WO2011067998A1 - 感光性樹脂組成物、それを用いた積層体および固体撮像装置 - Google Patents

感光性樹脂組成物、それを用いた積層体および固体撮像装置 Download PDF

Info

Publication number
WO2011067998A1
WO2011067998A1 PCT/JP2010/068939 JP2010068939W WO2011067998A1 WO 2011067998 A1 WO2011067998 A1 WO 2011067998A1 JP 2010068939 W JP2010068939 W JP 2010068939W WO 2011067998 A1 WO2011067998 A1 WO 2011067998A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive resin
less
resin composition
wavelength
light transmittance
Prior art date
Application number
PCT/JP2010/068939
Other languages
English (en)
French (fr)
Inventor
奥田裕美子
岡沢徹
鴨川政雄
諏訪充史
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP10834451.6A priority Critical patent/EP2508947A4/en
Priority to CN201080055022.8A priority patent/CN102640054B/zh
Priority to US13/513,464 priority patent/US8901225B2/en
Priority to KR1020177036813A priority patent/KR101913997B1/ko
Priority to SG2012040325A priority patent/SG181464A1/en
Priority to JP2010545713A priority patent/JP5088419B2/ja
Publication of WO2011067998A1 publication Critical patent/WO2011067998A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation

Definitions

  • the present invention relates to a photosensitive resin composition, a laminate using the same, and a solid-state imaging device.
  • solid-state imaging devices such as CCD (Charge Coupled Device) and CMOS (Complementary Metal-Oxide Semiconductor). So far, as a small solid-state imaging device, what is a solid-state imaging device and a surface that is bonded to the back surface of the solid-state imaging device and electrically connected to the solid-state imaging device and that is bonded to the solid-state imaging device?
  • a solid-state imaging device including a passive chip having an electrical connection terminal to the outside on the opposite surface, and a passive chip on which passive components are arranged, a dam-shaped spacer, and a lens holder
  • a camera module (see, for example, Patent Document 2) including a spacer resin, an optical filter, and a lens holder has been proposed.
  • FIG. 1 An example of the configuration of the solid-state imaging device is shown in FIG.
  • the lens holder 9 is provided on the semiconductor substrate 3 on which the solid-state imaging device 2 is formed, and the lens 10 and the glass 11 are sandwiched between the lens holders 9.
  • a glass 11 is formed on the solid-state imaging device 2, and an IR cut filter 8 sandwiched between lens holders 9 via a spacer 12 is mounted.
  • the solder ball 1 is formed at the tip of the through electrode 7 that penetrates the semiconductor substrate 3 on which the solid-state imaging device 2 is formed, and the semiconductor substrate 3 and the mounting substrate 4 on which the semiconductor substrate 3 is mounted are connected by the solder ball 1.
  • An insulating layer 5 is provided on the surface of the semiconductor substrate 3 on the mounting substrate 4 side.
  • a silicon wafer generally used as the semiconductor substrate 3 has a characteristic of transmitting light in the near infrared region while blocking light in the ultraviolet to visible region, and therefore, a light shielding layer that blocks light in the near infrared region. 6 is used to prevent the incidence of light in the ultraviolet to visible to near infrared region.
  • an insulating material preferably used for an insulating layer of a solid-state imaging device or the like for example, an alkali-soluble resin, a compound having two or more polymerizable groups, a photoacid generator, a crosslinking agent that reacts with an acid, and (E) a solvent are contained.
  • Negative photosensitive resin compositions have been proposed (see, for example, Patent Document 3).
  • the average particle diameter is 200 nm or less, and Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er , Tm, Yb, Lu, Sr, Ca, a near-infrared absorbent dispersion in which a near-infrared absorbent composed of one or more hexaboride particles of an element selected from the elements selected from the group consisting of
  • a near-infrared absorbent composed of one or more hexaboride particles of an element selected from the elements selected from the group consisting of
  • a near-infrared absorbent composed of one or more hexaboride particles of an element selected from the elements selected from the group consisting of
  • a near-infrared absorbent composed of one or more hexaboride particles of an element selected from the elements selected from the group consisting of
  • a near-infrared absorbent composed of one or more hexaboride particles of an element selected from the elements selected
  • the near-infrared absorbing material filter includes tungsten oxide fine particles and / or composite tungsten oxide fine particles having an average dispersed particle diameter of 800 nm or less, and the maximum visible light transmittance at a wavelength of 380 nm to 780 nm is 50% or more, and the wavelength is 800 nm.
  • a near-infrared absorbing material filter for a plasma display panel having a minimum near-infrared transmittance of ⁇ 1100 nm of 30% or less has been proposed (see, for example, Patent Document 6).
  • the solid-state imaging device having the configuration shown in FIG. 1 has an insulating layer and a light shielding layer laminated by applying a material that shields light in the near infrared region after applying an insulating material to the back surface of the semiconductor substrate.
  • the present invention provides a substrate having a light transmittance of less than 3.0% in a wavelength region of 400 nm or more and 900 nm or less, and a maximum light transmittance value of 3.0% or more in a region of a wavelength exceeding 900 nm and 1300 nm or less. It is an object of the present invention to provide a photosensitive resin composition that can easily impart insulating properties and light-shielding properties in the ultraviolet to visible to near-infrared region.
  • the present invention includes (a) an alkali-soluble resin, (b) a tungsten oxide and / or a composite tungsten oxide represented by the following general formula (1) or (2), and (c) two or more polymerizable groups.
  • a photosensitive resin composition comprising a photopolymerizable compound, (d) an oxime-based photopolymerization initiator, and (e) a solvent.
  • W is tungsten, O is oxygen, y> 0, z> 0, and 2.2 ⁇ z / y ⁇ 3 is satisfied.
  • M x W y O Z (2) (In the general formula (2), the M element is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, One or more elements selected from Mo, Ta, Re, Be, Hf, Os, Bi, I, W is tungsten, O is oxygen, x> 0, y> 0, z>0; 001 ⁇ x / y ⁇ 1.1 and 2.2 ⁇ z / y ⁇ 3.0 are satisfied.)
  • the photosensitive resin composition of the present invention has a light transmittance of less than 3.0% in a wavelength region of 400 nm or more and 900 nm or less, and a maximum light transmittance of 3.03 or less in a region exceeding a wavelength of 900 nm is 3.0%.
  • the photosensitive resin composition of the present invention contains (a) an alkali-soluble resin.
  • the alkali-soluble in the present invention means that a solution in which a resin is dissolved in ⁇ -butyrolactone is applied on a silicon wafer and prebaked at 120 ° C. for 4 minutes to form a prebaked film having a thickness of 10 ⁇ m ⁇ 0.5 ⁇ m.
  • the dissolution rate obtained from the decrease in film thickness when the membrane is immersed in a 2.38 wt% tetramethylammonium hydroxide aqueous solution at 23 ⁇ 1 ° C. for 1 minute and then rinsed with pure water is 50 nm / min or more.
  • the (a) alkali-soluble resin used in the present invention preferably has an acidic group in the structural unit of the resin and / or at the end of the main chain in order to impart the alkali solubility.
  • the acidic group include a carboxyl group, a phenolic hydroxyl group, a sulfonic acid group, and a thiol group.
  • the fluorine atom content in the alkali-soluble resin is preferably 5% by weight or more from the viewpoint of preventing the penetration of the interface, and preferably 20% by weight or less from the viewpoint of solubility in an aqueous alkali solution.
  • the photosensitive resin composition of the present invention preferably uses (a) polyimide, polybenzoxazole or a precursor thereof as (a) alkali-soluble resin.
  • Polyimide and polybenzoxazole are resins having a cyclic structure of an imide ring or an oxazole ring in the main chain structure.
  • the polyimide precursor and the polybenzoxazole precursor are resins having an amide bond in the main chain, and become the aforementioned polyimide or polybenzoxazole by dehydrating and ring-closing by heat treatment or chemical treatment. By containing these resins, a resin composition having excellent insulating properties can be obtained.
  • polyimide precursor examples include polyamic acid, polyamic acid ester, polyamic acid amide, and polyisoimide.
  • polybenzoxazole precursor examples include polyhydroxyamide, polyaminoamide, polyamide, and polyamideimide.
  • the number of repeating structural units is preferably 10 to 100,000. Two or more of these may be contained, or a copolymer having two or more of these structural units may be contained. In the case of curing by heat treatment at a low temperature of 250 ° C. or lower, polyimide is more preferable from the viewpoint of chemical resistance.
  • Polyimide is generally obtained by dehydrating and ring-closing polyamic acid, which is one of polyimide precursors obtained by reacting tetracarboxylic dianhydride and diamine, by heating or chemical treatment such as acid or base. It has a carboxylic acid residue and a diamine residue.
  • the polyimide preferably has a structural unit represented by the following general formula (3). Two or more of these may be contained, or a copolymer with another structural unit may be used. It is preferable to have a structural unit represented by the following general formula (3) or a general formula (4) described later in an amount of 50 mol% or more in all the structural units.
  • R 1 represents a 4- to 10-valent organic group
  • R 2 represents a 2- to 8-valent organic group
  • R 3 and R 4 represent a phenolic hydroxyl group, a sulfonic acid group or a thiol group, and may be the same or different.
  • p and q represent an integer of 0 to 6, and may be the same or different.
  • R 1- (R 3 ) p represents a tetracarboxylic acid residue.
  • R 1 is a 4- to 10-valent organic group, preferably a 4- to 10-valent organic group having 5 to 40 carbon atoms and having an aromatic ring or a cycloaliphatic group.
  • Examples of the acid dianhydride constituting the tetracarboxylic acid residue include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4.
  • R 10 represents an oxygen atom, C (CF 3 ) 2 , C (CH 3 ) 2 or SO 2 .
  • R 11 and R 12 represent a hydrogen atom, a hydroxyl group or a thiol group.
  • R 2 — (R 4 ) q represents a diamine residue.
  • R 2 is a divalent to octavalent organic group, preferably a divalent to octavalent organic group having 5 to 40 carbon atoms and having an aromatic ring or a cycloaliphatic group.
  • diamine constituting the diamine residue examples include 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, and 3,4'-diamino.
  • R 10 represents an oxygen atom, C (CF 3 ) 2 , C (CH 3 ) 2 or SO 2 .
  • R 11 to R 14 each represents a hydrogen atom, a hydroxyl group or a thiol group.
  • Polybenzoxazole can be obtained by reacting bisaminophenol with dicarboxylic acid, corresponding dicarboxylic acid chloride, dicarboxylic acid active ester and the like.
  • polyhydroxyamide which is one of the polybenzoxazole precursors obtained by reacting bisaminophenol compounds with dicarboxylic acids, is subjected to dehydration and ring closure by heating or chemical treatment of phosphoric anhydride, base, carbodiimide compounds, etc. It has a dicarboxylic acid residue and a bisaminophenol residue.
  • Examples of the acid constituting the dicarboxylic acid residue include terephthalic acid, isophthalic acid, diphenyl ether dicarboxylic acid, bis (carboxyphenyl) hexafluoropropane, biphenyl dicarboxylic acid, benzophenone dicarboxylic acid, and triphenyl dicarboxylic acid. Two or more of these may be used.
  • Examples of the diamine constituting the bisaminophenol residue include diamines having the structure shown below. Two or more of these may be used.
  • R 10 represents an oxygen atom, C (CF 3 ) 2 , C (CH 3 ) 2 or SO 2 .
  • R 11 to R 14 represent a hydrogen atom, a hydroxyl group or a thiol group, and at least one of each diamine is a hydroxyl group.
  • the polyimide precursor is obtained, for example, by reacting a tetracarboxylic dianhydride (a part of which may be replaced with an acid anhydride, a monoacid chloride compound, or a monoactive ester compound) and a diamine compound. Has a residue and a diamine residue.
  • the polybenzoxazole precursor is obtained, for example, by reacting a bisaminophenol compound with a dicarboxylic acid, and has a dicarboxylic acid residue and a bisaminophenol residue.
  • the polyimide precursor and the polybenzoxazole precursor preferably have a structural unit represented by the following general formula (4). Two or more of these may be contained, or a copolymer with another structural unit may be used. It is preferable that the structural unit represented by the following general formula (4) or the structural unit represented by the above general formula (3) has 50 mol% or more in all the structural units.
  • R 5 and R 6 each represent a divalent to octavalent organic group, and may be the same or different.
  • R 7 and R 8 represent a phenolic hydroxyl group, a sulfonic acid group, a thiol group, or COOR 9 and may be the same or different.
  • R 9 represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • r and s each represent an integer of 0 to 6. However, r + s> 0.
  • R 5- (R 7 ) r represents an acid residue such as dicarboxylic acid or tetracarboxylic acid.
  • R 5 is a divalent to octavalent organic group, preferably a divalent to octavalent organic group having 5 to 40 carbon atoms and containing an aromatic ring or a cycloaliphatic group.
  • Examples of the acid constituting the acid residue include those exemplified as the acid constituting the dicarboxylic acid residue of polybenzoxazole as an example of the dicarboxylic acid.
  • Examples of the tricarboxylic acid include trimellitic acid, trimesic acid, diphenyl ether tricarboxylic acid, biphenyltricarboxylic acid, and the like.
  • tetracarboxylic acid examples include pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, 2,2 ′, 3,3′- Biphenyltetracarboxylic acid, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, 2,2 ′, 3,3′-benzophenonetetracarboxylic acid, 2,2-bis (3,4-dicarboxyphenyl) hexa Fluoropropane, 2,2-bis (2,3-dicarboxyphenyl) hexafluoropropane, 1,1-bis (3,4-dicarboxyphenyl) ethane, 1,1-bis (2,3-dicarboxyphenyl) ) Ethane, bis (3,4-dicarboxyphenyl) methane, bis (2,3-dicarboxypheny
  • R 10 represents an oxygen atom, C (CF 3 ) 2 , C (CH 3 ) 2 or SO 2 .
  • R 11 and R 12 represent a hydrogen atom, a hydroxyl group or a thiol group.
  • one or two carboxy groups correspond to the R 7 group in the general formula (4).
  • R 7 groups in the general formula (4) preferably hydroxyl groups, sulfonic acid groups, thiol groups, etc. More preferred.
  • These acids can be used as they are, or as acid anhydrides and active esters.
  • R 6- (R 8 ) s represents an amine residue such as diamine or bisaminophenol.
  • R 8 is a divalent to octavalent organic group, preferably a divalent to octavalent organic group having 5 to 40 carbon atoms and having an aromatic ring or a cyclic aliphatic group.
  • Examples of the diamine constituting the amine residue include those exemplified as the diamine constituting the diamine residue of polyimide.
  • these resins it is preferable to seal the ends of these resins with a monoamine, acid anhydride, acid chloride, or monocarboxylic acid having a hydroxyl group, a carboxy group, a sulfonic acid group, or a thiol group. Two or more of these may be used.
  • a monoamine, acid anhydride, acid chloride, or monocarboxylic acid having a hydroxyl group, a carboxy group, a sulfonic acid group, or a thiol group Two or more of these may be used.
  • Preferred examples of the monoamine include 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1-hydroxy-6-aminonaphthalene, 1-hydroxy-5-aminonaphthalene and 1-hydroxy-4-amino.
  • acid anhydrides examples include phthalic anhydride, maleic anhydride, nadic acid, cyclohexanedicarboxylic anhydride, acid anhydrides such as 3-hydroxyphthalic anhydride, and 3-carboxyphenol.
  • the content of the end-capping agent such as monoamine, acid anhydride, acid chloride, monocarboxylic acid described above is 2 to 25 mol% with respect to 100 mol% of the total of acid residues and amine residues constituting the resin. Is preferred.
  • the end-capping agent introduced into the resin can be easily detected by the following method.
  • a resin into which an end-capping agent has been introduced is dissolved in an acidic solution and decomposed into an amine component and an acid component, which are constituent units of the resin, and this is analyzed by gas chromatograph (GC) or NMR measurement.
  • GC gas chromatograph
  • the sealant can be easily detected.
  • PPC pyrolysis gas chromatography
  • the photosensitive resin composition of the present invention contains (b) a tungsten oxide and / or a composite tungsten oxide represented by the following general formula (1) or (2). Since such a compound absorbs light in the near-infrared light region, the light-sensitive property in the near-infrared region can be imparted to the photosensitive resin composition of the present invention.
  • W is tungsten
  • O is oxygen
  • 2.2 ⁇ z / y ⁇ 3 is satisfied.
  • free electron-derived absorption characteristics can be obtained in the near-infrared region, which is suitable as a near-infrared absorbing material.
  • M element is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt.
  • W is tungsten
  • O is oxygen
  • the composite tungsten oxide preferably has a hexagonal crystal structure from the viewpoint of light absorption in the near infrared region, and the value of x is a value calculated theoretically from the hexagonal crystal structure (0.33). ),
  • the additive element M is disposed in all hexagonal voids, so that the light absorption ability in the near infrared region is further improved.
  • preferable M element includes one or more elements selected from Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn, and these elements are used.
  • a hexagonal structure is easily formed.
  • the value of z is preferably 2.2 or more and 3.0 or less.
  • Cs 0.33 WO 3 can be mentioned.
  • the composite tungsten oxide represented by the general formula (2) is particularly preferable.
  • the content of the compound represented by the general formula (1) or (2) is 5 parts by weight with respect to 100 parts by weight of the component (a) from the viewpoint of further improving the light shielding property in the near infrared region.
  • the above is preferable, and 18 parts by weight or more is more preferable.
  • in order to make the light transmittance at a wavelength of 500 nm of the cured film described later 40.0% or more 60 parts by weight or less is preferable with respect to 100 parts by weight of component (a), and 20 to 30 parts by weight is more preferable. .
  • 40 weight part or less is more preferable from a viewpoint of the pattern shape at the time of pattern formation, and a post-development residue control.
  • the compound represented by the general formula (1) or (2) is preferably a fine particle from the viewpoint of dispersibility in the resin.
  • the number average particle diameter is preferably 1 nm or more, and is preferably 800 nm or less and more preferably 100 nm or less from the viewpoint of suppressing light scattering in the visible light region.
  • the number average particle diameter of the compound represented by the general formula (1) or (2) is a value measured by a dynamic light scattering method.
  • the number average particle diameter of the particles of the compound represented by the general formula (1) or (2) can be measured using, for example, Nano-ZS manufactured by Malvern Instruments Co., Ltd.
  • the photosensitive resin composition of the present invention contains (c) a photopolymerizable compound having two or more polymerizable groups. Photosensitivity can be imparted to the resin composition by containing (c) a photopolymerizable compound having two or more polymerizable groups and (d) an oxime photopolymerization initiator described later.
  • a photopolymerizable compound having two or more polymerizable groups refers to a compound having an unsaturated bond in the molecule, and the unsaturated bond includes unsaturated groups such as vinyl group, allyl group, acryloyl group, and methacryloyl group. Examples include double bonds and unsaturated triple bonds such as propargyl groups.
  • a conjugated vinyl group, an acryloyl group, and a methacryloyl group are preferable in terms of polymerizability.
  • the number of unsaturated bonds in the photopolymerizable compound having two or more polymerizable groups is preferably 2 to 6 from the viewpoint of stability. When two or more unsaturated bonds are present, each may not be the same group.
  • (C) Preferred examples of the photopolymerizable compound having two or more polymerizable groups include 1,9-nonanediol dimethacrylate, 1,10-decandiol dimethacrylate, dimethylol-tricyclodecane diacrylate, pentaerythritol triacrylate.
  • particularly preferred examples include 1,9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, dimethylol-tricyclodecane diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, pentaerythritol trimethacrylate, Examples include pentaerythritol tetramethacrylate, dipentaerythritol hexaacrylate, dipentaerythritol hexamethacrylate, methylene bisacrylamide, ethylene oxide modified bisphenol A diacrylate, and ethylene oxide modified bisphenol A dimethacrylate. Two or more of these may be contained.
  • the content of the photopolymerizable compound having two or more polymerizable groups is preferably 5 parts by weight or more with respect to 100 parts by weight of the resin of the component (a), and the film loss of the exposed part during development is further reduced. can do. Moreover, 150 weight part or less is preferable, compatibility with (a) component resin can be improved, and whitening of a film
  • the photosensitive resin composition of the present invention preferably further contains (c) a photopolymerizable compound having only one polymerizable group. Thereby, aggregation of particles can be suppressed.
  • (C) 'Preferred examples of the photopolymerizable compound having only one polymerizable group include N, N-dimethylaminoethyl acrylate, N, N-dimethylaminoethyl methacrylate, 2-hydroxyethyl acrylate and 2-hydroxyethyl.
  • the content of the photopolymerizable compound having only one (c) ′ polymerizable group is preferably 10 parts by weight or more with respect to 100 parts by weight of (c) two or more polymerizable groups. Aggregation between each other can be sufficiently suppressed. Further, it is preferably 60 parts by weight or less, whereby (c) a photopolymerizable compound having two or more polymerizable groups forms a crosslinked structure sufficient to suppress elution of the exposed part.
  • the photosensitive resin composition of the present invention contains (d) an oxime photopolymerization initiator.
  • the oxime photopolymerization initiator include 1-phenyl-1,2-butanedione-2- (o-methoxycarbonyl) oxime, 1-phenyl-1,2-propanedione-2- (o- Methoxycarbonyl) oxime, 1-phenyl-1,2-propanedione-2- (o-ethoxycarbonyl) oxime, 1-phenyl-1,2-propanedione-2- (o-benzoyl) oxime, bis ( ⁇ - Isonitrosopropiophenone oxime) isophthal, 1,2-octanedione-1- [4- (phenylthio) phenyl] -2- (o-benzoyloxime), OXE-01 (trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.) Oximes such as OXE-02 (trade name,
  • the content of the oxime-based photopolymerization initiator is preferably 1 part by weight or more with respect to 100 parts by weight of the component (a), further reducing the film loss of the exposed part during development, and improving the pattern shape. be able to. Moreover, 50 weight part or less is preferable and can improve the film
  • the photosensitive resin composition of the present invention contains (e) a solvent.
  • the solvent is preferably an organic solvent having a boiling point of 80 ° C. to 250 ° C. under atmospheric pressure.
  • ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, ethylene glycol monoethyl ether Acetate, propylene glycol monomethyl ether acetate, propyl acetate, butyl acetate, isobutyl acetate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, acetates such as methyl lactate, ethyl lactate, butyl lactate, acetylacetone, methylpropyl Ketone, methyl butyl ketone
  • Alcohols such as toluene and xylene, N-methyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, ⁇ -butyrolactone Etc. Two or more of these may be contained.
  • those that dissolve the component (a) and have a boiling point of 120 ° C. to 200 ° C. under atmospheric pressure are more preferable. If the boiling point is within this range, volatilization during the application of the photosensitive resin composition can be suppressed and the heat treatment temperature for removing the solvent can be kept low, so that the material of the base substrate is not restricted. Further, by using a solvent that dissolves the component (a), a uniform coating film can be formed on the base substrate.
  • preferred organic solvents having such boiling point include cyclopentanone, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, methyl lactate, ethyl lactate, diacetone alcohol, 3-methyl- Examples include 3-methoxybutanol.
  • the content of the organic solvent is preferably in the range of 100 to 400 parts by weight with respect to 100 parts by weight of component (a), from the viewpoint of the solubility of components (a) to (d) and the viscosity at the time of application.
  • the photosensitive resin composition of the present invention may contain a crosslinking agent that reacts with acid or / and heat.
  • a crosslinking agent that reacts with acid or / and heat.
  • the heat resistance and chemical resistance of the cured film can be improved.
  • the crosslinking agent include a crosslinking agent that reacts with an acid or a crosslinking agent that reacts with heat, and any one of them or a combination of two or more of them can be used.
  • Examples of the crosslinking agent that reacts with an acid include compounds having a nitrogen atom that is bonded to a methylol group and / or an alkoxymethyl group.
  • these compounds for example, amino group-containing compounds such as melamine, glycoluril, urea, alkylene urea, and benzoguanamine are reacted with formaldehyde or formaldehyde and an alcohol, and the hydrogen atom of the amino group is substituted with a methylol group or an alkoxymethyl group.
  • the oligomer formed by self-condensing methylol groups of these compounds may be sufficient.
  • thermal crosslinking agent examples include, for example, ML-26X, ML-24X, ML-236TMP, 4-methylol 3M6C, ML-MC, ML-TBC, DML-MBPC, DML-MBOC, DML-OCHP, DML -PC, DML-PCHP, DML-PTBP, DML-34X, DML-EP, DML-POP, DML-OC, dimethylol-Bis-C, dimethylol-BisOC-P, DML-BisOC-Z, DML-BisOCHP-Z , DML-PFP, DML-PSBP, DML-MB25, DML-MTrisPC, DML-Bis25X-34XL, DML-Bis25X-PCHP, TriML-P, TriML-35XL, TriML-TrisCR-HAP, TML-BP, TML-HQ , TML-pp-B F, TML-BPA, TMOM-BP, H
  • the photosensitive resin composition of the present invention may contain a photoacid generator.
  • the photoacid generator is a substance that generates acids such as sulfonic acids and carboxylic acids by light irradiation.
  • acids such as sulfonic acids and carboxylic acids by light irradiation.
  • a sulfonium salt compound, an iodonium salt compound, a sulfonimide compound, a sulfonic acid ester compound examples thereof include diazomethane compounds and triazine compounds.
  • the photosensitive resin composition of the present invention may contain other resins in addition to the component (a).
  • another resin can be appropriately selected from the viewpoints of heat resistance and insulation of the cured film, and it is preferable that the resin of component (a) is contained by 50% by weight or more of the entire resin.
  • a surfactant may be contained, and the paintability with the substrate can be improved. Further, it may contain a silane coupling agent such as methylmethacryloxydimethoxysilane and 3-aminopropyltrimethoxysilane, a titanium chelating agent, an aluminum chelating agent, etc., and its content is 0.5 to 0.5% in the photosensitive resin composition. 10% by weight is preferred. By containing these, adhesiveness with base substrates, such as a silicon wafer, can be improved.
  • a solvent is removed to form a photosensitive resin film having a film thickness of 25 ⁇ m, heat-treated (prebaked) for 3 minutes on a 100 ° C. hot plate, and then in an oven at 180 ° C.
  • heat-treated for 120 minutes in a nitrogen atmosphere oxygen concentration of 10 ppm or less
  • the light transmittance at a wavelength of 500 nm is 40.0% or more
  • the light transmittance in a region exceeding a wavelength of 900 nm and 1300 nm or less is 3.0. It is preferable that it is less than%.
  • the light transmittance at a wavelength of 500 nm after the heat treatment is a characteristic that serves as an index of the light transmittance in the ultraviolet to visible region of the pre-baked photosensitive resin film. If this value is 40.0% or more, the exposure described later In the process, alignment with the substrate becomes easy. 50.0% or more is more preferable. Moreover, if the light transmittance in the region of 1300 nm or less exceeding the wavelength of 900 nm after the heat treatment is less than 3.0%, light transmitted through a silicon wafer generally used as a semiconductor substrate can be sufficiently shielded. When used in a solid-state imaging device, image noise can be suppressed.
  • transmittances are easily achieved, for example, by adjusting the content of the compound represented by (b) the general formula (1) or (2) in the photosensitive resin composition.
  • the content of the compound represented by (b) the general formula (1) or (2) in the photosensitive resin composition is 60 parts by weight or less with respect to 100 parts by weight of the component (a). Can be mentioned. 20 to 30 parts by weight is more preferable.
  • the resin solution obtained by stirring and dissolving the component (a) in the solvent (e) or the polymerization reaction to obtain the component (a) is used as it is, and the components (c) to (d) are added to the resin solution.
  • a compound represented by the general formula (1) or (2) is added and mixed to obtain a uniform solution.
  • the compound represented by the general formula (1) or (2) may be previously dispersed in (e) a solvent. If necessary, add other additives at an appropriate stage.
  • the photosensitive resin composition thus obtained is desirably filtered through a filter having a pore size of about 0.2 to 5 ⁇ m.
  • the laminate of the present invention has a light transmittance of less than 3.0% in the region of wavelength 400 nm or more and 900 nm or less, and the maximum value of light transmittance in the region of wavelength 300 nm or more and 1300 nm or less is 3.0% or more.
  • the light transmittance at a wavelength of 500 nm, which is formed by heat-treating the photosensitive resin film formed from the above-described photosensitive resin composition of the present invention on a certain substrate, is 40.0% or more and exceeds the wavelength of 900 nm.
  • a silicon wafer As a substrate having a light transmittance of less than 3.0% in a wavelength region of 400 nm or more and 900 nm or less and a maximum light transmittance value of 3.0% or more in a region exceeding a wavelength of 900 nm and 1300 nm or less, a silicon wafer is used. And a SiN substrate having a nitride film formed on a silicon wafer.
  • the light transmittance at a wavelength of 500 nm of the cured film is a characteristic that serves as an index of the light transmittance in the ultraviolet to visible region of the photosensitive resin film after pre-baking. In the process, alignment with the substrate becomes easy. 50.0% or more is more preferable. Moreover, if the light transmittance in the region of 1300 nm or less exceeding the wavelength of 900 nm after the heat treatment is less than 3.0%, light transmitted through a silicon wafer generally used as a semiconductor substrate can be sufficiently shielded. When used in a solid-state imaging device, image noise can be suppressed.
  • These transmittances can be easily adjusted, for example, by adjusting the content of the compound represented by (b) the general formula (1) or (2) in the photosensitive resin composition or the thickness of the cured film. Achieved.
  • the content of the compound represented by (b) the general formula (1) or (2) in the photosensitive resin composition is changed to 100% by weight of the component (a).
  • the method of setting it as 60 weight part or less with respect to a part is mentioned. 20 to 30 parts by weight is more preferable.
  • the film thickness of the cured film is preferably 15 to 40 ⁇ m.
  • the laminate of the present invention preferably has a light transmittance of 1.0% or less in a wavelength region of 400 nm or more and 1300 nm or less, and can further reduce image noise when used in a solid-state imaging device.
  • the transmittance of the entire laminate is determined from the product of the transmittance of the substrate and the transmittance of the cured film.
  • the thickness of the film formed from the photosensitive resin composition of the present invention on a 625 nm thick silicon wafer is 25 ⁇ m.
  • the content of the compound represented by (b) the general formula (1) or (2) in the photosensitive resin composition is 60% by weight with respect to 100 parts by weight of the component (a). Part or less. 20 to 30 parts by weight is more preferable.
  • the photosensitive resin composition is applied.
  • the substrate may be pretreated with a silane coupling agent such as methylmethacryloxydimethoxysilane or 3-aminopropyltrimethoxysilane, a titanium chelating agent or an aluminum chelating agent.
  • a solution obtained by dissolving 0.5 to 20% by weight of the above coupling agent in a solvent such as isopropanol, ethanol, methanol, water, tetrahydrofuran, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, ethyl lactate, or diethyl adipate Is used to treat the surface of the substrate by a method such as spin coating, dipping, spray coating, or steam treatment. If necessary, the reaction between the substrate and the coupling agent can be allowed to proceed by heat treatment in the range of 50 to 300 ° C.
  • Examples of the method for applying the photosensitive resin composition include spin coating using a spinner, spray coating, and roll coating.
  • the coating film thickness varies depending on the coating method, the solid content concentration of the composition, the viscosity, and the like, but the film thickness after drying is generally 15 to 40 ⁇ m.
  • the substrate coated with the photosensitive resin composition is heat-treated (pre-baked) to obtain a photosensitive resin film.
  • the pre-bake treatment is preferably performed using an oven, a hot plate, etc. in the range of 50 to 150 ° C. for 1 minute to several hours, for example, a method of heat treatment for 3 minutes on a 100 ° C. hot plate.
  • actinic rays When performing pattern processing, actinic rays are irradiated and exposed.
  • the actinic rays used for exposure include ultraviolet rays, visible rays, electron rays, X-rays, etc., but in the present invention, rays mixed with i rays (365 nm), h rays (405 nm), and g rays (436 nm) of a mercury lamp. Is preferred.
  • the baking temperature is preferably in the range of 50 to 180 ° C, more preferably in the range of 60 to 150 ° C. There is no particular limitation on the time.
  • the unexposed part is removed using a developer.
  • a developer for example, N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphortriamide or the like alone or methanol , Ethanol, isopropyl alcohol, methyl carbitol, ethyl carbitol, toluene, xylene, ethyl lactate, ethyl pyruvate, propylene glycol monomethyl ether acetate, methyl-3-methoxypropionate, ethyl-3-ethoxypropionate, 2 -Used in combination with organic solvents such as heptanone, ethyl acetate, tetramethylammonium aqueous solution, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide
  • an aqueous solution of tetramethylammonium an aqueous solution of an alkaline compound such as diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, or triethylamine is preferable.
  • an alkaline compound such as diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, or triethylamine
  • these alkaline aqueous solutions may contain polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, ⁇ -butyrolactone, dimethylacrylamide, methanol, ethanol, Alcohols such as isopropanol, esters such as ethyl lactate and propylene glycol monomethyl ether acetate, ketones such as cyclopentanone, cyclohexanone, isobutyl ketone, and methyl isobutyl ketone may be added singly or in combination. Good. After development, it is preferable to rinse with water. Here, alcohols such as ethanol and isopropyl alcohol, and esters such as ethyl lactate and propylene glycol monomethyl ether acetate may be added to water for rinsing treatment.
  • polar solvents such as N-methyl-2-pyrrolidone, N, N-d
  • heat treatment is performed at 120 to 400 ° C. to form a cured film.
  • This heat treatment may be carried out for 5 minutes to 5 hours by selecting the temperature and raising the temperature stepwise, or selecting a certain temperature range and continuously raising the temperature.
  • a method of performing heat treatment at 130 ° C., 200 ° C., and 300 ° C. for 30 minutes each, a method of linearly raising the temperature from room temperature to 300 ° C. over 2 hours, and a nitrogen atmosphere in an oven at 180 ° C. (oxygen concentration 10 ppm) The following is a method of performing a heat treatment for 120 minutes.
  • the photosensitive resin composition of the present invention can be suitably used as a photosensitive light-shielding insulating material applied to the back surface of a silicon wafer in a solid-state imaging device to which an Si through electrode is applied.
  • a schematic diagram showing an example of the solid-state imaging device of the present invention is shown in FIG.
  • the lens holder 9 is provided on the semiconductor substrate 3 on which the solid-state imaging device 2 is formed, and the lens 10 and the glass 11 are sandwiched between the lens holders 9.
  • a glass 11 is formed on the solid-state imaging device 2, and an IR cut filter 8 sandwiched between lens holders 9 via a spacer 12 is mounted.
  • the solder ball 1 is formed at the tip of the through electrode 7 that penetrates the semiconductor substrate 3 on which the solid-state imaging device 2 is formed, and the semiconductor substrate 3 and the mounting substrate 4 on which the semiconductor substrate 3 is mounted are connected by the solder ball 1.
  • the surface on the mounting substrate 4 side of the semiconductor substrate 3 has a light shielding insulating layer 13 formed using the photosensitive resin composition of the present invention. Since the photosensitive resin composition of the present invention has an insulating property, it serves as an insulating layer and can block light in the visible to near infrared region.
  • the light in the ultraviolet to visible region is shielded by the semiconductor substrate 3, so that the light in the ultraviolet to visible to near infrared region can be shielded. It becomes possible.
  • a photosensitive resin composition (hereinafter referred to as varnish) was applied onto a 6-inch silicon wafer so that the film thickness after pre-baking was 28 ⁇ m, and then a hot plate (Mark, manufactured by Tokyo Electron Ltd.).
  • a photosensitive resin film was obtained by pre-baking at ⁇ 100 ° C. for 3 minutes using ⁇ 7).
  • Exposure A reticle having a 150 ⁇ m line and space and a square pattern with a side length of 150 ⁇ m is set in an exposure machine (full wavelength stepper Spectrum 3e manufactured by Ultratech Co., Ltd.). Full wavelength exposure was performed with an exposure amount of 1000 mJ / cm 2 (i-line conversion).
  • the exposed photosensitive resin film was sprayed with a 2.38 wt% aqueous solution of tetramethylammonium hydroxide for 10 seconds at 50 revolutions using a Mark-7 developing device manufactured by Tokyo Electron Ltd. Then, it left still for 30 seconds at 50 rotations. This operation was repeated twice.
  • the film was rinsed with water at 400 rpm, shaken and dried for 10 seconds at 3000 rpm, and a film was obtained after development.
  • a 6-inch wafer manufactured by KST World Co., Ltd., wafer thickness is 625 nm, and light transmittance is 0% in a wavelength range of 400 nm to 900 nm.
  • the light transmittance in the region exceeding the wavelength of 900 nm and 1300 nm or less is 49.2% at the maximum
  • the transmittance of the photosensitive resin film is prepared on Tempax glass (manufactured by Daiko Seisakusho Co., Ltd.).
  • the cured film having a thickness of 25 ⁇ m was measured for light transmittance at a wavelength of 350 nm to 1400 nm using a spectrophotometer UV-3150 (manufactured by Shimadzu Corporation).
  • Synthesis Example 2 Synthesis of polyimide resin BAHF 29.3 g (0.08 mol), 1,3-bis (3-aminopropyl) tetramethyldisiloxane 1.24 g (0.005 mol), end-capped under a dry nitrogen stream
  • 3.27 g (0.03 mol) of 3-aminophenol (manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved in 150 g of N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • Synthesis Example 3 Synthesis of Polyamic Acid Ester Under a dry nitrogen stream, 48.4 g (0.08 mol) of hydroxyl group-containing diamine compound (I) obtained in Synthesis Example 1 and 1,3-bis (3-aminopropyl) tetra 1.24 g (0.005 mol) of methyldisiloxane and 3.27 g (0.03 mol) of 3-aminophenol (manufactured by Tokyo Chemical Industry Co., Ltd.) as an end-capping agent were dissolved in 150 g of NMP. ODPA 31.0g (0.1mol) was added here with NMP50g, and it stirred at 40 degreeC for 3 hours.
  • the solution was poured into 3 L of water containing 10% by weight of methanol to collect a white precipitate. This precipitate was collected by filtration, washed with water three times, and then dried in a vacuum dryer at 50 ° C. for 72 hours to obtain a polyhydroxyamide powder as a polybenzoxazole precursor.
  • Synthesis Example 5 Synthesis of Polyamic Acid Solution 43.3 g of 4,4′-diaminophenyl ether, 50.6 g of paraphenylenediamine, and 8.9 g of 1,3-bis (3-aminopropyl) tetramethyldisiloxane together with 850 g of GBL and 850 g of NMP The mixture was charged with 231.4 g of 3,3 ′, 4,4′-oxydiphthalcarboxylic dianhydride and stirred at 80 ° C. for 3 hours. The maleic anhydride 1.4g was added, and also it stirred at 80 degreeC for 1 hour, and the polyamic-acid solution (polymer concentration 20 weight%) which is a polyimide precursor was obtained.
  • Synthesis Example 6 Preparation of Titanium Nitride Particle Dispersion 96 g of titanium nitride particles (Nisshin Engineering Co., Ltd., TiNUFP Lot 13306B10) produced by a thermal plasma method, 120 g of polyamic acid solution described in Synthesis Example 5, GBL 114 g, NMP 538 g, 132 g of 3-methyl-3-methoxybutyl acetate was charged into a tank, and stirred for 1 hour with a homomixer (made by Koki Kokai Co., Ltd.) to obtain a preliminary dispersion 1.
  • Example 1 10.0 g of the polyimide powder obtained in Synthesis Example 2, YMF-02 (trade name, manufactured by Sumitomo Metal Mining Co., Ltd., Cs 0.33 WO) as the compound represented by the general formula (1) or (2) 3 Dispersion concentration 20% by weight) 12.0 g, PDBE-250 (trade name, manufactured by NOF Corporation) as a photopolymerizable compound having two polymerizable groups, light acrylate DCP-A (trade name) , Manufactured by Kyoeisha Chemical Co., Ltd.), 3.0 g of OXE-02 (trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.) as an oxime photopolymerization initiator was dissolved in 12 g of diacetone alcohol to prepare a photosensitive resin composition. A varnish A was obtained. Using the obtained varnish A, the pattern shape and the residue were evaluated as described above, and the light transmittance of the laminate and the photosensitive resin film was measured.
  • PDBE-250 trade name
  • Example 2 Varnish B of the photosensitive resin composition was obtained in the same manner as in Example 1 except that 10.0 g of the polyamic acid ester obtained in Synthesis Example 3 was used instead of the polyimide powder obtained in Synthesis Example 2. Using the obtained varnish B, evaluation was performed in the same manner as in Example 1.
  • Example 3 The same procedure as in Example 1 was performed except that 10.0 g of the polyhydroxyamide powder obtained in Synthesis Example 4 was used instead of the polyimide powder obtained in Synthesis Example 2, and GBL was used instead of diacetone alcohol. Thus, varnish C of the photosensitive resin composition was obtained. Evaluation was performed in the same manner as in Example 1 using the obtained varnish C.
  • Example 4 Varnish D of the photosensitive resin composition was obtained in the same manner as in Example 1, except that the amount of YMF-02 added was changed from 12.0 g to 7.5 g, and GBL was used instead of diacetone alcohol. Evaluation was performed in the same manner as in Example 1 using the obtained varnish D.
  • Example 5 Varnish E of the photosensitive resin composition was obtained in the same manner as in Example 1 except that the amount of YMF-02 (trade name, manufactured by Sumitomo Metal Mining Co., Ltd.) was changed from 12.0 g to 17.5 g. . Evaluation was performed in the same manner as in Example 1 using the obtained varnish E.
  • YMF-02 trade name, manufactured by Sumitomo Metal Mining Co., Ltd.
  • Example 6 Implemented except using 2.4 g of CsWO012-3 (trade name, manufactured by Nanogram Co., Ltd., Cs 0.4 WO 3 ) instead of 12.0 g of YMF-02 (trade name, manufactured by Sumitomo Metal Mining Co., Ltd.) Varnish F of the photosensitive resin composition was obtained in the same manner as in Example 1. Using the obtained varnish F, evaluation was performed in the same manner as in Example 1.
  • Example 7 Photosensitive resin composition in the same manner as in Example 1 except that 3.0 g of MX-270 (trade name, manufactured by Midori Chemical Co., Ltd.) is further used as a cross-linking agent, and 12.0 g of GBL is used instead of diacetone alcohol. A product varnish G was obtained. Evaluation was performed in the same manner as in Example 1 using the obtained varnish G.
  • MX-270 trade name, manufactured by Midori Chemical Co., Ltd.
  • Example 8 Implemented except using 2.4 g of CsWO009-04 (trade name, manufactured by Nanogram Co., Ltd., Cs 0.1 WO 3 ) instead of 12.0 g of YMF-02 (trade name, manufactured by Sumitomo Metal Mining Co., Ltd.) Varnish H of the photosensitive resin composition was obtained in the same manner as in Example 1. Using the obtained varnish H, evaluation was performed in the same manner as in Example 1.
  • Example 9 10.0 g of the polyimide powder obtained in Synthesis Example 2, YMF-02 (trade name, manufactured by Sumitomo Metal Mining Co., Ltd., Cs 0.33 WO) as the compound represented by the general formula (1) or (2) 3 dispersion (concentration: 20% by weight) 12.0 g, PDBE-250 (trade name, manufactured by NOF Corporation) as a photopolymerizable compound having two polymerizable groups, having only one polymerizable group 1.2 g of MOI-BP (trade name, manufactured by Showa Denko KK) as a photopolymerizable compound and 2.0 g of OXE-02 (trade name, manufactured by Ciba Specialty Chemicals) as an oxime-based photopolymerization initiator It was made to melt
  • Example 10 Varnish J of the photosensitive resin composition was obtained in the same manner as in Example 9 except that 10.0 g of the polyamic acid ester obtained in Synthesis Example 3 was used instead of the polyimide powder obtained in Synthesis Example 2. Evaluation was performed in the same manner as Example 1 using the obtained varnish J.
  • Example 11 In place of the polyimide powder obtained in Synthesis Example 2, 10.0 g of the polyhydroxyamide powder obtained in Synthesis Example 4 was used, and the amount of PDBE-250 (trade name, manufactured by NOF Corporation) was changed. Changing from 4.8 g to 3.0 g, using 3.0 g of DCP-A instead of 1.2 g of MOI-BP (trade name, manufactured by Showa Denko KK), using GBL instead of diacetone alcohol Except that, Varnish K of the photosensitive resin composition was obtained in the same manner as Example 9. Evaluation was performed in the same manner as in Example 1 using the obtained varnish K.
  • PDBE-250 trade name, manufactured by NOF Corporation
  • Example 12 Except for changing the addition amount of YMF-02 (trade name, manufactured by Sumitomo Metal Mining Co., Ltd.) from 12.0 g to 7.5 g, and using GBL instead of diacetone alcohol, the same as in Example 9. Varnish L of the photosensitive resin composition was obtained. Evaluation was performed in the same manner as in Example 1 using the obtained varnish L.
  • YMF-02 trade name, manufactured by Sumitomo Metal Mining Co., Ltd.
  • Example 13 Varnish M of the photosensitive resin composition was obtained in the same manner as in Example 9, except that the amount of YMF-02 (trade name, manufactured by Sumitomo Metal Mining Co., Ltd.) was changed from 12.0 g to 17.5 g. . Evaluation was performed in the same manner as in Example 1 using the obtained varnish M.
  • YMF-02 trade name, manufactured by Sumitomo Metal Mining Co., Ltd.
  • Example 14 The amount of PDBE-250 (trade name, manufactured by Nippon Oil & Fats Co., Ltd.) was added from 4.8 g to 5.4 g, and the amount of MOI-BP (trade name, manufactured by Showa Denko Co., Ltd.) was added from 1.2 g to 0.00 g. Except changing to 6g, it carried out similarly to Example 9, and obtained the varnish N of the photosensitive ase resin composition. Evaluation was performed in the same manner as in Example 1 using the obtained varnish N.
  • PDBE-250 trade name, manufactured by Nippon Oil & Fats Co., Ltd.
  • MOI-BP trade name, manufactured by Showa Denko Co., Ltd.
  • Example 15 Photosensitive in the same manner as in Example 9 except that 4.8 g of pentaerythritol triacrylate was used as a photopolymerizable compound having three polymerizable groups instead of PDBE-250 (trade name, manufactured by NOF Corporation). A resin composition O was obtained. Evaluation was performed in the same manner as in Example 1 using the obtained varnish O.
  • Example 16 Implemented except using 2.4 g of CsWO012-3 (trade name, manufactured by Nanogram Co., Ltd., Cs 0.4 WO 3 ) instead of 12.0 g of YMF-02 (trade name, manufactured by Sumitomo Metal Mining Co., Ltd.)
  • a varnish P of the photosensitive resin composition was obtained.
  • evaluation was performed in the same manner as in Example 1.
  • Example 17 Example except that 2.4 g of CsWO009-04 (trade name, manufactured by Nanogram Co., Ltd., Cs 0.1 WO 3 ) is used instead of 12.0 g of YMF-02 (trade name, manufactured by Sumitomo Metal Mining Co., Ltd.) In the same manner as in No. 9, a photosensitive resin composition varnish Q was obtained. Evaluation was performed in the same manner as in Example 1 using the obtained varnish Q.
  • CsWO009-04 trade name, manufactured by Nanogram Co., Ltd., Cs 0.1 WO 3
  • YMF-02 trade name, manufactured by Sumitomo Metal Mining Co., Ltd.
  • Example 18 Photosensitive resin composition as in Example 9 except that 3.0 g of MX-270 (trade name, manufactured by Midori Chemical Co., Ltd.) is further used as a cross-linking agent, and GBL 12.0 g is used instead of diacetone alcohol. A varnish R was obtained. Evaluation was performed in the same manner as in Example 1 using the obtained varnish R.
  • MX-270 trade name, manufactured by Midori Chemical Co., Ltd.
  • Example 19 The amount of YMF-02 (trade name, manufactured by Sumitomo Metal Mining Co., Ltd.) was changed from 12.0 g to 15.0 g, and the amount of OXE-02 (trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.) Varnish S of the photosensitive resin composition was obtained in the same manner as in Example 9 except that the amount was changed from 2.0 g to 0.7 g. Evaluation was performed in the same manner as in Example 1 using the obtained varnish S.
  • YMF-02 trade name, manufactured by Sumitomo Metal Mining Co., Ltd.
  • OXE-02 trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.
  • Example 20 Example except that MOI-BP (trade name, manufactured by Showa Denko KK) is not used, and the addition amount of PDBE-250 (trade name, manufactured by Nippon Oil & Fats Co., Ltd.) is changed from 4.8 g to 6 g.
  • MOI-BP trade name, manufactured by Showa Denko KK
  • PDBE-250 trade name, manufactured by Nippon Oil & Fats Co., Ltd.
  • Comparative Example 1 A photosensitive resin composition varnish U was obtained in the same manner as in Example 1 except that 12.0 g of YMF-02 (trade name, manufactured by Sumitomo Metal Mining Co., Ltd.) was not contained. Evaluation was performed in the same manner as in Example 1 using the obtained varnish U.
  • YMF-02 trade name, manufactured by Sumitomo Metal Mining Co., Ltd.
  • Comparative Example 2 Photosensitive resin composition as in Example 1 except that 2.4 g of titanium nitride particle dispersion obtained in Synthesis Example 6 was used instead of YMF-02 (trade name, manufactured by Sumitomo Metal Mining Co., Ltd.) A product varnish V was obtained. Evaluation was performed in the same manner as in Example 1 using the obtained varnish V.
  • Comparative Example 3 Varnish of the photosensitive resin composition in the same manner as in Example 1 except that 2.4 g of the carbon black dispersion obtained in Synthesis Example 7 was used instead of YMF-02 (trade name, manufactured by Sumitomo Metal Mining Co., Ltd.). W was obtained. Using the obtained varnish W, evaluation was performed in the same manner as in Example 1.
  • Comparative Example 4 A photosensitive resin composition varnish X was obtained in the same manner as in Example 9 except that YMF-02 (trade name, manufactured by Sumitomo Metal Mining Co., Ltd.) was not contained. Evaluation was performed in the same manner as in Example 1 using the obtained varnish X.
  • Comparative Example 7 Example except that PDBE-250 (trade name, manufactured by Nippon Oil & Fats Co., Ltd.) is not used, and the addition amount of MOI-BP (trade name, manufactured by Showa Denko KK) is changed from 1.2 g to 6 g. In the same manner as in No. 9, a photosensitive resin composition varnish AA was obtained. Evaluation was performed in the same manner as in Example 1 using the obtained varnish AA.
  • PDBE-250 trade name, manufactured by Nippon Oil & Fats Co., Ltd.
  • MOI-BP trade name, manufactured by Showa Denko KK
  • Comparative Example 8 Do not use polyimide powder, use 10 g of pentaerythritol tetraacrylate instead of PDBE-250 (trade name, manufactured by NOF Corporation) and MOI-BP (trade name, manufactured by Showa Denko KK), OXE In the same manner as in Example 9, except that 0.3 g of Irgacure 907 (trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.) was used instead of -02 (trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.). A varnish AB of the composition was obtained. Evaluation was performed in the same manner as in Example 1 using the obtained varnish AB.
  • Example 1 Evaluation was performed in the same manner as in Example 1 except that the varnish A obtained in Example 1 was used and a Tempax glass plate (transmittance in the wavelength range of 400 to 1300 nm: 100% in each region) was used as the substrate.
  • a Tempax glass plate transmittance in the wavelength range of 400 to 1300 nm: 100% in each region
  • Tables 1 to 3 show the compositions of the photosensitive resin compositions of Examples, Comparative Examples, and Reference Examples, and Tables 4 to 6 show the evaluation results.
  • the photosensitive resin composition of the present invention has a light transmittance of less than 3.0% in a wavelength region of 400 nm or more and 900 nm or less, and a maximum light transmittance of 3.03 or less in a region exceeding a wavelength of 900 nm is 3.0%.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Power Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

波長400nm以上900nm以下の領域における光透過率が3.0%未満であり、波長900nmを超えて1300nm以下の領域における光透過率の最大値が3.0%以上である基板に塗布することにより、絶縁性と紫外~可視~近赤外領域にわたる遮光性をより簡易に付与することができる感光性樹脂組成物を提供すること。(a)アルカリ可溶性樹脂、(b)特定のタングステン酸化物および/または複合タングステン酸化物、(c)重合性基を2つ以上有する光重合性化合物、(d)オキシム系光重合開始剤および(e)溶剤を含有することを特徴とする感光性樹脂組成物。

Description

感光性樹脂組成物、それを用いた積層体および固体撮像装置
 本発明は、感光性樹脂組成物、それを用いた積層体および固体撮像装置に関する。
 近年、デジタルカメラやカメラ付携帯電話などの急速な発展に伴って、CCD(Charge Coupled Device)やCMOS(Complementary Metal-Oxide Semiconductor)などの固体撮像素子において、小型化が要求されている。これまでに、小型の固体撮像装置として、固体撮像素子と、この固体撮像素子の裏面に接着されて前記固体撮像素子に電気的に接続されるとともに、前記固体撮像素子に接着される面とは反対側の面に外部への電気的な接続端子を有し、受動部品を配置してなる受動チップと、ダム状スペーサーと、レンズホルダとを備える固体撮像装置(例えば、特許文献1参照)や、固体撮像素子が形成された半導体基板と、ボンディングパッドと、複数の貫通電極および側面電極と、側面電極間に電気的に接続されて前記半導体基板側面に配置された受動部品と、マイクロレンズと、スペーサー樹脂と、光学フィルターと、レンズホルダとを備えるカメラモジュール(例えば、特許文献2参照)が提案されている。
 固体撮像装置の構成の一例を図1に示す。固体撮像素子2が形成された半導体基板3上にレンズホルダ9を有し、レンズ10およびガラス11はレンズホルダ9に挟まれている。固体撮像素子2の上にはガラス11が形成され、スペーサー12を介してレンズホルダ9に挟まれたIRカットフィルタ8が搭載されている。固体撮像素子2が形成された半導体基板3を貫通する貫通電極7の先にソルダーボール1が形成され、半導体基板3と、これを実装する実装基板4とが、ソルダーボール1により接続される。半導体基板3の実装基板4側の面には絶縁層5を有する。半導体基板3側から固体撮像素子2へ入射する光はレンズから入射する光と干渉し、光を電気信号に変換する際にノイズが生じるため、このような入射光を遮ることが求められる。半導体基板3として一般的に用いられるシリコンウエハは、紫外~可視領域の光は遮光するものの、近赤外領域の光を透過させる特性を有することから、近赤外領域の光を遮光する遮光層6を設けることにより、紫外~可視~近赤外領域の光の入射を防止することが行われている。
 固体撮像装置などの絶縁層に好ましく用いられる絶縁材料として、例えば、アルカリ可溶性樹脂、重合性基を2個以上有する化合物、光酸発生剤、酸により反応する架橋剤および(E)溶剤を含有するネガ型感光性樹脂組成物が提案されている(例えば、特許文献3参照)。また、近赤外領域の光を遮光する材料としては、例えば、平均粒径が200nm以下で、かつ、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sr、Caの内から選択された元素の1種類以上の6ホウ化物粒子により構成される近赤外線吸収剤が液体媒質中に分散された近赤外線吸収剤の分散液(例えば、特許文献4参照)、塩化ビニル系樹脂100質量部に対して、(a)2価の銅イオンからなる金属イオンおよび(b)酸化インジウムおよび/または酸化スズからなる粒子状金属酸化物から選ばれる少なくとも1種の赤外線吸収剤0.01~10質量部と、可塑剤10~200質量部とが含有されている塩化ビニル系樹脂組成物(例えば、特許文献5参照)が提案されている。また、近赤外線吸収材フィルターとして、平均分散粒径800nm以下のタングステン酸化物微粒子および/または複合タングステン酸化物微粒子を含み、波長380nm~780nmの可視光透過率の最大値が50%以上、波長800nm~1100nmの近赤外線透過率の最小値が30%以下であるプラズマディスプレイパネル用近赤外線吸収材フィルターが提案されている(例えば、特許文献6参照)。
特開2007-281929号公報 特開2008-311280号公報 特開2008-76740号公報 特開2003-227922号公報(請求項4~7) 特開平9-208775号公報 特開2006-154516号公報
 しかしながら、図1に示す構成の固体撮像装置は、半導体基板裏面に絶縁材料を塗布した後、近赤外領域の光を遮光する材料を塗布することにより絶縁層と遮光層を積層しており、複数の材料を塗布するため生産性に課題があった。そこで本発明は、波長400nm以上900nm以下の領域における光透過率が3.0%未満であり、波長900nmを超えて1300nm以下の領域における光透過率の最大値が3.0%以上である基板に塗布することにより、絶縁性と紫外~可視~近赤外領域にわたる遮光性をより簡易に付与することができる感光性樹脂組成物を提供することを目的とする。
 本発明は、(a)アルカリ可溶性樹脂、(b)下記一般式(1)または(2)で表されるタングステン酸化物および/または複合タングステン酸化物、(c)重合性基を2つ以上有する光重合性化合物、(d)オキシム系光重合開始剤および(e)溶剤を含有することを特徴とする感光性樹脂組成物である。
  (1)
(上記一般式(1)中、Wはタングステン、Oは酸素、y>0、z>0であり、2.2≦z/y≦3を満たす。)
 (2)
(上記一般式(2)中、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1以上の元素、Wはタングステン、Oは酸素、x>0、y>0、z>0であり、0.001≦x/y≦1.1、2.2≦z/y≦3.0を満たす。)
 本発明の感光性樹脂組成物を、波長400nm以上900nm以下の領域における光透過率が3.0%未満であり、波長900nmを超えて1300nm以下の領域の光透過率の最大値が3.0%以上である基板に塗布することにより、絶縁性と紫外~可視~近赤外領域にわたる遮光性を付与することができる。そのため、より簡易で生産性の高い方法で固体撮像装置を提供することができる。
固体撮像装置の構成の一例を示す概略図である。 本発明の固体撮像装置の一例を示す概略図である。
 本発明の感光性樹脂組成物は、(a)アルカリ可溶性樹脂を含有する。本発明におけるアルカリ可溶性とは、樹脂をγ-ブチロラクトンに溶解した溶液をシリコンウエハー上に塗布し、120℃で4分間プリベークを行って膜厚10μm±0.5μmのプリベーク膜を形成し、該プリベーク膜を23±1℃の2.38重量%テトラメチルアンモニウムヒドロキシド水溶液に1分間浸漬した後、純水でリンス処理したときの膜厚減少から求められる溶解速度が50nm/分以上であることをいう。
 本発明に用いられる(a)アルカリ可溶性樹脂は、上記アルカリ可溶性を付与するため、樹脂の構造単位中および/またはその主鎖末端に酸性基を有することが好ましい。酸性基としては、例えば、カルボキシル基、フェノール性水酸基、スルホン酸基、チオール基などが挙げられる。また、フッ素原子を有することが好ましく、アルカリ水溶液で現像する際に、膜の界面に撥水性を付与し、界面のしみこみを抑制することができる。アルカリ可溶性樹脂中のフッ素原子含有量は、界面のしみこみ防止効果の観点から5重量%以上が好ましく、アルカリ水溶液に対する溶解性の点から20重量%以下が好ましい。
 本発明の感光性樹脂組成物は(a)アルカリ可溶性樹脂として、(a)ポリイミド、ポリベンゾオキサゾールまたはそれらの前駆体を用いることが好ましい。ポリイミドおよびポリベンゾオキサゾールは、主鎖構造内にイミド環またはオキサゾール環の環状構造を有する樹脂である。ポリイミド前駆体およびポリベンゾオキサゾール前駆体は、主鎖にアミド結合を有する樹脂であり、加熱処理や化学処理により脱水閉環することにより、前述のポリイミドまたはポリベンゾオキサゾールとなる。これらの樹脂を含有することにより、絶縁性に優れた樹脂組成物を得ることができる。ポリイミド前駆体としては、例えば、ポリアミド酸、ポリアミド酸エステル、ポリアミド酸アミド、ポリイソイミドなどを挙げることができる。ポリベンゾオキサゾール前駆体としては、例えば、ポリヒドロキシアミド、ポリアミノアミド、ポリアミド、ポリアミドイミドなどを挙げることができる。いずれも構造単位の繰り返し数は10~100,000が好ましい。これらを2種以上含有してもよいし、これらの2種以上の構造単位を有する共重合体を含有してもよい。250℃以下の低温で熱処理することにより硬化させる場合には、耐薬品性の観点からポリイミドがより好ましい。
 ポリイミドは、一般に、テトラカルボン酸二無水物とジアミンを反応させて得られるポリイミド前駆体の一つであるポリアミド酸を、加熱または酸や塩基などの化学処理で脱水閉環することにより得られ、テトラカルボン酸残基とジアミン残基を有する。
 本発明において、ポリイミドは下記一般式(3)で表される構造単位を有するものが好ましい。これらを2種以上含有してもよいし、他の構造単位との共重合体であってもよい。下記一般式(3)または後述する一般式(4)で表される構造単位を、全構造単位中50mol%以上有することが好ましい。
Figure JPOXMLDOC01-appb-C000001
 上記一般式(3)中、Rは4~10価の有機基、Rは2~8価の有機基を表す。RおよびRはフェノール性水酸基、スルホン酸基またはチオール基を表し、それぞれ同じでも異なっていてもよい。pおよびqは0~6の整数を表し、それぞれ同じでも異なっていてもよい。
 上記一般式(3)中、R-(Rはテトラカルボン酸残基を表す。Rは4~10価の有機基であり、芳香族環または環状脂肪族基を有する炭素原子数5~40の4~10価の有機基が好ましい。
 テトラカルボン酸残基を構成する酸二無水物としては、例えば、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン酸二無水物、9,9-ビス{4-(3,4-ジカルボキシフェノキシ)フェニル}フルオレン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物および下記に示す構造を有する酸二無水物などの芳香族テトラカルボン酸二無水物や、ブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物などの脂肪族テトラカルボン酸二無水物などを挙げることができる。これらを2種以上用いてもよい。
Figure JPOXMLDOC01-appb-C000002
 R10は酸素原子、C(CF、C(CHまたはSOを表す。R11およびR12は水素原子、水酸基またはチオール基を表す。
 上記一般式(3)中、R-(Rはジアミン残基を表す。Rは2~8価の有機基であり、芳香族環または環状脂肪族基を有する炭素原子数5~40の2~8価の有機基が好ましい。
 ジアミン残基を構成するジアミンとしては、例えば、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルヒド、4,4’-ジアミノジフェニルスルヒド、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジン、m-フェニレンジアミン、p-フェニレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ビス(4-アミノフェノキシフェニル)スルホン、ビス(3-アミノフェノキシフェニル)スルホン、ビス(4-アミノフェノキシ)ビフェニル、ビス{4-(4-アミノフェノキシ)フェニル}エーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジエチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジエチル-4,4’-ジアミノビフェニル、2,2’,3,3’-テトラメチル-4,4’-ジアミノビフェニル、3,3’,4,4’-テトラメチル-4,4’-ジアミノビフェニル、2,2’-ジ(トリフルオロメチル)-4,4’-ジアミノビフェニル、9,9-ビス(4-アミノフェニル)フルオレンや、これらの芳香族環の水素原子の少なくとも一部をアルキル基やハロゲン原子で置換した化合物、シクロヘキシルジアミン、メチレンビスシクロヘキシルアミンなどの脂肪族ジアミン、および下記に示す構造を有するジアミンなどが挙げられる。これらを2種以上用いてもよい。
Figure JPOXMLDOC01-appb-C000003
 R10は酸素原子、C(CF、C(CHまたはSOを表す。R11~R14は水素原子、水酸基またはチオール基を表す。
 ポリベンゾオキサゾールは、ビスアミノフェノールとジカルボン酸、対応するジカルボン酸クロリド、ジカルボン酸活性エステルなどを反応させて得ることができる。一般に、ビスアミノフェノール化合物とジカルボン酸を反応させて得られるポリベンゾオキサゾール前駆体の1つであるポリヒドロキシアミドを、加熱あるいは無水リン酸、塩基、カルボジイミド化合物などの化学処理で脱水閉環することにより得ることができ、ジカルボン酸残基とビスアミノフェノール残基を有する。
 ジカルボン酸残基を構成する酸としては、例えば、テレフタル酸、イソフタル酸、ジフェニルエーテルジカルボン酸、ビス(カルボキシフェニル)ヘキサフルオロプロパン、ビフェニルジカルボン酸、ベンゾフェノンジカルボン酸、トリフェニルジカルボン酸などが挙げられる。これらを2種以上用いてもよい。
 ビスアミノフェノール残基を構成するジアミンとしては、例えば、下記に示す構造を有するジアミンなどが挙げられる。これらを2種以上用いてもよい。
Figure JPOXMLDOC01-appb-C000004
 R10は酸素原子、C(CF、C(CHまたはSOを表す。R11~R14は水素原子、水酸基またはチオール基を表し、各ジアミンにおいて少なくとも一つは水酸基である。
 ポリイミド前駆体は、例えば、テトラカルボン酸二無水物(一部を酸無水物、モノ酸クロリド化合物またはモノ活性エステル化合物に置換してもよい)とジアミン化合物を反応させて得られ、テトラカルボン酸残基とジアミン残基を有する。
 ポリベンゾオキサゾール前駆体は、例えば、ビスアミノフェノール化合物とジカルボン酸を反応させて得られ、ジカルボン酸残基とビスアミノフェノール残基を有する。
 本発明において、ポリイミド前駆体およびポリベンゾオキサゾール前駆体は下記一般式(4)で表される構造単位を有するものが好ましい。これらを2種以上含有してもよいし、他の構造単位との共重合体であってもよい。下記一般式(4)で表される構造単位または前述の一般式(3)で表される構造単位を、全構造単位中50mol%以上有することが好ましい。
Figure JPOXMLDOC01-appb-C000005
 上記一般式(4)中、RおよびRは2~8価の有機基を表し、それぞれ同じでも異なっていてもよい。RおよびRはフェノール性水酸基、スルホン酸基、チオール基、またはCOORを表し、それぞれ同じでも異なっていてもよい。Rは水素原子または炭素原子数1~20の1価の炭化水素基を示す。rおよびsは0~6の整数を表す。ただしr+s>0である。
 上記一般式(4)中、R-(Rはジカルボン酸やテトラカルボン酸などの酸残基を表す。Rは2~8価の有機基であり、芳香族環または環状脂肪族基を含有する炭素原子数5~40の2~8価の有機基が好ましい。
 酸残基を構成する酸としては、例えば、ジカルボン酸の例として、ポリベンゾオキサゾールのジカルボン酸残基を構成する酸として例示したものを挙げることができる。トリカルボン酸の例として、トリメリット酸、トリメシン酸、ジフェニルエーテルトリカルボン酸、ビフェニルトリカルボン酸などを挙げることができる。テトラカルボン酸の例としてピロメリット酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、2,2’,3,3’-ビフェニルテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、2,2’,3,3’-ベンゾフェノンテトラカルボン酸、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン、2,2-ビス(2,3-ジカルボキシフェニル)ヘキサフルオロプロパン、1,1-ビス(3,4-ジカルボキシフェニル)エタン、1,1-ビス(2,3-ジカルボキシフェニル)エタン、ビス(3,4-ジカルボキシフェニル)メタン、ビス(2,3-ジカルボキシフェニル)メタン、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)エーテル、1,2,5,6-ナフタレンテトラカルボン酸、2,3,6,7-ナフタレンテトラカルボン酸、2,3,5,6-ピリジンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸および下記に示す構造を有するテトラカルボン酸などの芳香族テトラカルボン酸や、ブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸などの脂肪族テトラカルボン酸などを挙げることができる。これらを2種以上用いてもよい。
Figure JPOXMLDOC01-appb-C000006
 R10は酸素原子、C(CF、C(CHまたはSOを表す。R11およびR12は水素原子、水酸基またはチオール基を表す。
 これらのうち、トリカルボン酸、テトラカルボン酸では1つまたは2つのカルボキシ基が一般式(4)におけるR基に相当する。また、上に例示したジカルボン酸、トリカルボン酸、テトラカルボン酸の水素原子を、一般式(4)におけるR基、好ましくは水酸基やスルホン酸基、チオール基などで1~4個置換したものがより好ましい。これらの酸は、そのまま、あるいは酸無水物、活性エステルとして使用できる。
 上記一般式(4)中、のR-(Rはジアミンやビスアミノフェノールなどのアミン残基を表す。Rは2~8価の有機基であり、芳香族環または環状脂肪族基を有する炭素原子数5~40の2~8価の有機基が好ましい。
 アミン残基を構成するジアミンとしては、例えば、ポリイミドのジアミン残基を構成するジアミンとして例示したものを挙げることができる。
 また、これらの樹脂の末端を、水酸基、カルボキシ基、スルホン酸基またはチオール基を有するモノアミン、酸無水物、酸クロリド、モノカルボン酸により封止することが好ましい。これらを2種以上用いてもよい。主鎖末端に前述の基を有することにより、樹脂のアルカリ水溶液に対する溶解速度を好ましい範囲に容易に調整することができる。
 モノアミンの好ましい例としては、5-アミノ-8-ヒドロキシキノリン、1-ヒドロキシ-7-アミノナフタレン、1-ヒドロキシ-6-アミノナフタレン、1-ヒドロキシ-5-アミノナフタレン、1-ヒドロキシ-4-アミノナフタレン、2-ヒドロキシ-7-アミノナフタレン、2-ヒドロキシ-6-アミノナフタレン、2-ヒドロキシ-5-アミノナフタレン、1-カルボキシ-7-アミノナフタレン、1-カルボキシ-6-アミノナフタレン、1-カルボキシ-5-アミノナフタレン、2-カルボキシ-7-アミノナフタレン、2-カルボキシ-6-アミノナフタレン、2-カルボキシ-5-アミノナフタレン、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノベンゼンスルホン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸、3-アミノ-4,6-ジヒドロキシピリミジン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、2-アミノチオフェノール、3-アミノチオフェノール、4-アミノチオフェノールなどが挙げられる。これらを2種以上用いてもよい。
 酸無水物、酸クロリド、モノカルボン酸の好ましい例としては、無水フタル酸、無水マレイン酸、ナジック酸、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物などの酸無水物、3-カルボキシフェノール、4-カルボキシフェノール、3-カルボキシチオフェノール、4-カルボキシチオフェノール、1-ヒドロキシ-7-カルボキシナフタレン、1-ヒドロキシ-6-カルボキシナフタレン、1-ヒドロキシ-5-カルボキシナフタレン、1-メルカプト-7-カルボキシナフタレン、1-メルカプト-6-カルボキシナフタレン、1-メルカプト-5-カルボキシナフタレン、3-カルボキシベンゼンスルホン酸、4-カルボキシベンゼンスルホン酸などのモノカルボン酸類およびこれらのカルボキシ基が酸クロリド化したモノ酸クロリド化合物、テレフタル酸、フタル酸、マレイン酸、シクロヘキサンジカルボン酸、1,5-ジカルボキシナフタレン、1,6-ジカルボキシナフタレン、1,7-ジカルボキシナフタレン、2,6-ジカルボキシナフタレンなどのジカルボン酸類の1つのカルボキシ基だけが酸クロリド化したモノ酸クロリド化合物、モノ酸クロリド化合物とN-ヒドロキシベンゾトリアゾールやN-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドとの反応により得られる活性エステル化合物が挙げられる。これらを2種以上用いてもよい。
 上記したモノアミン、酸無水物、酸クロリド、モノカルボン酸などの末端封止剤の含有量は、樹脂を構成する酸残基およびアミン残基の総和100モル%に対して、2~25モル%が好ましい。
 樹脂中に導入された末端封止剤は、以下の方法で容易に検出できる。例えば、末端封止剤が導入された樹脂を、酸性溶液に溶解し、樹脂の構成単位であるアミン成分と酸成分に分解し、これをガスクロマトグラフ(GC)や、NMR測定することにより、末端封止剤を容易に検出できる。これとは別に、末端封止剤が導入された樹脂を直接、熱分解ガスクロマトグラフ(PGC)や赤外スペクトルおよび13C-NMRスペクトル測定することで検出することが可能である。
 本発明の感光性樹脂組成物は、(b)下記一般式(1)または(2)で表されるタングステン酸化物および/または複合タングステン酸化物を含有する。かかる化合物は近赤外線光領域の光を吸収するため、本発明の感光性樹脂組成物に近赤外領域における遮光性を付与することができる。
z             (1)
 上記一般式(1)中、Wはタングステン、Oは酸素、y>0、z>0であり、2.2≦z/y<3を満たす。2.2≦z/y<3を満たすとき、近赤外線領域に自由電子由来の吸収特性を得ることができ、近赤外線吸収材料として好適である。
  (2)
 上記一般式(2)中、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1以上の元素、Wはタングステン、Oは酸素、x>0、y>0、z>0であり、0.001≦x/y≦1.1、2.2≦z/y≦3.0を満たす。
 特に、複合タングステン酸化物は近赤外領域の光の吸収の観点から六方晶の結晶構造を有することが好ましく、xの値が六方晶の結晶構造から理論的に算出される値(0.33)の近傍である場合に、添加元素Mが六角形の空隙全てに配置されるため、近赤外領域の光の吸収能がより向上する。その際、好ましいM元素としては、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Snの各元素から選ばれる1種類以上の元素が挙げられ、これらの元素を用いたときに六方晶の構造が形成されやすい。一方、zの値は2.2以上3.0以下が好ましい。一般に、複合タングステン酸化物はx、yおよびzが上記式を満たす場合に、近領域の光の吸収能がより向上することが知られており、典型的な例としては、Cs0.33WOを挙げることができる。
 本発明では特に、一般式(2)で表される複合タングステン酸化物が好ましい。
 (b)上記一般式(1)または(2)で表される化合物の含有量は、近赤外領域における遮光性をより向上させる観点から、(a)成分100重量部に対して5重量部以上が好ましく、18重量部以上がより好ましい。一方、後述する硬化膜の波長500nmにおける光透過率を40.0%以上とするためには、(a)成分100重量部に対して60重量部以下が好ましく、20~30重量部がより好ましい。また、パターン形成時のパターン形状と現像後残さ抑制の観点から、40重量部以下がより好ましい。
 (b)上記一般式(1)または(2)で表される化合物は、樹脂への分散性の観点から微粒子であることが好ましい。数平均粒子径は1nm以上が好ましく、可視光領域の光の散乱を抑制する観点から、800nm以下が好ましく、100nm以下がより好ましい。本発明において、b)上記一般式(1)または(2)で表される化合物の粒子の数平均粒子径は、動的光散乱法により測定した値をいう。b)上記一般式(1)または(2)で表される化合物の粒子の数平均粒子径は、例えば、Malvern Instruments(株)製Nano-ZSを用いて測定することができる。
 本発明の感光性樹脂組成物は、(c)重合性基を2つ以上有する光重合性化合物を含有する。(c)重合性基を2つ以上有する光重合性化合物と後述する(d)オキシム系光重合開始剤を含有することにより、樹脂組成物に感光性を付与することができる。(c)重合性基を2つ以上有する光重合性化合物は、分子内に不飽和結合を有する化合物を指し、不飽和結合としては、ビニル基、アリル基、アクリロイル基、メタクリロイル基などの不飽和二重結合、プロパルギル基などの不飽和三重結合などが挙げられる。これらの中でも、共役型のビニル基やアクリロイル基、メタクリロイル基が重合性の面で好ましい。また、重合性基を2つ以上有する光重合性化合物中の不飽和結合の数は、安定性の点から2~6が好ましい。不飽和結合を2以上有する場合、それぞれは同一の基でなくとも構わない。
 (c)重合性基を2つ以上有する光重合性化合物の好ましい例としては、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、メチレンビスアクリルアミド、エチレンオキシド変性ビスフェノールAジアクリレート、エチレンオキシド変性ビスフェノールAジメタクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジメタクリレート、トリメチロールプロパントリメタクリレート、1,3-ジイソプロペニルベンゼン、1,3-ブタンジオールジアクリレート、1,3-ブタンジオールジメタクリレート、ネオペンチルグリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジアクリレート、1,6-ヘキサンジオールジメタクリレート、1,3-ジアクリロイルオキシ-2-ヒドロキシプロパン、1,3-ジメタクリロイルオキシ-2-ヒドロキシプロパンなどが挙げられる。これらのうち、特に好ましい例として、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、メチレンビスアクリルアミド、エチレンオキシド変性ビスフェノールAジアクリレート、エチレンオキシド変性ビスフェノールAジメタクリレートなどが挙げられる。これらを2種以上含有してもよい。
 (c)重合性基を2つ以上有する光重合性化合物の含有量は、(a)成分の樹脂100重量部に対して5重量部以上が好ましく、現像時の露光部の膜減りをより低減することができる。また、150重量部以下が好ましく、(a)成分の樹脂との相溶性を向上させることができ、また膜の白化を抑制することができる。
 本発明の感光性樹脂組成物は、さらに(c)’重合性基を1つのみ有する光重合性化合物を含有することが好ましい。これにより粒子同士の凝集を抑制することができる。
 (c)’重合性基を1つのみ有する光重合性化合物の好ましい例としては、N,N-ジメチルアミノエチルアクリレート、N,N-ジメチルアミノエチルメタクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジメチルアミノプロピルメタクリルアミド、N-メチロールアクリルアミド、ブチルアクリレート、ブチルメタクリレート、イソブチルアクリレート、ヘキシルアクリレート、イソオクチルアクリレート、シクロヘキシルメタクリレート、イソボルニルアクリレート、イソボルニルメタクリレート、N,N-ジメチルアクリルアミド、N,N-ジメチルメタクリルアミド、N-メチロールアクリルアミド、2,2,6,6-テトラメチルピペリジニルメタクリレート、2,2,6,6-テトラメチルピペリジニルアクリレート、N-メチル-2,2,6,6-テトラメチルピペリジニルメタクリレート、N-メチル-2,2,6,6-テトラメチルピペリジニルアクリレート、N-ビニルピロリドン、N-ビニルカプロラクタム、2-イソシアナトエチルアクリレート、2-イソシアナトエチルメタクリレート、3-イソシアナトプロピルアクリレート、3-イソシアナトプロピルメタクリレート、2-イソシアナト-1-メチルエチルアクリレート、2-イソシアナト-1-メチルエチルメタクリレート、3-アクリロイルオキシフェニルイソシアネート、3-メタクリロイルオキシフェニルイソシアネート、3-イソシアナト-2-メチルブチルアクリレート、3-イソシアナト-2-メチルブチルメタクリレート、4-アクリロイルオキシフェニルイソシアネート、4-メタクリロイルオキシフェニルイソシアネート、3-アクリロイルオキシフェニルイソシアネート、3-メタクリロイルオキシフェニルイソシアネート、2-アクリロイルオキシフェニルイソシアネート、2-メタクリロイルオキシフェニルイソシアネートなどが挙げられる。これらを2種以上含有してもよい。
 また(c)’重合性基を1つのみ有する光重合性化合物の含有量については、(c)重合性基を2つ以上有する100重量部に対して10重量部以上が好ましく、これにより粒子同士の凝集を十分抑制することができる。また60重量部以下とすることが好ましく、これにより(c)重合性基を2つ以上有する光重合性化合物によって露光部の溶出を抑制するのに十分な架橋構造が構築される。
 本発明の感光性樹脂組成物は、(d)オキシム系光重合開始剤を含有する。(d)オキシム系光重合開始剤としては、例えば、1-フェニル-1,2-ブタンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-ベンゾイル)オキシム、ビス(α-イソニトロソプロピオフェノンオキシム)イソフタル、1,2-オクタンジオン-1-[4-(フェニルチオ)フェニル]-2-(o-ベンゾイルオキシム)、OXE-01(商品名、チバスペシャリティケミカルズ(株)製)、OXE-02(商品名、チバスペシャリティケミカルズ(株)製)などのオキシム類が挙げられる。これらを2種以上含有してもよい。
 (d)オキシム系光重合開始剤の含有量は、(a)成分100重量部に対して1重量部以上が好ましく、現像時の露光部の膜減りをより低減し、パターン形状を良好にすることができる。また、50重量部以下が好ましく、硬化膜の膜特性を向上させることができる。さらに必要に応じて増感剤を含有してもよい。
 本発明の感光性樹脂組成物は、(e)溶剤を含有する。(e)溶剤としては、大気圧下沸点が80℃~250℃の有機溶剤が好ましい。具体的には、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテルなどのエーテル類、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸メチル、乳酸エチル、乳酸ブチルなどのアセテート類、アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、シクロペンタノン、2-ヘプタノンなどのケトン類、ブチルアルコール、イソブチルアルコール、ペンタノール、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシブタノール、ジアセトンアルコールなどのアルコール類、トルエン、キシレンなどの芳香族炭化水素類、N-メチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトンなどが挙げられる。これらを2種以上含有してもよい。
 これらのうち、(a)成分を溶解し、かつ、大気圧下沸点が120℃~200℃であるものがより好ましい。沸点がこの範囲であれば、感光性樹脂組成物塗布時の揮発を抑制し、かつ、溶媒除去のための熱処理温度を低く抑えることができるため、下地基板の材質に制約が生じることがない。また、(a)成分を溶解する溶剤を用いることによって、下地基板に均一性の良い塗膜を形成することができる。このような沸点を有する好ましい有機溶剤として、具体的には、シクロペンタノン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、乳酸メチル、乳酸エチル、ジアセトンアルコール、3-メチル-3-メトキシブタノールなどが挙げられる。
 有機溶剤の含有量は、(a)~(d)成分の溶解性と塗布時の粘度の観点から、(a)成分100重量部に対して100~400重量部の範囲が好ましい。
 本発明の感光性樹脂組成物は、酸または/および熱により反応する架橋剤を含有してもよい。これにより、硬化膜の耐熱性、耐薬品性を向上させることができる。特に硬化温度が250℃以下の場合、耐薬品性向上効果がさらに顕著に発揮される。架橋剤としては酸により反応する架橋剤、または、熱により反応する架橋剤があり、これらのいずれか、またはこれらを2種以上組み合わせて使用することもできる。
 酸により反応する架橋剤としては、例えば、メチロール基および/またはアルコキシメチル基と結合する窒素原子を有する化合物が挙げられる。これらの化合物としては、例えば、メラミン、グリコールウリル、尿素、アルキレン尿素、ベンゾグアナミンなどのアミノ基含有化合物にホルムアルデヒドまたはホルムアルデヒドとアルコールを反応させ、該アミノ基の水素原子をメチロール基またはアルコキシメチル基で置換した化合物が挙げられる。また、これらの化合物のメチロール基同士が自己縮合してなるオリゴマーであってもよい。
 さらに、熱架橋剤の例としては、例えば、ML-26X、ML-24X、ML-236TMP、4-メチロール3M6C、ML-MC、ML-TBC、DML-MBPC、DML-MBOC、DML-OCHP、DML-PC、DML-PCHP、DML-PTBP、DML-34X、DML-EP、DML-POP、DML-OC、ジメチロール-Bis-C、ジメチロール-BisOC-P、DML-BisOC-Z、DML-BisOCHP-Z、DML-PFP、DML-PSBP、DML-MB25、DML-MTrisPC、DML-Bis25X-34XL、DML-Bis25X-PCHP、TriML-P、TriML-35XL、TriML-TrisCR-HAP、TML-BP、TML-HQ、TML-pp-BPF、TML-BPA、TMOM-BP、HML-TPPHBA、HML-TPHAP、HMOM-TPPHBA、HMOM-TPHAP(以上、商品名、本州化学工業(株)製)、B-a型ベンゾオキサジン、B-m型ベンゾオキサジン(以上、商品名、四国化成工業(株)製)、2,6-ジメトキシメチル-4-t-ブチルフェノール、2,6-ジメトキシメチル-p-クレゾール、2,6-ジアセトキシメチル-p-クレゾールなどが挙げられる。
 本発明の感光性樹脂組成物は、光酸発生剤を含有してもよい。光酸発生剤は、光照射によりスルホン酸類、カルボン酸類などの酸を発生させる物質であり、このような性質を有する化合物として、スルホニウム塩化合物、ヨードニウム塩化合物、スルホンイミド化合物、スルホン酸エステル化合物、ジアゾメタン化合物、トリアジン化合物などが挙げられる。また、これらを2種以上含有してもよい。
 本発明の感光性樹脂組成物は、(a)成分に加えて他の樹脂を含有してもよい。この場合、硬化膜の耐熱性や絶縁性の観点から他の樹脂を適宜選択することができ、(a)成分の樹脂を樹脂全体の50重量%以上含むことが好ましい。
 さらに、必要に応じて界面活性剤を含有してもよく、基板との塗れ性を向上させることができる。また、メチルメタクリロキシジメトキシシラン、3-アミノプロピルトリメトキシシランなどのシランカップリング剤、チタンキレート剤、アルミキレート剤などを含有してもよく、含有量は感光性樹脂組成物中0.5~10重量%が好ましい。これらを含有することにより、シリコンウエハなどの下地基板との接着性を向上させることができる。
 本発明の感光性樹脂組成物は、(e)溶剤を除去して膜厚25μmの感光性樹脂膜を形成し、100℃のホットプレートで3分間熱処理(プリベーク)した後に、180℃のオーブンで窒素雰囲気下(酸素濃度10ppm以下)にて120分間熱処理したときの、波長500nmにおける光透過率が40.0%以上であり、波長900nmを超えて1300nm以下の領域における光透過率が3.0%未満であることが好ましい。熱処理後の波長500nmにおける光透過率は、プリベーク後の感光性樹脂膜の紫外~可視領域における光透過率の指標となる特性であり、この値が40.0%以上であれば、後述する露光工程において基板とのアライメントが容易となる。50.0%以上がより好ましい。また、熱処理後の波長900nmを超えて1300nm以下の領域における光透過率が3.0%未満であれば、半導体基板として一般的に用いられるシリコンウエハを透過する光を十分に遮光することができ、固体撮像装置に用いた場合に画像のノイズを抑制することができる。これらの透過率は、例えば、感光性樹脂組成物中の(b)前記一般式(1)または(2)で表される化合物の含有量を調整することによって容易に達成される。例えば、感光性樹脂組成物中の(b)前記一般式(1)または(2)で表される化合物の含有量を、(a)成分100重量部に対して60重量部以下とする方法が挙げられる。20~30重量部がより好ましい。
 次に、本発明の感光性樹脂組成物の製造方法について例を挙げて説明するが、以下の方法に限定されない。
 (a)成分を(e)溶剤に撹拌溶解し、あるいは(a)成分を得るために重合反応して得られた樹脂溶液をそのまま用い、この樹脂溶液に(c)~(d)成分を所定の割合で混合した後、(b)一般式(1)または(2)で表される化合物を添加し、混合して均一な溶液とする。(b)一般式(1)または(2)で表される化合物を予め(e)溶剤に分散させておいてもよい。必要に応じて適当な段階でその他添加剤を混合する。このようにして得られた感光性樹脂組成物を、孔径が0.2~5μm程度のフィルターで濾過することが望ましい。
 次に、本発明の積層体について説明する。本発明の積層体は、波長400nm以上900nm以下の領域における光透過率が3.0%未満であり、波長900nmを超えて1300nm以下の領域における光透過率の最大値が3.0%以上である基板上に、上記本発明の感光性樹脂組成物から形成される感光性樹脂膜を熱処理することによって形成される、波長500nmにおける光透過率が40.0%以上であり、波長900nmを超えて1300nm以下の領域における光透過率が3.0%未満である硬化膜を有する。
 波長400nm以上900nm以下の領域における光透過率が3.0%未満であり、波長900nmを超えて1300nm以下の領域における光透過率の最大値が3.0%以上である基板としては、シリコンウエハ、シリコンウエハ上に窒化膜が形成されたSiN基板などが挙げられる。
 硬化膜の波長500nmにおける光透過率は、プリベーク後の感光性樹脂膜の紫外~可視領域における光透過率の指標となる特性であり、この値が40.0%以上であれば、後述する露光工程において基板とのアライメントが容易となる。50.0%以上がより好ましい。また、熱処理後の波長900nmを超えて1300nm以下の領域における光透過率が3.0%未満であれば、半導体基板として一般的に用いられるシリコンウエハを透過する光を十分に遮光することができ、固体撮像装置に用いた場合に画像のノイズを抑制することができる。これらの透過率は、例えば、感光性樹脂組成物中の(b)前記一般式(1)または(2)で表される化合物の含有量や、硬化膜の膜厚を調整することによって容易に達成される。例えば、硬化膜の膜厚が25μmの場合には、感光性樹脂組成物中の(b)前記一般式(1)または(2)で表される化合物の含有量を、(a)成分100重量部に対して60重量部以下とする方法が挙げられる。20~30重量部がより好ましい。また、硬化膜の膜厚は15~40μmが好ましい。
 本発明の積層体は、波長400nm以上1300nm以下の領域における光透過率が1.0%以下であることが好ましく、固体撮像装置に用いた場合に画像のノイズをより低減することができる。積層体全体の透過率は、基板の透過率と硬化膜の透過率との積から求められ、例えば、厚さ625nmのシリコンウエハに本発明の感光性樹脂組成物から形成される膜厚25μmの硬化膜を有する場合には、感光性樹脂組成物中の(b)前記一般式(1)または(2)で表される化合物の含有量を、(a)成分100重量部に対して60重量部以下とする方法が挙げられる。20~30重量部がより好ましい。
 次に、本発明の積層体の製造方法について説明する。
 波長400nm以上900nm以下の領域における光透過率が3.0%未満であり、波長900nmを超えて1300nm以下の領域における光透過率の最大値が3.0%以上である基板上に、本発明の感光性樹脂組成物を塗布する。メチルメタクリロキシジメトキシシラン、3-アミノプロピルトリメトキシシランなどのシランカップリング剤、チタンキレート剤、アルミキレート剤などにより基板を前処理しておいてもよい。例えば、前記カップリング剤などをイソプロパノール、エタノール、メタノール、水、テトラヒドロフラン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、乳酸エチル、アジピン酸ジエチルなどの溶剤に0.5~20重量%溶解させた溶液を用いて、スピンコート、浸漬、スプレー塗布、蒸気処理などの方法により基板の表面を処理する。必要により、その後50~300℃の範囲で熱処理することにより、基板と上記カップリング剤との反応を進行させることもできる。
 感光性樹脂組成物の塗布方法としては、スピナーを用いた回転塗布、スプレー塗布、ロールコーティングなどの方法が挙げられる。塗布膜厚は塗布手法、組成物の固形分濃度、粘度などによって異なるが、乾燥後の膜厚を15~40μmとすることが一般的である。
 次に感光性樹脂組成物を塗布した基板を熱処理(プリベーク処理)して、感光性樹脂膜を得る。プリベーク処理はオーブン、ホットプレートなどを使用し、50~150℃の範囲で1分間から数時間行うことが好ましく、例えば、100℃のホットプレートで3分間熱処理する方法が挙げられる。
 パターン加工を行う場合には、化学線を照射し、露光する。露光に用いられる化学線としては紫外線、可視光線、電子線、X線などがあるが、本発明では水銀灯のi線(365nm)、h線(405nm)、g線(436nm)が混合された光線が好ましい。次に露光後のベーク処理を行ってもよい。ベーク処理の温度は50~180℃の範囲が好ましく、60~150℃の範囲がより好ましい。時間は特に制限はない。
 露光後、現像液を用いて未露光部を除去する。現像液としては、例えば、N-メチル-2-ピロリドン、N-アセチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルトリアミドなどを単独あるいはメタノール、エタノール、イソプロピルアルコール、メチルカルビトール、エチルカルビトール、トルエン、キシレン、乳酸エチル、ピルビン酸エチル、プロピレングリコールモノメチルエーテルアセテート、メチル-3-メトキシプロピオネート、エチル-3-エトキシプロピオネート、2-ヘプタノン、酢酸エチルなどの有機溶剤と組み合わせて使用したり、テトラメチルアンモニウムの水溶液、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミンなどのアルカリ性を示す化合物の水溶液を使用することができる。特に、テトラメチルアンモニウムの水溶液、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミンなどのアルカリ性を示す化合物の水溶液が好ましい。また場合によっては、これらのアルカリ水溶液にN-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトン、ジメチルアクリルアミドなどの極性溶媒、メタノール、エタノール、イソプロパノールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類などを単独あるいは数種を組み合わせたものを添加してもよい。現像後は水にてリンス処理をすることが好ましい。ここでもエタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類などを水に加えてリンス処理をしてもよい。
 その後、120~400℃で熱処理して硬化膜にする。この熱処理は温度を選び、段階的に昇温するか、ある温度範囲を選び連続的に昇温しながら5分間~5時間実施してもよい。一例としては、130℃、200℃、300℃で各30分間ずつ熱処理する方法、室温から300℃まで2時間かけて直線的に昇温する方法、180℃のオーブンで窒素雰囲気下(酸素濃度10ppm以下)にて120分間熱処理する方法などが挙げられる。
 本発明の感光性樹脂組成物は、Si貫通電極を適用した固体撮像装置において、シリコンウエハの裏面に塗布する感光性遮光絶縁材料として好適に用いることができる。本発明の固体撮像装置の一例を示す概略図を図2に示す。固体撮像素子2が形成された半導体基板3上にレンズホルダ9を有し、レンズ10およびガラス11はレンズホルダ9に挟まれている。固体撮像素子2の上にはガラス11が形成され、スペーサー12を介してレンズホルダ9に挟まれたIRカットフィルタ8が搭載されている。固体撮像素子2が形成された半導体基板3を貫通する貫通電極7の先にソルダーボール1が形成され、半導体基板3と、これを実装する実装基板4とが、ソルダーボール1により接続される。半導体基板3の実装基板4側の面には、本発明の感光性樹脂組成物を用いて形成される遮光絶縁層13を有する。本発明の感光性樹脂組成物は絶縁性を有するため、これが絶縁層としての役割を担うとともに、可視~近赤外領域の光を遮光することができる。一方で、半導体基板3側から固体撮像素子2へ入射する光のうち、半導体基板3によって紫外~可視領域の光が遮光されるので、紫外~可視~近赤外領域の光を遮光することが可能となる。
 以下実施例を挙げて本発明を説明するが、本発明はこれらの例によって限定されるものではない。なお、合成例中の樹脂および実施例中の感光性樹脂組成物の評価は以下の方法により行った。
 膜厚の測定方法
 大日本スクリーン製造(株)製ラムダエースSTM-602を使用し、屈折率1.58で測定を行った。膜厚が30μm以上の場合には、走査型電子顕微鏡S-4800(日立製)にて断面を観察し、膜厚を測定した。
 感光性樹脂膜の作製
 6インチシリコンウエハ上に、感光性樹脂組成物(以下ワニスと呼ぶ)をプリベーク後の膜厚が28μmとなるように塗布し、ついでホットプレート(東京エレクトロン(株)製Mark-7)を用いて、100℃で3分間プリベークすることにより、感光性樹脂膜を得た。
 露光
 露光機(ウルトラテック(株)社製全波長ステッパーSpectrum 3e)に、150umのラインアンドスペースと一辺の長さが150umの正方形のパターンを有するレチクルをセットし、感光性樹脂膜に対して、露光量1000mJ/cm(i線換算)で全波長露光を行った。
 現像
 露光した感光性樹脂膜に対して、東京エレクトロン(株)製Mark-7の現像装置を用い、50回転で水酸化テトラメチルアンモニウムの2.38重量%水溶液を10秒間噴霧した。この後、50回転で30秒間静置した。この作業を2回繰り返した。400回転で水にてリンス処理し、3000回転で10秒間振り切り乾燥し、現像後膜を得た。
 熱処理(キュア)
 現像後膜を、イナートオーブンINH-21CD(光洋サーモシステム(株)社製)を用いて、窒素気流下(酸素濃度10ppm以下)、180℃で120分間熱処理を行い、硬化膜を得た。
 パターン形状の評価
 走査型電子顕微鏡S-4800(日立製)にて、硬化膜の断面を観察し、一辺の長さが150umの正方形のパターンにおいて、断面の上辺の長さに対する断面の下辺の長さの比((下辺の長さ/上辺の長さ)×100(%))を求めた。この値が50%以上であれば、パターン形状は良好と判断できる。
 残さの評価
 硬化膜を光学顕微鏡により倍率5倍にて観察し、未露光部において溶解せずに残存している樹脂組成物(残さ)の有無を次の基準にて3段階で評価した。
◎:150um間隔の露光により硬化された、残しパターン間において、全く溶け残りなし。
○:150um間隔の露光により硬化された、残しパターン間において、パターンから15um以内の部分に溶け残りあり。
△:150um間隔の露光により硬化された、残しパターン間において、パターンから15μmを超える部分にも溶け残りがあるが、パターン同士は区別できる。
 光透過率の測定
 積層体の光透過率については6インチウエハ(ケイ・エス・ティ・ワールド(株)製、ウエハ厚さ625nmであり、波長400nm以上900nm以下の領域における光透過率が0%、波長900nmを超えて1300nm以下の領域における光透過率が最大49.2%である基板)上に、感光性樹脂膜の透過率についてはテンパックスガラス((株)大興製作所製)上に作製した膜厚25μmの硬化膜について、分光光度計UV-3150(島津製作所(株)製)を用いて、波長350nm~1400nmの光透過率を測定した。
 合成例1 ヒドロキシル基含有ジアミン化合物(I)の合成
 ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(セントラル硝子(株)製、BAHF)18.3g(0.05モル)をアセトン100mL、プロピレンオキシド17.4g(0.3モル)に溶解させ、-15℃に冷却した。ここに4-ニトロベンゾイルクロリド20.4g(0.11モル)をアセトン100mLに溶解させた溶液を滴下した。滴下終了後、-15℃で4時間反応させ、その後室温に戻した。析出した白色粉体をろ別し、50℃で真空乾燥した。
 粉体30gを300mLのステンレスオートクレーブに入れ、メチルセルソルブ250mLに分散させ、5%パラジウム-炭素を2g加えた。ここに水素を風船で導入して、還元反応を室温で行った。約2時間後、風船がこれ以上しぼまないことを確認して反応を終了させた。反応終了後、ろ過して触媒であるパラジウム化合物を除き、ロータリーエバポレーターで濃縮し、下記式で表されるヒドロキシル基含有ジアミン化合物(I)を得た。
Figure JPOXMLDOC01-appb-C000007
 合成例2 ポリイミド樹脂の合成
 乾燥窒素気流下、BAHF29.3g(0.08モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン1.24g(0.005モル)、末端封止剤として、3-アミノフェノール(東京化成工業(株)製)3.27g(0.03モル)をN-メチル-2-ピロリドン(NMP)150gに溶解した。ここにビス(3,4-ジカルボキシフェニル)エーテル二無水物(マナック(株)製、ODPA)31.0g(0.1モル)をNMP50gとともに加えて、20℃で1時間撹拌し、次いで50℃で4時間撹拌した。その後、キシレンを15g添加し、水をキシレンとともに共沸しながら、150℃で5時間撹拌した。撹拌終了後、溶液を水3Lに投入して白色沈殿を集めた。この沈殿をろ過で集めて、水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、ポリイミド粉体を得た。
 合成例3 ポリアミド酸エステルの合成
 乾燥窒素気流下、合成例1で得られたヒドロキシル基含有ジアミン化合物(I)48.4g(0.08モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン1.24g(0.005モル)、末端封止剤として、3-アミノフェノール(東京化成工業(株)製)3.27g(0.03モル)をNMP150gに溶解した。ここにODPA31.0g(0.1モル)をNMP50gとともに加えて、40℃で3時間撹拌した。その後、N,N-ジメチルホルムアミドジメチルアセタール5.19g(0.127モル)をNMP4gで希釈した溶液を10分間かけて滴下した。滴下後、50℃で3時間撹拌した。反応終了後、溶液を水3Lに投入して白色沈殿を集めた。この沈殿をろ過で集めて、水で3回洗浄した後、50℃の真空乾燥機で72時間乾燥し、ポリイミド前駆体であるポリアミド酸エステルを得た。このようにして得られたポリアミド酸のエステル化率は100%であった。
 合成例4 ポリヒドロキシアミドの合成
 乾燥窒素気流下、BAHF18.3g(0.05モル)をNMP50g、グリシジルメチルエーテル26.4g(0.3モル)に溶解させ、溶液の温度を-15℃まで冷却した。ここにジフェニルエーテルジカルボン酸ジクロリド14.7g(日本農薬(株)製、0.050モル)をγ-ブチロラクトン(GBL)25gに溶解させた溶液を内部の温度が0℃を越えないように滴下した。滴下終了後、-15℃で6時間撹拌を続けた。反応終了後、溶液をメタノールを10重量%含んだ水3Lに投入して白色の沈殿を集めた。この沈殿をろ過で集めて、水で3回洗浄した後、50℃の真空乾燥機で72時間乾燥し、ポリベンゾオキサゾール前駆体であるポリヒドロキシアミド粉体を得た。
 合成例5 ポリアミド酸溶液の合成
 4,4’-ジアミノフェニルエーテル43.3g、パラフェニレンジアミン50.6g、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン8.9gをGBL850g、NMP850gと共に仕込み、3,3’,4,4’-オキシジフタルカルボン酸二無水物231.4gを添加し、80℃で3時間撹拌した。無水マレイン酸1.4gを添加し、さらに80℃で1時間撹拌し、ポリイミド前駆体であるポリアミド酸溶液(ポリマー濃度20重量%)を得た。
 合成例6 チタン窒化物粒子分散液の調製
 熱プラズマ法により製造したチタン窒化物粒子(日清エンジニアリング(株)製、TiNUFP Lot13306B10)96g、合成例5に記載のポリアミド酸溶液120g、GBL114g、NMP538g、3-メチル-3-メトキシブチルアセテート132gをタンクに仕込み、ホモミキサー(特殊機化製)で1時間撹拌し、予備分散液1を得た。その後、0.05mmφジルコニアビーズ(ニッカトー製、YTZボール)を70%充填した遠心分離セパレーターを具備したウルトラアペックスミル(寿工業製)に予備分散液1を供給し、回転速度8m/秒で2時間分散を行い、固形分濃度12重量%、チタン窒化物粒子/樹脂(重量比)=80/20のチタン窒化物粒子分散液を得た。
 合成例7 カーボンブラック分散液の調製
 チタン窒化物粒子(日清エンジニアリング(株)製、TiN UFP Lot13306B10)96gをカーボンブラック(“MA100”三菱化成製)96gに変更した以外は合成例6と同様にして、予備分散液2を得た。その後、予備分散液1を予備分散液2に変更し、ウルトラアペックスミルの回転速度を8m/秒から8m/20秒に変更した以外はで2時間分散を行い、固形分濃度12重量%、カーボンブラック/樹脂(重量比)=80/20のカーボンブラック分散液を得た。
 各実施例および比較例に用いた化合物の構造を以下に示す
Figure JPOXMLDOC01-appb-C000008
 実施例1
 合成例2で得られたポリイミド粉体10.0g、前記一般式(1)または(2)で表される化合物としてYMF-02(商品名、住友金属鉱山(株)製、Cs0.33WO分散液 濃度20重量%)12.0g、重合性基を2つ有する光重合性化合物としてPDBE-250(商品名、(株)日本油脂製)3.0g、ライトアクリレートDCP-A(商品名、共栄社化学(株)製)3.0g、オキシム系光重合開始剤としてOXE-02(商品名、チバスペシャリティケミカルズ(株)製)3.0gをジアセトンアルコール12gに溶解させて感光性樹脂組成物のワニスAを得た。得られたワニスAを用いて、前記のようにパターン形状および残さを評価し、積層体と感光性樹脂膜の光透過率を測定した。
 実施例2
 合成例2で得られたポリイミド粉体に代えて合成例3で得られたポリアミド酸エステル10.0gを用いること以外は実施例1と同様にして感光性樹脂組成物のワニスBを得た。得られたワニスBを用いて、実施例1と同様にして評価を行った。
 実施例3
 合成例2で得られたポリイミド粉体に代えて合成例4で得られたポリヒドロキシアミド粉体10.0gを用いること、ジアセトンアルコールに代えてGBLを用いること以外は実施例1と同様にして感光性樹脂組成物のワニスCを得た。得られたワニスCを用いて、実施例1と同様にして評価を行った。
 実施例4
YMF-02の添加量を12.0gから7.5gに変更すること、ジアセトンアルコールに代えてGBLを用いること以外は実施例1と同様にして感光性樹脂組成物のワニスDを得た。得られたワニスDを用いて、実施例1と同様にして評価を行った。
 実施例5
 YMF-02(商品名、住友金属鉱山(株)製)の添加量を12.0gから17.5gに変更すること以外は実施例1と同様にして感光性樹脂組成物のワニスEを得た。得られたワニスEを用いて、実施例1と同様にして評価を行った。
 実施例6
 YMF-02(商品名、住友金属鉱山(株)製)12.0gに変えてCsWO012-3(商品名、ナノグラム(株)製、Cs0.4WO)2.4gを用いること以外は実施例1と同様にして感光性樹脂組成物のワニスFを得た。得られたワニスFを用いて、実施例1と同様にして評価を行った。
 実施例7
 架橋剤としてMX-270(商品名、みどり化学(株)製)3.0gをさらに用いること、ダイアセトンアルコールに変えてGBL12.0gを用いること以外は実施例1と同様にして感光性樹脂組成物のワニスGを得た。得られたワニスGを用いて、実施例1と同様にして評価を行った。
 実施例8
 YMF-02(商品名、住友金属鉱山(株)製)12.0gに変えてCsWO009-04(商品名、ナノグラム(株)製、Cs0.1WO)2.4gを用いること以外は実施例1と同様にして感光性樹脂組成物のワニスHを得た。得られたワニスHを用いて、実施例1と同様にして評価を行った。
 実施例9
 合成例2で得られたポリイミド粉体10.0g、前記一般式(1)または(2)で表される化合物としてYMF-02(商品名、住友金属鉱山(株)製、Cs0.33WO分散液 濃度20重量%)12.0g、重合性基を2つ有する光重合性化合物としてPDBE-250(商品名、(株)日本油脂製)4.8g、重合性基を1つのみ有する光重合性化合物としてMOI-BP(商品名、昭和電工(株)製)1.2g、オキシム系光重合開始剤としてOXE-02(商品名、チバスペシャリティケミカルズ(株)製)2.0gをジアセトンアルコール12gに溶解させて感光性樹脂組成物のワニスIを得た。得られたワニスIを用いて、実施例1と同様にして評価を行った。
 実施例10
 合成例2で得られたポリイミド粉体に代えて合成例3で得られたポリアミド酸エステル10.0gを用いること以外は実施例9と同様にして感光性樹脂組成物のワニスJを得た。得られたワニスJを用いて、実施例1と同様にして評価を行った。
 実施例11
 合成例2で得られたポリイミド粉体に代えて合成例4で得られたポリヒドロキシアミド粉体10.0gを用いること、PDBE-250(商品名、(株)日本油脂製)の添加量を4.8gから3.0gに変更すること、MOI-BP(商品名、昭和電工(株)製)1.2gに代えてDCP-A3.0gを用いること、ジアセトンアルコールに代えてGBLを用いること以外は実施例9と同様にして感光性樹脂組成物のワニスKを得た。得られたワニスKを用いて、実施例1と同様にして評価を行った。
 実施例12
 YMF-02(商品名、住友金属鉱山(株)製)の添加量を12.0gから7.5gに変更すること、ジアセトンアルコールに代えてGBLを用いること以外は実施例9と同様にして感光性樹脂組成物のワニスLを得た。得られたワニスLを用いて、実施例1と同様にして評価を行った。
 実施例13
 YMF-02(商品名、住友金属鉱山(株)製)の添加量を12.0gから17.5gに変更すること以外は実施例9と同様にして感光性樹脂組成物のワニスMを得た。得られたワニスMを用いて、実施例1と同様にして評価を行った。
 実施例14
 PDBE-250(商品名、(株)日本油脂製)の添加量を4.8gから5.4g、MOI-BP(商品名、昭和電工(株)製)の添加量を1.2gから0.6gに変更すること以外は実施例9と同様にして感光阿世樹脂組成物のワニスNを得た。得られたワニスNを用いて、実施例1と同様にして評価を行った。
 実施例15
 PDBE-250(商品名、(株)日本油脂製)に代えて重合性基を3つ有する光重合性化合物としてペンタエリスリトールトリアクリレート4.8gを用いること以外は実施例9と同様にして感光性樹脂組成物Oを得た。得られたワニスOを用いて、実施例1と同様にして評価を行った。
 実施例16
 YMF-02(商品名、住友金属鉱山(株)製)12.0gに変えてCsWO012-3(商品名、ナノグラム(株)製、Cs0.4WO)2.4gを用いること以外は実施例9と同様にして感光性樹脂組成物のワニスPを得た。得られたワニスPを用いて、実施例1と同様にして評価を行った。
 実施例17
 YMF-02(商品名、住友金属鉱山(株)製)12.0gに変えてCsWO009-04(商品名、ナノグラム株)製、Cs0.1WO)2.4gを用いること以外は実施例9と同様にして感光性樹脂組成物のワニスQを得た。得られたワニスQを用いて、実施例1と同様にして評価を行った。
 実施例18
 架橋剤としてMX-270(商品名、みどり化学(株)製)3.0gをさらに用いること、ダイアセトンアルコールに変えてGBL12.0gを用いること以外は実施例9と同様にして感光性樹脂組成物のワニスRを得た。得られたワニスRを用いて、実施例1と同様にして評価を行った。
 実施例19
 YMF-02(商品名、住友金属鉱山(株)製)の添加量を12.0gから15.0gに変更すること、OXE-02(商品名、チバスペシャリティケミカルズ(株)製)の添加量を2.0gから0.7gに変更すること以外は実施例9と同様にして感光性樹脂組成物のワニスSを得た。得られたワニスSを用いて、実施例1と同様にして評価を行った。
 実施例20
 MOI-BP(商品名、昭和電工(株)製)を用いないこと、PDBE-250(商品名、(株)日本油脂製)の添加量を4.8gから6gに変更すること以外は実施例9と同様にして感光性樹脂組成物Tを得た。得られたワニスTを用いて、実施例1と同様にして評価を行った。
 比較例1
 YMF-02(商品名、住友金属鉱山(株)製)12.0gを含有しないこと以外は実施例1と同様にして感光性樹脂組成物のワニスUを得た。得られたワニスUを用いて、実施例1と同様にして評価を行った。
 比較例2
 YMF-02(商品名、住友金属鉱山(株)製)に代えて合成例6で得られたチタン窒化物粒子分散液2.4gを用いること以外は実施例1と同様にして感光性樹脂組成物のワニスVを得た。得られたワニスVを用いて、実施例1と同様にして評価を行った。
 比較例3
 YMF-02(商品名、住友金属鉱山(株)製)にえて合成例7で得られたカーボンブラック分散液2.4gを用いること以外は実施例1と同様にして感光性樹脂組成物のワニスWを得た。得られたワニスWを用いて、実施例1と同様にして評価を行った。
 比較例4
 YMF-02(商品名、住友金属鉱山(株)製)を含有しないこと以外は実施例9と同様にして感光性樹脂組成物のワニスXを得た。得られたワニスXを用いて、実施例1と同様にして評価を行った。
 比較例5
 YMF-02(商品名、住友金属鉱山(株)製)に代えて合成例6で得られたチタン窒化物粒子分散液1を25g用いること以外は実施例9と同様にして感光性樹脂組成物のワニスYを得た。得られたワニスYを用いて、実施例1と同様にして評価を行った。
 比較例6
 YMF-02(商品名、住友金属鉱山(株)製)に代えて合成例7で得られたカーボンブラック分散液2を25g用いること以外は実施例9と同様にして感光性樹脂組成物のワニスZを得た。得られたワニスZを用いて、実施例1と同様にして評価を行った。
 比較例7
 PDBE-250(商品名、(株)日本油脂製)を用いないこと、MOI-BP(商品名、昭和電工(株)製)の添加量を1.2gから6gに変更すること以外は実施例9と同様にして感光性樹脂組成物のワニスAAを得た。得られたワニスAAを用いて、実施例1と同様にして評価を行った。
 比較例8
 ポリイミド粉体を用いないこと、PDBE-250(商品名、(株)日本油脂製)とMOI-BP(商品名、昭和電工(株)製)に代えてペンタエリスリトールテトラアクリレートを10g用いること、OXE-02(商品名、チバスペシャリティケミカルズ(株)製)に代えて、イルガキュア907(商品名、チバスペシャリティケミカルズ(株)製)を0.3g用いること以外は実施例9と同様にして感光性樹脂組成物のワニスABを得た。得られたワニスABを用いて、実施例1と同様にして評価を行った。
 参考例1
 実施例1で得られたワニスAを用いて、基板としてテンパックスガラス板(波長400~1300nmの領域における透過率:いずれも100%)を用いる以外は実施例1と同様に評価を行った。
 各実施例、比較例および参考例の感光性樹脂組成物の組成を表1~3に、評価結果を表4~6に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 本発明の感光性樹脂組成物を、波長400nm以上900nm以下の領域における光透過率が3.0%未満であり、波長900nmを超えて1300nm以下の領域の光透過率の最大値が3.0%以上である基板に塗布することにより、絶縁性と紫外~可視~近赤外領域にわたる遮光性を付与することができる。そのため、より簡易で生産性の高い方法で固体撮像装置を提供することができる。
 1 ソルダーボール
 2 固体撮像素子
 3 半導体基板
 4 実装基板
 5 絶縁層
 6 遮光層
 7 貫通電極
 8 IRカットフィルタ
 9 レンズホルダ
10 レンズ
11 ガラス
12 スペーサー
13 遮光絶縁層

Claims (8)

  1. (a)アルカリ可溶性樹脂、(b)下記一般式(1)または(2)で表されるタングステン酸化物および/または複合タングステン酸化物、(c)重合性基を2つ以上有する光重合性化合物、(d)オキシム系光重合開始剤および(e)溶剤を含有することを特徴とする感光性樹脂組成物。
    z             (1)
    (上記一般式(1)中、Wはタングステン、Oは酸素、y>0、z>0であり、2.2≦z/y<3を満たす。)
      (2)
    (上記一般式(2)中、M元素は、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1以上の元素、Wはタングステン、Oは酸素、x>0、y>0、z>0であり、0.001≦x/y≦1.1、2.2≦z/y≦3.0を満たす。)
  2. (a)アルカリ可溶性樹脂が、ポリイミド、ポリベンゾオキサゾールまたはそれらの前駆体であることを特徴とする請求項1に記載の感光性樹脂組成物。
  3. さらに(c)’重合性基を1つのみ有する光重合性化合物を含有することを特徴とする請求項1または2に記載の感光性樹脂組成物。
  4. 前記(e)溶剤を除去して膜厚25μmの感光性樹脂膜を形成し、100℃のホットプレートで3分間熱処理した後に、180℃のオーブンで窒素雰囲気下(酸素濃度10ppm以下)にて120分間熱処理したときの、波長500nmにおける光透過率が40.0%以上であり、波長900nmを超えて1300nm以下の領域における光透過率が3.0%未満であることを特徴とする請求項1~3のいずれかに記載の感光性樹脂組成物。
  5. 波長400nm以上900nm以下の領域における光透過率が3.0%未満であり、波長900nmを超えて1300nm以下の領域における光透過率の最大値が3.0%以上である基板上に、請求項1~4のいずれかに記載の感光性樹脂組成物から形成される感光性樹脂膜を熱処理することによって形成される、波長500nmにおける光透過率が40.0%以上であり、波長900nmを超えて1300nm以下の領域における光透過率が3.0%未満である硬化膜を有することを特徴とする積層体。
  6. 波長400nm以上1300nm以下の領域における光透過率が1.0%以下であることを特徴とする請求項5に記載の積層体。
  7. 波長400nm以上900nm以下の領域における光透過率が3.0%未満であり、波長900nmを超えて1300nm以下の領域における光透過率の最大値が3.0%以上である基板上に、請求項1~4のいずれかに記載の感光性樹脂組成物から形成される感光性樹脂膜を熱処理することによって形成される積層体の製造方法。
  8. 請求項5または6に記載の積層体を搭載した固体撮像装置。
PCT/JP2010/068939 2009-12-04 2010-10-26 感光性樹脂組成物、それを用いた積層体および固体撮像装置 WO2011067998A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP10834451.6A EP2508947A4 (en) 2009-12-04 2010-10-26 PHOTOSENSITIVE RESIN COMPOSITION, LAMINATE USING THE SAME, AND SOLID STATE IMAGING DEVICE
CN201080055022.8A CN102640054B (zh) 2009-12-04 2010-10-26 感光性树脂组合物、使用该感光性树脂组合物的层积体和固态摄像装置
US13/513,464 US8901225B2 (en) 2009-12-04 2010-10-26 Photosensitive resin composition, laminate utilizing same and solid-state imaging device
KR1020177036813A KR101913997B1 (ko) 2009-12-04 2010-10-26 감광성 수지 조성물, 그것을 이용한 적층체 및 고체 촬상 장치
SG2012040325A SG181464A1 (en) 2009-12-04 2010-10-26 Photosensitive resin composition, laminate utilizing same, and solid-state imaging device
JP2010545713A JP5088419B2 (ja) 2009-12-04 2010-10-26 感光性樹脂組成物、それを用いた積層体および固体撮像装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009276101 2009-12-04
JP2009-276101 2009-12-04

Publications (1)

Publication Number Publication Date
WO2011067998A1 true WO2011067998A1 (ja) 2011-06-09

Family

ID=44114856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068939 WO2011067998A1 (ja) 2009-12-04 2010-10-26 感光性樹脂組成物、それを用いた積層体および固体撮像装置

Country Status (9)

Country Link
US (1) US8901225B2 (ja)
EP (1) EP2508947A4 (ja)
JP (1) JP5088419B2 (ja)
KR (2) KR20120109489A (ja)
CN (1) CN102640054B (ja)
MY (1) MY163409A (ja)
SG (1) SG181464A1 (ja)
TW (1) TWI510859B (ja)
WO (1) WO2011067998A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145742A1 (en) 2010-05-19 2011-11-24 Fujifilm Corporation Polymerizable composition
JP2011242660A (ja) * 2010-05-19 2011-12-01 Fujifilm Corp 重合性組成物
JP2012003225A (ja) * 2010-01-27 2012-01-05 Fujifilm Corp ソルダーレジスト用重合性組成物及びソルダーレジストパターンの形成方法
WO2012015076A1 (en) * 2010-07-29 2012-02-02 Fujifilm Corporation Polymerizable composition
JP2012068418A (ja) * 2010-09-22 2012-04-05 Fujifilm Corp 重合性組成物、並びに、これを用いた感光層、永久パターン、ウエハレベルレンズ、固体撮像素子、及び、パターン形成方法
JP2012118295A (ja) * 2010-11-30 2012-06-21 Fujifilm Corp 重合性組成物、並びに、これを用いた感光層、永久パターン、ウエハレベルレンズ、固体撮像素子、及び、パターン形成方法
JP2013088518A (ja) * 2011-10-14 2013-05-13 Asahi Kasei E-Materials Corp 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
JP2013088762A (ja) * 2011-10-21 2013-05-13 Three M Innovative Properties Co 熱遮蔽用積層体及びその製造に用いられる積層フィルム
WO2015198887A1 (ja) * 2014-06-27 2015-12-30 東京応化工業株式会社 感エネルギー性樹脂組成物
JP2016080792A (ja) * 2014-10-14 2016-05-16 旭化成イーマテリアルズ株式会社 ネガ型感光性樹脂組成物及び転写材料
WO2016167298A1 (ja) * 2015-04-13 2016-10-20 共同印刷株式会社 偽造防止用インキ及びその印刷物
WO2017038423A1 (ja) * 2015-08-31 2017-03-09 富士フイルム株式会社 感光性樹脂組成物、平版印刷版原版及び平版印刷版の製版方法
JPWO2016056451A1 (ja) * 2014-10-06 2017-07-27 東レ株式会社 樹脂組成物、耐熱性樹脂膜の製造方法、および表示装置
JPWO2017057281A1 (ja) * 2015-09-30 2018-05-10 東レ株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び表示装置、並びにその製造方法
WO2019026772A1 (ja) * 2017-07-31 2019-02-07 太陽ホールディングス株式会社 感光性樹脂組成物、ドライフィルム、硬化物、プリント配線板、半導体素子および電子部品
WO2019065902A1 (ja) * 2017-09-29 2019-04-04 東レ株式会社 感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び有機elディスプレイ、並びに有機elディスプレイの製造方法
WO2020080207A1 (ja) * 2018-10-15 2020-04-23 日産化学株式会社 感光性絶縁膜組成物
US10975250B2 (en) 2014-09-01 2021-04-13 Fujifilm Corporation Infrared shielding composition, infrared cut filter, and solid-state imaging device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5417364B2 (ja) * 2011-03-08 2014-02-12 富士フイルム株式会社 固体撮像素子用硬化性組成物、並びに、これを用いた感光層、永久パターン、ウエハレベルレンズ、固体撮像素子、及び、パターン形成方法
EP2662895B1 (en) * 2012-05-11 2014-06-25 Nxp B.V. Integrated circuit including a directional light sensor
WO2013167466A2 (en) 2012-05-11 2013-11-14 Nxp B.V. Integrated circuit with directional light sensor, device including such an ic and method of manufacturing such an ic
PT2902847T (pt) 2012-09-25 2019-08-06 Toray Industries Composição positiva da resina fotosensível e método para produção de dispositivo semicondutor contendo uma película curada utilizando a referida composição
JP6414060B2 (ja) * 2013-07-23 2018-10-31 日立化成デュポンマイクロシステムズ株式会社 樹脂組成物、それを用いたパターン形成方法及び電子部品
TWI675907B (zh) * 2015-01-21 2019-11-01 日商Jsr股份有限公司 固體攝像裝置
WO2017053401A1 (en) * 2015-09-25 2017-03-30 3M Innovative Properties Company Curable infrared light absorbing printing ink and articles prepared with it
KR102404323B1 (ko) * 2017-04-25 2022-06-07 삼성전기주식회사 차광성 수지 조성물 및 이를 포함하는 성형품
JPWO2021117586A1 (ja) * 2019-12-11 2021-06-17

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04111353A (ja) * 1990-08-31 1992-04-13 Canon Inc 光電変換装置
JPH06251621A (ja) * 1993-02-26 1994-09-09 Toray Ind Inc 感光性誘電ペースト
JPH09208775A (ja) 1996-01-30 1997-08-12 Kureha Chem Ind Co Ltd 塩化ビニル系樹脂組成物
JP2003227922A (ja) 2002-02-01 2003-08-15 Sumitomo Metal Mining Co Ltd プラズマディスプレイパネル用近赤外線吸収フィルターとこのフィルターの製造に用いられる近赤外線吸収剤の分散液
JP2006154516A (ja) 2004-11-30 2006-06-15 Sumitomo Metal Mining Co Ltd プラズマディスプレイパネル用近赤外線吸収フィルター、及びこれを用いたプラズマディスプレイパネル
JP2007133377A (ja) * 2005-10-12 2007-05-31 Toray Ind Inc 感光性樹脂組成物
JP2007281929A (ja) 2006-04-07 2007-10-25 Iwate Toshiba Electronics Co Ltd 固体撮像装置およびその製造方法
JP2008076740A (ja) 2006-09-21 2008-04-03 Nissan Chem Ind Ltd 重合性基を有する化合物を含有するネガ型感光性樹脂組成物
JP2008311280A (ja) 2007-06-12 2008-12-25 Iwate Toshiba Electronics Co Ltd カメラモジュールおよびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6546939B1 (en) * 1990-11-05 2003-04-15 Ekc Technology, Inc. Post clean treatment
JP2006309202A (ja) * 2005-03-29 2006-11-09 Toray Ind Inc 感光性樹脂組成物およびそれを用いた半導体装置
JP5107231B2 (ja) * 2006-03-28 2012-12-26 富士フイルム株式会社 感光性組成物、及び感光性フィルム、並びに永久パターン形成方法及びプリント基板
JP5109553B2 (ja) 2006-09-27 2012-12-26 東レ株式会社 感光性樹脂組成物およびそれを用いた誘電体組成物、半導体装置
KR20080036771A (ko) * 2006-10-24 2008-04-29 삼성전자주식회사 유기층 패턴 형성방법, 그에 의해 형성된 유기층 및 그를포함하는 유기 메모리 소자
JP5287080B2 (ja) 2007-10-18 2013-09-11 日油株式会社 プラズマディスプレイパネル用ハードコートフィルム及びプラズマディスプレイパネル
JP5358976B2 (ja) * 2008-02-29 2013-12-04 大日本印刷株式会社 近赤外線吸収材
JP5344843B2 (ja) * 2008-03-31 2013-11-20 富士フイルム株式会社 重合性組成物および固体撮像素子
JP5544239B2 (ja) * 2010-07-29 2014-07-09 富士フイルム株式会社 重合性組成物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04111353A (ja) * 1990-08-31 1992-04-13 Canon Inc 光電変換装置
JPH06251621A (ja) * 1993-02-26 1994-09-09 Toray Ind Inc 感光性誘電ペースト
JPH09208775A (ja) 1996-01-30 1997-08-12 Kureha Chem Ind Co Ltd 塩化ビニル系樹脂組成物
JP2003227922A (ja) 2002-02-01 2003-08-15 Sumitomo Metal Mining Co Ltd プラズマディスプレイパネル用近赤外線吸収フィルターとこのフィルターの製造に用いられる近赤外線吸収剤の分散液
JP2006154516A (ja) 2004-11-30 2006-06-15 Sumitomo Metal Mining Co Ltd プラズマディスプレイパネル用近赤外線吸収フィルター、及びこれを用いたプラズマディスプレイパネル
JP2007133377A (ja) * 2005-10-12 2007-05-31 Toray Ind Inc 感光性樹脂組成物
JP2007281929A (ja) 2006-04-07 2007-10-25 Iwate Toshiba Electronics Co Ltd 固体撮像装置およびその製造方法
JP2008076740A (ja) 2006-09-21 2008-04-03 Nissan Chem Ind Ltd 重合性基を有する化合物を含有するネガ型感光性樹脂組成物
JP2008311280A (ja) 2007-06-12 2008-12-25 Iwate Toshiba Electronics Co Ltd カメラモジュールおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2508947A4 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012003225A (ja) * 2010-01-27 2012-01-05 Fujifilm Corp ソルダーレジスト用重合性組成物及びソルダーレジストパターンの形成方法
US9389505B2 (en) 2010-01-27 2016-07-12 Fujifilm Corporation Polymerizable composition for solder resist, and solder resist pattern formation method
WO2011145742A1 (en) 2010-05-19 2011-11-24 Fujifilm Corporation Polymerizable composition
JP2011242660A (ja) * 2010-05-19 2011-12-01 Fujifilm Corp 重合性組成物
US8735483B2 (en) 2010-05-19 2014-05-27 Fujifilm Corporation Polymerizable composition
EP2598946A1 (en) * 2010-07-29 2013-06-05 FUJIFILM Corporation Polymerizable composition
JP2012032556A (ja) * 2010-07-29 2012-02-16 Fujifilm Corp 重合性組成物
EP2598946A4 (en) * 2010-07-29 2014-05-07 Fujifilm Corp POLYMERIZABLE COMPOSITION
US8728712B2 (en) 2010-07-29 2014-05-20 Fujifilm Corporation Polymerizable composition
WO2012015076A1 (en) * 2010-07-29 2012-02-02 Fujifilm Corporation Polymerizable composition
JP2012068418A (ja) * 2010-09-22 2012-04-05 Fujifilm Corp 重合性組成物、並びに、これを用いた感光層、永久パターン、ウエハレベルレンズ、固体撮像素子、及び、パターン形成方法
JP2012118295A (ja) * 2010-11-30 2012-06-21 Fujifilm Corp 重合性組成物、並びに、これを用いた感光層、永久パターン、ウエハレベルレンズ、固体撮像素子、及び、パターン形成方法
JP2013088518A (ja) * 2011-10-14 2013-05-13 Asahi Kasei E-Materials Corp 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
JP2013088762A (ja) * 2011-10-21 2013-05-13 Three M Innovative Properties Co 熱遮蔽用積層体及びその製造に用いられる積層フィルム
JP2016012019A (ja) * 2014-06-27 2016-01-21 東京応化工業株式会社 感エネルギー性樹脂組成物
WO2015198887A1 (ja) * 2014-06-27 2015-12-30 東京応化工業株式会社 感エネルギー性樹脂組成物
US10975250B2 (en) 2014-09-01 2021-04-13 Fujifilm Corporation Infrared shielding composition, infrared cut filter, and solid-state imaging device
JPWO2016056451A1 (ja) * 2014-10-06 2017-07-27 東レ株式会社 樹脂組成物、耐熱性樹脂膜の製造方法、および表示装置
JP2016080792A (ja) * 2014-10-14 2016-05-16 旭化成イーマテリアルズ株式会社 ネガ型感光性樹脂組成物及び転写材料
WO2016167298A1 (ja) * 2015-04-13 2016-10-20 共同印刷株式会社 偽造防止用インキ及びその印刷物
JP2016199715A (ja) * 2015-04-13 2016-12-01 共同印刷株式会社 偽造防止用インキ及びその印刷物
JPWO2017038423A1 (ja) * 2015-08-31 2018-04-05 富士フイルム株式会社 感光性樹脂組成物、平版印刷版原版及び平版印刷版の製版方法
CN107835960A (zh) * 2015-08-31 2018-03-23 富士胶片株式会社 感光性树脂组合物、平版印刷版原版及平版印刷版的制版方法
US10495971B2 (en) 2015-08-31 2019-12-03 Fujifilm Corporation Photosensitive resin composition, planographic printing plate precursor, and plate-making method for planographic printing plate
WO2017038423A1 (ja) * 2015-08-31 2017-03-09 富士フイルム株式会社 感光性樹脂組成物、平版印刷版原版及び平版印刷版の製版方法
JPWO2017057281A1 (ja) * 2015-09-30 2018-05-10 東レ株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び表示装置、並びにその製造方法
JP2019045865A (ja) * 2015-09-30 2019-03-22 東レ株式会社 ネガ型感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び表示装置、並びにその製造方法
WO2019026772A1 (ja) * 2017-07-31 2019-02-07 太陽ホールディングス株式会社 感光性樹脂組成物、ドライフィルム、硬化物、プリント配線板、半導体素子および電子部品
WO2019065902A1 (ja) * 2017-09-29 2019-04-04 東レ株式会社 感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び有機elディスプレイ、並びに有機elディスプレイの製造方法
CN111164512A (zh) * 2017-09-29 2020-05-15 东丽株式会社 感光性树脂组合物、固化膜、具备固化膜的元件和有机el显示器及有机el显示器的制造方法
WO2020080207A1 (ja) * 2018-10-15 2020-04-23 日産化学株式会社 感光性絶縁膜組成物
JPWO2020080207A1 (ja) * 2018-10-15 2021-10-07 日産化学株式会社 感光性絶縁膜組成物
JP7331860B2 (ja) 2018-10-15 2023-08-23 日産化学株式会社 感光性絶縁膜組成物

Also Published As

Publication number Publication date
CN102640054B (zh) 2013-07-24
TW201129867A (en) 2011-09-01
KR20120109489A (ko) 2012-10-08
MY163409A (en) 2017-09-15
KR20180001577A (ko) 2018-01-04
JP5088419B2 (ja) 2012-12-05
EP2508947A4 (en) 2013-12-11
US20120244473A1 (en) 2012-09-27
CN102640054A (zh) 2012-08-15
SG181464A1 (en) 2012-07-30
US8901225B2 (en) 2014-12-02
JPWO2011067998A1 (ja) 2013-04-18
TWI510859B (zh) 2015-12-01
KR101913997B1 (ko) 2018-10-31
EP2508947A1 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP5088419B2 (ja) 感光性樹脂組成物、それを用いた積層体および固体撮像装置
TWI501039B (zh) 感光性樹脂組成物、感光性樹脂組成物薄膜及使用其之半導體裝置
JP5125747B2 (ja) 感光性樹脂組成物
JP4826415B2 (ja) 感光性樹脂組成物
JP2006309202A (ja) 感光性樹脂組成物およびそれを用いた半導体装置
CN108885401B (zh) 感光性树脂组合物
JP5109553B2 (ja) 感光性樹脂組成物およびそれを用いた誘電体組成物、半導体装置
JPWO2011080992A1 (ja) ポジ型感光性樹脂組成物
JPWO2017169574A1 (ja) 感光性接着剤組成物、硬化物、感光性接着剤シート、積層基板および接着剤パターン付積層基板の製造方法
WO2018159384A1 (ja) 樹脂組成物、樹脂シート、硬化パターンおよび半導体電子部品または半導体装置
JP2007264028A (ja) 感光性樹脂組成物およびそれを用いた金属樹脂複合体
WO2017217293A1 (ja) 感光性樹脂組成物
JP2007063502A (ja) 非感光性樹脂組成物およびそれを用いた光学素子
JP2010229210A (ja) 樹脂組成物
JP2010210851A (ja) 感光性樹脂組成物
JP5875209B2 (ja) 熱硬化性樹脂組成物
JP2008308572A (ja) ポリイミドワニス
JP2009227697A (ja) 架橋剤およびそれを用いた感光性樹脂組成物
JP2011045917A (ja) 感光性はんだペースト組成物およびそれを用いたはんだ組成物
JP7259475B2 (ja) 感光性樹脂組成物、感光性樹脂組成物フィルムおよびこれらを用いた半導体装置
WO2021193091A1 (ja) 感光性樹脂シート、電子部品、弾性波フィルター、及び弾性波フィルターの製造方法
JP2008292799A (ja) 感光性ポリイミド用現像液およびこれを用いたパターン形成方法
JP2009249410A (ja) ペースト組成物およびそれを用いた高熱伝導率樹脂組成物
JP2023023822A (ja) 感光性樹脂成物、硬化膜および電子部品
JP2019138995A (ja) 感光性樹脂組成物、感光性樹脂シートおよびこれらを用いた半導体電子部品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080055022.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010545713

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834451

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010834451

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127013779

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13513464

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE