WO2018029766A1 - 樹脂積層膜、それを含む積層体、tft基板、有機el素子カラーフィルターならびにそれらの製造方法 - Google Patents

樹脂積層膜、それを含む積層体、tft基板、有機el素子カラーフィルターならびにそれらの製造方法 Download PDF

Info

Publication number
WO2018029766A1
WO2018029766A1 PCT/JP2016/073373 JP2016073373W WO2018029766A1 WO 2018029766 A1 WO2018029766 A1 WO 2018029766A1 JP 2016073373 W JP2016073373 W JP 2016073373W WO 2018029766 A1 WO2018029766 A1 WO 2018029766A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
film
polyimide
resin film
laminated film
Prior art date
Application number
PCT/JP2016/073373
Other languages
English (en)
French (fr)
Inventor
上岡耕司
脇田潤史
野中晴支
宮崎大地
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to PCT/JP2016/073373 priority Critical patent/WO2018029766A1/ja
Publication of WO2018029766A1 publication Critical patent/WO2018029766A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides

Definitions

  • the present invention relates to a resin laminate film, a laminate including the same, a TFT substrate, an organic EL element, and methods for producing them.
  • Resin film is more flexible than glass, hard to break, and lightweight. Recently, studies have been made to make a display flexible by using a resin film as a substrate of a flat panel display.
  • examples of the resin film include polyester, polyamide, polyimide, polyamideimide, polybenzoxazole, polycarbonate, polyethersulfone, acrylic, and epoxy.
  • a resin film in order to use a resin film as an alternative material for a glass substrate such as a display device or an optical element, heat resistance, transparency in the visible light region, and the like are required.
  • the display device include an organic electroluminescence (organic EL) display, a liquid crystal display, and electronic paper.
  • examples of the optical element include a color filter, and examples of other members include a touch panel.
  • membrane from a support substrate is mentioned.
  • a laser peeling technique using ultraviolet light is disclosed (for example, refer to Patent Documents 1 and 2).
  • the resin near the interface with the support substrate is thermally decomposed by heat generated by the absorption of the laser light into the resin, so that the resin film is separated from the support substrate.
  • the heat resistant resin film represented by polyimide has a problem that the irradiation energy required for peeling is high and the laser peelability is poor.
  • transparent polyimide having a high light transmittance in the visible light region has a higher irradiation energy required for peeling than colored polyimide. This is considered to be due to the low absorbance in the ultraviolet region in addition to the heat resistance.
  • an object of the present invention is to provide a resin laminate film having low irradiation energy required for laser peeling using ultraviolet light in the wavelength range.
  • the present invention is a resin laminated film having a polyimide resin film on at least one surface of the resin film, wherein the polyimide resin film is a polyimide resin film A described below.
  • Polyimide resin film A a polyimide resin film having a minimum light transmittance of less than 50% in a wavelength region of 300 to 400 nm when a film having a thickness of 100 nm is formed.
  • the resin laminated film of the present invention can reduce the irradiation energy required for laser peeling from the support substrate.
  • Sectional drawing which shows an example of a color filter substrate Sectional view showing an example of TFT substrate Sectional drawing which shows an example of an organic electroluminescent element display Sectional drawing which shows an example of an organic electroluminescent element display
  • the resin laminate film of the present invention is a resin laminate film having a polyimide resin film on at least one surface of the resin film, and the polyimide resin film is a polyimide laminate film A described below.
  • Polyimide resin film A a polyimide resin film having a minimum light transmittance of less than 50% in a wavelength region of 300 to 400 nm when a film having a thickness of 100 nm is formed.
  • the light transmittance is preferably less than 50% at at least one of wavelengths 308 nm, 343 nm, 351 nm, and 355 nm.
  • the minimum value of the light transmittance in the wavelength region of 300 to 400 nm is less than 50% is referred to as “physical property (A)”.
  • the wavelength that gives the minimum value of the light transmittance in the wavelength range of 300 to 400 nm is ⁇ 1 .
  • the polyimide resin film A satisfies the physical property (A)
  • the light absorption of a laser having a wavelength in the vicinity of ⁇ 1 is large. Therefore, heat generated by light absorption is large, and as a result, irradiation energy necessary for laser peeling is lower than that of a polyimide resin film that does not satisfy the physical property (A).
  • a decrease in irradiation energy necessary for laser peeling is expressed as improved laser peelability.
  • the smoothness of the peeled surface of the resin film can be increased.
  • the lower the irradiation energy the smaller the maximum height (Rz) of the peeled surface.
  • the film forming property of the inorganic film on the release surface can be improved. If the release surface has irregularities, the inorganic film may reduce the coverage of the release surface or cause pinhole defects in the inorganic film. These lead to deterioration of the properties of the inorganic film, for example, causing a decrease in gas barrier properties of the inorganic film. Therefore, it is preferable that the smoothness of the release surface is high.
  • the smoothness of the peeled surface can be evaluated with a surface roughness meter, AFM, or the like.
  • arithmetic average roughness (Ra), maximum peak height (Rp) of the roughness curve, maximum valley depth (Rv) of the roughness curve, and the like can be used as the smoothness index. .
  • the polyimide contained in the polyimide resin film A is not particularly limited, but the main component of the diamine residue in the polyimide is preferably derived from the following (B) diamine derivative.
  • B When an N-methyl-2-pyrrolidone solution having a concentration of 1 ⁇ 10 ⁇ 4 mol / L is used, the maximum absorbance under the condition of an optical path length of 1 cm in the wavelength range of 300 to 400 nm is 0. More than 6 diamine derivatives.
  • the diamine derivative is an N-methyl-2-pyrrolidone solution having a concentration of 1 ⁇ 10 ⁇ 4 mol / L
  • the light path length is 1 cm at least at one of wavelengths 308 nm, 343 nm, 351 nm, and 355 nm. It is more preferable that the diamine derivative has an absorbance of greater than 0.6.
  • diamine derivative examples include a diamine compound, a diisocyanate compound, a diamine compound reacted with a silylating agent (such as an amide silylating agent), and the like.
  • a silylating agent such as an amide silylating agent
  • the polyimide resin film A In order for the polyimide resin film A to satisfy the physical property (A), it is necessary that at least one of an acid dianhydride derivative or a diamine derivative, which is a polyimide raw material monomer, has a high absorbance in a wavelength region of 300 to 400 nm. . Compared with acid dianhydride derivatives, diamine derivatives have a higher degree of freedom in molecular design, so it is easy to obtain diamine derivatives with high absorbance in the wavelength range of 300 to 400 nm.
  • (B) a polyimide mainly composed of a diamine residue derived from a diamine derivative is referred to as “polyimide B”.
  • the main component means that the proportion of the diamine residue in the total diamine residues of the polyimide is higher than the total proportion of all other diamine residues.
  • polyimide B In polyimide B, the minimum value of the light transmittance is given at a wavelength of lambda 2 vicinity, the optical absorption of the laser with a wavelength of lambda 2 vicinity is increased. Therefore, the heat generated by light absorption is large, and as a result, the irradiation energy required for laser peeling is lower than that of polyimide other than polyimide B.
  • the method for producing the resin laminated film of the present invention is not particularly limited, but is preferably produced by a two-stage film forming process as described later.
  • a polyimide resin film A is formed as a first resin film (hereinafter referred to as “resin film 1”) on a support substrate such as a glass substrate, and then a second resin film is formed on the resin film 1.
  • resin film 2 is formed, and laser irradiation is performed from the glass substrate side to peel the resin laminated film from the glass substrate. Since the resin film 1 exists on the glass substrate, the resin laminated film exhibits good laser peelability regardless of the type of the resin film 2.
  • the wavelength of the irradiation laser is not particularly limited, and examples thereof include 266 nm, 308 nm, 343 nm, 351 nm, and 355 nm. Further, the light source is not limited to the laser as long as the resin laminated film is peeled off, and a high-pressure mercury lamp, LED, or the like may be used.
  • Such a resin laminated film preferably has a configuration in which at least the resin film 1 and the resin film 2 are laminated in this order.
  • the number of the resin films 2 to be stacked is not particularly limited, and the resin film 2 may be a single layer or two or more layers.
  • the resin film 2 may include a resin layer made of the same polyimide resin as the resin film 1. Good.
  • the number of the laminated resin film is preferably 2 from the viewpoint of the transparency of the resin laminated film and the adhesion between the layers. That is, the resin film 2 is preferably a single layer.
  • an inorganic film may be inserted between the resin film 1 and the resin film 2. It is preferable to insert an inorganic film because the gas barrier property of the laminated film is improved.
  • the gas barrier layer on the resin film plays a role of preventing permeation of water vapor, oxygen and the like.
  • it may be required to provide a gas barrier property to a resin laminated film used as a substrate.
  • Whether the resin film present on the surface of the resin laminated film of the present invention satisfies the physical property A is determined by etching the resin laminated body from the side opposite to the surface to be measured until the thickness reaches 100 nm, and the remaining film This can be confirmed by measuring the light transmittance.
  • measurement can be performed by the following procedure.
  • the film thickness of the resin laminated film is measured with a step meter, a scanning electron microscope (SEM), a micrometer, or the like.
  • the film thickness of each resin layer in the resin laminated film can also be measured by observing the fracture surface of the resin laminated film by SEM.
  • the surface to be measured is fixed to the glass substrate with an adhesive tape or the like, and a technique such as glow discharge emission analyzer (GD-OES), reactive ion etching (RIE), gas cluster ion beam (GCIB) is used.
  • GD-OES glow discharge emission analyzer
  • RIE reactive ion etching
  • GCIB gas cluster ion beam
  • the etching method is not particularly limited, but GD-OES and GCIB are preferable because elemental analysis of the resin film can be performed simultaneously. After etching to a film thickness of 100 nm, a light transmission spectrum is measured using a microspectroscope. The same etching and light transmittance measurement are performed at five locations, and the average value thereof is taken as the light transmittance.
  • the resin composition for example, the molecular structure of the diamine residue in the resin film 1
  • the film thickness of each layer in the resin laminated film of the present invention are precisely determined by total composition analysis by TPD-MS, TOF-SIMS, and IR spectrum measurement. It can be analyzed by using the oblique cutting method.
  • the minimum value of the light transmittance of the polyimide resin film A is not particularly limited as long as it is less than 50%, but is preferably less than 40%, more preferably less than 30%, and further preferably less than 20%. As the light transmittance decreases, the irradiation energy required for laser peeling decreases, and when it is less than 20%, the effect of reducing the irradiation energy is particularly great.
  • the maximum absorbance of the diamine derivative is not particularly limited as long as it exceeds 0.6, but is preferably 0.8 or more, and more preferably 1.0 or more. As the absorbance increases, the irradiation energy required for laser peeling decreases, and when it is 1.0 or more, the effect of reducing the irradiation energy is particularly great.
  • the thickness of the resin film 1 and the resin film 2 is not particularly limited, but from the viewpoint of the transparency, heat resistance, linear thermal expansion coefficient (hereinafter, also referred to as CTE) of the resin laminated film, the thickness of the resin film 1
  • the thickness is preferably 100 nm to 1 ⁇ m, more preferably 100 nm to 0.5 ⁇ m.
  • the thickness of the resin film 1 is 1 ⁇ m or less, the transparency of the resin film 1 in the visible light region is increased. Therefore, the transparency of the resin laminated film in the visible light region is not impaired.
  • the thickness of the resin film 1 is preferably thinner than the thickness of the resin film 2.
  • the ratio of the resin film 1 in the resin laminated film is not particularly limited, but the ratio of the resin film 1 is preferably 50% or less, and more preferably 10% or less.
  • the ratio of the resin film 1 is preferably 50% or less, and more preferably 10% or less.
  • the CTE of the resin laminate film of the present invention is not particularly specified, but is preferably in the range of ⁇ 10 to 30 ppm / ° C. in the range of 50 ° C. to 200 ° C. By being in this range, warpage of the substrate when the resin laminated film is formed on the support substrate can be reduced, and as a result, an element such as a TFT can be produced on the resin laminated film with high accuracy.
  • the range of ⁇ 10 to 20 ppm / ° C. is more preferable, and the range of ⁇ 10 to 10 ppm / ° C. is more preferable.
  • the glass transition temperature (Tg) of the resin laminate film of the present invention is not particularly specified, but is preferably 300 ° C. or higher. By being in this range, the film forming temperature of the inorganic film on the resin laminated film can be increased, and for example, the performance of the gas barrier layer and the TFT can be improved. In particular, since a temperature of 350 ° C. or higher is generally used when forming a TFT, the Tg of the resin laminated film is more preferably 350 ° C. or higher, and preferably 400 ° C. or higher. Further preferred.
  • the transparency of the resin laminate film of the present invention is not particularly specified, but the substrate is required to be transparent in the visible light region, such as a base material of a bottom emission type organic EL display, a color filter base material, a touch panel base material, etc. When it is used, it is preferable that the resin laminated film is transparent.
  • transparent means that the transmitted light viewed through the resin laminated film has a color tone close to white, and more specifically, the transmission chromaticity in the XYZ color system chromaticity diagram of the resin laminated film.
  • the coordinates (x, y) are (x ⁇ x0) / 2 + (y ⁇ y0) /2 ⁇ 0.01 with respect to the chromaticity coordinates (x0, y0) of the light source.
  • transmission chromaticity coordinates refers to the coordinates of transmission chromaticity in the CIE 1931 color system measured in the field of view twice.
  • the light source include a C light source.
  • the light transmittance at a wavelength of 400 nm to 800 nm is 80% or more. There are some cases.
  • the transmission chromaticity coordinates and the light transmittance can be measured by forming the resin laminated film of the present invention on a glass substrate and using an ultraviolet-visible spectrophotometer or a chromaticity meter.
  • the resin film 1 is not particularly limited as long as it is a polyimide resin film satisfying the physical property A, but the polyimide component preferably includes polyimide B, and the polyimide component is more preferably composed of polyimide B.
  • the diamine derivative has a maximum absorbance of 0 in an optical path length of 1 cm in a wavelength region of 300 to 400 nm in an N-methyl-2-pyrrolidone solution having a concentration of 1 ⁇ 10 ⁇ 4 mol / L.
  • Diamine derivatives having a wavelength exceeding .6 for example, bis [4- (4-aminophenoxy) phenyl] sulfone, 9,9-bis (4-aminophenyl) fluorene, 2,2- Bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [3- (3-aminophenoxy) phenyl] sulfone, bis [3- (4 -Aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] ether, 1,4-bis (4-aminophenoxy) Benzene, 1,3-bis (4-aminophenoxy) benzene, bis (4-aminophenoxy) biphenyl, 2,2-bis [3- (3-aminobenzamido) -4-hydroxyphenyl] hexafluor
  • A is a single bond, an oxygen atom, a sulfur atom, a sulfonyl group, a phenyl group, a fluorenyl group, or a 2 having 1 to 5 carbon atoms in which a hydrogen atom may be substituted with a halogen atom
  • R 1 to R 4 each independently represents a monovalent organic group having 1 to 10 carbon atoms and having at least one amino group.
  • Formula (1) includes a hydroxyamide structure
  • Formula (2) includes a benzoxazole structure, and these structures are effective for increasing the absorbance in the wavelength range of 300 to 400 nm.
  • a diamine compound having a hydroxyamide structure represented by formula (1) or a derivative thereof and an acid dianhydride or a derivative thereof examples thereof include imide ring closure and oxazole ring closure by heating ring closure of a polyimide precursor synthesized by reaction or chemical ring closure reaction.
  • a ring closure of a polyimide precursor synthesized by a reaction of a diamine compound having a benzoxazole structure represented by the formula (2) or a derivative thereof and an acid dianhydride or a derivative thereof, or chemical Examples of the ring closure reaction include imide ring closure.
  • the heating temperature for imide ring closure is not particularly limited, but is preferably 250 ° C or higher, more preferably 300 ° C or higher.
  • the temperature of imide ring closure can be lowered
  • the heating temperature for oxazole ring closure is not particularly limited, but is preferably 300 ° C or higher, more preferably 350 ° C or higher.
  • the temperature of oxazole ring closure can be reduced by adding an acidic catalyst such as a thermal acid generator.
  • the diamine residue of the polyimide of the resin film 1 contains the benzoxazole structure of the formula (2), or A in the formulas (1) and (2) is hexa It is preferably a fluoroisopropylidene group. Since the benzoxazole structure has a higher absorbance at a wavelength of 300 to 400 nm than the hydroxyamide structure, it is effective in reducing the irradiation energy necessary for laser peeling.
  • A is a hexafluoroisopropylidene group, it is more easily decomposed thermally than a single bond, a fluorenyl group, a sulfonyl group or the like, which is effective in reducing the irradiation energy necessary for laser peeling.
  • A is preferably a hexafluoroisopropylidene group or a sulfonyl group.
  • the diamine derivative having the structure represented by the general formula (1) or (2) include, for example, a diamine residue derived from a diamine compound represented by the following chemical formulas (3) to (6). It is particularly preferable to have it as a main component.
  • the diamine residue derived from the diamine compound represented by the general formulas (3) to (6) is the main component of the polyimide of the resin film 1, the transparency of the resin film 1 in the visible light region is further improved. Can do. Therefore, the transparency of the resin laminated film is not deteriorated, and it can be suitably used in applications that require transparency in the visible light region. Examples of such applications include base materials for bottom emission type organic EL displays, color filter substrates, touch panel substrates, and the like.
  • A is preferably a single bond or a phenyl group. Since the heat resistance of the resin laminated film is further improved because the diamine compound in which A is a single bond or a phenyl group is the main component of the polyimide of the resin film 1, the substrate of a device that requires a high-temperature process in the manufacturing process Can be suitably used. Specifically, an organic EL display substrate that may form a barrier layer between the substrate and the element at a high temperature, and a TFT substrate that may be annealed at a high temperature to ensure mobility and reliability. Etc.
  • the polyimide of the resin film 1 is mainly composed of (B) a diamine residue derived from a diamine derivative, it may contain a diamine residue derived from another diamine derivative.
  • the main component means that the proportion of the diamine residue in the total diamine residues of the polyimide is higher than the total proportion of all other diamine residues.
  • diamine derivatives are not particularly limited and include aromatic diamine compounds, alicyclic diamine compounds, and aliphatic diamine compounds.
  • aromatic diamine compounds examples include 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenyl sulfone, 4'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfide, 4,4'-diaminodiphenylsulfide, 1,4-bis (4-aminophenoxy) benzene, benzidine 2,2'-bis (trifluoromethyl) benzidine, 3,3'-bis (trifluoromethyl) benzidine, 2,2'-dimethylbenzidine, 3,3'-dimethylbenzidine, 2,2 ', 3 3'-tetramethylbenzidine, 2,2'-
  • alicyclic diamine compound examples include cyclobutane diamine, isophorone diamine, bicyclo [2,2,1] heptane bismethylamine, tricyclo [3,3,1,13,7] decane-1,3-diamine, 1,2 -Cyclohexyldiamine, 1,3-cyclohexyldiamine, 1,4-cyclohexyldiamine, trans-1,4-cyclohexyldiamine, cis-1,4-cyclohexyldiamine, 4,4'-diaminodicyclohexylmethane, 3,3'- Dimethyl-4,4′-diaminodicyclohexylmethane, 3,3′-diethyl-4,4′-diaminodicyclohexylmethane, 3,3 ′, 5,5′-tetramethyl-4,4′-diaminodicyclohexylmethane, 3 , 3 ′
  • Aliphatic diamine compounds include ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, and 1,8-diaminooctane.
  • Alkylene diamines such as 1,9-diaminononane and 1,10-diaminodecane, ethylene glycol diamines such as bis (aminomethyl) ether, bis (2-aminoethyl) ether, bis (3-aminopropyl) ether, And siloxanes such as 1,3-bis (3-aminopropyl) tetramethyldisiloxane, 1,3-bis (4-aminobutyl) tetramethyldisiloxane, ⁇ , ⁇ -bis (3-aminopropyl) polydimethylsiloxane
  • diamine is mentioned, it is not limited to these.
  • aromatic diamine compounds alicyclic diamine compounds, or aliphatic diamine compounds can be used alone or in combination of two or more.
  • the acid dianhydride used for the production of the polyimide in the resin film known ones can be used. It does not specifically limit as acid dianhydride, Aromatic acid dianhydride, alicyclic acid dianhydride, or aliphatic acid dianhydride is mentioned.
  • aromatic dianhydrides include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-terphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-oxydiphthalate Acid dianhydride, 2,3,3 ′, 4′-oxydiphthalic dianhydride, 2,3,2 ′, 3′-oxydiphthalic dianhydride, diphenylsulfone-3,3 ′, 4,4′- Tetracarboxylic dianhydride, benzophenone-3,3 ', 4,4'-tetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride,
  • alicyclic acid dianhydrides include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1S, 2S, 4R, 5R-cyclohexanetetracarboxylic dianhydride, 1R, 2S, 4S, 1,2,4,5-cyclohexanetetracarboxylic dianhydride such as 5R-cyclohexanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl -1,2,3,4-cyclobutanetetracarboxylic dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 3,4-dicarboxy-1-cyclohexyl
  • Examples of the aliphatic dianhydride include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-pentanetetracarboxylic dianhydride, “Licacid” (registered trademark) BT- 100 (trade name, manufactured by Shin Nippon Rika Co., Ltd.), “Rikacid” (registered trademark) TMEG-100 (trade name, manufactured by Shin Nippon Rika Co., Ltd.), “Rikacid” (registered trademark) TMTA-C (trade name) , New Nippon Rika Co., Ltd.), and derivatives thereof, but are not limited thereto.
  • aromatic acid dianhydrides alicyclic acid dianhydrides, or aliphatic acid dianhydrides can be used alone or in combination of two or more.
  • the polyimide contained in the polyimide resin film A is preferably a polyimide mainly composed of an aromatic dianhydride residue from the viewpoint of improving heat resistance.
  • the aromatic dianhydride residue is a residue derived from pyromellitic dianhydride or 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride
  • the heat resistance is reduced in addition to the improvement. This is preferable because the effect of CTE can be obtained.
  • the main component is an alicyclic acid dianhydride residue
  • a polyimide having an aliphatic acid dianhydride residue as a main component or a main component of a total of an alicyclic acid dianhydride residue and an aliphatic acid dianhydride residue is preferable.
  • polyimide B an alicyclic acid dianhydride residue is a main component
  • an aliphatic acid dianhydride residue is a main component
  • the polyimide which has as a main component the sum total of a group acid dianhydride residue is preferable.
  • charge transfer absorption which is one of the causes of polyimide coloring, is suppressed, so that the transparency of the resin film 1 in the visible light region is improved.
  • these acid dianhydride residues are more likely to be thermally decomposed than aromatic acid dianhydride residues, the effect of reducing the irradiation intensity necessary for laser peeling is increased.
  • mainly composed of an aromatic acid dianhydride residue means that the ratio of the aromatic acid dianhydride residue to the total acid dianhydride residues of the polyimide is all other acid dianhydrides. It means that it is higher than the total ratio of physical residues.
  • the main component is an alicyclic acid dianhydride residue
  • the ratio of the alicyclic acid dianhydride residue to the total acid dianhydride residues of the polyimide is all other acid dianhydrides. It means that it is higher than the total ratio of physical residues.
  • the main component is an aliphatic acid dianhydride residue
  • the ratio of the aliphatic acid dianhydride residue to the total acid dianhydride residues of the polyimide is the residue of all other acid dianhydrides. It means that it is higher than the total proportion of groups.
  • the main component is the total of alicyclic acid dianhydride residues and aliphatic acid dianhydride residues” means that the alicyclic acid dianhydride residue in the total acid dianhydride residues of the polyimide The sum of the group and aliphatic acid dianhydride residues is higher than the sum of all other acid dianhydride residues.
  • the ratio to the total of the acid dianhydrides is not limited, but 75% or more is preferable from the viewpoint of laser peelability.
  • cyclobutanetetracarboxylic dianhydride 1S, 2S, 4R, 5R-cyclohexanetetracarboxylic dianhydride 1R, 2S, 4S, 5R-cyclohexanetetracarboxylic dianhydride, 3,3 ′, 4,4′-dicyclohexanetetracarboxylic dianhydride, “Licacid” (registered trademark) BT-100 (Product name, manufactured by Shin Nippon Rika Co., Ltd.), “Rikacid” (registered trademark) TMEG-100 (product name, manufactured by Shin Nippon Rika Co., Ltd.), “Rikacid” (registered trademark) TMTA-C (The above-mentioned product name, manufactured by Shin Nippon Rika Co., Ltd.) and “Rikacid” (registered trademark) TDA-
  • cyclobutanetetracarboxylic dianhydride, 1S, 2S, 4R, 5R-cyclohexanetetracarboxylic dianhydride represented by chemical formulas (7) to (10) 1R, 2S, 4S, 5R-cyclohexanetetracarboxylic dianhydride and 3,3 ′, 4,4′-dicyclohexanetetracarboxylic dianhydride are more preferable. That is, the alicyclic acid dianhydride residue in the polyimide is preferably derived from a tetracarboxylic dianhydride represented by any one of formulas (7) to (10).
  • Polyimide and polyimide precursor resins such as polyamic acid, polyamic acid ester, and polyamic acid silyl ester may be sealed at both ends with a terminal sealing agent in order to adjust the molecular weight to a preferred range.
  • the terminal blocking agent that reacts with the acid dianhydride include monoamines and monohydric alcohols.
  • the terminal blocking agent that reacts with the diamine compound include an acid anhydride, a monocarboxylic acid, a monoacid chloride compound, a monoactive ester compound, a dicarbonate compound, and a vinyl ether compound.
  • various organic groups can be introduce
  • Monoamines used for the acid anhydride group end-capping agent include 5-amino-8-hydroxyquinoline, 4-amino-8-hydroxyquinoline, 1-hydroxy-8-aminonaphthalene, 1-hydroxy-7-amino.
  • Examples of the monohydric alcohol used as the acid anhydride group terminal blocking agent include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, 3 -Pentanol, 1-hexanol, 2-hexanol, 3-hexanol, 1-heptanol, 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 3-octanol, 1-nonanol, 2-nonanol, 1- Decanol, 2-decanol, 1-undecanol, 2-undecanol, 1-dodecanol, 2-dodecanol, 1-tridecanol, 2-tridecanol, 1-tetradecanol, 2-tetradecanol, 1-pentadecanol, 2- Pentadecanol, 1-hexadecanol, 2 He
  • Examples of the acid anhydride, monocarboxylic acid, monoacid chloride compound and monoactive ester compound used as an amino group terminal blocking agent include phthalic anhydride, maleic anhydride, nadic anhydride, cyclohexanedicarboxylic anhydride, 3- Acid anhydrides such as hydroxyphthalic anhydride, 2-carboxyphenol, 3-carboxyphenol, 4-carboxyphenol, 2-carboxythiophenol, 3-carboxythiophenol, 4-carboxythiophenol, 1-hydroxy-8- Carboxynaphthalene, 1-hydroxy-7-carboxynaphthalene, 1-hydroxy-6-carboxynaphthalene, 1-hydroxy-5-carboxynaphthalene, 1-hydroxy-4-carboxynaphthalene, 1-hydroxy-3-carboxynaphthalene, 1 Hydroxy-2-carboxynaphthalene, 1-mercapto-8-carboxynaphthalene, 1-mercapto-7-carboxynaphthalene, 1-mer
  • dicarbonate compound used as the amino group terminal blocking agent examples include di-tert-butyl dicarbonate, diphenyl dicarbonate, dibenzyl dicarbonate, dimethyl dicarbonate, and diethyl dicarbonate.
  • vinyl ether compounds used as amino-terminal end-capping agents include: tert-butyl chloroformate, n-butyl chloroformate, isobutyl chloroformate, benzyl chloroformate, allyl chloroformate, ethyl chloroformate, isopropyl chloroformate, chloroformate Chloroformates such as fluorenylmethyl acid, chloroformate 2,2,2-trichloroethyl, isocyanate compounds such as butyl isocyanate, 1-naphthyl isocyanate, octadecyl isocyanate, phenyl isocyanate, butyl vinyl ether, Cyclohexyl vinyl ether, ethyl vinyl ether, 2-ethylhexyl vinyl ether, isobutyl vinyl ether, isopropyl vinyl ether, n-propyl vinyl ether, tert-butyl vinyl ether, be
  • Examples of other compounds used as the amino group terminal blocking agent include benzoyl chloride, methanesulfonic acid chloride, p-toluenesulfonic acid chloride, and phenyl isocyanate.
  • the introduction ratio of the acid anhydride group terminal sealing agent is preferably in the range of 0.1 to 60 mol%, particularly preferably 1 to 50 mol%, relative to the acid dianhydride component.
  • the introduction ratio of the amino group terminal blocking agent is preferably in the range of 0.1 to 60 mol%, particularly preferably 1 to 50 mol%, relative to the diamine component.
  • the molecular structure of the repeating unit of the polyimide resin and the structure of the introduced terminal blocking agent can be confirmed by the following method. For example, it can be easily detected by pyrolysis gas chromatograph (PGC), infrared spectrum and 13 C NMR spectrum measurement. Furthermore, the polymer in which the end-capping agent is introduced is dissolved in an acidic solution and decomposed into an amine component and an acid anhydride component, which are constituent units of the polymer. The end capping agent can be easily detected.
  • PPC pyrolysis gas chromatograph
  • the resin type of the resin film 2 is not particularly limited, and is a polyimide resin, polybenzoxazole resin, polyamideimide resin, polyamide resin, polyester resin, polycarbonate resin, polyethersulfone resin, acrylic resin. And epoxy resin.
  • a polyimide resin is more preferable.
  • the acid dianhydride is not particularly limited, and examples thereof include an aromatic acid dianhydride, an alicyclic acid dianhydride, and an aliphatic acid dianhydride. These aromatic acid dianhydrides, alicyclic acid dianhydrides, or aliphatic acid dianhydrides can be used alone or in combination of two or more.
  • the diamine is not particularly limited, and examples thereof include aromatic diamine, alicyclic diamine, and aliphatic diamine as described above. These aromatic diamines, alicyclic diamines, or aliphatic diamines can be used alone or in combination of two or more. Furthermore, you may use the terminal blocker mentioned above.
  • the acid dianhydride used for the polyimide resin in the resin film 2 may include at least one of pyromellitic dianhydride and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride.
  • the diamine preferably contains at least one of 4,4′-diaminodiphenyl ether, p-phenylenediamine, and 3,3′-dimethylbenzidine.
  • a polyimide resin is used for the substrate of the bottom emission type organic EL display, the color filter substrate, the touch panel substrate, etc.
  • heat resistance and high transparency in the visible light region are required.
  • at least one of the acid dianhydride and diamine used for the polyimide resin in the resin film 2 has an alicyclic structure or a fluorinated alkyl group.
  • the polyimide resin of the resin film 2 has an alicyclic structure or a fluorinated alkyl group.
  • the alicyclic structure and the fluorinated alkyl group may be used for both acid dianhydride and diamine, or may be used for one side.
  • the diamine having an alicyclic structure is not particularly limited, and examples thereof include trans-1,4-diaminocyclohexane and 4,4′-dicyclohexylmethane.
  • the acid dianhydride having an alicyclic structure is not particularly limited, but 1,2,3,4-cyclobutanetetracarboxylic dianhydride and 1R, 2S, 4S, 5R-cyclohexanetetracarboxylic dianhydride Etc.
  • the diamine having a fluorinated alkyl group is not particularly limited, and examples thereof include 2,2'-bis (trifluoromethyl) benzidine.
  • the acid dianhydride having a fluorinated alkyl group is not particularly limited, and examples thereof include 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride.
  • polyimide resin films using these compounds from the viewpoint of transparency and low CTE properties, it is preferable that 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is included as the acid dianhydride, As the diamine, it is preferable to include trans-1,4-diaminocyclohexane.
  • the general manufacturing method of a polyimide precursor is demonstrated.
  • the polyimide resin represented by the following general formula (11) is obtained by imide ring closure (imidization reaction) of a polyimide precursor resin represented by the following general formula (12).
  • imide ring closure imidization reaction
  • a polyimide precursor resin represented by the following general formula (12) It does not specifically limit as a method of imidation reaction, Thermal imidation and chemical imidation are mentioned. Among these, thermal imidization is preferable from the viewpoint of heat resistance of the polyimide resin film and transparency in the visible light region.
  • R 5 represents a tetravalent organic group
  • R 6 represents a divalent organic group
  • X 1 and X 2 each independently represent a hydrogen atom, a monovalent organic group having 1 to 10 carbon atoms, or a monovalent alkylsilyl group having 1 to 10 carbon atoms.
  • Polyimide precursors such as polyamic acid, polyamic acid ester, and polyamic acid silyl ester can be synthesized by a reaction between a diamine compound or a derivative thereof and an acid dianhydride or a derivative thereof.
  • the acid dianhydride derivative include tetracarboxylic acid, acid chloride, and monocarboxylic, tetracarboxylic acid mono-, di-, tri-, and tetra-esters of the acid dianhydride, specifically, methyl group, ethyl group, n
  • Examples include structures esterified with -propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group and the like.
  • the reaction method of the polymerization reaction is not particularly limited as long as the target polyimide precursor can be produced, and a known reaction method can be used.
  • a predetermined amount of all the diamine component and reaction solvent are charged into a reactor and dissolved, and then a predetermined amount of acid dianhydride component is charged and the mixture is charged at room temperature to 120 ° C. for 0.5 to 30 hours.
  • Examples include a stirring method.
  • reaction solvent examples include N-methyl-2-pyrrolidone, gamma butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylpropyleneurea, 1,3-dimethyl-2-imidazolidinone, Polar aprotic solvents such as dimethyl sulfoxide, ethers such as tetrahydrofuran, dioxane, propylene glycol monomethyl ether, ketones such as acetone, methyl ethyl ketone, diisobutyl ketone, diacetone alcohol, ethyl acetate, propylene glycol monomethyl ether acetate, ethyl lactate Esters such as, aromatic hydrocarbons such as toluene and xylene can be used alone or in combination of two or more.
  • Polar aprotic solvents such as dimethyl sulfoxide, ethers such as tetrahydrofuran, dioxan
  • the content of the solvent in the polyimide precursor resin composition is preferably 50 parts by weight or more, more preferably 100 parts by weight or more, preferably 2,000 parts by weight or less, based on 100 parts by weight of the polyimide precursor. Preferably it is 1,500 parts by weight or less. If it is in the range of 50 to 2,000 parts by weight, the viscosity is suitable for coating, and the film thickness after coating can be easily adjusted.
  • the resin laminated film of the present invention can be produced by a production method including at least the following steps (1) to (3).
  • (1) A step of forming a polyimide resin film A on a support substrate.
  • (2) A step of further laminating a resin film on the resin film to form a resin laminated film.
  • (3) A step of peeling the resin laminated film by irradiating ultraviolet light from the support substrate side.
  • Step of forming polyimide resin film A on a support substrate A polyimide precursor resin solution is applied to the support substrate to form a polyimide precursor resin composition film of polyimide resin film A.
  • the support substrate for example, silicon, ceramics, gallium arsenide, soda lime glass, non-alkali glass, or the like is used, but is not limited thereto.
  • the coating method include a slit coating method, a spin coating method, a spray coating method, a roll coating method, and a bar coating method, and these methods may be used in combination. Among these, spin coating or slit coating is preferable.
  • the polyimide precursor resin composition applied on the support substrate is dried to obtain a polyimide precursor resin composition film.
  • a hot plate an oven, an infrared ray, a vacuum chamber or the like is used.
  • the support substrate coated with the polyimide precursor resin composition is held and heated directly on the plate or on a jig such as a proxy pin installed on the plate.
  • a material of the proxy pin there are a metal material such as aluminum or collless, or a synthetic resin such as polyimide resin or “Teflon” (registered trademark), and any proxy pin may be used.
  • the height of the proxy pin varies depending on the size of the support substrate, the type of the resin composition, the purpose of heating, and the like.
  • the resin composition applied on a glass support substrate of 300 mm ⁇ 350 mm ⁇ 0.7 mm is heated.
  • the height of the proxy pin is preferably about 2 to 12 mm.
  • the drying process time can be shortened and a uniform coating film can be formed.
  • the heating temperature for drying varies depending on the type and purpose of the support substrate and the polyimide precursor, and it is preferably performed in the range of room temperature to 170 ° C. for 1 minute to several hours. Furthermore, you may perform a drying process in multiple times on the same conditions or different conditions.
  • the polyimide precursor resin composition film is heated in the range of 170 ° C. or more and 650 ° C. or less to be converted into a polyimide resin film.
  • the thermal imidization process may be performed after passing through some process after the drying process.
  • the atmosphere of the thermal imidization step is not particularly limited, and may be air, an inert gas such as nitrogen or argon, or a vacuum.
  • an inert gas such as nitrogen or argon
  • a vacuum if firing is performed in an atmosphere having a high oxygen concentration, the mechanical properties deteriorate, such as the fired film becoming brittle due to oxidative degradation.
  • oxygen concentration management in the ppm order is often difficult at the manufacturing site.
  • the resin film of the present invention is preferably used if the oxygen concentration in the thermal imidization step is 5% or less because higher mechanical properties can be maintained.
  • thermal imidization when colorless transparency is required, it is preferable to perform thermal imidization by heating in an atmosphere having an oxygen concentration of 5% or less. Generally, by reducing the oxygen concentration, it is possible to reduce the coloration of the polyimide film in the thermal imidization step and obtain a polyimide resin film exhibiting high transparency.
  • a temperature raising method can be selected according to the heating method of the oven of the production line, but it is preferable to raise the temperature to the maximum heating temperature over 5 to 300 minutes.
  • the polyimide precursor resin composition film formed on the base material may be imidized by raising the temperature from room temperature to the maximum heating temperature over 5 to 300 minutes to form a polyimide resin film.
  • a polyimide precursor resin film formed on a base material is suddenly charged into an oven preliminarily heated in a range of 170 ° C. or higher and 650 ° C. or lower and imidized by heat treatment to form a polyimide resin film.
  • the number of steps in the temperature raising process is not particularly limited, and the temperature may be raised in one step from the substrate charging temperature to the maximum heating temperature, or may be two or more steps.
  • the firing temperature of the resin film used in at least one of the steps (1) or (2) is 400 ° C. or more from the viewpoint of improving the glass transition temperature of the resin laminated film.
  • Step of peeling the resin laminated film by irradiating ultraviolet light from the supporting substrate side The ultraviolet ray is irradiated from the supporting substrate side to peel the resin laminated film from the supporting substrate. Since the resin film 1 exists on the support substrate, the resin laminated film exhibits good laser peelability regardless of the type of the resin film 2.
  • the wavelength of ultraviolet light is not particularly limited, and examples thereof include 266 nm, 308 nm, 343 nm, 351 nm, and 355 nm.
  • the light source is not particularly limited as long as the resin laminated film is peeled off, such as a laser, a high-pressure mercury lamp, and an LED.
  • the polyimide precursor resin solution and polyimide resin film used for the formation of the resin films 1 and 2 include surfactants, internal mold release agents, silane coupling agents, thermal crosslinking agents, inorganic particles, ultraviolet absorbers, light An acid generator or the like may be contained. Moreover, these may be contained in the resin films 1 and 2 in the range which does not impair the required physical property.
  • Fluorosurfactants such as Florard (trade name, manufactured by Sumitomo 3M Co., Ltd.), Megafuck (trade name, manufactured by DIC Corporation), Sulflon (trade name, manufactured by Asahi Glass Co., Ltd.), etc. Is mentioned.
  • KP341 trade name, manufactured by Shin-Etsu Chemical Co., Ltd.
  • DBE trade name, manufactured by Chisso Corporation
  • Granol trade name, manufactured by Kyoeisha Chemical Co., Ltd.
  • BYK manufactured by Big Chemie Corporation
  • polyoxyalkylene lauryl ether polyoxyethylene lauryl ether, polyoxyethylene oleyl ether and polyoxyethylene cetyl ether such as Emalmin (manufactured by Sanyo Chemical Industries), polyflow (trade name, manufactured by Kyoeisha Chemical Co., Ltd.) ) And other acrylic polymer surfactants.
  • thermal crosslinking agent an epoxy compound or a compound having at least two alkoxymethyl groups or methylol groups is preferable. By having at least two of these groups, a crosslinked structure is formed by a condensation reaction with the resin and the same kind of molecules, and the mechanical strength and chemical resistance of the cured film after heat treatment can be improved.
  • Preferred examples of the epoxy compound include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, epoxy group-containing silicone such as polymethyl (glycidyloxypropyl) siloxane, and the like.
  • the present invention is not limited to these at all.
  • Epicron 850-S Epicron HP-4032, Epicron HP-7200, Epicron HP-820, Epicron HP-4700, Epicron EXA-4710, Epicron HP-4770, Epicron EXA-859CRP, Epicron EXA-1514 Epicron EXA-4880, Epicron EXA-4850-150, Epicron EXA-4850-1000, Epicron EXA-4816, Epicron EXA-4822 (trade name, manufactured by Dainippon Ink & Chemicals, Inc.), Recare Resin BEO-60E, Recare Resin BPO-20E, Rica Resin HBE-100, Portugal Resin DME-100 (above trade name, Shin Nippon Rika Co., Ltd.), EP-4003S, EP-4000S (above trade name, Adeka Co., Ltd.), PG-10 CG-500, EG-200 (above trade name, manufactured by Osaka Gas Chemical Co., Ltd.), NC-3000, NC-6000 (above trade name, manufactured by Nippon Meth
  • Examples of the compound having at least two alkoxymethyl groups or methylol groups include DML-PC, DML-PEP, DML-OC, DML-OEP, DML-34X, DML-PTBP, DML-PCHP, DML-OCHP, and DML.
  • Examples of the internal release agent include long-chain fatty acids such as lauric acid, stearic acid, and myristic acid, long-chain alcohols such as stearyl alcohol and myristyl alcohol, polyoxyalkylene alkyl ethers, and fluoroalkylalkylene oxide adducts.
  • long-chain fatty acids such as lauric acid, stearic acid, and myristic acid
  • long-chain alcohols such as stearyl alcohol and myristyl alcohol
  • polyoxyalkylene alkyl ethers such as polyoxyalkylene alkyl ethers, and fluoroalkylalkylene oxide adducts.
  • silane coupling agent examples include 3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane, and 3-mercaptopropyltrimethoxysilane. From the viewpoint of storage stability, it is preferable to contain 0.01 to 5 parts by weight with respect to 100 parts by weight of the polyimide precursor resin.
  • inorganic particles examples include silica fine particles, alumina fine particles, titania fine particles, zirconia fine particles, and the like.
  • the shape of the inorganic particles is not particularly limited, and examples thereof include a spherical shape, an elliptical shape, a flat shape, a rod shape, and a fiber shape.
  • the particle size of the inorganic particles contained is not particularly specified, but it is preferable that the particle size is small in order to prevent light scattering.
  • the average particle size is 0.5 to 100 nm, preferably in the range of 0.5 to 30 nm.
  • the content of the inorganic particles is preferably 1 to 200% by weight with respect to the resin, and more preferably 10% by weight or more with respect to the lower limit.
  • the upper limit is more preferably 150% by weight or less, further preferably 100% by weight or less, and particularly preferably 50% by weight or less. As the content increases, flexibility and folding resistance decrease.
  • Organo inorganic filler sol is an organic solvent in which an inorganic filler is dispersed at a ratio of about 30% by weight.
  • organic solvents include methanol, isopropanol, normal butanol, ethylene glycol, methyl ethyl ketone, methyl isobutyl ketone, propylene glycol monomethyl acetate, propylene.
  • Examples include glycol monomethyl ether, N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, 1,3-dimethylimidazolidinone, and gamma butyrolactone.
  • the surface of the organoinorganic filler sol is treated with a silane coupling agent, whereby the dispersibility of the inorganic filler in the resin is improved.
  • inorganic particles may be contained from the viewpoint of reducing the CTE of the resin laminated film.
  • the resin film 1 does not contain inorganic particles and the resin film 2 contains inorganic particles.
  • the resin laminated film containing inorganic particles in the resin film 2 can be easily peeled off by laser peeling.
  • UV absorbers examples include benzophenone UV absorbers, benzotriazole UV absorbers, triazine UV absorbers, benzoate UV absorbers, hindered amine light stabilizers, and the like.
  • the resin film 1 contains an ultraviolet absorber. In this case, since the light absorption at the time of irradiating the resin film 1 with ultraviolet light is higher than when no ultraviolet absorber is included, the irradiation energy required for laser peeling can be reduced.
  • photoacid generators examples include quinonediazide compounds, sulfonium salts, phosphonium salts, diazonium salts, and iodonium salts.
  • a quinonediazide compound is preferably used from the standpoint that a positive photosensitive resin composition exhibiting an excellent dissolution inhibiting effect and having a high sensitivity and a low film thickness can be obtained.
  • a positive photosensitive resin composition with high sensitivity can be obtained.
  • the content of the photoacid generator is preferably 3 to 40 parts by weight with respect to 100 parts by weight of the polyimide precursor. By setting the content of the photoacid generator within this range, higher sensitivity can be achieved. Furthermore, you may contain a sensitizer etc. as needed.
  • the developer used for removing the exposed portion is preferably an aqueous solution of an alkaline compound such as tetramethylammonium hydroxide, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, diethylaminoethanol.
  • an alkaline compound such as tetramethylammonium hydroxide, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, diethylaminoethanol.
  • amides such as N-methyl-2-pyrrolidone, alcohols such as propanol, esters such as ethyl lactate, ketones such as cyclohexanone, lactones such as gamma butyrolactone, etc. are used alone in these alkaline aqueous solutions. Or you may add what combined several types.
  • the resin laminated film of the present invention includes a TFT substrate having a TFT on the resin film 2, an organic EL element substrate having an organic EL element on the resin film 2, and a color filter on the resin film 2. It can be used as a color filter substrate. These may have a support substrate on the resin film 1 side.
  • the resin laminated film of the present invention is used for display elements such as liquid crystal displays, organic EL displays and electronic paper, optical elements such as color filters and optical waveguides, light receiving elements such as solar cells and CMOS, touch panels, circuit boards and the like. Can do.
  • the polyimide resin laminate film of the present invention can be preferably used as a flexible substrate in utilizing these display elements, light receiving elements and the like as bendable flexible elements.
  • an optical element color filter etc.
  • the polyimide resin laminated film of this invention is used as a flexible substrate, like a flexible display element, a flexible optical element (flexible color filter etc.), etc.
  • “flexible” is written before the name.
  • a resin laminated film of the present invention is produced on a support substrate such as glass, a flexible TFT substrate having a TFT on the resin film 2, and a flexible organic EL element substrate having an organic EL element on the resin film 2 It can be used for a flexible color filter substrate provided with a color filter.
  • the display element, the light receiving element, the circuit board, the TFT substrate, etc. may be manufactured after the resin laminated film of the present invention is formed on the supporting substrate and the resin laminated film is peeled off from the supporting substrate. You may implement without peeling a resin laminated film.
  • the type of the resin film 2 is not particularly limited, but polyimide is preferable from the viewpoint of heat resistance and mechanical properties.
  • the display element, the light receiving element, the TFT circuit, and the like may be formed on either the resin film 1 or the resin film 2 or on both resin films.
  • the latter manufacturing method since a display element, a light receiving element, a TFT circuit and the like are manufactured and then peeled from the support substrate, there is an advantage that a conventional single wafer manufacturing process can be used.
  • the resin laminated film is fixed to the support substrate, it is suitable for manufacturing a display element, a light receiving element, a circuit board, a TFT substrate, a touch panel and the like with high positional accuracy.
  • the latter method is often described as a representative example, but any of the former methods may be used.
  • an inorganic film can be formed on at least one surface to form a gas barrier layer, and can be suitably used as a substrate for a display element as a substrate with a gas barrier layer.
  • the gas barrier layer on the resin film plays a role of preventing permeation of water vapor, oxygen and the like.
  • the substrate including the resin laminated film of the present invention has a feature that it is flexible and can be bent greatly. Such a flexible substrate is called a flexible substrate.
  • the flexible substrate can be manufactured through at least the following steps (1), (2), and (4).
  • a flexible substrate having an inorganic film on a polyimide resin film can be produced through at least the following steps (1) to (4). (1) A step of forming a polyimide resin film A on a support substrate. (2) A step of further laminating a resin film on the resin film to form a resin laminated film. (3) A step of forming an inorganic film on the resin laminated film. (4) A step of peeling the resin laminated film by irradiating ultraviolet light from the support substrate side.
  • the steps (1), (2), and (4) are the same as those described above as (1) to (3) in the method for manufacturing a resin laminated film.
  • the step (3) in the manufacturing process of the flexible substrate is a step of forming an inorganic film on at least one surface of the resin laminated film.
  • a flexible substrate can be manufactured by peeling the resin laminated film from the support substrate.
  • an inorganic film may be formed immediately above the resin laminated film, or an inorganic film may be formed with another layer interposed therebetween.
  • the inorganic film is formed directly on the resin laminated film.
  • the place where the inorganic film is formed is not particularly limited.
  • the inorganic film may be formed on the resin film 1 after the step (1), or may be formed on the resin film 2 after the step (2), or the resin film 1 may be peeled off after the step (4). It may be formed on the surface and formed on both the resin film 1 and the resin film 2.
  • the support substrate used for manufacturing the flexible substrate is preferably a hard substrate having self-supporting properties, a smooth surface on which the resin composition is applied, and a heat-resistant base material.
  • the material is not particularly limited.
  • glass is preferred from the viewpoints of surface smoothness, laser peeling, and low cost.
  • An alkali free glass is preferable from a viewpoint of metal impurity reduction.
  • an inorganic film is preferably formed on the resin laminated film.
  • metal oxide, metal nitride, and metal oxynitride can be preferably used.
  • metal oxides such as calcium (Ca), metal nitrides, and metal oxynitrides.
  • a gas barrier layer containing at least a metal oxide of Zn, Sn, or In, a metal nitride, and a metal oxynitride is preferable because of high bending resistance.
  • a gas barrier layer having an atomic concentration of Zn, Sn, and In of 20 to 40% is preferable because it has higher bending resistance.
  • a composition in which silicon dioxide and aluminum oxide coexist in the gas barrier layer is also preferable because of its good bending resistance.
  • These inorganic gas barrier layers can be produced by vapor deposition such as sputtering, vacuum deposition, ion plating, plasma CVD, etc., in which a material is deposited in a vapor phase to form a film.
  • the deposition rate can be improved by performing reactive sputtering in which a metal target is sputtered in an oxygen-containing atmosphere.
  • the gas barrier layer may be formed on a laminate composed of a support substrate and a resin laminate film or on a free-standing film peeled from the support substrate.
  • the film forming temperature of the gas barrier layer is preferably 80 to 400 ° C., and it is advantageous to select a high film forming temperature in order to improve the gas barrier performance. However, if the film forming temperature is high, the bending resistance may be lowered. Therefore, in applications where bending resistance is important, the film forming temperature of the gas barrier layer is preferably 100 to 300 ° C.
  • the resin laminate film of the present invention when the resin film 2 is polyimide, the heat resistance of the resin laminate film is high, so that the gas barrier layer can be produced by raising the substrate temperature. Even when the gas barrier layer is formed at a high temperature (for example, 300 ° C.), defects such as wrinkles do not occur in the film.
  • gas barrier layers there is no limitation on the number of gas barrier layers, and it may be a single layer or a multilayer of two or more layers.
  • the multilayer film include a gas barrier layer in which the first layer is made of SiO, the second layer is made of SiN, and the gas barrier layer in which the first layer is made of SiO / AlO / ZnO and the second layer is made of SiO.
  • Various organic solvents are used in the process of forming a layer having various functions such as an organic EL light emitting layer on the gas barrier layer of the flexible substrate to produce a display element or an optical element.
  • a color filter hereinafter sometimes referred to as CF
  • a gas barrier layer is formed on a resin laminated film, and a colored pixel, a black matrix, or the like is formed to form a CF.
  • the uppermost gas barrier layer is preferably made of silicon oxide.
  • composition analysis of the gas barrier layer can be performed by quantitatively analyzing each element using X-ray photoelectron spectroscopy (XPS method).
  • the total thickness of the gas barrier layer is preferably 20 to 600 nm, and more preferably 30 to 300 nm.
  • the thickness of the gas barrier layer can usually be measured by cross-sectional observation with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • composition analysis in the thickness direction is performed, and then the elements in the thickness direction are analyzed. Then, the layer boundary and the layer thickness are determined based on the concentration distribution information.
  • the composition analysis procedure in the thickness direction and the definition of the layer boundary and layer thickness of each layer are described below.
  • composition analysis methods applied at this time include electron energy loss spectroscopy (hereinafter referred to as EELS analysis), energy dispersive X-ray spectroscopy (hereinafter referred to as EDX analysis), and secondary ion mass spectrometry (hereinafter referred to as SIMS analysis).
  • EELS analysis electron energy loss spectroscopy
  • EDX analysis energy dispersive X-ray spectroscopy
  • SIMS analysis secondary ion mass spectrometry
  • EELS analysis is most preferable from the viewpoint of sensitivity and accuracy. Therefore, the EELS analysis is first performed, and then the analysis is performed in the order given above (EELS analysis ⁇ EDX analysis ⁇ SIMS analysis ⁇ XPS analysis ⁇ AES analysis). To apply the data.
  • CF is obtained by providing a black matrix and colored pixels on a flexible substrate using the resin laminate film of the present invention. Since CF uses a resin film as a base material, it is characterized by light weight, resistance to cracking, flexibility, and the like.
  • the resin used for at least one of the black matrix and the colored pixel layer preferably contains a polyimide resin.
  • the black matrix is composed of a low optical density layer and a high optical density layer formed on the low optical density layer, and at least of the low optical density layer and the high optical density layer. It is preferable that the resin used for one layer contains a polyimide resin.
  • the resin film 2 when the resin film 2 is a polyimide, it has a high chemical resistance with respect to a general polar aprotic solvent as a solvent for the polyimide precursor. Can be used. Furthermore, even when a gas barrier layer is formed on the black matrix and the colored pixel layer, the polyimide resin of the black matrix and the colored pixel layer has high heat resistance. A gas barrier layer can be formed. Further, when patterning the black matrix and the colored pixel layer, a polyimide precursor soluble in an alkaline aqueous solution can be used, which is advantageous for forming a fine pattern.
  • FIG. 1 shows a basic structure of a CF including a resin laminated film of the present invention formed on a support substrate. From here, the support substrate (symbol: 1) is peeled off by the above-described peeling method, whereby a CF using the resin laminated film of the present invention as a substrate is obtained.
  • a resin laminated film (reference numeral: 2) made of a polyimide resin film A (reference numeral: 2A) and a resin film (reference numeral: 2B) is formed on a support substrate (reference numeral: 1), and a black matrix (reference numeral: 3) is formed thereon.
  • Red colored pixels (symbol: 4R), green colored pixels (symbol: 4G), and blue colored pixels (symbol: 4B) are formed.
  • an overcoat layer may be formed on the colored pixels.
  • a gas barrier layer that is an inorganic film may be formed. The place where the gas barrier layer is formed is not particularly limited.
  • the gas barrier layer may be formed on the resin laminated film (reference numeral: 2), or on the black matrix (reference numeral: 3) or the colored pixel layer. It may be formed on the overcoat layer existing on the surface of the color filter, or may be formed on both the resin laminated film (reference numeral: 2) and the overcoat layer.
  • the multilayer film include a gas barrier layer in which the first layer is made of SiO, the second layer is made of SiN, and the gas barrier layer in which the first layer is made of SiO / AlO / ZnO and the second layer is made of SiO.
  • the black matrix is preferably a black matrix made of a resin in which a black pigment is dispersed in a resin.
  • the black pigment include carbon black, titanium black, titanium oxide, titanium oxynitride, titanium nitride, or iron tetroxide.
  • carbon black and titanium black are suitable.
  • a red pigment, a green pigment, and a blue pigment can be mixed and used as a black pigment.
  • a black composition containing the black pigment as described above, preferably a resin, more preferably a solvent is used.
  • the black composition may be non-photosensitive or photosensitive, and examples of the patterning method include machining, dry etching, sand blasting, photolithography, etc., and performing high-definition patterning.
  • Photolithography that can be used is preferable.
  • patterning can also be performed by using the black resin composition itself as a photosensitive material, and a photolithography method is performed by laminating a photoresist separately from the black resin composition.
  • the composition can also be patterned to form a black matrix. In photolithography, an exposure process and a development process are performed and patterning is performed.
  • the resin used for the resin black matrix is preferably a polyimide resin from the viewpoint of heat resistance and ease of forming a fine pattern.
  • the polyimide resin is preferably a polyimide resin obtained by thermosetting a polyamic acid synthesized from an acid dianhydride and a diamine after patterning.
  • the acid dianhydride, diamine and solvent those mentioned in the above-mentioned section “Resin film 1” can be used.
  • a black matrix containing a polyimide resin In order to form a black matrix containing a polyimide resin, after applying a non-photosensitive black composition comprising at least a polyamic acid, a black pigment, and a solvent on a substrate, it is dried by air drying, heat drying, vacuum drying, etc. A non-photosensitive polyamic acid black film is formed, a positive photoresist is used to form a desired pattern, the photoresist is alkali stripped, and finally heated at 200 to 300 ° C. for 1 minute to 3 hours to form colored pixels Is generally cured (polyimidized).
  • a photosensitive acrylic resin can also be used.
  • an alkali-soluble acrylic resin in which a black pigment is dispersed, a photopolymerizable monomer, a polymerization initiator, and a black solvent are used.
  • alkali-soluble acrylic resins include copolymers of unsaturated carboxylic acids and ethylenically unsaturated compounds.
  • unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl acetic acid or acid anhydrides.
  • photopolymerizable monomers examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, triacryl formal, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate or dipentaerythritol. Examples include penta (meth) acrylate.
  • photopolymerization initiators examples include benzophenone, N, N′-tetraethyl-4,4′-diaminobenzophenone, 4-methoxy-4′-dimethylaminobenzophenone, 2,2-diethoxyacetophenone, ⁇ -hydroxyisobutylphenone , Thioxanthone or 2-chlorothioxanthone.
  • Examples of the solvent for dissolving the photosensitive acrylic resin include propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, ethyl acetoacetate, methyl-3-methoxypropionate, ethyl-3-ethoxypropionate, Mention may be made of methoxybutyl acetate or 3-methyl-3-methoxybutyl acetate.
  • the black matrix is a laminated resin black matrix composed of a low optical density layer and a high optical density layer formed on the low optical density layer in order to suppress a decrease in visibility due to external light reflection. It is preferable.
  • the low optical density layer has a layer configuration in which the optical density is not 0 and is not substantially transparent, and the optical density value per unit thickness is the optical density per unit thickness of the high optical density layer. It is smaller than the concentration.
  • the resin constituting the laminated resin black matrix is not particularly limited, but from the viewpoint of batch patterning of the low optical density layer and the high optical density layer, the low optical density layer may be a polyimide resin, and the high optical density layer may be an acrylic resin. preferable. Furthermore, in order to reduce the reflectance, it is more preferable that the resin black matrix contains fine particles.
  • the colored pixels are formed.
  • the colored pixels are composed of colored pixels of three colors, red, green, and blue.
  • the brightness of the white display of the display device can be improved by forming a pixel of the fourth color that is colorless and transparent or very lightly colored.
  • a resin containing a pigment or dye as a colorant can be used.
  • pigments used for red colored pixels include PR254, PR149, PR166, PR177, PR209, PY138, PY150 or PYP139
  • examples of pigments used for green colored pixels are PG7, PG36, PG58. , PG37, PB16, PY129, PY138, PY139, PY150 or PY185
  • examples of pigments used for blue colored pixels include PB15: 6 or PV23.
  • blue dyes include C.I. I. Basic blue (BB) 5, BB7, BB9 or BB26 may be mentioned, and examples of red dye include C.I. I. Acid Red (AR) 51, AR87 or AR289.
  • red dyes include C.I. I. Acid green (AG) 25 and AG27.
  • resins used for red, green, and blue colored pixels include acrylic resins, epoxy resins, and polyimide resins.
  • a polyimide resin is preferable from the viewpoint of heat resistance, and a photosensitive acrylic resin may be used in order to reduce the production cost of CF.
  • a non-photosensitive color paste made of at least a polyamic acid, a colorant, and a solvent is applied on a substrate, and then dried by air drying, heat drying, vacuum drying, etc.
  • the photoresist is alkali stripped and finally heated at 200 to 300 ° C. for 1 minute to 3 hours to form a colored pixel.
  • a method of curing (polyimidization) is common.
  • the photosensitive acrylic resin generally contains an alkali-soluble acrylic resin, a photopolymerizable monomer, and a photopolymerization initiator.
  • alkali-soluble acrylic resins include copolymers of unsaturated carboxylic acids and ethylenically unsaturated compounds.
  • unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl acetic acid or acid anhydrides.
  • photopolymerizable monomers examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, triacryl formal, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate or dipentaerythritol. Examples include penta (meth) acrylate.
  • photopolymerization initiators examples include benzophenone, N, N′-tetraethyl-4,4′-diaminobenzophenone, 4-methoxy-4′-dimethylaminobenzophenone, 2,2-diethoxyacetophenone, ⁇ -hydroxyisobutylphenone , Thioxanthone or 2-chlorothioxanthone.
  • Examples of the solvent for dissolving the photosensitive acrylic resin include propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, ethyl acetoacetate, methyl-3-methoxypropionate, ethyl-3-ethoxypropionate, Mention may be made of methoxybutyl acetate or 3-methyl-3-methoxybutyl acetate.
  • an overcoat layer may be further formed on the CF surface.
  • the resin used for forming the overcoat layer include an epoxy resin, an acrylic-modified epoxy resin, an acrylic resin, a siloxane resin, or a polyimide resin.
  • the thickness of the overcoat layer is preferably a thickness that makes the surface flat, more preferably 0.5 to 5.0 ⁇ m, and even more preferably 1.0 to 3.0 ⁇ m.
  • the CF including the resin laminated film of the present invention can be manufactured through at least the following steps. (1) A step of forming a polyimide resin film A on a support substrate. (2) A step of further laminating a resin film on the resin film to form a resin laminated film. (3) A step of forming a black matrix on the resin laminated film. (4) A step of forming colored pixels on the resin laminated film. (5) A step of peeling the resin laminated film by irradiating ultraviolet light from the support substrate side.
  • the steps (3) and (4) in the CF manufacturing process are steps for forming a black matrix and colored pixels on the resin laminated film.
  • photolithography is used for the pattern formation of the black matrix and the colored pixels.
  • high definition of 300 ppi or more is required for a liquid crystal display or an organic EL display, and a performance equal to or higher than that of a flexible display panel is also required.
  • the current technology for producing CF using a glass substrate as a support substrate can be applied.
  • a high-definition pattern can be formed as compared with the case of producing CF on the top.
  • a black matrix or colored pixels may be formed immediately above the resin laminated film, or these layers are formed with another layer interposed therebetween. May be.
  • the CF manufacturing process may further include a process of forming an inorganic film such as a gas barrier layer.
  • the place where the inorganic film is formed is not particularly limited. For example, it may be formed on a resin laminate film, on a black matrix or a colored pixel layer, or on an overcoat layer existing on the surface of a color filter, or on a resin laminate film and an overcoat layer. It may be formed on both of the above.
  • limiting in the number of layers of an inorganic film One layer may be sufficient and the multilayer of two or more layers may be sufficient.
  • the multilayer film include an inorganic film in which the first layer is made of SiO, the second layer is made of SiN, and the first layer is made of SiO / AlO / ZnO, and the second layer is made of SiO.
  • the resin laminated film and gas barrier layer of the present invention are produced on the support substrate by the above method.
  • a paste for a black matrix made of polyamic acid in which a black pigment made of carbon black or titanium black is dispersed is applied by a method such as a spin coater or a die coater so that the thickness after curing becomes 1 ⁇ m, and 60 Pa or less
  • semi-cure is performed in a hot air oven or hot plate at 110 to 140 ° C.
  • a positive resist by spin coater or die coater so that the thickness after pre-baking is 1.2 ⁇ m, then dry under reduced pressure to 80 Pa, and pre-bake in a hot air oven or hot plate at 80 to 110 ° C. And a resist film is formed. Then, after selective exposure with ultraviolet rays through a photomask by a proximity exposure machine or a projection exposure machine, alkali development such as 1.5 to 3% by weight of potassium hydroxide or tetramethylammonium hydroxide is performed. The exposed portion is removed by immersing in the solution for 20 to 300 seconds. After stripping the positive resist using a stripping solution, the polyamic acid is converted to polyimide by heating in a hot air oven or hot plate at 200 to 300 ° C. for 10 to 60 minutes to form a resin black matrix.
  • Colored pixels are produced using a colorant and a resin.
  • a pigment is used as the colorant, it is prepared by adding polyamic acid to a dispersion obtained by mixing a pigment with a polymer dispersant and a solvent and performing a dispersion treatment.
  • a dye is used as the colorant, it is prepared by adding a solvent and a polyamic acid to the dye.
  • the total solid content in this case is the total of the polymer dispersant, polyamic acid, which is a resin component, and the colorant.
  • the obtained colorant composition is formed on a resin laminated film on which a resin black matrix is formed, with a target thickness of 0.8 to 3.0 ⁇ m after heat treatment by a method such as a spin coater or a die coater. After coating, the film is dried under reduced pressure, and prebaked in a hot air oven or hot plate at 80 to 110 ° C. to form a colorant coating film.
  • a positive resist is applied by a method such as a spin coater or a die coater so that the thickness after pre-baking becomes 1.2 ⁇ m, followed by drying under reduced pressure, and pre-baking in a hot air oven or hot plate at 80 to 110 ° C.
  • a method such as a spin coater or a die coater so that the thickness after pre-baking becomes 1.2 ⁇ m, followed by drying under reduced pressure, and pre-baking in a hot air oven or hot plate at 80 to 110 ° C.
  • alkali development such as 1.5 to 3% by weight of potassium hydroxide or tetramethylammonium hydroxide is performed.
  • the exposed portion is removed by immersing in the solution for 20 to 300 seconds.
  • the polyamic acid is converted to polyimide by heating in a hot air oven or hot plate at 200 to 300 ° C. for 10 to 60 minutes to form colored pixels.
  • the patterning process as described above is sequentially performed on the red color pixel, the green color pixel, and the blue color pixel.
  • the order of patterning the colored pixels is not particularly limited.
  • the polysiloxane resin is applied by a method such as a spin coater or a die coater, vacuum dried, pre-baked in a hot air oven or hot plate at 80 to 110 ° C., and 5 to 5 in a hot air oven or hot plate at 150 to 250 ° C.
  • a method such as a spin coater or a die coater, vacuum dried, pre-baked in a hot air oven or hot plate at 80 to 110 ° C., and 5 to 5 in a hot air oven or hot plate at 150 to 250 ° C.
  • the resin laminated film of the present invention has a large light absorption in the ultraviolet light region of the resin film 1, it is possible to reduce the irradiation energy necessary for peeling.
  • CTE of the resin laminated film of this invention is low, for example, 30 ppm / degrees C or less, the curvature of the board
  • the resin laminated film of the present invention can be suitably used for a substrate of a TFT substrate. That is, a TFT substrate having TFTs on the resin laminate film of the present invention can be obtained. Since this TFT substrate uses a resin film as a base material, it is characterized by light weight and resistance to cracking.
  • FIG. 2 shows a basic structure of a TFT including a resin laminated film of the present invention formed on a support substrate.
  • the support substrate reference numeral: 1
  • the support substrate reference numeral: 1
  • a resin laminated film composed of a polyimide resin film A (symbol: 2A ′) and a resin film (symbol: 2B ′) is formed on a support substrate (symbol: 1), and an inorganic film is formed thereon.
  • a gas barrier layer (symbol: 5) is further formed, and a TFT (symbol: 6) and a planarization layer (symbol: 7) are formed thereon.
  • a TFT substrate using the resin laminated film of the present invention can be manufactured through at least the following steps. (1) A step of forming a polyimide resin film A on a support substrate. (2) A step of further laminating a resin film on the resin film to form a resin laminated film. (3) A step of forming a gas barrier layer on the resin laminated film (4) A step of forming a TFT on the resin laminated film. (5) A step of peeling the resin laminated film by irradiating ultraviolet light from the support substrate side.
  • the steps (3) and (4) in the manufacturing process of the TFT substrate are steps of forming a gas barrier layer on the resin laminated film and then forming a TFT.
  • the steps (3) and (4) may be to form a gas barrier layer or TFT directly on the resin laminated film, or to form these with another layer interposed therebetween. Also good.
  • a gas barrier layer is formed directly on the resin laminated film, and a TFT is formed thereon.
  • Semiconductor layers for forming TFTs include amorphous silicon semiconductors, polycrystalline silicon semiconductors, oxide semiconductors typified by In-Ga-ZnO - 4 , organic semiconductors typified by pentacene and polythiophene, and carbon nanotubes. Examples thereof include carbon materials.
  • a gas barrier layer, a gate electrode, a gate insulating film, a semiconductor layer, an etching stopper film, and a source / drain electrode are sequentially formed by a known method using the resin laminated film of the present invention as a base material to produce a bottom gate TFT. .
  • a TFT substrate using the resin laminated film of the present invention can be produced.
  • Such a TFT substrate can be used as a drive substrate for a display element such as a liquid crystal element, an organic EL element, or electronic paper.
  • the manufacturing temperature of the TFT depends on the type of the semiconductor layer, but in the case of a polycrystalline silicon semiconductor or an oxide semiconductor, it is advantageous to select a high manufacturing temperature in order to improve mobility and reliability. In general, heat treatment is required at 500 ° C. or higher for a polycrystalline silicon semiconductor and 300 ° C. or higher for an oxide semiconductor. In the resin laminated film of the present invention, when the resin film 2 is polyimide, the heat resistance of the resin laminated film is high, so that the TFT can be manufactured at a high temperature.
  • the acid dianhydride residue in the polyimide contained in the polyimide resin film A of the resin film 1 is an aromatic acid dianhydride residue
  • the heat resistance of the resin film 1 is increased and the semiconductor manufacturing process at the above high temperature is performed. Since the outgas when passing through can be reduced, a high-quality TFT substrate with few chippings can be obtained.
  • the aromatic acid dianhydride residue is preferably a group derived from pyromellitic dianhydride or 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, since the heat resistance is further improved. .
  • the resin laminated film of the present invention has high light absorption in the ultraviolet region of the resin film 1, it is possible to reduce the irradiation energy necessary for peeling.
  • photolithography is mainly used to form a gate electrode, a gate insulating film, a semiconductor layer, an etching stopper film, and a source / drain electrode.
  • the CTE of the resin laminate film of the present invention is low, for example, 30 ppm / ° C. or less, preferably 10 ppm / ° C. or less, the warpage of the substrate when the resin laminate film is formed on the support substrate as described above is reduced. it can.
  • the TFT can be manufactured with high accuracy.
  • a TFT substrate with good driving performance can be obtained.
  • the curling of the TFT substrate after peeling can be reduced, damage to the TFT element after peeling can be prevented.
  • the flexible substrate using the resin laminate film of the present invention can be used for a touch panel substrate.
  • a transparent conductive layer can be formed on at least one surface of the resin laminate film of the present invention to form a transparent conductive film
  • a touch panel can be created by laminating transparent conductive films using an adhesive, an adhesive, or the like.
  • a carbon material such as a carbon nanotube or graphene such as a known metal film or metal oxide film
  • a metal oxide film is applied from the viewpoint of transparency, conductivity, and mechanical properties. It is preferable.
  • the metal oxide film include indium oxide, cadmium oxide and tin oxide to which tin, tellurium, cadmium, molybdenum, tungsten, fluorine, zinc, germanium and the like are added as impurities, zinc oxide to which aluminum is added as an impurity, and oxide.
  • metal oxide films such as titanium.
  • an indium oxide thin film containing 2 to 15% by mass of tin oxide or zinc oxide is preferably used because of its excellent transparency and conductivity.
  • the transparent conductive layer may be formed by any method as long as the target thin film can be formed. For example, from the gas phase such as sputtering, vacuum deposition, ion plating, and plasma CVD. A vapor deposition method or the like in which a material is deposited to form a film is suitable. Especially, it is preferable to form into a film using sputtering method from a viewpoint that the outstanding electroconductivity and transparency are acquired.
  • the film thickness of the transparent conductive layer is preferably 20 to 500 nm, and more preferably 50 to 300 nm.
  • the patterning method of the transparent conductive layer is not particularly limited, and examples thereof include wet etching of a photoresist and an etchant solution, and dry etching using a laser.
  • the flexible substrate using the resin laminated film of the present invention can be used for a display element such as a liquid crystal display, an organic EL display, and electronic paper, or a light receiving element such as a solar cell or CMOS.
  • a display element such as a liquid crystal display, an organic EL display, and electronic paper
  • a light receiving element such as a solar cell or CMOS.
  • the flexible substrate of the present invention is preferably used.
  • a circuit and a functional layer necessary for the display element and the light receiving element are formed on the resin laminated film formed on the substrate, and further irradiated with ultraviolet light, For example, the laminated film is peeled off from the substrate.
  • an organic EL element which is an example of a display element
  • an organic EL element top emission method, red green blue light emitting organic EL
  • a resin laminated film (symbol: 2 ′) composed of a polyimide resin film A (symbol: 2A ′) and a resin film (symbol: 2B ′) is formed on a support substrate (symbol: 1), and an inorganic film is formed thereon.
  • a gas barrier layer (symbol: 5) is further formed, and a TFT (symbol: 6) circuit, an organic EL light emitting layer (symbols: 11R, 11G, 11B) and the like are formed thereon.
  • the TFT (symbol: 6) circuit, the organic EL light emitting layer (symbol: 11R, 11G, 11B), etc. are TFTs (symbol: 6) made of amorphous, silicon, low-temperature polysilicon, oxide semiconductor, etc., and a planarizing layer.
  • first electrode (symbol: 8) made of Al / ITO, insulating layer (symbol: 9) covering the end of the first electrode (symbol: 8), hole injection layer, hole Consists of a transport layer, a light emitting layer, an electron transport layer, a red green blue organic EL light emitting layer (symbol: 11R, 11G, 11B) composed of an electron injection layer, and a second electrode (symbol: 10) composed of ITO, etc. Sealed with a film (reference numeral: 12). It can be used as an organic EL element by irradiating ultraviolet light and peeling the resin laminated film (symbol: 2 ') from the support substrate (symbol: 1).
  • the organic EL element including the resin laminated film of the present invention can be produced through at least the following steps. (1) A step of forming a polyimide resin film A on a support substrate. (2) A step of further laminating a resin film on the resin film to form a resin laminated film. (3) The process of forming an organic EL element on the said resin laminated film. (4) A step of peeling the resin laminated film by irradiating ultraviolet light from the support substrate side.
  • the step (3) in the manufacturing process of the organic EL element includes a TFT (reference numeral: 6) made of amorphous, silicon, low-temperature polysilicon, an oxide semiconductor, etc., a flattening layer (reference numeral: 7), Al / ITO, etc.
  • a first electrode (symbol: 8), an insulating layer (symbol: 9) covering the end of the first electrode (symbol: 8), a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer,
  • the organic EL light emitting layer (symbol: 11W, 11R, 11G, 11B) of white or each color (red, green, blue, etc.) made of an electron injection layer, and the second electrode (symbol: 10) made of ITO, etc. are formed sequentially. .
  • a gas barrier layer which is an inorganic film
  • the resin laminate film (symbol: 2 ′) in advance, and then form a TFT circuit and an organic EL light emitting layer.
  • a sealing film (code
  • the light extraction method may be either a bottom emission method in which light is extracted to the TFT substrate side or a top emission method in which light is extracted to the sealing film side.
  • the organic EL element including the resin laminate film of the present invention and / or the CF including the resin laminate film of the present invention can be preferably used as an organic EL display including them.
  • a full-color organic EL display can be obtained by combining a white light-emitting organic EL element using the resin laminate film of the present invention as a substrate and a CF containing the resin laminate film of the present invention.
  • a red, green, and blue light emitting organic EL element using the resin laminated film of the present invention as a base material and a CF including the resin laminated film of the present invention may be combined.
  • FIG. 4 shows an example of an organic EL display obtained by bonding the CF of the present invention and a white light emitting organic EL element.
  • the following method is mentioned as an example of the manufacturing process.
  • the CF 20 of the present invention is formed on a first support substrate (not shown) by the above-described manufacturing method.
  • an organic EL element 30 having a resin laminated film as a substrate is formed on a second support substrate (not shown) by the above-described method.
  • CF symbol: 20
  • organic EL element symbol: 30
  • the first and second support substrates are respectively peeled by irradiating the first and second support substrates with ultraviolet light from the support substrate side.
  • the adhesive layer is not particularly limited, and examples thereof include a pressure-sensitive adhesive, an adhesive, and an adhesive cured by light or heat.
  • the resin for the adhesive layer is not particularly limited, and examples thereof include acrylic resin, epoxy resin, urethane resin, polyamide resin, polyimide resin, and silicone resin.
  • the pre-baked coating film was heated to 300 ° C. or 400 ° C. at 3.5 ° C./min using an inert oven (INH-21CD manufactured by Koyo Thermo System Co., Ltd.) under a nitrogen stream (oxygen concentration 20 ppm or less). For 30 minutes, and cooled to 50 ° C. at 5 ° C./min to produce a polyimide resin film.
  • the thickness of the obtained polyimide resin film was 10.0 ⁇ m.
  • Light transmittance at 266 nm, 308 nm, 343 nm, 351 nm, and 355 nm of the resin film 1 when a film having a thickness of 100 nm is obtained using a micro ultraviolet visible near infrared spectrophotometer (MSV-5100 manufactured by JASCO Corporation) was measured. The same etching and light transmittance measurement were performed at five locations, and the average value thereof was defined as the light transmittance.
  • B irradiation energy exceeds 230mJ / cm 2, 250mJ / cm 2 or less.
  • C Irradiation energy exceeds 250 mJ / cm 2 and is 270 mJ / cm 2 or less.
  • D Irradiation energy exceeds 270 mJ / cm 2 and is 290 mJ / cm 2 or less.
  • E Irradiation energy exceeds 290 mJ / cm 2 .
  • CTE coefficient of linear thermal expansion
  • Tg glass transition temperature
  • thermogravimetric apparatus TGA-50 manufactured by Shimadzu Corporation.
  • the temperature raising method was performed under the following conditions. In the first stage, the temperature of the sample was raised to 350 ° C. at a temperature rise rate of 3.5 ° C./min to remove the adsorbed water of the sample, and in the second stage, the temperature drop rate was 10 ° C./min to room temperature. In the third stage, the main measurement was performed at a temperature rising rate of 10 ° C./min to obtain a 1% thermogravimetric decrease temperature.
  • polyimide resin laminated films Examples 1 to 29 obtained by laser peeling the polyimide resin laminated film on the glass substrate prepared in (1) by the method described in (6) were used.
  • ITO film Sputtering is performed on the release surface of the polyimide resin laminated film peeled from the glass substrate by the method described in (6) using a composite oxide target of indium oxide and tin oxide. Then, an ITO layer having a thickness of 150 nm was formed. Sputtering was performed using a DC power source of 3 kW at a pressure of 6.7 ⁇ 10 ⁇ 1 Pa and a substrate temperature of 150 ° C.
  • Warpage measurement of glass substrate after resin laminated film formation Warpage measurement is performed on a glass substrate (AN-100 manufactured by Asahi Glass Co., Ltd.) having a thickness of 300 ⁇ 350 ⁇ 0.7 mm, according to the method described in (1)
  • a polyimide resin laminated film was prepared by placing it on a precision stone regular board (1000 mm x 1000 mm) manufactured by Mitutoyo Co., Ltd. and floated from the regular board for a total of eight points on each side of the four sides of the test plate and each vertex. The quantity (distance) was measured using a gap gauge. These average values were taken as the amount of warpage. The measurement was performed at room temperature (25 ° C.).
  • the TFT substrate and color filter substrate peeled from the glass substrate by the method described in (6) were stored at room temperature for 30 minutes.
  • the TFT substrate and color filter substrate after stationary storage were cut into 30 mm squares, and were further allowed to stand at room temperature for 30 minutes on a smooth glass plate so that the substrate side was down. Thereafter, observation was performed, and the maximum amount of the portion where the 30 mm square TFT substrate or the color filter substrate floated from the glass plate was measured as the curl amount, and evaluation was performed according to the following criteria.
  • PMDA pyromellitic dianhydride BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride ODPA: 3,3 ′, 4,4′-oxydiphthalic dianhydride 6FDA: 4,4 ′ -(Hexafluoroisopropylidene) diphthalic anhydride BSAA: 2,2-bis (4- (3,4-dicarboxyphenoxy) phenyl) propane dianhydride CBDA: cyclobutanetetracarboxylic dianhydride PMDA-HS: 1R , 2S, 4S, 5R-cyclohexanetetracarboxylic dianhydride BPDA-H: 3,3 ′, 4,4′-dicyclohexanetetracarboxylic dianhydride PDA: paraphenylenediamine 3,3′-DDS : 3,3'-
  • Synthesis Example 1 Synthesis of Polyimide Precursor Solution PMDA 5.0505 g (21.2 mmol), HFHA 13.9971 g (23.2 mmol), and NMP 100 g were placed in a 200 mL four-necked flask under a dry nitrogen stream and heated and stirred at 65 ° C. After 6 hours, it was cooled to obtain a polyimide precursor solution.
  • Synthesis Example 2 Synthesis of polyimide precursor solution BPDA 6.2357 g (21.2 mmol), HFHA 12.8119 g (21.2 mmol), and NMP 100 g were placed in a 200 mL four-necked flask under a dry nitrogen stream and heated and stirred at 65 ° C. After 6 hours, it was cooled to obtain a polyimide precursor solution.
  • Synthesis Example 3 Synthesis of polyimide precursor solution Under a dry nitrogen stream, 6.4PA g (20.8 mmol) of ODPA, 12.5879 g (20.8 mmol) of HFHA, and 100 g of NMP were placed in a 200 mL four-necked flask and stirred at 65 ° C. After 6 hours, it was cooled to obtain a polyimide precursor solution.
  • Synthesis Example 4 Synthesis of polyimide precursor solution Under a dry nitrogen stream, 6FDA 8.0855 g (18.2 mmol), HFHA 10.7992 g (18.2 mmol), and NMP 100 g were placed in a 200 mL four-necked flask and stirred at 65 ° C. After 6 hours, it was cooled to obtain a polyimide precursor solution.
  • Synthesis Example 5 Synthesis of Polyimide Precursor Solution Under a dry nitrogen stream, BPSA 8.8126 g (16.9 mmol), HFHA 10.2350 g (16.9 mmol), and NMP 100 g were placed in a 200 mL four-necked flask and heated and stirred at 65 ° C. After 6 hours, it was cooled to obtain a polyimide precursor solution.
  • Synthesis Example 8 Synthesis of Polyimide Precursor Solution Under a dry nitrogen stream, BPDA-H6.4058 g (20.9 mmol), HFHA 12.6418 g (20.9 mmol), and NMP 100 g were placed in a 200 mL four-necked flask and stirred at 65 ° C. . After 6 hours, it was cooled to obtain a polyimide precursor solution.
  • Synthesis Example 10 Synthesis of Polyimide Precursor Solution PMDA-HS 6.0422 g (27.0 mmol), BABODS 13.0054 g (27.0 mmol), and NMP 100 g were placed in a 200 mL four-necked flask in a dry nitrogen stream and heated at 65 ° C. with stirring. . After 6 hours, it was cooled to obtain a polyimide precursor solution.
  • Synthesis Example 11 Synthesis of polyimide precursor solution PMDA-HS 5.2923 g (23.6 mmol), BABOHA 13.7554 g (23.6 mmol) and NMP 100 g were placed in a 200 mL four-necked flask under a dry nitrogen stream and stirred at 65 ° C. . After 6 hours, it was cooled to obtain a polyimide precursor solution.
  • Synthesis Example 12 Synthesis of Polyimide Precursor Solution Under a dry nitrogen stream, BPDA 7.8737 g (26.7 mmol), BABOBA 11.1840 g (26.7 mmol), and NMP 100 g were placed in a 200 mL four-necked flask and heated and stirred at 65 ° C. After 6 hours, it was cooled to obtain a polyimide precursor solution.
  • Synthesis Example 14 Synthesis of Polyimide Precursor Solution Under a dry nitrogen stream, ODPA 7.9558 g (25.6 mmol), BAPS 11.0918 g (25.6 mmol), and NMP 100 g were placed in a 200 mL four-necked flask and heated and stirred at 65 ° C. After 6 hours, it was cooled to obtain a polyimide precursor solution.
  • Synthesis Example 15 Synthesis of polyimide precursor solution In a 200 mL four-necked flask under a dry nitrogen stream, BPDA 4.7698 g (16.2 mmol), PMDA-HS 1.2114 g (5.4 mmol), HFHA 13.0665 g (21.6 mmol), NMP 100 g And heated and stirred at 65 ° C. After 6 hours, it was cooled to obtain a polyimide precursor solution.
  • Synthesis Example 16 Synthesis of Polyimide Precursor Solution Under a dry nitrogen stream, in a 200 mL four-necked flask, BPDA 3.2443 g (11.0 mmol), PMDA-HS 2.4719 g (11.0 mmol), HFHA 13.3314 g (22.0 mmol), NMP 100 g And heated and stirred at 65 ° C. After 6 hours, it was cooled to obtain a polyimide precursor solution.
  • Synthesis Example 17 Synthesis of polyimide precursor solution Under a dry nitrogen stream, BPDA 1.6557 g (5.6 mmol), PMDA-HS 3.77846 g (16.8 mmol), HFHA 13.6073 g (22.5 mmol), NMP 100 g in a 200 mL four-necked flask And heated and stirred at 65 ° C. After 6 hours, it was cooled to a polyamic acid solution.
  • Synthesis Example 18 Synthesis of Polyamic Acid Solution Under a dry nitrogen stream, PMDA-HS 9.0374 g (40.3 mmol), 3,3′-DDS 10.0102 g (40.3 mmol), and NMP 100 g were placed in a 200 mL four-necked flask at 65 ° C. And stirred with heating. After 6 hours, it was cooled to obtain a polyimide precursor solution.
  • Synthesis Example 19 Synthesis of Polyimide Precursor Solution Under a dry nitrogen stream, BPDA-H14.0776 g (46.0 mmol), PDA 4.9700 g (46.0 mmol), and NMP 100 g were placed in a 200 mL four-necked flask and heated and stirred at 65 ° C. . After 6 hours, it was cooled to obtain a polyimide precursor solution.
  • Synthesis Example 20 Synthesis of Polyimide Precursor Solution Under a dry nitrogen stream, BPDA 13.7220 g (46.6 mmol), CHDA 5.3256 g (46.6 mmol), and NMP 100 g were placed in a 200 mL four-necked flask and stirred at 65 ° C. After 6 hours, it was cooled to obtain a polyimide precursor solution.
  • Synthesis Example 21 Synthesis of polyimide precursor solution Under a dry nitrogen stream, ODPA 9.3724 g (30.2 mmol), TFMB 9.6752 g (30.2 mmol), and NMP 100 g were placed in a 200 mL four-necked flask and heated and stirred at 65 ° C. After 6 hours, it was cooled to obtain a polyimide precursor solution.
  • Synthesis example 22 Synthesis
  • Synthesis Example 23 Synthesis of Polyimide Precursor Solution Under a dry nitrogen stream, BPDA 7.3799 g (25.1 mmol), BABB 11.4074 g (25.1 mmol), and NMP 100 g were placed in a 200 mL four-necked flask and heated and stirred at 65 ° C. After 6 hours, it was cooled to obtain a polyimide precursor solution.
  • Preparation Example 1 Preparation of Polyimide Precursor / Silica Nanoparticle Solution
  • the polyimide precursor solution was prepared so that the silica fine particles would be 100 parts by weight with respect to 100 parts by weight of the polyimide precursor in the polyimide precursor solution obtained in Synthesis Example 2.
  • Organosilica sol manufactured by Nissan Chemical Industries, Ltd., trade name: PMA-ST, particle size: 10-30 nm was added to obtain a polyimide precursor-silica nanoparticle varnish.
  • Preparation Example 2 Preparation of polyimide precursor / silica nanoparticle solution
  • the polyimide precursor solution was prepared so that the silica fine particles would be 50 parts by weight with respect to 100 parts by weight of the polyimide precursor in the polyimide precursor solution obtained in Synthesis Example 22.
  • Organosilica sol manufactured by Nissan Chemical Industries, Ltd., trade name: PMA-ST, particle size: 10-30 nm
  • a polyimide resin film was prepared by the method described in (2), and the laser peelability was evaluated by the method described in (6).
  • the results are shown in Table 1 together with the maximum absorbance of the diamine solution in the wavelength region of 300 to 400 nm, the absorbance at wavelengths of 266 nm, 308 nm, 343 nm, 351 nm, and 355 nm, and the CTE of the polyimide resin film.
  • Example 1 Using the polyimide precursor solutions of Synthesis Example 1 and Synthesis Example 20 by the method described in (1), a resin film 1 having a thickness of 1 ⁇ m (fired at 300 ° C.) and a resin film 2 having a thickness of 10 ⁇ m (fired at 300 ° C.) was made.
  • the method described in (3), (6) to (10) and (12) measurement of the light transmittance of the resin laminated film, laser peeling test, CTE measurement, Measurement of Tg, measurement of CTE change due to lamination, measurement of chromaticity coordinates, measurement of Rz of peeled surface, measurement of 1% weight loss temperature, measurement of water vapor transmission rate after forming ITO film on peeled surface Went.
  • Examples 2 to 11 A polyimide resin laminated film was produced in the same manner as in Example 1 except that the polyimide precursor solution used for producing the resin film 1 was changed as shown in Tables 2 to 3.
  • Example 1 measurement of light transmittance, laser peeling test, measurement of CTE, measurement of Tg, measurement of CTE change due to lamination, measurement of chromaticity coordinates, measurement of Rz of peeled surface, 1% weight
  • Example 2 measurement of light transmittance, laser peeling test, measurement of CTE, measurement of Tg, measurement of CTE change due to lamination, measurement of chromaticity coordinates, measurement of Rz of peeled surface, 1% weight
  • the water vapor transmission rate was measured. The results are shown in Tables 2-3.
  • Table 6 shows the minimum value of the light transmittance in the wavelength region of 300 to 400 nm and the light transmittance at the wavelengths of 266 nm, 308 nm, 343 nm, 351 nm, and 355 nm when the resin film 1 is a film having a thickness of 100 nm. .
  • Example 12 A polyimide resin laminate film was produced in the same manner as in Example 1 except that the polyimide resin precursor solution of Synthesis Example 12 was used for production of the resin film 1 and the firing temperature was changed to 400 ° C.
  • Example 1 measurement of light transmittance, laser peeling test, measurement of CTE, measurement of Tg, measurement of CTE change due to lamination, measurement of chromaticity coordinates, measurement of Rz of peeled surface, 1% weight After measuring the decrease temperature and forming an ITO film on the peeled surface, the water vapor transmission rate was measured. The results are shown in Table 3.
  • Table 6 shows the minimum value of the light transmittance in the wavelength region of 300 to 400 nm and the light transmittance at the wavelengths of 266 nm, 308 nm, 343 nm, 351 nm, and 355 nm when the resin film 1 is a film having a thickness of 100 nm. .
  • Examples 13-17 A polyimide resin laminated film was produced in the same manner as in Example 1 except that the polyimide precursor solution used for production of the resin film 1 was changed as described in Table 3.
  • Example 1 measurement of light transmittance, laser peeling test, measurement of CTE, measurement of Tg, measurement of CTE change due to lamination, measurement of chromaticity coordinates, measurement of Rz of peeled surface, 1% weight After measuring the decrease temperature and forming an ITO film on the peeled surface, the water vapor transmission rate was measured. The results are shown in Table 3.
  • Table 6 shows the minimum value of the light transmittance in the wavelength region of 300 to 400 nm and the light transmittance at the wavelengths of 266 nm, 308 nm, 343 nm, 351 nm, and 355 nm when the resin film 1 is a film having a thickness of 100 nm. .
  • Example 18-22 The polyimide precursor solution of Synthesis Example 7 was used instead of the polyimide precursor solution of Synthesis Example 1, and the polyimide film was changed in the same manner as in Example 1 except that the film thickness of the resin film 1 was changed as shown in Table 4.
  • a resin laminated film was produced.
  • measurement of light transmittance, laser peeling test, measurement of CTE, measurement of change in CTE by lamination, measurement of Tg, measurement of chromaticity coordinates, measurement of Rz of peeled surface, 1% weight After measuring the decrease temperature and forming an ITO film on the peeled surface, the water vapor transmission rate was measured. The results are shown in Table 4.
  • Table 6 shows the minimum value of the light transmittance in the wavelength region of 300 to 400 nm and the light transmittance at the wavelengths of 266 nm, 308 nm, 343 nm, 351 nm, and 355 nm when the resin film 1 is a film having a thickness of 100 nm. .
  • Examples 23-25 Other than using the polyimide precursor solution described in Table 4 for the production of the resin film 1 and using the polyimide precursor solution described in Table 4 for the production of the resin film 2 and setting the firing temperature to 400 ° C.
  • a polyimide resin laminated film was produced.
  • measurement of light transmittance, laser peeling test, measurement of CTE, measurement of Tg, measurement of CTE change due to lamination, measurement of chromaticity coordinates, measurement of Rz of peeled surface, 1% weight After measuring the decrease temperature and forming an ITO film on the peeled surface, the water vapor transmission rate was measured. The results are shown in Table 4.
  • Table 6 shows the minimum value of the light transmittance in the wavelength region of 300 to 400 nm and the light transmittance at the wavelengths of 266 nm, 308 nm, 343 nm, 351 nm, and 355 nm when the resin film 1 is a film having a thickness of 100 nm. .
  • Example 26-27 The polyimide precursor solution shown in Table 4 was used for the production of the resin film 1 and its firing temperature was changed to 400 ° C., and the polyimide precursor solution of Synthesis Example 22 was used for the production of the resin film 2 and its firing.
  • a polyimide resin laminated film was produced in the same manner as in Example 1 except that the temperature was 400 ° C.
  • measurement of light transmittance, laser peeling test, measurement of CTE, measurement of Tg, measurement of CTE change due to lamination, measurement of chromaticity coordinates, measurement of Rz of peeled surface, 1% weight After measuring the decrease temperature and forming an ITO film on the peeled surface, the water vapor transmission rate was measured. The results are shown in Table 4.
  • Table 6 shows the minimum value of the light transmittance in the wavelength region of 300 to 400 nm and the light transmittance at the wavelengths of 266 nm, 308 nm, 343 nm, 351 nm, and 355 nm when the resin film 1 is a film having a thickness of 100 nm. .
  • Examples 28-29 A polyimide resin laminated film was produced in the same manner as in Example 23 except that the polyimide precursor solution shown in Table 4 was used for production of the resin film 2.
  • Example 1 measurement of light transmittance, laser peeling test, measurement of CTE, measurement of Tg, measurement of CTE change due to lamination, measurement of chromaticity coordinates, measurement of Rz of peeled surface, 1% weight After measuring the decrease temperature and forming an ITO film on the peeled surface, the water vapor transmission rate was measured. The results are shown in Table 4.
  • Table 6 shows the minimum value of the light transmittance in the wavelength region of 300 to 400 nm and the light transmittance at the wavelengths of 266 nm, 308 nm, 343 nm, 351 nm, and 355 nm when the resin film 1 is a film having a thickness of 100 nm. .
  • Comparative Examples 1 and 2 A polyimide resin laminated film was produced in the same manner as in Example 1 except that the polyimide precursor solution used for production of the resin film 1 was changed as described in Table 5. In the same manner as in Example 1, measurement of light transmittance, laser peeling test, and measurement of chromaticity coordinates were performed. The results are shown in Table 5. Even with the maximum irradiation energy (400 mJ / cm 2 ) of the apparatus used for the laser peeling test, the resin laminated film could not be peeled off. Therefore, measurement of CTE, measurement of change of CTE due to lamination, measurement of Rz of peeled surface, measurement of 1% weight loss temperature, film formation of ITO film, and measurement of water vapor transmission rate were not performed.
  • Table 6 shows the minimum value of the light transmittance in the wavelength region of 300 to 400 nm and the light transmittance at the wavelengths of 266 nm, 308 nm, 343 nm, 351 nm, and 355 nm when the resin film 1 is a film having a thickness of 100 nm. .
  • Comparative Example 3 A polyimide resin laminated film was produced in the same manner as in Example 24 except that the polyimide precursor solution used for the production of the resin film 1 was changed as described in Table 5. In the same manner as in Example 1, measurement of light transmittance, laser peeling test, and measurement of chromaticity coordinates were performed. The results are shown in Table 5. Even with the maximum irradiation energy (400 mJ / cm 2 ) of the apparatus used for the laser peeling test, the resin laminated film could not be peeled off. Therefore, measurement of CTE, measurement of change of CTE due to lamination, measurement of Rz of peeled surface, measurement of 1% weight loss temperature, film formation of ITO film, and measurement of water vapor transmission rate were not performed.
  • Table 6 shows the minimum value of the light transmittance in the wavelength region of 300 to 400 nm and the light transmittance at the wavelengths of 266 nm, 308 nm, 343 nm, 351 nm, and 355 nm when the resin film 1 is a film having a thickness of 100 nm. .
  • Preparation Example 3 Synthesis of polyamic acid solution DAE (0.30 mol), PDA (0.65 mol) and SiDA (0.05 mol) were charged together with 850 g of GBL and 850 g of NMP, and ODPA (0.9975 mol) was added. And reacted at 80 ° C. for 3 hours. Maleic anhydride (0.02 mol) was added and further reacted at 80 ° C. for 1 hour to obtain a polyamic acid solution (resin concentration 20% by weight).
  • Preparation Example 4 Preparation of black resin composition for forming black matrix 50 g of carbon black (manufactured by Mitsubishi Chemical Corporation) and 200 g of NMP were mixed with 250 g of the polyamic acid solution of Preparation Example 3, and Dino mill KDL. Using -A, a zirconia bead having a diameter of 0.3 mm was used for dispersion treatment at 3200 rpm for 3 hours to obtain a black resin dispersion.
  • Example 30 Production of color filter (FIG. 1)
  • Preparation of Polyimide Resin Laminate Film A 300 mm ⁇ 350 mm ⁇ 0.7 mm thick glass substrate (AN100 manufactured by Asahi Glass Co., Ltd.) is used as the support substrate (reference numeral: 1), and the firing temperature of the polyimide resin film A is set to 300 ° C.
  • a resin laminated film (code: 2) which is a polyimide resin laminated film composed of a polyimide laminated film A (code: 2A) and a resin film (code: 2B), was produced in the same manner as in Example 18.
  • the film thickness at the black matrix opening after the heat treatment is 2.0 ⁇ m.
  • the rotational speed of the spinner was adjusted so that the photosensitive red resist prepared in Preparation Example 5 was applied and prebaked at 100 ° C. for 10 minutes on a hot plate to obtain a red colored layer.
  • a UV exposure machine “PLA-5011” manufactured by Canon Inc. a black matrix opening and a partial area on the black matrix are passed through a chrome photomask through which light is transmitted in an island shape. / Cm 2 (ultraviolet intensity of 365 nm).
  • Examples 31 to 33, Comparative Example 4 A color filter was produced in the same manner as in Example 30, except that the polyimide resin laminate film was produced under the same conditions as in Example 18, except that the conditions were the same as those in Examples shown in Table 6.
  • Examples 30 to 33 there were no particular problems such as repelling or color mixing, and a good color filter could be obtained.
  • the color filters of Examples 31 to 33 were more curled and the number of missing pixels increased. This is considered due to an increase in CTE of the polyimide resin laminated film.
  • the color filter could not be peeled from the glass substrate.
  • Example 34 Production of TFT substrate (FIG. 2) [1] Preparation of polyimide resin laminated film A glass substrate (AN100 (Asahi Glass Co., Ltd.)) having a thickness of 300 mm ⁇ 400 mm ⁇ 0.7 mm was used as a support substrate (reference numeral: 1), and the firing temperature of the polyimide resin film A was 300 ° C.
  • a resin laminated film code: 2 ′
  • a resin laminated film which is a polyimide resin laminated film composed of a polyimide resin film A (code: 2A ′) and a resin film (code: 2B ′) is used. Produced.
  • TFT substrate A gas barrier layer (symbol: 5) made of SiO was formed on the polyimide resin laminate film (on a glass substrate) produced by the above-described method using a plasma CVD method. Thereafter, a bottom gate type TFT (symbol: 6) was formed, and an insulating film (not shown) made of Si 3 N 4 was formed so as to cover the TFT. Next, after forming a contact hole in the insulating film, a wiring (height: 1.0 ⁇ m, not shown) connected to the TFT through the contact hole was formed on the insulating film. This wiring is for connecting an organic EL element formed between TFTs or an organic EL element formed in a later process and the TFT.
  • a flattening layer (symbol: 7) was formed on the insulating film in a state where the unevenness due to the wiring was embedded.
  • the flattening layer is formed by spin-coating a photosensitive polyimide varnish on a substrate, pre-baking on a hot plate (120 ° C. ⁇ 3 minutes), exposing and developing through a mask having a desired pattern, and under an air flow The heat treatment was performed at 230 ° C. for 60 minutes. The applicability when applying the varnish was good, and no wrinkles or cracks were observed in the flattened layer obtained after exposure, development and heat treatment. Furthermore, the average level difference of the wiring was 500 nm, a 5 ⁇ m square contact hole was formed in the prepared planarization layer, and the thickness was about 2 ⁇ m.
  • Examples 35 to 36 A TFT substrate was produced in the same manner as in Example 34 except that the polyimide resin laminate film was produced under the same conditions as in Example 26, except that the conditions were the same as those in Example 8 shown in Table 8.
  • the obtained TFT substrate (FIG. 2) was subjected to a laser peeling test by the method described in (6), the evaluation of the curl of the TFT substrate by the method described in (14), and the element missing by the method described in (15). Was evaluated. Moreover, after producing a polyimide laminated film on the glass substrate, the warpage amount of the glass substrate was measured by the method described in (13). The results are shown in Table 8.
  • Example 37 Production of polyimide substrate organic EL display (FIG. 3)
  • top emission type organic EL element The following parts were formed on the flattening layer (symbol: 7) of the TFT obtained by the above method to fabricate a top emission type organic EL element. .
  • a first electrode (symbol: 8) made of Al / ITO (Al: reflective electrode) was connected to a wiring through a contact hole.
  • a resist was applied, prebaked, exposed through a mask having a desired pattern, and developed.
  • patterning of the first electrode (symbol: 8) was performed by wet etching using an ITO etchant.
  • the resist pattern was stripped using a resist stripping solution (mixed solution of monoethanolamine and diethylene glycol monobutyl ether).
  • the substrate after peeling was washed with water and dehydrated by heating at 200 ° C. for 30 minutes to obtain an electrode substrate with a planarizing layer.
  • the change in the thickness of the flattening layer was less than 1% after heat dehydration with respect to the treatment before the stripping solution treatment.
  • the first electrode (symbol: 8) thus obtained corresponds to the anode of the organic EL element.
  • an insulating layer (symbol: 9) having a shape covering the end of the first electrode (symbol: 8) was formed.
  • the photosensitive polyimide varnish was also used for the insulating layer.
  • a hole transport layer, an organic light emitting layer, and an electron transport layer are sequentially deposited through a desired pattern mask in a vacuum vapor deposition apparatus, and a red organic EL light emitting layer (symbol: 11R), a green organic EL light emitting layer ( Code: 11G) and a blue organic EL light emitting layer (code: 11B) were provided.
  • a second electrode (symbol: 10) made of Mg / ITO was formed on the entire surface above the substrate.
  • a SiON sealing film (symbol: 12) was formed by CVD film formation.
  • the organic EL element was peeled from the glass substrate by the method described in (6) to produce an organic EL display (FIG. 3).
  • an organic EL display FIG. 3
  • a voltage was applied to the obtained active matrix type organic EL display via a drive circuit, good light emission was exhibited.
  • the obtained organic EL element was inferior compared with the organic EL element produced using the glass substrate.
  • Example 38 Production of polyimide substrate organic EL display (FIG. 4) [1] Preparation of Polyimide Resin Laminate Film Resin laminate that is a polyimide resin laminate film resin laminate film composed of polyimide resin film A (symbol: 2A ′) and resin film (symbol: 2B ′) by the method described in Example 34. A membrane (sign: 2 ') was produced.
  • TFT substrate was fabricated by the method described in Example 34.
  • top emission type organic EL element was produced by the method described in Example 34, except that the organic light emitting layer was changed to a white organic EL light emitting layer (symbol: 11 W).
  • Supporting substrate 2 2 ′ resin laminated film 2A, 2A ′ polyimide resin film A 2B, 2B 'Resin film 3 Black matrix 4R Red colored pixel 4G Green colored pixel 4B Blue colored pixel 5 Gas barrier layer 6 TFT 7 Flattening layer 8 First electrode 9 Insulating layer 10 Second electrode 11R Red organic EL light emitting layer 11G Green organic EL light emitting layer 11B Blue organic EL light emitting layer 11W White organic EL light emitting layer 12 Sealing film 13 Adhesive layer 20 CF 30 Organic EL device

Landscapes

  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

紫外光を用いたレーザー剥離に要する照射エネルギーが低い樹脂積層膜を提供することを課題とする。 樹脂膜の少なくとも一方の表面にポリイミド樹脂膜を有する樹脂積層膜であって、前記ポリイミド樹脂膜が、以下のポリイミド樹脂膜Aである樹脂積層膜。 ポリイミド樹脂膜A:厚さ100nmの膜としたときに、波長300~400nmの波長域において、光透過率の最小値が50%未満であるポリイミド樹脂膜。

Description

樹脂積層膜、それを含む積層体、TFT基板、有機EL素子カラーフィルターならびにそれらの製造方法
 本発明は、樹脂積層膜、それを含む積層体、TFT基板、および有機EL素子ならびにそれらの製造方法に関するものである。
 樹脂膜はガラスに比べて屈曲性に富み、割れにくく、軽量である。最近では、樹脂膜をフラットパネルディスプレイの基板に用いて、ディスプレイをフレキシブル化する検討がなされている。
 一般に、樹脂膜としては、ポリエステル、ポリアミド、ポリイミド、ポリアミドイミド、ポリベンゾオキサゾール、ポリカーボネート、ポリエーテルスルホン、アクリル、エポキシなどが挙げられる。表示装置や光学素子等のガラス基板の代替材料に樹脂膜を使用するには、耐熱性や可視光領域での透明性等が求められる。表示装置としては、有機エレクトロルミネッセンス(有機EL)ディスプレイ、液晶ディスプレイ、電子ペーパー等が挙げられる。光学素子としてはカラーフィルタ、その他の部材としてはタッチパネルが挙げられる。
 樹脂膜を用いてフレキシブル基板を製造する方法の一例としては、支持基板の上に樹脂ワニスを塗布し樹脂膜を形成する工程、該樹脂膜上に表示装置や光学素子等を形成する工程、樹脂膜を支持体基板から剥離する工程を含む方法が挙げられる。
 樹脂膜を支持基板から剥離する方法として、紫外光を用いたレーザー剥離技術が開示されている(例えば、特許文献1、2参照)。この手法では、レーザー光が樹脂に吸収されることで生じた熱により、支持基板との界面近傍の樹脂が熱分解されることで、樹脂膜が支持基板から剥離する。
特表2007-512568号公報 特表2010-500609号公報
 しかし、ポリイミドに代表される耐熱性樹脂膜では、剥離に必要な照射エネルギーが高くレーザー剥離性が悪いという課題があった。
 これは、樹脂膜の耐熱性が高いため、レーザー照射によって熱分解が起こりにくいためと考えられる。また、可視光領域での光透過率が高い透明ポリイミドは、着色ポリイミドに比べ、剥離に必要な照射エネルギーが高い。これは、耐熱性に加え、紫外光域での吸光度が低いことが原因と考えられる。
 そこで本発明は、該波長域の紫外光を用いたレーザー剥離に要する照射エネルギーが低い樹脂積層膜を提供することを目的とする。
 すなわち本発明は、樹脂膜の少なくとも一方の表面にポリイミド樹脂膜を有する樹脂積層膜であって、前記ポリイミド樹脂膜が、以下のポリイミド樹脂膜Aである樹脂積層膜である。
ポリイミド樹脂膜A:厚さ100nmの膜としたときに、波長300~400nmの波長域において、光透過率の最小値が50%未満であるポリイミド樹脂膜。
 本発明の樹脂積層膜は、支持基板からレーザー剥離する際に必要な照射エネルギーを低下させることができる。
カラーフィルタ基板の一例を示す断面図 TFT基板の一例を示す断面図 有機EL素子ディスプレイの一例を示す断面図 有機EL素子ディスプレイの一例を示す断面図
 以下、本発明を実施するための形態を詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。
 <樹脂積層膜>
 本発明の樹脂積層膜は、樹脂膜の少なくとも一方の表面にポリイミド樹脂膜を有する樹脂積層膜であって、前記ポリイミド樹脂膜が、以下のポリイミド樹脂膜Aである樹脂積層膜である。
ポリイミド樹脂膜A:厚さ100nmの膜としたときに、波長300~400nmの波長域において、光透過率の最小値が50%未満であるポリイミド樹脂膜。
 ポリイミド樹脂膜Aは、厚さ100nmの膜としたときに、波長308nm、343nm、351nm、355nmの少なくとも1つにおいて、光透過率が50%未満であることが好ましい。
 以下、厚さ100nmの膜としたときに、波長300~400nmの波長域において、光透過率の最小値が50%未満であることを「物性(A)」と称する。また、厚さ100nmの膜としたときに、波長300~400nmの波長域の光透過率の最小値を与える波長をλとする。
 ポリイミド樹脂膜Aは、物性(A)を満たすため、λ近傍の波長のレーザーの光吸収が大きい。そのため、光吸収により生じる熱が大きく、その結果レーザー剥離に必要な照射エネルギーが、物性(A)を満たさないポリイミド樹脂膜よりも低くなる。以降、レーザー剥離に必要な照射エネルギーが低下することを、レーザー剥離性が良くなると表現する。
 レーザー剥離に必要な照射エネルギーを低下させることで、樹脂膜の剥離面の平滑性を高くすることができる。例えば、照射エネルギーが低いほど、剥離面の最大高さ(Rz)を小さくすることができる。剥離面の平滑性を高くすることで、例えば、剥離面への無機膜の製膜性を改善することができる。剥離面に凹凸があると、無機膜により剥離面のカバレッジ性が低下したり、無機膜にピンホール欠陥が発生したりする。これらは、無機膜のガスバリア性の低下の原因になるなど、無機膜の特性低下につながる。したがって、剥離面の平滑性は高いことが好ましい。なお、剥離面の平滑性は、表面粗さ計やAFM等で評価することができる。また、平滑性の指標としては、Rz以外にも、算術平均粗さ(Ra)、粗さ曲線の最大山高さ(Rp)、粗さ曲線の最大谷深さ(Rv)などを用いることができる。
 ポリイミド樹脂膜Aに含まれるポリイミドは特に制限はないが、当該ポリイミドにおけるジアミン残基の主成分が、以下の(B)ジアミン誘導体に由来することが好ましい。
(B)濃度1×10-4mol/LのN-メチル-2-ピロリドン溶液としたときに、波長300~400nmの波長域において、光路長1cmの条件下での吸光度の最大値が0.6を超えるジアミン誘導体。
 (B)ジアミン誘導体は、濃度1×10-4mol/LのN-メチル-2-ピロリドン溶液としたときに、波長308nm、343nm、351nm、355nmの少なくとも1つにおいて、光路長1cmの条件下での吸光度が0.6を超えるジアミン誘導体であることがより好ましい。
 ジアミン誘導体とは、ジアミン化合物、ジイソシアネート化合物、シリル化剤(アミド系シリル化剤など)と反応させたジアミン化合物等が挙げられる。
 ポリイミド樹脂膜Aが物性(A)を満たすためには、ポリイミドの原料モノマーである、酸二無水物誘導体かジアミン誘導体の少なくとも一方の、300~400nmの波長域における吸光度が高いことが必要である。酸二無水物誘導体と比較するとジアミン誘導体の方が分子設計の自由度が高いため、300~400nmの波長域の吸光度の高いジアミン誘導体を入手することが容易である。
 以下、(B)ジアミン誘導体に由来するジアミン残基を主成分とするポリイミドを「ポリイミドB」と称する。ここで主成分とは、ポリイミドの全ジアミン残基に占める当該ジアミン残基の割合が他の全てのジアミン残基の合計の割合よりも高いことをいう。また、(B)ジアミン誘導体が波長300~400nmの波長域において吸光度の最大値を与えるときの波長をλとする。
 ポリイミドBでは、λ近傍の波長で光透過率の最小値が与えられ、λ近傍の波長のレーザーの光吸収が大きくなる。そのため、光吸収により生じる熱が大きく、その結果レーザー剥離に必要な照射エネルギーが、ポリイミドB以外のポリイミドよりも低くなる。
 本発明の樹脂積層膜の作製方法は、特に限定は無いが、後に述べるように2段階の製膜プロセスによる作製をすることが好ましい。一例を挙げると、まずガラス基板等の支持基板上に第1の樹脂膜(以下「樹脂膜1」という)としてポリイミド樹脂膜Aを製膜し、次に樹脂膜1上に第2の樹脂膜(以下「樹脂膜2」という)を製膜し、ガラス基板側からレーザーを照射して、ガラス基板から樹脂積層膜を剥離する。ガラス基板上に樹脂膜1が存在するため、樹脂膜2の種類に関わらず、樹脂積層膜は良好なレーザー剥離性を示す。
 照射レーザーの波長は特に限定されず、266nm、308nm、343nm、351nm、355nm等が挙げられる。また、樹脂積層膜が剥離するのであれば光源はレーザーに限定されず、高圧水銀灯、LEDなどを用いてもよい。
 このような樹脂積層膜は、少なくとも樹脂膜1と樹脂膜2がこの順に積層された構成であることが好ましい。また樹脂膜2の積層数は特に限定されず、樹脂膜2は単層でも2層以上の積層膜でもよく、例えば樹脂膜2が樹脂膜1と同じポリイミド樹脂からなる樹脂層を含んでいてもよい。ただし、樹脂積層膜の透明性や層間の密着性の観点から、樹脂積層膜の積層数は2が好ましい。すなわち、樹脂膜2は単層であることが好ましい。
 また本発明の樹脂積層膜は樹脂膜1と樹脂膜2の間に無機膜が挿入されていても良い。無機膜が挿入されていると積層膜のガスバリア性が向上するため、好ましい。
 樹脂膜上のガスバリア層は水蒸気や酸素等の透過を防ぐ役割を果たすものである。特に有機EL素子では、水分による素子の劣化が著しいので、基板として用いられる樹脂積層膜にガスバリア性を付与することが求められる場合がある。
 本発明の樹脂積層膜の中の表面に存在する樹脂膜が物性Aを満たすかどうかは、当該樹脂積層体を、測定対象の表面と反対側から厚さ100nmになるまでエッチングし、残った膜の光透過率を測定することにより、確認することができる。
 その具体的な方法としては、例えば以下の手順で測定することができる。まず、樹脂積層膜の膜厚を、段差計、走査型電子顕微鏡(SEM)、マイクロメータ等で測定する。この際に、SEMによる樹脂積層膜の破断面観察を行うことで、樹脂積層膜中の各樹脂層の膜厚を測定することもできる。その後、測定対象となる側の表面を粘着テープ等でガラス基板に固定し、グロー放電発光分析装置(GD-OES)、反応性イオンエッチング(RIE)、ガスクラスターイオンビーム(GCIB)などの手法で、樹脂積層膜の測定対象とは反対側の面から測定対象側の面に向かって、膜厚100nmになるまでエッチングを行う。エッチング手法としては特に限定はされないが、樹脂膜の元素分析も同時に行えることから、GD-OESやGCIBが好ましい。膜厚100nmまでエッチングを行った後に、顕微分光装置を用いて、光透過スペクトルを測定する。同様のエッチングと光透過率測定を5箇所で行い、それらの平均値を光透過率とする。
 本発明の樹脂積層膜の中の樹脂組成(例えば、樹脂膜1のジアミン残基の分子構造など)や各層の膜厚は、TPD-MSによる全組成分析、TOF-SIMSやIRスペクトル測定と精密斜め切創法を用いることで分析することができる。
 ポリイミド樹脂膜Aの光透過率の最小値は50%未満であれば特に限定されないが、40%未満であることが好ましく、30%未満がより好ましく、20%未満がさらに好ましい。光透過率が低くなるにつれ、レーザー剥離に必要な照射エネルギーが低下し、20%未満の場合に、特に照射エネルギー低減の効果が大きい。
 (B)ジアミン誘導体の前記吸光度の最大値は、0.6を超えるのであれば特に限定されないが、0.8以上であることが好ましく、1.0以上がさらに好ましい。吸光度が高くなるにつれ、レーザー剥離に必要な照射エネルギーが低下し、1.0以上の場合に、特に照射エネルギー低減の効果が大きい。
 樹脂膜1および樹脂膜2の厚さは特に限定されないが、樹脂積層膜の透明性、耐熱性、線熱膨張係数(以下、CTEと記すこともある)等の観点から、樹脂膜1の厚さは100nm~1μmが好ましく、100nm~0.5μmがより好ましい。樹脂膜1の厚さが1μm以下の場合、樹脂膜1の可視光域での透明性が高くなる。したがって、樹脂積層膜の可視光域での透明性を損なわない。また、樹脂膜1の厚さは樹脂膜2の厚さよりも薄いことが好ましい。
 また、樹脂積層膜における樹脂膜1の割合は特に制限されないが、樹脂膜1の割合が50%以下であることが好ましく、10%以下であることがさらに好ましい。樹脂膜1の割合を10%以下にすることで、樹脂積層膜全体のCTEが大きくなることを防ぐことができる。具体的には、樹脂積層膜と樹脂膜2のCTEの差をかなり小さく、例えば5ppm/℃以下にすることができる。
 本発明の樹脂積層膜のCTEについては特に規定はないが、50℃~200℃の範囲で-10~30ppm/℃の範囲であることが好ましい。この範囲にあることで、支持基板上に樹脂積層膜を形成した際の基板の反りを低減でき、その結果、TFT等の素子を高精度で樹脂積層膜上に作製できる。特に、TFT基板として用いる場合は、-10~20ppm/℃の範囲がより好ましく、-10~10ppm/℃の範囲がさらに好ましい。
 本発明の樹脂積層膜のガラス転移温度(Tg)については特に規定はないが、300℃以上であることが好ましい。この範囲にあることで、樹脂積層膜上への無機膜の製膜温度を高くすることができ、例えばガスバリア層やTFTの性能を高めることができる。特に、TFTを形成する際には、一般的に350℃以上の温度が使用されることから、樹脂積層膜のTgとしては、350℃以上であることがより好ましく、400℃以上であることがさらに好ましい。
 本発明の樹脂積層膜の透明性については特に規定はないが、ボトムエミッション型有機ELディスプレイの基材、カラーフィルタ基材、タッチパネル基材等のように基板に可視光域での透明性が求められる場合は、樹脂積層膜が透明であることが好ましい。
 ここで言う透明とは、樹脂積層膜を通して視認される透過光を白色に近い色調であることを意味し、より具体的には、前記樹脂積層膜のXYZ表色系色度図における透過色度座標(x,y)が、光源の色度座標(x0,y0)に対して、(x-x0)/2+(y-y0)/2≦0.01であることをいう。
 ここで、「透過色度座標」とは、2度視野で測定したCIE1931表色系における透過色度の座標のことをいう。光源の種類としては、例えばC光源等が挙げられる。
 前記(x-x0)/2+(y-y0)/2≦0.01の関係式を満たす具体例としては、例えば、前記樹脂積層膜において、波長400nm~800nmにおける光透過率が80%以上である場合などが挙げられる。なお、透過色度座標、及び光透過率はガラス基板に本発明の樹脂積層膜を形成し、紫外可視分光光度計や色度計などを用いて測定することができる。
 (樹脂膜1)
 樹脂膜1は、物性Aを満たすポリイミド樹脂膜であれば特に限定されないが、そのポリイミド成分にはポリイミドBを含むことが好ましく、ポリイミド成分がポリイミドBからなることがさらに好ましい。(B)ジアミン誘導体は、濃度1×10-4mol/LのN-メチル-2-ピロリドン溶液における、波長300~400nmの波長域において、光路長1cmの条件下での吸光度の最大値が0.6を超える波長を有するジアミン誘導体であれば特に限定されず、例えば、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、9,9-ビス(4-アミノフェニル)フルオレン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[3-(3-アミノフェノキシ)フェニル]スルホン、ビス[3-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、ビス(4-アミノフェノキシ)ビフェニル、2,2-ビス[3-(3-アミノベンズアミド)-4-ヒドロキシフェニル]ヘキサフルオロプロパン、ビス[3-(3-アミノベンズアミド)-4-ヒドロキシフェニル]スルホン、2,2-ビス[2-(3-アミノフェニル)-5-ベンゾオキサゾリル]ヘキサフルオロプロパン、ビス[2-(3-アミノフェニル)-5-ベンゾオキサゾリル]スルホン等が挙げられる。
 特に、レーザー剥離の光源として一般的に用いられる308nmの光に対する吸光度が高いことから、式(1)または(2)で表される構造を含むジアミン誘導体に由来するジアミン残基を樹脂膜1のポリイミドが主成分に有することが好ましい。
Figure JPOXMLDOC01-appb-C000003
 式(1)~(2)中、Aは、単結合、酸素原子、硫黄原子、スルホニル基、フェニル基、フルオレニル基、ハロゲン原子で水素原子が置換されていてもよい炭素数1~5の2価の有機基、またはそれらが2以上連結してなる2価の有機基を示す。R~Rは各々独立に少なくとも1つアミノ基を有する炭素数1~10の1価の有機基を示す。
 式(1)にはヒドロキシアミド構造、式(2)にはベンゾオキサゾール構造が含まれており、これらの構造が、波長300~400nmの波長域での吸光度を高めるのに有効である。
 ベンゾオキサゾール構造を含むジアミン残基をポリイミド分子鎖に導入する第1の方法としては、式(1)で表されるヒドロキシアミド構造を有するジアミン化合物又はその誘導体と酸二無水物又はその誘導体との反応により合成されるポリイミド前駆体の加熱閉環、又は化学的閉環反応により、イミド閉環とオキサゾール閉環させることが挙げられる。第2の方法としては、式(2)で表されるベンゾオキサゾール構造を有するジアミン化合物又はその誘導体と酸二無水物又はその誘導体との反応により合成されるポリイミド前駆体の加熱閉環、又は化学的閉環反応により、イミド閉環させることが挙げられる。
 イミド閉環のための加熱温度は特に限定されないが、250℃以上が好ましく、300℃以上がより好ましい。なお、イミダゾール等の塩基性触媒を加えることで、イミド閉環の温度を低下させることができる。オキサゾール閉環のための加熱温度は特に限定されないが、300℃以上が好ましく、350℃以上がより好ましい。なお、熱酸発生剤等の酸性触媒を加えることで、オキサゾール閉環の温度を低下させることができる。
 樹脂膜1のレーザー剥離性の観点から、樹脂膜1のポリイミドのジアミン残基には、式(2)のベンゾオキサゾール構造が含まれているか、又は式(1)、(2)のAがヘキサフルオロイソプロピリデン基であることが好ましい。ベンゾオキサゾール構造はヒドロキシアミド構造と比較して波長300-400nmの吸光度が高いため、レーザー剥離に必要な照射エネルギーを低下させるのに有効である。また、Aがヘキサフルオロイソプロピリデン基の場合、単結合、フルオレニル基、スルホニル基等と比較して熱分解しやすいため、レーザー剥離に必要な照射エネルギーを低下させるのに有効である。
 樹脂膜1の可視光域での透明性の観点からは、Aはヘキサフルオロイソプロピリデン基又はスルホニル基が好ましい。一般式(1)または(2)で表される構造を含むジアミン誘導体としては、例えば下記化学式(3)~(6)で表されるジアミン化合物に由来するジアミン残基を樹脂膜1のポリイミドが主成分に有することが特に好ましい。
Figure JPOXMLDOC01-appb-C000004
 一般式(3)~(6)で表されるジアミン化合物に由来するジアミン残基が樹脂膜1のポリイミドの主成分であることで、樹脂膜1の可視光域での透明性をより高めることができる。そのため、樹脂積層膜の透明性を悪化させることがなく、可視光域での透明性が必要とされる用途で好適に用いることができる。そのような用途の例としては、ボトムエミッション型有機ELディスプレイの基材、カラーフィルタ基材、タッチパネル基材等が挙げられる。
 また樹脂膜1の耐熱性の観点からは、Aは単結合もしくはフェニル基が好ましい。Aが単結合もしくはフェニル基であるジアミン化合物が樹脂膜1のポリイミドの主成分であることで樹脂積層膜の耐熱性がより向上するため、製造工程で高温のプロセスを必要とするデバイスの基材として好適に用いることができる。具体的には、基材と素子との間に高温でバリア層を形成する場合のある有機ELディスプレイの基材、移動度や信頼性確保のために高温でアニールする場合があるTFTの基材などが挙げられる。
 樹脂膜1のポリイミドが、(B)ジアミン誘導体に由来するジアミン残基を主成分とする場合、他のジアミン誘導体に由来するジアミン残基を含んでもよい。ここで主成分とは、ポリイミドの全ジアミン残基に占める当該ジアミン残基の割合が他の全てのジアミン残基の合計の割合よりも高いことをいう。
 他のジアミン誘導体としては特に限定されず、芳香族ジアミン化合物、脂環式ジアミン化合物、又は脂肪族ジアミン化合物が挙げられる。
 芳香族ジアミン化合物としては、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルヒド、4,4’-ジアミノジフェニルスルヒド、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、3,3’-ビス(トリフルオロメチル)ベンジジン、2,2’-ジメチルベンジジン、3,3’-ジメチルベンジジン、2,2’,3,3’-テトラメチルベンジジン、2,2’-ジクロロベンジジン、3,3’-ジクロロベンジジン、2,2’,3,3’-テトラクロロベンジジン、m-フェニレンジアミン、p-フェニレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、あるいはこれらの芳香族環の水素原子をアルキル基、アルコキシ基、ハロゲン原子などで置換したジアミン化合物が挙げられるが、これらに限定されるものではない。
 脂環式ジアミン化合物としては、シクロブタンジアミン、イソホロンジアミン、ビシクロ[2,2,1]ヘプタンビスメチルアミン、トリシクロ[3,3,1,13,7]デカン-1,3-ジアミン、1,2-シクロヘキシルジアミン、1,3-シクロヘキシルジアミン、1,4-シクロヘキシルジアミン、trans-1,4-シクロヘキシルジアミン、cis-1,4-シクロヘキシルジアミン、4,4’-ジアミノジシクロヘキシルメタン、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、3,3’-ジエチル-4,4’-ジアミノジシクロヘキシルメタン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジシクロヘキシルメタン、3,3’,5,5’-テトラエチル-4,4’-ジアミノジシクロヘキシルメタン、3,5-ジエチル-3’,5’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノジシクロヘキシルエーテル、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルエーテル、3,3’-ジエチル-4,4’-ジアミノジシクロヘキシルエーテル、3,3’,5,5’-テトラメチル-4,4’-ジアミノジシクロヘキシルエーテル、3,3’,5,5’-テトラエチル-4,4’-ジアミノジシクロヘキシルエーテル、3,5-ジエチル-3’,5’-ジメチル-4,4’-ジアミノジシクロヘキシルエーテル、2,2-ビス(4-アミノシクロヘキシル)プロパン、2,2-ビス(3-メチル-4-アミノシクロヘキシル)プロパン、2,2-ビス(3-エチル-4-アミノシクロヘキシル)プロパン、2,2-ビス(3,5-ジメチル-4-アミノシクロヘキシル)プロパン、2,2-ビス(3,5-ジエチル-4-アミノシクロヘキシル)プロパン、2,2-(3,5-ジエチル-3’,5’-ジメチル-4,4’-ジアミノジシクロヘキシル)プロパン、あるいはこれらの脂環構造の水素原子をアルキル基、アルコキシ基、ハロゲン原子などで置換したジアミン化合物が挙げられるが、これらに限定されるものではない。
 脂肪族ジアミン化合物としては、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカンなどのアルキレンジアミン類、ビス(アミノメチル)エーテル、ビス(2-アミノエチル)エーテル、ビス(3-アミノプロピル)エーテルなどのエチレングリコールジアミン類、及び1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、1,3-ビス(4-アミノブチル)テトラメチルジシロキサン、α,ω-ビス(3-アミノプロピル)ポリジメチルシロキサンなどのシロキサンジアミン類が挙げられるが、これらに限定されるものではない。
 これらの芳香族ジアミン化合物、脂環式ジアミン化合物、又は脂肪族ジアミン化合物は、単独で又は2種以上を組み合わせて使用することができる。
 樹脂膜1におけるポリイミドの製造に用いられる酸二無水物は既知のものを使用することができる。酸二無水物としては特に限定されず、芳香族酸二無水物、脂環式酸二無水物、又は脂肪族酸二無水物が挙げられる。
 芳香族酸二無水物としては、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ターフェニルテトラカルボン酸二無水物、3,3’,4,4’-オキシジフタル酸二無水物、2,3,3’,4’-オキシジフタル酸二無水物、2,3,2’,3’-オキシジフタル酸二無水物、ジフェニルスルホン-3,3’,4,4’-テトラカルボン酸二無水物、ベンゾフェノン-3,3’,4,4’-テトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、1,4-(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、ビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボン酸)1,4-フェニレン-2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパンニ無水物、2,2-ビス(4-(3,4-ジカルボキシベンゾイルオキシ)フェニル)ヘキサフルオロプロパン二無水物、1,6-ジフルオロピロメリット酸二無水物、1-トリフルオロメチルピロメリット酸二無水物、1,6-ジトリフルオロメチルピロメリット酸二無水物、2,2’-ビス(トリフルオロメチル)-4,4’-ビス(3,4-ジカルボキシフェノキシ)ビフェニル二無水物、2,2’-ビス[(ジカルボキシフェノキシ)フェニル]プロパン二無水物、2,2’-ビス[(ジカルボキシフェノキシ)フェニル]ヘキサフルオロプロパンニ無水物、あるいはこれらの芳香族環の水素原子をアルキル基、アルコキシ基、ハロゲン原子などで置換した酸二無水物化合物が挙げられるが、これらに限定されるものではない。
 脂環式酸二無水物としては、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1S,2S,4R,5R-シクロへキサンテトラカルボン酸二無水物、1R,2S,4S,5R-シクロへキサンテトラカルボン酸二無水物などの1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、3,4-ジカルボキシ-1-シクロヘキシルコハク酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物、ビシクロ[4,3,0]ノナン-2,4,7,9-テトラカルボン酸二無水物、ビシクロ[4,4,0]デカン-2,4,7,9-テトラカルボン酸二無水物、ビシクロ[4,4,0]デカン-2,4,8,10-テトラカルボン酸二無水物、トリシクロ[6,3,0,0<2,6>]ウンデカン-3,5,9,11-テトラカルボン酸二無水物、ビシクロ[2,2,2]オクタン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2,2,1]ヘプタンテトラカルボン酸二無水物、ビシクロ[2,2,1]ヘプタン-5-カルボキシメチル-2,3,6-トリカルボン酸二無水物、7-オキサビシクロ[2,2,1]ヘプタン-2,4,6,8-テトラカルボン酸二無水物、オクタヒドロナフタレン-1,2,6,7-テトラカルボン酸二無水物、テトラデカヒドロアントラセン-1,2,8,9-テトラカルボン酸二無水物、3,3’,4,4’-ジシクロへキサンテトラカルボン酸二無水物、3,3’,4,4’-オキシジシクロヘキサンテトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、“リカシッド”(登録商標)TDA-100(商品名、新日本理化(株)製)及びそれらの誘導体、あるいはこれらの脂環構造の水素原子をアルキル基、アルコキシ基、ハロゲン原子などで置換した酸二無水物化合物が挙げられるが、これらに限定されるものではない。
 脂肪族酸二無水物としては、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-ペンタンテトラカルボン酸二無水物、“リカシッド”(登録商標)BT-100(商品名、新日本理化(株)製)、“リカシッド”(登録商標)TMEG-100(商品名、新日本理化(株)製)、“リカシッド”(登録商標)TMTA-C(商品名、新日本理化(株)製)、及びそれらの誘導体などが挙げられるが、これらに限定されるものではない。
 これらの芳香族酸二無水物、脂環式酸二無水物、又は脂肪族酸二無水物は、単独で又は2種以上を組み合わせて使用することができる。
 ポリイミド樹脂膜Aに含まれるポリイミドとしては、耐熱性向上の観点から、芳香族酸二無水物残基を主成分とするポリイミドが好ましい。特に芳香族酸二無水物残基がピロメリット酸二無水物もしくは3,3’,4,4’-ビフェニルテトラカルボン酸二無水物に由来する残基であると耐熱性の向上に加えて低CTE化の効果が得られるため好ましい。
 また、ポリイミド樹脂膜Aに含まれるポリイミドとしては、可視光域での透明性、及びレーザー剥離に必要な照射強度低減の観点から、脂環式酸二無水物残基を主成分とするか、脂肪族酸二無水物残基を主成分とするか、または脂環式酸二無水物残基および脂肪族酸二無水物残基の合計を主成分とするポリイミドが好ましい。特に、ポリイミドBとしては、脂環式酸二無水物残基を主成分とするか、脂肪族酸二無水物残基を主成分とするか、または脂環式酸二無水物残基および脂肪族酸二無水物残基の合計を主成分とするポリイミドが好ましい。これらの酸二無水物残基を有することで、ポリイミドの着色の原因の1つである電荷移動吸収が抑制されるため、樹脂膜1の可視光域での透明性が向上する。また、これらの酸二無水物残基は芳香族酸二無水物残基よりも熱分解しやすいため、レーザー剥離に必要な照射強度の低減効果が大きくなる。
 なお、「芳香族酸二無水物残基を主成分とする」とは、ポリイミドの全酸二無水物残基に占める当該芳香族酸二無水物残基の割合が他の全ての酸二無水物残基の合計の割合よりも高いことをいう。
 「脂環式酸二無水物残基を主成分とする」とは、ポリイミドの全酸二無水物残基に占める当該脂環式酸二無水物残基の割合が他の全ての酸二無水物残基の合計の割合よりも高いことをいう。
 「脂肪族酸二無水物残基を主成分とする」とは、ポリイミドの全酸二無水物残基に占める当該脂肪族酸二無水物残基の割合が他の全ての酸二無水物残基の合計の割合よりも高いことをいう。
 「脂環式酸二無水物残基および脂肪族酸二無水物残基の合計を主成分とする」とは、ポリイミドの全酸二無水物残基に占める当該脂環式酸二無水物残基および脂肪族酸二無水物残基の合計の割合が他の全ての酸二無水物残基の合計の割合よりも高いことをいう。
 これらの残基が主成分であれば、酸二無水物の合計に対する割合に制限はないが、レーザー剥離性の観点から75%以上が好ましい。
 脂環式酸二無水物、脂肪族酸二無水物の中でも、入手のし易さの観点から、シクロブタンテトラカルボン酸二無水物、1S,2S,4R,5R-シクロへキサンテトラカルボン酸二無水物、1R,2S,4S,5R-シクロへキサンテトラカルボン酸二無水物、3,3’,4,4’-ジシクロへキサンテトラカルボン酸二無水物、“リカシッド”(登録商標)BT-100(以上、商品名、新日本理化(株)製)、“リカシッド”(登録商標)TMEG-100(以上、商品名、新日本理化(株)製)、“リカシッド”(登録商標)TMTA-C(以上、商品名、新日本理化(株)製)、“リカシッド”(登録商標)TDA-100(以上、商品名、新日本理化(株)製)が好ましい。
 これらの中でも、ジアミン誘導体との反応性の観点から、化学式(7)~(10)に示す、シクロブタンテトラカルボン酸二無水物、1S,2S,4R,5R-シクロへキサンテトラカルボン酸二無水物、1R,2S,4S,5R-シクロへキサンテトラカルボン酸二無水物、3,3’,4,4’-ジシクロへキサンテトラカルボン酸二無水物がより好ましい。すなわち、ポリイミドにおける脂環式酸二無水物残基が、式(7)~(10)のいずれかで表されるテトラカルボン酸二無水物に由来することが好ましい。
Figure JPOXMLDOC01-appb-C000005
 ポリイミド、及びポリアミド酸やポリアミド酸エステル、ポリアミド酸シリルエステルなどのポリイミド前駆体樹脂は、分子量を好ましい範囲に調整するために末端封止剤により両末端を封止してもよい。酸二無水物と反応する末端封止剤としては、モノアミンや一価のアルコールなどが挙げられる。また、ジアミン化合物と反応する末端封止剤としては、酸無水物、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物、二炭酸エステル化合物、ビニルエーテル化合物などが挙げられる。また、末端封止剤を反応させることにより、末端基として種々の有機基を導入することができる。
 酸無水物基末端の封止剤に用いられるモノアミンとしては、5-アミノ-8-ヒドロキシキノリン、4-アミノ-8-ヒドロキシキノリン、1-ヒドロキシ-8-アミノナフタレン、1-ヒドロキシ-7-アミノナフタレン、1-ヒドロキシ-6-アミノナフタレン、1-ヒドロキシ-5-アミノナフタレン、1-ヒドロキシ-4-アミノナフタレン、1-ヒドロキシ-3-アミノナフタレン、1-ヒドロキシ-2-アミノナフタレン、1-アミノ-7-ヒドロキシナフタレン、2-ヒドロキシ-7-アミノナフタレン、2-ヒドロキシ-6-アミノナフタレン、2-ヒドロキシ-5-アミノナフタレン、2-ヒドロキシ-4-アミノナフタレン、2-ヒドロキシ-3-アミノナフタレン、1-アミノ-2-ヒドロキシナフタレン、1-カルボキシ-8-アミノナフタレン、1-カルボキシ-7-アミノナフタレン、1-カルボキシ-6-アミノナフタレン、1-カルボキシ-5-アミノナフタレン、1-カルボキシ-4-アミノナフタレン、1-カルボキシ-3-アミノナフタレン、1-カルボキシ-2-アミノナフタレン、1-アミノ-7-カルボキシナフタレン、2-カルボキシ-7-アミノナフタレン、2-カルボキシ-6-アミノナフタレン、2-カルボキシ-5-アミノナフタレン、2-カルボキシ-4-アミノナフタレン、2-カルボキシ-3-アミノナフタレン、1-アミノ-2-カルボキシナフタレン、2-アミノニコチン酸、4-アミノニコチン酸、5-アミノニコチン酸、6-アミノニコチン酸、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、アメライド、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、2-アミノベンゼンスルホン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸、3-アミノ-4,6-ジヒドロキシピリミジン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、5-アミノ-8-メルカプトキノリン、4-アミノ-8-メルカプトキノリン、1-メルカプト-8-アミノナフタレン、1-メルカプト-7-アミノナフタレン、1-メルカプト-6-アミノナフタレン、1-メルカプト-5-アミノナフタレン、1-メルカプト-4-アミノナフタレン、1-メルカプト-3-アミノナフタレン、1-メルカプト-2-アミノナフタレン、1-アミノ-7-メルカプトナフタレン、2-メルカプト-7-アミノナフタレン、2-メルカプト-6-アミノナフタレン、2-メルカプト-5-アミノナフタレン、2-メルカプト-4-アミノナフタレン、2-メルカプト-3-アミノナフタレン、1-アミノ-2-メルカプトナフタレン、3-アミノ-4,6-ジメルカプトピリミジン、2-アミノチオフェノール、3-アミノチオフェノール、4-アミノチオフェノール、2-エチニルアニリン、3-エチニルアニリン、4-エチニルアニリン、2,4-ジエチニルアニリン、2,5-ジエチニルアニリン、2,6-ジエチニルアニリン、3,4-ジエチニルアニリン、3,5-ジエチニルアニリン、1-エチニル-2-アミノナフタレン、1-エチニル-3-アミノナフタレン、1-エチニル-4-アミノナフタレン、1-エチニル-5-アミノナフタレン、1-エチニル-6-アミノナフタレン、1-エチニル-7-アミノナフタレン、1-エチニル-8-アミノナフタレン、2-エチニル-1-アミノナフタレン、2-エチニル-3-アミノナフタレン、2-エチニル-4-アミノナフタレン、2-エチニル-5-アミノナフタレン、2-エチニル-6-アミノナフタレン、2-エチニル-7-アミノナフタレン、2-エチニル-8-アミノナフタレン、3,5-ジエチニル-1-アミノナフタレン、3,5-ジエチニル-2-アミノナフタレン、3,6-ジエチニル-1-アミノナフタレン、3,6-ジエチニル-2-アミノナフタレン、3,7-ジエチニル-1-アミノナフタレン、3,7-ジエチニル-2-アミノナフタレン、4,8-ジエチニル-1-アミノナフタレン、4,8-ジエチニル-2-アミノナフタレン等が挙げられるが、これらに限定されるものではない。
 酸無水物基末端の封止剤として用いられる一価のアルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、3-オクタノール、1-ノナノール、2-ノナノール、1-デカノール、2-デカノール、1-ウンデカノール、2-ウンデカノール、1-ドデカノール、2-ドデカノール、1-トリデカノール、2-トリデカノール、1-テトラデカノール、2-テトラデカノール、1-ペンタデカノール、2-ペンタデカノール、1-ヘキサデカノール、2-ヘキサデカノール、1-へプタデカノール、2-ヘプタデカノール、1-オクタデカノール、2-オクタデカノール、1-ノナデカノール、2-ノナデカノール、1-エイコサノール、2-メチル-1-プロパノール、2-メチル-2-プロパノール、2-メチル-1-ブタノール、3-メチル-1-ブタノール、2-メチル-2-ブタノール、3-メチル-2-ブタノール、2-プロピル-1-ペンタノール、2-エチル-1-ヘキサノール、4-メチル-3-ヘプタノール、6-メチル-2-ヘプタノール、2,4,4-トリメチル-1-ヘキサノール、2,6-ジメチル-4-ヘプタノール、イソノニルアルコール、3,7-ジメチル-3-オクタノール、2,4-ジメチル-1-ヘプタノール、2-ヘプチルウンデカノール、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール1-メチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、シクロペンタノール、シクロヘキサノール、シクロペンタンモノメチロール、ジシクロペンタンモノメチロール、トリシクロデカンモノメチロール、ノルボネオール、テルピネオール等が挙げられるが、これらに限定されるものではない。
 アミノ基末端の封止剤として用いられる酸無水物、モノカルボン酸、モノ酸クロリド化合物およびモノ活性エステル化合物としては、無水フタル酸、無水マレイン酸、無水ナジック酸、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物等の酸無水物、2-カルボキシフェノール、3-カルボキシフェノール、4-カルボキシフェノール、2-カルボキシチオフェノール、3-カルボキシチオフェノール、4-カルボキシチオフェノール、1-ヒドロキシ-8-カルボキシナフタレン、1-ヒドロキシ-7-カルボキシナフタレン、1-ヒドロキシ-6-カルボキシナフタレン、1-ヒドロキシ-5-カルボキシナフタレン、1-ヒドロキシ-4-カルボキシナフタレン、1-ヒドロキシ-3-カルボキシナフタレン、1-ヒドロキシ-2-カルボキシナフタレン、1-メルカプト-8-カルボキシナフタレン、1-メルカプト-7-カルボキシナフタレン、1-メルカプト-6-カルボキシナフタレン、1-メルカプト-5-カルボキシナフタレン、1-メルカプト-4-カルボキシナフタレン、1-メルカプト-3-カルボキシナフタレン、1-メルカプト-2-カルボキシナフタレン、2-カルボキシベンゼンスルホン酸、3-カルボキシベンゼンスルホン酸、4-カルボキシベンゼンスルホン酸、2-エチニル安息香酸、3-エチニル安息香酸、4-エチニル安息香酸、2,4-ジエチニル安息香酸、2,5-ジエチニル安息香酸、2,6-ジエチニル安息香酸、3,4-ジエチニル安息香酸、3,5-ジエチニル安息香酸、2-エチニル-1-ナフトエ酸、3-エチニル-1-ナフトエ酸、4-エチニル-1-ナフトエ酸、5-エチニル-1-ナフトエ酸、6-エチニル-1-ナフトエ酸、7-エチニル-1-ナフトエ酸、8-エチニル-1-ナフトエ酸、2-エチニル-2-ナフトエ酸、3-エチニル-2-ナフトエ酸、4-エチニル-2-ナフトエ酸、5-エチニル-2-ナフトエ酸、6-エチニル-2-ナフトエ酸、7-エチニル-2-ナフトエ酸、8-エチニル-2-ナフトエ酸等のモノカルボン酸類およびこれらのカルボキシル基が酸クロリド化したモノ酸クロリド化合物、およびテレフタル酸、フタル酸、マレイン酸、シクロヘキサンジカルボン酸、3-ヒドロキシフタル酸、5-ノルボルネン-2,3-ジカルボン酸、1,2-ジカルボキシナフタレン、1,3-ジカルボキシナフタレン、1,4-ジカルボキシナフタレン、1,5-ジカルボキシナフタレン、1,6-ジカルボキシナフタレン、1,7-ジカルボキシナフタレン、1,8-ジカルボキシナフタレン、2,3-ジカルボキシナフタレン、2,6-ジカルボキシナフタレン、2,7-ジカルボキシナフタレン等のジカルボン酸類の1つのカルボキシル基だけが酸クロリド化したモノ酸クロリド化合物、モノ酸クロリド化合物とN-ヒドロキシベンゾトリアゾールやN-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドとの反応により得られる活性エステル化合物が挙げられる。
 アミノ基末端の封止剤として用いられる二炭酸エステル化合物としては、二炭酸ジ-tert-ブチル、二炭酸ジフェニル、二炭酸ジベンジル、二炭酸ジメチル、二炭酸ジエチルが挙げられる。
 アミノ基末端の封止剤として用いられるビニルエーテル化合物としては、クロロギ酸-tert-ブチル、クロロギ酸-n-ブチル、クロロギ酸イソブチル、クロロギ酸ベンジル、クロロギ酸アリル、クロロギ酸エチル、クロロギ酸イソプロピル、クロロギ酸フルオレニルメチル、クロロギ酸2,2,2-トリクロロエチルなどのクロロギ酸エステル類、イソシアン酸ブチル、イソシアン酸1-ナフチル、イソシアン酸オクタデシル、イソシアン酸フェニルなどのイソシアナート化合物類、ブチルビニルエーテル、シクロヘキシルビニルエーテル、エチルビニルエーテル、2-エチルヘキシルビニルエーテル、イソブチルビニルエーテル、イソプロピルビニルエーテル、n-プロピルビニルエーテル、tert-ブチルビニルエーテル、ベンジルビニルエーテルなどが挙げられる。
 アミノ基末端の封止剤として用いられるその他の化合物としては、ベンゾイルクロリド、メタンスルホン酸クロリド、p-トルエンスルホン酸クロリド、フェニルイソシアネ-トなどが挙げられる。
 酸無水物基末端の封止剤の導入割合は、酸二無水物成分に対して、0.1~60モル%の範囲が好ましく、特に好ましくは1~50モル%である。また、アミノ基末端の封止剤の導入割合は、ジアミン成分に対して、0.1~60モル%の範囲が好ましく、特に好ましくは1~50モル%である。また、複数種の末端封止剤を反応させることにより、複数種の末端基を導入してもよい。
 ポリイミド樹脂の繰返し単位の分子構造や導入された末端封止剤の構造は、以下の方法で確認することができる。例えば、熱分解ガスクロマトグラフ(PGC)や赤外スペクトルおよび13CNMRスペクトル測定でも、容易に検出可能である。さらに、末端封止剤が導入されたポリマーを酸性溶液に溶解し、ポリマーの構成単位であるアミン成分と酸無水成分に分解し、これをガスクロマトグラフィー(GC)や、NMR測定することにより、末端封止剤を容易に検出できる。
 (樹脂膜2)
 本発明の樹脂積層膜において、樹脂膜2の樹脂の種類については特に制限はなく、ポリイミド樹脂、ポリベンゾオキサゾール樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリエーテルスルホン樹脂、アクリル樹脂、エポキシ樹脂などが挙げられる。中でも耐熱性、機械特性などの観点から、ポリイミド樹脂、ポリベンゾオキサゾール樹脂、ポリアミドイミド樹脂およびポリアミド樹脂からなる群より選ばれる少なくとも1種の樹脂を含むことが好ましく、更には耐薬品性や低CTE性の観点からポリイミド樹脂がより好ましい。
 樹脂膜2におけるポリイミド樹脂の合成に用いられる酸二無水物とジアミンは既知のものを使用することができる。
 酸二無水物としては特に限定されず、前述したような芳香族酸二無水物、脂環式酸二無水物、又は脂肪族酸二無水物等が挙げられる。これらの芳香族酸二無水物、脂環式酸二無水物、又は脂肪族酸二無水物は、単独で又は2種以上を組み合わせて使用することができる。また、ジアミンとしては特に限定されず、前述したような芳香族ジアミン、脂環式ジアミン、又は脂肪族ジアミン等が挙げられる。これらの芳香族ジアミン、脂環式ジアミン、又は脂肪族ジアミンは、単独で又は2種以上を組み合わせて使用することができる。さらに、前述した末端封止剤を用いてもよい。
 TFT基板、トップエミッション型有機ELディスプレイの基材、及び電子ペーパーの基材等にポリイミド樹脂を用いる場合には、耐熱性と低CTE性が特に求められる。この場合、樹脂膜2におけるポリイミド樹脂に用いられる酸二無水物として、ピロメリット酸二無水物や3,3’,4,4’-ビフェニルテトラカルボン酸二無水物の少なくとも1種類を含むことが好ましく、ジアミンとしては、4,4’-ジアミノジフェニルエーテル、p-フェニレンジアミン、3,3’-ジメチルベンジジンの中から少なくとも1種類を含むことが好ましい。
 一方、ボトムエミッション型有機ELディスプレイの基材、カラーフィルタ基材、タッチパネル基材等にポリイミド樹脂を用いる場合には、耐熱性および可視光領域での高透明性が求められる。この場合、樹脂膜2におけるポリイミド樹脂に用いられる酸二無水物やジアミンのうち少なくとも片方が脂環構造、又はフッ素化アルキル基を有することが好ましい。この場合、樹脂膜2のポリイミド樹脂は、脂環構造、又はフッ素化アルキル基を有する。
 脂環構造やフッ素化アルキル基は、酸二無水物とジアミンの両方に用いても、片方に用いてもよい。脂環構造を有するジアミンとしては特に制限はないが、例えば、trans-1,4-ジアミノシクロへキサン、4,4’-ジシクロヘキシルメタンが挙げられる。脂環構造を有する酸二無水物としては特に制限はないが、1,2,3,4-シクロブタンテトラカルボン酸二無水物や1R,2S,4S,5R-シクロへキサンテトラカルボン酸二無水物等が挙げられる。フッ素化アルキル基を有するジアミンとしては特に制限はないが、例えば2,2’-ビス(トリフルオロメチル)ベンジジンが挙げられる。フッ素化アルキル基を有する酸二無水物としては特に制限はないが、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパンニ無水物等が挙げられる。
 これらの化合物を用いたポリイミド樹脂膜の中でも、透明性と低CTE性の観点から、酸二無水物として3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を含むことが好ましく、ジアミンとして、trans-1,4-ジアミノシクロへキサンを含むことが好ましい。
 (ポリイミド前駆体の製造方法)
 以下では、ポリイミド前駆体の一般的な製造方法について説明する。一般的に、下記一般式(11)で表されるポリイミド樹脂は下記一般式(12)で表されるポリイミド前駆体樹脂をイミド閉環(イミド化反応)させることで得られる。イミド化反応の方法としては特に限定されず、熱イミド化や化学イミド化が挙げられる。中でも、ポリイミド樹脂膜の耐熱性、可視光領域での透明性の観点から、熱イミド化が好ましい。
Figure JPOXMLDOC01-appb-C000006
 一般式(11)、(12)中、Rは4価の有機基、Rは2価の有機基を示す。X、Xは各々独立に水素原子、炭素数1~10の1価の有機基または炭素数1~10の1価のアルキルシリル基を示す。
 ポリアミド酸やポリアミド酸エステル、ポリアミド酸シリルエステルなどのポリイミド前駆体は、ジアミン化合物又はその誘導体と酸二無水物又はその誘導体との反応により合成することができる。酸二無水物の誘導体としては該酸二無水物のテトラカルボン酸、酸塩化物、テトラカルボン酸のモノ、ジ、トリまたはテトラエステルなどが挙げられ、具体的にはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などでエステル化された構造が挙げられる。重合反応の反応方法は、目的のポリイミド前駆体が製造できれば特に制限はなく、公知の反応方法を用いることができる。
 具体的な反応方法としては、所定量の全てのジアミン成分および反応溶媒を反応器に仕込み溶解させた後、所定量の酸二無水物成分を仕込み、室温~120℃で0.5~30時間撹拌する方法などが挙げられる。
 反応溶媒としては、N-メチル-2-ピロリドン、ガンマブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルプロピレン尿素、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシドなどの極性の非プロトン性溶媒、テトラヒドロフラン、ジオキサン、プロピレングリコールモノメチルエーテルなどのエーテル類、アセトン、メチルエチルケトン、ジイソブチルケトン、ジアセトンアルコールなどのケトン類、酢酸エチル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチルなどのエステル類、トルエン、キシレンなどの芳香族炭化水素類などを単独、または2種以上使用することができる。
 ポリイミド前駆体樹脂組成物における溶剤の含有量は、ポリイミド前駆体100重量部に対して、好ましくは50重量部以上、より好ましくは100重量部以上であり、好ましくは2,000重量部以下、より好ましくは1,500重量部以下である。50~2,000重量部の範囲であれば、塗布に適した粘度となり、塗布後の膜厚を容易に調節することができる。
 (樹脂積層膜の製造方法)
 本発明の樹脂積層膜は少なくとも下記(1)~(3)の工程を含む製造方法で作製することができる。
(1)支持基板上に、ポリイミド樹脂膜Aを製膜する工程。
(2)前記樹脂膜上に更に樹脂膜を積層して樹脂積層膜を形成する工程。
(3)支持基板側から紫外光を照射して、前記樹脂積層膜を剥離する工程。
 以下では、ポリイミド前駆体と溶剤とを含有するポリイミド前駆体溶液を用いて、樹脂膜1および樹脂膜2がともにポリイミドである樹脂積層膜の製造方法について説明する。
 (1)支持基板上に、ポリイミド樹脂膜Aを製膜する工程
 ポリイミド前駆体樹脂溶液を支持基板上に塗布してポリイミド樹脂膜Aのポリイミド前駆体樹脂組成物膜を形成する。支持基板としては例えばシリコン、セラミックス類、ガリウムヒ素、ソーダ石灰硝子、無アルカリ硝子などが用いられるが、これらに限定されない。塗布方法は、例えば、スリットコート法、スピンコート法、スプレーコート法、ロールコート法、バーコート法などの方法があり、これらの手法を組み合わせて塗布しても構わない。これらの中でも、スピンコートもしくはスリットコートによる塗布が好ましい。
 次に、支持基板上に塗布したポリイミド前駆体樹脂組成物を乾燥して、ポリイミド前駆体樹脂組成物膜を得る。乾燥はホットプレート、オーブン、赤外線、真空チャンバーなどを使用する。ホットプレートを用いる場合、プレート上に直接、もしくは、プレート上に設置したプロキシピン等の治具上にポリイミド前駆体樹脂組成物を塗布した支持基板を保持して加熱する。プロキシピンの材質としては、アルミニウムやステレンレス等の金属材料、あるいはポリイミド樹脂や“テフロン”(登録商標)等の合成樹脂があり、いずれの材質のプロキシピンを用いても構わない。プロキシピンの高さは、支持基板のサイズ、樹脂組成物の種類、加熱の目的等により様々であるが、例えば300mm×350mm×0.7mmのガラス支持基板上に塗布した樹脂組成物を加熱する場合、プロキシピンの高さは2~12mm程度が好ましい。
 中でも、真空チャンバーを用いて真空乾燥させることが好ましく、真空乾燥後にさらに乾燥のための加熱を行ったり、真空乾燥しながら乾燥のための加熱を行ったりすることがさらに好ましい。これにより、乾燥処理時間の短縮、及び均一な塗布膜形成が可能となる。乾燥のための加熱の温度は支持基板やポリイミド前駆体の種類、目的により様々であり、室温から170℃の範囲で1分から数時間行うことが好ましい。さらに、乾燥工程は同一の条件、又は異なる条件で複数回行ってもよい。
 次に、イミド化のための加熱を行う。ポリイミド前駆体樹脂組成物膜を170℃以上650℃以下の範囲で加熱してポリイミド樹脂膜に変換する。なお、熱イミド化工程は、上記乾燥工程の後に何らかの工程を経てから行われても構わない。
 熱イミド化工程の雰囲気は特に限定されず、空気でも窒素やアルゴン等の不活性ガスでも真空中でもよい。ただし、酸素濃度が高い雰囲気で焼成を行うと、酸化劣化により焼成膜が脆くなるなど、機械特性が低下する。このような機械特性の低下を抑制するためには、酸素濃度が5%以下の雰囲気で焼成ことが好ましい。一方で、ppmオーダーでの酸素濃度管理は、製造現場では困難であることが多い。本発明の樹脂膜は、熱イミド化工程の酸素濃度が5%以下であればより高い機械特性を保つことができるため好ましい。さらに、無色透明性が求められる場合も、酸素濃度が5%以下の雰囲気で加熱して熱イミド化を行うことが好ましい。一般的に、酸素濃度を低くすることで、熱イミド化工程でのポリイミド膜の着色を低減し、高透明性を示すポリイミド樹脂膜を得ることができる。
 また、熱イミド化工程において、製造ラインのオーブンの加熱形式にあわせた昇温方法を選択できるが、最高加熱温度まで5~300分かけて昇温することが好ましい。例えば、オーブン内にて、基材上に形成されたポリイミド前駆体樹脂組成物膜を室温から、最高加熱温度まで5~300分かけて昇温してイミド化し、ポリイミド樹脂膜としてもよいし、予め170℃以上650℃以下の範囲に加熱されたオーブン内に基材上に形成されたポリイミド前駆体樹脂膜をいきなり投入して加熱処理を行ってイミド化し、ポリイミド樹脂膜としてもよい。また、昇温過程のステップ数に特に制限はなく、基板投入温度から最高加熱温度まで1段階で昇温しても、2段階以上の多段階昇温でもよい。
 (2)前記樹脂膜上に更に樹脂膜を積層して樹脂積層膜を形成する工程
 続いて第2のポリイミド前駆体樹脂溶液を塗布し、1層目と同様に乾燥、樹脂膜2を製膜して、樹脂積層膜とする。
 また、(1)または(2)の工程の少なくとも一方で用いる樹脂膜の焼成温度が400℃以上であることが、樹脂積層膜のガラス転移温度向上の観点から好ましい。
 (3)支持基板側から紫外光を照射して、前記樹脂積層膜を剥離する工程
 支持基板側から紫外光を照射して、支持基板から樹脂積層膜を剥離する。支持基板上に樹脂膜1が存在するため、樹脂膜2の種類に関わらず、樹脂積層膜は良好なレーザー剥離性を示す。
 紫外光の波長は特に限定されず、266nm、308nm、343nm、351nm、355nm等が挙げられる。また、光源はレーザー、高圧水銀灯、LEDなど、樹脂積層膜が剥離するのであれば特に限定されない。
 なお、樹脂膜1および2の製膜に用いるポリイミド前駆体樹脂溶液やポリイミド樹脂膜には、界面活性剤、内部離型剤、シランカップリング剤、熱架橋剤、無機粒子、紫外線吸収剤、光酸発生剤等が含まれていてもよい。また、これらは、求められる物性を損なわない範囲で樹脂膜1および2に含まれていてもよい。
 界面活性剤としては、フロラード(商品名、住友3M(株)製)、メガファック(商品名、DIC(株)製)、スルフロン(商品名、旭硝子(株)製)等のフッ素系界面活性剤が挙げられる。また、KP341(商品名、信越化学工業(株)製)、DBE(商品名、チッソ(株)製)、グラノール(商品名、共栄社化学(株)製)、BYK(ビック・ケミー(株)製)等の有機シロキサン界面活性剤が挙げられる。さらに、エマルミン(三洋化成工業(株)製)等のポリオキシアルキレンラウリエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンオレイルエーテルおよびポリオキシエチレンセチルエーテルや、ポリフロー(商品名、共栄社化学(株)製)等のアクリル重合物界面活性剤が挙げられる。
 熱架橋剤としては、エポキシ化合物やアルコキシメチル基またはメチロール基を少なくとも2つ有する化合物が好ましい。これらの基を少なくとも2つ有することで、樹脂および同種分子と縮合反応して架橋構造体が形成され、加熱処理後の硬化膜の機械強度や耐薬品性を向上させることができる。
 エポキシ化合物の好ましい例としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリメチル(グリシジロキシプロピル)シロキサン等のエポキシ基含有シリコーンなどを挙げることができるが、本発明は何らこれらに限定されない。具体的には、エピクロン850-S,エピクロンHP-4032、エピクロンHP-7200、エピクロンHP-820、エピクロンHP-4700、エピクロンEXA-4710、エピクロンHP-4770、エピクロンEXA-859CRP、エピクロンEXA-1514,エピクロンEXA-4880,エピクロンEXA-4850-150、エピクロンEXA-4850-1000、エピクロンEXA-4816、エピクロンEXA-4822(以上商品名、大日本インキ化学工業(株)製)、リカレジンBEO-60E、リカレジンBPO-20E、リカレジンHBE-100、リカレジンDME-100(以上商品名、新日本理化(株)製)、EP-4003S、EP-4000S(以上商品名、(株)アデカ製)、PG-100、CG-500、EG-200(以上商品名、大阪ガスケミカル(株)製)、NC-3000、NC-6000(以上商品名、日本化薬(株)製)、EPOX-MK R508、EPOX-MK R540、EPOX-MK R710、EPOX-MK R1710、VG3101L、VG3101M80(以上商品名、(株)プリンテック製)、セロキサイド2021P、セロキサイド2081、セロキサイド2083、セロキサイド2085(以上商品名、ダイセル化学工業(株)製)などが挙げられる。
 アルコキシメチル基またはメチロール基を少なくとも2つ有する化合物としては、例えば、DML-PC、DML-PEP、DML-OC、DML-OEP、DML-34X、DML-PTBP、DML-PCHP、DML-OCHP、DML-PFP、DML-PSBP、DML-POP、DML-MBOC、DML-MBPC、DML-MTrisPC、DML-BisOC-Z、DML-BisOCHP-Z、DML-BPC、DML-BisOC-P、DMOM-PC、DMOM-PTBP、DMOM-MBPC、TriML-P、TriML-35XL、TML-HQ、TML-BP、TML-pp-BPF、TML-BPE、TML-BPA、TML-BPAF、TML-BPAP、TMOM-BP、TMOM-BPE、TMOM-BPA、TMOM-BPAF、TMOM-BPAP、HML-TPPHBA、HML-TPHAP、HMOM-TPPHBA、HMOM-TPHAP(以上、商品名、本州化学工業(株)製)、NIKALAC(登録商標) MX-290、NIKALAC MX-280、NIKALAC MX-270、NIKALAC MX-279、NIKALAC MW-100LM、NIKALAC MX-750LM(以上、商品名、(株)三和ケミカル製)が挙げられる。これらを2種以上含有してもよい。熱架橋剤は、樹脂100重量部に対し、0.01~50重量部含有することが好ましい。
 内部離型剤としては、ラウリン酸、ステアリン酸、ミリスチン酸等の長鎖脂肪酸、ステアリルアルコール、ミリスチルアルコール等の長鎖アルコール、ポリオキシアルキレンアルキルエーテル、フルオロアルキルアルキレンオキシド付加物等が挙げられる。
 シランカップリング剤としては、3-アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン等が挙げられる。保存安定性の観点から、ポリイミド前駆体樹脂100重量部に対し、0.01~5重量部含むことが好ましい。
 無機粒子としては、シリカ微粒子、アルミナ微粒子、チタニア微粒子、ジルコニア微粒子などが挙げられる。
 無機粒子の形状は特に限定されず、球状、楕円形状、偏平状、ロッド状、繊維状などが挙げられる。
 含有させた無機粒子の粒径については特に規定はないが、光の散乱を防ぐため粒径が小さいことが好ましい。平均粒径は0.5~100nmであり、0.5~30nmの範囲が好ましい。
 無機粒子の含有量は、樹脂に対し、好ましくは1~200重量%、下限についてより好ましくは10重量%以上である。上限についてはより好ましくは150重量%以下、さらに好ましくは100重量%以下、特に好ましくは50重量%以下である。含有量の増加に伴い、可とう性や耐折性が低下する。
 無機粒子を混合する方法としては、種々の公知の方法を用いることができる。例えば、無機粒子やオルガノ無機フィラーゾルと樹脂溶液を混合することが挙げられる。オルガノ無機フィラーゾルは、有機溶剤に無機フィラーが30重量%程度の割合で分散したもので、有機溶剤としては、メタノール、イソプロパノール、ノルマルブタノール、エチレングリコール、メチルエチルケトン、メチルイソブチルケトン、プロピレングリコールモノメチルアセテート、プロピレングリコールモノメチルエーテル、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、1,3-ジメチルイミダゾリジノン、ガンマブチロラクトンなどが挙げられる。
 オルガノ無機フィラーゾルは、シランカップリング剤を用いて表面処理することで、無機フィラーの樹脂に対する分散性が向上する。
 本発明において、樹脂積層膜の低CTE化の観点から、無機粒子を含有していてもよい。ガラス基板上に製膜された無機粒子を含有する樹脂膜をレーザー剥離する場合、無機粒子はレーザー照射によって熱分解しないため、レーザー剥離性が著しく低下する場合がある。したがって、本発明の樹脂積層膜では、樹脂膜1は無機粒子を含有せず、樹脂膜2に無機粒子を含有していることが好ましい。この場合、ガラス基板との界面にレーザー剥離性の良好なポリイミド樹脂膜が存在するため、樹脂膜2に無機粒子を含有する樹脂積層膜をレーザー剥離によって容易に剥離することができる。
 紫外線吸収剤としては、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤、ベンゾエート系紫外線吸収剤、ヒンダードアミン系光安定剤等が挙げられる。本発明の樹脂積層膜において、特に樹脂膜1が紫外線吸収剤を含有することが好ましい。この場合、樹脂膜1に紫外光を照射した際の光吸収が紫外線吸収剤を含まない場合と比較して高くなるため、レーザー剥離に必要な照射エネルギー低減することができる。
 光酸発生剤としては、キノンジアジド化合物、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩、ヨードニウム塩などが挙げられる。中でも優れた溶解抑止効果を発現し、高感度かつ低膜減りのポジ型感光性樹脂組成物を得られるという点から、キノンジアジド化合物が好ましく用いられる。また、光酸発生剤を2種以上含有してもよい。これにより、一般的な紫外線である水銀灯のi線(波長365nm)、h線(波長405nm)、g線(波長436nm)による露光を用いて、露光部と未露光部の溶解速度の比をより大きくすることができ、高感度なポジ型感光性樹脂組成物を得ることができる。光酸発生剤の含有量は、ポリイミド前駆体100重量部に対して、好ましくは3~40重量部である。光酸発生剤の含有量をこの範囲とすることにより、より高感度化を図ることができる。さらに増感剤などを必要に応じて含有してもよい。なお、露光部の除去に用いる現像液としては、テトラメチルアンモニウムヒドロキシド、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、ジエチルアミノエタノールル等のアルカリ性を示す化合物の水溶液が好ましい。また場合によっては、これらのアルカリ水溶液にN-メチル-2-ピロリドン等のアミド類、プロパノール等のアルコール類、乳酸エチル等のエステル類、シクロヘキサノン等のケトン類、ガンマブチロラクトン等のラクトン類等を単独あるいは数種を組み合わせたものを添加してもよい。
 (樹脂積層膜の用途)
 本発明の樹脂積層膜は、樹脂膜2の上にTFTを備えたTFT基板や、樹脂膜2の上に有機EL素子を備えた有機EL素子基板や、樹脂膜2の上にカラーフィルタを備えたカラーフィルタ基板として利用できる。これらは、樹脂膜1側に支持基板を備えていてもよい。
 本発明の樹脂積層膜は、液晶ディスプレイ、有機ELディスプレイ、電子ペーパーなどの表示素子、カラーフィルタや光導波路などの光学素子、太陽電池、CMOSなどの受光素子、タッチパネル、回路基板等に使用することができる。特にこれらの表示素子や受光素子等を、折り曲げ可能なフレキシブル素子として活用する上で、本発明のポリイミド樹脂積層膜をフレキシブル基板として好ましく用いることができる。なお、本発明のポリイミド樹脂積層膜をフレキシブル基板として用いた場合の表示素子や光学素子(カラーフィルタ等)等については、フレキシブル表示素子やフレキシブル光学素子(フレキシブルカラーフィルタ等)等のように、素子名の前に「フレキシブル」と表記して示す場合もある。例えば、ガラスなどの支持基板上に本発明の樹脂積層膜を作製し、樹脂膜2の上にTFTを備えたフレキシブルTFT基板、樹脂膜2の上に有機EL素子を備えたフレキシブル有機EL素子基板、カラーフィルタを備えたフレキシブルカラーフィルタ基板等に利用できる。
 表示素子、受光素子、回路基板、TFT基板などの製造は、支持基板上に本発明の樹脂積層膜を形成し、樹脂積層膜を支持基板から剥離した後で実施してもよく、支持基板から樹脂積層膜を剥離せずに実施してもよい。樹脂膜2の種類は特に限定されないが、耐熱性、機械特性の観点からポリイミドが好ましい。
 前者の製造方法の場合、表示素子、受光素子、TFTの回路等は、樹脂膜1と樹脂膜2のいずれかの樹脂膜上に作成しても、両方の樹脂膜上に作成してもよい。後者の製造方法の場合、表示素子、受光素子、TFTの回路等を製造した後に、支持基板からそれらを剥離するため、従来の枚葉式の製造プロセスを利用できる利点がある。また、樹脂積層膜が支持基板に固定されているため、位置精度良く表示素子、受光素子、回路基板、TFT基板、タッチパネルなどを製造するために好適である。以下の説明では後者の方法を代表例として説明することが多いが、いずれも前者の方法であってもよい。
 本発明の樹脂積層膜には、少なくとも一方の面上に無機膜を製膜しガスバリア層とすることができ、ガスバリア層付き基板として、表示素子の基板に好適に使用することができる。
 樹脂膜上のガスバリア層は水蒸気や酸素等の透過を防ぐ役割を果たすものである。特に有機EL素子では、水分による素子の劣化が著しいので、基板にガスバリア性を付与することが好ましい。
 本発明の樹脂積層膜を含む基板は柔軟性があり大きく湾曲させることができるという特長を有する。かかる柔軟性のある基板を、フレキシブル基板と呼ぶ。フレキシブル基板は少なくとも以下の(1),(2),(4)の工程を経て製造できる。また、ポリイミド樹脂膜上に無機膜を有するフレキシブル基板は少なくとも以下の(1)~(4)の工程を経て製造することができる。
(1)支持基板上に、ポリイミド樹脂膜Aを製膜する工程。
(2)前記樹脂膜上に更に樹脂膜を積層して樹脂積層膜を形成する工程。
(3)前記樹脂積層膜上に無機膜を形成する工程。
(4)支持基板側から紫外光を照射して、前記樹脂積層膜を剥離する工程。
 上記(1)、(2)、(4)の工程は、詳細を(樹脂積層膜の製造方法)において(1)~(3)として前述したとおりである。
 上記フレキシブル基板の製造工程における(3)の工程は、樹脂積層膜の少なくとも片面に、無機膜を形成する工程である。樹脂積層膜を支持基板から剥離して、フレキシブル基板を製造することができる。
 なお、(3)の工程は樹脂積層膜の直上に無機膜を形成するものであってもよいし、間に別の層を介在させて無機膜を形成するものであってもよい。好ましくは、樹脂積層膜の直上に無機膜を形成する方法である。また、無機膜を形成する場所は特に限定されない。例えば、無機膜は工程(1)の後に樹脂膜1の上に形成しても、工程(2)の後に樹脂膜2の上に形成しても、工程(4)の後に樹脂膜1の剥離面上に形成して、樹脂膜1と樹脂膜2の両方の膜上に形成してもよい。
 フレキシブル基板を製造する際の支持基板は、自立性をもつ硬質なものであって、樹脂組成物を塗布する面が平滑であり、耐熱性のある基材が好ましい。材質は特に制限されず、例えばソーダガラスや無アルカリガラス、シリコン、石英、アルミナやサファイアなどのセラミック、ガリウムヒ素、鉄、錫、亜鉛、銅、アルミニウム、ステンレスなどの金属、ポリイミドやポリベンゾオキサゾールなどの耐熱プラスチックフィルム、ポリテトラフルオロエチレンやポリフッ化ビニリデンなどのフッ素樹脂、エポキシ樹脂、ポリエチレンテレフタレートやポリエチレンナフタレートなどの基材が挙げられる。これらのうち、表面の平滑性、レーザー剥離が可能であること、安価な点などから、ガラスが好ましい。ガラスの種類に特に制約は無いが、金属不純物低減の観点から無アルカリガラスが好ましい。
 前述したように、表示素子の基板にフレキシブル基板を用いる場合、基板はガスバリア性が求められる場合があるため、樹脂積層膜上に無機膜が形成されることが好ましい。ガスバリア層としての無機膜を構成する材料としては、金属酸化物、金属窒化物および金属酸窒化物が好ましく用いることができる。例えば、アルミニウム(Al)、ケイ素(Si)、チタン(Ti)、錫(Sn)、亜鉛(Zn)、ジルコニウム(Zr)、インジウム(In)、ニオブ(Nb)、モリブデン(Mo)、タンタル(Ta)、カルシウム(Ca)などの金属酸化物、金属窒化物および金属酸窒化物を挙げることができる。特に少なくともZn、Sn、Inの金属酸化物、金属窒化物および金属酸窒化物を含むガスバリア層は、耐屈曲性が高く好ましい。さらに、Zn、Sn、Inの原子濃度が20~40%であるガスバリア層は耐屈曲性がより高く好ましい。ガスバリア層には二酸化ケイ素、酸化アルミニウムを共存させた組成も耐屈曲性が良好で好ましい。
 これら無機のガスバリア層は例えばスパッタリング法、真空蒸着法、イオンプレーティング法、プラズマCVD法等の気相中より材料を堆積させて膜を形成する気相堆積法により作製することができる。中でも、スパッタ法では、金属ターゲットを酸素含有雰囲気でスパッタする反応性スパッタをすることで製膜速度を向上させることができる。
 ガスバリア層の形成は、支持基板と樹脂積層膜からなる積層体上で行っても、支持基板から剥離された自立膜上で行ってもよい。
 ガスバリア層の製膜温度は80~400℃とすることが好ましく、ガスバリア性能の向上には高い製膜温度を選択することが有利である。しかし、製膜温度が高いと耐屈曲性が低下する場合があるため、耐屈曲性が重要な用途では、ガスバリア層の製膜温度は100~300℃であることが好ましい。本発明の樹脂積層膜において、樹脂膜2がポリイミドの場合、樹脂積層膜の耐熱性が高いので、基板温度を上げてガスバリア層を作製することが可能である。また、高温下(例えば300℃)でガスバリア層を形成しても、膜に皺などの欠陥が生じることはない。
 ガスバリア層の層数に制限は無く、1層だけでも、2層以上の多層でもよい。多層膜の例としては、1層目がSiO、2層目がSiNからなるガスバリア層や、1層目がSiO/AlO/ZnO、2層目がSiOからなるガスバリア層が挙げられる。
 フレキシブル基板のガスバリア層上に有機EL発光層等の各種の機能を有する層を形成して、表示素子や光学素子などを作製する工程においては、各種有機溶媒が使用される。例えば、カラーフィルタ(以下、CFと記すこともある。)では、樹脂積層膜上にガスバリア層を形成した上に着色画素やブラックマトリックス等を形成してCFとする。このとき、ガスバリア層の耐溶剤性が悪い場合は、ガスバリア性能が低下する。したがって、最上層のガスバリア層に耐溶剤性が付与されていることが好ましく、例えば最上層のガスバリア層は酸化ケイ素からなることが好ましい。
 ガスバリア層の組成分析は、X線光電子分光法(XPS法)を使用して各元素を定量分析することにより行うことができる。
 ガスバリア層の合計の厚さは、20~600nmであることが好ましく、30~300nmであることがさらに好ましい。
 ガスバリア層の厚さは、通常は透過型電子顕微鏡(TEM)による断面観察により測定することが可能である。
 ガスバリア層の上層と下層の境界領域の組成が傾斜的に変化している等の理由によりTEMで明確な界面が視認できない場合には、まず、厚さ方向の組成分析を行い厚さ方向の元素の濃度分布を求めた上で、濃度分布の情報を基に層の境界および、層の厚さを求めるものとする。厚さ方向の組成分析の手順および各層の層の境界ならびに層の厚さの定義を以下に記す。
 まず、透過型電子顕微鏡によりガスバリア層の断面を観察し、全体の厚さを測定する。次いで、深さ方向に元素の組成分析が可能な以下の測定を適用して、ガスバリア層の厚さ位置に対応する元素の濃度の分布(厚さ方向の濃度プロファイル)を得る。このときに適用する組成分析方法としては、電子エネルギー損失分光法(以降EELS分析と記す)、エネルギー分散型X線分光法(以降EDX分析と記す)、二次イオン質量分析法(以降SIMS分析と記す)、X線光電子分光法(XPS分析と記す)、オージェ電子分光法(以降AES分析分析と記す)、が挙げられるが、感度および精度の観点から、EELS分析がもっとも好ましい。従って、まず、EELS分析を行い、以降先にあげた順(EELS分析→EDX分析→SIMS分析→XPS分析→AES分析)で分析を行って、より上位の分析で特定できない成分について、下位の分析のデータを適用するようにする。
 本発明の樹脂積層膜を用いたフレキシブル基板上にブラックマトリックス、着色画素を設けることで、CFが得られる。このCFは、樹脂膜を基材に用いているため、軽量、割れにくい、可とう性などが特徴である。ブラックマトリックス、着色画素層のうち少なくとも1つの層に使用されている樹脂がポリイミド樹脂を含むことが好ましい。さらに、反射率低減及び耐熱性の観点から、ブラックマトリックスが低光学濃度層と、該低光学濃度層上に形成された高光学濃度層からなり、かつ低光学濃度層と高光学濃度層の少なくとも1つの層に使用されている樹脂がポリイミド樹脂を含むことが好ましい。
 本発明の樹脂積層膜において、樹脂膜2がポリイミドの場合、ポリイミド前駆体の溶剤として一般的な極性非プロトン性溶媒に対して高い耐薬品性を有するため、ブラックマトリックス、着色画素層にポリイミド樹脂を使用できる。さらに、ブラックマトリックス、着色画素層上にガスバリア層を形成する場合においても、ブラックマトリックス、着色画素層のポリイミド樹脂は耐熱性が高いため、ガスバリア層の形成過程においてガス発生が少なく、ガスバリア性の高いガスバリア層を製膜できる。また、ブラックマトリックス、着色画素層のパターン加工時には、アルカリ水溶液に可溶なポリイミド前駆体を使用できるため微細なパターン形成に有利である。
 CFの構成の例を図面により説明する。図1は支持基板上に形成された、本発明の樹脂積層膜を含むCFの基本的な構成を示すものである。ここから前述の剥離方法によって支持基板(符号:1)を剥離することで、本発明の樹脂積層膜を基板とするCFが得られる。
 支持基板(符号:1)上にポリイミド樹脂膜A(符号:2A)と樹脂膜(符号:2B)からなる樹脂積層膜(符号:2)が形成され、その上にブラックマトリックス(符号:3)、赤の着色画素(符号:4R)、緑の着色画素(符号:4G)および青の着色画素(符号:4B)が形成されている。なお、着色画素の上には、オーバーコート層が形成されていてもよい。さらに、無機膜であるガスバリア層が形成されてもよい。ガスバリア層を形成する場所は特に限定されず、例えば、樹脂積層膜(符号:2)の上に形成しても、ブラックマトリックス(符号:3)や着色画素の層の上に形成しても、カラーフィルタの表面に存在するオーバーコート層上に形成しても、樹脂積層膜(符号:2)の上とオーバーコート層の上の両方に形成してもよい。また、ガスバリア層の層数に制限は無く、1層だけでも、2層以上の多層でもよい。多層膜の例としては、1層目がSiO、2層目がSiNからなるガスバリア層や、1層目がSiO/AlO/ZnO、2層目がSiOからなるガスバリア層が挙げられる。
 ブラックマトリックスは、黒色顔料を樹脂に分散した樹脂からなるブラックマトリックスであることが好ましい。黒色顔料の例としては、カーボンブラック、チタンブラック、酸化チタン、酸化窒化チタン、窒化チタン又は四酸化鉄が挙げられる。特に、カーボンブラック、チタンブラックが好適である。また赤顔料、緑顔料、青顔料を混合して黒色顔料として用いることもできる。
 ブラックマトリックスの製造には、前述のような黒色顔料を含み、好ましくは樹脂、より好ましくは溶剤を含んだ黒色組成物を用いる。また、黒色樹脂組成物をパターニングすることで、ブラックマトリックスを形成することが好ましい。黒色組成物は非感光性であっても、感光性であってもよく、パターニングの方法としては、機械加工、ドライエッチング、サンドブラスト、フォトリソグラフィーなどを挙げることができ、高精細のパターニングを行うことができるフォトリソグラフィーが好ましい。フォトリソグラフィーによるパターニングの方法としては、黒色樹脂組成物自体を感光性材料とすることでパターニングすることもでき、黒色樹脂組成物とは別にフォトレジストを積層することでフォトリソグラフィー法を行い、黒色樹脂組成物をパターニングしてブラックマトリックスを形成することもできる。フォトリソグラフィーでは、露光工程および現像工程を行い、パターニングを行う。
 樹脂ブラックマトリックスに使用する樹脂としては、耐熱性の観点、微細パターンの形成のしやすさの観点から、ポリイミド樹脂が好ましい。ポリイミド樹脂は、酸二無水物とジアミンとから合成されたポリアミド酸を、パターン加工後に熱硬化してポリイミド樹脂とすることが好ましい。また、酸二無水物、ジアミンおよび溶剤の例としては、前述の“樹脂膜1”の項で挙げたものを用いることができる。
 ポリイミド樹脂を含むブラックマトリックスを形成するためには、少なくともポリアミック酸、黒色顔料、溶剤からなる非感光性黒色組成物を、基板上に塗布した後、風乾、加熱乾燥、真空乾燥などにより乾燥し、非感光性ポリアミド酸黒色被膜を形成し、ポジ型フォトレジストを用いて、所望パターンを形成後、フォトレジストをアルカリ剥離し、最後に200~300℃で1分~3時間加熱することにより着色画素を硬化(ポリイミド化)させる方法が一般的である。
 樹脂ブラックマトリックスに使用する樹脂としては、感光性アクリル樹脂を用いることもでき、ブラックマトリックスの製造には黒色顔料を分散したアルカリ可溶性のアクリル樹脂、光重合性モノマー、重合開始剤、溶剤を含む黒色組成物を用いる。
 アルカリ可溶性のアクリル樹脂の例としては、不飽和カルボン酸とエチレン性不飽和化合物との共重合体が挙げられる。不飽和カルボン酸の例としては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、ビニル酢酸又は酸無水物が挙げられる。
 光重合性モノマーの例としては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリアクリルホルマール、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート又はジペンタエリスリトールペンタ(メタ)アクリレートが挙げられる。
 光重合開始剤の例としては、ベンゾフェノン、N,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、2,2-ジエトキシアセトフェノン、α-ヒドロキシイソブチルフェノン、チオキサントン又は2-クロロチオキサントンが挙げられる。
 感光性アクリル樹脂を溶解するための溶媒の例としては、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、アセト酢酸エチル、メチル-3-メトキシプロピオネート、エチル-3-エトキシプロピオネート、メトキシブチルアセテート又は3-メチル-3-メトキシブチルアセテートが挙げられる。
 外光反射に起因する視認性の低下を抑制するために、ブラックマトリックスは、低光学濃度層と、該低光学濃度層上に形成された高光学濃度層と、からなる積層樹脂ブラックマトリックスであることが好ましい。なお、低光学濃度層とは、光学濃度が0ではなく実質的に透明でない層構成のものであって、単位厚さ当たりの光学濃度の値が、高光学濃度層の単位厚さ当たりの光学濃度よりも小さいものをいう。前記積層樹脂ブラックマトリックスを構成する樹脂は特に制約されないが、低光学濃度層と高光学濃度層を一括パターニングする観点から、低光学濃度層はポリイミド樹脂、高光学濃度層はアクリル樹脂であることが好ましい。さらに、反射率を低下させるために、前記樹脂ブラックマトリックスには微粒子が含まれることがより好ましい。
 ブラックマトリックスを形成した後に、着色画素を形成する。着色画素は、赤、緑、青の3色の着色画素からなる。また3色の着色画素に加えて、無色透明または、ごく薄く着色した第4色の画素を形成することで、表示装置の白色表示の明るさを向上させることもできる。
 CFの着色画素は、着色剤として顔料または染料を含む樹脂が用いることができる。
 赤の着色画素に使用する顔料の例としては、PR254、PR149、PR166、PR177、PR209、PY138、PY150又はPYP139が挙げられ、緑の着色画素に使用する顔料の例としては、PG7、PG36、PG58、PG37、PB16、PY129、PY138、PY139、PY150又はPY185が挙げられ、青の着色画素に使用する顔料の例としては、PB15:6又はPV23が挙げられる。
 青色染料の例としては、C.I.ベイシックブルー(BB)5、BB7、BB9又はBB26が挙げられ、赤色染料の例としては、C.I.アシッドレッド(AR)51、AR87又はAR289が挙げられ、緑色染料の例としては、C.I.アシッドグリーン(AG)25、AG27が挙げられる。
 赤緑青の着色画素に使用する樹脂の例としては、アクリル樹脂、エポキシ樹脂又はポリイミド樹脂が挙げられる。耐熱性の観点からはポリイミド樹脂が好ましく、CFの製造コストを安くするために、感光性アクリル樹脂を使用してもよい。
 ポリイミド樹脂からなる着色画素を形成するためには、少なくともポリアミド酸、着色剤、溶剤からなる非感光性カラーペーストを、基板上に塗布した後、風乾、加熱乾燥、真空乾燥などにより乾燥し、非感光性ポリアミド酸着色被膜を形成し、ポジ型フォトレジストを用いて、所望パターンを形成後、フォトレジストをアルカリ剥離し、最後に200~300℃で1分~3時間加熱することにより着色画素を硬化(ポリイミド化)させる方法が一般的である。
 感光性アクリル樹脂は、アルカリ可溶性のアクリル樹脂、光重合性モノマーおよび光重合開始剤を含有することが一般的である。
 アルカリ可溶性のアクリル樹脂の例としては、不飽和カルボン酸とエチレン性不飽和化合物との共重合体が挙げられる。不飽和カルボン酸の例としては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、ビニル酢酸又は酸無水物が挙げられる。
 光重合性モノマーの例としては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリアクリルホルマール、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート又はジペンタエリスリトールペンタ(メタ)アクリレートが挙げられる。
 光重合開始剤の例としては、ベンゾフェノン、N,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、2,2-ジエトキシアセトフェノン、α-ヒドロキシイソブチルフェノン、チオキサントン又は2-クロロチオキサントンが挙げられる。
 感光性アクリル樹脂を溶解するための溶媒の例としては、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、アセト酢酸エチル、メチル-3-メトキシプロピオネート、エチル-3-エトキシプロピオネート、メトキシブチルアセテート又は3-メチル-3-メトキシブチルアセテートが挙げられる。
 ブラックマトリックスおよび着色画素を形成したCFの表面を平坦化するために、CF表面にさらにオーバーコート層を形成してもよい。オーバーコート層の形成に使用する樹脂の例としては、エポキシ樹脂、アクリル変性エポキシ樹脂、アクリル樹脂、シロキサン樹脂又はポリイミド樹脂が挙げられる。オーバーコート層の厚さとしては、表面が平坦になる厚さが好ましく、0.5~5.0μmがより好ましく、1.0~3.0μmがさらに好ましい。
 本発明の樹脂積層膜を含むCFは少なくとも以下の工程を経て製造することができる。
(1)支持基板上にポリイミド樹脂膜Aを製膜する工程。
(2)前記樹脂膜上に更に樹脂膜を積層して樹脂積層膜を形成する工程。
(3)前記樹脂積層膜上にブラックマトリックスを形成する工程。
(4)前記樹脂積層膜上に着色画素を形成する工程。
(5)支持基板側から紫外光を照射して、前記樹脂積層膜を剥離する工程。
 上記(1)、(2)、(5)の工程は、詳細を(樹脂積層膜の製造方法)において(1)~(3)として前述したとおりである。
 上記CFの製造工程における(3)及び(4)の工程は、樹脂積層膜上にブラックマトリックスおよび着色画素を形成する工程である。前述したように、ブラックマトリックスや着色画素のパターン形成にはフォトリソグラフィーが用いられる。現在、液晶ディスプレイや有機ELディスプレイとしては300ppi以上の高精細が求められており、フレキシブルディスプレイパネルでも同等以上の性能が求められている。このような高解像度を実現するには高精度のパターン形成が必要である。支持基板上に製膜された樹脂積層膜上にブラックマトリックスや着色画素を形成してCFを作製する場合、支持基板としてガラス基板を用いてCFを作製する現行の技術が適用できるため、自立膜上にCFを作製する場合と比較して、高精細パターンを形成することができる。
 なお、(3)及び(4)の工程は樹脂積層膜の直上にブラックマトリックスや着色画素を形成するものであってもよいし、間に別の層を介在させてこれらを形成するものであってもよい。
 上記CFの製造工程には、さらにガスバリア層等の無機膜を製膜する工程が含まれていてもよい。無機膜を形成する場所は特に限定されない。例えば、樹脂積層膜上に形成しても、ブラックマトリックスや着色画素層上に形成しても、カラーフィルタの表面に存在するオーバーコート層上に形成しても、樹脂積層膜上とオーバーコート層上の両方に形成してもよい。また、無機膜の層数に制限は無く、1層だけでも、2層以上の多層でもよい。多層膜の例としては、1層目がSiO、2層目がSiNからなる無機膜や、1層目がSiO/AlO/ZnO、2層目がSiOからなる無機膜が挙げられる。
 次に、本発明のCFの製造方法の一例をより具体的に説明する。支持基板上に本発明の樹脂積層膜およびガスバリア層を上記の方法で作製する。その上に、カーボンブラックまたはチタンブラックからなる黒色顔料を分散したポリアミド酸からなるブラックマトリックス用ペーストをスピンコーター又はダイコーター等の方法でキュア後の厚さが1μmになるように塗布し、60Pa以下まで減圧乾燥した後に、110~140℃の熱風オーブン又はホットプレートでセミキュアを行う。
 ポジ型レジストをスピンコーター又はダイコーター等の方法で、プリベーク後の厚さが1.2μmになるように塗布後、80Paまで減圧乾燥を行い、80~110℃の熱風オーブン又はホットプレートでプリベークを行い、レジスト膜を形成する。その後、プロキシミティ露光機又はプロジェクション露光機等により、フォトマスクを介して紫外線により選択的に露光を行った後、1.5~3重量%の水酸化カリウム又はテトラメチルアンモニウムヒドロキシド等のアルカリ現像液に20~300秒浸漬することにより露光部を除去する。剥離液を用いてポジレジストを剥離後、200~300℃の熱風オーブン又はホットプレートで10~60分加熱することで、ポリアミド酸をポリイミドに転換し、樹脂ブラックマトリックスを形成する。
 着色画素は、着色剤と樹脂とを用いて作製する。着色剤として顔料を使用する場合には、顔料に高分子分散剤および溶媒を混合して分散処理を行った分散液に、ポリアミド酸を添加して作製する。一方、着色剤として染料を使用する場合には、染料に溶媒、ポリアミド酸を添加して作製する。この場合の全固形分は、樹脂成分である高分子分散剤、ポリアミド酸と、着色剤との合計である。
 得られた着色剤組成物を、樹脂ブラックマトリックスが形成された樹脂積層膜上に、スピンコーター又はダイコーター等の方法で加熱処理後の厚さが0.8~3.0μmの目的の厚さになるように塗布後、減圧乾燥を行い、80~110℃の熱風オーブン又はホットプレートでプリベークを行い、着色剤の塗膜を形成する。
 次に、ポジ型レジストをスピンコーター又はダイコーター等の方法で、プリベーク後の厚さが1.2μmになるように塗布後、減圧乾燥を行い、80~110℃の熱風オーブン又はホットプレートでプリベークを行い、レジスト膜を形成する。その後、プロキシミティ露光機又はプロジェクション露光機等により、フォトマスクを介して紫外線により選択的に露光を行った後、1.5~3重量%の水酸化カリウム又はテトラメチルアンモニウムヒドロキシド等のアルカリ現像液に20~300秒浸漬することにより露光部を除去する。剥離液を用いてポジレジストを剥離後、200~300℃の熱風オーブン又はホットプレートで10~60分加熱することで、ポリアミド酸をポリイミドに転換し、着色画素を形成する。着色画素の色毎に作製した着色剤組成物を使用して、上記のようなパターニング工程を赤の着色画素、緑の着色画素および青の着色画素について順次行う。なお、着色画素のパターニングの順序は特に限定されない。
 その後、ポリシロキサン樹脂をスピンコーター又はダイコーター等の方法で塗布後、真空乾燥し、80~110℃の熱風オーブン又はホットプレートでプリベークを行い、150~250℃の熱風オーブン又はホットプレートで5~40分加熱することでオーバーコート層を形成することで、本発明のCFの画素が作製できる。
 前述したように、本発明の樹脂積層膜は樹脂膜1の紫外光域での光吸収が大きいため、剥離に必要な照射エネルギーを低減することができる。また、本発明の樹脂積層膜のCTEが低い場合、例えば30ppm/℃以下の場合、支持基板上に樹脂積層膜を形成した際の基板の反りを小さくすることができる。したがって、ブラックマトリックスや着色画素形成時のフォトリソグラフィー工程での焦点ずれを小さくでき、その結果、CFを高精度で作製できる。さらに、CTEを低くすることで、剥離後のカラーフィルタのカールを低減でき、剥離後の画素欠けなどを抑制することができる。
 本発明の樹脂積層膜は、TFT基板の基材に好適に使用することができる。すなわち、本発明の樹脂積層膜上にTFTを備えたTFT基板を得ることができる。このTFT基板は、樹脂膜を基材に用いているため、軽量、割れにくいなどが特徴である。
 TFTの構成の例を図面により説明する。図2は支持基板上に形成された、本発明の樹脂積層膜を含むTFTの基本的な構成を示すものである。ここから前述の剥離方法によって支持基板(符号:1)を剥離することで、本発明の樹脂積層膜(符号:2’)を基板とするTFTが得られる。支持基板(符号:1)上にポリイミド樹脂膜A(符号:2A’)と樹脂膜(符号:2B’)からなる樹脂積層膜(符号:2’)が形成され、その上に無機膜であるガスバリア層(符号:5)がさらに形成され、その上にTFT(符号:6)と平坦化層(符号:7)が形成されている。
 本発明の樹脂積層膜を利用したTFT基板は少なくとも以下の工程を経て製造することができる。
(1)支持基板上にポリイミド樹脂膜Aを製膜する工程。
(2)前記樹脂膜上に更に樹脂膜を積層して樹脂積層膜を形成する工程。
(3)前記樹脂積層膜上にガスバリア層を形成する工程
(4)前記樹脂積層膜上にTFTを形成する工程。
(5)支持基板側から紫外光を照射して、前記樹脂積層膜を剥離する工程。
 上記(1)、(2)、(5)の工程は、詳細を(樹脂積層膜の製造方法)において(1)~(3)として前述したとおりである。
 上記TFT基板の製造工程における(3)及び(4)の工程は、樹脂積層膜の上に、ガスバリア層を形成し、次いで、TFTを形成する工程である。なお、(3)や(4)の工程は樹脂積層膜の直上にガスバリア層やTFTを形成するものであってもよいし、間に別の層を介在させてこれらを形成するものであってもよい。好ましくは、樹脂積層膜の直上にガスバリア層を形成し、その上にTFTを形成する方法である。
 TFTを形成するための半導体層としては、アモルファスシリコン半導体、多結晶シリコン半導体、In-Ga-ZnO- に代表される酸化物半導体、ペンタセンやポリチオフェンに代表される有機物半導体、及びカーボンナノチューブなどの炭素材料が挙げられる。例えば、本発明の樹脂積層膜を基材として、ガスバリア層、ゲート電極、ゲート絶縁膜、半導体層、エッチングストッパ膜、ソース・ドレイン電極を公知の方法によって順次形成してボトムゲート型TFTを作製する。
 上記の工程を経て本発明の樹脂積層膜を用いたTFT基板を製造することができる。このようなTFT基板は、液晶素子、有機EL素子、電子ペーパーなどの表示素子の駆動基板として用いることができる。
 TFTの製造温度は半導体層の種類によるが、多結晶シリコン半導体や酸化物半導体の場合には、移動度や信頼性向上のために高い製造温度を選択することが有利である。一般的には、多結晶シリコン半導体では500℃以上、酸化物半導体では300℃以上での熱処理が必要である。本発明の樹脂積層膜において、樹脂膜2がポリイミドの場合、樹脂積層膜の耐熱性が高いので、高温でのTFT製造が可能である。また樹脂膜1のポリイミド樹脂膜Aに含まれるポリイミドにおける酸二無水物残基が芳香族酸二無水物残基である場合、樹脂膜1の耐熱性が高くなり上記高温での半導体製造工程を通過するときのアウトガスを少なくできるため、素子欠けの少ない高品質なTFT基板を得ることができる。また前記芳香族酸二無水物残基がピロメリット酸二無水物もしくは3,3’,4,4’-ビフェニルテトラカルボン酸二無水物に由来する基であるとさらに耐熱性が向上するため好ましい。
 前述したように本発明の樹脂積層膜は樹脂膜1の紫外光域での光吸収が高いため、剥離に必要な照射エネルギーを低減することができる。TFT基板の製造において、ゲート電極、ゲート絶縁膜、半導体層、エッチングストッパ膜、ソース・ドレイン電極の形成には、主にフォトリソグラフィーを用いられる。また、本発明の樹脂積層膜のCTEが低い場合、例えば30ppm/℃以下、好ましくは10ppm/℃以下の場合、前述したように支持基板上に樹脂積層膜を形成した際の基板の反りを低減できる。したがって、フォトリソグラフィー工程での焦点ずれを小さくできるため、TFTを高精度で作製できる。その結果、駆動性能の良好なTFT基板が得られる。また、剥離後のTFT基板のカールを低減できるため、剥離後のTFT素子の破損を防ぐことができる。
 本発明の樹脂積層膜を用いたフレキシブル基板は、タッチパネルの基板に使用することができる。例えば、本発明の樹脂積層膜の少なくとも片面に透明導電層を形成することで透明導電膜とし、接着剤や粘着剤等を用いて透明導電膜同士を積層させることでタッチパネルを作成することができる。
 透明導電層としては、公知の金属膜、金属酸化物膜等、カーボンナノチューブやグラフェンなどの炭素材料を適用できるが、中でも透明性、導電性および機械特性の観点から、金属酸化物膜を適用することが好ましい。前記金属酸化物膜としては、例えば、不純物としてスズ、テルル、カドミウム、モリブテン、タングステン、フッ素、亜鉛、ゲルマニウム等を添加した酸化インジウム、酸化カドミウムおよび酸化スズ、不純物としてアルミニウムを添加した酸化亜鉛、酸化チタン等の金属酸化物膜が挙げられる。中でも酸化スズまたは酸化亜鉛を2~15質量%含有した酸化インジウムの薄膜は、透明性および導電性が優れているため好ましく用いられる。
 上記透明導電層の成膜方法は、目的の薄膜を形成できる方法であれば、いかなる方法で
もよいが、例えば、スパッタリング法、真空蒸着法、イオンプレーティング法、プラズマ
CVD法等の気相中より材料を堆積させて膜を形成する気相堆積法などが適している。中でも、特に優れた導電性・透明性が得られるという観点から、スパッタリング法を用いて成膜することが好ましい。また、透明導電層の膜厚は20~500nmであることが好ましく、50~300nmであることがさらに好ましい。
 また、透明導電層のパターニング方法は特に限定されず、フォトレジストとエッチャント液をウェットエッチングやレーザーを用いたドライエッチング等が挙げられる。
 本発明の樹脂積層膜を利用したフレキシブル基板は、液晶ディスプレイ、有機ELディスプレイ、電子ペーパーといった表示素子や太陽電池、CMOSなどの受光素子に使用することができる。特にこれらの表示素子や受光素子を、折り曲げ可能なフレキシブルデバイスとして活用する上で、本発明のフレキシブル基板が好ましく用いられる。
 表示素子や受光素子の製造工程の一例としては、基板上に形成した樹脂積層膜の上に、表示素子や受光素子に必要な回路と機能層を形成し、更に紫外光を照射して、樹脂積層膜を基板から剥離することが挙げられる。
 表示素子の一例である有機EL素子として、図3に有機EL素子(トップエミッション方式、赤緑青色発光有機EL)を示す。支持基板(符号:1)上にポリイミド樹脂膜A(符号:2A’)と樹脂膜(符号:2B’)からなる樹脂積層膜(符号:2’)が形成され、その上に無機膜であるガスバリア層(符号:5)がさらに形成され、その上にTFT(符号:6)の回路と有機EL発光層(符号:11R,11G,11B)等が形成されている。TFT(符号:6)の回路と有機EL発光層(符号:11R,11G,11B)等は、アモルファス、シリコン、低温ポリシリコン、酸化物半導体などからなるTFT(符号:6)、および平坦化層(符号:7)、Al/ITOなどからなる第一電極(符号:8)、第一電極(符号:8)の端部を被覆する絶縁層(符号:9)、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層からなる赤緑青色有機EL発光層(符号:11R,11G,11B)、ITOなどからなる第二電極(符号:10)から構成され、封止膜(符号:12)で封止されている。紫外光を照射して樹脂積層膜(符号:2’)を支持基板(符号:1)から剥離することによって、有機EL素子として使用できる。
 本発明の樹脂積層膜を含む有機EL素子は少なくとも以下の工程を経て製造することができる。
(1)支持基板上にポリイミド樹脂膜Aを製膜する工程。
(2)前記樹脂膜上に更に樹脂膜を積層して樹脂積層膜を形成する工程。
(3)前記樹脂積層膜上に有機EL素子を形成する工程。
(4)支持基板側から紫外光を照射して、前記樹脂積層膜を剥離する工程。
 上記(1),(2),(4)の工程は、詳細を(樹脂積層膜の製造方法)において(1)~(3)として前述したとおりである。
 上記有機EL素子の製造工程における(3)の工程は、アモルファス、シリコン、低温ポリシリコン、酸化物半導体などからなるTFT(符号:6)、および平坦化層(符号:7)、Al/ITOなどからなる第一電極(符号:8)、第一電極(符号:8)の端部を被覆する絶縁層(符号:9)、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層からなる白色あるいは各色(赤色、緑色、青色等)の有機EL発光層(符号:11W,11R,11G,11B)、ITOなどからなる第二電極(符号:10)を順時形成する。この場合、樹脂積層膜(符号:2’)の上に予め無機膜であるガスバリア層(符号:5)を形成した上で、TFTの回路と有機EL発光層を形成することが好ましく、また、有機EL発光層を形成した後、封止膜(符号:12)で封止することも好ましい。
 なお、光取り出し方式は、TFT基板側に光を取り出すボトムエミッション方式でも、封止膜側に光を取り出すトップエミッション方式のどちらでもよい。
 本発明の樹脂積層膜を含む有機EL素子、および/または、本発明の樹脂積層膜を含むCFは、それらを備えた有機ELディスプレイとして好ましく用いることができる。例えば、本発明の樹脂積層膜を基材に用いた白色発光有機EL素子と、本発明の樹脂積層膜を含むCFとを組み合わせることにより、フルカラー表示の有機ELディスプレイを得ることができる。他にも、色純度の向上を目的として、本発明の樹脂積層膜を基材に用いた赤緑青色発光有機EL素子と、本発明の樹脂積層膜を含むCFとを組み合わせてもよい。
 本発明のCFと白色発光型の有機EL素子を貼り合わせてなる有機ELディスプレイの一例を図4に示す。その製造工程の一例としては、以下の方法が挙げられる。前述の製造方法によって第1支持基板(図示せず)上に本発明のCF20を形成する。別途、前述の方法によって第2支持基板(図示せず)上に樹脂積層膜を基板とする有機EL素子30を形成する。その後、接着層13を介してCF(符号:20)と有機EL素子(符号:30)
とを貼り合わせる。その後、第1、第2支持基板にそれぞれ支持基板側から紫外光を照射することで第1、第2支持基板をそれぞれ剥離する。
 接着層は特に制限されず、例えば、粘着剤、粘接着剤、接着剤を光や熱により硬化させたものが挙げられる。接着層の樹脂は特に制限されず、例えば、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、ポリアミド樹脂、ポリイミド樹脂、シリコーン樹脂などが挙げられる。
 以下実施例等をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。
 (1)ポリイミド樹脂積層膜(ガラス基板上)の作製
 100mm×100mm×0.7mm厚のガラス基板(AN-100 旭硝子(株)製)を支持基板として、これに、ミカサ(株)製のスピンコーターMS-A200を用いて140℃×4分のプリベーク後の厚さが所定の厚さ(0.15、0.75、1.5、3.0、7.5、15.0μm)になるように、回転数を調節してワニス(合成例1~19)をスピン塗布した。その後、大日本スクリーン(株)製ホットプレートD-SPINを用いて140℃×4分のプリベーク処理を行った。プリベーク処理後の塗膜をイナートオーブン(光洋サーモシステム(株)製 INH-21CD)を用いて窒素気流下(酸素濃度20ppm以下)、3.5℃/minで300℃または400℃まで昇温し、30分間保持し、5℃/minで50℃まで冷却し、樹脂膜1を作製した。続いて、樹脂膜1上に、上記と同様にプリベーク後の厚さが15.0μmになるようにワニス(合成例20~22、調製例1,2)をスピン塗布した。その後、上記の同様にプリベーク処理/イナートオーブンでの焼成を行い、樹脂膜1上に樹脂膜2を製膜した。
 (2)ポリイミド樹脂膜(ガラス基板上)の作製
 100mm×100mm×0.7mm厚のガラス基板(AN-100 旭硝子(株)製)を支持基板として、これに、ミカサ(株)製のスピンコーターMS-A200を用いて140℃×4分のプリベーク後の厚さが15.0μmになるように、回転数を調節してワニス(合成例1~22、調製例1,2)をスピン塗布した。その後、大日本スクリーン(株)製ホットプレートD-SPINを用いて140℃×4分のプリベーク処理を行った。プリベーク処理後の塗膜をイナートオーブン(光洋サーモシステム(株)製 INH-21CD)を用いて窒素気流下(酸素濃度20ppm以下)、3.5℃/minで300℃または400℃まで昇温し、30分間保持し、5℃/minで50℃まで冷却し、ポリイミド樹脂膜を作製した。得られたポリイミド樹脂膜の厚さは10.0μmであった。
 (3)ポリイミド樹脂積層膜の光透過率の測定
 紫外可視分光光度計((株)島津製作所製 MultiSpec1500)を用い、400nmにおける光透過率を測定した。なお、測定には(1)で作製したガラス基板上ポリイミド樹脂積層膜を用いた。
 (4)ジアミン溶液の吸光度の測定
 紫外可視分光光度計((株)島津製作所製 MultiSpec1500)を用い、266nm、308nm、343nm、351nm、355nmにおける吸光度を測定した。なお、光路長1cmの石英セルを用いて、濃度1×10-4mol/Lのジアミン溶液(溶媒:NMP)の測定を行った。
 (5)ポリイミド樹脂積層膜中の樹脂膜1の光透過率の測定
 (1)に記載の方法でガラス基板上に製膜したポリイミド樹脂積層膜を、GD-OES分析装置((株)堀場製作所製 GD-Profiler2)を用いて、樹脂膜2から樹脂膜1に向けてエッチング(径5mmφ)を行い、膜厚100nmの樹脂膜1を作製した。顕微紫外可視近赤外分光光度計(日本分光(株)製 MSV-5100)を用いて、厚さ100nmの膜としたときの樹脂膜1の266nm、308nm、343nm、351nm、355nmにおける光透過率を測定した。同様のエッチングと光透過率測定を5箇所で行い、それらの平均値を光透過率とした。
 (6)レーザー剥離試験
 (1)に記載の方法で得られたポリイミド樹脂積層膜、(2)に記載の方法で得られたポリイミド樹脂膜、及び後述する方法で作製したCF、TFT基板、有機ELディスプレイに対して、308nmのエキシマレーザー(形状:21mm×1.0mm)をガラス基板側から照射して、レーザー剥離試験を行った。レーザーは、短軸方向に0.5mmずつずらしながら照射した。照射領域の縁に沿って切り込みを入れた際に、膜が剥離したエネルギーを剥離に必要な照射エネルギーを測定し、以下の基準で評価を行った。
A:照射エネルギーが230mJ/cm以下。
B:照射エネルギーが230mJ/cmを超え、250mJ/cm以下。
C:照射エネルギーが250mJ/cmを超え、270mJ/cm以下。
D:照射エネルギーが270mJ/cmを超え、290mJ/cm以下。
E:照射エネルギーが290mJ/cmを超える。
 (7)線熱膨張係数(CTE)、ガラス転移温度(Tg)の測定
 熱機械分析装置(エスアイアイ・ナノテクノロジー(株)製 EXSTAR6000 TMA/SS6000)を用いて、窒素気流下で測定を行った。昇温方法は、以下の条件にて行った。第1段階で昇温レート5℃/minで150℃まで昇温して試料の吸着水を除去し、第2段階で降温レート5℃/minで室温まで空冷した。第3段階で、昇温レート5℃/minで本測定を行い、CTE、Tgを求めた。なお、CTEは、第3段階における50℃~200℃の平均値である。また、測定には(1)で作成したガラス基板上ポリイミド樹脂積層膜、及び(2)で作製したガラス基板上ポリイミド樹脂膜を(6)記載の方法でレーザー剥離して得たポリイミド樹脂積層膜(実施例1~29、比較例1~3)、及びポリイミド樹脂膜(合成例1~23、調製例1、2)を用いた。さらに、ポリイミド樹脂積層膜(樹脂膜1+樹脂膜2)のCTEと樹脂膜2のCTEの差(ポリイミド樹脂積層膜のCTE-樹脂膜2のCTE)をとり、樹脂膜1との積層化によるCTEの変化を求めた。
 (8)色度座標の測定
 XYZ表色系色度図における透過色度座標(x, y)を、顕微分光光度計(大塚電子(株)製 MCPD-2000)を用いて測定した。なお、測定には(1)で作製したガラス基板上ポリイミド樹脂積層膜を用いた。また、光源にはC光源(x0=0.310, y0=0.316)を用いた。
 (9)表面粗さの測定
 原子間力顕微鏡(AFM)(BRUKER社製 DIMENSION Icon)を用いて、(6)で剥離したポリイミド樹脂積層膜の剥離面の表面粗さ(最大高さ(Rz))の測定を行った。
 (10)1%重量減少温度(耐熱性)の測定
 熱重量測定装置(株式会社島津製作所製  TGA-50)を用いて窒素気流下で測定を行った。昇温方法は、以下の条件にて行った。第1段階で、昇温レート3.5℃/minで350℃まで昇温して試料の吸着水を除去し、第2段階で、降温レート10℃/min室温まで冷却した。第3段階で、昇温レート10℃/minで本測定を行い、1%熱重量減少温度を求めた。なお、測定には(1)で作成したガラス基板上ポリイミド樹脂積層膜を(6)記載の方法でレーザー剥離して得たポリイミド樹脂積層膜(実施例1~29)を用いた。
 (11)酸化インジウムスズ(ITO)膜の製膜
 (6)に記載の方法でガラス基板から剥離したポリイミド樹脂積層膜の剥離面に、酸化インジウムと酸化スズの複合酸化物ターゲットを用いてスパッタリングを行い、膜厚150nmのITO層を製膜した。このときの圧力は6.7×10-1Pa、基板温度は150度で3kWの直流電源を用いてスパッタリングを行った。
 (12)水蒸気透過率の測定
 (11)に記載の方法で作製したITO膜付きポリイミド樹脂積層膜について、温度40℃、湿度90%RH、測定面積50cmの条件で、水蒸気透過率測定装置(モコン(MOCON)製 PERMATRAN(登録商標))を使用して、水蒸気透過率を測定した。サンプル数は水準当たり2検体とし、測定回数は同一サンプルについて各10回とし、その平均値を水蒸気透過率(g/(m・day))としてガスバリア性評価の指標とした。
 (13)樹脂積層膜製膜後のガラス基板の反り測定
 反り測定は、300×350×0.7mm厚のガラス基板(AN-100 旭硝子(株)製)上に、(1)に記載の方法でポリイミド樹脂積層膜を作製し、(株)ミツトヨ製の精密石常盤(1000mm×1000mm)の上に載せ、試験板の4辺の各中点および各頂点の計8箇所について常盤から浮いている量(距離)を、隙間ゲージを用いて測定した。これらの平均値を反り量とした。測定は室温(25℃)で行なった。
 (14)TFT基板、カラーフィルタ基板のカール評価
 TFT基板、カラーフィルタ基板のカールは、以下のように評価を行った。
 (6)に記載の方法でガラス基板から剥離したTFT基板やカラーフィルタ基板を、30分間室温にて静置保存した。静置保存後のTFT基板やカラーフィルタ基板を30mm角に切り取り、平滑なガラス板の上に基板側が下になるよう更に30分間室温で静置した。その後に観察を行い、30mm角のTFT基板やカラーフィルタ基板がガラス板から浮いている箇所の最大量をカール量として測定し、以下の基準で評価を行った。
A(非常に良好): カール量が2mm以下
B(良好):カール量が2mmを超え、5mm以下
C(可):カール量が5mmを超え、10mm以下
D(不良):カール量が10mmを超える、もしくは筒状である。
 (15)TFT基板、カラーフィルタ基板の欠け評価
 (6)記載の方法でガラス基板から剥離したTFT基板の素子欠けやカラーフィルタ基板の画素欠けの数を評価した。評価には、光学顕微鏡((株)Nikon製、OPTIPHOT300)を用い、目視で1000素子や画素観察を行った。
 (使用原料等の表記)
 実施例で用いた物質等の略称を以下にまとめる。
PMDA:ピロメリット酸二無水物
BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
ODPA:3,3’,4,4’-オキシジフタル酸二無水物
6FDA:4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物
BSAA:2,2-ビス(4-(3,4-ジカルボキシフェノキシ)フェニル)プロパン二無水物
CBDA:シクロブタンテトラカルボン酸二無水物
PMDA-HS:1R,2S,4S,5R-シクロへキサンテトラカルボン酸二無水物
BPDA-H:3,3’,4,4’-ジシクロへキサンテトラカルボン酸二無水物
PDA:パラフェニレンジアミン
3,3’-DDS:3,3’-ジアミノジフェニルスルホン
TFMB:2,2’-ビス(トリフルオロメチル)ベンジジン
HFHA:化学式(3)の構造
BABOHF:化学式(5)の構造
BABODS:化学式(6)の構造
BABOHA:化学式(13)の構造
BABOBA:化学式(14)の構造
BAPS:ビス[4-(3-アミノフェノキシ)フェニル]スルホン
CHDA:トランス-1,4-ジアミノシクロへキサン
BABB:化学式(15)の構造
DAE:4,4’-ジアミノジフェニルエーテル
SiDA:ビス(3-アミノプロピル)テトラメチルジシロキサン
NMP:N-メチル-2-ピロリドン
GBL:ガンマブチロラクトン
Figure JPOXMLDOC01-appb-C000007
 合成例1: ポリイミド前駆体溶液の合成
 乾燥窒素気流下、200mL4つ口フラスコにPMDA5.0505g(21.2mmol)、HFHA13.9971g(23.2mmol)、NMP100gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体溶液とした。
 合成例2: ポリイミド前駆体溶液の合成
 乾燥窒素気流下、200mL4つ口フラスコにBPDA6.2357g(21.2mmol)、HFHA12.8119g(21.2mmol)、NMP100gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体溶液とした。
 合成例3: ポリイミド前駆体溶液の合成
 乾燥窒素気流下、200mL4つ口フラスコにODPA6.4597g(20.8mmol)、HFHA12.5879g(20.8mmol)、NMP100gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体溶液とした。
 合成例4: ポリイミド前駆体溶液の合成
 乾燥窒素気流下、200mL4つ口フラスコに6FDA8.0685g(18.2mmol)、HFHA10.9792g(18.2mmol)、NMP100gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体溶液とした。
 合成例5: ポリイミド前駆体溶液の合成
 乾燥窒素気流下、200mL4つ口フラスコにBSAA8.8126g(16.9mmol)、HFHA10.2350g(16.9mmol)、NMP100gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体溶液とした。
 合成例6: ポリイミド前駆体溶液の合成
 乾燥窒素気流下、200mL4つ口フラスコにCBDA4.6657g(23.8mmol)、HFHA14.3819g(23.8mmol)、NMP100gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体溶液とした。
 合成例7: ポリイミド前駆体溶液の合成
 乾燥窒素気流下、200mL4つ口フラスコにPMDA-HS5.1527g(23.0mmol)、HFHA13.8949g(23.0mmol)、NMP100gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体溶液とした。
 合成例8: ポリイミド前駆体溶液の合成
 乾燥窒素気流下、200mL4つ口フラスコにBPDA-H6.4058g(20.9mmol)、HFHA12.6418g(20.9mmol)、NMP100gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体溶液とした。
 合成例9: ポリイミド前駆体溶液の合成
 乾燥窒素気流下、200mL4つ口フラスコにPMDA-HS5.3869g(24.0mmol)、BABOHF13.6607g(24.0mmol)、NMP100gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体溶液とした。
 合成例10: ポリイミド前駆体溶液の合成
 乾燥窒素気流下、200mL4つ口フラスコにPMDA-HS6.0422g(27.0mmol)、BABODS13.0054g(27.0mmol)、NMP100gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体溶液とした。
 合成例11: ポリイミド前駆体溶液の合成
 乾燥窒素気流下、200mL4つ口フラスコにPMDA-HS5.2923g(23.6mmol)、BABOHA13.7554g(23.6mmol)、NMP100gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体溶液とした。
 合成例12: ポリイミド前駆体溶液の合成
乾燥窒素気流下、200mL4つ口フラスコにBPDA7.8637g(26.7mmol)、BABOBA11.1840g(26.7mmol)、NMP100gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体溶液とした。
 合成例13: ポリイミド前駆体溶液の合成
 乾燥窒素気流下、200mL4つ口フラスコにPMDA-HS6.6445g(29.6mmol)、BABOBA12.4031g(29.6mmol)、NMP100gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体溶液とした。
 合成例14: ポリイミド前駆体溶液の合成
 乾燥窒素気流下、200mL4つ口フラスコにODPA7.9558g(25.6mmol)、BAPS11.0918g(25.6mmol)、NMP100gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体溶液とした。
 合成例15: ポリイミド前駆体溶液の合成
 乾燥窒素気流下、200mL4つ口フラスコにBPDA4.7698g(16.2mmol)、PMDA-HS1.2114g(5.4mmol)、HFHA13.0665g(21.6mmol)、NMP100gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体溶液とした。
 合成例16: ポリイミド前駆体溶液の合成
 乾燥窒素気流下、200mL4つ口フラスコにBPDA3.2443g(11.0mmol)、PMDA-HS2.4719g(11.0mmol)、HFHA13.3314g(22.0mmol)、NMP100gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体溶液とした。
 合成例17: ポリイミド前駆体溶液の合成
 乾燥窒素気流下、200mL4つ口フラスコにBPDA1.6557g(5.6mmol)、PMDA-HS3.7846g(16.8mmol)、HFHA13.6073g(22.5mmol)、NMP100gを入れて65℃で加熱撹拌した。6時間後、冷却してポリアミド酸溶液とした。
 合成例18: ポリアミド酸溶液の合成
 乾燥窒素気流下、200mL4つ口フラスコにPMDA-HS9.0374g(40.3mmol)、3,3’-DDS10.0102g(40.3mmol)、NMP100gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体溶液とした。
 合成例19: ポリイミド前駆体溶液の合成
 乾燥窒素気流下、200mL4つ口フラスコにBPDA-H14.0776g(46.0mmol)、PDA4.9700g(46.0mmol)、NMP100gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体溶液とした。
 合成例20: ポリイミド前駆体溶液の合成
 乾燥窒素気流下、200mL4つ口フラスコにBPDA13.7220g(46.6mmol)、CHDA5.3256g(46.6mmol)、NMP100gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体溶液とした。
 合成例21: ポリイミド前駆体溶液の合成
 乾燥窒素気流下、200mL4つ口フラスコにODPA9.3724g(30.2mmol)、TFMB9.6752g(30.2mmol)、NMP100gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体溶液とした。
 合成例22: ポリイミド前駆体溶液の合成
 乾燥窒素気流下、200mL4つ口フラスコにBPDA13.9283g(47.3mmol)、PDA5.1193g(47.3mmol)、NMP100gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体溶液とした。
 合成例23: ポリイミド前駆体溶液の合成
 乾燥窒素気流下、200mL4つ口フラスコにBPDA7.3799g(25.1mmol)、BABB11.4074g(25.1mmol)、NMP100gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体溶液とした。
 調製例1:ポリイミド前駆体/シリカナノ粒子溶液の調整
 合成例2で得たポリイミド前駆体溶液中のポリイミド前駆体100重量部に対してシリカ微粒子が100重量部となるように、ポリイミド前駆体溶液にオルガノシリカゾル(日産化学工業株式会社製、商品名PMA-ST、粒子径10-30nm)を添加し、ポリイミド前駆体-シリカナノ粒子ワニスを得た。
 調製例2:ポリイミド前駆体/シリカナノ粒子溶液の調整
 合成例22で得たポリイミド前駆体溶液中のポリイミド前駆体100重量部に対してシリカ微粒子が50重量部となるように、ポリイミド前駆体溶液にオルガノシリカゾル(日産化学工業株式会社製、商品名PMA-ST、粒子径10-30nm)を添加し、ポリイミド前駆体-シリカナノ粒子ワニスを得た。
 各合成例、調製例のポリイミド前駆体溶液を用いて、(2)に記述の方法でポリイミド樹脂膜を作成し、(6)に記載の方法でレーザー剥離性の評価を行った。ジアミン溶液の波長300~400nmの波長域の波長域における吸光度の最大値、波長266nm、308nm、343nm、351nm、355nmにおける吸光度、ポリイミド樹脂膜のCTEと合わせて、結果を表1に示す。
Figure JPOXMLDOC01-appb-T000008
 実施例1
 (1)に記述の方法で、合成例1および合成例20のポリイミド前駆体溶液を用いて、膜厚1μmの樹脂膜1(300℃焼成)、膜厚10μmの樹脂膜2(300℃焼成)を作製した。得られたポリイミド樹脂積層膜を用いて、(3)、(6)~(10)および(12)に記載の方法で、樹脂積層膜の光透過率の測定、レーザー剥離試験、CTEの測定、Tgの測定、積層化によるCTEの変化の測定、色度座標の測定、剥離面のRzの測定、1%重量減少温度の測定、剥離面へのITO膜の製膜した後に水蒸気透過率の測定を行った。その結果を表2に示す。また、(5)に記載した方法で作製した、厚さ100nmの膜としたときの樹脂膜1の波長300~400nmの波長域における光透過率の最小値、及び波長266nm、308nm、343nm、351nm、355nmにおける光透過率を測定した。その結果を表6に示す。
 実施例2~11
 樹脂膜1の作製に用いるポリイミド前駆体溶液を表2~3に記載の通りに変更したこと以外、実施例1と同様にして、ポリイミド樹脂積層膜を作製した。実施例1と同様に、光透過率の測定、レーザー剥離試験、CTEの測定、Tgの測定、積層化によるCTEの変化の測定、色度座標の測定、剥離面のRzの測定、1%重量減少温度の測定、剥離面へのITO膜の製膜した後に水蒸気透過率の測定を行った。その結果を表2~3に示す。また、厚さ100nmの膜としたときの樹脂膜1の波長300~400nmの波長域における光透過率の最小値、及び波長266nm、308nm、343nm、351nm、355nmにおける光透過率を表6に示す。
 実施例12
 樹脂膜1の作製に合成例12のポリイミド樹脂前駆体溶液を用い、その焼成温度を400℃に変更したこと以外、実施例1と同様にして、ポリイミド樹脂積層膜を作製した。実施例1と同様に、光透過率の測定、レーザー剥離試験、CTEの測定、Tgの測定、積層化によるCTEの変化の測定、色度座標の測定、剥離面のRzの測定、1%重量減少温度の測定、剥離面へのITO膜の製膜した後に水蒸気透過率の測定を行った。その結果を表3に示す。また、厚さ100nmの膜としたときの樹脂膜1の波長300~400nmの波長域における光透過率の最小値、及び波長266nm、308nm、343nm、351nm、355nmにおける光透過率を表6に示す。
 実施例13~17
 樹脂膜1の作製に用いるポリイミド前駆体溶液を表3に記載の通りに変更したこと以外、実施例1と同様にして、ポリイミド樹脂積層膜を作製した。実施例1と同様に、光透過率の測定、レーザー剥離試験、CTEの測定、Tgの測定、積層化によるCTEの変化の測定、色度座標の測定、剥離面のRzの測定、1%重量減少温度の測定、剥離面へのITO膜の製膜した後に水蒸気透過率の測定を行った。その結果を表3に示す。また、厚さ100nmの膜としたときの樹脂膜1の波長300~400nmの波長域における光透過率の最小値、及び波長266nm、308nm、343nm、351nm、355nmにおける光透過率を表6に示す。
 実施例18~22
 合成例1のポリイミド前駆体溶液の代わりに合成例7のポリイミド前駆体溶液を用い、樹脂膜1の膜厚を表4に記載の通りに変更したこと以外、実施例1と同様にして、ポリイミド樹脂積層膜を作製した。実施例1と同様に、光透過率の測定、レーザー剥離試験、CTEの測定、積層化によるCTEの変化の測定、Tgの測定、色度座標の測定、剥離面のRzの測定、1%重量減少温度の測定、剥離面へのITO膜の製膜した後に水蒸気透過率の測定を行った。その結果を表4に示す。また、厚さ100nmの膜としたときの樹脂膜1の波長300~400nmの波長域における光透過率の最小値、及び波長266nm、308nm、343nm、351nm、355nmにおける光透過率を表6に示す。
 実施例23~25
 樹脂膜1の作製に表4に記載のポリイミド前駆体溶液を用いたこと、及び樹脂膜2の作製に表4に記載のポリイミド前駆体溶液を用いて、その焼成温度を400℃にしたこと以外、実施例1と同様にして、ポリイミド樹脂積層膜を作製した。実施例1と同様に、光透過率の測定、レーザー剥離試験、CTEの測定、Tgの測定、積層化によるCTEの変化の測定、色度座標の測定、剥離面のRzの測定、1%重量減少温度の測定、剥離面へのITO膜の製膜した後に水蒸気透過率の測定を行った。その結果を表4に示す。また、厚さ100nmの膜としたときの樹脂膜1の波長300~400nmの波長域における光透過率の最小値、及び波長266nm、308nm、343nm、351nm、355nmにおける光透過率を表6に示す。
 実施例26~27
 樹脂膜1の作製に表4に記載のポリイミド前駆体溶液を用い、その焼成温度を400℃に変更したこと、及び樹脂膜2の作製に合成例22のポリイミド前駆体溶液を用いて、その焼成温度を400℃にしたこと以外、実施例1と同様にして、ポリイミド樹脂積層膜を作製した。実施例1と同様に、光透過率の測定、レーザー剥離試験、CTEの測定、Tgの測定、積層化によるCTEの変化の測定、色度座標の測定、剥離面のRzの測定、1%重量減少温度の測定、剥離面へのITO膜の製膜した後に水蒸気透過率の測定を行った。その結果を表4に示す。また、厚さ100nmの膜としたときの樹脂膜1の波長300~400nmの波長域における光透過率の最小値、及び波長266nm、308nm、343nm、351nm、355nmにおける光透過率を表6に示す。
 実施例28~29
 樹脂膜2の作製に表4に記載のポリイミド前駆体溶液を用いたこと以外、実施例23と同様にして、ポリイミド樹脂積層膜を作製した。実施例1と同様に、光透過率の測定、レーザー剥離試験、CTEの測定、Tgの測定、積層化によるCTEの変化の測定、色度座標の測定、剥離面のRzの測定、1%重量減少温度の測定、剥離面へのITO膜の製膜した後に水蒸気透過率の測定を行った。その結果を表4に示す。また、厚さ100nmの膜としたときの樹脂膜1の波長300~400nmの波長域における光透過率の最小値、及び波長266nm、308nm、343nm、351nm、355nmにおける光透過率を表6に示す。
 比較例1~2
 樹脂膜1の作製に用いるポリイミド前駆体溶液を表5に記載の通りに変更したこと以外、実施例1と同様にして、ポリイミド樹脂積層膜を作製した。実施例1と同様に、光透過率の測定、レーザー剥離試験、色度座標の測定を行った。その結果を表5に示す。レーザー剥離試験に用いた装置の最大照射エネルギー(400mJ/cm)でも、樹脂積層膜を剥離することができなかった。そのため、CTEの測定、積層化によるCTEの変化の測定、剥離面のRzの測定、1%重量減少温度の測定、ITO膜の製膜、水蒸気透過率の測定は実施しなかった。また、厚さ100nmの膜としたときの樹脂膜1の波長300~400nmの波長域における光透過率の最小値、及び波長266nm、308nm、343nm、351nm、355nmにおける光透過率を表6に示す。
 比較例3
 樹脂膜1の作製に用いるポリイミド前駆体溶液を表5に記載の通りに変更したこと以外、実施例24と同様にして、ポリイミド樹脂積層膜を作製した。実施例1と同様に、光透過率の測定、レーザー剥離試験、色度座標の測定を行った。その結果を表5に示す。レーザー剥離試験に用いた装置の最大照射エネルギー(400mJ/cm)でも、樹脂積層膜を剥離することができなかった。そのため、CTEの測定、積層化によるCTEの変化の測定、剥離面のRzの測定、1%重量減少温度の測定、ITO膜の製膜、水蒸気透過率の測定は実施しなかった。また、厚さ100nmの膜としたときの樹脂膜1の波長300~400nmの波長域における光透過率の最小値、及び波長266nm、308nm、343nm、351nm、355nmにおける光透過率を表6に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 調整例3:ポリアミド酸溶液の合成
 DAE(0.30mol)、PDA(0.65mol)およびSiDA(0.05mol)を、850gのGBLおよび850gのNMPと共に仕込み、ODPA(0.9975mol)を添加し、80℃で3時間反応させた。無水マレイン酸(0.02mol)を添加し、更に80℃で1時間反応させ、ポリアミド酸溶液(樹脂の濃度20重量%)を得た。
 調製例4;ブラックマトリックスを形成するための黒色樹脂組成物の作製
 調整例3のポリアミド酸溶液250gに、50gのカーボンブラック(MA100 三菱化学(株)製)および200gのNMPを混合し、ダイノーミルKDL-Aを用いて、直径0.3mmのジルコニアビーズを使用して、3200rpmで3時間の分散処理を行い、黒色樹脂分散液を得た。
 この黒色分散液を50gに、49.9gのNMPおよび0.1gの界面活性剤(LC951 楠本化学(株)製)を添加して、非感光性の黒色樹脂組成物を得た。
 調製例5:感光性カラーレジストの作製
 ピグメントレッドPR177、8.05gを3-メチル-3-メトキシブタノール50gとともに仕込み、ホモジナイザーを用い、7000rpmで5時間分散後、ガラスビーズを濾過し、除去した。アクリル共重合体溶液(ダイセル化学工業(株)製“サイクロマー”P、ACA-250、43wt%溶液)70.00g、多官能モノマーとしてペンタエリスリトールテトラメタクリレート30.00g、光重合開始剤として“イルガキュア”369、15.00gにシクロペンタノン260.00gを加えた濃度20重量%の感光性アクリル樹脂溶液(AC)134.75gを加え、感光性赤レジストを得た。同様にして、ピグメントグリーンPG38とピグメントイエローPY138からなる感光性緑レジスト、ピグメントブルーPB15:6からなる感光性青レジストを得た。
 実施例30 カラーフィルタの作製(図1)
 [1]ポリイミド樹脂積層膜の作製
 支持基板(符号:1)として300mm×350mm×0.7mm厚のガラス基板(AN100 旭硝子(株)製)を用い、ポリイミド樹脂膜Aの焼成温度を300℃にしたこと以外、実施例18と同様にして、ポリイミド積層膜A(符号:2A)と樹脂膜(符号:2B)からなるポリイミド樹脂積層膜である樹脂積層膜(符号:2)を作製した。
 [2]樹脂ブラックマトリックスの作製
 上記で作製したガラス基板上のポリイミド樹脂積層膜上に調整例4で作製した黒色樹脂組成物をスピン塗布し、ホットプレートで130℃、10分間乾燥し、黒色の樹脂塗膜を形成した。ポジ型フォトレジスト(シプレー社製、“SRC-100”)をスピン塗布、ホットプレートで120℃、5分間プリベークし、超高圧水銀灯を用いて100mJ/cm紫外線照射してマスク露光した後、2.38%のテトラメチルアンモニウムヒドロキシド水溶液を用いて、フォトレジストの現像と黒色の樹脂塗膜のエッチングを同時に行い、パターンを形成、メチルセロソルブアセテートでレジスト剥離し、ホットプレートで280℃、10分間加熱させることでイミド化させ、ポリイミド樹脂にカーボンブラックを分散したブラックマトリックス(符号:3)を形成した。ブラックマトリックスの厚さを測定したところ、1.4μmであった。
 [3]着色層の作製
 [1]、[2]で作製したブラックマトリクスがパターン加工されたガラス基板上のポリイミド樹脂積層膜上に、熱処理後のブラックマトリクス開口部での膜厚が2.0μmになるようにスピナーの回転数を調整し、調製例5で調整した感光性赤レジストを塗布し、ホットプレートで100℃、10分間プリベークすることにより、赤色着色層を得た。次に、キャノン(株)製、紫外線露光機“PLA-5011”を用い、ブラックマトリクス開口部とブラックマトリクス上の一部の領域についてアイランド状に光が透過するクロム製フォトマスクを介して、100mJ/cm(365nmの紫外線強度)で露光した。露光後に0.2%のテトラメチルアンモニウムヒドロキシド水溶液からなる現像液に浸漬を行い現像し、続いて純水洗浄後、230℃のオーブンで30分間加熱処理し、赤の着色画素(符号:4R)を作製した。同様にして、調製例5で調整した感光性緑レジストからなる緑の着色画素(符号:4G)、感光性青レジストからなる青の着色画素(符号:4Bを作製し、ガラス基板上に作製されたポリイミド基板カラーフィルタ(図1)を得た。
 実施例31~33、比較例4
 ポリイミド樹脂積層膜の作製を実施例18と同じ条件とする代わりに表6に記載の実施例と同じ条件に変更したこと以外、実施例30と同様にしてカラーフィルタを作製した。
 各実施例、比較例のカラーフィルタについて、(6)に記載の方法でレーザー剥離試験を行い、(14)に記載の方法でカラーフィルタのカールの評価、(15)に記載の方法で画素欠けの評価を行った。また、各実施例、比較例において、支持基板であるガラス基板上にポリイミド樹脂積層膜を作製した後に、(13)に記載の方法でガラス基板の反り量を測定した。結果を表7に示す。
 実施例30~33において、はじきや混色などの問題は特になく、良好なカラーフィルタを得ることができた。しかし、実施例30のカラーフィルタと比較すると実施例31~33のカラーフィルタではカールが大きく、画素欠けも増加した。これは、ポリイミド樹脂積層膜のCTEの増加が原因と考えられる。比較例4においては、カラーフィルタをガラス基板から剥離することができなかった。
Figure JPOXMLDOC01-appb-T000014
 実施例34 TFT基板の作製(図2)
 [1]ポリイミド樹脂積層膜の作製
支持基板(符号:1)として300mm×400mm×0.7mm厚のガラス基板(AN100(旭硝子(株)))を用い、ポリイミド樹脂膜Aの焼成温度を300℃にしたこと以外、実施例26と同様にして、ポリイミド樹脂膜A(符号:2A’)と樹脂膜(符号:2B’)からなるポリイミド樹脂積層膜である樹脂積層膜(符号:2’)を作製した。
 [2]TFT基板の作製
 上記の方法で作製したポリイミド樹脂積層膜(ガラス基板上)に、プラズマCVD法を用いてSiOからなるガスバリア層(符号:5)を製膜した。その後、ボトムゲート型のTFT(符号:6)を形成し、このTFTを覆う状態でSiからなる絶縁膜(図示せず)を形成した。次に、この絶縁膜に、コンタクトホールを形成した後、このコンタクトホールを介してTFTに接続される配線(高さ1.0μm、図示せず)を絶縁膜上に形成した。この配線は、TFT間または、後の工程で形成される有機EL素子とTFTとを接続するためのものである。
 さらに、配線の形成による凹凸を平坦化するために、配線による凹凸を埋め込む状態で絶縁膜上へ平坦化層(符号:7)を形成した。平坦化層の形成は、感光性ポリイミドワニスを基板上にスピンコートし、ホットプレート上でプリベーク(120℃×3分間)した後、所望のパターンのマスクを介して露光、現像し、空気フロー下において230℃で60分間加熱処理することにより行った。ワニスを塗布する際の塗布性は良好で、露光、現像、加熱処理の後に得られた平坦化層にはしわやクラックの発生は認められなかった。さらに、配線の平均段差は500nm、作製した平坦化層には5μm四方のコンタクトホールが形成され、厚さは約2μmであった。
 実施例35~36
 ポリイミド樹脂積層膜の作製を実施例26と同じ条件とする代わりに表8に記載の実施例と同じ条件に変更したこと以外、実施例34と同様にしてTFT基板を作製した。
 得られたTFT基板(図2)について、(6)に記載の方法でレーザー剥離試験を行い、(14)に記載の方法でTFT基板のカールの評価、(15)に記載の方法で素子欠けの評価を行った。また、ガラス基板上にポリイミド積層膜を作製した後に、(13)に記載の方法でガラス基板の反り量を測定した。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000015
 実施例37 ポリイミド基板有機ELディスプレイの作製(図3)
[1]ポリイミド樹脂積層膜の作製
 実施例34に記載の方法で、ポリイミド樹脂膜A(符号:2A’)と樹脂膜(符号:2B’)からなるポリイミド樹脂積層膜である樹脂積層膜(符号:2’)を作製した。
[2]TFT基板の作製
 実施例34に記載の方法で、TFT基板を作製した。
 [3]トップエミッション型有機EL素子の作製
 上記の方法で得られたTFTの平坦化層(符号:7)の上に以下の各部位を形成して、トップエミッション型の有機EL素子を作製した。まず、平坦化層(符号:7) の上に、Al/ITO(Al:反射電極)からなる第一電極(符号:8)を、コンタクトホールを介して配線に接続させて形成した。その後、レジストを塗布、プリベークし、所望のパターンのマスクを介して露光し、現像した。このレジストパターンをマスクとして、ITOエッチャント用いたウェットエッチングにより第一電極(符号:8)のパターン加工を行った。その後、レジスト剥離液(モノエタノールアミンとジエチレングリコールモノブチルエーテルの混合液)を用いて該レジストパターンを剥離した。剥離後の基板を水洗し、200℃で30分間加熱脱水して平坦化層付き電極基板を得た。平坦化層の厚さの変化は、剥離液処理前に対して加熱脱水後で1%未満であった。こうして得られた第一電極(符号:8)は、有機EL素子の陽極に相当する。
 次に、第一電極(符号:8)の端部を覆う形状の絶縁層(符号:9)を形成した。絶縁層には、同じく感光性ポリイミドワニスを用いた。この絶縁層を設けることによって、第一電極とこの後の工程で形成する第二電極(符号:10)との間のショートを防止することができる。
 さらに、真空蒸着装置内で所望のパターンマスクを介して、正孔輸送層、有機発光層、電子輸送層を順次蒸着して、赤色有機EL発光層(符号:11R)、緑色有機EL発光層(符号:11G)、青色有機EL発光層(符号:11B)を設けた。次いで、基板上方の全面にMg/ITOからなる第二電極(符号:10)を形成した。さらにCVD成膜によりSiON封止膜(符号:12)を形成した。
 続いて、(6)に記載の方法で、ガラス基板から有機EL素子を剥離し、有機ELディスプレイ(図3)を作製した。得られたアクティブマトリックス型の有機ELディスプレイに駆動回路を介して電圧を印加したところ、良好な発光を示した。また、得られた有機EL素子は、ガラス基板を用いて作製した有機EL素子と比較して、遜色の無いものであった。
 実施例38 ポリイミド基板有機ELディスプレイの作製(図4)
 [1]ポリイミド樹脂積層膜の作製
 実施例34に記載の方法で、ポリイミド樹脂膜A(符号:2A’)と樹脂膜(符号:2B’)からなるポリイミド樹脂積層膜樹脂積層膜である樹脂積層膜(符号:2’)を作製した。
 [2]TFT基板の作製
 実施例34に記載の方法で、TFT基板を作製した。
 [3]トップエミッション型有機EL素子の作製
 有機発光層を白色有機EL発光層(符号:11W)に変更したこと以外は、実施例34に記載の方法でトップエミッション型有機EL素子を作製した。
 [4]有機ELディスプレイの作製
 実施例30で得られたガラス基板付きカラーフィルタと上記[3]で得られたガラス基板付きトップエミッション型有機EL素子を、接着層(符号:13)を介して貼り合わせた。続いて、(6)に記載の方法で、ガラス基板からカラーフィルタと有機EL素子を剥離し、有機ELディスプレイ(図4)を作製した。得られたアクティブマトリックス型の有機ELディスプレイに駆動回路を介して電圧を印加したところ、良好な発光を示した。また、得られた有機EL素子は、ガラス基板を用いて作製した有機EL素子と比較して、遜色の無いものであった。
1 支持基板
2、2’ 樹脂積層膜
2A、2A’ ポリイミド樹脂膜A
2B、2B’ 樹脂膜
3 ブラックマトリックス
4R 赤の着色画素
4G 緑の着色画素
4B 青の着色画素
5 ガスバリア層
6 TFT
7 平坦化層
8 第一電極
9 絶縁層
10 第二電極
11R 赤色有機EL発光層
11G 緑色有機EL発光層
11B 青色有機EL発光層
11W 白色有機EL発光層
12 封止膜
13 接着層
20 CF
30 有機EL素子

Claims (22)

  1. 樹脂膜の少なくとも一方の表面にポリイミド樹脂膜を有する樹脂積層膜であって、前記ポリイミド樹脂膜が、以下のポリイミド樹脂膜Aである樹脂積層膜。
    ポリイミド樹脂膜A:厚さ100nmの膜としたときに、波長300~400nmの波長域において、光透過率の最小値が50%未満であるポリイミド樹脂膜。
  2. 前記ポリイミド樹脂膜Aに含まれるポリイミドにおけるジアミン残基の主成分が以下の(B)ジアミン誘導体に由来する請求項1に記載の樹脂積層膜。
    (B)濃度1×10-4mol/LのN-メチル-2-ピロリドン溶液としたときに、波長300~400nmの波長域において、光路長1cmの条件下での吸光度の最大値が0.6を超えるジアミン誘導体。
  3. 前記(B)ジアミン誘導体の前記吸光度の最大値が1.0以上である請求項1または2に記載の樹脂積層膜。
  4. 前記ポリイミド樹脂膜の厚さが100nm~1μmである請求項1~3のいずれかに記載の樹脂積層膜。
  5. 前記(B)ジアミン誘導体が、式(1)または(2)で表される構造を含む請求項1~4のいずれかに記載の樹脂積層膜。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)~(2)中、Aは、単結合、酸素原子、硫黄原子、スルホニル基、フェニル基、フルオレニル基、ハロゲン原子で水素原子が置換されていてもよい炭素数1~5の2価の有機基、またはそれらが2以上連結してなる2価の有機基を示す。R~Rは各々独立に少なくとも1つアミノ基を有する炭素数1~10の1価の有機基を示す。
  6. 前記ポリイミド樹脂膜Aに含まれるポリイミドにおける酸二無水物残基が、芳香族酸二無水物残基を主成分とする請求項1~5のいずれかに記載の樹脂積層膜。
  7. 前記芳香族酸二無水物残基が、ピロメリット酸二無水物もしくは3,3’,4,4’-ビフェニルテトラカルボン酸二無水物に由来する請求項6記載の樹脂積層膜。
  8. 前記ポリイミド樹脂膜Aに含まれるポリイミドにおける酸二無水物残基が、脂環式酸二無水物残基を主成分とするか、脂肪族酸二無水物残基を主成分とするか、または脂環式酸二無水物残基および脂肪族酸二無水物残基の合計を主成分とする請求項1~5のいずれかに記載の樹脂積層膜。
  9. 前記ポリイミド樹脂膜Aに含まれるポリイミドにおける酸二無水物残基が、脂環式酸二無水物残基を主成分とするか、または脂環式酸二無水物残基および脂肪族酸二無水物残基の合計を主成分とし、前記脂環式酸二無水物残基が、式(3)~(6)のいずれかで表されるテトラカルボン酸二無水物化合物に由来する請求項8記載の樹脂積層膜。
    Figure JPOXMLDOC01-appb-C000002
  10. 前記樹脂積層膜の線熱膨張係数が50℃~200℃の範囲で-10~30ppm/℃以下である、請求項1~9のいずれかに記載の樹脂積層膜。
  11. 前記樹脂積層膜のガラス転移温度が400℃以上である、請求項1~10のいずれかに記載の樹脂積層膜。
  12. 前記樹脂積層膜の積層数が2である請求項1~11のいずれかに記載の樹脂積層膜。
  13. 前記樹脂積層膜のうち前記ポリイミド樹脂膜以外の樹脂膜がポリイミド樹脂、ポリベンゾオキサゾール樹脂、ポリアミドイミド樹脂およびポリアミド樹脂からなる群より選ばれる少なくとも1種の樹脂を含む請求項1~12のいずれかに記載の樹脂積層膜。
  14. 請求項1~13のいずれかに記載の樹脂積層膜の、前記ポリイミド樹脂膜A上に支持基板を備えた積層体。
  15. 請求項1~13のいずれかに記載の樹脂積層樹脂膜上にTFTを備えたTFT基板。
  16. 請求項1~13のいずれかに記載の樹脂積層膜上に有機EL素子を備えた有機EL素子。
  17. 請求項1~13のいずれかに記載の樹脂積層膜上にカラーフィルタを備えたカラーフィルタ。
  18. 少なくとも下記(1)~(3)の工程を含む樹脂積層膜の製造方法。
    (1)支持基板上に、以下のポリイミド樹脂膜Aを製膜する工程
    (2)前記樹脂膜上に更に樹脂膜を積層して樹脂積層膜を形成する工程
    (3)支持基板側から紫外光を照射して、前記樹脂積層膜を剥離する工程
    ポリイミド樹脂膜A:厚さ100nmの膜としたときに、波長300~400nmの波長域において、光透過率の最小値が50%未満であるポリイミド樹脂膜。
  19. 請求項18に記載の樹脂積層膜の製造方法において、(1)または(2)の工程の少なくとも一方で用いる樹脂膜の焼成温度が400℃以上である、樹脂積層膜の製造方法。
  20. 少なくとも下記(1)~(4)の工程を含むTFT基板の製造方法。
    (1)支持基板上に、以下のポリイミド樹脂膜Aを製膜する工程
    (2)前記樹脂膜上に更に樹脂膜を積層して樹脂積層膜を形成する工程
    (3)前記樹脂積層膜上にTFTを形成する工程
    (4)支持基板側から紫外光を照射して、前記樹脂積層膜を剥離する工程
    ポリイミド樹脂膜A:厚さ100nmの膜としたときに、波長300~400nmの波長域において、光透過率の最小値が50%未満であるポリイミド樹脂膜。
  21. 少なくとも下記(1)~(4)の工程を含む有機EL素子の製造方法。
    (1)支持基板上に、以下のポリイミド樹脂膜Aを製膜する工程
    (2)前記樹脂膜上に更に樹脂膜を積層して樹脂積層膜を形成する工程
    (3)前記樹脂積層膜上に有機EL素子を形成する工程
    (4)支持基板側から紫外光を照射して、前記樹脂積層膜を剥離する工程
    ポリイミド樹脂膜A:厚さ100nmの膜としたときに、波長300~400nmの波長域において、光透過率の最小値が50%未満であるポリイミド樹脂膜。
  22. 少なくとも下記(1)~(5)の工程を含むカラーフィルタの製造方法。
    (1)支持基板上に、以下のポリイミド樹脂膜Aを製膜する工程
    (2)前記樹脂膜上に更に樹脂膜を積層して樹脂積層膜を形成する工程
    (3)前記樹脂積層膜上にブラックマトリックスを形成する工程
    (4)前記樹脂積層膜上に着色画素を形成する工程
    (5)支持基板側から紫外光を照射して、前記樹脂積層膜を剥離する工程
    ポリイミド樹脂膜A:厚さ100nmの膜としたときに、波長300~400nmの波長域において、光透過率の最小値が50%未満であるポリイミド樹脂膜。
PCT/JP2016/073373 2016-08-09 2016-08-09 樹脂積層膜、それを含む積層体、tft基板、有機el素子カラーフィルターならびにそれらの製造方法 WO2018029766A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/073373 WO2018029766A1 (ja) 2016-08-09 2016-08-09 樹脂積層膜、それを含む積層体、tft基板、有機el素子カラーフィルターならびにそれらの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/073373 WO2018029766A1 (ja) 2016-08-09 2016-08-09 樹脂積層膜、それを含む積層体、tft基板、有機el素子カラーフィルターならびにそれらの製造方法

Publications (1)

Publication Number Publication Date
WO2018029766A1 true WO2018029766A1 (ja) 2018-02-15

Family

ID=61161998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073373 WO2018029766A1 (ja) 2016-08-09 2016-08-09 樹脂積層膜、それを含む積層体、tft基板、有機el素子カラーフィルターならびにそれらの製造方法

Country Status (1)

Country Link
WO (1) WO2018029766A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110948A1 (ja) * 2018-11-28 2020-06-04 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2021042497A1 (zh) * 2019-09-03 2021-03-11 武汉华星光电半导体显示技术有限公司 聚酰亚胺前驱物、以其形成之聚酰亚胺膜和该聚酰亚胺膜之制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024201A (ja) * 1988-06-23 1990-01-09 Toray Ind Inc カラーフィルタ用耐熱着色ペースト
JP2000151046A (ja) * 1998-11-05 2000-05-30 Sony Chem Corp ポリイミドフィルム及びフレキシブル基板
WO2013024849A1 (ja) * 2011-08-18 2013-02-21 東レ株式会社 ポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物ならびにそれらを含有するフレキシブル基板
WO2014050933A1 (ja) * 2012-09-27 2014-04-03 新日鉄住金化学株式会社 表示装置の製造方法
JP2015127124A (ja) * 2013-12-27 2015-07-09 三星電子株式会社Samsung Electronics Co.,Ltd. ガスバリアフィルム(Gasbarrierfilm)及びガスバリアフィルムの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024201A (ja) * 1988-06-23 1990-01-09 Toray Ind Inc カラーフィルタ用耐熱着色ペースト
JP2000151046A (ja) * 1998-11-05 2000-05-30 Sony Chem Corp ポリイミドフィルム及びフレキシブル基板
WO2013024849A1 (ja) * 2011-08-18 2013-02-21 東レ株式会社 ポリアミド酸樹脂組成物、ポリイミド樹脂組成物およびポリイミドオキサゾール樹脂組成物ならびにそれらを含有するフレキシブル基板
WO2014050933A1 (ja) * 2012-09-27 2014-04-03 新日鉄住金化学株式会社 表示装置の製造方法
JP2015127124A (ja) * 2013-12-27 2015-07-09 三星電子株式会社Samsung Electronics Co.,Ltd. ガスバリアフィルム(Gasbarrierfilm)及びガスバリアフィルムの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110948A1 (ja) * 2018-11-28 2020-06-04 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JPWO2020110948A1 (ja) * 2018-11-28 2021-10-21 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
JP7367699B2 (ja) 2018-11-28 2023-10-24 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
WO2021042497A1 (zh) * 2019-09-03 2021-03-11 武汉华星光电半导体显示技术有限公司 聚酰亚胺前驱物、以其形成之聚酰亚胺膜和该聚酰亚胺膜之制备方法

Similar Documents

Publication Publication Date Title
JP6787124B2 (ja) 樹脂積層膜、それを含む積層体、tft基板、有機el素子カラーフィルターならびにそれらの製造方法。
JP6292351B1 (ja) ポリイミド樹脂、ポリイミド樹脂組成物、それを用いたタッチパネルおよびその製造方法、カラーフィルタおよびその製造方法、液晶素子およびその製造方法、有機el素子およびその製造方法
JP5773090B1 (ja) ポリイミド前駆体、それから得られるポリイミド樹脂膜、ならびにそれを含む表示素子、光学素子、受光素子、タッチパネル、回路基板、有機elディスプレイ、および、有機el素子ならびにカラーフィルタの製造方法
JP5660249B1 (ja) ポリイミド前駆体、ポリイミド、それを用いたフレキシブル基板、カラーフィルタおよびその製造方法、ならびにフレキシブル表示デバイス
WO2016052323A1 (ja) ディスプレイ用支持基板、それを用いたカラーフィルターおよびその製造方法、有機el素子およびその製造方法、ならびにフレキシブル有機elディスプレイ
JP6746888B2 (ja) ディスプレイ用支持基板、それを用いたカラーフィルターおよびその製造方法、有機el素子およびその製造方法、ならびにフレキシブル有機elディスプレイ
JP6206071B2 (ja) 樹脂組成物、それを用いたポリイミド樹脂膜、それを含むカラーフィルタ、tft基板、表示デバイスおよびそれらの製造方法
JP6369141B2 (ja) 樹脂膜、それを含む積層体、それを用いた有機el素子基板、カラーフィルター基板およびそれらの製造方法ならびにフレキシブル有機elディスプレイ
JP2015078254A (ja) 樹脂組成物、それを用いたポリイミド樹脂膜、それを含むカラーフィルタ、tft基板、表示デバイスおよびそれらの製造方法
WO2018029766A1 (ja) 樹脂積層膜、それを含む積層体、tft基板、有機el素子カラーフィルターならびにそれらの製造方法
JP6331314B2 (ja) フレキシブルカラーフィルター、その製造方法ならびにそれを用いたフレキシブル発光デバイス
TW201809140A (zh) 樹脂積層膜、含有其之積層體、tft基板、有機el元件、彩色濾光片以及彼等之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16912649

Country of ref document: EP

Kind code of ref document: A1