WO2019065902A1 - 感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び有機elディスプレイ、並びに有機elディスプレイの製造方法 - Google Patents

感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び有機elディスプレイ、並びに有機elディスプレイの製造方法 Download PDF

Info

Publication number
WO2019065902A1
WO2019065902A1 PCT/JP2018/036083 JP2018036083W WO2019065902A1 WO 2019065902 A1 WO2019065902 A1 WO 2019065902A1 JP 2018036083 W JP2018036083 W JP 2018036083W WO 2019065902 A1 WO2019065902 A1 WO 2019065902A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
general formula
preferable
resin composition
Prior art date
Application number
PCT/JP2018/036083
Other languages
English (en)
French (fr)
Inventor
勇剛 谷垣
三好 一登
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2018553165A priority Critical patent/JP7230508B2/ja
Priority to US16/650,700 priority patent/US20200319549A1/en
Priority to KR1020207007302A priority patent/KR20200055715A/ko
Priority to CN201880062538.1A priority patent/CN111164512A/zh
Publication of WO2019065902A1 publication Critical patent/WO2019065902A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/101Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents
    • C08G73/1017Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents in the form of (mono)amine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1082Partially aromatic polyimides wholly aromatic in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/22Polybenzoxazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/0275Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with dithiol or polysulfide compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0387Polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/105Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having substances, e.g. indicators, for forming visible images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/162Coating on a rotating support, e.g. using a whirler or a spinner
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/322Aqueous alkaline compositions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13398Spacer materials; Spacer properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements

Definitions

  • the present invention relates to a photosensitive resin composition, a cured film, an element comprising the cured film, an organic EL display, and a method of manufacturing the organic EL display.
  • an organic EL display has a transparent electrode such as indium tin oxide (hereinafter, "ITO") on the light extraction side of a light emitting element, and a metal electrode such as an alloy of magnesium and silver on the light extraction side of the light emitting element.
  • ITO indium tin oxide
  • metal electrode such as an alloy of magnesium and silver
  • an insulating layer called a pixel division layer is provided between the transparent electrode and the metal electrode.
  • a light emitting material is deposited by vapor deposition through a vapor deposition mask in a region corresponding to the pixel region, in which the pixel division layer is opened and the underlying transparent electrode or metal electrode is exposed.
  • a layer is formed.
  • the transparent electrode and the metal electrode are generally formed by sputtering, but in order to prevent disconnection of the formed transparent electrode or metal electrode, a pattern shape with a low taper is required for the pixel division layer Be done.
  • the organic EL display has a thin film transistor (hereinafter, "TFT") for controlling a light emitting element, and includes a driving TFT, a switching TFT, and the like.
  • TFTs are formed as a laminated structure located below the transparent electrode or metal electrode which is the base of the above-mentioned pixel division layer.
  • the difference in level due to the TFT array formed with these TFTs and metal interconnects connecting the TFTs deteriorates the uniformity of the film formation of the transparent electrode, the metal electrode, the pixel division layer, and the light emitting layer formed later. , Which causes deterioration in display characteristics and reliability of the organic EL display. Therefore, after forming a TFT array, it is general to form a TFT planarization layer and / or a TFT protective layer to reduce or smooth a step due to the TFT array.
  • the organic EL display has a self light emitting element that emits light using energy due to recombination of electrons injected from the cathode and holes injected from the anode. Therefore, if there is a substance that inhibits the movement of electrons or holes, or a substance that forms an energy level that inhibits the recombination of electrons and holes, the light emission efficiency of the light emitting element decreases and the deactivation of the light emitting material occurs. And the like, leading to a decrease in the life of the light emitting element. Since the pixel division layer is formed at a position adjacent to the light emitting element, outgassing from the pixel division layer and the outflow of ionic components can contribute to the reduction of the life of the organic EL display.
  • a photosensitive resin composition having high heat resistance a negative photosensitive resin composition using a resin such as highly heat resistant polyimide is known (see, for example, Patent Document 1). By using such a photosensitive resin composition, it is possible to form a highly heat-resistant pixel divided layer having a low taper shape pattern.
  • the organic EL display has a self light emitting element, when external light such as sunlight is incident outdoors, visibility and contrast are reduced due to the reflection of the external light. Therefore, a technique for reducing external light reflection is required.
  • a photosensitive resin composition containing an alkali-soluble polyimide and a colorant is known (see, for example, Patent Document 2). That is, it is a method of reducing external light reflection by forming a pixel division layer having high heat resistance and light shielding property using a photosensitive resin composition containing a colorant such as polyimide and a pigment.
  • the TFT planarization layer and the TFT protective layer are also formed on the light emitting layer through the pixel division layer.
  • high heat resistance is required because they are formed at close positions.
  • a coloring agent such as a pigment is added to the photosensitive resin composition to impart light shielding properties, the ultraviolet light etc. at the time of pattern exposure is also blocked as the content of the coloring agent is increased.
  • any photosensitive resin composition containing a colorant known in the prior art has characteristics for use as a material for forming a pixel division layer, a TFT flattening layer, or a TFT protective layer of an organic EL display. It was inadequate. Specifically, any of the sensitivity, the light shielding property, or the pattern processability of the low taper shape was insufficient.
  • the curing of the film deep portion is insufficient at the time of pattern exposure, so the film deep portion is side-etched at the time of development. Therefore, it becomes reverse-tapered after development, which is a factor that inhibits formation of a low-tapered pattern.
  • UV curing ultraviolet curing
  • the pattern skirt is also reflowed at the time of heat curing. Therefore, since the pattern opening size width after thermosetting is smaller than the pattern opening size width after development, an error occurs in the pixel design of a display device such as an organic EL display. In addition, the variation in the dimension of the pattern opening due to the reflow at the time of heat curing causes the decrease in the panel manufacturing yield.
  • the present invention has been made in view of the above, and an object thereof is to provide a high sensitivity, to form a low taper shape pattern after heat curing, and to suppress a change in dimension opening width of the pattern before and after heat curing. It is possible to obtain a photosensitive resin composition capable of obtaining a cured film excellent in light shielding property.
  • the photosensitive resin composition according to one aspect of the present invention is a photosensitive resin composition containing (A) an alkali-soluble resin, (C) a photosensitizer, (Da) a blackening agent, and (F) a crosslinking agent.
  • the (A) alkali-soluble resin is a group consisting of (A1-1) polyimide, (A1-2) polyimide precursor, (A1-3) polybenzoxazole, and (A1-4) polybenzoxazole precursor (A1)
  • One or more types selected from the group consisting of polybenzoxazole precursors contain a structural unit having a fluorine atom in an amount of 10 to 100 mol% of the total structural units, and the content ratio of the (Da) blackening agent is the total solid 5 to 70% by mass in which the (F) crosslinking agent is an epoxy compound having a fluorene skeleton and two or more epoxy groups in the (F1) molecule, an indane skeleton and two in the (F2) molecule.
  • Epoxy compound having the above epoxy group (F3) epoxy resin having a structural unit containing aromatic structure, alicyclic structure and epoxy group, (F4) biphenyl structure, terphenyl structure, naphthalene structure, anthracene structure and fluorene structure
  • the photosensitive resin composition according to the present invention has high sensitivity, can form a low-tapered pattern after heat curing, can suppress changes in the dimension opening width of the pattern before and after heat curing, and is excellent in light shielding properties It is possible to obtain a cured film.
  • FIG. 1 is a schematic cross-sectional view showing a manufacturing process of steps 1 to 7 in an organic EL display using a cured film of the photosensitive resin composition of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing the manufacturing process of steps 1 to 13 in a liquid crystal display using a cured film of the photosensitive resin composition of the present invention.
  • FIG. 3 is a cross-sectional view showing an example of a cross section of a cured pattern having a step shape.
  • FIG. 4 is a schematic view illustrating the manufacturing process of Steps 1 to 4 in the substrate of the organic EL display used for light emission characteristic evaluation in a plan view.
  • FIG. 5 is a schematic cross-sectional view showing an organic EL display having no polarizing layer.
  • FIG. 1 is a schematic cross-sectional view showing a manufacturing process of steps 1 to 7 in an organic EL display using a cured film of the photosensitive resin composition of the present invention.
  • FIG. 2 is a schematic cross-sectional view
  • FIG. 6 is a schematic view showing a method of evaluating the bendability of a cured film.
  • FIG. 7A is a schematic view showing a method of evaluating the residue during heat curing.
  • FIG. 7B is a schematic view showing a method of evaluating a residue during heat curing.
  • FIG. 8 is a schematic cross-sectional view showing a flexible organic EL display having no polarizing layer.
  • the photosensitive resin composition according to the present invention is a photosensitive resin composition comprising (A) an alkali-soluble resin, (C) a photosensitizer, (Da) a blackening agent and (F) a crosslinking agent,
  • the (A) alkali-soluble resin is selected from the group consisting of (A1-1) polyimide, (A1-2) polyimide precursor, (A1-3) polybenzoxazole, and (A1-4) polybenzoxazole precursor Containing (A1) the first resin containing one or more of One or more types selected from the group consisting of (A1-1) polyimide, (A1-2) polyimide precursor, (A1-3) polybenzoxazole, and (A1-4) polybenzoxazole precursor are fluorine atoms Containing structural units having 10 to 100 mol% of all structural units,
  • the content ratio of the (Da) blackening agent is 5 to 70% by mass in the total solid content
  • the (F) crosslinking agent is (
  • the photosensitive resin composition of the present invention contains at least the (A1) first resin as the (A) alkali-soluble resin.
  • A1 One kind of resin selected from (A1-1) polyimide, (A1-2) polyimide precursor, (A1-3) polybenzoxazole, and (A1-4) polybenzoxazole precursor as the first resin Contains the above.
  • the (A1-1) polyimide, the (A1-2) polyimide precursor, the (A1-3) polybenzoxazole, and the (A1-4) polybenzoxazole precursor may be a single resin or a co-polymer thereof. It may be any of polymers.
  • (A1-2) Polyimide precursor for example, tetracarboxylic acid, corresponding tetracarboxylic acid dianhydride or tetracarboxylic acid diester dichloride, etc., diamine, corresponding diisocyanate compound or trimethylsilylated diamine, etc. What is obtained by making it react is mentioned, and it has a tetracarboxylic acid residue and / or its derivative residue, and a diamine residue and / or its derivative residue.
  • the (A1-2) polyimide precursor include polyamic acid, polyamic acid ester, polyamic acid amide and polyisoimide.
  • polyimide (A1-1) for example, those obtained by subjecting the above-described polyamic acid, polyamic acid ester, polyamic acid amide or polyisoimide to dehydration ring closure by heating or reaction using an acid or a base can be mentioned. , Tetracarboxylic acid residue and / or its derivative residue, and diamine residue and / or its derivative residue.
  • the polyimide precursor (A1-2) is a thermosetting resin, and is thermally cured at a high temperature for dehydration ring closure to form a highly heat resistant imide bond, thereby obtaining a polyimide (A1-1). Therefore, the heat resistance of the cured film obtained can be remarkably improved by incorporating the polyimide (A1-1) having a highly heat resistant imide bond into the photosensitive resin composition. Therefore, it is suitable when using a cured film for the use by which high heat resistance is requested
  • (A1-2) polyimide precursor is a resin whose heat resistance improves after dehydration and ring closure, it is used in applications where it is desired to achieve both the characteristics of the precursor structure before dehydration and ring closure and the heat resistance of the cured film. It is suitable.
  • the (A1-1) polyimide and the (A1-2) polyimide precursor have an imide bond and / or an amide bond as a bond having polarity. Therefore, when (D1) pigment is contained as (D) coloring agent to be described later, the bond having such polarity interacts strongly with (D1) pigment, and thus the dispersion stability of (D1) pigment is improved. be able to.
  • the polyimide (A1-1) used in the present invention preferably contains a structural unit represented by the following general formula (1), from the viewpoint of improving the heat resistance of the cured film.
  • R 1 represents a 4- to 10-valent organic group
  • R 2 represents a 2- to 10-valent organic group
  • R 3 and R 4 each independently represent a phenolic hydroxyl group, a sulfonic acid group, a mercapto group or a substituent represented by the general formula (5) or the general formula (6).
  • p represents an integer of 0 to 6
  • q represents an integer of 0 to 8.
  • R 1 in the general formula (1) represents a tetracarboxylic acid residue and / or a derivative residue thereof
  • R 2 represents a diamine residue and / or a derivative residue thereof.
  • the tetracarboxylic acid derivative include tetracarboxylic acid dianhydride, tetracarboxylic acid dichloride or tetracarboxylic acid active diester.
  • a diamine derivative a diisocyanate compound or trimethylsilylated diamine is mentioned.
  • R 1 has one or more selected from an aliphatic structure having 2 to 20 carbon atoms, an alicyclic structure having 4 to 20 carbon atoms, and an aromatic structure having 6 to 30 carbon atoms
  • An organic group of 10 to 10 is preferred.
  • R 2 is a divalent to decavalent organic compound having one or more selected from an aliphatic structure having 2 to 20 carbon atoms, an alicyclic structure having 4 to 20 carbon atoms and an aromatic structure having 6 to 30 carbon atoms Groups are preferred.
  • q is preferably 1 to 8.
  • the aliphatic structure, alicyclic structure and aromatic structure described above may have a hetero atom and may be either unsubstituted or substituted.
  • R 19 to R 21 each independently represent hydrogen, an alkyl group having 1 to 10 carbon atoms, an acyl group having 2 to 6 carbon atoms or an aryl having 6 to 15 carbon atoms. Represents a group.
  • R 19 to R 21 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 4 carbon atoms or an aryl having 6 to 10 carbon atoms. Groups are preferred.
  • the alkyl group, the acyl group, and the aryl group described above may be either unsubstituted or substituted.
  • the polyimide (A1-1) preferably contains the structural unit represented by the general formula (1) as a main component, and the general formula (1) accounts for all the structural units in the polyimide (A1-1).
  • the content ratio of the structural unit to be represented is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and still more preferably 70 to 100 mol%.
  • the heat resistance of a cured film can be improved as the content ratio is 50 to 100 mol%.
  • the polyimide precursor (A1-2) used in the present invention preferably contains a structural unit represented by the general formula (3) from the viewpoint of improving the heat resistance of the cured film and improving the resolution after development.
  • R 9 represents a 4- to 10-valent organic group
  • R 10 represents a 2- to 10-valent organic group
  • R 11 represents a substituent represented by the general formula (5) or the general formula (6) described above
  • R 12 represents a phenolic hydroxyl group, a sulfonic acid group or a mercapto group
  • R 13 represents a phenolic It represents a substituent represented by a hydroxyl group, a sulfonic acid group, a mercapto group, or the above-described formula (5) or formula (6).
  • t represents an integer of 2 to 8
  • u represents an integer of 0 to 6
  • v represents an integer of 0 to 8
  • R 9 in the general formula (3) represents a tetracarboxylic acid residue and / or a derivative residue thereof
  • R 10 represents a diamine residue and / or a derivative residue thereof.
  • the tetracarboxylic acid derivative include tetracarboxylic acid dianhydride, tetracarboxylic acid dichloride or tetracarboxylic acid active diester.
  • a diamine derivative a diisocyanate compound or trimethylsilylated diamine is mentioned.
  • R 9 has one or more selected from an aliphatic structure having 2 to 20 carbon atoms, an alicyclic structure having 4 to 20 carbon atoms and an aromatic structure having 6 to 30 carbon atoms
  • An organic group of 10 to 10 is preferred.
  • R 10 is a divalent to decavalent organic having one or more selected from an aliphatic structure having 2 to 20 carbon atoms, an alicyclic structure having 4 to 20 carbon atoms and an aromatic structure having 6 to 30 carbon atoms Groups are preferred.
  • v is preferably 1 to 8.
  • the aliphatic structure, alicyclic structure and aromatic structure described above may have a hetero atom and may be either unsubstituted or substituted.
  • the polyimide precursor (A1-2) preferably contains the structural unit represented by the general formula (3) as a main component, and the general formula (A1-2) accounts for all structural units in the polyimide precursor
  • the content ratio of the structural unit represented by 3) is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and still more preferably 70 to 100 mol%. When the content ratio is 50 to 100 mol%, the resolution can be improved.
  • the amic acid structural unit in the polyimide precursor has a carboxy group as a tetracarboxylic acid residue and / or a derivative residue thereof.
  • R 11 in the general formula (3) structural unit represented by the general formula (5) substituents only consists represented by, R 19 is hydrogen (A1-2) a polyimide precursor, ( A1-2a) It is called a polyamic acid.
  • R 11 in the structural unit represented by the general formula (3) is a substituent represented by the general formula (5) as the polyimide precursor (A1-2)
  • R 19 has 1 to 6 carbon atoms Structural units that are 10 alkyl groups, acyl groups having 2 to 6 carbon atoms, or aryl groups having 6 to 15 carbon atoms are referred to as amic acid ester structural units.
  • the amic acid ester structural unit in the polyimide precursor has a carboxylic acid ester group as a group obtained by esterifying a tetracarboxylic acid residue and / or its derivative residue.
  • R 11 in the structural unit represented by the general formula (3) consists only of the substituent represented by the general formula (5), and R 19 is an alkyl group having 1 to 10 carbon atoms, 2 to 6 carbon atoms
  • the polyimide precursor (A1-2) which is an acyl group of the above or an aryl group having a carbon number of 6 to 15 is referred to as (A1-2b) polyamic acid ester.
  • the amic acid amide structural unit in the polyimide precursor has a carboxylic acid amide group as a group in which a tetracarboxylic acid residue and / or a derivative residue thereof is amidated.
  • the (A1-2) polyimide precursor the amic acid structural unit, and the amic acid ester structural unit and / or the amic acid It is preferred to contain an amide structural unit.
  • the (A1-2) polyimide precursor containing an amic acid structural unit and an amic acid ester structural unit is referred to as (A1-2-1) polyamic acid partial ester.
  • the (A1-2) polyimide precursor containing an amic acid structural unit and an amic acid amide structural unit is referred to as (A1-2-2) polyamic acid partial amide.
  • the (A1-2) polyimide precursor containing an amic acid structural unit, an amic acid ester structural unit and an amic acid amide structural unit is referred to as (A1-2-3) polyamic acid partial ester amide.
  • These polyimide precursors containing an amic acid structural unit and an amic acid ester structural unit and / or an amic acid amide structural unit have a carboxy group as a tetracarboxylic acid residue and / or a derivative residue thereof (A1- 2a) It can be synthesized from a polyamic acid by esterification of a part of carboxy group and / or amidization of a part of carboxy group.
  • the content ratio of the polyamic acid unit in the total structural units in the polyimide precursor (A1-2) is preferably 10 mol% or more, more preferably 20 mol% or more, and still more preferably 30 mol% or more.
  • the content ratio is 10 mol% or more, the resolution after development can be improved.
  • 60 mol% or less is preferable, as for the content rate of a polyamic acid unit, 50 mol% or less is more preferable, and 40 mol% or less is more preferable.
  • the content ratio is 60 mol% or less, a pattern with a low taper shape can be formed after development.
  • (A1-2) 40 mol% or more is preferable, 50 mol% or more is more preferable, and 60 mol% or more is more preferable as the total of the content ratio of the polyamic acid ester unit and the polyamic acid amide unit in the total structural units in the polyimide precursor .
  • the total content ratio is 40 mol% or more, a pattern with a low taper shape can be formed after development.
  • 90 mol% or less is preferable, as for the sum total of the content ratio of a polyamic-acid ester unit and a polyamic-acid amide unit, 80 mol% or less is more preferable, and 70 mol% is further more preferable.
  • the total content ratio is 90 mol% or less, the resolution after development can be improved.
  • a polybenzoxazole precursor for example, one obtained by reacting a dicarboxylic acid, a corresponding dicarboxylic acid dichloride or a dicarboxylic acid-active diester with a bisaminophenol compound as a diamine It has a dicarboxylic acid residue and / or a derivative residue thereof and a bisaminophenol compound residue and / or a derivative residue thereof.
  • Examples of (A1-4) polybenzoxazole precursors include polyhydroxyamides.
  • polybenzoxazole for example, those obtained by dehydration ring closure of a dicarboxylic acid and a bisaminophenol compound as a diamine by using a polyphosphoric acid, and the polyhydroxyamide described above Include those obtained by dehydration and ring closure by heating or reaction with phosphoric anhydride, a base or a carbodiimide compound, etc., and dicarboxylic acid residues and / or their derivative residues, bisaminophenol compound residues, And / or have a derivative residue thereof.
  • the (A1-4) polybenzoxazole precursor is a thermosetting resin, and is thermally cured at a high temperature to form a highly heat-resistant and rigid benzoxazole ring by dehydration ring closure, (A1-3) polybenzo An oxazole is obtained. Therefore, the heat resistance of the cured film obtained can be remarkably improved by containing the (A1-3) polybenzoxazole having a highly heat resistant and rigid benzoxazole ring in the photosensitive resin composition. Therefore, it is suitable when using a cured film for the use by which high heat resistance is requested
  • the (A1-4) polybenzoxazole precursor is a resin whose heat resistance improves after dehydration and ring closure, when it is used for applications where the characteristics of the precursor structure before dehydration and ring closure and the heat resistance of the cured film are desired to be compatible And so on.
  • the (A1-3) polybenzoxazole and the (A1-4) polybenzoxazole precursor have an oxazole bond and / or an amide bond as a bond having polarity. Therefore, when (D1) pigment is contained as (D) coloring agent to be described later, the bond having such polarity interacts strongly with (D1) pigment, and thus the dispersion stability of (D1) pigment is improved. be able to.
  • the (A1-3) polybenzoxazole used in the present invention preferably contains a structural unit represented by the general formula (2) from the viewpoint of improving the heat resistance of the cured film.
  • R 5 represents a di- to 10-valent organic group
  • R 6 represents a 4- to 10-valent organic group having an aromatic structure.
  • Each of R 7 and R 8 independently represents a phenolic hydroxyl group, a sulfonic acid group, a mercapto group or a substituent represented by the above-mentioned general formula (5) or general formula (6).
  • r represents an integer of 0 to 8
  • s represents an integer of 0 to 6.
  • R 5 in the general formula (2) represents a dicarboxylic acid residue and / or a derivative residue thereof
  • R 6 represents a bisaminophenol compound residue and / or a derivative residue thereof.
  • dicarboxylic acid derivatives include dicarboxylic acid anhydrides, dicarboxylic acid chlorides, dicarboxylic acid active esters, tricarboxylic acid anhydrides, tricarboxylic acid chlorides, tricarboxylic acid active esters, and diformyl compounds.
  • R 5 has one or more selected from an aliphatic structure having 2 to 20 carbon atoms, an alicyclic structure having 4 to 20 carbon atoms, and an aromatic structure having 6 to 30 carbon atoms
  • An organic group of 10 to 10 is preferred.
  • R 6 is preferably a tetra- to deca-valent organic group having a C 6-30 aromatic structure.
  • s is preferably 1 to 8.
  • the aliphatic structure, alicyclic structure and aromatic structure described above may have a hetero atom and may be either unsubstituted or substituted.
  • the polybenzoxazole preferably contains the structural unit represented by the general formula (2) as a main component, and the general formula occupied by all structural units in the (A1-3) polybenzoxazole
  • the content ratio of the structural unit represented by (2) is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and still more preferably 70 to 100 mol%.
  • the heat resistance of a cured film can be improved as the content ratio is 50 to 100 mol%.
  • the (A1-4) polybenzoxazole precursor used in the present invention may contain the structural unit represented by the general formula (4) from the viewpoint of improving the heat resistance of the cured film and improving the resolution after development. preferable.
  • R 14 represents a di- to 10-valent organic group
  • R 15 represents a 4- to 10-valent organic group having an aromatic structure
  • R 16 represents a phenolic hydroxyl group, a sulfonic acid group, a mercapto group, or a substituent represented by the general formula (5) or the general formula (6) described above
  • R 17 represents a phenolic hydroxyl group
  • R 18 Represents a sulfonic acid group, a mercapto group, or a substituent represented by the general formula (5) or the general formula (6) described above.
  • w represents an integer of 0 to 8
  • x represents an integer of 2 to 8
  • y represents an integer of 0 to 6, and 2 ⁇ x + y ⁇ 8.
  • R 14 in the general formula (4) represents a dicarboxylic acid residue and / or a derivative residue thereof
  • R 15 represents a bisaminophenol compound residue and / or a derivative residue thereof.
  • dicarboxylic acid derivatives include dicarboxylic acid anhydrides, dicarboxylic acid chlorides, dicarboxylic acid active esters, tricarboxylic acid anhydrides, tricarboxylic acid chlorides, tricarboxylic acid active esters, and diformyl compounds.
  • R 14 has one or more selected from an aliphatic structure having 2 to 20 carbon atoms, an alicyclic structure having 4 to 20 carbon atoms and an aromatic structure having 6 to 30 carbon atoms
  • An organic group of 10 to 10 is preferred.
  • R 15 is preferably a tetra- to deca-valent organic group having a C 6-30 aromatic structure.
  • the aliphatic structure, alicyclic structure and aromatic structure described above may have a hetero atom and may be either unsubstituted or substituted.
  • the (A1-4) polybenzoxazole precursor preferably contains a structural unit represented by the general formula (4) as a main component, and (A1-4) all structural units in the polybenzoxazole precursor
  • the content ratio of the structural unit represented by the general formula (4) is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and still more preferably 70 to 100 mol%. When the content ratio is 50 to 100 mol%, the resolution can be improved.
  • tetracarboxylic acids and dicarboxylic acids and their derivatives examples include aromatic tetracarboxylic acids, alicyclic tetracarboxylic acids and aliphatic tetracarboxylic acids. These tetracarboxylic acids may have a heteroatom other than the oxygen atom of the carboxy group.
  • aromatic tetracarboxylic acid and derivatives thereof examples include 1,2,4,5-benzenetetracarboxylic acid (pyromellitic acid), 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 1,2, 5,6-Naphthalenetetracarboxylic acid, 3,3 ', 4,4'-benzophenonetetracarboxylic acid, 2,2-bis (3,4-dicarboxyphenyl) propane, 2,2-bis (3,4- Dicarboxyphenyl) hexafluoropropane, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) ether, 2,3,5,6-pyridinetetracarboxylic acid, or 3,4,6 9,10-Perylenetetracarboxylic acid, N, N'-bis [5,5'-hexafluoropropane-2,2-diyl-bis (2-hydroxyphenyl)] Scan
  • alicyclic tetracarboxylic acids and derivatives thereof include bicyclo [2.2.2] octane-7-ene-2,3,5,6-tetracarboxylic acid and 1,2,4,5-cyclohexanetetra Carboxylic acid, 1,2,3,4-cyclobutane tetracarboxylic acid, or 2,3,4,5-tetrahydrofuran tetracarboxylic acid, or their tetracarboxylic acid dianhydride, tetracarboxylic acid dichloride, or tetracarboxylic acid Acid active diesters are mentioned.
  • aliphatic tetracarboxylic acids and derivatives thereof include butane-1,2,3,4-tetracarboxylic acid, or its tetracarboxylic acid dianhydride, tetracarboxylic acid dichloride or tetracarboxylic acid active diester.
  • dicarboxylic acid and its derivative in the (A1-3) polybenzoxazole and (A1-4) polybenzoxazole precursor a tricarboxylic acid and / or a derivative thereof may be used.
  • dicarboxylic acids and tricarboxylic acids examples include aromatic dicarboxylic acids, aromatic tricarboxylic acids, alicyclic dicarboxylic acids, alicyclic tricarboxylic acids, aliphatic dicarboxylic acids or aliphatic tricarboxylic acids. These dicarboxylic acids and tricarboxylic acids may have heteroatoms other than oxygen atom in addition to oxygen atom of carboxy group.
  • aromatic dicarboxylic acids and derivatives thereof include 4,4′-dicarboxybiphenyl, 2,2′-bis (trifluoromethyl) -4,4′-dicarboxybiphenyl, 4,4′-benzophenonedicarboxylic acid 2,2-bis (4-carboxyphenyl) hexafluoropropane, 2,2-bis (3-carboxyphenyl) hexafluoropropane or 4,4′-dicarboxydiphenyl ether, or their dicarboxylic acid anhydrides, dicarboxylic acids There may be mentioned acid chlorides, dicarboxylic acid active esters or diformyl compounds.
  • aromatic tricarboxylic acid and derivatives thereof for example, 1,2,4-benzenetricarboxylic acid, 1,3,5-benzenetricarboxylic acid, 2,4,5-benzophenonetricarboxylic acid, 2,4,4'-biphenyl Tricarboxylic acid or 3,3 ′, 4′-tricarboxydiphenyl ether or their tricarboxylic acid anhydrides, tricarboxylic acid chlorides, tricarboxylic acid active esters or diformyl monocarboxylic acids can be mentioned.
  • alicyclic dicarboxylic acids and derivatives thereof include tetrahydrophthalic acid, 3-methyltetrahydrophthalic acid, 4-methylhexahydrophthalic acid, 1,4-cyclohexanedicarboxylic acid or 1,2-cyclohexanedicarboxylic acid, or These include dicarboxylic acid anhydrides, dicarboxylic acid chlorides, dicarboxylic acid active esters or diformyl compounds.
  • alicyclic tricarboxylic acids and derivatives thereof include 1,2,4-cyclohexanetricarboxylic acid or 1,3,5-cyclohexanetricarboxylic acid, or their tricarboxylic acid anhydrides, tricarboxylic acid chlorides and tricarboxylic acid activities. Ester or diformyl monocarboxylic acid may be mentioned.
  • Aliphatic dicarboxylic acids and derivatives thereof include, for example, itaconic acid, maleic acid, fumaric acid, malonic acid, succinic acid, or hexane-1,6-dicarboxylic acid, or their dicarboxylic acid anhydrides and dicarboxylic acid chlorides. And dicarboxylic acid active esters or diformyl compounds.
  • aliphatic tricarboxylic acids and derivatives thereof include hexane-1,3,6-tricarboxylic acid or propane-1,2,3-tricarboxylic acid, or their tricarboxylic acid anhydrides, tricarboxylic acid chlorides and tricarboxylic acid There may be mentioned active esters or diformyl monocarboxylic acids.
  • diamines and derivatives thereof include aromatic diamines, bisaminophenol compounds, alicyclic diamines, alicyclic dihydroxydiamines, aliphatic diamines, and aliphatic dihydroxydiamines. These diamines and their derivatives may have hetero atoms in addition to the nitrogen atom and the oxygen atom possessed by the amino group and its derivatives.
  • aromatic diamines and bisaminophenol compounds and derivatives thereof include p-phenylenediamine, 1,4-bis (4-aminophenoxy) benzene, 2,2′-dimethyl-4,4′-diaminobiphenyl, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 3,3'-diamino-4,4'-biphenol, 1,5-naphthalenediamine, 9,9-bis (3-amino -4-hydroxyphenyl) fluorene, 2,2-bis (3-amino-4-hydroxyphenyl) propane, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, bis (3-amino- 4-hydroxyphenyl) sulfone, 4,4'-diaminodiphenyl sulfide, bis (3-amino-4-hydroxy!
  • Alicyclic diamines and alicyclic dihydroxy diamines, and derivatives thereof include, for example, 1,4-cyclohexanediamine, bis (4-aminocyclohexyl) methane, 3,6-dihydroxy-1,2-cyclohexanediamine or bis. (3-hydroxy-4-aminocyclohexyl) methane or their diisocyanate compounds or trimethylsilylated diamines.
  • Aliphatic diamines and aliphatic dihydroxy diamines, and derivatives thereof include, for example, 1,6-hexamethylene diamine or 2,5-dihydroxy-1,6-hexamethylene diamine, or a diisocyanate compound thereof or trimethylsilylation thereof Diamine is mentioned.
  • ⁇ Structural unit having a fluorine atom> One or more selected from (A1-1) polyimide, (A1-2) polyimide precursor, (A1-3) polybenzoxazole, and (A1-4) polybenzoxazole precursor is a structural unit having a fluorine atom In 10 to 100 mol% of all structural units.
  • a structural unit in which one or more selected from (A1-1) polyimide, (A1-2) polyimide precursor, (A1-3) polybenzoxazole, and (A1-4) polybenzoxazole precursor have a fluorine atom By containing these, the transparency can be improved, and the sensitivity at the time of exposure can be improved. In addition, water repellency can be imparted to the film surface, and penetration from the film surface at the time of alkali development can be suppressed.
  • exposure is irradiation of active actinic radiation (radiation), and examples thereof include irradiation of visible light, ultraviolet light, electron beam, or X-ray.
  • an ultra-high pressure mercury lamp light source capable of irradiating visible light or ultraviolet light is preferable, and j-ray (wavelength 313 nm), i-ray (wavelength 365 nm), h-ray (wavelength 405 nm), or Irradiation with g-ray (wavelength 436 nm) is more preferable.
  • exposure means irradiation of actinic radiation (radiation).
  • One or more types selected from (A1-1) polyimide, (A1-2) polyimide precursor, (A1-3) polybenzoxazole, and (A1-4) polybenzoxazole precursor have a structural unit having a fluorine atom
  • the solubility with respect to a solvent can be improved. Therefore, the content of the high polar solvent described above can be reduced, or these resins can be dissolved without using the high polar solvent, and the dispersion stability of the (D1) pigment can be improved.
  • the fluorine atom-containing structural unit contained in the (A1-1) polyimide and / or the (A1-2) polyimide precursor is derived from a structural unit derived from a fluorine atom-containing tetracarboxylic acid and / or a derivative thereof
  • a structural unit or a structural unit derived from a diamine having a fluorine atom and / or a structural unit derived from a derivative thereof can be mentioned.
  • the content ratio of structural units having a fluorine atom is preferably 30 to 100 mol%.
  • the content rate of the structural unit which has a fluorine atom 50 mol% or more is more preferable, and 70 mol% or more is further more preferable.
  • the content ratio is 30 to 100 mol%, the sensitivity at the time of exposure can be improved.
  • carboxylic acids in one or more resins selected from (A1-1) polyimide, (A1-2) polyimide precursor, (A1-3) polybenzoxazole, and (A1-4) polybenzoxazole precursor From a tetracarboxylic acid having a fluorine atom, a tetracarboxylic acid derivative having a fluorine atom, a dicarboxylic acid having a fluorine atom, and a dicarboxylic acid derivative having a fluorine atom occupying in the total of structural units derived from the structural unit and its derivative
  • the content ratio of structural units derived from one or more selected species is preferably 30 to 100 mol%.
  • the content rate of the structural unit which has a fluorine atom 50 mol% or more is more preferable, and 70 mol% or more is further more preferable.
  • the content ratio is 30 to 100 mol%, the sensitivity at the time of exposure can be improved.
  • (A1-1) polyimide, (A1-2) polyimide precursor, (A1-3) polybenzoxazole and (A1-4) polybenzoxazole precursor It is selected from a diamine having a fluorine atom, a diamine derivative having a fluorine atom, a bisaminophenol compound having a fluorine atom, and a bisaminophenol compound derivative having a fluorine atom in the total of structural units derived from the structural unit and its derivative
  • the content ratio of structural units derived from one or more kinds is preferably 30 to 100 mol%.
  • the content rate of the structural unit which has a fluorine atom 50 mol% or more is more preferable, and 70 mol% or more is further more preferable.
  • the content ratio is 30 to 100 mol%, the sensitivity at the time of exposure can be improved.
  • the (A1-1) polyimide and / or the (A1-2) polyimide precursor preferably contains a structural unit derived from an aromatic carboxylic acid and / or a structural unit derived from a derivative thereof.
  • the polyimide precursor contains a structural unit derived from an aromatic carboxylic acid and / or a structural unit derived from a derivative thereof, whereby the heat resistance of the aromatic group is obtained. Thus, the heat resistance of the cured film can be improved.
  • aromatic carboxylic acid and its derivative aromatic tetracarboxylic acid and / or its derivative are preferable.
  • the content ratio of structural units derived from a derivative thereof is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and still more preferably 70 to 100 mol%.
  • the heat resistance of a cured film can be improved as the content ratio is 50 to 100 mol%.
  • the (A1-3) polybenzoxazole and / or the (A1-4) polybenzoxazole precursor preferably contains a structural unit derived from an aromatic carboxylic acid and / or a structural unit derived from a derivative thereof.
  • the polybenzoxazole precursor is aromatic by containing a structural unit derived from an aromatic carboxylic acid and / or a derivative thereof
  • the heat resistance of the base can improve the heat resistance of the cured film.
  • aromatic carboxylic acid and its derivative aromatic dicarboxylic acid or aromatic tricarboxylic acid and / or their derivative are preferable, and aromatic dicarboxylic acid and / or its derivative are more preferable.
  • the content ratio of the structural unit derived from the structural unit and / or the derivative thereof is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and still more preferably 70 to 100 mol%.
  • the heat resistance of a cured film can be improved as the content ratio is 50 to 100 mol%.
  • One or more types selected from (A1-1) polyimide, (A1-2) polyimide precursor, (A1-3) polybenzoxazole, and (A1-4) polybenzoxazole precursor are derived from aromatic amines It is preferable to contain a structural unit derived from a structural unit and / or a derivative thereof.
  • At least one selected from (A1-1) polyimide, (A1-2) polyimide precursor, (A1-3) polybenzoxazole, and (A1-4) polybenzoxazole precursor is derived from an aromatic amine
  • aromatic diamines, bisaminophenol compounds, aromatic triamines, or trisaminophenol compounds, and / or their derivatives are preferable, and aromatic diamines or bisaminophenol compounds, and / or those The derivatives of are more preferred.
  • the content ratio of the structural unit derived from the aromatic amine and / or the structural unit derived from the derivative thereof in the total of the structural units derived from the structural unit and the derivative thereof is preferably 50 to 100 mol%, more preferably 60 to 100 mol% More preferably, 70 to 100 mol% is more preferable. When the content ratio is 50 to 100 mol%, the heat resistance of the cured film can be improved.
  • One or more selected from (A1-1) polyimide, (A1-2) polyimide precursor, (A1-3) polybenzoxazole, and (A1-4) polybenzoxazole precursor have a silyl group or a siloxane bond It is preferable to contain a structural unit derived from a diamine having and / or a derivative thereof.
  • One or more selected from (A1-1) polyimide, (A1-2) polyimide precursor, (A1-3) polybenzoxazole, and (A1-4) polybenzoxazole precursor have a silyl group or a siloxane bond
  • the interaction between the cured film of the photosensitive resin composition and the substrate interface of the underlayer is increased, and the adhesion to the substrate of the underlayer is increased. And the chemical resistance of a cured film can be improved.
  • One or more selected from (A1-1) polyimide, (A1-2) polyimide precursor, (A1-3) polybenzoxazole, and (A1-4) polybenzoxazole precursor is an amine having an oxyalkylene structure It is preferable to contain a structural unit derived from a structural unit derived from and / or a derivative thereof.
  • At least one selected from (A1-1) polyimide, (A1-2) polyimide precursor, (A1-3) polybenzoxazole and (A1-4) polybenzoxazole precursor is an amine having an oxyalkylene structure
  • ⁇ Terminal blocking agent One or more kinds selected from (A1-1) polyimide, (A1-2) polyimide precursor, (A1-3) polybenzoxazole and (A1-4) polybenzoxazole precursor, the terminal of the resin is a monoamine, It may be capped with an end capping agent such as a dicarboxylic acid anhydride, a monocarboxylic acid, a monocarboxylic acid chloride or a monocarboxylic acid active ester.
  • an end capping agent such as a dicarboxylic acid anhydride, a monocarboxylic acid, a monocarboxylic acid chloride or a monocarboxylic acid active ester.
  • the terminal of the resin is sealed with a terminal blocking agent, whereby (A1-1) polyimide, (A1-2) polyimide precursor, (A1-3) polybenzoxazole, and (A1-4) polybenzoxazole It is possible to improve the storage stability of the coating solution of the resin composition containing one or more types selected from precursors.
  • A1-1) Polyimide, (A1-2) Polyimide Precursor, (A1-3) Polybenzoxazole, and / or (A1-4) Various Carboxylic Acids or Amines and Their Derivatives Contained in Polybenzoxazole Precursor The content ratio of the structural unit derived from can be determined by combining 1 H-NMR, 13 C-NMR, 15 N-NMR, IR, TOF-MS, elemental analysis, ash measurement and the like.
  • One or more weight average molecular weights selected from (A1-1) polyimide, (A1-2) polyimide precursor, (A1-3) polybenzoxazole, and (A1-4) polybenzoxazole precursor (hereinafter referred to as “ As Mw "), 1,000 or more are preferable in polystyrene conversion measured by gel permeation chromatography (following," GPC "), 3,000 or more are more preferable, and 5,000 or more are more preferable.
  • the resolution after development can be improved as Mw is 1,000 or more.
  • Mw 500,000 or less is preferable, 300,000 or less is more preferable, 100,000 or less is more preferable. When the Mw is 500,000 or less, it is possible to improve the leveling property at the time of coating and the pattern processability by the alkaline developer.
  • Mn number average molecular weight
  • 1,000 or more are preferable in polystyrene conversion measured by GPC
  • 3,000 or more are more preferable, and 5,000 or more are more preferable.
  • the resolution after development can be improved as Mn is 1,000 or more.
  • Mn 500,000 or less is preferable, 300,000 or less is more preferable, 100,000 or less is more preferable.
  • coating and the pattern processability by alkali developing solution can be improved as Mn is 500,000 or less.
  • Mw and Mn of (A1-1) polyimide, (A1-2) polyimide precursor, (A1-3) polybenzoxazole, and (A1-4) polybenzoxazole precursor are GPC, light scattering method or X ray It can be easily measured as a polystyrene conversion value by a small angle scattering method or the like.
  • an alkali dissolution rate of one or more types selected from (A1-1) polyimide, (A1-2) polyimide precursor, (A1-3) polybenzoxazole, and (A1-4) polybenzoxazole precursor 50 nm / Minute or more is preferable, 70 nm / minute or more is more preferable, and 100 nm / minute or more is more preferable.
  • the alkali dissolution rate is 50 nm / min or more, the resolution after development can be improved.
  • the alkali dissolution rate is preferably 12,000 nm / min or less, more preferably 10,000 nm / min or less, and still more preferably 8,000 nm / min or less. When the alkali dissolution rate is 12,000 nm / min or less, film reduction during alkali development can be suppressed.
  • the alkali dissolution rate referred to here is that after a solution of resin dissolved in ⁇ -butyrolactone is coated on a Si wafer, it is prebaked at 120 ° C. for 4 minutes to form a prebaked film with a film thickness of 10 ⁇ m ⁇ 0.5 ⁇ m, This prebaked film is developed with a 2.38 mass% tetramethylammonium hydroxide aqueous solution at 23 ° C. ⁇ 1 ° C. for 60 seconds, and the film thickness decrease value after rinsing for 30 seconds with water.
  • the (A1-1) polyimide and the (A1-2) polyimide precursor can be synthesized by a known method. For example, a method of reacting tetracarboxylic acid dianhydride and diamine (partially replaced with monoamine which is an end capping agent) at 80 to 200 ° C. in a polar solvent such as N-methyl-2-pyrrolidone, or A tetracarboxylic acid dianhydride (partially substituted with a terminal blocking agent dicarboxylic acid anhydride, a monocarboxylic acid, a monocarboxylic acid chloride or a monocarboxylic acid active ester) and a diamine are reacted at 80 to 200 ° C. Methods etc.
  • the (A1-3) polybenzoxazole and the (A1-4) polybenzoxazole precursor can be synthesized by known methods. For example, a method of reacting a dicarboxylic acid active diester with a bisaminophenol compound (partially replaced with a terminal capping agent monoamine) at 80 to 250 ° C. in a polar solvent such as N-methyl-2-pyrrolidone, Or a dicarboxylic acid active diester (partly replaced with a capping agent dicarboxylic acid anhydride, monocarboxylic acid, monocarboxylic acid chloride or monocarboxylic acid active ester) and a bisaminophenol compound at 80 to 250 ° C. The method of making it react etc. are mentioned.
  • the imide ring closing ratio (imidization ratio) of the (A1-1) polyimide or (A1-2) polyimide precursor can be determined, for example, by the following method. First, measuring the infrared absorption spectrum of the resin, the absorption peak of the imide bond due to the polyimide structure (1780 cm around -1, 1377 cm around -1) to confirm the presence of. Next, the resin is thermally cured at 350 ° C. for 1 hour, and an infrared absorption spectrum is measured. Before and after thermal curing, by comparing the peak intensity at around 1780 cm -1 or near 1377 cm -1, by calculating the content of the imide bonds in the resin before thermosetting, it is possible to obtain the imidization ratio .
  • the oxazole ring closure ratio (oxazolization ratio) of the (A1-3) polybenzoxazole or (A1-4) polybenzoxazole precursor can be determined, for example, by the following method. First, the infrared absorption spectrum of the resin is measured to confirm the presence of absorption peaks (around 1574 cm ⁇ 1, around 1557 cm ⁇ 1 ) of the oxazole bond due to the polybenzoxazole structure. Next, the resin is thermally cured at 350 ° C. for 1 hour, and an infrared absorption spectrum is measured. By comparing the peak intensity at around 1574 -1 or near 1557cm -1 before and after thermal curing, by calculating the content of oxazole bonds in the resin before thermal curing, it is possible to obtain the oxazole rate.
  • the photosensitive resin composition according to the present invention preferably contains (A2) a second resin as the (A) alkali-soluble resin.
  • (A2) As the second resin it is selected from (A2-1) polysiloxane, (A2-2) polycyclic side chain containing resin, (A2-3) acid-modified epoxy resin, and (A2-4) acrylic resin It is preferable to contain one or more kinds.
  • (A2-1) polysiloxane, (A2-2) polycyclic side chain-containing resin, (A2-3) acid-modified epoxy resin, and (A2-4) acrylic resin are single resins or those Any of the copolymers of
  • (A2-1) Polysiloxane As (A2-1) polysiloxane used for this invention, 1 or more types chosen from trifunctional organosilane, tetrafunctional organosilane, bifunctional organosilane, and monofunctional organosilane are hydrolyzed, for example, and dehydration condensation is carried out. And polysiloxanes obtained by
  • (A2-1) Polysiloxane is a thermosetting resin, which is thermally cured at a high temperature for dehydration condensation to form a highly heat-resistant siloxane bond (Si—O). Therefore, the heat resistance of the cured film obtained can be improved by containing the (A2-1) polysiloxane having a highly heat-resistant siloxane bond in the photosensitive resin composition. Moreover, since it is a resin whose heat resistance improves after dehydration condensation, it is suitable for use in applications where it is desired to achieve both the characteristics before dehydration condensation and the heat resistance of a cured film.
  • the (A2-1) polysiloxane has a silanol group as a reactive group. Therefore, when (D1) pigment is contained as a colorant (D) to be described later, the silanol group can interact with and / or bind to the surface of the (D1) pigment and (D1) the surface of the pigment It is possible to interact and / or combine with the modifying group. Therefore, the dispersion stability of the (D1) pigment can be improved.
  • the polysiloxane (A2-1) used in the present invention preferably contains a trifunctional organosilane unit and / or a tetrafunctional organosilane unit from the viewpoint of improving the heat resistance of the cured film and the resolution after development.
  • a trifunctional organosilane the organosilane unit represented by General formula (7) is preferable.
  • an organosilane unit represented by the general formula (8) is preferable.
  • the (A2-1) polysiloxane used in the present invention may contain a bifunctional organosilane unit from the viewpoint of reducing the pattern shape and improving the mechanical properties of the cured film.
  • a bifunctional organosilane the organosilane unit represented by General formula (9) is preferable.
  • the (A2-1) polysiloxane used in the present invention may contain a monofunctional organosilane unit from the viewpoint of improving the storage stability of the coating liquid of the resin composition.
  • a monofunctional organosilane unit the organosilane unit represented by General formula (10) is preferable.
  • R 22 to R 27 each independently represent hydrogen, an alkyl group, a cycloalkyl group, an alkenyl group or an aryl group.
  • R 22 to R 27 each independently represent hydrogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or 2 to 10 carbon atoms
  • An alkenyl group or an aryl group having 6 to 15 carbon atoms is preferable.
  • the above-mentioned alkyl group, cycloalkyl group, alkenyl group and aryl group may have a hetero atom and may be either unsubstituted or substituted.
  • organosilane having an organosilane unit represented by the general formula (7) for example, methyltrimethoxysilane, methyltriethoxysilane, n-propyltrimethoxysilane, cyclohexyltrimethoxysilane, 3-glycidoxypropyl tri Methoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-[(3-ethyl-3-oxetanyl) methoxy] propyltrimethoxysilane, 3-aminopropyltrimethoxysilane, N-phenyl-3 -Aminopropyltrimethoxysilane, 3- (4-aminophenyl) propyltrimethoxysilane, 1- (3-trimethoxysilylpropyl) urea, 3-triethoxysilyl-N- (1,3-dimethylbutylidene) propyl
  • the content ratio of the organosilane unit represented by the general formula (7) in the polysiloxane (A2-1) is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and more preferably 70 to 100 mol in terms of the Si atom mol ratio. % Is more preferred. When the content ratio is 50 to 100 mol%, the heat resistance of the cured film can be improved.
  • organosilane having an organosilane unit represented by the general formula (8) examples include tetrafunctional organosilanes such as tetramethoxysilane, tetraethoxysilane or tetra-n-propoxysilane, or methyl silicate 51 And silicate compounds such as M silicate 51 (manufactured by Tama Chemical Industry Co., Ltd.) or methyl silicate 51 (manufactured by Corcoat Co., Ltd.).
  • the content ratio of the organosilane unit represented by the general formula (8) in the polysiloxane (A2-1) is preferably 0 to 40 mol%, more preferably 0 to 30 mol%, and still more preferably 0 to 20 mol% in mol ratio of Si atom. Is more preferred.
  • the content ratio is 0 to 40 mol%, the heat resistance of the cured film and the resolution after development can be improved.
  • organosilane having an organosilane unit represented by the general formula (9) examples include dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diphenyldimethoxysilane, 1,1,3,3-tetramethyl-1 And difunctional organosilanes such as 2,3-dimethoxydisiloxane or 1,1,3,3-tetraethyl-1,3-dimethoxydisiloxane.
  • the content ratio of the organosilane unit represented by the general formula (9) in the polysiloxane (A2-1) is preferably 0 to 60 mol%, more preferably 0 to 50 mol%, and more preferably 0 to 40 mol in terms of a Si atom mol ratio. % Is more preferred. When the content ratio is 0 to 60 mol%, the heat resistance of the cured film and the resolution after development can be improved.
  • organosilane having an organosilane unit represented by the general formula (10) for example, trimethylmethoxysilane, trimethylethoxysilane, tri-n-propylmethoxysilane, (3-glycidoxypropyl) dimethylmethoxysilane or ( Monofunctional organosilanes such as 3-glycidoxypropyl) dimethylethoxysilane can be mentioned.
  • the content ratio of the organosilane unit represented by the general formula (10) in the polysiloxane (A2-1) is preferably 0 to 20 mol%, more preferably 0 to 10 mol%, and still more preferably 0 to 5 mol in terms of a Si atom mol ratio. % Is more preferred. When the content ratio is 0 to 20 mol%, the heat resistance of the cured film can be improved.
  • an organosilane represented by the general formula (7a), an organosilane represented by the general formula (8a), an organosilane represented by the general formula (9a) And one or more selected from organosilanes represented by the general formula (10a), which are obtained by hydrolyzing and dehydrating condensation are preferable (A2-1) polysiloxanes.
  • R 22 to R 27 each independently represent hydrogen, an alkyl group, a cycloalkyl group, an alkenyl group, or an aryl group
  • R 115 to R 124 are each independently And represents hydrogen, an alkyl group, an acyl group or an aryl group.
  • R 22 to R 27 each independently represent hydrogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or 2 to 10 carbon atoms
  • An alkenyl group or an aryl group having 6 to 15 carbon atoms is preferable.
  • Each of R 115 to R 124 is preferably independently hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • the above-mentioned alkyl group, cycloalkyl group, alkenyl group, aryl group and acyl group may have a hetero atom and may be either unsubstituted or substituted.
  • the organosilane unit represented by (10) may be either a regular arrangement or a random arrangement.
  • the regular arrangement includes, for example, alternating copolymerization, periodic copolymerization, block copolymerization, graft copolymerization and the like.
  • the irregular arrangement includes, for example, random copolymerization.
  • an organosilane unit represented by the general formula (7), an organosilane unit represented by the general formula (8), an organosilane unit represented by the general formula (9), and the organosilane unit represented by General formula (10) may be either a two-dimensional arrangement or a three-dimensional arrangement.
  • sequence linear form is mentioned, for example.
  • a three-dimensional arrangement for example, a ladder-like shape, a scaly shape, or a mesh shape may be mentioned.
  • the (A2-1) polysiloxane used in the present invention preferably contains an organosilane unit having an aromatic group.
  • Such (A2-1) polysiloxane is an organosilane having an aromatic group as an organosilane having an organosilane unit represented by the general formula (7), the general formula (9), or the general formula (10) It is preferable that it is obtained using (A2-1) Since the polysiloxane contains an organosilane unit having an aromatic group, the heat resistance of the cured film can be improved by the heat resistance of the aromatic group.
  • the polysiloxane contains an organosilane unit having an aromatic group, thereby causing steric hindrance of the aromatic group ( D1) Dispersion stability of the pigment can be improved.
  • the aromatic group in the (A2-1) polysiloxane interacts with the aromatic group of the (D1-1) organic pigment; 1) It is possible to improve the dispersion stability of the organic pigment.
  • the content ratio of the organosilane unit having an aromatic group in the polysiloxane (A2-1) is preferably 5 mol% or more, more preferably 10 mol% or more, and still more preferably 15 mol% or more in terms of the Si atom mol ratio.
  • the heat resistance of a cured film can be improved as a content rate is 5 mol% or more.
  • the content ratio is preferably 80 mol% or less, more preferably 75 mol% or less, and still more preferably 70 mol% or less.
  • the pattern processability by alkaline developing solution can be improved as a content ratio is 80 mol% or less.
  • the Si atom molar ratio represented by the general formula (7), the general formula (9), or the general formula (10) and derived from the organosilane unit having an aromatic group is 5 mol% or more and 80 mol% or less Is preferred.
  • the (A2-1) polysiloxane used in the present invention preferably contains an organosilane unit having an ethylenically unsaturated double bond group.
  • Such (A2-1) polysiloxane has an ethylenically unsaturated double bond as an organosilane having an organosilane unit represented by the general formula (7), the general formula (9), or the general formula (10) It is preferable that it is obtained by using an organosilane having a group.
  • UV curing at the time of exposure can be promoted to improve sensitivity.
  • a double bond equivalent 10,000 g / mol or less is preferable, 5,000 g / mol or less is more preferable, and 2,000 g / mol or less is more preferable.
  • the double bond equivalent is 10,000 g / mol or less, the sensitivity at the time of exposure can be improved.
  • it is derived from an organosilane unit represented by the general formula (7), the general formula (9), or the general formula (10) in the (A2-1) polysiloxane and having an ethylenically unsaturated double bond group.
  • the preferred double bond equivalent is 150 g / mol or more and 10,000 g / mol or less.
  • the double bond equivalent refers to the resin weight per mol of the ethylenically unsaturated double bond group, and the unit is g / mol. From the value of double bond equivalent, the number of ethylenically unsaturated double bond groups in the resin can be determined. The double bond equivalent can be calculated from the iodine value.
  • the iodine value is a value obtained by converting the amount of halogen that reacts with 100 g of resin into the weight of iodine, and the unit is gI / 100 g.
  • the unreacted iodine can be captured with an aqueous solution of potassium iodide, and the unreacted iodine can be determined by titration with an aqueous solution of sodium thiosulfate.
  • the (A2-1) polysiloxane used in the present invention preferably contains an organosilane unit having an acidic group.
  • Such (A2-1) polysiloxane is an organosilane having an acidic group as an organosilane having an organosilane unit represented by the general formula (7), the general formula (9), or the general formula (10) It is preferable that it is obtained by using.
  • the polysiloxane contains an organosilane unit having an acidic group, the pattern processability with an alkali developer and the resolution after development can be improved.
  • the acidic group a group exhibiting an acidity of less than pH 6 is preferred.
  • a carboxy group, a carboxylic anhydride group, a sulfonic acid group, phenolic hydroxyl group, a hydroxy imide group, or a silanol group is mentioned, for example.
  • a carboxy group, a carboxylic acid anhydride group, a phenolic hydroxyl group, or a hydroxyimide group is preferable, and a carboxy group or a carboxylic acid anhydride group is more preferable, from the viewpoint of pattern processability improvement with an alkaline developer and resolution improvement after development.
  • the acid equivalent of the (A2-1) polysiloxane is 280 g / mol or more is preferable, 300 g / mol or more is more preferable, and 400 g / mol or more is more preferable.
  • the acid equivalent is 280 g / mol or more, it is possible to suppress film loss during alkali development.
  • the acid equivalent is preferably 1,400 g / mol or less, more preferably 1,100 g / mol or less, and still more preferably 950 g / mol or less.
  • the acid equivalent is 1,400 g / mol or less
  • the pattern processability with an alkaline developer and the resolution after development can be improved.
  • the acid equivalent weight of the organosilane unit represented by the general formula (7), the general formula (9), or the general formula (10) in the (A2-1) polysiloxane and having an acidic group is 280 g / It is preferable that it is mol or more and 1,400 g / mol or less.
  • the acid equivalent is more preferably a carboxylic acid equivalent from the viewpoint of the improvement of pattern processability by an alkaline developer and the improvement of resolution after development.
  • an acid equivalent means resin weight per mol of acidic group, and a unit is g / mol.
  • the number of acidic groups in the resin can be determined from the value of the acid equivalent.
  • the acid equivalent can be calculated from the acid value.
  • the acid value refers to the weight of potassium hydroxide that reacts with 1 g of resin, and the unit is mg KOH / g. It can be determined by titrating 1 g of resin with an aqueous solution of potassium hydroxide.
  • the content ratio of various organosilane units in the (A2-1) polysiloxane is a combination of 1 H-NMR, 13 C-NMR, 29 Si-NMR, IR, TOF-MS, elemental analysis and ash content measurement. It can be asked.
  • Mw of (A2-1) polysiloxane used for this invention 500 or more are preferable in polystyrene conversion measured by GPC, 700 or more are more preferable, and 1,000 or more are more preferable.
  • the resolution after development can be improved as Mw is 500 or more.
  • Mw 100,000 or less is preferable, 50,000 or less is more preferable, 20,000 or less is more preferable.
  • coating and the pattern processability by alkaline developing solution can be improved as Mw is 100,000 or less.
  • the (A2-1) polysiloxane can be synthesized by a known method.
  • a method of hydrolyzing organosilane in a reaction solvent and dehydrating condensation may be mentioned.
  • a method of hydrolyzing organosilane and dehydrating condensation for example, a reaction solvent and water, if necessary, a catalyst are further added to a mixture containing organosilane, and the reaction is carried out at 50 to 150 ° C, preferably 90 to 130 ° C.
  • a method of heating and stirring at a temperature of about 0.5 to 100 hours may be mentioned.
  • hydrolysis byproducts alcohols such as methanol
  • condensation byproducts water
  • Examples of the (A2-2) polycyclic side chain-containing resin used in the present invention include the following (I) to (IV) polycyclic side chain-containing resins.
  • a polycyclic side chain-containing resin obtained by reacting an epoxy compound with a compound obtained by reacting a polyfunctional epoxy compound and a polyfunctional carboxylic acid compound obtained by reacting a polyfunctional epoxy compound and a polyfunctional carboxylic acid compound.
  • a polycyclic side chain-containing resin obtained by reacting a polyfunctional carboxylic acid anhydride with a compound obtained by reacting a polyfunctional epoxy compound and a carboxylic acid compound obtained by reacting a polyfunctional epoxy compound and a carboxylic acid compound.
  • a phenol compound an epoxy compound, a carboxylic acid anhydride, and a carboxylic acid compound, the compound as described in international publication 2017/057281 is mentioned, for example.
  • the polycyclic side chain-containing resin is a thermosetting resin and has a structure in which a main chain and a bulky side chain are connected by one atom, and as a bulky side chain, it has high heat resistance and It has a cyclic structure such as a rigid fluorene ring. Therefore, the heat resistance of a cured film obtained is improved by incorporating a resin having a polycyclic side chain (A2-2) having a cyclic structure such as a highly heat resistant and rigid fluorene ring into the photosensitive resin composition. Can. Therefore, it is suitable when using a cured film for the use which heat resistance is requested
  • the (A2-2) polycyclic side chain-containing resin used in the present invention preferably has an ethylenically unsaturated double bond group.
  • the sensitivity at the time of exposure can be improved.
  • the formed three-dimensional crosslinked structure is mainly composed of an alicyclic structure or an aliphatic structure, it is possible to suppress the increase in temperature of the softening point of the resin and obtain a low-tapered pattern shape.
  • Mechanical properties of the cured film can be improved. Therefore, it is suitable when using a cured film for the use which a mechanical characteristic is requested
  • the (A2-2) polycyclic side chain-containing resin used in the present invention is a structural unit represented by the general formula (47) or a general formula (48) from the viewpoint of improving the heat resistance of the cured film It is preferable to contain one or more types selected from the structural unit, the structural unit represented by the general formula (49), and the structural unit represented by the general formula (50).
  • any one of a main chain, a side chain, and an end from the viewpoint of improving sensitivity at the time of exposure and mechanical properties of a cured film. It is preferable to contain an ethylenically unsaturated double bond group as described above.
  • X 69 , X 70 , X 72 , X 73 , X 75 , X 76 , X 78 and X 79 each independently represent a monocyclic or fused polycyclic ring Represents a hydrocarbon ring of
  • Each of X 71 , X 74 , X 77 and X 80 independently represents a divalent to ten-valent organic group of a carboxylic acid and / or its derivative residue.
  • Each of W 1 to W 4 independently represents an organic group having two or more aromatic groups.
  • R 160 to R 167 each independently represent hydrogen or an alkyl group having 1 to 6 carbon atoms
  • R 170 to R 175 , R 177 , and R 178 each independently represent hydrogen or ethylenically unsaturated
  • R 176 represents hydrogen or an alkyl group having 1 to 10 carbon atoms.
  • a, b, c, d, e, f, g and h each independently represent an integer of 0 to 10, and ⁇ , ⁇ , ⁇ and ⁇ each independently represent 0 or 1.
  • X 79 each independently preferably represent a monocyclic or fused polycyclic hydrocarbon ring having 6 to 15 and 2 to 10 carbon atoms.
  • X 71 , X 74 , X 77 and X 80 each independently represent an aliphatic structure having 2 to 20 carbon atoms, an alicyclic structure having 4 to 20 carbon atoms, or an aromatic having 6 to 30 carbon atoms
  • the organic group is preferably a di- to 10-valent organic group having one or more kinds selected from group structures.
  • W 1 to W 4 are preferably each independently a substituent represented by any one of the general formulas (51) to (56).
  • R 170 to R 175 , R 177 and R 178 are preferably each independently a substituent represented by General Formula (57).
  • the above-described alkyl group, aliphatic structure, alicyclic structure, aromatic structure, monocyclic or fused polycyclic aromatic hydrocarbon ring, and organic group having an ethylenically unsaturated double bond group are hetero compounds. It may have an atom, and may be unsubstituted or substituted.
  • R 179 to R 182 , R 185 and R 188 each independently represent an alkyl group having 1 to 10 carbon atoms.
  • R 183 , R 184 , R 186 , R 187 , R 189 , R 191 and R 193 to R 196 each independently represent hydrogen, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 4 to 10 carbon atoms Or an aryl group having 6 to 15 carbon atoms.
  • R 190 and R 192 each independently represent hydrogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms or an aryl group having 6 to 15 carbon atoms, and R 190 and R 192 each represent You may form a ring.
  • the ring formed by R 190 and R 192 includes, for example, a benzene ring or a cyclohexane ring.
  • At least one of R 183 and R 184 is an aryl group having 6 to 15 carbon atoms.
  • At least one of R 186 and R 187 is an aryl group having 6 to 15 carbon atoms.
  • At least one of R 189 and R 190 is an aryl group having 6 to 15 carbon atoms
  • at least one of R 191 and R 192 is an aryl group having 6 to 15 carbon atoms
  • R 190 and R 192 are You may form a ring.
  • At least one of R 193 and R 194 is an aryl group having 6 to 15 carbon atoms
  • at least one of R 195 and R 196 is an aryl group having 6 to 15 carbon atoms.
  • i, j, k, l, m and n each independently represent an integer of 0 to 4.
  • a benzene ring is preferable as the ring formed by R 190 and R 192 .
  • the alkyl group, cycloalkyl group and aryl group described above may be either unsubstituted or substituted.
  • X 81 is a direct bond, represents an alkylene chain having 1 to 10 carbon atoms, a cycloalkylene chain having 4 to 10 carbon atoms, or an arylene chain of carbon atoms 6 ⁇
  • X 82 is a direct It represents a bond or an arylene chain having 6 to 15 carbon atoms.
  • R 197 represents a vinyl group, an aryl group or a (meth) acrylic group.
  • X 81 is preferably a direct bond, an alkylene chain having 1 to 6 carbon atoms, a cycloalkylene chain having 4 to 7 carbon atoms, or an arylene chain having 6 to 10 carbon atoms.
  • X 82 is preferably a direct bond or an arylene chain having 6 to 10 carbon atoms.
  • the above-mentioned alkylene chain, cycloalkylene chain, arylene chain, vinyl group, aryl group and (meth) acrylic group may be either unsubstituted or substituted.
  • any one or more types of (A2-2) polycyclic side chain-containing resins described in the following (I) to (IV) can be used. It is preferably a resin.
  • Examples thereof include (A2-2) polycyclic side chain-containing resins obtained by reaction.
  • a polyfunctional active carboxylic acid derivative tetracarboxylic dianhydride is preferable.
  • a tricarboxylic acid anhydride a dicarboxylic acid anhydride, a monocarboxylic acid chloride, or a monocarboxylic acid active ester may be used as the end capping agent for the reaction component.
  • tetracarboxylic acid dianhydride dicarboxylic acid dichloride
  • A2-2 dicarboxylic acid active diester
  • a polycyclic side chain-containing resin obtained by reacting (A2-2) As a polyfunctional active carboxylic acid derivative, tetracarboxylic dianhydride is preferable.
  • a tricarboxylic acid anhydride a dicarboxylic acid anhydride, a monocarboxylic acid chloride, or a monocarboxylic acid active ester may be used as the end capping agent for the reaction component.
  • a polyfunctional carboxylic acid tetracarboxylic acid or tricarboxylic acid is preferable.
  • a monocarboxylic acid may be used as the end capping agent for the reaction component.
  • (A2-2) polycyclic side chain-containing resin of (IV) a compound having two or more aromatic groups in the molecule, and a compound having an epoxy group and an unsaturated carbon having an ethylenically unsaturated double bond group
  • a resin obtained by subjecting an acid to a ring-opening addition reaction is reacted with a polyfunctional active carboxylic acid derivative (one or more kinds selected from tetracarboxylic acid dianhydride, dicarboxylic acid dichloride, and dicarboxylic acid active diester)
  • a polycyclic side chain-containing resin obtained by As a polyfunctional active carboxylic acid derivative, tetracarboxylic dianhydride is preferable.
  • a tricarboxylic acid anhydride, a dicarboxylic acid anhydride, a monocarboxylic acid chloride, or a monocarboxylic acid active ester may be used as a terminal capping agent for the reaction component.
  • the (A2-2) polycyclic side chain-containing resin used in the present invention preferably contains a structural unit derived from an aromatic carboxylic acid and a derivative thereof.
  • the heat resistance of the cured film can be improved by the heat resistance of the aromatic group. .
  • the aromatic carboxylic acid and derivatives thereof are selected from tetracarboxylic acids having an aromatic group, tetracarboxylic acid dianhydrides having an aromatic group, tricarboxylic acids having an aromatic group, and dicarboxylic acids having an aromatic group
  • tetracarboxylic acids having an aromatic group tetracarboxylic acid dianhydrides having an aromatic group
  • tricarboxylic acids having an aromatic group tricarboxylic acids having an aromatic group
  • dicarboxylic acids having an aromatic group One or more types are preferable.
  • (D1) pigment when (D1) pigment is especially contained as a (D) coloring agent mentioned later, (A2-2)
  • the polycyclic side chain containing resin contains a structural unit derived from aromatic carboxylic acid and its derivative. The steric hindrance of the aromatic group can improve the dispersion stability of the (D1) pigment.
  • the aromatic group in the (A2-2) polycyclic side chain-containing resin interacts with the aromatic group of the (D1-1) organic pigment Therefore, the dispersion stability of the (D1-1) organic pigment can be improved.
  • aromatic carboxylic acid and the derivative thereof As the aromatic carboxylic acid and the derivative thereof, the above-mentioned aromatic tetracarboxylic acid and / or the derivative thereof, the aromatic tricarboxylic acid and / or the derivative thereof, or the compound contained in the aromatic dicarboxylic acid and / or the derivative thereof It can be mentioned.
  • the ratio is preferably 10 to 100 mol%, more preferably 20 to 100 mol%, and still more preferably 30 to 100 mol%.
  • the content ratio is 10 to 100 mol%, the heat resistance of the cured film can be improved.
  • the (A2-2) polycyclic side chain-containing resin used in the present invention contains a structural unit derived from a carboxylic acid and a derivative thereof, and (A2-2) the polycyclic side chain-containing resin has an acidic group Is preferred. (A2-2) When the polycyclic side chain-containing resin has an acidic group, pattern processability with an alkaline developer and resolution after development can be improved.
  • the acidic group a group exhibiting an acidity of less than pH 6 is preferred.
  • a carboxy group, a carboxylic anhydride group, a sulfonic acid group, a phenolic hydroxyl group, or a hydroxy imide group is mentioned, for example.
  • a carboxy group, a carboxylic acid anhydride group or a phenolic hydroxyl group is preferable, and a carboxy group or a carboxylic acid anhydride group is more preferable, from the viewpoint of pattern processability improvement with an alkaline developer and resolution improvement after development.
  • the acid equivalent of the (A2-2) polycyclic side chain-containing resin used in the present invention is preferably 280 g / mol or more, more preferably 300 g / mol or more, and still more preferably 400 g / mol or more.
  • the acid equivalent is preferably 1,400 g / mol or less, more preferably 1,100 g / mol or less, and still more preferably 950 g / mol or less.
  • the acid equivalent is 1,400 g / mol or less, the pattern processability with an alkaline developer and the resolution after development can be improved.
  • the content ratio of structural units derived from various monomer components in the polycyclic side chain-containing resin is 1 H-NMR, 13 C-NMR, 29 Si-NMR, IR, TOF-MS, elemental analysis It can be determined by combining the method and the ash content measurement.
  • Examples of the (A2-2) polycyclic side chain-containing resin used in the present invention include “ADEKA ARKLS” (registered trademark) WR-101 or WR-301 (all of which are made by ADEKA), OGSOL (registered trademark) Trademarks CR-1030, CR-TR1, CR-TR2, CR-TR3, CR-TR4, CR-TR5, CR-TR6, CR-TR7, CR-TR8, CR-TR9 Or CR-TR10 (all from Osaka Gas Chemical Co., Ltd.) or TR-B201 or TR-B202 (all from TRONLY).
  • ADKA ARKLS registered trademark
  • OGSOL registered trademark
  • the double bond equivalent of the (A2-2) polycyclic side chain-containing resin used in the present invention is preferably 150 g / mol or more, more preferably 200 g / mol or more, and still more preferably 250 g / mol or more.
  • the double bond equivalent is 150 g / mol or more, adhesion to the underlying substrate can be improved.
  • a double bond equivalent 10,000 g / mol or less is preferable, 5,000 g / mol or less is more preferable, and 2,000 g / mol or less is more preferable.
  • the double bond equivalent is 10,000 g / mol or less, the sensitivity at the time of exposure can be improved.
  • Mw of (A2-2) polycyclic side chain containing resin used for this invention 500 or more are preferable in polystyrene conversion measured by GPC, 1,000 or more are more preferable, and 1,500 or more are more preferable. .
  • the resolution after development can be improved as Mw is 500 or more.
  • Mw 100,000 or less is preferable, 50,000 or less is more preferable, 20,000 or less is more preferable.
  • coating and the pattern processability by alkaline developing solution can be improved as Mw is 100,000 or less.
  • Examples of the acid-modified epoxy resin (A2-3) used in the present invention include the following acid-modified epoxy resins (I) to (VI).
  • III An acid-modified epoxy resin obtained by reacting an epoxy compound with a compound obtained by reacting a polyfunctional alcohol compound and a polyfunctional carboxylic acid anhydride.
  • the acid-modified epoxy resin is a thermosetting resin, and has a highly heat-resistant aromatic cyclic structure in the epoxy resin skeleton of the main chain. Therefore, the heat resistance of the cured film obtained can be improved by containing the (A2-3) acid-modified epoxy resin in the resin composition. Therefore, it is suitable when using a cured film for the use which heat resistance is requested
  • the acid-modified epoxy resin (A2-3) used in the present invention preferably has an ethylenically unsaturated double bond group.
  • an acid-modified epoxy resin (A2-3) having an ethylenically unsaturated double bond group into the resin composition, the sensitivity at the time of exposure can be improved.
  • the formed three-dimensional crosslinked structure is mainly composed of an alicyclic structure or an aliphatic structure, it is possible to suppress the increase in temperature of the softening point of the resin and obtain a low-tapered pattern shape.
  • Mechanical properties of the cured film can be improved. Therefore, it is suitable when using a cured film for the use which a mechanical characteristic is requested
  • the acid-modified epoxy resin (A2-3) used in the present invention has a carboxy group and / or a carboxylic anhydride group as an alkali-soluble group.
  • a carboxy group and / or a carboxylic acid anhydride group By having a carboxy group and / or a carboxylic acid anhydride group, the resolution after development can be improved.
  • the acid-modified epoxy resin (A2-3) used in the present invention a structural unit represented by the general formula (35) or a structural unit represented by the general formula (36) from the viewpoint of improving the heat resistance of the cured film
  • the acid-modified epoxy resin (A2-3) used in the present invention is ethylene in any one or more of the main chain, side chain and terminal from the viewpoint of improving sensitivity at the time of exposure and mechanical properties of the cured film. It is preferred to have a polyunsaturated double bond group.
  • X 51 to X 54 each independently represent an aliphatic structure having 1 to 6 carbon atoms.
  • Z 51 represents an aromatic structure having 10 to 25 carbon atoms and 3 to 16 carbon atoms.
  • R 71 to R 75 each independently represent an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms, and
  • R 76 and R 77 each represent And R 78 to R 82 each independently represent a halogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or an alkyl group having 1 to 10 carbon atoms.
  • R 83 to R 88 each independently represent a substituent represented by General Formula (39).
  • a, b, c, d and e each independently represent an integer of 0 to 10
  • f represents an integer of 0 to 8
  • g represents an integer of 0 to 6
  • h i, j and k each independently represent an integer of 0 to 3
  • l represents an integer of 0 to 4.
  • the above-mentioned alkyl group, cycloalkyl group, aryl group, aliphatic structure and aromatic structure may have a hetero atom and may be either unsubstituted or substituted.
  • the aromatic structure of Z 51 in the general formula (38) contains one or more selected from the group consisting of a terphenyl structure, a naphthalene structure, an anthracene structure, and a fluorene structure.
  • a terphenyl structure contains one or more selected from the group consisting of a terphenyl structure, a naphthalene structure, an anthracene structure, and a fluorene structure.
  • other aromatic structures of Z 51 in the general formula (38) for example, 1,2,3,4-tetrahydronaphthalene structure, 2,2-diphenylpropane structure, diphenyl ether structure, diphenyl ketone structure, or diphenyl A sulfone structure is mentioned.
  • X 55 represents an alkylene chain having 1 to 6 carbon atoms or a cycloalkylene chain having 4 to 10 carbon atoms.
  • R 89 to R 91 each independently represent hydrogen, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • R 92 represents hydrogen or a substituent represented by the general formula (40).
  • each of R 89 and R 90 independently is preferably hydrogen or an alkyl group having 1 to 4 carbon atoms, and more preferably hydrogen.
  • R 91 is preferably hydrogen or an alkyl group having 1 to 4 carbon atoms, and more preferably hydrogen or a methyl group.
  • X56 represents a C1-C6 alkylene chain or a C4-C10 cycloalkylene chain.
  • X 56 is preferably an alkylene chain of 1 to 4 carbon atoms or a cycloalkylene chain of 4 to 7 carbon atoms.
  • the above-mentioned alkylene chain, cycloalkylene chain, alkyl group and aryl group may be either unsubstituted or substituted.
  • X 57 to X 61 each independently represent an aliphatic structure having 1 to 6 carbon atoms
  • X 62 and X 63 each independently have 1 carbon atom And an alkylene chain of to 6 or a cycloalkylene chain having 4 to 10 carbon atoms.
  • R 93 to R 97 each independently represent an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms
  • R 98 to R 104 represent Each independently represents a halogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms
  • R 105 represents hydrogen or 1 to 6 carbon atoms
  • R 106 and R 107 each independently represent a substituent represented by general formula (39)
  • R 108 represents hydrogen, a substituent represented by general formula (39) or Represents a substituent represented by formula (40).
  • n, o, p and q each independently represent an integer of 0 to 10
  • r and s each independently represent an integer of 0 to 3
  • t, u, v, w and Each x independently represents an integer of 0 to 4.
  • the alkylene chain, the cycloalkylene chain, the alkyl group, the cycloalkyl group, the aryl group and the aliphatic structure described above may have a hetero atom, and may be unsubstituted or substituted.
  • the terminal of the acid-modified epoxy resin having a structural unit represented by the general formula (43) (A2-3) has a general formula (44) It is preferable to have a substituent represented by and / or a substituent represented by General Formula (45).
  • R 109 represents a substituent represented by Formula (39).
  • X 64 represents an aliphatic structure having 1 to 6 carbon atoms.
  • R 110 represents an alkyl group having 1 to 10 carbons, a cycloalkyl group having 4 to 10 carbons, or an aryl group having 6 to 15 carbons, and R 111 and R 112 each independently represent a halogen or a carbon number It represents an alkyl group of 1 to 10, a cycloalkyl group of 4 to 10 carbon atoms, or an aryl group of 6 to 15 carbon atoms.
  • R 113 represents a substituent represented by General Formula (39).
  • represents an integer of 0 to 10.
  • X 64 is preferably an aliphatic structure having 1 to 4 carbon atoms.
  • R 110 is preferably an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 4 to 7 carbon atoms or an aryl group having 6 to 10 carbon atoms, and R 111 and R 112 each independently represent a halogen or a carbon atom
  • An alkyl group of 1 to 6, a cycloalkyl group of 4 to 7 carbon atoms or an aryl group of 6 to 10 carbon atoms is preferable.
  • the acid-modified epoxy resin (A2-3) used in the present invention preferably contains a structural unit derived from an aromatic carboxylic acid and a derivative thereof.
  • A2-3) When the acid-modified epoxy resin contains a structural unit derived from an aromatic carboxylic acid and a derivative thereof, the heat resistance of the cured film can be improved by the heat resistance of the aromatic group.
  • Aromatic carboxylic acids and derivatives thereof include tetracarboxylic acids having an aromatic group, tricarboxylic acids having an aromatic group, tricarboxylic acid anhydrides having an aromatic group, dicarboxylic acids having an aromatic group, and an aromatic group
  • tetracarboxylic acids having an aromatic group tricarboxylic acids having an aromatic group
  • tricarboxylic acid anhydrides having an aromatic group
  • dicarboxylic acids having an aromatic group and an aromatic group
  • One or more selected from dicarboxylic acid anhydrides are preferred.
  • the (A2-3) acid-modified epoxy resin contains an aromatic carboxylic acid and a structural unit derived from a derivative thereof, so that the aromatic The steric hindrance of the group group can improve the dispersion stability of the (D1) pigment.
  • the aromatic group in the (A2-3) acid-modified epoxy resin interacts with the aromatic group of the (D1-1) organic pigment, (D1-1) It is possible to improve the dispersion stability of the organic pigment.
  • Aromatic carboxylic acids and derivatives thereof include the compounds contained in the aromatic tetracarboxylic acids and / or derivatives thereof, aromatic tricarboxylic acids and / or derivatives thereof and aromatic dicarboxylic acids and / or derivatives thereof described above. .
  • the content ratio of the structural unit derived from the aromatic carboxylic acid and / or the derivative thereof in the structural units derived from all the carboxylic acid and the derivative thereof in the acid-modified epoxy resin is preferably 10 to 100 mol% 20 to 100 mol% is more preferable, and 30 to 100 mol% is more preferable. When the content ratio is 10 to 100 mol%, the heat resistance of the cured film can be improved.
  • the acid-modified epoxy resin (A2-3) used in the present invention preferably contains a structural unit derived from a carboxylic acid and a derivative thereof, and the acid-modified epoxy resin (A2-3) preferably has an acidic group.
  • the acid-modified epoxy resin having an acidic group can improve the pattern processability with an alkaline developer and the resolution after development.
  • the acidic group a group exhibiting an acidity of less than pH 6 is preferred.
  • a carboxy group, a carboxylic anhydride group, a sulfonic acid group, a phenolic hydroxyl group, or a hydroxy imide group is mentioned, for example.
  • a carboxy group, a carboxylic acid anhydride group or a phenolic hydroxyl group is preferable, and a carboxy group or a carboxylic acid anhydride group is more preferable, from the viewpoint of pattern processability improvement with an alkaline developer and resolution improvement after development.
  • the acid equivalent of the acid-modified epoxy resin (A2-3) used in the present invention is preferably 280 g / mol or more, more preferably 300 g / mol or more, and still more preferably 400 g / mol or more.
  • the acid equivalent is preferably 1,400 g / mol or less, more preferably 1,100 g / mol or less, and still more preferably 950 g / mol or less.
  • the acid equivalent is 1,400 g / mol or less, the pattern processability with an alkaline developer and the resolution after development can be improved.
  • the content ratio of structural units derived from various monomer components in the acid-modified epoxy resin (A2-3) is 1 H-NMR, 13 C-NMR, 29 Si-NMR, IR, TOF-MS, elemental analysis method and It can be determined by combining ash content measurement and the like.
  • Examples of the acid-modified epoxy resin (A2-3) used in the present invention include “KAYARAD” (registered trademark) PCR-1222H, CCR-1171H, TCR-1348H, ZAR-1494H, and ZFR-1401H. ZCR-1798H, ZXR-1807H, ZCR-6002H, or ZCR-8001H (all are manufactured by Nippon Kayaku Co., Ltd.) or "NK OLIGO” (registered trademark) EA-6340, EA-7140, Or the same EA-7340 (all of which are manufactured by Shin-Nakamura Chemical Co., Ltd.).
  • the Mw of the acid-modified epoxy resin (A2-3) used in the present invention is preferably 500 or more, more preferably 1,000 or more, still more preferably 1,500 or more, in terms of polystyrene measured by GPC.
  • the resolution after development can be improved as Mw is in the above-mentioned range.
  • Mw 100,000 or less is preferable, 50,000 or less is more preferable, 20,000 or less is more preferable.
  • coating and the pattern processability by alkaline developing solution can be improved as Mw is in the said range.
  • (A2-4) Acrylic resin for example, one or more kinds selected from a copolymerization component having an acidic group, a copolymerization component derived from (meth) acrylic acid ester, and other copolymerization components
  • the acrylic resin obtained by radically copolymerizing the copolymerization component of these is mentioned.
  • the (A2-4) acrylic resin used in the present invention preferably has an ethylenically unsaturated double bond group.
  • the (A2-4) acrylic resin having an ethylenically unsaturated double bond group in the photosensitive resin composition it is possible to improve the sensitivity at the time of exposure.
  • the formed three-dimensional crosslinked structure is mainly composed of an alicyclic structure or an aliphatic structure, it is possible to suppress the increase in temperature of the softening point of the resin and obtain a low-tapered pattern shape.
  • Mechanical properties of the cured film can be improved. Therefore, it is suitable when using a cured film for the use which a mechanical characteristic is requested
  • the (A2-4) acrylic resin used in the present invention is a structural unit represented by the general formula (61) and / or a general formula (62) from the viewpoint of improving sensitivity at the time of exposure and mechanical properties of the cured film. It is preferable to contain the structural unit represented by
  • Rd 1 and Rd 2 each independently represent an alkyl group having 1 to 10 carbons and a cyclocarbon having 4 to 15 carbons, each having an ethylenically unsaturated double bond group. It represents an alkyl group or an aryl group having 6 to 15 carbon atoms.
  • R 200 to R 205 independently represents hydrogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • Each of X 90 and X 91 independently represents a direct bond, an alkylene chain having 1 to 10 carbon atoms, a cycloalkylene chain having 4 to 10 carbon atoms, or an arylene chain having 6 to 15 carbon atoms.
  • Rd 1 and Rd 2 each independently represent an alkyl group having 1 to 6 carbon atoms and a cyclocarbon having 4 to 10 carbon atoms, each having an ethylenically unsaturated double bond group.
  • An alkyl group or an aryl group having 6 to 10 carbon atoms is preferred.
  • Each of R 200 to R 205 is preferably independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 4 to 7 carbon atoms, or an aryl group having 6 to 10 carbon atoms.
  • each of X 90 and X 91 is preferably a direct bond, an alkylene chain having 1 to 6 carbon atoms, a cycloalkylene chain having 4 to 7 carbon atoms, or an arylene chain having 6 to 10 carbon atoms.
  • the alkyl group, the cycloalkyl group, the aryl group, the alkylene chain, the cycloalkylene chain and the arylene chain described above may have a hetero atom and may be either unsubstituted or substituted.
  • the (A2-4) acrylic resin used in the present invention is preferably an (A2-4) acrylic resin obtained by radical copolymerization of a copolymerization component having an acidic group or another copolymerization component.
  • a copolymerization component having an aromatic group or a copolymerization component having an alicyclic group is preferable.
  • the (A2-4) acrylic resin used in the present invention preferably contains a structural unit derived from a copolymerization component having an acidic group, and the (A2-4) acrylic resin preferably has an acidic group. (A2-4) Since the acrylic resin has an acidic group, it is possible to improve the pattern processability with an alkaline developer and the resolution after development.
  • the acidic group a group exhibiting an acidity of less than pH 6 is preferred.
  • a carboxy group, a carboxylic anhydride group, a sulfonic acid group, phenolic hydroxyl group, or a hydroxy imide group is mentioned, for example.
  • a carboxy group, a carboxylic acid anhydride group, or a phenolic hydroxyl group is preferable, and a carboxy group or a carboxylic acid anhydride group is more preferable, from the viewpoint of pattern processability improvement with an alkaline developer and resolution improvement after development.
  • the acid equivalent of the (A2-4) acrylic resin used in the present invention is preferably 280 g / mol or more, more preferably 300 g / mol or more, and still more preferably 400 g / mol or more.
  • the acid equivalent is preferably 1,400 g / mol or less, more preferably 1,100 g / mol or less, and still more preferably 950 g / mol or less.
  • the acid equivalent is 1,400 g / mol or less, the pattern processability with an alkaline developer and the resolution after development can be improved.
  • the (A2-4) acrylic resin used in the present invention when the (A2-4) acrylic resin has a carboxy group, the (A2-4) acrylic resin having no epoxy group is preferable.
  • the acrylic resin has both a carboxy group and an epoxy group, there is a possibility that the carboxy group and the epoxy group may react during storage of the coating solution of the photosensitive resin composition. Therefore, the storage stability of the coating liquid of the resin composition may be reduced.
  • An acrylic resin having no epoxy group is obtained by radically copolymerizing a copolymer component having a carboxy group or a carboxylic acid anhydride group and another copolymer component having no epoxy group (A2-4) ) Acrylic resins are preferred.
  • the (A2-4) acrylic resin used in the present invention preferably contains a structural unit derived from a copolymerization component having an aromatic group.
  • the acrylic resin contains a structural unit derived from a copolymer component having an aromatic group, the heat resistance of the cured film can be improved by the heat resistance of the aromatic group.
  • (D1) pigment when (D1) pigment is especially contained as a (D) coloring agent to be described later, (A2-4) an aromatic group by containing a structural unit derived from a copolymerization component having an aromatic group.
  • the steric hindrance of (D1) can improve the dispersion stability of the (D1) pigment.
  • the aromatic group in the (A2-4) acrylic resin interacts with the aromatic group of the (D1-1) organic pigment; -1) It is possible to improve the dispersion stability of the organic pigment.
  • the content ratio of structural units derived from the copolymerization component having an aromatic group in the structural units derived from all the copolymerization components in the acrylic resin is preferably 10 mol% or more, and more preferably 20 mol% or more Preferably, 30 mol% or more is more preferable.
  • the heat resistance of a cured film can be improved as a content rate is 10 mol% or more.
  • the content ratio is preferably 80 mol% or less, more preferably 75 mol% or less, and still more preferably 70 mol% or less. When the content ratio is 80 mol% or less, the sensitivity at the time of exposure can be improved.
  • the (A2-4) acrylic resin used in the present invention preferably contains a structural unit derived from a copolymerization component having an alicyclic group.
  • the acrylic resin By containing a structural unit derived from a copolymer component having an alicyclic group, the acrylic resin improves the heat resistance and the transparency of the cured film by the heat resistance and the transparency of the alicyclic group. It can be done.
  • the content ratio of structural units derived from the copolymerization component having an alicyclic group in the structural units derived from all the copolymerization components in the acrylic resin is preferably 5 mol% or more, and 10 mol% or more More preferably, 15 mol% or more is more preferable.
  • the heat resistance and transparency of a cured film can be improved as a content rate is 5 mol% or more.
  • 90 mol% or less is preferable, 85 mol% or less is more preferable, and 75 mol% or less is more preferable.
  • the mechanical property of a cured film can be improved as a content rate is 90 mol% or less.
  • an ethylenic unsaturated double bond group and a resin obtained by radical copolymerization of a copolymer component having an acidic group or another copolymer component, and The resin obtained by ring-opening addition reaction of the unsaturated compound which has an epoxy group is preferable.
  • An ethylenically unsaturated double bond group can be introduced into the side chain of the (A2-4) acrylic resin by subjecting an unsaturated compound having an ethylenically unsaturated double bond group and an epoxy group to a ring-opening addition reaction.
  • the content ratio of structural units derived from various copolymerization components in the acrylic resin (A2-4) is 1 H-NMR, 13 C-NMR, 29 Si-NMR, IR, TOF-MS, elemental analysis method and ash content It can be determined by combining measurements and the like.
  • the double bond equivalent of the (A2-4) acrylic resin used in the present invention is preferably 150 g / mol or more, more preferably 200 g / mol or more, and still more preferably 250 g / mol or more.
  • the double bond equivalent is 150 g / mol or more, adhesion to the underlying substrate can be improved.
  • a double bond equivalent 10,000 g / mol or less is preferable, 5,000 g / mol or less is more preferable, and 2,000 g / mol or less is more preferable.
  • the double bond equivalent is 10,000 g / mol or less, the sensitivity at the time of exposure can be improved.
  • the Mw of the (A2-4) acrylic resin used in the present invention is preferably 1,000 or more, more preferably 3,000 or more, and still more preferably 5,000 or more, in terms of polystyrene measured by GPC.
  • the resolution after development can be improved as Mw is 1,000 or more.
  • Mw 100,000 or less is preferable, 70,000 or less is more preferable, 50,000 or less is more preferable.
  • coating and the pattern processability by alkaline developing solution can be improved as Mw is 100,000 or less.
  • the acrylic resin can be synthesized by a known method.
  • the method of radically copolymerizing a copolymerization component under air or under nitrogen and in the presence of a radical polymerization initiator can be mentioned.
  • a radical polymerization initiator for example, after the inside of the reaction vessel is sufficiently replaced with nitrogen in the air or by bubbling or reduced pressure degassing, a copolymerization component and a radical polymerization initiator are added in the reaction solvent, The reaction may be carried out at 110 ° C. for 30 to 500 minutes. Further, if necessary, a chain transfer agent such as a thiol compound and / or a polymerization inhibitor such as a phenol compound may be used.
  • the content ratio of the (A1) first resin in the total 100 mass% of (A1) the first resin and (A2) the second resin is 25% by mass or more.
  • 50% by mass or more is more preferable, 60% by mass or more is more preferable, 70% by mass or more is still more preferable, and 80% by mass or more is particularly preferable.
  • the heat resistance of a cured film can be improved as a content rate is 25 mass% or more.
  • the content ratio of the (A1) first resin is preferably 99% by mass or less, more preferably 98% by mass or less, still more preferably 97% by mass or less, still more preferably 95% by mass or less, and 90% by mass or less Is particularly preferred. When the content ratio is 99% by mass or less, a cured film having a low taper pattern shape can be obtained.
  • the heat resistance of the cured film is improved by the content ratio of the (A1) first resin and the (A2) second resin in the photosensitive resin composition of the present invention being within the above-described preferable range. It is possible to obtain a low taper pattern shape. Therefore, the cured film obtained from the photosensitive resin composition of the present invention has a pattern shape with high heat resistance and low taper, such as an insulating layer such as a pixel division layer of an organic EL display, a TFT planarization layer, or a TFT protective layer. It is suitable for the required application.
  • the photosensitive resin composition of the present invention preferably further comprises (B) a radically polymerizable compound.
  • the radically polymerizable compound (B) refers to a compound having a plurality of ethylenically unsaturated double bond groups in the molecule.
  • radical polymerization of the (B) radically polymerizable compound proceeds by radicals generated from the (C1) photopolymerization initiator described later, and the exposed part of the film of the resin composition becomes insolubilized in an alkali developer. Can form a negative pattern.
  • UV curing at the time of exposure is promoted, and the sensitivity at the time of exposure can be improved.
  • crosslink density after heat curing can be improved, and the hardness of the cured film can be improved.
  • radically polymerizable compound (B) a compound having a (meth) acrylic group which facilitates the progress of radical polymerization is preferable. From the viewpoint of sensitivity improvement at the time of exposure and hardness improvement of a cured film, a compound having two or more (meth) acrylic groups in the molecule is more preferable.
  • the double bond equivalent of the radically polymerizable compound (B) is preferably 80 to 800 g / mol from the viewpoint of improving sensitivity at the time of exposure and forming a pattern with a low taper shape.
  • (B) As the radically polymerizable compound, in addition to the (B1) fluorene skeleton-containing radically polymerizable compound and the (B2) indane skeleton-containing radically polymerizable compound described later, for example, diethylene glycol di (meth) acrylate, triethylene glycol di ( Meta) acrylate, tetraethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, ditrimethylol Propane tetra (meth) acrylate, 1,3-butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate 1,1,6-hexanediol di
  • the compound obtained by subjecting a compound having two or more glycidoxy groups to a ring-opening addition reaction with an unsaturated carboxylic acid having an ethylenically unsaturated double bond group in a molecule is also preferred.
  • a compound obtained by reacting a polybasic acid carboxylic acid or a polybasic carboxylic acid anhydride is also preferred.
  • the content of the (B) radically polymerizable compound in the photosensitive resin composition of the present invention is 15 parts by mass when the total of (A) alkali soluble resin and (B) radically polymerizable compound is 100 parts by mass.
  • the above is preferable, 20 mass parts or more are more preferable, 25 mass parts or more are more preferable, and 30 mass parts or more are especially preferable. While being able to improve the sensitivity at the time of exposure as content is 15 mass parts or more, the cured film of the low taper pattern shape can be obtained.
  • 65 mass parts or less are preferable, as for content of a radically polymerizable compound (B), 60 mass parts or less are more preferable, 55 mass parts or less are more preferable, 50 mass parts or less are especially preferable. While the heat resistance of a cured film can be improved as content is 65 mass parts or less, a low taper pattern shape can be obtained.
  • the photosensitive resin composition of the present invention comprises, as the (B) radically polymerizable compound, at least one selected from the group consisting of (B1) a fluorene skeleton-containing radically polymerizable compound and (B2) an indan skeleton-containing radically polymerizable compound It is preferable to contain.
  • the (B1) fluorene skeleton-containing radically polymerizable compound refers to a compound having a plurality of ethylenic unsaturated double bond groups and a fluorene skeleton in the molecule.
  • Indane skeleton-containing radically polymerizable compound means a compound having a plurality of ethylenically unsaturated double bond groups and indane skeleton in the molecule.
  • the (D1a-1a) benzofuranone-based black pigment is particularly contained as the (Da) blackening agent described later, a pigment-derived developing residue may be generated due to the insufficient alkali resistance of the pigment described above.
  • the pigment derived as described above is obtained by containing the (B3) flexible chain-containing aliphatic radically polymerizable compound and the (B1) fluorene skeleton-containing radically polymerizable compound or the (B2) indan skeleton-containing radically polymerizable compound described later. Generation of development residues can be suppressed.
  • fluorene skeleton-containing radically polymerizable compound (B1) a compound represented by the general formula (31) is preferable.
  • (B2) indane skeleton-containing radically polymerizable compound a compound represented by the general formula (32) and a compound represented by the general formula (33) are preferable.
  • X 21 to X 26 each independently represent a monocyclic or fused polycyclic aromatic ring having 6 to 15 and 2 to 10 carbon atoms.
  • Y 21 to Y 26 each independently represent a direct bond, an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 4 to 10 carbon atoms, or an arylene group having 6 to 15 carbon atoms.
  • Z 21 to Z 26 represent direct bonds
  • q, r, s, t, u and v are 0.
  • Z 21 to Z 26 represent an oxygen atom
  • q, r, s, t, u and v each independently represent an integer of 0 to 8.
  • R 131 to R 140 each independently represent a halogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms
  • R 141 to R 144 Each independently represents hydrogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms
  • R 145 to R 150 are each independently And represents an alkyl group having 1 to 10 carbon atoms or a hydroxy group.
  • Each of P 31 to P 36 independently represents a group represented by General Formula (34).
  • a, b, c, d, e and f each independently represent 0 or 1;
  • Z 21 to Z 26 represent an oxygen atom.
  • g, h, i, j, k and l each independently represent an integer of 0 to 8
  • m, n, o and p each independently represent an integer of 0 to 4.
  • ⁇ , ⁇ , ⁇ , ⁇ , ⁇ and ⁇ ⁇ ⁇ ⁇ each independently represent an integer of 1 to 4.
  • R 151 to R 153 each independently represent hydrogen, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • R 151 is preferably hydrogen or an alkyl group having 1 to 4 carbon atoms, and more preferably hydrogen or a methyl group.
  • Each of R 152 and R 153 is preferably hydrogen or an alkyl group having 1 to 4 carbon atoms, and more preferably hydrogen.
  • a compound having a (meth) acrylic group which is easily progressed by radical polymerization is preferable. From the viewpoint of sensitivity improvement at the time of exposure and suppression of residues after development, compounds having two or more (meth) acryl groups in the molecule are more preferable.
  • 150 g / mol or more is preferable, as for the double bond equivalent of the (B1) fluorene skeleton-containing radically polymerizable compound and the (B2) indane skeleton-containing radically polymerizable compound, 170 g / mol or more is more preferable, and 190 g / mol or more is more preferable And particularly preferably 210 g / mol or more.
  • the double bond equivalent is 150 g / mol or more, a pattern with a low taper shape can be formed after heat curing, and changes in the dimension opening width of the pattern before and after heat curing can be suppressed.
  • the double bond equivalent of the (B1) fluorene skeleton-containing radically polymerizable compound and the (B2) indane skeleton-containing radically polymerizable compound is preferably 800 g / mol or less, more preferably 600 g / mol or less, and 500 g / mol or less More preferred is 400 g / mol or less.
  • the double bond equivalent is 800 g / mol or less, the sensitivity at the time of exposure can be improved.
  • Examples of the (B1) fluorene skeleton-containing radically polymerizable compound include 9,9-bis [4- (2- (meth) acryloxyethoxy) phenyl] fluorene, 9,9-bis [4- (3- (meth) ) Acryloxypropoxy) phenyl] fluorene, 9,9-bis (4- (meth) acryloxyphenyl) fluorene, 9,9-bis [4- (2-hydroxy-3- (meth) acryloxypropoxy) phenyl] Fluorene or 9,9-bis [3,4-bis (2- (meth) acryloxyethoxy) phenyl] fluorene is exemplified by OGSOL (registered trademark) EA-50P, EA-0200, EA-0250P, EA -0300, EA-500, EA-1000, EA-F5510 or GA-5000 (all of which Osaka Gas Chemicals Co., Ltd.) and the like.
  • Indane skeleton-containing radically polymerizable compounds include, for example, 1,1-bis [4- (2- (meth) acryloxyethoxy) phenyl] indane, 1,1-bis (4- (meth) acryloxy) Phenyl) indane, 1,1-bis [4- (2-hydroxy-3- (meth) acryloxypropoxy) phenyl] indane, 1,1-bis [3,4-bis (2- (meth) acryloxyethoxy) And R) phenyl] indane, 2,2-bis [4- (2- (meth) acryloxyethoxy) phenyl] indane, or 2,2-bis (4- (meth) acryloxyphenyl) indane.
  • the (B1) fluorene skeleton-containing radically polymerizable compound and the (B2) indane skeleton-containing radically polymerizable compound can be synthesized by a known method.
  • the synthesis method described in WO 2008/139924 can be mentioned.
  • the total content of the (B1) fluorene skeleton-containing radically polymerizable compound and the (B2) indane skeleton-containing radically polymerizable compound in the photosensitive resin composition of the present invention is (A) alkali-soluble resin and (B) radical polymerization
  • the total amount of the hydrophobic compound is 100 parts by mass, 0.5 parts by mass or more is preferable, 1 part by mass or more is more preferable, 2 parts by mass or more is more preferable, 3 parts by mass or more is further more preferable, 5 parts by mass
  • the above is particularly preferable. While the sensitivity at the time of exposure can be improved as content is 0.5 mass parts or more, a pattern of low taper shape can be formed after thermosetting.
  • the total content of the (B1) fluorene skeleton-containing radically polymerizable compound and the (B2) indane skeleton-containing radically polymerizable compound is preferably 25 parts by mass or less, more preferably 22 parts by mass or less, and 20 parts by mass or less It is more preferable, 18 parts by mass or less is still more preferable, and 15 parts by mass or less is particularly preferable. While the change of the pattern opening dimension width
  • the photosensitive resin composition of the present invention preferably contains (B3) a soft chain-containing aliphatic radically polymerizable compound as the (B) radically polymerizable compound.
  • a flexible chain-containing aliphatic radically polymerizable compound refers to a compound having a plurality of ethylenically unsaturated double bond groups in the molecule and a flexible skeleton such as an aliphatic chain or an oxyalkylene chain.
  • (B3) By containing a flexible chain-containing aliphatic radically polymerizable compound, UV curing at the time of exposure can proceed efficiently, and sensitivity at the time of exposure can be improved.
  • (D1) pigment is contained as a (D) coloring agent to be described later
  • the (D1) pigment is fixed to a cured portion by crosslinking at the time of UV curing of the (B3) flexible chain-containing aliphatic radically polymerizable compound.
  • the (D1a-1a) benzofuranone-based black pigment is particularly contained as the (Da) blackening agent described later, a pigment-derived developing residue may be generated due to the insufficient alkali resistance of the pigment described above. Even in such a case, the generation of the above-described development residue derived from the pigment can be suppressed by containing the (B3) flexible chain-containing aliphatic radically polymerizable compound.
  • the flexible chain-containing aliphatic radical polymerizable compound (B3) a compound having a group represented by General Formula (24) and a group represented by three or more General Formulas (25) in a molecule is preferable.
  • R 125 represents hydrogen or an alkyl group having 1 to 10 carbon atoms.
  • Z 17 represents a group represented by General Formula (29) or a group represented by General Formula (30).
  • a represents an integer of 1 to 10
  • b represents an integer of 1 to 4
  • c represents 0 or 1
  • d represents an integer of 1 to 4
  • e represents 0 or 1 .
  • c 0, d is 1.
  • each of R 126 to R 128 independently represents hydrogen, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • R 129 represents hydrogen or an alkyl group having 1 to 10 carbon atoms.
  • c is preferably 1 and e is preferably 1.
  • R 126 is preferably hydrogen or an alkyl group having 1 to 4 carbon atoms, and more preferably hydrogen or a methyl group.
  • Each of R 127 and R 128 independently is preferably hydrogen or an alkyl group having 1 to 4 carbon atoms, and more preferably hydrogen.
  • R 129 is preferably hydrogen or an alkyl group having 1 to 4 carbon atoms, and more preferably hydrogen or a methyl group.
  • (B3) flexible chain-containing aliphatic radical polymerizable compound a compound represented by the general formula (27) and a compound represented by the general formula (28) are preferable.
  • X 28 represents a divalent organic group.
  • Y 28 to Y 33 each independently represent a direct bond or a group represented by the above general formula (24), and at least one of Y 28 to Y 33 is a group represented by the above general formula (24) It is a represented group.
  • P 12 to P 17 each independently represent hydrogen or a group represented by the above-mentioned general formula (25), and at least three of P 12 to P 17 are a group represented by the above-mentioned general formula (25)
  • Is a group to be a, b, c, d, e, and f each independently represent 0 or 1
  • g represents an integer of 0 to 10.
  • X 28 has one or more selected from an aliphatic structure having 1 to 10 carbon atoms, an alicyclic structure having 4 to 20 carbon atoms and an aromatic structure having 6 to 30 carbon atoms Valent organic groups are preferred.
  • Each of a, b, c, d, e and f is independently preferably 1 and g is preferably 0-5.
  • the aliphatic structure, alicyclic structure and aromatic structure described above may have a hetero atom and may be either unsubstituted or substituted.
  • two or more groups are preferable, three or more groups are more preferable, and four or more groups are more preferable.
  • the number of groups represented by the above-mentioned general formula (24) among Y 28 to Y 33 is two or more, the sensitivity at the time of exposure can be improved, and the generation of residues after development can be suppressed. In addition, the bendability of the cured film can be improved.
  • X 29 represents a divalent organic group.
  • Each of X 30 and X 31 independently represents a direct bond or an alkylene chain having 1 to 10 carbon atoms.
  • Y 34 to Y 37 each independently represent a direct bond or a group represented by the above general formula (24), and at least one of Y 34 to Y 37 is a group represented by the above general formula (24) It is a represented group.
  • R 69 and R 70 each independently represent hydrogen or an alkyl group having 1 to 10 carbon atoms.
  • P 18 to P 21 each independently represent hydrogen or a group represented by the above general formula (25), and at least three of P 18 to P 21 are a group represented by the above general formula (25) Is a group to be h, i, j and k each independently represent 0 or 1, and l represents an integer of 0 to 10.
  • X 29 has one or more selected from an aliphatic structure having 1 to 10 carbon atoms, an alicyclic structure having 4 to 20 carbon atoms and an aromatic structure having 6 to 30 carbon atoms Valent organic groups are preferred.
  • h, i, j and k are each independently preferably 1 and 1 is preferably 0-5.
  • the alkyl group, the alkylene chain, the aliphatic structure, the alicyclic structure, and the aromatic structure described above may have a hetero atom, and may be unsubstituted or substituted.
  • Y 34 to Y 37 two or more groups are preferable, three or more groups are more preferable, and four or more groups are more preferable.
  • the group represented by the general formula (24) is two or more, the residual ⁇ production after development is possible to improve the sensitivity at the time of exposure can be suppressed. In addition, the bendability of the cured film can be improved.
  • the flexible chain-containing aliphatic radical polymerizable compound (B3) preferably has at least one lactone modified chain and / or at least one lactam modified chain.
  • the generation of a residue after development can be suppressed by the soft chain-containing aliphatic radically polymerizable compound having at least one lactone modified chain and / or at least one lactam modified chain.
  • the bendability of the cured film can be improved. This is considered to be due to the fact that UV curing is significantly promoted and the molecular weight of the cured film is increased by having a lactone modified chain and / or a lactam modified chain.
  • mechanical properties are improved by introducing a soft skeleton such as a lactone-modified chain and / or a lactam-modified chain into the cured film.
  • the flexible chain-containing aliphatic radically polymerizable compound has at least one lactone-modified chain and / or at least one lactam when c is 1 and e is 1 in the general formula (24) described above It has a denatured chain.
  • numerator four or more are more preferable.
  • the number of ethylenically unsaturated double bond groups is 3 or more, the sensitivity at the time of exposure can be improved.
  • the number of ethylenically unsaturated double bond groups that the (B3) flexible chain-containing aliphatic radical polymerizable compound has in the molecule is preferably 12 or less, more preferably 10 or less, and still more preferably 8 or less. Particularly preferred is not more than one.
  • the number of ethylenically unsaturated double bond groups is 12 or less, it is possible to form a low-tapered pattern after heat curing, and to suppress changes in the dimension opening width of the pattern before and after heat curing.
  • the double bond equivalent is 100 g / mol or more is preferable, 120 g / mol or more is more preferable, 150 g / mol or more is further more preferable, and 170 g / mol or more is further more preferable for the double bond equivalent of the soft chain-containing aliphatic radically polymerizable compound , 200 g / mol or more is particularly preferable.
  • the double bond equivalent is 100 g / mol or more, the sensitivity at the time of exposure can be improved, and the generation of residues after development can be suppressed. In addition, it is possible to suppress a change in the pattern opening dimension width before and after heat curing.
  • 800 g / mol or less is preferable, as for the double bond equivalent of the (B3) flexible chain containing aliphatic radically polymerizable compound, 600 g / mol or less is more preferable, 500 g / mol or less is more preferable, and 450 g / mol or less is particularly preferable preferable. While the sensitivity at the time of exposure can be improved as a double bond equivalent is 800 g / mol or less, generation
  • (B3) As a flexible chain-containing aliphatic radical polymerizable compound, as a compound having 3 or more ethylenic unsaturated double bond groups in the molecule, for example, ethoxylated dipentaerythritol hexa (meth) acrylate, propoxylation Dipentaerythritol hexa (meth) acrylate, ⁇ -caprolactone modified dipentaerythritol hexa (meth) acrylate, ⁇ -valerolactone modified dipentaerythritol hexa (meth) acrylate, ⁇ -butyrolactone modified dipentaerythritol hexa (meth) acrylate, ⁇ -Propiolactone modified dipentaerythritol hexa (meth) acrylate, ⁇ -caprolactam modified dipentaerythritol hexa (meth) acrylate, ⁇ -caprol
  • the flexible chain-containing aliphatic radically polymerizable compound (B3) can be synthesized by a known method.
  • the content of the (B3) flexible chain-containing aliphatic radically polymerizable compound in the photosensitive resin composition of the present invention is 100 parts by mass of the total of (A) alkali-soluble resin and (B) radically polymerizable compound 5 mass parts or more are preferable, 10 mass parts or more are more preferable, 15 mass parts or more are more preferable, and 20 mass parts or more are especially preferable. While being able to improve the sensitivity at the time of exposure as content is 5 mass parts or more, generation
  • the content of the (B3) soft chain-containing aliphatic radical polymerizable compound is 45 parts by mass or less, 40 parts by mass or less is more preferable, 35 parts by mass or less is more preferable, and 30 parts by mass or less is particularly preferable as the content of the (B3) soft chain-containing aliphatic radical polymerizable compound. If the content is 45 parts by mass or less, a cured film having a low taper pattern shape can be obtained.
  • the photosensitive resin composition of the present invention preferably contains the (B3) flexible chain-containing aliphatic radically polymerizable compound and the (B4) flexible chain-containing bifunctional radically polymerizable compound described above.
  • the combination of the (B3) flexible chain-containing aliphatic radical polymerizable compound and the (B4) flexible chain-containing bifunctional radically polymerizable compound described above suppresses changes in the dimension opening width of the pattern before and after heat curing. While being able to be done, the bendability of a cured film can be improved.
  • the (B4) softness accounts for 100% by mass in total of (B3) soft chain-containing aliphatic radically polymerizable compound and (B4) soft chain-containing bifunctional radically polymerizable compound. 20 mass% or more is preferable, 25 mass% or more is more preferable, 30 mass% or more is further more preferable, 35 mass% or more is further more preferable, and 40 mass% or more of the content ratio of a chain containing bifunctional radically polymerizable compound Particularly preferred. While being able to suppress the change of the pattern opening dimension width
  • 80 mass% or less is preferable, as for the content ratio of the (B4) flexible chain
  • the photosensitive resin composition of the present invention preferably contains (B4) a soft chain-containing bifunctional radically polymerizable compound as the (B) radically polymerizable compound.
  • the flexible chain-containing bifunctional radically polymerizable compound (B4) refers to a compound having two ethylenic unsaturated double bond groups in the molecule and a flexible skeleton such as an aliphatic chain or an oxyalkylene chain.
  • (B4) By containing a soft chain-containing bifunctional radically polymerizable compound, UV curing at the time of exposure can proceed efficiently, and the sensitivity at the time of exposure can be improved.
  • (D1) pigment is contained as a (D) coloring agent to be described later, the (D1) pigment is fixed to a cured portion by crosslinking at the time of UV curing of the (B4) flexible chain-containing bifunctional radically polymerizable compound. While being able to suppress the generation
  • the bendability of a cured film can be improved. This is because, in addition to the fact that UV curing was promoted and the molecular weight of the cured film was increased by having a flexible skeleton such as an aliphatic chain, mechanical properties were improved by the introduction of the flexible skeleton into the cured film. It is guessed. Moreover, since it is bifunctional, excessive curing is suppressed and it is thought that the softness
  • the (D1a-1a) benzofuranone-based black pigment is particularly contained as the (Da) blackening agent described later, as described above, there may be a case where a pigment-derived developing residue is generated due to the insufficient alkali resistance of the pigment. is there. Even in such a case, generation of a development residue derived from the pigment can be suppressed by containing the (B4) flexible chain-containing bifunctional radically polymerizable compound. Similar to the above, UV curing is promoted and the crosslink density is improved, so that the (D1a-1a) benzofuranone-based black pigment is fixed to the cured portion, and it is speculated that it is to inhibit the decomposition or dissolution by the alkaline developer. Be done.
  • (B4) flexible chain-containing bifunctional radically polymerizable compound a compound having at least one group represented by General Formula (21) and two groups represented by General Formula (25) in the molecule is preferable.
  • R 67 represents hydrogen or an alkyl group having 1 to 10 carbon atoms.
  • a represents an integer of 1 to 10
  • b represents an integer of 1 to 4.
  • R 68 represents hydrogen or an alkyl group having 1 to 10 carbon atoms.
  • Z 18 represents a group represented by General Formula (29) or a group represented by General Formula (30).
  • c represents an integer of 1 to 10
  • d represents an integer of 1 to 4.
  • each of R 126 to R 128 independently represents hydrogen, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • R 129 represents hydrogen or an alkyl group having 1 to 10 carbon atoms.
  • R 67 is preferably hydrogen or an alkyl group having 1 to 4 carbon atoms.
  • a is preferably an integer of 1 to 6, and b is preferably 1 or 2.
  • R 68 is preferably hydrogen or an alkyl group having 1 to 4 carbon atoms.
  • c is preferably an integer of 1 to 6, and d is preferably 1 or 2.
  • R 126 is preferably hydrogen or an alkyl group having 1 to 4 carbon atoms, and more preferably hydrogen or a methyl group.
  • Each of R 127 and R 128 independently is preferably hydrogen or an alkyl group having 1 to 4 carbon atoms, and more preferably hydrogen.
  • R 129 is preferably hydrogen or an alkyl group having 1 to 4 carbon atoms, and more preferably hydrogen or a methyl group.
  • (B4) flexible chain-containing bifunctional radically polymerizable compound a compound represented by the general formula (22) and a compound represented by the general formula (23) are preferable.
  • X 38 represents a divalent organic group.
  • Y 38 and Y 39 each independently represent a direct bond, a group represented by the general formula (20) or a group represented by the general formula (21), and at least of Y 38 and Y 39 One is a group represented by the above general formula (21).
  • P 22 and P 23 each represent a group represented by the general formula (25).
  • a and b each independently represent 0 or 1;
  • X 38 has one or more selected from an aliphatic structure having 1 to 10 carbon atoms, an alicyclic structure having 4 to 20 carbon atoms and an aromatic structure having 6 to 30 carbon atoms Divalent organic group having one or more kinds selected from aliphatic structures having 1 to 6 carbon atoms, alicyclic structures having 4 to 15 carbon atoms, and aromatic structures having 6 to 25 carbon atoms Is more preferred.
  • a and b are each independently preferably 1;
  • the above aliphatic structure, alicyclic structure and aromatic structure may have a hetero atom, and may be either unsubstituted or substituted.
  • X 39 and X 40 each independently represent a divalent organic group.
  • Y 40 and Y 41 each independently represent a direct bond, a group represented by the general formula (20) or a group represented by the general formula (21), and at least of Y 40 and Y 41 One is a group represented by the above general formula (21).
  • Z 38 represents a direct bond or oxygen.
  • P 24 and P 25 each represent a group represented by the general formula (25).
  • c and d each independently represent 0 or 1;
  • at least one of X 39 and X 40 is selected from aliphatic structures having 1 to 10 carbon atoms, alicyclic structures having 4 to 20 carbon atoms and aromatic structures having 6 to 30 carbon atoms.
  • c and d are each independently preferably 1; The above aliphatic structure, alicyclic structure and aromatic structure may have a hetero atom, and may be either unsubstituted or substituted.
  • the flexible chain-containing bifunctional radically polymerizable compound has at least one lactone modified chain and / or at least one lactam modified chain.
  • the soft chain-containing bifunctional radically polymerizable compound has at least one lactone modified chain and / or at least one lactam modified chain, generation of a residue after development can be suppressed.
  • the bendability of the cured film can be improved. This is considered to be due to the fact that UV curing is significantly promoted and the molecular weight of the cured film is increased by having a lactone modified chain and / or a lactam modified chain.
  • mechanical properties are improved by introducing a soft skeleton such as a lactone-modified chain and / or a lactam-modified chain into the cured film.
  • the flexible chain-containing bifunctional radically polymerizable compound has a group represented by the above general formula (34), it has at least one lactone modified chain and / or at least one lactam modified chain.
  • the lactone modified chain is preferably a structure derived from a lactone compound.
  • lactone compounds include ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone and ⁇ -caprolactone.
  • the lactam modified chain is preferably a structure derived from a lactam compound.
  • the lactam compounds include ⁇ -propiolactam, ⁇ -butyrolactam, ⁇ -valerolactam or ⁇ -caprolactam.
  • the sensitivity at the time of exposure can be improved as a double bond equivalent is 100 g / mol or more, generation
  • production of the residue after image development can be suppressed.
  • the double bond equivalent of the (B4) flexible chain-containing bifunctional radically polymerizable compound is preferably 800 g / mol or less, more preferably 600 g / mol or less, still more preferably 500 g / mol or less, particularly 450 g / mol or less preferable. While the sensitivity at the time of exposure can be improved as a double bond equivalent is 800 g / mol or less, generation
  • the molecular weight of the (B4) flexible chain-containing bifunctional radically polymerizable compound is preferably 200 or more, more preferably 250 or more, still more preferably 300 or more, still more preferably 350 or more, and particularly preferably 400 or more. While the sensitivity at the time of exposure can be improved as molecular weight is 200 or more, generation
  • (B4) As a flexible chain-containing bifunctional radically polymerizable compound, as a compound having two ethylenic unsaturated double bond groups in the molecule, for example, ⁇ -caprolactone modified neopentyl glycol hydroxypivalate dipentyl methacrylate (meth) Acrylate, ⁇ -caprolactone modified trimethylolpropane di (meth) acrylate, ⁇ -caprolactone modified ditrimethylolpropane di (meth) acrylate, ⁇ -caprolactone modified glycerine di (meth) acrylate, ⁇ -caprolactone modified pentaerythritol di (meth) acrylate ⁇ -caprolactone modified dimethylol-tricyclodecane di (meth) acrylate, ⁇ -caprolactone modified 1,3-bis ((meth) acryloxyethyl) isocyanuric acid, or ⁇ -caprolactone modified 1,3-bi
  • the content of the (B4) flexible chain-containing bifunctional radically polymerizable compound in the photosensitive resin composition of the present invention is 100 parts by mass of the total of (A) alkali-soluble resin and (B) radically polymerizable compound 3 mass parts or more are preferable, 5 mass parts or more are more preferable, 10 mass parts or more are more preferable, 15 mass parts or more are still more preferable, and 20 mass parts or more are especially preferable. While the sensitivity at the time of exposure can be improved as content is 3 mass parts or more, a low taper-shaped pattern can be formed. In addition, the bendability of the cured film can be improved.
  • 40 parts by mass or less is preferable, 35 parts by mass or less is more preferable, 30 parts by mass or less is more preferable, and 25 parts by mass or less is particularly preferable. While the sensitivity at the time of exposure can be improved as content is 40 mass parts or less, generation
  • the photosensitive resin composition of the present invention preferably contains the (B3) flexible chain-containing aliphatic radically polymerizable compound and the (B4) flexible chain-containing bifunctional radically polymerizable compound described above.
  • the combination of the (B3) flexible chain-containing aliphatic radical polymerizable compound and the (B4) flexible chain-containing bifunctional radically polymerizable compound described above suppresses changes in the dimension opening width of the pattern before and after heat curing. While being able to be done, the bendability of a cured film can be improved.
  • the (B4) softness accounts for 100% by mass in total of (B3) soft chain-containing aliphatic radically polymerizable compound and (B4) soft chain-containing bifunctional radically polymerizable compound. 20 mass% or more is preferable, 25 mass% or more is more preferable, 30 mass% or more is further more preferable, 35 mass% or more is further more preferable, and 40 mass% or more of the content ratio of a chain containing bifunctional radically polymerizable compound Particularly preferred. While being able to suppress the change of the pattern opening dimension width
  • 80 mass% or less is preferable, as for the content ratio of the (B4) flexible chain
  • the photosensitive resin composition of the present invention further comprises (C) a photosensitizer.
  • a photosensitizer As the photosensitizer (C), a photopolymerization initiator (C1) and / or a photoacid generator (C2) are preferable.
  • the photopolymerization initiator refers to a compound which generates a radical by bond cleavage and / or reaction upon exposure to light.
  • variety before and behind thermosetting can be suppressed by containing (C1) photoinitiator as a specific amount or more. This is considered to be due to the increase in the amount of radicals generated from the (C1) photopolymerization initiator at the time of exposure. That is, by increasing the radical generation amount at the time of exposure, the collision probability between the generated radical and the ethylenically unsaturated double bond group in the above-mentioned (B) radical polymerizable compound becomes high, and the UV curing is accelerated. It is presumed that, by improving the crosslink density, it is possible to suppress a change in the dimension opening width of the pattern before and after heat curing by suppressing the reflow of the tapered portion and pattern foot of the pattern at the time of heat curing.
  • (C1) As the photopolymerization initiator, for example, benzyl ketal photopolymerization initiator, ⁇ -hydroxy ketone photopolymerization initiator, ⁇ -amino ketone photopolymerization initiator, acyl phosphine oxide photopolymerization initiator, oxime ester Photopolymerization initiator, acridine photopolymerization initiator, titanocene photopolymerization initiator, benzophenone photopolymerization initiator, acetophenone photopolymerization initiator, aromatic keto ester photopolymerization initiator or benzoic acid ester photopolymerization initiation Agent is preferable, and from the viewpoint of improving sensitivity at the time of exposure, ⁇ -hydroxy ketone photopolymerization initiator, ⁇ -amino ketone photopolymerization initiator, acyl phosphine oxide photopolymerization initiator, oxime ester photopolymerization initiator, acrid
  • benzyl ketal photopolymerization initiators examples include 2,2-dimethoxy-1,2-diphenylethane-1-one.
  • Examples of ⁇ -hydroxy ketone photopolymerization initiators include 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one and 2-hydroxy-2-methyl-1-phenylpropane-1 -One, 1-hydroxycyclohexyl phenyl ketone, 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methylpropan-1-one or 2-hydroxy-1- [4- [4- (4- 2-hydroxy-2-methylpropionyl) benzyl] phenyl] -2-methylpropan-1-one.
  • Examples of ⁇ -amino ketone photopolymerization initiators include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4) -Morpholinophenyl) -butan-1-one, 2-dimethylamino-2- (4-methylbenzyl) -1- (4-morpholinophenyl) -butan-1-one, or 3,6-bis (2-methyl) -2-morpholinopropionyl) -9-octyl-9H-carbazole.
  • acyl phosphine oxide type photoinitiator For example, 2, 4, 6- trimethyl benzoyl diphenyl phosphine oxide, bis (2, 4, 6 trimethyl trimethyl)-phenyl phosphine oxide, or bis (2, 6- dimethoxy) And benzoyl)-(2,4,4-trimethylpentyl) phosphine oxide.
  • oxime ester photopolymerization initiators include 1-phenylpropane-1,2-dione-2- (O-ethoxycarbonyl) oxime, 1-phenylbutane-1,2-dione-2- (O-methoxy) Carbonyl) oxime, 1,3-diphenylpropane-1,2,3-trione-2- (O-ethoxycarbonyl) oxime, 1- [4- (phenylthio) phenyl] octane-1,2-dione-2- ( O-Benzoyl) oxime, 1- [4- [4-carboxyphenylthio] phenyl] propane-1,2-dione-2- (O-acetyl) oxime, 1- [4- [4- (2-hydroxyethoxy) oxime ) Phenylthio] phenyl] propane-1,2-dione-2- (O-acetyl) oxime, 1- [4- (phenylthio)
  • acridine photopolymerization initiators examples include 1,7-bis (acridin-9-yl) -n-heptane.
  • titanocene photopolymerization initiator for example, bis ( ⁇ 5 -2,4-cyclopentadien-1-yl) -bis [2,6-difluoro-3- (1H-pyrrol-1-yl) phenyl] titanium (IV) or bis ( ⁇ 5 -3-methyl-2,4-cyclopentadien-1-yl) -bis (2,6-difluorophenyl) titanium (IV).
  • benzophenone-based photopolymerization initiators include benzophenone, 4,4'-bis (dimethylamino) benzophenone, 4,4'-bis (diethylamino) benzophenone, 4-phenylbenzophenone, 4,4-dichlorobenzophenone, 4- There may be mentioned hydroxybenzophenone, alkylated benzophenone, 3,3 ', 4,4'-tetrakis (t-butylperoxycarbonyl) benzophenone, 4-methylbenzophenone, dibenzyl ketone or fluorenone.
  • acetophenone photopolymerization initiators examples include 2,2-diethoxyacetophenone, 2,3-diethoxyacetophenone, 4-t-butyldichloroacetophenone, benzalacetophenone, and 4-azidobenzalacetophenone.
  • aromatic ketoester photopolymerization initiators examples include methyl 2-phenyl-2-oxyacetate.
  • benzoate-based photopolymerization initiators include ethyl 4-dimethylaminobenzoate, (2-ethyl) hexyl 4-dimethylaminobenzoate, ethyl 4-diethylaminobenzoate or methyl 2-benzoylbenzoate. .
  • the content of the (C1) photopolymerization initiator in the photosensitive resin composition of the present invention is 10 parts by mass when the total of (A) alkali soluble resin and (B) radically polymerizable compound is 100 parts by mass.
  • the above is preferable, 12 parts by mass or more is more preferable, 14 parts by mass or more is more preferable, and 15 parts by mass or more is particularly preferable.
  • the content is 10 parts by mass or more, it is possible to suppress a change in the dimension opening width of the pattern before and after heat curing.
  • 30 parts by mass or less is preferable, 25 parts by mass or less is more preferable, 22 parts by mass or less is more preferable, and 20 parts by mass or less is particularly preferable.
  • the content is 30 parts by mass or less, the resolution after development can be improved, and a cured film having a low taper shape pattern can be obtained.
  • the photosensitive resin composition of the present invention may further contain (C2) a photoacid generator as (C) a photosensitizer.
  • a photoacid generator is a compound which causes bond cleavage by exposure to generate an acid.
  • C2 By containing a photo-acid generator, UV curing at the time of exposure is promoted, and sensitivity can be improved. Moreover, the crosslinking density after thermosetting of a resin composition can be improved, and the chemical resistance of a cured film can be improved.
  • C2 As a photo-acid generator, there exist an ionic compound and a nonionic compound.
  • triorganosulfonium salt compounds include methanesulfonate, trifluoromethanesulfonate, camphorsulfonate or 4-toluenesulfonate of triphenylsulfonium; methanesulfonate of dimethyl-1-naphthylsulfonium Trifluoromethanesulfonate, camphorsulfonate or 4-toluenesulfonate; methanesulfonate, trifluoromethanesulfonate, camphorsulfonate or 4- (dimethyl (4-hydroxy-1-naphthyl) sulfonium) Toluene sulfonate; Methanesulfonate,
  • Examples of (C2) photoacid generators for nonionic compounds include halogen-containing compounds, diazomethane compounds, sulfone compounds, sulfonic acid ester compounds, carboxylic acid ester compounds, sulfoneimide compounds, phosphoric acid ester compounds, or sulfone benzotriazoles Compounds are mentioned.
  • nonionic compounds are preferable to ionic compounds from the viewpoints of solubility and insulating properties of the cured film. From the viewpoint of the strength of the generated acid, those generating benzenesulfonic acid, 4-toluenesulfonic acid, perfluoroalkylsulfonic acid or phosphoric acid are more preferable.
  • Sulfone from the viewpoint of high sensitivity due to high quantum yield to j-ray (wavelength 313 nm), i-line (wavelength 365 nm), h-line (wavelength 405 nm) or g-line (wavelength 436 nm) and transparency of cured film
  • An acid ester compound, a sulfone imide compound or an iminosulfonic acid ester compound is more preferable.
  • the content of the (C2) photoacid generator in the photosensitive resin composition of the present invention is 0.1 when the total of (A) the alkali-soluble resin and the (B) radically polymerizable compound is 100 parts by mass. It is preferably at least part by mass, more preferably at least 0.5 parts by mass, still more preferably at least 0.7 parts by mass, and particularly preferably at least 1 part by mass.
  • the sensitivity at the time of exposure can be improved as content is 0.1 mass part or more.
  • 25 parts by mass or less is preferable, 20 parts by mass or less is more preferable, 17 parts by mass or less is more preferable, and 15 parts by mass or less is particularly preferable.
  • the content is 25 parts by mass or less, the resolution after development can be improved, and a low taper pattern shape can be obtained.
  • the photosensitive resin composition of the present invention further contains (D) a colorant.
  • the colorant (D) is a compound which absorbs light of a specific wavelength, and particularly refers to a compound which is colored by absorbing light of the wavelength of visible light (380 to 780 nm).
  • the film obtained from the photosensitive resin composition can be colored, and the light transmitted through the film of the resin composition or the light reflected from the film of the resin composition is desired. It is possible to impart colorability that causes the color to be colored. Moreover, the light shielding property which shields the light of the wavelength which the (D) coloring agent absorbs from the light which permeate
  • a coloring agent the compound which absorbs the light of the wavelength of visible light, and colors red, orange, yellow, green, blue, or purple is mentioned. By combining these coloring agents in two or more colors, it is possible to improve the toning property to adjust the light transmitted through the film of the resin composition or the light reflected from the film of the resin composition to a desired color coordinate. .
  • the photosensitive resin composition of the present invention contains (Da) a blackening agent as an essential component as the (D) coloring agent.
  • the blackening agent refers to a compound that is colored black by absorbing light of the wavelength of visible light.
  • the film of the resin composition is blackened, so that the light transmitted through the film of the resin composition or the light reflected from the film of the resin composition is blocked, and the light shielding property is improved. be able to.
  • a pixel division layer having a light shielding property of an organic EL display an electrode insulation layer, a wiring insulation layer, an interlayer insulation layer, a TFT planarization layer, an electrode planarization layer, a wiring planarization layer, a TFT protective layer, an electrode protection layer, a wiring
  • a protective layer or a gate insulating layer and suitable for applications where high contrast is required by suppressing external light reflection, such as a pixel division layer having a light shielding property, an interlayer insulating layer, a TFT planarizing layer, or a TFT protective layer. is there.
  • (D) Black in the colorant refers to one in which "BLACK" is included in a Color Index Generic Number (hereinafter, "CI number").
  • Two or more C.I. I. A mixture of (D) colorants whose number is not black, and C.I. I. The black color in the mixture of two or more colors of the (D) colorant containing at least one non-numbered (D) colorant means black when it is a cured film.
  • black means the transmittance per 1.0 ⁇ m of film thickness at a wavelength of 550 nm in the transmission spectrum of the cured film of the resin composition containing (D) a colorant, based on the Lambert-Veil equation.
  • the film thickness is converted in the range of 0.1 to 1.5 ⁇ m so that the transmittance at a wavelength of 550 nm is 10%, the transmittance at a wavelength of 450 to 650 nm in the transmission spectrum after conversion is 25 It says that it is less than%.
  • the transmission spectrum of the cured film can be determined by the following method.
  • the resin composition containing at least an optional binder resin and (D) colorant is prepared such that the content ratio of (D) colorant in the total solid content of the resin composition is 35% by mass.
  • the film After applying a film of the resin composition on a Tempax glass substrate (manufactured by AGC Techno Glass Co., Ltd.), the film is prebaked at 110 ° C. for 2 minutes to form a film to obtain a prebaked film.
  • a high temperature inert gas oven IH-9CD-S; manufactured by Koyo Thermo Systems Co., Ltd.
  • a 1.0 ⁇ m cured film (hereinafter, "colorant-containing cured film") is prepared. Also, a resin composition containing the binder resin and (D) not containing a colorant is prepared, applied, prebaked and thermally cured on a Tempax glass substrate by the same method as described above, (D) coloring A cured film with a film thickness of 1.0 ⁇ m of a resin composition containing no agent (hereinafter, "cured film for blank”) is prepared.
  • a UV-visible spectrophotometer (MultiSpec-1500; manufactured by Shimadzu Corporation), measure a Tempax glass substrate on which a blank cured film is formed with a film thickness of 1.0 ⁇ m, and use the UV-visible absorption spectrum as a blank Do.
  • the tempax glass substrate on which the produced colorant-containing cured film is formed is measured by a single beam, and the transmittance per 1.0 ⁇ m film thickness at a wavelength of 450 to 650 nm is determined. Calculate the transmittance of the cured film.
  • the blackening agent (Da) a compound which absorbs light of all wavelengths of visible light and is colored black is preferable from the viewpoint of light shielding. Also preferred is a mixture of two or more (D) colorants selected from red, orange, yellow, green, blue or violet colorants. By combining these (D) colorants in two or more colors, it is possible to pseudo-colorize them and to improve the light shielding property.
  • the (Da) black agent mentioned above is selected from the (D1a) black pigment, (D2a-1) black dye and (D2a-2) two or more dye mixtures described later. It is preferable to contain 1 type or more, and it is more preferable to contain the (D1a) black pigment mentioned later from a light-shielding viewpoint.
  • a coloring agent other than black refers to a compound that is colored by absorbing light of the wavelength of visible light. That is, it is the coloring agent which colors red, orange, yellow, green, blue or purple except black which was mentioned above.
  • a blackening agent and (Db) a coloring agent other than black, it is possible to impart a light shielding property, a coloring property and / or a toning property to the film of the resin composition.
  • the colorant other than the (Db) black described above preferably contains a pigment other than (D1b) black and / or a dye other than (D2b) black described below, It is more preferable to contain pigments other than (D1b) black described later from the viewpoints of the properties and heat resistance or weather resistance.
  • the content ratio of the (D) colorant in the total 100% by mass of the (A) alkali-soluble resin, (D) colorant, and (E) dispersant described later is 15 mass. % Or more is preferable, 20 mass% or more is more preferable, 25 mass% or more is more preferable, and 30 mass% or more is particularly preferable. When the content ratio is 15% by mass or more, the light shielding property, the coloring property or the toning property can be improved. On the other hand, 80 mass% or less is preferable, as for the content ratio of (D) coloring agent, 75 mass% or less is more preferable, 70 mass% or less is more preferable, 65 mass% or less is especially preferable. The sensitivity at the time of exposure can be improved as a content ratio is 80 mass% or less.
  • the content ratio of the (D) coloring agent which occupies in the total solid of the photosensitive resin composition of this invention except a solvent 10 mass% or more is more preferable, and 15 mass% or more Is more preferable, and 20% by mass or more is particularly preferable.
  • the content ratio is 5% by mass or more, light shielding properties, coloring properties, or toning properties can be improved.
  • 70 mass% or less is preferable, as for the content ratio of (D) coloring agent, 65 mass% or less is more preferable, 60 mass% or less is more preferable, 55 mass% or less is still more preferable, 50 mass% or less is especially preferable preferable.
  • the sensitivity at the time of exposure can be improved as a content ratio is 70 mass% or less.
  • the content ratio of the (Da) blackening agent is 5 to 70% by mass in the total solid content.
  • the preferable content ratio of (Da) blackening agent is as the preferable content ratio of (D) coloring agent mentioned above.
  • the (D) colorant described above contains a (D1) pigment.
  • the (Da) black agent described above is necessarily contained, and a colorant other than (Db) black may optionally be contained.
  • the (D1) pigment is a compound that causes the surface of the object to be physically adsorbed, or causes the surface of the object to interact with the (D1) pigment to color the object. Generally, it is insoluble in solvents and the like. In addition, the coloring by the (D1) pigment has high hiding ability and is hardly discolored by ultraviolet rays and the like. (D1) By containing a pigment, it can be colored to a color excellent in concealing property, and the light shielding property and the weather resistance of the film of the resin composition can be improved.
  • the number average particle diameter of the (D1) pigment is preferably 1 to 1,000 nm, more preferably 5 to 500 nm, and still more preferably 10 to 200 nm.
  • the number average particle diameter of the pigment (D1) is 1 to 1,000 nm, the light shielding property of the film of the resin composition and the dispersion stability of the pigment (D1) can be improved.
  • the number average particle diameter of the (D1) pigment is a submicron particle size distribution measuring device (N4-PLUS; manufactured by Beckman Coulter, Inc.) or a zeta potential / particle diameter / molecular weight measuring device (Zetasizer Nano ZS; Sysmex Corporation) (D1) pigment can be used to measure the laser scattering due to the Brownian motion of the (D1) pigment in the solution (dynamic light scattering method). Further, the number average particle diameter of the (D1) pigment in the cured film obtained from the resin composition is measured using a scanning electron microscope (hereinafter, "SEM”) and a transmission electron microscope (hereinafter, "TEM").
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the number average particle size of the (D1) pigment is directly measured with a magnification of 50,000 to 200,000 in SEM and TEM.
  • D1 When the pigment is a true sphere, the diameter of the true sphere is measured to obtain a number average particle diameter.
  • D1 When the pigment is not a true sphere, the longest diameter (hereinafter, "major axis diameter”) and the longest diameter (hereinafter, “minor axis diameter”) in the direction orthogonal to the major axis diameter are measured. The minor axis diameter is averaged, and the biaxial average diameter is taken as the number average particle diameter.
  • Examples of the (D1) pigment include (D1-1) an organic pigment or (D1-2) an inorganic pigment.
  • (D1-1) As the organic pigment for example, phthalocyanine pigments, anthraquinone pigments, quinacridone pigments, dioxazine pigments, thioindigo pigments, diketopyrrolopyrrole pigments, surren pigments, indoline pigments, benzofuranone pigments And perylene pigments, aniline pigments, azo pigments, condensed azo pigments, and carbon black.
  • the inorganic pigment for example, graphite or silver-tin alloy, or fine particles of metal such as titanium, copper, iron, manganese, cobalt, chromium, nickel, zinc, calcium, or silver, oxide, composite And oxides, sulfides, sulfates, nitrates, carbonates, nitrides, carbides or oxynitrides.
  • the preferred content ratio of the (D1) pigment, the (D1-1) organic pigment and the (D1-2) inorganic pigment in the total solid content of the photosensitive resin composition of the present invention excluding the solvent is the same as that described above (D
  • the preferred content of colorants is as described above.
  • the (D1) pigment described above contains a (D1a) black pigment, or a (D1a) black pigment and a pigment other than (D1b) black.
  • the black pigment refers to a pigment that is colored black by absorbing light of the wavelength of visible light.
  • D1a By containing a black pigment, the film of the resin composition turns black, and the shielding property is excellent, so the light shielding property of the film of the resin composition can be improved.
  • the (Da) black agent described above is a (D1a) black pigment
  • the (D1a) black pigment is a (D1a-1) black organic pigment described later (D1a-2). It is preferable that it is one or more types selected from black inorganic pigments and (D1a-3) two or more color pigment mixtures.
  • a pigment other than black refers to a pigment that colors purple, blue, green, yellow, orange or red except black by absorbing light of the wavelength of visible light.
  • D1b By containing a pigment other than black, the film of the resin composition can be colored, and coloring or toning can be imparted.
  • D1b By combining two or more pigments other than black, the film of the resin composition can be toned to a desired color coordinate, and the toning property can be improved. Examples of pigments other than black (D1b) include pigments described below which are colored in red, orange, yellow, green, blue or purple except black.
  • the pigment (D1b) other than black described above is an organic pigment other than black (D1b-1) and / or an inorganic pigment other than black (D1b-2) described later. Is preferred.
  • the above-mentioned (D1a) black pigment is a mixture of (D1a-1) black organic pigment, (D1a-2) black inorganic pigment and (D1a-3) two or more color pigments It is preferable that it is one or more types chosen from.
  • the black organic pigment refers to an organic pigment that is colored black by absorbing light of a wavelength of visible light.
  • the black organic pigment By containing a black organic pigment, the film of the resin composition turns black and the shielding property is excellent, so the light shielding property of the film of the resin composition can be improved. Furthermore, because it is an organic substance, it adjusts the transmission spectrum or absorption spectrum of the film of the resin composition, such as transmitting or shielding light of a desired specific wavelength by chemical structural change or functional conversion, to improve the color matching property be able to.
  • the film resistance value can be obtained by including the (D1a-1) black organic pigment. Can be improved.
  • an insulating layer such as a pixel division layer of an organic EL display, a TFT planarization layer, or a TFT protective layer, it is possible to suppress light emission defects and the like and to improve reliability.
  • Examples of the (D1a-1) black organic pigment include anthraquinone black pigments, benzofuranone black pigments, perylene black pigments, aniline black pigments, azo black pigments, azomethine black pigments, and carbon black.
  • Examples of carbon black include channel black, furnace black, thermal black, acetylene black and lamp black. Channel black is preferred from the viewpoint of light shielding.
  • the black inorganic pigment refers to an inorganic pigment that is colored black by absorbing light of the wavelength of visible light.
  • D1a-2 By containing a black inorganic pigment, the film of the resin composition turns black, and the shielding property is excellent, so the light shielding property of the film of the resin composition can be improved. Furthermore, since it is an inorganic substance and is excellent in heat resistance and weather resistance, the heat resistance and weather resistance of the film of the resin composition can be improved.
  • black inorganic pigments include graphite or silver-tin alloy, or fine particles of metal such as titanium, copper, iron, manganese, cobalt, chromium, nickel, zinc, calcium, or silver, oxides, composites And oxides, sulfides, sulfates, nitrates, carbonates, nitrides, carbides or oxynitrides. From the viewpoint of light shielding property improvement, fine particles of titanium or silver, oxides, composite oxides, sulfides, nitrides, carbides, or oxynitrides are preferable, and titanium nitride or titanium oxynitride is more preferable.
  • the color pigment mixture of two or more colors is artificially colored black by combining two or more pigments selected from red, orange, yellow, green, blue, or purple pigments, It refers to a pigment mixture.
  • D1a-3 By containing a color pigment mixture of two or more colors, the film of the resin composition becomes black and the shielding property is excellent, so that the light shielding property of the film of the resin composition can be improved. Furthermore, in order to mix two or more pigments, it is possible to adjust the transmission spectrum or absorption spectrum of the film of the resin composition, such as transmitting or shielding light of a desired specific wavelength, and to improve the color matching property. .
  • black organic pigment black inorganic pigment, red pigment, orange pigment, yellow pigment, green pigment, blue pigment and violet pigment, known pigments can be used.
  • the pigment other than (D1b) black is preferably an organic pigment other than (D1b-1) black and / or an inorganic pigment other than (D1b-2) black.
  • An organic pigment other than black refers to an organic pigment that colors red, orange, yellow, green, blue, or purple except black by absorbing light of a wavelength of visible light.
  • an organic pigment other than black By containing an organic pigment other than black, the film of the resin composition can be colored, and coloring or toning can be imparted. Furthermore, since it is an organic substance, it adjusts the transmission spectrum or absorption spectrum of the film of the resin composition, such as transmitting or shielding light of a desired specific wavelength by chemical structural change or functional conversion, to improve the color matching property. Can.
  • the film of the resin composition can be adjusted to a desired color coordinate, and the toning property can be improved.
  • Examples of the organic pigment other than black include organic pigments colored in red, orange, yellow, green, blue, or purple except black.
  • An inorganic pigment other than black refers to an inorganic pigment which is colored in red, orange, yellow, green, blue or purple except black by absorbing light of wavelength of visible light.
  • D1b-2) By containing an inorganic pigment other than black, the film of the resin composition can be colored, and coloring or toning can be imparted. Furthermore, since it is an inorganic substance and is excellent in heat resistance and weather resistance, the heat resistance and weather resistance of the film of the resin composition can be improved.
  • D1b-2) By combining inorganic pigments other than black in two or more colors, the film of the resin composition can be adjusted to a desired color coordinate, and the toning property can be improved.
  • inorganic pigments other than black By combining inorganic pigments other than black in two or more colors, the film of the resin composition can be adjusted to a desired color coordinate, and the toning property can be improved.
  • inorganic pigments other than black include inorganic pigments colored in red, orange, yellow, green, blue, or purple except black.
  • the above-mentioned (D1a-1) black organic pigment is (D1a-1a) benzofuranone-based black pigment, (D1a-1b) perylene-based black pigment and (D1a-1c) azo-based It is preferable that it is 1 or more types selected from the group which consists of black pigments.
  • a film of a resin composition By containing one or more selected from the group consisting of (D1a-1a) benzofuranone-based black pigment, (D1a-1b) perylene-based black pigment and (D1a-1c) azo-based black pigment, a film of a resin composition can be obtained Since it is blackened and excellent in concealing property, the light shielding property of the film of the resin composition can be improved. In particular, since the light shielding property per unit content ratio of the pigment in the resin composition is excellent as compared with a general organic pigment, the same light shielding performance can be provided with a small content ratio. Therefore, the light shielding property of the film can be improved, and the sensitivity at the time of exposure can be improved.
  • the film of the resin composition adjusts the transmission spectrum or absorption spectrum of the film of the resin composition, such as transmitting or shielding light of a desired specific wavelength by chemical structural change or functional conversion, to improve the color matching property be able to.
  • the transmittance of the near infrared region wavelength for example, 700 nm or more
  • it has a light shielding property and is suitable for applications using light of the near infrared region wavelength.
  • the insulating property and the low dielectric property are excellent as compared with general organic pigments and inorganic pigments, the resistance value of the film can be improved.
  • an insulating layer such as a pixel division layer of an organic EL display, a TFT planarization layer, or a TFT protective layer, it is possible to suppress light emission defects and the like and to improve reliability.
  • (D1a-1a) benzofuranone-based black pigment absorbs light of the wavelength of visible light, while it has high transmittance in the wavelength of ultraviolet region (for example, 400 nm or less), so (D1a-1a) benzofuranone-based black pigment
  • a benzofuranone-based black pigment is blackened by absorbing light of a visible light wavelength having a benzofuran-2 (3H) -one structure or a benzofuran-3 (2H) -one structure in the molecule It refers to a compound to be colored.
  • a development residue derived from the pigment may be generated due to the insufficient alkali resistance of the pigment described above. That is, when the surface of the (D1a-1a) benzofuranone-based black pigment described above is exposed to the alkali developing solution during development, a part of the surface is decomposed or dissolved, and remains on the substrate as a development residue derived from the pigment May.
  • (D1a-1a) benzofuranone-based black pigment a benzofuranone compound represented by any one of the general formulas (63) to (68), a geometric isomer thereof, a salt thereof, or a salt of the geometric isomer thereof is preferable.
  • each of R 206 , R 207 , R 212 , R 213 , R 218 and R 219 independently represents hydrogen, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or fluorine It represents an alkyl group having 1 to 10 carbon atoms and having 1 to 20 atoms.
  • a plurality of R 208 , R 209 , R 214 , R 215 , R 220 or R 221 may form a ring by a direct bond or an oxygen atom bridge, a sulfur atom bridge, an NH bridge or an NR 251 bridge.
  • Each of R 210 , R 211 , R 216 , R 217 , R 222 and R 223 independently represents hydrogen, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • Each of a, b, c, d, e and f independently represents an integer of 0 to 4.
  • alkyl group, cycloalkyl group, alkenyl group, cycloalkenyl group, alkynyl group and aryl group may have a hetero atom and may be either unsubstituted or substituted.
  • R 253 , R 254 , R 259 , R 260 , R 265 and R 266 are each independently hydrogen, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or fluorine It represents an alkyl group having 1 to 10 carbon atoms and having 1 to 20 atoms.
  • a plurality of R 255 , R 256 , R 261 , R 262 , R 267 or R 268 may form a ring with a direct bond or an oxygen atom bridge, a sulfur atom bridge, an NH bridge or an NR 271 bridge .
  • Each of R 257 , R 258 , R 263 , R 264 , R 269 and R 270 independently represents hydrogen, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • Each of a, b, c, d, e and f independently represents an integer of 0 to 4.
  • alkyl group, cycloalkyl group, alkenyl group, cycloalkenyl group, alkynyl group and aryl group may have a hetero atom and may be either unsubstituted or substituted.
  • benzofuranone-based black pigments examples include “IRGAPHOR” (registered trademark) BLACK S 0100 CF (manufactured by BASF), black pigments described in WO 2010/081624 or WO 2010/081756 And black pigments of
  • the (D1a-1b) perylene black pigment refers to a compound having a perylene structure in the molecule, which is colored in black by absorbing light of a wavelength of visible light.
  • the (D1a-1b) perylene black pigment is preferably a perylene compound represented by any one of the general formulas (69) to (71), a geometric isomer thereof, a salt thereof, or a salt of the geometric isomer.
  • X 92 , X 93 , X 94 and X 95 each independently represent an alkylene chain having 1 to 10 carbon atoms.
  • R 224 and R 225 each independently represent hydrogen, a hydroxy group, an alkoxy group having 1 to 6 carbon atoms, or an acyl group having 2 to 6 carbon atoms.
  • R 273 and R 274 each independently represent hydrogen or an alkyl group having 1 to 10 carbon atoms.
  • Each of a and b independently represents an integer of 0 to 5.
  • the above-mentioned alkylene chain, alkoxy group, acyl group and alkyl group may have a hetero atom, and may be either unsubstituted or substituted.
  • Examples of (D1a-1b) perylene black pigments include, for example, pigment black 31 or 32 (the numerical values are all CI numbers).
  • PALIOGEN registered trademark
  • BLACK S0084, K0084, L0086, K0086, EH0788, or FK4281 can be mentioned.
  • the (D1a-1c) azo black pigment refers to a compound having an azo group in the molecule, which is colored in black by absorbing light of a visible light wavelength.
  • an azo compound represented by the general formula (72) is preferable.
  • X 96 represents an arylene chain having 6 to 15 carbon atoms.
  • Y 96 represents an arylene chain having 6 to 15 carbon atoms.
  • R 275 , R 276 and R 277 each independently represent a halogen or an alkyl group having 1 to 10 carbon atoms.
  • R 278 represents a halogen, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a nitro group.
  • R 279 represents a halogen, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an acylamino group having 2 to 10 carbon atoms, or a nitro group.
  • R 280 , R 281 , R 282 and R 283 each independently represent hydrogen or an alkyl group having 1 to 10 carbon atoms.
  • a represents an integer of 0 to 4
  • b represents an integer of 0 to 2
  • c represents an integer of 0 to 4
  • d and e each independently represent an integer of 0 to 8.
  • n each represents an integer of 1 to 4.
  • the arylene chain, the alkyl group, the alkoxy group and the acylamino group described above may have a hetero atom and may be either unsubstituted or substituted.
  • azo black pigment for example, “CHROMOFINE” (registered trademark) BLACK A1103 (manufactured by Dainichi Seika Kogyo Co., Ltd.), a black pigment described in JP-A 01-170601, or JP-A 02-170601 Black pigments described in Japanese Patent Application Publication No. 034664 can be mentioned.
  • the content ratio of one or more selected from the group consisting of (D1a-1a) benzofuranone-based black pigment, (D1a-1b) perylene-based black pigment and (D1a-1c) azo-based black pigment is 70% by mass or less
  • the content is preferably 65% by mass or less, more preferably 60% by mass or less, still more preferably 55% by mass or less, and particularly preferably 50% by mass or less.
  • the sensitivity at the time of exposure can be improved as a content ratio is 70 mass% or less.
  • the (D1a-1) black organic pigment preferably further contains a (DC) coating layer.
  • the coating layer (DC) covers the pigment surface, which is formed by, for example, surface treatment with a silane coupling agent, surface treatment with a silicate, surface treatment with a metal alkoxide, or coating treatment with a resin. I say a layer.
  • Modifying the surface state of the particles such as acidifying, basifying, hydrophilizing or hydrophobizing the particle surface of the (D1a-1) black organic pigment, by including a (DC) coating layer It is possible to improve acid resistance, alkali resistance, solvent resistance, dispersion stability, heat resistance and the like. As a result, it is possible to suppress the generation of development residues derived from the pigment.
  • the (D1a-1) black organic pigment particularly contains a (D1a-1a) benzofuranone-based black pigment
  • the (D1a-1a) benzofuranone-based black pigment contains the (DC) -coated layer to obtain the pigment.
  • the alkali resistance of the pigment can be improved, and the development residue derived from the pigment can be suppressed.
  • the average coverage by the (DC) coating layer on the (D1a-1) black organic pigment is preferably 50% or more, preferably 70% or more, more preferably 80% or more, and still more preferably 90% or more.
  • the average coverage by the (DC) coating layer is 80% or more, generation of a residue during development can be suppressed.
  • the average coverage ratio of the (DC) coating layer to the (D1a-1) black organic pigment is a magnification of 50 at an accelerating voltage of 300 kV using a transmission electron microscope (H9500; manufactured by Hitachi High-Technologies Corporation).
  • the cross section is observed as 1,000,000 to 200,000 times, and the coverage M (%) of each black pigment is determined by the following formula for 100 particles of black pigment randomly selected, and the number average value is calculated.
  • the average coverage N (%) can be determined.
  • Coverage M (%) ⁇ L1 / (L1 + L2) ⁇ ⁇ 100
  • L1 The total length (nm) of the portion of the outer periphery of the particle covered by the covering layer
  • L2 The total length (nm) of the part of the particle periphery not covered by the covering layer (the part where the interface and the embedding resin are in direct contact)
  • L1 + L2 peripheral length of particle (nm).
  • the (DC) coating layer contains one selected from the group consisting of (DC-1) silica coating layer, (DC-2) metal oxide coating layer, and (DC-3) metal hydroxide coating layer. Is preferred. Since silica, metal oxides and metal hydroxides have a function of imparting alkali resistance to the pigment, generation of development residues derived from the pigment can be suppressed.
  • (DC-1) Silica contained in the silica coating layer is a generic term for silicon dioxide and its hydrate.
  • DC-2 The metal oxide contained in the metal oxide coating layer is a generic term for metal oxides and their hydrates.
  • An example of the metal oxide is alumina, and examples thereof include alumina (Al 2 O 3 ) or alumina hydrate (Al 2 O 3 .nH 2 O).
  • Examples of the metal hydroxide contained in the (DC-3) metal hydroxide coating layer include aluminum hydroxide (Al (OH) 3 ).
  • silica has a low dielectric constant, the dielectric constant of the pixel division layer, the TFT planarization layer, or the TFT protective layer is high even when the content of the (DC) coating layer of (D1a-1) black organic pigment is large. It is possible to suppress the rise.
  • the (DC-1) silica coating layer, the (DC-2) metal oxide coating layer and the (DC-3) metal hydroxide coating layer of the (DC) coating layer are analyzed by, for example, X-ray diffraction method be able to.
  • X-ray-diffraction apparatus a powder X-ray-diffraction apparatus (made by Mac Science) etc. are mentioned, for example.
  • the mass of silicon atoms or metal atoms contained in the (DC-1) silica coating layer, the (DC-2) metal oxide coating layer, and the (DC-3) metal hydroxide coating layer is rounded off to two decimal places. And calculate the value to the first decimal place.
  • the mass of pigment particles excluding the (DC) covering layer contained in the (D1a-1) black organic pigment having the (DC) covering layer can be determined, for example, by the following method.
  • the pigment whose mass is measured is put in a mortar and ground with a pestle to remove the coating layer (DC), and then it is immersed in an amide solvent such as N, N-dimethylformamide to dissolve only the particles of the pigment and filtrate
  • an amide solvent such as N, N-dimethylformamide
  • metal oxides or metal hydroxides contained in (DC-2) metal oxide coating layer or (DC-3) metal hydroxide coating layer chemical resistance such as alkali resistance, heat resistance and light resistance It is preferable to have the properties, the Vickers hardness which can endure the mechanical energy input suitably optimized in the dispersing step, and the physical durability such as the abrasion resistance.
  • a metal oxide and a metal hydroxide an alumina, a zirconia, a zinc oxide, a titanium oxide, or iron oxide etc. are mentioned, for example.
  • Alumina or zirconia is preferable from the viewpoint of insulation, ultraviolet transmittance and near infrared transmittance, and alumina is more preferable from the viewpoint of dispersibility in an alkali-soluble resin and a solvent.
  • the metal oxide and the metal hydroxide may be surface-modified with a group containing an organic group.
  • an alumina coating layer is formed as a (DC-2) metal oxide coating layer on the surface of the (DC-1) silica coating layer.
  • Alumina is also effective in improving the dispersibility in an aqueous pigment suspension even in the pigment sizing step carried out after the pigment surface treatment step, so that the secondary aggregation particle diameter can be adjusted to a desired range. Furthermore, productivity and quality stability can be improved.
  • the coating amount of the alumina coating layer as the (DC-2) metal oxide coating layer contained in the (DC) coating layer is 10 parts by mass based on 100 parts by mass of the silica contained in the (DC-1) silica coating layer. More than part is preferable and 20 mass parts or more are more preferable.
  • the content of silica is preferably 1 part by mass or more, more preferably 2 parts by mass or more, based on 100 parts by mass of the pigment particles. Preferably, 5 parts by mass or more is more preferable.
  • the coverage of the particle surface of the pigment can be increased, and the development residue derived from the pigment can be suppressed.
  • 20 mass parts or less are preferable, and, as for content of a silica, 10 mass parts or less are more preferable.
  • the pattern linearity of the pixel division layer, the TFT planarization layer, or the TFT protective layer can be improved.
  • the total content of the metal oxide and the metal hydroxide is When 100 parts by mass of pigment particles is used, 0.1 parts by mass or more is preferable, and 0.5 parts by mass or more is more preferable. By setting the total content to 0.1 parts by mass or more, the dispersibility and the pattern linearity can be improved. On the other hand, 15 mass parts or less are preferable, and, as for the sum total of content of a metal oxide and a metal hydroxide, 10 mass parts or less are more preferable.
  • the concentration gradient generation of the pigment is generated in the photosensitive composition of the present invention designed to have a low viscosity, preferably a viscosity of 15 mPa ⁇ s or less. It is possible to suppress the storage stability of the coating liquid.
  • the content of silica is calculated from the silicon atom content, including the case where it does not become a single component in the inside and the surface layer of the (DC) coating layer, or the case where a difference occurs in the dehydration amount due to heat history. It is a silicon dioxide conversion value, and it is a SiO 2 conversion value.
  • Content of a metal oxide and a metal hydroxide means the metal oxide and metal hydroxide conversion value calculated from metal atom content. That is, in the case of alumina, zirconia and titanium oxide, they refer to an Al 2 O 3 converted value, a ZrO 2 converted value and a TiO 2 converted value, respectively.
  • the sum total of the content of the metal oxide and the metal hydroxide means the content when either of the metal oxide and the metal hydroxide is contained, and the total amount of the content when both are contained. Say.
  • the surface may be surface-modified with an organic group using a silane coupling agent, with the hydroxy on the surface of the hydroxide as the reaction point.
  • an organic group an ethylenically unsaturated double bond group is preferable.
  • the outermost layer may be further subjected to surface treatment with an organic surface treatment agent.
  • the (DC) coating layer may further contain a resin coating layer formed by coating treatment with a resin.
  • the particle surface is coated with an insulating resin having low conductivity, the surface condition of the particles can be modified, and the light shielding property and the insulating property of the cured film can be improved.
  • the (D) colorant described above contains a (D2) dye.
  • the (D) coloring agent described above contains the (D2) dye, it is preferable to contain the (D2) dye as the (Da) blackening agent and / or (Db) coloring agent other than black described above .
  • a dye is a compound that causes the surface structure of an object to be colored by causing a substituent such as an ionic group or a hydroxy group in the dye to interact with the surface structure of the object (D2) or the like. Generally, they are soluble in solvents and the like. In addition, coloring with the (D2) dye has high coloring power and high coloring efficiency because each molecule adsorbs with the object.
  • (D2) By containing a dye, it can be colored to a color excellent in coloring power, and the coloring property and toning property of the film of the resin composition can be improved.
  • (D2) dyes include direct dyes, reactive dyes, sulfur dyes, vat dyes, acid dyes, metal-containing dyes, metal-containing acid dyes, basic dyes, mordant dyes, acid mordant dyes, disperse dyes, cationic dyes Or fluorescent whitening dyes.
  • the disperse dye is a dye which is insoluble or poorly soluble in water and does not have an anionic ionizable group such as a sulfonic acid group or a carboxy group.
  • D2 Dyes include anthraquinone dyes, azo dyes, azine dyes, phthalocyanine dyes, methine dyes, oxazine dyes, quinoline dyes, indigo dyes, indigoid dyes, carbonium dyes, and srene dyes And perinone dyes, perylene dyes, triarylmethane dyes, and xanthene dyes. From the viewpoint of solubility in solvents and heat resistance described later, anthraquinone dyes, azo dyes, azine dyes, methine dyes, triarylmethane dyes and xanthene dyes are preferable.
  • the above-mentioned (D2) dye is selected from (D2a-1) black dyes described later, (D2a-2) two or more dye mixtures and (D2b) dyes other than black. It is preferable to contain one or more of the following.
  • 0.01 mass% or more is preferable, as for the content ratio of the (D2) dye which occupies in the total solid of the photosensitive resin composition of this invention except a solvent, 0.05 mass% or more is more preferable, and 0.1 % Or more is more preferable.
  • the content ratio is 0.01% by mass or more, the colorability or the toning property can be improved.
  • 50 mass% or less is preferable, as for the content ratio of (D2) dye, 45 mass% or less is more preferable, and 40 mass% or less is more preferable.
  • the heat resistance of a cured film can be improved as a content ratio is 50 mass% or less.
  • one of the above-mentioned (D2) dyes is selected from (D2a-1) black dyes, (D2a-2) two or more dye mixtures and (D2b) dyes other than black. It is preferable to contain more than types.
  • the black dye is a dye that colors black by absorbing light of the wavelength of visible light.
  • D2a-1 When the black dye is contained, the film of the resin composition turns black and the coloring property is excellent, so the light shielding property of the film of the resin composition can be improved.
  • (D2a-2) A mixture of two or more dyes is artificially colored black by combining two or more dyes selected from white, red, orange, yellow, green, blue, and purple dyes. , Say dye mixtures. (D2a-2) By containing a dye mixture of two or more colors, the film of the resin composition turns black and the coloring property is excellent, so the light shielding property of the film of the resin composition can be improved. Furthermore, in order to mix two or more dyes, it is possible to adjust the transmission spectrum or absorption spectrum of the film of the resin composition, such as transmitting or blocking light of a desired specific wavelength, to improve the color matching property. Known black dyes, red dyes, orange dyes, yellow dyes, green dyes, blue dyes and purple dyes can be used.
  • Dyes other than black are dyes which are colored in white, red, orange, yellow, green, blue or purple except black by absorbing light of wavelength of visible light.
  • D2b By containing a dye other than black, the film of the resin composition can be colored, and coloring or toning can be imparted.
  • D2b By combining two or more dyes other than black, the film of the resin composition can be adjusted to a desired color coordinate, and the toning property can be improved.
  • Examples of dyes other than black include the above-mentioned dyes that color white, red, orange, yellow, green, blue or purple except black.
  • the cured film obtained by curing the photosensitive resin composition of the present invention preferably has an optical density of 0.3 or more per 1 ⁇ m of film thickness, more preferably 0.5 or more, and 0.7 or more. Is more preferably 1.0, and particularly preferably 1.0 or more. Since the light shielding property can be improved by the cured film when the optical density per 1 ⁇ m of film thickness is 0.3 or more, in a display device such as an organic EL display or a liquid crystal display, visualization of electrode wiring is prevented or external light is reflected. The reduction is possible, and the contrast in image display can be improved.
  • the pixel division layer, the electrode insulating layer, the wiring insulating layer, the interlayer insulating layer, the TFT planarization layer, the electrode planarization layer, the wiring planarization layer, the TFT protective layer, the electrode protective layer, the wiring protective layer, the gate insulating layer It is suitable for applications such as color filters, black matrices, or black column spacers.
  • a pixel division layer having a light shielding property of an organic EL display an electrode insulation layer, a wiring insulation layer, an interlayer insulation layer, a TFT planarization layer, an electrode planarization layer, a wiring planarization layer, a TFT protective layer, an electrode protection layer, a wiring
  • a protective layer or a gate insulating layer and suitable for applications where high contrast is required by suppressing external light reflection, such as a pixel division layer having a light shielding property, an interlayer insulating layer, a TFT planarizing layer, or a TFT protective layer. is there.
  • the optical density per 1 ⁇ m of film thickness is preferably 5.0 or less, more preferably 4.0 or less, and still more preferably 3.0 or less. While the sensitivity at the time of exposure can be improved as the optical density per film thickness per 1 micrometer is 5.0 or less, a cured film with a low taper pattern shape can be obtained.
  • the optical density per 1 ⁇ m of the film thickness of the cured film can be adjusted by the composition and content ratio of the (D) colorant described above.
  • the photosensitive resin composition of the present invention preferably further comprises (E) a dispersant.
  • the (E) dispersant is a surface affinity group that interacts with the surface of the disperse dye as the (D1) pigment and / or (D2) dye described above, and (D1) the pigment and / or (D2) dye A compound having a dispersion stabilization structure that improves the dispersion stability of the disperse dye.
  • the dispersion stabilizing structure of the dispersant (E) include a polymer chain and / or a substituent having an electrostatic charge.
  • the photosensitive resin composition contains a disperse dye as the (D1) pigment and / or the (D2) dye by containing a dispersant (E), the dispersion stability of those can be improved, and the development is performed. Later resolution can be improved.
  • the surface area of the (D1) pigment particles increases, so aggregation of the (D1) pigment particles tends to occur. Become.
  • the surface of the crushed (D1) pigment interacts with the surface affinity group of the (E) dispersant and the dispersion stabilization of the (E) dispersant Steric hindrance due to structure and / or electrostatic repulsion can inhibit aggregation of the particles of the (D1) pigment and improve the dispersion stability.
  • the (E) dispersant having a surface affinity group for example, (E) dispersant having only a basic group, (E) dispersant having a basic group and an acidic group, and having only an acidic group (E) A dispersing agent or (E) dispersing agent which does not have any of a basic group and an acidic group is mentioned. From the viewpoint of improving the dispersion stability of the particles of the pigment (D1), the (E) dispersant having only a basic group and the (E) dispersant having a basic group and an acidic group are preferable. Moreover, it is also preferable that the basic group which is a surface affinity group and / or the acidic group have a structure formed with an acid and / or a base.
  • the basic group or the structure formed by salt formation of the basic group possessed by the dispersant includes tertiary amino group, quaternary ammonium salt structure, or pyrrolidine skeleton, pyrrole skeleton, imidazole skeleton, pyrazole skeleton, triazole skeleton, Tetrazole skeleton, imidazoline skeleton, oxazole skeleton, isoxazole skeleton, oxazoline skeleton, isoxazoline skeleton, thiazole skeleton, isothiazole skeleton, thiazole skeleton, thiazole skeleton, thiazole skeleton, thiazole skeleton, thiazoline skeleton, thiazoline skeleton, isothiazoline skeleton, thiazine skeleton, piperidine skeleton, piperazine skeleton, morpholine skeleton, pyridine skeleton, pyridazine skeleton
  • the structure in which a basic group or a basic group forms a salt includes a tertiary amino group, a quaternary ammonium salt structure, or a pyrrole skeleton, an imidazole skeleton, and a pyrazole skeleton Containing pyridine skeleton, pyridazine skeleton, pyrimidine skeleton, pyrazine skeleton, triazine skeleton, isocyanuric acid skeleton, imidazolidinone skeleton, propylene urea skeleton, butylene urea skeleton, hydantoin skeleton, barbituric acid skeleton, alloxan skeleton or glycoluril skeleton, etc.
  • a nitrogen ring skeleton is preferred.
  • (E) dispersant having only a basic group, for example, “DISPERBYK” (registered trademark) -108, -160, -167, -182, -2000 or -2164, "BYK” Registered trade mark -9075, the same -LP-N 6919 or the same -LP-N 21116 (all, made by BIC Chemie Japan Ltd.), "EFKA” (registered trademark) 4015, 4050, 4080, 4300, 4400 or Same as 4800 (all manufactured by BASF), “Ajispar” (registered trademark) PB711 (manufactured by Ajinomoto Fine Techno Co., Ltd.), or “SOLSPERSE” (registered trademark) 13240, 20000 or 71000 (all, manufactured by Lubrizol Can be mentioned.
  • DISPERBYK registered trademark
  • (E) dispersant having a basic group and an acidic group for example, “ANTI-TERRA” (registered trademark) -U100 or -204, “DISPERBYK” (registered trademark) -106, -140, and- 145, -180, -191, -2001 or -2020, “BYK” (registered trademark)-9076 (manufactured by Bick Chemie Japan), "Aispar” (registered trademark) PB 821 or PB 881 (any one of them Also available are Ajinomoto Fine Techno Co., Ltd.) or "SOLSSPERSE” (registered trademark) 9000, 13650, 24000, 33000, 37500, 39000, 56000 or 76500 (all from Lubrizol).
  • (E) dispersant having only an acidic group for example, "DISPERBYK” (registered trademark) -102, -118, -170 or -2096, “BYK” (registered trademark) -P104 or -220S (All the above are made by Big Chemie Japan Ltd.) or “SOLSPERSE” (registered trademark) 3000, 16000, 21000, 36000 or 55000 (all, each produced by Lubrizol).
  • dispersant (E) having neither a basic group nor an acidic group examples include, for example, “DISPERBYK” (registered trademark) -103, -192, -2152 or -2200 (all of which are Big Chemie Japan) Or “SOLSPERSE” (registered trademark) 27000, 54000 or X300 (all are made by Lubrizol).
  • the amine value of the dispersant (E) is preferably 5 mg KOH / g or more, more preferably 8 mg KOH / g or more, and still more preferably 10 mg KOH / g or more.
  • the dispersion stability of (D1) pigment can be improved as an amine value is 5 mgKOH / g or more.
  • 150 mgKOH / g or less is preferable, 120 mgKOH / g or less is more preferable, and 100 mgKOH / g or less is more preferable.
  • the storage stability of a resin composition can be improved as an amine titer is 150 mgKOH / g or less.
  • the amine value referred to herein means the weight of potassium hydroxide equivalent to the acid to be reacted with 1 g of the (E) dispersant, and the unit is mg KOH / g.
  • the amine equivalent weight (unit: g / mol), which is the resin weight per mol of basic group such as amino group, can be calculated from the value of amine value, and (E) the number of basic groups such as amino group in the dispersant It can be asked.
  • the acid value of the dispersant (E) is preferably 5 mg KOH / g or more, more preferably 8 mg KOH / g or more, and still more preferably 10 mg KOH / g or more.
  • the dispersion stability of the (D1) pigment can be improved.
  • 200 mgKOH / g or less is preferable, 170 mgKOH / g or less is more preferable, and 150 mgKOH / g or less is more preferable.
  • the storage stability of a resin composition can be improved as an acid value is 200 mgKOH / g or less.
  • the acid value as used herein refers to the weight of potassium hydroxide which reacts with 1 g of the (E) dispersant, and the unit is mg KOH / g. (E) It can obtain
  • an acrylic resin based dispersant, a polyoxyalkylene ether based dispersant, a polyester based dispersant, a polyurethane based dispersant, a polyol based dispersant, a polyethyleneimine based dispersant or a polyallylamine based agent Dispersants are mentioned. From the viewpoint of pattern processability with an alkaline developer, acrylic resin dispersants, polyoxyalkylene ether dispersants, polyester dispersants, polyurethane dispersants or polyol dispersants are preferable.
  • the content ratio of the (E) dispersant in the photosensitive resin composition of the present invention is (D1
  • the total of the pigment and / or the disperse dye and the (E) dispersant is 100% by mass, 1% by mass or more is preferable, 5% by mass or more is more preferable, and 10% by mass or more is more preferable.
  • the content ratio is 1% by mass or more, the dispersion stability of the (D1) pigment and / or the disperse dye can be improved, and the resolution after development can be improved.
  • the heat resistance of a cured film can be improved as a content ratio is 60 mass% or less.
  • the photosensitive resin composition of the present invention further comprises (F) a crosslinking agent.
  • the (F) crosslinking agent refers to a compound having a crosslinkable group capable of binding to the (A) alkali-soluble resin and the like.
  • the hardness and chemical resistance of a cured film can be improved by containing the crosslinking agent (F). It is presumed that this is because the crosslinking density can be improved because a new crosslinking structure can be introduced to the cured film of the resin composition by (F) the crosslinking agent.
  • the (F) crosslinking agent it is possible to form a low taper pattern after heat curing. This is because the (F) cross-linking agent forms a cross-linked structure between the polymers, thereby inhibiting the close alignment of polymer chains and maintaining the reflowability of the pattern during heat curing, so a pattern with a low taper shape It is thought that formation becomes possible.
  • crosslinking agent (F) a compound having two or more thermal crosslinking properties such as alkoxymethyl group, methylol group, epoxy group or oxetanyl group in a molecule is preferable.
  • Examples of compounds having two or more alkoxymethyl groups or methylol groups in the molecule include DML-PC, DML-OC, DML-PTBP, DML-PCHP, DML-MBPC, DML-MTrisPC, DMOM-PC, and DMOM- PTBP, TriML-P, TriML-35 XL, TML-HQ, TML-BPA, TML-BPAF, TML-BPAP, TMOM-BPA, TMOM-BPAF, TMOM-BPAP, HML-TPHAP or HMOM-TPHAP (all of them Honshu Chemical Industry Co., Ltd.) or “NIKALAC” (registered trademark) MX-290, MX-280, MX-270, MX-279, MW-100 LM, MW-30HM, MW-390 or MX -750 LM (more than three Chemical Co., Ltd.) and the like.
  • Epolite (registered trademark) 40E, 100E, 400E, 70P, 1500NP, 80MF, 3002 or 4000 (all of which are mentioned above) Kyoeisha Chemical Co., Ltd.), “Denacol” (registered trademark) EX-212L, EX-216L, EX-321L or EX-850L (all of which are manufactured by Nagase ChemteX Corporation), “jER” (registered trademark) 828, 1002, 1750, YX8100-BH30, E1256 or E4275 (all of which are manufactured by Mitsubishi Chemical Corporation), GAN, GOT, EPPN-502H, NC-3000 or NC-6000 (all of which are Japan) Manufactured by Kayaku Co., Ltd., “EPICLON” (registered trademark) EXA-9583, HP4032, N695 or HP7200 (all available from Dainippon Ink and Chemicals,
  • ETERNACOLL registered trademark
  • OXBP organic compound having two or more oxetanyl groups in the molecule
  • OXTP organic compound having two or more oxetanyl groups in the molecule
  • OXMA oxetanized phenol novolac
  • the content of the (F) crosslinking agent in the photosensitive resin composition of the present invention is 0.5 parts by mass when the total of (A) the alkali-soluble resin and the (B) radically polymerizable compound is 100 parts by mass.
  • the content is preferably 1 part by mass or more, more preferably 2 parts by mass or more, still more preferably 3 parts by mass or more, and particularly preferably 5 parts by mass or more. While being able to improve the hardness and chemical resistance of a cured film as content is 0.5 mass part or more, the pattern of low taper shape can be formed after thermosetting.
  • the pattern of low taper shape can be formed after thermosetting.
  • the photosensitive resin composition of the present invention comprises, as the (F) crosslinking agent, an epoxy compound having a fluorene skeleton and two or more epoxy groups in the (F1) molecule, an indane skeleton and two or more in the (F2) molecule.
  • IPN interpenetrating polymer network
  • an epoxy compound having a fluorene skeleton and two or more epoxy groups in a molecule (F1) or an epoxy compound having an indane skeleton and two or more epoxy groups in a molecule (F2) after development Since it becomes possible to form a forward tapered pattern by controlling the pattern shape of the above, it is possible to improve the halftone characteristics. This is because the hydrophobicity of the fluorene skeleton or indane skeleton can suppress side etching of the halftone exposed area not completely cured during alkali development, and also can control the alkali solubility of the halftone exposed area. it is conceivable that.
  • epoxy compound having a fluorene skeleton and two or more epoxy groups in the molecule (F1) a compound represented by the general formula (11) is preferable.
  • epoxy compound having an indane skeleton and two or more epoxy groups in the molecule (F2) a compound represented by the general formula (12) and a compound represented by the general formula (13) are preferable.
  • X 1 to X 6 each independently represent a monocyclic or fused polycyclic aromatic ring having 6 to 15 and 2 to 10 carbon atoms.
  • Y 1 to Y 6 each independently represent a direct bond, an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 4 to 10 carbon atoms, or an arylene group having 6 to 15 carbon atoms.
  • R 31 to R 40 each independently represent a halogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a fluoroalkyl having 1 to 10 carbon atoms Group, a fluorocycloalkyl group having 4 to 10 carbon atoms or a fluoroaryl group having 6 to 15 carbon atoms, each of R 41 to R 44 independently represents hydrogen, an alkyl group having 1 to 10 carbon atoms, or the carbon number R 4 to 10 represents a cycloalkyl group or an aryl group having 6 to 15 carbon atoms, and R 45 to R 50 each independently represent hydrogen, an alkyl group having 1 to 10 carbon atoms, or a hydroxy group.
  • Each of a, b, c, d, e and f independently represents an integer of 0 to 8, and g, h, i and j each independently represent an integer of 0 to 4.
  • ⁇ , ⁇ , ⁇ , ⁇ , ⁇ and ⁇ ⁇ ⁇ ⁇ each independently represent an integer of 1 to 4.
  • X 1 to X 6 each independently represent a monocyclic or fused polycyclic aromatic ring having 6 to 10 and 2 to 10 carbon atoms. Hydrocarbon rings are preferred.
  • the group, the fluoroalkyl group, the fluorocycloalkyl group, and the fluoroaryl group may have a hetero atom, and may be unsubstituted or substituted.
  • the epoxy equivalent of the epoxy compound having a fluorene skeleton and two or more epoxy groups in a molecule and the epoxy compound having an indane skeleton and two or more epoxy groups in a molecule (F2) is preferably 150 g / mol or more. 170 g / mol or more is more preferable, 190 g / mol or more is more preferable, and 210 g / mol or more is particularly preferable.
  • the epoxy equivalent is 150 g / mol or more, a pattern with a low taper shape can be formed after heat curing.
  • the epoxy equivalent of the epoxy compound having a fluorene skeleton and two or more epoxy groups in the (F1) molecule and the epoxy compound having an indane skeleton and two or more epoxy groups in the (F2) molecule is 800 g / mol or less Is preferable, 600 g / mol or less is more preferable, 500 g / mol or less is more preferable, and 400 g / mol or less is particularly preferable.
  • the epoxy equivalent is 800 g / mol or less, it is possible to suppress a change in the dimension opening width of the pattern before and after heat curing.
  • Examples of the epoxy compound having a fluorene skeleton and two or more epoxy groups in the molecule (F1) include, for example, 9,9-bis [4- (2-glycidoxyethoxy) phenyl] fluorene, 9,9-bis [ 4- (3-glycidoxypropoxy) phenyl] fluorene, 9,9-bis [4-((3-glycidoxy) hexyloxy) phenyl] fluorene, 9,9-bis [4- (2-glycidoxyethoxy) ), 3-Methylphenyl] fluorene, 9,9-bis [4- (2-glycidoxyethoxy) -3,5-dimethylphenyl] fluorene, 9,9-bis (4-glycidoxyphenyl) fluorene, 9,9-bis [4- (2-hydroxy-3-glycidoxypropoxy) phenyl] fluorene, 9,9-bis [4- (2-hydroxy-3-glycidone) Propoxy)
  • Examples of the epoxy compound having an indane skeleton and two or more epoxy groups in the molecule (F2) include, for example, 1,1-bis [4- (2-glycidoxyethoxy) phenyl] indane, 1,1-bis 4- (3-glycidoxypropoxy) phenyl] indane, 1,1-bis [4- (3-glycidoxyhexyloxy) phenyl] indane, 1,1-bis [4- (2-glycidoxyethoxy) ) 3-Methylphenyl] indane, 1,1-bis [4- (2-glycidoxyethoxy) -3,5-dimethylphenyl] indane, 1,1-bis (4-glycidoxyphenyl) indane, 1,1-Bis [4- (2-hydroxy-3-glycidoxypropoxy) phenyl] indane, 1,1-bis [4- (2-hydroxy-3-glycidoxypropoxy) -3- 3 Thilphenyl] indane, 1,
  • An epoxy compound having a fluorene skeleton and two or more epoxy groups in a molecule (F1) and an epoxy compound having an indane skeleton and two or more epoxy groups in a molecule (F2) can be synthesized by known methods.
  • the total of (A) alkali-soluble resin and (B) radically polymerizable compound is 100 parts by mass, 0.5 parts by mass or more is preferable, and 1 part by mass or more is more preferable. 2 parts by mass or more is more preferable, 3 parts by mass or more is further more preferable, and 5 parts by mass or more is particularly preferable. While the sensitivity at the time of exposure can be improved as content is 0.5 mass parts or more, a pattern of low taper shape can be formed after thermosetting.
  • the total content of the epoxy compound having a fluorene skeleton and two or more epoxy groups in the (F1) molecule and the epoxy compound having the indane skeleton and two or more epoxy groups in the (F2) molecule is 50 mass Or less is preferable, 40 parts by mass or less is more preferable, 30 parts by mass or less is more preferable, 25 parts by mass or less is still more preferable, and 20 parts by mass or less is particularly preferable. While the change of the pattern opening dimension width
  • Epoxy resin having a structural unit containing an aromatic structure, an alicyclic structure, and an epoxy group and (F4) selected from the group consisting of a biphenyl structure, a terphenyl structure, a naphthalene structure, an anthracene structure, and a fluorene structure
  • An epoxy resin having a structural unit containing an aromatic structure, an alicyclic structure and an epoxy group, or (F4) one type selected from the group consisting of a biphenyl structure, a terphenyl structure, a naphthalene structure, an anthracene structure and a fluorene structure By including an epoxy resin having a structural unit containing the above and two or more epoxy groups, sensitivity improvement during exposure and pattern shape control after development become possible, and a low taper shape after heat curing Pattern formation becomes possible.
  • an alkaline developer is obtained by introducing an aromatic structure, an alicyclic structure or a polycyclic aromatic structure derived from the above-mentioned epoxy resin and dramatically improving the molecular weight of the film even in UV curing with a low exposure amount. It is inferred that the sensitivity at the time of exposure is improved because the resin is insolubilized.
  • the aromatic structure, alicyclic structure or polycyclic aromatic structure is hydrophobic, the hydrophobic property of the UV-cured film is improved, whereby the penetration of the alkaline developer is suppressed, and in particular, the UV curing is insufficient. This is considered to be because it is possible to suppress side etching in the deep portion of the film that is easy to be done. As a result, reverse tapering after development is inhibited, and pattern shape control after development, such as formation of a pattern of a forward tapered shape after development, becomes possible.
  • the steric hindrance of the aromatic structure, the alicyclic structure or the polycyclic aromatic structure inhibits the excessive curing at the time of UV curing, whereby the pattern at the time of heat curing is Since the reflowability of the tapered portion can be maintained, it is presumed that pattern formation with a low taper shape is possible.
  • epoxy resin having a structural unit containing (F3) aromatic structure, alicyclic structure and epoxy group, or (F4) biphenyl structure, terphenyl structure, naphthalene structure, anthracene structure and fluorene structure By including an epoxy resin having a structural unit containing one or more selected epoxy groups and two or more epoxy groups, it becomes possible to form a pattern of a forward tapered shape by pattern shape control after development, Tone characteristics can be improved.
  • an epoxy resin having a structural unit containing an aromatic structure, an alicyclic structure and an epoxy group or (F4) a biphenyl structure, a terphenyl structure, a naphthalene structure, an anthracene structure and a fluorene structure
  • an epoxy resin having a structural unit containing one or more kinds of epoxy groups and two or more epoxy groups it is possible to suppress a change in the pattern opening dimension width before and after heat curing.
  • (F3) As an epoxy resin which has a structural unit containing an aromatic structure, an alicyclic structure, and an epoxy group, the epoxy resin which has a structural unit represented by General formula (14) is preferable.
  • (F4) As an epoxy resin having a structural unit containing one or more kinds selected from the group consisting of a biphenyl structure, a terphenyl structure, a naphthalene structure, an anthracene structure and a fluorene structure and two or more epoxy groups, The epoxy resin which has a structural unit represented by 15), or a structural unit represented by General formula (16) is preferable.
  • each of X 7 to X 10 independently represents an aliphatic structure having 1 to 6 carbon atoms.
  • Y 7 to Y 10 each independently represent a direct bond, an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 4 to 10 carbon atoms, or an arylene group having 6 to 15 carbon atoms.
  • Z 1 represents an aromatic structure having 10 to 25 and 3 to 16 carbon atoms.
  • R 51 to R 55 each independently represent an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms
  • R 56 and R 57 each represent Independently, it represents an alkyl group having 1 to 10 carbon atoms
  • R 58 to R 62 each independently represent a halogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or carbon
  • R 63 to R 66 each independently represent hydrogen, an alkyl group having 1 to 10 carbon atoms, or a hydroxy group.
  • a, b, c, d and e each independently represent an integer of 0 to 10
  • f represents an integer of 0 to 8
  • g represents an integer of 0 to 6
  • h and i Each independently represents an integer of 0 to 3
  • j represents an integer of 0 to 2
  • k and l each independently represent an integer of 0 to 4
  • m, n, and o Each independently represents an integer of 1 to 4
  • p represents an integer of 2 to 4.
  • the aliphatic structure, the alkylene group, the cycloalkylene group, the arylene group, the aromatic structure, the alkyl group, the cycloalkyl group, and the aryl group described above may have a hetero atom, and may be either unsubstituted or substituted. Good.
  • the aromatic structure of Z 1 in the general formula (15) contains one or more kinds selected from the group consisting of a terphenyl structure, a naphthalene structure, an anthracene structure and a fluorene structure.
  • other aromatic structures of Z 1 in the general formula (15) for example, 1,2,3,4-tetrahydronaphthalene structure, 2,2-diphenylpropane structure, diphenyl ether structure, diphenyl ketone structure or diphenyl sulfone The structure is mentioned.
  • (F3) an epoxy resin having a structural unit containing an aromatic structure, an alicyclic structure and an epoxy group
  • epoxy equivalent When the epoxy equivalent is 150 g / mol or more, a pattern with a low taper shape can be formed after heat curing.
  • epoxy resin having a structural unit containing (F3) aromatic structure, alicyclic structure and epoxy group, and (F4) selected from the group consisting of biphenyl structure, terphenyl structure, naphthalene structure, anthracene structure and fluorene structure 800 g / mol or less is preferable, as for the epoxy equivalent of the epoxy resin which has a structural unit containing one or more types and two or more epoxy groups, 600 g / mol or less is more preferable, 500 g / mol or less is more preferable, 400 g Particularly preferred is at most / mol.
  • the epoxy equivalent is 800 g / mol or less, it is possible to suppress a change in the dimension opening width of the pattern before and after heat curing.
  • the epoxy resin having a structural unit containing an aromatic structure, an alicyclic structure and an epoxy group includes, for example, XD-1000, XD-1000-2L, XD-1000-H, XD-1000-2H or XD And -1000-FH (all manufactured by Nippon Kayaku Co., Ltd.).
  • the epoxy resin having a structural unit containing one or more kinds selected from the group consisting of a biphenyl structure, a terphenyl structure, a naphthalene structure, an anthracene structure and a fluorene structure and two or more epoxy groups is, for example, NC- Examples include 7000L, NC-7000H, NC-7300L, NC-7700, or NC-3500 (all manufactured by Nippon Kayaku Co., Ltd.).
  • (F3) an epoxy resin having a structural unit containing an aromatic structure, an alicyclic structure and an epoxy group, and (F4) one selected from the group consisting of a biphenyl structure, a terphenyl structure, a naphthalene structure, an anthracene structure and a fluorene structure
  • An epoxy resin having a structural unit containing at least one kind of epoxy group and two or more epoxy groups can be synthesized by a known method.
  • the total of 100 parts by mass is taken as 100 parts by mass, 0.5 parts by mass or more is preferable, 1 part by mass or more is more preferable, 2 parts by mass or more is more preferable, 3 parts by mass or more is further more preferable, 5 parts by mass or more Particularly preferred.
  • a pattern of low taper shape can be formed after thermosetting. In addition, it is possible to suppress a change in the pattern opening dimension width before and after heat curing.
  • epoxy resin having a structural unit containing (F3) aromatic structure, alicyclic structure and epoxy group, and (F4) selected from the group consisting of biphenyl structure, terphenyl structure, naphthalene structure, anthracene structure and fluorene structure 50 mass parts or less are preferable, 40 mass parts or less are more preferable, and, as for the sum total of content of the epoxy resin which has a structural unit containing 1 or more types and 2 or more epoxy groups, 30 mass parts or less are more preferable 25 parts by mass or less is further more preferable, and 20 parts by mass or less is particularly preferable.
  • the content is 50 parts by mass or less, a pattern with a low taper shape can be formed after heat curing, and the generation of residues after development
  • the hydrophobicity of the UV-cured film is improved, whereby the penetration of the alkaline developer can be suppressed, and in particular, the side etching of the deep portion where UV curing tends to be insufficient can be suppressed. it is conceivable that. As a result, reverse tapering after development is inhibited, and pattern shape control after development, such as formation of a pattern of a forward tapered shape after development, becomes possible.
  • Tone characteristics can be improved. This is thought to be due to the fact that the hydrophobicity of the above-mentioned skeleton makes it possible to suppress the side etching of the half tone exposed area where curing does not proceed completely during alkali development, and to control the alkali solubility of the half tone exposed area.
  • the (F5) compound, the (F6) compound, the (F7) compound, or the (F8) compound it is possible to suppress the change in the width dimension of the pattern opening before and after heat curing. This is also considered to be due to the above-mentioned backbone being hydrophobic. That is, since side etching at the time of development in a film deep part where UV curing tends to be insufficient is suppressed, and a pattern of a forward tapered shape can be formed after development, reflow before and after pattern curing is suppressed during heat curing. It can be inferred that changes in the dimension opening width of the pattern at can be suppressed. In addition, it is also considered that the reflow of the pattern foot at the time of heat curing is suppressed by the introduction of the above-described skeleton into the UV-cured film at the time of exposure to dramatically improve the molecular weight of the film.
  • each of X 101 to X 112 independently represents a monocyclic or fused polycyclic aromatic hydrocarbon ring having 6 to 15 and 2 to 10 carbon atoms, Or a monocyclic or fused polycyclic aliphatic hydrocarbon ring having 4 to 10 carbon atoms and 2 to 8 carbon atoms.
  • Y 61 to Y 63 each independently represent an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 4 to 10 carbon atoms, or an arylene group having 6 to 15 carbon atoms.
  • Y 64 represents a direct bond, an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 4 to 10 carbon atoms, or an arylene group having 6 to 15 carbon atoms.
  • R 301 to R 320 each independently represent a halogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a fluoroalkyl having 1 to 10 carbon atoms And a group, a fluorocycloalkyl group having 4 to 10 carbon atoms, or a fluoroaryl group having 6 to 15 carbon atoms.
  • R 321 to R 328 each independently represent hydrogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms.
  • R 329 to R 334 represent a group represented by the general formula (84).
  • R 335 represents hydrogen, an alkyl group having 1 to 10 carbon atoms, or a hydroxy group.
  • a, b, c, d, e, f, g, h, i, j, k and l each independently represent an integer of 0 to 8.
  • m, n, o, p, q, r, s and t each independently represent an integer of 0 to 4.
  • x represents an integer of 1 to 4; ⁇ , ⁇ and ⁇ each independently represent an integer of 1 to 10. ⁇ , ⁇ and ⁇ are each independently 0 or 1.
  • X 101 to X 112 each independently represent a monocyclic or fused polycyclic aromatic hydrocarbon ring having 6 to 10 carbon atoms and 2 to 10 carbon atoms. preferable.
  • the group, the fluoroalkyl group, the fluorocycloalkyl group, and the fluoroaryl group may have a hetero atom, and may be unsubstituted or substituted.
  • Y 65 to Y 67 each independently represents an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 4 to 10 carbon atoms, or an arylene group having 6 to 15 carbon atoms
  • Y 68 represents a direct bond, an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 4 to 10 carbon atoms, or an arylene group having 6 to 15 carbon atoms.
  • Z 81 to Z 92 each independently represent a direct bond, an alkylene group of 1 to 5 carbon atoms, oxygen or sulfur.
  • R 336 to R 355 each independently represents a halogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a fluoroalkyl having 1 to 10 carbon atoms And a group, a fluorocycloalkyl group having 4 to 10 carbon atoms, or a fluoroaryl group having 6 to 15 carbon atoms.
  • R 356 to R 363 each independently represent hydrogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms or an aryl group having 6 to 15 carbon atoms.
  • R 364 to R 369 represent a group represented by the general formula (88).
  • R 370 represents hydrogen, an alkyl group having 1 to 10 carbon atoms, or a hydroxy group.
  • Each of a, b, c, d, e, f, g, h, i, j, k and l independently represents an integer of 0 to 3.
  • m, n, o, p, q, r, s and t each independently represent an integer of 0 to 4.
  • x represents an integer of 1 to 4;
  • ⁇ , ⁇ and ⁇ each independently represent an integer of 0 to 10.
  • ⁇ , ⁇ and ⁇ are each independently 0 or 1.
  • the above-mentioned alkylene group, cycloalkylene group, arylene group, alkyl group, cycloalkyl group, aryl group, fluoroalkyl group, fluorocycloalkyl group, and fluoroaryl group are hetero compounds It may have an atom, and may be unsubstituted or substituted.
  • Examples of the compound (F6) include TBIS (registered trademark) RXG (manufactured by Taoka Chemical Co., Ltd.).
  • X 113 to X 118 each independently represent a monocyclic or fused polycyclic aromatic hydrocarbon ring having 6 to 15 and 2 to 10 carbon atoms, Or a monocyclic or fused polycyclic aliphatic hydrocarbon ring having 4 to 10 carbon atoms and 2 to 8 carbon atoms.
  • Y 69 to Y 74 each independently represent a direct bond, an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 4 to 10 carbon atoms, or an arylene group having 6 to 15 carbon atoms.
  • R 371 to R 379 each independently represent a halogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a fluoroalkyl having 1 to 10 carbon atoms And a group, a fluorocycloalkyl group having 4 to 10 carbon atoms, or a fluoroaryl group having 6 to 15 carbon atoms.
  • R 380 to R 382 are each independently hydrogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a fluoroalkyl having 1 to 10 carbon atoms And a group, a fluorocycloalkyl group having 4 to 10 carbon atoms, or a fluoroaryl group having 6 to 15 carbon atoms.
  • Each of R 383 to R 388 independently represents hydrogen, an alkyl group having 1 to 10 carbon atoms, or a hydroxy group.
  • Each of a, b, c, d, e and f independently represents an integer of 0 to 8.
  • X 113 to X 118 each independently represent a monocyclic or fused polycyclic aromatic hydrocarbon ring having 6 to 10 carbon atoms and 2 to 10 carbon atoms. preferable.
  • the group, the fluoroalkyl group, the fluorocycloalkyl group, and the fluoroaryl group may have a hetero atom, and may be unsubstituted or substituted.
  • Examples of the compound (F7) include WHR-991S (manufactured by Nippon Kayaku Co., Ltd.).
  • epoxy compound having two or more naphthalene skeletons and two or more epoxy groups in the molecule (F8) a compound represented by the general formula (92) is preferable.
  • X 119 represents a direct bond, an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 4 to 10 carbon atoms or an arylene group having 6 to 15 carbon atoms.
  • Each of X 120 and X 121 independently represents a direct bond or oxygen. When X 120 and X 121 are direct bonds, Y 75 and Y 76 are direct bonds. When X 120 and X 121 are not a direct bond, Y 75 and Y 76 each represent an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 4 to 10 carbon atoms, or an arylene group having 6 to 15 carbon atoms.
  • R 389 and R 390 each independently represent a halogen, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a fluoroalkyl having 1 to 10 carbon atoms And a group, a fluorocycloalkyl group having 4 to 10 carbon atoms, or a fluoroaryl group having 6 to 15 carbon atoms.
  • R 391 and R 392 each independently represent hydrogen, an alkyl group having 1 to 10 carbon atoms, or a hydroxy group.
  • a and b each independently represent an integer of 0 to 6; ⁇ and ⁇ each independently represent an integer of 1 to 4.
  • the monocyclic or fused polycyclic aromatic hydrocarbon ring a monocyclic or fused polycyclic aliphatic hydrocarbon ring, an alkylene group, a cycloalkylene group, an arylene group, an alkyl as described above
  • the group, the cycloalkyl group, the aryl group, the fluoroalkyl group, the fluorocycloalkyl group, and the fluoroaryl group may have a hetero atom, and may be unsubstituted or substituted.
  • the compound (F8) include TBIS (registered trademark) BNG 200 or BNEG (all manufactured by Taoka Chemical Co., Ltd.).
  • the epoxy equivalent of (F5) compound, (F6) compound, (F7) compound and (F8) compound is preferably 150 g / mol or more, more preferably 170 g / mol or more, still more preferably 190 g / mol or more, 210 g / mol
  • the above is particularly preferable.
  • the epoxy equivalent is 150 g / mol or more, a pattern with a low taper shape can be formed after heat curing.
  • the epoxy equivalent of (F5) compound, (F6) compound, (F7) compound or (F8) compound is preferably 800 g / mol or less, more preferably 600 g / mol or less, still more preferably 500 g / mol or less, 400 g Particularly preferred is at most / mol.
  • the epoxy equivalent is 800 g / mol or less, it is possible to suppress a change in the dimension opening width of the pattern before and after heat curing.
  • the (F5) compound, the (F6) compound, the (F7) compound and the (F8) compound described above can be synthesized by a known method.
  • the total content of the (F5) compound, the (F6) compound, the (F7) compound and the (F8) compound in the photosensitive resin composition of the present invention is (A) alkali soluble resin and (B) radically polymerizable compound
  • the total of 100 parts by mass is taken as 100 parts by mass, 0.5 parts by mass or more is preferable, 1 part by mass or more is more preferable, 2 parts by mass or more is more preferable, 3 parts by mass or more is further more preferable, 5 parts by mass or more Particularly preferred.
  • a pattern of low taper shape can be formed after thermosetting. In addition, it is possible to suppress a change in the pattern opening dimension width before and after heat curing.
  • the total content of (F5) compound, (F6) compound, (F7) compound and (F8) compound is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and further preferably 30 parts by mass or less Preferably, 25 parts by mass or less is further more preferable, and 20 parts by mass or less is particularly preferable. While the change of the pattern opening dimension width
  • the photosensitive resin composition of this invention it is more preferable to contain 2 or more types among specific (F) crosslinking agents. That is, it is selected from the group consisting of (F1) compound, (F2) compound, (F3) compound, (F4) compound, (F5) compound, (F6) compound, (F7) compound, and (F8) compound described above It is preferable to contain 2 or more types. By containing two or more types, it is possible to form a low taper shape pattern after heat curing, and to suppress a change in dimension opening width of the pattern before and after heat curing. In addition, the bendability of the cured film can be improved.
  • the photosensitive resin composition of the present invention contains two types of the specific (F) crosslinking agent
  • the first type of the specific (F) crosslinking agent is the first crosslinking agent
  • the specific (F) crosslinking is the second crosslinking agent
  • the content ratio of two types is preferably 80/20 to 20/80. 70/30 to 30/70 is more preferable, and 60/40 to 40/60 is further preferable.
  • the content ratio is 80/20 to 20/80, it becomes possible to form a pattern with a low taper shape after heat curing, and it is possible to suppress changes in the dimension opening width of the pattern before and after heat curing. In addition, the bendability of the cured film can be improved.
  • the photosensitive resin composition of the present invention preferably further contains (F9) a nitrogen-containing ring skeleton-containing epoxy compound as the (F) crosslinking agent.
  • the (F9) nitrogen-containing ring skeleton-containing epoxy compound By including the (F9) nitrogen-containing ring skeleton-containing epoxy compound, it is possible to suppress the generation of a residue during heat curing. It is speculated that this is because the above-mentioned epoxy compound functions as a crosslinking agent and also functions as a curing catalyst and a curing accelerator for crosslinking agents such as other epoxy compounds at the time of heat curing. That is, the epoxy compound mentioned above has an epoxy group which is a crosslinkable group, and a nitrogen-containing ring frame.
  • the thermal curing of other epoxy compounds is promoted by the catalytic action of a basic skeleton such as a nitrogen-containing ring skeleton, whereby the heat resistance of the cured film is improved, which is caused by the thermal decomposition or sublimation during thermal curing It is considered that the generation of residues is suppressed.
  • a basic skeleton such as a nitrogen-containing ring skeleton
  • the nitrogen-containing ring skeleton of the nitrogen-containing ring skeleton-containing epoxy compound includes, for example, pyrrolidine skeleton, pyrrole skeleton, imidazole skeleton, pyrazole skeleton, triazole skeleton, tetrazole skeleton, imidazoline skeleton, oxazole skeleton, isoxazole skeleton, Oxazoline skeleton, isoxazoline skeleton, thiazole skeleton, isothiazole skeleton, thiazoline skeleton, isothiazoline skeleton, thiazine skeleton, piperidine skeleton, piperazine skeleton, morpholine skeleton, pyridine skeleton, pyridazine skeleton, pyrimidine skeleton, pyrazine skeleton, triazine skeleton, isocyanuric acid skeleton And imidazolidinone skeleton, propylene ure
  • the alkylene chain is preferably an alkylene chain having 2 to 30 carbon atoms, more preferably an alkylene chain having 4 to 25 carbon atoms, and still more preferably an alkylene chain having 6 to 20 carbon atoms.
  • nitrogen-containing ring skeleton-containing epoxy compound (F9) a compound represented by the general formula (17), a compound represented by the general formula (18) and a compound represented by the general formula (19) are preferable.
  • R 286 to R 288 each independently represent a group represented by any one of the general formulas (74) to (77), hydrogen, an alkyl group having 1 to 10 carbon atoms, and the carbon number 4 to 10 cycloalkyl group, an aryl group having 6 to 15 carbon atoms, or a hydroxy group, and at least one of R 286 to R 288 is a group represented by general formula (74) or (76).
  • R 289 to R 291 each independently represent a group represented by any one of the general formulas (74) to (77), hydrogen, an alkyl group having 1 to 10 carbon atoms, and the carbon number 4 to 10 cycloalkyl group, an aryl group having 6 to 15 carbon atoms, or a hydroxy group, and at least one of R 289 to R 291 is a group represented by general formula (74) or (76).
  • R 292 to R 295 each independently represent a group represented by any one of the general formulas (74) to (77), hydrogen, an alkyl group having 1 to 10 carbon atoms, and the carbon number 4 to 10 cycloalkyl group, an aryl group having 6 to 15 carbon atoms, or a hydroxy group, and at least one of R 292 to R 295 is a group represented by general formula (74) or (76).
  • X 11 represents a direct bond or an alkylene chain having 1 to 10 carbon atoms.
  • Y 11 represents a direct bond or an alkylene chain having 1 to 10 carbon atoms.
  • Z 11 represents a direct bond, an alkylene chain of 1 to 10 carbon atoms, a cycloalkylene chain of 4 to 10 carbon atoms or an arylene chain of 6 to 15 carbon atoms.
  • R 296 represents a group represented by General Formula (78) or a group represented by General Formula (79).
  • a represents 0 or 1
  • b represents 0 or 1
  • c represents an integer of 1 to 4.
  • b is 1
  • Y 11 is an alkylene chain having 1 to 10 carbon atoms.
  • X 12 represents a direct bond, an alkylene chain having 1 to 6 carbon atoms, or an arylene chain having 6 to 15 carbon atoms.
  • X 13 represents a direct bond or an alkylene chain having 1 to 10 carbon atoms.
  • Y 12 represents a direct bond or an alkylene chain having 1 to 10 carbon atoms.
  • Z 12 represents a direct bond, an alkylene chain of 1 to 10 carbon atoms, a cycloalkylene chain of 4 to 10 carbon atoms or an arylene chain of 6 to 15 carbon atoms.
  • R 297 represents a group represented by General Formula (78) or a group represented by General Formula (79).
  • d represents an integer of 1 to 4;
  • X 14 represents a direct bond or an alkylene chain having 1 to 10 carbon atoms.
  • R 298 represents hydrogen or an alkyl group having 1 to 10 carbon atoms.
  • e represents an integer of 1 to 6;
  • R 299 represents hydrogen, an alkyl group having 1 to 10 carbon atoms, or a hydroxy group.
  • R 300 represents hydrogen, an alkyl group having 1 to 10 carbon atoms, or a hydroxy group.
  • the above-mentioned alkyl group, alkylene chain, cycloalkylene chain and arylene chain may have a hetero atom and may be either unsubstituted or substituted.
  • the number of epoxy groups contained in the molecule of the nitrogen-containing ring skeleton-containing epoxy compound is preferably 2 or more, more preferably 3 or more, and still more preferably 4 or more. While generation
  • the number of epoxy groups that the (F9) nitrogen-containing ring skeleton-containing epoxy compound has in the molecule is preferably 10 or less, more preferably 8 or less, and still more preferably 6 or less. When the number of epoxy groups is 10 or less, it is possible to form a low-tapered pattern after heat curing.
  • the epoxy equivalent of the (F9) nitrogen-containing ring skeleton-containing epoxy compound is preferably 70 g / mol or more, more preferably 80 g / mol or more, still more preferably 90 g / mol or more, and particularly preferably 100 g / mol or more.
  • the epoxy equivalent of the (F 9) nitrogen-containing ring skeleton-containing epoxy compound is preferably 800 g / mol or less, more preferably 600 g / mol or less, still more preferably 500 g / mol or less, and particularly preferably 400 g / mol or less. While generation
  • the nitrogen-containing ring skeleton-containing epoxy compound is, for example, 1,3,5-tris (glycidyl) isocyanuric acid, 1,3,5-tris (2-glycidylethyl) isocyanuric acid, 1,3,5-t Tris (5-glycidylpentyl) isocyanuric acid, 1,3,5-tris (glycidyldecyl) isocyanuric acid, 1,3,5-tris (glycidylstearyl) isocyanuric acid, 1,3,5-tris (glycidyloxy) isocyanuric acid Acid, 1,3,5-tris (2-glycidyloxyethyl) isocyanuric acid, 1,3,5-tris (2-glycidylethoxy) isocyanuric acid, 1,3,5-tris (2-glycidyloxyethoxy) isocyanuric acid Acid, 1,3,5-tris (3,4-epoxycyclohexyl)
  • 1,3,5-tris (5-glycidylpentyl) isocyanuric acid, 1,3,5-tris (glycidyldecyl) isocyanuric acid, 1,3,5-tris (glycidyl stearyl) ) Isocyanuric acid, 1,3,5-tris [2,2-bis (glycidyloxymethyl) butoxycarbonylethyl] isocyanuric acid, 1,3,5-tris [3- (3,4-epoxycyclohexyl) methoxycarbonylpropyl ] Isocyanuric acid, 1,3,5-tris (5-glycidylpentyloxy) triazine, 1,3,5-tris (glycidyldecyloxy) triazine, 1,3,5-tris (glycidylsteayloxy) triazine, 1,3,4 3,4,6-Tetrakis (5-glycidylpentyl) isocyanuric acid,
  • the content of the nitrogen-containing ring skeleton-containing epoxy compound (F9) in the photosensitive resin composition of the present invention is 100 parts by mass of the total of (A) alkali-soluble resin and (B) radically polymerizable compound.
  • 0.3 mass part or more is preferable, 0.5 mass part or more is more preferable, 1 mass part or more is more preferable, 2 mass part or more is further more preferable, 3 mass part or more is especially preferable.
  • production of the residue after image development can be suppressed as content is 0.3 mass part or more, generation
  • 25 parts by mass or less is preferable, 20 parts by mass or less is more preferable, 15 parts by mass or less is more preferable, 12 parts by mass or less is further more preferable, and the content of the (F9) nitrogen-containing ring skeleton-containing epoxy compound is 10 Particularly preferred are parts by weight or less.
  • the content is 25 parts by mass or less, a pattern with a low taper shape can be formed after heat curing, and changes in the dimension opening width of the pattern before and after heat curing can be suppressed.
  • the photosensitive resin composition of the present invention can be obtained by using the above-mentioned specific (F) crosslinking agent (the above-mentioned (F1) compound, (F2) compound, (F3) compound, (F4) compound, (F5) compound, (F6) It is preferable to contain one or more types selected from the group consisting of a compound, a (F7) compound, and a (F8) compound, and a (F9) nitrogen-containing ring skeleton-containing epoxy compound.
  • F specific crosslinking agent
  • the content of the (F9) nitrogen-containing ring skeleton-containing epoxy compound accounts for 100% by mass in total of the specific (F) crosslinking agent and the (F9) nitrogen-containing ring skeleton-containing epoxy compound 10 mass% or more is preferable, 15 mass% or more is more preferable, 20 mass% or more is further more preferable, and 25 mass% or more is especially preferable.
  • production of the residue after image development can be suppressed as a content ratio is 10 mass% or more, generation
  • 49 mass% or less is preferable, as for the content ratio of (F 9) nitrogen-containing ring frame containing epoxy compound, 48 mass% or less is more preferable, 45 mass% or less is more preferable, 42 mass% or less is further more preferable, 40 Particularly preferred is mass% or less.
  • the content ratio is 49% by mass or less, a pattern with a low taper shape can be formed after heat curing, and changes in the dimension opening width of the pattern before and after heat curing can be suppressed.
  • the photosensitive resin composition of the present invention preferably further contains a sensitizer.
  • a sensitizer absorbs energy by exposure, generates an excited triplet electron by internal conversion and intersystem crossing, and generates a compound capable of energy transfer to the above-mentioned (C1) photoinitiator and the like Say.
  • the sensitivity at the time of exposure can be improved.
  • the sensitizer absorbs light of long wavelength (C1) where the photopolymerization initiator and the like do not have absorption, and the energy is transferred from the sensitizer to the (C1) photopolymerization initiator etc. It is presumed that this is because the photoreaction efficiency can be improved.
  • a thioxanthone type sensitizer is preferable.
  • thioxanthone sensitizers include thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, or 2,4-dichlorothioxanthone.
  • the content of the sensitizer in the photosensitive resin composition of the present invention is 0.01 parts by mass or more when the total of (A) alkali-soluble resin and (B) radically polymerizable compound is 100 parts by mass.
  • 0.1 part by mass or more is more preferable, 0.5 part by mass or more is more preferable, and 1 part by mass or more is particularly preferable.
  • the sensitivity at the time of exposure can be improved as content is 0.01 mass part or more.
  • the content of the sensitizer is preferably 15 parts by mass or less, more preferably 13 parts by mass or less, still more preferably 10 parts by mass or less, and particularly preferably 8 parts by mass or less. When the content is 15 parts by mass or less, the resolution after development can be improved, and a cured film having a low taper pattern shape can be obtained.
  • the photosensitive resin composition of the present invention preferably further contains a chain transfer agent.
  • a chain transfer agent refers to a compound capable of receiving a radical from a polymer growth terminal of a polymer chain obtained by radical polymerization at the time of exposure and capable of undergoing radical transfer to another polymer chain.
  • the sensitivity at the time of exposure can be improved. It is speculated that this is because radicals generated by exposure to light are radically transferred to other polymer chains by the chain transfer agent to radically crosslink to the deep part of the film.
  • the resin composition contains (Da) a blackening agent as the (D) coloring agent described above
  • the light from the exposure is absorbed by the (Da) blackening agent, and thus the light does not reach the deep part of the film.
  • a chain transfer agent when a chain transfer agent is contained, radical crosslinking is performed to the deep part of the film by radical transfer by the chain transfer agent, so that the sensitivity at the time of exposure can be improved.
  • a cured film having a low taper pattern shape can be obtained. It is presumed that this is because the radical transfer by the chain transfer agent can control the molecular weight of the polymer chain obtained by radical polymerization at the time of exposure. That is, by containing the chain transfer agent, the formation of a remarkable high molecular weight polymer chain by excessive radical polymerization at the time of exposure is inhibited, and the increase of the softening point of the obtained film is suppressed. Therefore, it is thought that the reflow property of the pattern at the time of thermosetting is improved, and a low taper pattern shape can be obtained.
  • the photosensitive resin composition of the present invention preferably contains (G) a multifunctional thiol compound as a chain transfer agent.
  • (G) a multifunctional thiol compound as a chain transfer agent in addition to the sensitivity improvement at the time of exposure described above and the pattern formation of the low taper shape, it is possible to suppress the change of the pattern opening dimension width before and after heat curing. This is because (G) the multifunctional thiol compound suppresses oxygen inhibition, thereby promoting UV curing at the time of exposure and suppressing the reflow of the pattern foot at the time of heat curing, so that the pattern before and after the heat curing It is presumed that the change of the opening dimension width can be suppressed.
  • X 42 represents a divalent organic group.
  • Y 42 to Y 47 each independently represent a direct bond, an alkylene chain having 1 to 10 carbon atoms, or a group represented by General Formula (96).
  • Z 40 to Z 45 each independently represent a direct bond or an alkylene chain having 1 to 10 carbon atoms.
  • R 231 to R 236 each independently represent an alkylene chain having 1 to 10 carbon atoms.
  • a, b, c, d, e, and f each independently represent 0 or 1, and g represents an integer of 0 to 10.
  • m, n, o, p, q and r each independently represent an integer of 0 to 10.
  • X 42 has one or more selected from an aliphatic structure having 1 to 10 carbon atoms, an alicyclic structure having 4 to 20 carbon atoms and an aromatic structure having 6 to 30 carbon atoms Valent organic groups are preferred.
  • Each of a, b, c, d, e and f is independently preferably 1 and g is preferably 0-5.
  • m, n, o, p, q and r are each independently preferably 0.
  • the above-mentioned alkylene chain, aliphatic structure, alicyclic structure and aromatic structure may have a hetero atom and may be either unsubstituted or substituted.
  • X 43 represents a divalent organic group.
  • Each of X 44 and X 45 independently represents a direct bond or an alkylene chain having 1 to 10 carbon atoms.
  • Y 48 to Y 51 each independently represent a direct bond, an alkylene chain having 1 to 10 carbon atoms, or a group represented by General Formula (96).
  • Z 46 to Z 49 each independently represent a direct bond or an alkylene chain having 1 to 10 carbon atoms.
  • R 237 to R 240 each independently represent an alkylene chain having 1 to 10 carbon atoms.
  • Each of R 241 and R 242 independently represents hydrogen or an alkyl group having 1 to 10 carbon atoms.
  • X 43 has one or more selected from an aliphatic structure having 1 to 10 carbon atoms, an alicyclic structure having 4 to 20 carbon atoms and an aromatic structure having 6 to 30 carbon atoms Valent organic groups are preferred.
  • h, i, j and k are each independently preferably 1 and 1 is preferably 0-5.
  • Each of s, t, u and v is independently preferably 0.
  • the alkyl group, the alkylene chain, the aliphatic structure, the alicyclic structure, and the aromatic structure described above may have a hetero atom, and may be unsubstituted or substituted.
  • R 243 represents hydrogen or an alkyl group having 1 to 10 carbon atoms.
  • Z 50 represents a group represented by General Formula (97) or a group represented by General Formula (98).
  • a represents an integer of 1 to 10
  • b represents an integer of 1 to 4
  • c represents 0 or 1
  • d represents an integer of 1 to 4
  • e represents 0 or 1 .
  • R 244 represents hydrogen or an alkyl group having 1 to 10 carbon atoms.
  • c is preferably 1 and e is preferably 1.
  • R 244 is preferably hydrogen or an alkyl group having 1 to 4 carbon atoms, and more preferably hydrogen or a methyl group.
  • polyfunctional thiol compound for example, ⁇ -mercaptopropionic acid, methyl ⁇ -mercaptopropionate, 2-ethylhexyl ⁇ -mercaptopropionate, stearyl ⁇ -mercaptopropionate, methoxybutyl ⁇ -mercaptopropionate, ⁇ -Mercaptobutanoic acid, methyl ⁇ -mercaptobutanoate, methyl thioglycolate, n-octyl thioglycolate, methoxybutyl thioglycolate, 1,4-bis (3-mercaptobutanoyloxy) butane, 1,4-bis (3-Mercaptopropionyloxy) butane, 1,4-bis (thioglycoloyloxy) butane, ethylene glycol bis (thioglycollate), trimethylolethane tris (3-mercaptopropionate), trimethylolethane tris (3 -Mel
  • the content of the (G) polyfunctional thiol compound in the photosensitive resin composition of the present invention is 0.01 when the total of (A) the alkali-soluble resin and the (B) radically polymerizable compound is 100 parts by mass.
  • the content is preferably at least 0.1 parts by mass, more preferably at least 0.3 parts by mass, still more preferably at least 0.5 parts by mass, and particularly preferably at least 1 part by mass. While the sensitivity at the time of exposure can be improved as content is 0.01 mass part or more, a cured film of pattern shape with a low taper can be obtained. In addition, it is possible to suppress a change in the pattern opening dimension width before and after heat curing.
  • the content of the (G) polyfunctional thiol compound is preferably 15 parts by mass or less, more preferably 13 parts by mass or less, still more preferably 10 parts by mass or less, still more preferably 8 parts by mass or less, and 5 parts by mass or less Is particularly preferred.
  • the content is 15 parts by mass or less, a pattern with a low taper shape can be formed, generation of residues after development can be suppressed, and the heat resistance of the cured film can be improved.
  • the photosensitive resin composition of this invention contains the specific (F) crosslinking agent and (G) polyfunctional thiol compound which were mentioned above.
  • the specific (F) crosslinking agent and the (G) polyfunctional thiol compound described above in combination it is possible to suppress the generation of residues at the time of heat curing and to improve the bendability of the cured film. This is because the heat resistance of the cured film is improved by the fact that the epoxy group possessed by the specific (F) crosslinking agent and the mercapto group possessed by the (G) polyfunctional thiol compound react at the time of heat curing to improve the degree of crosslinking. It is thought that it is for.
  • the photosensitive resin composition of this invention contains the (F9) nitrogen-containing ring frame
  • the (F9) nitrogen-containing ring skeleton-containing epoxy compound and the (G) polyfunctional thiol compound described above in combination it is possible to suppress the generation of residues at the time of heat curing and to improve the bendability of the cured film.
  • the photosensitive resin composition of this invention contains the specific (F) crosslinking agent mentioned above, the (F9) nitrogen-containing ring frame
  • the specific (F) crosslinking agent described above the (F9) nitrogen-containing ring skeleton-containing epoxy compound described above, and the (G) polyfunctional thiol compound in combination, residue generation during heat curing is similarly achieved. While being able to control, the bendability of a cured film can be improved.
  • the photosensitive resin composition of the present invention preferably further contains a polymerization inhibitor.
  • the polymerization inhibitor may be a radical generated at the time of exposure, or a radical of the polymer growth terminal of the polymer chain obtained by the radical polymerization at the time of exposure being captured and held as a stable radical to terminate the radical polymerization. Refers to possible compounds.
  • a polymerization inhibitor By containing a polymerization inhibitor in an appropriate amount, it is possible to suppress the generation of residues after development and to improve the resolution after development. It is presumed that this is because the polymerization inhibitor captures excess radicals generated at the time of exposure or radicals at the growth terminals of high molecular weight polymer chains, thereby suppressing the progress of the radical polymerization.
  • a phenol type polymerization inhibitor is preferable.
  • phenolic polymerization inhibitors include 4-methoxyphenol, 1,4-hydroquinone, 1,4-benzoquinone, 2-t-butyl-4-methoxyphenol, 3-t-butyl-4-methoxyphenol, and the like.
  • the content of the polymerization inhibitor in the photosensitive resin composition of the present invention is 0.01 parts by mass or more when the total of (A) alkali-soluble resin and (B) radically polymerizable compound is 100 parts by mass.
  • the amount is preferably 0.03 parts by mass or more, more preferably 0.05 parts by mass or more, and particularly preferably 0.1 parts by mass or more.
  • the content is 0.01 parts by mass or more, the resolution after development and the heat resistance of the cured film can be improved.
  • 10 parts by mass or less is preferable, 8 parts by mass or less is more preferable, 5 parts by mass or less is more preferable, and 3 parts by mass or less is particularly preferable.
  • the sensitivity at the time of exposure can be improved as content is 10 mass parts or less.
  • the photosensitive resin composition of the present invention further contain a silane coupling agent.
  • the silane coupling agent refers to a compound having a hydrolyzable silyl group or silanol group.
  • interaction between the cured film of the resin composition and the interface between the base and the substrate can be increased, and adhesion to the substrate of the base and chemical resistance of the cured film can be improved.
  • the silane coupling agent is preferably a trifunctional organosilane, a tetrafunctional organosilane or a silicate compound.
  • trifunctional organosilanes examples include methyltrimethoxysilane, cyclohexyltrimethoxysilane, vinyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, phenyltrimethoxysilane, 4-hydroxyphenyltrimethoxysilane, 1-naphthyltriol.
  • organosilane represented by General formula (73) is mentioned, for example.
  • each of R 226 to R 229 independently represents hydrogen, an alkyl group, an acyl group or an aryl group, and x represents an integer of 1 to 15.
  • R 226 to R 229 are preferably each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms, or an aryl group having 6 to 15 carbon atoms Hydrogen, an alkyl group having 1 to 4 carbon atoms, an acyl group having 2 to 4 carbon atoms, or an aryl group having 6 to 10 carbon atoms is more preferable.
  • the alkyl group, the acyl group, and the aryl group described above may be either unsubstituted or substituted.
  • organosilane represented by the general formula (73) examples include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane, and tetraacetoxysilane.
  • methyl silicate 51 made by Sakai Chemical Industry Co., Ltd.
  • M silicate 51, silicate 40, or silicate 45 all above, made by Tama Chemical Co., Ltd.
  • methyl silicate 51 methyl silicate 53A, ethyl silicate 40,
  • silicate compounds such as ethyl silicate 48 (all, all are manufactured by Corcoat Co., Ltd.) etc. are mentioned.
  • the content of the silane coupling agent in the photosensitive resin composition of the present invention is 0.01 parts by mass or more when the total of (A) alkali-soluble resin and (B) radically polymerizable compound is 100 parts by mass. 0.1 mass part or more is more preferable, 0.5 mass part or more is further more preferable, and 1 mass part or more is especially preferable.
  • the content of the silane coupling agent is preferably 15 parts by mass or less, more preferably 13 parts by mass or less, still more preferably 10 parts by mass or less, and particularly preferably 8 parts by mass or less. The resolution after development can be improved as content is 15 mass parts or less.
  • the photosensitive resin composition of the present invention may further contain a surfactant.
  • the surfactant refers to a compound having a hydrophilic structure and a hydrophobic structure. By incorporating an appropriate amount of surfactant, the surface tension of the resin composition can be arbitrarily adjusted, the leveling property at the time of application can be improved, and the film thickness uniformity of the coating film can be improved.
  • a fluorocarbon resin surfactant, a silicone surfactant, a polyoxyalkylene ether surfactant or an acrylic resin surfactant is preferable.
  • 0.001 mass% or more of the photosensitive resin composition whole is preferable, and, as for the content ratio of surfactant which occupies for the photosensitive resin composition of this invention, 0.005 mass% or more is more preferable, and 0.01 mass% is preferable. The above is more preferable.
  • the leveling property at the time of application can be improved as a content rate is 0.001 mass% or more.
  • the content ratio of the surfactant is preferably 1% by mass or less, more preferably 0.5% by mass or less, and still more preferably 0.03% by mass or less.
  • coating can be improved as a content ratio is 1 mass% or less.
  • the photosensitive resin composition of the present invention further contains a solvent.
  • the solvent means a compound capable of dissolving various resins and various additives to be contained in the resin composition.
  • various resins and various additives to be contained in the resin composition can be uniformly dissolved, and the transmittance of the cured film can be improved.
  • the viscosity of the resin composition can be arbitrarily adjusted, and a film can be formed on a substrate with a desired film thickness.
  • the surface tension of the resin composition or the drying speed at the time of application can be arbitrarily adjusted, and the leveling properties at the time of application and the film thickness uniformity of the coating film can be improved.
  • the solvent is preferably a compound having an alcoholic hydroxyl group, a compound having a carbonyl group, or a compound having three or more ether bonds from the viewpoint of solubility of various resins and various additives.
  • compounds having a boiling point of 110 to 250 ° C. under atmospheric pressure are more preferred.
  • Examples of the compound having an alcoholic hydroxyl group and having a boiling point of 110 to 250 ° C. under atmospheric pressure include diacetone alcohol, ethyl lactate, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, dipropylene glycol Monomethyl ether, 3-methoxy-1-butanol, 3-methoxy-3-methyl-1-butanol, or tetrahydrofurfuryl alcohol is mentioned.
  • Examples of compounds having a carbonyl group and having a boiling point of 110 to 250 ° C. under atmospheric pressure include, for example, 3-methoxy-n-butyl acetate, 3-methyl-3-n-butyl acetate, propylene glycol monomethyl ether acetate And dipropylene glycol monomethyl ether acetate or ⁇ -butyrolactone.
  • Examples of the compound having three or more ether bonds and having a boiling point of 110 to 250 ° C. under atmospheric pressure include diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, or dipropylene glycol dimethyl ether.
  • the content ratio of the solvent in the photosensitive resin composition of the present invention can be appropriately adjusted according to the coating method and the like. For example, when forming a coating film by spin coating, it is generally 50 to 95% by mass of the whole photosensitive resin composition.
  • a solvent having a carbonyl group or an ester bond is preferable as the solvent.
  • a solvent having a carbonyl group or an ester bond the dispersion stability of the disperse dye as the (D1) pigment and / or the (D2) dye can be improved.
  • a solvent having an acetate bond is more preferable.
  • the dispersion stability of the disperse dye as the (D1) pigment and / or the (D2) dye can be improved.
  • the content ratio of the solvent having a carbonyl group or an ester bond in the solvent is preferably 30 to 100% by mass, more preferably 50 to 100% by mass, and 70 to 100% by mass. More preferable.
  • the content ratio is 30 to 100% by mass, the dispersion stability of the (D1) pigment can be improved.
  • the photosensitive resin composition of the present invention may further contain other resins or their precursors.
  • Other resins or their precursors include, for example, polyamide, polyamideimide, epoxy resin, novolac resin, urea resin, or polyurethane, or their precursors.
  • Dispersers include, for example, ball mills, bead mills, sand grinders, three roll mills, or high speed impact mills.
  • a bead mill is preferred from the viewpoint of dispersion efficiency and fine dispersion.
  • a bead mill a co-ball mill, a basket mill, a pin mill, or a Dyno mill is mentioned, for example.
  • the beads of the bead mill include, for example, titania beads, zirconia beads, or zircon beads.
  • the bead diameter of the bead mill is preferably 0.01 to 6 mm, more preferably 0.015 to 5 mm, and still more preferably 0.03 to 3 mm.
  • (D1) When the primary particle diameter of the pigment and the particle diameter of secondary particles formed by aggregation of primary particles are several hundred nm or less, fine beads of 0.015 to 0.1 mm are preferable. In this case, it is preferable to use a bead mill provided with a separator by a centrifugal separation method that can separate minute beads and a pigment dispersion. On the other hand, when the (D1) pigment contains coarse particles of several hundred nm or more, beads of 0.1 to 6 mm are preferable from the viewpoint of dispersion efficiency.
  • the photosensitive resin composition of the present invention can obtain a cured film including a cured pattern having a low taper pattern shape. 1 degree or more is preferable, 5 degrees or more are more preferable, 10 degrees or more are more preferable, and the taper angle of the inclined side in the cross section of the cured pattern which a cured film contains obtained from the photosensitive resin composition of this invention is more preferable. The above is even more preferable, and 15 ° or more is particularly preferable. When the taper angle is 1 ° or more, the resolution of the display device can be improved because the light emitting elements can be integrated and arranged with high density.
  • the taper angle of the inclined side in the cross section of the cured pattern contained in the cured film is preferably 60 ° or less, more preferably 55 ° or less, still more preferably 50 ° or less, still more preferably 45 ° or less, and 40 ° or less Particularly preferred.
  • the taper angle is 60 ° or less, disconnection at the time of forming an electrode such as a transparent electrode or a reflective electrode can be prevented.
  • the concentration of the electric field at the edge portion of the electrode can be suppressed, the deterioration of the light emitting element can be suppressed.
  • the photosensitive resin composition of the present invention can form a cured pattern having a step shape with a sufficient film thickness difference between the thick film portion and the thin film portion while maintaining high sensitivity, and having a low taper pattern shape. .
  • FIG. 3 An example of the cross section of the cured pattern having a step shape obtained from the photosensitive resin composition of the present invention is shown in FIG.
  • the thick film portion 34 in the step shape corresponds to a cured portion at the time of exposure, and has the largest film thickness of the cured pattern.
  • the thin film portions 35a, 35b, and 35c in the step shape correspond to halftone exposure portions at the time of exposure, and have a film thickness smaller than the thickness of the thick film portion 34.
  • Inclined side 36a in the cross section of the cured pattern having a step shape, 36b, 36c, 36d, of 36e, the taper angle ⁇ a, ⁇ b, ⁇ c , ⁇ d, ⁇ e is preferably a low taper.
  • the taper angle theta a here, ⁇ b, ⁇ c, ⁇ d, and theta e is 3, the curing pattern horizontal side of the underlying substrate to be formed 37 or the thin film part 35a,, 35b, 35c horizontal
  • the forward taper means that the taper angle is in the range of less than 1 to 90 °
  • the reverse taper means that the taper angle is in the range of less than 91 to 180 °
  • the rectangle is the taper angle Is 90 °
  • low taper means that the taper angle is in the range of 1 to 60 °.
  • Step 1 A thin film transistor (hereinafter referred to as "TFT") 2 is formed on a glass substrate 1, a photosensitive material for a TFT planarization film is formed, patterned by photolithography, and thermally cured. Thus, a cured film 3 for flattening the TFT is formed.
  • TFT thin film transistor
  • Step 2 Silver-palladium-copper alloy (hereinafter, “APC”) is formed by sputtering, patterned by etching using a photoresist to form an APC layer, and further, an upper layer of the APC layer Indium tin oxide (hereinafter, "ITO”) is formed into a film by sputtering and patterned by etching using a photoresist to form a reflective electrode 4 as a first electrode.
  • step 3 the photosensitive resin composition of the present invention is applied and prebaked to form a prebaked film 5a.
  • Step 4 the active actinic radiation 7 is irradiated through the mask 6 having a desired pattern.
  • Step 5 after development and pattern processing, bleaching exposure and middle baking as necessary, and heat curing are performed to obtain a cured pattern 5b having a desired pattern as a light-shielding pixel division layer.
  • Step 6 an EL light emitting material is deposited by vapor deposition through a mask 6 to form an EL light emitting layer 8
  • a magnesium-silver alloy hereinafter, "MgAg”
  • MgAg magnesium-silver alloy
  • Step 7 A photosensitive material for a planarization film is formed, patterned by photolithography, and then thermally cured to form a hardening film 10 for planarization, and then bonding a cover glass 11 By doing this, an organic EL display having the photosensitive resin composition of the present invention as a light-shielding pixel division layer is obtained.
  • a cured film of the composition is used as a black column spacer (hereinafter, "BCS") of a liquid crystal display and a black matrix (hereinafter, "BM”) of a color filter.
  • BCS black column spacer
  • BM black matrix
  • step 1 a backlight unit (hereinafter, "BLU") 13 is formed on a glass substrate 12 to obtain a glass substrate 14 having BLU.
  • BLU backlight unit
  • step 2 A TFT 16 is formed on another glass substrate 15, a photosensitive material for a TFT planarization film is formed, patterned by photolithography, and then thermally cured to planarize the TFT.
  • a cured film 17 is formed.
  • Step 3 ITO is deposited by sputtering, patterned by etching using a photoresist, a transparent electrode 18 is formed, and a planarizing film 19 and an alignment film 20 are formed thereon.
  • Step 4 the photosensitive resin composition of the present invention is applied and prebaked to form a prebaked film 21a.
  • the active actinic radiation 23 is irradiated through the mask 22 having the desired pattern.
  • Step 6) after development and pattern processing, bleaching exposure and middle baking are carried out if necessary, and heat curing is carried out to form a cured pattern 21b having a desired pattern as a light blocking BCS, A glass substrate 24 having BCS is obtained.
  • Step 7) the glass substrate 14 described above and the glass substrate 24 are bonded to obtain a glass substrate 25 having BLU and BCS.
  • Step 8 The color filters 27 of three colors of red, green and blue are formed on another glass substrate 26.
  • step 9 a cured pattern 28 having a desired pattern as a light-shielding BM is formed from the photosensitive resin composition of the present invention in the same manner as described above.
  • Step 10 A photosensitive material for planarization is formed into a film, patterned by photolithography, and then thermally cured to form a cured film 29 for planarization, and an alignment film 30 is formed thereon Thus, the color filter substrate 31 is obtained.
  • Step 11 the glass substrate 25 having BLU and BCS described above is bonded to the color filter substrate 31 to obtain a glass substrate 32 having BLU, BCS and BM (Step 12).
  • Step 13 liquid crystal is injected to form a liquid crystal layer 33, thereby obtaining a liquid crystal display having the photosensitive resin composition of the present invention as BCS and BM.
  • the manufacturing method of the organic EL display and the liquid crystal display using the photosensitive resin composition of the present invention it is patterned and contains polyimide and / or polybenzoxazole, and has high heat resistance and light shielding. It is possible to obtain a cured film of the property, which leads to improvement in yield, performance and reliability in the manufacture of organic EL displays and liquid crystal displays.
  • the resin composition is photosensitive, it can be directly patterned by photolithography. Therefore, since the number of processes can be reduced as compared with the process using a photoresist, the productivity of the organic EL display and the liquid crystal display can be improved, the process time can be shortened and the tact time can be shortened.
  • the cured film obtained from the photosensitive resin composition of this invention can comprise an organic electroluminescent display or a liquid crystal display suitably.
  • the photosensitive resin composition of this invention can obtain the pattern shape of a low taper, and can obtain the cured film excellent in high heat resistance. Therefore, it is suitable for applications requiring high heat resistance and low taper pattern shapes, such as insulating layers such as pixel division layers of an organic EL display, a TFT planarization layer, or a TFT protective layer.
  • problems due to heat resistance and pattern shape are expected, such as defective or deteriorated characteristics of the element due to degassing due to thermal decomposition, disconnection of electrode wiring due to high taper pattern shape, etc.
  • the cured film of the conductive resin composition it becomes possible to manufacture a highly reliable device in which the occurrence of the above-mentioned problems is suppressed.
  • the cured film is excellent in the light shielding property, the visualization of the electrode wiring can be prevented or the reflection of external light can be reduced, and the contrast in image display can be improved. Therefore, by using the cured film obtained from the photosensitive resin composition of the present invention as a pixel division layer, a TFT flattening layer, or a TFT protective layer of an organic EL display, a polarizing plate and The contrast can be improved without forming a quarter wave plate.
  • the photosensitive resin composition of this invention can obtain the cured film which was excellent in bendability and which has flexibility. Therefore, the cured film can be provided as a laminated structure on a flexible substrate, and pattern shapes of flexibility and low taper, such as an insulating layer such as a pixel division layer of a flexible organic EL display, a TFT planarization layer, or a TFT protective layer. Is suitable for applications requiring Furthermore, since the cured film has high heat resistance, there are problems caused by heat resistance and pattern shape, such as element failure or characteristic deterioration due to degassing due to thermal decomposition, disconnection of electrode wiring due to high taper pattern shape, etc. By using the cured film of the photosensitive resin composition of the present invention in the intended application, it becomes possible to manufacture a highly reliable device which does not cause the above-mentioned problems.
  • the display device of the present invention preferably has a curved display portion.
  • the radius of curvature of the curved surface is preferably 0.1 mm or more, and more preferably 0.3 mm or more, from the viewpoint of suppressing display defects caused by disconnection or the like in the display portion including the curved surface.
  • the radius of curvature of the curved surface is preferably 10 mm or less, more preferably 7 mm or less, and still more preferably 5 mm or less, from the viewpoint of downsizing and high resolution of the display device.
  • the method for producing a display device using the photosensitive resin composition of the present invention includes the following steps (1) to (4). (1) forming a film of the photosensitive resin composition of the present invention on a substrate; (2) a step of irradiating the coating film of the photosensitive resin composition with actinic radiation through a photomask; (3) developing using an alkaline solution to form a pattern of the photosensitive resin composition; (4) A step of heating the pattern to obtain a cured pattern of the photosensitive resin composition.
  • the method for producing a display device using the photosensitive resin composition of the present invention comprises (1) forming a film of a photosensitive resin composition on a substrate.
  • a method of forming a film of the photosensitive resin composition of the present invention for example, a method of applying the above-mentioned resin composition on a substrate, or a method of applying the above-mentioned resin composition in a pattern on a substrate Can be mentioned.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • AZO aluminum zinc oxide
  • IGZO indium gallium zinc oxide
  • ZnO zinc oxide
  • substrate microgravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, or slit coating is mentioned, for example.
  • the coating thickness varies depending on the coating method, solid content concentration and viscosity of the resin composition, etc. Usually, coating is performed so that the thickness after coating and prebaking becomes 0.1 to 30 ⁇ m.
  • prebaking can use an oven, a hot plate, infrared rays, a flash annealing apparatus, a laser annealing apparatus, or the like.
  • the pre-bake temperature is preferably 50 to 150.degree.
  • the pre-bake time is preferably 30 seconds to several hours. After prebaking at 80 ° C. for 2 minutes, prebaking may be performed in two or more stages, such as prebaking at 120 ° C. for 2 minutes.
  • ⁇ Method of applying the photosensitive resin composition of the present invention in a pattern on a substrate examples include letterpress printing, intaglio printing, stencil printing, lithographic printing, screen printing, inkjet printing, offset printing, or laser printing.
  • the coating thickness varies depending on the coating method, the solid content concentration and viscosity of the photosensitive resin composition of the present invention, etc. Usually, coating is performed so that the thickness after coating and prebaking becomes 0.1 to 30 ⁇ m.
  • prebaking can use an oven, a hot plate, infrared rays, a flash annealing apparatus, a laser annealing apparatus, or the like.
  • the pre-bake temperature is preferably 50 to 150.degree.
  • the pre-bake time is preferably 30 seconds to several hours. After prebaking at 80 ° C. for 2 minutes, prebaking may be performed in two or more stages, such as prebaking at 120 ° C. for 2 minutes.
  • Method of patterning a coating film formed on a substrate As a method of pattern-processing the coating film of the photosensitive resin composition of this invention formed into a film on a board
  • the method for producing a display device using the photosensitive resin composition of the present invention includes (2) a step of irradiating the coating film of the photosensitive resin composition described above with active actinic radiation through a photomask.
  • the photosensitive resin composition of the present invention is applied and prebaked on a substrate to form a film, and then exposure is performed using an exposure device such as a stepper, mirror projection mask aligner (MPA) or parallel light mask aligner (PLA).
  • an exposure device such as a stepper, mirror projection mask aligner (MPA) or parallel light mask aligner (PLA).
  • MPA mirror projection mask aligner
  • PPA parallel light mask aligner
  • the active actinic radiation applied at the time of exposure include ultraviolet light, visible light, electron beam, X-ray, KrF (wavelength 248 nm) laser, and ArF (wavelength 193 nm) laser. It is preferable to use j-line (wavelength 313 nm), i-line (wavelength 365 nm), h-line (wavelength 405 nm) or g-line (wavelength 436 nm) of a mercury lamp.
  • the exposure dose is usually about 100 to 40,000 J / m 2 (10 to 4,000 mJ / cm 2 ) (the value of the i-line illuminance meter), and exposure is performed via a photomask having a desired pattern as necessary. it can.
  • post-exposure baking may be performed.
  • effects such as improvement of resolution after development or increase of tolerance of development conditions can be expected.
  • an oven, a hot plate, infrared light, a flash annealing apparatus, a laser annealing apparatus, or the like can be used.
  • the post-exposure baking temperature is preferably 50 to 180 ° C., and more preferably 60 to 150 ° C.
  • the post-exposure bake time is preferably 10 seconds to several hours. If the post-exposure bake time is 10 seconds to several hours, the reaction may proceed favorably and the development time may be shortened.
  • the manufacturing method of a display apparatus using the photosensitive resin composition of this invention has the process of developing using the alkaline solution and forming the pattern of the photosensitive resin composition mentioned above. After exposure, development is performed using an automatic developing device or the like.
  • the photosensitive resin composition of the present invention has photosensitivity, so that after development, the exposed part or the unexposed part can be removed by a developer to obtain a relief pattern.
  • an alkaline developing solution is generally used.
  • an alkali developing solution for example, an organic alkaline solution or an aqueous solution of a compound exhibiting alkalinity is preferable, and from the environmental viewpoint, an aqueous solution of a compound exhibiting alkalinity, that is, an alkaline aqueous solution is more preferable.
  • organic alkaline solutions or compounds exhibiting alkalinity examples include 2-aminoethanol, 2- (dimethylamino) ethanol, 2- (diethylamino) ethanol, diethanolamine, methylamine, ethylamine, dimethylamine, diethylamine, triethylamine, acetic acid (2-Dimethylamino) ethyl, (meth) acrylic acid (2-dimethylamino) ethyl, cyclohexylamine, ethylenediamine, hexamethylenediamine, ammonia, tetramethylammonium hydroxide, tetraethylammonium hydroxide, sodium hydroxide, potassium hydroxide , Magnesium hydroxide, calcium hydroxide, barium hydroxide, sodium carbonate or potassium carbonate, but from the viewpoint of reducing metal impurities in the cured film and suppressing display defects in display devices? , Tetramethylammonium hydroxide or tetraethy
  • An organic solvent may be used as the developer.
  • Examples of the development method include paddle development, spray development, or dip development.
  • As the paddle development for example, a method of applying the above-mentioned developing solution as it is to the film after exposure as it is and leaving it for an arbitrary time, or emitting the above-mentioned developing solution onto the film after exposure in the form of mist for an arbitrary time And then left for an arbitrary time.
  • Examples of the spray development include a method in which the above-described developer is emitted in the form of a mist to the film after exposure and the film is continuously applied for an arbitrary time.
  • dip development there is a method of immersing a film after exposure in a developer as described above for an arbitrary time or a method of immersing a film after exposure in a developer as described above and continuing irradiation of ultrasonic waves for an arbitrary time. It can be mentioned.
  • paddle development is preferable from the viewpoint of process cost reduction due to suppression of apparatus contamination during development and reduction in the amount of use of the developing solution. By suppressing the apparatus contamination at the time of development, the substrate contamination at the time of development can be suppressed, and the display defect of the display apparatus can be suppressed.
  • spray development is preferable as a development method from a viewpoint of suppression of residue generation after development.
  • dip development is preferable from the viewpoint of reduction of the amount of use of the developing solution by reuse of the developing solution and reduction of process cost.
  • the development time is preferably 30 minutes or less, more preferably 15 minutes or less, still more preferably 10 minutes or less, and particularly preferably 5 minutes or less.
  • the obtained relief pattern is preferably washed with a rinse solution.
  • a rinse solution water is preferable when an alkaline aqueous solution is used as the developer.
  • an aqueous solution of an alcohol such as ethanol or isopropyl alcohol, an aqueous solution of an ester such as propylene glycol monomethyl ether acetate, or an aqueous solution of a compound exhibiting acidity such as carbon dioxide gas, hydrochloric acid or acetic acid may be used.
  • An organic solvent may be used as the rinse solution.
  • bleaching exposure may be performed.
  • the bleaching exposure it is possible to arbitrarily control the pattern shape after the thermal curing.
  • the transparency of a cured film can be improved.
  • the bleaching exposure can use an exposure machine such as a stepper, a mirror projection mask aligner (MPA) or a parallel light mask aligner (PLA).
  • Examples of the active actinic radiation to be applied during the bleaching exposure include ultraviolet light, visible light, electron beam, X-ray, KrF (wavelength 248 nm) laser, and ArF (wavelength 193 nm) laser. It is preferable to use j-line (wavelength 313 nm), i-line (wavelength 365 nm), h-line (wavelength 405 nm) or g-line (wavelength 436 nm) of a mercury lamp.
  • the exposure dose is usually about 500 to 500,000 J / m 2 (50 to 50,000 mJ / cm 2 ) (value of i-line illuminance meter), and can be exposed through a mask having a desired pattern as required. .
  • middle baking may be performed.
  • middle baking By performing middle baking, the resolution after heat curing can be improved, and the pattern shape after heat curing can be arbitrarily controlled.
  • an oven, a hot plate, an infrared ray, a flash annealing apparatus, a laser annealing apparatus, or the like can be used.
  • the middle bake temperature is preferably 50 to 250 ° C., and more preferably 70 to 220 ° C.
  • the middle bake time is preferably 10 seconds to several hours.
  • middle baking may be performed in two or more stages, such as middle baking for 5 minutes at 150 ° C.
  • the method for producing a display device using the photosensitive resin composition of the present invention comprises the steps of: (4) heating the pattern of the photosensitive resin composition described above to obtain a cured pattern of the photosensitive resin composition described above Have.
  • An oven, a hot plate, infrared rays, a flash annealing apparatus, a laser annealing apparatus, etc. can be used for the heating of the pattern of the photosensitive resin composition of this invention formed into a film on the board
  • the heat resistance of the cured film can be improved, and a pattern shape with a low taper can be obtained.
  • thermosetting As temperature which carries out thermosetting, 150 ° C or more is preferred, 200 ° C or more is more preferred, and 250 ° C or more is still more preferred. While being able to improve the heat resistance of a cured film as heat curing temperature is 150 degreeC or more, the pattern shape after heat curing can be made into a lower taper. On the other hand, from the viewpoint of shortening the tact time, the temperature for thermosetting is preferably 500 ° C. or less, more preferably 450 ° C. or less, and still more preferably 400 ° C. or less.
  • the heat curing time is preferably 1 minute or more, more preferably 5 minutes or more, further preferably 10 minutes or more, and particularly preferably 30 minutes or more.
  • the heat curing time is preferably 300 minutes or less, more preferably 250 minutes or less, further preferably 200 minutes or less, and particularly preferably 150 minutes or less.
  • heat curing may be performed in two or more stages such as heat curing at 250 ° C. for 30 minutes.
  • a pixel division layer, an electrode insulating layer, a wiring insulating layer, an interlayer insulating layer, a TFT planarization layer, an electrode planarization layer, a wiring planarization layer, a TFT protective layer, an electrode It is possible to obtain a cured film suitably used for applications such as a protective layer, a wiring protective layer, a gate insulating layer, a color filter, a black matrix, or a black column spacer. Moreover, it becomes possible to obtain the element and display apparatus provided with those cured films.
  • the cured film is divided into a pixel division layer, an electrode insulation layer, a wiring insulation layer, an interlayer insulation layer, a TFT planarization layer, an electrode planarization layer, a wiring planarization layer, a TFT protective layer, an electrode protection layer And at least one selected from the group consisting of a wiring protective layer, a gate insulating layer, a color filter, a black matrix, and a black column spacer.
  • the negative photosensitive resin composition of the present invention is excellent in the light shielding property, a pixel divided layer having a light shielding property, an electrode insulating layer, a wiring insulating layer, an interlayer insulating layer, a TFT flattening layer, an electrode flattening layer, a wiring It is preferable as a planarizing layer, a TFT protective layer, an electrode protective layer, a wiring protective layer, or a gate insulating layer, and more preferable as a pixel division layer having a light shielding property, an interlayer insulating layer, a TFT planarizing layer, or a TFT protective layer.
  • the method of manufacturing a display device using the photosensitive resin composition of the present invention it is possible to obtain a highly heat-resistant, light-shielding cured film that is patterned and contains polyimide and / or polybenzoxazole This leads to yield improvement, performance improvement, and reliability improvement in the manufacture of organic EL displays and liquid crystal displays.
  • the photosensitive resin composition of the present invention can be directly patterned by photolithography, the number of steps can be reduced as compared with a process using a photoresist, thereby improving productivity and shortening process time. And tact time can be shortened.
  • BYK-167 "DISPERBYK” (registered trademark)-167 (manufactured by Bick Chemie Japan Ltd .; polyurethane-based dispersant having a tertiary amino group having an amine value of 13 mg KOH / g (solid content concentration: 52% by mass))
  • DFA N, N-dimethylformamide dimethyl acetal
  • DPCA-30 "KAYARAD” (registered trademark) DPCA-30 (manufactured by Nippon Kayaku Co., Ltd .; ⁇ -caprolactone modified dipenta having three oxypentylene carbonyl structures in the molecule) Erythritol hexaacrylate)
  • DPCA-60 "KAYARAD” (registered trademark) DPCA-60 (manufactured by Nippon Kayaku Co., Ltd .; ⁇ -caprolactone modified dipentaerythritol hexaacrylate having 6 oxypentylene carbonyl
  • Pigment yellow 139 PGMEA Propylene glycol monomethyl ether acetate
  • PHA Phthalic anhydride
  • PhTMS Phenyltrimethoxysilane S-20000: “SOLSPERSE” (registered trademark) 20000 (manufactured by Lubrizol; amine value is 32 mg KOH / g (solid content concentration: 100 mass%)
  • TCDM tricyclo methacrylate [5.2.1.0 2 , 6] decan-8-yl; dimethylol - tricyclodecane methacrylate
  • ICA-GST 1,3,5-tris (glycidyl stearyl) isocyanuric acid TBIS
  • Synthesis example (A) In a three-necked flask, 18.31 g (0.05 mol) of BAHF, 17.42 g (0.3 mol) of propylene oxide, and 100 mL of acetone were weighed and dissolved. To this was added dropwise a solution of 20.41 g (0.11 mol) of 3-nitrobenzoyl chloride in 10 mL of acetone. After completion of the dropwise addition, the reaction was carried out at -15.degree. C. for 4 hours, and then returned to room temperature. The precipitated white solid was collected by filtration and vacuum dried at 50 ° C.
  • Synthesis Example 1 Synthesis of Polyimide (PI-1) In a three-necked flask, 31.13 g (0.085 mol; 77.3 mol% with respect to structural units derived from all amines and their derivatives) of BAHF in a three-necked flask under dry nitrogen gas flow, SiDA To 1.24 g (0.0050 mol; 4.5 mol% relative to the structural units derived from all amines and their derivatives), 2.18 g (0.020 mol; all amines and their derivatives) as a capping agent 150.00 g of NMP was weighed and dissolved with respect to the structural unit derived (18.2 mol%).
  • Synthesis Examples 2 to 5 Synthesis of Polyimide (PI-2) to Polyimide (PI-5) The polymerization was carried out in the same manner as in Synthesis Example 1 using the monomer species and ratio thereof shown in Table 1-1 to obtain polyimide (PI- 2) to obtain a polyimide (PI-5).
  • Synthesis Example 6 Synthesis of Polyimide Precursor (PIP-1) In a three-necked flask under a stream of dry nitrogen, 44.42 g (0.10 mol; 100 mol% with respect to structural units derived from all carboxylic acids and their derivatives) of 6FDA 150 g of NMP was weighed and dissolved.
  • the resulting solid was washed three times with water and then dried in a vacuum drier at 80 ° C. for 24 hours to obtain a polyimide precursor (PIP-1).
  • the Mw of the obtained polyimide precursor was 20,000, and the acid equivalent was 450.
  • Synthesis Example 7 Synthesis of Polyimide Precursor (PIP-2) The polymerization was carried out in the same manner as in Synthesis Example 6 with the types of monomers shown in Table 1-1 and the ratio thereof to obtain a polyimide precursor (PIP-2). .
  • Synthesis Example 8 Synthesis of Polybenzoxazole (PBO-1) In a 500 mL round bottom flask equipped with a Dean-Stark water separator and a condenser filled with toluene, 34.79 g (0.095 mol; total amine and its derivatives) of BAHF were added. 95.0 mol% relative to the structural unit derived), 1.24 g (0.0050 mol; 5.0 mol% relative to the structural units derived from all amines and their derivatives) of SiDA, 75.00 g NMP , Dissolved.
  • the obtained solid was washed 3 times with water and then dried in a vacuum drier at 80 ° C. for 24 hours to obtain polybenzoxazole (PBO-1).
  • the Mw of the obtained polybenzoxazole was 25,000, and the acid equivalent was 330.
  • Synthesis Example 9 Synthesis of Polybenzoxazole Precursor (PBOP-1) 34.79 g (0.095 mol; total amine and its amine) of BAHF in a 500 mL round bottom flask equipped with a Dean-Stark water separator and a condenser filled with toluene. 95.0 mol% of the structural unit derived from the derivative), 1.24 g (0.0050 mol; 5.0 mol% relative to the structural units derived from all amines and their derivatives) of SiDA, 70.00 g of NMP And allowed to dissolve.
  • PBOP-1 Polybenzoxazole Precursor
  • the reaction solution was poured into 3 L of water, and the precipitated solid precipitate was obtained by filtration.
  • the obtained solid was washed three times with water and then dried in a vacuum drier at 80 ° C. for 24 hours to obtain a polybenzoxazole precursor (PBOP-1).
  • the Mw of the obtained polybenzoxazole precursor was 20,000, and the acid equivalent was 330.
  • Synthesis Example 10 Synthesis of Polysiloxane Solution (PS-1) In a three-necked flask, 23.48 g (35 mol%) MeTMS, 49.57 g (50 mol%) PhTMS, 3.81 g (5 mol%) TMOS, 76 PGMEA I loaded 36 g. The flask was flushed with air at 0.05 L / min, and the mixed solution was heated to 40 ° C. in an oil bath while stirring. While further stirring the mixed solution, a phosphoric acid aqueous solution in which 0.271 g of phosphoric acid was dissolved in 28.38 g of water was added dropwise over 10 minutes.
  • PS-1 Polysiloxane Solution
  • the silane compound was hydrolyzed by stirring at 40 ° C. for 30 minutes. After completion of the hydrolysis, a solution of 13.12 g (10 mol%) of TMSSucA in 8.48 g of PGMEA was added. Thereafter, the bath temperature was raised to 70 ° C. and stirred for 1 hour, and then the bath temperature was raised to 115 ° C. About 1 hour after the start of the temperature rise, the internal temperature of the solution reached 100 ° C., and the mixture was heated and stirred for 2 hours (the internal temperature is 100 to 110 ° C.). The resin solution obtained by heating and stirring for 2 hours was cooled in an ice bath to obtain a polysiloxane solution (PS-1). The Mw of the obtained polysiloxane was 4,200, and the carboxylic acid equivalent was 700 g / mol.
  • PS-1 polysiloxane solution
  • Synthesis Example 11 Synthesis of Polysiloxane Solution (PS-2) 13.62 g (20 mol%) of MeTMS, 49.57 g (50 mol%) of PhTMS, 23.43 g (20 mol%) of AcrTMS, 89. I charged 84g. Nitrogen was flushed at 0.05 L / min into the flask and the mixed solution was heated to 40 ° C. in an oil bath while stirring. While further stirring the mixed solution, an aqueous phosphoric acid solution in which 0.499 g of phosphoric acid was dissolved in 27.93 g of water was added over 10 minutes. After completion of the addition, the silane compound was hydrolyzed by stirring at 40 ° C. for 30 minutes.
  • PS-2 Polysiloxane Solution
  • Synthesis Example 12 Synthesis of Polycyclic Side Chain-Containing Resin Solution (CR-1)
  • 35.04 g (0.10 mol) of BHPF and 40.31 g of MBA were weighed and dissolved.
  • a solution of 27.92 g (0.090 mol) of ODPA and 2.96 g (0.020 mol) of PHA as an end capping agent in 3 g of MBA was added and stirred at 20 ° C. for 1 hour. Then, it stirred at 150 degreeC under nitrogen atmosphere for 5 hours.
  • Bk-CBF1 Surface-Coated Benzofuranone-Based Black Pigment
  • Sodium silicate aqueous solution Na 2 O ⁇ nSiO 2 ⁇ mH 2 so that the coating amount of silica is 10.0 parts by mass in terms of SiO 2 with respect to 100 parts by mass of the black pigment based on the aqueous pigment suspension O: 30% by mass as sodium oxide, 10% by mass as silicon dioxide) diluted 100 times with deionized water and sulfuric acid at 0.001 mol / L, pH is maintained in the range of 2 or more and less than 7 As described above, the addition was carried out in parallel while adjusting the addition rate, and the surface of the particles of the black pigment was precipitated and coated with silica.
  • an aqueous solution of sodium aluminate Na 2 O ⁇ nAl is used so that the coating amount of alumina is 2.0 parts by mass in terms of Al 2 O 3 with respect to 100 parts by mass of the black pigment based on the aqueous pigment suspension.
  • the filtration and washing operations are repeated three times to remove some of the water-soluble impurities in the aqueous pigment suspension, and the solution is sent to a horizontal bead mill filled with 0.4 mm ⁇ zirconia beads for one-pass dispersion treatment did.
  • 10 g of each of a cation exchange resin and an anion exchange resin (Amberlight; manufactured by Organo Corporation) are added to the aqueous pigment suspension, stirred for 12 hours, and filtered to obtain a black filter. I got a thing.
  • the coverage of silica and alumina of the obtained surface-coated benzofuranone-based black pigment (Bk-CBF1) was 100 parts by mass of the black pigment, respectively. It was 10.0 parts by mass in terms of SiO 2 , 2.0 parts by mass in terms of Al 2 O 3 , and the average coverage of the coating layer with respect to the pigment was 97.5%.
  • compositions of Preparation Examples 1 to 8 are shown in Table 2-1.
  • Preparation Examples 3 to 8 Preparation of pigment dispersion (Bk-3) to pigment dispersion (Bk-8) Types of colorants described in Table 2-1, (A1) first resin and (E) dispersant, and The pigment was dispersed at these ratios in the same manner as in Preparation Example 2 to obtain pigment dispersion (Bk-3) to pigment dispersion (Bk-8).
  • XD-1000-H has a structural unit represented by the general formula (14a).
  • NC-7000L has a structural unit represented by the general formula (15a).
  • NC-3500 has a structural unit represented by the general formula (16a).
  • FLE-3 an epoxy compound having two fluorene skeletons and two epoxy groups
  • the acid-modified epoxy resin (AE-1) has a structural unit represented by the general formula (38a).
  • Nuclear magnetic resonance device JNM-GX270; manufactured by Nippon Denshi Co., Ltd.
  • Measurement method Gated decoupling method Measurement nuclear frequency: 53.6693 MHz ( 29 Si nucleus) Spectrum width: 20000 Hz Pulse width: 12 ⁇ s (45 ° pulse) Pulse repetition time: 30.0 seconds
  • Solvent acetone-d6 Reference material: tetramethylsilane Measurement temperature: 23 ° C Sample rotation speed: 0.0 Hz.
  • ITO substrate Glass substrate on which ITO is deposited to 100 nm by sputtering on glass is a desktop type light surface treatment apparatus (PL16-110; Sen Special Light Source Co., Ltd.) ) And used for 100 seconds for UV-O 3 cleaning.
  • a Si wafer manufactured by Electronics End Materials Corporation was used after being subjected to dehydration baking by heating at 130 ° C. for 2 minutes using a hot plate (HP-1SA; manufactured by As One).
  • HP-1SA hot plate
  • a polyimide film, Kapton (registered trademark) -150EN-C manufactured by Toray DuPont; hereinafter, “PI film substrate” was used without pretreatment.
  • Sensitivity A gray scale mask (MDRM MODEL 4000-5-FS) for sensitivity measurement using a double-sided alignment single-sided exposure apparatus (mask aligner PEM-6M; manufactured by Union Optical Co., Ltd.) according to the method described in Example 1 below.
  • mask aligner PEM-6M manufactured by Union Optical Co., Ltd.
  • i-line wavelength 365 nm
  • h-line wavelength 405 nm
  • g-line wavelength 436 nm
  • the resolution pattern of the developed film is observed using an FPD / LSI inspection microscope (OPTIPHOT-300; manufactured by Nikon Corporation), and the exposure dose for forming a 20 ⁇ m line and space pattern in a width of 1: 1 (The value of i ray illuminance meter) was taken as the sensitivity.
  • sensitivity is 90 mJ / cm 2 or less
  • a +, A, B, and C are accepted
  • sensitivity is 60 mJ / cm 2 or less
  • a +, A, and B are sensitivity.
  • a + and A which have a sensitivity of 45 mJ / cm 2 or less, were regarded as excellent in sensitivity.
  • a + no residue at the opening A: 1 to 5% of the area of residue at the opening B: 6 to 10% of the area of the residue at the opening C: 11 to 30% of the area of the residue at the opening D: Remaining area of 31 to 50% at the opening E: The existing area of the residue at the opening is 51 to 100%.
  • a cross section of a line and space pattern with a space dimension width of 20 ⁇ m is observed.
  • the taper angle of the cross section was measured.
  • the taper angle of the cross section is 60 ° or less, A +, A and B are acceptable, and the taper angle of the cross section is 45 ° or smaller.
  • a + and A are good pattern shapes, and the taper of the cross section is determined as follows. A + with a corner of 30 ° or less was regarded as excellent in pattern shape.
  • the taper angle of the cross section is 1 to 30 °
  • the taper angle of the cross section is 31 to 45 °
  • B The taper angle of the cross section is 46 to 60 °
  • C The taper angle of the cross section is 61 to 70 °
  • D The taper angle of the cross section is 71 to 80 °
  • E The taper angle of the cross section is 81 to 179 °.
  • the cross section of a line and space pattern with a space dimension width of 20 ⁇ m is observed by using a field emission scanning electron microscope (S-4800; manufactured by Hitachi High-Technologies Corporation) The taper angle of was measured.
  • the taper angle of the cross section is 60 ° or less, A +, A and B are acceptable, and the taper angle of the cross section is 45 ° or smaller.
  • a + and A are good pattern shapes, and the taper of the cross section is determined as follows. A + with a corner of 30 ° or less was regarded as excellent in pattern shape.
  • the taper angle of the cross section is 1 to 30 °
  • the taper angle of the cross section is 31 to 45 °
  • B The taper angle of the cross section is 46 to 60 °
  • C The taper angle of the cross section is 61 to 70 °
  • D The taper angle of the cross section is 71 to 80 °
  • E The taper angle of the cross section is 81 to 179 °.
  • the resolution pattern of the developed film is observed using an FPD / LSI inspection microscope (OPTIPHOT-300; manufactured by Nikon Corporation), the opening dimension width of the 20 ⁇ m line and space pattern is measured, and after development
  • the film after development described above is thermally cured using a high temperature inert gas oven (INH-9CD-S; manufactured by Koyo Thermo Systems Co., Ltd.) by the method described in Example 1 below, and a cured film of the photosensitive resin composition was produced.
  • a high temperature inert gas oven IH-9CD-S; manufactured by Koyo Thermo Systems Co., Ltd.
  • the resolution pattern of the produced cured film is observed using an FPD / LSI inspection microscope (OPTIPHOT-300; manufactured by Nikon Corporation), and the opening dimension of the 20 ⁇ m line and space pattern at the same place as the place observed after development The width was measured and used as the pattern opening width after heat curing (CD CURE ).
  • the change in the pattern opening dimension width before and after heat curing ((CD DEV ) ⁇ (CD CURE )) was calculated.
  • a +, A, and B pass the pattern opening dimension width change before and after heat curing is 0.60 ⁇ m or less, change in pattern opening dimension width before and after heat curing is 0.40 ⁇ m or less Therefore, A + and A indicate that the change in pattern dimension width is good, and A + indicates that the change in pattern aperture width before and after heat curing is 0.20 ⁇ m or less.
  • the change in pattern dimension width is excellent.
  • thermogravimetric apparatus TGA-50; Shimadzu Corporation
  • thermogravimetric analysis was performed while maintaining the temperature at 150 ° C. for 30 minutes and further raising the temperature to 500 ° C. at a temperature rising rate of 10 ° C./min.
  • the weight 100% by mass after heating at 150 ° C. for 30 minutes, the weight residual rate at 350 ° C.
  • a +: High temperature weight residual rate difference is 0 to 5.0%
  • the incident light intensity (I 0 ) and the transmitted light intensity (I) of the produced cured film were measured using a transmission densitometer (X-Rite 361 T (V); manufactured by X-Rite).
  • a gray scale mask (MDRM MODEL 4000-5-FS; Opto-Line) for sensitivity measurement using a double-sided alignment single-sided exposure apparatus (Mask Aligner PEM-6M; manufactured by Union Optical Co., Ltd.) by the method described in Example 1 below.
  • the surface resistivity ( ⁇ / ⁇ ) of the produced cured film was measured using a high resistance resistivity meter (“Hiresta” UP; manufactured by Mitsubishi Chemical Corporation).
  • FIG. 4 shows a schematic view of the used substrate.
  • an ITO transparent conductive film 10 nm was formed on the entire surface of a 38 ⁇ 46 mm non-alkali glass substrate 47 by a sputtering method, and etched as a first electrode 48 to form a transparent electrode.
  • an auxiliary electrode 49 was also formed at the same time to take out the second electrode (FIG. 4 (step 1)).
  • the obtained substrate was subjected to ultrasonic cleaning for 10 minutes with "SEMICOCLEAN” (registered trademark) 56 (manufactured by Furuuchi Chemical Co., Ltd.) and washed with ultrapure water.
  • SEMICOCLEAN registered trademark
  • a photosensitive resin composition is applied and prebaked on this substrate by the method described in Example 1 below, and after patterning exposure through a photomask having a predetermined pattern, development and rinsing, heating and heat are applied. It was allowed to cure.
  • the openings 70 ⁇ m wide and 260 ⁇ m long are arranged at a pitch of 155 ⁇ m in the width direction and at a pitch of 465 ⁇ m in the length direction, and each opening is shaped to expose the first electrode. It limited to the board
  • the substrate effective area was 16 mm square, and the thickness of the insulating layer 50 was about 1.0 ⁇ m.
  • an organic EL display was manufactured using the substrate on which the first electrode 48, the auxiliary electrode 49, and the insulating layer 50 were formed.
  • an organic EL layer 51 including a light emitting layer was formed by vacuum evaporation (FIG. 4 (Step 3)).
  • the degree of vacuum at the time of deposition was 1 ⁇ 10 ⁇ 3 Pa or less, and the substrate was rotated relative to the deposition source during the deposition.
  • the compound (HT-1) was deposited to 10 nm as a hole injection layer, and the compound (HT-2) was deposited to 50 nm as a hole transport layer.
  • a compound (GH-1) as a host material and a compound (GD-1) as a dopant material were vapor deposited to a thickness of 40 nm so that the doping concentration was 10%.
  • a compound (ET-1) and a compound (LiQ) were laminated at a thickness ratio of 40 nm at a volume ratio of 1: 1.
  • the structures of the compounds used in the organic EL layer are shown below.
  • a compound LiQ
  • sealing was performed by bonding a cap-like glass plate using an epoxy resin adhesive under a low humidity nitrogen atmosphere, and four 5 mm square bottom emission type organic EL displays were fabricated on one substrate. .
  • the organic EL display manufactured by the above-described method was made to emit light by direct current drive at 10 mA / cm 2 , and it was observed whether there was a light emission failure such as a non-emission area or uneven brightness.
  • the manufactured organic EL display was held at 80 ° C. for 500 hours as a durability test. After the durability test, the organic EL display was made to emit light by direct current drive at 10 mA / cm 2 , and it was observed whether or not the light emission characteristics such as the light emission region and the luminance unevenness were changed.
  • the light emission area area after the endurance test is 80% or more when the light emission area area before the endurance test is 100% as determined as follows: A +, A and B are accepted, and the light emission area area is 90 A + and A, which are% or more, have good light emission characteristics, and A +, which has a light emission area of 95% or more, is excellent in light emission characteristics.
  • a + 95 to 100% of light emitting area after endurance test A: 90 to 94% of light emitting area after endurance test B: 80 to 89% of light emitting area after endurance test C: 70 to 79% of light emitting area after endurance test D: 50 to 69% of light emitting area after endurance test E: The light emitting area after the endurance test is 0 to 49%.
  • Example 1 Under a yellow light, 0.313 g of NCI-831 and 0.261 g of FR-201 were weighed, 8.060 g of MBA and 5.100 g of PGMEA were added and dissolved by stirring. Next, 5.650 g of a 30% by mass MBA solution of polyimide (PI-1) obtained in Synthesis Example 1 and 1.825 g of a 50% by mass MBA solution of DPHA are added and stirred to prepare a uniform solution I got a liquid. Next, 7.326 g of the pigment dispersion (Bk-1) obtained in Preparation Example 1 was weighed, and 17.674 g of the prepared liquid obtained above was added and stirred to obtain a uniform solution. Thereafter, the resulting solution was filtered through a 0.45 ⁇ m filter to prepare Composition 1.
  • the prepared composition 1 is applied on an ITO substrate by spin coating at any rotation speed using a spin coater (MS-A100; manufactured by Mikasa), and then a buzzer hot plate (HPD-3000BZN; manufactured by As One Corporation) is formed. Using this, prebaking was performed at 110 ° C. for 120 seconds to prepare a prebaked film having a film thickness of about 1.8 ⁇ m.
  • MS-A100 manufactured by Mikasa
  • HPD-3000BZN manufactured by As One Corporation
  • the prepared pre-bake film is spray-developed with a 2.38 mass% TMAH aqueous solution using a small photolithographic developing apparatus (AD-2000; manufactured by Takizawa Sangyo Co., Ltd.), and the time required for the pre-bake film (unexposed area) to completely dissolve (Breaking Point; hereinafter, "BP") was measured.
  • AD-2000 small photolithographic developing apparatus
  • BP Bonding Point
  • a gray scale mask (MDRM MODEL 4000-5) for sensitivity measurement was prepared using the double-sided alignment single-sided exposure apparatus (Mask Aligner PEM-6M; manufactured by Union Optical Co., Ltd.). Patterning exposure was carried out with i-line (wavelength 365 nm), h-line (wavelength 405 nm) and g-line (wavelength 436 nm) of an ultra-high pressure mercury lamp via -FS (manufactured by Opto-Line International).
  • a 2.38 mass% TMAH aqueous solution was applied for 10 seconds using a small photolithographic developing apparatus (AD-2000; manufactured by Takizawa Sangyo Co., Ltd.), paddle development was performed, and rinsing was performed with water for 30 seconds.
  • the developing time is B.I. P. 1.5 times the The development time is the total of 10 seconds of applying the above-mentioned 2.38 mass% TMAH aqueous solution and the paddle development time.
  • thermal curing was performed at 250 ° C. using a high temperature inert gas oven (INH-9CD-S; manufactured by Koyo Thermo Systems Co., Ltd.) to prepare a cured film having a thickness of about 1.2 ⁇ m.
  • the heat curing conditions were heat curing at 250 ° C. for 60 minutes under a nitrogen atmosphere.
  • Examples 2 to 88 and Comparative Examples 1 to 9 Compositions 2 to 98 were prepared in the same manner as in Example 1 with the compositions described in Tables 3-1 to 15-1. A composition was formed into a film on a substrate like Example 1, using each composition obtained, and evaluation of the photosensitive characteristic and the characteristic of a cured film was performed. The evaluation results are shown in Tables 3-2 to 15-2. In order to facilitate comparison, Table 4-1, Table 5-1, Table 7-1, Table 8-1, Table 10-1, Table 11-1, Table 12-1, Table 13-1, Table 14-1, Table 4-2, Table 5-2, Table 7-2, Table 8-2, Table 10-2, Table 11-2, Table 12-2, Table 13-2, and Table 14-2. The composition and evaluation results of Example 7 are described. Similarly, the composition and evaluation results of Example 15 are described in Table 6-1, Table 9-1, Table 10-1, Table 6-2, Table 9-2, and Table 10-2.
  • Example 89 Metal of manufacturing organic EL display without polarizing layer
  • the outline of the organic electroluminescent display to produce is shown in FIG. First, a laminated film of chromium and gold was formed on a 38 ⁇ 46 mm non-alkali glass substrate 53 by electron beam evaporation, and the source electrode 54 and the drain electrode 55 were formed by etching.
  • APC ITO was deposited to a thickness of 10 nm on the upper layer by sputtering, and a reflective electrode 56 was formed as a first electrode by etching.
  • an amorphous IGZO film was formed by sputtering, and an oxide semiconductor layer 57 was formed between the source and drain electrodes by etching.
  • a positive type photosensitive polysiloxane material SP-P 2301; manufactured by Toray Industries, Inc.
  • SP-P 2301 a positive type photosensitive polysiloxane material
  • the via holes 58 and the pixel region 59 are opened by photolithography and then thermally cured to form a gate.
  • An insulating layer 60 was formed.
  • a gold film is formed by an electron beam evaporation method, and a gate electrode 61 is formed by etching to form an oxide TFT array.
  • the composition 7 is applied and prebaked on the oxide TFT array by the method described in the above-mentioned Example 1 to form a film, patterning exposure through a photomask having a predetermined pattern, development and rinsing to form a pixel region Were opened and then thermally cured to form a TFT protective layer / pixel division layer 62 having a light shielding property.
  • the pixel division layer having a shape in which openings of 70 ⁇ m in width and 260 ⁇ m in length are arranged at a pitch of 155 ⁇ m in the width direction and 465 ⁇ m in the length direction and each opening exposes the reflective electrode 56 It was formed limited to the substrate effective area. This opening finally becomes a light emitting pixel of the organic EL display.
  • the substrate effective area is 16 mm square, and the thickness of the pixel division layer is about 1.0 ⁇ m.
  • the organic EL light emitting layer 63 was formed using the compound (ET-1) and the compound (LiQ) as the electron transport material.
  • a transparent electrode 64 as a second electrode was formed by etching.
  • a sealing film 65 was formed using an organic EL sealing material (Structbond (registered trademark) XMF-T; manufactured by Mitsui Chemicals, Inc.) in a low humidity nitrogen atmosphere.
  • an alkali-free glass substrate 66 was bonded on the sealing film 65, and four 5 mm square top emission type organic EL displays having no polarization layer were produced on one substrate.
  • the organic EL display manufactured by the above-mentioned method is made to emit light by direct current drive at 10 mA / cm 2 , and the luminance (Y ') when the outside light is irradiated to the pixel division layer portion, the luminance when the outside light is not irradiated ( Y 0 ) was measured.
  • the contrast is 0.80 or more, A +, A and B are accepted, the contrast is 0.90 or more, A + and A are excellent in external light reflection reduction effect, and the contrast is 0. A +, which is 95 or more, was regarded as excellent in the external light reflection reduction effect. It was confirmed that the organic EL display manufactured by the above-described method has a contrast of 0.90 and can reduce external light reflection.
  • Contrast is 0.70 to 0.79
  • D Contrast of 0.50 to 0.69
  • Contrast is 0.01 to 0.49.
  • Example 90 Evaluation of halftone characteristics
  • a pre-baked film of composition 7 is formed to a thickness of 5 ⁇ m on an ITO substrate by the method described in Example 1 above, and a double-sided alignment single-sided exposure apparatus (mask aligner PEM-6M; manufactured by Union Optical Co., Ltd.) is used.
  • a double-sided alignment single-sided exposure apparatus mask aligner PEM-6M; manufactured by Union Optical Co., Ltd.
  • I-line wavelength 365 nm
  • h-line wavelength 405 nm
  • g-line wavelength of an ultra-high pressure mercury lamp
  • MDRM MODEL 4000-5-FS manufactured by Opto-Line International
  • the composition is prepared using a high temperature inert gas oven (INH-9CD-S; manufactured by Koyo Thermo Systems Co., Ltd.) A cured film of Object 7 was produced.
  • the thickness was measured, and the film thickness (T FT ) ⁇ m after heat curing at the exposure amount of the sensitivity of Example 7 was measured.
  • the exposure dose of the sensitivity of Example 7 is (E FT ) mJ / cm 2
  • a +, A, B and C pass when the step thickness is 0.5 ⁇ m or more, A +, A and B have halftone characteristics good when the step thickness is 1.0 ⁇ m or more A + and A, which have a step thickness of 1.5 ⁇ m or more, are considered to have excellent halftone characteristics. It was confirmed that the cured film of the composition 7 produced by the method described above had a stepped film thickness of 1.7 ⁇ m and excellent halftone characteristics.
  • step thickness is 2.0 ⁇ m or more
  • Example 91 Evaluation of bendability
  • a pre-baked film of composition 7 is formed on PI film substrate to a film thickness of 1.8 ⁇ m by the method described in Example 1 above, and double-sided alignment single-sided exposure apparatus (mask aligner PEM-6M; made by Union Optical Co., Ltd.) Patterning exposure with an i-line (wavelength 365 nm), an h-line (wavelength 405 nm) and a g-line (wavelength 436 nm) of an ultra-high pressure mercury lamp.
  • mask aligner PEM-6M made by Union Optical Co., Ltd.
  • openings having a width of 30 ⁇ m and a length of 50 ⁇ m were exposed through a photomask having a pattern arranged at a pitch of 60 ⁇ m in the width direction and at a pitch of 100 ⁇ m in the length direction.
  • the film was developed using a small photolithographic developing apparatus (AD-2000; manufactured by Takizawa Sangyo Co., Ltd.), and then a composition 7 of Composition 7 was prepared using a high temperature inert gas oven (INH-9CD-S; manufactured by Koyo Thermo Systems Co., Ltd.).
  • a cured film was produced.
  • the PI film substrate on which the cured film was formed was cut into a length of 2 cm ⁇ 5 cm.
  • FIG. 6 The schematic of the evaluation method of the bendability of a cured film is shown in FIG.
  • the cured film 68 formed on the PI film substrate 67 was folded with the surface of the cured film 68 facing outside as shown in FIG. 6 to sandwich the Si wafer 69 having a thickness of (T) mm.
  • Sellotape registered trademark
  • a +, A, B, and C are accepted as the minimum curvature radius R becomes 0.50 mm or less, A +, A, B become the bendability, the minimum curvature radius R becomes 0.25 mm or less A + and A were considered to be excellent in bendability, with a good value and a minimum curvature radius R of 0.10 mm or less. It was confirmed that the cured film of the composition 7 produced by the above method had a minimum curvature radius R of 0.40 mm at which no crack occurs in the bent portion, and the bendability was passed.
  • Minimum curvature radius R is 0 mm
  • FIG. 7A and 7B The schematic of the evaluation method of the residue at the time of thermosetting is shown to FIG. 7A and 7B.
  • the ITO substrate 71 on which the film 72 after development was formed was cut in half by the above method, as shown in FIG. 7A, the surfaces of the film 72 after development were overlapped to be in the state shown in FIG. 7B.
  • heat curing is performed using a high temperature inert gas oven (INH-9CD-S; manufactured by Koyo Thermo Systems Co., Ltd.), and residues resulting from thermal decomposition products and sublimation products during heat curing during heat curing are generated.
  • the cured film of the composition 7 was produced in the easy state.
  • compositions 15, 64, 65, 72, 73, 79 and 80 are used as examples 106 to 112, and composition 85 is used as comparative example 11 to obtain the respective compositions on a PI film substrate A cured film of the object was produced, and the bendability of each was evaluated to determine the minimum curvature radius R.
  • the evaluation results of Examples 105 to 112 and Comparative Example 11 are shown in Table 17.
  • Example 113 Manufacturing method of flexible organic EL display having no polarization layer
  • An outline of the organic EL display to be produced is shown in FIG.
  • a PI film substrate is temporarily fixed on a 38 ⁇ 46 mm non-alkali glass substrate with an adhesive layer, and dehydrated baked at 130 ° C. for 120 seconds using a hot plate (SCW-636; Dainippon Screen Mfg. Co., Ltd.) did.
  • a SiO 2 film 73 was formed as a gas barrier layer on the PI film substrate by the CVD method.
  • a laminated film of chromium and gold was formed by an electron beam vapor deposition method, and a source electrode 74 and a drain electrode 75 were formed by etching.
  • APC ITO was deposited on the upper layer of the layer by sputtering, and a reflective electrode 76 was formed as a first electrode by etching.
  • an amorphous IGZO film was formed by sputtering, and an oxide semiconductor layer 77 was formed between the source and drain electrodes by etching.
  • a positive type photosensitive polysiloxane material SP-P 2301; manufactured by Toray Industries, Inc.
  • SP-P 2301 a positive type photosensitive polysiloxane material
  • An insulating layer 80 was formed.
  • a gold film is formed by an electron beam evaporation method, and a gate electrode 81 is formed by etching to form an oxide TFT array.
  • the composition 52 is applied and prebaked on the oxide TFT array by the method described in the above-mentioned Example 1 to form a film, patterning exposure through a photomask having a predetermined pattern, development and rinsing to form a pixel region Then, the resultant was thermally cured to form a TFT protective layer / pixel division layer 82 having a light shielding property.
  • the openings of 70 ⁇ m in width and 260 ⁇ m in length are arranged at a pitch of 155 ⁇ m in the width direction and at a pitch of 465 ⁇ m in the length direction, and each opening has a shape for exposing the reflective electrode It was formed limited to the effective area. This opening finally becomes a light emitting pixel of the organic EL display.
  • the substrate effective area is 16 mm square, and the thickness of the pixel division layer is about 1.0 ⁇ m.
  • the organic EL light emitting layer 83 was formed using the compound (ET-1) and the compound (LiQ) as the electron transport material.
  • a transparent electrode 84 was formed as a second electrode by etching.
  • a sealing film 85 was formed using an organic EL sealing material (Structbond (registered trademark) XMF-T; manufactured by Mitsui Chemicals, Inc.) in a low humidity nitrogen atmosphere.
  • the non-alkali glass substrate is peeled off from the PI film substrate, and 5 mm square on one substrate
  • Four top emission type flexible organic EL displays having no polarizing layer were manufactured.
  • the organic EL display manufactured by the above method is made to emit light by direct current drive at 10 mA / cm 2 and the external light is irradiated to the pixel division layer portion (Y '), the external light is not irradiated ( Y 0 ) was measured.
  • the contrast is 0.80 or more, A +, A and B are accepted, the contrast is 0.90 or more, A + and A are excellent in external light reflection reduction effect, and the contrast is 0. A +, which is 95 or more, was regarded as excellent in the external light reflection reduction effect. It was confirmed that the organic EL display manufactured by the above method had a contrast of 0.90 and was able to reduce external light reflection.
  • Contrast is 0.70 to 0.79
  • D Contrast of 0.50 to 0.69
  • Contrast is 0.01 to 0.49.
  • the organic EL display produced by the above method was made to emit light by direct current drive at 10 mA / cm 2 . While emitting light, the organic EL display was curved in a U-shape with the surface of the PET film to be the display surface facing outwards to make the display part curved, and the curvature radius of the curved surface was held for 1 minute . After the display unit was held in a curved surface shape, the organic EL display did not cause abnormal light emission, so it was confirmed that the organic EL display was flexible.
  • the photosensitive resin composition according to the present invention, the cured film, and the element provided with the cured film have high sensitivity, can form a low-tapered pattern after heat curing, and suppress changes in the dimension opening width of the pattern before and after heat curing. Since it is possible to obtain a cured film excellent in light shielding property, it can be suitably used for an organic EL display.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Materials For Photolithography (AREA)
  • Electroluminescent Light Sources (AREA)
  • Epoxy Resins (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

高感度であり、熱硬化後に低テーパー形状のパターンを形成でき、熱硬化前後におけるパターン開口寸法幅の変化を抑制することが可能であって、遮光性に優れた硬化膜及びそれを形成する感光性樹脂組成物を得ることを目的とする。(A)アルカリ可溶性樹脂、(C)感光剤、(Da)黒色剤及び(F)架橋剤を含有する感光性樹脂組成物であって、(A)アルカリ可溶性樹脂が、特定の(A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール、及び(A1-4)ポリベンゾオキサゾール前駆体からなる群より選ばれる一種類以上を含む(A1)第1の樹脂を含有し、かつ、フッ素原子を有する構造単位を特定比率で含有し、(Da)黒色剤の含有比率が、特定比率であって、(F)架橋剤が、特定構造のエポキシ化合物、及び/又は特定構造単位を有するエポキシ樹脂を含有する感光性樹脂組成物である。

Description

感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び有機ELディスプレイ、並びに有機ELディスプレイの製造方法
 本発明は、感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び有機ELディスプレイ、並びに有機ELディスプレイの製造方法に関する。
 近年、スマートフォン、タブレットPC、及びテレビなど、薄型ディスプレイを有する表示装置において、有機エレクトロルミネッセンス(Electroluminescence:EL)ディスプレイを用いた製品が多く開発されている。
 一般に、有機ELディスプレイは、発光素子の光取り出し側に酸化インジウムスズ(以下、「ITO」)などの透明電極を有し、発光素子の光取り出しでない側にマグネシウムと銀との合金などの金属電極を有する。また、発光素子の画素間を分割するため、透明電極と金属電極との層間に画素分割層という絶縁層が設けられる。画素分割層を形成した後、画素領域に相当する、画素分割層が開口して下地である透明電極又は金属電極が露出した領域に、蒸着マスクを介して発光材料を蒸着によって成膜し、発光層が形成される。透明電極及び金属電極は、スパッタによって成膜されるのが一般的であるが、成膜された透明電極又は金属電極が断線するのを防ぐため、画素分割層には低テーパーのパターン形状が要求される。
 また、有機ELディスプレイは、発光素子を制御するための薄膜トランジスタ(以下、「TFT」)を有しており、駆動用TFTと、スイッチング用TFTなどを備える。一般に、これらのTFTは上記の画素分割層の下地である透明電極又は金属電極の、さらに下層に位置する積層構造として形成される。これらのTFTや、TFT同士を接続する金属配線などを形成したTFTアレイによる段差は、その後に形成される透明電極、金属電極、画素分割層、及び発光層の成膜における均一性等を悪化させ、有機ELディスプレイの表示特性低下や信頼性低下の要因になる。そのため、TFTアレイを形成した後、TFT平坦化層及び/又はTFT保護層を形成し、TFTアレイによる段差を低減又は平滑化するのが一般的である。
 有機ELディスプレイは、陰極から注入された電子と陽極から注入された正孔との再結合によるエネルギーを用いて発光する自発光素子を有する。そのため、電子又は正孔の移動を阻害する物質、及び電子と正孔との再結合を阻害するエネルギー準位を形成する物質などが存在すると、発光素子の発光効率の低下や発光材料の失活などの影響が及ぼされることから、発光素子の寿命低下に繋がる。画素分割層は、発光素子に隣接する位置に形成されるため、画素分割層からの脱ガスやイオン成分の流出は、有機ELディスプレイの寿命低下の一因と成り得る。そのため、画素分割層には高耐熱性が要求される。高耐熱性を有する感光性樹脂組成物としては、高耐熱性のポリイミド等の樹脂を用いたネガ型感光性樹脂組成物が知られている(例えば、特許文献1参照)。このような感光性樹脂組成物を用いることで、低テーパー形状のパターンを有する、高耐熱性の画素分割層を形成できる。
 また、有機ELディスプレイは自発光素子を有するため、屋外における太陽光などの外光が入射すると、その外光反射によって視認性及びコントラストが低下する。そのため、外光反射を低減する技術が要求される。
 外光を遮断して外光反射を低減する技術としては、アルカリ可溶性ポリイミドと着色剤とを含有する感光性樹脂組成物が知られている(例えば、特許文献2参照)。すなわち、ポリイミド、及び顔料などの着色剤を含有する感光性樹脂組成物を用いて、高耐熱性及び遮光性を有する画素分割層を形成することによって、外光反射を低減する方法である。
国際公開第2017/057281号 国際公開第2016/158672号
 有機ELディスプレイの信頼性向上の観点から、発光素子に隣接する画素分割層に高耐熱性が要求されることに加え、TFT平坦化層及びTFT保護層も、画素分割層を介して発光層に近接する位置に形成されるため、同様に、高耐熱性が要求される。しかしながら、感光性樹脂組成物に遮光性を付与させるために顔料などの着色剤を含有させる場合、着色剤の含有量を増加させるのに従って、パターン露光時の紫外線等も遮断されるため、露光時の感度が低下してしまう。従って、従来知られていた着色剤を含有する感光性樹脂組成物は、何れも、有機ELディスプレイの画素分割層、TFT平坦化層、又はTFT保護層を形成する材料として使用するには特性が不十分であった。具体的には、感度、遮光性、又は低テーパー形状のパターン加工性のいずれかが不足していた。
 例えば、感光性樹脂組成物の遮光性を向上させる場合、パターン露光時に膜深部の硬化が不足するため、現像時に膜深部がサイドエッチングされてしまう。そのため、現像後に逆テーパー形状になってしまい、低テーパー形状のパターン形成の阻害要因になる。一方、膜深部まで十分に硬化させるには、パターン露光時の露光量を高くして紫外線硬化(UV硬化)を促進する必要がある。しかしながら、露光量が高くなると、UV硬化時に膜が過剰に架橋して熱硬化時のリフロー性が低下するため、高テーパー形状のパターンが形成されてしまう。従って、例えば特許文献2に記載されたアルカリ可溶性ポリイミド、及び顔料などの着色剤を含有する感光性樹脂組成物では、感度、遮光性、及び低テーパー形状のパターン形成などの特性を兼ね備えることが困難であった。
 さらに、現像後に高テーパー形状のパターンを形成し、熱硬化時のリフローによって低テーパー形状のパターンを形成する場合、熱硬化時にパターン裾もリフローしてしまう。そのため、現像後のパターン開口寸法幅と比較して、熱硬化後のパターン開口寸法幅が小さくなるため、有機ELディスプレイなどの表示装置の画素設計等に誤差が生ずる要因になる。また、熱硬化時のリフローによるパターン開口寸法幅のバラつきが、パネル製造歩留まり低下の要因になる。従って、例えば特許文献1に記載された高耐熱性のポリイミド等の樹脂、及び顔料などの着色剤を含有する感光性樹脂組成物では、低テーパー形状のパターン形成と、熱硬化前後におけるパターン開口寸法幅の変化の抑制との両立が困難であった。
 本発明は、上記に鑑みてなされたものであり、その目的は、高感度であり、熱硬化後に低テーパー形状のパターンを形成でき、熱硬化前後におけるパターン開口寸法幅の変化を抑制することが可能であって、遮光性に優れた硬化膜を得ることが可能な感光性樹脂組成物を得ることにある。
 本発明の一態様に係る感光性樹脂組成物は、(A)アルカリ可溶性樹脂、(C)感光剤、(Da)黒色剤、及び(F)架橋剤を含有する感光性樹脂組成物であって、前記(A)アルカリ可溶性樹脂が、(A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール、及び(A1-4)ポリベンゾオキサゾール前駆体からなる群より選ばれる一種類以上を含む(A1)第1の樹脂を含有し、前記(A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール、及び(A1-4)ポリベンゾオキサゾール前駆体からなる群より選ばれる一種類以上が、フッ素原子を有する構造単位を、全構造単位の10~100mol%で含有し、前記(Da)黒色剤の含有比率が、全固形分中における5~70質量%であって、前記(F)架橋剤が、(F1)分子中にフルオレン骨格及び2つ以上のエポキシ基を有するエポキシ化合物、(F2)分子中にインダン骨格及び2つ以上のエポキシ基を有するエポキシ化合物、(F3)芳香族構造、脂環式構造及びエポキシ基を含む構造単位を有するエポキシ樹脂、(F4)ビフェニル構造、ターフェニル構造、ナフタレン構造、アントラセン構造及びフルオレン構造からなる群より選ばれる一種類以上、並びに2つ以上のエポキシ基を含む構造単位を有するエポキシ樹脂、(F5)分子中に2つ以上のフルオレン骨格又は2つ以上のインダン骨格、並びに2つ以上のエポキシ基を有するエポキシ化合物、(F6)分子中にスピロ骨格で連結された2つ以上の縮合多環式骨格、並びに2つ以上のエポキシ基を有するエポキシ化合物、(F7)分子中にインドリノン骨格又はイソインドリノン骨格、並びに2つ以上のエポキシ基を有するエポキシ化合物、及び(F8)分子中に2つ以上のナフタレン骨格及び2つ以上のエポキシ基を有するエポキシ化合物、からなる群より選ばれる一種類以上を含有する。
 本発明による感光性樹脂組成物によれば、高感度であり、熱硬化後に低テーパー形状のパターンを形成でき、熱硬化前後におけるパターン開口寸法幅の変化の抑制が可能で、遮光性に優れた硬化膜を得ることが可能となる。
図1は、本発明の感光性樹脂組成物の硬化膜を用いた有機ELディスプレイにおける工程1~工程7の製造プロセスを示す模式的断面図である。 図2は、本発明の感光性樹脂組成物の硬化膜を用いた液晶ディスプレイにおける工程1~工程13の製造プロセスを示す模式的断面図である。 図3は、段差形状を有する硬化パターンの断面の一例を示す断面図である。 図4は、発光特性評価に用いた有機ELディスプレイの基板における工程1~工程4の製造プロセスを平面図で例示する概略図である。 図5は、偏光層を有しない有機ELディスプレイを示す模式的断面図である。 図6は、硬化膜の折り曲げ性の評価方法を示す概略図である。 図7Aは、熱硬化時の残渣の評価方法を示す概略図である。 図7Bは、熱硬化時の残渣の評価方法を示す概略図である。 図8は、偏光層を有しないフレキシブル有機ELディスプレイを示す模式的断面図である。
 以下、本発明に係る感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び有機ELディスプレイ、並びに有機ELディスプレイの製造方法の好適な実施形態について詳細に説明するが、本発明は以下の実施例を含む実施形態に限定して解釈されるものではなく、発明の目的を達成でき、かつ発明の要旨を逸脱しない範囲内においての種々の変更が可能である。
 本発明による感光性樹脂組成物は、(A)アルカリ可溶性樹脂、(C)感光剤、(Da)黒色剤及び(F)架橋剤を含有する感光性樹脂組成物であって、
 前記(A)アルカリ可溶性樹脂が、(A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール、及び(A1-4)ポリベンゾオキサゾール前駆体からなる群より選ばれる一種類以上を含む(A1)第1の樹脂を含有し、
 前記(A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール、及び(A1-4)ポリベンゾオキサゾール前駆体からなる群より選ばれる一種類以上が、フッ素原子を有する構造単位を全構造単位の10~100mol%で含有し、
 前記(Da)黒色剤の含有比率が、全固形分中における5~70質量%であって、
 前記(F)架橋剤が、
 (F1)分子中にフルオレン骨格及び2つ以上のエポキシ基を有するエポキシ化合物、
 (F2)分子中にインダン骨格及び2つ以上のエポキシ基を有するエポキシ化合物、
 (F3)芳香族構造、脂環式構造及びエポキシ基を含む構造単位を有するエポキシ樹脂、
 (F4)ビフェニル構造、ターフェニル構造、ナフタレン構造、アントラセン構造及びフルオレン構造からなる群より選ばれる一種類以上、及び、2つ以上のエポキシ基を含む構造単位を有するエポキシ樹脂、
 (F5)分子中に2つ以上のフルオレン骨格又は2つ以上のインダン骨格、並びに2つ以上のエポキシ基を有するエポキシ化合物、
 (F6)分子中にスピロ骨格で連結された2つ以上の縮合多環式骨格、並びに2つ以上のエポキシ基を有するエポキシ化合物、
 (F7)分子中にインドリノン骨格又はイソインドリノン骨格、並びに2つ以上のエポキシ基を有するエポキシ化合物、及び
 (F8)分子中に2つ以上のナフタレン骨格及び2つ以上のエポキシ基を有するエポキシ化合物、からなる群より選ばれる一種類以上を含有する。
 <(A1)第1の樹脂>
 本発明の感光性樹脂組成物は、(A)アルカリ可溶性樹脂として、少なくとも(A1)第1の樹脂を含有する。
 (A1)第1の樹脂として、(A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール、及び(A1-4)ポリベンゾオキサゾール前駆体から選ばれる一種類以上を含有する。
 本発明において、(A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール、及び(A1-4)ポリベンゾオキサゾール前駆体は、単一の樹脂又はそれらの共重合体のいずれでもよい。
 <(A1-1)ポリイミド及び(A1-2)ポリイミド前駆体>
 (A1-2)ポリイミド前駆体としては、例えば、テトラカルボン酸、対応するテトラカルボン酸二無水物又はテトラカルボン酸ジエステル二塩化物などと、ジアミン、対応するジイソシアネート化合物又はトリメチルシリル化ジアミンなどと、を反応させることによって得られるものが挙げられ、テトラカルボン酸残基及び/又はその誘導体残基と、ジアミン残基及び/又はその誘導体残基を有する。(A1-2)ポリイミド前駆体としては、例えば、ポリアミド酸、ポリアミド酸エステル、ポリアミド酸アミド又はポリイソイミドが挙げられる。
 (A1-1)ポリイミドとしては、例えば、上述したポリアミド酸、ポリアミド酸エステル、ポリアミド酸アミド又はポリイソイミドを、加熱又は酸若しくは塩基などを用いた反応により、脱水閉環させることによって得られるものが挙げられ、テトラカルボン酸残基及び/又はその誘導体残基と、ジアミン残基及び/又はその誘導体残基を有する。
 (A1-2)ポリイミド前駆体は、熱硬化性樹脂であり、高温で熱硬化させて脱水閉環させることで高耐熱性のイミド結合が形成され、(A1-1)ポリイミドが得られる。従って、高耐熱性のイミド結合を有する(A1-1)ポリイミドを感光性樹脂組成物に含有させることで、得られる硬化膜の耐熱性を著しく向上させることができる。そのため、硬化膜を高耐熱性が要求される用途に用いる場合などに好適である。また、(A1-2)ポリイミド前駆体は、脱水閉環後に耐熱性が向上する樹脂であるため、脱水閉環前の前駆体構造の特性と硬化膜の耐熱性を両立させたい用途に用いる場合などに好適である。
 また、(A1-1)ポリイミド及び(A1-2)ポリイミド前駆体は、極性を有する結合として、イミド結合及び/又はアミド結合を有する。そのため、後述する(D)着色剤として、特に(D1)顔料を含有させる場合、これらの極性を有する結合は(D1)顔料と強く相互作用するため、(D1)顔料の分散安定性を向上させることができる。
 本発明に用いられる(A1-1)ポリイミドとしては、硬化膜の耐熱性向上の観点から、次の一般式(1)で表される構造単位を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000005
 一般式(1)において、Rは、4~10価の有機基を表し、Rは、2~10価の有機基を表す。R及びRは、それぞれ独立して、フェノール性水酸基、スルホン酸基、メルカプト基又は一般式(5)若しくは一般式(6)で表される置換基を表す。pは、0~6の整数を表し、qは、0~8の整数を表す。
 一般式(1)のRは、テトラカルボン酸残基及び/又はその誘導体残基を表し、Rは、ジアミン残基及び/又はその誘導体残基を表す。テトラカルボン酸誘導体としては、テトラカルボン酸二無水物、テトラカルボン酸二塩化物又はテトラカルボン酸活性ジエステルが挙げられる。ジアミン誘導体としては、ジイソシアネート化合物又はトリメチルシリル化ジアミンが挙げられる。
 一般式(1)において、Rは、炭素数2~20の脂肪族構造、炭素数4~20の脂環式構造及び炭素数6~30の芳香族構造から選ばれる一種類以上を有する4~10価の有機基が好ましい。また、Rは、炭素数2~20の脂肪族構造、炭素数4~20の脂環式構造及び炭素数6~30の芳香族構造から選ばれる一種類以上を有する2~10価の有機基が好ましい。qは、1~8が好ましい。上述した脂肪族構造、脂環式構造、及び芳香族構造は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれでもよい。
Figure JPOXMLDOC01-appb-C000006
 一般式(5)及び(6)において、R19~R21は、それぞれ独立して、水素、炭素数1~10のアルキル基、炭素数2~6のアシル基又は炭素数6~15のアリール基を表す。一般式(5)及び(6)において、R19~R21は、それぞれ独立して、水素、炭素数1~6のアルキル基、炭素数2~4のアシル基又は炭素数6~10のアリール基が好ましい。上述したアルキル基、アシル基、及びアリール基は、無置換体又は置換体のいずれでもよい。
 (A1-1)ポリイミドとしては、一般式(1)で表される構造単位を主成分として含有することが好ましく、(A1-1)ポリイミド中の全構造単位に占める、一般式(1)で表される構造単位の含有比率は、50~100mol%が好ましく、60~100mol%がより好ましく、70~100mol%がさらに好ましい。含有比率が50~100mol%であると、硬化膜の耐熱性を向上させることができる。
 本発明に用いられる(A1-2)ポリイミド前駆体としては、硬化膜の耐熱性向上及び現像後の解像度向上の観点から、一般式(3)で表される構造単位を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000007
 一般式(3)において、Rは、4~10価の有機基を表し、R10は、2~10価の有機基を表す。R11は、上述した一般式(5)又は一般式(6)で表される置換基を表し、R12は、フェノール性水酸基、スルホン酸基、又はメルカプト基を表し、R13は、フェノール性水酸基、スルホン酸基、メルカプト基、又は上述した一般式(5)若しくは一般式(6)で表される置換基を表す。tは、2~8の整数を表し、uは、0~6の整数を表し、vは、0~8の整数を表し、2≦t+u≦8である。
 一般式(3)のRは、テトラカルボン酸残基及び/又はその誘導体残基を表し、R10は、ジアミン残基及び/又はその誘導体残基を表す。テトラカルボン酸誘導体としては、テトラカルボン酸二無水物、テトラカルボン酸二塩化物又はテトラカルボン酸活性ジエステルが挙げられる。ジアミン誘導体としては、ジイソシアネート化合物又はトリメチルシリル化ジアミンが挙げられる。
 一般式(3)において、Rは、炭素数2~20の脂肪族構造、炭素数4~20の脂環式構造及び炭素数6~30の芳香族構造から選ばれる一種類以上を有する4~10価の有機基が好ましい。また、R10は、炭素数2~20の脂肪族構造、炭素数4~20の脂環式構造及び炭素数6~30の芳香族構造から選ばれる一種類以上を有する2~10価の有機基が好ましい。vは、1~8が好ましい。上述した脂肪族構造、脂環式構造及び芳香族構造は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれでもよい。
 (A1-2)ポリイミド前駆体としては、一般式(3)で表される構造単位を主成分として含有することが好ましく、(A1-2)ポリイミド前駆体中の全構造単位に占める一般式(3)で表される構造単位の含有比率は、50~100mol%が好ましく、60~100mol%がより好ましく、70~100mol%がさらに好ましい。含有比率が50~100mol%であると、解像度を向上させることができる。
 (A1-2)ポリイミド前駆体としては、一般式(3)で表される構造単位におけるR11が、一般式(5)で表される置換基である場合において、R19が水素である構造単位を、アミド酸構造単位という。(A1-2)ポリイミド前駆体におけるアミド酸構造単位は、テトラカルボン酸残基及び/又はその誘導体残基としてカルボキシ基を有する。なお、一般式(3)で表される構造単位におけるR11が、一般式(5)で表される置換基のみからなり、R19が水素である(A1-2)ポリイミド前駆体を、(A1-2a)ポリアミド酸という。
 (A1-2)ポリイミド前駆体としては、一般式(3)で表される構造単位におけるR11が、一般式(5)で表される置換基である場合において、R19が炭素数1~10のアルキル基、炭素数2~6のアシル基又は炭素数6~15のアリール基である構造単位を、アミド酸エステル構造単位という。(A1-2)ポリイミド前駆体におけるアミド酸エステル構造単位は、テトラカルボン酸残基及び/又はその誘導体残基がエステル化された基として、カルボン酸エステル基を有する。なお、一般式(3)で表される構造単位におけるR11が、一般式(5)で表される置換基のみからなり、R19が炭素数1~10のアルキル基、炭素数2~6のアシル基又は炭素数6~15のアリール基である(A1-2)ポリイミド前駆体を、(A1-2b)ポリアミド酸エステルという。
 (A1-2)ポリイミド前駆体としては、一般式(3)で表される構造単位におけるR11が、一般式(6)で表される置換基である場合の構造単位を、アミド酸アミド構造単位という。(A1-2)ポリイミド前駆体におけるアミド酸アミド構造単位は、テトラカルボン酸残基及び/又はその誘導体残基がアミド化された基として、カルボン酸アミド基を有する。なお、一般式(3)で表される構造単位におけるR11が、一般式(6)で表される置換基のみからなる(A1-2)ポリイミド前駆体を、(A1-2c)ポリアミド酸アミドという。
 現像後の解像度向上及び現像後の低テーパー形状のパターン形成の観点から、(A1-2)ポリイミド前駆体としては、前記アミド酸構造単位、並びに、前記アミド酸エステル構造単位及び/又は前記アミド酸アミド構造単位を含有することが好ましい。なお、アミド酸構造単位と、アミド酸エステル構造単位を含有する(A1-2)ポリイミド前駆体を、(A1-2-1)ポリアミド酸部分エステルという。一方、アミド酸構造単位と、アミド酸アミド構造単位を含有する(A1-2)ポリイミド前駆体を、(A1-2-2)ポリアミド酸部分アミドという。また、アミド酸構造単位、アミド酸エステル構造単位及びアミド酸アミド構造単位を含有する(A1-2)ポリイミド前駆体を、(A1-2-3)ポリアミド酸部分エステルアミドという。アミド酸構造単位、並びに、アミド酸エステル構造単位及び/又はアミド酸アミド構造単位を含有するこれらのポリイミド前駆体は、テトラカルボン酸残基及び/又はその誘導体残基としてカルボキシ基を有する(A1-2a)ポリアミド酸から、カルボキシ基の一部をエステル化及び/又はカルボキシ基の一部をアミド化させることで合成できる。
 (A1-2)ポリイミド前駆体中の全構造単位に占めるポリアミド酸単位の含有比率は、10mol%以上が好ましく、20mol%以上がより好ましく、30mol%以上がさらに好ましい。含有比率が10mol%以上であると、現像後の解像度を向上できる。一方、ポリアミド酸単位の含有比率は、60mol%以下が好ましく、50mol%以下がより好ましく、40mol%以下がさらに好ましい。含有比率が60mol%以下であると、現像後に低テーパー形状のパターンを形成できる。
 (A1-2)ポリイミド前駆体中の全構造単位に占めるポリアミド酸エステル単位及びポリアミド酸アミド単位の含有比率の合計は、40mol%以上が好ましく、50mol%以上がより好ましく、60mol%以上がさらに好ましい。含有比率の合計が、40mol%以上であると、現像後に低テーパー形状のパターンを形成できる。一方、ポリアミド酸エステル単位及びポリアミド酸アミド単位の含有比率の合計は、90mol%以下が好ましく、80mol%以下がより好ましく、70mol%がさらに好ましい。含有比率の合計が、90mol%以下であると、現像後の解像度を向上できる。
 <(A1-3)ポリベンゾオキサゾール及び(A1-4)ポリベンゾオキサゾール前駆体>
 (A1-4)ポリベンゾオキサゾール前駆体としては、例えば、ジカルボン酸、対応するジカルボン酸二塩化物又はジカルボン酸活性ジエステルなどと、ジアミンとしてビスアミノフェノール化合物などとを反応させることによって得られるものが挙げられ、ジカルボン酸残基及び/又はその誘導体残基と、ビスアミノフェノール化合物残基及び/又はその誘導体残基を有する。(A1-4)ポリベンゾオキサゾール前駆体としては、例えば、ポリヒドロキシアミドが挙げられる。
 (A1-3)ポリベンゾオキサゾールとしては、例えば、ジカルボン酸と、ジアミンとしてビスアミノフェノール化合物とを、ポリリン酸を用いた反応により、脱水閉環させることによって得られるものや、上述したポリヒドロキシアミドを、加熱又は無水リン酸、塩基若しくはカルボジイミド化合物などを用いた反応により、脱水閉環させることによって得られるものが挙げられ、ジカルボン酸残基及び/又はその誘導体残基と、ビスアミノフェノール化合物残基及び/又はその誘導体残基を有する。
 (A1-4)ポリベンゾオキサゾール前駆体は、熱硬化性樹脂であり、高温で熱硬化させて脱水閉環させることで高耐熱性かつ剛直なベンゾオキサゾール環が形成され、(A1-3)ポリベンゾオキサゾールが得られる。従って、高耐熱性かつ剛直なベンゾオキサゾール環を有する(A1-3)ポリベンゾオキサゾールを感光性樹脂組成物に含有させることで、得られる硬化膜の耐熱性を著しく向上させることができる。そのため、硬化膜を高耐熱性が要求される用途に用いる場合などに好適である。また、(A1-4)ポリベンゾオキサゾール前駆体は、脱水閉環後に耐熱性が向上する樹脂であるため、脱水閉環前の前駆体構造の特性と硬化膜の耐熱性を両立させたい用途に用いる場合などに好適である。
 また、(A1-3)ポリベンゾオキサゾール及び(A1-4)ポリベンゾオキサゾール前駆体は、極性を有する結合として、オキサゾール結合及び/又はアミド結合を有する。そのため、後述する(D)着色剤として、特に(D1)顔料を含有させる場合、これらの極性を有する結合は(D1)顔料と強く相互作用するため、(D1)顔料の分散安定性を向上させることができる。
 本発明に用いられる(A1-3)ポリベンゾオキサゾールとしては、硬化膜の耐熱性向上の観点から、一般式(2)で表される構造単位を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000008
 一般式(2)において、Rは、2~10価の有機基を表し、Rは、芳香族構造を有する4~10価の有機基を表す。R及びRは、それぞれ独立して、フェノール性水酸基、スルホン酸基、メルカプト基又は上述した一般式(5)若しくは一般式(6)で表される置換基を表す。rは、0~8の整数を表し、sは、0~6の整数を表す。
 一般式(2)のRは、ジカルボン酸残基及び/又はその誘導体残基を表し、Rは、ビスアミノフェノール化合物残基及び/又はその誘導体残基を表す。ジカルボン酸誘導体としては、ジカルボン酸無水物、ジカルボン酸塩化物、ジカルボン酸活性エステル、トリカルボン酸無水物、トリカルボン酸塩化物、トリカルボン酸活性エステル、ジホルミル化合物が挙げられる。
 一般式(2)において、Rは、炭素数2~20の脂肪族構造、炭素数4~20の脂環式構造及び炭素数6~30の芳香族構造から選ばれる一種類以上を有する2~10価の有機基が好ましい。また、Rは、炭素数6~30の芳香族構造を有する4~10価の有機基が好ましい。sは、1~8が好ましい。上述した脂肪族構造、脂環式構造及び芳香族構造は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれでもよい。
 (A1-3)ポリベンゾオキサゾールとしては、一般式(2)で表される構造単位を主成分として含有することが好ましく、(A1-3)ポリベンゾオキサゾール中の全構造単位に占める、一般式(2)で表される構造単位の含有比率は、50~100mol%が好ましく、60~100mol%がより好ましく、70~100mol%がさらに好ましい。含有比率が50~100mol%であると、硬化膜の耐熱性を向上させることができる。
 本発明に用いられる(A1-4)ポリベンゾオキサゾール前駆体としては、硬化膜の耐熱性向上及び現像後の解像度向上の観点から、一般式(4)で表される構造単位を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000009
 一般式(4)において、R14は、2~10価の有機基を表し、R15は、芳香族構造を有する4~10価の有機基を表す。R16は、フェノール性水酸基、スルホン酸基、メルカプト基、又は上述した一般式(5)若しくは一般式(6)で表される置換基を表し、R17は、フェノール性水酸基を表し、R18は、スルホン酸基、メルカプト基、又は上述した一般式(5)若しくは一般式(6)で表される置換基を表す。wは、0~8の整数を表し、xは、2~8の整数を表し、yは、0~6の整数を表し、2≦x+y≦8である。
 一般式(4)のR14は、ジカルボン酸残基及び/又はその誘導体残基を表し、R15は、ビスアミノフェノール化合物残基及び/又はその誘導体残基を表す。ジカルボン酸誘導体としては、ジカルボン酸無水物、ジカルボン酸塩化物、ジカルボン酸活性エステル、トリカルボン酸無水物、トリカルボン酸塩化物、トリカルボン酸活性エステル、ジホルミル化合物が挙げられる。
 一般式(4)において、R14は、炭素数2~20の脂肪族構造、炭素数4~20の脂環式構造及び炭素数6~30の芳香族構造から選ばれる一種類以上を有する2~10価の有機基が好ましい。また、R15は、炭素数6~30の芳香族構造を有する4~10価の有機基が好ましい。上述した脂肪族構造、脂環式構造、及び芳香族構造は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれでもよい。
 (A1-4)ポリベンゾオキサゾール前駆体としては、一般式(4)で表される構造単位を主成分として含有することが好ましく、(A1-4)ポリベンゾオキサゾール前駆体中の全構造単位に占める、一般式(4)で表される構造単位の含有比率は、50~100mol%が好ましく、60~100mol%がより好ましく、70~100mol%がさらに好ましい。含有比率が50~100mol%であると、解像度を向上させることができる。
 <テトラカルボン酸及びジカルボン酸並びにそれらの誘導体>
 テトラカルボン酸としては、例えば、芳香族テトラカルボン酸、脂環式テトラカルボン酸又は脂肪族テトラカルボン酸が挙げられる。これらのテトラカルボン酸は、カルボキシ基の酸素原子以外にヘテロ原子を有してもよい。
 芳香族テトラカルボン酸及びその誘導体としては、例えば、1,2,4,5-ベンゼンテトラカルボン酸(ピロメリット酸)、3,3’,4,4’-ビフェニルテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)エーテル、2,3,5,6-ピリジンテトラカルボン酸、若しくは3,4,9,10-ペリレンテトラカルボン酸、N,N’-ビス[5,5’-ヘキサフルオロプロパン-2,2-ジイル-ビス(2-ヒドロキシフェニル)]ビス(3,4-ジカルボキシ安息香酸アミド)、又はそれらのテトラカルボン酸二無水物、テトラカルボン酸二塩化物若しくはテトラカルボン酸活性ジエステルが挙げられる。
 脂環式テトラカルボン酸及びその誘導体としては、例えば、ビシクロ[2.2.2]オクタン-7-エン-2,3,5,6-テトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、1,2,3,4-シクロブタンテトラカルボン酸、若しくは2,3,4,5-テトラヒドロフランテトラカルボン酸、又はそれらのテトラカルボン酸二無水物、テトラカルボン酸二塩化物、若しくはテトラカルボン酸活性ジエステルが挙げられる。
 脂肪族テトラカルボン酸及びその誘導体としては、例えば、ブタン-1,2,3,4-テトラカルボン酸、又はそのテトラカルボン酸二無水物、テトラカルボン酸二塩化物若しくはテトラカルボン酸活性ジエステルが挙げられる。
 (A1-3)ポリベンゾオキサゾール及び(A1-4)ポリベンゾオキサゾール前駆体中のジカルボン酸及びその誘導体としては、トリカルボン酸及び/又はその誘導体を用いても構わない。
 ジカルボン酸及びトリカルボン酸としては、例えば、芳香族ジカルボン酸、芳香族トリカルボン酸、脂環式ジカルボン酸、脂環式トリカルボン酸、脂肪族ジカルボン酸又は脂肪族トリカルボン酸が挙げられる。これらジカルボン酸及びトリカルボン酸は、カルボキシ基の酸素原子以外に、酸素原子以外のヘテロ原子を有してもよい。
 芳香族ジカルボン酸及びその誘導体としては、例えば、4,4’-ジカルボキシビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジカルボキシビフェニル、4,4’-ベンゾフェノンジカルボン酸、2,2-ビス(4-カルボキシフェニル)ヘキサフルオロプロパン、2,2-ビス(3-カルボキシフェニル)ヘキサフルオロプロパン若しくは4,4’-ジカルボキシジフェニルエーテル、又は、それらのジカルボン酸無水物、ジカルボン酸塩化物、ジカルボン酸活性エステル若しくはジホルミル化合物が挙げられる。
 芳香族トリカルボン酸及びその誘導体としては、例えば、1,2,4-ベンゼントリカルボン酸、1,3,5-ベンゼントリカルボン酸、2,4,5-ベンゾフェノントリカルボン酸、2,4,4’-ビフェニルトリカルボン酸若しくは3,3’,4’-トリカルボキシジフェニルエーテル、又は、それらのトリカルボン酸無水物、トリカルボン酸塩化物、トリカルボン酸活性エステル若しくはジホルミルモノカルボン酸が挙げられる。
 脂環式ジカルボン酸及びその誘導体としては、例えば、テトラヒドロフタル酸、3-メチルテトラヒドロフタル酸、4-メチルヘキサヒドロフタル酸、1,4-シクロヘキサンジカルボン酸若しくは1,2-シクロヘキサンジカルボン酸、又は、それらのジカルボン酸無水物、ジカルボン酸塩化物、ジカルボン酸活性エステル若しくはジホルミル化合物が挙げられる。
 脂環式トリカルボン酸及びその誘導体としては、例えば、1,2,4-シクロヘキサントリカルボン酸若しくは1,3,5-シクロヘキサントリカルボン酸、又は、それらのトリカルボン酸無水物、トリカルボン酸塩化物、トリカルボン酸活性エステル若しくはジホルミルモノカルボン酸が挙げられる。
 脂肪族ジカルボン酸及びその誘導体としては、例えば、イタコン酸、マレイン酸、フマル酸、マロン酸、コハク酸、若しくはヘキサン-1,6-ジカルボン酸、又は、それらのジカルボン酸無水物、ジカルボン酸塩化物、ジカルボン酸活性エステル、若しくはジホルミル化合物が挙げられる。
 脂肪族トリカルボン酸及びその誘導体としては、例えば、ヘキサン-1,3,6-トリカルボン酸若しくはプロパン-1,2,3-トリカルボン酸、又は、それらのトリカルボン酸無水物、トリカルボン酸塩化物、トリカルボン酸活性エステル若しくはジホルミルモノカルボン酸が挙げられる。
 <ジアミン及びその誘導体>
 ジアミン及びその誘導体としては、例えば、芳香族ジアミン、ビスアミノフェノール化合物、脂環式ジアミン、脂環式ジヒドロキシジアミン、脂肪族ジアミン又は脂肪族ジヒドロキシジアミンが挙げられる。これらのジアミン及びその誘導体は、アミノ基及びその誘導体が有する窒素原子、酸素原子以外に、ヘテロ原子を有してもよい。
 芳香族ジアミン及びビスアミノフェノール化合物並びにそれらの誘導体としては、例えば、p-フェニレンジアミン、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3’-ジアミノ-4,4’-ビフェノール、1,5-ナフタレンジアミン、9,9-ビス(3-アミノ-4-ヒドロキシフェニル)フルオレン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、4,4’-ジアミノジフェニルスルフィド、ビス(3-アミノ-4-ヒドロキシフェニル)エーテル、3-スルホン酸-4,4’-ジアミノジフェニルエーテル、ジメルカプトフェニレンジアミン若しくはN,N’-ビス[5,5’-ヘキサフルオロプロパン-2,2-ジイル-ビス(2-ヒドロキシフェニル)]ビス(3-アミノ安息香酸アミド)、又は、それらのジイソシアネート化合物若しくはトリメチルシリル化ジアミンが挙げられる。
 脂環式ジアミン及び脂環式ジヒドロキシジアミン、並びにそれらの誘導体としては、例えば、1,4-シクロヘキサンジアミン、ビス(4-アミノシクロヘキシル)メタン、3,6-ジヒドロキシ-1,2-シクロヘキサンジアミン若しくはビス(3-ヒドロキシ-4-アミノシクロヘキシル)メタン、又は、それらのジイソシアネート化合物若しくはトリメチルシリル化ジアミンが挙げられる。
 脂肪族ジアミン及び脂肪族ジヒドロキシジアミン、並びにそれらの誘導体としては、例えば、1,6-ヘキサメチレンジアミン、若しくは2,5-ジヒドロキシ-1,6-ヘキサメチレンジアミン、又は、それらのジイソシアネート化合物若しくはトリメチルシリル化ジアミンが挙げられる。
 <フッ素原子を有する構造単位>
 (A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール、及び(A1-4)ポリベンゾオキサゾール前駆体から選ばれる一種類以上は、フッ素原子を有する構造単位を全構造単位の10~100mol%で含有する。
 (A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール、及び(A1-4)ポリベンゾオキサゾール前駆体から選ばれる一種類以上が、フッ素原子を有する構造単位を含有することで、透明性が向上し、露光時の感度を向上させることができる。また、膜表面に撥水性を付与でき、アルカリ現像時における膜表面からの浸み込みを抑制できる。ここで、露光とは、活性化学線(放射線)の照射のことであり、例えば可視光線、紫外線、電子線、又はX線などの照射が挙げられる。一般的に使用される光源という観点から、例えば可視光線や紫外線の照射が可能な超高圧水銀灯光源が好ましく、j線(波長313nm)、i線(波長365nm)、h線(波長405nm)、又はg線(波長436nm)の照射がより好ましい。以降、露光とは、活性化学線(放射線)の照射をいう。
 また、一般に、(A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール、及び/又は(A1-4)ポリベンゾオキサゾール前駆体を用いる場合、これらの樹脂を溶解させるために用いられる、後述する溶剤としては、N-メチル-2-ピロリドン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、又はγ-ブチロラクトンなどの高極性溶剤を用いる必要がある。しかしながら、後述する(D)着色剤として、特に(D1)顔料を含有させる場合、これらの高極性溶剤は(D1)顔料と強く相互作用するため、(A1)第1の樹脂、後述する(A2)第2の樹脂、又は後述する(E)分散剤による分散安定性向上の効果が不十分となる場合がある。
 (A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール、及び(A1-4)ポリベンゾオキサゾール前駆体から選ばれる一種類以上がフッ素原子を有する構造単位を含有することで、溶剤に対する溶解性を向上させることができる。そのため、上述した高極性溶剤の含有量の低減、又は高極性溶剤を用いずにこれらの樹脂の溶解が可能となり、(D1)顔料の分散安定性を向上させることができる。
 (A1-1)ポリイミド及び/又は(A1-2)ポリイミド前駆体が含有する、フッ素原子を有する構造単位としては、フッ素原子を有するテトラカルボン酸に由来する構造単位及び/又はその誘導体に由来する構造単位、又はフッ素原子を有するジアミンに由来する構造単位及び/又はその誘導体に由来する構造単位が挙げられる。
 (A1-3)ポリベンゾオキサゾール及び/又は(A1-4)ポリベンゾオキサゾール前駆体が含有する、フッ素原子を有する構造単位としては、フッ素原子を有するジカルボン酸に由来する構造単位及び/又はその誘導体に由来する構造単位、又は、フッ素原子を有するビスアミノフェノール化合物に由来する構造単位及び/又はその誘導体に由来する構造単位が挙げられる。
 (A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール、及び(A1-4)ポリベンゾオキサゾール前駆体から選ばれる一種類以上の樹脂における、全構造単位に占める、フッ素原子を有する構造単位の含有比率は、30~100mol%が好ましい。フッ素原子を有する構造単位の含有比率は、50mol%以上がより好ましく、70mol%以上がさらに好ましい。含有比率が30~100mol%であると露光時の感度を向上させることができる。
 (A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール、及び(A1-4)ポリベンゾオキサゾール前駆体から選ばれる一種類以上の樹脂における、全カルボン酸に由来する構造単位及びその誘導体に由来する構造単位の合計に占める、フッ素原子を有するテトラカルボン酸、フッ素原子を有するテトラカルボン酸誘導体、フッ素原子を有するジカルボン酸、及びフッ素原子を有するジカルボン酸誘導体から選ばれる一種類以上に由来する構造単位の含有比率は、30~100mol%が好ましい。フッ素原子を有する構造単位の含有比率は、50mol%以上がより好ましく、70mol%以上がさらに好ましい。含有比率が30~100mol%であると露光時の感度を向上させることができる。
 (A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール及び(A1-4)ポリベンゾオキサゾール前駆体から選ばれる一種類以上の樹脂における、全アミンに由来する構造単位及びその誘導体に由来する構造単位の合計に占める、フッ素原子を有するジアミン、フッ素原子を有するジアミン誘導体、フッ素原子を有するビスアミノフェノール化合物、及びフッ素原子を有するビスアミノフェノール化合物誘導体から選ばれる一種類以上に由来する構造単位の含有比率は、30~100mol%が好ましい。フッ素原子を有する構造単位の含有比率は、50mol%以上がより好ましく、70mol%以上がさらに好ましい。含有比率が30~100mol%であると露光時の感度を向上させることができる。
 <芳香族カルボン酸及びその誘導体に由来する構造単位>
 (A1-1)ポリイミド及び/又は(A1-2)ポリイミド前駆体は、芳香族カルボン酸に由来する構造単位及び/又はその誘導体に由来する構造単位を含有することが好ましい。(A1-1)ポリイミド及び/又は(A1-2)ポリイミド前駆体が、芳香族カルボン酸に由来する構造単位及び/又はその誘導体に由来する構造単位を含有することで、芳香族基の耐熱性により、硬化膜の耐熱性を向上させることができる。芳香族カルボン酸及びその誘導体としては、芳香族テトラカルボン酸及び/又はその誘導体が好ましい。
 (A1-1)ポリイミド及び/又は(A1-2)ポリイミド前駆体における、全カルボン酸に由来する構造単位及びその誘導体に由来する構造単位の合計に占める、芳香族カルボン酸に由来する構造単位及び/又はその誘導体に由来する構造単位の含有比率は、50~100mol%が好ましく、60~100mol%がより好ましく、70~100mol%がさらに好ましい。含有比率が50~100mol%であると、硬化膜の耐熱性を向上させることができる。
 (A1-3)ポリベンゾオキサゾール及び/又は(A1-4)ポリベンゾオキサゾール前駆体は、芳香族カルボン酸に由来する構造単位及び/又はその誘導体に由来する構造単位を含有することが好ましい。(A1-3)ポリベンゾオキサゾール及び/又は(A1-4)ポリベンゾオキサゾール前駆体が、芳香族カルボン酸に由来する構造単位及び/又はその誘導体に由来する構造単位を含有することによって、芳香族基の耐熱性により硬化膜の耐熱性を向上させることができる。芳香族カルボン酸及びその誘導体としては、芳香族ジカルボン酸若しくは芳香族トリカルボン酸、及び/又はそれらの誘導体が好ましく、芳香族ジカルボン酸及び/又はその誘導体がより好ましい。
 (A1-3)ポリベンゾオキサゾール及び/又は(A1-4)ポリベンゾオキサゾール前駆体における、全カルボン酸に由来する構造単位及びその誘導体に由来する構造単位の合計に占める、芳香族カルボン酸に由来する構造単位及び/又はその誘導体に由来する構造単位の含有比率は、50~100mol%が好ましく、60~100mol%がより好ましく、70~100mol%がさらに好ましい。含有比率が50~100mol%であると、硬化膜の耐熱性を向上させることができる。
 <芳香族アミン及びその誘導体に由来する構造単位>
 (A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール、及び(A1-4)ポリベンゾオキサゾール前駆体から選ばれる一種類以上は、芳香族アミンに由来する構造単位及び/又はその誘導体に由来する構造単位を含有することが好ましい。(A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール、及び(A1-4)ポリベンゾオキサゾール前駆体から選ばれる一種類以上が、芳香族アミンに由来する構造単位及び/又はその誘導体に由来する構造単位を含有することによって、芳香族基の耐熱性により硬化膜の耐熱性を向上させることができる。芳香族アミン及びその誘導体としては、芳香族ジアミン、ビスアミノフェノール化合物、芳香族トリアミン、若しくはトリスアミノフェノール化合物、及び/又はそれらの誘導体が好ましく、芳香族ジアミン若しくはビスアミノフェノール化合物、及び/又はそれらの誘導体がより好ましい。
 (A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール及び(A1-4)ポリベンゾオキサゾール前駆体から選ばれる一種類以上の樹脂における、全アミンに由来する構造単位及びその誘導体に由来する構造単位の合計に占める、芳香族アミンに由来する構造単位及び/又はその誘導体に由来する構造単位の含有比率は、50~100mol%が好ましく、60~100mol%がより好ましく、70~100mol%がさらに好ましい。含有比率が50~100mol%であると硬化膜の耐熱性を向上させることができる。
 <シリル基又はシロキサン結合を有するジアミン及びその誘導体に由来する構造単位>
 (A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール、及び(A1-4)ポリベンゾオキサゾール前駆体から選ばれる一種類以上は、シリル基又はシロキサン結合を有するジアミンに由来する構造単位及び/又はその誘導体に由来する構造単位を含有することが好ましい。(A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール、及び(A1-4)ポリベンゾオキサゾール前駆体から選ばれる一種類以上が、シリル基又はシロキサン結合を有するジアミンに由来する構造単位及び/又はその誘導体に由来する構造単位を含有することで、感光性樹脂組成物の硬化膜と下地の基板界面における相互作用が増大し、下地の基板との密着性及び硬化膜の耐薬品性を向上させることができる。
 <オキシアルキレン構造を有するアミン及びその誘導体に由来する構造単位>
 (A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール、及び(A1-4)ポリベンゾオキサゾール前駆体から選ばれる一種類以上は、オキシアルキレン構造を有するアミンに由来する構造単位及び/又はその誘導体に由来する構造単位を含有することが好ましい。(A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール及び(A1-4)ポリベンゾオキサゾール前駆体から選ばれる一種類以上が、オキシアルキレン構造を有するアミンに由来する構造単位及び/又はその誘導体に由来する構造単位を含有することで、低テーパーのパターン形状の硬化膜を得ることができるとともに、硬化膜の機械特性及びアルカリ現像液によるパターン加工性を向上させることができる。
 <末端封止剤>
 (A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール及び(A1-4)ポリベンゾオキサゾール前駆体から選ばれる一種類以上は、樹脂の末端が、モノアミン、ジカルボン酸無水物、モノカルボン酸、モノカルボン酸塩化物又はモノカルボン酸活性エステルなどの末端封止剤で封止されていても構わない。樹脂の末端が末端封止剤で封止されることで、(A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール、及び(A1-4)ポリベンゾオキサゾール前駆体から選ばれる一種類以上を含有する樹脂組成物の塗液の保管安定性を向上させることができる。
 (A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール、及び/又は(A1-4)ポリベンゾオキサゾール前駆体に占める、各種カルボン酸若しくはアミン及びそれらの誘導体に由来する構造単位の含有比率は、H-NMR、13C-NMR、15N-NMR、IR、TOF-MS、元素分析法及び灰分測定などを組み合わせて求めることができる。
 <(A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール及び/又は(A1-4)ポリベンゾオキサゾール前駆体の物性>
 (A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール、及び(A1-4)ポリベンゾオキサゾール前駆体から選ばれる一種類以上の樹脂における構造単位の繰り返し数nは、5以上が好ましく、10以上がより好ましく、15以上がさらに好ましい。繰り返し数nが5以上であると、現像後の解像度を向上させることができる。一方、繰り返し数nは、1,000以下が好ましく、500以下がより好ましく、100以下がさらに好ましい。繰り返し数nが1,000以下であると、塗布時のレベリング性及びアルカリ現像液によるパターン加工性を向上させることができる。
 (A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール、及び(A1-4)ポリベンゾオキサゾール前駆体から選ばれる一種類以上の重量平均分子量(以下、「Mw」)としては、ゲルパーミエーションクロマトグラフィー(以下、「GPC」)によって測定されるポリスチレン換算で1,000以上が好ましく、3,000以上がより好ましく、5,000以上がさらに好ましい。Mwが1,000以上であると、現像後の解像度を向上させることができる。一方、Mwとしては、500,000以下が好ましく、300,000以下がより好ましく、100,000以下がさらに好ましい。Mwが500,000以下であると、塗布時のレベリング性及びアルカリ現像液によるパターン加工性を向上させることができる。
 また、数平均分子量(以下、「Mn」)としては、GPCで測定されるポリスチレン換算で1,000以上が好ましく、3,000以上がより好ましく、5,000以上がさらに好ましい。Mnが1,000以上であると、現像後の解像度を向上させることができる。一方で、Mnとしては、500,000以下が好ましく、300,000以下がより好ましく、100,000以下がさらに好ましい。Mnが500,000以下であると、塗布時のレベリング性及びアルカリ現像液によるパターン加工性を向上させることができる。
 (A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール、及び(A1-4)ポリベンゾオキサゾール前駆体のMw及びMnは、GPC、光散乱法又はX線小角散乱法などで、ポリスチレン換算の値として容易に測定できる。(A1-1)ポリイミド、(A1-2)、ポリイミド前駆体(A1-3)ポリベンゾオキサゾール、及び(A1-4)ポリベンゾオキサゾール前駆体中の構造単位の繰り返し数nは、構造単位の分子量をMとし、樹脂の重量平均分子量をMwとすると、n=Mw/Mにより導出できる。
 (A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール、及び(A1-4)ポリベンゾオキサゾール前駆体から選ばれる一種類以上のアルカリ溶解速度としては、50nm/分以上が好ましく、70nm/分以上がより好ましく、100nm/分以上がさらに好ましい。アルカリ溶解速度が50nm/分以上であると、現像後の解像度を向上させることができる。一方、アルカリ溶解速度としては、12,000nm/分以下が好ましく、10,000nm/分以下がより好ましく、8,000nm/分以下がさらに好ましい。アルカリ溶解速度が12,000nm/分以下であると、アルカリ現像時における膜減りを抑制できる。
 ここでいうアルカリ溶解速度とは、樹脂をγ-ブチロラクトンに溶解した溶液をSiウェハ上に塗布した後、120℃で4分間プリベークして膜厚10μm±0.5μmのプリベーク膜を成膜し、このプリベーク膜を23℃±1℃で2.38質量%の水酸化テトラメチルアンモニウム水溶液によって60秒間現像し、水で30秒間リンスした後の膜厚減少値をいう。
 (A1-1)ポリイミド及び(A1-2)ポリイミド前駆体は、公知の方法で合成できる。例えば、N-メチル-2-ピロリドンなどの極性溶媒中で、テトラカルボン酸二無水物とジアミン(一部を末端封止剤であるモノアミンに置き換え)とを80~200℃で反応させる方法、又はテトラカルボン酸二無水物(一部を末端封止剤であるジカルボン酸無水物、モノカルボン酸、モノカルボン酸塩化物若しくはモノカルボン酸活性エステルに置き換え)とジアミンとを80~200℃で反応させる方法などが挙げられる。
 (A1-3)ポリベンゾオキサゾール及び(A1-4)ポリベンゾオキサゾール前駆体は、公知の方法で合成できる。例えば、N-メチル-2-ピロリドンなどの極性溶媒中で、ジカルボン酸活性ジエステルとビスアミノフェノール化合物(一部を末端封止剤であるモノアミンに置き換え)とを80~250℃で反応させる方法、又はジカルボン酸活性ジエステル(一部を末端封止剤であるジカルボン酸無水物、モノカルボン酸、モノカルボン酸塩化物若しくはモノカルボン酸活性エステルに置き換え)とビスアミノフェノール化合物とを80~250℃で反応させる方法などが挙げられる。
 (A1-1)ポリイミド又は(A1-2)ポリイミド前駆体のイミド環閉環率(イミド化率)は、例えば、次の方法によって求めることができる。まず、樹脂の赤外吸収スペクトルを測定し、ポリイミド構造に起因するイミド結合の吸収ピーク(1780cm-1付近、1377cm-1付近)の存在を確認する。次に、その樹脂を350℃で1時間熱硬化させ、赤外吸収スペクトルを測定する。熱硬化前後での、1780cm-1付近又は1377cm-1付近のピーク強度を比較することによって、熱硬化前の樹脂中のイミド結合の含有量を算出することにより、イミド化率を求めることができる。
 (A1-3)ポリベンゾオキサゾール又は(A1-4)ポリベンゾオキサゾール前駆体のオキサゾール環閉環率(オキサゾール化率)は、例えば、次の方法によって求めることができる。まず、樹脂の赤外吸収スペクトルを測定し、ポリベンゾオキサゾール構造に起因するオキサゾール結合の吸収ピーク(1574cm-1付近、1557cm-1付近)の存在を確認する。次に、その樹脂を350℃で1時間熱硬化させ、赤外吸収スペクトルを測定する。熱硬化前後における1574cm-1付近又は1557cm-1付近のピーク強度を比較することによって、熱硬化前の樹脂中のオキサゾール結合の含有量を算出することで、オキサゾール化率を求めることができる。
 <(A2)第2の樹脂>
 本発明による感光性樹脂組成物は、(A)アルカリ可溶性樹脂として、(A2)第2の樹脂を含有することが好ましい。
 (A2)第2の樹脂として、(A2-1)ポリシロキサン、(A2-2)多環側鎖含有樹脂、(A2-3)酸変性エポキシ樹脂、及び(A2-4)アクリル樹脂から選ばれる一種類以上を含有することが好ましい。
 本発明において、(A2-1)ポリシロキサン、(A2-2)多環側鎖含有樹脂、(A2-3)酸変性エポキシ樹脂、及び(A2-4)アクリル樹脂は、単一の樹脂又はそれらの共重合体のいずれでもよい。
 <(A2-1)ポリシロキサン>
 本発明に用いられる(A2-1)ポリシロキサンとしては、例えば、三官能オルガノシラン、四官能オルガノシラン、二官能オルガノシラン、及び一官能オルガノシランから選ばれる一種類以上を加水分解し、脱水縮合させて得られるポリシロキサンが挙げられる。
 (A2-1)ポリシロキサンは熱硬化性樹脂であり、高温で熱硬化させて脱水縮合させることで高耐熱性のシロキサン結合(Si-O)が形成される。従って、高耐熱性のシロキサン結合を有する(A2-1)ポリシロキサンを感光性樹脂組成物に含有させることで、得られる硬化膜の耐熱性を向上させることができる。また、脱水縮合後に耐熱性が向上する樹脂であることから、脱水縮合前の特性と硬化膜の耐熱性とを両立させたい用途に用いる場合などに好適である。
 また、(A2-1)ポリシロキサンは、反応性基としてシラノール基を有する。そのため、後述する(D)着色剤として特に(D1)顔料を含有させる場合、シラノール基が(D1)顔料の表面と相互作用及び/又は結合することが可能であるとともに、(D1)顔料の表面修飾基と相互作用及び/又は結合することが可能である。従って、(D1)顔料の分散安定性を向上させることができる。
 <三官能オルガノシラン単位、四官能オルガノシラン単位、二官能オルガノシラン単位及び一官能オルガノシラン単位>
 本発明に用いられる(A2-1)ポリシロキサンとしては、硬化膜の耐熱性向上及び現像後の解像度向上の観点から、三官能オルガノシラン単位及び/又は四官能オルガノシラン単位を含有することが好ましい。三官能オルガノシランとしては、一般式(7)で表されるオルガノシラン単位が好ましい。四官能オルガノシラン単位としては、一般式(8)で表されるオルガノシラン単位が好ましい。
 本発明に用いられる(A2-1)ポリシロキサンとしては、パターン形状の低テーパー化及び硬化膜の機械特性向上の観点から、二官能オルガノシラン単位を含有しても構わない。二官能オルガノシランとしては、一般式(9)で表されるオルガノシラン単位が好ましい。
 本発明に用いられる(A2-1)ポリシロキサンとしては、樹脂組成物の塗液の保管安定性向上の観点から、一官能オルガノシラン単位を含有しても構わない。一官能オルガノシラン単位としては、一般式(10)で表されるオルガノシラン単位が好ましい。
Figure JPOXMLDOC01-appb-C000010
 一般式(7)~(10)において、R22~R27は、それぞれ独立して、水素、アルキル基、シクロアルキル基、アルケニル基又はアリール基を表す。一般式(7)~(10)において、R22~R27は、それぞれ独立して、水素、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数2~10のアルケニル基又は炭素数6~15のアリール基が好ましい。上述したアルキル基、シクロアルキル基、アルケニル基及びアリール基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれでもよい。
 一般式(7)で表されるオルガノシラン単位を有するオルガノシランとしては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、n-プロピルトリメトキシシラン、シクロヘキシルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-[(3-エチル-3-オキセタニル)メトキシ]プロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-(4-アミノフェニル)プロピルトリメトキシシラン、1-(3-トリメトキシシリルプロピル)尿素、3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌル酸、N-t-ブチル-2-(3-トリメトキシシリルプロピル)コハク酸イミド又はN-t-ブチル-2-(3-トリエトキシシリルプロピル)コハク酸イミドなどの三官能オルガノシランが挙げられる。
 (A2-1)ポリシロキサンに占める、一般式(7)で表されるオルガノシラン単位の含有比率は、Si原子mol比で50~100mol%が好ましく、60~100mol%がより好ましく、70~100mol%がさらに好ましい。含有比率が50~100mol%であると硬化膜の耐熱性を向上させることができる。
 一般式(8)で表されるオルガノシラン単位を有するオルガノシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン若しくはテトラ-n-プロポキシシランなどの四官能オルガノシラン、又はメチルシリケート51(扶桑化学工業社製)、Mシリケート51(多摩化学工業社製)若しくはメチルシリケート51(コルコート社製)などのシリケート化合物が挙げられる。
 (A2-1)ポリシロキサンに占める一般式(8)で表されるオルガノシラン単位の含有比率は、Si原子mol比で0~40mol%が好ましく、0~30mol%がより好ましく、0~20mol%がさらに好ましい。含有比率が0~40mol%であると、硬化膜の耐熱性及び現像後の解像度を向上させることができる。
 一般式(9)で表されるオルガノシラン単位を有するオルガノシランとしては、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、1,1,3,3-テトラメチル-1,3-ジメトキシジシロキサン又は1,1,3,3-テトラエチル-1,3-ジメトキシジシロキサンなどの二官能オルガノシランが挙げられる。
 (A2-1)ポリシロキサンに占める、一般式(9)で表されるオルガノシラン単位の含有比率は、Si原子mol比で0~60mol%が好ましく、0~50mol%がより好ましく、0~40mol%がさらに好ましい。含有比率が0~60mol%であると、硬化膜の耐熱性及び現像後の解像度を向上させることができる。
 一般式(10)で表されるオルガノシラン単位を有するオルガノシランとしては、例えば、トリメチルメトキシシラン、トリメチルエトキシシラン、トリ-n-プロピルメトキシシラン、(3-グリシドキシプロピル)ジメチルメトキシシラン又は(3-グリシドキシプロピル)ジメチルエトキシシランなどの一官能オルガノシランが挙げられる。
 (A2-1)ポリシロキサンに占める、一般式(10)で表されるオルガノシラン単位の含有比率は、Si原子mol比で0~20mol%が好ましく、0~10mol%がより好ましく、0~5mol%がさらに好ましい。含有比率が0~20mol%であると、硬化膜の耐熱性を向上させることができる。
 本発明に用いられる(A2-1)ポリシロキサンとしては、一般式(7a)で表されるオルガノシラン、一般式(8a)で表されるオルガノシラン、一般式(9a)で表されるオルガノシラン、及び一般式(10a)で表されるオルガノシランから選ばれる一種類以上を加水分解し、脱水縮合させて得られる(A2-1)ポリシロキサンであることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 一般式(7a)~(10a)において、R22~R27は、それぞれ独立して、水素、アルキル基、シクロアルキル基、アルケニル基、又はアリール基を表し、R115~R124は、それぞれ独立して、水素、アルキル基、アシル基、又はアリール基を表す。一般式(7a)~(10a)において、R22~R27は、それぞれ独立して、水素、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数2~10のアルケニル基、又は炭素数6~15のアリール基が好ましい。また、R115~R124は、それぞれ独立して、水素、炭素数1~6のアルキル基、炭素数2~6のアシル基、又は炭素数6~15のアリール基が好ましい。上述したアルキル基、シクロアルキル基、アルケニル基、アリール基、及びアシル基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれでもよい。
 (A2-1)ポリシロキサンにおいて、一般式(7)で表されるオルガノシラン単位、一般式(8)で表されるオルガノシラン単位、一般式(9)で表されるオルガノシラン単位及び一般式(10)で表されるオルガノシラン単位は、規則的な配列又は不規則的な配列のいずれでもよい。規則的な配列としては、例えば、交互共重合、周期的共重合、ブロック共重合、又はグラフト共重合などが挙げられる。不規則的な配列としては、例えばランダム共重合などが挙げられる。
 また、(A2-1)ポリシロキサンにおいて、一般式(7)で表されるオルガノシラン単位、一般式(8)で表されるオルガノシラン単位、一般式(9)で表されるオルガノシラン単位、及び一般式(10)で表されるオルガノシラン単位は、二次元的な配列又は三次元的な配列のいずれでもよい。二次元的な配列としては、例えば、直鎖状が挙げられる。三次元的な配列としては、例えば、梯子状、籠状、又は網目状などが挙げられる。
 <芳香族基を有するオルガノシラン単位>
 本発明に用いられる(A2-1)ポリシロキサンとしては、芳香族基を有するオルガノシラン単位を含有することが好ましい。そのような(A2-1)ポリシロキサンは、一般式(7)、一般式(9)、又は一般式(10)で表されるオルガノシラン単位を有するオルガノシランとして、芳香族基を有するオルガノシランを用いて得られるものであることが好ましい。(A2-1)ポリシロキサンが芳香族基を有するオルガノシラン単位を含有することで、芳香族基の耐熱性により硬化膜の耐熱性を向上させることができる。
 また、後述する(D)着色剤として特に(D1)顔料を含有させる場合、(A2-1)ポリシロキサンが芳香族基を有するオルガノシラン単位を含有することで、芳香族基の立体障害により(D1)顔料の分散安定性を向上させることができる。さらに(D1)顔料が(D1-1)有機顔料の場合、(A2-1)ポリシロキサン中の芳香族基は、(D1-1)有機顔料の芳香族基と相互作用するため、(D1-1)有機顔料の分散安定性を向上させることができる。
 (A2-1)ポリシロキサンに占める芳香族基を有するオルガノシラン単位の含有比率は、Si原子mol比で5mol%以上が好ましく、10mol%以上がより好ましく、15mol%以上がさらに好ましい。含有比率が5mol%以上であると、硬化膜の耐熱性を向上させることができる。一方、含有比率は80mol%以下が好ましく、75mol%以下がより好ましく、70mol%以下がさらに好ましい。含有比率が80mol%以下であると、アルカリ現像液によるパターン加工性を向上させることができる。特に、一般式(7)、一般式(9)、又は一般式(10)で表され、かつ芳香族基を有するオルガノシラン単位に由来するSi原子mol比が、5mol%以上80mol%以下であることが好ましい。
 <エチレン性不飽和二重結合基を有するオルガノシラン単位>
 本発明に用いられる(A2-1)ポリシロキサンとしては、エチレン性不飽和二重結合基を有するオルガノシラン単位を含有することが好ましい。このような(A2-1)ポリシロキサンは、一般式(7)、一般式(9)、又は一般式(10)で表されるオルガノシラン単位を有するオルガノシランとして、エチレン性不飽和二重結合基を有するオルガノシランを用いて得られるものであることが好ましい。(A2-1)ポリシロキサンがエチレン性不飽和二重結合基を有するオルガノシラン単位を含有することによって、露光時のUV硬化が促進されて、感度を向上させることができる。
 一般式(7)、一般式(9)、又は一般式(10)で表され、かつエチレン性不飽和二重結合基を有するオルガノシラン単位を有するオルガノシランを用いる場合、(A2-1)ポリシロキサンの二重結合当量としては、150g/mol以上が好ましく、200g/mol以上がより好ましく、250g/mol以上がさらに好ましい。二重結合当量が150g/mol以上であると、下地の基板との密着性を向上させることができる。一方、二重結合当量としては、10,000g/mol以下が好ましく、5,000g/mol以下がより好ましく、2,000g/mol以下がさらに好ましい。二重結合当量が10,000g/mol以下であると、露光時の感度を向上させることができる。特に、(A2-1)ポリシロキサン中の、一般式(7)、一般式(9)、又は一般式(10)で表され、かつエチレン性不飽和二重結合基を有するオルガノシラン単位に由来する二重結合当量が、150g/mol以上10,000g/mol以下であることが好ましい。
 ここで、二重結合当量とは、エチレン性不飽和二重結合基1mol当たりの樹脂重量をいい、単位はg/molである。二重結合当量の値から、樹脂中のエチレン性不飽和二重結合基の数を求めることができる。二重結合当量は、ヨウ素価から算出できる。
 なお、ヨウ素価とは、100gの樹脂と反応するハロゲンの量をヨウ素の重量に換算した値をいい、単位はgI/100gである。100gの樹脂を一塩化ヨウ素と反応させた後、ヨウ化カリウム水溶液で未反応ヨウ素を捕捉し、未反応ヨウ素を、チオ硫酸ナトリウム水溶液を用いて滴定することで求めることができる。
 <酸性基を有するオルガノシラン単位>
 本発明に用いられる(A2-1)ポリシロキサンとしては、酸性基を有するオルガノシラン単位を含有することが好ましい。このような(A2-1)ポリシロキサンは、一般式(7)、一般式(9)、又は一般式(10)で表されるオルガノシラン単位を有するオルガノシランとして、酸性基を有するオルガノシランを用いて得られるものであることが好ましい。(A2-1)ポリシロキサンが酸性基を有するオルガノシラン単位を含有することによって、アルカリ現像液によるパターン加工性及び現像後の解像度を向上させることができる。
 酸性基としては、pH6未満の酸性度を示す基が好ましい。pH6未満の酸性度を示す基としては、例えば、カルボキシ基、カルボン酸無水物基、スルホン酸基、フェノール性水酸基、ヒドロキシイミド基、又はシラノール基が挙げられる。アルカリ現像液によるパターン加工性向上及び現像後の解像度向上の観点から、カルボキシ基、カルボン酸無水物基、フェノール性水酸基、又はヒドロキシイミド基が好ましく、カルボキシ基又はカルボン酸無水物基がより好ましい。
 一般式(7)、一般式(9)、又は一般式(10)で表され、かつ酸性基を有するオルガノシラン単位を有するオルガノシランを用いる場合、(A2-1)ポリシロキサンの酸当量は、280g/mol以上が好ましく、300g/mol以上がより好ましく、400g/mol以上がさらに好ましい。酸当量が280g/mol以上であると、アルカリ現像時における膜減りを抑制できる。一方、酸当量は、1,400g/mol以下が好ましく、1,100g/mol以下がより好ましく、950g/mol以下がさらに好ましい。酸当量が1,400g/mol以下であると、アルカリ現像液によるパターン加工性及び現像後の解像度を向上させることができる。特に、(A2-1)ポリシロキサン中の、一般式(7)、一般式(9)、又は一般式(10)で表され、かつ酸性基を有するオルガノシラン単位に由来する酸当量が280g/mol以上1,400g/mol以下であることが好ましい。また、アルカリ現像液によるパターン加工性向上及び現像後の解像度向上の観点から、酸当量はカルボン酸当量であることがより好ましい。
 ここで、酸当量とは、酸性基1mol当たりの樹脂重量をいい、単位はg/molである。酸当量の値から樹脂中の酸性基の数を求めることができる。酸当量は、酸価から算出できる。なお、酸価とは、1gの樹脂と反応する水酸化カリウムの重量をいい、単位はmgKOH/gである。1gの樹脂を水酸化カリウム水溶液で滴定することで求めることができる。
 (A2-1)ポリシロキサンに占める、各種オルガノシラン単位の含有比率は、H-NMR、13C-NMR、29Si-NMR、IR、TOF-MS、元素分析法及び灰分測定などを組み合わせて求めることができる。
 <(A2-1)ポリシロキサンの物性>
 本発明に用いられる(A2-1)ポリシロキサンのMwとしては、GPCで測定されるポリスチレン換算で、500以上が好ましく、700以上がより好ましく、1,000以上がさらに好ましい。Mwが500以上であると、現像後の解像度を向上させることができる。一方、Mwとしては、100,000以下が好ましく、50,000以下がより好ましく、20,000以下がさらに好ましい。Mwが100,000以下であると、塗布時のレベリング性及びアルカリ現像液によるパターン加工性を向上させることができる。
 (A2-1)ポリシロキサンは、公知の方法で合成できる。例えば、反応溶媒中においてオルガノシランを加水分解し、脱水縮合させる方法などが挙げられる。オルガノシランを加水分解し、脱水縮合する方法としては、例えば、オルガノシランを含む混合物に、反応溶媒及び水、必要に応じて触媒をさらに添加し、50~150℃、好ましくは90~130℃の温度で0.5~100時間程度、加熱攪拌する方法などが挙げられる。なお、加熱攪拌中、必要に応じて蒸留によって加水分解副生物(メタノールなどのアルコール)や縮合副生物(水)を蒸留により留去しても構わない。
 <(A2-2)多環側鎖含有樹脂>
 本発明に用いられる(A2-2)多環側鎖含有樹脂としては、例えば、以下の(I)~(IV)の多環側鎖含有樹脂が挙げられる。
(I)多官能フェノール化合物と多官能カルボン酸無水物とを反応させて得られる化合物に、エポキシ化合物を反応させて得られる多環側鎖含有樹脂。
(II)多官能フェノール化合物とエポキシ化合物とを反応させて得られる化合物に、多官能カルボン酸無水物を反応させて得られる多環側鎖含有樹脂。
(III)多官能エポキシ化合物と多官能カルボン酸化合物とを反応させて得られる化合物に、エポキシ化合物を反応させて得られる多環側鎖含有樹脂。
(IV)多官能エポキシ化合物とカルボン酸化合物とを反応させて得られる化合物に、多官能カルボン酸無水物を反応させて得られる多環側鎖含有樹脂。
 なお、フェノール化合物、エポキシ化合物、カルボン酸無水物、及びカルボン酸化合物としては、例えば、国際公開第2017/057281号に記載の化合物が挙げられる。
 (A2-2)多環側鎖含有樹脂は、熱硬化性樹脂であって主鎖と嵩高い側鎖が1つの原子で繋がれた構造を有し、嵩高い側鎖として、高耐熱性かつ剛直なフルオレン環などの環状構造を有する。従って、高耐熱性かつ剛直なフルオレン環などの環状構造を有する(A2-2)多環側鎖含有樹脂を感光性樹脂組成物に含有させることによって、得られる硬化膜の耐熱性を向上させることができる。そのため、硬化膜を耐熱性が要求される用途に用いる場合などに好適である。
 本発明に用いられる(A2-2)多環側鎖含有樹脂としては、エチレン性不飽和二重結合基を有することが好ましい。エチレン性不飽和二重結合基を有する(A2-2)多環側鎖含有樹脂を感光性樹脂組成物に含有させることで、露光時の感度を向上させることができる。また、形成される三次元架橋構造は、脂環式構造又は脂肪族構造が主成分であるため、樹脂の軟化点の高温化が抑制され、低テーパーのパターン形状を得ることができるとともに、得られる硬化膜の機械特性を向上させることができる。そのため、硬化膜を機械特性が要求される用途に用いる場合などに好適である。
 本発明に用いられる(A2-2)多環側鎖含有樹脂としては、硬化膜の耐熱性向上の観点から、一般式(47)で表される構造単位、一般式(48)で表される構造単位、一般式(49)で表される構造単位、及び一般式(50)で表される構造単位から選ばれる一種類以上を含有することが好ましい。また、本発明に用いられる(A2-2)多環側鎖含有樹脂としては、露光時の感度向上及び硬化膜の機械特性向上の観点から、主鎖、側鎖、及び末端のいずれか一ヶ所以上に、エチレン性不飽和二重結合基を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000012
 一般式(47)~(50)において、X69、X70、X72、X73、X75、X76、X78、及びX79は、それぞれ独立して、単環式又は縮合多環式の炭化水素環を表す。X71、X74、X77、及びX80は、それぞれ独立して、カルボン酸及び/又はその誘導体残基の2~10価の有機基を表す。W~Wは、それぞれ独立して、芳香族基を2つ以上有する有機基を表す。R160~R167は、それぞれ独立して、水素又は炭素数1~6のアルキル基を表し、R170~R175、R177、及びR178は、それぞれ独立して、水素又はエチレン性不飽和二重結合基を有する有機基を表す。R176は、水素又は炭素数1~10のアルキル基を表す。a、b、c、d、e、f、g、及びhは、それぞれ独立して0~10の整数を表し、α、β、γ、及びδは、それぞれ独立して0又は1を表す。
 一般式(47)~(50)において、X69、X70、X72、X73、X75、X76、X78。及びX79は、それぞれ独立して、炭素数6~15及び2~10価の、単環式又は縮合多環式の炭化水素環が好ましい。また、X71、X74、X77、及びX80は、それぞれ独立して、炭素数2~20の脂肪族構造、炭素数4~20の脂環式構造、及び炭素数6~30の芳香族構造から選ばれる一種類以上を有する2~10価の有機基が好ましい。また、W~Wは、それぞれ独立して、一般式(51)~(56)のいずれかで表される置換基が好ましい。また、R170~R175、R177及びR178は、それぞれ独立して、一般式(57)で表される置換基が好ましい。上述したアルキル基、脂肪族構造、脂環式構造、芳香族構造、単環式、若しくは縮合多環式の芳香族炭化水素環、及びエチレン性不飽和二重結合基を有する有機基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれでもよい。
Figure JPOXMLDOC01-appb-C000013
 
 一般式(51)~(56)において、R179~R182、R185及びR188は、それぞれ独立して、炭素数1~10のアルキル基を表す。R183、R184、R186、R187、R189、R191及びR193~R196は、それぞれ独立して、水素、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基又は炭素数6~15のアリール基を表す。R190及びR192は、それぞれ独立して、水素、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基又は炭素数6~15のアリール基を表し、R190及びR192で環を形成しても構わない。R190及びR192で形成する環としては、例えば、ベンゼン環又はシクロヘキサン環が挙げられる。R183及びR184の少なくとも1つは、炭素数6~15のアリール基である。R186及びR187の少なくとも1つは、炭素数6~15のアリール基である。R189及びR190の少なくとも1つは、炭素数6~15のアリール基であり、R191及びR192の少なくとも1つは、炭素数6~15のアリール基であり、R190及びR192で環を形成しても構わない。R193及びR194の少なくとも1つは、炭素数6~15のアリール基であり、R195及びR196の少なくとも1つは、炭素数6~15のアリール基である。i、j、k、l、m、及びnは、それぞれ独立して、0~4の整数を表す。一般式(51)~(56)において、R190及びR192で形成する環としては、ベンゼン環が好ましい。上述したアルキル基、シクロアルキル基及びアリール基は、無置換体又は置換体のいずれでもよい。
Figure JPOXMLDOC01-appb-C000014
 一般式(57)において、X81は、直接結合、炭素数1~10のアルキレン鎖、炭素数4~10のシクロアルキレン鎖、又は炭素数6~15のアリーレン鎖を表し、X82は、直接結合又は炭素数6~15のアリーレン鎖を表す。R197は、ビニル基、アリール基、又は(メタ)アクリル基を表す。一般式(57)において、X81は、直接結合、炭素数1~6のアルキレン鎖、炭素数4~7のシクロアルキレン鎖、又は炭素数6~10のアリーレン鎖が好ましい。また、X82は、直接結合又は炭素数6~10のアリーレン鎖が好ましい。上述したアルキレン鎖、シクロアルキレン鎖、アリーレン鎖、ビニル基、アリール基、及び(メタ)アクリル基は、無置換体又は置換体のいずれでもよい。
 <(A2-2)多環側鎖含有樹脂の合成方法>
 本発明に用いられる(A2-2)多環側鎖含有樹脂としては、以下の(I)~(IV)に記載の合成方法のいずれか一種類以上の(A2-2)多環側鎖含有樹脂であることが好ましい。
 (I)の(A2-2)多環側鎖含有樹脂としては、芳香族基を分子中に2つ以上、及び、ヒドロキシ基を有する化合物と多官能活性カルボン酸誘導体(テトラカルボン酸二無水物、ジカルボン酸二塩化物、及びジカルボン酸活性ジエステルから選ばれる一種類以上)と、を反応させて得られる樹脂に、エチレン性不飽和二重結合基及びエポキシ基を有する不飽和化合物を開環付加反応させて得られる(A2-2)多環側鎖含有樹脂が挙げられる。多官能活性カルボン酸誘導体としては、テトラカルボン酸二無水物が好ましい。多官能活性カルボン酸誘導体に加え、末端封止剤として、トリカルボン酸無水物、ジカルボン酸無水物、モノカルボン酸塩化物、又はモノカルボン酸活性エステルを反応成分に用いても構わない。
 (II)の(A2-2)多環側鎖含有樹脂としては、芳香族基を分子中に2つ以上、及び、ヒドロキシ基を有する化合物と、エチレン性不飽和二重結合基、及びエポキシ基を有する不飽和化合物と、を開環付加反応させて得られる樹脂に、多官能活性カルボン酸誘導体(テトラカルボン酸二無水物、ジカルボン酸二塩化物、及びジカルボン酸活性ジエステルから選ばれる一種類以上)を反応させて得られる(A2-2)多環側鎖含有樹脂が挙げられる。多官能活性カルボン酸誘導体としては、テトラカルボン酸二無水物が好ましい。多官能活性カルボン酸誘導体に加え、末端封止剤として、トリカルボン酸無水物、ジカルボン酸無水物、モノカルボン酸塩化物、又はモノカルボン酸活性エステルを反応成分に用いても構わない。
 (III)の(A2-2)多環側鎖含有樹脂としては、芳香族基を分子中に2つ以上、及び、エポキシ基を有する化合物と多官能カルボン酸(テトラカルボン酸、トリカルボン酸、及びジカルボン酸から選ばれる一種類以上)とを開環付加反応させて得られる樹脂に、エチレン性不飽和二重結合基及びエポキシ基を有する不飽和化合物を開環付加反応させて得られる(A2-2)多環側鎖含有樹脂が挙げられる。多官能カルボン酸としては、テトラカルボン酸又はトリカルボン酸が好ましい。多官能カルボン酸に加え、末端封止剤として、モノカルボン酸を反応成分に用いても構わない。
 (IV)の(A2-2)多環側鎖含有樹脂としては、芳香族基を分子中に2つ以上、及び、エポキシ基を有する化合物とエチレン性不飽和二重結合基を有する不飽和カルボン酸と、を開環付加反応させて得られる樹脂に、多官能活性カルボン酸誘導体(テトラカルボン酸二無水物、ジカルボン酸二塩化物、及びジカルボン酸活性ジエステルから選ばれる一種類以上)を反応させて得られる(A2-2)多環側鎖含有樹脂が挙げられる。多官能活性カルボン酸誘導体としては、テトラカルボン酸二無水物が好ましい。多官能活性カルボン酸誘導体に加え、末端封止剤として、トリカルボン酸無水物、ジカルボン酸無水物、モノカルボン酸塩化物、又はモノカルボン酸活性エステルを、反応成分に用いても構わない。
 <芳香族カルボン酸及びその誘導体に由来する構造単位>
 本発明に用いられる(A2-2)多環側鎖含有樹脂としては、芳香族カルボン酸及びその誘導体に由来する構造単位を含有することが好ましい。(A2-2)多環側鎖含有樹脂が、芳香族カルボン酸及びその誘導体に由来する構造単位を含有することで、芳香族基の耐熱性により、硬化膜の耐熱性を向上させることができる。芳香族カルボン酸及びその誘導体としては、芳香族基を有するテトラカルボン酸、芳香族基を有するテトラカルボン酸二無水物、芳香族基を有するトリカルボン酸、及び芳香族基を有するジカルボン酸から選ばれる一種類以上が好ましい。
 また、後述する(D)着色剤として、特に(D1)顔料を含有させる場合、(A2-2)多環側鎖含有樹脂が芳香族カルボン酸及びその誘導体に由来する構造単位を含有することで、芳香族基の立体障害により、(D1)顔料の分散安定性を向上させることができる。さらに(D1)顔料が、(D1-1)有機顔料の場合、(A2-2)多環側鎖含有樹脂中の芳香族基は、(D1-1)有機顔料の芳香族基と相互作用するため、(D1-1)有機顔料の分散安定性を向上させることができる。
 芳香族カルボン酸及びその誘導体としては、上述した、芳香族テトラカルボン酸及び/又はその誘導体、芳香族トリカルボン酸及び/又はその誘導体、又は、芳香族ジカルボン酸及び/又はその誘導体に含まれる化合物が挙げられる。
 (A2-2)多環側鎖含有樹脂中の、全テトラカルボン酸及び全ジカルボン酸並びにそれらの誘導体に由来する構造単位に占める、芳香族カルボン酸及び/又はその誘導体に由来する構造単位の含有比率は、10~100mol%が好ましく、20~100mol%がより好ましく、30~100mol%がさらに好ましい。含有比率が10~100mol%であると、硬化膜の耐熱性を向上させることができる。
 <カルボン酸及びその誘導体に由来する酸性基>
 本発明に用いられる(A2-2)多環側鎖含有樹脂としては、カルボン酸及びその誘導体に由来する構造単位を含有し、(A2-2)多環側鎖含有樹脂が、酸性基を有することが好ましい。(A2-2)多環側鎖含有樹脂が酸性基を有することで、アルカリ現像液によるパターン加工性及び現像後の解像度を向上させることができる。
 酸性基としては、pH6未満の酸性度を示す基が好ましい。pH6未満の酸性度を示す基としては、例えば、カルボキシ基、カルボン酸無水物基、スルホン酸基、フェノール性水酸基又はヒドロキシイミド基が挙げられる。アルカリ現像液によるパターン加工性向上及び現像後の解像度向上の観点から、カルボキシ基、カルボン酸無水物基又はフェノール性水酸基が好ましく、カルボキシ基又はカルボン酸無水物基がより好ましい。
 本発明に用いられる(A2-2)多環側鎖含有樹脂の酸当量としては、280g/mol以上が好ましく、300g/mol以上がより好ましく、400g/mol以上がさらに好ましい。酸当量が280g/mol以上であると、アルカリ現像時における膜減りを抑制できる。一方、酸当量としては、1,400g/mol以下が好ましく、1,100g/mol以下がより好ましく、950g/mol以下がさらに好ましい。酸当量が1,400g/mol以下であると、アルカリ現像液によるパターン加工性及び現像後の解像度を向上させることができる。また、アルカリ現像液によるパターン加工性向上及び現像後の解像度向上の観点から、酸当量が、カルボン酸当量であることがより好ましい。
 (A2-2)多環側鎖含有樹脂に占める、各種モノマー成分に由来する構造単位の含有比率は、H-NMR、13C-NMR、29Si-NMR、IR、TOF-MS、元素分析法及び灰分測定などを組み合わせて求めることができる。
 <(A2-2)多環側鎖含有樹脂の具体例>
 本発明に用いられる(A2-2)多環側鎖含有樹脂としては、例えば、“ADEKA ARKLS”(登録商標) WR-101若しくは同 WR-301(以上、何れもADEKA社製)、OGSOL(登録商標) CR-1030、同 CR-TR1、同 CR-TR2、同 CR-TR3、同 CR-TR4、同 CR-TR5、同 CR-TR6、同 CR-TR7、同 CR-TR8、同 CR-TR9若しくは同 CR-TR10(以上、何れも大阪ガスケミカル社製)又はTR-B201若しくはTR-B202(以上、何れもTRONLY社製)が挙げられる。
 <(A2-2)多環側鎖含有樹脂の物性>
 本発明に用いられる(A2-2)多環側鎖含有樹脂の二重結合当量としては、150g/mol以上が好ましく、200g/mol以上がより好ましく、250g/mol以上がさらに好ましい。二重結合当量が150g/mol以上であると、下地の基板との密着性を向上させることができる。一方、二重結合当量としては、10,000g/mol以下が好ましく、5,000g/mol以下がより好ましく、2,000g/mol以下がさらに好ましい。二重結合当量が10,000g/mol以下であると、露光時の感度を向上させることができる。
 本発明に用いられる(A2-2)多環側鎖含有樹脂のMwとしては、GPCで測定されるポリスチレン換算で、500以上が好ましく、1,000以上がより好ましく、1,500以上がさらに好ましい。Mwが500以上であると、現像後の解像度を向上させることができる。一方、Mwとしては、100,000以下が好ましく、50,000以下がより好ましく、20,000以下がさらに好ましい。Mwが100,000以下であると、塗布時のレベリング性及びアルカリ現像液によるパターン加工性を向上させることができる。
 <(A2-3)酸変性エポキシ樹脂>
 本発明に用いられる(A2-3)酸変性エポキシ樹脂としては、例えば、以下の(I)~(VI)の酸変性エポキシ樹脂が挙げられる。
(I)多官能フェノール化合物と多官能カルボン酸無水物とを反応させて得られる化合物に、エポキシ化合物を反応させて得られる酸変性エポキシ樹脂。
(II)多官能フェノール化合物とエポキシ化合物とを反応させて得られる化合物に、多官能カルボン酸無水物を反応させて得られる酸変性エポキシ樹脂。
(III)多官能アルコール化合物と多官能カルボン酸無水物とを反応させて得られる化合物に、エポキシ化合物を反応させて得られる酸変性エポキシ樹脂。
(IV)多官能アルコール化合物とエポキシ化合物とを反応させて得られる化合物に、多官能カルボン酸無水物を反応させて得られる酸変性エポキシ樹脂。
(V)多官能エポキシ化合物と多官能カルボン酸化合物とを反応させて得られる化合物に、エポキシ化合物を反応させて得られる酸変性エポキシ樹脂。
(VI)多官能エポキシ化合物とカルボン酸化合物とを反応させて得られる化合物に、多官能カルボン酸無水物を反応させて得られる酸変性エポキシ樹脂。
 なお、フェノール化合物、アルコール化合物、エポキシ化合物、カルボン酸無水物、及びカルボン酸化合物としては、例えば、国際公開第2017/057281号に記載の化合物が挙げられる。
 (A2-3)酸変性エポキシ樹脂は熱硬化性樹脂であり、主鎖のエポキシ樹脂骨格中に、高耐熱性の芳香族環状構造を有する。従って、(A2-3)酸変性エポキシ樹脂を樹脂組成物に含有させることで、得られる硬化膜の耐熱性を向上させることができる。そのため、硬化膜を耐熱性が要求される用途に用いる場合などに好適である。
 本発明に用いられる(A2-3)酸変性エポキシ樹脂としては、エチレン性不飽和二重結合基を有することが好ましい。エチレン性不飽和二重結合基を有する(A2-3)酸変性エポキシ樹脂を樹脂組成物に含有させることで、露光時の感度を向上させることができる。また、形成される三次元架橋構造は、脂環式構造又は脂肪族構造が主成分であるため、樹脂の軟化点の高温化が抑制され、低テーパーのパターン形状を得ることができるとともに、得られる硬化膜の機械特性を向上させることができる。そのため、硬化膜を機械特性が要求される用途に用いる場合などに好適である。
 本発明に用いられる(A2-3)酸変性エポキシ樹脂は、アルカリ可溶性基として、カルボキシ基及び/又はカルボン酸無水物基を有する。カルボキシ基及び/又はカルボン酸無水物基を有することで、現像後の解像度を向上させることができる。
 本発明に用いられる(A2-3)酸変性エポキシ樹脂としては、硬化膜の耐熱性向上の観点から、一般式(35)で表される構造単位、一般式(36)で表される構造単位、一般式(37)で表される構造単位、一般式(38)で表される構造単位、一般式(41)で表される構造単位、一般式(42)で表される構造単位、及び、一般式(43)で表される構造単位から選ばれる一種類以上を含有することが好ましい。また、本発明に用いられる(A2-3)酸変性エポキシ樹脂は、露光時の感度向上及び硬化膜の機械特性向上の観点から、主鎖、側鎖及び末端のいずれか一ヶ所以上に、エチレン性不飽和二重結合基を有することが好ましい。
Figure JPOXMLDOC01-appb-C000015
 一般式(35)~(38)において、X51~X54は、それぞれ独立して、炭素数1~6の脂肪族構造を表す。Z51は、炭素数10~25及び3~16価の、芳香族構造を表す。R71~R75は、それぞれ独立して、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基又は炭素数6~15のアリール基を表し、R76及びR77は、それぞれ独立して、炭素数1~10のアルキル基を表し、R78~R82は、それぞれ独立して、ハロゲン、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基又は炭素数6~15のアリール基を表し、R83~R88は、それぞれ独立して、一般式(39)で表される置換基を表す。a、b、c、d及びeは、それぞれ独立して、0~10の整数を表し、fは、0~8の整数を表し、gは、0~6の整数を表し、h、i、j及びkは、それぞれ独立して、0~3の整数を表し、lは、0~4の整数を表す。上述したアルキル基、シクロアルキル基、アリール基、脂肪族構造及び芳香族構造は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれでもよい。
 一般式(38)のZ51の芳香族構造としては、ターフェニル構造、ナフタレン構造、アントラセン構造、及びフルオレン構造からなる群より選ばれる一種類以上を含有する。また、一般式(38)のZ51のその他の芳香族構造としては、例えば、1,2,3,4-テトラヒドロナフタレン構造、2,2-ジフェニルプロパン構造、ジフェニルエーテル構造、ジフェニルケトン構造、又はジフェニルスルホン構造が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 一般式(39)において、X55は、炭素数1~6のアルキレン鎖又は炭素数4~10のシクロアルキレン鎖を表す。R89~R91は、それぞれ独立して、水素、炭素数1~10のアルキル基又は炭素数6~15のアリール基を表す。R92は、水素又は一般式(40)で表される置換基を表す。一般式(39)において、R89及びR90は、それぞれ独立して、水素又は炭素数1~4のアルキル基が好ましく、水素がより好ましい。R91は、水素又は炭素数1~4のアルキル基が好ましく、水素又はメチル基がより好ましい。一般式(40)において、X56は、炭素数1~6のアルキレン鎖又は炭素数4~10のシクロアルキレン鎖を表す。一般式(40)において、X56は、炭素数1~4のアルキレン鎖又は炭素数4~7のシクロアルキレン鎖が好ましい。上述したアルキレン鎖、シクロアルキレン鎖、アルキル基及びアリール基は、無置換体又は置換体のいずれでもよい。
Figure JPOXMLDOC01-appb-C000017
 一般式(41)~(43)において、X57~X61は、それぞれ独立して、炭素数1~6の脂肪族構造を表し、X62及びX63は、それぞれ独立して、炭素数1~6のアルキレン鎖又は炭素数4~10のシクロアルキレン鎖を表す。R93~R97は、それぞれ独立して、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、又は炭素数6~15のアリール基を表し、R98~R104は、それぞれ独立して、ハロゲン、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、又は炭素数6~15のアリール基を表し、R105は、水素又は炭素数1~6のアルキル基を表し、R106及びR107は、それぞれ独立して、一般式(39)で表される置換基を表し、R108は、水素、一般式(39)で表される置換基又は一般式(40)で表される置換基を表す。m、n、o、p及びqは、それぞれ独立して、0~10の整数を表し、r及びsは、それぞれ独立して、0~3の整数を表し、t、u、v、w及びxは、それぞれ独立して、0~4の整数を表す。上述したアルキレン鎖、シクロアルキレン鎖、アルキル基、シクロアルキル基、アリール基及び脂肪族構造は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれでもよい。
 本発明に用いられる(A2-3)酸変性エポキシ樹脂のうち、一般式(43)で表される構造単位を有する(A2-3)酸変性エポキシ樹脂としては、末端が、一般式(44)で表される置換基及び/又は一般式(45)で表される置換基を有することが好ましい。
Figure JPOXMLDOC01-appb-C000018
 一般式(44)において、R109は、一般式(39)で表される置換基を表す。一般式(45)において、X64は、炭素数1~6の脂肪族構造を表す。R110は、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基又は炭素数6~15のアリール基を表し、R111及びR112は、それぞれ独立して、ハロゲン、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基又は炭素数6~15のアリール基を表す。R113は、一般式(39)で表される置換基を表す。αは、0~10の整数を表す。β及びγは、0~4の整数を表す。一般式(45)において、X64は、炭素数1~4の脂肪族構造が好ましい。R110は、炭素数1~6のアルキル基、炭素数4~7のシクロアルキル基又は炭素数6~10のアリール基が好ましく、R111及びR112は、それぞれ独立して、ハロゲン、炭素数1~6のアルキル基、炭素数4~7のシクロアルキル基又は炭素数6~10のアリール基が好ましい。
 <芳香族カルボン酸及びその誘導体に由来する構造単位>
 本発明に用いられる(A2-3)酸変性エポキシ樹脂としては、芳香族カルボン酸及びその誘導体に由来する構造単位を含有することが好ましい。(A2-3)酸変性エポキシ樹脂が、芳香族カルボン酸及びその誘導体に由来する構造単位を含有することで、芳香族基の耐熱性により、硬化膜の耐熱性を向上させることができる。芳香族カルボン酸及びその誘導体としては、芳香族基を有するテトラカルボン酸、芳香族基を有するトリカルボン酸、芳香族基を有するトリカルボン酸無水物、芳香族基を有するジカルボン酸及び芳香族基を有するジカルボン酸無水物から選ばれる一種類以上が好ましい。
 また、後述する(D)着色剤として、特に(D1)顔料を含有させる場合、(A2-3)酸変性エポキシ樹脂が芳香族カルボン酸及びその誘導体に由来する構造単位を含有することで、芳香族基の立体障害により、(D1)顔料の分散安定性を向上させることができる。さらに(D1)顔料が、(D1-1)有機顔料の場合、(A2-3)酸変性エポキシ樹脂中の芳香族基は、(D1-1)有機顔料の芳香族基と相互作用するため、(D1-1)有機顔料の分散安定性を向上させることができる。
 芳香族カルボン酸及びその誘導体としては、上述した、芳香族テトラカルボン酸及び/又はその誘導体、芳香族トリカルボン酸及び/又はその誘導体、芳香族ジカルボン酸及び/又はその誘導体に含まれる化合物が挙げられる。
 (A2-3)酸変性エポキシ樹脂中の、全カルボン酸及びその誘導体に由来する構造単位に占める、芳香族カルボン酸及び/又はその誘導体に由来する構造単位の含有比率は10~100mol%が好ましく、20~100mol%がより好ましく、30~100mol%がさらに好ましい。含有比率が10~100mol%であると、硬化膜の耐熱性を向上させることができる。
 <カルボン酸及びその誘導体に由来する酸性基>
 本発明に用いられる(A2-3)酸変性エポキシ樹脂としては、カルボン酸及びその誘導体に由来する構造単位を含有し、(A2-3)酸変性エポキシ樹脂が、酸性基を有することが好ましい。(A2-3)酸変性エポキシ樹脂が酸性基を有することで、アルカリ現像液によるパターン加工性及び現像後の解像度を向上させることができる。
 酸性基としては、pH6未満の酸性度を示す基が好ましい。pH6未満の酸性度を示す基としては、例えば、カルボキシ基、カルボン酸無水物基、スルホン酸基、フェノール性水酸基又はヒドロキシイミド基が挙げられる。アルカリ現像液によるパターン加工性向上及び現像後の解像度向上の観点から、カルボキシ基、カルボン酸無水物基又はフェノール性水酸基が好ましく、カルボキシ基又はカルボン酸無水物基がより好ましい。
 本発明に用いられる(A2-3)酸変性エポキシ樹脂の酸当量としては、280g/mol以上が好ましく、300g/mol以上がより好ましく、400g/mol以上がさらに好ましい。酸当量が280g/mol以上であると、アルカリ現像時における膜減りを抑制できる。一方、酸当量としては、1,400g/mol以下が好ましく、1,100g/mol以下がより好ましく、950g/mol以下がさらに好ましい。酸当量が1,400g/mol以下であると、アルカリ現像液によるパターン加工性及び現像後の解像度を向上させることができる。また、アルカリ現像液によるパターン加工性向上及び現像後の解像度向上の観点から、酸当量が、カルボン酸当量であることがより好ましい。
 (A2-3)酸変性エポキシ樹脂に占める、各種モノマー成分に由来する構造単位の含有比率は、H-NMR、13C-NMR、29Si-NMR、IR、TOF-MS、元素分析法及び灰分測定などを組み合わせて求めることができる。
 <(A2-3)酸変性エポキシ樹脂の具体例>
 本発明に用いられる(A2-3)酸変性エポキシ樹脂としては、例えば、“KAYARAD”(登録商標) PCR-1222H、同 CCR-1171H、同 TCR-1348H、同 ZAR-1494H、同 ZFR-1401H、同 ZCR-1798H、同 ZXR-1807H、同 ZCR-6002H、若しくは同 ZCR-8001H(以上、何れも、日本化薬社製)又は“NK OLIGO”(登録商標) EA-6340、同 EA-7140、若しくは同 EA-7340(以上、何れも、新中村化学工業社製)が挙げられる。
 <(A2-3)酸変性エポキシ樹脂の物性>
 本発明に用いられる(A2-3)酸変性エポキシ樹脂のMwとしては、GPCで測定されるポリスチレン換算で、500以上が好ましく、1,000以上がより好ましく、1,500以上がさらに好ましい。Mwが上記範囲内であると、現像後の解像度を向上させることができる。一方、Mwとしては、100,000以下が好ましく、50,000以下がより好ましく、20,000以下がさらに好ましい。Mwが上記範囲内であると、塗布時のレベリング性及びアルカリ現像液によるパターン加工性を向上させることができる。
 <(A2-4)アクリル樹脂>
 本発明に用いられる(A2-4)アクリル樹脂としては、例えば、酸性基を有する共重合成分、(メタ)アクリル酸エステルに由来する共重合成分、及びその他の共重合成分から選ばれる一種類以上の共重合成分を、ラジカル共重合させて得られるアクリル樹脂が挙げられる。
 本発明に用いられる(A2-4)アクリル樹脂としては、エチレン性不飽和二重結合基を有することが好ましい。エチレン性不飽和二重結合基を有する(A2-4)アクリル樹脂を感光性樹脂組成物に含有させることで、露光時の感度を向上させることができる。また、形成される三次元架橋構造は、脂環式構造又は脂肪族構造が主成分であるため、樹脂の軟化点の高温化が抑制され、低テーパーのパターン形状を得ることができるとともに、得られる硬化膜の機械特性を向上させることができる。そのため、硬化膜を機械特性が要求される用途に用いる場合などに好適である。
 本発明に用いられる(A2-4)アクリル樹脂としては、露光時の感度向上及び硬化膜の機械特性向上の観点から、一般式(61)で表される構造単位及び/又は一般式(62)で表される構造単位を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000019
 一般式(61)及び(62)において、Rd及びRdは、それぞれ独立して、エチレン性不飽和二重結合基を有する、炭素数1~10のアルキル基、炭素数4~15のシクロアルキル基、又は炭素数6~15のアリール基を表す。R200~R205は、それぞれ独立して、水素、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、又は炭素数6~15のアリール基を表す。X90及びX91は、それぞれ独立して、直接結合、炭素数1~10のアルキレン鎖、炭素数4~10のシクロアルキレン鎖、又は炭素数6~15のアリーレン鎖を表す。
 一般式(61)及び(62)において、Rd及びRdは、それぞれ独立して、エチレン性不飽和二重結合基を有する、炭素数1~6のアルキル基、炭素数4~10のシクロアルキル基、又は炭素数6~10のアリール基が好ましい。また、R200~R205は、それぞれ独立して、水素、炭素数1~6のアルキル基、炭素数4~7のシクロアルキル基、又は炭素数6~10のアリール基が好ましい。また、X90及びX91は、それぞれ独立して、直接結合、炭素数1~6のアルキレン鎖、炭素数4~7のシクロアルキレン鎖、又は炭素数6~10のアリーレン鎖が好ましい。上述したアルキル基、シクロアルキル基、アリール基、アルキレン鎖、シクロアルキレン鎖及びアリーレン鎖は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれでもよい。
 本発明に用いられる(A2-4)アクリル樹脂としては、酸性基を有する共重合成分又はその他の共重合成分を、ラジカル共重合させて得られる(A2-4)アクリル樹脂であることが好ましい。その他の共重合成分としては、芳香族基を有する共重合成分又は脂環式基を有する共重合成分が好ましい。
 <酸性基を有する共重合成分に由来する構造単位>
 本発明に用いられる(A2-4)アクリル樹脂としては、酸性基を有する共重合成分に由来する構造単位を含有し、(A2-4)アクリル樹脂が、酸性基を有することが好ましい。(A2-4)アクリル樹脂が酸性基を有することで、アルカリ現像液によるパターン加工性及び現像後の解像度を向上させることができる。
 酸性基としては、pH6未満の酸性度を示す基が好ましい。pH6未満の酸性度を示す基としては、例えば、カルボキシ基、カルボン酸無水物基、スルホン酸基、フェノール性水酸基、又はヒドロキシイミド基が挙げられる。アルカリ現像液によるパターン加工性向上及び現像後の解像度向上の観点から、カルボキシ基、カルボン酸無水物基、又はフェノール性水酸基が好ましく、カルボキシ基又はカルボン酸無水物基がより好ましい。
 本発明に用いられる(A2-4)アクリル樹脂の酸当量としては、280g/mol以上が好ましく、300g/mol以上がより好ましく、400g/mol以上がさらに好ましい。酸当量が280g/mol以上であると、アルカリ現像時における膜減りを抑制できる。一方、酸当量としては、1,400g/mol以下が好ましく、1,100g/mol以下がより好ましく、950g/mol以下がさらに好ましい。酸当量が1,400g/mol以下であると、アルカリ現像液によるパターン加工性及び現像後の解像度を向上させることができる。また、アルカリ現像液によるパターン加工性向上及び現像後の解像度向上の観点から、酸当量が、カルボン酸当量であることがより好ましい。
 本発明に用いられる(A2-4)アクリル樹脂としては、(A2-4)アクリル樹脂がカルボキシ基を有する場合、エポキシ基を有しない(A2-4)アクリル樹脂が好ましい。(A2-4)アクリル樹脂がカルボキシ基とエポキシ基と、の両方を有すると、感光性樹脂組成物の塗液の保管中にカルボキシ基とエポキシ基と、が反応する可能性がある。そのため、樹脂組成物の塗液の保管安定性が低下する原因となる。エポキシ基を有しない(A2-4)アクリル樹脂としては、カルボキシ基又はカルボン酸無水物基を有する共重合成分とエポキシ基を有しないその他の共重合成分とをラジカル共重合させた(A2-4)アクリル樹脂が好ましい。
 <芳香族基を有する共重合成分に由来する構造単位>
 本発明に用いられる(A2-4)アクリル樹脂としては、芳香族基を有する共重合成分に由来する構造単位を含有することが好ましい。(A2-4)アクリル樹脂が芳香族基を有する共重合成分に由来する構造単位を含有することで、芳香族基の耐熱性により、硬化膜の耐熱性を向上させることができる。
 また、後述する(D)着色剤として特に(D1)顔料を含有させる場合、(A2-4)アクリル樹脂が芳香族基を有する共重合成分に由来する構造単位を含有することで、芳香族基の立体障害により、(D1)顔料の分散安定性を向上させることができる。さらに(D1)顔料が、(D1-1)有機顔料の場合、(A2-4)アクリル樹脂中の芳香族基は、(D1-1)有機顔料の芳香族基と相互作用するため、(D1-1)有機顔料の分散安定性を向上させることができる。
 (A2-4)アクリル樹脂中の全共重合成分に由来する構造単位に占める、芳香族基を有する共重合成分に由来する構造単位の含有比率は、10mol%以上が好ましく、20mol%以上がより好ましく、30mol%以上がさらに好ましい。含有比率が10mol%以上であると、硬化膜の耐熱性を向上させることができる。一方、含有比率は、80mol%以下が好ましく、75mol%以下がより好ましく、70mol%以下がさらに好ましい。含有比率が80mol%以下であると、露光時の感度を向上させることができる。
 <脂環式基を有する共重合成分に由来する構造単位>
 本発明に用いられる(A2-4)アクリル樹脂としては、脂環式基を有する共重合成分に由来する構造単位を含有することが好ましい。(A2-4)アクリル樹脂が脂環式基を有する共重合成分に由来する構造単位を含有することで、脂環式基の耐熱性及び透明性により、硬化膜の耐熱性及び透明性を向上させることができる。
 (A2-4)アクリル樹脂中の全共重合成分に由来する構造単位に占める、脂環式基を有する共重合成分に由来する構造単位の含有比率は、5mol%以上が好ましく、10mol%以上がより好ましく、15mol%以上がさらに好ましい。含有比率が5mol%以上であると、硬化膜の耐熱性及び透明性を向上させることができる。一方、含有比率は、90mol%以下が好ましく、85mol%以下がより好ましく、75mol%以下がさらに好ましい。含有比率が90mol%以下であると、硬化膜の機械特性を向上させることができる。
 本発明に用いられる(A2-4)アクリル樹脂としては、酸性基を有する共重合成分又はその他の共重合成分をラジカル共重合させて得られる樹脂に、さらに、エチレン性不飽和二重結合基及びエポキシ基を有する不飽和化合物を開環付加反応させて得られる樹脂が好ましい。エチレン性不飽和二重結合基及びエポキシ基を有する不飽和化合物を開環付加反応させることで、(A2-4)アクリル樹脂の側鎖にエチレン性不飽和二重結合基を導入できる。
 (A2-4)アクリル樹脂に占める、各種共重合成分に由来する構造単位の含有比率は、H-NMR、13C-NMR、29Si-NMR、IR、TOF-MS、元素分析法及び灰分測定などを組み合わせて求めることができる。
 <(A2-4)アクリル樹脂の物性>
 本発明に用いられる(A2-4)アクリル樹脂の二重結合当量としては、150g/mol以上が好ましく、200g/mol以上がより好ましく、250g/mol以上がさらに好ましい。二重結合当量が150g/mol以上であると、下地の基板との密着性を向上させることができる。一方、二重結合当量としては、10,000g/mol以下が好ましく、5,000g/mol以下がより好ましく、2,000g/mol以下がさらに好ましい。二重結合当量が10,000g/mol以下であると、露光時の感度を向上させることができる。
 本発明に用いられる(A2-4)アクリル樹脂のMwとしては、GPCで測定されるポリスチレン換算で、1,000以上が好ましく、3,000以上がより好ましく、5,000以上がさらに好ましい。Mwが1,000以上であると、現像後の解像度を向上させることができる。一方、Mwとしては、100,000以下が好ましく、70,000以下がより好ましく、50,000以下がさらに好ましい。Mwが100,000以下であると、塗布時のレベリング性及びアルカリ現像液によるパターン加工性を向上させることができる。
 (A2-4)アクリル樹脂は、公知の方法で合成できる。例えば、空気下又は窒素下で、ラジカル重合開始剤の存在下、共重合成分をラジカル共重合させる方法などが挙げられる。ラジカル共重合させる方法としては、例えば、空気下、又はバブリングや減圧脱気などによって反応容器内を十分窒素置換した後、反応溶媒中、共重合成分とラジカル重合開始剤とを添加し、60~110℃で30~500分反応させる方法などが挙げられる。また、必要に応じてチオール化合物などの連鎖移動剤及び/又はフェノール化合物などの重合禁止剤を用いても構わない。
 本発明の感光性樹脂組成物において、(A1)第1の樹脂及び(A2)第2の樹脂の合計100質量%に占める、(A1)第1の樹脂の含有比率は、25質量%以上が好ましく、50質量%以上がより好ましく、60質量%以上がさらに好ましく、70質量%以上がさらにより好ましく、80質量%以上が特に好ましい。含有比率が25質量%以上であると、硬化膜の耐熱性を向上させることができる。一方、(A1)第1の樹脂の含有比率は、99質量%以下が好ましく、98質量%以下がより好ましく、97質量%以下がさらに好ましく、95質量%以下がさらにより好ましく、90質量%以下が特に好ましい。含有比率が99質量%以下であると、低テーパーのパターン形状の硬化膜を得ることができる。
 本発明の感光性樹脂組成物に占める、(A1)第1の樹脂及び(A2)第2の樹脂の含有比率が上述した好ましい範囲内であることにより、硬化膜の耐熱性を向上させることができるとともに、低テーパーのパターン形状を得ることができる。そのため、本発明の感光性樹脂組成物から得られる硬化膜は、有機ELディスプレイの画素分割層等の絶縁層、TFT平坦化層、又はTFT保護層など、高耐熱性及び低テーパーのパターン形状が要求される用途に好適である。特に、熱分解による脱ガスに起因した素子の不良又は特性低下や、高テーパーのパターン形状による電極配線の断線など、耐熱性及びパターン形状に起因する問題が想定される用途において、本発明の感光性樹脂組成物の硬化膜を用いることで、上述した問題の発生が抑制された高信頼性の素子を製造することが可能となる。加えて、本発明の感光性樹脂組成物は後述する(D)着色剤を含有するため、電極配線の可視化防止又は外光反射低減が可能となり、画像表示におけるコントラストを向上させることができる。
 <(B)ラジカル重合性化合物>
 本発明の感光性樹脂組成物としては、さらに、(B)ラジカル重合性化合物を含有することが好ましい。
 (B)ラジカル重合性化合物とは、分子中に複数のエチレン性不飽和二重結合基を有する化合物をいう。露光時、後述する(C1)光重合開始剤から発生するラジカルによって、(B)ラジカル重合性化合物のラジカル重合が進行し、樹脂組成物の膜の露光部がアルカリ現像液に対して不溶化することによって、ネガ型のパターンを形成できる。
 (B)ラジカル重合性化合物を含有させることで、露光時のUV硬化が促進されて、露光時の感度を向上させることができる。加えて、熱硬化後の架橋密度が向上し、硬化膜の硬度を向上させることができる。
 (B)ラジカル重合性化合物としては、ラジカル重合の進行しやすい、(メタ)アクリル基を有する化合物が好ましい。露光時の感度向上及び硬化膜の硬度向上の観点から、(メタ)アクリル基を分子中に2つ以上有する化合物がより好ましい。(B)ラジカル重合性化合物の二重結合当量としては、露光時の感度向上、及び、低テーパー形状のパターン形成の観点から、80~800g/molが好ましい。
 (B)ラジカル重合性化合物としては、後述する(B1)フルオレン骨格含有ラジカル重合性化合物及び(B2)インダン骨格含有ラジカル重合性化合物以外に、例えば、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、テトラペンタエリスリトールノナ(メタ)アクリレート、テトラペンタエリスリトールデカ(メタ)アクリレート、ペンタペンタエリスリトールウンデカ(メタ)アクリレート、ペンタペンタエリスリトールドデカ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、2,2-ビス[4-(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)フェニル]プロパン、1,3,5-トリス((メタ)アクリロキシエチル)イソシアヌル酸、若しくは1,3-ビス((メタ)アクリロキシエチル)イソシアヌル酸、又はそれらの酸変性体が挙げられる。また、現像後の解像度向上の観点から、分子中に2つ以上のグリシドキシ基を有する化合物とエチレン性不飽和二重結合基を有する不飽和カルボン酸とを開環付加反応させて得られる化合物に、多塩基酸カルボン酸又は多塩基カルボン酸無水物を反応させて得られる化合物も好ましい。
 本発明の感光性樹脂組成物に占める(B)ラジカル重合性化合物の含有量は、(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100質量部とした場合において、15質量部以上が好ましく、20質量部以上がより好ましく、25質量部以上がさらに好ましく、30質量部以上が特に好ましい。含有量が15質量部以上であると、露光時の感度を向上できるとともに、低テーパーのパターン形状の硬化膜を得ることができる。一方、(B)ラジカル重合性化合物の含有量は、65質量部以下が好ましく、60質量部以下がより好ましく、55質量部以下がさらに好ましく、50質量部以下が特に好ましい。含有量が65質量部以下であると、硬化膜の耐熱性を向上させることができるとともに、低テーパーのパターン形状を得ることができる。
 <(B1)フルオレン骨格含有ラジカル重合性化合物及び(B2)インダン骨格含有ラジカル重合性化合物>
 本発明の感光性樹脂組成物は、(B)ラジカル重合性化合物として、(B1)フルオレン骨格含有ラジカル重合性化合物及び(B2)インダン骨格含有ラジカル重合性化合物からなる群より選ばれる一種類以上を含有することが好ましい。
 (B1)フルオレン骨格含有ラジカル重合性化合物とは、分子中に複数のエチレン性不飽和二重結合基及びフルオレン骨格を有する化合物をいう。(B2)インダン骨格含有ラジカル重合性化合物とは、分子中に複数のエチレン性不飽和二重結合基及びインダン骨格を有する化合物をいう。
 (B1)フルオレン骨格含有ラジカル重合性化合物又は(B2)インダン骨格含有ラジカル重合性化合物を含有させることによって、露光時の感度向上、及び現像後のパターン形状制御が可能になるとともに、熱硬化後に低テーパー形状のパターン形成が可能となる。加えて、現像後のパターン形状制御による順テーパー形状のパターン形成が可能となることから、ハーフトーン特性を向上させることができる。また、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。
 さらに、後述する(Da)黒色剤として特に(D1a-1a)ベンゾフラノン系黒色顔料を含有させる場合、上述した顔料のアルカリ耐性不足に起因した、顔料由来の現像残渣が発生する場合がある。この場合、後述する(B3)柔軟鎖含有脂肪族ラジカル重合性化合物、及び(B1)フルオレン骨格含有ラジカル重合性化合物又は(B2)インダン骨格含有ラジカル重合性化合物を含有させることで、上述した顔料由来の現像残渣発生を抑制できる。
 (B1)フルオレン骨格含有ラジカル重合性化合物としては、一般式(31)で表される化合物が好ましい。(B2)インダン骨格含有ラジカル重合性化合物としては、一般式(32)で表される化合物、及び一般式(33)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000020
 一般式(31)、(32)、及び(33)において、X21~X26は、それぞれ独立して、炭素数6~15及び2~10価の、単環式若しくは縮合多環式の芳香族炭化水素環、又は炭素数4~10及び2~8価の、単環式若しくは縮合多環式の脂肪族炭化水素環を表す。Y21~Y26は、それぞれ独立して、直接結合、炭素数1~10のアルキレン基、炭素数4~10のシクロアルキレン基、又は炭素数6~15のアリーレン基を表す。Y21~Y26が、直接結合の場合、Z21~Z26は、直接結合を表し、q、r、s、t、u及びvは、0である。Y21~Y26が、直接結合でない場合、Z21~Z26は、酸素原子を表し、q、r、s、t、u及びvは、それぞれ独立して、0~8の整数を表す。R131~R140は、それぞれ独立して、ハロゲン、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、又は炭素数6~15のアリール基を表し、R141~R144は、それぞれ独立して、水素、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、又は炭素数6~15のアリール基を表し、R145~R150は、それぞれ独立して、炭素数1~10のアルキル基又はヒドロキシ基を表す。P31~P36は、それぞれ独立して、一般式(34)で表される基を表す。a、b、c、d、e及びfは、それぞれ独立して、0又は1を表す。a、b、c、d、e及びfが、0の場合、Z21~Z26は、酸素原子を表す。g、h、i、j、k及びlは、それぞれ独立して、0~8の整数を表し、m、n、o及びpは、それぞれ独立して、0~4の整数を表す。α、β、γ、δ、ε及びζは、それぞれ独立して、1~4の整数を表す。上述した単環式若しくは縮合多環式の芳香族炭化水素環、単環式若しくは縮合多環式の脂肪族炭化水素環、アルキレン基、シクロアルキレン基、アリーレン基、アルキル基、シクロアルキル基、及びアリール基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれでもよい。
Figure JPOXMLDOC01-appb-C000021
 一般式(34)において、R151~R153は、それぞれ独立して、水素、炭素数1~10のアルキル基、又は炭素数6~15のアリール基を表す。一般式(34)において、R151は、水素又は炭素数1~4のアルキル基が好ましく、水素又はメチル基がより好ましい。R152及びR153は、それぞれ独立して、水素又は炭素数1~4のアルキル基が好ましく、水素がより好ましい。
 (B1)フルオレン骨格含有ラジカル重合性化合物及び(B2)インダン骨格含有ラジカル重合性化合物としては、ラジカル重合の進行しやすい、(メタ)アクリル基を有する化合物が好ましい。露光時の感度向上及び現像後の残渣抑制の観点から、(メタ)アクリル基を分子中に2つ以上有する化合物がより好ましい。
 (B1)フルオレン骨格含有ラジカル重合性化合物及び(B2)インダン骨格含有ラジカル重合性化合物の二重結合当量は、150g/mol以上が好ましく、170g/mol以上がより好ましく、190g/mol以上がさらに好ましく、210g/mol以上が特に好ましい。二重結合当量が、150g/mol以上であると、熱硬化後に低テーパー形状のパターンを形成できるとともに、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。一方、(B1)フルオレン骨格含有ラジカル重合性化合物及び(B2)インダン骨格含有ラジカル重合性化合物の二重結合当量は、800g/mol以下が好ましく、600g/mol以下がより好ましく、500g/mol以下がさらに好ましく、400g/mol以下が特に好ましい。二重結合当量が、800g/mol以下であると、露光時の感度を向上させることができる。
 (B1)フルオレン骨格含有ラジカル重合性化合物としては、例えば、9,9-ビス[4-(2-(メタ)アクリロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(3-(メタ)アクリロキシプロポキシ)フェニル]フルオレン、9,9-ビス(4-(メタ)アクリロキシフェニル)フルオレン、9,9-ビス[4-(2-ヒドロキシ-3-(メタ)アクリロキシプロポキシ)フェニル]フルオレン、若しくは9,9-ビス[3,4-ビス(2-(メタ)アクリロキシエトキシ)フェニル]フルオレンは、OGSOL(登録商標) EA-50P、同 EA-0200、同 EA-0250P、同 EA-0300、同 EA-500、同 EA-1000、同 EA-F5510若しくは同 GA-5000(以上、何れも大阪ガスケミカル社製)が挙げられる。
 (B2)インダン骨格含有ラジカル重合性化合物としては、例えば、1,1-ビス[4-(2-(メタ)アクリロキシエトキシ)フェニル]インダン、1,1-ビス(4-(メタ)アクリロキシフェニル)インダン、1,1-ビス[4-(2-ヒドロキシ-3-(メタ)アクリロキシプロポキシ)フェニル]インダン、1,1-ビス[3,4-ビス(2-(メタ)アクリロキシエトキシ)フェニル]インダン、2,2-ビス[4-(2-(メタ)アクリロキシエトキシ)フェニル]インダン、又は2,2-ビス(4-(メタ)アクリロキシフェニル)インダンが挙げられる。
 (B1)フルオレン骨格含有ラジカル重合性化合物及び(B2)インダン骨格含有ラジカル重合性化合物は、公知の方法により合成できる。例えば、国際公開第2008/139924号に記載の合成方法が挙げられる。
 本発明の感光性樹脂組成物に占める(B1)フルオレン骨格含有ラジカル重合性化合物及び(B2)インダン骨格含有ラジカル重合性化合物の含有量の合計は、(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100質量部とした場合において、0.5質量部以上が好ましく、1質量部以上がより好ましく、2質量部以上がさらに好ましく、3質量部以上がさらにより好ましく、5質量部以上が特に好ましい。含有量が0.5質量部以上であると、露光時の感度を向上できるとともに熱硬化後に低テーパー形状のパターンを形成できる。加えて、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。一方、(B1)フルオレン骨格含有ラジカル重合性化合物及び(B2)インダン骨格含有ラジカル重合性化合物の含有量の合計は、25質量部以下が好ましく、22質量部以下がより好ましく、20質量部以下がさらに好ましく、18質量部以下がさらにより好ましく、15質量部以下が特に好ましい。含有量が25質量部以下であると、熱硬化前後におけるパターン開口寸法幅の変化を抑制できるとともに、現像後の残渣発生を抑制できる。
 <(B3)柔軟鎖含有脂肪族ラジカル重合性化合物>
 本発明の感光性樹脂組成物は、(B)ラジカル重合性化合物として、(B3)柔軟鎖含有脂肪族ラジカル重合性化合物を含有することが好ましい。
 (B3)柔軟鎖含有脂肪族ラジカル重合性化合物とは、分子中に複数のエチレン性不飽和二重結合基、及び、脂肪族鎖若しくはオキシアルキレン鎖などの柔軟骨格を有する化合物をいう。
 (B3)柔軟鎖含有脂肪族ラジカル重合性化合物を含有させることで、露光時のUV硬化が効率的に進行し、露光時の感度を向上させることができる。加えて、後述する(D)着色剤として、特に(D1)顔料を含有させる場合、(D1)顔料が(B3)柔軟鎖含有脂肪族ラジカル重合性化合物のUV硬化時の架橋によって硬化部に固定化されることで、(D1)顔料に由来する現像後の残渣発生を抑制できる。また、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。加えて、硬化膜の折り曲げ性を向上させることができる。これは、脂肪族鎖などの柔軟骨格を有することで、UV硬化が促進されて硬化膜の分子量が増大したことに加え、硬化膜に柔軟骨格が導入されることで、機械物性が向上したためと推測される。
 さらに、後述する(Da)黒色剤として、特に(D1a-1a)ベンゾフラノン系黒色顔料を含有させる場合、上述した顔料のアルカリ耐性不足に起因した、顔料由来の現像残渣が発生する場合がある。そのような場合にも、(B3)柔軟鎖含有脂肪族ラジカル重合性化合物を含有させることで、上述した顔料由来の現像残渣発生を抑制できる。
 (B3)柔軟鎖含有脂肪族ラジカル重合性化合物としては、分子中に一般式(24)で表される基、及び3個以上の一般式(25)で表される基を有する化合物が好ましい。
Figure JPOXMLDOC01-appb-C000022
 一般式(24)において、R125は、水素又は炭素数1~10のアルキル基を表す。Z17は、一般式(29)で表される基又は一般式(30)で表される基を表す。aは、1~10の整数を表し、bは、1~4の整数を表し、cは、0又は1を表し、dは、1~4の整数を表し、eは、0又は1を表す。cが、0の場合、dは、1である。一般式(25)において、R126~R128は、それぞれ独立して、水素、炭素数1~10のアルキル基、又は炭素数6~15のアリール基を表す。一般式(30)において、R129は、水素又は炭素数1~10のアルキル基を表す。一般式(24)において、cは1が好ましく、eは1が好ましい。一般式(25)において、R126は、水素又は炭素数1~4のアルキル基が好ましく、水素又はメチル基がより好ましい。R127及びR128は、それぞれ独立して、水素又は炭素数1~4のアルキル基が好ましく、水素がより好ましい。一般式(30)において、R129は、水素又は炭素数1~4のアルキル基が好ましく、水素又はメチル基がより好ましい。一般式(24)において、cが、1であると、現像後の残渣発生を抑制できる。加えて、硬化膜の折り曲げ性を向上させることができる。
 (B3)柔軟鎖含有脂肪族ラジカル重合性化合物としては、一般式(27)で表される化合物及び一般式(28)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000023
 一般式(27)において、X28は、2価の有機基を表す。Y28~Y33は、それぞれ独立して、直接結合又は上述した一般式(24)で表される基を表し、Y28~Y33のうち、少なくとも1つは上述した一般式(24)で表される基である。P12~P17は、それぞれ独立して、水素又は上述した一般式(25)で表される基を表し、P12~P17のうち、少なくとも3つは上述した一般式(25)で表される基である。a、b、c、d、e、及びfは、それぞれ独立して、0又は1を表し、gは、0~10の整数を表す。
 一般式(27)において、X28は、炭素数1~10の脂肪族構造、炭素数4~20の脂環式構造及び炭素数6~30の芳香族構造から選ばれる一種類以上を有する2価の有機基が好ましい。a、b、c、d、e、及びfは、それぞれ独立して、1が好ましく、gは、0~5が好ましい。上述した脂肪族構造、脂環式構造及び芳香族構造は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれでもよい。一般式(27)において、Y28~Y33のうち、上述した一般式(24)で表される基は2つ以上が好ましく、3つ以上がより好ましく、4つ以上がさらに好ましい。Y28~Y33のうち、上述した一般式(24)で表される基が2つ以上であると、露光時の感度を向上できるとともに、現像後の残渣発生を抑制できる。加えて、硬化膜の折り曲げ性を向上させることができる。
 一般式(28)において、X29は、2価の有機基を表す。X30及びX31は、それぞれ独立して、直接結合又は炭素数1~10のアルキレン鎖を表す。Y34~Y37は、それぞれ独立して、直接結合又は上述した一般式(24)で表される基を表し、Y34~Y37のうち、少なくとも1つは上述した一般式(24)で表される基である。R69及びR70は、それぞれ独立して、水素又は炭素数1~10のアルキル基を表す。P18~P21は、それぞれ独立して、水素又は上述した一般式(25)で表される基を表し、P18~P21のうち、少なくとも3つは上述した一般式(25)で表される基である。h、i、j及びkは、それぞれ独立して、0又は1を表し、lは、0~10の整数を表す。
 一般式(28)において、X29は、炭素数1~10の脂肪族構造、炭素数4~20の脂環式構造及び炭素数6~30の芳香族構造から選ばれる一種類以上を有する2価の有機基が好ましい。h、i、j、及びkは、それぞれ独立して、1が好ましく、lは、0~5が好ましい。上述したアルキル基、アルキレン鎖、脂肪族構造、脂環式構造、及び芳香族構造は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれでもよい。一般式(28)において、Y34~Y37のうち、上述した一般式(24)で表される基は2つ以上が好ましく、3つ以上がより好ましく、4つ以上がさらに好ましい。Y34~Y37のうち、上述した一般式(24)で表される基が2つ以上であると、露光時の感度を向上できるとともに現像後の残渣発生を抑制できる。加えて、硬化膜の折り曲げ性を向上させることができる。
 (B3)柔軟鎖含有脂肪族ラジカル重合性化合物としては、少なくとも1つのラクトン変性鎖及び/又は少なくとも1つのラクタム変性鎖を有することが好ましい。(B3)柔軟鎖含有脂肪族ラジカル重合性化合物が、少なくとも1つのラクトン変性鎖及び/又は少なくとも1つのラクタム変性鎖を有することで、現像後の残渣発生を抑制できる。加えて、硬化膜の折り曲げ性を向上させることができる。これは、ラクトン変性鎖及び/又はラクタム変性鎖を有することで、UV硬化が顕著に促進されて硬化膜の分子量が増大したためと考えられる。また、ラクトン変性鎖及び/又はラクタム変性鎖のような柔軟骨格が硬化膜に導入されることで、機械物性が向上したためと推測される。
 (B3)柔軟鎖含有脂肪族ラジカル重合性化合物は、上述した一般式(24)において、cが1であって、eが1であると、少なくとも1つのラクトン変性鎖及び/又は少なくとも1つのラクタム変性鎖を有する。
 (B3)柔軟鎖含有脂肪族ラジカル重合性化合物が分子中に有するエチレン性不飽和二重結合基数は、3個以上が好ましく、4個以上がより好ましい。エチレン性不飽和二重結合基数が3個以上であると、露光時の感度を向上させることができる。一方、(B3)柔軟鎖含有脂肪族ラジカル重合性化合物が分子中に有するエチレン性不飽和二重結合基数は、12個以下が好ましく、10個以下がより好ましく、8個以下がさらに好ましく、6個以下が特に好ましい。エチレン性不飽和二重結合基数が12個以下であると、熱硬化後に低テーパー形状のパターンを形成できるとともに、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。
 (B3)柔軟鎖含有脂肪族ラジカル重合性化合物の二重結合当量は、100g/mol以上が好ましく、120g/mol以上がより好ましく、150g/mol以上がさらに好ましく、170g/mol以上がさらにより好ましく、200g/mol以上が特に好ましい。二重結合当量が、100g/mol以上であると、露光時の感度を向上できるとともに現像後の残渣発生を抑制できる。加えて、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。一方、(B3)柔軟鎖含有脂肪族ラジカル重合性化合物の二重結合当量は、800g/mol以下が好ましく、600g/mol以下がより好ましく、500g/mol以下がさらに好ましく、450g/mol以下が特に好ましい。二重結合当量が、800g/mol以下であると、露光時の感度を向上できるとともに現像後の残渣発生を抑制できる。加えて、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。
 (B3)柔軟鎖含有脂肪族ラジカル重合性化合物としては、分子中に有するエチレン性不飽和二重結合基数が3個以上の化合物として、例えば、エトキシ化ジペンタエリスリトールヘキサ(メタ)アクリレート、プロポキシ化ジペンタエリスリトールヘキサ(メタ)アクリレート、ε-カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、δ-バレロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、γ-ブチロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、β-プロピオラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ε-カプロラクタム変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ε-カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレート、ε-カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、ε-カプロラクトン変性ジトリメチロールプロパンテトラ(メタ)アクリレート、ε-カプロラクトン変性グリセリントリ(メタ)アクリレート、ε-カプロラクトン変性ペンタエリスリトールトリ(メタ)アクリレート、ε-カプロラクトン変性ペンタエリスリトールテトラ(メタ)アクリレート若しくはε-カプロラクトン変性1,3,5-トリス((メタ)アクリロキシエチル)イソシアヌル酸、“KAYARAD”(登録商標) DPEA-12、同 DPCA-20、同 DPCA-30、同 DPCA-60、若しくは同 DPCA-120(以上、何れも日本化薬社製)、又は“NK ESTER”(登録商標) A-DPH-6E、同 A-DPH-6P、同 M-DPH-6E、同 A-9300-1CL、若しくは同 A-9300-3CL(以上、何れも新中村化学工業社製)が挙げられる。
 (B3)柔軟鎖含有脂肪族ラジカル重合性化合物は、公知の方法により、合成できる。
 本発明の感光性樹脂組成物に占める(B3)柔軟鎖含有脂肪族ラジカル重合性化合物の含有量は、(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100質量部とした場合において、5質量部以上が好ましく、10質量部以上がより好ましく、15質量部以上がさらに好ましく、20質量部以上が特に好ましい。含有量が5質量部以上であると、露光時の感度を向上できるとともに、現像後の残渣発生を抑制できる。加えて、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。加えて、硬化膜の折り曲げ性を向上できる。一方、(B3)柔軟鎖含有脂肪族ラジカル重合性化合物の含有量は、45質量部以下が好ましく、40質量部以下がより好ましく、35質量部以下がさらに好ましく、30質量部以下が特に好ましい。含有量が45質量部以下であると、低テーパーのパターン形状の硬化膜を得ることができる。
 本発明の感光性樹脂組成物は、上述した(B3)柔軟鎖含有脂肪族ラジカル重合性化合物及び(B4)柔軟鎖含有二官能ラジカル重合性化合物を含有することが好ましい。上述した(B3)柔軟鎖含有脂肪族ラジカル重合性化合物と、(B4)柔軟鎖含有二官能ラジカル重合性化合物とを、組み合わせて使用することで、熱硬化前後におけるパターン開口寸法幅の変化を抑制できるとともに、硬化膜の折り曲げ性を向上させることができる。本発明の感光性樹脂組成物において、(B3)柔軟鎖含有脂肪族ラジカル重合性化合物、及び、(B4)柔軟鎖含有二官能ラジカル重合性化合物の合計100質量%に占める、前記(B4)柔軟鎖含有二官能ラジカル重合性化合物の含有比率は、20質量%以上が好ましく、25質量%以上がより好ましく、30質量%以上がさらに好ましく、35質量%以上がさらにより好ましく、40質量%以上が特に好ましい。含有比率が20質量%以上であると、熱硬化前後におけるパターン開口寸法幅の変化を抑制できるとともに、硬化膜の折り曲げ性を向上できる。一方、(B4)柔軟鎖含有二官能ラジカル重合性化合物の含有比率は、80質量%以下が好ましく、75質量%以下がより好ましく、70質量%以下がさらに好ましく、65質量%以下がさらにより好ましく、60質量%以下が特に好ましい。含有比率が80質量%以下であると、露光時の感度を向上できるとともに、現像後の残渣発生を抑制することができ、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。
 <(B4)柔軟鎖含有二官能ラジカル重合性化合物>
 本発明の感光性樹脂組成物は、(B)ラジカル重合性化合物として、(B4)柔軟鎖含有二官能ラジカル重合性化合物を含有することが好ましい。(B4)柔軟鎖含有二官能ラジカル重合性化合物とは、分子中に2つのエチレン性不飽和二重結合基、及び、脂肪族鎖若しくはオキシアルキレン鎖などの柔軟骨格を有する化合物をいう。
 (B4)柔軟鎖含有二官能ラジカル重合性化合物を含有させることで、露光時のUV硬化が効率的に進行し、露光時の感度を向上させることができる。加えて、後述する(D)着色剤として、特に(D1)顔料を含有させる場合、(D1)顔料が(B4)柔軟鎖含有二官能ラジカル重合性化合物のUV硬化時の架橋によって硬化部に固定化されることで、(D1)顔料に由来する現像後の残渣発生を抑制することができるとともに、熱硬化後に低テーパー形状のパターンを形成することができる。これは、脂肪族鎖などの柔軟骨格を有することで、UV硬化が促進されて架橋密度が向上したことに加え、二官能であるため過剰硬化が抑制され、熱硬化時におけるリフロー性を維持できるためと推測される。また、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。これは、露光時のUV硬化度制御によって、現像後に低テーパー形状のパターンを形成でき、熱硬化時におけるパターン裾のリフローが抑制されるためと推測される。
 さらに、硬化膜の折り曲げ性を向上させることができる。これは、脂肪族鎖などの柔軟骨格を有することで、UV硬化が促進されて硬化膜の分子量が増大したことに加え、硬化膜に柔軟骨格が導入されることで、機械物性が向上したためと推測される。また、二官能であるため過剰硬化が抑制され、硬化膜の柔軟性を向上できるためと考えられる。
 さらに、後述する(Da)黒色剤として、特に(D1a-1a)ベンゾフラノン系黒色顔料を含有させる場合、前述した通り、前記顔料の耐アルカリ性不足に起因した、顔料由来の現像残渣が発生する場合がある。そのような場合にも、(B4)柔軟鎖含有二官能ラジカル重合性化合物を含有させることで、前記顔料由来の現像残渣発生を抑制することができる。上記と同様に、UV硬化が促進され、架橋密度が向上することで、前記(D1a-1a)ベンゾフラノン系黒色顔料が硬化部に固定化され、アルカリ現像液による分解又は溶解を阻害するためと推測される。
 (B4)柔軟鎖含有二官能ラジカル重合性化合物としては、分子中に少なくとも1つの一般式(21)で表される基、及び2個の一般式(25)で表される基を有する化合物が好ましい。
Figure JPOXMLDOC01-appb-C000024
 一般式(20)において、R67は、水素又は炭素数1~10のアルキル基を表す。aは、1~10の整数を表し、bは、1~4の整数を表す。一般式(21)において、R68は、水素又は炭素数1~10のアルキル基を表す。Z18は、一般式(29)で表される基又は一般式(30)で表される基を表す。cは、1~10の整数を表し、dは、1~4の整数を表す。一般式(25)において、R126~R128は、それぞれ独立して、水素、炭素数1~10のアルキル基又は炭素数6~15のアリール基を表す。一般式(30)において、R129は、水素又は炭素数1~10のアルキル基を表す。一般式(20)において、R67は、水素又は炭素数1~4のアルキル基が好ましい。aは、1~6の整数が好ましく、bは、1又は2が好ましい。一般式(21)において、R68は、水素又は炭素数1~4のアルキル基が好ましい。cは、1~6の整数が好ましく、dは、1又は2が好ましい。一般式(25)において、R126は、水素又は炭素数1~4のアルキル基が好ましく、水素又はメチル基がより好ましい。R127及びR128は、それぞれ独立して、水素又は炭素数1~4のアルキル基が好ましく、水素がより好ましい。一般式(30)において、R129は、水素又は炭素数1~4のアルキル基が好ましく、水素又はメチル基がより好ましい。
 (B4)柔軟鎖含有二官能ラジカル重合性化合物としては、一般式(22)で表される化合物及びは一般式(23)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000025
 一般式(22)において、X38は、2価の有機基を表す。Y38及びY39は、それぞれ独立して、直接結合、前記一般式(20)で表される基又は前記一般式(21)で表される基を表し、Y38及びY39のうち、少なくとも1つは前記一般式(21)で表される基である。P22及びP23は、前記一般式(25)で表される基を表す。a及びbは、それぞれ独立して、0又は1を表す。一般式(22)において、X38は、炭素数1~10の脂肪族構造、炭素数4~20の脂環式構造及び炭素数6~30の芳香族構造から選ばれる一種類以上を有する2価の有機基が好ましく、炭素数1~6の脂肪族構造、炭素数4~15の脂環式構造及び炭素数6~25の芳香族構造から選ばれる一種類以上を有する2価の有機基がより好ましい。a及びbは、それぞれ独立して、1が好ましい。上記の脂肪族構造、脂環式構造及び芳香族構造は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。
 一般式(23)において、X39及びX40は、それぞれ独立して、2価の有機基を表す。Y40及びY41は、それぞれ独立して、直接結合、前記一般式(20)で表される基又は前記一般式(21)で表される基を表し、Y40及びY41のうち、少なくとも1つは前記一般式(21)で表される基である。Z38は、直接結合又は酸素を表す。P24及びP25は、前記一般式(25)で表される基を表す。c及びdは、それぞれ独立して、0又は1を表す。一般式(23)において、X39及びX40は、炭素数1~10の脂肪族構造、炭素数4~20の脂環式構造及び炭素数6~30の芳香族構造から選ばれる一種類以上を有する2価の有機基が好ましく、炭素数1~6の脂肪族構造、炭素数4~15の脂環式構造及び炭素数6~25の芳香族構造から選ばれる一種類以上を有する2価の有機基がより好ましい。c及びdは、それぞれ独立して、1が好ましい。上記の脂肪族構造、脂環式構造及び芳香族構造は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれであっても構わない。
 (B4)柔軟鎖含有二官能ラジカル重合性化合物としては、少なくとも1つのラクトン変性鎖及び/又は少なくとも1つのラクタム変性鎖を有する。(B4)柔軟鎖含有二官能ラジカル重合性化合物が、少なくとも1つのラクトン変性鎖及び/又は少なくとも1つのラクタム変性鎖を有することで、現像後の残渣発生を抑制できる。加えて、硬化膜の折り曲げ性を向上させることができる。これは、ラクトン変性鎖及び/又はラクタム変性鎖を有することで、UV硬化が顕著に促進されて硬化膜の分子量が増大したためと考えられる。また、ラクトン変性鎖及び/又はラクタム変性鎖のような柔軟骨格が硬化膜に導入されることで、機械物性が向上したためと推測される。
 (B4)柔軟鎖含有二官能ラジカル重合性化合物が、上述した一般式(34)で表される基を有すると、少なくとも1つのラクトン変性鎖及び/又は少なくとも1つのラクタム変性鎖を有する。
 ラクトン変性鎖としては、ラクトン化合物に由来する構造が好ましい。ラクトン化合物としては、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン又はε-カプロラクトンが挙げられる。ラクタム変性鎖としては、ラクタム化合物に由来する構造が好ましい。ラクタム化合物としては、β-プロピオラクタム、γ-ブチロラクタム、δ-バレロラクタム又はε-カプロラクタムが挙げられる。
 (B4)柔軟鎖含有二官能ラジカル重合性化合物の二重結合当量は、100g/mol以上が好ましく、120g/mol以上がより好ましく、150g/mol以上がさらに好ましく、170g/mol以上がさらにより好ましく、200g/mol以上が特に好ましい。二重結合当量が、100g/mol以上であると、露光時の感度を向上できるとともに、現像後の残渣発生を抑制することができる。一方、(B4)柔軟鎖含有二官能ラジカル重合性化合物の二重結合当量は、800g/mol以下が好ましく、600g/mol以下がより好ましく、500g/mol以下がさらに好ましく、450g/mol以下が特に好ましい。二重結合当量が、800g/mol以下であると、露光時の感度を向上できるとともに、現像後の残渣発生を抑制することができる。
 (B4)柔軟鎖含有二官能ラジカル重合性化合物の分子量は、200以上が好ましく、250以上がより好ましく、300以上がさらに好ましく、350以上がさらにより好ましく、400以上が特に好ましい。分子量が、200以上であると、露光時の感度を向上できるとともに、現像後の残渣発生を抑制することができる。一方、(B4)柔軟鎖含有二官能ラジカル重合性化合物の分子量は、1,000以下が好ましく、900以下がより好ましく、800以下がさらに好ましく、700以下が特に好ましい。分子量が、1,000以下であると、露光時の感度を向上できるとともに、現像後の残渣発生を抑制することができる。
 (B4)柔軟鎖含有二官能ラジカル重合性化合物としては、分子中に有するエチレン性不飽和二重結合基数が2個の化合物として、例えば、ε-カプロラクトン変性ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ε-カプロラクトン変性トリメチロールプロパンジ(メタ)アクリレート、ε-カプロラクトン変性ジトリメチロールプロパンジ(メタ)アクリレート、ε-カプロラクトン変性グリセリンジ(メタ)アクリレート、ε-カプロラクトン変性ペンタエリスリトールジ(メタ)アクリレート、ε-カプロラクトン変性ジメチロール-トリシクロデカンジ(メタ)アクリレート、ε-カプロラクトン変性1,3-ビス((メタ)アクリロキシエチル)イソシアヌル酸、若しくはε-カプロラクトン変性1,3-ビス((メタ)アクリロキシエチル)イソシアヌル酸、又は“KAYARAD”(登録商標)HX-220、若しくは同HX-620(以上、何れも日本化薬社製)が挙げられる。
 本発明の感光性樹脂組成物に占める(B4)柔軟鎖含有二官能ラジカル重合性化合物の含有量は、(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100質量部としたとき、3質量部以上が好ましく、5質量部以上がより好ましく、10質量部以上がさらに好ましく、15質量部以上がさらにより好ましく、20質量部以上が特に好ましい。含有量が3質量部以上であると、露光時の感度を向上できるとともに、低テーパー形状のパターンを形成することができる。加えて、硬化膜の折り曲げ性を向上させることができる。一方、(B4)柔軟鎖含有二官能ラジカル重合性化合物の含有量は、40質量部以下が好ましく、35質量部以下がより好ましく、30質量部以下がさらに好ましく、25質量部以下が特に好ましい。含有量が40質量部以下であると、露光時の感度を向上できるとともに、現像後の残渣発生を抑制することができる。
 本発明の感光性樹脂組成物は、上述した(B3)柔軟鎖含有脂肪族ラジカル重合性化合物及び(B4)柔軟鎖含有二官能ラジカル重合性化合物を含有することが好ましい。上述した(B3)柔軟鎖含有脂肪族ラジカル重合性化合物と、(B4)柔軟鎖含有二官能ラジカル重合性化合物とを、組み合わせて使用することで、熱硬化前後におけるパターン開口寸法幅の変化を抑制できるとともに、硬化膜の折り曲げ性を向上させることができる。本発明の感光性樹脂組成物において、(B3)柔軟鎖含有脂肪族ラジカル重合性化合物、及び、(B4)柔軟鎖含有二官能ラジカル重合性化合物の合計100質量%に占める、前記(B4)柔軟鎖含有二官能ラジカル重合性化合物の含有比率は、20質量%以上が好ましく、25質量%以上がより好ましく、30質量%以上がさらに好ましく、35質量%以上がさらにより好ましく、40質量%以上が特に好ましい。含有比率が20質量%以上であると、熱硬化前後におけるパターン開口寸法幅の変化を抑制できるとともに、硬化膜の折り曲げ性を向上できる。一方、(B4)柔軟鎖含有二官能ラジカル重合性化合物の含有比率は、80質量%以下が好ましく、75質量%以下がより好ましく、70質量%以下がさらに好ましく、65質量%以下がさらにより好ましく、60質量%以下が特に好ましい。含有比率が80質量%以下であると、露光時の感度を向上できるとともに、現像後の残渣発生を抑制することができ、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。
 <ネガ型感光性>
 本発明の感光性樹脂組成物は、さらに、(C)感光剤を含有する。(C)感光剤としては、(C1)光重合開始剤及び/又は(C2)光酸発生剤が好ましい。
 <(C1)光重合開始剤>
 (C1)光重合開始剤とは、露光によって結合開裂及び/又は反応してラジカルを発生する化合物をいう。
 (C1)光重合開始剤を含有させることで、上述した(B)ラジカル重合性化合物のラジカル重合が進行し、樹脂組成物の膜の露光部がアルカリ現像液に対して不溶化することで、ネガ型のパターンを形成できる。また、露光時のUV硬化が促進されて、感度を向上させることができる。
 また、(C1)光重合開始剤を特定量以上含有させることで、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。これは、露光時における(C1)光重合開始剤に由来するラジカル発生量の増加に起因すると考えられる。すなわち、露光時におけるラジカル発生量を増加させることで、発生したラジカルと、上述した(B)ラジカル重合性化合物中のエチレン性不飽和二重結合基との衝突確率が高くなり、UV硬化が促進され、架橋密度が向上することで、熱硬化時におけるパターンのテーパー部及びパターン裾のリフローが抑制されることで、熱硬化前後におけるパターン開口寸法幅の変化を抑制できると推測される。
 (C1)光重合開始剤としては、例えば、ベンジルケタール系光重合開始剤、α-ヒドロキシケトン系光重合開始剤、α-アミノケトン系光重合開始剤、アシルホスフィンオキシド系光重合開始剤、オキシムエステル系光重合開始剤、アクリジン系光重合開始剤、チタノセン系光重合開始剤、ベンゾフェノン系光重合開始剤、アセトフェノン系光重合開始剤、芳香族ケトエステル系光重合開始剤又は安息香酸エステル系光重合開始剤が好ましく、露光時の感度向上の観点から、α-ヒドロキシケトン系光重合開始剤、α-アミノケトン系光重合開始剤、アシルホスフィンオキシド系光重合開始剤、オキシムエステル系光重合開始剤、アクリジン系光重合開始剤又はベンゾフェノン系光重合開始剤がより好ましく、α-アミノケトン系光重合開始剤、アシルホスフィンオキシド系光重合開始剤、オキシムエステル系光重合開始剤がさらに好ましい。
 ベンジルケタール系光重合開始剤としては、例えば、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オンが挙げられる。
 α-ヒドロキシケトン系光重合開始剤としては、例えば、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチルプロパン-1-オン又は2-ヒドロキシ-1-[4-[4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル]フェニル]-2-メチルプロパン-1-オンが挙げられる。
 α-アミノケトン系光重合開始剤としては、例えば、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルホリノフェニル)-ブタン-1-オン、又は3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-オクチル-9H-カルバゾールが挙げられる。
 アシルホスフィンオキシド系光重合開始剤としては、例えば、2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド、又はビス(2,6-ジメトキシベンゾイル)-(2,4,4-トリメチルペンチル)ホスフィンオキシドが挙げられる。
 オキシムエステル系光重合開始剤としては、例えば、1-フェニルプロパン-1,2-ジオン-2-(O-エトキシカルボニル)オキシム、1-フェニルブタン-1,2-ジオン-2-(O-メトキシカルボニル)オキシム、1,3-ジフェニルプロパン-1,2,3-トリオン-2-(O-エトキシカルボニル)オキシム、1-[4-(フェニルチオ)フェニル]オクタン-1,2-ジオン-2-(O-ベンゾイル)オキシム、1-[4-[4-カルボキシフェニルチオ]フェニル]プロパン-1,2-ジオン-2-(O-アセチル)オキシム、1-[4-[4-(2-ヒドロキシエトキシ)フェニルチオ]フェニル]プロパン-1,2-ジオン-2-(O-アセチル)オキシム、1-[4-(フェニルチオ)フェニル]-3-シクロペンチルプロパン-1,2-ジオン-2-(O-ベンゾイル)オキシム、1-[4-(フェニルチオ)フェニル]-2-シクロペンチルエタン-1,2-ジオン-2-(O-アセチル)オキシム、1-[9,9-ジエチルフルオレン-2-イル]プロパン-1,2-ジオン-2-(O-アセチル)オキシム、1-[9,9-ジ-n-プロピル-7-(2-メチルベンゾイル)-フルオレン-2-イル]エタノン-1-(O-アセチル)オキシム、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン-1-(O-アセチル)オキシム、1-[9-エチル-6-[2-メチル-4-[1-(2,2-ジメチル-1,3-ジオキソラン-4-イル)メチルオキシ]ベンゾイル]-9H-カルバゾール-3-イル]エタノン-1-(O-アセチル)オキシム、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-3-シクロペンチルプロパン-1-オン-1-(O-アセチル)オキシム、又は1-(9-エチル-6-ニトロ-9H-カルバゾール-3-イル)-1-[2-メチル-4-(1-メトキシプロパン-2-イルオキシ)フェニル]メタノン-1-(O-アセチル)オキシムが挙げられる。
 アクリジン系光重合開始剤としては、例えば、1,7-ビス(アクリジン-9-イル)-n-ヘプタンが挙げられる。
 チタノセン系光重合開始剤としては、例えば、ビス(η-2,4-シクロペンタジエン-1-イル)-ビス[2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル]チタン(IV)又はビス(η-3-メチル-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロフェニル)チタン(IV)が挙げられる。
 ベンゾフェノン系光重合開始剤としては、例えば、ベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4-フェニルベンゾフェノン、4,4-ジクロロベンゾフェノン、4-ヒドロキシベンゾフェノン、アルキル化ベンゾフェノン、3,3’,4,4’-テトラキス(t-ブチルパーオキシカルボニル)ベンゾフェノン、4-メチルベンゾフェノン、ジベンジルケトン又はフルオレノンが挙げられる。
 アセトフェノン系光重合開始剤としては、例えば、2,2-ジエトキシアセトフェノン、2,3-ジエトキシアセトフェノン、4-t-ブチルジクロロアセトフェノン、ベンザルアセトフェノン又は4-アジドベンザルアセトフェノンが挙げられる。
 芳香族ケトエステル系光重合開始剤としては、例えば、2-フェニル-2-オキシ酢酸メチルが挙げられる。
 安息香酸エステル系光重合開始剤としては、例えば、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸(2-エチル)ヘキシル、4-ジエチルアミノ安息香酸エチル又は2-ベンゾイル安息香酸メチルが挙げられる。
 本発明の感光性樹脂組成物に占める(C1)光重合開始剤の含有量は、(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100質量部とした場合において、10質量部以上が好ましく、12質量部以上がより好ましく、14質量部以上がさらに好ましく、15質量部以上が特に好ましい。含有量が10質量部以上であると、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。一方、(C1)光重合開始剤の含有量は、30質量部以下が好ましく、25質量部以下がより好ましく、22質量部以下がさらに好ましく、20質量部以下が特に好ましい。含有量が30質量部以下であると、現像後の解像度を向上できるとともに、低テーパー形状のパターンの硬化膜を得ることができる。
 <(C2)光酸発生剤>
 本発明の感光性樹脂組成物は、さらに、(C)感光剤として(C2)光酸発生剤を含有してもよい。
 (C2)光酸発生剤とは、露光によって結合開裂を起こして酸を発生する化合物をいう。(C2)光酸発生剤を含有させることで、露光時のUV硬化が促進されて、感度を向上できる。また、樹脂組成物の熱硬化後の架橋密度が向上し、硬化膜の耐薬品性を向上できる。(C2)光酸発生剤としては、イオン性化合物と非イオン性化合物とがある。
 イオン性化合物の(C2)光酸発生剤としては、重金属、ハロゲンイオンを含まないものが好ましく、トリオルガノスルホニウム塩系化合物がより好ましい。トリオルガノスルホニウム塩系化合物としては、例えば、トリフェニルスルホニウムの、メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、カンファースルホン酸塩又は4-トルエンスルホン酸塩;ジメチル-1-ナフチルスルホニウムのメタンスルホン酸塩、トリフルオロメタンスルホン酸塩、カンファースルホン酸塩又は4-トルエンスルホン酸塩;ジメチル(4-ヒドロキシ-1-ナフチル)スルホニウムの、メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、カンファースルホン酸塩又は4-トルエンスルホン酸塩;ジメチル(4,7-ジヒドロキシ-1-ナフチル)スルホニウムの、メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、カンファースルホン酸塩又は4-トルエンスルホン酸塩;ジフェニルヨードニウムのメタンスルホン酸塩、トリフルオロメタンスルホン酸塩、カンファースルホン酸塩、又は4-トルエンスルホン酸塩が挙げられる。
 非イオン性化合物の(C2)光酸発生剤としては、例えば、ハロゲン含有化合物、ジアゾメタン化合物、スルホン化合物、スルホン酸エステル化合物、カルボン酸エステル化合物、スルホンイミド化合物、リン酸エステル化合物、又はスルホンベンゾトリアゾール化合物が挙げられる。
 これらの(C2)光酸発生剤のうち、溶解性と硬化膜の絶縁性の観点から、イオン性化合物よりも非イオン性化合物の方が好ましい。発生する酸の強さの観点から、ベンゼンスルホン酸、4-トルエンスルホン酸、パーフルオロアルキルスルホン酸、又はリン酸を発生するものがより好ましい。j線(波長313nm)、i線(波長365nm)、h線(波長405nm)、又はg線(波長436nm)に対する量子収率の高さによる高感度と硬化膜の透明性との観点から、スルホン酸エステル化合物、スルホンイミド化合物、又はイミノスルホン酸エステル化合物がさらに好ましい。
 本発明の感光性樹脂組成物に占める(C2)光酸発生剤の含有量は、(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100質量部とした場合において、0.1質量部以上が好ましく、0.5質量部以上がより好ましく、0.7質量部以上がさらに好ましく、1質量部以上が特に好ましい。含有量が0.1質量部以上であると、露光時の感度を向上できる。一方、(C2)光酸発生剤の含有量は、25質量部以下が好ましく、20質量部以下がより好ましく、17質量部以下がさらに好ましく、15質量部以下が特に好ましい。含有量が25質量部以下であると、現像後の解像度を向上できるとともに、低テーパーのパターン形状を得ることができる。
 <(D)着色剤、(Da)黒色剤及び(Db)黒色以外の着色剤>
 本発明の感光性樹脂組成物は、さらに(D)着色剤を含有する。(D)着色剤とは、特定波長の光を吸収する化合物であり、特に、可視光線の波長(380~780nm)の光を吸収することによって着色する化合物をいう。
 (D)着色剤を含有させることで、感光性樹脂組成物から得られる膜を着色させることができ、樹脂組成物の膜を透過する光又は樹脂組成物の膜から反射する光を、所望の色に着色させる着色性を付与できる。また、樹脂組成物の膜を透過する光又は樹脂組成物の膜から反射する光から、(D)着色剤が吸収する波長の光を遮光する遮光性を付与できる。
 (D)着色剤としては、可視光線の波長の光を吸収し、赤、橙、黄、緑、青、又は紫色に着色する化合物が挙げられる。これらの着色剤を二色以上組み合わせることで、樹脂組成物の膜を透過する光又は樹脂組成物の膜から反射する光を、所望の色座標に調色する調色性を向上させることができる。
 本発明の感光性樹脂組成物は、(D)着色剤として、(Da)黒色剤を必須成分として含有する。(Da)黒色剤とは、可視光線の波長の光を吸収することで、黒色に着色する化合物をいう。(Da)黒色剤を含有させることで、樹脂組成物の膜が黒色化するため、樹脂組成物の膜を透過する光又は樹脂組成物の膜から反射する光を遮光する、遮光性を向上させることができる。そのため、画素分割層、電極絶縁層、配線絶縁層、層間絶縁層、TFT平坦化層、電極平坦化層、配線平坦化層、TFT保護層、電極保護層、配線保護層、ゲート絶縁層、カラーフィルタ、ブラックマトリックス、又はブラックカラムスペーサーなどの用途に好適である。特に、有機ELディスプレイの遮光性を有する画素分割層、電極絶縁層、配線絶縁層、層間絶縁層、TFT平坦化層、電極平坦化層、配線平坦化層、TFT保護層、電極保護層、配線保護層、又はゲート絶縁層として好ましく、遮光性を有する画素分割層、層間絶縁層、TFT平坦化層、又はTFT保護層など、外光反射の抑制によって高コントラスト化が要求される用途に好適である。
 (D)着色剤における黒色とは、Color Index Generic Number(以下、「C.I.ナンバー」)に“BLACK”が含まれるものをいう。C.I.ナンバーが付与されていないものは、硬化膜とした場合に黒色であるものをいう。二色以上のC.I.ナンバーが黒色でない(D)着色剤の混合物、及び、C.I.ナンバーが付与されていない(D)着色剤を少なくとも一つ含む、二色以上の(D)着色剤の混合物における黒色とは、硬化膜とした場合に黒色であるものをいう。硬化膜とした場合における黒色とは、(D)着色剤を含有する樹脂組成物の硬化膜の透過スペクトルにおいて、波長550nmにおける膜厚1.0μmあたりの透過率を、ランベルト・ベールの式に基づいて、波長550nmにおける透過率が10%となるように膜厚を0.1~1.5μmの範囲内で換算した場合に、換算後の透過スペクトルにおける、波長450~650nmにおける透過率が、25%以下であることをいう。
 硬化膜の透過スペクトルは、以下の方法で求めることができる。少なくとも任意のバインダー樹脂及び(D)着色剤を含む樹脂組成物を、樹脂組成物の全固形分中に占める(D)着色剤の含有比率が35質量%となるように調製する。テンパックスガラス基板(AGCテクノグラス社製)上に、該樹脂組成物の膜を塗布した後、110℃で2分間プリベークして成膜してプリベーク膜を得る。次に、高温イナートガスオーブン(INH-9CD-S;光洋サーモシステム社製)を用いて、窒素雰囲気下、250℃で60分間熱硬化させ、(D)着色剤を含有する樹脂組成物の膜厚1.0μmの硬化膜(以下、「着色剤含有硬化膜」)を作製する。また、前記バインダー樹脂を含み、かつ、(D)着色剤を含有しない樹脂組成物を調製し、上記と同様の方法でテンパックスガラス基板上に、塗布、プリベーク及び熱硬化させ、(D)着色剤を含有しない樹脂組成物の膜厚1.0μmの硬化膜(以下、「ブランク用硬化膜」)を作製する。紫外可視分光光度計(MultiSpec-1500;島津製作所社製)を用いて、まず、ブランク硬化膜を膜厚1.0μmで成膜したテンパックスガラス基板を測定し、その紫外可視吸収スペクトルをブランクとする。次に、作製した着色剤含有硬化膜を成膜したテンパックスガラス基板をシングルビームで測定し、波長450~650nmにおける膜厚1.0μmあたりの透過率を求め、ブランクとの差分から着色剤含有硬化膜の透過率を算出する。
 (Da)黒色剤としては、遮光性の観点から、可視光線の全波長の光を吸収し、黒色に着色する化合物が好ましい。また、赤、橙、黄、緑、青、又は紫色の着色剤から選ばれる二色以上の(D)着色剤の混合物も好ましい。これらの(D)着色剤を二色以上組み合わせることによって、擬似的に黒色に着色でき、遮光性を向上させることができる。
 本発明の感光性樹脂組成物としては、上述した(Da)黒色剤が、後述する(D1a)黒色顔料、(D2a-1)黒色染料及び(D2a-2)二色以上の染料混合物から選ばれる一種類以上を含有することが好ましく、遮光性の観点から、後述する(D1a)黒色顔料を含有することがより好ましい。
 (Db)黒色以外の着色剤とは、可視光線の波長の光を吸収することで、着色する化合物をいう。すなわち、上述した、黒色を除く、赤、橙、黄、緑、青又は紫色に着色する着色剤である。(Da)黒色剤及び(Db)黒色以外の着色剤を含有させることで、樹脂組成物の膜に遮光性、並びに、着色性及び/又は調色性を付与できる。
 本発明の感光性樹脂組成物としては、上述した(Db)黒色以外の着色剤が、後述する(D1b)黒色以外の顔料及び/又は(D2b)黒色以外の染料を含有することが好ましく、遮光性、及び、耐熱性又は耐候性の観点から、後述する(D1b)黒色以外の顔料を含有することがより好ましい。
 本発明の感光性樹脂組成物において、(A)アルカリ可溶性樹脂、(D)着色剤、及び後述する(E)分散剤の合計100質量%に占める(D)着色剤の含有比率は、15質量%以上が好ましく、20質量%以上がより好ましく、25質量%以上がさらに好ましく、30質量%以上が特に好ましい。含有比率が15質量%以上であると、遮光性、着色性又は調色性を向上させることができる。一方、(D)着色剤の含有比率は、80質量%以下が好ましく、75質量%以下がより好ましく、70質量%以下がさらに好ましく、65質量%以下が特に好ましい。含有比率が80質量%以下であると、露光時の感度を向上させることができる。
 また、溶剤を除く、本発明の感光性樹脂組成物の全固形分中に占める(D)着色剤の含有比率は、5質量%以上が好ましく、10質量%以上がより好ましく、15質量%以上がさらに好ましく、20質量%以上が特に好ましい。含有比率が5質量%以上であると、遮光性、着色性、又は調色性を向上させることができる。一方、(D)着色剤の含有比率は、70質量%以下が好ましく、65質量%以下がより好ましく、60質量%以下がさらに好ましく、55質量%以下がさらにより好ましく、50質量%以下が特に好ましい。含有比率が70質量%以下であると、露光時の感度を向上させることができる。
 本発明の感光性樹脂組成物において、(Da)黒色剤の含有比率は、全固形分中における5~70質量%である。また、(Da)黒色剤の好ましい含有比率は、上述した(D)着色剤の好ましい含有比率の通りである。
 <(D1)顔料、(D1-1)有機顔料及び(D1-2)無機顔料>
 本発明の感光性樹脂組成物としては、上述した(D)着色剤が、(D1)顔料を含有することが好ましい。上述した(D)着色剤が、(D1)顔料を含有する態様としては、上述した(Da)黒色剤を必ず含有し、任意に(Db)黒色以外の着色剤を含有できる。
 (D1)顔料とは、対象物の表面に(D1)顔料が物理吸着、又は、対象物の表面と(D1)顔料と、が相互作用などをすることで、対象物を着色させる化合物をいい、一般的に溶剤等に不溶である。また、(D1)顔料による着色は隠蔽性が高く、紫外線等による色褪せがしにくい。(D1)顔料を含有させることで、隠蔽性に優れた色に着色することができ、樹脂組成物の膜の遮光性及び耐候性を向上させることができる。
 (D1)顔料の数平均粒子径は、1~1,000nmが好ましく、5~500nmがより好ましく、10~200nmがさらに好ましい。(D1)顔料の数平均粒子径が1~1,000nmであると、樹脂組成物の膜の遮光性及び(D1)顔料の分散安定性を向上させることができる。
 ここで、(D1)顔料の数平均粒子径は、サブミクロン粒度分布測定装置(N4-PLUS;べックマン・コールター社製)又はゼータ電位・粒子径・分子量測定装置(ゼータサイザーナノZS;シスメックス社製)を用いて、溶液中の(D1)顔料のブラウン運動によるレーザー散乱を測定する(動的光散乱法)ことにより求めることができる。また、樹脂組成物から得られる硬化膜中の(D1)顔料の数平均粒子径は、走査型電子顕微鏡(以下、「SEM」)及び透過型電子顕微鏡(以下、「TEM」)を用いて測定することにより求めることができる。SEM及びTEMにおける拡大倍率を50,000~200,000倍として、(D1)顔料の数平均粒子径を直接測定する。(D1)顔料が真球の場合、真球の直径を測定して数平均粒子径とする。(D1)顔料が真球でない場合、最も長い径(以下、「長軸径」)及び長軸径と直交する方向において最も長い径(以下、「短軸径」)を測定し、長軸径と短軸径を平均した、二軸平均径を数平均粒子径とする。
 (D1)顔料としては、例えば、(D1-1)有機顔料又は(D1-2)無機顔料が挙げられる。(D1-1)有機顔料としては、例えば、フタロシアニン系顔料、アントラキノン系顔料、キナクリドン系顔料、ジオキサジン系顔料、チオインジゴ系顔料、ジケトピロロピロール系顔料、スレン系顔料、インドリン系顔料、ベンゾフラノン系顔料、ペリレン系顔料、アニリン系顔料、アゾ系顔料、縮合アゾ系顔料又はカーボンブラックが挙げられる。(D1-2)無機顔料としては、例えば、グラファイト、若しくは銀スズ合金、又はチタン、銅、鉄、マンガン、コバルト、クロム、ニッケル、亜鉛、カルシウム、若しくは銀などの金属の微粒子、酸化物、複合酸化物、硫化物、硫酸塩、硝酸塩、炭酸塩、窒化物、炭化物、若しくは酸窒化物が挙げられる。
 溶剤を除く、本発明の感光性樹脂組成物の全固形分中に占める、(D1)顔料、(D1-1)有機顔料及び(D1-2)無機顔料の好ましい含有比率は、上述した(D)着色剤の好ましい含有比率の通りである。
 <(D1a)黒色顔料及び(D1b)黒色以外の顔料>
 本発明の感光性樹脂組成物としては、上述した(D1)顔料が、(D1a)黒色顔料、又は、(D1a)黒色顔料及び(D1b)黒色以外の顔料を含有することが好ましい。
 (D1a)黒色顔料とは、可視光線の波長の光を吸収することによって、黒色に着色する顔料をいう。(D1a)黒色顔料を含有させることで、樹脂組成物の膜が黒色化するとともに、隠蔽性に優れるため、樹脂組成物の膜の遮光性を向上させることができる。
 本発明の感光性樹脂組成物としては、上述した(Da)黒色剤が(D1a)黒色顔料であり、この(D1a)黒色顔料が、後述する(D1a-1)黒色有機顔料、(D1a-2)黒色無機顔料、及び(D1a-3)二色以上の着色顔料混合物から選ばれる一種類以上であることが好ましい。
 (D1b)黒色以外の顔料とは、可視光線の波長の光を吸収することで、黒色を除く、紫、青、緑、黄、橙又は赤色に着色する顔料をいう。(D1b)黒色以外の顔料を含有させることで、樹脂組成物の膜を着色させることができ、着色性又は調色性を付与できる。(D1b)黒色以外の顔料を二色以上組み合わせることで、樹脂組成物の膜を所望の色座標に調色でき、調色性を向上させることができる。(D1b)黒色以外の顔料としては、後述する、黒色を除く、赤、橙、黄、緑、青又は紫色に着色する顔料が挙げられる。
 本発明の感光性樹脂組成物としては、上述した(D1b)黒色以外の顔料が、後述する(D1b-1)黒色以外の有機顔料及び/又は(D1b-2)黒色以外の無機顔料であることが好ましい。
 <(D1a-1)黒色有機顔料、(D1a-2)黒色無機顔料及び(D1a-3)二色以上の着色顔料混合物>
 本発明の感光性樹脂組成物としては、上述した(D1a)黒色顔料が、(D1a-1)黒色有機顔料、(D1a-2)黒色無機顔料及び(D1a-3)二色以上の着色顔料混合物から選ばれる一種類以上であることが好ましい。
 (D1a-1)黒色有機顔料とは、可視光線の波長の光を吸収することで、黒色に着色する有機顔料をいう。(D1a-1)黒色有機顔料を含有させることで、樹脂組成物の膜が黒色化するとともに、隠蔽性に優れるため、樹脂組成物の膜の遮光性を向上させることができる。さらに、有機物であるため、化学構造変化又は官能変換により、所望の特定波長の光を透過する又は遮光するなど、樹脂組成物の膜の透過スペクトル又は吸収スペクトルを調整し、調色性を向上させることができる。また、(D1a-1)黒色有機顔料は、一般的な無機顔料と比較して、絶縁性及び低誘電性に優れるため、(D1a-1)黒色有機顔料を含有させることで、膜の抵抗値を向上できる。特に、有機ELディスプレイの画素分割層等の絶縁層、TFT平坦化層、又はTFT保護層などとして用いた場合に、発光不良等を抑制し、信頼性を向上させることができる。
 (D1a-1)黒色有機顔料としては、例えば、アントラキノン系黒色顔料、ベンゾフラノン系黒色顔料、ペリレン系黒色顔料、アニリン系黒色顔料、アゾ系黒色顔料、アゾメチン系黒色顔料又はカーボンブラックが挙げられる。カーボンブラックとしては、例えば、チャンネルブラック、ファーネスブラック、サーマルブラック、アセチレンブラック及びランプブラックが挙げられる。遮光性の観点から、チャンネルブラックが好ましい。
 (D1a-2)黒色無機顔料とは、可視光線の波長の光を吸収することで、黒色に着色する無機顔料をいう。(D1a-2)黒色無機顔料を含有させることで、樹脂組成物の膜が黒色化するとともに、隠蔽性に優れるため、樹脂組成物の膜の遮光性を向上させることができる。さらに、無機物であり、耐熱性及び耐候性により優れるため、樹脂組成物の膜の耐熱性及び耐候性を向上させることができる。
 (D1a-2)黒色無機顔料としては、例えば、グラファイト若しくは銀スズ合金、又はチタン、銅、鉄、マンガン、コバルト、クロム、ニッケル、亜鉛、カルシウム、若しくは銀などの金属の微粒子、酸化物、複合酸化物、硫化物、硫酸塩、硝酸塩、炭酸塩、窒化物、炭化物、若しくは酸窒化物が挙げられる。遮光性向上の観点から、チタン、若しくは銀の微粒子、酸化物、複合酸化物、硫化物、窒化物、炭化物、若しくは酸窒化物が好ましく、チタンの窒化物又はチタンの酸窒化物がより好ましい。
 (D1a-3)二色以上の着色顔料混合物とは、赤、橙、黄、緑、青、又は紫色の顔料から選ばれる二色以上の顔料を組み合わせることにより、擬似的に黒色に着色する、顔料混合物をいう。(D1a-3)二色以上の着色顔料混合物を含有させることで、樹脂組成物の膜が黒色化するとともに、隠蔽性に優れるため、樹脂組成物の膜の遮光性を向上させることができる。さらに、二色以上の顔料を混合するため、所望の特定波長の光を透過する又は遮光するなど、樹脂組成物の膜の透過スペクトル又は吸収スペクトルを調整し、調色性を向上させることができる。
 黒色有機顔料、黒色無機顔料、赤色顔料、橙色顔料、黄色顔料、緑色顔料、青色顔料、及び紫色顔料としては、公知のものを用いることができる。
 <(D1b-1)黒色以外の有機顔料、(D1b-2)黒色以外の無機顔料>
 本発明の感光性樹脂組成物としては、上述した(D1b)黒色以外の顔料が、(D1b-1)黒色以外の有機顔料及び/又は(D1b-2)黒色以外の無機顔料であることが好ましい。
 (D1b-1)黒色以外の有機顔料とは、可視光線の波長の光を吸収することで、黒色を除く、赤、橙、黄、緑、青、又は紫色に着色する有機顔料をいう。(D1b-1)黒色以外の有機顔料を含有させることで、樹脂組成物の膜を着色させることができ、着色性又は調色性を付与できる。さらに、有機物であるため、化学構造変化又は官能変換により、所望の特定波長の光を透過又は遮光するなど、樹脂組成物の膜の透過スペクトル又は吸収スペクトルを調整し、調色性を向上させることができる。(D1b-1)黒色以外の有機顔料を二色以上組み合わせることで、樹脂組成物の膜を所望の色座標に調色でき、調色性を向上させることができる。(D1b-1)黒色以外の有機顔料としては、黒色を除く、赤、橙、黄、緑、青、又は紫色に着色する有機顔料が挙げられる。
 (D1b-2)黒色以外の無機顔料とは、可視光線の波長の光を吸収することで、黒色を除く、赤、橙、黄、緑、青、又は紫色に着色する無機顔料をいう。(D1b-2)黒色以外の無機顔料を含有させることで、樹脂組成物の膜を着色させることができ、着色性又は調色性を付与できる。さらに、無機物であり、耐熱性及び耐候性により優れるため、樹脂組成物の膜の耐熱性及び耐候性を向上させることができる。(D1b-2)黒色以外の無機顔料を二色以上組み合わせることで、樹脂組成物の膜を所望の色座標に調色でき、調色性を向上させることができる。(D1b-2)黒色以外の無機顔料を二色以上組み合わせることで、樹脂組成物の膜を所望の色座標に調色でき、調色性を向上させることができる。(D1b-2)黒色以外の無機顔料としては、黒色を除く、赤、橙、黄、緑、青、又は紫色に着色する無機顔料が挙げられる。
 <(D1a-1a)ベンゾフラノン系黒色顔料、(D1a-1b)ペリレン系黒色顔料及び(D1a-1c)アゾ系黒色顔料>
 本発明の感光性樹脂組成物としては、上述した(D1a-1)黒色有機顔料が、(D1a-1a)ベンゾフラノン系黒色顔料、(D1a-1b)ペリレン系黒色顔料及び(D1a-1c)アゾ系黒色顔料からなる群より選ばれる一種類以上であることが好ましい。
 (D1a-1a)ベンゾフラノン系黒色顔料、(D1a-1b)ペリレン系黒色顔料及び(D1a-1c)アゾ系黒色顔料からなる群より選ばれる一種類以上を含有させることで、樹脂組成物の膜が黒色化するとともに、隠蔽性に優れるため、樹脂組成物の膜の遮光性を向上させることができる。特に、一般的な有機顔料と比較して、樹脂組成物中の顔料の単位含有比率当たりの遮光性に優れるため、少ない含有比率で同等の遮光性を付与できる。そのため、膜の遮光性を向上できるとともに、露光時の感度を向上させることができる。さらに、有機物であるため、化学構造変化又は官能変換により、所望の特定波長の光を透過する又は遮光するなど、樹脂組成物の膜の透過スペクトル又は吸収スペクトルを調整し、調色性を向上させることができる。特に、近赤外領域の波長(例えば、700nm以上)の透過率を向上させることができるため、遮光性を有し、近赤外領域の波長の光を利用する用途に好適である。また、一般的な有機顔料及び無機顔料と比較して、絶縁性及び低誘電性に優れるため、膜の抵抗値を向上できる。特に、有機ELディスプレイの画素分割層等の絶縁層、TFT平坦化層、又はTFT保護層などとして用いた場合に、発光不良等を抑制し、信頼性を向上させることができる。
 また、(D1a-1a)ベンゾフラノン系黒色顔料は、可視光線の波長の光を吸収する一方、紫外領域の波長(例えば、400nm以下)の透過率が高いため、(D1a-1a)ベンゾフラノン系黒色顔料を含有させることで露光時の感度を向上させることができる。
 (D1a-1a)ベンゾフラノン系黒色顔料とは、分子中にベンゾフラン-2(3H)-オン構造又はベンゾフラン-3(2H)-オン構造を有する、可視光線の波長の光を吸収することで黒色に着色する化合物をいう。
 一方、(D1a-1a)ベンゾフラノン系黒色顔料を含有させる場合、上述した通り、上述した顔料のアルカリ耐性不足に起因した、顔料由来の現像残渣が発生する場合がある。すなわち、現像時に上述した(D1a-1a)ベンゾフラノン系黒色顔料の表面がアルカリ現像液に曝されることで、表面の一部が分解又は溶解し、上述した顔料由来の現像残渣として基板上に残存する場合がある。そのような場合、上述した通り、(B3)柔軟鎖含有脂肪族ラジカル重合性化合物、及び、(B1)フルオレン骨格含有ラジカル重合性化合物又は(B2)インダン骨格含有ラジカル重合性化合物を含有させることで、上述した顔料由来の現像残渣発生を抑制できる。
 (D1a-1a)ベンゾフラノン系黒色顔料としては、一般式(63)~(68)のいずれかで表されるベンゾフラノン化合物、その幾何異性体、その塩、又はその幾何異性体の塩が好ましい。
Figure JPOXMLDOC01-appb-C000026
 一般式(63)~(65)において、R206、R207、R212、R213、R218及びR219は、それぞれ独立して、水素、ハロゲン原子、炭素数1~10のアルキル基又はフッ素原子を1~20個有する炭素数1~10のアルキル基を表す。R208、R209、R214、R215、R220及びR221は、それぞれ独立して、水素、ハロゲン原子、R251、COOH、COOR251、COO、CONH、CONHR251、CONR251252、CN、OH、OR251、OCOR251、OCONH、OCONHR251、OCONR251252、NO、NH、NHR251、NR251252、NHCOR251、NR251COR252、N=CH、N=CHR251、N=CR251252、SH、SR251、SOR251、SO251、SO251、SOH、SO 、SONH、SONHR251又はSONR251252を表し、R251及びR252は、それぞれ独立して、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数2~10のアルケニル基、炭素数4~10のシクロアルケニル基又は炭素数2~10のアルキニル基を表す。複数のR208、R209、R214、R215、R220又はR221で、直接結合、又は酸素原子ブリッジ、硫黄原子ブリッジ、NHブリッジ、若しくはNR251ブリッジで環を形成しても構わない。R210、R211、R216、R217、R222、及びR223は、それぞれ独立して、水素、炭素数1~10のアルキル基又は炭素数6~15のアリール基を表す。a、b、c、d、e、及びfは、それぞれ独立して、0~4の整数を表す。上述したアルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、及びアリール基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれでもよい。
Figure JPOXMLDOC01-appb-C000027
 一般式(66)~(68)において、R253、R254、R259、R260、R265及びR266は、それぞれ独立して、水素、ハロゲン原子、炭素数1~10のアルキル基又はフッ素原子を1~20個有する炭素数1~10のアルキル基を表す。R255、R256、R261、R262、R267、及びR268は、それぞれ独立して、水素、ハロゲン原子、R271、COOH、COOR271、COO、CONH、CONHR271、CONR271272、CN、OH、OR271、OCOR271、OCONH、OCONHR271、OCONR271272、NO、NH、NHR271、NR271272、NHCOR271、NR271COR272、N=CH、N=CHR271、N=CR271272、SH、SR271、SOR271、SO271、SO271、SOH、SO 、SONH、SONHR271、又はSONR271272を表し、R271及びR272は、それぞれ独立して、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数2~10のアルケニル基、炭素数4~10のシクロアルケニル基、又は炭素数2~10のアルキニル基を表す。複数のR255、R256、R261、R262、R267、又はR268で、直接結合、又は酸素原子ブリッジ、硫黄原子ブリッジ、NHブリッジ、若しくはNR271ブリッジで環を形成しても構わない。R257、R258、R263、R264、R269、及びR270は、それぞれ独立して、水素、炭素数1~10のアルキル基又は炭素数6~15のアリール基を表す。a、b、c、d、e、及びfは、それぞれ独立して、0~4の整数を表す。上述したアルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基及びアリール基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれでもよい。
 (D1a-1a)ベンゾフラノン系黒色顔料としては、例えば、“IRGAPHOR”(登録商標) BLACK S0100CF(BASF社製)、国際公開2010/081624号に記載の黒色顔料又は国際公開第2010/081756号に記載の黒色顔料が挙げられる。
 (D1a-1b)ペリレン系黒色顔料とは、分子中にペリレン構造を有する、可視光線の波長の光を吸収することで黒色に着色する化合物をいう。
 (D1a-1b)ペリレン系黒色顔料としては、一般式(69)~(71)のいずれかで表されるペリレン化合物、その幾何異性体、その塩、又は、その幾何異性体の塩が好ましい。
Figure JPOXMLDOC01-appb-C000028
 一般式(69)~(71)において、X92、X93、X94、及びX95は、それぞれ独立して、炭素数1~10のアルキレン鎖を表す。R224及びR225は、それぞれ独立して、水素、ヒドロキシ基、炭素数1~6のアルコキシ基、又は炭素数2~6のアシル基を表す。R273及びR274は、それぞれ独立して、水素又は炭素数1~10のアルキル基を表す。a及びbは、それぞれ独立して、0~5の整数を表す。上述したアルキレン鎖、アルコキシ基、アシル基及びアルキル基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれでもよい。
 (D1a-1b)ペリレン系黒色顔料としては、例えば、ピグメントブラック31又は32が挙げられる(数値は何れもC.I.ナンバー)。
 上述した以外にも、“PALIOGEN”(登録商標) BLACK S0084、同 K0084、同 L0086、同 K0086、同 EH0788、又は同 FK4281(以上、何れもBASF社製)が挙げられる。
 (D1a-1c)アゾ系黒色顔料とは、分子内にアゾ基を有する、可視光線の波長の光を吸収することで黒色に着色する化合物をいう。(D1a-1c)アゾ系黒色顔料としては、一般式(72)で表されるアゾ化合物が好ましい。
Figure JPOXMLDOC01-appb-C000029
 一般式(72)において、X96は、炭素数6~15のアリーレン鎖を表す。Y96は、炭素数6~15のアリーレン鎖を表す。R275、R276、及びR277は、それぞれ独立して、ハロゲン又は炭素数1~10のアルキル基を表す。R278は、ハロゲン、炭素数1~10のアルキル基、炭素数1~6のアルコキシ基、又はニトロ基を表す。R279は、ハロゲン、炭素数1~10のアルキル基、炭素数1~6のアルコキシ基、炭素数2~10のアシルアミノ基、又はニトロ基を表す。R280、R281、R282、及びR283は、それぞれ独立して、水素又は炭素数1~10のアルキル基を表す。aは、0~4の整数を表し、bは、0~2の整数を表し、cは、0~4の整数を表し、d及びeは、それぞれ独立して、0~8の整数を表し、nは、1~4の整数を表す。上述したアリーレン鎖、アルキル基、アルコキシ基及びアシルアミノ基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれでもよい。
 (D1a-1c)アゾ系黒色顔料としては、例えば、“CHROMOFINE”(登録商標) BLACK A1103(大日精化工業社製)、特開平01-170601号公報に記載の黒色顔料、又は特開平02-034664号公報に記載の黒色顔料が挙げられる。
 溶剤を除く、本発明の感光性樹脂組成物の全固形分中に占める(D1a-1a)ベンゾフラノン系黒色顔料、(D1a-1b)ペリレン系黒色顔料、及び(D1a-1c)アゾ系黒色顔料からなる群より選ばれる一種類以上の含有比率は、5質量%以上が好ましく、10質量%以上がより好ましく、15質量%以上がさらに好ましく、20質量%以上が特に好ましい。含有比率が5質量%以上であると、遮光性及び調色性を向上させることができる。一方、(D1a-1a)ベンゾフラノン系黒色顔料、(D1a-1b)ペリレン系黒色顔料及び(D1a-1c)アゾ系黒色顔料からなる群より選ばれる一種類以上の含有比率は、70質量%以下が好ましく、65質量%以下がより好ましく、60質量%以下がさらに好ましく、55質量%以下がさらにより好ましく、50質量%以下が特に好ましい。含有比率が70質量%以下であると、露光時の感度を向上させることができる。
 <(DC)被覆層>
 本発明の感光性樹脂組成物としては、前記(D1a-1)黒色有機顔料が、さらに、(DC)被覆層を含有することが好ましい。(DC)被覆層とは、例えば、シランカップリング剤による表面処理、ケイ酸塩による表面処理、金属アルコキシドによる表面処理又は樹脂による被覆処理などの処理することで形成される、顔料表面を被覆する層をいう。
 (DC)被覆層を含有させることで、前記(D1a-1)黒色有機顔料の粒子表面を酸性化、塩基性化、親水性化又は疎水性化させるなど、粒子の表面状態を改質することができ、耐酸性、耐アルカリ性、耐溶剤性、分散安定性又は耐熱性などを向上させることができる。それにより、顔料由来の現像残渣発生を抑制することができる。また、現像時のサイドエッチングが抑制され、現像後に低テーパー形状のパターンを形成することができ、さらに、熱硬化時におけるパターン裾のリフローが抑制されることで、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。加えて、現像後のパターン形状制御による、低テーパー形状のパターン形成が可能となることから、ハーフトーン特性を向上させることができる。また、粒子表面に絶縁性の被覆層を形成させることで、硬化膜の絶縁性を向上させ、リーク電流の低減などにより、ディスプレイの信頼性などを向上させることができる。
 前記(D1a-1)黒色有機顔料として、特に(D1a-1a)ベンゾフラノン系黒色顔料を含有させる場合、(D1a-1a)ベンゾフラノン系黒色顔料に、(DC)被覆層を含有させることで、前記顔料の耐アルカリ性を向上させることができ、前記顔料由来の現像残渣発生を抑制することができる。
 前記(D1a-1)黒色有機顔料に対する、(DC)被覆層による平均被覆率は、50%以上が好ましく、70%以上が好ましく、80%以上がより好ましく、90%以上がさらに好ましい。(DC)被覆層による平均被覆率が、80%以上であると、現像時の残渣発生を抑制することができる。
 前記(D1a-1)黒色有機顔料に対する、(DC)被覆層による平均被覆率は、透過型電子顕微鏡(H9500;日立ハイテクノロジーズ社製)を用いて、加速電圧300kVの条件下、拡大倍率を50,000~200,000倍として断面を観察し、無作為に選択した黒色顔料の粒子100個について、下記式により、各黒色顔料の被覆率M(%)を求め、その数平均値を算出することにより、平均被覆率N(%)を求めることができる。
被覆率M(%)={L1/(L1+L2)}×100
L1:粒子の外周のうち、被覆層により覆われた部位の合計長さ(nm)
L2:粒子の外周のうち、被覆層により覆われていない部位(界面と埋め込み樹脂が直接接する部位)の合計長さ(nm)
L1+L2:粒子の外周長さ(nm)。
 <(DC-1)シリカ被覆層、(DC-2)金属酸化物被覆層及び(DC-3)金属水酸化物被覆層>
 (DC)被覆層としては、(DC-1)シリカ被覆層、(DC-2)金属酸化物被覆層及び(DC-3)金属水酸化物被覆層からなる群より選ばれる一種類を含有することが好ましい。シリカ、金属酸化物及び金属水酸化物は、顔料に耐アルカリ性を付与する機能を有するため、顔料由来の現像残渣発生を抑制することができる。
 (DC-1)シリカ被覆層に含まれるシリカとは、二酸化ケイ素及びその含水物の総称である。(DC-2)金属酸化物被覆層に含まれる金属酸化物とは、金属酸化物及びその水和物の総称である。金属酸化物の一例として、アルミナが挙げられ、例えば、アルミナ(Al)又はアルミナ水和物(Al・nHO)が挙げられる。(DC-3)金属水酸化物被覆層に含まれる金属水酸化物としては、例えば、水酸化アルミニウム(Al(OH))などが挙げられる。シリカは誘電率が低いため、(D1a-1)黒色有機顔料の(DC)被覆層の含有量が多い場合であっても、画素分割層、TFT平坦化層、又はTFT保護層の誘電率の上昇を抑制することができる。
 (DC)被覆層が有する、(DC-1)シリカ被覆層、(DC-2)金属酸化物被覆層及び(DC-3)金属水酸化物被覆層は、例えば、X線回折法により分析することができる。X線回折装置としては、例えば、粉末X線回折装置(マックサイエンス社製)などが挙げられる。(DC-1)シリカ被覆層、(DC-2)金属酸化物被覆層及び(DC-3)金属水酸化物被覆層に含まれるケイ素原子又は金属原子の質量は、小数点第二位以下を四捨五入して小数点第一位までの値を算出する。また、(DC)被覆層を有する(D1a-1)黒色有機顔料に含まれる、(DC)被覆層を除く、顔料の粒子の質量は、例えば、以下の方法で求めることができる。質量を測定した顔料を乳鉢に入れ、乳棒で磨り潰して(DC)被覆層を除去した後、N,N-ジメチルホルムアミドなどのアミド系溶剤に浸漬して、顔料の粒子のみを溶解して濾液として除去する作業を、濾物が黒味を完全に消失するまで繰り返した後、濾物の質量を測定し、顔料の質量との差から算出する。
 (DC-2)金属酸化物被覆層、又は(DC-3)金属水酸化物被覆層に含まれる金属酸化物又は金属水酸化物としては、耐アルカリ性、耐熱性及び耐光性などの化学的耐久性と、分散工程において適宜最適化される機械的エネルギー投入に耐えうるビッカース硬度、及び、耐摩耗性等の物理的耐久性を兼ね備えたものが好ましい。金属酸化物及び金属水酸化物としては、例えば、アルミナ、ジルコニア、酸化亜鉛、酸化チタン又は酸化鉄等が挙げられる。絶縁性、紫外線透過率及び近赤外線透過率の観点から、アルミナ又はジルコニアが好ましく、アルカリ可溶性樹脂及び溶剤への分散性の観点から、アルミナがより好ましい。金属酸化物及び金属水酸化物は、有機基を含む基で表面修飾されていても構わない。
 (DC)被覆層が、(DC-1)シリカ被覆層を含有する場合、(DC-1)シリカ被覆層の表面に、(DC-2)金属酸化物被覆層として、アルミナ被覆層を形成することにより、パターン直線性の低下を抑制することができる。アルミナは、顔料の表面処理工程の後に行う顔料の整粒工程においても、水性顔料懸濁液中における分散性向上に効果があるため、二次凝集粒子径を所望の範囲に調整することができ、さらに、生産性及び品質安定性を向上させることができる。(DC)被覆層に含まれる(DC-2)金属酸化物被覆層として、アルミナ被覆層の被覆量は、(DC-1)シリカ被覆層に含まれるシリカを100質量部としたとき、10質量部以上が好ましく、20質量部以上がより好ましい。
 (DC)被覆層が、(DC-1)シリカ被覆層を含有する場合、シリカの含有量は、顔料の粒子を100質量部としたとき、1質量部以上が好ましく、2質量部以上がより好ましく、5質量部以上がさらに好ましい。含有量を1質量部以上とすることで、顔料の粒子表面の被覆率を高め、顔料由来の現像残渣発生を抑制することができる。一方、シリカの含有量は、20質量部以下が好ましく、10質量部以下がより好ましい。含有量を20質量部以下とすることによって、画素分割層、TFT平坦化層、又はTFT保護層のパターン直線性を向上させることができる。
 (DC)被覆層が、(DC-2)金属酸化物被覆層及び/又は(DC-3)金属水酸化物被覆層を含有する場合、金属酸化物及び金属水酸化物の含有量の合計は、顔料の粒子を100質量部としたとき、0.1質量部以上が好ましく、0.5質量部以上がより好ましい。含有量の合計を0.1質量部以上とすることで、分散性及びパターン直線性を向上させることができる。一方、金属酸化物及び金属水酸化物の含有量の合計は、15質量部以下が好ましく、10質量部以下がより好ましい。含有量の合計を15質量部以下とすることで、粘度を低く、好ましくは15mPa・s以下の粘度となるように設計される、本発明の感光性組成物中において、顔料の濃度勾配発生を抑制し、塗液の保管安定性を向上させることができる。
 なお、シリカの含有量とは、(DC)被覆層の内部及び表層において、単一の成分とならない場合や、熱履歴により脱水量に差異が生ずる場合を含み、ケイ素原子含有量から算出される二酸化ケイ素換算値であり、SiO換算値をいう。金属酸化物及び金属水酸化物の含有量とは、金属原子含有量から算出される金属酸化物及び金属水酸化物換算値をいう。すなわち、アルミナ、ジルコニア及び酸化チタンの場合、それぞれ、Al換算値、ZrO換算値及びTiO換算値をいう。また、金属酸化物及び金属水酸化物の含有量の合計とは、金属酸化物及び金属水酸化物のいずれかを含有する場合はその含有量をいい、両方を含有する場合はその合計量をいう。
 (DC)被覆層としては、(DC-1)シリカ被覆層、(DC-2)金属酸化物被覆層、又は(DC-3)金属水酸化物被覆層に含まれるシリカ、金属酸化物又は金属水酸化物の表面のヒドロキシを反応点として、シランカップリング剤を用いて、有機基により表面修飾されていても構わない。有機基としては、エチレン性不飽和二重結合基が好ましい。エチレン性不飽和二重結合基を有するシランカップリング剤により表面修飾をすることで、(D1a-1)黒色有機顔料にラジカル重合性を付与することができ、硬化部の膜の剥がれを抑制し、未露光部の顔料由来の現像残渣発生を抑制することができる。
 (DC)被覆層を有する(D1a-1)黒色有機顔料としては、さらに、最外層に対して有機系表面処理剤による表面処理をしても構わない。最外層への表面処理をすることで、樹脂又は溶剤への濡れ性を向上させることができる。(DC)被覆層としては、さらに、樹脂による被覆処理で形成される、樹脂被覆層を含有しても構わない。樹脂被覆層を含有することで、粒子表面が導電性の低い絶縁性の樹脂で被覆され、粒子の表面状態を改質することができ、硬化膜の遮光性及び絶縁性を向上させることができる。
 <(D2)染料>
 本発明の感光性樹脂組成物としては、上述した(D)着色剤が、(D2)染料を含有することが好ましい。上述した(D)着色剤が、(D2)染料を含有する態様としては、上述した(Da)黒色剤及び/又は(Db)黒色以外の着色剤として、(D2)染料を含有することが好ましい。
 (D2)染料とは、対象物の表面構造に、(D2)染料中のイオン性基若しくはヒドロキシ基などの置換基が、化学吸着又は強く相互作用などをすることで、対象物を着色させる化合物をいい、一般的に溶剤等に可溶である。また、(D2)染料による着色は、分子1つ1つが対象物と吸着するため、着色力が高く、発色効率が高い。
 (D2)染料を含有させることで、着色力に優れた色に着色することができ、樹脂組成物の膜の着色性及び調色性を向上させることができる。(D2)染料としては、例えば、直接染料、反応性染料、硫化染料、バット染料、酸性染料、含金属染料、含金属酸性染料、塩基性染料、媒染染料、酸性媒染染料、分散染料、カチオン染料、又は蛍光増白染料が挙げられる。ここで分散染料とは、水に不溶又は難溶であり、スルホン酸基、カルボキシ基などのアニオン性イオン化基を持たない染料をいう。
 (D2)染料としては、アントラキノン系染料、アゾ系染料、アジン系染料、フタロシアニン系染料、メチン系染料、オキサジン系染料、キノリン系染料、インジゴ系染料、インジゴイド系染料、カルボニウム系染料、スレン系染料、ペリノン系染料、ペリレン系染料、トリアリールメタン系染料、又はキサンテン系染料が挙げられる。後述する溶剤への溶解性及び耐熱性の観点から、アントラキノン系染料、アゾ系染料、アジン系染料、メチン系染料、トリアリールメタン系染料、キサンテン系染料が好ましい。
 本発明の感光性樹脂組成物としては、上述した(D2)染料が、後述する(D2a-1)黒色染料、(D2a-2)二色以上の染料混合物及び(D2b)黒色以外の染料から選ばれる一種類以上を含有することが好ましい。
 溶剤を除く、本発明の感光性樹脂組成物の全固形分中に占める(D2)染料の含有比率は、0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上がさらに好ましい。含有比率が0.01質量%以上であると、着色性又は調色性を向上させることができる。一方、(D2)染料の含有比率は、50質量%以下が好ましく、45質量%以下がより好ましく、40質量%以下がさらに好ましい。含有比率が50質量%以下であると、硬化膜の耐熱性を向上させることができる。
 <(D2a-1)黒色染料、(D2a-2)二色以上の染料混合物及び(D2b)黒色以外の染料>
 本発明の感光性樹脂組成物としては、上述した(D2)染料が、(D2a-1)黒色染料、(D2a-2)二色以上の染料混合物及び(D2b)黒色以外の染料から選ばれる一種類以上を含有することが好ましい。
 (D2a-1)黒色染料とは、可視光線の波長の光を吸収することで、黒色に着色する染料をいう。(D2a-1)黒色染料を含有させることで、樹脂組成物の膜が黒色化するとともに、着色性に優れるため、樹脂組成物の膜の遮光性を向上させることができる。
 (D2a-2)二色以上の染料混合物とは、白、赤、橙、黄、緑、青、又は紫色の染料から選ばれる二色以上の染料を組み合わせることで、擬似的に黒色に着色する、染料混合物をいう。(D2a-2)二色以上の染料混合物を含有させることで、樹脂組成物の膜が黒色化するとともに、着色性に優れるため、樹脂組成物の膜の遮光性を向上させることができる。さらに、二色以上の染料を混合するため、所望の特定波長の光を透過又は遮光するなど、樹脂組成物の膜の透過スペクトル又は吸収スペクトルを調整し、調色性を向上させることができる。黒色染料、赤色染料、橙色染料、黄色染料、緑色染料、青色染料及び紫色染料としては、公知のものを用いることができる。
 (D2b)黒色以外の染料とは、可視光線の波長の光を吸収することで、黒色を除く、白、赤、橙、黄、緑、青又は紫色に着色する染料をいう。(D2b)黒色以外の染料を含有させることで、樹脂組成物の膜を着色させることができ、着色性又は調色性を付与できる。(D2b)黒色以外の染料を二色以上組み合わせることで、樹脂組成物の膜を所望の色座標に調色でき、調色性を向上させることができる。(D2b)黒色以外の染料としては、上述した、黒色を除く、白、赤、橙、黄、緑、青又は紫色に着色する染料が挙げられる。
 本発明においての感光性樹脂組成物を硬化した硬化膜は、膜厚1μm当たりの光学濃度が、0.3以上であることが好ましく、0.5以上であることがより好ましく、0.7以上であることがさらに好ましく、1.0以上であることが特に好ましい。膜厚1μm当たりの光学濃度が0.3以上であると、硬化膜によって遮光性を向上させることができるため、有機ELディスプレイ又は液晶ディスプレイなどの表示装置において、電極配線の可視化防止又は外光反射低減が可能となり、画像表示におけるコントラストを向上させることができる。このため、画素分割層、電極絶縁層、配線絶縁層、層間絶縁層、TFT平坦化層、電極平坦化層、配線平坦化層、TFT保護層、電極保護層、配線保護層、ゲート絶縁層、カラーフィルタ、ブラックマトリックス、又はブラックカラムスペーサーなどの用途に好適である。特に、有機ELディスプレイの遮光性を有する画素分割層、電極絶縁層、配線絶縁層、層間絶縁層、TFT平坦化層、電極平坦化層、配線平坦化層、TFT保護層、電極保護層、配線保護層、又はゲート絶縁層として好ましく、遮光性を有する画素分割層、層間絶縁層、TFT平坦化層、又はTFT保護層など、外光反射の抑制によって高コントラスト化が要求される用途に好適である。一方、膜厚1μm当たりの光学濃度は、5.0以下であることが好ましく、4.0以下であることがより好ましく、3.0以下であることがさらに好ましい。膜厚1μm当たりの光学濃度が5.0以下であると、露光時の感度を向上できるとともに、低テーパーのパターン形状の硬化膜を得ることができる。硬化膜の、膜厚1μm当たりの光学濃度は、上述した(D)着色剤の組成及び含有比率により調節できる。
 <(E)分散剤>
 本発明の感光性樹脂組成物としては、さらに、(E)分散剤を含有することが好ましい。(E)分散剤とは、上述した(D1)顔料及び/又は(D2)染料として分散染料などの表面と相互作用する表面親和性基、及び、(D1)顔料及び/又は(D2)染料として分散染料の分散安定性を向上させる分散安定化構造を有する化合物をいう。(E)分散剤の分散安定化構造としては、ポリマー鎖及び/又は静電荷を有する置換基などが挙げられる。
 (E)分散剤を含有させることで、感光性樹脂組成物が、(D1)顔料及び/又は(D2)染料として分散染料を含有する場合、それらの分散安定性を向上させることができ、現像後の解像度を向上させることができる。特に、例えば、(D1)顔料が1μm以下の数平均粒子径に解砕された粒子の場合、(D1)顔料の粒子の表面積が増大するため、(D1)顔料の粒子の凝集が発生しやすくなる。一方、(E)分散剤を含有する場合、解砕された(D1)顔料の表面と(E)分散剤の表面親和性基と、が相互作用するとともに、(E)分散剤の分散安定化構造による立体障害及び/又は静電反発により、(D1)顔料の粒子の凝集を阻害し、分散安定性を向上させることができる。
 表面親和性基を有する(E)分散剤としては、例えば、塩基性基のみを有する(E)分散剤、塩基性基及び酸性基を有する(E)分散剤、酸性基のみを有する(E)分散剤、又は、塩基性基及び酸性基のいずれも有しない(E)分散剤が挙げられる。(D1)顔料の粒子の分散安定性向上を観点から、塩基性基のみを有する(E)分散剤、並びに、塩基性基及び酸性基を有する(E)分散剤が好ましい。また、表面親和性基である塩基性基及び/又は酸性基が、酸及び/又は塩基と塩形成した構造を有することも好ましい。
 (E)分散剤が有する塩基性基又は塩基性基が塩形成した構造としては、三級アミノ基、四級アンモニウム塩構造、又は、ピロリジン骨格、ピロール骨格、イミダゾール骨格、ピラゾール骨格、トリアゾール骨格、テトラゾール骨格、イミダゾリン骨格、オキサゾール骨格、イソオキサゾール骨格、オキサゾリン骨格、イソオキサゾリン骨格、チアゾール骨格、イソチアゾール骨格、チアゾリン骨格、イソチアゾリン骨格、チアジン骨格、ピペリジン骨格、ピペラジン骨格、モルホリン骨格、ピリジン骨格、ピリダジン骨格、ピリミジン骨格、ピラジン骨格、トリアジン骨格、イソシアヌル酸骨格、イミダゾリジノン骨格、プロピレン尿素骨格、ブチレン尿素骨格、ヒダントイン骨格、バルビツール酸骨格、アロキサン骨格若しくはグリコールウリル骨格などの含窒素環骨格が挙げられる。
 分散安定性向上及び現像後の解像度向上の観点から、塩基性基又は塩基性基が塩形成した構造としては、三級アミノ基、四級アンモニウム塩構造、又は、ピロール骨格、イミダゾール骨格、ピラゾール骨格、ピリジン骨格、ピリダジン骨格、ピリミジン骨格、ピラジン骨格、トリアジン骨格、イソシアヌル酸骨格、イミダゾリジノン骨格、プロピレン尿素骨格、ブチレン尿素骨格、ヒダントイン骨格、バルビツール酸骨格、アロキサン骨格若しくはグリコールウリル骨格などの含窒素環骨格が好ましい。
 塩基性基のみを有する(E)分散剤としては、例えば、“DISPERBYK”(登録商標)-108、同-160、同-167、同-182、同-2000若しくは同-2164、“BYK”(登録商標)-9075、同-LP-N6919若しくは同-LP-N21116(以上、何れもビックケミー・ジャパン社製)、“EFKA”(登録商標) 4015、同 4050、同 4080、同 4300、同 4400若しくは同 4800(以上、何れもBASF社製)、“アジスパー”(登録商標) PB711(味の素ファインテクノ社製)又は“SOLSPERSE”(登録商標) 13240、同 20000若しくは同 71000(以上、何れもLubrizol社製)が挙げられる。
 塩基性基及び酸性基を有する(E)分散剤としては、例えば、“ANTI-TERRA”(登録商標)-U100若しくは同-204、“DISPERBYK”(登録商標)-106、同-140、同-145、同-180、同-191、同-2001若しくは同-2020、“BYK”(登録商標)-9076(ビックケミー・ジャパン社製)、“アジスパー”(登録商標) PB821若しくは同 PB881(以上、何れも味の素ファインテクノ社製)又は“SOLSPERSE”(登録商標) 9000、同 13650、同 24000、同 33000、同 37500、同 39000、同 56000若しくは同 76500(以上、何れもLubrizol社製)が挙げられる。
 酸性基のみを有する(E)分散剤としては、例えば、“DISPERBYK”(登録商標)-102、同-118、同-170若しくは同-2096、“BYK”(登録商標)-P104若しくは同-220S(以上、何れもビックケミー・ジャパン社製)又は“SOLSPERSE”(登録商標) 3000、同 16000、同 21000、同 36000若しくは同 55000(以上、何れもLubrizol社製)が挙げられる。
 塩基性基及び酸性基のいずれも有しない(E)分散剤としては、例えば、“DISPERBYK”(登録商標)-103、同-192、同-2152若しくは同-2200(以上、何れもビックケミー・ジャパン社製)又は“SOLSPERSE”(登録商標) 27000、同 54000若しくは同 X300(以上、何れもLubrizol社製)が挙げられる。
 (E)分散剤のアミン価としては、5mgKOH/g以上が好ましく、8mgKOH/g以上がより好ましく、10mgKOH/g以上がさらに好ましい。アミン価が5mgKOH/g以上であると、(D1)顔料の分散安定性を向上させることができる。一方、アミン価としては、150mgKOH/g以下が好ましく、120mgKOH/g以下がより好ましく、100mgKOH/g以下がさらに好ましい。アミン価が150mgKOH/g以下であると、樹脂組成物の保管安定性を向上させることができる。
 ここでいうアミン価とは、(E)分散剤1g当たりと反応する酸と当量の水酸化カリウムの重量をいい、単位はmgKOH/gである。(E)分散剤1gを酸で中和させた後、水酸化カリウム水溶液で滴定することで求めることができる。アミン価の値から、アミノ基などの塩基性基1mol当たりの樹脂重量であるアミン当量(単位はg/mol)を算出でき、(E)分散剤中のアミノ基などの塩基性基の数を求めることができる。
 (E)分散剤の酸価としては、5mgKOH/g以上が好ましく、8mgKOH/g以上がより好ましく、10mgKOH/g以上がさらに好ましい。酸価が5mgKOH/g以上であると、(D1)顔料の分散安定性を向上させることができる。一方、酸価としては、200mgKOH/g以下が好ましく、170mgKOH/g以下がより好ましく、150mgKOH/g以下がさらに好ましい。酸価が200mgKOH/g以下であると、樹脂組成物の保管安定性を向上させることができる。
 ここでいう酸価とは、(E)分散剤1g当たりと反応する水酸化カリウムの重量をいい、単位はmgKOH/gである。(E)分散剤1gを水酸化カリウム水溶液で滴定することで求めることができる。酸価の値から、酸性基1mol当たりの樹脂重量である酸当量(単位はg/mol)を算出でき、(E)分散剤中の酸性基の数を求めることができる。
 ポリマー鎖を有する(E)分散剤としては、アクリル樹脂系分散剤、ポリオキシアルキレンエーテル系分散剤、ポリエステル系分散剤、ポリウレタン系分散剤、ポリオール系分散剤、ポリエチレンイミン系分散剤又はポリアリルアミン系分散剤が挙げられる。アルカリ現像液によるパターン加工性の観点から、アクリル樹脂系分散剤、ポリオキシアルキレンエーテル系分散剤、ポリエステル系分散剤、ポリウレタン系分散剤又はポリオール系分散剤が好ましい。
 本発明の感光性樹脂組成物が(D1)顔料及び/又は(D2)染料として分散染料を含有する場合、本発明の感光性樹脂組成物に占める(E)分散剤の含有比率は、(D1)顔料及び/又は分散染料、及び、(E)分散剤の合計を100質量%とした場合において、1質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上がさらに好ましい。含有比率が1質量%以上であると、(D1)顔料及び/又は分散染料の分散安定性を向上させることができ、現像後の解像度を向上させることができる。一方、(E)分散剤の含有比率は、60質量%以下が好ましく、55質量%以下がより好ましく、50質量%以下がさらに好ましい。含有比率が60質量%以下であると、硬化膜の耐熱性を向上させることができる。
 <(F)架橋剤>
 本発明の感光性樹脂組成物としては、さらに、(F)架橋剤を含有する。(F)架橋剤とは、(A)アルカリ可溶性樹脂などと結合可能な架橋性基を有する化合物をいう。
 (F)架橋剤を含有させることで、硬化膜の硬度及び耐薬品性を向上させることができる。これは、(F)架橋剤により、樹脂組成物の硬化膜に新たな架橋構造を導入できるため、架橋密度が向上するためと推測される。
 また、(F)架橋剤を含有させることで、熱硬化後に低テーパー形状のパターン形成が可能となる。これは、(F)架橋剤によってポリマー間に架橋構造が形成されることで、ポリマー鎖同士の密な配向が阻害され、熱硬化時におけるパターンのリフロー性を維持できるため、低テーパー形状のパターン形成が可能になると考えられる。
 (F)架橋剤としては、アルコキシメチル基、メチロール基、エポキシ基又はオキセタニル基などの熱架橋性を、分子中に2つ以上有する化合物が好ましい。
 アルコキシメチル基又はメチロール基を分子中に2つ以上有する化合物としては、例えば、DML-PC、DML-OC、DML-PTBP、DML-PCHP、DML-MBPC、DML-MTrisPC、DMOM-PC、DMOM-PTBP、TriML-P、TriML-35XL、TML-HQ、TML-BPA、TML-BPAF、TML-BPAP、TMOM-BPA、TMOM-BPAF、TMOM-BPAP、HML-TPHAP若しくはHMOM-TPHAP(以上、何れも本州化学工業社製)又は“NIKALAC”(登録商標) MX-290、同 MX-280、同 MX-270、同 MX-279、同 MW-100LM、同 MW-30HM、同 MW-390若しくは同 MX-750LM(以上、三和ケミカル社製)が挙げられる。
 エポキシ基を分子中に2つ以上有する化合物としては、例えば、“エポライト”(登録商標)40E、同100E、同400E、同70P、同1500NP、同80MF 、同3002若しくは同4000(以上、何れも共栄社化学社製)、“デナコール”(登録商標)EX-212L、同EX-216L、同EX-321L若しくは同EX-850L(以上、何れもナガセケムテックス社製)、“jER”(登録商標) 828、同 1002 、同 1750、同 YX8100-BH30、同 E1256若しくは同 E4275(以上、何れも三菱化学社製)、GAN、GOT、EPPN-502H、NC-3000若しくはNC-6000(以上、何れも日本化薬社製)、“EPICLON”(登録商標) EXA-9583、同 HP4032、同 N695若しくは同 HP7200(以上、何れも大日本インキ化学工業社製)、“TECHMORE”(登録商標) VG-3101L(プリンテック社製)、又は“エポトート”(登録商標)YH-434L(東都化成社製)が挙げられる。
 オキセタニル基を分子中に2つ以上有する化合物としては、例えば、“ETERNACOLL”(登録商標) EHO、同 OXBP、同 OXTP若しくは同 OXMA(以上、何れも宇部興産社製)又はオキセタン化フェノールノボラックが挙げられる。
 本発明の感光性樹脂組成物に占める(F)架橋剤の含有量は、(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100質量部とした場合において、0.5質量部以上が好ましく、1質量部以上がより好ましく、2質量部以上がさらに好ましく、3質量部以上がさらにより好ましく、5質量部以上が特に好ましい。含有量が0.5質量部以上であると、硬化膜の硬度及び耐薬品性を向上させることができるとともに、熱硬化後に低テーパー形状のパターンを形成できる。一方、(F)架橋剤の含有量は、50質量部以下が好ましく、40質量部以下がより好ましく、30質量部以下がさらに好ましく、25質量部以下がさらにより好ましく、20質量部以下が特に好ましい。含有量が50質量部以下であると、硬化膜の硬度及び耐薬品性を向上させることができるとともに、熱硬化後に低テーパー形状のパターンを形成できる。
 <特定の(F)架橋剤>
 本発明の感光性樹脂組成物は、(F)架橋剤として、(F1)分子中にフルオレン骨格及び2つ以上のエポキシ基を有するエポキシ化合物、(F2)分子中にインダン骨格及び2つ以上のエポキシ基を有するエポキシ化合物、(F3)芳香族構造、脂環式構造及びエポキシ基を含む構造単位を有するエポキシ樹脂、(F4)ビフェニル構造、ターフェニル構造、ナフタレン構造、アントラセン構造及びフルオレン構造からなる群より選ばれる一種類以上、及び、2つ以上のエポキシ基を含む構造単位を有するエポキシ樹脂、(F5)分子中に2つ以上のフルオレン骨格又は2つ以上のインダン骨格、並びに2つ以上のエポキシ基を有するエポキシ化合物、(F6)分子中にスピロ骨格で連結された2つ以上の縮合多環式骨格、並びに2つ以上のエポキシ基を有するエポキシ化合物、(F7)分子中にインドリノン骨格又はイソインドリノン骨格、並びに2つ以上のエポキシ基を有するエポキシ化合物、及び、(F8)分子中に2つ以上のナフタレン骨格及び2つ以上のエポキシ基を有するエポキシ化合物、からなる群より選ばれる一種類以上(以下、「特定の(F)架橋剤」)を含有する。
 <(F1)分子中にフルオレン骨格及び2つ以上のエポキシ基を有するエポキシ化合物及び(F2)分子中にインダン骨格及び2つ以上のエポキシ基を有するエポキシ化合物>
 (F1)分子中にフルオレン骨格及び2つ以上のエポキシ基を有するエポキシ化合物又は(F2)分子中にインダン骨格及び2つ以上のエポキシ基を有するエポキシ化合物を含有させることで、露光時の感度向上、及び、現像後のパターン形状制御が可能になるとともに、熱硬化後に低テーパー形状のパターン形成が可能となる。これは、露光時にUV硬化した膜において、相互進入高分子網目(以下、「IPN」)構造形成により、硬化膜中に上述したエポキシ化合物が取り込まれるためと推測される。すなわち、上述したエポキシ化合物に由来するフルオレン骨格又はインダン骨格が導入され、低露光量のUV硬化においても膜の分子量が飛躍的に向上することで、アルカリ現像液に対して不溶化するため、露光時の感度が向上すると推測される。また、フルオレン骨格及びインダン骨格が疎水性であるため、UV硬化した膜の疎水性が向上することで、アルカリ現像液の浸透が抑えられ、とりわけUV硬化が不足しやすい膜深部のサイドエッチングを抑制できるためと考えられる。それにより、現像後の逆テーパー化が阻害され、現像後に順テーパー形状のパターン形成が可能になるなど、現像後のパターン形状制御が可能となる。現像後の逆テーパー化の阻害に加え、フルオレン骨格又はインダン骨格の立体障害により、UV硬化時の過剰な硬化が阻害されることで、熱硬化時におけるパターンのテーパー部のリフロー性を維持できるため、低テーパー形状のパターン形成が可能になると推測される。
 加えて、(F1)分子中にフルオレン骨格及び2つ以上のエポキシ基を有するエポキシ化合物又は(F2)分子中にインダン骨格及び2つ以上のエポキシ基を有するエポキシ化合物を含有させることで、現像後のパターン形状制御による、順テーパー形状のパターン形成が可能となることから、ハーフトーン特性を向上させることができる。これは、フルオレン骨格又はインダン骨格の疎水性により、アルカリ現像時において、完全に硬化が進行していないハーフトーン露光部のサイドエッチングを抑制できるとともに、ハーフトーン露光部のアルカリ溶解性を制御できるためと考えられる。
 また、(F1)分子中にフルオレン骨格及び2つ以上のエポキシ基を有するエポキシ化合物又は(F2)分子中にインダン骨格及び2つ以上のエポキシ基を有するエポキシ化合物を含有させることで、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。これは、上記と同様に、フルオレン骨格及びインダン骨格が疎水性であることに起因すると考えられる。すなわち、UV硬化が不足しやすい膜深部における現像時のサイドエッチングが抑制され、現像後に順テーパー形状のパターンが形成できるため、熱硬化時におけるパターン裾のリフローが抑制されることで、熱硬化前後におけるパターン開口寸法幅の変化を抑制できると推測される。また、露光時にUV硬化した膜にフルオレン骨格又はインダン骨格が導入され、膜の分子量が飛躍的に向上することで、熱硬化時におけるパターン裾のリフローが抑制されることも要因と考えられる。
 (F1)分子中にフルオレン骨格及び2つ以上のエポキシ基を有するエポキシ化合物としては、一般式(11)で表される化合物が好ましい。(F2)分子中にインダン骨格及び2つ以上のエポキシ基を有するエポキシ化合物としては、一般式(12)で表される化合物及び一般式(13)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000030
 一般式(11)、(12)、及び(13)において、X~Xは、それぞれ独立して、炭素数6~15及び2~10価の、単環式若しくは縮合多環式の芳香族炭化水素環、又は炭素数4~10及び2~8価の、単環式若しくは縮合多環式の脂肪族炭化水素環を表す。Y~Yは、それぞれ独立して、直接結合、炭素数1~10のアルキレン基、炭素数4~10のシクロアルキレン基又は炭素数6~15のアリーレン基を表す。R31~R40は、それぞれ独立して、ハロゲン、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基、炭素数1~10のフルオロアルキル基、炭素数4~10のフルオロシクロアルキル基又は炭素数6~15のフルオロアリール基を表し、R41~R44は、それぞれ独立して、水素、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基又は炭素数6~15のアリール基を表し、R45~R50は、それぞれ独立して、水素、炭素数1~10のアルキル基又はヒドロキシ基を表す。a、b、c、d、e、及びfは、それぞれ独立して、0~8の整数を表し、g、h、i及びjは、それぞれ独立して、0~4の整数を表す。α、β、γ、δ、ε及びζは、それぞれ独立して、1~4の整数を表す。一般式(11)、(12)及び(13)において、X~Xは、それぞれ独立して、炭素数6~10及び2~10価の、単環式又は縮合多環式の芳香族炭化水素環が好ましい。上述した単環式若しくは縮合多環式の芳香族炭化水素環、単環式若しくは縮合多環式の脂肪族炭化水素環、アルキレン基、シクロアルキレン基、アリーレン基、アルキル基、シクロアルキル基、アリール基、フルオロアルキル基、フルオロシクロアルキル基、及び、フルオロアリール基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれでもよい。
 (F1)分子中にフルオレン骨格及び2つ以上のエポキシ基を有するエポキシ化合物及び(F2)分子中にインダン骨格及び2つ以上のエポキシ基を有するエポキシ化合物のエポキシ当量は、150g/mol以上が好ましく、170g/mol以上がより好ましく、190g/mol以上がさらに好ましく、210g/mol以上が特に好ましい。エポキシ当量が、150g/mol以上であると、熱硬化後に低テーパー形状のパターンを形成できる。一方、(F1)分子中にフルオレン骨格及び2つ以上のエポキシ基を有するエポキシ化合物及び(F2)分子中にインダン骨格及び2つ以上のエポキシ基を有するエポキシ化合物のエポキシ当量は、800g/mol以下が好ましく、600g/mol以下がより好ましく、500g/mol以下がさらに好ましく、400g/mol以下が特に好ましい。エポキシ当量が、800g/mol以下であると、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。
 (F1)分子中にフルオレン骨格及び2つ以上のエポキシ基を有するエポキシ化合物としては、例えば、9,9-ビス[4-(2-グリシドキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(3-グリシドキシプロポキシ)フェニル]フルオレン、9,9-ビス[4-((3-グリシドキシ)ヘキシルオキシ)フェニル]フルオレン、9,9-ビス[4-(2-グリシドキシエトキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-グリシドキシエトキシ)-3,5-ジメチルフェニル]フルオレン、9,9-ビス(4-グリシドキシフェニル)フルオレン、9,9-ビス[4-(2-ヒドロキシ-3-グリシドキシプロポキシ)フェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシ-3-グリシドキシプロポキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシ-3-グリシドキシプロポキシ)-3,5-ジメチルフェニル]フルオレン、9,9-ビス[3-フェニル-4-(2-グリシドキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-グリシドキシエトキシ)-1-ナフチル]フルオレン、9,9-ビス[4’-(2-グリシドキシエトキシ)-(1,1’-ビフェニル)-4-イル]フルオレン、9,9-ビス[3,4-ビス(2-グリシドキシエトキシ)フェニル]フルオレン、若しくは9-[3,4-ビス(2-グリシドキシエトキシ)フェニル]-9-[4-(2-グリシドキシエトキシ)フェニル]フルオレン、OGSOL(登録商標) PG、同 PG-100、同 EG、同 EG-200、同 EG-210、同 EG-280、同 CG-400若しくは同 CG-500(以上、何れも大阪ガスケミカル社製)又はオンコート(登録商標)EX-1010、同EX-1011、同EX-1012、同EX-1020、同EX-1030、同EX-1040、同EX-1050、同EX-1051、同EX-1020M80若しくは同EX-1020M70(以上、何れもナガセケムテックス社製)が挙げられる。
 (F2)分子中にインダン骨格及び2つ以上のエポキシ基を有するエポキシ化合物としては、例えば、1,1-ビス[4-(2-グリシドキシエトキシ)フェニル]インダン、1,1-ビス[4-(3-グリシドキシプロポキシ)フェニル]インダン、1,1-ビス[4-(3-グリシドキシヘキシルオキシ)フェニル]インダン、1,1-ビス[4-(2-グリシドキシエトキシ)-3-メチルフェニル]インダン、1,1-ビス[4-(2-グリシドキシエトキシ)-3,5-ジメチルフェニル]インダン、1,1-ビス(4-グリシドキシフェニル)インダン、1,1-ビス[4-(2-ヒドロキシ-3-グリシドキシプロポキシ)フェニル]インダン、1,1-ビス[4-(2-ヒドロキシ-3-グリシドキシプロポキシ)-3-メチルフェニル]インダン、1,1-ビス[4-(2-ヒドロキシ-3-グリシドキシプロポキシ)-3,5-ジメチルフェニル]インダン、1,1-ビス[4-(2-グリシドキシエトキシ)フェニル]-3-フェニルインダン、1,1-ビス[3-フェニル-4-(2-グリシドキシエトキシ)フェニル]インダン、1,1-ビス[4-(2-グリシドキシエトキシ)-1-ナフチル]インダン、1,1-ビス[3,4-ビス(2-グリシドキシエトキシ)フェニル]インダン、2,2-ビス[4-(2-グリシドキシエトキシ)フェニル]インダン、2,2-ビス[4-(3-グリシドキシプロポキシ)フェニル]インダン、2,2-ビス[4-[(3-グリシドキシ)ヘキシルオキシ]フェニル]インダン、2,2-ビス[4-(2-グリシドキシエトキシ)-3-メチルフェニル]インダン、2,2-ビス(4-グリシドキシフェニル)インダン、2,2-ビス[4-(2-ヒドロキシ-3-グリシドキシプロポキシ)フェニル]インダン、2,2-ビス[3-フェニル-4-(2-グリシドキシエトキシ)フェニル]インダン、2,2-ビス[4-(2-グリシドキシエトキシ)-1-ナフチル]インダン、又は2,2-ビス[3,4-ビス(2-グリシドキシエトキシ)フェニル]インダンが挙げられる。
 (F1)分子中にフルオレン骨格及び2つ以上のエポキシ基を有するエポキシ化合物、及び(F2)分子中にインダン骨格及び2つ以上のエポキシ基を有するエポキシ化合物は、公知の方法により合成できる。
 本発明の感光性樹脂組成物に占める(F1)分子中にフルオレン骨格及び2つ以上のエポキシ基を有するエポキシ化合物と、(F2)分子中にインダン骨格及び2つ以上のエポキシ基を有するエポキシ化合物との含有量の合計は、(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100質量部とした場合において、0.5質量部以上が好ましく、1質量部以上がより好ましく、2質量部以上がさらに好ましく、3質量部以上がさらにより好ましく、5質量部以上が特に好ましい。含有量が0.5質量部以上であると、露光時の感度を向上できるとともに、熱硬化後に低テーパー形状のパターンを形成できる。加えて、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。一方、(F1)分子中にフルオレン骨格及び2つ以上のエポキシ基を有するエポキシ化合物及び(F2)分子中にインダン骨格及び2つ以上のエポキシ基を有するエポキシ化合物の含有量の合計は、50質量部以下が好ましく、40質量部以下がより好ましく、30質量部以下がさらに好ましく、25質量部以下がさらにより好ましく、20質量部以下が特に好ましい。含有量が50質量部以下であると、熱硬化前後におけるパターン開口寸法幅の変化を抑制できるとともに、現像後の残渣発生を抑制できる。
 <(F3)芳香族構造、脂環式構造、及びエポキシ基を含む構造単位を有するエポキシ樹脂、及び(F4)ビフェニル構造、ターフェニル構造、ナフタレン構造、アントラセン構造、及びフルオレン構造からなる群より選ばれる一種類以上、並びに2つ以上のエポキシ基を含む構造単位を有するエポキシ樹脂>
 (F3)芳香族構造、脂環式構造及びエポキシ基を含む構造単位を有するエポキシ樹脂、又は(F4)ビフェニル構造、ターフェニル構造、ナフタレン構造、アントラセン構造及びフルオレン構造からなる群より選ばれる一種類以上、並びに2つ以上のエポキシ基を含む構造単位を有するエポキシ樹脂を含有させることで、露光時の感度向上、及び、現像後のパターン形状制御が可能になるとともに、熱硬化後に低テーパー形状のパターン形成が可能となる。これは、露光時にUV硬化した膜において、IPN構造形成により、硬化膜中に上述したエポキシ樹脂が取り込まれるためと推測される。すなわち、上述したエポキシ樹脂に由来する芳香族構造、脂環式構造又は多環芳香族構造が導入され、低露光量のUV硬化においても膜の分子量が飛躍的に向上することで、アルカリ現像液に対して不溶化するため、露光時の感度が向上すると推測される。また、芳香族構造、脂環式構造又は多環芳香族構造が疎水性であるため、UV硬化した膜の疎水性が向上することで、アルカリ現像液の浸透が抑えられ、とりわけUV硬化が不足しやすい膜深部のサイドエッチングを抑制できるためと考えられる。それにより、現像後の逆テーパー化が阻害され、現像後に順テーパー形状のパターン形成が可能になるなど、現像後のパターン形状制御が可能となる。現像後の逆テーパー化の阻害に加え、芳香族構造、脂環式構造又は多環芳香族構造の立体障害により、UV硬化時の過剰な硬化が阻害されることで、熱硬化時におけるパターンのテーパー部のリフロー性を維持できるため、低テーパー形状のパターン形成が可能になると推測される。
 加えて、(F3)芳香族構造、脂環式構造及びエポキシ基を含む構造単位を有するエポキシ樹脂、又は、(F4)ビフェニル構造、ターフェニル構造、ナフタレン構造、アントラセン構造及びフルオレン構造からなる群より選ばれる一種類以上、及び、2つ以上のエポキシ基を含む構造単位を有するエポキシ樹脂を含有させることで、現像後のパターン形状制御による、順テーパー形状のパターン形成が可能となることから、ハーフトーン特性を向上させることができる。
 また、(F3)芳香族構造、脂環式構造及びエポキシ基を含む構造単位を有するエポキシ樹脂、又は、(F4)ビフェニル構造、ターフェニル構造、ナフタレン構造、アントラセン構造及びフルオレン構造からなる群より選ばれる一種類以上、及び、2つ以上のエポキシ基を含む構造単位を有するエポキシ樹脂を含有させることで、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。
 (F3)芳香族構造、脂環式構造及びエポキシ基を含む構造単位を有するエポキシ樹脂としては、一般式(14)で表される構造単位を有するエポキシ樹脂が好ましい。(F4)ビフェニル構造、ターフェニル構造、ナフタレン構造、アントラセン構造及びフルオレン構造からなる群より選ばれる一種類以上、及び、2つ以上のエポキシ基を含む構造単位を有するエポキシ樹脂としては、一般式(15)で表される構造単位又は一般式(16)で表される構造単位を有するエポキシ樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000031
 一般式(14)、(15)、及び(16)において、X~X10は、それぞれ独立して、炭素数1~6の脂肪族構造を表す。Y~Y10は、それぞれ独立して、直接結合、炭素数1~10のアルキレン基、炭素数4~10のシクロアルキレン基又は炭素数6~15のアリーレン基を表す。Zは、炭素数10~25及び3~16価の、芳香族構造を表す。R51~R55は、それぞれ独立して、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基又は炭素数6~15のアリール基を表し、R56及びR57は、それぞれ独立して、炭素数1~10のアルキル基を表し、R58~R62は、それぞれ独立して、ハロゲン、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、又は炭素数6~15のアリール基を表し、R63~R66は、それぞれ独立して、水素、炭素数1~10のアルキル基、又はヒドロキシ基を表す。a、b、c、d、及びeは、それぞれ独立して、0~10の整数を表し、fは、0~8の整数を表し、gは、0~6の整数を表し、h及びiは、それぞれ独立して、0~3の整数を表し、jは、0~2の整数を表し、k及びlは、それぞれ独立して、0~4の整数を表し、m、n、及びoは、それぞれ独立して、1~4の整数を表し、pは、2~4の整数を表す。上述した脂肪族構造、アルキレン基、シクロアルキレン基、アリーレン基、芳香族構造、アルキル基、シクロアルキル基、及びアリール基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれでもよい。
 一般式(15)のZの芳香族構造としては、ターフェニル構造、ナフタレン構造、アントラセン構造及びフルオレン構造からなる群より選ばれる一種類以上を含有する。また、一般式(15)のZのその他の芳香族構造としては、例えば、1,2,3,4-テトラヒドロナフタレン構造、2,2-ジフェニルプロパン構造、ジフェニルエーテル構造、ジフェニルケトン構造又はジフェニルスルホン構造が挙げられる。
 (F3)芳香族構造、脂環式構造及びエポキシ基を含む構造単位を有するエポキシ樹脂、及び、(F4)ビフェニル構造、ターフェニル構造、ナフタレン構造、アントラセン構造及びフルオレン構造からなる群より選ばれる一種類以上、及び、2つ以上のエポキシ基を含む構造単位を有するエポキシ樹脂のエポキシ当量は、150g/mol以上が好ましく、170g/mol以上がより好ましく、190g/mol以上がさらに好ましく、210g/mol以上が特に好ましい。エポキシ当量が、150g/mol以上であると、熱硬化後に低テーパー形状のパターンを形成できる。一方、(F3)芳香族構造、脂環式構造及びエポキシ基を含む構造単位を有するエポキシ樹脂、及び、(F4)ビフェニル構造、ターフェニル構造、ナフタレン構造、アントラセン構造及びフルオレン構造からなる群より選ばれる一種類以上、及び、2つ以上のエポキシ基を含む構造単位を有するエポキシ樹脂のエポキシ当量は、800g/mol以下が好ましく、600g/mol以下がより好ましく、500g/mol以下がさらに好ましく、400g/mol以下が特に好ましい。エポキシ当量が、800g/mol以下であると、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。
 (F3)芳香族構造、脂環式構造及びエポキシ基を含む構造単位を有するエポキシ樹脂としては、例えば、XD-1000、XD-1000-2L、XD-1000-H、XD-1000-2H又はXD-1000-FH(以上、何れも日本化薬社製)が挙げられる。
 (F4)ビフェニル構造、ターフェニル構造、ナフタレン構造、アントラセン構造及びフルオレン構造からなる群より選ばれる一種類以上、並びに2つ以上のエポキシ基を含む構造単位を有するエポキシ樹脂としては、例えば、NC-7000L、NC-7000H、NC-7300L、NC-7700、又はNC-3500(以上、何れも日本化薬社製)が挙げられる。
 (F3)芳香族構造、脂環式構造及びエポキシ基を含む構造単位を有するエポキシ樹脂、及び、(F4)ビフェニル構造、ターフェニル構造、ナフタレン構造、アントラセン構造及びフルオレン構造からなる群より選ばれる一種類以上、及び、2つ以上のエポキシ基を含む構造単位を有するエポキシ樹脂は、公知の方法により、合成できる。
 本発明の感光性樹脂組成物に占める(F3)芳香族構造、脂環式構造及びエポキシ基を含む構造単位を有するエポキシ樹脂、及び、(F4)ビフェニル構造、ターフェニル構造、ナフタレン構造、アントラセン構造及びフルオレン構造からなる群より選ばれる一種類以上、及び、2つ以上のエポキシ基を含む構造単位を有するエポキシ樹脂の含有量の合計は、(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100質量部とした場合において、0.5質量部以上が好ましく、1質量部以上がより好ましく、2質量部以上がさらに好ましく、3質量部以上がさらにより好ましく、5質量部以上が特に好ましい。含有量が0.5質量部以上であると、露光時の感度を向上できるとともに、熱硬化後に低テーパー形状のパターンを形成できる。加えて、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。一方、(F3)芳香族構造、脂環式構造及びエポキシ基を含む構造単位を有するエポキシ樹脂、及び、(F4)ビフェニル構造、ターフェニル構造、ナフタレン構造、アントラセン構造及びフルオレン構造からなる群より選ばれる一種類以上、及び、2つ以上のエポキシ基を含む構造単位を有するエポキシ樹脂の含有量の合計は、50質量部以下が好ましく、40質量部以下がより好ましく、30質量部以下がさらに好ましく、25質量部以下がさらにより好ましく、20質量部以下が特に好ましい。含有量が50質量部以下であると、熱硬化後に低テーパー形状のパターンを形成できるとともに、現像後の残渣発生を抑制できる。
 <(F5)分子中に2つ以上のフルオレン骨格又は2つ以上のインダン骨格、並びに2つ以上のエポキシ基を有するエポキシ化合物、(F6)分子中にスピロ骨格で連結された2つ以上の縮合多環式骨格、並びに2つ以上のエポキシ基を有するエポキシ化合物、(F7)分子中にインドリノン骨格又はイソインドリノン骨格、並びに2つ以上のエポキシ基を有するエポキシ化合物、及び、(F8)分子中に2つ以上のナフタレン骨格及び2つ以上のエポキシ基を有するエポキシ化合物>
 上述した(F5)化合物、(F6)化合物、(F7)化合物又は(F8)化合物を含有させることで、露光時の感度向上、及び、現像後のパターン形状制御が可能になるとともに、熱硬化後に低テーパー形状のパターン形成が可能となる。これは、露光時にUV硬化した膜において、IPN構造形成により、硬化膜中に上述したエポキシ樹脂が取り込まれるためと推測される。すなわち、上述したエポキシ樹脂に由来するフルオレン骨格、スピロ骨格で連結された縮合多環式骨格、インドリノン骨格若しくはイソインドリノン骨格、又は、ナフタレン骨格が導入され、低露光量のUV硬化においても膜の分子量が飛躍的に向上することで、アルカリ現像液に対して不溶化するため、露光時の感度が向上すると推測される。また、上記の骨格が疎水性であるため、UV硬化した膜の疎水性が向上することで、アルカリ現像液の浸透が抑えられ、とりわけUV硬化が不足しやすい膜深部のサイドエッチングを抑制できるためと考えられる。それにより、現像後の逆テーパー化が阻害され、現像後に順テーパー形状のパターン形成が可能になるなど、現像後のパターン形状制御が可能となる。現像後の逆テーパー化の阻害に加え、上記の骨格の立体障害により、UV硬化時の過剰な硬化が阻害されることで、熱硬化時におけるパターンのテーパー部のリフロー性を維持できるため、低テーパー形状のパターン形成が可能になると推測される。
 加えて、(F5)化合物、(F6)化合物、(F7)化合物又は(F8)化合物を含有させることで、現像後のパターン形状制御による、順テーパー形状のパターン形成が可能となることから、ハーフトーン特性を向上させることができる。これは、上記の骨格の疎水性により、アルカリ現像時において、完全に硬化が進行していないハーフトーン露光部のサイドエッチングを抑制できるとともに、ハーフトーン露光部のアルカリ溶解性を制御できるためと考えられる。
 また、(F5)化合物、(F6)化合物、(F7)化合物又は(F8)化合物を含有させることで、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。これは同様に、上記の骨格が疎水性であることに起因すると考えられる。すなわち、UV硬化が不足しやすい膜深部における現像時のサイドエッチングが抑制され、現像後に順テーパー形状のパターンが形成できるため、熱硬化時におけるパターン裾のリフローが抑制されることで、熱硬化前後におけるパターン開口寸法幅の変化を抑制できると推測される。また、露光時にUV硬化した膜に上記の骨格が導入され、膜の分子量が飛躍的に向上することで、熱硬化時におけるパターン裾のリフローが抑制されることも要因と考えられる。
 (F5)分子中に2つ以上のフルオレン骨格又は2つ以上のインダン骨格、並びに2つ以上のエポキシ基を有するエポキシ化合物としては、一般式(81)~(83)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000032
 一般式(81)~(83)において、X101~X112は、それぞれ独立して、炭素数6~15及び2~10価の、単環式若しくは縮合多環式の芳香族炭化水素環、又は炭素数4~10及び2~8価の、単環式若しくは縮合多環式の脂肪族炭化水素環を表す。Y61~Y63は、それぞれ独立して、炭素数1~10のアルキレン基、炭素数4~10のシクロアルキレン基又は炭素数6~15のアリーレン基を表す。Y64は、直接結合、炭素数1~10のアルキレン基、炭素数4~10のシクロアルキレン基又は炭素数6~15のアリーレン基を表す。R301~R320は、それぞれ独立して、ハロゲン、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基、炭素数1~10のフルオロアルキル基、炭素数4~10のフルオロシクロアルキル基又は炭素数6~15のフルオロアリール基を表す。R321~R328は、それぞれ独立して、水素、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基又は炭素数6~15のアリール基を表す。R329~R334は、一般式(84)で表される基を表す。R335は、水素、炭素数1~10のアルキル基又はヒドロキシ基を表す。a、b、c、d、e、f、g、h、i、j、k及びlは、それぞれ独立して、0~8の整数を表す。m、n、o、p、q、r、s及びtは、それぞれ独立して、0~4の整数を表す。xは、1~4の整数を表す。α、β及びγは、それぞれ独立して、1~10の整数を表す。δ、ε及びζは、それぞれ独立して、0又は1である。一般式(81)~(83)において、X101~X112は、それぞれ独立して、炭素数6~10及び2~10価の、単環式又は縮合多環式の芳香族炭化水素環が好ましい。上述した単環式若しくは縮合多環式の芳香族炭化水素環、単環式若しくは縮合多環式の脂肪族炭化水素環、アルキレン基、シクロアルキレン基、アリーレン基、アルキル基、シクロアルキル基、アリール基、フルオロアルキル基、フルオロシクロアルキル基、及び、フルオロアリール基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれでもよい。
 (F6)分子中にスピロ骨格で連結された2つ以上の縮合多環式骨格、並びに2つ以上のエポキシ基を有するエポキシ化合物としては、一般式(85)~(87)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000033
 一般式(85)~(87)において、Y65~Y67は、それぞれ独立して、炭素数1~10のアルキレン基、炭素数4~10のシクロアルキレン基又は炭素数6~15のアリーレン基を表す。Y68は、直接結合、炭素数1~10のアルキレン基、炭素数4~10のシクロアルキレン基又は炭素数6~15のアリーレン基を表す。Z81~Z92は、それぞれ独立して、直接結合、炭素数1~5のアルキレン基、酸素又は硫黄を表す。R336~R355は、それぞれ独立して、ハロゲン、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基、炭素数1~10のフルオロアルキル基、炭素数4~10のフルオロシクロアルキル基又は炭素数6~15のフルオロアリール基を表す。R356~R363は、それぞれ独立して、水素、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基又は炭素数6~15のアリール基を表す。R364~R369は、一般式(88)で表される基を表す。R370は、水素、炭素数1~10のアルキル基又はヒドロキシ基を表す。a、b、c、d、e、f、g、h、i、j、k及びlは、それぞれ独立して、0~3の整数を表す。m、n、o、p、q、r、s及びtは、それぞれ独立して、0~4の整数を表す。xは、1~4の整数を表す。α、β及びγは、それぞれ独立して、0~10の整数を表す。δ、ε及びζは、それぞれ独立して、0又は1である。一般式(85)~(87)において、上述したアルキレン基、シクロアルキレン基、アリーレン基、アルキル基、シクロアルキル基、アリール基、フルオロアルキル基、フルオロシクロアルキル基、及び、フルオロアリール基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれでもよい。
 (F6)化合物としては、例えば、TBIS(登録商標)RXG(田岡化学社製)が挙げられる。
 (F7)分子中にインドリノン骨格又はイソインドリノン骨格、並びに2つ以上のエポキシ基を有するエポキシ化合物としては、一般式(89)~(91)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000034
 一般式(89)~(91)において、X113~X118は、それぞれ独立して、炭素数6~15及び2~10価の、単環式若しくは縮合多環式の芳香族炭化水素環、又は炭素数4~10及び2~8価の、単環式若しくは縮合多環式の脂肪族炭化水素環を表す。Y69~Y74は、それぞれ独立して、直接結合、炭素数1~10のアルキレン基、炭素数4~10のシクロアルキレン基又は炭素数6~15のアリーレン基を表す。R371~R379は、それぞれ独立して、ハロゲン、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基、炭素数1~10のフルオロアルキル基、炭素数4~10のフルオロシクロアルキル基又は炭素数6~15のフルオロアリール基を表す。R380~R382は、それぞれ独立して、水素、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基、炭素数1~10のフルオロアルキル基、炭素数4~10のフルオロシクロアルキル基又は炭素数6~15のフルオロアリール基を表す。R383~R388は、それぞれ独立して、水素、炭素数1~10のアルキル基又はヒドロキシ基を表す。a、b、c、d、e及びfは、それぞれ独立して、0~8の整数を表す。g、h及びiは、それぞれ独立して、0~4の整数を表す。α、β、γ、δ、ε及びζは、それぞれ独立して、1~4の整数を表す。一般式(89)~(91)において、X113~X118は、それぞれ独立して、炭素数6~10及び2~10価の、単環式又は縮合多環式の芳香族炭化水素環が好ましい。上述した単環式若しくは縮合多環式の芳香族炭化水素環、単環式若しくは縮合多環式の脂肪族炭化水素環、アルキレン基、シクロアルキレン基、アリーレン基、アルキル基、シクロアルキル基、アリール基、フルオロアルキル基、フルオロシクロアルキル基、及び、フルオロアリール基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれでもよい。(F7)化合物としては、例えば、WHR-991S(日本化薬社製)が挙げられる。
 (F8)分子中に2つ以上のナフタレン骨格及び2つ以上のエポキシ基を有するエポキシ化合物としては、一般式(92)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000035
 一般式(92)において、X119は、直接結合、炭素数1~10のアルキレン基、炭素数4~10のシクロアルキレン基又は炭素数6~15のアリーレン基を表す。X120及びX121は、それぞれ独立して、直接結合又は酸素を表す。X120及びX121が、直接結合の場合、Y75及びY76は、直接結合である。X120及びX121が、直接結合でない場合、Y75及びY76は、炭素数1~10のアルキレン基、炭素数4~10のシクロアルキレン基又は炭素数6~15のアリーレン基を表す。R389及びR390は、それぞれ独立して、ハロゲン、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基、炭素数1~10のフルオロアルキル基、炭素数4~10のフルオロシクロアルキル基又は炭素数6~15のフルオロアリール基を表す。R391及びR392は、それぞれ独立して、水素、炭素数1~10のアルキル基又はヒドロキシ基を表す。a及びbは、それぞれ独立して、0~6の整数を表す。α及びβは、それぞれ独立して、1~4の整数を表す。一般式(92)において、上述した単環式若しくは縮合多環式の芳香族炭化水素環、単環式若しくは縮合多環式の脂肪族炭化水素環、アルキレン基、シクロアルキレン基、アリーレン基、アルキル基、シクロアルキル基、アリール基、フルオロアルキル基、フルオロシクロアルキル基、及び、フルオロアリール基は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれでもよい。(F8)化合物としては、例えば、TBIS(登録商標) BNG200又は同 BNEG(以上、何れも田岡化学社製)が挙げられる。
 (F5)化合物、(F6)化合物、(F7)化合物及び(F8)化合物のエポキシ当量は、150g/mol以上が好ましく、170g/mol以上がより好ましく、190g/mol以上がさらに好ましく、210g/mol以上が特に好ましい。エポキシ当量が、150g/mol以上であると、熱硬化後に低テーパー形状のパターンを形成できる。一方、(F5)化合物、(F6)化合物、(F7)化合物又は(F8)化合物のエポキシ当量は、800g/mol以下が好ましく、600g/mol以下がより好ましく、500g/mol以下がさらに好ましく、400g/mol以下が特に好ましい。エポキシ当量が、800g/mol以下であると、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。
 上述した(F5)化合物、(F6)化合物、(F7)化合物及び(F8)化合物は、公知の方法により合成できる。
 本発明の感光性樹脂組成物に占める(F5)化合物、(F6)化合物、(F7)化合物及び(F8)化合物の含有量の合計は、(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100質量部とした場合において、0.5質量部以上が好ましく、1質量部以上がより好ましく、2質量部以上がさらに好ましく、3質量部以上がさらにより好ましく、5質量部以上が特に好ましい。含有量が0.5質量部以上であると、露光時の感度を向上できるとともに、熱硬化後に低テーパー形状のパターンを形成できる。加えて、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。一方、(F5)化合物、(F6)化合物、(F7)化合物、及び(F8)化合物の含有量の合計は、50質量部以下が好ましく、40質量部以下がより好ましく、30質量部以下がさらに好ましく、25質量部以下がさらにより好ましく、20質量部以下が特に好ましい。含有量が50質量部以下であると、熱硬化前後におけるパターン開口寸法幅の変化を抑制できるとともに、現像後の残渣発生を抑制できる。
 本発明の感光性樹脂組成物は、特定の(F)架橋剤のうち、二種類以上を含有することがより好ましい。すなわち、上述した(F1)化合物、(F2)化合物、(F3)化合物、(F4)化合物、(F5)化合物、(F6)化合物、(F7)化合物、及び(F8)化合物からなる群より選ばれる二種類以上を含有することが好ましい。二種類以上を含有させることで、熱硬化後に低テーパー形状のパターン形成が可能になるとともに、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。加えて、硬化膜の折り曲げ性を向上させることができる。
 本発明の感光性樹脂組成物において、特定の(F)架橋剤のうち、二種類を含有する場合、特定の(F)架橋剤の一種類目を第1架橋剤、特定の(F)架橋剤の二種類目を第2架橋剤とすると、二種類の含有比((第1架橋剤の含有量)/(第2架橋剤の含有量))は、80/20~20/80が好ましく、70/30~30/70がより好ましく、60/40~40/60がさらに好ましい。含有比が80/20~20/80であると、熱硬化後に低テーパー形状のパターン形成が可能になるとともに、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。加えて、硬化膜の折り曲げ性を向上させることができる。
 <(F9)含窒素環骨格含有エポキシ化合物物>
 本発明の感光性樹脂組成物は、さらに、(F)架橋剤として、(F9)含窒素環骨格含有エポキシ化合物を含有することが好ましい。
 (F9)含窒素環骨格含有エポキシ化合物を含有させることで、現像後の残渣発生を抑制できる。これは、露光時にUV硬化した膜において、IPN構造形成により、硬化膜中に上述したエポキシ化合物が取り込まれるためと推測される。すなわち、上述したエポキシ化合物に由来する含窒素環骨格の極性/親水性により、現像時のアルカリ現像液に対する親和性が向上したためと考えられる。
 加えて、(F9)含窒素環骨格含有エポキシ化合物を含有させることで、熱硬化時における残渣発生を抑制できる。これは、熱硬化時において、上述したエポキシ化合物が架橋剤として機能するとともに、他のエポキシ化合物等の架橋剤に対する、硬化触媒や硬化促進剤として機能するためと推測される。すなわち、上述したエポキシ化合物は、架橋性基であるエポキシ基と含窒素環骨格とを有する。含窒素環骨格のような塩基性骨格の触媒作用によって、他のエポキシ化合物の熱硬化が促進されることで硬化膜の耐熱性が向上し、熱硬化時における熱分解物や昇華物に起因する残渣発生が抑制されていると考えられる。
 (F9)含窒素環骨格含有エポキシ化合物が有する、含窒素環骨格としては、例えば、ピロリジン骨格、ピロール骨格、イミダゾール骨格、ピラゾール骨格、トリアゾール骨格、テトラゾール骨格、イミダゾリン骨格、オキサゾール骨格、イソオキサゾール骨格、オキサゾリン骨格、イソオキサゾリン骨格、チアゾール骨格、イソチアゾール骨格、チアゾリン骨格、イソチアゾリン骨格、チアジン骨格、ピペリジン骨格、ピペラジン骨格、モルホリン骨格、ピリジン骨格、ピリダジン骨格、ピリミジン骨格、ピラジン骨格、トリアジン骨格、イソシアヌル酸骨格、イミダゾリジノン骨格、プロピレン尿素骨格、ブチレン尿素骨格、ヒダントイン骨格、バルビツール酸骨格、アロキサン骨格若しくはグリコールウリル骨格などが挙げられる。
 現像後の残渣抑制及び熱硬化時における残渣抑制の観点から、イミダゾール骨格、ピラゾール骨格、トリアゾール骨格、テトラゾール骨格、オキサゾール骨格、イソオキサゾール骨格、チアゾール骨格、イソチアゾール骨格、チアジン骨格、ピリジン骨格、ピリダジン骨格、ピリミジン骨格、ピラジン骨格、トリアジン骨格、イソシアヌル酸骨格、ヒダントイン骨格、バルビツール酸骨格、アロキサン骨格若しくはグリコールウリル骨格が好ましく、イミダゾール骨格、トリアゾール骨格、ピリミジン骨格、ピラジン骨格、トリアジン骨格、イソシアヌル酸骨格若しくはグリコールウリル骨格がより好ましい。
 また、(F9)含窒素環骨格含有エポキシ化合物としては、硬化膜の折り曲げ性向上及び現像後の残渣抑制の観点から、含窒素環骨格とエポキシ基との間に、アルキレン鎖を有することが好ましい。アルキレン鎖としては、炭素数2~30のアルキレン鎖が好ましく、炭素数4~25のアルキレン鎖がより好ましく、炭素数6~20のアルキレン鎖がさらに好ましい。
 (F9)含窒素環骨格含有エポキシ化合物としては、一般式(17)で表される化合物、一般式(18)で表される化合物及び一般式(19)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000036
 一般式(17)において、R286~R288は、それぞれ独立して、一般式(74)~(77)のいずれかで表される基、水素、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基又はヒドロキシ基を表し、R286~R288の少なくとも1つは一般式(74)又は(76)で表される基である。一般式(18)において、R289~R291は、それぞれ独立して、一般式(74)~(77)のいずれかで表される基、水素、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基又はヒドロキシ基を表し、R289~R291の少なくとも1つは一般式(74)又は(76)で表される基である。一般式(19)において、R292~R295は、それぞれ独立して、一般式(74)~(77)のいずれかで表される基、水素、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基又はヒドロキシ基を表し、R292~R295の少なくとも1つは一般式(74)又は(76)で表される基である。
 一般式(74)において、X11は、直接結合又は炭素数1~10のアルキレン鎖を表す。Y11は、直接結合又は炭素数1~10のアルキレン鎖を表す。Z11は、直接結合、炭素数1~10のアルキレン鎖、炭素数4~10のシクロアルキレン鎖又は炭素数6~15のアリーレン鎖を表す。R296は、一般式(78)で表される基又は一般式(79)で表される基を表す。aは、0又は1を表し、bは、0又は1を表し、cは、1~4の整数を表す。bが、1の場合、aは、1であり、Y11は、炭素数1~10のアルキレン鎖である。一般式(75)において、X12は、直接結合、炭素数1~6のアルキレン鎖又は炭素数6~15のアリーレン鎖を表す。一般式(76)において、X13は、直接結合又は炭素数1~10のアルキレン鎖を表す。Y12は、直接結合又は炭素数1~10のアルキレン鎖を表す。Z12は、直接結合、炭素数1~10のアルキレン鎖、炭素数4~10のシクロアルキレン鎖又は炭素数6~15のアリーレン鎖を表す。R297は、一般式(78)で表される基又は一般式(79)で表される基を表す。dは、1~4の整数を表す。一般式(77)において、X14は、直接結合又は炭素数1~10のアルキレン鎖を表す。R298は、水素又は炭素数1~10のアルキル基を表す。eは、1~6の整数を表す。一般式(78)において、R299は、水素、炭素数1~10のアルキル基又はヒドロキシ基を表す。一般式(79)において、R300は、水素、炭素数1~10のアルキル基又はヒドロキシ基を表す。上述したアルキル基、アルキレン鎖、シクロアルキレン鎖及び、アリーレン鎖は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれでもよい。
 (F9)含窒素環骨格含有エポキシ化合物が分子中に有するエポキシ基数は、2個以上が好ましく、3個以上がより好ましく、4個以上がさらに好ましい。エポキシ基数が2個以上であると、熱硬化時における残渣発生を抑制できるとともに、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。一方、(F9)含窒素環骨格含有エポキシ化合物が分子中に有するエポキシ基数は、10個以下が好ましく、8個以下がより好ましく、6個以下がさらに好ましい。エポキシ基数が10個以下であると、熱硬化後に低テーパー形状のパターンを形成できる。
 (F9)含窒素環骨格含有エポキシ化合物のエポキシ当量は、70g/mol以上が好ましく、80g/mol以上がより好ましく、90g/mol以上がさらに好ましく、100g/mol以上が特に好ましい。エポキシ当量が、70g/mol以上であると、熱硬化後に低テーパー形状のパターンを形成できる。一方、(F9)含窒素環骨格含有エポキシ化合物のエポキシ当量は、800g/mol以下が好ましく、600g/mol以下がより好ましく、500g/mol以下がさらに好ましく、400g/mol以下が特に好ましい。エポキシ当量が、800g/mol以下であると、熱硬化時における残渣発生を抑制できるとともに、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。
 (F9)含窒素環骨格含有エポキシ化合物としては、例えば、1,3,5-トリス(グリシジル)イソシアヌル酸、1,3,5-トリス(2-グリシジルエチル)イソシアヌル酸、1,3,5-トリス(5-グリシジルペンチル)イソシアヌル酸、1,3,5-トリス(グリシジルデシル)イソシアヌル酸、1,3,5-トリス(グリシジルステアリル)イソシアヌル酸、1,3,5-トリス(グリシジルオキシ)イソシアヌル酸、1,3,5-トリス(2-グリシジルオキシエチル)イソシアヌル酸、1,3,5-トリス(2-グリシジルエトキシ)イソシアヌル酸、1,3,5-トリス(2-グリシジルオキシエトキシ)イソシアヌル酸、1,3,5-トリス(3,4-エポキシシクロヘキシル)イソシアヌル酸、1,3,5-トリス[2-(3,4-エポキシシクロヘキシル)エチル]イソシアヌル酸、1,3,5-トリス(4-オキシラニルベンジル)イソシアヌル酸、1,3,5-トリス[2-(4-オキシラニルベンジルオキシ)エチル]イソシアヌル酸、1,3,5-トリス[2,2-ビス(グリシジルオキシメチル)ブトキシカルボニルエチル]イソシアヌル酸、1,3,5-トリス[3-(3,4-エポキシシクロヘキシル)メトキシカルボニルプロピル]イソシアヌル酸、1,3-ビス(グリシジル)-5-[2,3-ビス(エチルカルボニルオキシ)プロピル]イソシアヌル酸、1-グリシジル-3,5-ビス[2,3-ビス(エチルカルボニルオキシ)プロピル]イソシアヌル酸、1,3-ビス(グリシジル)-5-アリルイソシアヌル酸、1-グリシジル-3,5-ジアリルイソシアヌル酸、2,4,6-トリス(グリシジル)トリアジン、2,4,6-トリス(2-グリシジルエチル)トリアジン、2,4,6-トリス(グリシジルオキシ)トリアジン、2,4,6-トリス(2-グリシジルオキシエチル)トリアジン、2,4,6-トリス(2-グリシジルエトキシ)トリアジン、2,4,6-トリス(5-グリシジルペンチルオキシ)トリアジン、2,4,6-トリス(グリシジルデシルオキシ)トリアジン、2,4,6-トリス(グリシジルステアリルオキシ)トリアジン、2,4,6-トリス(2-グリシジルオキシエトキシ)トリアジン、2,4,6-トリス(2-グリシジルオキシエトキシ)トリアジン、2,4-ビス(グリシジルオキシ)-6-ヒドロキシトリアジン、1,3,4,6-テトラキス(グリシジル)グリコールウリル、1,3,4,6-テトラキス(2-グリシジルエチル)グリコールウリル、1,3,4,6-テトラキス(5-グリシジルペンチル)グリコールウリル、1,3,4,6-テトラキス(グリシジルデシル)グリコールウリル、1,3,4,6-テトラキス(グリシジルステアリル)グリコールウリル、1,3,4,6-テトラキス(グリシジルオキシ)グリコールウリル、1,3,4,6-テトラキス(2-グリシジルオキシエチル)グリコールウリル、1,3,4,6-テトラキス(2-グリシジルエトキシ)グリコールウリル、1,3,4,6-テトラキス(2-グリシジルオキシエトキシ)グリコールウリル又は1,4-ビス(グリシジル)グリコールウリルが挙げられる。
 硬化膜の折り曲げ性向上の観点から、1,3,5-トリス(5-グリシジルペンチル)イソシアヌル酸、1,3,5-トリス(グリシジルデシル)イソシアヌル酸、1,3,5-トリス(グリシジルステアリル)イソシアヌル酸、1,3,5-トリス[2,2-ビス(グリシジルオキシメチル)ブトキシカルボニルエチル]イソシアヌル酸、1,3,5-トリス[3-(3,4-エポキシシクロヘキシル)メトキシカルボニルプロピル]イソシアヌル酸、1,3,5-トリス(5-グリシジルペンチルオキシ)トリアジン、1,3,5-トリス(グリシジルデシルオキシ)トリアジン、1,3,5-トリス(グリシジルステアリルオキシ)トリアジン、1,3,4,6-テトラキス(5-グリシジルペンチル)グリコールウリル、1,3,4,6-テトラキス(グリシジルデシル)グリコールウリル、又は1,3,4,6-テトラキス(グリシジルステアリル)グリコールウリルが好ましい。
 本発明の感光性樹脂組成物に占める(F9)含窒素環骨格含有エポキシ化合物の含有量は、(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100質量部とした場合において、0.3質量部以上が好ましく、0.5質量部以上がより好ましく、1質量部以上がさらに好ましく、2質量部以上がさらにより好ましく、3質量部以上が特に好ましい。含有量が0.3質量部以上であると、現像後の残渣発生を抑制できるとともに、熱硬化時における残渣発生を抑制できる。加えて、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。一方、(F9)含窒素環骨格含有エポキシ化合物の含有量は、25質量部以下が好ましく、20質量部以下がより好ましく、15質量部以下がさらに好ましく、12質量部以下がさらにより好ましく、10質量部以下が特に好ましい。含有量が25質量部以下であると、熱硬化後に低テーパー形状のパターンを形成できるとともに、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。
 本発明の感光性樹脂組成物は、上述した特定の(F)架橋剤(上述した(F1)化合物、(F2)化合物、(F3)化合物、(F4)化合物、(F5)化合物、(F6)化合物、(F7)化合物、及び(F8)化合物からなる群より選ばれる一種類以上)、並びに、(F9)含窒素環骨格含有エポキシ化合物を含有することが好ましい。上述した特定の(F)架橋剤と、(F9)含窒素環骨格含有エポキシ化合物とを、組み合わせて使用することで、熱硬化前後におけるパターン開口寸法幅の変化を抑制できるとともに、熱硬化時における残渣発生を抑制できる。本発明の感光性樹脂組成物において、特定の(F)架橋剤、及び、(F9)含窒素環骨格含有エポキシ化合物の合計100質量%に占める、(F9)含窒素環骨格含有エポキシ化合物の含有比率は、10質量%以上が好ましく、15質量%以上がより好ましく、20質量%以上がさらに好ましく、25質量%以上が特に好ましい。含有比率が10質量%以上であると、現像後の残渣発生を抑制できるとともに、熱硬化時における残渣発生を抑制できる。加えて、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。一方、(F9)含窒素環骨格含有エポキシ化合物の含有比率は、49質量%以下が好ましく、48質量%以下がより好ましく、45質量%以下がさらに好ましく、42質量%以下がさらにより好ましく、40質量%以下が特に好ましい。含有比率が49質量%以下であると、熱硬化後に低テーパー形状のパターンを形成できるとともに、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。
 <増感剤>
 本発明の感光性樹脂組成物としては、さらに、増感剤を含有することが好ましい。増感剤とは、露光によるエネルギーを吸収し、内部転換及び項間交差によって励起三重項の電子を生じ、上述した(C1)光重合開始剤などへのエネルギー移動を介することが可能な化合物をいう。
 増感剤を含有させることによって、露光時の感度を向上させることができる。これは、(C1)光重合開始剤などが吸収を持たない、長波長の光を増感剤が吸収し、そのエネルギーを増感剤から(C1)光重合開始剤などへエネルギー移動をすることで、光反応効率を向上させることができるためであると推測される。
 増感剤としては、チオキサントン系増感剤が好ましい。チオキサントン系増感剤としては、例えば、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、又は2,4-ジクロロチオキサントンが挙げられる。
 本発明の感光性樹脂組成物に占める増感剤の含有量は、(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100質量部とした場合において、0.01質量部以上が好ましく、0.1質量部以上がより好ましく、0.5質量部以上がさらに好ましく、1質量部以上が特に好ましい。含有量が0.01質量部以上であると、露光時の感度を向上させることができる。一方、増感剤の含有量は、15質量部以下が好ましく、13質量部以下がより好ましく、10質量部以下がさらに好ましく、8質量部以下が特に好ましい。含有量が15質量部以下であると、現像後の解像度を向上させることができるとともに、低テーパーのパターン形状の硬化膜を得ることができる。
 <連鎖移動剤>
 本発明の感光性樹脂組成物としては、さらに、連鎖移動剤を含有することが好ましい。連鎖移動剤とは、露光時のラジカル重合により得られるポリマー鎖の、ポリマー生長末端からラジカルを受け取り、他のポリマー鎖へのラジカル移動を介することが可能な化合物をいう。
 連鎖移動剤を含有させることによって、露光時の感度を向上させることができる。これは、露光によって発生したラジカルが連鎖移動剤によって他のポリマー鎖へラジカル移動することで、膜の深部にまでラジカル架橋をするためであると推測される。特に、例えば、樹脂組成物が上述した(D)着色剤として(Da)黒色剤を含有する場合、露光による光が(Da)黒色剤によって吸収されるため、膜の深部まで光が到達しない場合がある。一方、連鎖移動剤を含有する場合、連鎖移動剤によるラジカル移動によって、膜の深部にまでラジカル架橋をするため、露光時の感度を向上させることができる。
 また、連鎖移動剤を含有させることで、低テーパーのパターン形状の硬化膜を得ることができる。これは、連鎖移動剤によるラジカル移動によって、露光時のラジカル重合により得られるポリマー鎖の、分子量制御ができるためであると推測される。すなわち、連鎖移動剤を含有することで、露光時の過剰なラジカル重合による、顕著な高分子量のポリマー鎖の生成が阻害され、得られる膜の軟化点の上昇が抑制される。そのため、熱硬化時のパターンのリフロー性が向上し、低テーパーのパターン形状が得られると考えられる。
 <(G)多官能チオール化合物>
 本発明の感光性樹脂組成物は、連鎖移動剤として、(G)多官能チオール化合物を含有することが好ましい。連鎖移動剤として、(G)多官能チオール化合物を含有させることで、上述した露光時の感度向上及び低テーパー形状のパターン形成に加え、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。これは、(G)多官能チオール化合物によって、酸素阻害が抑制されることで、露光時のUV硬化が促進され、熱硬化時におけるパターン裾のリフローが抑制されることで、熱硬化前後におけるパターン開口寸法幅の変化を抑制できると推測される。
 (G)多官能チオール化合物としては、一般式(94)で表される化合物及び/又は一般式(95)で表される化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 一般式(94)において、X42は、2価の有機基を表す。Y42~Y47は、それぞれ独立して、直接結合、炭素数1~10のアルキレン鎖又は一般式(96)で表される基を表す。Z40~Z45は、それぞれ独立して、直接結合又は炭素数1~10のアルキレン鎖を表す。R231~R236は、それぞれ独立して、炭素数1~10のアルキレン鎖を表す。a、b、c、d、e、及びfは、それぞれ独立して、0又は1を表し、gは、0~10の整数を表す。m、n、o、p、q、及びrは、それぞれ独立して、0~10の整数を表す。一般式(94)において、X42は、炭素数1~10の脂肪族構造、炭素数4~20の脂環式構造及び炭素数6~30の芳香族構造から選ばれる一種類以上を有する2価の有機基が好ましい。a、b、c、d、e、及びfは、それぞれ独立して、1が好ましく、gは、0~5が好ましい。m、n、o、p、q、及びrは、それぞれ独立して、0が好ましい。上述したアルキレン鎖、脂肪族構造、脂環式構造及び芳香族構造は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれでもよい。
 一般式(95)において、X43は、2価の有機基を表す。X44及びX45は、それぞれ独立して、直接結合又は炭素数1~10のアルキレン鎖を表す。Y48~Y51は、それぞれ独立して、直接結合、炭素数1~10のアルキレン鎖又は一般式(96)で表される基を表す。Z46~Z49は、それぞれ独立して、直接結合又は炭素数1~10のアルキレン鎖を表す。R237~R240は、それぞれ独立して、炭素数1~10のアルキレン鎖を表す。R241及びR242は、それぞれ独立して、水素又は炭素数1~10のアルキル基を表す。h、i、j及びkは、それぞれ独立して、0又は1を表し、lは、0~10の整数を表す。s、t、u、及びvは、それぞれ独立して、0~10の整数を表す。一般式(95)において、X43は、炭素数1~10の脂肪族構造、炭素数4~20の脂環式構造及び炭素数6~30の芳香族構造から選ばれる一種類以上を有する2価の有機基が好ましい。h、i、j、及びkは、それぞれ独立して、1が好ましく、lは、0~5が好ましい。s、t、u、及びvは、それぞれ独立して、0が好ましい。上述したアルキル基、アルキレン鎖、脂肪族構造、脂環式構造、及び芳香族構造は、ヘテロ原子を有してもよく、無置換体又は置換体のいずれでもよい。
 一般式(96)において、R243は、水素又は炭素数1~10のアルキル基を表す。Z50は、一般式(97)で表される基又は一般式(98)で表される基を表す。aは、1~10の整数を表し、bは、1~4の整数を表し、cは、0又は1を表し、dは、1~4の整数を表し、eは、0又は1を表す。cが、0の場合、dは、1である。一般式(98)において、R244は、水素又は炭素数1~10のアルキル基を表す。一般式(96)において、cは1が好ましく、eは1が好ましい。一般式(98)において、R244は、水素又は炭素数1~4のアルキル基が好ましく、水素又はメチル基がより好ましい。
 (G)多官能チオール化合物としては、例えば、β-メルカプトプロピオン酸、β-メルカプトプロピオン酸メチル、β-メルカプトプロピオン酸2-エチルヘキシル、β-メルカプトプロピオン酸ステアリル、β-メルカプトプロピオン酸メトキシブチル、β-メルカプトブタン酸、β-メルカプトブタン酸メチル、チオグリコール酸メチル、チオグリコール酸n-オクチル、チオグリコール酸メトキシブチル、1,4-ビス(3-メルカプトブタノイルオキシ)ブタン、1,4-ビス(3-メルカプトプロピオニルオキシ)ブタン、1,4-ビス(チオグリコロイルオキシ)ブタン、エチレングリコールビス(チオグリコレート)、トリメチロールエタントリス(3-メルカプトプロピオネート)、トリメチロールエタントリス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトブチレート)、トリメチロールプロパントリス(チオグリコレート)、1,3,5-トリス[(3-メルカプトプロピオニルオキシ)エチル]イソシアヌル酸、1,3,5-トリス[(3-メルカプトブタノイルオキシ)エチル]イソシアヌル酸、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(チオグリコレート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)又はジペンタエリスリトールヘキサキス(3-メルカプトブチレート)が挙げられる。
 露光時の感度向上、低テーパー形状のパターン形成、及び、熱硬化前後におけるパターン開口寸法幅変化抑制の観点から、トリメチロールエタントリス(3-メルカプトプロピオネート)、トリメチロールエタントリス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトブチレート)、トリメチロールプロパントリス(チオグリコレート)、1,3,5-トリス[(3-メルカプトプロピオニルオキシ)エチル]イソシアヌル酸、1,3,5-トリス[(3-メルカプトブタノイルオキシ)エチル]イソシアヌル酸、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(チオグリコレート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)又はジペンタエリスリトールヘキサキス(3-メルカプトブチレート)が好ましい。
 本発明の感光性樹脂組成物に占める(G)多官能チオール化合物の含有量は、(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100質量部とした場合において、0.01質量部以上が好ましく、0.1質量部以上がより好ましく、0.3質量部以上がさらに好ましく、0.5質量部以上がさらにより好ましく、1質量部以上が特に好ましい。含有量が0.01質量部以上であると、露光時の感度を向上できるとともに、低テーパーのパターン形状の硬化膜を得ることができる。加えて、熱硬化前後におけるパターン開口寸法幅の変化を抑制できる。一方、(G)多官能チオール化合物の含有量は、15質量部以下が好ましく、13質量部以下がより好ましく、10質量部以下がさらに好ましく、8質量部以下がさらにより好ましく、5質量部以下が特に好ましい。含有量が15質量部以下であると、低テーパー形状のパターンを形成でき、現像後の残渣発生を抑制できるとともに、硬化膜の耐熱性を向上させることができる。
 本発明の感光性樹脂組成物は、上述した特定の(F)架橋剤及び(G)多官能チオール化合物を含有することが好ましい。上述した特定の(F)架橋剤と(G)多官能チオール化合物とを、組み合わせて使用することで、熱硬化時における残渣発生を抑制できるとともに、硬化膜の折り曲げ性を向上できる。これは、特定の(F)架橋剤が有するエポキシ基と(G)多官能チオール化合物が有するメルカプト基とが、熱硬化時に反応して架橋度が向上することで硬化膜の耐熱性が向上するためと考えられる。すなわち、熱硬化時における熱分解物や昇華物に起因する残渣発生を抑制したとともに、硬化膜の高分子量化によって機械物性が向上したと推測される。また、特定の(F)架橋剤が有する、特定の芳香族構造及び/又は脂環式構造が硬化膜中に導入されるとともに、(G)多官能チオール化合物により、それらが架橋構造を形成して架橋密度が向上することで、硬化膜の耐熱性が飛躍的に向上したためと考えられる。
 さらに、本発明の感光性樹脂組成物は、上述した(F9)含窒素環骨格含有エポキシ化合物、並びに、(G)多官能チオール化合物を含有することが好ましい。上述した(F9)含窒素環骨格含有エポキシ化合物と(G)多官能チオール化合物とを、組み合わせて使用することで、熱硬化時における残渣発生を抑制できるとともに、硬化膜の折り曲げ性を向上できる。これは、熱硬化時において、それぞれが硬化膜の架橋度を高め、耐熱性向上に機能するとともに、相乗効果によって硬化膜の架橋度及び耐熱性が顕著に向上し、熱硬化時における熱分解物や昇華物に起因する残渣発生が抑制されたとともに、硬化膜が高分子量化したためと考えられる。
 また、本発明の感光性樹脂組成物は、上述した特定の(F)架橋剤、上述した(F9)含窒素環骨格含有エポキシ化合物、並びに、(G)多官能チオール化合物を含有することが好ましい。上述した特定の(F)架橋剤、上述した(F9)含窒素環骨格含有エポキシ化合物と、(G)多官能チオール化合物とを、組み合わせて使用することで、同様に熱硬化時における残渣発生を抑制できるとともに、硬化膜の折り曲げ性を向上できる。
 <重合禁止剤>
 本発明の感光性樹脂組成物としては、さらに、重合禁止剤を含有することが好ましい。
 重合禁止剤とは、露光時に発生したラジカル、又は、露光時のラジカル重合により得られるポリマー鎖の、ポリマー生長末端のラジカルを捕捉し、安定ラジカルとして保持することで、ラジカル重合を停止することが可能な化合物をいう。
 重合禁止剤を適量含有させることで、現像後の残渣発生を抑制し、現像後の解像度を向上させることができる。これは、露光時に発生した過剰量のラジカル、又は、高分子量のポリマー鎖の生長末端のラジカルを重合禁止剤が捕捉することで、過剰なラジカル重合の進行を抑制するためと推測される。
 重合禁止剤としては、フェノール系重合禁止剤が好ましい。フェノール系重合禁止剤としては、例えば、4-メトキシフェノール、1,4-ヒドロキノン、1,4-ベンゾキノン、2-t-ブチル-4-メトキシフェノール、3-t-ブチル-4-メトキシフェノール、4-t-ブチルカテコール、2,6-ジ-t-ブチル-4-メチルフェノール、2,5-ジ-t-ブチル-1,4-ヒドロキノン若しくは2,5-ジ-t-アミル-1,4-ヒドロキノン又は“IRGANOX”(登録商標) 245、同 259、同 565、同 1010、同 1035、同 1076、同 1098、同 1135、同 1330、同 1425、同 1520、同 1726若しくは同 3114(以上、何れもBASF社製)が挙げられる。
 本発明の感光性樹脂組成物に占める重合禁止剤の含有量は、(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100質量部とした場合において、0.01質量部以上が好ましく、0.03質量部以上がより好ましく、0.05質量部以上がさらに好ましく、0.1質量部以上が特に好ましい。含有量が0.01質量部以上であると、現像後の解像度及び硬化膜の耐熱性を向上させることができる。一方、重合禁止剤の含有量は、10質量部以下が好ましく、8質量部以下がより好ましく、5質量部以下がさらに好ましく、3質量部以下が特に好ましい。含有量が10質量部以下であると、露光時の感度を向上させることができる。
 <シランカップリング剤>
 本発明の感光性樹脂組成物としては、さらに、シランカップリング剤を含有することが好ましい。シランカップリング剤とは、加水分解性のシリル基又はシラノール基を有する化合物をいう。シランカップリング剤を含有させることで、樹脂組成物の硬化膜と下地の基板界面における相互作用が増大し、下地の基板との密着性及び硬化膜の耐薬品性を向上させることができる。シランカップリング剤としては、三官能オルガノシラン、四官能オルガノシラン又はシリケート化合物が好ましい。
 三官能オルガノシランとしては、例えば、メチルトリメトキシシラン、シクロヘキシルトリメトキシシラン、ビニルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、4-ヒドロキシフェニルトリメトキシシラン、1-ナフチルトリメトキシシラン、4-スチリルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-トリメトキシシリルプロピルコハク酸、3-トリメトキシシリルプロピルコハク酸無水物、3,3,3-トリフルオロプロピルトリメトキシシラン、3-[(3-エチル-3-オキセタニル)メトキシ]プロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-(4-アミノフェニル)プロピルトリメトキシシラン、1-(3-トリメトキシシリルプロピル)尿素、3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌル酸、又はN-t-ブチル-2-(3-トリメトキシシリルプロピル)コハク酸イミドが挙げられる。
 四官能オルガノシラン又はシリケート化合物としては、例えば、一般式(73)で表されるオルガノシランが挙げられる。
Figure JPOXMLDOC01-appb-C000039
 一般式(73)において、R226~R229は、それぞれ独立して、水素、アルキル基、アシル基、又はアリール基を表し、xは1~15の整数を表す。一般式(73)において、R226~R229は、それぞれ独立して、水素、炭素数1~6のアルキル基、炭素数2~6のアシル基、又は炭素数6~15のアリール基が好ましく、水素、炭素数1~4のアルキル基、炭素数2~4のアシル基、又は炭素数6~10のアリール基がより好ましい。上述したアルキル基、アシル基、及びアリール基は、無置換体又は置換体のいずれでもよい。
 一般式(73)で表されるオルガノシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトライソプロポキシシラン、テトラ-n-ブトキシシラン、若しくはテトラアセトキシシランなどの四官能オルガノシラン、又はメチルシリケート51(扶桑化学工業社製)、Mシリケート51、シリケート40、若しくはシリケート45(以上、何れも多摩化学工業社製)、メチルシリケート51、メチルシリケート53A、エチルシリケート40、若しくはエチルシリケート48(以上、何れもコルコート社製)などのシリケート化合物が挙げられる。
 本発明の感光性樹脂組成物に占めるシランカップリング剤の含有量は、(A)アルカリ可溶性樹脂及び(B)ラジカル重合性化合物の合計を100質量部とした場合において、0.01質量部以上が好ましく、0.1質量部以上がより好ましく、0.5質量部以上がさらに好ましく、1質量部以上が特に好ましい。含有量が0.01質量部以上であると、下地の基板との密着性及び硬化膜の耐薬品性を向上させることができる。一方、シランカップリング剤の含有量は、15質量部以下が好ましく、13質量部以下がより好ましく、10質量部以下がさらに好ましく、8質量部以下が特に好ましい。含有量が15質量部以下であると、現像後の解像度を向上させることができる。
 <界面活性剤>
 本発明の感光性樹脂組成物としては、さらに、界面活性剤を含有しても構わない。界面活性剤とは、親水性の構造及び疎水性の構造を有する化合物をいう。界面活性剤を適量含有させることで、樹脂組成物の表面張力を任意に調整でき、塗布時のレベリング性が向上し、塗膜の膜厚均一性を向上させることができる。界面活性剤としては、フッ素樹脂系界面活性剤、シリコーン系界面活性剤、ポリオキシアルキレンエーテル系界面活性剤又はアクリル樹脂系界面活性剤が好ましい。
 本発明の感光性樹脂組成物に占める界面活性剤の含有比率は、感光性樹脂組成物全体の、0.001質量%以上が好ましく、0.005質量%以上がより好ましく、0.01質量%以上がさらに好ましい。含有比率が0.001質量%以上であると、塗布時のレベリング性を向上させることができる。一方、界面活性剤の含有比率は、1質量%以下が好ましく、0.5質量%以下がより好ましく、0.03質量%以下がさらに好ましい。含有比率が1質量%以下であると、塗布時のレベリング性を向上させることができる。
 <溶剤>
 本発明の感光性樹脂組成物としては、さらに、溶剤を含有することが好ましい。溶剤とは、樹脂組成物中に含有させる各種樹脂及び各種添加剤を溶解させることができる化合物をいう。溶剤を含有させることで、樹脂組成物中に含有させる各種樹脂及び各種添加剤を均一に溶解させ、硬化膜の透過率を向上させることができる。また、樹脂組成物の粘度を任意に調整でき、基板上に所望の膜厚で成膜できる。加えて、樹脂組成物の表面張力又は塗布時の乾燥速度などを任意に調整でき、塗布時のレベリング性及び塗膜の膜厚均一性を向上させることができる。
 溶剤としては、各種樹脂及び各種添加剤の溶解性の観点から、アルコール性水酸基を有する化合物、カルボニル基を有する化合物、又はエーテル結合を3つ以上有する化合物が好ましい。加えて、大気圧下の沸点が、110~250℃である化合物がより好ましい。沸点を110℃以上とすることで、塗布時に適度に溶剤が揮発して塗膜の乾燥が進行するため、塗布ムラを抑制し、膜厚均一性を向上させることができる。一方、沸点を250℃以下とすることで、塗膜中に残存する溶剤量を低減できる。そのため、熱硬化時の膜収縮量を低減させることができ、硬化膜の平坦性を高め、膜厚均一性を向上させることができる。
 アルコール性水酸基を有し、かつ大気圧下の沸点が110~250℃である化合物としては、例えば、ジアセトンアルコール、乳酸エチル、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、3-メトキシ-1-ブタノール、3-メトキシ-3-メチル-1-ブタノール、又はテトラヒドロフルフリルアルコールが挙げられる。
 カルボニル基を有し、かつ大気圧下の沸点が110~250℃である化合物としては、例えば、3-メトキシ-n-ブチルアセテート、3-メチル-3-n-ブチルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、又はγ-ブチロラクトンが挙げられる。
 エーテル結合を3つ以上有し、かつ大気圧下の沸点が110~250℃である化合物としては、例えば、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、又はジプロピレングリコールジメチルエーテルが挙げられる。
 本発明の感光性樹脂組成物に占める溶剤の含有比率は、塗布方法などに応じて適宜調整可能である。例えば、スピンコーティングにより塗膜を形成する場合、感光性樹脂組成物全体の50~95質量%とすることが一般的である。
 (D)着色剤として、(D1)顔料及び/又は(D2)染料として分散染料を含有させる場合、溶剤としては、カルボニル基又はエステル結合を有する溶剤が好ましい。カルボニル基又はエステル結合を有する溶剤を含有させることで、(D1)顔料及び/又は(D2)染料として分散染料の分散安定性を向上させることができる。また、分散安定性の観点から、溶剤としては、アセテート結合を有する溶剤がより好ましい。アセテート結合を有する溶剤を含有させることで、(D1)顔料及び/又は(D2)染料として分散染料の分散安定性を向上させることができる。
 アセテート結合を有する溶剤としては、例えば、3-メトキシ-n-ブチルアセテート、3-メチル-3-メトキシ-n-ブチルアセテート、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノ-n-ブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、シクロヘキサノールアセテート、プロピレングリコールジアセテート、又は1,4-ブタンジオールジアセテートが挙げられる。
 本発明の感光性樹脂組成物において、溶剤に占める、カルボニル基又はエステル結合を有する溶剤の含有比率は、30~100質量%が好ましく、50~100質量%がより好ましく、70~100質量%がさらに好ましい。含有比率が30~100質量%であると、(D1)顔料の分散安定性を向上させることができる。
 <その他の添加剤>
 本発明の感光性樹脂組成物としては、さらに、他の樹脂又はそれらの前駆体を含有しても構わない。他の樹脂又はそれらの前駆体としては、例えば、ポリアミド、ポリアミドイミド、エポキシ樹脂、ノボラック樹脂、ウレア樹脂、若しくはポリウレタン、又はそれらの前駆体が挙げられる。
 <本発明の感光性樹脂組成物の製造方法>
 本発明の感光性樹脂組成物の、代表的な製造方法について説明する。(D)着色剤として(Da)黒色剤を含む(D1)顔料を含有する場合、(A1)第1の樹脂及び(A2)第2の樹脂の溶液に(E)分散剤を加え、分散機を用いて、この混合溶液に(D1)顔料を分散させ、顔料分散液を調製する。次に、この顔料分散液に、(B)ラジカル重合性化合物、(C1)光重合開始剤、その他の添加剤及び任意の溶剤を加え、20分~3時間攪拌して均一な溶液とする。攪拌後、得られた溶液をろ過することで、本発明の感光性樹脂組成物が得られる。
 分散機としては、例えば、ボールミル、ビーズミル、サンドグラインダー、3本ロールミル、又は高速度衝撃ミルが挙げられる。分散効率化及び微分散化の観点から、ビーズミルが好ましい。ビーズミルとしては、例えば、コボールミル、バスケットミル、ピンミル、又はダイノーミルが挙げられる。ビーズミルのビーズとしては、例えば、チタニアビーズ、ジルコニアビーズ、又はジルコンビーズが挙げられる。ビーズミルのビーズ径としては、0.01~6mmが好ましく、0.015~5mmがより好ましく、0.03~3mmがさらに好ましい。(D1)顔料の一次粒子径及び一次粒子が凝集して形成された二次粒子の粒子径が、数百nm以下の場合、0.015~0.1mmの微小なビーズが好ましい。この場合、微小なビーズと顔料分散液とを分離可能な、遠心分離方式によるセパレータを備えるビーズミルが好ましい。一方、(D1)顔料が、数百nm以上の粗大な粒子を含む場合、分散効率化の観点から0.1~6mmのビーズが好ましい。
 <低テーパーのパターン形状の硬化パターン>
 本発明の感光性樹脂組成物は、低テーパーのパターン形状の硬化パターンを含む硬化膜を得ることが可能である。本発明の感光性樹脂組成物から得られる、硬化膜が含む硬化パターンの断面における傾斜辺のテーパー角は、1°以上が好ましく、5°以上がより好ましく、10°以上がさらに好ましく、12°以上がさらにより好ましく、15°以上が特に好ましい。テーパー角が1°以上であると、発光素子を高密度に集積及び配置できることで、表示装置の解像度を向上させることができる。一方、硬化膜が含む硬化パターンの断面における傾斜辺のテーパー角は、60°以下が好ましく、55°以下がより好ましく、50°以下がさらに好ましく、45°以下がさらにより好ましく、40°以下が特に好ましい。テーパー角が60°以下であると、透明電極又は反射電極などの電極を形成する際の断線を防止できる。また、電極のエッジ部における電界集中を抑制できることで、発光素子の劣化を抑制できる。
 <段差形状を有する硬化パターン>
 本発明の感光性樹脂組成物は、高感度を維持しつつ、厚膜部と薄膜部とで十分な膜厚差がある段差形状を有し、低テーパーのパターン形状を有する硬化パターンを形成できる。
 本発明の感光性樹脂組成物から得られる、段差形状を有する硬化パターンの断面の一例を、図3に示す。図3に示すように、段差形状における厚膜部34は、露光時の硬化部に相当し、硬化パターンの最大の膜厚を有する。段差形状における薄膜部35a,35b,35cは、露光時のハーフトーン露光部に相当し、厚膜部34の厚さより小さい膜厚を有する。段差形状を有する硬化パターンの断面における傾斜辺36a,36b,36c,36d,36eの、テーパー角θ,θ,θ,θ,θは、低テーパーであることが好ましい。
 ここでいうテーパー角θ,θ,θ,θ,θとは、図3において、硬化パターンが形成される下地の基板の水平辺37、又は薄膜部35a,35b,35cの水平辺と、それらの水平辺と交差する、段差形状を有する硬化パターンの断面における傾斜辺36a,36b,36c,36d,36eとが成す、段差形状を有する硬化パターンの断面内部の角をいう。順テーパーとは、テーパー角が1~90°未満の範囲内であることをいい、逆テーパーとは、テーパー角が91~180°未満の範囲内であることをいい、矩形とは、テーパー角が90°であることをいい、低テーパーとは、テーパー角が1~60°の範囲内であることをいう。
 <有機ELディスプレイの製造プロセス>
 本発明の感光性樹脂組成物を用いたプロセスとして、該組成物の硬化膜を有機ELディスプレイの遮光性の画素分割層として用いたプロセスを例に、図1に模式的断面図を示して説明する。
 まず、(工程1)ガラス基板1上に、薄膜トランジスタ(以下、「TFT」)2を形成し、TFT平坦化膜用の感光性材料を成膜し、フォトリソグラフィーによってパターン加工した後、熱硬化させてTFT平坦化用の硬化膜3を形成する。次に、(工程2)銀‐パラジウム‐銅合金(以下、「APC」)をスパッタにより成膜し、フォトレジストを用いてエッチングによりパターン加工してAPC層を形成し、さらに、APC層の上層に酸化インジウムスズ(以下、「ITO」)をスパッタにより成膜し、フォトレジストを用いたエッチングによりパターン加工し、第1電極として反射電極4を形成する。その後、(工程3)本発明の感光性樹脂組成物を塗布及びプリベークして、プリベーク膜5aを形成する。次いで、(工程4)所望のパターンを有するマスク6を介して、活性化学線7を照射する。次に、(工程5)現像してパターン加工をした後、必要に応じてブリーチング露光及びミドルベークし、熱硬化させることで、遮光性の画素分割層として、所望のパターンを有する硬化パターン5bを形成する。その後、(工程6)EL発光材料を、マスク6を介した蒸着によって成膜してEL発光層8を形成し、マグネシウム‐銀合金(以下、「MgAg」)を蒸着により成膜し、フォトレジストを用いてエッチングによりパターン加工し、第2電極として透明電極9を形成する。次に、(工程7)平坦化膜用の感光性材料を成膜し、フォトリソグラフィーによってパターン加工した後、熱硬化させて平坦化用の硬化膜10を形成し、その後、カバーガラス11を接合させることで、本発明の感光性樹脂組成物を遮光性の画素分割層として有する有機ELディスプレイを得る。
 <液晶ディスプレイの製造プロセス>
 本発明の感光性樹脂組成物を用いた別のプロセスとして、該組成物の硬化膜を液晶ディスプレイのブラックカラムスペーサー(以下、「BCS」)及びカラーフィルタのブラックマトリックス(以下、「BM」)として用いたプロセスを例に、図2に模式的断面図を示して説明する。
 まず、(工程1)ガラス基板12上に、バックライトユニット(以下、「BLU」)13を形成し、BLUを有するガラス基板14を得る。また、(工程2)別のガラス基板15上に、TFT16を形成し、TFT平坦化膜用の感光性材料を成膜し、フォトリソグラフィーによってパターン加工した後、熱硬化させてTFT平坦化用の硬化膜17を形成する。次に、(工程3)ITOをスパッタにより成膜し、フォトレジストを用いてエッチングによりパターン加工し、透明電極18を形成し、その上に平坦化膜19及び配向膜20を形成する。その後、(工程4)本発明の感光性樹脂組成物を塗布及びプリベークして、プリベーク膜21aを形成する。次いで、(工程5)所望のパターンを有するマスク22を介して、活性化学線23を照射する。次に、(工程6)現像してパターン加工をした後、必要に応じてブリーチング露光及びミドルベークし、熱硬化させることで、遮光性のBCSとして所望のパターンを有する硬化パターン21bを形成し、BCSを有するガラス基板24を得る。次いで、(工程7)上述したガラス基板14と該ガラス基板24と、を接合させることで、BLU及びBCSを有するガラス基板25を得る。
 さらに、(工程8)別のガラス基板26上に、赤色、緑色、青色の三色のカラーフィルタ27を形成する。次に、(工程9)上記と同様の方法で、本発明の感光性樹脂組成物から、遮光性のBMとして所望のパターンを有する硬化パターン28を形成する。その後、(工程10)平坦化用の感光性材料を成膜し、フォトリソグラフィーによってパターン加工した後、熱硬化させて平坦化用の硬化膜29を形成し、その上に配向膜30を形成することで、カラーフィルタ基板31を得る。次いで、(工程11)上述したBLU及びBCSを有するガラス基板25とカラーフィルタ基板31とを接合させることによって、(工程12)BLU、BCS及びBMを有するガラス基板32を得る。次に、(工程13)液晶を注入して液晶層33を形成することで、本発明の感光性樹脂組成物をBCS及びBMとして有する液晶ディスプレイを得る。
 以上のように、本発明の感光性樹脂組成物を用いた、有機ELディスプレイ及び液晶ディスプレイの製造方法によれば、パターン加工され、ポリイミド及び/又はポリベンゾオキサゾールを含有する、高耐熱性かつ遮光性の硬化膜を得ることが可能であるため、有機ELディスプレイ及び液晶ディスプレイの製造における歩留まり向上、性能向上、及び信頼性向上に繋がる。
 本発明の感光性樹脂組成物を用いたプロセスによれば、樹脂組成物が感光性であるため、フォトリソグラフィーにより直接パターン加工可能である。従って、フォトレジストを用いたプロセスと比較して、工程数を削減できるため、有機ELディスプレイ及び液晶ディスプレイの生産性の向上、プロセスタイム短縮及びタクトタイム短縮が可能となる。
 <本発明の感光性樹脂組成物から得られる硬化膜を用いた表示装置>
 本発明の感光性樹脂組成物から得られる硬化膜は、有機ELディスプレイ又は液晶ディスプレイを好適に構成できる。
 また、本発明の感光性樹脂組成物は、低テーパーのパターン形状を得ることができ、高耐熱性に優れた硬化膜を得ることが可能である。そのため、有機ELディスプレイの画素分割層等の絶縁層、TFT平坦化層、又はTFT保護層など、高耐熱性及び低テーパーのパターン形状が要求される用途に好適である。特に、熱分解による脱ガスに起因した素子の不良又は特性低下や、高テーパーのパターン形状による電極配線の断線など、耐熱性及びパターン形状に起因する問題が想定される用途において、本発明の感光性樹脂組成物の硬化膜を用いることで、上述した問題の発生が抑制された高信頼性の素子を製造することが可能となる。さらに、硬化膜は遮光性に優れるため、電極配線の可視化防止又は外光反射の低減が可能となり、画像表示におけるコントラストを向上させることができる。従って、本発明の感光性樹脂組成物から得られる硬化膜を、有機ELディスプレイの画素分割層、TFT平坦化層、又はTFT保護層として用いることで、発光素子の光取り出し側に、偏光板及び1/4波長板を形成することなく、コントラストを向上させることができる。
 また、本発明の感光性樹脂組成物は、折り曲げ性に優れた、フレキシブル性を有する硬化膜を得ることが可能である。そのため、該硬化膜をフレキシブル基板上の積層構造として有することができ、フレキシブル有機ELディスプレイの画素分割層等の絶縁層、TFT平坦化層、又はTFT保護層など、フレキシブル性及び低テーパーのパターン形状が要求される用途に好適である。さらに、硬化膜は高耐熱性を有するため、熱分解による脱ガスに起因した素子の不良又は特性低下や、高テーパーのパターン形状による電極配線の断線など、耐熱性及びパターン形状に起因する問題が想定される用途において、本発明の感光性樹脂組成物の硬化膜を用いることで、上記の問題が発生しない、高信頼性の素子を製造することが可能となる。
 本発明の表示装置は、曲面の表示部を有することが好ましい。この曲面の曲率半径は、曲面からなる表示部における断線等に起因する表示不良抑制の観点から、0.1mm以上が好ましく、0.3mm以上がより好ましい。また曲面の曲率半径は、表示装置の小型化及び高解像化の観点から、10mm以下が好ましく、7mm以下がより好ましく、5mm以下がさらに好ましい。
 本発明の感光性樹脂組成物を用いた、表示装置の製造方法においては、以下の(1)~(4)の工程を有する。
(1)基板上に、本発明の感光性樹脂組成物の塗膜を成膜する工程、
(2)前記感光性樹脂組成物の塗膜にフォトマスクを介して活性化学線を照射する工程、
(3)アルカリ溶液を用いて現像し、前記感光性樹脂組成物のパターンを形成する工程、及び、
(4)前記パターンを加熱して、前記感光性樹脂組成物の硬化パターンを得る工程。
 <塗膜を成膜する工程>
 本発明の感光性樹脂組成物を用いた、表示装置の製造方法は、(1)基板上に、感光性樹脂組成物の塗膜を成膜する工程、を有する。本発明の感光性樹脂組成物を成膜する方法としては、例えば、基板上に、上述した樹脂組成物を塗布する方法、又は、基板上に、上述した樹脂組成物をパターン状に塗布する方法が挙げられる。
 基板としては、例えば、ガラス上に、インジウム、スズ、亜鉛、アルミニウム及びガリウムから選ばれる一種類以上を有する酸化物、金属(モリブデン、銀、銅、アルミニウム、クロム若しくはチタンなど)若しくはCNT(Carbon Nano Tube)が、電極若しくは配線として形成された基板などが用いられる。
 インジウム、スズ、亜鉛、アルミニウム、及びガリウムから選ばれる一種類以上を有する酸化物としては、例えば、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化アルミニウム亜鉛(AZO)、酸化インジウムガリウム亜鉛(IGZO)、又は酸化亜鉛(ZnO)が挙げられる。
 <基板上に、本発明の感光性樹脂組成物を塗布する方法>
 基板上に、本発明の感光性樹脂組成物を塗布する方法としては、例えば、マイクログラビアコーティング、スピンコーティング、ディップコーティング、カーテンフローコーティング、ロールコーティング、スプレーコーティング、又はスリットコーティングが挙げられる。塗布膜厚は、塗布方法、樹脂組成物の固形分濃度や粘度などによって異なるが、通常は塗布及びプリベーク後の膜厚が0.1~30μmになるように塗布する。
 基板上に、本発明の感光性樹脂組成物を塗布した後、プリベークして成膜することが好ましい。プリベークは、オーブン、ホットプレート、赤外線、フラッシュアニール装置又はレーザーアニール装置などを使用できる。プリベーク温度としては、50~150℃が好ましい。プリベーク時間としては、30秒~数時間が好ましい。80℃で2分間プリベークした後、120℃で2分間プリベークするなど、二段又はそれ以上の多段でプリベークしても構わない。
 <基板上に、本発明の感光性樹脂組成物をパターン状に塗布する方法>
 基板上に、本発明の感光性樹脂組成物をパターン状に塗布する方法としては、例えば、凸版印刷、凹版印刷、孔版印刷、平版印刷、スクリーン印刷、インクジェット印刷、オフセット印刷、又はレーザー印刷が挙げられる。塗布膜厚は、塗布方法、本発明の感光性樹脂組成物の固形分濃度や粘度などによって異なるが、通常は塗布及びプリベーク後の膜厚が0.1~30μmになるように塗布する。
 基板上に、本発明の感光性樹脂組成物をパターン状に塗布した後、プリベークして成膜することが好ましい。プリベークは、オーブン、ホットプレート、赤外線、フラッシュアニール装置、又はレーザーアニール装置などを使用できる。プリベーク温度としては、50~150℃が好ましい。プリベーク時間としては、30秒~数時間が好ましい。80℃で2分間プリベークした後、120℃で2分間プリベークするなど、二段又はそれ以上の多段でプリベークしても構わない。
 <基板上に成膜した塗膜をパターン加工する方法>
 基板上に成膜した、本発明の感光性樹脂組成物の塗膜をパターン加工する方法としては、例えば、フォトリソグラフィーにより直接パターン加工する方法又はエッチングによりパターン加工する方法が挙げられる。工程数の削減による生産性の向上及びプロセスタイム短縮の観点から、フォトリソグラフィーにより直接パターン加工する方法が好ましい。
 <フォトマスクを介して活性化学線を照射する工程>
 本発明の感光性樹脂組成物を用いた、表示装置の製造方法は、(2)上述した感光性樹脂組成物の塗膜にフォトマスクを介して活性化学線を照射する工程、を有する。
 基板上に、本発明の感光性樹脂組成物を塗布及びプリベークして成膜した後、ステッパー、ミラープロジェクションマスクアライナー(MPA)又はパラレルライトマスクアライナー(PLA)などの露光機を用いて露光する。露光時に照射する活性化学線としては、例えば、紫外線、可視光線、電子線、X線、KrF(波長248nm)レーザー、又はArF(波長193nm)レーザーなどが挙げられる。水銀灯のj線(波長313nm)、i線(波長365nm)、h線(波長405nm)、又はg線(波長436nm)を用いることが好ましい。また露光量は通常100~40,000J/m(10~4,000mJ/cm)程度(i線照度計の値)であり、必要に応じて所望のパターンを有するフォトマスクを介して露光できる。
 露光後、露光後ベークをしても構わない。露光後ベークを行うことによって、現像後の解像度向上又は現像条件の許容幅増大などの効果が期待できる。露光後ベークは、オーブン、ホットプレート、赤外線、フラッシュアニール装置、又はレーザーアニール装置などを使用できる。露光後ベーク温度としては、50~180℃が好ましく、60~150℃がより好ましい。露光後ベーク時間は、10秒~数時間が好ましい。露光後ベーク時間が10秒~数時間であると、反応が良好に進行して現像時間を短くできる場合がある。
 <アルカリ溶液を用いて現像し、パターンを形成する工程>
 本発明の感光性樹脂組成物を用いた、表示装置の製造方法は、(3)アルカリ溶液を用いて現像し、上述した感光性樹脂組成物のパターンを形成する工程を有する。露光後、自動現像装置などを用いて現像する。本発明の感光性樹脂組成物は、感光性を有するため、現像後、露光部、又は未露光部が現像液で除去され、レリーフ・パターンを得ることができる。
 現像液としては、アルカリ現像液が一般的に用いられる。アルカリ現像液としては、例えば、有機系のアルカリ溶液又はアルカリ性を示す化合物の水溶液が好ましく、環境面の観点から、アルカリ性を示す化合物の水溶液、すなわちアルカリ水溶液がより好ましい。
 有機系のアルカリ溶液又はアルカリ性を示す化合物としては、例えば、2-アミノエタノール、2-(ジメチルアミノ)エタノール、2-(ジエチルアミノ)エタノール、ジエタノールアミン、メチルアミン、エチルアミン、ジメチルアミン、ジエチルアミン、トリエチルアミン、酢酸(2-ジメチルアミノ)エチル、(メタ)アクリル酸(2-ジメチルアミノ)エチル、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミン、アンモニア、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、炭酸ナトリウム又は炭酸カリウムが挙げられるが、硬化膜の金属不純物低減及び表示装置の表示不良抑制の観点から、水酸化テトラメチルアンモニウム又は水酸化テトラエチルアンモニウムが好ましい。
 現像液としては、有機溶媒を用いても構わない。現像液としては、有機溶媒と、本発明の感光性樹脂組成物に対する貧溶媒の、両方を含有する混合溶液を用いても構わない。
 現像方法としては、例えば、パドル現像、スプレー現像、又はディップ現像が挙げられる。パドル現像としては、例えば、露光後の膜に上述した現像液をそのまま塗布した後、任意の時間放置する方法、又は露光後の膜に上述した現像液を任意の時間の間、霧状に放射して塗布した後、任意の時間放置する方法が挙げられる。スプレー現像としては、露光後の膜に上述した現像液を霧状に放射して、任意の時間当て続ける方法が挙げられる。ディップ現像としては、露光後の膜を上述した現像液中に任意の時間浸漬する方法、又は、露光後の膜を上述した現像液中に浸漬後、超音波を任意の時間照射し続ける方法が挙げられる。現像時の装置汚染抑制及び現像液の使用量削減によるプロセスコスト削減の観点から、現像方法としては、パドル現像が好ましい。現像時の装置汚染を抑制することで、現像時の基板汚染を抑制でき、表示装置の表示不良を抑制できる。一方、現像後の残渣発生の抑制の観点から、現像方法としては、スプレー現像が好ましい。また、現像液の再利用による現像液の使用量削減及びプロセスコスト削減の観点から、現像方法としては、ディップ現像が好ましい。
 現像時間は、5秒以上が好ましく、10秒以上がより好ましく、30秒以上がさらに好ましく、1分以上が特に好ましい。現像時間が上記範囲内であると、アルカリ現像時の残渣発生を抑制できる。一方、タクトタイム短縮の観点から、現像時間は、30分以下が好ましく、15分以下がより好ましく、10分以下がさらに好ましく、5分以下が特に好ましい。
 現像後、得られたレリーフ・パターンを、リンス液で洗浄することが好ましい。リンス液としては、現像液としてアルカリ水溶液を用いた場合、水が好ましい。リンス液としては、例えば、エタノール若しくはイソプロピルアルコールなどのアルコール類の水溶液、プロピレングリコールモノメチルエーテルアセテートなどのエステル類の水溶液又は炭酸ガス、塩酸若しくは酢酸などの酸性を示す化合物の水溶液を用いても構わない。リンス液としては、有機溶媒を用いても構わない。
 フォトリソグラフィーにより、本発明の感光性樹脂組成物のパターンを得た後、ブリーチング露光をしても構わない。ブリーチング露光をすることで、熱硬化後のパターン形状を任意に制御できる。また、硬化膜の透明性を向上させることができる。
 ブリーチング露光は、ステッパー、ミラープロジェクションマスクアライナー(MPA)又はパラレルライトマスクアライナー(PLA)などの露光機を使用できる。ブリーチング露光時に照射する活性化学線としては、例えば、紫外線、可視光線、電子線、X線、KrF(波長248nm)レーザー、又はArF(波長193nm)レーザーなどが挙げられる。水銀灯のj線(波長313nm)、i線(波長365nm)、h線(波長405nm)、又はg線(波長436nm)を用いることが好ましい。また露光量は通常500~500,000J/m(50~50,000mJ/cm)程度(i線照度計の値)であり、必要に応じて所望のパターンを有するマスクを介して露光できる。
 本発明の感光性樹脂組成物のパターンを得た後、ミドルベークをしても構わない。ミドルベークを行うことで、熱硬化後の解像度が向上するとともに、熱硬化後のパターン形状を任意に制御できる。ミドルベークは、オーブン、ホットプレート、赤外線、フラッシュアニール装置、又はレーザーアニール装置などを使用できる。ミドルベーク温度としては、50~250℃が好ましく、70~220℃がより好ましい。ミドルベーク時間としては、10秒~数時間が好ましい。100℃で5分間ミドルベークした後、150℃で5分間ミドルベークするなど、二段又はそれ以上の多段でミドルベークしても構わない。
 <パターンを加熱して、硬化パターンを得る工程>
 本発明の感光性樹脂組成物を用いた、表示装置の製造方法は、(4)上述した感光性樹脂組成物のパターンを加熱して、上述した感光性樹脂組成物の硬化パターンを得る工程を有する。
 基板上に成膜した、本発明の感光性樹脂組成物のパターンの加熱は、オーブン、ホットプレート、赤外線、フラッシュアニール装置、又はレーザーアニール装置などを使用できる。本発明の感光性樹脂組成物のパターンを加熱して熱硬化させることで、硬化膜の耐熱性を向上させることができるとともに、低テーパーのパターン形状を得ることができる。
 熱硬化させる温度としては、150℃以上が好ましく、200℃以上がより好ましく、250℃以上がさらに好ましい。熱硬化温度が150℃以上であると、硬化膜の耐熱性を向上させることができるとともに、熱硬化後のパターン形状をより低テーパー化させることができる。一方、タクトタイム短縮の観点から、熱硬化させる温度は、500℃以下が好ましく、450℃以下がより好ましく、400℃以下がさらに好ましい。
 熱硬化させる時間としては、1分以上が好ましく、5分以上がより好ましく、10分以上がさらに好ましく、30分以上が特に好ましい。熱硬化時間が1分以上であると、熱硬化後のパターン形状をより低テーパー化させることができる。一方、タクトタイム短縮の観点から、熱硬化させる時間は、300分以下が好ましく、250分以下がより好ましく、200分以下がさらに好ましく、150分以下が特に好ましい。また150℃で30分間熱硬化させた後、250℃で30分間熱硬化させるなど、二段又はそれ以上の多段で熱硬化させても構わない。
 また、本発明の感光性樹脂組成物によれば、画素分割層、電極絶縁層、配線絶縁層、層間絶縁層、TFT平坦化層、電極平坦化層、配線平坦化層、TFT保護層、電極保護層、配線保護層、ゲート絶縁層、カラーフィルタ、ブラックマトリックス、又はブラックカラムスペーサーなどの用途に好適に用いられる硬化膜を得ることが可能となる。また、それらの硬化膜を備える素子及び表示装置を得ることが可能となる。本発明の有機ELディスプレイは、上記硬化膜を画素分割層、電極絶縁層、配線絶縁層、層間絶縁層、TFT平坦化層、電極平坦化層、配線平坦化層、TFT保護層、電極保護層、配線保護層、ゲート絶縁層、カラーフィルタ、ブラックマトリックス、及びブラックカラムスペーサーからなる群より選ばれる一種類以上として備える。特に、本発明のネガ型感光性樹脂組成物は遮光性に優れるため、遮光性を有する画素分割層、電極絶縁層、配線絶縁層、層間絶縁層、TFT平坦化層、電極平坦化層、配線平坦化層、TFT保護層、電極保護層、配線保護層、又はゲート絶縁層として好ましく、遮光性を有する画素分割層、層間絶縁層、TFT平坦化層、又はTFT保護層としてより好ましい。
 さらに、本発明の感光性樹脂組成物を用いた、表示装置の製造方法によれば、パターン加工され、ポリイミド及び/又はポリベンゾオキサゾールを含有する、高耐熱性かつ遮光性の硬化膜を得ることが可能であるため、有機ELディスプレイ及び液晶ディスプレイの製造における歩留まり向上、性能向上及び信頼性向上に繋がる。加えて、本発明の感光性樹脂組成物は、フォトリソグラフィーにより直接パターン加工可能であるため、フォトレジストを用いたプロセスと比較して、工程数を削減できるため、生産性の向上、プロセスタイム短縮及びタクトタイム短縮が可能となる。
 以下に実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの範囲に限定されない。なお、用いた化合物のうち略語を使用しているものについて、名称を以下に示す。
6FDA:2,2-(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物;4,4’-ヘキサフルオロプロパン-2,2-ジイル-ビス(1,2-フタル酸無水物)
AcrTMS:3-アクリロキシプロピルトリメトキシシラン
A-DPH-6E:“NK ESTER”(登録商標) A-DPH-6E(新中村化学工業社製;オキシエチレン構造を分子中に6個有する、エトキシ化ジペンタエリスリトールヘキサアクリレート)
APC:Argentum‐Palladium‐Cupper(銀‐パラジウム‐銅合金)
BAHF:2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン
BAPF:9,9-ビス(3-アミノ-4-ヒドロキシフェニル)フルオレン
BFE:1,2-ビス(4-ホルミルフェニル)エタン
BHPF:9,9-ビス(4-ヒドロキシフェニル)フルオレン
Bis-A-AF:2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン
Bk-A1103:“CHROMOFINE”(登録商標) BLACK A1103(大日精化工業社製;一次粒子径50~100nmのアゾ系黒色顔料)
Bk-S0084:“PALIOGEN”(登録商標) BLACK S0084(BASF社製;一次粒子径50~100nmのペリレン系黒色顔料)
Bk-S0100CF:“IRGAPHOR”(登録商標) BLACK S0100CF(BASF社製;一次粒子径40~80nmのベンゾフラノン系黒色顔料)
D.BYK-167:“DISPERBYK”(登録商標)-167(ビックケミー・ジャパン社製;アミン価が13mgKOH/g(固形分濃度:52質量%)の三級アミノ基を有するポリウレタン系分散剤)
DFA:N,N-ジメチルホルムアミドジメチルアセタール
DPCA-30:“KAYARAD”(登録商標) DPCA-30(日本化薬社製;オキシペンチレンカルボニル構造を分子中に3個有する、ε-カプロラクトン変性ジペンタエリスリトールヘキサアクリレート)
DPCA-60:“KAYARAD”(登録商標) DPCA-60(日本化薬社製;オキシペンチレンカルボニル構造を分子中に6個有する、ε-カプロラクトン変性ジペンタエリスリトールヘキサアクリレート)
DPHA:“KAYARAD”(登録商標) DPHA(日本化薬社製;ジペンタエリスリトールヘキサアクリレート)
DPMP:ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)
EOCN-1020:ベンゼン骨格、及び、エポキシ基を含む構造単位を有するエポキシ樹脂(日本化薬社製)
FLE-1:9,9-ビス[4-(2-グリシドキシエトキシ)フェニル]フルオレン
FLE-2:9,9-ビス(4-グリシドキシ-1-ナフチル)フルオレン
FLE-3:2つのフルオレン骨格、及び、2つのエポキシ基を有するエポキシ化合物
FR-201:9,9-ビス(4-グリシドキシフェニル)フルオレン(Tronly社製)
GMA:メタクリル酸グリシジル
HA:N,N’-ビス[5,5’-ヘキサフルオロプロパン-2,2-ジイル-ビス(2-ヒドロキシフェニル)]ビス(3-アミノ安息香酸アミド)
HX-220:“KAYARAD”(登録商標) HX-220(日本化薬社製;オキシペンチレンカルボニル構造を分子内に2個有する、ε-カプロラクトン変性ヒドロキシピバリン酸ネオペンチルグリコールジアクリレート)
IDE-1:1,1-ビス(4-グリシドキシフェニル)-3-フェニルインダン
IDE-2:1,1-ビス[4-(2-グリシドキシエトキシ)フェニル]-3-フェニルインダン
IGZO:酸化インジウムガリウム亜鉛
ITO:酸化インジウムスズ
jer-834:2,2-ビス(4-グリシドキシフェニル)プロパン(三菱ケミカル社製)
MAA:メタクリル酸
MAP:3-アミノフェノール;メタアミノフェノール
MBA:3-メトキシ-n-ブチルアセテート
MeTMS:メチルトリメトキシシラン
MgAg:Magnesium‐Argentum(マグネシウム‐銀合金)
NA:5-ノルボルネン-2,3-ジカルボン酸無水物;ナジック酸無水物
NC-3500:ビフェニル骨格、ベンゼン骨格、及び、2つのエポキシ基を含む構造単位を有するエポキシ樹脂(日本化薬社製)
NC-7000L:ナフタレン骨格、ベンゼン骨格、及び、2つのエポキシ基を含む構造単位を有するエポキシ樹脂(日本化薬社製)
NC-7300L:ナフタレン骨格、ベンゼン骨格、及び、2つのエポキシ基を含む構造単位を有するエポキシ樹脂(日本化薬社製)
NCI-831:“アデカアークルズ”(登録商標)NCI-831(ADEKA社製;オキシムエステル系光重合開始剤)
NMP:N-メチル-2-ピロリドン
ODPA:ビス(3,4-ジカルボキシフェニル)エーテル二無水物;オキシジフタル酸二無水物
P.B.15:6:C.I.ピグメントブルー15:6
P.R.254:C.I.ピグメントレッド254
P.V.23:C.I.ピグメントバイオレット23
P.Y.139:C.I.ピグメントイエロー139
PGMEA:プロピレングリコールモノメチルエーテルアセテート
PHA:フタル酸無水物
PhTMS:フェニルトリメトキシシラン
S-20000:“SOLSPERSE”(登録商標) 20000(Lubrizol社製;アミン価が32mgKOH/g(固形分濃度:100質量%)の三級アミノ基を有するポリオキシアルキレンエーテル系分散剤)
SiDA:1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン
STR:スチレン
TAZ-G:2,4,6-トリス(グリシジルオキシ)トリアジン
TCDM:メタクリル酸トリシクロ[5.2.1.02,6]デカン-8-イル;ジメチロール-トリシクロデカンジメタアクリレート
ICA-GST:1,3,5-トリス(グリシジルステアリル)イソシアヌル酸
TBIS-BNG200:2,2’-ビス(グリシドキシ)-1,1’-ビナフタレン(田岡化学社製)
TBIS-RXG:3’,6’-ビス(グリシドキシ)-スピロ[9H-フルオレン-9,9-[9H]キサンテン](田岡化学社製)
TEPIC-FL:“TEPIC”(登録商標)-FL(日産化学社製;1,3,5-トリス(5-グリシジルペンチル)イソシアヌル酸)
TEPIC-L:“TEPIC”(登録商標)-L(日産化学社製;1,3,5-トリス(グリシジル)イソシアヌル酸)
TG-G:1,3,4,6-テトラキス(グリシジル)グリコールウリル(四国化成社製)
THPHA:1,2,3,6-テトラヒドロフタル酸無水物
TMAH:水酸化テトラメチルアンモニウム
TMOS:テトラメトキシシラン
TMMP:トリメチロールプロパントリス(3-メルカプトプロピオネート)
TMSSucA:3-トリメトキシシリルプロピルコハク酸無水物
TPK-1227:スルホン酸基を導入する表面処理がされたカーボンブラック(CABOT社製)
WHR-991S:3,3-ビス(4-グリシドキシフェニル)-1-イソインドリノン(日本化薬社製)
WR-301:“ADEKA ARKLS”(登録商標) WR-301(ADEKA社製;エポキシ基を有する芳香族化合物及び不飽和カルボン酸を開環付加反応させて得られる樹脂に、カルボン酸無水物を反応させて得られる多環側鎖含有樹脂、酸当量:560、二重結合当量:450)
XD-1000-H:ベンゼン骨格、トリシクロデカン骨格、及び、エポキシ基を含む構造単位を有するエポキシ樹脂(日本化薬社製)
 合成例(A)
 三口フラスコに、BAHFを18.31g(0.05mol)、プロピレンオキシドを17.42g(0.3mol)、アセトンを100mL秤量して溶解させた。ここに、アセトン10mLに塩化3-ニトロベンゾイルを20.41g(0.11mol)溶かした溶液を滴下した。滴下終了後、-15℃で4時間反応させ、その後室温に戻した。析出した白色固体をろ取し、50℃で真空乾燥させた。得られた固体30gを、300mLのステンレスオートクレーブに入れ、2-メトキシエタノール250mLに分散させ、5%パラジウム-炭素を2g加えた。ここに水素を風船で導入して、室温で2時間反応させた。2時間後、風船がこれ以上しぼまないことを確認した。反応終了後、ろ過して触媒であるパラジウム化合物を除去し、減圧留去させて濃縮し、以下に示す構造のヒドロキシ基含有ジアミン化合物(HA)を得た。
Figure JPOXMLDOC01-appb-C000040
 次に、合成例について説明する。合成例1~14の組成を表1-1~表1-3に示す。
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
 合成例1 ポリイミド(PI-1)の合成
 乾燥窒素気流下、三口フラスコに、BAHFを31.13g(0.085mol;全アミン及びその誘導体に由来する構造単位に対して77.3mol%)、SiDAを1.24g(0.0050mol;全アミン及びその誘導体に由来する構造単位に対して4.5mol%)、末端封止剤として、MAPを2.18g(0.020mol;全アミン及びその誘導体に由来する構造単位に対して18.2mol%)、NMPを150.00g秤量して溶解させた。ここに、NMP50.00gにODPAを31.02g(0.10mol;全カルボン酸及びその誘導体に由来する構造単位に対して100mol%)溶かした溶液を添加し、20℃で1時間攪拌し、次いで50℃で4時間攪拌した。その後、キシレン15gを添加し、水をキシレンとともに共沸しながら、150℃で5時間攪拌した。反応終了後、反応溶液を水3Lに投入し、析出した固体沈殿をろ過して得た。得られた固体を水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、ポリイミド(PI-1)を得た。得られたポリイミドのMwは27,000、酸当量は350であった。
 合成例2~5 ポリイミド(PI-2)~ポリイミド(PI-5)の合成
 表1-1に記載のモノマー種及びその比率にて、合成例1と同様に重合をして、ポリイミド(PI-2)~ポリイミド(PI-5)を得た。
 合成例6 ポリイミド前駆体(PIP-1)の合成
 乾燥窒素気流下、三口フラスコに、6FDAを44.42g(0.10mol;全カルボン酸及びその誘導体に由来する構造単位に対して100mol%)、NMPを150g秤量して溶解させた。ここに、NMP50gにBAHFを14.65g(0.040mol;全アミン及びその誘導体に由来する構造単位に対して32.0mol%)、HAを18.14g(0.030mol;全アミン及びその誘導体に由来する構造単位に対して24.0mol%)、SiDAを1.24g(0.0050mol;全アミン及びその誘導体に由来する構造単位に対して4.0mol%)溶かした溶液を添加し、20℃で1時間攪拌し、次いで50℃で2時間攪拌した。次に、末端封止剤として、NMP15gにMAPを5.46g(0.050mol;全アミン及びその誘導体に由来する構造単位に対して40.0mol%)溶かした溶液を添加し、50℃で2時間攪拌した。その後、NMP15gにDFAを23.83g(0.20mol)溶かした溶液を10分かけて滴下した。滴下終了後、50℃で3時間攪拌した。反応終了後、反応溶液を室温に冷却した後、反応溶液を水3Lに投入し、析出した固体沈殿をろ過して得た。得られた固体を水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、ポリイミド前駆体(PIP-1)を得た。得られたポリイミド前駆体のMwは20,000、酸当量は450であった。
 合成例7 ポリイミド前駆体(PIP-2)の合成
 表1-1に記載のモノマー種及びその比率にて、合成例6と同様に重合をして、ポリイミド前駆体(PIP-2)を得た。
 合成例8 ポリベンゾオキサゾール(PBO-1)の合成
 トルエンを満たしたディーンスターク水分離器及び冷却管を付けた500mL丸底フラスコに、BAHFを34.79g(0.095mol;全アミン及びその誘導体に由来する構造単位に対して95.0mol%)、SiDAを1.24g(0.0050mol;全アミン及びその誘導体に由来する構造単位に対して5.0mol%)、NMPを75.00g秤量して、溶解させた。ここに、NMP25.00gに、BFEを19.06g(0.080mol;全カルボン酸及びその誘導体に由来する構造単位に対し66.7mol%)、末端封止剤として、NAを6.57g(0.040mol;全カルボン酸及びその誘導体に由来する構造単位に対し33.3mol%)溶かした溶液を添加し、20℃で1時間攪拌し、次いで50℃で1時間攪拌した。その後、窒素雰囲気下、200℃以上で10時間加熱攪拌し、脱水反応を行った。反応終了後、反応溶液を水3Lに投入し、析出した固体沈殿をろ過して得た。得られた固体を水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、ポリベンゾオキサゾール(PBO-1)を得た。得られたポリベンゾオキサゾールのMwは25,000、酸当量は330であった。
 合成例9 ポリベンゾオキサゾール前駆体(PBOP-1)の合成
 トルエンを満たしたディーンスターク水分離器及び冷却管を付けた500mL丸底フラスコに、BAHFを34.79g(0.095mol;全アミン及びその誘導体に由来する構造単位に対して95.0mol%)、SiDAを1.24g(0.0050mol;全アミン及びその誘導体に由来する構造単位に対して5.0mol%)、NMPを70.00g秤量して、溶解させた。ここに、NMP20.00gに、BFEを19.06g(0.080mol;全カルボン酸及びその誘導体に由来する構造単位に対し66.7mol%)溶かした溶液を添加し、20℃で1時間攪拌し、次いで50℃で2時間攪拌した。次に、末端封止剤として、NMP10gにNAを6.57g(0.040mol;全カルボン酸及びその誘導体に由来する構造単位に対し33.3mol%)溶かした溶液を添加し、50℃で2時間攪拌した。その後、窒素雰囲気下、100℃で2時間攪拌した。反応終了後、反応溶液を水3Lに投入し、析出した固体沈殿をろ過して得た。得られた固体を水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、ポリベンゾオキサゾール前駆体(PBOP-1)を得た。得られたポリベンゾオキサゾール前駆体のMwは20,000、酸当量は330であった。
 合成例10 ポリシロキサン溶液(PS-1)の合成
 三口フラスコに、MeTMSを23.84g(35mol%)、PhTMSを49.57g(50mol%)、TMOSを3.81g(5mol%)、PGMEAを76.36g仕込んだ。フラスコ内に空気を0.05L/分で流し、混合溶液を攪拌しながらオイルバスで40℃に加熱した。混合溶液をさらに攪拌しながら、水28.38gにリン酸0.271gを溶かしたリン酸水溶液を10分かけて滴下した。滴下終了後、40℃で30分間攪拌して、シラン化合物を加水分解させた。加水分解終了後、PGMEA8.48gにTMSSucA13.12g(10mol%)を溶かした溶液を添加した。その後、バス温を70℃にして1時間攪拌した後、続いてバス温を115℃まで昇温した。昇温開始後、約1時間後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した(内温は100~110℃)。2時間加熱攪拌して得られた樹脂溶液を氷浴にて冷却し、ポリシロキサン溶液(PS-1)を得た。得られたポリシロキサンのMwは4,200であり、カルボン酸当量は700g/molであった。
 合成例11 ポリシロキサン溶液(PS-2)の合成
 三口フラスコにMeTMSを13.62g(20mol%)、PhTMSを49.57g(50mol%)、AcrTMSを23.43g(20mol%)、PGMEAを89.84g仕込んだ。フラスコ内に窒素を0.05L/分で流し、混合溶液を攪拌しながらオイルバスで40℃に加熱した。混合溶液をさらに攪拌しながら、水27.93gにリン酸0.499gを溶かしたリン酸水溶液を10分かけて添加した。添加終了後、40℃で30分間攪拌して、シラン化合物を加水分解させた。加水分解終了後、PGMEA9.98gにTMSSucA13.12g(10mol%)を溶かした溶液を添加した。その後、バス温を70℃にして1時間攪拌した後、続いてバス温を115℃まで昇温した。昇温開始後、約1時間後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した(内温は100~110℃)。2時間加熱攪拌して得られた樹脂溶液を氷浴にて冷却し、ポリシロキサン溶液(PS-2)を得た。得られたポリシロキサンのMwは5,200、カルボン酸当量は800g/molであり、二重結合当量は800g/molであった。
 合成例12 多環側鎖含有樹脂溶液(CR-1)の合成
 三口フラスコに、BHPFを35.04g(0.10mol)、MBAを40.31g秤量して溶解させた。ここに、MBA30.00gにODPAを27.92g(0.090mol)、末端封止剤として、PHAを2.96g(0.020mol)溶かした溶液を添加し、20℃で1時間攪拌した。その後、窒素雰囲気下、150℃で5時間攪拌した。反応終了後、得られた溶液に、MBA10.00gにGMAを14.22g(0.10mol)、ジベンジルアミンを0.135g(0.0010mol)、4-メトキシフェノールを0.037g(0.0003mol)溶かした溶液を添加し、90℃で4時間攪拌して、多環側鎖含有樹脂溶液(CR-1)を得た。得られた多環側鎖含有樹脂のMwは4,000、カルボン酸当量は810g/molであり、二重結合当量は810g/molであった。
 合成例13 酸変性エポキシ樹脂溶液(AE-1)の合成
 三口フラスコに、NC-7300L(エポキシ当量:210g/mol)を42.00g、MBAを47.91g秤量して溶解させた。ここに、MBA10.00gにMAAを17.22g(0.20mol)、ジベンジルアミンを0.270g(0.0020mol)、4-メトキシフェノールを0.074g(0.0006mol)溶かした溶液を添加し、90℃で4時間攪拌した。その後、MBA30.00gにTHPHAを24.34g(0.160mol)溶かした溶液を添加し、20℃で1時間攪拌した。その後、窒素雰囲気下、150℃で5時間攪拌して、酸変性エポキシ樹脂溶液(AE-1)を得た。得られた酸変性エポキシ樹脂のMwは5,000、酸当量は510g/molであり、二重結合当量は410g/molであった。
 合成例14 アクリル樹脂溶液(AC-1)の合成
 三口フラスコに、2,2’-アゾビス(イソブチロニトリル)を0.821g(1mol%)、PGMEAを29.29g仕込んだ。次に、MAAを21.52g(50mol%)、TCDMを22.03g(20mol%)、STRを15.62g(30mol%)仕込み、室温でしばらく攪拌して、フラスコ内をバブリングによって十分に窒素置換した後、70℃で5時間攪拌した。次に、得られた溶液に、PGMEAを59.47g、GMAを14.22g(20mol%)、ジベンジルアミンを0.676g(1mol%)、4-メトキシフェノールを0.186g(0.3mol%)溶かした溶液を添加し、90℃で4時間攪拌して、アクリル樹脂溶液(AC-1)を得た。得られたアクリル樹脂のMwは15,000、カルボン酸当量は490g/molであり、二重結合当量は740g/molであった。
 被覆例1 表面被覆ベンゾフラノン系黒色顔料(Bk-CBF1)の合成
 黒色顔料として、ベンゾフラノン系黒色顔料であるBk-S0100CF(表面未処理品;顔料表面のpH4.5)150gを、2,850gの脱イオン水を入れたガラス容器に投入してディゾルバーで攪拌し、水性顔料懸濁液を得た。これをチューブポンプで吸い上げ、0.4mmφジルコニアビーズ(“トレセラム”(登録商標);東レ社製)が充填された横型ビーズミル内に送液して2パス分散処理を行った後、元のガラス容器内に全量を吐出させ、再びディゾルバーで攪拌した。pHメーターを、その先端電極部が、ガラス容器内で攪拌中の水性顔料懸濁液の液面から3~5cmの深さで漬かるようにセットし、得られた水性顔料懸濁液のpHを測定したところ、pH4.5(液温25℃)を示した。その後、攪拌しながら水性顔料懸濁液の液温を60℃に上げ、30分後に一旦攪拌を止めて、2分後ガラス容器の底に沈降堆積物が無いことを確認し、攪拌を再開した。
 水性顔料懸濁液に対して、シリカの被覆量が黒色顔料100質量部に対してSiO換算値で10.0質量部となるよう、ケイ酸ナトリウム水溶液(NaO・nSiO・mHO;酸化ナトリウムとして30質量%、二酸化ケイ素として10質量%)を脱イオン水で100倍希釈した液と、0.001mol/Lの硫酸とを、pHが2以上7未満の範囲で維持されるようにそれぞれの添加速度を調整しながら並行添加し、黒色顔料の粒子表面にシリカを析出させて被覆した。次いで、水性顔料懸濁液に対して、アルミナの被覆量が黒色顔料100質量部に対してAl換算値で2.0質量部となるよう、アルミン酸ナトリウム水溶液(NaO・nAl・mHO;酸化ナトリウムとして40質量%、アルミナとして50質量%)を脱イオン水で100倍希釈した液と、0.001mol/Lの硫酸とを、pHが2以上7未満の範囲で維持されるようにそれぞれの添加速度を調整しながら並行添加し、シリカ被覆層の表面にアルミナを析出させて被覆した。続いて、濾過および水洗作業を3回繰り返して水性顔料懸濁液中の水溶性不純物の一部を除去し、0.4mmφジルコニアビーズが充填された横型ビーズミル内に送液して1パス分散処理した。さらに、イオン性不純物を除去するため、各10gの陽イオン交換樹脂と陰イオン交換樹脂(アンバーライト;オルガノ社製)を水性顔料懸濁液に投入して12時間攪拌し、濾過して黒色濾物を得た。これを90℃の乾燥オーブン内で6時間、200℃の乾燥オーブン内で30分間乾燥した後、ジェットミルを用いた乾式粉砕処理により整粒し、表面被覆ベンゾフラノン系黒色顔料(Bk-CBF1)を得た。
 飛行時間型二次イオン質量分析及びX線回折法による分析の結果、得られた表面被覆ベンゾフラノン系黒色顔料(Bk-CBF1)のシリカ及びアルミナの被覆量は、それぞれ、黒色顔料100質量部に対して、SiO換算値で10.0質量部、Al換算値で2.0質量部であり、顔料に対する被覆層の平均被覆率は97.5%であった。
 次に、調整例について説明する。調製例1~8の組成を表2-1に示す。
Figure JPOXMLDOC01-appb-T000044
 
 調製例1 顔料分散液(Bk-1)の調製
 分散剤として、S-20000を34.5g、溶剤として、MBAを782.0g秤量して混合し、10分間攪拌して拡散した後、着色剤として、Bk-S0100CFを103.5g秤量して混合して30分間攪拌し、0.40mmφのジルコニアビーズが充填された横型ビーズミルを用いて、数平均粒子径が100nmとなるように湿式メディア分散処理を行い、固形分濃度15質量%、着色剤/分散剤=75/25(質量比)の顔料分散液(Bk-1)を得た。得られた顔料分散液中の顔料の数平均粒子径は100nmであった。
 調製例2 顔料分散液(Bk-2)の調製
 樹脂として、合成例1で得られた、ポリイミド(PI-1)の30質量%のMBA溶液を92.0g、分散剤として、S-20000を27.6g、溶剤として、MBAを717.6g秤量して混合し、10分間攪拌して拡散した後、着色剤として、Bk-S0100CFを82.8g秤量して混合して30分間攪拌し、0.40mmφのジルコニアビーズが充填された横型ビーズミルを用いて、数平均粒子径が100nmとなるように湿式メディア分散処理を行い、固形分濃度15質量%、着色剤/樹脂/分散剤=60/20/20(質量比)の顔料分散液(Bk-2)を得た。得られた顔料分散液中の顔料の数平均粒子径は100nmであった。
 調製例3~8 顔料分散液(Bk-3)~顔料分散液(Bk-8)の調製
 表2-1に記載の着色剤、(A1)第1の樹脂及び(E)分散剤の種類並びにこれらの比率にて、調製例2と同様に顔料分散をして、顔料分散液(Bk-3)~顔料分散液(Bk-8)を得た。
 各実施例及び比較例で使用した、(F)架橋剤、及び、特定の(F)架橋剤((F1)~(F9)化合物)の一覧及び物性値を表2-2に示す。
Figure JPOXMLDOC01-appb-T000045
 XD-1000-H、NC-7000L、NC-3500、及びFLE-3、並びに合成例13で得られた酸変性エポキシ樹脂(AE-1)が有する構造単位を以下に示す。XD-1000-Hは、一般式(14a)で表される構造単位を有する。NC-7000Lは、一般式(15a)で表される構造単位を有する。NC-3500は、一般式(16a)で表される構造単位を有する。FLE-3(2つのフルオレン骨格、及び、2つのエポキシ基を有するエポキシ化合物)は、一般式(81)で表される構造である。酸変性エポキシ樹脂(AE-1)は、一般式(38a)で表される構造単位を有する。
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
 次に、各実施例及び比較例における評価方法について説明する。
 (1)樹脂の重量平均分子量
 GPC分析装置(HLC-8220;東ソー社製)を用い、流動層としてテトラヒドロフラン又はNMPを用いて、「JIS K7252-3(2008)」に基づき、常温付近での方法により、ポリスチレン換算の重量平均分子量を測定して求めた。
 (2)酸価、酸当量
 電位差自動滴定装置(AT-510;京都電子工業社製)を用い、滴定試薬として0.1mol/Lの水酸化ナトリウム/エタノール溶液、滴定溶剤としてキシレン/N,N-ジメチルホルムアミド=1/1(質量比)を用いて、「JIS K2501(2003)」に基づき、電位差滴定法により、酸価(単位はmgKOH/g)を測定して求めた。測定した酸価の値から、酸当量(単位はg/mol)を算出した。
 (3)二重結合当量
 電位差自動滴定装置(AT-510;京都電子工業社製)を用い、ヨウ素供給源として一塩化ヨウ素溶液(三塩化ヨウ素=7.9g、ヨウ素=8.9g、酢酸=1,000mLの混合溶液)、未反応ヨウ素の捕捉水溶液として100g/Lのヨウ化カリウム水溶液、滴定試薬として0.1mol/Lのチオ硫酸ナトリウム水溶液を用いて、JIS K0070:1992「化学製品の酸価、けん化価、エステル価、よう素価、水酸基価及び不けん化物の試験方法」の「第6項よう素価」に記載の方法に基づき、ウィイス法により、樹脂のヨウ素価を測定した。測定したヨウ素価(単位はgI/100g)の値から、二重結合当量(単位はg/mol)を算出した。
 (4)ポリシロキサン中の各オルガノシラン単位の含有比率
 29Si-NMRの測定を行い、オルガノシランに由来するSi全体の積分値に対する、特定のオルガノシラン単位に由来するSiの積分値の割合を算出して、それらの含有比率を計算した。試料(液体)は、直径10mm の“テフロン(登録商標)”製NMRサンプル管に注入して測定に用いた。29Si-NMR測定条件を以下に示す。
 装置:核磁気共鳴装置(JNM-GX270;日本電子社製)
 測定法:ゲーテッドデカップリング法
 測定核周波数:53.6693MHz(29Si核)
 スペクトル幅:20000Hz
 パルス幅:12μs(45°パルス)
 パルス繰り返し時間:30.0秒
 溶媒:アセトン-d6
 基準物質:テトラメチルシラン
 測定温度:23℃
 試料回転数:0.0Hz。
 (5)顔料の数平均粒子径
 ゼータ電位・粒子径・分子量測定装置(ゼータサイザーナノZS;シスメックス社製)を用い、希釈溶媒としてPGMEAを用いて、顔料分散液を1.0×10-5~40体積%の濃度に希釈し、希釈溶媒の屈折率をPGMEAの屈折率に、測定対象の屈折率を1.6に設定して、波長633nmのレーザー光を照射して顔料分散液中の顔料の数平均粒子径を測定した。
 (6)基板の前処理
 ガラス上に、ITOをスパッタにより100nm成膜したガラス基板(ジオマテック社製;以下、「ITO基板」)は、卓上型光表面処理装置(PL16-110;セン特殊光源社製)を用いて、100秒間UV-O洗浄処理をして使用した。Siウェハ(エレクトロニクス エンド マテリアルズ コーポレーション社製)は、ホットプレート(HP-1SA;アズワン社製)を用いて、130℃で2分間加熱して脱水ベーク処理をして使用した。ポリイミドフィルムであるKapton(登録商標)-150EN-C(東レ・デュポン社製;以下、「PIフィルム基板」)は、前処理をせずに使用した。
 (7)膜厚測定
 表面粗さ・輪郭形状測定機(SURFCOM1400D;東京精密社製)を用いて、測定倍率を10,000倍、測定長さを1.0mm、測定速度を0.30mm/sとして、プリベーク後、現像後及び熱硬化後の膜厚を測定した。
 (8)感度
 下記、実施例1記載の方法で、両面アライメント片面露光装置(マスクアライナー PEM-6M;ユニオン光学社製)を用いて、感度測定用のグレースケールマスク(MDRM MODEL 4000-5-FS;Opto-Line International社製)を介して、超高圧水銀灯のi線(波長365nm)、h線(波長405nm)及びg線(波長436nm)でパターニング露光した後、フォトリソ用小型現像装置(AD-2000;滝沢産業社製)を用いて現像し、感光性樹脂組成物の現像後膜を作製した。
 FPD/LSI検査顕微鏡(OPTIPHOT-300;ニコン社製)を用いて、作製した現像後膜の解像パターンを観察し、20μmのライン・アンド・スペースパターンを1対1の幅に形成する露光量(i線照度計の値)を感度とした。下記のように判定し、感度が90mJ/cm以下となる、A+、A、B、及びCを合格とし、感度が60mJ/cm以下となる、A+、A、及びBを感度良好とし、感度45mJ/cm以下となる、A+及びAを感度優秀とした。
 A+:感度が1~30mJ/cm
 A:感度が31~45mJ/cm
 B:感度が46~60mJ/cm
 C:感度が61~90mJ/cm
 D:感度が91~150mJ/cm
 E:感度が151~500mJ/cm
 (9)現像残渣
 下記、実施例1に記載の方法で、両面アライメント片面露光装置(マスクアライナー PEM-6M;ユニオン光学社製)を用いて、感度測定用のグレースケールマスク(MDRM MODEL 4000-5-FS;Opto-Line International社製)を介して、超高圧水銀灯のi線(波長365nm)、h線(波長405nm)及びg線(波長436nm)でパターニング露光した後、フォトリソ用小型現像装置(AD-2000;滝沢産業社製)を用いて現像し、感光性樹脂組成物の現像後膜を作製した。
 FPD/LSI検査顕微鏡(OPTIPHOT-300;ニコン社製)を用いて、作製した硬化膜の解像パターンを観察し、20μmのライン・アンド・スペースパターンの開口部における顔料由来の残渣の有無を観察した。下記のように判定し、開口部における残渣の存在面積が10%以下となる、A+、A及びBを合格とし、開口部における残渣の存在面積が5%以下となる、A+及びAを現像残渣良好とし、開口部における残渣の存在面積が無い、A+を現像残渣優秀とした。
 A+:開口部における残渣無し
 A:開口部における残渣の存在面積が1~5%
 B:開口部における残渣の存在面積が6~10%
 C:開口部における残渣の存在面積が11~30%
 D:開口部における残渣の存在面積が31~50%
 E:開口部における残渣の存在面積が51~100%。
 (10)現像後のパターン断面形状
 下記、実施例1記載の方法で、両面アライメント片面露光装置(マスクアライナー PEM-6M;ユニオン光学社製)を用いて、感度測定用のグレースケールマスク(MDRM MODEL 4000-5-FS;Opto-Line International社製)を介して、超高圧水銀灯のi線(波長365nm)、h線(波長405nm)及びg線(波長436nm)でパターニング露光した後、フォトリソ用小型現像装置(AD-2000;滝沢産業社製)を用いて現像し、感光性樹脂組成物の現像後膜を作製した。
 電界放出型走査電子顕微鏡(S-4800;日立ハイテクノロジーズ社製)を用いて、作製した現像後膜の解像パターンのうち、スペース寸法幅20μmのライン・アンド・スペースパターンの断面を観察し、断面のテーパー角を測定した。下記のように判定し、断面のテーパー角が60°以下となる、A+、A及びBを合格とし、断面のテーパー角が45°以下となる、A+及びAをパターン形状良好とし、断面のテーパー角が30°以下となる、A+をパターン形状優秀とした。
 A+:断面のテーパー角が1~30°
 A:断面のテーパー角が31~45°
 B:断面のテーパー角が46~60°
 C:断面のテーパー角が61~70°
 D:断面のテーパー角が71~80°
 E:断面のテーパー角が81~179°。
 (11)熱硬化後のパターン断面形状
 下記、実施例1記載の方法で、両面アライメント片面露光装置(マスクアライナー PEM-6M;ユニオン光学社製)を用いて、感度測定用のグレースケールマスク(MDRM MODEL 4000-5-FS;Opto-Line International製)を介して、超高圧水銀灯のi線(波長365nm)、h線(波長405nm)及びg線(波長436nm)でパターニング露光した後、フォトリソ用小型現像装置(AD-2000;滝沢産業社製)を用いて現像した後、高温イナートガスオーブン(INH-9CD-S;光洋サーモシステム社製)を用いて、感光性樹脂組成物の硬化膜を作製した。
 電界放出型走査電子顕微鏡(S-4800;日立ハイテクノロジーズ社製)を用いて、作製した硬化膜の解像パターンのうち、スペース寸法幅20μmのライン・アンド・スペースパターンの断面を観察し、断面のテーパー角を測定した。下記のように判定し、断面のテーパー角が60°以下となる、A+、A及びBを合格とし、断面のテーパー角が45°以下となる、A+及びAをパターン形状良好とし、断面のテーパー角が30°以下となる、A+をパターン形状優秀とした。
 A+:断面のテーパー角が1~30°
 A:断面のテーパー角が31~45°
 B:断面のテーパー角が46~60°
 C:断面のテーパー角が61~70°
 D:断面のテーパー角が71~80°
 E:断面のテーパー角が81~179°。
 (12)熱硬化前後のパターン開口寸法幅の変化
 下記、実施例1記載の方法で、両面アライメント片面露光装置(マスクアライナー PEM-6M;ユニオン光学社製)を用いて、感度測定用のグレースケールマスク(MDRM MODEL 4000-5-FS;Opto-Line International社製)を介して、超高圧水銀灯のi線(波長365nm)、h線(波長405nm)及びg線(波長436nm)でパターニング露光した後、フォトリソ用小型現像装置(AD-2000;滝沢産業社製)を用いて現像し、感光性樹脂組成物の現像後膜を作製した。
 FPD/LSI検査顕微鏡(OPTIPHOT-300;ニコン社製)を用いて、作製した現像後膜の解像パターンを観察し、20μmのライン・アンド・スペースパターンの開口寸法幅を測長し、現像後のパターン開口寸法幅(CDDEV)とした。
 その後、上述した現像後膜を、下記、実施例1記載の方法で、高温イナートガスオーブン(INH-9CD-S;光洋サーモシステム社製)を用いて熱硬化させ、感光性樹脂組成物の硬化膜を作製した。
 FPD/LSI検査顕微鏡(OPTIPHOT-300;ニコン社製)を用いて、作製した硬化膜の解像パターンを観察し、現像後に観察した箇所と同一箇所の20μmのライン・アンド・スペースパターンの開口寸法幅を測長し、熱硬化後のパターン開口寸法幅(CDCURE)とした。
 現像後のパターン開口寸法幅及び熱硬化後のパターン開口寸法幅から、熱硬化前後のパターン開口寸法幅の変化((CDDEV)-(CDCURE))を算出した。下記のように判定し、熱硬化前後のパターン開口寸法幅の変化が0.60μm以下となる、A+、A、及びBを合格とし、熱硬化前後のパターン開口寸法幅の変化が0.40μm以下となる、A+及びAをパターン寸法幅の変化が良好であるとし、熱硬化前後のパターン開口寸法幅の変化が0.20μm以下となる、A+をパターン寸法幅の変化が優秀であるとした。
 A+:熱硬化前後のパターン開口寸法幅の変化が0~0.20μm
 A:熱硬化前後のパターン開口寸法幅の変化が0.21~0.40μm
 B:熱硬化前後のパターン開口寸法幅の変化が0.41~0.60μm
 C:熱硬化前後のパターン開口寸法幅の変化が0.61~1.00μm
 D:熱硬化前後のパターン開口寸法幅の変化が1.01~2.00μm
 E:熱硬化前後のパターン開口寸法幅の変化が2.01μm以上。
 (13)耐熱性(高温重量残存率差)
 下記、実施例1記載の方法で、両面アライメント片面露光装置(マスクアライナー PEM-6M;ユニオン光学社製)を用いて、感度測定用のグレースケールマスク(MDRM MODEL 4000-5-FS;Opto-Line International社製)を介して、超高圧水銀灯のi線(波長365nm)、h線(波長405nm)及びg線(波長436nm)でパターニング露光した後、フォトリソ用小型現像装置(AD-2000;滝沢産業社製)を用いて現像した後、高温イナートガスオーブン(INH-9CD-S;光洋サーモシステム社製)を用いて、感光性樹脂組成物の硬化膜を作製した。
 熱硬化後、作製した硬化膜を基板から削りとり、アルミセルに約10mg入れた。このアルミセルを、熱重量測定装置(TGA-50;島津製作所社製)を用い、窒素雰囲気中、30℃にて10分間保持した後、昇温速度10℃/分で150℃まで昇温させ、その後、150℃で30分間保持し、さらに昇温速度10℃/分で500℃まで昇温させながら熱重量分析を行った。150℃で30分間加熱した後の重量100質量%に対して、さらに加熱した場合の350℃での重量残存率を(M)質量%、400℃での重量残存率を(M)質量%とし、耐熱性の指標として、高温重量残存率差((M)-(M))を算出した。下記のように判定し、高温重量残存率差が25.0質量%以下となる、A+、A及びBを合格とし、高温重量残存率差が15.0%以下となる、A+及びAを耐熱性良好とし、高温重量残存率差が5.0%以下となる、A+を耐熱性優秀とした。
 A+:高温重量残存率差が0~5.0%
 A:高温重量残存率差が5.1~15.0%
 B:高温重量残存率差が15.1~25.0%
 C:高温重量残存率差が25.1~35.0%
 D:高温重量残存率差が35.1~45.0%
 E:高温重量残存率差が45.1~100%。
 (14)遮光性(光学濃度(以下、「OD」)値)
 下記、実施例1記載の方法で、両面アライメント片面露光装置(マスクアライナー PEM-6M;ユニオン光学社製)を用いて、感度測定用のグレースケールマスク(MDRM MODEL 4000-5-FS;Opto-Line International社製)を介して、超高圧水銀灯のi線(波長365nm)、h線(波長405nm)及びg線(波長436nm)でパターニング露光した後、フォトリソ用小型現像装置(AD-2000;滝沢産業社製)を用いて現像した後、高温イナートガスオーブン(INH-9CD-S;光洋サーモシステム社製)を用いて、感光性樹脂組成物の硬化膜を作製した。
 透過濃度計(X-Rite 361T(V);X-Rite社製)を用いて、作製した硬化膜の入射光強度(I)及び透過光強度(I)をそれぞれ測定した。遮光性の指標として、OD値を下記式により算出した。
OD値=log10(I/I)。
 (15)絶縁性(表面抵抗率)
 下記、実施例1記載の方法で、両面アライメント片面露光装置(マスクアライナー PEM-6M;ユニオン光学社製)を用いて、感度測定用のグレースケールマスク(MDRM MODEL 4000-5-FS;Opto-Line International社製)を介して、超高圧水銀灯のi線(波長365nm)、h線(波長405nm)及びg線(波長436nm)でパターニング露光した後、フォトリソ用小型現像装置(AD-2000;滝沢産業社製)を用いて現像した後、高温イナートガスオーブン(INH-9CD-S;光洋サーモシステム社製)を用いて、感光性樹脂組成物の硬化膜を作製した。
 高抵抗抵抗率計(“ハイレスタ”UP;三菱ケミカル社製)を用いて、作製した硬化膜の表面抵抗率(Ω/□)を測定した。
 (16)有機ELディスプレイの発光特性
 (有機ELディスプレイの作製方法)
 図4に、使用した基板の概略図を示す。まず、38×46mmの無アルカリガラス基板47に、スパッタ法により、ITO透明導電膜10nmを基板全面に形成し、第1電極48としてエッチングし、透明電極を形成した。また、第2電極を取り出すため補助電極49も同時に形成した(図4(工程1))。得られた基板を“セミコクリーン”(登録商標)56(フルウチ化学社製)で10分間超音波洗浄し、超純水で洗浄した。次に、この基板上に、感光性樹脂組成物を下記実施例1記載の方法で塗布及びプリベークし、所定のパターンを有するフォトマスクを介してパターンニング露光、現像及びリンスした後、加熱し熱硬化させた。以上の方法で、幅70μm及び長さ260μmの開口部が、幅方向にピッチ155μm及び長さ方向にピッチ465μmで配置され、それぞれの開口部が第1電極を露出せしめる形状の絶縁層50を、基板有効エリアに限定して形成した(図4(工程2))。なお、この開口部が、最終的に有機ELディスプレイの発光画素となる。また、基板有効エリアは、16mm四方であり、絶縁層50の厚さは、約1.0μmで形成した。
 次に、第1電極48、補助電極49及び絶縁層50を形成した基板を用いて、有機ELディスプレイの作製を行った。前処理として、窒素プラズマ処理を行った後、真空蒸着法により、発光層を含む有機EL層51を形成した(図4(工程3))。なお、蒸着時の真空度は、1×10-3Pa以下であり、蒸着中は蒸着源に対して基板を回転させた。まず、正孔注入層として、化合物(HT-1)を10nm、正孔輸送層として、化合物(HT-2)を50nm蒸着した。次に、発光層に、ホスト材料として、化合物(GH-1)とドーパント材料として、化合物(GD-1)を、ドープ濃度が10%になるように40nmの厚さに蒸着した。その後、電子輸送材料として、化合物(ET-1)と化合物(LiQ)を、体積比1:1で40nmの厚さに積層した。有機EL層で用いた化合物の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000049
 次に、化合物(LiQ)を2nm蒸着した後、MgAg(マグネシウム/銀=10/1(体積比))を100nm蒸着して第2電極52とし、反射電極を形成した(図4の工程4)。その後、低湿窒素雰囲気下、エポキシ樹脂系接着剤を用いて、キャップ状ガラス板を接着することで封止をし、1枚の基板上に5mm四方のボトムエミッション型有機ELディスプレイを4つ作製した。
 (発光特性評価)
 上述した方法で作製した有機ELディスプレイを、10mA/cmで直流駆動にて発光させ、非発光領域や輝度ムラなどの発光不良がないかを観察した。作製した有機ELディスプレイを、耐久性試験として、80℃で500時間保持した。耐久性試験後、有機ELディスプレイを、10mA/cmで直流駆動にて発光させ、発光領域や輝度ムラなどの発光特性に変化がないかを観察した。下記のように判定し、耐久試験前の発光領域面積を100%とした場合の、耐久試験後の発光領域面積が80%以上となる、A+、A及びBを合格とし、発光領域面積が90%以上となる、A+及びAを発光特性良好とし、発光領域面積が95%以上となる、A+を発光特性優秀とした。
 A+:耐久試験後の発光領域面積が95~100%
 A:耐久試験後の発光領域面積が90~94%
 B:耐久試験後の発光領域面積が80~89%
 C:耐久試験後の発光領域面積が70~79%
 D:耐久試験後の発光領域面積が50~69%
 E:耐久試験後の発光領域面積が0~49%。
 [実施例1]
 黄色灯下、NCI-831を0.313g、FR-201を0.261g秤量し、MBAを8.060g、PGMEAを5.100g添加し、攪拌して溶解させた。次に、合成例1で得られたポリイミド(PI-1)の30質量%のMBA溶液を5.650g、DPHAの50質量%のMBA溶液を1.825g添加して攪拌し、均一溶液として調合液を得た。次に、調製例1で得られた顔料分散液(Bk-1)を7.326g秤量し、ここに、上記で得られた調合液を17.674g添加して攪拌し、均一溶液とした。その後、得られた溶液を0.45μmφのフィルターでろ過し、組成物1を調製した。
 調製した組成物1を、ITO基板上にスピンコーター(MS-A100;ミカサ社製)を用いて任意の回転数でスピンコーティングにより塗布した後、ブザーホットプレート(HPD-3000BZN;アズワン社製)を用いて110℃で120秒間プリベークし、膜厚約1.8μmのプリベーク膜を作製した。
 作製したプリベーク膜を、フォトリソ用小型現像装置(AD-2000;滝沢産業社製)を用いて、2.38質量%TMAH水溶液でスプレー現像し、プリベーク膜(未露光部)が完全に溶解する時間(Breaking Point;以下、「B.P.」)を測定した。
 上記と同様にプリベーク膜を作製し、作製したプリベーク膜を、両面アライメント片面露光装置(マスクアライナー PEM-6M;ユニオン光学社製)を用いて、感度測定用のグレースケールマスク(MDRM MODEL 4000-5-FS;Opto-Line International社製)を介して、超高圧水銀灯のi線(波長365nm)、h線(波長405nm)及びg線(波長436nm)でパターニング露光した。露光後、フォトリソ用小型現像装置(AD-2000;滝沢産業社製)を用いて、2.38質量%TMAH水溶液を10秒間塗布した後、パドル現像し、水で30秒間リンスした。現像時間は、B.P.の1.5倍とした。なお、現像時間は、上述した2.38質量%TMAH水溶液を塗布する10秒間と、パドル現像する時間の合計である。
 現像後、高温イナートガスオーブン(INH-9CD-S;光洋サーモシステム社製)を用いて、250℃で熱硬化させ、膜厚約1.2μmの硬化膜を作製した。熱硬化条件は、窒素雰囲気下、250℃で60分間熱硬化させた。
 [実施例2~88及び比較例1~9]
 実施例1と同様に、組成物2~98を表3-1~表15-1に記載の組成にて調製した。得られた各組成物を用いて、実施例1と同様に、基板上に組成物を成膜し、感光特性及び硬化膜の特性の評価を行った。それらの評価結果を、表3-2~表15-2に示す。なお、比較しやすくするために、表4-1、表5-1、表7-1、表8-1、表10-1、表11-1、表12-1、表13-1、表14-1、表4-2、表5-2、表7-2、表8-2、表10-2、表11-2、表12-2、表13-2、及び表14-2に実施例7の組成及び評価結果を記載した。同様に、表6-1、表9-1、表10-1、表6-2、表9-2、及び表10-2に、実施例15の組成及び評価結果を記載した。
Figure JPOXMLDOC01-appb-T000050
 
Figure JPOXMLDOC01-appb-T000051
 
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
 
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
 
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
 
Figure JPOXMLDOC01-appb-T000070
 
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
 
Figure JPOXMLDOC01-appb-T000073
 
Figure JPOXMLDOC01-appb-T000074
 
Figure JPOXMLDOC01-appb-T000075
 [実施例89]
 (偏光層を有しない有機ELディスプレイの製造方法)
 作製する有機ELディスプレイの概略を図5に示す。まず、38×46mmの無アルカリガラス基板53上に、電子ビーム蒸着法により、クロムと金の積層膜を成膜し、エッチングによりソース電極54とドレイン電極55を形成した。次に、APC(銀/パラジウム/銅=98.07/0.87/1.06(質量比))をスパッタにより100nm成膜し、エッチングによりパターン加工してAPC層を形成し、さらに、APC層の上層にITOをスパッタにより10nm成膜し、エッチングにより、第1電極として反射電極56を形成した。電極表面を酸素プラズマで洗浄した後、スパッタ法により、アモルファスIGZOを成膜し、エッチングによりソース・ドレイン電極間に酸化物半導体層57を形成した。次に、スピンコート法により、ポジ型感光性ポリシロキサン系材料(SP-P2301;東レ社製)を成膜し、フォトリソグラフィーにより、ビアホール58と画素領域59を開口した後、熱硬化させてゲート絶縁層60を形成した。その後、電子ビーム蒸着法により、金を成膜し、エッチングによりゲート電極61を形成することで、酸化物TFTアレイとした。
 上記、実施例1記載の方法で、組成物7を、酸化物TFTアレイ上に塗布及びプリベークして成膜し、所定のパターンを有するフォトマスクを介してパターニング露光、現像及びリンスして画素領域を開口した後、熱硬化させて、遮光性を有するTFT保護層/画素分割層62を形成した。以上の方法で、幅70μm及び長さ260μmの開口部が、幅方向にピッチ155μm及び長さ方向にピッチ465μmで配置され、それぞれの開口部が反射電極56を露出せしめる形状の画素分割層を、基板有効エリアに限定して形成した。なお、この開口部が、最終的に有機ELディスプレイの発光画素となる。また、基板有効エリアは、16mm四方であり、画素分割層の厚さは、約1.0μmで形成した。
 次に、上記(16)記載の方法で、正孔注入層として化合物(HT-1)、正孔輸送層として化合物(HT-2)、ホスト材料として化合物(GH-1)、ドーパント材料として化合物(GD-1)、電子輸送材料として化合物(ET-1)と化合物(LiQ)を用いて、有機EL発光層63を形成した。
 その後、蒸着法により、MgAg(マグネシウム/銀=10/1(体積比))を10nm成膜し、エッチングにより、第2電極としての透明電極64を形成した。次いで、低湿窒素雰囲気下、有機ELシール材(ストラクトボンド(登録商標)XMF-T;三井化学社製)を用いて封止膜65を形成した。さらに、無アルカリガラス基板66を、封止膜65上に貼りあわせ、1枚の基板上に5mm四方の、偏光層を有しないトップエミッション型有機ELディスプレイを4つ作製した。
 (発光特性評価)
 上述した方法で作製した有機ELディスプレイを、10mA/cmで直流駆動にて発光させ、外光を画素分割層部に照射した場合の輝度(Y’)、外光を照射しない場合の輝度(Y)を測定した。外光反射低減の指標として、コントラストを下記式により算出した。
コントラスト=Y/Y’。
 下記のように判定し、コントラストが0.80以上となる、A+、A及びBを合格とし、コントラストが0.90以上となる、A+及びAを外光反射低減効果良好とし、コントラストが0.95以上となる、A+を外光反射低減効果優秀とした。上述した方法で作製した有機ELディスプレイは、コントラストが0.90であり、外光反射低減が可能であることを確認した。
 A+:コントラストが0.95~1.00
 A:コントラストが0.90~0.94
 B:コントラストが0.80~0.89
 C:コントラストが0.70~0.79
 D:コントラストが0.50~0.69
 E:コントラストが0.01~0.49。
 [実施例90]
 (ハーフトーン特性の評価)
 上記、実施例1記載の方法で、ITO基板上に組成物7のプリベーク膜を5μmの膜厚で成膜し、両面アライメント片面露光装置(マスクアライナー PEM-6M;ユニオン光学社製)を用いて、感度測定用のグレースケールマスク(MDRM MODEL 4000-5-FS;Opto-Line International社製)を介して、超高圧水銀灯のi線(波長365nm)、h線(波長405nm)及びg線(波長436nm)でパターニング露光し、フォトリソ用小型現像装置(AD-2000;滝沢産業社製)を用いて現像した後、高温イナートガスオーブン(INH-9CD-S;光洋サーモシステム社製)を用いて、組成物7の硬化膜を作製した。
 表面粗さ・輪郭形状測定機(SURFCOM1400D;東京精密社製)を用いて、測定倍率を10,000倍、測定長さを1.0mm、測定速度を0.30mm/sとして、現像後の膜厚を測定し、実施例7の感度の露光量での熱硬化後の膜厚(TFT)μmを測定した。実施例7の感度の露光量を(EFT)mJ/cmとした場合、0.25×(EFT)mJ/cmの露光量での熱硬化後の膜厚(THT25)μmを測定した。ハーフトーン特性の指標として、段差膜厚を下記式により算出した。
段差膜厚=(TFT)-(THT25)。
 下記のように判定し、段差膜厚が0.5μm以上となる、A+、A、B及びCを合格とし、段差膜厚が1.0μm以上となる、A+、A及びBをハーフトーン特性良好とし、段差膜厚が1.5μm以上となる、A+及びAをハーフトーン特性優秀とした。上述した方法で作製した組成物7の硬化膜は、段差膜厚が1.7μmであり、ハーフトーン特性優秀であることを確認した。
 A+:段差膜厚が2.0μm以上
 A:段差膜厚が1.5μm以上かつ2.0μm未満
 B:段差膜厚が1.0μm以上かつ1.5μm未満
 C:段差膜厚が0.5μm以上かつ1.0μm未満
 D:段差膜厚が0.1μm以上かつ0.5μm未満
 E:段差膜厚が0.1μm未満又は現像後に残膜せず測定不能。
 [実施例91]
 (折り曲げ性の評価)
 上記、実施例1記載の方法で、PIフィルム基板上に組成物7のプリベーク膜を1.8μmの膜厚で成膜し、両面アライメント片面露光装置(マスクアライナー PEM-6M;ユニオン光学社製)を用いて、超高圧水銀灯のi線(波長365nm)、h線(波長405nm)及びg線(波長436nm)でパターニング露光した。パターニング露光は、幅30μm及び長さ50μmの開口部が、幅方向にピッチ60μm及び長さ方向にピッチ100μmで配置されたパターンを有するフォトマスクを介して露光した。パターニング露光後、フォトリソ用小型現像装置(AD-2000;滝沢産業社製)を用いて現像した後、高温イナートガスオーブン(INH-9CD-S;光洋サーモシステム社製)を用いて、組成物7の硬化膜を作製した。硬化膜を成膜したPIフィルム基板を、2cm×5cmの長さに切断した。
 硬化膜の折り曲げ性の評価方法の概略図を図6に示す。上記の方法で、PIフィルム基板67上に成膜した硬化膜68を、図6に示すように硬化膜68の面を外側にして折り曲げ、厚さが(T)mmのSiウェハ69を挟んだ状態として、セロテープ(登録商標)(No.405(産業用);ニチバン社製;幅=18mm、厚さ=0.050mm、粘着力=3.93N/10mm、引っ張り強さ=41.6N/10mm)で仮固定した。その後、質量1kg、縦10cm×横10cm(底面積100cm)の重し70を、硬化膜68の上から置いた状態として、曲率半径(R=T/2)mmに折り曲げた状態で1分間放置した。重し70とSiウェハ69除去し、FPD/LSI検査顕微鏡(OPTIPHOT-300;ニコン社製)を用いて、硬化膜68の折り曲げ部におけるクラックの有無を観察した。厚さ(T)mmが異なるSiウェハを用いて、上記の折り曲げ性評価を繰り返し、折り曲げ性の指標として、折り曲げ部においてクラックが発生しない最小曲率半径Rを求めた。
 下記のように判定し、最小曲率半径Rが0.50mm以下となる、A+、A、B及びCを合格とし、最小曲率半径Rが0.25mm以下となる、A+、A及びBを折り曲げ性良好とし、最小曲率半径Rが0.10mm以下となる、A+及びAを折り曲げ性優秀とした。上記の方法で作製した組成物7の硬化膜は、折り曲げ部においてクラックが発生しない最小曲率半径Rが0.40mmであり、折り曲げ性合格であることを確認した。
 A+:最小曲率半径Rが0mm
 A:最小曲率半径Rが0.01mm以上かつ0.10mm以下
 B:最小曲率半径Rが0.11mm以上かつ0.20mm以下
 C:最小曲率半径Rが0.21mm以上かつ0.40mm以下
 D:最小曲率半径Rが0.41mm以上かつ1.00mm以下
 E:最小曲率半径Rが1.00mm以上又は測定不能。
 同様の方法で、実施例92~104として、組成物15、56、52、53、58、59、65、70、71、72、73、79及び80を用いて、PIフィルム基板上にそれぞれの組成物の硬化膜を作製し、それぞれの折り曲げ性を評価して最小曲率半径Rを求めた。実施例91~104の評価結果を、表16に示す。
Figure JPOXMLDOC01-appb-T000076
 [実施例105]
 (熱硬化時の残渣の評価)
 上記、実施例1に記載の方法で、ITO基板上に組成物7のプリベーク膜を1.8μmの膜厚で成膜し、両面アライメント片面露光装置(マスクアライナー PEM-6M;ユニオン光学社製)を用いて、感度測定用のグレースケールマスク(MDRM MODEL 4000-5-FS;Opto-Line International社製)を介して、超高圧水銀灯のi線(波長365nm)、h線(波長405nm)及びg線(波長436nm)でパターニング露光し、フォトリソ用小型現像装置(AD-2000;滝沢産業社製)を用いて現像し、組成物7の現像後膜を作製した。同様の方法で、組成物7の現像後膜を別途作製し、現像後膜を成膜したITO基板を半分に切断した。
 熱硬化時の残渣の評価方法の概略図を図7A及び図7Bに示す。上記の方法で、現像後膜72を成膜したITO基板71を半分に切断した後、図7Aに示すように現像後膜72の面同士が接するように重ね、図7Bに示す状態にした。この状態で保持したまま、高温イナートガスオーブン(INH-9CD-S;光洋サーモシステム社製)を用いて熱硬化させ、熱硬化時における熱硬化時における熱分解物や昇華物に起因する残渣が発生しやすい状態で組成物7の硬化膜を作製した。
 電界放出型走査電子顕微鏡(S-4800;日立ハイテクノロジーズ社製)を用いて、現像後膜の解像パターンを観察し、スペース寸法幅20μmのライン・アンド・スペースパターンの開口部における残渣の有無を観察し、現像後の開口部における残渣の存在面積(RDEV)を算出した。同様の方法で、図7Bにおける、上部側のITO基板の硬化膜の解像パターンを観察し、熱硬化後の開口部における残渣の存在面積(RCURE)を算出した。熱硬化時の残渣の指標として、熱硬化時の残渣増加率を下記式により算出した。
熱硬化時の残渣増加率=(RCURE)-(RDEV)。
 下記のように判定し、熱硬化時の残渣増加率が10%以下となる、A+、A及びBを合格とし、熱硬化時の残渣増加率が5%以下となる、A+及びAを熱硬化時の残渣良好とし、熱硬化時の残渣増加が無い、A+を熱硬化時の残渣優秀とした。上記の方法で作製した組成物7の現像後膜及び硬化膜は、熱硬化時の残渣増加率が10%であり、熱硬化時の残渣合格であることを確認した。
 A+:熱硬化時の残渣増加無し
 A:熱硬化時の残渣増加率が1~5%
 B:熱硬化時の残渣増加率が6~10%
 C:熱硬化時の残渣増加率が11~30%
 D:熱硬化時の残渣増加率が31~50%
 E:熱硬化時の残渣増加率が51~100%。
 同様の方法で、実施例106~112として、組成物15、64、65、72、73、79及び80を用い、比較例11として、組成物85を用いて、PIフィルム基板上にそれぞれの組成物の硬化膜を作製し、それぞれの折り曲げ性を評価して最小曲率半径Rを求めた。実施例105~112及び比較例11の評価結果を、表17に示す。
Figure JPOXMLDOC01-appb-T000077
 [実施例113]
 (偏光層を有しないフレキシブル有機ELディスプレイの製造方法)
 作製する有機ELディスプレイの概略を図8に示す。まず、38×46mmの無アルカリガラス基板上に、PIフィルム基板を粘着層で仮固定し、ホットプレート(SCW-636;大日本スクリーン製造(株)製)を用いて130℃で120秒間脱水ベークした。次に、PIフィルム基板上に、CVD法により、ガスバリア層としてSiO膜73を形成した。ガスバリア層の上に、電子ビーム蒸着法により、クロムと金の積層膜を成膜し、エッチングによりソース電極74とドレイン電極75を形成した。次に、APC(銀/パラジウム/銅=98.07/0.87/1.06(質量比))をスパッタにより100nm成膜し、エッチングによりパターン加工してAPC層を形成し、さらに、APC層の上層にITOをスパッタにより成膜し、エッチングにより、第1電極として反射電極76を形成した。電極表面を酸素プラズマで洗浄した後、スパッタ法により、アモルファスIGZOを成膜し、エッチングによりソース・ドレイン電極間に酸化物半導体層77を形成した。次に、スピンコート法により、ポジ型感光性ポリシロキサン系材料(SP-P2301;東レ社製)を成膜し、フォトリソグラフィーにより、ビアホール78と画素領域79を開口した後、熱硬化させてゲート絶縁層80を形成した。その後、電子ビーム蒸着法により、金を成膜し、エッチングによりゲート電極81を形成することで、酸化物TFTアレイとした。
 上記、実施例1記載の方法で、組成物52を、酸化物TFTアレイ上に塗布及びプリベークして成膜し、所定のパターンを有するフォトマスクを介してパターニング露光、現像及びリンスして画素領域を開口した後、熱硬化させて、遮光性を有するTFT保護層/画素分割層82を形成した。以上の方法で、幅70μm及び長さ260μmの開口部が、幅方向にピッチ155μm及び長さ方向にピッチ465μmで配置され、それぞれの開口部が反射電極を露出せしめる形状の画素分割層を、基板有効エリアに限定して形成した。なお、この開口部が、最終的に有機ELディスプレイの発光画素となる。また、基板有効エリアは、16mm四方であり、画素分割層の厚さは、約1.0μmで形成した。
 次に、上記(16)記載の方法で、正孔注入層として化合物(HT-1)、正孔輸送層として化合物(HT-2)、ホスト材料として化合物(GH-1)、ドーパント材料として化合物(GD-1)、電子輸送材料として化合物(ET-1)と化合物(LiQ)を用いて、有機EL発光層83を形成した。
 その後、蒸着法により、MgAg(マグネシウム/銀=10/1(体積比))を10nm成膜し、エッチングにより、第2電極として透明電極84を形成した。次いで、低湿窒素雰囲気下、有機ELシール材(ストラクトボンド(登録商標)XMF-T;三井化学社製)を用いて封止膜85を形成した。さらに、ガスバリア層としてSiO膜86を形成したPETフィルム基板87を、封止膜上に貼りあわせた後、PIフィルム基板から無アルカリガラス基板を剥離し、1枚の基板上に5mm四方の、偏光層を有しないトップエミッション型フレキシブル有機ELディスプレイを4つ作製した。
 (発光特性評価)
 上記の方法で作製した有機ELディスプレイを、10mA/cmで直流駆動にて発光させ、外光を画素分割層部に照射した場合の輝度(Y’)、外光を照射しない場合の輝度(Y)を測定した。外光反射低減の指標として、コントラストを下記式により算出した。
コントラスト=Y/Y’。
 下記のように判定し、コントラストが0.80以上となる、A+、A及びBを合格とし、コントラストが0.90以上となる、A+及びAを外光反射低減効果良好とし、コントラストが0.95以上となる、A+を外光反射低減効果優秀とした。上記の方法で作製した有機ELディスプレイは、コントラストが0.90であり、外光反射低減が可能であることを確認した。
A+:コントラストが0.95~1.00
A:コントラストが0.90~0.94
B:コントラストが0.80~0.89
C:コントラストが0.70~0.79
D:コントラストが0.50~0.69
E:コントラストが0.01~0.49。
 (フレキシブル性評価)
 上記の方法で作製した有機ELディスプレイを、10mA/cmで直流駆動にて発光させた。発光させたまま、表示面となるPETフィルムの面を外側にして、有機ELディスプレイをU字型に湾曲させて表示部が曲面形状にし、前記曲面の曲率半径が1mmの状態で1分間保持した。表示部を曲面形状で保持後、前記有機ELディスプレイは異常な発光を起こすことがなかったため、フレキシブル性を有する有機ELディスプレイであることを確認した。
 本発明に係る感光性樹脂組成物、硬化膜、硬化膜を具備する素子は、高感度であり、熱硬化後に低テーパー形状のパターンを形成でき、熱硬化前後におけるパターン開口寸法幅の変化の抑制が可能で、遮光性に優れた硬化膜を得ることが可能となるので、有機ELディスプレイに好適に用いることができる。
 1,12,15,26 ガラス基板
 2,16 TFT
 3,17 TFT平坦化用の硬化膜
 4,56,76 反射電極
 5a,21a プリベーク膜
 5b,21b,28 硬化パターン
 6,22 マスク
 7,23 活性化学線
 8 EL発光層
 9,18,64,84 透明電極
 10,29 平坦化用の硬化膜
 11 カバーガラス
 13 BLU
 14 BLUを有するガラス基板
 19 平坦化膜
 20,30 配向膜
 24 BCSを有するガラス基板
 25 BLU及びBCSを有するガラス基板
 27 カラーフィルタ
 31 カラーフィルタ基板
 32 BLU、BCS及びBMを有するガラス基板
 33 液晶層
 34 厚膜部
 35a,35b,35c 薄膜部
 36a,36b,36c,36d,36e 硬化パターンの断面の傾斜辺
 37 下地の基板の水平辺
 47,53,66 無アルカリガラス基板
 48 第1電極
 49 補助電極
 50 絶縁層
 51 有機EL層
 52 第2電極
 54,74 ソース電極
 55,75 ドレイン電極
 57,77 酸化物半導体層
 58,78 ビアホール
 59,79 画素領域
 60,80 ゲート絶縁層
 61,81 ゲート電極
 62,82 TFT保護層/画素分割層
 63,83 有機EL発光層
 65,85 封止膜
 67 PIフィルム基板
 68 硬化膜
 69 Siウェハ
 70 重石
 71 ITO基板
 72 現像後膜
 73,86 SiO
 87 PETフィルム基板

Claims (21)

  1.  (A)アルカリ可溶性樹脂、(C)感光剤、(Da)黒色剤、及び(F)架橋剤を含有する感光性樹脂組成物であって、
     前記(A)アルカリ可溶性樹脂が、(A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール、及び(A1-4)ポリベンゾオキサゾール前駆体からなる群より選ばれる一種類以上を含む(A1)第1の樹脂を含有し、
     前記(A1-1)ポリイミド、(A1-2)ポリイミド前駆体、(A1-3)ポリベンゾオキサゾール、及び(A1-4)ポリベンゾオキサゾール前駆体からなる群より選ばれる一種類以上が、フッ素原子を有する構造単位を、全構造単位の10~100mol%で含有し、
     前記(Da)黒色剤の含有比率が、全固形分中における5~70質量%であって、
     前記(F)架橋剤が、
     (F1)分子中にフルオレン骨格及び2つ以上のエポキシ基を有するエポキシ化合物、
     (F2)分子中にインダン骨格及び2つ以上のエポキシ基を有するエポキシ化合物、
     (F3)芳香族構造、脂環式構造及びエポキシ基を含む構造単位を有するエポキシ樹脂、
     (F4)ビフェニル構造、ターフェニル構造、ナフタレン構造、アントラセン構造及びフルオレン構造からなる群より選ばれる一種類以上、並びに2つ以上のエポキシ基を含む構造単位を有するエポキシ樹脂、
     (F5)分子中に2つ以上のフルオレン骨格又は2つ以上のインダン骨格、並びに2つ以上のエポキシ基を有するエポキシ化合物、
     (F6)分子中にスピロ骨格で連結された2つ以上の縮合多環式骨格、並びに2つ以上のエポキシ基を有するエポキシ化合物、
     (F7)分子中にインドリノン骨格又はイソインドリノン骨格、並びに2つ以上のエポキシ基を有するエポキシ化合物、及び
     (F8)分子中に2つ以上のナフタレン骨格及び2つ以上のエポキシ基を有するエポキシ化合物、からなる群より選ばれる一種類以上を含有する
     感光性樹脂組成物。
  2.  前記(F)架橋剤が、
     (F1)分子中にフルオレン骨格及び2つ以上のエポキシ基を有するエポキシ化合物、
     (F2)分子中にインダン骨格及び2つ以上のエポキシ基を有するエポキシ化合物、
     (F3)芳香族構造、脂環式構造及びエポキシ基を含む構造単位を有するエポキシ樹脂、及び
     (F4)ビフェニル構造、ターフェニル構造、ナフタレン構造、アントラセン構造及びフルオレン構造からなる群より選ばれる一種類以上、並びに2つ以上のエポキシ基を含む構造単位を有するエポキシ樹脂、からなる群より選ばれる一種類以上を含有する
     請求項1に記載の感光性樹脂組成物。
  3.  前記(Da)黒色剤が、(D1a)黒色顔料を含有し、
     前記(D1a)黒色顔料が、(D1a-1)黒色有機顔料として、(D1a-1a)ベンゾフラノン系黒色顔料を含有する
     請求項1又は2に記載の感光性樹脂組成物。
  4.  前記(D1a-1)黒色有機顔料が、さらに、(DC)被覆層を含有し、
     前記(DC)被覆層が、(DC-1)シリカ被覆層、(DC-2)金属酸化物被覆層及び(DC-3)金属水酸化物被覆層からなる群より選ばれる一種類以上を含む
     請求項3に記載の感光性樹脂組成物。
  5.  前記(F1)分子中にフルオレン骨格及び2つ以上のエポキシ基を有するエポキシ化合物として、一般式(11)で表される化合物、
     前記(F2)分子中にインダン骨格及び2つ以上のエポキシ基を有するエポキシ化合物として、一般式(12)で表される化合物及び/又は一般式(13)で表される化合物、
     前記(F3)芳香族構造、脂環式構造及びエポキシ基を含む構造単位を有するエポキシ樹脂として、一般式(14)で表される構造単位を有するエポキシ樹脂、
     前記(F4)ビフェニル構造、ターフェニル構造、ナフタレン構造、アントラセン構造、及びフルオレン構造からなる群より選ばれる一種類以上、並びに2つ以上のエポキシ基を含む構造単位を有するエポキシ樹脂として、一般式(15)で表される構造単位又は一般式(16)で表される構造単位を有するエポキシ樹脂、からなる群より選ばれる一種類以上を含有する
     請求項1~4のいずれか1項に記載の感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     (一般式(11)、(12)、及び(13)において、X~Xは、それぞれ独立して、炭素数6~15及び2~10価の、単環式若しくは縮合多環式の芳香族炭化水素環、又は、炭素数4~10及び2~8価の、単環式若しくは縮合多環式の脂肪族炭化水素環を表す。Y~Yは、それぞれ独立して、直接結合、炭素数1~10のアルキレン基、炭素数4~10のシクロアルキレン基、又は炭素数6~15のアリーレン基を表す。R31~R40は、それぞれ独立して、ハロゲン、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、炭素数6~15のアリール基、炭素数1~10のフルオロアルキル基、炭素数4~10のフルオロシクロアルキル基、又は炭素数6~15のフルオロアリール基を表し、R41~R44は、それぞれ独立して、水素、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、又は炭素数6~15のアリール基を表し、R45~R50は、それぞれ独立して、水素、炭素数1~10のアルキル基、又はヒドロキシ基を表す。a、b、c、d、e、及びfはそれぞれ独立して、0~8の整数を表し、g、h、i、及びjは、それぞれ独立して、0~4の整数を表す。α、β、γ、δ、ε、及びζは、それぞれ独立して、1~4の整数を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (一般式(14)、(15)、及び(16)において、X~X10は、それぞれ独立して、炭素数1~6の脂肪族構造を表す。Y~Y10は、それぞれ独立して、直接結合、炭素数1~10のアルキレン基、炭素数4~10のシクロアルキレン基、又は炭素数6~15のアリーレン基を表す。Zは、炭素数10~25及び3~16価の、芳香族構造を表す。R51~R55は、それぞれ独立して、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、又は炭素数6~15のアリール基を表し、R56及びR57は、それぞれ独立して、炭素数1~10のアルキル基を表し、R58~R62は、それぞれ独立して、ハロゲン、炭素数1~10のアルキル基、炭素数4~10のシクロアルキル基、又は炭素数6~15のアリール基を表し、R63~R66は、それぞれ独立して、水素、炭素数1~10のアルキル基、又はヒドロキシ基を表す。a、b、c、d、及びeは、それぞれ独立して、0~10の整数を表し、fは、0~8の整数を表し、gは、0~6の整数を表し、h及びiは、それぞれ独立して、0~3の整数を表し、jは、0~2の整数を表し、k及びlは、それぞれ独立して、0~4の整数を表し、m、n、及びoは、それぞれ独立して、1~4の整数を表し、pは、2~4の整数を表す。)
  6.  さらに、(B)ラジカル重合性化合物として、(B3)柔軟鎖含有脂肪族ラジカル重合性化合物及び/又は(B4)柔軟鎖含有二官能ラジカル重合性化合物を含有し、
     前記(B3)柔軟鎖含有脂肪族ラジカル重合性化合物及び(B4)柔軟鎖含有二官能ラジカル重合性化合物が、少なくとも1つのラクトン変性鎖及び/又は少なくとも1つのラクタム変性鎖を有する
     請求項1~5のいずれか1項に記載の感光性樹脂組成物。
  7.  前記(B)ラジカル重合性化合物として、(B3)柔軟鎖含有脂肪族ラジカル重合性化合物及び(B4)柔軟鎖含有二官能ラジカル重合性化合物を含有し、
     前記(B3)柔軟鎖含有脂肪族ラジカル重合性化合物が、ラクトン変性鎖及び/又はラクタム変性鎖として、分子中に一般式(24)で表される基、及び、3個以上の一般式(25)で表される基を有し、
     前記(B4)柔軟鎖含有二官能ラジカル重合性化合物が、ラクトン変性鎖及び/又はラクタム変性鎖として、分子中に一般式(21)で表される基、及び、2個の一般式(25)で表される基を有する
     請求項6に記載の感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(24)において、R125は、水素又は炭素数1~10のアルキル基を表す。Z17は、一般式(29)で表される基又は一般式(30)で表される基を表す。aは、1~10の整数を表し、bは、1~4の整数を表し、cは、0又は1を表し、dは、1~4の整数を表し、eは、0又は1を表す。cが0の場合、dは1である。一般式(25)において、R126~R128は、それぞれ独立して、水素、炭素数1~10のアルキル基、又は炭素数6~15のアリール基を表す。一般式(30)において、R129は、水素又は炭素数1~10のアルキル基を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (一般式(20)において、R67は、水素又は炭素数1~10のアルキル基を表す。aは、1~10の整数を表し、bは、1~4の整数を表す。一般式(21)において、R68は、水素又は炭素数1~10のアルキル基を表す。Z18は、一般式(29)で表される基又は一般式(30)で表される基を表す。cは、1~10の整数を表し、dは、1~4の整数を表す。一般式(25)において、R126~R128は、それぞれ独立して、水素、炭素数1~10のアルキル基又は炭素数6~15のアリール基を表す。一般式(30)において、R129は、水素又は炭素数1~10のアルキル基を表す。)
  8.  前記(B3)柔軟鎖含有脂肪族ラジカル重合性化合物、及び、前記(B4)柔軟鎖含有二官能ラジカル重合性化合物の合計100質量%に占める、前記(B4)柔軟鎖含有二官能ラジカル重合性化合物の含有比率が、20~80質量%である
     請求項7に記載の感光性樹脂組成物。
  9.  さらに、前記(F)架橋剤として、(F9)含窒素環骨格含有エポキシ化合物を含有する
     請求項1~8のいずれか1項に記載の感光性樹脂組成物。
  10.  さらに、(G)多官能チオール化合物を含有する
     請求項1~9のいずれか1項に記載の感光性樹脂組成物。
  11.  さらに、(B)ラジカル重合性化合物を含有し、
     前記(C)感光剤が、(C1)光重合開始剤を含有し、
     前記(C1)光重合開始剤の含有量が、前記(A)アルカリ可溶性樹脂及び前記(B)ラジカル重合性化合物の合計を100質量部とした場合において、10~30質量部である
     請求項1~10のいずれか1項に記載の感光性樹脂組成物。
  12.  前記(Da)黒色剤が、(D1a)黒色顔料を含有し、
     前記(D1a)黒色顔料が、(D1a-3)二色以上の着色顔料混合物を含有し、前記(D1a-3)二色以上の着色顔料混合物が、赤、橙、黄、緑、青又は紫色の顔料から選ばれる二色以上の顔料を含む、
     請求項1~11のいずれか1項に記載の感光性樹脂組成物。
  13.  前記(A)アルカリ可溶性樹脂が、さらに、(A2-1)ポリシロキサン、(A2-2)多環側鎖含有樹脂、(A2-3)酸変性エポキシ樹脂、及び(A2-4)アクリル樹脂からなる群より選ばれる一種類以上を含む(A2)第2の樹脂を含有し、
     前記(A1)第1の樹脂及び前記(A2)第2の樹脂の合計100質量%に占める、前記(A1)第1の樹脂の含有比率が、70~99質量%である
     請求項1~12のいずれか1項に記載の感光性樹脂組成物。
  14.  さらに、(B)ラジカル重合性化合物として、(B1)フルオレン骨格含有ラジカル重合性化合物及び/又は(B2)インダン骨格含有ラジカル重合性化合物からなる群より選ばれる一種類以上を含有する
     請求項1~13のいずれか1項に記載の感光性樹脂組成物。
  15.  請求項1~14のいずれか1項に記載の感光性樹脂組成物を硬化した硬化膜。
  16.  前記硬化膜の膜厚1μm当たりの光学濃度が、0.3~5.0であって、前記硬化膜が、段差形状を有する硬化パターンを含む
     請求項15に記載の硬化膜。
  17.  前記硬化膜が硬化パターンを有し、前記硬化パターンの断面における傾斜辺のテーパー角が1~60°である
     請求項15又は16に記載の硬化膜。
  18.  請求項15~17のいずれか1項に記載の硬化膜を具備する素子。
  19.  請求項15~17のいずれか1項に記載の硬化膜を具備する有機ELディスプレイであって、前記硬化膜を、画素分割層、電極絶縁層、配線絶縁層、層間絶縁層、TFT平坦化層、電極平坦化層、配線平坦化層、TFT保護層、電極保護層、配線保護層、及びゲート絶縁層から選ばれる一種類以上として具備する
     有機ELディスプレイ。
  20.  前記有機ELディスプレイが、曲面の表示部を有し、前記曲面の曲率半径が0.1~10mmである
     請求項19に記載の有機ELディスプレイ。
  21.  有機ELディスプレイの製造方法であって、
     (1)基板上に、請求項1~14のいずれか1項に記載の感光性樹脂組成物の塗膜を成膜する工程、
     (2)前記感光性樹脂組成物の塗膜にフォトマスクを介して活性化学線を照射する工程、
     (3)アルカリ溶液を用いて現像し、前記感光性樹脂組成物のパターンを形成する工程、及び
     (4)前記パターンを加熱して、前記感光性樹脂組成物の硬化パターンを得る工程、を有する、
     有機ELディスプレイの製造方法。
PCT/JP2018/036083 2017-09-29 2018-09-27 感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び有機elディスプレイ、並びに有機elディスプレイの製造方法 WO2019065902A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018553165A JP7230508B2 (ja) 2017-09-29 2018-09-27 感光性樹脂組成物、硬化膜、硬化膜を具備する有機elディスプレイ、並びに有機elディスプレイの製造方法
US16/650,700 US20200319549A1 (en) 2017-09-29 2018-09-27 Photosensitive resin composition, cured film, element having cured film, organic el display, and method for manufacturing organic el display
KR1020207007302A KR20200055715A (ko) 2017-09-29 2018-09-27 감광성 수지 조성물, 경화막, 경화막을 구비하는 소자 및 유기 el 디스플레이, 그리고 유기 el 디스플레이의 제조 방법
CN201880062538.1A CN111164512A (zh) 2017-09-29 2018-09-27 感光性树脂组合物、固化膜、具备固化膜的元件和有机el显示器及有机el显示器的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-191946 2017-09-29
JP2017191946 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019065902A1 true WO2019065902A1 (ja) 2019-04-04

Family

ID=65903589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036083 WO2019065902A1 (ja) 2017-09-29 2018-09-27 感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び有機elディスプレイ、並びに有機elディスプレイの製造方法

Country Status (6)

Country Link
US (1) US20200319549A1 (ja)
JP (1) JP7230508B2 (ja)
KR (1) KR20200055715A (ja)
CN (1) CN111164512A (ja)
TW (1) TW201920374A (ja)
WO (1) WO2019065902A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111596525A (zh) * 2020-06-10 2020-08-28 浙江福斯特新材料研究院有限公司 一种印刷电路板用黑色感光性聚酰亚胺覆盖膜
JP2021047378A (ja) * 2019-09-20 2021-03-25 住友ベークライト株式会社 感光性樹脂組成物、電子デバイスの製造方法および電子デバイス
WO2021091223A1 (ko) * 2019-11-08 2021-05-14 주식회사 엘지화학 바인더 수지, 네가티브형 감광성 수지 조성물 및 이를 이용하여 형성된 블랙뱅크를 포함하는 디스플레이 장치
WO2021091222A1 (ko) * 2019-11-08 2021-05-14 주식회사 엘지화학 화합물, 바인더 수지, 네가티브형 감광성 수지 조성물 및 이를 이용하여 형성된 블랙뱅크를 포함하는 디스플레이 장치
WO2021157282A1 (ja) * 2020-02-03 2021-08-12 太陽インキ製造株式会社 硬化性組成物、そのドライフィルムおよび硬化物
EP4024134A4 (en) * 2019-08-28 2023-10-25 Zhejiang First Advanced Material R&D Institute Co., Ltd. RESIN COMPOSITION AND USES THEREOF
JP7464493B2 (ja) 2020-10-02 2024-04-09 東京応化工業株式会社 黒色感光性樹脂組成物、パターン化された硬化物の製造方法、パターン化された硬化物、及びブラックマトリクス

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102151639B1 (ko) * 2013-10-16 2020-09-07 삼성디스플레이 주식회사 유기 발광 표시 장치
CN110649185B (zh) * 2019-09-26 2022-08-09 合肥京东方卓印科技有限公司 显示基板及其喷墨打印方法、显示装置
TWI782241B (zh) * 2019-11-12 2022-11-01 臺灣永光化學工業股份有限公司 聚醯亞胺正型光阻組成物
TW202206554A (zh) * 2020-07-22 2022-02-16 日商富士軟片股份有限公司 樹脂組成物、膜、濾光器、固體攝像元件、圖像顯示裝置、樹脂及化合物
TW202208470A (zh) * 2020-07-22 2022-03-01 日商富士軟片股份有限公司 樹脂組成物、膜、濾光器、固體攝像元件、圖像顯示裝置、樹脂及化合物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067998A1 (ja) * 2009-12-04 2011-06-09 東レ株式会社 感光性樹脂組成物、それを用いた積層体および固体撮像装置
WO2017057281A1 (ja) * 2015-09-30 2017-04-06 東レ株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び表示装置、並びにその製造方法
JP2017083604A (ja) * 2015-10-27 2017-05-18 凸版印刷株式会社 カラーフィルタ用感光性組成物、カラーフィルタ及び固体撮像素子
WO2018181311A1 (ja) * 2017-03-29 2018-10-04 東レ株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び有機elディスプレイ、並びにその製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114826A (en) * 1989-12-28 1992-05-19 Ibm Corporation Photosensitive polyimide compositions
JP4662793B2 (ja) * 2005-03-01 2011-03-30 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. エポキシ含有物質を含むネガ型感光性樹脂組成物
JP2009237441A (ja) * 2008-03-28 2009-10-15 Fujifilm Corp 着色感光性組成物、カラーフィルタ、及び表示装置
CN102227474B (zh) * 2009-01-29 2013-11-06 东丽株式会社 树脂组合物及使用其的显示装置
JP5617275B2 (ja) * 2009-02-26 2014-11-05 日本ゼオン株式会社 感放射線性樹脂組成物、樹脂膜、積層体及び電子部品
JP5526693B2 (ja) * 2009-10-09 2014-06-18 日油株式会社 感光性樹脂組成物およびその用途
KR101810702B1 (ko) * 2009-12-28 2017-12-19 아사히 가라스 가부시키가이샤 감광성 조성물, 격벽, 컬러 필터 및 유기 el 소자
JP5471966B2 (ja) * 2010-08-17 2014-04-16 Jsr株式会社 感光性接着剤組成物、前記組成物を用いる積層体または固体撮像素子の製造方法、および固体撮像素子
EP2725423B1 (en) * 2011-06-24 2021-09-01 Tokyo Ohka Kogyo Co., Ltd. Negative-type photosensitive resin composition, pattern forming method, cured film, insulating film, and color filter
TWI585527B (zh) * 2012-02-29 2017-06-01 新日鐵住金化學股份有限公司 A photosensitive composition for black matrix and a method for producing the same
KR20140106282A (ko) * 2013-02-26 2014-09-03 동우 화인켐 주식회사 착색 감광성 수지 조성물
WO2014199800A1 (ja) * 2013-06-12 2014-12-18 Jsr株式会社 樹脂組成物、感光性樹脂組成物、絶縁膜およびその製法ならびに電子部品
TWI485516B (zh) * 2013-08-28 2015-05-21 Chi Mei Corp 黑色矩陣用感光性樹脂組成物及其應用
JP6248561B2 (ja) * 2013-11-14 2017-12-20 日本ゼオン株式会社 感放射線性樹脂組成物、及び積層体
KR20170042582A (ko) * 2014-08-12 2017-04-19 가부시키가이샤 디엔피 파인 케미칼 색재 분산액, 컬러 필터용 착색 수지 조성물, 컬러 필터 및 표시 장치
SG11201707367VA (en) 2015-03-30 2017-10-30 Toray Industries Colored resin composition, colored film, decorative substrate and touch panel
JP6879204B2 (ja) * 2016-03-30 2021-06-02 東レ株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜を具備する表示装置、並びにその製造方法
JPWO2018003808A1 (ja) * 2016-06-30 2019-04-18 東レ株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜を具備する素子、素子を具備する表示装置、及び有機elディスプレイ
CN109804310B (zh) * 2016-09-30 2022-09-30 东丽株式会社 负型感光性树脂组合物、固化膜、具备固化膜的元件及显示装置、以及其制造方法
US20200356005A1 (en) * 2018-01-31 2020-11-12 Toray Industries, Inc. Negative photosensitive resin composition, cured film, element provided with cured film, display device and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067998A1 (ja) * 2009-12-04 2011-06-09 東レ株式会社 感光性樹脂組成物、それを用いた積層体および固体撮像装置
WO2017057281A1 (ja) * 2015-09-30 2017-04-06 東レ株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び表示装置、並びにその製造方法
JP2017083604A (ja) * 2015-10-27 2017-05-18 凸版印刷株式会社 カラーフィルタ用感光性組成物、カラーフィルタ及び固体撮像素子
WO2018181311A1 (ja) * 2017-03-29 2018-10-04 東レ株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び有機elディスプレイ、並びにその製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4024134A4 (en) * 2019-08-28 2023-10-25 Zhejiang First Advanced Material R&D Institute Co., Ltd. RESIN COMPOSITION AND USES THEREOF
JP2021047378A (ja) * 2019-09-20 2021-03-25 住友ベークライト株式会社 感光性樹脂組成物、電子デバイスの製造方法および電子デバイス
JP7375406B2 (ja) 2019-09-20 2023-11-08 住友ベークライト株式会社 感光性樹脂組成物、電子デバイスの製造方法および電子デバイス
WO2021091222A1 (ko) * 2019-11-08 2021-05-14 주식회사 엘지화학 화합물, 바인더 수지, 네가티브형 감광성 수지 조성물 및 이를 이용하여 형성된 블랙뱅크를 포함하는 디스플레이 장치
CN114222947A (zh) * 2019-11-08 2022-03-22 株式会社Lg化学 粘结剂树脂、负型光敏树脂组合物、和包括使用其形成的黑堤的显示装置
JP2022545349A (ja) * 2019-11-08 2022-10-27 エルジー・ケム・リミテッド 化合物、バインダー樹脂、ネガ型感光性樹脂組成物およびこれを用いて形成されたブラックバンクを含むディスプレイ装置
JP7302766B2 (ja) 2019-11-08 2023-07-04 エルジー・ケム・リミテッド 化合物、バインダー樹脂、ネガ型感光性樹脂組成物およびこれを用いて形成されたブラックバンクを含むディスプレイ装置
WO2021091223A1 (ko) * 2019-11-08 2021-05-14 주식회사 엘지화학 바인더 수지, 네가티브형 감광성 수지 조성물 및 이를 이용하여 형성된 블랙뱅크를 포함하는 디스플레이 장치
US11892772B2 (en) 2019-11-08 2024-02-06 Lg Chem, Ltd. Binder resin, negative-type photosensitive resin composition, and display device comprising black bank formed using same
CN114222947B (zh) * 2019-11-08 2024-05-28 株式会社Lg化学 粘结剂树脂、负型光敏树脂组合物、和包括使用其形成的黑堤的显示装置
WO2021157282A1 (ja) * 2020-02-03 2021-08-12 太陽インキ製造株式会社 硬化性組成物、そのドライフィルムおよび硬化物
CN111596525A (zh) * 2020-06-10 2020-08-28 浙江福斯特新材料研究院有限公司 一种印刷电路板用黑色感光性聚酰亚胺覆盖膜
JP7464493B2 (ja) 2020-10-02 2024-04-09 東京応化工業株式会社 黒色感光性樹脂組成物、パターン化された硬化物の製造方法、パターン化された硬化物、及びブラックマトリクス

Also Published As

Publication number Publication date
TW201920374A (zh) 2019-06-01
KR20200055715A (ko) 2020-05-21
US20200319549A1 (en) 2020-10-08
CN111164512A (zh) 2020-05-15
JP7230508B2 (ja) 2023-03-01
JPWO2019065902A1 (ja) 2020-09-10

Similar Documents

Publication Publication Date Title
JP7234631B2 (ja) ネガ型感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び有機elディスプレイ、並びにその製造方法
JP6680315B2 (ja) ネガ型感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び表示装置、並びにその製造方法
JP7230508B2 (ja) 感光性樹脂組成物、硬化膜、硬化膜を具備する有機elディスプレイ、並びに有機elディスプレイの製造方法
KR102318807B1 (ko) 네가티브형 감광성 수지 조성물, 경화막, 경화막을 구비하는 표시 장치, 및 그의 제조 방법
CN109804310B (zh) 负型感光性树脂组合物、固化膜、具备固化膜的元件及显示装置、以及其制造方法
WO2019087985A1 (ja) ネガ型感光性樹脂組成物、硬化膜、並びに有機elディスプレイ及びその製造方法
TWI782907B (zh) 負型感光性樹脂組成物、硬化膜、具備硬化膜之顯示裝置、及其製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018553165

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863085

Country of ref document: EP

Kind code of ref document: A1