d)光酸発生剤を含有することで、光照射部に酸が発生して光照射部のアルカリ水溶液に対する溶解性が増大し、光照射部が溶解するポジ型のレリーフパターンを得ることができる。また、(d)光酸発生剤とエポキシ化合物を含有することで、光照射部に発生した酸がエポキシ化合物の反応を促進し、光照射部が不溶化するネガ型のレリーフパターンを得ることができる。
 (d)光酸発生剤としては、キノンジアジド化合物、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩、ヨードニウム塩などが挙げられる。
 キノンジアジド化合物としては、ポリヒドロキシ化合物にキノンジアジドのスルホン酸がエステルで結合したもの、ポリアミノ化合物にキノンジアジドのスルホン酸がスルホンアミド結合したもの、ポリヒドロキシポリアミノ化合物にキノンジアジドのスルホン酸がエステル結合および/またはスルホンアミド結合したものなどが挙げられる。これらポリヒドロキシ化合物やポリアミノ化合物の官能基全体の50モル%以上がキノンジアジドで置換されていることが好ましい。また、(d)光酸発生剤を2種以上含有することが好ましく、高感度な感光性樹脂組成物を得ることができる。
 本発明において、キノンジアジド化合物は5-ナフトキノンジアジドスルホニル基、4-ナフトキノンジアジドスルホニル基のいずれを有するものも好ましく用いられる。4-ナフトキノンジアジドスルホニルエステル化合物は水銀灯のi線領域に吸収を持っており、i線露光に適している。5-ナフトキノンジアジドスルホニルエステル化合物は水銀灯のg線領域まで吸収が伸びており、g線露光に適している。本発明においては、露光する波長によって4-ナフトキノンジアジドスルホニルエステル化合物、5-ナフトキノンジアジドスルホニルエステル化合物を選択することが好ましい。また、同一分子中に4-ナフトキノンジアジドスルホニル基、5-ナフトキノンジアジドスルホニル基を有するナフトキノンジアジドスルホニルエステル化合物を含有してもよいし、4-ナフトキノンジアジドスルホニルエステル化合物と5-ナフトキノンジアジドスルホニルエステル化合物を含有してもよい。
 (d)光酸発生剤のうち、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩は、露光によって発生した酸成分を適度に安定化させるため好ましい。中でもスルホニウム塩が好ましい。
 本発明において、(d)光酸発生剤の含有量は、高感度化の観点から、(a)成分の樹脂100重量部に対して、好ましくは0.01~50重量部である。このうち、キノンジアジド化合物は3~40重量部の範囲が好ましい。また、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩の総量は0.5~20重量部の範囲が好ましい。さらに増感剤などを必要に応じて含有することもできる。なお、(d)成分を2種以上含有する場合は、それらの総量が上記範囲であることが好ましい。
 本発明の感光性樹脂組成物に、(e)光重合開始剤および(f)エチレン性不飽和結合を2個以上有する化合物を含有することもできる。光照射部に発生した活性ラジカルがエチレン性不飽和結合のラジカル重合を進行させ、光照射部が不溶化するネガ型のレリーフパターンを得ることができる。
 (e)光重合開始剤としては、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトン、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4,4-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アルキル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、4-ベンゾイル-N,N-ジメチル-N-[2-(1-オキソ-2-プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4-ベンゾイルベンジル)トリメチルアンモニウムクロリド、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロペンアミニウムクロリド一水塩、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、2-ヒドロキシ-3-(3,4-ジメチル-9-オキソ-9H-チオキサンテン-2-イロキシ)-N,N,N-トリメチル-1-プロパナミニウムクロリド、2,4,6-トリメチルベンゾイルフェニルホスフィンオキサイド、1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)、2,2’-ビス(o-クロロフェニル)-4,5,4’,5’-テトラフェニル-1,2-ビイミダゾール、10-ブチル-2-クロロアクリドン、2-エチルアンスラキノン、ベンジル、9,10-フェナンスレンキノン、カンファーキノン、メチルフェニルグリオキシエステル、η5-シクロペンタジエニル-η6-クメニル-アイアン(1+)-ヘキサフルオロフォスフェイト(1-)、ジフェニルスルフィド誘導体、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、4,4-ビス(ジメチルアミノ)ベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、4-ベンゾイル-4-メチルフェニルケトン、ジベンジルケトン、フルオレノン、2,3-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニル-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、p-t-ブチルジクロロアセトフェノン、ベンジルメトキシエチルアセタール、アントラキノン、2-t-ブチルアントラキノン、2-アミノアントラキノン、β-クロルアントラキノン、アントロン、ベンズアントロン、ジベンズスベロン、メチレンアントロン、4-アジドベンザルアセトフェノン、2,6-ビス(p-アジドベンジリデン)シクロヘキサン、2,6-ビス(p-アジドベンジリデン)-4-メチルシクロヘキサノン、2-フェニル-1,2-ブタジオン-2-(o-メトキシカルボニル)オキシム、1,3-ジフェニルプロパントリオン-2-(o-エトキシカルボニル)オキシム、ナフタレンスルフォニルクロライド、キノリンスルホニルクロライド、N-フェニルチオアクリドン、4,4-アゾビスイソブチロニトリル、ベンズチアゾールジスルフィド、トリフェニルホスフィン、四臭素化炭素、トリブロモフェニルスルホン、過酸化ベンゾイルおよびエオシン、メチレンブルーなどの光還元性の色素とアスコルビン酸、トリエタノールアミンなどの還元剤の組み合わせなどが挙げられる。これらを2種以上含有してもよい。
 本発明において、(e)光重合開始剤の含有量は、(a)成分の樹脂100重量部に対して、0.1~20重量部が好ましい。0.1重量部以上であれば、光照射により十分なラジカルが発生し、感度が向上する。また、20重量部以下であれば、過度なラジカルの発生による光未照射部の硬化がなく、アルカリ現像性が向上する。なお、(e)成分を2種以上含有する場合は、それらの総量が上記範囲であることが好ましい。
 (f)エチレン性不飽和結合を2個以上有する化合物として、エチレングリコールジメタクリレート、エチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、エトキシ化ビスフェノールAジメタクリレート、グリセリンジメタクリレート、トリプロピレングリコールジメタクリレート、ブタンジオールジメタクリレート、グリセリントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、エトキシ化イソシアヌール酸トリアクリレートなどのアクリルモノマーを挙げることができる。これらを2種以上含有してもよい。
 本発明において、(f)エチレン性不飽和結合を2個以上有する化合物の含有量は、(a)成分の樹脂100重量部に対して1重量部以上が好ましく、5重量部以上がより好ましい。また、100重量部以下が好ましく、50重量部以下がより好ましい。なお、(f)成分を2種以上含有する場合は、それらの総量が上記範囲であることが好ましい。
 また、溶解性の調整などのためにエチレン性不飽和結合を1個だけ有する化合物を、(a)成分の樹脂100重量部に対して1~50重量部含有してもよい。このような化合物の例として、アクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチル、アクリル酸ブチル、ヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレート、ジメチルアクリルアミド、ジメチルアミノエチルメタクリレート、アクリロイルモロフォリン、1-ヒドロキシエチルα-クロロアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルα-クロロアクリレート、1-ヒドロキシプロピルメタクリレート、1-ヒドロキシプロピルアクリレート、1-ヒドロキシプロピルα-クロロアクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルα-クロロアクリレート、3-ヒドロキシプロピルメタクリレート、3-ヒドロキシプロピルアクリレート、3-ヒドロキシプロピルα-クロロアクリレート、1-ヒドロキシ-1-メチルエチルメタクリレート、1-ヒドロキシ-1-メチルエチルアクリレート、1-ヒドロキシ-1-メチルエチルα-クロロアクリレート、2-ヒドロキシ-1-メチルエチルメタクリレート、2-ヒドロキシ-1-メチルエチルアクリレート、2-ヒドロキシ-1-メチルエチルα-クロロアクリレート、1-ヒドロキシブチルメタクリレート、1-ヒドロキシブチルアクリレート、1-ヒドロキシブチルα-クロロアクリレート、2-ヒドロキシブチルメタクリレート、2-ヒドロキシブチルアクリレート、2-ヒドロキシブチルα-クロロアクリレート、3-ヒドロキシブチルメタクリレート、3-ヒドロキシブチルアクリレート、3-ヒドロキシブチルα-クロロアクリレート、4-ヒドロキシブチルメタクリレート、4-ヒドロキシブチルアクリレート、4-ヒドロキシブチルα-クロロアクリレート、1-ヒドロキシ-1-メチルプロピルメタクリレート、1-ヒドロキシ-1-メチルプロピルアクリレート、1-ヒドロキシ-1-メチルプロピルα-クロロアクリレート、2-ヒドロキシ-1-メチルプロピルメタクリレート、2-ヒドロキシ-1-メチルプロピルアクリレート、2-ヒドロキシ-1-メチルプロピルα-クロロアクリレート、1-ヒドロキシ-2-メチルプロピルメタクリレート、1-ヒドロキシ-2-メチルプロピルアクリレート、1-ヒドロキシ-2-メチルプロピルα-クロロアクリレート、2-ヒドロキシ-2-メチルプロピルメタクリレート、2-ヒドロキシ-2-メチルプロピルアクリレート、2-ヒドロキシ-2-メチルプロピルα-クロロアクリレート、2-ヒドロキシ-1,1-ジメチルエチルメタクリレート、2-ヒドロキシ-1,1-ジメチルエチルアクリレート、2-ヒドロキシ-1,1-ジメチルエチルα-クロロアクリレート、1,2-ジヒドロキシプロピルメタクリレート、1,2-ジヒドロキシプロピルアクリレート、1,2-ジヒドロキシプロピルα-クロロアクリレート、2,3-ジヒドロキシプロピルメタクリレート、2,3-ジヒドロキシプロピルアクリレート、2,3-ジヒドロキシプロピルα-クロロアクリレート、2,3-ジヒドロキシブチルメタクリレート、2,3-ジヒドロキシブチルアクリレート、2,3-ジヒドロキシブチルα-クロロアクリレート、p-ヒドロキシスチレン、p-イソプロペニルフェノール、フェネチルメタクリレート、フェネチルアクリレート、フェネチルα-クロロアクリレート、N-メチロールアクリルアミド、N-メチロールメタクリルアミド、α-クロロアクリル酸、クロトン酸、4-ペンテン酸、5-ヘキセン酸、6-ヘプテン酸、7-オクテン酸、8-ノナン酸、9-デカン酸、10-ウンデシレン酸、ブラシジン酸、リシノール酸、2-(メタクリロイロキシ)エチルイソシアネート、2-(アクリロイロキシ)エチルイソシアネート、2-(α-クロロアクリロイロキシ)エチルイソシアネートなどを挙げることができる。これらを2種以上含有してもよい。
 本発明の樹脂組成物は、さらに(g)熱酸発生剤を含有してもよい。(g)熱酸発生剤は、後述する現像後加熱により酸を発生し、(a)成分の樹脂と(c)成分の熱架橋剤との架橋反応を促進するほか、(a)成分の樹脂のイミド環、オキサゾール環の環化を促進する。このため、硬化膜の耐薬品性が向上し、膜減りを低減することができる。(g)熱酸発生剤から発生する酸は強酸が好ましく、例えば、p-トルエンスルホン酸、ベンゼンスルホン酸などのアリールスルホン酸、メタンスルホン酸、エタンスルホン酸、ブタンスルホン酸などのアルキルスルホン酸などが好ましい。本発明において、熱酸発生剤は一般式(4)または(5)で表される脂肪族スルホン酸化合物が好ましく、これらを2種以上含有してもよい。
Figure JPOXMLDOC01-appb-C000012
 上記一般式(4)および(5)中、R30~R32は炭素数1~10のアルキル基または炭素数7~12の1価の芳香族基を示す。アルキル基および芳香族基は置換されていてもよく、置換基としては、アルキル基、カルボニル基などが挙げられる。
 一般式(4)で表される化合物の具体例としては以下の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000013
 一般式(5)で表される化合物の具体例としては以下の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000014
 (g)熱酸発生剤の含有量は、架橋反応をより促進する観点から、(a)成分の樹脂100重量部に対して、0.1重量部以上が好ましく、0.3重量部以上がより好ましく、0.5重量部以上がより好ましい。一方、硬化膜の電気絶縁性の観点から、20重量部以下が好ましく、15重量部以下がより好ましく、10重量部以下がより好ましい。なお、(g)成分を2種以上含有する場合は、それらの総量が上記範囲であることが好ましい。
 本発明の樹脂組成物には、(h)フィラーを含有することができる。(h)フィラーを含有することにより、本発明の樹脂組成物を回路基板用のソルダーレジストとして用いる場合、スクリーン印刷により塗布、乾燥する行程において、チクソ性を発現し、パターンを所定のサイズに保持する効果がある。さらに、熱硬化の収縮を抑制する効果も期待できる。
 (h)フィラーのうち、絶縁性フィラーの例としては、炭酸カルシウム、シリカ、アルミナ、窒化アルミ、酸化チタン、シリカ-酸化チタン複合粒子などが挙げられ、シリカ、酸化チタン、シリカ-酸化チタン複合粒子が好ましい。導電性フィラーの例としては、金、銀、銅、ニッケル、アルミニウム、カーボンなどが挙げられ、銀が好ましい。用途によりこれらを2種以上含有してもよい。(h)フィラーの含有量は、(a)成分100重量部に対して、好ましくは5~500重量部の範囲である。(h)フィラーの数平均粒子径は10μm以下が好ましく、2μm以下がより好ましい。また、異なる数平均粒子径のフィラーを2種以上混合して用いることも、チクソ性付与、応力緩和の観点から好ましい。
 また、(h)フィラーとして数平均粒子径100nm以下の粒子、いわゆるナノ粒子を用いることで、光の透過率を維持しつつ屈折率などの物性を調整することが可能となる。特に、高屈折率のナノ粒子を用いることで、高い透過率と高い屈折率を同時に発現することができる。このようなナノ粒子を混合することで、固体撮像素子のオンチップマイクロレンズや各種ディスプレイ・固体撮像素子用平坦化膜などの低温硬化性光学薄膜として好適に用いることできる。上記目的に好適な粒子として、酸化スズ-酸化アルミニウム複合粒子、酸化ジルコニウム-酸化アルミニウム複合粒子、酸化ジルコニウム-酸化ケイ素複合粒子、酸化スズ粒子、酸化ジルコニウム-酸化スズ複合粒子、酸化チタン粒子、酸化スズ-酸化チタン複合粒子、酸化ケイ素-酸化チタン複合粒子、酸化ジルコニウム-酸化チタン複合粒子、酸化ジルコニウム粒子などを挙げることができる。また、粒子表面を他の物質で被覆してもよい。上記粒子は粉末状であってもゾル状であってもよいが、分散の容易さなどの点からゾル状であることがより好ましい。ナノ粒子の数平均粒子径は、透過率の観点から50nm以下が好ましく、30nm以下がより好ましい。
 フィラーの数平均粒子径は、種々のパーティクルカウンターで測定することができる。また、ナノ粒子の平均粒子径は、ガス吸着法や動的光散乱法、X線小角散乱法、透過型電子顕微鏡により粒子径を直接測定する方法などに測定することができる。これら測定法において得られる粒子径は、体積平均や質量平均などである場合もあるが、粒子形状を球形と仮定することで数平均分子量に換算することができる。
 本発明の樹脂組成物には、加熱により発色し、350nm以上700nm以下に吸収極大を示す熱発色性化合物や、350nm以上500nm未満に吸収極大を持たず500nm以上750nm以下に吸収極大を有する有機顔料または染料を含有することができる。熱発色性化合物の発色温度は120℃以上が好ましく、150℃以上が好ましい。熱発色性化合物の発色温度が高いほど、高温条件下での耐熱性に優れ、また長時間の紫外-可視光照射により退色することなく耐光性に優れる。
 熱発色性化合物としては、感熱色素、感圧色素や、トリアリールメタン骨格を有する水酸基含有化合物などが挙げられる。
 本発明の樹脂組成物は、密着改良剤を含有してもよい。密着改良剤としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、エポキシシクロヘキシルエチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシランなどのシランカップリング剤、チタンキレート剤、アルミキレート剤、芳香族アミン化合物とアルコキシ基含有ケイ素化合物を反応させて得られる化合物などが挙げられる。これらを2種以上含有してもよい。これらの密着改良剤を含有することにより、感光性樹脂膜を現像する場合などに、シリコンウエハ、ITO、SiO、窒化ケイ素などの下地基材との密着性を高めることができる。また、洗浄などに用いられる酸素プラズマ、UVオゾン処理に対する耐性を高めることができる。密着改良剤の含有量は、(a)成分の樹脂100重量部に対して、0.1~10重量部が好ましい。
 本発明の樹脂組成物は、接着改良剤を含有してもよい。接着改良剤としては、アルコキシシラン含有芳香族アミン化合物、芳香族アミド化合物または芳香族非含有シラン化合物などが挙げられる。これらを2種以上含有してもよい。これらの化合物を含有することにより、硬化後の基材との接着性を向上させることができる。アルコキシシラン含有芳香族アミン化合物および芳香族アミド化合物の具体例を以下に示す。この他に、芳香族アミン化合物とアルコキシ基含有ケイ素化合物を反応させて得られる化合物であってもよく、例えば、芳香族アミン化合物と、エポキシ基、クロロメチル基などのアミノ基と反応する基を有するアルコキシシラン化合物を反応させて得られる化合物などが挙げられる。
Figure JPOXMLDOC01-appb-C000015
 芳香族非含有シラン化合物としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリクロルシラン、ビニルトリス(β-メトキシエトキシ)シランなどのビニルシラン化合物、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシランなどの炭素-炭素不飽和結合含有シラン化合物などが挙げられる。これらの中でも、ビニルトリメトキシシラン、ビニルトリエトキシシランが好ましい。
 アルコキシシラン含有芳香族アミン化合物、芳香族アミド化合物、または芳香族非含有シラン化合物の総含有量は、(a)成分の樹脂100重量部に対して、0.01~15重量部が好ましい。
 本発明の樹脂組成物は、界面活性剤を含有してもよく、基板との塗れ性を向上させることができる。
 界面活性剤としては、フロラード(商品名、住友3M(株)製)、メガファック(商品名、DIC(株)製)、スルフロン(商品名、旭硝子(株)製)などのフッ素系界面活性剤、KP341(商品名、信越化学工業(株)製)、DBE(商品名、チッソ(株)製)、ポリフロー、グラノール(商品名、共栄社化学(株)製)、BYK(ビック・ケミー(株)製)などの有機シロキサン界面活性剤、ポリフロー(商品名、共栄社化学(株)製)などのアクリル重合物界面活性剤などが挙げられる。
 本発明の樹脂組成物は、溶媒を含有することが好ましい。溶媒としては、N-メチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシドなどの極性の非プロトン性溶媒、テトラヒドロフラン、ジオキサン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテルなどのエーテル類、アセトン、メチルエチルケトン、ジイソブチルケトン、ジアセトンアルコールなどのケトン類、酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸プロピル、プロピレングリコールモノメチルエーテルアセテート、3-メチル-3-メトキシブチルアセテートなどのエステル類、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メチル-3-メトキシブタノールなどのアルコール類、トルエン、キシレンなどの芳香族炭化水素類などが挙げられる。これらを2種以上含有してもよい。溶媒の含有量は、(a)成分の樹脂100重量部に対して、100~2000重量部が好ましい。
 本発明の樹脂組成物は、硬化前の樹脂膜の透過率が高く、硬化膜の可視光領域における透過率が低いことが好ましい。すなわち、厚さ3.0μmの膜における硬化前後の波長450nmにおける透過率の変化量が20%以上であることが好ましい。ここで、波長450nmにおける透過率は、可視光領域の透過率の指標である。より具体的には、樹脂組成物を基板に塗布し、120℃で2分間熱処理して得られる厚さ3.0μmの膜(硬化前)の波長450nmにおける透過率と、硬化前の膜を、さらに窒素気流下、230℃で30分間熱処理して得られる厚さ3.0μmの膜(硬化後)の波長450nmにおける透過率とから、以下の式により求められる透過率変化量が20%以上であることが好ましい。本発明により、このような透過率変化量を容易に実現することができる。
透過率変化量(%)=硬化前透過率(%)-硬化後透過率(%)
 本発明の樹脂組成物を感光性樹脂として用いる場合、硬化前の樹脂膜の透過率は高いことが望ましい。具体的には、硬化前の樹脂膜の波長450nmにおける透過率は70%以上が好ましく、より好ましくは90%以上である。硬化膜の可視光領域における透過率は低いことが望ましい。具体的には、硬化膜の450nmにおける透過率は70%以下が好ましく、より好ましくは60%以下である。硬化膜の透過率を低くすることにより、本発明の樹脂組成物を表示装置の平坦化膜や絶縁層に用いた場合、駆動用TFTへの光の進入による誤作動や、リーク電流などを防ぐことができる。このため、硬化前後の波長450nmにおける透過率変化量は20%以上100%以下であることが好ましく、より好ましくは30%以上100%以下である。
 次に、本発明の樹脂組成物の製造方法について説明する。例えば、前記(a)~(c)成分と、必要により(d)~(h)成分、熱発色成分、密着改良剤、接着改良剤または界面活性剤などを溶媒に溶解させることにより、樹脂組成物を得ることができる。溶解方法としては、撹拌や加熱が挙げられる。加熱する場合、加熱温度は樹脂組成物の性能を損なわない範囲で設定することが好ましく、通常、室温~80℃である。また、各成分の溶解順序は特に限定されず、例えば、溶解性の低い化合物から順次溶解させる方法がある。また、界面活性剤や一部の密着改良剤など、撹拌溶解時に気泡を発生しやすい成分については、他の成分を溶解してから最後に添加することで、気泡の発生による他成分の溶解不良を防ぐことができる。
 得られた樹脂組成物は、濾過フィルターを用いて濾過し、ゴミや粒子を除去することが好ましい。フィルター孔径は、例えば0.5μm、0.2μm、0.1μm、0.05μmなどがあるが、これらに限定されない。濾過フィルターの材質には、ポリプロピレン(PP)、ポリエチレン(PE)、ナイロン(NY)、ポリテトラフルオロエチエレン(PTFE)などがあるが、ポリエチレンやナイロンが好ましい。樹脂組成物中に(h)フィラーや有機顔料を含有する場合、これらの粒子径より大きな孔径の濾過フィルターを用いることが好ましい。
 次に、本発明の樹脂組成物を用いた硬化膜の製造方法について説明する。本発明の樹脂組成物をスピンコート法、スリットコート法、ディップコート法、スプレーコート法、印刷法などで塗布し、樹脂組成物膜を得る。塗布に先立ち、樹脂組成物を塗布する基材を予め前述した密着改良剤で前処理してもよい。例えば、密着改良剤をイソプロパノール、エタノール、メタノール、水、テトラヒドロフラン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、乳酸エチル、アジピン酸ジエチルなどの溶媒に0.5~20重量%溶解させた溶液を用いて、基材表面を処理する方法が挙げられる。基材表面の処理方法としては、スピンコート、スリットダイコート、バーコート、ディップコート、スプレーコート、蒸気処理などの方法が挙げられる。必要に応じて、減圧乾燥処理を施し、その後50℃~300℃の熱処理により基材と密着改良剤との反応を進行させることができる。
 得られた樹脂組成物膜を加熱処理することにより、硬化膜を得ることができる。例えば、230℃で60分間加熱処理する方法、120~400℃で1分~10時間加熱処理する方法、硬化触媒などを加えて室温~100℃程度の低温で加熱処理する方法、超音波や電磁波処理により室温~100℃程度の低温で硬化する方法などが挙げられる。
 本発明の樹脂組成物が感光性を有する場合には、前記樹脂組成物膜に紫外線などの活性光線を部分的に照射し、現像液で現像処理をすることにより、ネガ型あるいはポジ型のレリーフパターンを得ることができる。
 本発明の樹脂組成物を硬化させて得られる硬化膜は、配線の絶縁膜や保護膜として好適に用いられる。例えば、ポリイミド、セラミックスなどのフィルムや基板の上に銅、アルミなどで配線を形成するプリンと基板における配線の絶縁膜や保護膜の用途、配線を部分的に半田付けするための保護膜の用途などが挙げられる。また、樹脂組成物が導電性フィラーを含有する場合には、配線材料として使用することもできる。
 また、本発明の樹脂組成物を硬化させて得られる硬化膜は、TFTが形成された基板、平坦化膜、絶縁層および表示素子をこの順に有する表示装置の平坦化膜や絶縁層として、好適に用いられる。かかる構成の表示装置としては、液晶表示装置や有機EL表示装置などが挙げられる。アクティブマトリックス型の表示装置は、ガラスなどの基板上にTFTとTFTの側方部に位置しTFTと接続された配線とを有し、その上に凹凸を覆うようにして平坦化膜を有し、さらに平坦化膜上に表示素子が設けられている。表示素子と配線とは、平坦化膜に形成されたコンタクトホールを介して接続される。図1に平坦化膜と絶縁層を形成したTFT基板の断面図を示す。基板6上に、ボトムゲート型またはトップゲート型のTFT1が行列状に設けられており、このTFT1を覆う状態で絶縁膜3が形成されている。また、この絶縁膜3の下にTFT1に接続された配線2が設けられている。さらに絶縁膜3上には、配線2を開口するコンタクトホール7とこれらを埋め込む状態で平坦化膜4が設けられている。平坦化膜4には、配線2のコンタクトホール7に達するように開口部が設けられている。そして、このコンタクトホール7を介して、配線2に接続された状態で、平坦化膜4上にITO(透明電極)5が形成されている。ここで、ITO5は、表示素子(例えば有機EL素子)の電極となる。そしてITO5の周縁を覆うように絶縁層8が形成される。この有機EL素子は、基板6の反対側から発光光を放出するトップエミッション型でもよいし、基板6側から光を取り出すボトムエミッション型でもよい。このようにして、各有機EL素子にこれを駆動するためのTFT1を接続したアクティブマトリックス型の有機EL表示装置が得られる。
 また、本発明の樹脂組成物を硬化させて得られる硬化膜は、TFTが形成された基板、絶縁層および表示素子をこの順に有する表示装置の絶縁層として、好適に用いられる。かかる構成の表示装置としては、有機EL表示装置などが挙げられる。アクティブマトリックス型の表示装置は、ガラスなどの基板上にTFTとTFTの側方部に位置しTFTと接続された配線とを有する。表示素子と配線とは、絶縁膜に形成されたコンタクトホールを介して接続される。図2に絶縁層を形成したTFT基板の断面図を示す。基板6上に、ボトムゲート型またはトップゲート型のTFT1が行列状に設けられており、このTFT1を覆う状態で絶縁膜3が形成されている。また、この絶縁膜3の下にTFT1に接続された配線2が設けられている。さらに絶縁膜3上には、配線2を開口するようにコンタクトホール7が設けられている。そして、このコンタクトホール7を介して、配線2に接続された状態で、ITO(透明電極)5が形成されている。ここで、ITO5は、表示素子(例えば有機EL素子)の電極となる。そしてITO5の周縁とTFTおよび配線の段差を覆うように絶縁層8が形成される。この有機EL素子は、基板6の反対側から発光光を放出するトップエミッション型でもよいし、基板6側から光を取り出すボトムエミッション型でもよい。このようにして、各有機EL素子にこれを駆動するためのTFT1を接続したアクティブマトリックス型の有機EL表示装置が得られる。
 例えば、アモルファスシリコン、マイクロクリスタルシリコンまたはIn-Ga-Zn-Oなどに代表される酸化物半導体などからなるTFTを使用する有機EL表示装置の場合、比較的高エネルギーの青色発光光の進入によりリーク電流や光有機電流などの好ましくない現象を生じる場合がある。本発明の樹脂組成物から得られる硬化膜は450nm付近に適度な吸収を有するので、このような有機EL表示装置において絶縁層や平坦化膜などに用いることにより、リーク電流、光誘起電流などの発生を防止し、安定した駆動・発光特性が得られる。
 さらに、本発明の樹脂組成物を硬化させて得られる硬化膜は、LSIなど半導体素子の表面保護膜、層間絶縁膜、デバイスをパッケージに封入する際の接着剤やアンダーフィル剤、銅のマイグレーションを防ぐキャップ剤、固体撮像素子のオンチップマイクロレンズや各種ディスプレイ・固体撮像素子用平坦化膜などの用途に好ましく用いることができる。
 以下実施例等をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。なお、実施例中の樹脂組成物の評価は以下の方法により行った。
 (1)透過率の評価
 5センチ角ガラス基板上に樹脂組成物(以下ワニスという)をスピンコートし、120℃で2分間熱処理(プリベーク)して、膜厚3.0μmのプリベーク膜を作製した。また、ワニスを硬化後膜厚が3.0μmとなるようにスピンコートし、光洋サーモシステム(株)製イナートオーブンINH-21CDを用いて、窒素気流下(酸素濃度20ppm以下)230℃で30分間熱処理して硬化膜を作製した。なお、プリベーク膜および硬化膜の膜厚は、サーフコム1400D(東京精密(株)製)を用いて測定した。このようにして得られたプリベーク膜と硬化膜について、紫外可視分光光度計MultiSpec-1500(島津製作所(株)製)を用いて、波長300nm~700nmの透過スペクトルを測定し、波長450nmの透過率を測定した。硬化前(=プリベーク膜)および硬化後(=硬化膜)の透過率から、下記の式により透過率変化量を求めた。
透過率変化量(%)=硬化前透過率(%)-硬化後透過率(%)
 透過率変化量が20%以上であれば良好、30%以上であれば極めて良好と判断できる。
 (2)感度の評価
 実施例4~11および比較例5~6で作製したワニスを6インチシリコンウエハ上に回転塗布し、次いで、ホットプレート(Mark-7)で3分間熱処理し、厚さ4.0μmのプリベーク膜を作製した。プリベーク温度は、実施例4~9および比較例5~6は120℃、実施例10~11は100℃とした。得られたプリベーク膜を、i線ステッパー(GCA製DSW-8000)を用いて0~500mJ/cmの露光量にて25mJ/cmステップで露光した。露光に用いたライン&スペースパターンは1、2、3、4、5、6、7、8、9、10、20、30、50、100μmである。実施例10~11は露光後、100℃で1分加熱した。実施例4~9は露光後、実施例10~11は露光後加熱の後、2.38重量%のテトラメチルアンモニウム(TMAH)水溶液(三菱ガス化学(株)製、ELM-D)で60秒間現像し、ついで純水でリンスし、現像後の膜を得た。ポジ型のワニスの場合は、露光部分が現像で完全に溶出してなくなった露光量を感度とした。ネガ型のワニスの場合は、現像後の膜の膜厚を測定し、プリベーク膜の膜厚の90%が現像後に残る露光量を感度とした。なお、プリベーク後および現像後の膜厚は、大日本スクリーン製造(株)製ラムダエースSTM-602を使用し、屈折率1.63で測定した。
 (3)耐薬品性の評価
 (i)実施例1~3および比較例1~4で作製したワニスを6インチシリコンウエハ上に回転塗布し、ホットプレートで3分間熱処理して厚さ4.0μmのプリベーク膜を作製した。また、実施例4~11および比較例5~6で作製したワニスは上記(2)記載の方法で現像後の膜を作製した。得られたプリベーク膜および現像後の膜を、光洋サーモシステム(株)製イナートオーブンINH-21CDを用いて、窒素気流下(酸素濃度20ppm以下)230℃で30分間熱処理して硬化膜を作製した。
 得られた硬化膜を、東京応化工業(株)製剥離液106に70℃で10分間浸漬した。
剥離液処理前後の硬化膜の膜厚を、大日本スクリーン製造(株)製ラムダエースSTM-602を使用し、屈折率1.64で測定し、膜減り量を求めた。膜減り量は0.25μm以下が好ましく、より好ましくは、0.15μm以下、さらに好ましくは0.10μm以下である。
 (ii)実施例4~11および比較例5~6で作製したワニスを用いて、上記(i)記載の方法で硬化膜を作製した。得られた硬化膜を、東京応化工業(株)製剥離液106に70℃で10分間浸漬した。剥離液処理後の硬化膜を20倍の光学顕微鏡で観察し、パターン剥がれの有無を評価した。パターン剥がれのない最小パターンを残存パターンとした。より微細なパターンほど剥がれやすいため、残存パターンが20μm以下であれば良好、5μm以下であれば極めて良好と判断できる。
 合成例1 ヒドロキシル基含有ジアミン化合物の合成
 2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(セントラル硝子(株)製、BAHF)18.3g(0.05モル)をアセトン100mL、プロピレンオキシド(東京化成(株)製)17.4g(0.3モル)に溶解させ、-15℃に冷却した。ここに3-ニトロベンゾイルクロリド(東京化成(株)製)20.4g(0.11モル)をアセトン100mLに溶解させた溶液を滴下した。滴下終了後、-15℃で4時間撹拌し、その後室温に戻した。析出した白色固体をろ別し、50℃で真空乾燥した。
 得られた白色固体30gを300mLのステンレスオートクレーブに入れ、メチルセルソルブ250mLに分散させ、5%パラジウム-炭素(和光純薬工業(株)製)を2g加えた。ここに水素を風船で導入して、還元反応を室温で行った。約2時間後、風船がこれ以上しぼまないことを確認して反応を終了させた。反応終了後、濾過して触媒であるパラジウム化合物を除き、ロータリーエバポレーターで濃縮し、下記式で表されるヒドロキシル基含有ジアミン化合物を得た。
Figure JPOXMLDOC01-appb-C000016
 合成例2 キノンジアジド化合物の合成
 乾燥窒素気流下、TrisP-PA(商品名、本州化学工業(株)製)、21.22g(0.05モル)と5-ナフトキノンジアジドスルホン酸クロリド(東洋合成(株)製、NAC-5)26.8g(0.1モル)を1,4-ジオキサン450gに溶解させ、室温にした。ここに、1,4-ジオキサン50gと混合したトリエチルアミン12.65gを、系内が35℃以上にならないように滴下した。滴下後40℃で2時間撹拌した。トリエチルアミン塩を濾過し、濾液を水に投入した。その後、析出した沈殿を濾過で集め、さらに1%塩酸水1Lで洗浄した。その後、さらに水2Lで2回洗浄した。この沈殿を真空乾燥機で乾燥し、下記式で表されるキノンジアジド化合物を得た。
Figure JPOXMLDOC01-appb-C000017
 合成例3 アルコキシメチル基含有化合物(A-1)の合成
 (1)1,1,1-トリス(4-ヒドロキシフェニル)エタン(本州化学工業(株)製、TrisP-HAP)103.2g(0.4モル)を、水酸化ナトリウム80g(2.0モル)を純水800gに溶解させた溶液に溶解させた。完全に溶解させた後、20~25℃で36~38重量%のホルマリン水溶液686gを2時間かけて滴下した。その後20~25℃で17時間撹拌した。これに硫酸98gと水552gを加えて中和を行い、そのまま2日間放置した。放置後に溶液に生じた針状の白色結晶をろ過で集め、水100mLで洗浄した。この白色結晶を50℃で48時間真空乾燥した。乾燥した白色結晶を島津製作所(株)製の高速液体クロマトグラフィーで、カラムにODSを、展開溶媒にアセトニトリル/水=70/30を用い、254nmで分析したところ、出発原料は完全に消失し、純度92%であることがわかった。さらに、重溶媒にDMSO-d6を用いてNMR(日本電子(株)製、GX-270)により分析したところ、ヘキサメチロール化したTrisP-HAPであることがわかった。
 (2)次に、このようにして得た化合物をメタノール300mLに溶解させ、硫酸2gを加えて室温で24時間撹拌した。この溶液にアニオン型イオン交換樹脂(Rohm and Haas社製、アンバーリストIRA96SB)15gを加え1時間撹拌し、濾過によりイオン交換樹脂を除いた。その後、乳酸エチル500mLを加え、ロータリーエバポレーターでメタノールを除き、乳酸エチル溶液にした。この溶液を室温で2日間放置したところ、白色結晶が生じた。得られた白色結晶を高速液体クロマトグラフィー法により分析したところ、下記式で表される純度99%のTrisP-HAPのヘキサメトキシメチル化合物(アルコキシメチル基含有化合物(A-1))であることがわかった。
Figure JPOXMLDOC01-appb-C000018
 合成例4 アルコキシメチル基含有化合物(A-2)の合成
 (1)1,1,1-トリス(4-ヒドロキシフェニル)エタン(本州化学工業(株)製、TrisP-HAP)103.2g(0.4モル)のかわりに4,4’-[1-[4-[1-(4-ヒドロキシフェニル-1)-1-メチルエチル]フェニル]エチリデン]ビスフェノール(本州化学工業(株)製、TrisP-PA)169.6g(0.4モル)を用いた以外は合成例3(1)と同様にして、乾燥した白色結晶を得た。これを合成例3(1)と同様にして高速液体クロマトグラフィーで分析したところ、出発原料は完全に消失し、純度88%であることがわかった。さらに、合成例3(1)と同様にしてNMR分析したところ、ヘキサメチロール化したTrisP-PAであることがわかった。
 (2)次に、ヘキサメチロール化したTrisP-HAPのかわりに、上記方法で得られたヘキサメチロール化したTrisP-PAを用いた以外は合成例3(2)と同様にして白色結晶を得た。得られた白色結晶を高速液体クロマトグラフィー法により分析したところ、下記式で表される、純度99%のTrisP-PAのヘキサメトキシメチル化合物(アルコキシメチル基含有化合物(A-2))であることがわかった。
Figure JPOXMLDOC01-appb-C000019
 合成例5 アルコキシメチル基含有化合物(A-3)の合成
 (1)合成例3(1)と同様にして、純度92%のヘキサメチロール化したTrisP-HAPを得た。
 (2)次に、メタノール300mLのかわりにエタノール300mLを用いた以外は合成例3(2)と同様にして、白色結晶を得た。得られた白色結晶を高速液体クロマトグラフィー法により分析したところ、下記式で表される、純度98%のTrisP-HAPのエトキシメチル化合物(アルコキシメチル基含有化合物(A-3))であることがわかった。
Figure JPOXMLDOC01-appb-C000020
 合成例6 接着改良剤(B―1)の合成
 BAHF(セントラル硝子(株)製)36.6g(0.1モル)を100gの乳酸エチル(武蔵野化学工業(株)製、EL)に溶解させた。ついでこの溶液に3-グリシドキシプロピルトリエトキシシラン(KBE-403、信越化学工業(株)製)55.6g(0.2モル)を加え、50℃で6時間撹拌し、接着改良剤(B-1)を得た。
 実施例、比較例で使用したその他の熱架橋剤および酸発生剤は以下のとおりである。
Figure JPOXMLDOC01-appb-C000021
 実施例1
 乾燥窒素気流下、BAHF32.9g(0.09モル)をN-メチルピロリドン(NMP)500gに溶解させた。ここに3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物(マナック(株)製、ODPA)31.0g(0.1モル)をNMP50gとともに加えて、30℃で2時間撹拌した。その後、3-アミノフェノール(東京化成(株)製)2.18g(0.02モル)を加え、40℃で2時間撹拌を続けた。さらにピリジン(東京化成(株)製)5gをトルエン(東京化成(株)製30g)に希釈して、溶液に加え、冷却管を付け系外に水をトルエンとともに共沸で除去しながら溶液の温度を120℃にして2時間、さらに180℃で2時間反応させた。この溶液の温度を室温まで低下させ、水3Lに溶液を投入し、白色の粉体を得た。この粉体をろ過で集め、さらに水で3回洗浄を行った。洗浄後、白色粉体を50℃の真空乾燥機で72時間乾燥させ、ポリイミドを得た。
 このポリイミド10gに1,5-ジヒドロキシナフタレン(東京化成(株)製)4g、合成例3で得られたアルコキシメチル基含有化合物(A-1)5gとガンマブチロラクトン(三菱化学(株)製、GBL)40gを加えてポリイミド樹脂組成物のワニスを得た。このワニスを用いて得られた硬化前後の膜の450nmにおける透過率は、硬化前は95%、硬化後は61%であった。これより透過率変化量は34%であった。また、硬化膜の耐薬品性を評価したところ、膜減り量は0.10μm以下と非常に良好であった。
 比較例1
 合成例3で得られたアルコキシメチル基含有化合物(A-1)の代わりに、2,6-ジメトキシメチル-t-ブチルフェノール(本州化学工業(株)製)を5g加えた以外は実施例1と同様にしてポリイミド樹脂組成物のワニスを得た。このワニスを用いて得られた硬化前後の膜の450nmにおける透過率は、硬化前は96%、硬化後は85%であった。これより透過率変化量は11%であった。また、硬化膜耐薬品性を評価したところ、膜が完全に溶解した。
 比較例2
 500mlのフラスコに2,2’-アゾビス(イソブチロニトリル)を5g、テトラヒドロフラン(THF)を200g仕込んだ。その後、メチルメタクリレート(MM)35g、tert-ブチルメタクリレート(t-BM)30gおよびメタクリル酸(MA)35gを仕込み、室温でしばらく撹拌し、フラスコ内を窒素置換した後、室温で40時間撹拌した。ここにプロピレングリコールモノメチルエーテルを300g追加し撹拌した。撹拌終了後、溶液を水2Lに投入して、ポリマー固体の沈殿をろ過で集めた。さらに水2Lで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、アクリル樹脂を得た。
 得られたアクリル樹脂10gに、1,5-ジヒドロキシナフタレン(東京化成(株)製)4g、合成例3で得られたアルコキシメチル基含有化合物(A-1)5gとプロピレングリコールモノメチルエーテルアセテート(クラレ(株)製、PMA)40gを加えてアクリル樹脂組成物のワニスを得た。このワニスを用いて得られた硬化前後の膜の450nmにおける透過率は、硬化前は97%、硬化後は93%であった。これより透過率変化量は4%であった。また、硬化膜の耐薬品性を評価したところ、膜が完全に溶解した。
 実施例2
 乾燥窒素気流下、合成例1で得られたヒドロキシル基含有ジアミン57.4g(0.095モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(SiDA)1.24g(0.005モル)をNMP200gに溶解した。ここにODPA 31.0g(0.1モル)を加え、40℃で2時間撹拌した。その後、ジメチルホルアミドジメチルアセタール(三菱レーヨン(株)製、DFA)7.14g(0.06モル)をNMP5gで希釈した溶液を10分かけて滴下した。滴下後、40℃で2時間撹拌を続けた。撹拌終了後、溶液を水2Lに投入して、ポリマー固体の沈殿をろ過で集めた。さらに水2Lで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、ポリアミド酸を得た。
 このようにして得たポリアミド酸10gを計り、1,6-ジヒドロキシナフタレン(東京化成(株)製)2g、MW-30HM(三和ケミカル(株)製)4gをEL20g、GBL20gに溶解させてポリイミド前駆体組成物のワニスを得た。このワニスを用いて得られた硬化前後の膜の450nmにおける透過率は、硬化前は94%、硬化後は40%であった。これより透過率変化量は54%であった。硬化前後の透過スペクトルを図3に示す。硬化により400nm~550nmの透過率が低下し可視光領域で明確に着色していることがわかった。また、硬化膜の耐薬品性を評価したところ、膜減り量は0.10μm以下と非常に良好であった。
 実施例3
 ポリアミド酸の代わりに実施例1で得られたポリイミド粉体10gを加えた以外は実施例2と同様にしてポリイミド樹脂組成物のワニスを作製し、評価を行ったところ、硬化前後の膜の450nmにおける透過率は、硬化前は95%、硬化後は45%であった。これより透過率変化量は50%であった。また、硬化膜の耐薬品性を評価したところ、膜減り量は0.1μm以下と非常に良好であった。
 比較例3
 ポリアミド酸の代わりにノボラック樹脂PSF2808(群栄化学(株)製)10gを用いた以外は実施例2と同様にしてノボラック樹脂組成物のワニスを作製し、評価を行ったところ、硬化前後の膜の450nmにおける透過率は、硬化前は97%、硬化後は88%であった。これより透過率変化量は9%であった。硬化前後の透過スペクトルを図4に示す。硬化後も400nm以上の領域で透過率はほとんど低下せず、可視光領域で着色していないことが分かった。また、硬化膜の耐薬品性を評価したところ、膜が完全に溶解した。
 比較例4
 ポリアミド酸の代わりにポリヒドロキシスチレン樹脂マルカリンカーS-2(商品名、丸善石油化学(株)製)10gを用いた以外は実施例2と同様にしてポリヒドロキシスチレン樹脂組成物のワニスを作製し、評価を行ったところ、硬化前後の膜の450nmにおける透過率は、硬化前は97%、硬化後は91%であった。これより透過率変化量は6%であった。また、硬化膜の耐薬品性を評価したところ、膜が完全に溶解した。
 実施例4
 実施例1のワニスにさらに合成例2で得られたキノンジアジド化合物4gを溶解させてポジ型感光性ポリイミド樹脂組成物のワニスを得た。得られたワニスを用いて前記のように、硬化前後の膜の透過率評価、耐薬品性評価および感度評価を行った。450nmにおける透過率は、硬化前は95%、硬化後は60%であった。これより透過率変化量は35%であった。感度は150mJ/cmであった。膜減り量は0.10μm以下であった。また10μm以上のパターンが残存していた。
 実施例5
 実施例2で得られたポリアミド酸10gを計り、1,7-ジヒドロキシナフタレン(東京化成(株)製)4g、合成例4で得られたアルコキシメチル基含有化合物(A-2)5g、合成例2で得られたキノンジアジド化合物4gをEL20g、GBL20gに溶解させてポジ型感光性ポリイミド前駆体組成物のワニスを得た。得られたワニスを用いて前記のように、硬化前後の膜の透過率評価、耐薬品性評価および感度評価を行った。450nmにおける透過率は、硬化前は90%、硬化後は59%であった。これより透過率変化量は31%であった。感度は150mJ/cmであった。膜減り量は0.15μmであった。また10μm以上のパターンが残存していた。
 比較例5
 1,7-ジヒドロキシナフタレンの代わりに1-ナフトールを用いた以外は実施例5と同様にしてポジ型感光性ポリイミド前駆体組成物のワニスを作製し、評価を行ったところ、450nmにおける透過率は、硬化前は90%、硬化後は77%であった。これより透過率変化量は13%であった。膜減り量は0.20μmであった。感度は300mJ/cmであった。また20μm以上のパターンが残存していた。
 比較例6
 1,7-ジヒドロキシナフタレンの代わりに2,7-ジヒドロキシナフタレンを用いた以外は実施例5と同様にしてポジ型感光性ポリイミド前駆体組成物のワニスを作製し、評価を行ったところ、450nmにおける透過率は、硬化前は90%、硬化後は74%であった。これより透過率変化量は16%であった。膜減り量は0.15μmであった。感度は150mJ/cmであった。また10μm以上のパターンが残存していた。
 実施例6
 実施例5のワニスにさらに熱酸発生剤として5-プロピルスルホニルオキシイミノ-5H-チオフェン-2-メチルフェニル-アセトニトリル(商品名PAG-103、チバスペシャリティケミカルズ(株)製)0.5gを溶解させて、ポジ型感光性ポリイミド前駆体組成物のワニスを得た。得られたワニスを用いて前記のように、硬化前後の膜の透過率評価、耐薬品性評価および感度評価を行った。450nmにおける透過率は、硬化前は90%、硬化後は59%であった。これより透過率の低下量は31%であった。感度は150mJ/cmであった。膜減り量は0.10μm以下であった。また10μm以上のパターンが残存していた。
 実施例7
 実施例5のワニスにさらに合成例6で得られた接着改良剤(B-1)0.5gを溶解させて、ポジ型感光性ポリイミド前駆体組成物のワニスを得た。得られたワニスを用いて前記のように、硬化前後の膜の透過率評価、耐薬品性評価および感度評価を行った。450nmにおける透過率は、硬化前は90%、硬化後は59%であった。これより透過率変化量は31%であった。感度は150mJ/cmであった。膜減り量は0.15μmであった。また3μm以上のパターンが残存していた。
 実施例8
 実施例2で得られたポリアミド酸10gを計り、2,3-ジヒドロキシナフタレン(東京化成(株)製)4g、合成例4で得られたアルコキシメチル基含有化合物(A-2)を5g、合成例2で得られたキノンジアジド化合物4gをEL20g、GBL20gに溶解させてポジ型感光性ポリイミド前駆体組成物のワニスを得た。得られたワニスを用いて前記のように、硬化前後の膜の透過率評価、耐薬品性評価および感度評価を行った。450nmにおける透過率は、硬化前は93%、硬化後は63%であった。これより透過率変化量は30%であった。膜減り量は0.15μmであった。感度は200mJ/cmであった。また10μm以上のパターンが残存していた。
 実施例9
 乾燥窒素気流下、BAHF18.3g(0.05モル)をNMP50g、グリシジルメチルエーテル26.4g(0.3モル)に溶解させ、溶液の温度を-15℃まで冷却した。ここにジフェニルエーテルジカルボン酸ジクロリド(日本農薬(株)製)7.4g(0.025モル)、イソフタル酸クロリド(東京化成(株)製)5.1g(0.025モル)をGBL25gに溶解させた溶液を内部の温度が0℃を越えないように滴下した。滴下終了後、-15℃で6時間撹拌を続けた。反応終了後、メタノールを10重量%含んだ水3Lに溶液を投入して白色の沈殿を集めた。この沈殿をろ過で集めて、水で3回洗浄した後、50℃の真空乾燥機で72時間乾燥し、ポリヒドロキシアミドを得た。
 EL10g、GBL30gに、得られたポリヒドロキシアミド10g、1,5-ジヒドロキシナフタレン4g、合成例2のキノンジアジド化合物2g、WPAG-314(商品名、和光純薬工業(株)製)0.5g、MX-270 5gを溶解させてポジ型感光性ポリベンゾオキサゾール前駆体組成物のワニスを得た。得られたワニスを用いて前記のように、硬化前後の膜の透過率評価、耐薬品性評価および感度評価を行った。450nmにおける透過率は、硬化前は92%、硬化後は61%であった。これより透過率の低下量は31%であった。膜減り量は0.25μm、感度は160mJ/cmであった。また20μm以上のパターンが残存していた。
 実施例10
 実施例9で得られたポリヒドロキシアミド10g、1,7-ジヒドロキシナフタレン1.5g、WPAG-314(商品名、和光純薬工業(株)製)0.5g、熱酸発生剤として5-プロピルスルホニルオキシイミノ-5H-チオフェン-2-メチルフェニル-アセトニトリル(商品名PAG-103、チバスペシャリティケミカルズ(株)製)0.5g、MW-30HM 2gをGBL40gに溶解させてネガ型感光性ポリベンゾオキサゾール前駆体組成物のワニスを得た。得られたワニスを用いて前記のように、硬化前後の膜の透過率評価、耐薬品性評価および感光性評価を行った。450nmにおける透過率は、硬化前は95%、硬化後は57%であった。これより透過率変化量は38%であった。膜減り量は0.25μm、感度は200mJ/cmであった。また20μm以上のパターンが残存していた。
 実施例11
 実施例1で得たポリイミド10gに、1,7-ジヒドロキシナフタレン5g、合成例5で得られたアルコキシメチル基含有化合物(A-3)4g、エチレンオキサイド変性ビスフェノールAジメタクリレート(新中村化学工業(株)製、NKエステルBPE-100)2g、トリメチロールプロパントリアクリレート0.5g、1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)](チバ・スペシャルティ・ケミカルズ(株)製)0.1g、EL20gとGBL20gを加えてネガ型感光性ポリイミド樹脂組成物のワニスを得た。得られたワニスを用いて前記のように、硬化前後の膜の透過率評価、耐薬品性評価および感度評価を行った。450nmにおける透過率は、硬化前は94%、硬化後は66%であった。これより透過率変化量は28%であった。膜減り量は0.1μm、感度は200mJ/cmであった。また10μm以上のパターンが残存していた。
 実施例1~11および比較例1~6の組成と評価結果を表1~3に示す。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 実施例12
 ガラス基板上にボトムゲート型のTFTを形成し、TFTに接続される配線(高さ1.0μm)を形成した。このTFTと配線を覆う状態でSiからなる絶縁膜を形成した。次に、この絶縁膜にコンタクトホールを形成した。
 さらに、TFTおよび配線の凹凸を平坦化するために、絶縁膜上へ平坦化膜を形成した。絶縁膜上への平坦化膜の形成は、実施例5で得られた感光性ポリイミド前駆体組成物のワニスを基板上にスピン塗布し、ホットプレート上で120℃で3分間プリベークした後、露光、現像し、空気フロー下において250℃で60分間加熱焼成処理することにより行った。ワニスを塗布する際の塗布性は良好で、露光、現像、焼成の後に得られた硬化膜にはしわやクラックの発生は認められなかった。また、配線の平均段差は500nm、作製した平坦化膜の膜厚は2000nmであった。
 次に、得られた平坦化膜上に、トップエミッション型の有機EL素子を形成した。まず、平坦化膜上に、ITOからなる下部電極を、コンタクトホールを介して配線に接続させてスパッタリングにより形成した。その後、レジストを塗布、プリベークし、所望のパターンのマスクを介して露光し、現像した。このレジストパターンをマスクとして、ITOエッチャントを用いたウエットエッチングによりパターン加工を行った。その後、レジスト剥離液(モノエタノールアミンとDMSOの混合液)を用いて該レジストパターンを剥離した。こうして得られた下部電極は、有機EL素子の陽極に相当する。
 次に、下部電極の周縁を覆う形状の絶縁層を形成した。絶縁層には、同じく実施例5で得られた感光性ポリイミド前駆体組成物のワニスを用いた。この絶縁層を設けることによって、下部電極とこの後の工程で形成する上部電極との間のショートを防止することができる。絶縁層をパターニングし、250℃で60分間の加熱処理を行い、波長450nm付近に適度な吸収を有する絶縁層を形成した。
 さらに、真空蒸着装置内で所望のパターンマスクを介して、正孔輸送層、赤色、緑色、青色の有機発光層、電子輸送層を順次蒸着して設けた。次いで、基板上方の全面にAlから成る上部電極を形成した。これは有機EL素子の陰極に相当する。得られた上記基板を蒸着機から取り出し、封止用ガラス基板と紫外線硬化型エポキシ樹脂を用いて貼り合わせることで封止した。
 以上の様にして、各有機EL素子にこれを駆動するためのTFTが接続してなるアクティブマトリックス型の有機EL表示装置が得られた。駆動回路を介して電圧を引加したところ、良好な発光を示した。
 実施例13
 ガラス基板上にボトムゲート型のTFTを形成し、TFTに接続される配線(高さ1.0μm)を形成した。このTFTと配線を覆う状態でSiからなる絶縁膜を形成した。次に、この絶縁膜にコンタクトホールを形成した。この配線は、TFT間または、後の工程で形成される有機EL素子とTFTとを接続するためのものである。
 次にITOからなる下部電極を、コンタクトホールを介して配線に接続させてスパッタリングにより形成した。その後、レジストを塗布、プリベークし、所望のパターンのマスクを介して露光し、現像した。このレジストパターンをマスクとして、ITOエッチャントを用いたウエットエッチングによりパターン加工を行った。その後、レジスト剥離液(モノエタノールアミンとDMSOの混合液)を用いて該レジストパターンを剥離した。こうして得られた下部電極は、有機EL素子の陽極に相当する。
 次に、下部電極の周縁、TFTならびに配線の段差を覆う形状の絶縁層を形成した。絶縁層には、同じく実施例5で得られた感光性ポリイミド前駆体組成物のワニスを基板上にスピン塗布し、続いて減圧乾燥し、ホットプレートにて120℃で3分間プリベークした後、露光、現像し、窒素フロー下において250℃で60分間の加熱焼成処理を行った。ワニスをスピン塗布する際の塗布性は良好で、露光、現像、焼成の後に得られた硬化膜にはしわやクラックの発生は認められなかった。また、配線の平均段差は500nm、作製した絶縁層の膜厚は2000nmであった。この絶縁層を設けることによって、下部電極とこの後の工程で形成する上部電極との間のショートを防止することができる。この様にして波長450nm付近に適度な吸収を有する絶縁層を形成した。
 さらに、真空蒸着装置内で所望のパターンマスクを介して、正孔輸送層、赤色、緑色、青色の有機発光層、電子輸送層を順次蒸着して設けた。次いで、基板上方の全面にAlから成る上部電極を形成した。これは有機EL素子の陰極に相当する。得られた上記基板を蒸着機から取り出し、封止用ガラス基板と紫外線硬化型エポキシ樹脂を用いて貼り合わせることで封止した。
 以上の様にして、各有機EL素子にこれを駆動するためのTFTが接続してなるアクティブマトリックス型の有機EL表示装置が得られた。駆動回路を介して電圧を引加したところ、良好な発光を示した。
 本発明の樹脂組成物は、半導体素子の表面保護膜や層間絶縁膜、有機EL素子の絶縁層、有機EL素子を用いた表示装置の駆動用TFT基板の平坦化膜、回路基板の配線保護絶縁膜、固体撮像素子のオンチップマイクロレンズや各種ディスプレイ・固体撮像素子用平坦化膜、回路基板用ソルダーレジスト、アンダーフィル剤、銅のマイグレーションを防ぐキャップ剤などの用途に好ましく用いることができる。
1 TFT
2 配線
3 絶縁膜
4 平坦化膜
5 ITO
6 基板
7 コンタクトホール
8 絶縁層

Claims (6)

  1. (a)ポリイミド、ポリベンゾオキサゾール、ポリイミド前駆体またはポリベンゾオキサゾール前駆体、(b)1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレンまたは2,3-ジヒドロキシナフタレンおよび(c)下記一般式(1)で表される構造を有する熱架橋剤または下記一般式(2)で表される基を有する熱架橋剤を含有する樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(1)中、Rは2~4価の連結基を示す。Rは炭素数1~20の1価の有機基、Cl、Br、IまたはFを示す。RおよびRは、CHOR(Rは水素原子または炭素数1~6の1価の炭化水素基)を示す。Rは水素原子、メチル基またはエチル基を示す。sは0~2の整数、uは2~4の整数を示す。)
      -N(CHOR(H)  (2)
    (上記一般式(2)中、Rは水素原子または炭素数1~6の1価の炭化水素基を示す。tは1または2、vは0または1を示す。ただし、t+vは1または2である。)
  2. 請求項1記載の樹脂組成物に、さらに(d)光酸発生剤を含有するポジ型感光性樹脂組成物。
  3. 請求項1記載の樹脂組成物に、さらに(e)光重合開始剤および(f)エチレン性不飽和結合を2個以上有する化合物を含有するネガ型感光性樹脂組成物。
  4. 厚さ3.0μmの膜における硬化前後の波長450nmの光の透過率変化量が20%以上である請求項1~3のいずれか記載の樹脂組成物。
  5. 薄膜トランジスタが形成された基板、請求項1~4のいずれか記載の樹脂組成物を硬化させて得られる平坦化膜および/または絶縁層、および表示素子をこの順に有する表示装置。
  6. 前記表示素子が有機エレクトロルミネッセンス素子である請求項5記載の表示装置。
PCT/JP2010/050402 2009-01-29 2010-01-15 樹脂組成物およびこれを用いた表示装置 WO2010087238A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG2011054848A SG173468A1 (en) 2009-01-29 2010-01-15 Resin composition and display device formed using same
JP2010506056A JP5699602B2 (ja) 2009-01-29 2010-01-15 樹脂組成物およびこれを用いた表示装置
US13/146,794 US8709552B2 (en) 2009-01-29 2010-01-15 Resin composition and display device using the same
CN2010800032835A CN102227474B (zh) 2009-01-29 2010-01-15 树脂组合物及使用其的显示装置
US14/202,595 US8895676B2 (en) 2009-01-29 2014-03-10 Resin composition and display device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-017790 2009-01-29
JP2009017790 2009-01-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/146,794 A-371-Of-International US8709552B2 (en) 2009-01-29 2010-01-15 Resin composition and display device using the same
US14/202,595 Division US8895676B2 (en) 2009-01-29 2014-03-10 Resin composition and display device using the same

Publications (1)

Publication Number Publication Date
WO2010087238A1 true WO2010087238A1 (ja) 2010-08-05

Family

ID=42395499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050402 WO2010087238A1 (ja) 2009-01-29 2010-01-15 樹脂組成物およびこれを用いた表示装置

Country Status (7)

Country Link
US (2) US8709552B2 (ja)
JP (1) JP5699602B2 (ja)
KR (1) KR101596985B1 (ja)
CN (1) CN102227474B (ja)
SG (1) SG173468A1 (ja)
TW (1) TWI464214B (ja)
WO (1) WO2010087238A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012063498A (ja) * 2010-09-15 2012-03-29 Toray Ind Inc 感光性樹脂組成物
JP2012216454A (ja) * 2011-04-01 2012-11-08 Seiko Epson Corp 発光装置及び電子機器
WO2013024849A1 (ja) * 2011-08-18 2013-02-21 東レ株式会社 ポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物ならびにそれらを含有するフレキシブル基板
WO2014073591A1 (ja) * 2012-11-08 2014-05-15 旭化成イーマテリアルズ株式会社 フレキシブルデバイス用基板、フレキシブルデバイス及びその製造方法、積層体及びその製造方法、並びに、樹脂組成物
JPWO2012098828A1 (ja) * 2011-01-21 2014-06-09 三菱瓦斯化学株式会社 低分子化合物、感放射線性組成物、およびレジストパターン形成方法
JP2015004000A (ja) * 2013-06-21 2015-01-08 東レ株式会社 樹脂組成物
JP2015052770A (ja) * 2013-08-08 2015-03-19 Jsr株式会社 感放射線性樹脂組成物、絶縁膜及びその形成方法並びに有機el素子
WO2016171179A1 (ja) * 2015-04-24 2016-10-27 東レ株式会社 樹脂組成物、それを用いた半導体素子の製造方法および半導体装置
KR20170068449A (ko) 2014-10-06 2017-06-19 도레이 카부시키가이샤 수지 조성물, 내열성 수지막의 제조 방법, 및 표시 장치
JP2018087877A (ja) * 2016-11-28 2018-06-07 日立化成デュポンマイクロシステムズ株式会社 ネガ型感光性樹脂組成物、硬化パターンの製造方法、硬化物及び電子デバイス
JP2019095797A (ja) * 2013-12-16 2019-06-20 Jsr株式会社 着色組成物、着色硬化膜及び表示素子
JPWO2018101376A1 (ja) * 2016-11-30 2019-10-24 三菱瓦斯化学株式会社 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
JP2020066651A (ja) * 2018-10-22 2020-04-30 東レ株式会社 樹脂組成物、樹脂シート、硬化膜、硬化膜の製造方法、半導体装置および表示装置
WO2023153390A1 (ja) * 2022-02-14 2023-08-17 東レ株式会社 感光性樹脂シート、硬化膜、及び多層配線基板

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI422970B (zh) * 2011-03-21 2014-01-11 Chi Mei Corp 感光性樹脂組成物、間隙體及含彼之液晶顯示元件
JP6024738B2 (ja) * 2012-02-23 2016-11-16 日立化成デュポンマイクロシステムズ株式会社 ディスプレイ基板の製造方法
KR102276783B1 (ko) * 2013-06-26 2021-07-14 닛산 가가쿠 가부시키가이샤 치환된 가교성 화합물을 포함하는 레지스트 하층막 형성 조성물
TWI490653B (zh) * 2013-09-10 2015-07-01 Chi Mei Corp 正型感光性樹脂組成物及其圖案形成方法
CN104167563B (zh) * 2014-08-15 2016-05-11 北京理工大学 一种复合固态电解质薄膜、制备方法和应用
KR20160092110A (ko) * 2015-01-26 2016-08-04 삼성디스플레이 주식회사 유기 발광 표시 장치
CN107409457B (zh) * 2015-03-11 2018-11-13 东丽株式会社 有机el显示装置及其制造方法
CN107428935B (zh) * 2015-03-27 2019-04-02 东丽株式会社 二胺化合物、使用其的耐热性树脂或耐热性树脂前体
CN108027562B (zh) * 2015-09-30 2019-07-05 东丽株式会社 负型着色感光性树脂组合物、固化膜、元件及显示装置
US10802401B2 (en) * 2015-09-30 2020-10-13 Toray Industries, Inc. Negative-type photosensitive resin composition, cured film, element and display apparatus that include cured film, production method for the same
TWI559080B (zh) 2015-11-09 2016-11-21 新應材股份有限公司 正型感光性絕緣樹脂組成物塗佈溶液及其絕緣膜的製造方法
JP2017173741A (ja) * 2016-03-25 2017-09-28 アーゼッド・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ 感光性シロキサン組成物
KR102277707B1 (ko) * 2016-04-25 2021-07-16 도레이 카부시키가이샤 수지 조성물
JP7003914B2 (ja) * 2016-05-02 2022-02-10 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミド樹脂組成物、及びポリイミドフィルム
WO2018013342A1 (en) * 2016-07-15 2018-01-18 E. I. Du Pont De Nemours And Company Electrically conductive adhesives
CN109298600B (zh) * 2017-07-25 2022-03-29 台湾永光化学工业股份有限公司 增幅型I-line光阻组合物
WO2019065902A1 (ja) * 2017-09-29 2019-04-04 東レ株式会社 感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び有機elディスプレイ、並びに有機elディスプレイの製造方法
CN110221731B (zh) * 2018-03-02 2023-03-28 宸鸿光电科技股份有限公司 触控面板的直接图案化方法及其触控面板
KR102149966B1 (ko) * 2018-03-09 2020-08-31 삼성에스디아이 주식회사 감광성 수지 조성물, 이를 이용한 감광성 수지막 및 전자 소자
TWI697515B (zh) * 2018-07-20 2020-07-01 南韓商Lg化學股份有限公司 聚醯亞胺樹脂、負型光敏樹脂組成物以及電子元件
TWI685717B (zh) * 2019-01-11 2020-02-21 律勝科技股份有限公司 感光性樹脂組成物及其應用
TWI685716B (zh) * 2019-01-11 2020-02-21 律勝科技股份有限公司 感光性聚醯亞胺樹脂組成物及其聚醯亞胺膜
WO2020150914A1 (zh) * 2019-01-23 2020-07-30 律胜科技股份有限公司 感光性聚酰亚胺树脂组合物及其聚酰亚胺膜
US11572442B2 (en) * 2020-04-14 2023-02-07 International Business Machines Corporation Compound, polyimide resin and method of producing the same, photosensitive resin composition, patterning method and method of forming cured film, interlayer insulating film, surface protective film, and electronic component

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134349A (ja) * 1994-11-02 1996-05-28 Showa Highpolymer Co Ltd 耐熱性樹脂組成物
JPH08143670A (ja) * 1994-11-24 1996-06-04 Showa Highpolymer Co Ltd 耐熱性樹脂組成物
JPH1062989A (ja) * 1996-08-23 1998-03-06 Mitsui Petrochem Ind Ltd 感光性樹脂組成物
JP2006313237A (ja) * 2005-05-09 2006-11-16 Hitachi Chemical Dupont Microsystems Ltd ポジ型感光性樹脂組成物、パターンの製造方法及び電子部品
JP2007063502A (ja) * 2005-09-02 2007-03-15 Toray Ind Inc 非感光性樹脂組成物およびそれを用いた光学素子
JP2008007744A (ja) * 2006-05-31 2008-01-17 Toray Ind Inc 耐熱性樹脂組成物およびそれを用いた金属樹脂複合体ならびに電子部品
JP2009227697A (ja) * 2008-03-19 2009-10-08 Toray Ind Inc 架橋剤およびそれを用いた感光性樹脂組成物
JP2009258634A (ja) * 2008-03-25 2009-11-05 Toray Ind Inc ポジ型感光性樹脂組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170715A (ja) 1996-12-12 1998-06-26 Canon Inc 樹脂ブラックマトリクスの製造方法、該方法によって製造された樹脂ブラックマトリクス、該ブラックマトリクスを有する液晶用カラーフィルター及び該カラーフィルターを用いた液晶パネル
JP3913022B2 (ja) 2001-10-09 2007-05-09 旭化成エレクトロニクス株式会社 ネガ型感光性樹脂組成物
EP1475665B1 (en) * 2003-04-07 2009-12-30 Toray Industries, Inc. Positive-type photosensitive resin composition
KR101314513B1 (ko) * 2005-03-15 2013-10-07 도레이 카부시키가이샤 감광성 수지 조성물
JP2008122501A (ja) 2006-11-09 2008-05-29 Sumitomo Chemical Co Ltd ポジ型感放射線性樹脂組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134349A (ja) * 1994-11-02 1996-05-28 Showa Highpolymer Co Ltd 耐熱性樹脂組成物
JPH08143670A (ja) * 1994-11-24 1996-06-04 Showa Highpolymer Co Ltd 耐熱性樹脂組成物
JPH1062989A (ja) * 1996-08-23 1998-03-06 Mitsui Petrochem Ind Ltd 感光性樹脂組成物
JP2006313237A (ja) * 2005-05-09 2006-11-16 Hitachi Chemical Dupont Microsystems Ltd ポジ型感光性樹脂組成物、パターンの製造方法及び電子部品
JP2007063502A (ja) * 2005-09-02 2007-03-15 Toray Ind Inc 非感光性樹脂組成物およびそれを用いた光学素子
JP2008007744A (ja) * 2006-05-31 2008-01-17 Toray Ind Inc 耐熱性樹脂組成物およびそれを用いた金属樹脂複合体ならびに電子部品
JP2009227697A (ja) * 2008-03-19 2009-10-08 Toray Ind Inc 架橋剤およびそれを用いた感光性樹脂組成物
JP2009258634A (ja) * 2008-03-25 2009-11-05 Toray Ind Inc ポジ型感光性樹脂組成物

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012063498A (ja) * 2010-09-15 2012-03-29 Toray Ind Inc 感光性樹脂組成物
JP6007793B2 (ja) * 2011-01-21 2016-10-12 三菱瓦斯化学株式会社 低分子化合物、感放射線性組成物、およびレジストパターン形成方法
JPWO2012098828A1 (ja) * 2011-01-21 2014-06-09 三菱瓦斯化学株式会社 低分子化合物、感放射線性組成物、およびレジストパターン形成方法
JP2012216454A (ja) * 2011-04-01 2012-11-08 Seiko Epson Corp 発光装置及び電子機器
KR20140051430A (ko) * 2011-08-18 2014-04-30 도레이 카부시키가이샤 폴리아미드산 수지 조성물, 폴리이미드 수지 조성물, 폴리이미드 옥사졸 수지 조성물 및 그것들을 함유하는 플렉시블 기판
KR101921919B1 (ko) * 2011-08-18 2018-11-26 도레이 카부시키가이샤 폴리아미드산 수지 조성물, 폴리이미드 수지 조성물, 폴리이미드 옥사졸 수지 조성물 및 그것들을 함유하는 플렉시블 기판
WO2013024849A1 (ja) * 2011-08-18 2013-02-21 東レ株式会社 ポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物ならびにそれらを含有するフレキシブル基板
JPWO2013024849A1 (ja) * 2011-08-18 2015-03-05 東レ株式会社 ポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物ならびにそれらを含有するフレキシブル基板
TWI570156B (zh) * 2011-08-18 2017-02-11 Toray Industries 聚醯胺酸樹脂組成物、聚醯亞胺樹脂組成物及聚醯亞胺唑樹脂組成物、以及含有其之可撓性基板
CN103842408A (zh) * 2011-08-18 2014-06-04 东丽株式会社 聚酰胺酸树脂组合物、聚酰亚胺树脂组合物和聚酰亚胺*唑树脂组合物以及含有它们的柔性基板
KR20150068442A (ko) * 2012-11-08 2015-06-19 아사히 가세이 이-매터리얼즈 가부시키가이샤 플렉서블 디바이스용 기판, 플렉서블 디바이스 및 그 제조 방법, 적층체 및 그 제조 방법, 그리고 수지 조성물
JPWO2014073591A1 (ja) * 2012-11-08 2016-09-08 旭化成株式会社 フレキシブルデバイス用基板、フレキシブルデバイス及びその製造方法、積層体及びその製造方法、並びに、樹脂組成物
WO2014073591A1 (ja) * 2012-11-08 2014-05-15 旭化成イーマテリアルズ株式会社 フレキシブルデバイス用基板、フレキシブルデバイス及びその製造方法、積層体及びその製造方法、並びに、樹脂組成物
KR101709422B1 (ko) 2012-11-08 2017-02-22 아사히 가세이 이-매터리얼즈 가부시키가이샤 플렉서블 디바이스용 기판, 플렉서블 디바이스 및 그 제조 방법, 적층체 및 그 제조 방법, 그리고 수지 조성물
JP2015004000A (ja) * 2013-06-21 2015-01-08 東レ株式会社 樹脂組成物
JP2015052770A (ja) * 2013-08-08 2015-03-19 Jsr株式会社 感放射線性樹脂組成物、絶縁膜及びその形成方法並びに有機el素子
JP2019095797A (ja) * 2013-12-16 2019-06-20 Jsr株式会社 着色組成物、着色硬化膜及び表示素子
KR20170068449A (ko) 2014-10-06 2017-06-19 도레이 카부시키가이샤 수지 조성물, 내열성 수지막의 제조 방법, 및 표시 장치
JPWO2016171179A1 (ja) * 2015-04-24 2018-02-15 東レ株式会社 樹脂組成物、それを用いた半導体素子の製造方法および半導体装置
WO2016171179A1 (ja) * 2015-04-24 2016-10-27 東レ株式会社 樹脂組成物、それを用いた半導体素子の製造方法および半導体装置
US10451969B2 (en) 2015-04-24 2019-10-22 Toray Industries, Inc. Resin composition, method for manufacturing semiconductor element using the same, and semiconductor device
JP2018087877A (ja) * 2016-11-28 2018-06-07 日立化成デュポンマイクロシステムズ株式会社 ネガ型感光性樹脂組成物、硬化パターンの製造方法、硬化物及び電子デバイス
JPWO2018101376A1 (ja) * 2016-11-30 2019-10-24 三菱瓦斯化学株式会社 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
JP7205715B2 (ja) 2016-11-30 2023-01-17 三菱瓦斯化学株式会社 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
JP2020066651A (ja) * 2018-10-22 2020-04-30 東レ株式会社 樹脂組成物、樹脂シート、硬化膜、硬化膜の製造方法、半導体装置および表示装置
JP7210999B2 (ja) 2018-10-22 2023-01-24 東レ株式会社 樹脂組成物、樹脂シート、硬化膜、硬化膜の製造方法、半導体装置および表示装置
WO2023153390A1 (ja) * 2022-02-14 2023-08-17 東レ株式会社 感光性樹脂シート、硬化膜、及び多層配線基板

Also Published As

Publication number Publication date
KR101596985B1 (ko) 2016-02-23
US20110284855A1 (en) 2011-11-24
US8895676B2 (en) 2014-11-25
CN102227474A (zh) 2011-10-26
US20140191222A1 (en) 2014-07-10
KR20110107793A (ko) 2011-10-04
TWI464214B (zh) 2014-12-11
TW201035241A (en) 2010-10-01
US8709552B2 (en) 2014-04-29
SG173468A1 (en) 2011-09-29
CN102227474B (zh) 2013-11-06
JP5699602B2 (ja) 2015-04-15
JPWO2010087238A1 (ja) 2012-08-02

Similar Documents

Publication Publication Date Title
JP5699602B2 (ja) 樹脂組成物およびこれを用いた表示装置
KR101227280B1 (ko) 감광성 수지 조성물 및 감광성 수지막의 제조방법
TWI688826B (zh) 感光性著色樹脂組成物、耐熱性著色樹脂膜之製造方法及顯示裝置
JP5211438B2 (ja) 樹脂組成物およびそれを用いた表示装置
JP6332022B2 (ja) 感光性樹脂組成物、耐熱性樹脂膜の製造方法および表示装置
JP6787123B2 (ja) 感光性樹脂組成物、樹脂硬化膜の製造方法および半導体装置
KR102367407B1 (ko) 수지 조성물
TWI714570B (zh) 耐熱性樹脂組成物、耐熱性樹脂膜之製造方法、層間絕緣膜或表面保護膜之製造方法、及電子零件或半導體零件之製造方法
TWI725250B (zh) 樹脂組成物、樹脂薄片、硬化膜、有機el顯示裝置、半導體電子零件、半導體裝置及有機el顯示裝置之製造方法
JP6286834B2 (ja) 耐熱性樹脂組成物および耐熱性樹脂膜の製造方法
JP2008039961A (ja) ポジ型感光性樹脂組成物およびそれを用いた有機エレクトロルミネッセンス素子
JP6212979B2 (ja) 樹脂組成物
KR20130078782A (ko) 포지티브형 감광성 수지 조성물
JP6903916B2 (ja) 樹脂組成物
JP5712658B2 (ja) ポジ型感光性樹脂組成物
KR20140086724A (ko) 표시장치 절연막용 감광성 수지 조성물, 및 이를 이용한 표시장치 절연막 및 표시장치
JP2020101690A (ja) バンクパターンの形成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003283.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010506056

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10735707

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117010340

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13146794

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10735707

Country of ref document: EP

Kind code of ref document: A1