WO2021193091A1 - 感光性樹脂シート、電子部品、弾性波フィルター、及び弾性波フィルターの製造方法 - Google Patents

感光性樹脂シート、電子部品、弾性波フィルター、及び弾性波フィルターの製造方法 Download PDF

Info

Publication number
WO2021193091A1
WO2021193091A1 PCT/JP2021/009762 JP2021009762W WO2021193091A1 WO 2021193091 A1 WO2021193091 A1 WO 2021193091A1 JP 2021009762 W JP2021009762 W JP 2021009762W WO 2021193091 A1 WO2021193091 A1 WO 2021193091A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive resin
resin sheet
wave filter
wall material
metal wiring
Prior art date
Application number
PCT/JP2021/009762
Other languages
English (en)
French (fr)
Inventor
桂田悠基
金森大典
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2021516504A priority Critical patent/JPWO2021193091A1/ja
Publication of WO2021193091A1 publication Critical patent/WO2021193091A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking

Definitions

  • the present invention relates to a photosensitive resin sheet, a cured film obtained from a photosensitive resin sheet, a laminate having a photosensitive resin sheet, an electronic component containing the cured film, a method for manufacturing an electronic component using the photosensitive resin sheet, and elasticity. Regarding the manufacturing method of the wave filter.
  • the photosensitive resin composition is widely used as an insulating film for wiring and substrates having electronic elements because it can be microfabricated by photolithography technology.
  • a photosensitive resin composition a liquid photosensitive resin varnish and a sheet-shaped photosensitive resin sheet have been developed. Since the photosensitive resin sheet can be thermocompression bonded by a laminator and has a small amount of volatile solvent components, the resin is smoother than the photosensitive resin varnish even if the substrate has irregularities due to wiring or electronic elements. It is possible to form a pattern.
  • the present invention is for solving the above problems, and it is possible to smoothly laminate a resin without containing voids and laminating even on a substrate having a large unevenness difference.
  • An object of the present invention is to provide a photosensitive resin sheet capable of obtaining a patterned cured film having high heat resistance.
  • the polyimide (a') has a weight average molecular weight of 1,000 to 8,000.
  • the glass transition temperature of the cured film obtained by heating and curing the photosensitive resin sheet is 200 to 300 ° C., and the melt viscosity of the photosensitive resin sheet at 80 ° C. is 50 to 2,000 Pa ⁇ s. Resin sheet.
  • a member (wall material) provided on the substrate and surrounding a part of the surface of the substrate on the side where the metal wiring is formed, and the top of the wall material.
  • the wall material has a member (roof material) that covers the space surrounded by the wall material, and the photosensitive resin sheet according to any one of (1) to (5) is cured.
  • An electronic component made of a cured product, and a part of the metal wiring is arranged so that the outside and the inside of the space surrounded by the wall material and the roof material can be electrically read by each other.
  • the thickness of the metal wiring is a ( ⁇ m)
  • the thickness of the wall material on the metal wiring is b ( ⁇ m)
  • the wall material is on the part without the metal wiring.
  • the electronic component according to (6) or (7) above which has a space surrounded by the wall material having a thickness of 20 to 35 ⁇ m.
  • a developed sheet surrounds the elastic wave filter element, and a metal wiring electrically connected to the elastic wave filter element surrounds the elastic wave filter element.
  • second cured film It has a step of obtaining a film (referred to as "second cured film” for convenience), and has a step of obtaining a film (referred to as “second cured film”).
  • the second photosensitive resin sheet contains a filler, and the second photosensitive resin sheet contains a filler.
  • the resin can be smoothly laminated without containing voids and laminated, and a patterned cured film having high heat resistance. Can be obtained.
  • the photosensitive resin sheet of the present invention contains a resin (a), a photopolymerizable compound (b), and a photopolymerization initiator (c).
  • the resin (a) is a resin having a weight average molecular weight of 1,000 to 8,000.
  • the weight average molecular weight of the resin (a) is 1,000 to 8,000.
  • the photosensitive resin sheet of the present invention contains a photopolymerization initiator (c) together with a photopolymerizable compound (b).
  • the photopolymerization initiator (c) in the exposed portion starts the polymerization of the photopolymerizable compound (b), and the polymerization proceeds (photocuring).
  • the solubility of the exposed portion in the developing solution is reduced, and only the unexposed portion is removed by dissolution, so that a pattern can be formed.
  • the glass transition temperature of the cured film obtained by heating and curing the photosensitive resin sheet is 200 to 300 ° C.
  • the heat curing condition adopted here when determining the glass transition temperature is that the photosensitive resin sheet is exposed at 500 mJ / cm 2 and heated at 200 ° C. for 1 hour in a nitrogen atmosphere having an oxygen concentration of 100 ppm or less.
  • the glass transition temperature of the cured film obtained under these curing conditions is 200 ° C. or higher.
  • the glass transition temperature of the cured film obtained when the photosensitive resin sheet is exposed at 500 mJ / cm 2 and heated at 200 ° C. for 1 hour in a nitrogen atmosphere having an oxygen concentration of 100 ppm or less is preferably 230 ° C. or higher.
  • the glass transition temperature of the cured film obtained when heated under the above conditions is at ° C. or higher.
  • the upper limit of the glass transition temperature is not particularly limited, but the cured film obtained when the photosensitive resin sheet is exposed at 500 mJ / cm 2 and heated at 200 ° C. for 1 hour in a nitrogen atmosphere having an oxygen concentration of 100 ppm or less.
  • the glass transition temperature is preferably 400 ° C. or lower, more preferably 350 ° C. or lower, and even more preferably 300 ° C. or lower.
  • a method using a photosensitive resin sheet containing the heat-crosslinkable compound (e) is also preferable.
  • the photosensitive resin sheet of the present invention has a melt viscosity at 80 ° C. of 50 to 2,000 Pa ⁇ s.
  • the melt viscosity of the photosensitive resin sheet is smoothly laminated without containing voids and being laminated even on a substrate having a large unevenness difference. It becomes possible to do.
  • the photosensitive resin sheet of the present invention contains the resin (a).
  • the weight average molecular weight of the resin (a) is preferably 1,000 or more, more preferably 2,000 or more, and even more preferably 3,000 or more.
  • the weight average molecular weight of the resin (a) is preferably 8,000 or less, more preferably 7,000 or less, and even more preferably 6,000 or less. The smaller the weight average molecular weight of the resin (a), the lower the melt viscosity of the photosensitive resin sheet and the better the laminateability.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the weight average molecular weight of the present invention means the weight average molecular weight measured in polystyrene conversion using GPC (manufactured by Japan Waters Corp., trade name: e2695-2998).
  • the resin (a) is preferably an alkali-soluble resin because it can be developed with alkali.
  • Alkali-soluble here means that the solubility in a 2.38 mass% tetramethylammonium hydroxide (TMAH) aqueous solution is 0.1 g / 100 mL or more.
  • the structure of the resin (a) is not particularly limited, and examples of the functional group (alkali-soluble group) capable of acquiring alkali solubility include a phenolic hydroxyl group, a thiol group, a carboxyl group, and a sulfonic acid group, among which phenolic groups are used. It preferably has a hydroxyl group and / or a carboxyl group.
  • the structure of the resin (a) is not particularly limited as long as it has a weight average molecular weight of 1,000 to 8,000, but from the viewpoint of processability and heat resistance, polyimide, polybenzoxazole, polyamideimide, or any one of them. It is preferably at least one resin selected from the group consisting of precursors and their copolymers, and preferably selected from the group consisting of polyimides, polybenzoxazoles, any of these precursors, and their copolymers. It is more preferable that it is at least one resin to be used, and it is further preferable that it contains at least polyimide.
  • polyimide (sometimes referred to as "polyimide (a')"
  • resin (a) an example of polyimide is shown below.
  • polyimide sometimes referred to as "polyimide (a')
  • it may contain one or more types of polyimide represented by the following general formula (1) or general formula (2). preferable.
  • X represents a monovalent organic group having at least one group selected from the group consisting of a carboxyl group, a phenolic hydroxyl group, a sulfonic acid group and a thiol group
  • Y represents a carboxyl group, a phenolic hydroxyl group and a sulfonic acid. It represents a divalent organic group having at least one group selected from the group consisting of a group and a thiol group
  • R 4 represents a 4- to 14-valent organic group
  • R 5 represents a 2- to 12-valent organic group.
  • R 6 and R 7 each independently represent at least one alkali-soluble group selected from the group consisting of a carboxyl group, a phenolic hydroxyl group, a sulfonic acid group and a thiol group, and ⁇ and ⁇ are independently 0.
  • n represents an integer of 1 to 100.
  • X represents a monovalent organic group having at least one group selected from the group consisting of a carboxyl group, a phenolic hydroxyl group, a sulfonic acid group and a thiol group.
  • Y represents a divalent organic group having at least one group selected from the group consisting of a carboxyl group, a phenolic hydroxyl group, a sulfonic acid group and a thiol group.
  • X and Y preferably have a phenolic hydroxyl group or a carboxyl group, and particularly preferably have a phenolic hydroxyl group.
  • ⁇ and ⁇ each independently represent an integer in the range of 0 to 10. In such ⁇ and ⁇ , it is preferable that ⁇ + ⁇ is 1 or more.
  • n represents the number of repetitions of the structural unit of the polymer. This range of n is an integer from 1 to 100. The smaller n is, the smaller the molecular weight is, and it is possible to improve the laminate property. In each polymer chain, n is an integer, but n obtained by analysis from the resin (a) may not be an integer.
  • R 4 is 4 to 14-valent organic group having a structure derived from a tetracarboxylic acid dianhydride.
  • Such R 4 is preferably an organic group having 5 to 40 carbon atoms and containing an aromatic group or a cyclic aliphatic group.
  • tetracarboxylic acid dianhydride examples include aromatic tetracarboxylic acid dianhydride and aliphatic tetracarboxylic acid dianhydride.
  • aromatic tetracarboxylic acid dianhydride examples include pyromellitic acid dianhydride, 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride, 2,3,3', 4'-biphenyltetra.
  • tetracarboxylic dianhydride an acid dianhydride having the structure shown below can be mentioned.
  • the tetracarboxylic acid dianhydride two types of the above-mentioned aromatic tetracarboxylic acid dianhydride, aliphatic tetracarboxylic acid dianhydride, and acid dianhydride having the structure shown below are used. The above may be used.
  • R 8 represents an oxygen atom, C (CF 3 ) 2 , C (CH 3 ) 2 or SO 2 .
  • R 9 and R 10 independently represent a carboxyl group, a hydroxyl group, a sulfonic acid group or a thiol group.
  • R 5 is 2-12 monovalent organic group having a structure derived from a diamine.
  • Such R 5 is preferably an organic group having 5 to 40 carbon atoms and containing an aromatic group or a cyclic aliphatic group.
  • diamine examples include a hydroxyl group-containing diamine, a carboxyl group-containing diamine, a thiol group-containing diamine, an aromatic diamine, a compound in which at least a part of hydrogen atoms in these aromatic rings is replaced with an alkyl group or a halogen atom, and a fat.
  • diamines examples include family diamines.
  • hydroxyl group-containing diamine examples include bis- (3-amino-4-hydroxyphenyl) hexafluoropropane, bis (3-amino-4-hydroxyphenyl) sulfone, and bis (3-amino-4-hydroxyphenyl) propane.
  • Bis (3-amino-4-hydroxyphenyl) methylene, bis (3-amino-4-hydroxyphenyl) ether, bis (3-amino-4-hydroxy) biphenyl, bis (3-amino-4-hydroxyphenyl) Fluoren and the like can be mentioned.
  • carboxyl group-containing diamine examples include 2,2-bis [3-amino-4-carboxyphenyl] propane, 2,2-bis [4-amino-3-carboxyphenyl] propane, and 2,2-bis [3. -Amino-4-carboxyphenyl] Hexafluoropropane, 4,4'-diamino-2,2', 5,5'-tetracarboxydiphenylmethane, 3,3'-diamino-4,4'-dicarboxydiphenyl ether, 4 , 4'-diamino-3,3'-dicarboxydiphenyl ether, 4,4'-diamino-2,2'-dicarboxydiphenyl ether, 4,4'-diamino-2,2', 5,5'-tetracarboxy Diphenyl ether, 3,3'-diamino-4,4'-dicarboxydiphenylsulphon, 4,4'-dia
  • aromatic diamine examples include 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4, 4'-diaminodiphenylmethane, 3,3'-diaminodiphenylsulfone, 3,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, 3,4′-diaminodiphenylsulfide, 4,4′-diaminodiphenylsulfide , 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, benzidine, m-
  • the diamine for example, a diamine having the structure shown below can be mentioned.
  • the diamine at least a part of the above-mentioned hydroxyl group-containing diamine, carboxyl group-containing diamine, thiol group-containing diamine, aromatic diamine, and hydrogen atom of these aromatic rings is replaced with an alkyl group or a halogen atom.
  • Two or more of the above compounds, aliphatic diamines, and diamines having the structures shown below may be used.
  • R 11 represents an oxygen atom, C (CF 3 ) 2 , C (CH 3 ) 2 or SO 2 .
  • R 12 to R 15 independently represent a carboxyl group, a hydroxyl group, a sulfonic acid group or a thiol group.
  • R 6 and R 7 are independently selected from the group consisting of a carboxyl group, a phenolic hydroxyl group, a sulfonic acid group or a thiol group, respectively, as described above. Represents at least one alkali-soluble group.
  • the above-mentioned general formula (1) in the polyimide having the structure represented by the general formula (2), it may be copolymerized aliphatic compound having a siloxane structure R 5 within a range not to lower the heat resistance.
  • the adhesiveness to the substrate can be improved.
  • the aliphatic compound having a siloxane structure include 1,3-bis (3-aminopropyl) tetramethyldisiloxane and 1,3-bis (p-amino-phenyl) octamethylpentasiloxane in the case of diamine. Can be mentioned. It is preferable to copolymerize these in the total diamine of polyimide in an amount of 1 to 10 mol%.
  • X is derived from a primary monoamine which is an end-capping agent.
  • the primary monoamine as the terminal encapsulant include 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1-hydroxy-6-aminonaphthalene, and 1-hydroxy-5-aminonaphthalene.
  • 1-Hydroxy-4-aminonaphthalene 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-aminonaphthalene, 1-carboxy-7-aminonaphthalene, 1-carboxy- 6-Aminonaphthalene, 1-carboxy-5-aminonaphthalene, 2-carboxy-7-aminonaphthalene, 2-carboxy-6-aminonaphthalene, 2-carboxy-5-aminonaphthalene, 2-aminobenzoic acid, 3-amino Benzoic acid, 4-aminobenzoic acid, 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzenesulfonic acid, 3-aminobenzenesulfonic acid, 4-aminobenzenesulfonic acid, 3-amino-4 , 6-Dihydroxypyrimidine, 2-aminophenol, 3-aminophenol, 3-
  • Y is derived from a dicarboxylic acid anhydride which is an end-capping agent.
  • the dicarboxylic acid anhydride which is the terminal encapsulant for example, 4-carboxyphthalic acid anhydride, 3-hydroxyphthalic acid anhydride, cis-aconytic acid anhydride and the like are preferable.
  • an end-sealing material two or more of these dicarboxylic acid anhydrides may be used.
  • the polyimide (a') may contain a polyimide other than the one having the structure represented by the general formula (1) or the general formula (2).
  • the alkali-soluble polyimide having the structure represented by the general formula (1) or the general formula (2) is preferably contained in an amount of 30% by mass or more, preferably 60% by mass or more, based on the total mass of the polyimide. Is more preferable.
  • 30% by mass or more of the polyimide represented by the general formula (1) or (2) shrinkage of the polyimide during thermosetting can be suppressed.
  • the type and content of the polyimide having a structure other than the structure represented by the general formula (1) or the general formula (2) is preferably selected within a range that does not impair the heat resistance of the cured film obtained by the final heat treatment.
  • the imidization ratio thereof is from the viewpoint of further improving the electrical characteristics, mechanical characteristics, heat resistance, moisture resistance and residual film ratio of the polyimide. It is preferably 90% or more.
  • the imidization reaction is carried out under a dry nitrogen stream at a reaction temperature of 160 ° C. or higher and a reaction time of 2 There is a method of making it more than an hour.
  • polyimide (a') when polyimide (a') is used as the resin (a) in the present invention, its imidization ratio can be determined by the following method. First, the infrared absorption spectrum of the alkali-soluble polyimide (a') is measured to determine the peak intensity P1 near 1377 cm -1, which is the absorption peak derived from the imide structure. Next, the alkali-soluble polyimide (a') is heat-treated at 350 ° C. for 1 hour, and then the infrared absorption spectrum is measured again to obtain a peak intensity P2 in the vicinity of 1377 cm -1. Using the obtained peak intensities P1 and P2, the imidization rate of the alkali-soluble polyimide (a') can be determined based on the following formula.
  • the terminal sealant introduced at the end thereof can be detected by the following method.
  • the polyimide into which the terminal encapsulant is introduced is dissolved in an acidic solution and decomposed into an amine component and a carboxylic acid anhydride component, which are constituent units of the polyimide.
  • the polyimide end-capping agent can be detected by analyzing these amine components and carboxylic acid anhydride components by gas chromatography (GC) or NMR.
  • GC gas chromatography
  • NMR gas chromatography
  • the polyimide terminal encapsulant can also be detected by directly analyzing the polyimide into which the terminal encapsulant has been introduced using pyrolysis gas chromatography (PGC), an infrared spectrum, and a 13 CNMR spectrum. can.
  • PPC pyrolysis gas chromatography
  • the content of the resin (a) is preferably 20% by mass or more, more preferably 30% by mass or more, and further preferably 40% by mass or more in 100% by mass of the photosensitive resin sheet.
  • the content of the resin (a) is preferably 80% by mass or less, more preferably 70% by mass or less, and further preferably 60% by mass or less in 100% by mass of the photosensitive resin sheet. preferable. As the content of the resin (a) is smaller, the melt viscosity of the photosensitive resin sheet can be lowered, and the laminateability can be improved.
  • the photosensitive resin sheet of the present invention contains the photopolymerizable compound (b).
  • the photopolymerizable compound is a compound that can be polymerized by active species such as radicals, cations, and anions generated by exposure, and a polymerizable monomer having a (meth) acrylic group, a polymerizable monomer having a glycidyl group, or the like is used. ..
  • the photopolymerizable compound (b) is preferably a radically polymerizable compound because there are many variations and it is easy to adjust the characteristics of the photosensitive resin sheet and its cured film (meth). More preferably, it is a polymerizable monomer having an acrylic group.
  • the meaning of "(meth) acrylic group" is a general term for an acrylic group and a methacrylic group.
  • the photopolymerizable compound (b) is preferably a radically polymerizable compound (b1) having an isocyanate group or a blocked isocyanate group, and is particularly preferably having a blocked isocyanate group from the viewpoint of stability.
  • the isocyanate group or the blocked isocyanate group reacts with the acidic group of the resin (a)
  • the resin (a) and the radically polymerizable compound (b1) having an isocyanate group or a blocked isocyanate group form a crosslinked structure.
  • the strength of the resin composition is increased, and it is possible to improve the resolution by suppressing the development residue and improve the residual film ratio.
  • the polymerizable monomer having a (meth) acrylic group a compound having one or more (meth) acrylic groups in the molecule can be used, and radical polymerizable without an isocyanate group and a blocked isocyanate group.
  • the compound include diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, trimethylolpropane diacrylate, and trimethylolpropanetriacrylate.
  • Examples of the radically polymerizable processed product (b1) having an isocyanate group include 2-isocyanatoethyl acrylate, 2-isocyanatoethyl methacrylate, 1,1- (bisacryloyloxymethyl) ethyl isocyanate, and 2- (2-isocyanatoethoxy). ) Ethyl methacrylate and the like.
  • Examples of the radically polymerizable compound (b1) having a blocked isocyanate group include 2- [O- (1'-methylpropylideneamino) carboxyamino] ethyl methacrylate and 2-[(3,5-dimethylpyrazolyl) carbonylamino]. Ethyl methacrylate, etc. can be mentioned. These are used alone or in combination of two or more.
  • a compound having one or more glycidyl groups in the molecule can be used, for example, jER 828, jER1002, jER1750, jER152, jER157S70, jER YL980, jER630LSD (Mitsubishi Chemical (Mitsubishi Chemical Co., Ltd.
  • Adeka Resin EP-4100HF Adeka Resin EP-4901HF, Adeka Resin EP-4000S, Adeka Resin EP-4000L, Adeka Resin EP-4003S, Adeka Resin EP-4010S, Adeka Resin EP-4010L, (made by ADEKA Co., Ltd.), Epicron , Epicron HP4032, Epicron N-865, Epicron EXA-850CRP (manufactured by DIC Corporation), YD-825GS, YDCN-704 (manufactured by Nippon Steel Chemical Co., Ltd.), EOCN-1020, NC3000 (manufactured by Nippon Kayaku Co., Ltd.) Epoxy resins such as LX-01 (manufactured by Daiso Co., Ltd.), etc. may be mentioned, and these may be used alone or in combination of two or more.
  • the content of the photopolymerizable compound (b) is preferably 10% by mass or more, more preferably 15% by mass or more, and more preferably 20% by mass or more in 100% by mass of the photosensitive resin sheet. More preferred. The greater the amount of the photopolymerizable compound (b), the more it is possible to suppress film loss during development. On the other hand, the content of the photopolymerizable compound (b) is preferably 60% by mass or less, more preferably 50% by mass or less, and 40% by mass or less in 100% by mass of the photosensitive resin sheet. Is even more preferable. The smaller the content of the resin (a), the better the heat resistance of the cured film.
  • the content of the radically polymerizable compound (b1) having an isocyanate group or a blocked isocyanate group in the photosensitive resin sheet of the present invention is 100 of the radically polymerizable compound (b1) from the viewpoint of improving the resolution and the residual film ratio. It is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and further preferably 20 parts by mass or more with respect to parts by mass.
  • the content of the radically polymerizable compound (b1) having an isocyanate group or a blocked isocyanate group is 100% by mass of the radically polymerizable compound (b1) from the viewpoint of sufficiently exhibiting the alkali solubility of the polyimide (a'). It is preferably 80 parts by mass or less, more preferably 50 parts by mass or less, and further preferably 30 parts by mass or less.
  • the photosensitive resin sheet of the present invention contains a photopolymerization initiator (c).
  • the photopolymerization initiator (c) can be used as long as it generates radicals, cations, anions and the like by irradiation with ultraviolet rays and initiates the polymerization of the photopolymerizable compound (b).
  • a polymerizable monomer having a (meth) acrylic group can be applied to the photopolymerizable compound (b), and there are many variations, and the photosensitive characteristics can be easily adjusted. Therefore, photopolymerization is started.
  • the agent (c) is preferably a photoradical polymerization initiator that generates radicals.
  • photoradical polymerization initiator examples include benzophenones, glycines, mercaptos, oximes, acylphosphines, ⁇ -aminoalkylphenones and the like, and among them, acylphosphines and oximes are preferably used. Be done.
  • the photopolymerization initiator may be used alone or in combination of two or more.
  • photoradical polymerization initiator examples include benzophenones such as benzophenone, Michler's ketone, 4,4-bis (diethylamino) benzophenone, and 3,3,4,5,4-tetra (t-butylperoxycarbonyl) benzophenone.
  • Benzylidenes such as 3,5-bis (diethylaminobenzylidene) -N-methyl-4-piperidone, 3,5-bis (diethylaminobenzylidene) -N-ethyl-4-piperidone, 7-diethylamino-3-nonylcoumarin, 4 , 6-Dimethyl-3-ethylaminocoumarin, 3,3-carbonylbis (7-diethylaminocoumarin), 7-diethylamino-3- (1-methylmethylbenzoimidazolyl) coumarin, 3- (2-benzothiazolyl) -7-diethylamino Kumarins such as coumarin, anthraquinones such as 2-t-butyl anthraquinone, 2-ethylanthraquinone, 1,2-benzanthraquinone, benzoins such as benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, 2,
  • acylphosphines and oximes are 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 1-phenyl.
  • photocationic polymerization initiators that generate cations include diazodisulfones, triphenylsulfoniums, diphenyliodoniums, and the like. These may be used alone or in combination of two or more.
  • photoanionic polymerization initiators that generate anions include aminoacetonenes, oxime esters, compounds having N-formylated aromatic amino groups and N-acylated aromatic amino groups, nitrobenzyl carbamate compounds, and the like.
  • Carbamates such as alcooxybenzyl carbamate and quaternary ammonium salts can be mentioned. These may be used alone or in combination of two or more.
  • the content of the photopolymerization initiator (c) is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and 1% by mass or more in 100% by mass of the photosensitive resin sheet. Is more preferable.
  • the content of the photopolymerization initiator (c) is preferably 10% by mass or less, more preferably 7% by mass or less, and 5% by mass or less in 100% by mass of the photosensitive resin sheet. Is even more preferable.
  • the smaller the content of the photopolymerization initiator (c) the deeper the light can be transmitted, and the better the pattern shape can be obtained.
  • the photosensitive resin sheet of the present invention can further contain 0.1 to 12% by mass of the solvent (d) in 100% by mass of the photosensitive resin sheet.
  • the solvent (d) By containing the solvent (d), the melt viscosity of the photosensitive resin sheet can be lowered, and the laminateability can be improved.
  • the solvent (d) is not particularly limited, but it is preferable to dissolve other components.
  • examples of such a solvent (d) include ethers, acetates, ketones, aromatic hydrocarbons, N-methyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N, N-dimethylformamide, and the like. Examples thereof include N, N-dimethylacetamide, dimethyl sulfoxide and ⁇ -butyrolactone.
  • the photosensitive resin sheet of the present invention may contain two or more of these as the solvent (d).
  • the ethers include, for example, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ale, propylene glycol monoethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and ethylene glycol dibutyl ether.
  • Ethers such as ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propyl acetate, butyl acetate, isobutyl acetate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl lactate, ethyl lactate, lactic acid.
  • Acetates such as butyl, acetone, methyl ethyl ketone, acetyl acetone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, cyclopentanone, ketones such as 2-heptanone, butyl alcohol, isobutyl alcohol, pentanol, 4-methyl- Alcohols such as 2-pentanol, 3-methyl-2-butanol, 3-methyl-3-methoxybutanol, diacetone alcohol, aromatic hydrocarbons such as toluene and xylene, and other N-methyl-2-pyrrolidone. , N-cyclohexyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, ⁇ -butyrolactone and the like.
  • the content of the solvent (d) is preferably 0.1% by mass or more, more preferably 1% by mass or more, and further preferably 3% by mass or more in 100% by mass of the photosensitive resin sheet. preferable. As the content of the solvent (d) increases, the melt viscosity of the photosensitive resin sheet can be lowered, and the laminateability can be improved. On the other hand, the content of the solvent (d) is preferably 12% by mass or less, more preferably 9% by mass or less, and further preferably 7% by mass or less in 100% by mass of the photosensitive resin sheet. preferable. The smaller the content of the solvent (d), the more the shrinkage of the film thickness due to heat curing can be suppressed, and a smooth pattern can be obtained. Further, the smaller the content of the solvent (d), the higher the resolution of the pattern can be formed.
  • the content of the solvent (d) in the photosensitive resin sheet can be measured by gas chromatography (GC).
  • the photosensitive resin sheet of the present invention can further contain the heat-crosslinkable compound (e).
  • the heat-crosslinkable compound (e) for example, a compound containing at least one of an alkoxymethyl group, a methylol group and an epoxy group, and a benzoxazine compound are preferable, and at least 2 of the alkoxymethyl group, a methylol group and an epoxy group are preferable. Compounds having one are more preferable.
  • the heat-crosslinkable compound (e) forms a crosslinked structure by a reaction with the resin (a) or a reaction between the heat-crosslinkable compounds (e). Therefore, since it is possible to improve the mechanical properties and chemical resistance of the cured film after heat-treating the photosensitive resin sheet, it is preferable that the photosensitive resin sheet of the present invention contains the heat-crosslinkable compound (e). ..
  • thermally crosslinkable compounds (e) examples of the compound having an alkoxymethyl group or a methylol group include 46DMOC, 46DMOEP (trade name, manufactured by Asahi Organic Materials Industry Co., Ltd.), DML-PC, DML-PEP, and DML.
  • thermocrossable compounds (e) examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, and polymethyl (glycidyloxypropyl). ), Epoxy group-containing silicone and the like.
  • examples of the benzoxazine compound include BA-type benzoxazine and B-m-type benzoxazine (trade names, manufactured by Shikoku Kasei Kogyo Co., Ltd.).
  • the heat-crosslinkable compound (e) may contain two or more of these.
  • the content of the heat-crosslinkable compound (e) is preferably 3% by mass or more, more preferably 5% by mass or more, and preferably 7% by mass or more in 100% by mass of the photosensitive resin sheet. More preferred. The higher the content of the heat-crosslinkable compound (e), the better the heat resistance of the cured film. On the other hand, the content of the heat-crosslinkable compound (e) is preferably 20% by mass or less, more preferably 15% by mass or less, and 10% by mass or less in 100% by mass of the photosensitive resin sheet. Is even more preferable. The smaller the content of the heat-crosslinkable compound (e), the more it is possible to suppress the warpage of the substrate due to heat curing.
  • the photosensitive resin sheet of the present invention can be used as a cross-linking agent other than the heat-crosslinkable compound (e), a heat polymerization initiator, a polymerization inhibitor, a colorant, a surfactant, a silane coupling agent, and a titanium
  • the photosensitive resin composition of the present invention contains a polymerization inhibitor, the concentration of excitons is adjusted, so that excessive photoresponsiveness can be suppressed and the exposure margin can be widened. Further, the photosensitive resin composition of the present invention has an effect of suppressing stray light from the light emitting area when used as an insulating layer of an organic electroluminescent element by containing a colorant, and is a solder for a circuit board. When used as a resist, it acts as a blindfold to hide the circuit wiring on the circuit board.
  • the colorant include dyes and pigments. Examples of the dye include thermal color-developing dyes. Examples of the pigment include an inorganic pigment and an organic pigment. As such a colorant, one that is soluble in the solvent (d) and compatible with the resin (a) is preferable.
  • the photosensitive resin composition of the present invention can improve the adhesion to the substrate by containing a surfactant, a silane coupling agent, a titanium chelating agent and the like.
  • the photosensitive resin sheet of the present invention is not particularly limited as long as it is in the form of a sheet.
  • the "sheet” here also includes a film, a film, a plate, and the like.
  • the photosensitive resin sheet of the present invention can be obtained, for example, by applying a liquid photosensitive resin varnish on a support and then drying it if necessary.
  • the photosensitive resin varnish is, for example, a resin (a), a photopolymerizable compound (b), a photopolymerization initiator (c) and, if necessary, a solvent (d), a heat-crosslinkable compound (e), and other inclusions. Can be obtained by mixing and dissolving.
  • the solid content concentration of the photosensitive resin varnish used for producing the photosensitive resin sheet of the present invention is not particularly limited, but is preferably about 20 to 70% by mass from the viewpoint of coatability.
  • the photosensitive resin varnish may be filtered using a filter paper or a filter.
  • the method for filtering the photosensitive resin varnish is not particularly limited, but a method of filtering by pressure filtration using a filter having a reserved particle size of 0.4 ⁇ m to 10 ⁇ m is preferable.
  • Examples of the support for the photosensitive resin sheet of the present invention include polyethylene terephthalate (PET) film, polyphenylene sulfide film, and polyimide film.
  • PET polyethylene terephthalate
  • the joint surface between the support and the photosensitive resin sheet may be surface-treated with silicone, a silane coupling agent, an aluminum chelating agent, polyurea, or the like in order to improve the adhesion and peelability thereof.
  • the thickness of the support film is not particularly limited, but is preferably in the range of 10 to 100 ⁇ m from the viewpoint of workability.
  • the layer made of the photosensitive resin composition When the layer made of the photosensitive resin composition is exposed, it can be exposed through the support film, so that the haze of the support film is preferably 2.0% or less. If the haze is larger than 2.0%, the exposure light is scattered and the pattern processability is deteriorated.
  • the photosensitive resin sheet of the present invention may have a protective film for protecting the photosensitive resin layer.
  • This protective film can protect the surface of the photosensitive resin layer from pollutants such as dust and dirt in the atmosphere.
  • Examples of the protective film that can be used in the present invention include polyethylene film, polypropylene (PP) film, polyester film, polyvinyl alcohol film, and the like.
  • the protective film preferably has a peeling force to such an extent that the photosensitive resin layer and the protective film do not easily peel off.
  • the photosensitive resin varnish for example, rotary coating using a spinner, spray coating, roll coating, screen printing, blade coater, die coater, calendar
  • examples include coaters, meniscus coaters, bar coaters, roll coaters, comma roll coaters, gravure coaters, screen coaters, and slit die coaters.
  • the coating film thickness varies depending on the coating method, the solid content concentration of the composition, the viscosity, and the like, but it is usually preferable that the film thickness after drying is 3 ⁇ m or more and 100 ⁇ m or less.
  • drying device for drying the applied photosensitive resin composition examples include an oven, a hot plate, and infrared rays.
  • the drying temperature and drying time may be any range as long as the organic solvent can be volatilized, and it is preferable to appropriately set the range so that the photosensitive resin sheet is in an uncured or semi-cured state.
  • the drying temperature is preferably in the range of 40 ° C. to 120 ° C.
  • the drying time is preferably in the range of 1 minute to several tens of minutes.
  • the drying temperature may be raised stepwise by combining temperatures within this range.
  • the photosensitive resin composition when the photosensitive resin composition is dried, the photosensitive resin composition may be heated at 50 ° C., 60 ° C., and 70 ° C. for 1 minute each.
  • the photosensitive resin sheet of the present invention preferably has a melt viscosity at 80 ° C. of 2,000 Pa ⁇ s or less, and most preferably 1,000 Pa ⁇ s or less.
  • the lower the melt viscosity of the photosensitive resin sheet at 80 ° C. the better the laminating property, and the smoother the resin can be laminated on a substrate having a large unevenness difference without voids.
  • the lower limit of the melt viscosity of the photosensitive resin sheet at 80 ° C. is preferably 50 Pa ⁇ s or more, more preferably 100 Pa ⁇ s or more, and further preferably 200 Pa ⁇ s or more.
  • the higher the melt viscosity of the photosensitive resin sheet at 80 ° C. the more likely it is that the tackiness at room temperature can be suppressed, and the handleability can be improved.
  • the method for setting the melt viscosity at 80 ° C. to 50 or more and 2,000 Pa ⁇ s or less is not particularly limited, and for example, the weight average molecular weight of the resin (a) in the photosensitive resin sheet is 1,000 to 8,000.
  • the method of As another method for reducing the melt viscosity at 80 ° C. to 8,000 Pa ⁇ s or less the content of the solvent (d) in the photosensitive resin sheet is set to 0.1 to 12 in 100% by mass of the photosensitive resin sheet.
  • a method of increasing the mass% and a method of adjusting the content of the resin (a) to 20 to 80% by mass in 100% by mass of the photosensitive resin sheet are preferable.
  • the melt viscosity of the photosensitive resin sheet at 80 ° C. can be measured by the following method. That is, the photosensitive resin sheets are bonded to each other with a roll laminator or the like to obtain a laminate of photosensitive resin sheets having a thickness sufficient for measurement, for example, 200 to 800 ⁇ m. This laminate was sandwiched between probes with a diameter of 15 mm in a viscoelasticity measuring device, and measured at a heating rate of 2 ° C./min and a frequency of 0.2 Hz in the range of 40 ° C. to 100 ° C., and the complex viscosity at 80 ° C. was measured as the melt viscosity. And. That is, the meaning of "melt viscosity" means a complex viscosity measured at 80 ° C. and does not imply that the photosensitive resin sheet must be melted at 80 ° C.
  • melt viscosity is the same for the melt viscosity at 80 ° C. of the second photosensitive resin sheet, which will be described later.
  • the photosensitive resin sheet of the present invention is cured by heating, that is, when the photosensitive resin sheet is exposed at 500 mJ / cm 2 and heated at 200 ° C. for 1 hour in a nitrogen atmosphere having an oxygen concentration of 100 ppm or less.
  • a cured film of the photosensitive resin assembly sheet By heat-curing the photosensitive resin sheet of the present invention, a cured film of the photosensitive resin assembly sheet can be obtained.
  • the heat curing temperature is preferably in the range of 120 ° C. to 400 ° C.
  • the heating atmosphere is not particularly limited, but from the viewpoint of suppressing oxidation by oxygen, it is preferable to use a nitrogen atmosphere having an oxygen concentration of 100 ppm or less.
  • the form of the cured film of the photosensitive resin sheet is not particularly limited, and by processing the photosensitive resin sheet, a protective film is formed on the wiring, a protective film is formed on the wall surface, a via hole is formed for conduction, impedance and static.
  • the shape of this cured film can also be selected according to the application, such as adjusting the capacitance or internal stress and imparting a heat dissipation function.
  • the glass transition temperature of the cured film is preferably 200 ° C. or higher, more preferably 215 ° C. or higher, and even more preferably 230 ° C. or higher.
  • the glass transition temperature of the cured film can be measured by dynamic viscoelasticity measurement (DMA).
  • the glass transition temperature of the cured film is a tension mode and a temperature rising rate of 5 ° C./min using DMA (manufactured by Hitachi High-Tech Science Co., Ltd., trade name: DMS6100) for the cured film obtained from the photosensitive resin sheet.
  • Tan ⁇ is the temperature at which the peak is reached when measured under the condition of the measurement temperature of 25 to 500 ° C. When a plurality of peaks are detected, the temperature of the peak on the low temperature side is defined as the glass transition temperature.
  • the laminate using the photosensitive resin sheet of the present invention has the photosensitive resin sheet of the present invention and the support. That is, the laminate of the present invention can be obtained by forming the photosensitive resin sheet of the present invention on the support. Further, in this laminated body, a protective film can be provided on the surface opposite to the side on which the support of the photosensitive resin sheet is laminated. By forming a laminate having the photosensitive resin sheet and the support of the present invention, the laminate can be suitably used in the production of electronic components described later.
  • the method for manufacturing an electronic component using the photosensitive resin sheet of the present invention is, for example, a method for manufacturing an electronic component using a substrate having a convex portion and the above-mentioned laminate, which comprises the following steps.
  • the method can be mentioned.
  • Peeling step (C) A step of peeling the support of the laminated body.
  • Thermosetting step (E) A step of thermosetting the exposed portion to form a cured film.
  • the order of the exposure step (B) and the peeling step (C) is not particularly limited, but it is preferable to perform the exposure step (B) before the peeling step (C).
  • FIG. 1 shows an example of one suitable processing method for a substrate having an uneven shape due to the formation of metal wiring using the photosensitive resin sheet of the present invention.
  • (Laminating step (A)) First, in the laminated body, if the photosensitive resin sheet has a protective film on the side opposite to the side on which the support is laminated, the protective film is peeled off to be convex with the side of the laminated body on which the photosensitive resin sheet is provided.
  • the substrate 1 having the portion (metal wiring 2) is arranged so as to face each other and bonded by thermocompression bonding. Examples of the method of bonding the photosensitive resin sheet side of the laminated body and the substrate having the convex portion include a press machine and a roll laminator. It is preferable from the viewpoint of.
  • the temperature in the laminating step is preferably 40 ° C.
  • the photosensitive resin sheet that has undergone the laminating step (A) is also referred to as a "photosensitive resin layer" below.
  • a mask having a desired pattern is formed on the photosensitive resin layer 4 formed by laminating so as to embed the convex portion with the photosensitive resin sheet, and the photosensitive resin is passed through the mask.
  • the layer 4 is irradiated with chemical rays, and the photosensitive resin layer 4 is exposed in a pattern.
  • chemical rays used for exposure include ultraviolet rays, visible rays, electron beams, and X-rays.
  • the exposure step (B) is performed before the peeling step (C) described later, and the support 3 is not peeled from the photosensitive resin layer 4. Exposure may be performed. From the viewpoint of suppressing the tackiness of the photosensitive resin layer 4 and facilitating the peeling of the support 3, it is preferable to perform the exposure step (B) before the peeling step (C).
  • peeling step (C) After the laminating step (A), the support 3 in the laminated body is peeled from the photosensitive resin layer 5.
  • the peeling step (C) may be performed either before or after the exposure step (B), but the tackiness of the photosensitive resin layer is suppressed.
  • a baking step of heating the photosensitive resin layer 5 before development may be incorporated.
  • the baking temperature is preferably 50 ° C. or higher, and more preferably 60 ° C. or higher, from the viewpoint of accelerating the curing of the exposed portion.
  • the bake temperature is preferably 180 ° C. or lower, more preferably 140 ° C. or lower, from the viewpoint of suppressing the curing of the unexposed portion.
  • the baking time is preferably 5 seconds to several hours.
  • the baking step may be performed before the peeling step (C). Examples of the baking method of the photosensitive resin layer 5 include a method of heating with an oven, a hot plate, or the like.
  • the developing solution used in this developing step (D) includes an aqueous solution of tetramethylammine, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, and dimethyl acetate.
  • an aqueous solution of an alkaline compound such as aminoethyl, dimethylaminoethanol, dimethylaminoethyl methacrylate, cyclohexylamine, ethylenediamine and hexamethylenediamine is preferable. If necessary, these alkaline aqueous solutions are mixed with polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, ⁇ -butyrolactone and dimethylacrylamide, methanol and ethanol.
  • polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, ⁇ -butyrolactone and dimethylacrylamide, methanol and ethanol.
  • Alcohols such as isopropanol, esters such as ethyl lactate and propylene glycol monomethyl ether acetate, and ketones such as cyclopentanone, cyclohexanone, isobutyl ketone and methyl isobutyl ketone may be added.
  • Examples of the developing method of the photosensitive resin layer 5 include a method of spraying the above-mentioned developing solution on the coating surface, a method of immersing the coating surface in the developing solution, and a method of applying ultrasonic waves while immersing the coating surface in the developing solution. Examples thereof include a method and a method of spraying a developing solution while rotating the substrate.
  • the "coated surface” referred to here is the surface of the substrate portion of the substrate surface coated with the patterned photosensitive resin layer. Conditions such as the developing time and the temperature of the developing solution can be set within a range in which the unexposed portion of the photosensitive resin layer is removed. In order to process a fine pattern on the photosensitive resin layer or to remove the residue between the patterns, the photosensitive resin layer may be further developed even after the unexposed portion is removed.
  • the substrate After developing the photosensitive resin layer, the substrate may be rinsed. Water is preferable as the rinsing liquid used for this rinsing treatment. If necessary, alcohols such as ethanol and isopropyl alcohol, and esters such as ethyl lactate and propylene glycol monomethyl ether acetate may be added to the rinse solution (water).
  • alcohols such as ethanol and isopropyl alcohol
  • esters such as ethyl lactate and propylene glycol monomethyl ether acetate may be added to the rinse solution (water).
  • thermosetting step (E) In the thermosetting step (E), the exposed portion obtained by the exposure step is thermoset to form a cured film 6. More specifically, after the photosensitive resin layer 4 is developed, the exposed photosensitive resin layer 5 on the substrate is heat-treated under temperature conditions of 120 ° C. to 400 ° C. to form a cured film 6. In this heat treatment (cure), the temperature may be selected and the temperature may be raised stepwise, or a certain temperature range may be selected and the temperature may be continuously raised. In this heat treatment, the heating temperature is more preferably 150 ° C. or higher, and even more preferably 180 ° C. or higher. On the other hand, the heating temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower.
  • the heat treatment time is preferably 5 minutes to 5 hours.
  • Examples of this heat treatment include a method of heat treatment at 130 ° C. and 200 ° C. for 30 minutes each, and a method of linearly raising the temperature from room temperature to 250 ° C. over 2 hours.
  • the hollow structure is a hollow structure that utilizes the cured product of the photosensitive resin sheet of the present invention as a wall material, and is suitably used for electronic parts such as elastic wave filters described later.
  • electronic components provided with a hollow structure include a substrate having metal wiring and a member (wall) provided on the substrate and surrounding a part of the surface of the substrate on the side where the metal wiring is formed.
  • the material) and a member (roof material) that is in contact with the top of the wall material and covers the space surrounded by the wall material, and the wall material is a cured photosensitive resin sheet of the present invention.
  • Examples thereof include those made of a cured product, and a part of the metal wiring is arranged so that the outside and the inside of the space surrounded by the wall material and the roof material can be electrically read by each other.
  • the wall material constituting the hollow structure can be formed by using the photosensitive resin sheet of the present invention by the method described in the above section ⁇ Example of processing the photosensitive resin sheet>.
  • Step 1 Using the photosensitive resin sheet of the present invention (hereinafter, may be referred to as "first photosensitive resin sheet” for convenience) on a substrate provided with metal wiring, a photosensitive resin layer (hereinafter, convenience).
  • first photosensitive resin sheet Using the photosensitive resin sheet of the present invention (hereinafter, may be referred to as "first photosensitive resin sheet” for convenience) on a substrate provided with metal wiring, a photosensitive resin layer (hereinafter, convenience).
  • the process of forming the "first photosensitive resin layer” (hereinafter, convenience)
  • Step 2 A step of processing the first photosensitive resin layer by a photolithography method to form a cured film (hereinafter, may be referred to as "first cured film” for convenience) as a wall material.
  • Step 3 A photosensitive resin sheet (hereinafter, may be referred to as a “second photosensitive resin sheet” for convenience) is attached in contact with the top of the first cured film, and a photosensitive resin layer (hereinafter, for convenience) is attached.
  • Step 4 The second photosensitive resin layer is patterned by a photolithography method, then developed, and the developed second photosensitive resin layer is heated and cured to serve as a roofing material. (Hereinafter, for convenience, it may be referred to as "second cured film”).
  • Step 1 First, with respect to the substrate 1 having the metal wiring 2, the first photosensitive resin sheet is laminated so as to embed the metal wiring portion by covering at least a part of the metal wiring to form the first photosensitive resin layer 10. do.
  • Step 2 Next, according to the method of ⁇ Processing example of photosensitive resin sheet>, the first photosensitive resin layer is processed by a lithography method using active light rays, and further heat-cured to form a metal wiring on the surface.
  • a first cured film 11 is formed as a member (wall material) that surrounds a part of the film.
  • the patterning of the first photosensitive resin layer 10 is formed so as to surround a part of the metal wiring, and the metal wiring is outside and inside the space surrounded by the wall material and the roof material described later.
  • an elastic wave filter which will be described later, that the above can be read electrically. That is, in this preferred embodiment, the first cured film 11 is provided so as to surround the elastic wave filter element (not shown) electrically connected to the metal wiring.
  • the elastic wave filter element referred to here refers to an elastic wave resonator.
  • Step 3 the photosensitive resin layer side of the second photosensitive resin sheet is attached to the top of the first cured film 11 to form the second photosensitive resin layer 12.
  • the photosensitive resin layer side of the second photosensitive resin sheet is attached to the top of the first cured film 11 to form the second photosensitive resin layer 12.
  • the second photosensitive resin layer 2 so as to cover the space surrounded by the wall material, the substrate 1 provided with the metal wiring 2, the first cured film 11, and the above.
  • a hollow structure closed by the second photosensitive resin layer 12 is formed.
  • Step 4 Subsequently, the second photosensitive resin layer 12 was patterned by a lithography method using active rays so as to leave at least a portion covering the space surrounded by the cured film 11, and the pattern was processed.
  • a second cured film 13 serving as a member (roofing material) covering a space surrounded by a wall material is formed, and a substrate on which the metal wiring is formed, the said.
  • a hollow structure having a hollow structure closed by the wall material and the roof material can be formed.
  • the thickness of the metal wiring is a ( ⁇ m)
  • the thickness of the wall material on the metal wiring is b ( ⁇ m)
  • the portion without the metal wiring is formed.
  • the thickness of the wall material is c ( ⁇ m) at the places where the wall material is provided, it is preferable to have at least one place where (a + bc) / a is 0.05 to 0.15. ..
  • the adhesion of the roofing material can be improved, and by setting it to 0.15 or less, laminating of the second photosensitive resin sheet becomes easy.
  • (a + bc) / a is 0.05 to all in the portion where the wall material is provided on the metal wiring portion and the wall material and the roof material are in contact with each other. It is more preferable that the value is 0.15 because it is advantageous to obtain a hollow structure with good yield.
  • the wall material has a thickness of 8 to 15 ⁇ m in a place where no metal wiring is provided.
  • a space having a hollow structure can be sufficiently secured by setting the thickness to 8 ⁇ m or more, and the size of the electronic component can be reduced by setting the size to 15 ⁇ m or less.
  • the sum of the thickness of the wall material and the thickness of the roof material provided on the wall material is 20 to 35 ⁇ m. When the sum of the thicknesses is 20 ⁇ m or more, the thickness of the wall material and the roofing material can be sufficiently secured, and when it is 35 ⁇ m or less, the electronic components can be miniaturized.
  • the second photosensitive resin sheet for forming the roofing material preferably contains a polyimide resin.
  • the heat resistance of the roofing material can be improved by using polyimide, and when the wall material contains polyimide, the adhesion can be improved.
  • a / d is 0.2 to 0.5. Is preferable. When it is 0.2 or more, it is possible to improve the performance of electronic parts, and when it is 0.5 or less, it becomes easy to embed metal wiring.
  • the thickness of the first photosensitive resin sheet is preferably 10 to 20 ⁇ m. When it is 10 ⁇ m or more, it becomes easy to embed the wiring, and when it is 20 ⁇ m or less, the electronic component can be miniaturized.
  • the first photosensitive resin layer under atmospheric pressure. Compared to laminating under vacuum, the takt time can be shortened.
  • the melt viscosity of the second photosensitive resin sheet at 80 ° C. is preferably 10,000 to 100,000 Pa ⁇ s.
  • the value is 10,000 Pa ⁇ s or more, it is possible to prevent the substrate from falling into the substrate during laminating, and when the value is 100,000 Pa ⁇ s or less, it becomes easy to adhere to the wall material.
  • the second photosensitive resin sheet preferably contains a filler, and the content of the filler in 100 parts by mass of the second cured film when the filler is contained is 60 to 80 parts by mass. Is preferable. When the amount is 60 parts by mass or more, the strength of the roofing material can be improved, and when the amount is 80 parts by mass or less, it becomes easy to adhere to the wall material.
  • a hollow structure can be easily produced, it is suitably used for an electronic component having a hollow structure.
  • electronic components having a hollow structure include an elastic wave filter.
  • the electronic component of the present invention comprises the cured film of the present invention obtained by heat-curing the photosensitive resin sheet of the present invention.
  • the photosensitive resin sheet of the present invention can smoothly laminate a resin without voids even on a substrate having a large unevenness difference, and can pattern a cured film having high heat resistance. Therefore, the photosensitive resin sheet of the present invention is useful as an insulating film for electronic parts having irregularities such as wiring and electronic elements, and can be preferably used. In particular, it can be suitably used as a wall material for a hollow structure of an elastic wave filter having a hollow structure.
  • a first photosensitive resin sheet is laminated on an elastic wave filter element and a substrate on which a metal wiring electrically connected to the elastic wave filter element is formed, and the elastic wave filter element is used.
  • the elastic wave filter element is used.
  • the resin (a) used in each of the following Examples and Comparative Examples that is, the resin (a1) to the resin (a5) was synthesized by the following method.
  • the weight average molecular weight of the resin a1 was 4300.
  • the solubility of the resin a1 in a tetramethylammonium aqueous solution (2.38% by mass) at 23 ° C. was 0.1 g / 100 g or more.
  • the weight average molecular weight of the resin a2 was 5100.
  • the solubility of the resin a2 in a tetramethylammonium aqueous solution (2.38% by mass) at 23 ° C. was 0.1 g / 100 g or more.
  • the weight average molecular weight of the resin a3 was 6100.
  • the solubility of the resin a3 in a tetramethylammonium aqueous solution (2.38% by mass) at 23 ° C. was 0.1 g / 100 g or more.
  • the weight average molecular weight of the resin a4 was 7300.
  • the solubility of the resin a4 in a tetramethylammonium aqueous solution (2.38% by mass) at 23 ° C. was 0.1 g / 100 g or more.
  • Synthesis Example 5 A method for synthesizing the resin a5 (polyimide), which is the resin (a) of Synthesis Example 5 in the present invention, will be described.
  • BAHF 31.13 g (0.085 mol)
  • SiDA (1.24 g (0.005 mol)
  • MAP 2.18 g (0.020 mol)
  • the weight average molecular weight of the resin a5 was 8800.
  • the solubility of the resin a5 in a tetramethylammonium aqueous solution (2.38% by mass) at 23 ° C. was 0.1 g / 100 g or more.
  • Examples of the photopolymerizable compound (b) include BP-6EM (trade name, manufactured by Kyoeisha Chemical Co., Ltd., ethylene oxide-modified bisphenol A dimethacrylate) and MOI-BP (trade name, manufactured by Showa Denko Co., Ltd., 2-[(3,5-). Dimethylpyrazolyl) carbonylamino] ethyl methacrylate, a radically polymerizable compound having a blocked isocyanate group) is used.
  • Examples of the photopolymerization initiator (c) include "ADEKA ARKULS” NCI-831 (trade name, manufactured by ADEKA, photoradical polymerization initiator for oximes) and "IRGACURE” (registered trademark) OXE04 (trade name, BASF). (Manufactured by Oxime, photo-radical polymerization initiator) is used.
  • ⁇ -butyrolactone manufactured by Mitsubishi Chemical Corporation
  • ethyl lactate manufactured by Musashino Chemical Research Institute
  • HMOM-TPHAP (trade name, manufactured by Honshu Chemical Industry Co., Ltd., 4,4', 4 "-Ethylidinetris [2,6-bis (methoxymethyl) phenol]) is used.
  • KBM-403 (trade name, manufactured by Shinetsu Silicone Co., Ltd., 3-glycidoxypropyltrimethoxysilane), which is a silane coupling agent, is used.
  • the protective film of the photosensitive resin sheet obtained in each Example and each Comparative Example is peeled off, and using a laminating apparatus (manufactured by Takatori Co., Ltd., VTM-200M), the stage temperature is 80 ° C., the roll temperature is 80 ° C., and the sticking speed is 3 mm.
  • the peeled surface of the photosensitive resin sheet was laminated on a substrate having copper wiring having a width of 50 ⁇ m and a thickness of 5 ⁇ m under the conditions of / sec, a sticking pressure of 0.1 MPa, and an atmospheric pressure.
  • the substrate was installed in the laminator so that the wiring was horizontal with respect to the traveling direction of the laminate roll.
  • the support is peeled off, and the difference between the film thickness at which the film thickness on the wiring becomes the thickest and the film thickness on the flat portion not on the wiring is defined as the film thickness difference (Fig. 3), and the film thickness is evaluated according to the following criteria. bottom.
  • the film thickness difference is less than 0.1 ⁇ m.
  • 2: The film thickness difference is 0.1 ⁇ m or more and less than 0.2 ⁇ m.
  • 1 The film thickness difference is 0.2 ⁇ m or more.
  • the laminated substrate obtained in the above ⁇ evaluation of smoothness> was exposed at 200 mJ / cm 2 (h-line conversion) with an exposure apparatus (SME-150GA-TRJ, manufactured by Seiwa Optical Mfg. Co., Ltd.).
  • the support was peeled off, and after the oxygen concentration became 100 ppm or less in a nitrogen atmosphere in an inert oven, heat treatment was performed at 200 ° C. for 1 hour to obtain a cured film.
  • the difference between the film thickness at which the film thickness on the wiring is the thickest and the film thickness on the flat portion not on the wiring was defined as the film thickness difference (reference: Fig. 3), and the film thickness was evaluated according to the following criteria. 2:
  • the film thickness difference is in the range of 0.25 to 0.75 ⁇ m 1:
  • the film thickness difference is less than 0.25 ⁇ m or more than 0.75 ⁇ m.
  • a concave-convex substrate was produced.
  • PW1500 (trade name, manufactured by Toray Industries, Inc.), which is a photosensitive resin varnish, was rotationally coated on a 4-inch silicon wafer and then baked on a hot plate at 120 ° C. for 3 minutes to prepare a prebaked film having an average thickness of 7 ⁇ m.
  • This film was set in an exposure apparatus (SME-150GA-TRJ, manufactured by Seiwa Optical Mfg. Co., Ltd.) together with a photomask , and exposed at 150 mJ / cm 2 (h-line conversion).
  • TMAH tetramethylammonium hydroxide
  • a substrate having the concavo-convex pattern of (X) and the concavo-convex pattern of (Y) which is a grid pattern having a line width of 100 ⁇ m and having a via of 100 ⁇ m ⁇ 100 ⁇ m shown in FIG. 4 (Y) was produced.
  • the protective film of the photosensitive resin sheet obtained in each Example and each Comparative Example was peeled off, and a laminating device (manufactured by Takatori Co., Ltd., VTM-200M) was used to set the stage temperature to 80 ° C, the roll temperature to 80 ° C, and the sticking speed to 3 mm.
  • the peeled surface of the photosensitive resin sheet was laminated on a substrate having the above-mentioned uneven patterns (X) and (Y) having a thickness of 5 ⁇ m under the conditions of / sec, a sticking pressure of 0.1 MPa, and an atmospheric pressure.
  • the substrate was installed in the laminator so that the line, which is the convex pattern of (X), was perpendicular to the traveling direction of the laminate roll.
  • This single film sample is cut into 5 mm ⁇ 40 mm with a single blade, and using DMA (Hitachi High-Tech Science Co., Ltd., DMS6100), sample length: 10 mm, temperature condition: 25 ° C ⁇ 500 ° C (5 ° C / min), strain amplitude.
  • the test was performed at 5 ⁇ m, minimum tension / pressure 10 mN, tension pressure gain 1.5, and initial force amplitude 50 mN, and the glass transition temperature at which tan ⁇ peaked was measured.
  • the protective film of the photosensitive resin sheet obtained in each Example and each Comparative Example was peeled off, and a laminating device (manufactured by Takatori Co., Ltd., VTM-200M) was used to perform a stage temperature of 80 ° C., a roll temperature of 80 ° C., and a sticking speed of 3 mm.
  • the peeled surface of the photosensitive resin sheet was laminated on a 4-inch silicon wafer under the conditions of / sec, a sticking pressure of 0.1 MPa, and an atmospheric pressure.
  • Beer 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80 in the exposure equipment (SME-150GA-TRJ, manufactured by Seiwa Optical Mfg. Co., Ltd.) , 85, 90, 95, 100 ⁇ m ⁇ patterns were set, and exposure was performed at 200 mJ / cm 2 (h-line conversion) with the support film and the photomask in contact with each other. After the exposure, the support film was peeled off, and then the photosensitive resin layer was heated on a hot plate at 80 ° C. for 3 minutes.
  • the minimum dimension via is 30 ⁇ m ⁇ or less.
  • a photosensitive resin sheet is laminated on a 4-inch silicon wafer in the same manner, and before the support is peeled off, an exposure device (SME-150GA-TRJ, manufactured by Seiwa Optical Mfg. Co., Ltd.) is used to 200 mJ / cm. Exposure was performed at 2 (h-line conversion). After that, the support was peeled off, and the peelability of the support when exposed was confirmed. The peelability of the support was evaluated according to the following criteria. 3: The support can be easily peeled off regardless of the presence or absence of exposure, and the photosensitive resin layer is not scratched.
  • Example 1 the GBL solution (solid content concentration 40% by weight) of the resin a1 shown in Synthesis Example 1 was used as the resin (a), and BP-6EM was used as the photopolymerizable compound (b). NCI-831 and OXE-04 were used as the polymerization initiator (c), and KBM-403 was used as the silane coupling agent.
  • a GBL solution of resin a1 (87.5 g (35 g as resin a1)), BP-6EM (25 g), NCI-831 (2.5 g), and OXE-04 (1.0 g).
  • KBM-403 (2 g) were dissolved in ethyl lactate as a solvent (d).
  • the amount of ethyl lactate added was adjusted so that the solid content was 45% by mass, with additives other than the solvent (d) GBL and ethyl lactate as the solid content.
  • the obtained solution was pressure-filtered using a filter having a reserved particle size of 2 ⁇ m, whereby a photosensitive resin varnish was obtained.
  • the obtained photosensitive resin varnish was applied onto a PET film (thickness 50 ⁇ m) as a support using a comma roll coater, dried at 65 ° C. for 5 minutes, and then used as a protective film having a thickness of 50 ⁇ m.
  • PP film was laminated to obtain a photosensitive resin sheet having a thickness of 15 ⁇ m.
  • the content of the solvent (d), the melt viscosity at 80 ° C., the smoothness, the void, the glass transition temperature, the resolution, and the peelability of the support were evaluated by the above-mentioned method. ..
  • the evaluation results of Example 1 are shown in Table 1 described later.
  • Examples 2 to 8 of the present invention and Comparative Example 1 with respect to the present invention treatment was carried out according to the same method as in Example 1 except that the composition in Example 1 described above was changed to the composition shown in Table 1 and the drying temperature.
  • a photosensitive resin sheet was produced. Using the obtained photosensitive resin sheet, the content of the solvent (d), the melt viscosity at 80 ° C., the smoothness, the void, the glass transition temperature, the resolution, and the peelability of the support were evaluated by the above-mentioned method.
  • the evaluation results of Examples 2 to 8 and Comparative Example 1 are shown in Table 1.
  • the "content of the solvent (d)” indicates the content of the solvent (d) in 100% by mass of the photosensitive resin sheet
  • the "80 ° C. melt viscosity” is 80 of the photosensitive resin sheet.
  • the value of the melt viscosity (complex viscosity) at ° C. is defined as the "glass transition temperature”.
  • the photosensitive resin sheet was exposed at 500 mJ / cm 2 and heated at 200 ° C. for 1 hour in a nitrogen atmosphere having an oxygen concentration of 100 ppm or less. The glass transition temperature of the cured film obtained at that time is shown.
  • each evaluation result was good in Examples 1 to 8 using the resin (a) having a weight average molecular weight of 1,000 to 8,000.
  • Example 3 using MOI-BP, which is a photoradical polymerizable compound (b1) having a blocked isocyanate, good resolution was exhibited.
  • Comparative Example 1 the evaluation of smoothness and the evaluation of voids were inferior to those of Examples 1 to 8.
  • the photosensitive resin sheet according to the present invention does not contain voids and is not laminated even on a substrate having a large unevenness difference, and the resin can be smoothly laminated and has high heat resistance. It is suitable for a photosensitive resin sheet capable of patterning a cured film. Therefore, the photosensitive resin sheet of the present invention is useful as an insulating film for electronic parts having irregularities such as wiring and electronic elements, and can be preferably used.

Abstract

凹凸差の大きい基板に対しても、ボイドなく、樹脂を平滑にラミネートすることが可能であり、かつ耐熱性の高い硬化膜をパターニングすることができる感光性樹脂シートを提供することを課題とするものであり、ポリイミド(a')、光重合性化合物(b)、及び光重合開始剤(c)を含む感光性樹脂シートであって、 前記ポリイミド(a')は、重量平均分子量が1,000~8,000であり、 前前記感光性樹脂シートを加熱硬化して得られる硬化膜のガラス転移温度が200℃以上であり、 前記感光性樹脂シートの80℃における溶融粘度が50~2,000Pa・s以下である、感光性樹脂シート。

Description

感光性樹脂シート、電子部品、弾性波フィルター、及び弾性波フィルターの製造方法
 本発明は、感光性樹脂シート、感光性樹脂シートから得られる硬化膜、感光性樹脂シートを有する積層体、硬化膜を含む電子部品、及び感光性樹脂シートを用いた電子部品の製造方法、弾性波フィルターの製造方法に関する。
 感光性樹脂組成物は、フォトリソグラフィー技術によって微細加工が可能であることから、配線や電子素子を有する基板などの絶縁膜として広く使用されている。このような感光性樹脂組成物として、液状の感光性樹脂ワニス、シート状の感光性樹脂シートが開発されている。感光性樹脂シートは、ラミネーターによる熱圧着が可能であることと、揮発する溶剤成分が少ないため、配線や電子素子による凹凸を有する基板であっても、感光性樹脂ワニスと比較して樹脂を平滑にパターン形成することが可能である。
 これまでに、感光性樹脂シートの例が、数多く報告されている。その中でも、既閉環ポリイミドを含有する感光性ポリイミドシートが提案されている(例えば特許文献1参照)。既閉環ポリイミドであることから閉環反応による硬化収縮を伴わず、加熱硬化をした際にパターンの平滑性を保ちやすい。また、ポリイミドであることから高い耐熱性を有する硬化膜が形成可能である。
特開2011-17897号公報
 しかしながら、特許文献1に記載される感光性樹脂シートを、配線や電子素子が厚い(凹凸差が大きい)基板に対してラミネート加工する場合、樹脂シートの基板に対する追随性が十分でないことなどによるボイドが発生する、ラミネート後の樹脂シートに凹凸がみられるなどの不良が生じた。
 本発明は、以上の問題を解決するためのものであって、凹凸差が大きい基板に対しても、ボイドが含まれてラミネートされることがなく、樹脂を平滑にラミネートすることが可能であり、かつパターニングされた耐熱性の高い硬化膜を得ることができる感光性樹脂シートを提供することを目的とする。
 上述した課題を解決し、目的を達成する本発明は以下の構成を有する。
(1) ポリイミド(a’)、光重合性化合物(b)、及び光重合開始剤(c)を含む感光性樹脂シートであって、
 前記ポリイミド(a’)は、重量平均分子量が1,000~8,000であり、
 前記感光性樹脂シートを加熱硬化して得られる硬化膜のガラス転移温度が200~300℃であり、前記感光性樹脂シートの80℃における溶融粘度が50~2,000Pa・sである、感光性樹脂シート。
(2) 前記ポリイミド(a’)が、末端にカルボキシル基、及びフェノール性水酸基からなる群より選ばれる少なくとも一つの基を有する、(1)に記載の感光性樹脂シート。
(3) 前記光重合性化合物(b)の少なくとも1種は、イソシアネート基又はブロックイソシアネート基を有するラジカル重合性化合物(b1)である、(1)または(2)に記載の感光性樹脂シート。
(4) 凹凸を有する基板の凹凸の埋め込みに用いられる、(1)~(3)のいずれかに記載の感光性樹脂シート。
(5) 中空構造を形成するための壁材として用いられることを特徴とする、(1)~(3)のいずれかに記載の感光性樹脂シート。
(6) 金属配線を有する基板と、前記基板上に設けられ、かつ、前記基板の金属配線が形成された側の面の一部を囲む部材(壁材)と、該壁材の頂部に接し、かつ、該壁材で囲まれた空間を覆う部材(屋根材)とを有し、前記の壁材は前記(1)~(5)の何れかに記載の感光性樹脂シートが硬化された硬化物からなり、かつ、前記金属配線の一部は前記壁材と前記屋根材で囲まれた空間の外と中とを電気的に接読可能に配置されている、電子部品。
(7)金属配線部分上に壁材が設けられたカ所において、金属配線の厚みをa(μm)、当該金属配線上の壁材の厚みをb(μm)、金属配線のない部分に壁材が設けられたカ所における壁材の厚みをcとしたとき、(a+b-c)/aが0.05~0.15であるカ所を少なくとも1つ有している、前記(6)に記載の電子部品。
(8)金属配線部分上に壁材が設けられていないカ所において、壁材の膜厚が8~15μmであり、前記壁材の厚みと当該壁材上に設けられた屋根材の厚みの和が20~35μmである前記壁材で囲まれた空間を有している、前記(6)または(7)に記載の電子部品。
(9)前記屋根材がポリイミド樹脂を含有する、前記(6)~(8)のいずれかに記載の電子部品。
(10)前記(1)~(5)請求項1~5のいずれかに記載の感光性樹脂シートが硬化された硬化膜を有する電子部品。
(11)前記電子部品が、弾性波フィルターである、前記(6)~(10)のいずれかに記載の電子部品。
(12)弾性波フィルター素子、及び弾性波フィルター素子が電気的に接続された金属配線を有する基板の金属配線の少なくとも一部を覆って請求項1~5のいずれかに記載の感光性樹脂シートをラミネートする工程、当該ラミネートされた感光性樹脂シートを露光・現像する工程、次いで現像されたシートを加熱硬化して硬化膜を得る工程を有し、
 前記の露光・現像工程は、現像されたシートが前記弾性波フィルター素子を囲むように、かつ、当該弾性波フィルター素子に電気的に接続された金属配線がその弾性波フィルター素子を囲んで形成された空間の内と外とを電気的に接続可能に、ラミネートされた感光性樹脂シートが現像される工程であり、
 かつ、ラミネート前の状態において、前記金属配線の厚みをa(μm)、前記感光性樹脂シートの厚みd(μm)としたとき、a/dが0.2~0.5である、弾性波フィルターの製造方法。
(13)dが10~20μmである、前記(12)に記載の弾性波フィルターの製造方法。
(14)前記ラミネート工程が大気圧下で行われる、前記(12)または(13)に記載の弾性波フィルターの製造方法。
(15)さらに、前記弾性波フィルター素子を囲んで形成された硬化膜の頂部に接し、かつ、当該弾性波フィルター素子を囲んで形成された空間を覆って感光性樹脂シート(便宜上、「第2の感光性樹脂シート」という)をラミネートする工程、前記第2の感光性樹脂層を、弾性波フィルター素子を囲んで形成された空間を覆う状態を保って、露光・現像・加熱硬化して硬化膜(便宜上、「第2の硬化膜」という)を得る工程を有し、
 前記第2の感光性樹脂シートの80℃における溶融粘度が10,000~100,000Pa・sである、前記(12)~(14)のいずれかに記載の弾性波フィルターの製造方法。
(16)前記第2の感光性樹脂シートがフィラーを含有し、
 前記第2の硬化膜100質量部中のフィラーの含有量が、60~80質量部である、請求項前記(12)~(15)のいずれかに記載の弾性波フィルターの製造方法。
 本発明によれば、凹凸差が大きい基板に対しても、ボイドが含まれてラミネートされることがなく、樹脂を平滑にラミネートすることが可能であり、かつパターニングされた耐熱性の高い硬化膜を得ることができる。
凸部を有する基板に対する本発明の感光性樹脂シートの好適な一つの加工方法を表す図。 中空構造体を形成する方法の例を示した模式図である。 実施例の<平滑性の評価>にて実施した、膜厚差を表す模式図。 実施例の<ボイドの評価>にて実施した、凸部パターンを表す模式図。
 以下、本発明の好適な実施形態を詳細に説明する。ただし、本発明は、以下の実施形態に限定して解釈されるものではなく、目的や用途に応じて種々に変更して実施することができる。
 <感光性樹脂シート>
 本発明の感光性樹脂シートは、樹脂(a)、光重合性化合物(b)、及び光重合開始剤(c)を含有する。
 本発明において、樹脂(a)は、重量平均分子量が1,000~8,000の樹脂である。樹脂(a)の重量平均分子量を1,000~8,000とすることで、感光性樹脂シートの溶融粘度を低下させ、凹凸差が大きい基板に対しても、ボイドなく、樹脂を平滑にラミネートすることが可能となる。
 本発明の感光性樹脂シートは、光重合性化合物(b)とともに光重合開始剤(c)を含有する。このようにすることで、露光部の光重合開始剤(c)が光重合性化合物(b)の重合を開始し、重合が進行する(光硬化)。これにより、露光部の現像液に対する溶解性が低下し、未露光部のみが溶解により除去されることでパターンを形成することができる。
 また本発明の感光性樹脂シートは、感光性樹脂シートを加熱硬化して得られる硬化膜のガラス転移温度が200~300℃である。ここでガラス転移温度を求める際に採用される加熱硬化条件は、感光性樹脂シートを500mJ/cmで露光し、酸素濃度100ppm以下の窒素雰囲気下において200℃で一時間加熱することである。この硬化条件で得られ求まる硬化膜のガラス転移温度は200℃以上である。感光性樹脂シートを500mJ/cmで露光し、酸素濃度100ppm以下の窒素雰囲気下において200℃で一時間加熱した際に得られる硬化膜のガラス転移温度は215℃以上であることが好ましく、230℃以上であることがより好ましい。前述の条件で加熱した際に得られる硬化膜のガラス転移温度を200℃以上とすることで、十分な耐熱性を有することができる。一方、ガラス転移温度に上限は特に限定されないが、前記感光性樹脂シートを500mJ/cmで露光し、酸素濃度100ppm以下の窒素雰囲気下において200℃で一時間加熱した際に得られる硬化膜のガラス転移温度が400℃以下であることが好ましく、350℃以下であることがより好ましく、300℃以下であることがさらに好ましい。前述の条件で得られる硬化膜のガラス転移温度を400℃以下とすることで、硬化膜の弾性率が下がり、硬化膜の伸度が向上する傾向にある。
 感光性樹脂シートを500mJ/cmで露光し、酸素濃度100ppm以下の窒素雰囲気下において200℃で一時間加熱した際に得られる硬化膜のガラス転移温度を200℃以上にするためには、例えば、感光性樹脂シート中の樹脂(a)として、ポリイミド、ポリベンゾオキサゾール、ポリアミドイミド、それらいずれかの前駆体、及びそれらの共重合体からなる群より選択される少なくとも1つの樹脂を用いる方法が好ましい。前述の条件で得られる硬化膜のガラス転移温度を200℃以上にするためのその他の方法として、熱架橋性化合物(e)を含む感光性樹脂シートを用いる方法も好ましい。
 また本発明の感光性樹脂シートは、80℃における溶融粘度が50~2,000Pa・sである。感光性樹脂シートの80℃における溶融粘度を50~2,000Pa・sとすることで、凹凸差が大きい基板に対しても、ボイドが含まれてラミネートされることがなく、樹脂を平滑にラミネートすることが可能となる。
 (樹脂)
 本発明の感光性樹脂シートは、樹脂(a)を含有する。樹脂(a)の重量平均分子量は、1,000以上であることが好ましく、2,000以上であることがより好ましく、3,000以上であることがさらに好ましい。樹脂(a)の重量平均分子量が大きいほど良好な塗工特性が得られ、感光性樹脂シートの作製が容易になる。一方で、樹脂(a)の重量平均分子量は、8,000以下であることが好ましく、7,000以下であることがより好ましく、6,000以下であることがさらに好ましい。樹脂(a)の重量平均分子量が小さいほど、感光性樹脂シートの溶融粘度を下げることが可能であり、ラミネート性を向上することができる。
 重量平均分子量の測定方法は、ゲル浸透クロマトグラフィー(GPC)により測定することができる。本発明の重量平均分子量とは、GPC(日本ウォーターズ(株)製、商品名:e2695-2998)を用いて、ポリスチレン換算で測定した時の重量平均分子量を意味する。
 樹脂(a)は、アルカリ現像が可能となることから、アルカリ可溶性樹脂であることが好ましい。ここでいうアルカリ可溶性とは、2.38質量%水酸化テトラメチルアンモニウム(TMAH)水溶液への溶解度が0.1g/100mL以上になることを指す。樹脂(a)の構造は特に限定されないが、アルカリ可溶性を獲得できる官能基(アルカリ可溶性基)としては、例えば、フェノール性水酸基、チオール基、カルボキシル基、スルホン酸基が挙げられ、その中でもフェノール性水酸基及び/又はカルボキシル基を有することが好ましい。
 樹脂(a)の構造は、重量平均分子量が1,000~8,000であれば、特に限定されないが、加工性、耐熱性の点から、ポリイミド、ポリベンゾオキサゾール、ポリアミドイミド、それらいずれかの前駆体、及びそれらの共重合体からなる群より選択される少なくとも1つの樹脂であることが好ましく、ポリイミド、ポリベンゾオキサゾール、それらいずれかの前駆体、及びそれらの共重合体からなる群より選択される少なくとも一つの樹脂であることがより好ましく、ポリイミドを少なくとも含むことがさらに好ましい。
 樹脂(a)について、ポリイミドの例を以下に示す。樹脂(a)としてポリイミド(「ポリイミド(a’)」と表記することがある)を用いる場合、下記一般式(1)または一般式(2)で表される一種以上のポリイミドを含有することが好ましい。
Figure JPOXMLDOC01-appb-C000001
 (式中、Xはカルボキシル基、フェノール性水酸基、スルホン酸基およびチオール基からなる群より選ばれる基を少なくとも一つ有する1価の有機基を表し、Yはカルボキシル基、フェノール性水酸基、スルホン酸基およびチオール基からなる群より選ばれる基を少なくとも一つ有する2価の有機基を表す。また、Rは4~14価の有機基を表し、Rは2~12価の有機基を表し、RおよびRは、それぞれ独立にカルボキシル基、フェノール性水酸基、スルホン酸基およびチオール基からなる群より選ばれる少なくとも一つのアルカリ可溶性基を表す。また、αおよびβはそれぞれ独立に0~10の整数を表し、nは1~100の整数を表す。)
 Xは、カルボキシル基、フェノール性水酸基、スルホン酸基およびチオール基からなる群より選ばれる基を少なくとも一つ有する1価の有機基を表す。Yは、カルボキシル基、フェノール性水酸基、スルホン酸基およびチオール基からなる群より選ばれる基を少なくとも一つ有する2価の有機基を表す。XおよびYは、フェノール性水酸基またはカルボキシル基を有することが好ましく、フェノール性水酸基を有することが特に好ましい。
 また、αおよびβは、それぞれ独立に0~10の範囲の整数を表す。このようなαおよびβにおいて、α+βが1以上であることが好ましい。nは、ポリマーの構造単位の繰り返し数を表す。このnの範囲は、1~100の整数である。nが小さいほど分子量が小さくなり、ラミネート性を向上することが可能である。なお、各ポリマー鎖において、nは整数となるが、樹脂(a)から分析によって求められるnは整数にならない場合がある。
 上記一般式(1)、一般式(2)において、Rは、テトラカルボン酸二無水物由来の構造を有する4~14価の有機基である。このようなRは、芳香族基または環状脂肪族基を含有する炭素数5~40の有機基であることが好ましい。
 テトラカルボン酸二無水物としては、例えば、芳香族テトラカルボン酸二無水物、脂肪族のテトラカルボン酸二無水物などを挙げることができる。芳香族テトラカルボン酸二無水物としては、例えば、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン酸二無水物、9,9-ビス{4-(3,4-ジカルボキシフェノキシ)フェニル}フルオレン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物などが挙げられる。脂肪族のテトラカルボン酸二無水物としては、例えば、ブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物などが挙げられる。
 また、テトラカルボン酸二無水物としては、下記に示す構造を有する酸二無水物を挙げることができる。本実施形態では、テトラカルボン酸二無水物として、上述した芳香族テトラカルボン酸二無水物、脂肪族のテトラカルボン酸二無水物、および下記に示す構造を有する酸二無水物のうちの2種類以上を用いてもよい。
Figure JPOXMLDOC01-appb-C000002
 上記構造の酸二無水物を表す一般式において、Rは、酸素原子、C(CF、C(CHまたはSOを表す。RおよびR10は、それぞれ独立に、カルボキシル基、水酸基、スルホン酸基またはチオール基を表す。
 また、上記一般式(1)、一般式(2)において、Rは、ジアミン由来の構造を有する2~12価の有機基である。このようなRは、芳香族基または環状脂肪族基を含有する炭素数5~40の有機基であることが好ましい。
 ジアミンとしては、例えば、ヒドロキシル基含有ジアミン、カルボキシル基含有ジアミン、チオール基含有ジアミン、芳香族ジアミン、これらの芳香族環の水素原子のうち少なくとも一部をアルキル基やハロゲン原子で置換した化合物、脂肪族ジアミンなどが挙げられる。
 ヒドロキシル基含有ジアミンとしては、例えば、ビス-(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)メチレン、ビス(3-アミノ-4-ヒドロキシフェニル)エーテル、ビス(3-アミノ-4-ヒドロキシ)ビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)フルオレンなどが挙げられる。カルボキシル基含有ジアミンとしては、例えば、2,2-ビス[3-アミノ-4-カルボキシフェニル]プロパン、2,2-ビス[4-アミノ-3-カルボキシフェニル]プロパン、2,2-ビス[3-アミノ-4-カルボキシフェニル]ヘキサフルオロプロパン、4,4’-ジアミノ-2,2‘,5,5’-テトラカルボキシジフェニルメタン、3,3‘-ジアミノ-4,4’-ジカルボキシジフェニルエーテル、4,4‘-ジアミノ-3,3’-ジカルボキシジフェニルエーテル、4,4‘-ジアミノ-2,2’-ジカルボキシジフェニルエーテル、4,4‘-ジアミノ-2,2’,5,5‘-テトラカルボキシジフェニルエーテル、3,3’-ジアミノ-4,4‘-ジカルボキシジフェニルスルフォン、4,4’-ジアミノ-3,3‘-ジカルボキシジフェニルスルフォン、4,4’-ジアミノ-2,2‘-ジカルボキシジフェニルスルフォン、4,4’-ジアミノ-2,2‘,5,5’-テトラカルボキシジフェニルスルフォン、2,2-ビス[4-(4-アミノ-3-カルボキシフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノ-3-カルボキシフェノキシ)フェニル]スルフォンなどが挙げられる。チオール基含有ジアミンとしては、例えば、ジメルカプトフェニレンジアミンなどが挙げられる。
 芳香族ジアミンとしては、例えば、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ベンジジン、m-フェニレンジアミン、p-フェニレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ビス(4-アミノフェノキシフェニル)スルホン、ビス(3-アミノフェノキシフェニル)スルホン、ビス(4-アミノフェノキシ)ビフェニル、ビス{4-(4-アミノフェノキシ)フェニル}エーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジエチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジエチル-4,4’-ジアミノビフェニル、2,2’,3,3’-テトラメチル-4,4’-ジアミノビフェニル、3,3’,4,4’-テトラメチル-4,4’-ジアミノビフェニル、2,2’-ジ(トリフルオロメチル)-4,4’-ジアミノビフェニル、9,9-ビス(4-アミノフェニル)フルオレンなどが挙げられる。脂肪族ジアミンとしては、例えば、シクロヘキシルジアミン、メチレンビスシクロヘキシルアミンなどが挙げられる。
 また、ジアミンとしては、例えば、下記に示す構造を有するジアミンが挙げられる。本実施形態では、ジアミンとして、上述したヒドロキシル基含有ジアミン、カルボキシル基含有ジアミン、チオール基含有ジアミン、芳香族ジアミン、これらの芳香族環の水素原子のうち少なくとも一部をアルキル基やハロゲン原子で置換した化合物、脂肪族ジアミン、および下記に示す構造を有するジアミンのうちの2種類以上を用いてもよい。
Figure JPOXMLDOC01-appb-C000003
 上記構造のジアミンを表す一般式において、R11は、酸素原子、C(CF、C(CHまたはSOを表す。R12~R15は、それぞれ独立に、カルボキシル基、水酸基、スルホン酸基またはチオール基を表す。
 上述したジアミンのうち、ビス-(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)メチレン、ビス(3-アミノ-4-ヒドロキシフェニル)エーテル、ビス(3-アミノ-4-ヒドロキシ)ビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)フルオレン、2,2-ビス[3-アミノ-4-カルボキシフェニル]プロパン、2,2-ビス[4-アミノ-3-カルボキシフェニル]プロパン、2,2-ビス[3-アミノ-4-カルボキシフェニル]ヘキサフルオロプロパン、4,4’-ジアミノ-2,2‘,5,5’-テトラカルボキシジフェニルメタン、3,3‘-ジアミノ-4,4’-ジカルボキシジフェニルエーテル、4,4‘-ジアミノ-3,3’-ジカルボキシジフェニルエーテル、4,4‘-ジアミノ-2,2’-ジカルボキシジフェニルエーテル、4,4‘-ジアミノ-2,2’,5,5‘-テトラカルボキシジフェニルエーテル、3,3’-ジアミノ-4,4‘-ジカルボキシジフェニルスルフォン、4,4’-ジアミノ-3,3‘-ジカルボキシジフェニルスルフォン、4,4’-ジアミノ-2,2‘-ジカルボキシジフェニルスルフォン、4,4’-ジアミノ-2,2‘,5,5’-テトラカルボキシジフェニルスルフォン、2,2-ビス[4-(4-アミノ-3-カルボキシフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノ-3-カルボキシフェノキシ)フェニル]スルフォン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、m-フェニレンジアミン、p-フェニレンジアミン、1,4-ビス(4-アミノフェノキシ)ベンゼン、9,9-ビス(4-アミノフェニル)フルオレンおよび下記に示す構造を有するジアミンが好ましい。
Figure JPOXMLDOC01-appb-C000004
 また、上記一般式(1)、一般式(2)において、RおよびRは、上述したように、それぞれ独立にカルボキシル基、フェノール性水酸基、スルホン酸基またはチオール基からなる群より選ばれる少なくとも一つのアルカリ可溶性基を表す。これらのRおよびRのアルカリ可溶性基の量を調整することにより、ポリイミドのアルカリ水溶液に対する溶解速度が変化するため、所望の溶解速度を有する感光性樹脂組成物を得ることができる。
 さらに、上記一般式(1)、一般式(2)で表される構造を有するポリイミドにおいては、耐熱性を低下させない範囲でRにシロキサン構造を有する脂肪族化合物を共重合してもよい。シロキサン構造を有する脂肪族化合物を共重合することにより、基板との接着性を向上させることができる。シロキサン構造を有する脂肪族化合物としては、例えば、ジアミンの場合、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、1,3-ビス(p-アミノ-フェニル)オクタメチルペンタシロキサンなどが挙げられる。これらをポリイミドの全ジアミン中に1~10モル%共重合することが好ましい。
 また、一般式(1)において、Xは、末端封止剤である1級モノアミンに由来する。この末端封止剤である1級モノアミンとしては、例えば、5-アミノ-8-ヒドロキシキノリン、1-ヒドロキシ-7-アミノナフタレン、1-ヒドロキシ-6-アミノナフタレン、1-ヒドロキシ-5-アミノナフタレン、1-ヒドロキシ-4-アミノナフタレン、2-ヒドロキシ-7-アミノナフタレン、2-ヒドロキシ-6-アミノナフタレン、2-ヒドロキシ-5-アミノナフタレン、1-カルボキシ-7-アミノナフタレン、1-カルボキシ-6-アミノナフタレン、1-カルボキシ-5-アミノナフタレン、2-カルボキシ-7-アミノナフタレン、2-カルボキシ-6-アミノナフタレン、2-カルボキシ-5-アミノナフタレン、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノベンゼンスルホン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸、3-アミノ-4,6-ジヒドロキシピリミジン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、2-アミノチオフェノール、3-アミノチオフェノール、4-アミノチオフェノールなどが好ましい。このような末端封止材としては、これらの1級アミンのうちの2種以上を用いてもよい。
 また、一般式(2)において、Yは、末端封止剤であるジカルボン酸無水物に由来する。この末端封止剤であるジカルボン酸無水物としては、例えば、4-カルボキシフタル酸無水物、3-ヒドロキシフタル酸無水物、シス-アコニット酸無水物などが好ましい。このような末端封止材としては、これらのジカルボン酸無水物のうちの2種以上を用いてもよい。
 ポリイミド(a’)は、一般式(1)または一般式(2)で表される構造を有するもの以外のポリイミドを含有してもよい。この場合、一般式(1)または一般式(2)で表される構造を有するアルカリ可溶性ポリイミドを、ポリイミド全体の質量に対して30質量%以上含有することが好ましく、60質量%以上含有することがより好ましい。一般式(1)または(2)で表されるポリイミドを30質量%以上含有することにより、ポリイミドの熱硬化時の収縮を抑えることができる。一般式(1)または一般式(2)で表される構造以外の構造を有するポリイミドの種類および含有量は、最終加熱処理によって得られる硬化膜の耐熱性損なわない範囲で選択することが好ましい。
 本発明において、樹脂(a)としてアルカリ可溶性樹脂であるポリイミドを用いる場合、そのイミド化率は、ポリイミドの電気特性、機械特性、耐熱性、耐湿性および残膜率をより向上させるという観点から、90%以上であることが好ましい。樹脂(a)としてアルカリ可溶性樹脂であるポリイミドを用いる場合、そのイミド化率を上記範囲にする方法としては、例えば、イミド化反応を、乾燥窒素気流下において、反応温度160℃以上、反応時間2時間以上とする方法などが挙げられる。
 ここで、本発明における樹脂(a)としてポリイミド(a’)を用いる場合、そのイミド化率は、以下の方法により求めることができる。まず、アルカリ可溶性を有するポリイミド(a’)の赤外吸収スペクトルを測定し、イミド構造由来の吸収ピークである1377cm-1付近のピーク強度P1を求める。次に、そのアルカリ可溶性を有するポリイミド(a’)を350℃で1時間熱処理した後、再度、赤外吸収スペクトルを測定し、1377cm-1付近のピーク強度P2を求める。得られたピーク強度P1、P2を用い、下記式に基づいて、アルカリ可溶性を有するポリイミド(a’)のイミド化率を求めることができる。
イミド化率[%]=(ピーク強度P1÷ピーク強度P2)×100
 樹脂(a)としてポリイミド(a’)を用いる場合、その末端に導入された末端封止剤は、以下の方法により検出できる。例えば、末端封止剤が導入されたポリイミドを、酸性溶液に溶解して、ポリイミドの構成単位であるアミン成分とカルボン酸無水物成分とに分解する。続いて、これらのアミン成分およびカルボン酸無水物成分をガスクロマトグラフィー(GC)やNMRによって分析することにより、ポリイミドの末端封止剤を検出することができる。また、末端封止剤が導入されたポリイミドを直接、熱分解ガスクロマトグラフィー(PGC)や赤外スペクトルおよび13CNMRスペクトルを用いて分析することによっても、ポリイミドの末端封止剤を検出することができる。
 樹脂(a)の含有量は、感光性樹脂シート100質量%中、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることがさらに好ましい。樹脂(a)の含有量が多いほど、塗工性が良好になることから感光性樹脂シートを形成しやすくなり、また硬化膜の耐熱性も向上することが可能である。一方で樹脂(a)の含有量は、感光性樹脂シート100質量%中、80質量%以下であることが好ましく、70質量%以下であることがより好ましく、60質量%以下であることがさらに好ましい。樹脂(a)の含有量が少ないほど、感光性樹脂シートの溶融粘度を下げることが可能であり、ラミネート性を向上することができる。
 (光重合性化合物)
 本発明の感光性樹脂シートは、光重合性化合物(b)を含有する。光重合性化合物とは、露光により生成したラジカルやカチオン、アニオンなどの活性種により重合可能な化合物であり、(メタ)アクリル基を有する重合性モノマーやグリシジル基を有する重合性モノマーなどが用いられる。このうち、バリエーションが多数あり、感光性樹脂シートおよびその硬化膜の特性を調整することが容易であることから、光重合性化合物(b)はラジカル重合性化合物であることが好ましく、(メタ)アクリル基を有する重合性モノマーであることがより好ましい。なお、「(メタ)アクリル基」の意味は、アクリル基とメタクリル基とを総称する意味である。
 また、光重合性化合物(b)はイソシアネート基もしくはブロックイソシアネート基を有するラジカル重合性化合物(b1)であることが好ましく、安定性の観点からブロックイソシアネート基を有することが特に好ましい。イソシアネート基もしくはブロックイソシアネート基が樹脂(a)の酸性基と反応することで、樹脂(a)とイソシアネート基もしくはブロックイソシアネート基を有するラジカル重合性化合物(b1)が架橋構造を形成する。これによって樹脂組成物の強度があがり、現像残渣の抑制による解像性の向上や、残膜率の向上をすることが可能となる。
 (メタ)アクリル基を有する重合性モノマーとしては、(メタ)アクリル基を分子内に一つ、もしくは二つ以上有する化合物を用いることができ、イソシアネート基およびブロックイソシアネート基を有さないラジカル重合性化合物としては、例えば、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジメタクリレート、トリメチロールプロパントリメタクリレート、ブチルアクリレート、ブチルメタクリレート、イソブチルアクリレート、ヘキシルアクリレート、イソオクチルアクリレート、イソボルニルアクリレート、イソボルニルメタクリレート、シクロヘキシルメタクリレート、グリシジルメタクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル、1,3-ブタンジオールジアクリレート、1,3-ブタンジオールジメタクリレート、ネオペンチルグリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジアクリレート、1,6-ヘキサンジオールジメタクリレート、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、1,3-ジアクリロイルオキシ-2-ヒドロキシプロパン、1,3-ジメタクリロイルオキシ-2-ヒドロキシプロパン、2,2,6,6-テトラメチルピペリジニルメタクリレート、2,2,6,6-テトラメチルピペリジニルアクリレート、N-メチル-2,2,6,6-テトラメチルピペリジニルメタクリレート、N-メチル-2,2,6,6-テトラメチルピペリジニルアクリレート、エチレンオキシド変性ビスフェノールAジアクリレート、エチレンオキシド変性ビスフェノールAジメタクリレート、プロピレンオキシド変性ビスフェノールAジアクリレート、プロピレンオキシド変性ビスフェノールAメタクリレート、プロポキシ化エトキシ化ビスフェノールAジアクリレート、プロポキシ化エトキシ化ビスフェノールAジメタクリレート、エチレンオキシド変性ペンタエリスリトールテトラメタクリレート、プロピレンオキシド変性ペンタエリスリトールテトラアクリレート、等が挙げられる。イソシアネート基を有するラジカル重合性加工物(b1)としては、2-イソシアナトエチルアクリレート、2-イソシアナトエチルメタクリレート、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート、2-(2-イソシアナトエトキシ)エチルメタクリレートなどが挙げられる。ブロックイソシアネート基を有するラジカル重合性化合物(b1)としては、メタクリル酸 2-[O-(1’-メチルプロピリデンアミノ)カルボキシアミノ]エチル、2-[(3,5-ジメチルピラゾリル)カルボニルアミノ]エチルメタクリレート、等が挙げられる。これらは単独でまたは2種類以上を組み合わせて使用される。
 グリシジル基を有する重合性モノマーとしては、グリシジル基を分子内に一つまたは二つ以上有する化合物が用いることができ、例えばjER 828、jER1002、jER1750、jER152、jER157S70、jER YL980、jER630LSD(三菱化学(株)製)、アデカレジンEP-4100HF、アデカレジンEP-4901HF、アデカレジンEP-4000S、アデカレジンEP-4000L、アデカレジンEP-4003S、アデカレジンEP-4010S,アデカレジンEP-4010L、(ADEKA(株)製)、エピクロンHP7200、エピクロンHP4032、エピクロンN-865、エピクロンEXA-850CRP(以上DIC(株)製)、YD-825GS、YDCN-704(以上新日鉄化学(株)製)、EOCN-1020、NC3000(以上日本化薬(株)製)、LX-01(ダイソー(株)製)、などのエポキシ樹脂が挙げられ、これらを単独または2種以上の組み合わせで用いてもよい。
 光重合性化合物(b)の含有量は、感光性樹脂シート100質量%中、10質量%以上であることが好ましく、15質量%以上であることがより好ましく、20質量%以上であることがさらに好ましい。光重合性化合物(b)が多いほど、現像時の膜減りを抑制することが可能である。一方で光重合性化合物(b)の含有量は、感光性樹脂シート100質量%中、60質量%以下であることが好ましく、50質量%以下であることがより好ましく、40質量%以下であることがさらに好ましい。樹脂(a)の含有量が少ないほど、硬化膜の耐熱性を向上することが可能である。
 本発明の感光性樹脂シートにおけるイソシアネート基もしくはブロックイソシアネート基を有するラジカル重合性化合物(b1)の含有量は、解像性および残膜率の向上の観点から、ラジカル重合性化合物(b1)の100質量部に対して、5質量部以上であることが好ましく、10質量部以上であることがより好ましく、20質量部以上であることがさらに好ましい。一方、イソシアネート基もしくはブロックイソシアネート基を有するラジカル重合性化合物(b1)の含有量は、ポリイミド(a’)のアルカリ溶解性を十分に発揮するという観点から、ラジカル重合性化合物(b1)の100質量部に対して、80質量部以下であることが好ましく、50質量部以下であることがより好ましく、30質量部以下であることがさらに好ましい。
 (光重合開始剤)
 本発明の感光性樹脂シートは、光重合開始剤(c)を含有する。光重合開始剤(c)は紫外線の照射によってラジカル、カチオン、アニオンなどを生成し、光重合性化合物(b)の重合を開始するものであれば用いることができる。これらのうち、光重合性化合物(b)に(メタ)アクリル基を有する重合性モノマーを適用することが可能であり、かつバリエーションが多数あり、感光特性の調整がしやすいことから、光重合開始剤(c)はラジカルを生成する光ラジカル重合開始剤であることが好ましい。
 光ラジカル重合開始剤の例としては、ベンゾフェノン類、グリシン類、メルカプト類、オキシム類、アシルフォスフィン類、α-アミノアルキルフェノン類などが挙げられ、中でもアシルフォスフィン類、オキシム類が好適に用いられる。光重合開始剤は1種で用いてもよく、2種以上を組み合わせて使用してもよい。
 光ラジカル重合開始剤の具体例としては、ベンゾフェノン、ミヒラーズケトン、4,4,-ビス(ジエチルアミノ)ベンゾフェノン、3,3,4,4,-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノンなどのベンゾフェノン類、3,5-ビス(ジエチルアミノベンジリデン)-N-メチル-4-ピペリドン、3,5-ビス(ジエチルアミノベンジリデン)-N-エチル-4-ピペリドンなどのベンジリデン類、7-ジエチルアミノ-3-ノニルクマリン、4,6-ジメチル-3-エチルアミノクマリン、3,3-カルボニルビス(7-ジエチルアミノクマリン)、7-ジエチルアミノ-3-(1-メチルメチルベンゾイミダゾリル)クマリン、3-(2-ベンゾチアゾリル)-7-ジエチルアミノクマリンなどのクマリン類、2-t-ブチルアントラキノン、2-エチルアントラキノン、1,2-ベンズアントラキノンなどのアントラキノン類、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテルなどのベンゾイン類、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン、2-イソプロピルチオキサントンなどのチオキサントン類、エチレングリコールジ(3-メルカプトプロピオネート)、2-メルカプトベンズチアゾール、2-メルカプトベンゾキサゾール、2-メルカプトベンズイミダゾールなどのメルカプト類、N-フェニルグリシン、N-メチル-N-フェニルグリシン、N-エチル-N-(p-クロロフェニル)グリシン、N-(4-シアノフェニル)グリシンなどのグリシン類、1-フェニル-1,2-ブタンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-ベンゾイル)オキシム、ビス(α-イソニトロソプロピオフェノンオキシム)イソフタル、1,2-オクタンジオン-1-[4-(フェニルチオ)フェニル]-2-(o-ベンゾイルオキシム)、エタノン-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(o-アセチルオキシム)などのオキシム類、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドなどのアシルフォスフィン類、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、2-メチル-1[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オンなどのα-アミノアルキルフェノン類、2,2’-ビス(o-クロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、などが挙げられる。
 なかでも好ましいアシルフォスフィン類およびオキシム類の例としては、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-ベンゾイル)オキシム、ビス(α-イソニトロソプロピオフェノンオキシム)イソフタル、1,2-オクタンジオン-1-[4-(フェニルチオ)フェニル]-2-(o-ベンゾイルオキシム)]、エタノン-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(o-アセチルオキシム)、(株)株式会社ADEKA製のアデカアークルズ(登録商標)N-1919、NCI-831、NCI-930、BASF株式会社製OXE-01、OXE-02、OXE-03、OXE-04から選ばれた化合物である。
 カチオンを生成する光カチオン重合開始剤の例としては、ジアゾジスルホン類、トリフェニルスルホニウム類、ジフェニルヨードニウム類などが挙げられる。これらは1種で用いてもよく、2種以上を組み合わせて使用してもよい。
 アニオンを生成する光アニオン重合開始剤の例としては、アミノアセトフェノン類、オキシムエステル類の他、N-ホルミル化芳香族アミノ基やN-アシル化芳香族アミノ基を有する化合物、ニトロベンジルカルバメート化合物やアルコオキシベンジルカルバメートなどのカルバメート類、4級アンモニウム塩挙げられる。これらは1種で用いてもよく、2種以上を組み合わせて使用してもよい。
 光重合開始剤(c)の含有量は、感光性樹脂シート100質量%中、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、1質量%以上であることがさらに好ましい。光重合開始剤(c)の含有量が多いほど、感光性樹脂シートの露光に対する感度を向上することができる。一方で光重合開始剤(c)の含有量は、感光性樹脂シート100質量%中、10質量%以下であることが好ましく、7質量%以下であることがより好ましく、5質量%以下であることがさらに好ましい。光重合開始剤(c)の含有量が少ないほど、深部まで光を透過することが可能となり、良好なパターン形状を得ることができる。
 (溶剤)
 本発明の感光性樹脂シートは、感光性樹脂シート100質量%において、さらに溶剤(d)を0.1~12質量%含有することができる。溶剤(d)を含むことで、感光性樹脂シートの溶融粘度を下げることが可能であり、ラミネート性を向上することができる。
 溶剤(d)としては、特に限定はされないが、その他の成分を溶解することが好ましい。このような溶剤(d)としては、例えば、エーテル類、アセテート類、ケトン類、芳香族炭化水素類、N-メチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトンなどが挙げられる。本発明の感光性樹脂シートは、溶剤(d)として、これらを2種以上含有してもよい。
 溶剤(d)の具体例として、エーテル類は、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエール、プロピレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテルなどのエーテル類、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸メチル、乳酸エチル、乳酸ブチルなどのアセテート類、アセトン、メチルエチルケトン、アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、シクロペンタノン、2-ヘプタノンなどのケトン類、ブチルアルコール、イソブチルアルコール、ペンタノ-ル、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシブタノール、ジアセトンアルコールなどのアルコール類、トルエン、キシレンなどの芳香族炭化水素類、その他、N-メチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトンなどが挙げられる。
 溶剤(d)の含有量は、感光性樹脂シート100質量%中、0.1質量%以上であることが好ましく、1質量%以上であることがより好ましく、3質量%以上であることがさらに好ましい。溶剤(d)の含有量が多いほど、感光性樹脂シートの溶融粘度を下げることが可能であり、ラミネート性を向上することができる。一方で溶剤(d)の含有量は、感光性樹脂シート100質量%中、12質量%以下であることが好ましく、9質量%以下であることがより好ましく、7質量%以下であることがさらに好ましい。溶剤(d)の含有量が少ないほど、加熱硬化による膜厚の収縮を抑制し、平滑なパターンを得ることができる。また、溶剤(d)の含有量が少ないほど、高解像度なパターンを形成することが可能である。
 感光性樹脂シートの溶剤(d)の含有量は、ガスクロマトグラフィー(GC)により測定することができる。
 (熱架橋性化合物)
 本発明の感光性樹脂シートは、さらに熱架橋性化合物(e)を含有することができる。熱架橋性化合物(e)としては、例えば、アルコキシメチル基、メチロール基およびエポキシ基のうち少なくとも1つを含有する化合物、ベンゾオキサジン化合物が好ましく、アルコキシメチル基、メチロール基およびエポキシ基のうち少なくとも2つを有する化合物がより好ましい。熱架橋性化合物(e)は、樹脂(a)との反応や、熱架橋性化合物(e)同士の反応によって架橋構造体を形成する。このため、感光性樹脂シートを加熱処理した後の硬化膜の機械特性や耐薬品性を向上させることができることから、本発明の感光性樹脂シートは熱架橋性化合物(e)を含むことが好ましい。
 熱架橋性化合物(e)のうち、アルコキシメチル基またはメチロール基を有する化合物としては、例えば、46DMOC、46DMOEP(以上、商品名、旭有機材工業社製)、DML-PC、DML-PEP、DML-OC、DML-OEP、DML-34X、DML-PTBP、DML-PCHP、DML-OCHP、DML-PFP、DML-PSBP、DML-POP、DML-MBOC、DML-MBPC、DML-MTrisPC、DML-BisOC-Z、DML-BisOCHP-Z、DML-BPC、DMLBisOC-P、DMOM-PC、DMOM-PTBP、DMOM-MBPC、TriML-P、TriML-35XL、TML-HQ、TML-BP、TML-pp-BPF、TML-BPE、TML-BPA、TML-BPAF、TML-BPAP、TMOM-BP、TMOM-BPE、TMOM-BPA、TMOM-BPAF、TMOM-BPAP、HML-TPPHBA、HML-TPHAP、HMOM-TPPHBA、HMOM-TPHAP(以上、商品名、本州化学工業社製)、“NIKALAC”(登録商標)MX-290、“NIKALAC”MX-280、“NIKALAC”MX-270、“NIKALAC”MX-279、“NIKALAC”MW-100LM、“NIKALAC”MX-750LM(以上、商品名、三和ケミカル社製)などが挙げられる。熱架橋性化合物(e)は、これらを2種以上含有してもよい。
 熱架橋性化合物(e)のうち、エポキシ基を有する化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリメチル(グリシジロキシプロピル)、エポキシ基含有シリコーンなどが挙げられる。具体的には、“エピクロン”(登録商標)850-S、“エピクロン”HP-4032、“エピクロン”HP-7200、“エピクロン”HP-820、“エピクロン”HP-4700、“エピクロン”EXA-4710、“エピクロン”HP-4770、“エピクロン”EXA-859CRP、“エピクロン”EXA-1514、“エピクロン”EXA-4880、“エピクロン”EXA-4850-150、“エピクロン”EXA-4850-1000、“エピクロン”EXA-4816、“エピクロン”EXA-4822(以上、商品名、大日本インキ化学工業社製)、“リカレジン”(登録商標)BEO-60E、“リカレジン”BPO-20E、“リカレジン”HBE-100、“リカレジン”DME-100(以上、商品名、新日本理化社製)、EP-4003S、EP-4000S(以上、商品名、ADEKA社製)、PG-100、CG-500、EG-200(以上、商品名、大阪ガスケミカル社製)、NC-3000、NC-6000(以上、商品名、日本化薬社製)、“EPOX”(登録商標)-MK R508、“EPOX”-MK R540、“EPOX”-MK R710、“EPOX”-MK R1710、VG3101L、VG3101M80(以上、商品名、プリンテック社製)、“セロキサイド”(登録商標)2021P、“セロキサイド”2081、“セロキサイド”2083、“セロキサイド”2085(以上、商品名、ダイセル化学工業社製)などが挙げられる。熱架橋性化合物(e)は、これらを2種以上含有してもよい。
 熱架橋性化合物(e)のうち、ベンゾオキサジン化合物としては、例えば、B-a型ベンゾオキサジン、B-m型ベンゾオキサジン(以上、商品名、四国化成工業社製)などが挙げられる。熱架橋性化合物(e)は、これらを2種以上含有してもよい。
 熱架橋性化合物(e)の含有量は、感光性樹脂シート100質量%中、3質量%以上であることが好ましく、5質量%以上であることがより好ましく、7質量%以上であることがさらに好ましい。熱架橋性化合物(e)の含有量が多いほど、硬化膜の耐熱性を向上することが可能である。一方で熱架橋性化合物(e)の含有量は、感光性樹脂シート100質量%中、20質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。熱架橋性化合物(e)の含有量が少ないほど、加熱硬化による基板の反りを抑制することが可能である。
 (その他の含有物)
 本発明の感光性樹脂シートは、必要に応じて、熱架橋性化合物(e)以外の架橋剤、熱重合開始剤、重合禁止剤、着色剤、界面活性剤、シランカップリング剤、チタンキレート剤、架橋促進剤、溶解調整剤、安定剤、消泡剤、フィラーなどの添加剤、有機溶剤を含有してもよい。
 本発明の感光性樹脂組成物は、重合禁止剤を含有することにより、励起子の濃度が調節されるため、過度な光応答性を抑制し、露光マージンを広くすることができる。また、本発明の感光性樹脂組成物は、着色剤を含有することにより、有機電界発光素子の絶縁層に用いた場合には発光エリアからの迷光を抑制する作用を奏し、回路基板用のソルダーレジストに用いた場合には回路基板上の回路配線を隠す目隠しの作用を奏する。着色剤としては、例えば、染料や顔料などが挙げられる。染料としては、熱発色性染料などが挙げられる。顔料としては、無機顔料、有機顔料などが挙げられる。このような着色剤としては、溶剤(d)に可溶であって樹脂(a)と相溶するものが好ましい。
 本発明の感光性樹脂組成物は、界面活性剤、シランカップリング剤、チタンキレート剤などを含有することにより、基板との密着性を向上させることができる。
 <感光性樹脂シートの作製方法>
 本発明の感光性樹脂シートは、シート状であれば特に限定されない。ここでいう「シート」には、膜、フィルム、板なども含まれる。本発明の感光性樹脂シートは、例えば、液状の感光性樹脂ワニスを支持体上に塗布し、次いで、これを必要に応じて乾燥することにより得ることができる。
 感光性樹脂ワニスは、例えば、樹脂(a)、光重合性化合物(b)、光重合開始剤(c)および必要に応じて溶剤(d)、熱架橋性化合物(e)、その他の含有物を混合し、溶解させることにより得ることができる。また、本発明の感光性樹脂シートの作製に用いる感光性樹脂ワニスの固形分濃度は特に限定されないが、塗工性の観点から20~70質量%程度であると好ましい。
 また、感光性樹脂ワニスは、濾紙やフィルターを用いて濾過してもよい。この感光性樹脂ワニスの濾過方法は、特に限定されないが、保留粒子径0.4μm~10μmのフィルターを用いて加圧濾過により濾過する方法が好ましい。
 本発明の感光性樹脂シートの支持体としては、例えば、ポリエチレンテレフタレート(PET)フィルム、ポリフェニレンサルファイドフィルム、ポリイミドフィルムなどが挙げられる。支持体と感光性樹脂シートとの接合面には、これらの密着性および剥離性を向上させるために、シリコーン、シランカップリング剤、アルミキレート剤、ポリ尿素などによる表面処理を施してもよい。また、支持フィルムの厚みは特に限定されないが、作業性の観点から、10~100μmの範囲であることが好ましい。感光性樹脂組成物からなる層に露光を行う際、支持フィルムを介して露光できるため、支持フィルムのヘイズは2.0%以下であることが好ましい。ヘイズが2.0%より大きいと露光光の散乱が発生するため、パターン加工性が悪化する。
 本発明の感光性樹脂シートは、感光性樹脂層を保護するための保護フィルムを有してもよい。この保護フィルムにより、大気中のゴミやチリなどの汚染物質から感光性樹脂層の表面を保護することができる。
 本発明に用いうる保護フィルムとしては、例えば、ポリエチレンフィルム、ポリプロピレン(PP)フィルム、ポリエステルフィルム、ポリビニルアルコールフィルムなどが挙げられる。この保護フィルムは、感光性樹脂層と保護フィルムとが容易に剥離しない程度の剥離力を有することが好ましい。
 本発明の感光性樹脂シートを作製すべく感光性樹脂ワニスを支持体に塗布する方法としては、例えば、スピンナーを用いた回転塗布、スプレー塗布、ロールコーティング、スクリーン印刷、ブレードコーター、ダイコーター、カレンダーコーター、メニスカスコーター、バーコーター、ロールコーター、コンマロールコーター、グラビアコーター、スクリーンコーター、スリットダイコーターなどの方法が挙げられる。また、塗布膜厚は、塗布手法、組成物の固形分濃度、粘度などによって異なるが、通常、乾燥後の膜厚が、3μm以上100μm以下であることが好ましい。
 塗布した感光性樹脂組成物を乾燥するための乾燥装置としては、例えば、オーブン、ホットプレート、赤外線などが挙げられる。乾燥温度および乾燥時間は、有機溶媒を揮発させることが可能な範囲であればよく、感光性樹脂シートが未硬化または半硬化状態となるような範囲を適宜設定することが好ましい。具体的には、乾燥温度は40℃~120℃の範囲内であることが好ましく、乾燥時間は1分間~数十分間の範囲内であることが好ましい。また、乾燥温度は、この範囲内の温度を組み合わせて段階的に昇温してもよい。例えば、感光性樹脂組成物の乾燥する際、50℃、60℃、70℃で各1分間ずつ感光性樹脂組成物を加熱してもよい。
 本発明の感光性樹脂シートは、80℃における溶融粘度が2,000Pa・s以下であることが好ましく、1,000Pa・s以下であることが最も好ましい。感光性樹脂シートは、80℃における溶融粘度が低いほど、ラミネート性が向上し、凹凸差の大きい基板に対しても、ボイドなく、樹脂を平滑にラミネートすることが容易になる。一方、感光性樹脂シートの80℃における溶融粘度について、下限は、50Pa・s以上であることが好ましく、100Pa・s以上であることがより好ましく、200Pa・s以上であることがさらに好ましい。感光性樹脂シートは、80℃における溶融粘度が高いほど、常温でのタック性を抑制できる傾向にあり、取り扱い性を向上することが可能である。
 80℃における溶融粘度を50以上2,000Pa・s以下とするための方法は特に限定されないが、例えば、感光性樹脂シート中の樹脂(a)の重量平均分子量を、1,000~8,000にする方法が好ましい。80℃における溶融粘度を8,000Pa・s以下とするためのその他の方法として、感光性樹脂シート中の溶剤(d)の含有量を、感光性樹脂シート100質量%中に0.1~12質量%にする方法や、樹脂(a)の含有量を、感光性樹脂シート100質量%中、20~80質量%にする方法が好ましい。
 感光性樹脂シートの80℃での溶融粘度は、以下の方法により測定することができる。
すなわち、感光性樹脂シート同士をロールラミネーターなどで貼り合わせて、測定に充分な厚み、例えば200~800μm、の感光性樹脂シートの積層物とする。この積層物について、粘弾性測定装置の直径15mmのプローブにはさみ、40℃から100℃の範囲で昇温速度2℃/分、周波数0.2Hzで測定を行い、80℃における複素粘度を溶融粘度とする。すなわち、「溶融粘度」の意味は、80℃において測定される複素粘度を意味し、感光性樹脂シートが80℃で溶融していることを必須とすることを含意していない。
 なお、「溶融粘度」の意味は、後述する第2の感光性樹脂シートにおける80℃での溶融粘度についても同様である。
 本発明の感光性樹脂シートは、加熱硬化した際、すなわち感光性樹脂シートを500mJ/cmで露光し、酸素濃度100ppm以下の窒素雰囲気下において200℃で一時間加熱した際、に得られる硬化膜のガラス転移温度が200℃以上となる、感光性樹脂シートである。この硬化膜のガラス転移温度の測定方法は、<感光性樹脂シートの硬化膜>の項に記載の通りである。
 <感光性樹脂シートの硬化膜>
 本発明の感光性樹脂シートを加熱硬化することにより、この感光性樹脂組シートの硬化膜を得ることができる。感光性樹脂シートの加熱硬化において、加熱硬化温度は、120℃~400℃の範囲内であることが好ましい。加熱雰囲気として特に限定されないが、酸素による酸化を抑制する観点から、酸素濃度が100ppm以下の窒素雰囲気下であることが好ましい。感光性樹脂シートの硬化膜の形態は、特に限定されず、感光性樹脂シートの加工によって、配線への保護膜の形成、壁面への保護膜の形成、導通のためのビアホール形成、インピーダンスや静電容量あるいは内部応力の調整、放熱機能付与など、用途にあわせて、この硬化膜の形状を選択することもできる。
 加熱処理によって得られる硬化膜は、耐熱性の観点からガラス転移温度が高いほど好ましい。ガラス転移温度が高いほど、電子部品の信頼性試験を耐えることが可能になる。硬化膜のガラス転移温度は、200℃以上であることが好ましく、215℃以上であることがより好ましく、230℃以上であることがさらに好ましい。
 硬化膜のガラス転移温度は、動的粘弾性測定(DMA)によって測定することが可能である。硬化膜のガラス転移温度とは、感光性樹脂シートから得られた硬化膜を、DMA((株)日立ハイテクサイエンス製、商品名:DMS6100)を用いて、引っ張りモード、昇温速度5℃/min、測定温度25~500℃の条件で測定したときのtanδがピークトップとなる温度である。複数のピークが検出された場合は、低温側のピークの温度をガラス転移温度とする。
 <積層体>
 本発明の感光性樹脂シートを用いた積層体は、本発明の感光性樹脂シート、及び、支持体を有するものである。つまり支持体上に、本発明の感光性樹脂シートを形成することで、本発明の積層体を得ることができる。また、この積層体においては、感光性樹脂シートの支持体が積層された側とは反対側の面に、保護フィルムを設けることができる。本発明の感光性樹脂シートと支持体を有する積層体とすることで、後述する電子部品の製造において積層体を好適に用いることができる。
 <感光性樹脂シートの加工例>
 次に、本発明の感光性樹脂シートを用いたパターン加工方法について、以下に例を挙げて説明する。
 本発明の感光性樹脂シートを用いた電子部品の製造方法は、例えば、凸部を有する基板、及び、前記の積層体を用いた電子部品の製造方法として、以下の工程を有する電子部品の製造方法を挙げることができる。
 ラミネート工程(A):前記積層体の感光性樹脂シートが設けられた側を、凸部を有する基板の凸部の側に向けて、前記感光性樹脂シートによって凸部を埋め込むようにラミネートして、感光性樹脂層を形成する工程。
 露光工程(B):感光性樹脂層の所定部分に、活性光線を照射して露光部を光硬化する工程。
 剥離工程(C):積層体の支持体を剥離する工程。
 現像工程(D):現像液を用いて、感光性樹脂層の露光部以外の部分を除去する工程。
 熱硬化工程(E):前記露光部を熱硬化させて、硬化膜を形成する工程。
 なお、上記の製造方法においては、露光工程(B)と剥離工程(C)の順序に特に制限はないが、剥離工程(C)の前に露光工程(B)を行うことが好ましい。
 これらの詳細について、以下で説明する。本発明の感光性樹脂シートを用いて、金属配線が形成されたことで凹凸形状を有している基板に対する好適な一つの加工方法の例示を図1に示した。
 (ラミネート工程(A))
 まず、積層体において、感光性樹脂シートが支持体の積層された側とは反対の側に保護フィルムを有する場合にはこれを剥離し、積層体の感光性樹脂シートが設けられた側と凸部(金属配線2)を有する基板1とを、互いに対向するように配置して熱圧着により貼り合わせる。積層体の感光性樹脂シートの側と凸部を有する基板を貼り合わせる方法としてはプレス機、ロールラミネーターが挙げられるが、ロール・ツー・ロールで連続して貼り合わせが可能なロールラミネーターが量産性の観点から好ましい。ラミネート工程における温度としては、低温すぎると感光性樹脂層の接着性が十分発現しないことから40℃以上が好ましく、高温すぎると感光性樹脂層の硬化が進行してしまうため120℃以下が好ましい。また、貼り合わせ圧力が高すぎると、基板もしくは基板上の電子部品の素子を破壊する恐れがあるため、0.2MPa以下であることが好ましい。なお、ラミネート工程(A)を経た感光性樹脂シートのことを、以下では「感光性樹脂層」ともいう。
 (露光工程(B))
 ラミネート工程(A)において、感光性樹脂シートによって凸部を埋め込むようにラミネートすることで形成された感光性樹脂層4の上に、所望のパターンを有するマスクを形成し、このマスクを通して感光性樹脂層4に化学線を照射し、この感光性樹脂層4をパターン状に露光する。露光に用いられる化学線としては、紫外線、可視光線、電子線、X線などが挙げられる。本発明においては、水銀灯のi線(365nm)、h線(405nm)、g線(436nm)を用いることが好ましい。
 支持体3がこれらの光線に対して透明な材質である場合は、後述する剥離工程(C)の前に露光工程(B)を行い、感光性樹脂層4から支持体3を剥離せずに露光を行ってもよい。感光性樹脂層4のタック性を抑制し、支持体3を剥離しやすくする観点から、剥離工程(C)の前に露光工程(B)を行うことが好ましい。
 (剥離工程(C))
 ラミネート工程(A)後、積層体中の支持体3を、感光性樹脂層5から剥離する。図1では露光後の感光性樹脂層からの剥離を図示しているが、剥離工程(C)は、露光工程(B)の前後どちらでも行ってよいが、感光性樹脂層のタック性を抑制し、支持体を剥離しやすくする観点場合には、露光工程(B)の後に剥離工程(C)を行うことが好ましい。
 (ベーク工程)
 感光性樹脂層5の現像が安定する場合には、感光性樹脂層5を現像前に加熱するベーク工程を取り入れても差し支えない。このベーク処理において、ベーク温度は、露光部の硬化を促進する観点から、50℃以上であることが好ましく、60℃以上であることがより好ましい。一方、ベーク温度は、未露光部の硬化を抑制する観点から、180℃以下であることが好ましく、140℃以下であることがより好ましい。ベーク時間は、5秒~数時間であることが好ましい。ベーク工程は、剥離工程(C)の前に行ってもよい。感光性樹脂層5のベーク方法としては、例えば、オーブン、ホットプレートなどによって加熱する方法が挙げられる。
 (現像工程(D))
 次に、現像液を用いて、感光性樹脂層の露光部以外の部分を除去(未露光部を除去)する。これにより、感光性樹脂層にパターンを形成する。この現像工程(D)で用いる現像液としては、テトラメチルアンモニウムの水溶液、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミンなどのアルカリ性を示す化合物の水溶液が好ましい。必要に応じて、これらのアルカリ水溶液に、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトン、ジメチルアクリルアミドなどの極性溶媒、メタノール、エタノール、イソプロパノールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類などを添加してもよい。
 感光性樹脂層5の現像方法としては、例えば、上記の現像液を被膜面にスプレーする方法、現像液中に被膜面を浸漬する方法、現像液中に被膜面を浸漬しながら超音波をかける方法、基板を回転させながら現像液をスプレーする方法などが挙げられる。ここでいう「被膜面」は、基板面のうちパターン状の感光性樹脂層によって被覆された基板部分の面である。現像時間や現像液の温度などの条件は、感光性樹脂層の未露光部が除去される範囲で設定することができる。感光性樹脂層に微細なパターンを加工するためや、パターン間の残渣を除去するために、未露光部が除去されてからもさらに感光性樹脂層の現像を行ってもよい。
 (リンス工程)
 感光性樹脂層の現像後、基板に対してリンス処理を行ってもよい。このリンス処理に用いられるリンス液としては、水が好ましい。必要に応じて、エタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類などをリンス液(水)に添加してもよい。
 (熱硬化工程(E))
 熱硬化工程(E)では、露光工程により得られた露光部を熱硬化させて、硬化膜6を形成する。より具体的には、感光性樹脂層4の現像後、基板上の露光された感光性樹脂層5を120℃~400℃の温度条件で加熱処理して硬化膜6にする。この加熱処理(キュア)は、温度を選び、段階的に昇温してもよいし、ある温度範囲を選び連続的に昇温してもよい。この加熱処理において、加熱温度は、150℃以上であることがより好ましく、180℃以上であることがさらに好ましい。一方、加熱温度は、300℃以下であることが好ましく、250℃以下であることがより好ましい。加熱処理時間は、5分間~5時間であることが好ましい。この加熱処理の一例としては、130℃、200℃で各30分間ずつ加熱処理する方法や、室温から250℃まで2時間かけて直線的に昇温する方法などが挙げられる。
 <中空構造体>
 中空構造体は、本発明の感光性樹脂シートの硬化物を壁材として利用した中空構造体であり、後述する弾性波フィルター等の電子部品に好適に用いられる。中空構造体が具備された電子部品の例としては、金属配線を有する基板と、前記基板上に設けられ、かつ、前記基板の金属配線が形成された側の面の一部を囲む部材(壁材)と、該壁材の頂部に接し、かつ、該壁材で囲まれた空間を覆う部材(屋根材)とを有し、前記の壁材は本発明の感光性樹脂シートが硬化された硬化物からなり、かつ、前記金属配線の一部は前記壁材と屋根材で囲まれた空間の外と中とを電気的に接読可能に配置されたものが挙げられる。
 中空構造体を構成している壁材は、本発明の感光性樹脂シートを用い、前記の<感光性樹脂シートの加工例>の項で説明した方法で形成することができる。
 中空構造体を形成する方法をさらに具体的に例を挙げて説明する。しかし、本発明は、この態様に限定して解釈されるものではない。
工程1:金属配線が設けられた基板上に本発明の感光性樹脂シート(以下便宜的に、「第1の感光性樹脂シート」ということがある)を用いて、感光性樹脂層(以下便宜的に、「第1の感光性樹脂層」ということがある)を形成する工程、
工程2:第1の感光性樹脂層をフォトリソグラフィー法によって加工し、壁材となる硬化膜(以下便宜的に、「第1の硬化膜」ということがある)を形成する工程、
工程3:前記第1の硬化膜の頂部に接して感光性樹脂シート(以下便宜的に、「第2の感光性樹脂シート」ということがある)を貼り合わせ、感光性樹脂層(以下便宜的に、「第2の感光性樹脂層」ということがある)を形成する工程、
工程4:当該第2の感光性樹脂層にフォトリソグラフィー法によってパターン加工を行い、ついで、現像を行い、現像された第2の感光性樹脂層を加熱・硬化して、屋根材となる硬化膜(以下便宜的に、「第2の硬化膜」ということがある)を形成する工程。
 各工程について、図2を用いて詳細に説明する。
 (工程1)
 まず、金属配線2を有する基板1について、金属配線の少なくとも一部を覆って第1の感光性樹脂シートを、前記金属配線部分を埋め込むようにラミネートし、第1の感光性樹脂層10を形成する。
 (工程2)
 次に、前記の<感光性樹脂シートの加工例>の方法で、第1の感光性樹脂層に活性光線によるリソグラフィー法による加工を行い、さらに加熱硬化することで金属配線が形成された面の一部を囲む部材(壁材)となる第1の硬化膜11を形成する。このとき、第1の感光性樹脂層10のパターニングは、金属配線の一部を囲むように形成され、また、当該金属配線は前記壁材と後述する屋根材で囲まれた空間の外と中とを電気的に接読可能とされていることが、後述する弾性波フィルターの製造において好適である。すなわちこの好適な態様にあっては、第1の硬化膜11は前記金属配線に電気的に接続された弾性波フィルター素子(図示せず)を囲むように設けられている。ここでいう弾性波フィルター素子とは、弾性波共振子のことを指す。
 (工程3)
 次いで、第2の感光性樹脂シートの感光性樹脂層側を、第1の硬化膜11の頂部に貼り合わせ、第2の感光性樹脂層12を形成する。この際、壁材で囲まれた空間を覆うように第2の感光性樹脂層2を形成することで、前記の金属配線2が設けられた基板1、前記第1の硬化膜11、及び前記第2の感光性樹脂層12で閉じられた中空構造が形成される。
 (工程4)
 続いて、第2の感光性樹脂層12に対して、活性光線によるリソグラフィー法によって、少なくとも前記硬化膜11で囲まれた空間を覆う部分を残すようにパターン加工を行い、パターン加工がされた第2の感光性樹脂層を加熱・硬化することで、壁材で囲まれた空間を覆う部材(屋根材)となる第2の硬化膜13を形成し、前記金属配線が形成された基板、前記壁材、前記屋根材によって閉じられた中空構造を有する中空構造体が形成できる。
 本発明においては、金属配線部分上に壁材が設けられたカ所において、金属配線の厚みをa(μm)、当該金属配線上の壁材の厚みをb(μm)、金属配線のない部分に壁材が設けられたカ所における壁材の厚みをc(μm)としたとき、(a+b-c)/aが0.05~0.15であるカ所を少なくとも1つ有していることが好ましい。(a+b-c)/aを0.05以上とすることで屋根材の密着性を向上でき、0.15以下とすることで第2の感光性樹脂シートのラミネートが容易になる。また、1つの壁材で囲まれた領域において、金属配線部分上に壁材が設けられたカ所の壁材と屋根材とが接する部分の全てで(a+b-c)/aが0.05~0.15であることが歩留まり良く中空構造体を得るに有利であるのでさらに好ましい。
 また、金属配線が設けられていないカ所において、前記壁材の厚みが8~15μmであることが好ましい。8μm以上とすることで十分に中空構造の空間を確保することができ、15μm以下とすることで電子部品を小型化することができる。また、前記壁材の厚みと当該壁材の上に設けられた屋根材の厚みの和が20~35μmであることが好ましい。この厚みの和を20μm以上とすることで壁材と屋根材の厚みを十分に確保することができ、35μm以下とすることで電子部品を小型化することができる。
 前記屋根材を形成するための第2の感光性樹脂シートはポリイミド樹脂を含有することが好ましい。ポリイミドを使用することで屋根材の耐熱性を向上することができ、また壁材にポリイミドを含有する場合、密着性を向上することが可能である。
 また、本発明においては、第1の感光性樹脂層のラミネート前の状態において、第1の感光性樹脂シートの厚みをd(μm)としたとき、a/dが0.2~0.5であることが好ましい。0.2以上とすることで電子部品の性能を向上することが可能であり、0.5以下とすることで金属配線を埋め込むことが容易となる。
 前記第1の感光性樹脂シートの厚みは、10~20μmであることが好ましい。10μm以上とすることで配線の埋め込みが容易となり、20μm以下とすることで電子部品を小型化することができる。
 前記第1の感光性樹脂層のラミネートを大気圧下で行うことが好ましい。真空下でラミネートすることと比較して、タクトタイムを短縮することができる。
 前記第2の感光性樹脂シートの80℃における溶融粘度は、10,000~100,000Pa・sであることが好ましい。10,000Pa・s以上とすることで、ラミネート時に基板に落ち込むことを抑制することができ、100,000Pa・s以下とすることで、壁材に接着することが容易となる。
 前記第2の感光性樹脂シートはフィラーを含有していることが好ましく、フィラーを含有する場合の前記第2の硬化膜100質量部中のフィラーの含有量が、60~80質量部であることが好ましい。60質量部以上とすることで屋根材の強度を向上することが可能となり、80質量部以下とすることで壁材に接着することが容易となる。
 本発明によれば、簡便に中空構造体を作製することができるので、中空構造体を有する電子部品に好適に用いられる。中空構造体を有する電子部品としては、例えば、弾性波フィルターが挙げられる。
 <電子部品>
 本発明の電子部品は、本発明の感光性樹脂シートを加熱硬化して得られる本発明の硬化膜を備えるものである。本発明の感光性樹脂シートは、凹凸差の大きい基板に対しても、ボイドなく、樹脂を平滑にラミネートすることが可能であり、かつ耐熱性の高い硬化膜をパターニングすることができる。そのため、本発明の感光性樹脂シートは、配線や電子素子などの凹凸を有する電子部品の絶縁膜用途に有用であり、好適に使用することができる。特に、中空構造を有する弾性波フィルターの中空構造体の壁材として、好適に使用することが可能である。
 弾性波フィルターの製造においては、弾性波フィルター素子、及び当該弾性波フィルター素子に電気的に接続された金属配線を形成した基板に第1の感光性樹脂シートをラミネートし、当該弾性波フィルター素子を囲むように壁材を形成し、該壁材の頂部に屋根材を設けることで、当該弾性波フィルター素子を中空構造内におくことができる。
 以下に、実施例および比較例を示して本発明を具体的に説明するが、本発明が下記の各実施例に限定されるものではないことはもとよりである。下記の各実施例および各比較例で用いた樹脂(a)、すなわち樹脂(a1)から樹脂(a5)、は、以下の方法により合成した。
 (合成例1)
 本発明における合成例1の樹脂(a)である樹脂a1(ポリイミド)の合成方法について説明する。樹脂a1の合成方法では、乾燥窒素気流下、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(23.62g(0.0645モル))と、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(1.24g(0.005モル))と、3-アミノフェノール(6.55g(0.060モル))を、γ-ブチロラクトン(72.04g)に加え、100℃で1時間撹拌し、溶解させた。以降、「2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン」は「BAHF」、「1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン」は「SiDA」、「3-アミノフェノール」は「MAP」、「γ-ブチロラクトン」は「GBL」と称す。この溶液に、ビス(3,4-ジカルボキシフェニル)エーテル二無水物(31.02g(0.100モル))をGBL(21.61g)とともに加えて、100℃で1時間撹拌した。以降、「ビス(3,4-ジカルボキシフェニル)エーテル二無水物」は「ODPA」と称す。さらに、この溶液を200℃で4時間撹拌して樹脂a1の樹脂溶液(固形分濃度40重量%)を得た。
 樹脂a1の重量平均分子量は、4300であった。また、23℃のテトラメチルアンモニウム水溶液(2.38質量%)に対する樹脂a1の溶解度は、0.1g/100g以上であった。
 (合成例2)
 本発明における合成例2の樹脂(a)である樹脂a2(ポリイミド)の合成方法について説明する。樹脂a2の合成方法では、乾燥窒素気流下、BAHF(25.64g(0.070モル))と、SiDA(1.24g(0.005モル))と、MAP(5.46g(0.050モル))を、GBL(73.11g)に加え、100℃で1時間撹拌し、溶解させた。この溶液に、ODPA(31.02g(0.100モル))をGBL(21.93g)とともに加えて、100℃で1時間撹拌した。さらに、この溶液を200℃で4時間撹拌して樹脂a2の樹脂溶液(固形分濃度40重量%)を得た。
 樹脂a2の重量平均分子量は、5100であった。また、23℃のテトラメチルアンモニウム水溶液(2.38質量%)に対する樹脂a2の溶解度は、0.1g/100g以上であった。
 (合成例3)
 本発明における合成例3の樹脂(a)である樹脂a3(ポリイミド)の合成方法について説明する。樹脂a3の合成方法では、乾燥窒素気流下、BAHF(27.47g(0.075モル))と、SiDA(1.24g(0.005モル))と、MAP(4.37g(0.040モル))を、GBL(73.96g)に加え、100℃で1時間撹拌し、溶解させた。この溶液に、ODPA(31.02g(0.100モル))をGBL(22.19g)とともに加えて、100℃で1時間撹拌した。さらに、この溶液を200℃で4時間撹拌して樹脂a3の樹脂溶液(固形分濃度40重量%)を得た。
 樹脂a3の重量平均分子量は、6100であった。また、23℃のテトラメチルアンモニウム水溶液(2.38質量%)に対する樹脂a3の溶解度は、0.1g/100g以上であった。
 (合成例4)
 本発明における合成例4の樹脂(a)である樹脂a4(ポリイミド)の合成方法について説明する。樹脂a4の合成方法では、乾燥窒素気流下、BAHF(29.30g(0.080モル))と、SiDA(1.24g(0.005モル))と、MAP(3.27g(0.030モル))を、GBL(74.81g)に加え、100℃で1時間撹拌し、溶解させた。この溶液に、ODPA(31.02g(0.100モル))をGBL(22.44g)とともに加えて、100℃で1時間撹拌した。さらに、この溶液を200℃で4時間撹拌して樹脂a4の樹脂溶液(固形分濃度40重量%)を得た。
 樹脂a4の重量平均分子量は、7300であった。また、23℃のテトラメチルアンモニウム水溶液(2.38質量%)に対する樹脂a4の溶解度は、0.1g/100g以上であった。
(合成例5)
 本発明における合成例5の樹脂(a)である樹脂a5(ポリイミド)の合成方法について説明する。樹脂a5の合成方法では、乾燥窒素気流下、BAHF(31.13g(0.085モル))と、SiDA(1.24g(0.005モル))と、MAP(2.18g(0.020モル))を、GBL(75.67g)に加え、100℃で1時間撹拌し、溶解させた。この溶液に、ODPA(31.02g(0.100モル))をGBL(22.70g)とともに加えて、100℃で1時間撹拌した。さらに、この溶液を200℃で4時間撹拌して樹脂a5の樹脂溶液(固形分濃度40重量%)を得た。
 樹脂a5の重量平均分子量は、8800であった。また、23℃のテトラメチルアンモニウム水溶液(2.38質量%)に対する樹脂a5の溶解度は、0.1g/100g以上であった。
 (その他の材料)
 一方、下記の各実施例および各比較例で用いたその他の各材料は、以下に示す通りである。
 光重合性化合物(b)としては、BP-6EM(商品名、共栄社化学社製、エチレンオキシド変性ビスフェノールAジメタクリレート)、MOI-BP(商品名、昭和電工社製、2-[(3,5-ジメチルピラゾリル)カルボニルアミノ]エチルメタクリレート、ブロックイソシアネート基を有するラジカル重合性化合物)が用いられている。
 光重合開始剤(c)としては、“アデカアークルズ”NCI-831(商品名、ADEKA社製、オキシム類の光ラジカル重合開始剤)、“IRGACURE”(登録商標)OXE04(商品名、BASF社製、オキシム類の光ラジカル重合開始剤)が用いられている。
 溶剤(d)としては、γ-ブチロラクトン(三菱ケミカル社製)、乳酸エチル(武蔵野化学研究所社製)が用いられている。
 熱架橋性化合物(e)としては、HMOM-TPHAP(商品名、本州化学工業社製、4,4’,4”-Ethylidynetris[2,6-bis(methoxymethyl)phenol])が用いられている。
 その他の含有物としては、シランカップリング剤である、KBM-403(商品名、信越シリコーン社製、3-グリシドキシプロピルトリメトキシシラン)が用いられている。
 また、樹脂(a)の評価、および、下記の各実施例および各比較例における評価の方法は、以下に示す通りである。
 <樹脂(a)の重量平均分子量の評価>
 合成例に示す樹脂(a)の樹脂溶液を用いて、GPCにより重量平均分子量を測定し、その値を樹脂(a)の重量平均分子量とした。測定条件としては、以下の通りである。
  装置名:e2695-2998(日本ウォーターズ社製)
  カラム:G4000HXL+G1000HXL(東ソー社製)
  カラム温度:30℃
  溶離液:テトラヒドロフラン
  流速:1ml/min
  標準物質:ポリスチレン。
 <溶剤(d)の含有量の評価>
 各実施例および各比較例により得られた感光性樹脂シートの保護フィルムを剥離し、2cm×2cmに裁断した。このサンプルをバイアル瓶に密封し、ガスクロマトグラフ(島津製作所社製、商品名:GC-14B)によって、感光性樹脂シート100質量%に対する溶剤(d)の含有量を測定した。具体的には、50℃から220℃へ10℃/分で昇温し、220℃で8分間保持することでサンプルを加熱し、溶剤であるγ-ブチロラクトンと乳酸エチルの含有量を測定した。それらを足し合わせて溶剤(d)の含有量とした。
 <80℃溶融粘度の評価>
 各実施例および各比較例により得られた感光性樹脂シートの保護フィルムを剥離し、同一の感光性樹脂シート同士をロールラミネーターにより60℃で貼り合わせて、厚み750~800μmの感光性樹脂シートの積層物を作製した。この積層物について、粘弾性測定装置(TAインスツルメント社製、DISCOVERY HR-2)を用いて、直径15mmのプローブにはさみ、40℃から100℃の範囲で昇温速度2℃/分、周波数0.2Hzで測定を行い、80℃における複素粘度を測定し、80℃における溶融粘度とした。
 <平滑性の評価>
 各実施例および各比較例により得られた感光性樹脂シートの保護フィルムを剥離し、ラミネート装置(タカトリ社製、VTM-200M)を用いて、ステージ温度80℃、ロール温度80℃、貼付速度3mm/秒、貼付圧力0.1MPa、大気圧下の条件で、感光性樹脂シートの剥離面を、幅50μm、厚み5μmの銅配線を有する基板上にラミネートした。基板は、ラミネートロールの進行方向に対して、配線が水平となるようにラミネーターに設置した。その後、支持体を剥離し、配線上の膜厚が最も厚くなる膜厚と、配線上ではない平坦な部分の膜厚との差を膜厚差とし(図3)、以下の基準にて評価した。評価点が大きいほど平滑性が良好であり、優れることを意味する。
3:膜厚差が0.1μm未満。
2:膜厚差が0.1μm以上、0.2μm未満。
1:膜厚差が0.2μm以上。
 <硬化膜の膜厚差の評価>
 前記<平滑性の評価>で得られたラミネート後の基板を、露光装置(清和光学製作所社製、SME-150GA-TRJ)で、200mJ/cm(h線換算)で露光を行った。支持体を剥離し、イナートオーブンにて酸素濃度が100ppm以下の窒素雰囲気下となった後、200℃1時間の熱処理をし、硬化膜を得た。配線上の膜厚が最も厚くなる膜厚と、配線上ではない平坦な部分の膜厚との差を膜厚差とし(参考:図3)、以下の基準にて評価した。
2:膜厚差が0.25~0.75μmの範囲内
1:膜厚差が0.25μm未満もしくは0.75μmを超える。
 <ボイドの評価>
 まず、凹凸基板の作製を行った。4インチシリコンウエハ上に感光性樹脂ワニスであるPW1500(商品名、東レ社製)を回転塗布し、次いで、120℃のホットプレートで3分間ベークし、平均厚さ7μmのプリベーク膜を作製した。この膜を、露光装置(清和光学製作所社製、SME-150GA-TRJ)に、フォトマスクと共にセットし、150mJ/cm(h線換算)で露光を行った。露光後、2.38重量%のテトラメチルアンモニウムヒドロキシド(TMAH)水溶液で100秒間現像し、ついで純水でリンスして、現像膜を得た。その後、イナートオーブンにて酸素濃度が100ppm以下の窒素雰囲気下となった後、350℃1時間の熱処理をし、膜厚5μmの図4(X)に示すLine/Space=25μm/25μmのラインパターンである(X)の凹凸パターンと、図4(Y)に示す100μm×100μmのビアを有し、ライン幅が100μmの格子状パターンである(Y)の凹凸パターンを有する基板を作製した。
 各実施例および各比較例により得られた感光性樹脂シートの保護フィルムを剥離し、ラミネート装置(タカトリ社製、VTM-200M)を用いて、ステージ温度80℃、ロール温度80℃、貼付速度3mm/秒、貼付圧力0.1MPa、大気圧下の条件で、感光性樹脂シートの剥離面を、厚み5μmの上記の(X)と(Y)の凹凸パターンを有する基板上にラミネートした。基板は、ラミネートロールの進行方向に対して、(X)の凸部パターンであるラインが垂直となるようにラミネーターに設置した。その後、(X)と(Y)の凹凸パターンそれぞれに対してボイドの有無を確認し、以下の基準にて評価した。評点が大きいほどボイドによる不良が少なく、優れることを意味する。
3:(X)と(Y)のどちらの凹凸パターンにおいてもボイドが発生していない。
2:(X)の凹凸パターンではボイドが発生しないが、(Y)の凹凸パターンではボイドが発生する。
1:(X)と(Y)のどちらの凹凸パターンともにボイドが発生する。
 <ガラス転移温度の評価>
 各実施例および各比較例により得られた感光性樹脂シートを露光装置(清和光学製作所社製、SME-150GA-TRJ)にて、支持体側から500mJ/cm(h線換算)で露光をした。その後、保護フィルムを剥離し、イナートオーブンにて、酸素濃度が100ppm以下の窒素雰囲気下となった後、200℃1時間の熱処理をした。そして、支持体を剥がしとり、加熱硬化後の単膜サンプルを得た。この単膜サンプルを5mm×40mm に片刃で切り取り、DMA(日立ハイテクサイエンス社製、DMS6100)を用いて、サンプル長さ:10mm、温度条件:25℃→500℃(5℃/min)、歪振幅5μm、最小張力/圧力10mN、張力圧力ゲイン1.5、力振幅初期値50mNにて試験し、tanδがピークトップとなるガラス転移温度を測定した。
 <解像性の評価>
 各実施例および各比較例により得られた感光性樹脂シートの保護フィルムを剥離し、ラミネート装置(タカトリ社製、VTM-200M)を用いて、ステージ温度80℃、ロール温度80℃、貼付速度3mm/秒、貼付圧力0.1MPa、大気圧下の条件で、感光性樹脂シートの剥離面を、4インチシリコンウエハ上にラミネートした。露光装置(清和光学製作所社製、SME-150GA-TRJ)に、ビア=5、10,15、20、25、30、35、40,45、50、55、60、65、70、75、80、85、90、95、100μmΦのパターンを有するフォトマスクをセットし、支持フィルムとフォトマスクが接触した状態で、200mJ/cm(h線換算)で露光を行った。露光後、支持フィルムを剥離した後、感光性樹脂層を80℃のホットプレートで3分間加熱した。次に、水酸化テトラメチルアンモニウムの2.38%水溶液を用いて、180秒間のシャワー現像により、感光性樹脂層の未露光部を除去した。さらに、水にてリンス処理を30秒間行い、スピン乾燥により乾燥させた。その後、形成されたパターンを顕微鏡で観察し、以下の基準にて評価した。評点が大きいほど解像度が良好であり、優れることを意味する。
4:最小寸法のビアが30μmφ以下。
3:最小寸法のビアが40μmφ以下。
2:最小寸法のビアが45μmφ以上70μmφ以下。
1:最小寸法のビアが75μmφ以上もしくは開口したビアが無い。
 <支持体の剥離性の評価>
 各実施例および各比較例により得られた感光性樹脂シートの保護フィルムを剥離し、ラミネート装置(タカトリ社製、VTM-200M)を用いて、ステージ温度80℃、ロール温度80℃、貼付速度3mm/秒、貼付圧力0.1MPa、大気下の条件で、感光性樹脂シートの剥離面を、4インチシリコンウエハ上にラミネートした。その後、支持体を剥離し、露光をしない場合での支持体の剥離性を確認した。次に、同様な方法で4インチシリコンウエハ上に感光性樹脂シートをラミネートし、支持体を剥離する前に、露光装置(清和光学製作所社製、SME-150GA-TRJ)にて、200mJ/cm(h線換算)で露光を行った。その後、支持体を剥離し、露光をする場合での支持体の剥離性を確認した。以下の基準で支持体の剥離性を評価した。
3:露光の有無に関わらず、支持体の剥離が容易であり、感光性樹脂層に傷が付かない。
2:露光をする場合では、支持体の剥離が容易であり、感光性樹脂層を傷つけないが、露光をしない場合では、支持体の剥離がしづらく、感光性樹脂層に傷がつく。
1:露光の有無に関わらず、感光性樹脂層に傷がつく。
 <実施例1>
 本発明の実施例1では、樹脂(a)として合成例1に示した樹脂a1のGBL溶液(固形分濃度40重量%)を用い、光重合性化合物(b)としてBP-6EMを用い、光重合開始剤(c)としてNCI-831とOXE-04を用い、シランカップリング剤としてKBM-403を用いた。
 具体的には、樹脂a1のGBL溶液を(87.5g(樹脂a1として35g))と、BP-6EM(25g)と、NCI-831(2.5g)と、OXE-04(1.0g)と、KBM-403(2g)とを溶剤(d)である乳酸エチルに溶解した。乳酸エチルの添加量は、溶剤(d)であるGBLと乳酸エチル以外の添加物を固形分とし、固形分濃度が45質量%となるように調整した。得られた溶液を、保留粒子径2μmのフィルターを用いて加圧濾過し、これにより、感光性樹脂ワニスを得た。
 得られた感光性樹脂ワニスを、コンマロールコーターを用いて、支持体であるPETフィルム(厚さ50μm)上に塗布し、65℃で5分間乾燥を行った後、保護フィルムとして、厚さ50μmのPPフィルムをラミネートし、厚みが15μmの感光性樹脂シートを得た。得られた感光性樹脂シートを用いて、前述の方法により、溶剤(d)の含有量、80℃溶融粘度、平滑性、ボイド、ガラス転移温度、解像性、支持体の剥離性を評価した。実施例1の評価結果は、後述の表1に示した。
 <実施例2~8、比較例1>
 本発明の実施例2~8および本発明に対する比較例1では、上述した実施例1における組成を表1に示す組成および乾燥温度に変更したこと以外は実施例1と同様の方法に沿って処理を行い、これにより、感光性樹脂シートを作製した。得られた感光性樹脂シートを用いて、前述の方法により溶剤(d)の含有量、80℃溶融粘度、平滑性、ボイド、ガラス転移温度、解像性、支持体の剥離性を評価した。実施例2~8、比較例1の評価結果は表1に示した。
Figure JPOXMLDOC01-appb-T000005
 なお、表において、「溶剤(d)の含有量」とは、感光性樹脂シート100質量%における溶剤(d)の含有量を示し、「80℃溶融粘度」とは、感光性樹脂シートの80℃における溶融粘度(複素粘度)の値を示し、「ガラス転移温度」とは、感光性樹脂シートを500mJ/cmで露光し、酸素濃度100ppm以下の窒素雰囲気下において200℃で一時間加熱した際に得られる硬化膜のガラス転移温度を示す。
 表1に示すように、重量平均分子量が1,000から8,000の樹脂(a)を用いた実施例1~8では各評価結果が良好であった。ブロックイソシアネートを有する光ラジカル重合性化合物(b1)であるMOI-BPを用いた実施例3では、良好な解像性を示した。一方、比較例1では、平滑性の評価およびボイドの評価にて実施例1~8よりも劣る結果となった。
 本発明に係る感光性樹脂シートは、凹凸差の大きい基材に対しても、ボイドが含まれてラミネートされることがなく、樹脂を平滑にラミネートすることが可能であり、かつ耐熱性の高い硬化膜をパターニングすることができる感光性樹脂シートに適している。そのため、本発明の感光性樹脂シートは、配線や電子素子などの凹凸を有する電子部品の絶縁膜用途に有用であり、好適に使用することができる。
1 基板
2 金属配線
3 支持体
4 感光性樹脂層
5 露光による光硬化後の感光性樹脂層
6 硬化膜
7 銅配線
8 膜厚差
9 PW1500の硬化膜
10 第1の感光性樹脂層
11 第1の硬化膜(壁材)
12 第2の感光性樹脂層
13 第2の硬化膜(屋根材)

Claims (16)

  1.  ポリイミド(a’)、光重合性化合物(b)、及び光重合開始剤(c)を含む感光性樹脂シートであって、
     前記ポリイミド(a’)は、重量平均分子量が1,000~8,000であり、
     前記感光性樹脂シートを加熱硬化して得られる硬化膜のガラス転移温度が200~300℃であり、
     前記感光性樹脂シートの80℃における溶融粘度が50~2,000Pa・sであことを特徴とする、感光性樹脂シート。
  2.  前記ポリイミド(a’)が、末端にカルボキシル基、及びフェノール性水酸基からなる群より選ばれる少なくとも一つの基を有する、請求項1に記載の感光性樹脂シート。
  3.  前記光重合性化合物(b)の少なくとも1種は、イソシアネート基又はブロックイソシアネート基を有するラジカル重合性化合物(b1)である、請求項1または2に記載の感光性樹脂シート。
  4.  凹凸を有する基板の凹凸の埋め込みに用いられる、請求項1~3のいずれかに記載の感光性樹脂シート。
  5.  中空構造を形成するための壁材として用いられることを特徴とする、請求項1~3のいずれかに記載の感光性樹脂シート。
  6.  金属配線を有する基板と、前記基板上に設けられ、かつ、前記基板の金属配線が形成された側の面の一部を囲む部材(壁材)と、該壁材の頂部に接し、かつ、該壁材で囲まれた空間を覆う部材(屋根材)とを有し、前記の壁材は請求項1~5の何れか記載の感光性樹脂シートが硬化された硬化物からなり、かつ、前記金属配線の一部は前記壁材と前記屋根材で囲まれた空間の外と中とを電気的に接読可能に配置されている、電子部品。
  7.  金属配線部分上に壁材が設けられたカ所において、金属配線の厚みをa(μm)、当該金属配線上の壁材の厚みをb(μm)、金属配線のない部分に壁材が設けられたカ所における壁材の厚みをcとしたとき、(a+b-c)/aが0.05~0.15であるカ所を少なくとも1つ有している、請求項6に記載の電子部品。
  8.  金属配線部分上に壁材が設けられていないカ所において、壁材の膜厚が8~15μmであり、前記壁材の厚みと当該壁材上に設けられた屋根材の厚みの和が20~35μmである前記壁材で囲まれた空間を有している、請求項6または7に記載の電子部品。
  9.  前記屋根材がポリイミド樹脂を含有する、請求項6~8のいずれかに記載の電子部品。
  10.  請求項1~5のいずれかに記載の感光性樹脂シートが硬化された硬化膜を有する電子部品。
  11.  前記電子部品が、弾性波フィルターである、請求項6~10のいずれかに記載の電子部品。
  12.  弾性波フィルター素子、及び弾性波フィルター素子が電気的に接続された金属配線を有する基板の金属配線の少なくとも一部を覆って請求項1~5のいずれかに記載の感光性樹脂シートをラミネートする工程、当該ラミネートされた感光性樹脂シートを露光・現像する工程、次いで現像されたシートを加熱硬化して硬化膜を得る工程を有し、
     前記の露光・現像工程は、現像されたシートが前記弾性波フィルター素子を囲むように、かつ、当該弾性波フィルター素子に電気的に接続された金属配線がその弾性波フィルター素子を囲んで形成された空間の内と外とを電気的に接続可能に、ラミネートされた感光性樹脂シートが現像される工程であり、
     かつ、ラミネート前の状態において、前記金属配線の厚みをa(μm)、前記感光性樹脂シートの厚みをd(μm)としたとき、a/dが0.2~0.5である、弾性波フィルターの製造方法。
  13.  dが10~20μmである、請求項12に記載の弾性波フィルターの製造方法。
  14.  前記ラミネート工程が大気圧下で行われる、請求項12または13に記載の弾性波フィルターの製造方法。
  15.  さらに、前記弾性波フィルター素子を囲んで形成された硬化膜の頂部に接し、かつ、当該弾性波フィルター素子を囲んで形成された空間を覆って感光性樹脂シート(便宜上、「第2の感光性樹脂シート」という)をラミネートする工程、前記第2の感光性樹脂層を、弾性波フィルター素子を囲んで形成された空間を覆う状態を保って、露光・現像・加熱硬化して硬化膜(便宜上、「第2の硬化膜」という)を得る工程を有し、
     前記第2の感光性樹脂シートの80℃における溶融粘度が10,000~100,000Pa・sである、請求項12~14のいずれかに記載の弾性波フィルターの製造方法。
  16.  前記第2の感光性樹脂シートがフィラーを含有し、
     前記第2の硬化膜100質量部中のフィラーの含有量が、60~80質量部である、請求項12~15のいずれかに記載の弾性波フィルターの製造方法。
PCT/JP2021/009762 2020-03-23 2021-03-11 感光性樹脂シート、電子部品、弾性波フィルター、及び弾性波フィルターの製造方法 WO2021193091A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021516504A JPWO2021193091A1 (ja) 2020-03-23 2021-03-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020050531 2020-03-23
JP2020-050531 2020-03-23

Publications (1)

Publication Number Publication Date
WO2021193091A1 true WO2021193091A1 (ja) 2021-09-30

Family

ID=77891976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009762 WO2021193091A1 (ja) 2020-03-23 2021-03-11 感光性樹脂シート、電子部品、弾性波フィルター、及び弾性波フィルターの製造方法

Country Status (3)

Country Link
JP (1) JPWO2021193091A1 (ja)
TW (1) TW202136378A (ja)
WO (1) WO2021193091A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164642A (ja) * 2000-11-27 2002-06-07 Kanegafuchi Chem Ind Co Ltd 感光性カバーレイフィルム
JP2010211095A (ja) * 2009-03-12 2010-09-24 Toray Ind Inc 感光性カバーレイ
JP2012068622A (ja) * 2010-08-24 2012-04-05 Hitachi Chem Co Ltd 感光性樹脂組成物、感光性フィルム、リブパターンの形成方法、中空構造の形成方法及び電子部品
WO2012133579A1 (ja) * 2011-03-28 2012-10-04 日立化成工業株式会社 感光性樹脂組成物、感光性フィルム、リブパターンの形成方法、中空構造の形成方法及び電子部品
JP2016006521A (ja) * 2014-03-04 2016-01-14 Jsr株式会社 隔壁の製造方法
JP2018172533A (ja) * 2017-03-31 2018-11-08 太陽インキ製造株式会社 硬化性樹脂組成物、積層構造体、その硬化物、および電子部品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164642A (ja) * 2000-11-27 2002-06-07 Kanegafuchi Chem Ind Co Ltd 感光性カバーレイフィルム
JP2010211095A (ja) * 2009-03-12 2010-09-24 Toray Ind Inc 感光性カバーレイ
JP2012068622A (ja) * 2010-08-24 2012-04-05 Hitachi Chem Co Ltd 感光性樹脂組成物、感光性フィルム、リブパターンの形成方法、中空構造の形成方法及び電子部品
WO2012133579A1 (ja) * 2011-03-28 2012-10-04 日立化成工業株式会社 感光性樹脂組成物、感光性フィルム、リブパターンの形成方法、中空構造の形成方法及び電子部品
JP2016006521A (ja) * 2014-03-04 2016-01-14 Jsr株式会社 隔壁の製造方法
JP2018172533A (ja) * 2017-03-31 2018-11-08 太陽インキ製造株式会社 硬化性樹脂組成物、積層構造体、その硬化物、および電子部品

Also Published As

Publication number Publication date
TW202136378A (zh) 2021-10-01
JPWO2021193091A1 (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
WO2016140024A1 (ja) 感光性樹脂組成物、樹脂硬化膜の製造方法および半導体装置
JP4826415B2 (ja) 感光性樹脂組成物
JP7088004B2 (ja) 感光性樹脂組成物、感光性樹脂組成物フィルム、絶縁膜および電子部品
JP7059927B2 (ja) 樹脂組成物、樹脂シート、硬化パターンおよび半導体電子部品または半導体装置
WO2017169574A1 (ja) 感光性接着剤組成物、硬化物、感光性接着剤シート、積層基板および接着剤パターン付積層基板の製造方法
JP5740915B2 (ja) フィルム積層体
WO2020196139A1 (ja) 感光性樹脂組成物、感光性樹脂シート、中空構造の製造方法および電子部品
JP2009258471A (ja) 感光性樹脂組成物フィルムおよびそれを用いたレジスト形成方法
JP6984322B2 (ja) 光重合性モノマー、それを用いた感光性樹脂組成物および感光性樹脂組成物の硬化膜
JP2014186186A (ja) 耐熱性樹脂及びその前駆体組成物
JP2011017897A (ja) 感光性樹脂組成物、感光性樹脂組成物フィルムおよびそれを用いた多層配線基板
WO2017217293A1 (ja) 感光性樹脂組成物
WO2018043250A1 (ja) 感光性樹脂組成物、硬化膜、有機el表示装置、半導体電子部品、半導体装置
JP2008007744A (ja) 耐熱性樹脂組成物およびそれを用いた金属樹脂複合体ならびに電子部品
JP6740899B2 (ja) 感光性樹脂組成物、感光性樹脂組成物フィルム、硬化物、絶縁膜および多層配線基板
JP2011180472A (ja) 感光性樹脂組成物フィルムおよびそれを用いた多層配線基板
JP2008281597A (ja) 感光性樹脂組成物シート
KR102614299B1 (ko) 감광성 수지 조성물, 감광성 수지 시트, 중공 구조체, 경화물, 중공 구조체의 제조 방법, 전자 부품 및 탄성파 필터
JP2018173469A (ja) 感光性樹脂組成物フィルム、絶縁膜および配線基板
JP2010210851A (ja) 感光性樹脂組成物
JP2020166125A (ja) 中空構造体の製造方法
WO2021193091A1 (ja) 感光性樹脂シート、電子部品、弾性波フィルター、及び弾性波フィルターの製造方法
TWI834010B (zh) 感光性樹脂組成物、感光性樹脂片、中空結構體、硬化物、中空結構體的製造方法、電子零件、及彈性波濾波器
KR20230141762A (ko) 감광성 수지 조성물, 감광성 수지 시트, 경화물, 중공구조체, 전자 부품 및 탄성파 필터
JP2022117560A (ja) 樹脂組成物、樹脂シート、硬化物、中空構造体、及び電子部品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021516504

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21775985

Country of ref document: EP

Kind code of ref document: A1