WO2016052323A1 - ディスプレイ用支持基板、それを用いたカラーフィルターおよびその製造方法、有機el素子およびその製造方法、ならびにフレキシブル有機elディスプレイ - Google Patents

ディスプレイ用支持基板、それを用いたカラーフィルターおよびその製造方法、有機el素子およびその製造方法、ならびにフレキシブル有機elディスプレイ Download PDF

Info

Publication number
WO2016052323A1
WO2016052323A1 PCT/JP2015/077070 JP2015077070W WO2016052323A1 WO 2016052323 A1 WO2016052323 A1 WO 2016052323A1 JP 2015077070 W JP2015077070 W JP 2015077070W WO 2016052323 A1 WO2016052323 A1 WO 2016052323A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resin
support substrate
organic
display
Prior art date
Application number
PCT/JP2015/077070
Other languages
English (en)
French (fr)
Inventor
佐伯昭典
脇田潤史
野中晴支
的羽良典
西山雅仁
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014200266A external-priority patent/JP6503674B2/ja
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020177007256A priority Critical patent/KR20170066340A/ko
Priority to SG11201702467QA priority patent/SG11201702467QA/en
Priority to US15/515,729 priority patent/US10431753B2/en
Priority to CN201580052928.7A priority patent/CN107073914A/zh
Publication of WO2016052323A1 publication Critical patent/WO2016052323A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • C08F283/124Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes on to polysiloxanes having carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/1053Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1082Partially aromatic polyimides wholly aromatic in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0035Multiple processes, e.g. applying a further resist layer on an already in a previously step, processed pattern or textured surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0752Silicon-containing compounds in non photosensitive layers or as additives, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/095Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer
    • G03F7/0955Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer one of the photosensitive systems comprising a non-macromolecular photopolymerisable compound having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/322Aqueous alkaline compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2451/00Type of carrier, type of coating (Multilayers)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0466Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases the gas being a non-reacting gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • B05D7/546No clear coat specified each layer being cured, at least partially, separately
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/162Coating on a rotating support, e.g. using a whirler or a spinner
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a display support substrate, a color filter using the same, a manufacturing method thereof, an organic EL element and a manufacturing method thereof, and a flexible organic EL display.
  • Organic film is more flexible than glass, has the characteristics of being hard to break and lightweight. Recently, studies for making a display flexible by forming a substrate of a flat panel display using an organic film have become active.
  • the resin used for the organic film includes polyester, polyamide, polyimide, polycarbonate, polyethersulfone, acrylic, epoxy, and the like.
  • polyimide has excellent mechanical properties such as high mechanical strength, wear resistance, dimensional stability, chemical resistance, and excellent electrical properties such as insulation, in addition to high heat resistance compared to other resins. Because of this, development of flexible substrates using polyimide films is underway.
  • the flexible substrate examples include display substrates such as a flexible TFT (Thin Film Transistor) substrate, a flexible organic EL element substrate, and a flexible color filter substrate.
  • the color filter is a member necessary for color display of an organic electroluminescence display device or a liquid crystal display device using white light as a light source.
  • a three-color filter in which three colored pixels, that is, a red colored pixel, a green colored pixel, and a blue colored pixel are finely patterned, is generally used. In the three-color filter, white is obtained by additive color mixture of three colored pixels of red, green, and blue.
  • the flat panel display substrate and color filter substrate exemplified above are required to have high light transmittance in the visible light region. Also, in order to prevent deterioration in alignment accuracy due to heating when forming display elements and light receiving elements such as TFTs and color filters, it is required that the coefficient of linear thermal expansion (CTE) is low and the substrate does not warp. In addition, low birefringence is required in order to prevent color misregistration when viewed from an oblique direction and to suppress external light reflection when a circularly polarizing film is used.
  • CTE coefficient of linear thermal expansion
  • a polyimide composed of fluorine-containing and / or alicyclic acid dianhydride and fluorine-containing and / or alicyclic diamine is disclosed (for example, patent document). 1 to 4).
  • a shape retention layer is laminated on the opposite side of the high CTE layer laminated on the low CTE layer, and it occurs on both sides of the low CTE layer.
  • a method for canceling the stress to suppress the warpage of the substrate is disclosed (for example, see Patent Document 5).
  • the polyimide produced by the specific method using the specific acid dianhydride and diamine is disclosed as a flexible substrate which makes low CTE and low birefringence compatible. (For example, see Patent Document 6)
  • an organic EL element when an organic EL element is produced using such a polyimide resin, it is common to form a silicon oxide or nitride as a gas barrier film on the polyimide.
  • the CTE of silicon oxide and nitride is as low as about 3.5 ppm / ° C. Therefore, in such a case, in addition to the above-described problems, cracks and wrinkles occur in the gas barrier film in the subsequent heating process due to the CTE difference between the polyimide resin and the gas barrier film, and the organic EL element is likely to deteriorate. There is a problem.
  • Patent Document 6 discloses a method for obtaining a polyimide film that achieves both low CTE and low birefringence using a specific technique using a specific acid anhydride and diamine, but the monomer is limited. Therefore, there is a problem that the degree of freedom in polymer design is slightly low.
  • low-molecular compounds imidizing agent, dehydration catalyst
  • these compounds may cause degassing in the heating process at the time of module production and may cause defects. .
  • An object of the present invention is to provide a display supporting substrate.
  • the present invention is a display support substrate having a film B containing a polysiloxane resin on at least one side of a film A containing a polyimide resin, wherein the film B contains inorganic oxide particles. It is a substrate.
  • a support substrate for a display can be provided.
  • the present invention is a display support substrate having a film B containing a polysiloxane resin on at least one surface of a film A containing a polyimide resin, wherein the film B contains inorganic oxide particles. It is.
  • the structure having the film B containing the polysiloxane resin on at least one surface of the film A containing the polyimide resin used for the display support substrate of the present invention is referred to as a “resin laminate”.
  • the display support substrate includes not only a substrate that supports the display itself, but also any support substrate that is used for members constituting the display.
  • any support substrate that is used for members constituting the display For example, black matrix, support substrate for color filter having colored pixels, support substrate for organic EL element having TFT, electrode, organic layer, etc., support substrate for electronic paper having electrode, ink layer, etc., electrode, phosphor, etc.
  • the films containing the polyimide resin has a film containing the polysiloxane resin (film B), and the film containing the polysiloxane resin is an inorganic oxide. Since the material particles are included, even if the CTE of the polyimide is large, the CTE can be lowered as a laminate.
  • the display support substrate preferably has a linear expansion coefficient of 40 ppm / ° C. or less. In this case, as described later, a color filter is formed on the side of the display support substrate opposite to the side in contact with the support substrate.
  • a gas barrier layer is formed to form an EL element, a high-definition color filter or an organic EL element in which deterioration of the element is suppressed without deterioration of processing accuracy and generation of cracks in the gas barrier layer is produced. Is possible.
  • the reflection can be suppressed preferentially, and the visibility of the display can be improved.
  • the thickness of the film A is preferably 5.0 ⁇ m or more and 20 ⁇ m or less, and the thickness of the film B is 0.2 ⁇ m or more and 3.0 ⁇ m or less. Preferably there is. From the viewpoint of transparency, the thickness of the entire laminate is preferably 5.0 ⁇ m or more and 20 ⁇ m or less.
  • the film thickness of the film A is more preferably 5.0 ⁇ m or more and 15 ⁇ m or less, and further preferably 5 ⁇ m or more and 10 ⁇ m or less. By being in the said range, the transmission color tone of the support substrate for a display becomes more favorable.
  • the film thickness of the film B is more preferably 0.4 ⁇ m or more as the lower limit, and further preferably 2.0 ⁇ m or less as the upper limit. By being within the above film thickness range, it is possible to produce a resin film laminate having a lower CTE, no warping of the substrate, and particularly excellent transparency and crack resistance.
  • the film thickness can be measured by observing the cross section with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • five measurement points are determined at intervals of 1 mm in the cross-sectional direction of the laminate, and the thickness of each layer is measured.
  • the transparency of the resin laminate in the present invention is not particularly limited, but when the substrate is required to be transparent like a color filter or a see-through display, the resin laminate is preferably transparent.
  • transparent as used herein means that the visible light transmittance at a wavelength of 400 nm is 65% or more in the resin laminate. By being transparent in the visible light region, it can be effectively used for flexible display substrates and the like that require high transparency. More preferably, the visible light transmittance at a wavelength of 400 nm is 75% or more.
  • the visible light transmittance can be measured by forming the resin film laminate of the present invention on a glass substrate and using an ultraviolet-visible spectrophotometer.
  • the polyimide resin contained in the film A is not particularly limited, and generally, a polyimide resin represented by the following general formula (11) can be used. This can be obtained by, for example, imide ring closure (imidation reaction) of a polyimide precursor resin represented by the following general formula (12). It does not specifically limit as a method of imidation reaction, Thermal imidation and chemical imidation are mentioned. Among these, thermal imidization is preferable from the viewpoint of heat resistance of the polyimide resin film and transparency in the visible light region.
  • R 2 represents a tetravalent organic group
  • R 3 represents a divalent organic group
  • X 1 and X 2 each independently represent a hydrogen atom, a monovalent organic group having 1 to 10 carbon atoms, or a monovalent alkylsilyl group having 1 to 10 carbon atoms.
  • Polyimide precursor resins such as polyamic acid, polyamic acid ester, and polyamic acid silyl ester can be synthesized by a reaction between a diamine compound and an acid dianhydride or a derivative thereof.
  • the derivatives include tetracarboxylic acids of the acid dianhydrides, mono-, di-, tri-, or tetra-esters of the tetracarboxylic acids, acid chlorides, and the like, and specifically include methyl groups, ethyl groups, and n-propyl.
  • the reaction method of the polymerization reaction is not particularly limited as long as the target polyimide precursor resin can be produced, and a known reaction method can be used.
  • a predetermined amount of all the diamine component and solvent are charged and dissolved in a reactor, and then a predetermined amount of acid dianhydride component is charged and stirred at room temperature to 80 ° C. for 0.5 to 30 hours. The method of doing is mentioned.
  • the acid dianhydride is not particularly limited, and examples thereof include aromatic acid dianhydrides, alicyclic acid dianhydrides, and aliphatic acid dianhydrides.
  • Aromatic dianhydrides include 4,4′-oxydiphthalic anhydride, pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2-bis ( 4- (3,4-dicarboxyphenoxy) phenyl) propane dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic acid Dianhydride, 3,3 ′, 4,4′-terphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-oxyphthalic dianhydride, 2,3,3 ′, 4′-oxyphthale Acid dianhydride, 2,3,2 ′, 3′-oxyphthalic dianhydride, diphenylsulfone-3,3 ′, 4,4′-tetracarboxylic dianhydride, benzophenone-3,3 ′,
  • Examples of the alicyclic acid dianhydride include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2,3,4- Cyclopentanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl-1,2,3,4- Cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cycloheptanetetracarboxylic dianhydride, 2,3 , 4,5-tetrahydrofurantetracarboxylic dianhydride, 3,4-dicarboxy-1-cyclohexylsuccinic dianhydride, 2,3,5-tricarboxycyclopentylacetic dianhydride, 3,4
  • aliphatic dianhydride examples include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-pentanetetracarboxylic dianhydride, and derivatives thereof. It is not limited to these.
  • aromatic acid dianhydrides alicyclic acid dianhydrides, or aliphatic acid dianhydrides can be used alone or in combination of two or more.
  • pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′ from the viewpoint of being commercially available and easy to obtain and from the viewpoint of reactivity 4,4′-oxyphthalic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride, 2,2′-bis [(dicarboxyphenoxy) phenyl] propane dianhydride 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,3 ′, 4,4′-dicyclohexyltetracarboxylic dianhydride Anhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 4,4'-oxydiphthalic anhydride, 2,2-bis (4- (3,4-dicarboxyphenoxy)
  • the diamine is not particularly limited, and examples thereof include aromatic diamine compounds, alicyclic diamine compounds, and aliphatic diamine compounds.
  • aromatic diamine compounds examples include 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenyl sulfone, 4'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfide, 4,4'-diaminodiphenylsulfide, 1,4-bis (4-aminophenoxy) benzene, benzidine 2,2'-bis (trifluoromethyl) benzidine, 3,3'-bis (trifluoromethyl) benzidine, 2,2'-dimethylbenzidine, 3,3'-dimethylbenzidine, 2,2'3,3 '-Tetramethylbenzidine, 2,2'-d
  • Examples of the alicyclic diamine compound include cyclobutane diamine, isophorone diamine, bicyclo [2,2,1] heptane bismethylamine, tricyclo [3,3,1,13,7] decane-1,3-diamine, 1,2 -Cyclohexyl diamine, 1,3-cyclohexyl diamine, 1,4-cyclohexyl diamine, trans-1,4-diaminocyclohexane, 4,4'-diaminodicyclohexyl methane, 3,3'-dimethyl-4,4'- Diaminodicyclohexylmethane, 3,3′-diethyl-4,4′-diaminodicyclohexylmethane, 3,3 ′, 5,5′-tetramethyl-4,4′-diaminodicyclohexylmethane, 3,3 ′, 5,5 '-Tetraethyl-4,4'-di
  • Aliphatic diamine compounds include ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane
  • Alkylene diamines such as 1,9-diaminononane and 1,10-diaminodecane
  • ethylene glycol diamines such as bis (aminomethyl) ether, bis (2-aminoethyl) ether, bis (3-aminopropyl) ether
  • siloxanes such as 1,3-bis (3-aminopropyl) tetramethyldisiloxane, 1,3-bis (4-aminobutyl) tetramethyldisiloxane, ⁇ , ⁇ -bis (3-aminopropyl) polydimethylsiloxane
  • diamine
  • aromatic diamines alicyclic diamines, or aliphatic diamines can be used alone or in combination of two or more.
  • the polyimide resin of the display support substrate used for color filters, touch screens, etc. is required to have heat resistance, low water absorption and high transparency in the visible light region. It is preferable that the component has a trifluoromethyl group or an alicyclic monomer component as a bulky fluorine substituent. That is, it is preferable that the polyimide resin has at least one group selected from a trifluoromethyl group and an alicyclic hydrocarbon group. Moreover, it is preferable to have a trifluoromethyl group in the acid dianhydride or diamine component in order to impart low water absorption.
  • the trifluoromethyl group-containing monomer and the alicyclic monomer component may be used for either the acid dianhydride and the diamine component, or may be used for one of them, but may be used for the diamine component from the viewpoint of availability of the monomer. preferable.
  • it has at least one group selected from a trifluoromethyl group or an alicyclic hydrocarbon group with respect to the total amount of diamine residues contained in the polyimide resin. It is preferable that 50 mol% or more of diamine residues are contained.
  • ODPA 4,4′-oxydiphthalic anhydride
  • BPDA 4,4′-biphenyltetracarboxylic dianhydride
  • 6FDA 4,4 ′-(hexafluoro) Isopropylidene) diphthalic anhydride
  • BSAA 2,2-bis (4- (3,4-dicarboxyphenoxy) phenyl) propane dianhydride
  • CBDA 1,2,4,5-cyclohexanetetracarboxylic dianhydride
  • PMDA-H 1,2,4,5-cyclohexanetetracarboxylic dianhydride
  • diamine examples include 2,2-bis [3- (3-aminobenzamido) -4-hydroxyphenyl] hexafluoropropane (HFHA), trans-1,4-diaminocyclohexane (t-DACH), 2,2 ′. It preferably contains bis (trifluoromethyl) benzidine (TFMB).
  • the polyimide resin of the support substrate for display used in the organic EL element is required to have heat resistance and low water absorption.
  • acid dianhydrides in this case, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 4,4′-oxydiphthalic anhydride (ODPA), 1,2,4,5 -Cyclohexanetetracarboxylic dianhydride (PMDA-H), 2,2-bis (4- (3,4-dicarboxyphenoxy) phenyl) propane dianhydride (BSAA), 4,4 '-(hexafluoroisopropyl It is preferable to include (redene) diphthalic anhydride (6FDA) and 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA).
  • 6FDA diphthalic anhydride
  • CBDA 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • diamine examples include 4,4′-diaminodiphenyl ether and p-phenylenediamine.
  • 3,3′-dimethylbenzidine, 2,2-bis [3- (3-aminobenzamido) -4-hydroxyphenyl] hexafluoropropa (HFHA) they are preferable to include hexane trans-1,4 Jiaminoshikuro, 2,2'-bis (trifluoromethyl) benzidine (TFMB).
  • TFMB trifluoromethyl benzidine
  • ODPA 4,4′-oxydiphthalic anhydride
  • BPDA 4,4′-biphenyltetracarboxylic dianhydride
  • BSAA 2,2-bis (4- (3,4-Dicarboxyphenoxy) phenyl) propane dianhydride
  • ODPA 4,4′-oxydiphthalic anhydride
  • 6FDA 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride
  • CBDA 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • diamines examples include 2,2-bis [3- (3-aminobenzamide) -4-hydroxyphenyl] hexafluoropropane (HFHA), trans-1,4-diaminocyclohexane, 2,2′-bis (trifluoro).
  • HFHA 2,2-bis [3- (3-aminobenzamide) -4-hydroxyphenyl] hexafluoropropane
  • TFMB methyl
  • Particularly preferred polyimide resins include polyimides having as a main component at least one of repeating structural units represented by the general formulas (1) to (3).
  • R 1 is at least one group represented by (4) to (9).
  • the main component means that the structural units represented by the general formulas (1) to (3) have 50 mol% or more of the total structural units of the polymer.
  • the structure represented by the general formulas (1) to (3) at the diamine portion of the polyimide it is possible to improve the low water absorption, transparency and heat resistance of the polyimide resin.
  • the aromatic or alicyclic acid anhydride represented by the general formulas (4) to (9) in the acid anhydride portion a polyimide resin having high heat resistance and good flexibility can be obtained. Is possible.
  • a polyimide resin a polyimide mainly composed of a repeating structural unit represented by the general formula (10) can be given.
  • R 1 is at least one group represented by (4) to (9).
  • the main component means that the structural unit represented by the general formula (10) has 50 mol% or more of the total structural unit of the polymer.
  • the polyimide and the polyimide precursor resin may be sealed at both ends with a terminal sealing agent in order to adjust the molecular weight to a preferable range.
  • a terminal sealing agent examples include monoamines and monohydric alcohols.
  • the terminal blocking agent that reacts with the diamine compound include acid anhydrides, monocarboxylic acids, monoacid chloride compounds, monoactive ester compounds, dicarbonates, and vinyl ethers.
  • various organic groups can be introduce
  • Monoamines used for the acid anhydride group end-capping agent include 5-amino-8-hydroxyquinoline, 4-amino-8-hydroxyquinoline, 1-hydroxy-8-aminonaphthalene, 1-hydroxy-7-amino.
  • Examples of the monohydric alcohol used as the acid anhydride group terminal blocking agent include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, 3 -Pentanol, 1-hexanol, 2-hexanol, 3-hexanol, 1-heptanol, 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 3-octanol, 1-nonanol, 2-nonanol, 1- Decanol, 2-decanol, 1-undecanol, 2-undecanol, 1-dodecanol, 2-dodecanol, 1-tridecanol, 2-tridecanol, 1-tetradecanol, 2-tetradecanol, 1-pentadecanol, 2- Pentadecanol, 1-hexadecanol, 2 He
  • Examples of the acid anhydride, monocarboxylic acid, monoacid chloride compound and monoactive ester compound used as an amino group terminal blocking agent include phthalic anhydride, maleic anhydride, nadic anhydride, cyclohexanedicarboxylic anhydride, 3- Acid anhydrides such as hydroxyphthalic anhydride, 2-carboxyphenol, 3-carboxyphenol, 4-carboxyphenol, 2-carboxythiophenol, 3-carboxythiophenol, 4-carboxythiophenol, 1-hydroxy-8- Carboxynaphthalene, 1-hydroxy-7-carboxynaphthalene, 1-hydroxy-6-carboxynaphthalene, 1-hydroxy-5-carboxynaphthalene, 1-hydroxy-4-carboxynaphthalene, 1-hydroxy-3-carboxynaphthalene, 1 Hydroxy-2-carboxynaphthalene, 1-mercapto-8-carboxynaphthalene, 1-mercapto-7-carboxynaphthalene, 1-mer
  • dicarbonate compound used as the amino group terminal blocking agent examples include di-tert-butyl dicarbonate, dibenzyl dicarbonate, dimethyl dicarbonate, and diethyl dicarbonate.
  • vinyl ether compounds used as amino-group end-capping agents include tert-butyl chloroformate, n-butyl chloroformate, isobutyl chloroformate, benzyl chloroformate, allyl chloroformate, ethyl chloroformate, and isopropyl chloroformate.
  • Isocyanates such as chloroformates, butyl isocyanate, 1-naphthyl isocyanate, octadecyl isocyanate, phenyl isocyanate, butyl vinyl ether, cyclohexyl vinyl ether, ethyl vinyl ether, 2-ethylhexyl vinyl ether, isobutyl vinyl ether, isopropyl vinyl ether, n -Propyl vinyl ether, tert-butyl vinyl ether, benzyl vinyl ether and the like.
  • Examples of other compounds used as the amino group-end blocking agent include benzyl chloroformate, benzoyl chloride, fluorenylmethyl chloroformate, 2,2,2-trichloroethyl chloroformate, allyl chloroformate, methanesulfonic acid chloride, Examples thereof include p-toluenesulfonic acid chloride and phenyl isocyanate.
  • the introduction ratio of the acid anhydride group terminal sealing agent is preferably in the range of 0.1 to 60 mol%, particularly preferably 0.5 to 50 mol%, relative to the acid dianhydride component.
  • the introduction ratio of the amino group terminal blocking agent is preferably in the range of 0.1 to 100 mol%, particularly preferably 0.5 to 70 mol%, relative to the diamine component.
  • a plurality of different end groups may be introduced by reacting a plurality of end-capping agents.
  • the end-capping agent introduced into the polyimide precursor resin or the polyimide resin can be easily detected by the following method. For example, by dissolving a polymer having an end capping agent dissolved in an acidic solution and decomposing it into an amine component and an acid anhydride component, which are constituent units of the polymer, this is measured by gas chromatography (GC) or NMR measurement, The end capping agent can be easily detected.
  • the polymer in which the end-capping agent is introduced can be easily detected directly by pyrolysis gas chromatograph (PGC), infrared spectrum, 1 H NMR spectrum measurement and 13 C NMR spectrum measurement.
  • PPC pyrolysis gas chromatograph
  • the film A may contain a thermal crosslinking agent.
  • a thermal crosslinking agent an epoxy compound, a compound having at least two alkoxymethyl groups or methylol groups are preferable. By having at least two of these groups, a crosslinked structure is formed by a condensation reaction with the resin and the same kind of molecules, and the mechanical strength and chemical resistance of the cured film after heat treatment can be improved.
  • Preferred examples of the epoxy compound include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, polymethyl (glycidyloxypropyl), epoxy group-containing silicone such as siloxane, etc.
  • the present invention is not limited to these at all.
  • Epicron 850-S Epicron HP-4032, Epicron HP-7200, Epicron HP-820, Epicron HP-4700, Epicron EXA-4710, Epicron HP-4770, Epicron EXA-859CRP, Epicron EXA-1514 Epicron EXA-4880, Epicron EXA-4850-150, Epicron EXA-4850-1000, Epicron EXA-4816, Epicron EXA-4822 (trade name, manufactured by Dainippon Ink & Chemicals, Inc.), Recare Resin BEO-60E, Recare Resin BPO-20E, Rica Resin HBE-100, Portugal Resin DME-100 (above trade name, Shin Nippon Rika Co., Ltd.), EP-4003S, EP-4000S (above trade name, Adeka Co., Ltd.), PG-10 CG-500, EG-200 (above trade name, manufactured by Osaka Gas Chemical Co., Ltd.), NC-3000, NC-6000 (above trade name, manufactured by Nippon Meth
  • Examples of the compound having at least two alkoxymethyl groups or methylol groups include DML-PC, DML-PEP, DML-OC, DML-OEP, DML-34X, DML-PTBP, DML-PCHP, DML-OCHP, and DML.
  • the thermal crosslinking agent is preferably contained in an amount of 0.01 to 50 parts by weight with respect to 100 parts by weight of the resin.
  • a coupling agent such as a silane coupling agent or a titanium coupling agent can be added to improve adhesion to the substrate.
  • the coupling agent is preferably contained in an amount of 0.1 to 10 parts by weight with respect to 100 parts by weight of the resin.
  • the film A may contain an inorganic filler.
  • the inorganic filler include silica fine particles, alumina fine particles, titania fine particles, zirconia fine particles, and the like.
  • the shape of the inorganic filler is not particularly limited, and examples thereof include a spherical shape, an elliptical shape, a flat shape, a rod shape, and a fiber shape.
  • the contained inorganic filler preferably has a small particle size in order to prevent light scattering.
  • the average particle diameter is 0.5 to 100 nm, preferably in the range of 0.5 to 30 nm, and the inorganic filler is preferably contained in 1 to 100 parts by weight with respect to 100 parts by weight of the resin.
  • the polysiloxane resin contained in the film B is not particularly limited.
  • the polysiloxane resin composition used for forming the film B is non-photosensitive or positive photosensitive, those having a phenyl group or a naphthyl group are preferable from the viewpoint of storage stability of the coating liquid, and from the viewpoint of chemical resistance. Those having an epoxy group or amino group are preferred.
  • the polysiloxane resin composition used for forming the film B is negative photosensitive, those having a phenyl group or a naphthyl group are preferable from the viewpoint of storage stability of the coating liquid, and from the viewpoint of curability, Those having a (meth) acrylic group or vinyl group are preferred, and those having a carboxyl group or a phenolic hydroxyl group are preferred from the viewpoint of pattern processability.
  • a method for synthesizing a polysiloxane resin a method of hydrolyzing and condensing an organosilane compound is common.
  • organosilane compound used for the synthesis of polysiloxane include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, hexyltrimethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxysilane, and phenyl.
  • the hydrolysis reaction conditions of the organosilane compound may be appropriately set. For example, after adding an acid catalyst and water to the organosilane compound in a solvent over 1 to 180 minutes, the reaction is performed at room temperature to 110 ° C. for 1 to 180 minutes. It is preferable to make it. By performing the hydrolysis reaction under such conditions, a rapid reaction can be suppressed.
  • the reaction temperature is preferably 30 to 105 ° C.
  • the hydrolysis reaction is preferably performed in the presence of an acid catalyst.
  • the acid catalyst an acidic aqueous solution containing formic acid, acetic acid or phosphoric acid is preferable.
  • the content of these acid catalysts is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the total organosilane compound used during the hydrolysis reaction. By making content of an acid catalyst into the said range, it can control easily so that a hydrolysis reaction may progress sufficiently and necessary.
  • As conditions for the condensation reaction it is preferable to obtain a silanol compound by hydrolysis of an organosilane compound, and then heat the reaction solution as it is at 50 ° C. to the boiling point of the solvent for 1 to 100 hours. In order to increase the degree of polymerization of the polysiloxane, reheating or a base catalyst may be added. Further, after the hydrolysis reaction, an appropriate amount of the produced alcohol or the like may be distilled and removed by heating and / or decompression as necessary, and an optional solvent may be added thereafter.
  • the weight average molecular weight (Mw) of the polysiloxane resin contained in the film B is preferably 1000 to 100,000 in terms of polystyrene measured by GPC. By setting Mw within the above range, coating characteristics and solubility in a developing solution when forming a pattern are improved.
  • the film B containing a polysiloxane resin contains inorganic oxide particles.
  • the CTE of the film B can be lowered, and by forming the film B on at least one of the films A, the CTE of the resin laminate can be lowered.
  • the number average particle diameter of the inorganic oxide particles is preferably 1 to 200 nm, and more preferably 1 to 70 nm in order to obtain a cured film with high transmittance.
  • the number average particle diameter of the inorganic oxide particles can be calculated as follows. The surface of the film B is observed using a SEM (scanning electron microscope) at a magnification of 10,000 times, and the image of the particles is linked to an image analyzer (for example, QTM900 manufactured by Cambridge Instrument). Data is acquired by changing the observation location, and when the total number of particles reaches 5000 or more, the following numerical processing is performed, and the number average diameter d obtained thereby is defined as the average particle diameter (diameter).
  • di is the equivalent circular diameter of the particle (the diameter of a circle having the same area as the cross-sectional area of the particle), and N is the number.
  • inorganic oxides are exemplified and are not particularly limited, but preferably silicon oxide (silica), hollow silica, aluminum oxide (alumina), titanium oxide, antimony oxide, zinc oxide, tin oxide, zirconium oxide. Etc. are used. Of these, silicon dioxide is preferred from the viewpoints of transparency when dispersed in a polysiloxane resin, CTE reduction, price, and availability.
  • inorganic oxides are appropriately selected from one or more.
  • the form of the inorganic oxide to be added is not particularly limited, but a form such as powder or sol is preferable.
  • the inorganic oxide particles can be pulverized or dispersed using a disperser such as a bead mill by procuring an appropriate nanoparticle powder.
  • a disperser such as a bead mill by procuring an appropriate nanoparticle powder.
  • commercially available nanoparticle powders include REA200, RA200SH, RA200H (silica; manufactured by Nippon Aerosil Co., Ltd.), T-BTO-020RF (barium titanate; manufactured by Toda Kogyo Co., Ltd.), UEP-100 (zirconium oxide; 1st rare element chemical industry) or STR-100N (titanium oxide; Sakai Chemical Industry Co., Ltd.). It can also be procured as a dispersion.
  • “through rear” 4110 which is a hollow silica particle having a number average particle diameter of 60 nm may be mentioned.
  • silicon oxide-titanium oxide particles include “OPTRAIK” (registered trademark) TR-502, “OPTRAIK” TR-503, “OPTRAIK” TR-504, “OPTRAIK” TR-513, “OPTRAIK” “TR-520", “Optlake” TR-527, “Optlake” TR-528, “Optlake” TR-529, “Optlake” TR-544 or “Optlake” TR-550 Kogyo Co., Ltd.).
  • SZR-M or SZR-K both manufactured by Sakai Chemical Co
  • the content of the inorganic oxide particles is not particularly limited, but is preferably in the range of 20 to 80% by weight in the film B. Further, from the viewpoint of crack resistance, 20 to 65% by weight is more preferable. When the content is within this range, the occurrence of cracks in the film B is further suppressed, and the CTE of the laminate is further reduced.
  • the solid content concentration of the polysiloxane resin composition used for forming the film B is preferably 5 to 35 wt% because the film thickness can be easily controlled.
  • the polysiloxane resin composition may contain a photosensitizer.
  • a resin laminate composed of the films A and B can be obtained by patterning in a single exposure and development. More specifically, the photosensitive polysiloxane resin composition for forming the film B ′ is applied on the film A ′ (a film containing the polyimide precursor resin), and the pattern processing is performed by exposing, developing and curing. Membrane A and membrane B can be obtained.
  • the photosensitive resin composition is a positive type
  • a quinonediazide compound is preferable as the component imparting photosensitivity.
  • a mixture of a quinonediazide compound and an alkali-soluble resin forms a positive type by exposure and alkali development.
  • quinonediazide compound a compound in which naphthoquinonediazidesulfonic acid is ester-bonded to a compound having a phenolic hydroxyl group is preferable, and hydrogen or the following formula (13) The compound which has a substituent represented by these is used.
  • R 4 to R 6 may be the same or different and each represents an alkyl group having 1 to 10 carbon atoms, a carboxyl group, a phenyl group or a substituted phenyl group, or R 4 and R 5 , R 4 And R 6 or R 5 and R 6 may form a ring.
  • R 4 to R 6 may be the same or different and each is a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a carboxyl group, a phenyl group, or a substituted phenyl group. Indicates one of the following. Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-hexyl group, cyclohexyl group, n-heptyl group, and n-octyl group.
  • examples of the ring formed by R 4 and R 5 , R 4 and R 6, or R 5 and R 6 include a cyclopentane ring, a cyclohexane ring, an adamantane ring, and a fluorene ring.
  • the quinonediazide compound can be synthesized by a known esterification reaction between a compound having a phenolic hydroxyl group and naphthoquinonediazidesulfonic acid chloride.
  • Examples of the compound having a phenolic hydroxyl group include the following compounds (manufactured by Honshu Chemical Industry Co., Ltd.).
  • naphthoquinone diazide sulfonic acid examples include 4-naphthoquinone diazide sulfonic acid and 5-naphthoquinone diazide sulfonic acid. Since 4-naphthoquinonediazide sulfonic acid ester compound has absorption in the i-line (wavelength 365 nm) region, it is suitable for i-line exposure. Further, the 5-naphthoquinonediazide sulfonic acid ester compound has absorption in a wide wavelength range and is therefore suitable for exposure in a wide wavelength range.
  • a 4-naphthoquinone diazide sulfonic acid ester compound or a 5-naphthoquinone diazide sulfonic acid ester compound depending on the wavelength to be exposed.
  • a mixture of 4-naphthoquinone diazide sulfonic acid ester compound and 5-naphthoquinone diazide sulfonic acid ester compound may be used.
  • the molecular weight of the naphthoquinone diazide compound is preferably 300 to 1500, and more preferably 350 to 1200. If the molecular weight of the naphthoquinone diazide compound is greater than 1500, pattern formation may not be possible with an addition amount of 4 to 10% by weight. On the other hand, when the molecular weight of the naphthoquinone diazide compound is less than 300, the colorless transparency may be lowered.
  • the photosensitive polysiloxane composition is a negative type
  • a photopolymerization initiator and a polyfunctional monomer are preferable as the component imparting photosensitivity.
  • the photopolymerization initiator that is a component imparting photosensitivity is preferably one that decomposes and / or reacts with light (including ultraviolet rays and electron beams) to generate radicals.
  • Examples of the photopolymerization initiator that decomposes and / or reacts with light to generate radicals include 2-methyl- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-dimethylamino- 2- (4-Methylbenzyl) -1- (4-morpholin-4-yl-phenyl) -butan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone -1,2,4,6-trimethylbenzoylphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxybenzoyl)-(2,4,4-trimethyl Pentyl)
  • ⁇ -aminoalkylphenone compounds acylphosphine oxide compounds, oxime ester compounds, benzophenone compounds having an amino group, or benzoic acid ester compounds having an amino group are preferable.
  • Examples of the ⁇ -aminoalkylphenone compound include 2-methyl- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-dimethylamino-2- (4-methylbenzyl) -1- (4-morpholin-4-yl-phenyl) -butan-1-one or 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1.
  • acylphosphine oxide compound examples include 2,4,6-trimethylbenzoylphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, or bis (2,6-dimethoxybenzoyl)-(2 , 4,4-trimethylpentyl) -phosphine oxide.
  • oxime ester compounds include 1-phenyl-1,2-propanedione-2- (o-ethoxycarbonyl) oxime, 1,2-octanedione, 1- [4- (phenylthio) -2- (O— Benzoyloxime)], 1-phenyl-1,2-butadion-2- (o-methoxycarbonyl) oxime, 1,3-diphenylpropanetrione-2- (o-ethoxycarbonyl) oxime or ethanone, 1- [9- And ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (0-acetyloxime).
  • benzophenone compound having an amino group examples include 4,4-bis (dimethylamino) benzophenone and 4,4-bis (diethylamino) benzophenone.
  • benzoic acid ester compound having an amino group examples include ethyl p-dimethylaminobenzoate, 2-ethylhexyl-p-dimethylaminobenzoate, and ethyl p-diethylaminobenzoate.
  • polyfunctional monomer that is a component imparting photosensitivity examples include diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, and trimethylol.
  • Dimethylol-tricyclodecane diacrylate, dimethylol-tricyclodecane dimethacrylate, ethoxylated bisphenol A diacrylate or 9,9-bis [4- (2-acryloyloxyethoxy) Phenyl] fluorene are preferred.
  • polyfunctional monomers include, for example, epoxy (meth) acrylates obtained by reacting polyfunctional epoxy compounds with (meth) acrylic acid.
  • examples of the polyfunctional epoxy compound include the following compounds.
  • the 3% weight loss temperature (Td3) of the film B used in the present invention is preferably 300 ° C. or higher. As a result, degassing is suppressed. For example, when a gas barrier film is formed on the resin laminate of the present invention, generation of cracks in the gas barrier film due to degassing is suppressed, and the display performance of the display is improved.
  • the 3% weight loss temperature (Td3) mentioned here means that in the first stage, the temperature of the sample is raised to 150 ° C. at a rate of temperature rise of 3.5 ° C./min to remove adsorbed water from the sample, and in the second stage, When cooled to 40 ° C. at a rate of 10 ° C./min, the weight when cooled to 40 ° C. is measured, and when this measurement is performed at a temperature rising rate of 10 ° C./min in the third stage, the weight is 3 It means the temperature when it decreases by%.
  • the transmission chromaticity coordinates of the resin layer of the membrane B are preferably in the ranges of 0.300 ⁇ x ⁇ 0.325 and 0.305 ⁇ y ⁇ 0.325. Thereby, the transmitted light visually recognized through the resin laminate can have a color tone close to white.
  • the transmission chromaticity coordinates are more preferably in the ranges of 0.300 ⁇ x ⁇ 0.310 and 0.305 ⁇ y ⁇ 0.315.
  • “transmission chromaticity coordinates” refers to the coordinates of transmission chromaticity in the CIE 1931 color system measured with a C light source and a two-degree field of view.
  • the resin layer of the film B preferably contains a colorant so that the transmission chromaticity coordinates are in the above range.
  • the colorant include organic pigments, inorganic pigments, and dyes. Blue pigments, blue dyes, purple pigments, or purple dyes are preferable for adjusting the color tone of transmitted light.
  • blue pigments examples include C.I. I. Pigment Blue 1, 1: 2, 9, 14, 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6, 16, 17, 19, 25, 27, 28, 29, 33, 35, 36, 56, 56: 1, 60, 61, 61: 1, 62, 63, 66, 67, 68, 71, 72, 73, 74, 75, 76, 78 or 79.
  • I. Pigment Blue 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6 or 60 is preferable.
  • I. Pigment Blue 15: 6 is more preferable.
  • Examples of purple pigments include C.I. I. Pigment Violet 1, 1: 1, 2, 2: 2, 3, 3: 1, 3: 3, 5, 5: 1, 14, 15, 16, 19, 23, 25, 27, 29, 31, 32, 37, 39, 42, 44, 47, 49 or 50.
  • I. Pigment Violet 19 or 23 is preferred, and C.I. I. Pigment Violet 23 is more preferable.
  • pigments may be subjected to surface treatment such as rosin treatment, acidic group treatment or basic treatment, if necessary, and pigment derivatives may be added as a dispersant.
  • the form of the dye examples include those having any form of various dyes such as oil-soluble dyes, acid dyes, direct dyes, basic dyes, mordant dyes, and acid mordant dyes.
  • the dye may be used in the form of a lake, or may be in the form of a salt-forming compound of a dye and a nitrogen-containing compound.
  • the dye is not particularly limited as long as it is generally referred to as a dye.
  • a dye triphenylmethane dye, diphenylmethane dye, quinoline dye, thiazine dye, thiazole dye, xanthene dye, flavin A dye, an auramine dye, a safranin dye, a phloxine dye, a methylene blue dye, a rhodamine dye or the like can be preferably used.
  • Solvent Blue 2 3, 4, 5, 718, 25, 26, 35, 36, 37, 38, 43, 44, 45, 48, 51, 58, 59, 59: 1, 63, 64, 67, 68, 69, 70, 78, 79, 83, 94, 97, 98, 100, 101, 102, 104, 105, 111, 112, 122, 124, 128, 129, 132, 136, 137, 138, 139, 143, C. I. Acid Blue 22, 25, 40, 78, 78, 92, 113, 129, 167, 230, C.I. I. Basic Blue 3, 7, 9, 17, 41, 66, C.I. I.
  • Solvent violet 2 8, 9, 11, 13, 14, 21, 21: 1, 26, 31, 36, 37, 38, 45, 46, 47, 48, 49, 50, 51, 55, 56, 57, 58, 59, 60, 61, C.I. I. Acid Red 52, 87, 91, 92, 94, 289 and the like.
  • a basic dye it is preferably a salt-forming compound salted with an organic acid or perchloric acid.
  • the organic acid is preferably an organic sulfonic acid or an organic carboxylic acid.
  • naphthalene sulfonic acid such as tobias acid and perchloric acid are preferable in terms of resistance.
  • chlorination was performed using a quaternary ammonium salt compound, a tertiary amine compound, a secondary amine compound, a primary amine compound, etc., and a resin component having these functional groups.
  • a salt-forming compound or a salt-forming compound obtained by sulfonamidation to form a sulfonic acid amide compound is preferably a salt-forming compound or a salt-forming compound obtained by sulfonamidation to form a sulfonic acid amide compound.
  • colorants may be used alone, but it is preferable to use two or more types in combination because it is easy to make transmitted light close to white.
  • combinations of colorants include C.I. I. Pigment blue 15: 6, C.I. I. Pigment violet 23, C.I. A combination of colorants selected from the group consisting of I Acid Red 289 is preferred.
  • the film B may contain other pigments or dyes in addition to these blue pigments, blue dyes, purple pigments or purple dyes in order to adjust the transmission color tone more accurately.
  • examples of other pigments include red pigments, green pigments, yellow pigments, and orange pigments.
  • the ratio of the colorant in the film B is preferably 0.0001 to 10% by weight, more preferably 0.001 to 1% by weight, based on the solid content, because the color tone can be easily adjusted.
  • the film B contains a pigment derivative or a polymer dispersant as a dispersant.
  • the method for producing the resin laminate of the present invention is not particularly limited, but preferably includes the following steps. (1) A step of obtaining a film A ′ by applying a resin solution containing a polyimide precursor resin on a support substrate. (2) A step of obtaining a film B ′ by applying a polysiloxane resin composition onto the film A ′. (3) A step of heating the film A ′ and the film B ′ to obtain a resin laminate.
  • Application methods include, for example, a slit coating method, a spin coating method, a spray coating method, a roll coating method, a bar coating method, and the like, and these methods may be applied in combination.
  • the solvent in the resin varnish is removed by drying.
  • a hot plate an oven, an infrared ray, a vacuum chamber or the like is used.
  • the object to be heated is heated by holding it directly on the plate or on a jig such as a proxy pin installed on the plate.
  • a material of the proxy pin there are a metal material such as aluminum or sterylene, or a synthetic resin such as polyimide resin or “Teflon (registered trademark)”, and any proxy pin may be used.
  • the height of the proxy pin varies depending on the size of the substrate, the type of the resin layer to be heated, the purpose of heating, etc. In this case, the height of the proxy pin is preferably about 2 to 12 mm.
  • the heating temperature for drying varies depending on the type and purpose of the object to be heated, and it is preferably performed in the range of room temperature to 170 ° C. for 1 minute to several hours.
  • the room temperature is usually 20-30 ° C., preferably 25 ° C.
  • the polysiloxane resin composition is applied onto the film A ′ by the same method as that for the film A ′, and a drying process is performed to form the film B ′ on the film A ′.
  • the resin coating film is heated in the range of 180 ° C. or more and 500 ° C. or less to obtain a resin laminate composed of the film A and the film B.
  • a heating process may be performed after passing through a certain process after the said drying process.
  • the atmosphere of the heating process is not particularly limited, and may be air or an inert gas such as nitrogen or argon.
  • the atmosphere of the heating process is not particularly limited, and may be air or an inert gas such as nitrogen or argon.
  • the mechanical properties are deteriorated such that the film A and the film B become brittle due to oxidative degradation.
  • oxygen concentration management in the ppm order is often difficult at the manufacturing site.
  • the resin film of the present invention is preferable if the oxygen concentration during heating is 5% or less because higher mechanical properties can be maintained.
  • the film B ′ is exposed and exposed after the step of obtaining the film B ′.
  • a developing step can be added.
  • an exposure machine such as a stepper, mirror projection mask aligner (MPA), parallel light mask aligner (PLA), etc., light of 10 mJ / m 2 or more and 1000 mJ or less / m 2 or less (wavelength 365 nm exposure dose conversion) of the desired mask Irradiate through or without.
  • the light source is not limited, and ultraviolet rays such as i-line, g-line, and h-line, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, and the like can be used.
  • the unexposed part or the exposed part can be dissolved by development to form a pattern.
  • a developing method it is preferable to immerse in a developing solution for 5 seconds or more and 10 minutes or less by a method such as showering, dipping, or paddle.
  • a known alkali developer can be used as the developer.
  • specific examples include inorganic alkalis such as alkali metal hydroxides, carbonates, phosphates, silicates and borates, amines such as 2-dimethylaminoethanol, monoethanolamine and diethanolamine, and tetramethylammonium.
  • examples thereof include an aqueous solution containing one or more quaternary ammonium salts such as hydroxide and choline. After development, it is preferable to rinse with water, followed by drying and baking in the range of 50 ° C. or higher and 150 ° C. or lower.
  • the laminate composed of the above-described film A containing polyimide resin and film B containing polysiloxane resin may be manufactured through the following two-stage film forming process. First, after applying a resin solution containing a polyimide precursor resin on the support substrate in the step (1), heating is performed in the step (3) to form the film A. Then, the polysiloxane resin composition is applied on the film A as the step (2), and heating is performed as the step (3) as in the first layer.
  • the above resin laminate is used as a display support substrate applicable to color filters, organic EL elements, on-chip substrates, sealing resins, touch panels, circuit boards, liquid crystal panels, PDP panels, electronic paper, see-through displays, etc. Used.
  • the resin laminate of the present invention preferably has a coefficient of linear thermal expansion (CTE) of 40 ppm / ° C. or less.
  • CTE coefficient of linear thermal expansion
  • the coefficient of linear expansion (CTE) is 35 ppm / ° C. or less.
  • the linear expansion coefficient mentioned here means that the temperature of the sample is raised to 150 ° C. at a temperature rising rate of 5 ° C./min in the first stage to remove the adsorbed water of the sample, and the air is cooled to room temperature at a temperature lowering rate of 5 ° C./min in the second stage. In the third stage, this measurement is performed at a temperature rising rate of 5 ° C./min, and the value is obtained from the average of the linear expansion coefficients of 50 to 200 ° C.
  • the resin laminate When the resin laminate is used for a color filter, it is a color filter having at least a black matrix and colored pixels on the film B.
  • the organic EL element When the resin laminate is used for an organic EL element, the organic EL element includes at least a TFT, an electrode, and an organic layer on the film B. Each of these may have a support substrate on the membrane A side.
  • the color filter using the display support substrate of the present invention can be manufactured through the following steps in addition to the steps (1) to (3). (4) A step of forming a black matrix on the resin laminate. (5) A step of forming colored pixels on the resin laminate. (6) The process of peeling the said resin laminated body from a support substrate.
  • the black matrix is preferably a resin black matrix in which a black pigment is dispersed in a resin.
  • the black pigment include carbon black, titanium black, titanium oxide, titanium oxynitride, titanium nitride, or iron tetroxide.
  • carbon black and titanium black are suitable.
  • a red pigment, a green pigment, and a blue pigment can be mixed and used as a black pigment.
  • the resin used for the resin black matrix is preferably a polyimide resin because a thin pattern can be easily formed.
  • the polyimide resin is preferably a polyimide resin obtained by thermosetting a polyamic acid synthesized from an acid anhydride and a diamine after patterning.
  • the acid anhydride, diamine and solvent those mentioned above for the polyimide resin can be used.
  • the resin used for the resin black matrix a photosensitive acrylic resin is also preferable.
  • the resin black matrix using this contains a black pigment-dispersed alkali-soluble acrylic resin, a photopolymerizable monomer, a polymer dispersant and an additive.
  • alkali-soluble resin examples include a copolymer of an unsaturated carboxylic acid and an ethylenically unsaturated compound.
  • unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl acetic acid or acid anhydrides.
  • photopolymerizable monomers examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, triacryl formal, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate or dipentaerythritol. Examples include penta (meth) acrylate.
  • photopolymerization initiators examples include benzophenone, N, N′-tetraethyl-4,4′-diaminobenzophenone, 4-methoxy-4′-dimethylaminobenzophenone, 2,2-diethoxyacetophenone, ⁇ -hydroxyisobutylphenone , Thioxanthone or 2-chlorothioxanthone.
  • Examples of the solvent for dissolving the photosensitive acrylic resin include propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, ethyl acetoacetate, methyl-3-methoxypropionate, ethyl-3-ethoxypropionate, Mention may be made of methoxybutyl acetate or 3-methyl-3-methoxybutyl acetate.
  • a black resin composition for a resin black matrix made of polyamic acid in which a black pigment is dispersed is applied by a method such as a spin coater or a die coater so that the film thickness after curing is 1 ⁇ m, and is 60 Pa or less. After drying under reduced pressure, semi-cure is performed in a hot air oven or hot plate at 110 to 140 ° C.
  • a positive resist is applied by a spin coater or die coater so that the film thickness after pre-baking is 1.2 ⁇ m, and then dried under reduced pressure up to 80 Pa. And a resist film is formed. Then, after selectively exposing with ultraviolet rays through a photomask by a proximity exposure machine or a projection exposure machine, 1.5 to 3.0% by weight of potassium hydroxide, tetramethylammonium hydroxide, etc. The exposed area is removed by immersing in an alkaline developer for 20 to 300 seconds. After stripping the positive resist using a stripper, the polyamic acid is converted to polyimide by heating in a hot air oven or hot plate at 200 to 300 ° C. for 10 to 60 minutes to disperse the black pigment in the resin film. A resin black matrix is formed. In the case of forming with a photosensitive resin, exposure and development can be performed without applying a positive resist.
  • the colored pixels are formed.
  • the colored pixels are generally composed of colored pixels of three colors of red, green, and blue.
  • the brightness of the white color of the display device can be improved by forming the pixels of the fourth color which are colorless and transparent or very thinly attached.
  • the colored pixel of the color filter uses a resin containing a pigment or a dye as a colorant.
  • pigments used for red colored pixels include PR254, PR149, PR166, PR177, PR209, PY138, PY150 or PYP139
  • examples of pigments used for green colored pixels are PG7, PG36, PG58. , PG37, PB16, PY129, PY138, PY139, PY150 or PY185
  • examples of pigments used for blue colored pixels include PB15: 6 or PV23.
  • blue dyes include C.I. I. Basic blue (BB) 5, BB7, BB9 or BB26 may be mentioned.
  • red dyes include C.I. I. Acid Red (AR) 51, AR87 or AR289.
  • resins used for red, green and blue colored pixels include acrylic resins, epoxy resins, and polyimide resins, but photosensitive acrylic resins are preferred because the manufacturing cost of the color filter can be reduced.
  • the photosensitive acrylic resin generally contains an alkali-soluble resin, a photopolymerizable monomer, and a photopolymerization initiator.
  • alkali-soluble resin examples include a copolymer of an unsaturated carboxylic acid and an ethylenically unsaturated compound.
  • unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl acetic acid or acid anhydrides.
  • photopolymerizable monomers examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, triacryl formal, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate or dipentaerythritol. Examples include penta (meth) acrylate.
  • photopolymerization initiators examples include benzophenone, N, N′-tetraethyl-4,4′-diaminobenzophenone, 4-methoxy-4′-dimethylaminobenzophenone, 2,2-diethoxyacetophenone, ⁇ -hydroxyisobutylphenone , Thioxanthone or 2-chlorothioxanthone.
  • Examples of the solvent for dissolving the photosensitive acrylic resin include propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, ethyl acetoacetate, methyl-3-methoxypropionate, ethyl-3-ethoxypropionate , Methoxybutyl acetate or 3-methyl-3-methoxybutyl acetate.
  • the colored pixels of the color filter are made using a colorant and a resin.
  • a pigment is used as the colorant
  • the pigment is mixed with a polymer dispersant and a solvent and subjected to a dispersion treatment, and then added with an alkali-soluble resin, a monomer, a photopolymerization initiator, and the like.
  • the dye is prepared by adding a solvent, an alkali-soluble resin, a monomer, a photopolymerization initiator, and the like.
  • the total solid content in this case is the total of the polymer component, the alkali-soluble resin and monomer, which are resin components, and the colorant.
  • the obtained colorant composition is applied to a target film thickness of 0.8 to 3.0 ⁇ m after heat treatment on a transparent substrate on which a resin black matrix is formed by a method such as a spin coater or a die coater. After coating, the film is dried under reduced pressure to 80 Pa, and prebaked in a hot air oven or hot plate at 80 to 110 ° C. to form a colorant coating film.
  • the gas barrier film described above may be formed between the resin film and the black matrix / colored pixel layer.
  • a flattening layer may be provided on the color filter.
  • the resin used for forming the planarization layer include an epoxy resin, an acrylic epoxy resin, an acrylic resin, a siloxane resin, or a polyimide resin.
  • the film thickness of the planarizing layer is preferably a film thickness that makes the surface flat, more preferably 0.5 to 5.0 ⁇ m, and even more preferably 1.0 to 3.0 ⁇ m.
  • the color filter is peeled off by cutting around the resin laminate.
  • a color filter using the display support substrate can be manufactured.
  • the order of patterning the colored pixels is not particularly limited.
  • Organic EL device using the display support substrate of the present invention can be produced through the following steps in addition to the steps (1) to (3). (4) A step of forming an organic EL element on the resin laminate. (5) The process of peeling the said resin laminated body from a support substrate.
  • a gas barrier film for suppressing permeation of a gas such as water vapor or oxygen is formed on the above-described resin laminate film B.
  • Preferred gas barrier films include, for example, metal oxides composed mainly of one or more metals selected from the group consisting of silicon, aluminum, magnesium, zinc, zirconium, titanium, yttrium, and tantalum, silicon, aluminum , Boron metal nitrides or mixtures thereof.
  • silicon oxide, nitride, or oxynitride is the main component from the viewpoint of gas barrier properties, transparency, surface smoothness, flexibility, film stress, cost, and the like.
  • These gas barrier films can be produced by a vapor deposition method in which a film is formed by depositing a material in a vapor phase such as sputtering, vacuum deposition, ion plating, plasma CVD or the like.
  • a vapor deposition method in which a film is formed by depositing a material in a vapor phase such as sputtering, vacuum deposition, ion plating, plasma CVD or the like.
  • the sputtering method is preferable from the viewpoint that particularly excellent gas barrier properties can be obtained.
  • the thickness of the gas barrier film is preferably 10 to 300 nm, and more preferably 30 to 200 nm.
  • the film-forming temperature of the gas barrier film is preferably high, preferably 300 ° C. or higher, more preferably 400 ° C. or higher, and further preferably 500 ° C. or higher.
  • TFT is formed on the gas barrier film.
  • the semiconductor layer for forming the TFT include an amorphous silicon semiconductor, a polycrystalline silicon semiconductor, an oxide semiconductor typified by InGaZnO, and an organic semiconductor typified by pentacene and polythiophene.
  • a gas barrier film, a gate electrode, a gate insulating film, a polycrystalline silicon semiconductor layer, an etching stopper film, and a source / drain electrode are sequentially formed by a known method to form a bottom gate TFT. Make it.
  • a planarization layer is provided on the TFT.
  • the resin used for forming the planarization layer include an epoxy resin, an acrylic epoxy resin, an acrylic resin, a polysiloxane resin, or a polyimide resin.
  • an electrode and an organic layer are formed thereon. Specifically, a first electrode made of Al / ITO or the like, an insulating film covering the end of the first electrode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer A white organic EL light-emitting layer made of is formed, a second electrode made of ITO or the like is formed, and a sealing film is formed. After manufacturing through the above steps, the organic EL element can be obtained by peeling the resin film from the support substrate.
  • an on-chip type substrate can be manufactured by directly forming a color filter on the organic EL element thus obtained by the above-described method.
  • the display support substrate of the present invention can be used for display devices such as liquid crystal displays, organic EL displays, electronic paper, PDP displays, LED displays, and see-through displays, light receiving devices such as color filters, touch panels, solar cells, and CMOS. it can. In particular, when utilizing these display devices and light receiving devices as flexible devices that can be bent, the display support substrate of the present invention is preferably used.
  • the circuit required for the display device and the light receiving device is formed on the resin film formed on the substrate, and the resin laminate is formed by cutting and physically peeling as described above. Is peeled off from the substrate.
  • the color filter and the organic EL element produced in the present invention have a flexible resin laminate as a base material, they can be a flexible color filter and a flexible organic EL element. And a flexible organic EL display can be produced using these flexible color filters and flexible organic EL elements.
  • a flexible display device for full color display can be obtained by bonding a light emitting device to a color filter using the flexible substrate of the present invention.
  • a flexible organic EL display in which an organic EL element using the flexible substrate of the present invention and a color filter are combined is preferable.
  • the polysiloxane resin composition was spin-coated so that the thickness after pre-baking at 100 ° C. ⁇ 2 minutes would be the thickness shown in Table 1. did.
  • the coating film after the pre-baking treatment was heated to 300 ° C. at 3.5 ° C./min under nitrogen flow (oxygen concentration 20 ppm or less) using an inert oven (INH-21CD manufactured by Koyo Thermo System Co., Ltd.) for 30 minutes. This was held and cooled to 50 ° C. at 5 ° C./min to produce a resin laminate (on a glass substrate).
  • the polyimide precursor is such that the thickness after pre-baking at 140 ° C. ⁇ 4 minutes is the thickness shown in Table 1.
  • the resin solution was spin coated. Thereafter, a pre-bake treatment at 140 ° C. for 4 minutes was similarly performed using a Mark-7 hot plate. Subsequently, a polysiloxane resin composition was spin-coated using a spin coater MS-A200 manufactured by Mikasa Co., Ltd. so that the thickness after pre-baking at 100 ° C. ⁇ 2 minutes would be the thickness shown in Table 1.
  • the coating film after the pre-baking treatment was heated to 300 ° C. at 3.5 ° C./min under nitrogen flow (oxygen concentration 20 ppm or less) using an inert oven (INH-21CD manufactured by Koyo Thermo System Co., Ltd.) for 30 minutes. This was held and cooled to 50 ° C. at 5 ° C./min to produce a resin laminate. Subsequently, a cut was made around the obtained resin laminate, immersed in hot water of 65 ° C. for 1 to 4 minutes, and then physically pulled to peel the resin laminate from the substrate and air-dried.
  • T Measurement of light transmittance
  • the light transmittance at a wavelength of 400 nm was measured using an ultraviolet-visible spectrophotometer (MultiSpec 1500, manufactured by Shimadzu Corporation).
  • MultiSpec 1500 manufactured by Shimadzu Corporation
  • the resin laminated body on a glass substrate produced by (1) was used for the measurement.
  • CTE linear thermal expansion coefficient
  • the resin laminated body produced by (3) was used for the measurement, and it determined with the following evaluation methods. Excellent (A): 35 ppm / ° C or less Good (B): More than 35 ppm / ° C and 40 ppm / ° C or less Defective (C): More than 40 ppm / ° C.
  • TE refractive index (n (TE)) and TM refractive index (n (TM)) at a wavelength of 632.8 nm were measured using a prism coupler (PC2010, manufactured by METRICON).
  • n (TE) and n (TM) are refractive indexes in parallel and perpendicular directions to the film surface, respectively.
  • Birefringence is calculated as the n difference (TE) and n (TM) (n (TE ) -n (TM)), the birefringence of the film A was .DELTA.N A, .DELTA.N B birefringence film B.
  • the resin film prepared in (2) was used.
  • Td3 3% weight loss temperature
  • the polysiloxane resin film prepared in (2) is scraped off, and about 15 mg is put into an aluminum cell, and nitrogen is measured using a thermogravimetric measuring device (TGA-50 manufactured by Shimadzu Corporation). Measurements were performed under air flow.
  • the temperature raising method was performed under the following conditions. In the first stage, the temperature of the sample is raised to 150 ° C. at a rate of temperature rise of 3.5 ° C./min to remove the adsorbed water of the sample. This measurement was carried out at a heating rate of 10 ° C./min, and the temperature (Td3) when the weight was reduced by 3% was determined.
  • membrane A containing a polyimide resin was produced.
  • the C light source (L * a * b * ) color space of the resin laminate substrate was measured using a microspectrophotometer “MCPD-2000” manufactured by Otsuka Electronics Co., Ltd., and the transmission color tone was determined as follows. .
  • the presence or absence of cracks in the film B before and after the bending operation was used as an index, and 100 sheets were visually observed using an optical microscope (Nikon (manufactured by OPTIPHOT 300)) after the test.
  • the average of the absolute values of the deviation amounts obtained by the measurement was obtained by calculation, and the obtained value was taken as the deviation amount from the ideal lattice of BM at that level. While evaluating the value of the amount of deviation in each Example and Comparative Example, and evaluating how much difference there is in the amount of deviation between the case where the BM pattern was produced on the glass substrate and the case where it was produced on the resin laminate, The determination was made by the following evaluation method. Excellent (A): BM displacement amount is 1.8 ⁇ m or less. Good (B): BM displacement amount is more than 1.8 ⁇ m and less than 2.4 ⁇ m. (C): BM displacement amount is more than 2.4 ⁇ m.
  • the high temperature and high humidity test was conducted by placing the organic EL element peeled from the glass substrate in a high temperature and high humidity tank having an internal temperature of 85 ° C. and a humidity of 85% for 24 hours.
  • Synthesis Example 3 Synthesis of Transparent Polyimide Precursor Resin Solution (III) 7.90 g (26) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) in a 200 mL four-necked flask under a dry nitrogen stream .4 mmol), 2,2-bis (4- (3,4-dicarboxyphenoxy) phenyl) propane dianhydride (BSAA) 14.01 g (26.4 mmol), trans-1,4-diaminocyclohexane ( (CHDA) 6.1375 g (53.7 mmol) and N-methyl-2-pyrrolidone 100 g were added and heated and stirred at 65 ° C. After 6 hours, it was cooled to obtain a transparent polyimide precursor resin solution (III).
  • BPDA 4,4′-biphenyltetracarboxylic dianhydride
  • BSAA 2,2-bis (4- (3,4-dicarboxyphenoxy) phen
  • Synthesis Example 4 Synthesis of Transparent Polyimide Precursor Resin Solution (IV) 13.72 g (46) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) in a 200 mL four-necked flask under a dry nitrogen stream .6 mmol), trans-1,4-diaminocyclohexane (CHDA) 5.33 g (46.6 mmol), and N-methyl-2-pyrrolidone 100 g were added and heated and stirred at 65 ° C. After 6 hours, it was cooled to obtain a transparent polyimide precursor resin solution (IV).
  • BPDA 4,4′-biphenyltetracarboxylic dianhydride
  • CHDA trans-1,4-diaminocyclohexane
  • N-methyl-2-pyrrolidone 100 g were added and heated and stirred at 65 ° C. After 6 hours, it was cooled to obtain a transparent polyimide precursor
  • Synthesis Example 5 Synthesis of Transparent Polyimide Precursor Resin Solution (V) 7.23 g (36.9 mmol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA) in a 200 mL four-necked flask under a dry nitrogen stream ), 2,2′-bis (trifluoromethyl) benzidine (TFMB) 11.81 g (36.9 mmol) and N-methyl-2-pyrrolidone 100 g were added and stirred at 65 ° C. with heating. After 6 hours, it was cooled to obtain a transparent polyimide precursor resin solution (V).
  • CBDA 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • TFMB 2,2′-bis (trifluoromethyl) benzidine
  • N-methyl-2-pyrrolidone 100 g were added and stirred at 65 ° C. with heating. After 6 hours, it was cooled to obtain a transparent polyimide precursor
  • Synthesis Example 7 Synthesis of Polyimide Precursor Resin Solution (VII) 7.03 g (32.2 mmol) of pyromellitic anhydride (PMDA), 4,4′-biphthalic anhydride in a 200 mL four-necked flask under a dry nitrogen stream (BPDA) 6.32 g (21.5 mmol), 1,4-phenylenediamine (PDA) 5.81 g (53.7 mmol), and N-methyl-2-pyrrolidone 100 g were added, and the mixture was heated and stirred at 65 ° C. After 6 hours, it was cooled to obtain a polyimide precursor resin solution (VII).
  • PMDA pyromellitic anhydride
  • PDA 1,4-phenylenediamine
  • N-methyl-2-pyrrolidone 100 g were added, and the mixture was heated and stirred at 65 ° C. After 6 hours, it was cooled to obtain a polyimide precursor resin solution (VII).
  • Synthesis Example 8 Synthesis of Polyimide Precursor Resin Solution (VIII) 10.21 g (34.7 mmol) of 4,4′-biphthalic anhydride (BPDA), trans-1,4- Diaminocyclohexane (CHDA) 1.59 g (13.9 mmol), 9,9-bis (4-aminophenyl) fluorene (FDA) 7.26 g (20.8 mmol), N-methyl-2-pyrrolidone 100 g The mixture was heated and stirred at ° C. After 6 hours, it was cooled to obtain a polyimide precursor resin solution (VIII).
  • BPDA 4,4′-biphthalic anhydride
  • CHDA trans-1,4- Diaminocyclohexane
  • FDA 9,9-bis (4-aminophenyl) fluorene
  • N-methyl-2-pyrrolidone 100 g
  • the mixture was heated and stirred at ° C. After 6 hours, it was cooled to obtain a polyimide precursor resin solution
  • Synthesis Example 9 Synthesis of polyimide precursor resin solution (VIIII) 4,4′-diaminophenyl ether (ODA) 60.07 g (300.0 mmol), 1,4-phenylenediamine (PDA) 70. 33 g (650.4 mmol) and 1,3-bis (3-aminopropyl) tetramethyldisiloxane 12.43 g (50.0 mmol) were charged with 850 g ⁇ -butyrolactone and 850 g N-methyl-2-pyrrolidone, 309.43 g (997.5 mmol) of 3,3 ′, 4,4′-oxydiphthalcarboxylic dianhydride (ODPA) was added and reacted at 80 ° C. for 3 hours. 1.96 g (20.0 mmol) of maleic anhydride was added and further reacted at 80 ° C. for 1 hour to obtain a polyimide precursor resin solution (VIIII).
  • ODA 4,4′-diaminophenyl
  • Synthesis Example 10 Synthesis of Polysiloxane Resin Solution (I) 46.05 g (0.34 mo) of methyltrimethoxysilane was added to a 500 ml three-necked flask. l), 83.79 g (0.42 mol) of phenyltrimethoxysilane, (2- (3, 20.82 g (0.08 mo) of 4-epoxycyclohexyl) ethyltrimethoxysilane l), 151.6836.55 g of propylene glycol monomethyl ether acetate (PGMEA) and 15.17 g of methanol were charged, and 0.45 g of phosphoric acid (charged) was added to 47.21 g of water (theoretical amount required for hydrolysis) while stirring at room temperature.
  • PGMEA propylene glycol monomethyl ether acetate
  • a phosphoric acid aqueous solution in which 0.3% by weight of the monomer was dissolved was added with a dropping funnel over 10 minutes. Thereafter, the flask was immersed in a 40 ° C. oil bath and stirred for 30 minutes, and then the oil bath was heated to 115 ° C. over 30 minutes. One hour after the start of temperature increase, the internal temperature of the solution reached 100 ° C., from which it was heated and stirred for 2 hours (internal temperature was 100 to 110 ° C.) to obtain a polysiloxane solution (I). During heating and stirring, nitrogen was flowed at 0.05 l (liter) / min.
  • Synthesis Example 11 Synthesis of Polysiloxane Resin Solution (II) 47.67 g (0.35 mol) methyltrimethoxysilyl, 39.66 g (0.20 mol) phenyltrimethoxysilane, 82.04 g (0 .35 mol) of ⁇ -acryloylpropyltrimethoxysilane, 26.23 (0.1 mol) of 3-trimethoxysilylpropyl succinic anhydride and 195.6 g of diacetone alcohol (DAA), and an oil bath at 40 ° C.
  • DAA diacetone alcohol
  • aqueous solution of phosphoric acid in which 0.39 g of phosphoric acid (0.2 parts by weight with respect to the charged monomer) is dissolved in 55.8 g of water (theoretical amount necessary for hydrolysis) with stirring. Added over minutes. After stirring at 40 ° C. for 1 hour, the oil bath temperature was set to 70 ° C. and stirred for 1 hour, and the oil bath was further heated to 115 ° C. over 30 minutes. One hour after the start of temperature increase, the internal temperature of the solution reached 100 ° C., and was then heated and stirred for 2 hours (the internal temperature was 100 to 110 ° C.).
  • Polysiloxane Resin Composition 1 7.42 g of Polysiloxane Solution (I) obtained
  • PMA-ST manufactured by Nissan Chemical Industries, Ltd .
  • 0.0898 g of Irgacure OXE-02 and 0.0299 g of hydroquinone methyl ether (HQME) were added and dissolved in 6.00 g of DAA and 1.44 g of PGMEA and stirred.
  • Preparation Example 4 Preparation of black resin composition for forming a black matrix 50 g of carbon black (MA100; manufactured by Mitsubishi Chemical Corporation) and 200 g of N were added to 250 g of the polyimide precursor resin solution (VIIII) of Synthesis Example 9. -Methyl-2-pyrrolidone was mixed, and dispersion treatment was performed at 3200 rpm for 3 hours using zirconia beads having a diameter of 0.3 mm using DYNOMILL KDL-A to obtain a black resin dispersion.
  • Non-photosensitive black resin composition by adding 49.9 g of N-methyl-2-pyrrolidone and 0.1 g of a surfactant (LC951; manufactured by Enomoto Chemical Co., Ltd.) to 50 g of this black dispersion.
  • a surfactant LC951; manufactured by Enomoto Chemical Co., Ltd.
  • Preparation Example 6 Preparation of Resin Composition for Forming Transparent Protective Film 280 g of GBL and 74.95 g of ⁇ -aminopropyltriethoxysilane were added to 65.05 g of trimellitic acid, and 120 ° C. for 2 hours. Heated. To 20 g of the obtained solution, 7.00 g of bisphenoxyethanol fluorenediglycidyl ether and 15.00 g of diethylene glycol dimethyl ether were added to obtain a resin composition.
  • Preparation Example 7 Preparation of pigment dispersion (d1) PB15: 65 g, PV23 35 g, bic chemie “BYK2001” 40 g and propylene glycol monomethyl acetate 860 g as a dispersing agent together with 1000 g of zirconia beads having a diameter of 0.3 mm using a homogenizer After the dispersion treatment at 7000 rpm for 30 minutes, the zirconia beads were removed by filtration to obtain a pigment dispersion liquid (d1).
  • Example 1 Production of a color filter and an organic EL element using a display support substrate (FIGS. 3 and 4)
  • a transparent polyimide precursor resin solution (I) obtained in Synthesis Example 1 is applied to a glass substrate 1 (AN100 (manufactured by Asahi Glass Co., Ltd.)) of 300 mm ⁇ 400 mm ⁇ 0.7 mm thickness. Spin coating was performed so that the thickness after pre-baking at 140 ° C. for 10 minutes was 15 ⁇ 0.5 ⁇ m. Then, the prebaking process was performed for 10 minutes at 140 degreeC using the ventilation dryer.
  • AN100 manufactured by Asahi Glass Co., Ltd.
  • the polysiloxane resin composition 1 obtained in Preparation Example 1 was spin-coated on the polyimide resin film so that the thickness after prebaking at 100 ° C. for 2 minutes was 1.2 ⁇ m. Then, the prebaking process was performed for 2 minutes at 100 degreeC using the ventilation dryer. Thereafter, heating was performed for 30 minutes in an inert oven (INH-21CD manufactured by Koyo Thermo System Co., Ltd.) heated to 300 ° C. under a nitrogen stream (oxygen concentration of 20 ppm or less), a film A containing polyimide resin A 10 ⁇ m, and a film B 1 ⁇ m containing polysiloxane resin The resin laminated body which consists of was produced.
  • an inert oven IH-21CD manufactured by Koyo Thermo System Co., Ltd.
  • 2.38% tetramethylammonium hydroxide aqueous solution is used to simultaneously develop the photoresist and etch the black resin coating to form a pattern, strip the resist with methyl cellosolve acetate,
  • the resin was imidized by heating at 280 ° C. for 10 minutes to form a resin black matrix in which carbon black was dispersed in a polyimide resin.
  • the thickness of the black matrix was measured, it was 1.4 ⁇ m.
  • the position accuracy of the black matrix was evaluated by the above-described method, the amount of BM positional deviation was 1.7 ⁇ m.
  • the film was dipped in a developer composed of a 0.2% tetramethylammonium hydroxide aqueous solution, developed, washed with pure water, and then heat-treated in an oven at 230 ° C. for 30 minutes to produce a red pixel 7R.
  • a green pixel 7G made of a photosensitive green resist and a blue pixel 7B made of a photosensitive blue resist prepared in Preparation Example 4 were produced, and a color filter (FIG. 3) was obtained.
  • the rotation speed of the spinner was adjusted so that the thickness of the colored layer portion after the heat treatment was 2.5 ⁇ m, and the resin composition produced in Adjustment Example 6 was applied. Then, it heat-processed for 30 minutes in 230 degreeC oven, and produced the overcoat layer.
  • a flattening layer was formed on the insulating film with the unevenness due to the wiring embedded.
  • the planarization layer is formed by spin-coating a photosensitive polyimide varnish on a substrate, pre-baking on a hot plate (120 ° C., 3 minutes), exposing and developing through a mask having a desired pattern, and under an air flow The heat treatment was performed at 230 ° C. for 60 minutes. The applicability when applying the varnish was good, and no wrinkles or cracks were observed in the flattened layer obtained after exposure, development and heat treatment. Furthermore, the average level difference of the wiring was 500 nm, a 5 ⁇ m square contact hole was formed in the prepared planarization layer, and the thickness was about 2 ⁇ m.
  • FIG. 4 Production of white light emitting organic EL element (FIG. 4) A top emission type organic EL element was formed on the flattening layer of the TFT obtained by the above method.
  • a first electrode made of Al / ITO Al: reflective electrode
  • a resist was applied, prebaked, exposed through a mask having a desired pattern, and developed.
  • patterning of the first electrode was performed by wet etching using an ITO etchant.
  • the resist pattern was stripped using a resist stripping solution (mixed solution of monoethanolamine and diethylene glycol monobutyl ether).
  • the substrate after peeling was washed with water and dehydrated by heating at 200 ° C. for 30 minutes to obtain an electrode substrate with a planarizing layer.
  • the change in the thickness of the flattening layer was less than 1% after heat dehydration with respect to that before the stripping solution treatment.
  • the first electrode thus obtained corresponds to the anode of the organic EL element.
  • an insulating layer having a shape covering the end of the first electrode was formed.
  • the photosensitive polyimide varnish was also used for the insulating layer.
  • a hole transport layer, an organic light emitting layer, and an electron transport layer were sequentially deposited through a desired pattern mask in a vacuum deposition apparatus to provide a white organic EL light emitting layer.
  • a second electrode made of Mg / ITO was formed on the entire surface above the substrate.
  • a SiON sealing film was formed by CVD film formation to obtain an organic EL element (FIG. 4).
  • the obtained organic EL device was measured for luminous efficiency by the method described above. As a result, the luminous efficiency was 5 cd / A immediately after fabrication and after the high-temperature and high-humidity test.
  • Example 2 A resin laminate, a color filter, and an organic EL device were produced in the same manner as in Example 1 except that the polyimide precursor resin solution (II) obtained in Synthesis Example 2 was used instead of the polyimide precursor resin solution (I). did.
  • the visible light transmittance and CTE at a wavelength of 400 nm of the resin laminate were 85.5% and 20 ppm, respectively.
  • birefringence measurement, flexural resistance evaluation, 3% weight loss temperature measurement, chromaticity measurement, black matrix positional accuracy evaluation, and luminous efficiency measurement were performed by the above-described methods. The results are shown in Table 1.
  • Example 3 A resin laminate, a color filter, and an organic EL device were produced in the same manner as in Example 1 except that the polyimide precursor resin solution (III) obtained in Synthesis Example 3 was used instead of the polyimide precursor resin solution (I). did.
  • the visible light transmittance and CTE at a wavelength of 400 nm of the resin laminate were 91.0% and 32 ppm, respectively.
  • birefringence measurement, flexural resistance evaluation, 3% weight loss temperature measurement, chromaticity measurement, black matrix positional accuracy evaluation, and luminous efficiency measurement were performed by the above-described methods. The results are shown in Table 1.
  • Example 4 A resin laminate, a color filter, and an organic EL device were produced in the same manner as in Example 1 except that the polyimide precursor resin solution (IV) obtained in Synthesis Example 4 was used instead of the polyimide precursor resin solution (I). did.
  • the visible light transmittance and CTE at a wavelength of 400 nm of the resin laminate were 86.8% and 9.0 ppm, respectively.
  • birefringence measurement, flexural resistance evaluation, 3% weight loss temperature measurement, chromaticity measurement, black matrix positional accuracy evaluation, and luminous efficiency measurement were performed by the above-described methods. The results are shown in Table 1.
  • Example 5 A resin laminate, a color filter, and an organic EL device were produced in the same manner as in Example 1 except that the polyimide precursor resin solution (V) obtained in Synthesis Example 5 was used instead of the polyimide precursor resin solution (I). did.
  • the visible light transmittance and CTE at a wavelength of 400 nm of the resin laminate were 95.3% and 19 ppm, respectively. Further, birefringence measurement, flexural resistance evaluation, 3% weight loss temperature measurement, chromaticity measurement, black matrix positional accuracy evaluation, and luminous efficiency measurement were performed by the above-described methods. The results are shown in Table 1.
  • Example 6 A resin laminate, a color filter, and an organic EL device were produced in the same manner as in Example 1 except that the polyimide precursor resin solution (VI) obtained in Synthesis Example 6 was used instead of the polyimide precursor resin solution (I). did.
  • the visible light transmittance and CTE at a wavelength of 400 nm of the resin laminate were 96.1% and 29 ppm, respectively.
  • birefringence measurement, flexural resistance evaluation, 3% weight loss temperature measurement, chromaticity measurement, black matrix positional accuracy evaluation, and luminous efficiency measurement were performed by the above-described methods. The results are shown in Table 1.
  • Example 7 A resin laminate, a color filter, and an organic EL device are produced in the same manner as in Example 1 except that the polyimide precursor resin solution (VII) obtained in Synthesis Example 7 is used instead of the polyimide precursor resin solution (I). did.
  • the visible light transmittance and CTE at a wavelength of 400 nm of the resin laminate were 2.4% and 6.0 ppm, respectively.
  • birefringence measurement, flexural resistance evaluation, 3% weight loss temperature measurement, chromaticity measurement, black matrix positional accuracy evaluation, and luminous efficiency measurement were performed by the above-described methods. The results are shown in Table 1.
  • Example 8 A resin laminate, a color filter, and an organic EL device were produced in the same manner as in Example 1 except that the polyimide precursor resin solution (VIII) obtained in Synthesis Example 8 was used instead of the polyimide precursor resin solution (I). did.
  • the visible light transmittance and CTE at a wavelength of 400 nm of the resin laminate were 65.2% and 23 ppm, respectively.
  • birefringence measurement, flexural resistance evaluation, 3% weight loss temperature measurement, chromaticity measurement, black matrix positional accuracy evaluation, and luminous efficiency measurement were performed by the above-described methods. The results are shown in Table 1.
  • Example 9 instead of the polysiloxane resin composition 1, the polysiloxane resin composition 2 obtained in Preparation Example 2 was used, and the polysiloxane resin composition 2 was applied and prebaked, followed by Canon Inc., UV exposure machine “PLA” ⁇ 5011 ′′, the entire surface of the coating film was exposed at 150 mJ / cm 2 (i-line conversion), and after the film B ′ was photocured, a developer composed of 0.2% tetramethylammonium hydroxide aqueous solution was used. A resin laminate, a color filter, and an organic EL element were produced in the same manner as in Example 1 except that the film was immersed for 1 minute, developed, and then washed with pure water.
  • Canon Inc. UV exposure machine “PLA” ⁇ 5011 ′′
  • the visible light transmittance and CTE at a wavelength of 400 nm of the resin laminate were 87.4% and 30 ppm, respectively. Further, birefringence measurement, flexural resistance evaluation, 3% weight loss temperature measurement, chromaticity measurement, black matrix positional accuracy evaluation, and luminous efficiency measurement were performed by the above-described methods. The results are shown in Table 1.
  • Example 10 A resin laminate, a color filter, and an organic EL device were produced in the same manner as in Example 1 except that 0.1 g of the pigment dispersion (d1) was added in Preparation Example 1.
  • the visible light transmittance and CTE at a wavelength of 400 nm of the resin laminate were 87.7% and 30 ppm, respectively.
  • birefringence measurement, flexural resistance evaluation, 3% weight loss temperature measurement, chromaticity measurement, black matrix positional accuracy evaluation, and luminous efficiency measurement were performed by the above-described methods. The results are shown in Table 1.
  • Example 11 A resin laminate, a color filter, and an organic EL element were produced in the same manner as in Example 1 except that the film A was changed to 20 ⁇ m and the film B was changed to 3 ⁇ m.
  • the visible light transmittance and CTE at a wavelength of 400 nm of the resin laminate were 76.3% and 29 ppm, respectively.
  • birefringence measurement, flexural resistance evaluation, 3% weight loss temperature measurement, chromaticity measurement, black matrix positional accuracy evaluation, and luminous efficiency measurement were performed by the above-described methods. The results are shown in Table 2.
  • Example 12 A resin laminate, a color filter, and an organic EL element were produced in the same manner as in Example 1, except that the film thickness of the film A was changed to 5 ⁇ m and the film thickness of the film B was changed to 3 ⁇ m.
  • the visible light transmittance and CTE at a wavelength of 400 nm of the resin laminate were 91.1% and 25 ppm, respectively.
  • birefringence measurement, flexural resistance evaluation, 3% weight loss temperature measurement, chromaticity measurement, black matrix positional accuracy evaluation, and luminous efficiency measurement were performed by the above-described methods. The results are shown in Table 2.
  • Example 13 A resin laminate, a color filter, and an organic EL element were produced in the same manner as in Example 1, except that the film thickness of the film A was changed to 10 ⁇ m and the film thickness of the film B was changed to 2.5 ⁇ m.
  • the visible light transmittance and CTE at a wavelength of 400 nm of the resin laminate were 85.6% and 28 ppm, respectively.
  • birefringence measurement, flexural resistance evaluation, 3% weight loss temperature measurement, chromaticity measurement, black matrix positional accuracy evaluation, and luminous efficiency measurement were performed by the above-described methods. The results are shown in Table 2.
  • Example 14 A resin laminate, a color filter, and an organic EL element were produced in the same manner as in Example 1, except that the film thickness of the film A was changed to 15 ⁇ m and the film thickness of the film B was changed to 1.5 ⁇ m.
  • the visible light transmittance and CTE at a wavelength of 400 nm of the resin laminate were 82.2% and 31 ppm, respectively.
  • birefringence measurement, flexural resistance evaluation, 3% weight loss temperature measurement, chromaticity measurement, black matrix positional accuracy evaluation, and luminous efficiency measurement were performed by the above-described methods. The results are shown in Table 2.
  • Example 15 A resin laminate, a color filter, and an organic EL element were produced in the same manner as in Example 1 except that the film thickness of the film A was changed to 19 ⁇ m in Example 1.
  • the visible light transmittance and CTE at a wavelength of 400 nm of the resin laminate were 77.1% and 36 ppm, respectively.
  • birefringence measurement, flexural resistance evaluation, 3% weight loss temperature measurement, chromaticity measurement, black matrix positional accuracy evaluation, and luminous efficiency measurement were performed by the above-described methods. The results are shown in Table 2.
  • Example 16 A resin laminate, a color filter, and an organic EL element were produced in the same manner as in Example 1 except that the film thickness of the film A was changed to 24 ⁇ m in Example 1.
  • the visible light transmittance and CTE at a wavelength of 400 nm of the resin laminate were 75.8% and 38 ppm, respectively.
  • birefringence measurement, flexural resistance evaluation, 3% weight loss temperature measurement, chromaticity measurement, black matrix positional accuracy evaluation, and luminous efficiency measurement were performed by the above-described methods. The results are shown in Table 2.
  • Example 17 The polysiloxane resin composition 2 obtained in Preparation Example 3 was used in place of the polysiloxane resin composition 1, and the polysiloxane resin composition 2 was applied and pre-baked, followed by Canon Inc., UV exposure. Using a machine “PLA-5011”, the entire surface of the coating film was exposed at 150 mJ / cm 2 (i-line conversion), and after film B ′ was photocured, it was composed of a 0.2% tetramethylammonium hydroxide aqueous solution. A resin laminate, a color filter, and an organic EL device were produced in the same manner as in Example 1 except that it was immersed in a developer for 1 minute, developed, and then washed with pure water.
  • the visible light transmittance and CTE at a wavelength of 400 nm of the resin laminate were 87.6% and 30 ppm, respectively. Further, birefringence measurement, flexural resistance evaluation, 3% weight loss temperature measurement, chromaticity measurement, black matrix positional accuracy evaluation, and luminous efficiency measurement were performed by the above-described methods. The results are shown in Table 2.
  • Example 18 A resin laminate, a color filter, and an organic EL element were prepared in the same manner as in Example 1 except that the content of silica particles in the varnish solid content was 65 wt% in Preparation Example 1.
  • the visible light transmittance and CTE at a wavelength of 400 nm of the resin laminate were 88.0% and 29 ppm, respectively.
  • birefringence measurement, flexural resistance evaluation, 3% weight loss temperature measurement, chromaticity measurement, black matrix positional accuracy evaluation, and luminous efficiency measurement were performed by the above-described methods. The results are shown in Table 2.
  • Example 19 A resin laminate, a color filter, and an organic EL device were prepared in the same manner as in Example 1, except that the content of silica particles in the varnish solid content was 80 wt%.
  • the visible light transmittance and CTE at a wavelength of 400 nm of the resin laminate were 88.1% and 27 ppm, respectively.
  • birefringence measurement, flexural resistance evaluation, 3% weight loss temperature measurement, chromaticity measurement, black matrix positional accuracy evaluation, and luminous efficiency measurement were performed by the above-described methods. The results are shown in Table 2.
  • a laminate, a color filter, and an organic EL element were produced.
  • the visible light transmittance and CTE at a wavelength of 400 nm of the resin laminate were 83.5% and 36 ppm, respectively.
  • birefringence measurement, flexural resistance evaluation, 3% weight loss temperature measurement, chromaticity measurement, black matrix positional accuracy evaluation, and luminous efficiency measurement were performed by the above-described methods. The results are shown in Table 2.
  • Example 21 A resin laminate, a color filter, and an organic EL element were produced in the same manner as in Example 1 except that the film thickness of the film B was changed to 0.4 ⁇ m in Example 1.
  • the visible light transmittance and CTE at a wavelength of 400 nm of the resin laminate were 88.5% and 39 ppm, respectively.
  • birefringence measurement, flexural resistance evaluation, 3% weight loss temperature measurement, chromaticity measurement, black matrix positional accuracy evaluation, and luminous efficiency measurement were performed by the above-described methods. The results are shown in Table 2.
  • Example 22 A resin laminate, a color filter, and an organic EL device were prepared in the same manner as in Example 1 except that the content of silica particles in the varnish solid content was 90 wt% in Preparation Example 1.
  • the visible light transmittance and CTE at a wavelength of 400 nm of the resin laminate were 86.2% and 25 ppm / ° C., respectively. It was 88.5% and 25 ppm.
  • birefringence measurement, flexural resistance evaluation, 3% weight loss temperature measurement, chromaticity measurement, black matrix positional accuracy evaluation, and luminous efficiency measurement were performed by the above-described methods. The results are shown in Table 2.
  • Example 1 a resin laminate, a color filter, and an organic EL element were produced in the same manner as in Example 1, except that the film B was not formed.
  • the visible light transmittance and CTE at a wavelength of 400 nm of the resin laminate were 88.0% and 48 ppm, respectively.
  • birefringence measurement, flexural resistance evaluation, 3% weight loss temperature measurement, chromaticity measurement, black matrix positional accuracy evaluation, and luminous efficiency measurement were performed by the above-described methods. The results are shown in Table 2.
  • Comparative Example 2 A resin laminate, a color filter, and an organic EL device were prepared in the same manner as in Example 1 except that PMA-ST was not added in Preparation Example 1.
  • the visible light transmittance and CTE at a wavelength of 400 nm of the resin laminate were 87.7% and 53 ppm, respectively.
  • birefringence measurement, flexural resistance evaluation, 3% weight loss temperature measurement, chromaticity measurement, black matrix positional accuracy evaluation, and luminous efficiency measurement were performed by the above-described methods. The results are shown in Table 2.
  • Comparative Example 3 A resin laminate, a color filter, and an organic EL element were produced in the same manner as in Example 1, except that the film thickness of the film A was changed to 25 ⁇ m and the film thickness of the film B was changed to 0.5 ⁇ m.
  • the visible light transmittance and CTE at a wavelength of 400 nm of the resin laminate were 73.4% and 42 ppm, respectively.
  • birefringence measurement, flexural resistance evaluation, 3% weight loss temperature measurement, chromaticity measurement, black matrix positional accuracy evaluation, and luminous efficiency measurement were performed by the above-described methods. The results are shown in Table 2.
  • Example 4 a resin laminate, a color filter, and an organic EL element were produced in the same manner as in Example 1 except that the film A was changed to 4.0 ⁇ m and the film B was changed to 3.0 ⁇ m. did.
  • the visible light transmittance and CTE at a wavelength of 400 nm of the resin laminate were 92.1% and 23 ppm, respectively.
  • birefringence measurement, flexural resistance evaluation, 3% weight loss temperature measurement, chromaticity measurement, black matrix positional accuracy evaluation, and luminous efficiency measurement were performed by the above-described methods. The results are shown in Table 2.
  • Example 23 Production of organic EL display (FIG. 5) [1] Production of Color Filter with Glass Substrate and White Light-Emitting Organic EL Element A color filter and a white light-emitting organic EL element were produced on a glass substrate by the method described in Example 1.
  • Example 24 An organic EL display was produced in the same manner as in Example 23 except that the color filter produced in Example 10 was used.
  • Example 25 An organic EL display was produced in the same manner as in Example 23 except that the color filter produced in Example 4 was used.
  • Example 26 An organic EL display was produced in the same manner as in Example 23 except that the color filter produced in Example 8 was used.
  • Reference Example 1 Production of polyimide resin film A glass substrate 1 (AN100 (Asahi Glass Co., Ltd.)) having a thickness of 300 mm ⁇ 400 mm ⁇ 0.7 mm was applied to the polyimide precursor resin solution (VII) obtained in Synthesis Example 7 at 140 ° C. Was applied by spin coating so that the thickness after pre-baking for 10 minutes was 15 ⁇ 0.5 ⁇ m. Then, the prebaking process was performed for 10 minutes at 140 degreeC using the ventilation dryer. After the temperature of the substrate dropped to room temperature, it was heated for 30 minutes in an inert oven (INH-21CD manufactured by Koyo Thermo System Co., Ltd.) heated to 300 ° C.
  • an inert oven IH-21CD manufactured by Koyo Thermo System Co., Ltd.
  • Example 27 Production of Organic EL Display [1] Production of Color Filter with Glass Substrate A color filter was produced on a glass substrate by the method described in Example 1.
  • TFT support substrate was produced on the polyimide resin film produced in (1) above in the same manner as in [4] of Example 1.
  • Example 28 An organic EL display was produced in the same manner as in Example 23, except that the color filter produced in Example 16 was used.
  • Example 29 An organic EL display was produced in the same manner as in Example 23, except that the color filter produced in Example 20 was used.
  • Comparative Example 5 An organic EL display was produced in the same manner as in Example 23 except that the color filter produced in Comparative Example 1 was used.
  • Comparative Example 6 An organic EL display was produced in the same manner as in Example 23 except that the white light emitting organic EL element produced in Comparative Example 1 was used.
  • the organic EL displays of Examples 23, 24, and 27 were capable of producing a clear and high-contrast display with little displacement of the color filter and no deterioration of the organic EL element.
  • Example 24 by adjusting the transmission chromaticity of the resin film used for the film B, it was possible to reduce the coloring of the display support substrate and to create a display with good visibility.
  • Example 25 Although the effect of reducing external light reflection was slightly inferior, it was possible to create a display with good visibility and display performance.
  • Example 26 Although the transparency of the support substrate for the color filter was slightly low, the display was good as a whole although the clarity was inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本発明は、ポリイミド樹脂を含む膜Aの少なくとも片面にポリシロキサン樹脂を含む膜Bを有するディスプレイ用支持基板であって、膜Bに無機酸化物粒子を含むことを特徴とするディスプレイ用支持基板であり、煩雑な操作を行うことなく、カラーフィルターや有機EL素子等に適用でき、高精細なディスプレイが作製可能で、CTEが小さく、複屈折が小さく、かつ可撓性を備えたディスプレイ用支持基板を提供する。

Description

ディスプレイ用支持基板、それを用いたカラーフィルターおよびその製造方法、有機EL素子およびその製造方法、ならびにフレキシブル有機ELディスプレイ
 本発明は、ディスプレイ用支持基板、それを用いたカラーフィルターおよびその製造方法、有機EL素子およびその製造方法、ならびにフレキシブル有機ELディスプレイに関する。
 有機フィルムはガラスに比べて屈曲性に富み、割れにくく、軽量といった特長を有する。最近では、フラットパネルディスプレイの基板を、有機フィルムにより形成することで、ディスプレイをフレキシブル化する検討が活発化している。
 一般に、有機フィルムに用いられる樹脂としては、ポリエステル、ポリアミド、ポリイミド、ポリカーボネート、ポリエーテルスルホン、アクリル、エポキシなどが挙げられる。特にポリイミドは、他の樹脂に比べて高い耐熱性に加え、高機械強度、耐磨耗性、寸法安定性、耐薬品性などの優れた機械特性、および、絶縁性などの優れた電気特性を併せ持つことから、ポリイミドフィルムを使用したフレキシブル基板の開発が進められている。
 フレキシブル基板の例としては、フレキシブルTFT(Thin Film Transistor、薄膜トランジスタ)基板、フレキシブル有機EL素子基板、フレキシブルカラーフィルター基板等のディスプレイ用基板が挙げられる。カラーフィルターは、白色光を光源とした有機エレクトロルミネッセンス表示装置や液晶表示装置をカラー表示にするために必要な部材である。赤色の着色画素、緑色の着色画素および青色の着色画素の、3色の着色画素が微細にパターンニングされている3色カラーフィルターが一般的である。3色カラーフィルターにおいて白色は、赤緑青の3色の着色画素の加法混色により得られる。
 上記に例示されるフラットパネルディスプレイ基板ならびにカラーフィルター基板に対しては、可視光領域で光線透過率が高いことが求められる。また、TFTやカラーフィルターなどの表示素子・受光素子形成時の加熱による位置あわせ精度の悪化を防ぐために、線熱膨張係数(CTE)が低く、基板に反りが生じないことが求められる。また、斜め方向から見た場合の色ずれを防いだり、円偏光フィルムを用いた時の外光反射を抑制したりするために低複屈折であることが求められる。
 可視光領域で高い光線透過率を示す透明ポリイミドとしては、含フッ素および/または脂環式酸二無水物と含フッ素および/または脂環式ジアミンからなるポリイミドが開示されている(例えば、特許文献1~4参照)。
 また、CTEの差が大きくても反りが少ない有機ELデバイスを作製する方法として、低CTE層に積層させた高CTE層とは反対側に形状保持層を積層させ、低CTE層の両側で発生する応力を相殺し、基板の反りを抑制させる方法が開示されている(例えば、特許文献5参照)。また、低CTE、低複屈折を両立するフレキシブル基板として、特定の酸二無水物とジアミンを用いて特定の方法で作成したポリイミドが開示されている。(例えば、特許文献6参照)
特開2005-338394号公報 特開2012-146905号公報 特開2008-045054号公報 特開2010-100674号公報 特開2013-157228号公報 特開2011-111596号公報
 特許文献1~4に記載されているようなポリイミド樹脂を用いて透明基板を形成した場合にはCTEが50ppm/℃以上の大きな値を示す。このようなポリイミド樹脂を用いてTFTやカラーフィルターを作製すると基板に反りが生じ、位置合わせ精度が悪く、高精細なディスプレイを作製することが難しいといった問題がある。
 また、そのようなポリイミド樹脂を用いて有機EL素子を作成する際は、ポリイミド上にガスバリア膜としてケイ素の酸化物または窒化物を形成することが一般的である。一般的にケイ素酸化物、窒化物のCTEは3.5ppm/℃程度と低い。そのため、そのような場合には、上述の問題に加え、ポリイミド樹脂とガスバリア膜とのCTE差から後の加熱工程においてガスバリア膜にクラックやシワが発生し、有機EL素子に劣化が発生し易くなるという問題がある。
 さらに、特許文献5に記載されているような手法においては基板の反りを抑制させるため、低CTE層に接着層を介して形状保持層を貼り付ける作業が必要となり、製造工程が煩雑になるという問題がある。
 また、特許文献6においては、特定の酸無水物、ジアミンを用いて特定の手法を用いて低CTEと低複屈折を両立させたポリイミドフィルムを得る方法が開示されているが、モノマーが制限されているため、ポリマー設計の自由度がやや低いといった問題がある。また、化学的イミド化のため低分子化合物(イミド化剤、脱水触媒)を使用しているが、これらの化合物がモジュール製造時の加熱プロセスにおいて脱ガスの原因となり、欠陥を発生させる懸念もある。
 本発明は上記問題に鑑み、煩雑な操作を行うことなく、カラーフィルターや有機EL素子等に適用でき、高精細なディスプレイが作製可能で、CTEが小さく、複屈折が小さく、かつ可撓性を備えたディスプレイ用支持基板を提供することを目的とする。
 すなわち本発明は、ポリイミド樹脂を含む膜Aの少なくとも片面にポリシロキサン樹脂を含む膜Bを有するディスプレイ用支持基板であって、前記膜Bに無機酸化物粒子を含むことを特徴とするディスプレイ用支持基板である。
 本発明によれば、煩雑な操作を行うことなく、カラーフィルターや有機EL素子等に適用でき、高精細なディスプレイが作製可能で、CTEが小さく、複屈折が小さく、かつ可撓性を備えたディスプレイ用支持基板を提供することができる。
カラーフィルターの耐屈曲性評価を行う際の模式斜視図 カラーフィルターの耐屈曲性評価を行う際の模式斜視図 カラーフィルターの一例を示す断面図 有機EL素子からなるアレイの一例を示す断面図 フレキシブル有機ELディスプレイの一例を示す断面図
 以下、本発明を実施するための形態について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 本発明は、ポリイミド樹脂を含む膜Aの少なくとも片面にポリシロキサン樹脂を含む膜Bを有するディスプレイ用支持基板であって、前記膜Bに無機酸化物粒子を含むことを特徴とするディスプレイ用支持基板である。
 以下、本発明のディスプレイ用支持基板に用いられる、ポリイミド樹脂を含む膜Aの少なくとも片面にポリシロキサン樹脂を含む膜Bを有する構造体を「樹脂積層体」という。
 ここでいうディスプレイ用支持基板とは、ディスプレイそのものを支持する基板だけではなく、ディスプレイを構成する部材に用いられるあらゆる支持基板を含むものとする。例えば、ブラックマトリックス、着色画素を有するカラーフィルター用支持基板、TFT、電極、有機層等を有する有機EL素子用支持基板、電極、インク層等を有する電子ペーパー用支持基板、電極、蛍光体等を有するプラズマディスプレイ用支持基板、有機EL素子上に直接カラーフィルターが形成されているオンチップ型の支持基板、樹脂積層体上にガスバリア膜を有する封止樹脂用支持基板、樹脂積層体の少なくとも片面に透明導電層を有するタッチスクリーン用支持基板、樹脂積層体の少なくとも片面に透明導電層を有するタッチデバイス用支持基板、樹脂積層体上に何らかの回路が形成された回路用支持基板、樹脂積層体の少なくとも片面に液晶層を有する液晶ディスプレイ用支持基板、樹脂積層体の少なくとも片面にLED素子を有するLEDディスプレイ用支持基板、画面の反対側が透けて見えるシースルーディスプレイ用支持基板等を挙げることができる。
 本発明におけるディスプレイ用支持基板においては、ポリイミド樹脂を含む膜(膜A)の少なくとも一方にポリシロキサン樹脂を含む膜(膜B)を有しており、かつ、ポリシロキサン樹脂を含む膜は無機酸化物粒子を含むため、ポリイミドのCTEが大きいとしても積層体としてCTEを低下させることが可能である。前記ディスプレイ用支持基板の線膨張係数は40ppm/℃以下であることが好ましく、この場合、後に述べるようにディスプレイ用支持基板の支持基板と接する側とは反対側にカラーフィルターを形成したり、有機EL素子を形成するためにガスバリア層を形成したりする際に、加工精度の悪化やガスバリア層へのクラック発生がなく、高精細なカラーフィルターや素子の劣化が抑制された有機EL素子等を作製することが可能である。
 また、膜Aの複屈折をΔN、膜Bの複屈折をΔNとした時に(ΔN-ΔN)≦0.065であることが好ましい。この場合、例えば円偏光フィルムを用いて外光反射を防止しようとした際に優位に反射を抑制することができ、ディスプレイの視認性を向上させることが可能である。
 本発明における樹脂積層体の厚さは特に限定はないが、膜Aと膜Bの膜厚比率が膜A/膜B=25/1~1.5/1であることが好ましい。中でも、膜A/膜B=10/1~5/3であることがさらに好ましい。各層の膜厚比率が前記範囲内にあることでディスプレイ用支持基板の可撓性を維持しつつ、CTEをより低減することが可能である。
 各層の膜厚に関しては、透明性、低CTE性の観点から、膜Aの膜厚が5.0μm以上20μm以下であることが好ましく、膜Bの膜厚が0.2μm以上3.0μm以下であることが好ましい。透明性の観点から、積層体全体の膜厚は5.0μm以上20μm以下であることが好ましい。
 膜Aの膜厚は5.0μm以上15μm以下であることがより好ましく、5μm以上10μm以下であることがさらに好ましい。上記範囲内にあることにより、ディスプレイ用支持基板の透過色調がより良好となる。膜Bの膜厚は、下限としては0.4μm以上であることがさらに好ましく、上限としては2.0μm以下であることがさらに好ましい。上記膜厚範囲内であることにより、CTEがより低く、基板の反りがないとともに透明性、耐クラック性に特に優れた樹脂膜積層体を作製することができる。
 膜厚については、断面を走査電子顕微鏡(SEM)で観察することによって測定することが可能である。本発明では積層体の断面方向に1mmの間隔で5点、測定点を定め各層の厚さを測定し、平均値を各層の膜厚とする。
 また、本発明における樹脂積層体の透明性については特に制限はないが、カラーフィルターやシースルーディスプレイのように基板に透明性が求められる場合は、樹脂積層体が透明であることが好ましい。ここで言う透明とは、前記樹脂積層体において、波長400nmにおける可視光線透過率が65%以上であることを示す。可視光領域で透明性があることで、高透明性が求められるフレキシブルディスプレイ基板等に有効に利用することが可能となる。波長400nmにおける可視光線透過率は75%以上であることがさらに好ましい。なお、可視光線透過率はガラス基板に本発明の樹脂膜積層体を形成させ、紫外可視分光光度計を用いて測定することができる。
 <ポリイミド樹脂>
 本発明において膜Aに含まれるポリイミド樹脂は、特に制限はなく、一般的に、下記一般式(11)で表されるポリイミド樹脂を用いることができる。これは例えば下記一般式(12)で表されるポリイミド前駆体樹脂をイミド閉環(イミド化反応)させることで得られる。イミド化反応の方法としては特に限定されず、熱イミド化や化学イミド化が挙げられる。中でも、ポリイミド樹脂膜の耐熱性、可視光領域での透明性の観点から、熱イミド化が好ましい。
Figure JPOXMLDOC01-appb-C000005
 一般式(11)および(12)中、Rは4価の有機基、Rは2価の有機基を示す。X、Xは各々独立に水素原子、炭素数1~10の1価の有機基または炭素数1~10の1価のアルキルシリル基を示す。
 ポリアミド酸やポリアミド酸エステル、ポリアミド酸シリルエステルなどのポリイミド前駆体樹脂は、ジアミン化合物と酸二無水物又はその誘導体との反応により合成することができる。誘導体としては、該酸二無水物のテトラカルボン酸、そのテトラカルボン酸のモノ、ジ、トリ、又はテトラエステル、酸塩化物などが挙げられ、具体的にはメチル基、エチル基、n-プロピル基、イソプロピル基、n―ブチル基、sec-ブチル基、tert-ブチル基などでエステル化された構造が挙げられる。重合反応の反応方法は、目的のポリイミド前駆体樹脂が製造できれば特に制限はなく、公知の反応方法を用いることができる。
 具体的な反応方法としては、所定量の全てのジアミン成分および溶剤を反応器に仕込み溶解させた後、所定量の酸二無水物成分を仕込み、室温~80℃で0.5~30時間撹拌する方法などが挙げられる。
 ポリイミド前駆体樹脂の合成に用いられる酸二無水物とジアミンは既知のものを使用することができる。
 酸二無水物としては特に限定されず、芳香族酸二無水物、脂環式酸二無水物、又は脂肪族酸二無水物が挙げられる。
 芳香族酸二無水物としては、4、4’-オキシジフタル酸無水物、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2-ビス(4-(3,4-ジカルボキシフェノキシ)フェニル)プロパン二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ターフェニルテトラカルボン酸二無水物、3,3’,4,4’-オキシフタル酸二無水物、2,3,3’,4’-オキシフタル酸二無水物、2,3,2’,3’-オキシフタル酸二無水物、ジフェニルスルホン-3,3’,4,4’-テトラカルボン酸二無水物、ベンゾフェノン-3,3’,4,4’-テトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、1,4-(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、ビス(1,3-ジオキソ-1,3-ジヒドロイソベンズフラン-5-カルボン酸)1,4-フェニレン-2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパンニ無水物、2,2-ビス(4-(3,4-ジカルボキシベンゾイルオキシ)フェニル)ヘキサフルオロプロパン二無水物、1,6-ジフルオロプロメリット酸二無水物、1-トリフルオロメチルピロメリット酸二無水物、1,6-ジトリフルオロメチルピロメリット酸二無水物、2,2’-ビス(トリフルオロメチル)-4,4’-ビス(3,4-ジカルボキシフェノキシ)ビフェニル二無水物、2,2’-ビス[(ジカルボキシフェノキシ)フェニル]プロパン二無水物、2,2’-ビス[(ジカルボキシフェノキシ)フェニル]ヘキサフルオロプロパンニ無水物、9,9′-ビス(3,4-ジカルボキシフェニル)フルオレン酸二無水物あるいはこれらの芳香族環にアルキル基、アルコキシ基、ハロゲン原子などで置換した酸二無水物化合物が挙げられるが、これらに限定されるものではない。
 脂環式酸二無水物としては、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロヘプタンテトラカルボン酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、3,4-ジカルボキシ-1-シクロヘキシルコハク酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物、ビシクロ[4,3,0]ノナン-2,4,7,9-テトラカルボン酸二無水物、ビシクロ[4,4,0]デカン-2,4,7,9-テトラカルボン酸二無水物、ビシクロ[4,4,0]デカン-2,4,8,10-テトラカルボン酸二無水物、トリシクロ[6,3,0,0<2,6>]ウンデカン-3,5,9,11-テトラカルボン酸二無水物、ビシクロ[2,2,2]オクタン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2,2,1]ヘプタンテトラカルボン酸二無水物、ビシクロ[2,2,1]ヘプタン-5-カルボキシメチル-2,3,6-トリカルボン酸二無水物、7-オキサビシクロ[2,2,1]ヘプタン-2,4,6,8-テトラカルボン酸二無水物、オクタヒドロナフタレン-1,2,6,7-テトラカルボン酸二無水物、テトラデカヒドロアントラセン-1,2,8,9-テトラカルボン酸二無水物、3,3’,4,4’-ジシクロへキサンテトラカルボン酸二無水物、3,3’,4,4’-オキシジシクロヘキサンテトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボンサン無水物、及び“リカシッド”(登録商標)BT-100(以上、商品名、新日本理化(株)製)及びそれらの誘導体、あるいはこれらの脂環にアルキル基、アルコキシ基、ハロゲン原子などで置換した酸二無水物化合物が挙げられるが、これらに限定されるものではない。
 脂肪族酸二無水物としては、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-ペンタンテトラカルボン酸二無水物及びそれらの誘導体などが挙げられるが、これらに限定されるものではない。
 これらの芳香族酸二無水物、脂環式酸二無水物、又は脂肪族酸二無水物は、単独で又は2種以上を組み合わせて使用することができる。
 これらのうち、市販され手に入れやすい観点、反応性の観点の観点から、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-オキシフタル酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパンニ無水物、2,2’-ビス[(ジカルボキシフェノキシ)フェニル]プロパン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’-ジシクロへキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、4、4’-オキシジフタル酸無水物、2,2-ビス(4-(3,4-ジカルボキシフェノキシ)フェニル)プロパン二無水物を用いることが好ましい。
 ジアミンとしては特に限定されず、芳香族ジアミン化合物、脂環式ジアミン化合物、又は脂肪族ジアミン化合物が挙げられる。
 芳香族ジアミン化合物としては、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルヒド、4,4’-ジアミノジフェニルスルヒド、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、3,3’-ビス(トリフルオロメチル)ベンジジン、2,2’-ジメチルベンジジン、3,3’-ジメチルベンジジン、2,2’3,3’-テトラメチルベンジジン、2,2’-ジクロロベンジジン、3,3’-ジクロロベンジジン、2,2’3,3’-テトラクロロベンジジン、m-フェニレンジアミン、p-フェニレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ビス(4-アミノフェノキシフェニル)スルホン、ビス(3-アミノフェノキシフェニル)スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス(4-アミノフェノキシ)ビフェニル、ビス{4-(4-アミノフェノキシ)フェニル}エーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、9,9-ビス(4-アミノフェニル)フルオレン、2,2’-ビス[3-(3-アミノベンズアミド)-4-ヒドロキシフェニル]ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、4-アミノフェニルー4-アミノベンゼンスルホナート、3-アミノフェニル-4-アミノベンゼンスルホナート、1,4-フェニレン-ビス(4-アミノベンゼンスルホナート)あるいはこれらの芳香族環にアルキル基、アルコキシ基、ハロゲン原子などで置換したジアミン化合物が挙げられるが、これらに限定されるものではない。
 脂環式ジアミン化合物としては、シクロブタンジアミン、イソホロンジアミン、ビシクロ[2,2,1]ヘプタンビスメチルアミン、トリシクロ[3,3,1,13,7]デカン-1,3-ジアミン、1,2-シクロヘキシルジアミン、1,3-シクロヘキシルジアミン、1,4-シクロヘキシルジアミン、trans-1,4-ジアミノシクロへキサン、4,4’-ジアミノジシクロヘキシルメタン、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、3,3’-ジエチル-4,4’-ジアミノジシクロヘキシルメタン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジシクロヘキシルメタン、3,3’,5,5’-テトラエチル-4,4’-ジアミノジシクロヘキシルメタン、3,5-ジエチル-3’,5’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノジシクロヘキシルエーテル、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルエーテル、3,3’-ジエチル-4,4’-ジアミノジシクロヘキシルエーテル、3,3’,5,5’-テトラメチル-4,4’-ジアミノジシクロヘキシルエーテル、3,3’,5,5’-テトラエチル-4,4’-ジアミノジシクロヘキシルエーテル、3,5-ジエチル-3’,5’-ジメチル-4,4’-ジアミノジシクロヘキシルエーテル、2,2-ビス(4-アミノシクロヘキシル)プロパン、2,2-ビス(3-メチル-4-アミノシクロヘキシル)プロパン、2,2-ビス(3-エチル-4-アミノシクロヘキシル)プロパン、2,2-ビス(3,5-ジメチル-4-アミノシクロヘキシル)プロパン、2,2-ビス(3,5-ジエチル-4-アミノシクロヘキシル)プロパン、2,2-(3,5-ジエチル-3’,5’-ジメチル-4,4’-ジアミノジシクロヘキシル)プロパン、あるいはこれらの脂環にアルキル基、アルコキシ基、ハロゲン原子などで置換したジアミン化合物が挙げられるが、これらに限定されるものではない。
 脂肪族ジアミン化合物としては、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカンなどのアルキレンジアミン類、ビス(アミノメチル)エーテル、ビス(2-アミノエチル)エーテル、ビス(3-アミノプロピル)エーテルなどのエチレングリコールジアミン類、及び1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、1,3-ビス(4-アミノブチル)テトラメチルジシロキサン、α,ω-ビス(3-アミノプロピル)ポリジメチルシロキサンなどのシロキサンジアミン類が挙げられるが、これらに限定されるものではない。
 これらの芳香族ジアミン、脂環式ジアミン、又は脂肪族ジアミンは、単独で又は2種以上を組み合わせて使用することができる。
 カラーフィルターやタッチスクリーン等に用いるディスプレイ用支持基板のポリイミド樹脂には、耐熱性、低吸水性および可視光領域での高透明性が求められるので透明性を付与するために酸二無水物やジアミン成分に嵩高いフッ素置換基としてトリフルオロメチル基や、脂環式モノマー成分を有していることが好ましい。すなわち、ポリイミド樹脂が、トリフルオロメチル基および脂環式炭化水素基から選ばれる少なくとも1種の基を有することが好ましい。また、低吸水性を付与するために酸二無水物やジアミン成分にトリフルオロメチル基を有していることが好ましい。トリフルオロメチル基含有モノマー、脂環式モノマー成分は酸二無水物とジアミン成分の両方に用いても、片方に用いてもよいが、モノマーの入手し易さの観点からジアミン成分に用いることが好ましい。また、十分な透明性や低吸水性を発現するため、ポリイミド樹脂に含まれるジアミン残基の全量に対して、トリフルオロメチル基また脂環式炭化水素基から選ばれる少なくとも1種の基を有するジアミン残基が50モル%以上含まれることが好ましい。
 この場合の酸二無水物として4、4’-オキシジフタル酸無水物(ODPA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)、2,2-ビス(4-(3,4-ジカルボキシフェノキシ)フェニル)プロパン二無水物(BSAA)、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(PMDA-H)を含むことが好ましい。ジアミンとしては2,2-ビス[3-(3-アミノベンズアミド)-4-ヒドロキシフェニル]ヘキサフルオロプロパン(HFHA)、trans-1,4-ジアミノシクロへキサン(t-DACH)、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)を含むことが好ましい。
 一方、有機EL素子に用いるディスプレイ用支持基板のポリイミド樹脂には、耐熱性、低吸水性が求められる。この場合の酸二無水物として、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、4、4’-オキシジフタル酸無水物(ODPA)、1,2,4,5‐シクロヘキサンテトラカルボン酸二無水物(PMDA-H)、2,2-ビス(4-(3,4-ジカルボキシフェノキシ)フェニル)プロパン二無水物(BSAA)、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)を含むことが好ましく、ジアミンとしては、4,4’-ジアミノジフェニルエーテル、p-フェニレンジアミン、3,3’-ジメチルベンジジン、2,2-ビス[3-(3-アミノベンズアミド)-4-ヒドロキシフェニル]ヘキサフルオロプロパン(HFHA)、trans-1,4-ジアミノシクロへキサン、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)を含むことが好ましい。また、ディスプレイ用支持基板側から光を取り出す場合は透明であること求められるので、ディスプレイ用支持基板側から光を取り出す場合は酸二無水物やジアミン成分にトリフルオロメチル基や脂環式モノマー成分を導入することが有効である。この場合の酸二無水物として4、4’-オキシジフタル酸無水物(ODPA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、2,2-ビス(4-(3,4-ジカルボキシフェノキシ)フェニル)プロパン二無水物(BSAA)、4、4’-オキシジフタル酸無水物(ODPA)、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)を含むことが好ましい。ジアミンとしては2,2-ビス[3-(3-アミノベンズアミド)-4-ヒドロキシフェニル]ヘキサフルオロプロパン(HFHA)、trans-1,4-ジアミノシクロへキサン、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)を含むことが好ましい。
 特に好ましいポリイミド樹脂として、一般式(1)~(3)で表される繰り返し構造単位の少なくとも1つを主成分とするポリイミドが挙げられる。
Figure JPOXMLDOC01-appb-C000006
 一般式(1)~(3)中、Rは(4)~(9)で表される少なくとも一種類以上の基である。
Figure JPOXMLDOC01-appb-C000007
 ここで、主成分とは、一般式(1)~(3)で表される構造単位をポリマーの全構造単位の50モル%以上有することを意味する。ポリイミドのジアミン部位に一般式(1)~(3)で示される構造有することでポリイミド樹脂の低吸水性、透明性、耐熱性を向上させることが可能である。また、酸無水物部位に一般式(4)~(9)で表される芳香族、脂環式酸無水物を有することで耐熱性が高く、可撓性が良好なポリイミド樹脂を得ることが可能である。
 また、特に好ましいポリイミド樹脂として、一般式(10)で表される繰り返し構造単位を主成分とするポリイミドが挙げられる。
Figure JPOXMLDOC01-appb-C000008
 一般式(10)中、Rは(4)~(9)で表される少なくとも一種類以上の基である。
Figure JPOXMLDOC01-appb-C000009
 ここで、主成分とは、一般式(10)で表される構造単位をポリマーの全構造単位の50モル%以上有することを意味する。
 ポリイミドのジアミン部位に一般式(10)で示される構造を有することでポリイミド樹脂の透明性、耐熱性を向上させることが可能である。また、酸無水物部位に一般式(4)~(9)で表される芳香族、脂環式酸無水物を有することで耐熱性が高く、可撓性が良好なポリイミド樹脂を得ることが可能である。
 前記ポリイミド、及びポリイミド前駆体樹脂は、分子量を好ましい範囲に調整するために末端封止剤により両末端を封止してもよい。酸二無水物と反応する末端封止剤としては、モノアミンや一価のアルコールなどが挙げられる。また、ジアミン化合物と反応する末端封止剤としては、酸無水物、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物、二炭酸エステル類、ビニルエーテル類などが挙げられる。また、末端封止剤を反応させることにより、末端基として種々の有機基を導入することができる。
 酸無水物基末端の封止剤に用いられるモノアミンとしては、5-アミノ-8-ヒドロキシキノリン、4-アミノ-8-ヒドロキシキノリン、1-ヒドロキシ-8-アミノナフタレン、1-ヒドロキシ-7-アミノナフタレン、1-ヒドロキシ-6-アミノナフタレン、1-ヒドロキシ-5-アミノナフタレン、1-ヒドロキシ-4-アミノナフタレン、1-ヒドロキシ-3-アミノナフタレン、1-ヒドロキシ-2-アミノナフタレン、1-アミノ-7-ヒドロキシナフタレン、2-ヒドロキシ-7-アミノナフタレン、2-ヒドロキシ-6-アミノナフタレン、2-ヒドロキシ-5-アミノナフタレン、2-ヒドロキシ-4-アミノナフタレン、2-ヒドロキシ-3-アミノナフタレン、1-アミノ-2-ヒドロキシナフタレン、1-カルボキシ-8-アミノナフタレン、1-カルボキシ-7-アミノナフタレン、1-カルボキシ-6-アミノナフタレン、1-カルボキシ-5-アミノナフタレン、1-カルボキシ-4-アミノナフタレン、1-カルボキシ-3-アミノナフタレン、1-カルボキシ-2-アミノナフタレン、1-アミノ-7-カルボキシナフタレン、2-カルボキシ-7-アミノナフタレン、2-カルボキシ-6-アミノナフタレン、2-カルボキシ-5-アミノナフタレン、2-カルボキシ-4-アミノナフタレン、2-カルボキシ-3-アミノナフタレン、1-アミノ-2-カルボキシナフタレン、2-アミノニコチン酸、4-アミノニコチン酸、5-アミノニコチン酸、6-アミノニコチン酸、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、アメライド、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、2-アミノベンゼンスルホン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸、3-アミノ-4,6-ジヒドロキシピリミジン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、5-アミノ-8-メルカプトキノリン、4-アミノ-8-メルカプトキノリン、1-メルカプト-8-アミノナフタレン、1-メルカプト-7-アミノナフタレン、1-メルカプト-6-アミノナフタレン、1-メルカプト-5-アミノナフタレン、1-メルカプト-4-アミノナフタレン、1-メルカプト-3-アミノナフタレン、1-メルカプト-2-アミノナフタレン、1-アミノ-7-メルカプトナフタレン、2-メルカプト-7-アミノナフタレン、2-メルカプト-6-アミノナフタレン、2-メルカプト-5-アミノナフタレン、2-メルカプト-4-アミノナフタレン、2-メルカプト-3-アミノナフタレン、1-アミノ-2-メルカプトナフタレン、3-アミノ-4,6-ジメルカプトピリミジン、2-アミノチオフェノール、3-アミノチオフェノール、4-アミノチオフェノール、2-エチニルアニリン、3-エチニルアニリン、4-エチニルアニリン、2,4-ジエチニルアニリン、2,5-ジエチニルアニリン、2,6-ジエチニルアニリン、3,4-ジエチニルアニリン、3,5-ジエチニルアニリン、1-エチニル-2-アミノナフタレン、1-エチニル-3-アミノナフタレン、1-エチニル-4-アミノナフタレン、1-エチニル-5-アミノナフタレン、1-エチニル-6-アミノナフタレン、1-エチニル-7-アミノナフタレン、1-エチニル-8-アミノナフタレン、2-エチニル-1-アミノナフタレン、2-エチニル-3-アミノナフタレン、2-エチニル-4-アミノナフタレン、2-エチニル-5-アミノナフタレン、2-エチニル-6-アミノナフタレン、2-エチニル-7-アミノナフタレン、2-エチニル-8-アミノナフタレン、3,5-ジエチニル-1-アミノナフタレン、3,5-ジエチニル-2-アミノナフタレン、3,6-ジエチニル-1-アミノナフタレン、3,6-ジエチニル-2-アミノナフタレン、3,7-ジエチニル-1-アミノナフタレン、3,7-ジエチニル-2-アミノナフタレン、4,8-ジエチニル-1-アミノナフタレン、4,8-ジエチニル-2-アミノナフタレン等が挙げられるが、これらに限定されるものではない。
 酸無水物基末端の封止剤として用いられる一価のアルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、3-オクタノール、1-ノナノール、2-ノナノール、1-デカノール、2-デカノール、1-ウンデカノール、2-ウンデカノール、1-ドデカノール、2-ドデカノール、1-トリデカノール、2-トリデカノール、1-テトラデカノール、2-テトラデカノール、1-ペンタデカノール、2-ペンタデカノール、1-ヘキサデカノール、2-ヘキサデカノール、1-へプタデカノール、2-ヘプタデカノール、1-オクタデカノール、2-オクタデカノール、1-ノナデカノール、2-ノナデカノール、1-イコサノール、2-メチル-1-プロパノール、2-メチル-2-プロパノール、2-メチル-1-ブタノール、3-メチル-1-ブタノール、2-メチル-2-ブタノール、3-メチル-2-ブタノール、2-プロピル-1-ペンタノール、2-エチル-1-ヘキサノール、4-メチル-3-ヘプタノール、6-メチル-2-ヘプタノール、2,4,4-トリメチル-1-ヘキサノール、2,6-ジメチル-4-ヘプタノール、イソノニルアルコール、3,7-ジメチル-3-オクタノール、2,4-ジメチル-1-ヘプタノール、2-ヘプチルウンデカノール、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール1-メチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、シクロペンタノール、シクロヘキサノール、シクロペンタンモノメチロール、ジシクロペンタンモノメチロール、トリシクロデカンモノメチロール、ノルボネオール、テルピネオール等が挙げられるが、これらに限定されるものではない。
 アミノ基末端の封止剤として用いられる酸無水物、モノカルボン酸、モノ酸クロリド化合物およびモノ活性エステル化合物としては、無水フタル酸、無水マレイン酸、無水ナジック酸、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物等の酸無水物、2-カルボキシフェノール、3-カルボキシフェノール、4-カルボキシフェノール、2-カルボキシチオフェノール、3-カルボキシチオフェノール、4-カルボキシチオフェノール、1-ヒドロキシ-8-カルボキシナフタレン、1-ヒドロキシ-7-カルボキシナフタレン、1-ヒドロキシ-6-カルボキシナフタレン、1-ヒドロキシ-5-カルボキシナフタレン、1-ヒドロキシ-4-カルボキシナフタレン、1-ヒドロキシ-3-カルボキシナフタレン、1-ヒドロキシ-2-カルボキシナフタレン、1-メルカプト-8-カルボキシナフタレン、1-メルカプト-7-カルボキシナフタレン、1-メルカプト-6-カルボキシナフタレン、1-メルカプト-5-カルボキシナフタレン、1-メルカプト-4-カルボキシナフタレン、1-メルカプト-3-カルボキシナフタレン、1-メルカプト-2-カルボキシナフタレン、2-カルボキシベンゼンスルホン酸、3-カルボキシベンゼンスルホン酸、4-カルボキシベンゼンスルホン酸、2-エチニル安息香酸、3-エチニル安息香酸、4-エチニル安息香酸、2,4-ジエチニル安息香酸、2,5-ジエチニル安息香酸、2,6-ジエチニル安息香酸、3,4-ジエチニル安息香酸、3,5-ジエチニル安息香酸、2-エチニル-1-ナフトエ酸、3-エチニル-1-ナフトエ酸、4-エチニル-1-ナフトエ酸、5-エチニル-1-ナフトエ酸、6-エチニル-1-ナフトエ酸、7-エチニル-1-ナフトエ酸、8-エチニル-1-ナフトエ酸、2-エチニル-2-ナフトエ酸、3-エチニル-2-ナフトエ酸、4-エチニル-2-ナフトエ酸、5-エチニル-2-ナフトエ酸、6-エチニル-2-ナフトエ酸、7-エチニル-2-ナフトエ酸、8-エチニル-2-ナフトエ酸等のモノカルボン酸類およびこれらのカルボキシル基が酸クロリド化したモノ酸クロリド化合物、およびテレフタル酸、フタル酸、マレイン酸、シクロヘキサンジカルボン酸、3-ヒドロキシフタル酸、5-ノルボルネン-2,3-ジカルボン酸、1,2-ジカルボキシナフタレン、1,3-ジカルボキシナフタレン、1,4-ジカルボキシナフタレン、1,5-ジカルボキシナフタレン、1,6-ジカルボキシナフタレン、1,7-ジカルボキシナフタレン、1,8-ジカルボキシナフタレン、2,3-ジカルボキシナフタレン、2,6-ジカルボキシナフタレン、2,7-ジカルボキシナフタレン等のジカルボン酸類のモノカルボキシル基だけが酸クロリド化したモノ酸クロリド化合物、モノ酸クロリド化合物とN-ヒドロキシベンゾトリアゾールやN-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドとの反応により得られる活性エステル化合物が挙げられる。
 アミノ基末端の封止剤として用いられる二炭酸エステル化合物としては、二炭酸ジ-tert-ブチル、二炭酸ジベンジル、二炭酸ジメチル、二炭酸ジエチルが挙げられる。
 アミノ基末端の封止剤として用いられるビニルエーテル化合物としては、クロロギ酸-tert-ブチル、クロロギ酸-n-ブチル、クロロギ酸イソブチル、クロロギ酸ベンジル、クロロギ酸アリル、クロロギ酸エチル、クロロギ酸イソプロピルなどのクロロギ酸エステル類、イソシアン酸ブチル、イソシアン酸1-ナフチル、イソシアン酸オクタデシル、イソシアン酸フェニルなどのイソシアナート化合物類、ブチルビニルエーテル、シクロヘキシルビニルエーテル、エチルビニルエーテル、2-エチルヘキシルビニルエーテル、イソブチルビニルエーテル、イソプロピルビニルエーテル、n-プロピルビニルエーテル、tert-ブチルビニルエーテル、ベンジルビニルエーテルなどが挙げられる。
 アミノ基末端の封止剤として用いられるその他の化合物としては、クロロギ酸ベンジル、ベンゾイルクロリド、クロロギ酸フルオレニルメチル、クロロギ酸2,2,2-トリクロロエチル、クロロギ酸アリル、メタンスルホン酸クロリド、p-トルエンスルホン酸クロリド、フェニルイソシアネ-トなどが挙げられる。
 酸無水物基末端の封止剤の導入割合は、酸二無水物成分に対して、0.1~60モル%の範囲が好ましく、特に好ましくは0.5~50モル%である。また、アミノ基末端の封止剤の導入割合は、ジアミン成分に対して、0.1~100モル%の範囲が好ましく、特に好ましくは0.5~70モル%である。複数の末端封止剤を反応させることにより、複数の異なる末端基を導入してもよい。
 ポリイミド前駆体樹脂やポリイミド樹脂に導入された末端封止剤は、以下の方法で容易に検出できる。例えば、末端封止剤が導入されたポリマーを酸性溶液に溶解し、ポリマーの構成単位であるアミン成分と酸無水成分に分解し、これをガスクロマトグラフィー(GC)や、NMR測定することにより、末端封止剤を容易に検出できる。その他に、末端封止剤が導入されたポリマーを直接、熱分解ガスクロマトグラフ(PGC)や赤外スペクトル、H NMRスペクトル測定および13C NMRスペクトル測定でも、容易に検出可能である。
 <熱架橋剤>
 膜Aは、熱架橋剤を含有していてもよい。熱架橋剤としては、エポキシ化合物やアルコキシメチル基またはメチロール基を少なくとも2つ有する化合物が好ましい。これらの基を少なくとも2つ有することで、樹脂および同種分子と縮合反応して架橋構造体が形成され、加熱処理後の硬化膜の機械強度や耐薬品性を向上させることができる。
 エポキシ化合物の好ましい例としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリメチル(グリシジロキシプロピル)、シロキサン等のエポキシ基含有シリコーンなどを挙げることができるが、本発明は何らこれらに限定されない。具体的には、エピクロン850-S,エピクロンHP-4032、エピクロンHP-7200、エピクロンHP-820、エピクロンHP-4700、エピクロンEXA-4710、エピクロンHP-4770、エピクロンEXA-859CRP、エピクロンEXA-1514,エピクロンEXA-4880,エピクロンEXA-4850-150、エピクロンEXA-4850-1000、エピクロンEXA-4816、エピクロンEXA-4822(以上商品名、大日本インキ化学工業(株)製)、リカレジンBEO-60E、リカレジンBPO-20E、リカレジンHBE-100、リカレジンDME-100(以上商品名、新日本理化(株)製)、EP-4003S、EP-4000S(以上商品名、(株)アデカ製)、PG-100、CG-500、EG-200(以上商品名、大阪ガスケミカル(株)製)、NC-3000、NC-6000(以上商品名、日本化薬(株)製)、EPOX-MK R508、EPOX-MK R540、EPOX-MK R710、EPOX-MK R1710、VG3101L、VG3101M80(以上商品名、(株)プリンテック製)、セロキサイド2021P、セロキサイド2081、セロキサイド2083、セロキサイド2085(以上商品名、ダイセル化学工業(株)製)などが挙げられる。
 アルコキシメチル基またはメチロール基を少なくとも2つ有する化合物としては、例えば、DML-PC、DML-PEP、DML-OC、DML-OEP、DML-34X、DML-PTBP、DML-PCHP、DML-OCHP、DML-PFP、DML-PSBP、DML-POP、DML-MBOC、DML-MBPC、DML-MTrisPC、DML-BisOC-Z、DML-BisOCHP-Z、DML-BPC、DML-BisOC-P、DMOM-PC、DMOM-PTBP、DMOM-MBPC、TriML-P、TriML-35XL、TML-HQ、TML-BP、TML-pp-BPF、TML-BPE、TML-BPA、TML-BPAF、TML-BPAP、TMOM-BP、TMOM-BPE、TMOM-BPA、TMOM-BPAF、TMOM-BPAP、HML-TPPHBA、HML-TPHAP、HMOM-TPPHBA、HMOM-TPHAP(以上、商品名、本州化学工業(株)製)、NIKALAC(登録商標) MX-290、NIKALAC MX-280、NIKALAC MX-270、NIKALAC MX-279、NIKALAC MW-100LM、NIKALAC MX-750LM(以上、商品名、(株)三和ケミカル製)が挙げられる。これらを2種以上含有してもよい。
 熱架橋剤は、樹脂100重量部に対し、0.01~50重量部含有することが好ましい。
 <カップリング剤>
 膜Aは基材との接着性向上のため、シランカップリング剤、チタンカップリング剤等のカップリング剤を添加することができる。カップリング剤は、樹脂100重量部に対し、0.1~10重量部含有することが好ましい。
 <無機フィラー>
 膜Aは、無機フィラーを含有していてもよい。無機フィラーとしては、シリカ微粒子、アルミナ微粒子、チタニア微粒子、ジルコニア微粒子などが挙げられる。無機フィラーの形状は特に限定されず、球状、楕円形状、偏平状、ロッド状、繊維状などが挙げられる。含有させた無機フィラーは光の散乱を防ぐため粒径が小さいことが好ましい。平均粒径は0.5~100nmであり、0.5~30nmの範囲が好ましく、無機フィラーは、樹脂100重量部に対し、1~100重量部含有することが好ましい。前記粒径範囲の無機フィラーを樹脂100重量部に対し、1~100重量部添加することによって、可撓性を損なわず、ポリイミド樹脂のCTEや複屈折を低下させることが可能である。
 <ポリシロキサン樹脂>
 本発明において膜Bに含まれるポリシロキサン樹脂としては特に制限はない。膜Bの形成に用いるポリシロキサン樹脂組成物が非感光性またはポジ型感光性である場合は塗液の保存安定性の観点からフェニル基又はナフチル基を有するものが好ましく、耐薬品性の観点から、エポキシ基又はアミノ基を有するものが好ましい。また、膜Bの形成に用いるポリシロキサン樹脂組成物がネガ型感光性である場合は塗液の保存安定性の観点から、フェニル基又はナフチル基を有するものが好ましく、硬化性の観点から、(メタ)アクリル基又はビニル基を有するものが好ましく、パターン加工性の観点から、カルボキシル基又はフェノール性水酸基を有するものが好ましい。
 ポリシロキサン樹脂の合成方法としては、オルガノシラン化合物を加水分解縮合する方法が一般的である。ポリシロキサンの合成に用いるオルガノシラン化合物としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ヘキシルトリメトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、1-ナフチルトリメトキシシラン、2-ナフチルトリメトキシシラン、1-ナフチルトリエトキシシラン、2-ナフチルトリエトキシシラン、4-ヒドロキシフェニルトリメトキシシラン、4-ヒドロキシフェニルトリエトキシシラン、4-ヒドロキシベンジルトリメトキシシラン、4-ヒドロキシベンジルトリエトキシシラン、2-(4-ヒドロキシフェニル)エチルトリメトキシシラン、2-(4-ヒドロキシフェニル)エチルトリエトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、3-(N,N-ジグリシジル)アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、β-シアノエチルトリエトキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、α-グリシドキシエチルトリメトキシシラン、α-グリシドキシエチルトリエトキシシラン、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、α-グリシドキシプロピルトリメトキシシラン、α-グリシドキシプロピルトリエトキシシラン、β-グリシドキシプロピルトリメトキシシラン、β-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、α-グリシドキシブチルトリメトキシシラン、α-グリシドキシブチルトリエトキシシラン、β-グリシドキシブチルトリメトキシシラン、β-グリシドキシブチルトリエトキシシラン、γ-グリシドキシブチルトリメトキシシラン、γ-グリシドキシブチルトリエトキシシラン、δ-グリシドキシブチルトリメトキシシラン、δ-グリシドキシブチルトリエトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリブトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリフェノキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、4-(3,4-エポキシシクロヘキシル)ブチルトリメトキシシラン、4-(3,4-エポキシシクロヘキシル)ブチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、グリシドキシメチルジメトキシシラン、グリシドキシメチルメチルジエトキシシラン、α-グリシドキシエチルメチルジメトキシシラン、α-グリシドキシエチルメチルジエトキシシラン、β-グリシドキシエチルメチルジメトキシシラン、β-グリシドキシエチルメチルジエトキシシラン、α-グリシドキシプロピルメチルジメトキシシラン、α-グリシドキシプロピルメチルジエトキシシラン、β-グリシドキシプロピルメチルジメトキシシラン、β-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルエチルジエトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルメチルジエトキシシラン、シクロヘキシルメチルジメトキシシラン、オクタデシルメチルジメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、メチルシリケート、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、3-トリメトキシシリルプロピオン酸、3-トリエトキシシリルプロピオン酸、3-ジメチルメトキシシリルプロピオン酸、3-ジメチルエトキシシリルプロピオン酸、4-トリメトキシシリル酪酸、4-トリエトキシシリル絡酸、4-ジメチルメトキシシリル絡酸、4-ジメチルエトキシシリル絡酸、5-トリメトキシシリル吉草酸、5-トリエトキシシリル吉草酸、5-ジメチルメトキシシリル吉草酸、5-ジメチルエトキシシリル吉草酸、3-トリメトキシシリルプロピルコハク酸無水物、3-トリエトキシシリルプロピルコハク酸無水物、3-ジメチルメトキシシリルプロピルコハク酸無水物、3-ジメチルエトキシシリルプロピルコハク酸無水物、3-トリメトキシシリルプロピルシクロヘキシルジカルボン酸無水物、3-トリエトキシシリルプロピルシクロヘキシルジカルボン酸無水物、3-ジメチルメトキシシリルプロピルシクロヘキシルジカルボン酸無水物、3-ジメチルエトキシシリルプロピルシクロヘキシルジカルボン酸無水物、3-トリメトキシシリルプロピルフタル酸無水物、3-トリエトキシシリルプロピルフタル酸無水物、3-ジメチルメトキシシリルプロピルフタル酸無水物、3-ジメチルエトキシシリルプロピルフタル酸無水物、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニメチルジメトキシシラン、ビニルメチルジエトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、アリルメチルジメトキシシラン、アリルメチルジエトキシシラン、スチリルトリメトキシシラン、スチリルトリエトキシシラン、スチリルメチルジメトキシシラン、スチリルメチルジエトキシシラン、γ-アクリロイルプロピルトリメトキシシラン、γ-アクリロイルプロピルトリエトキシシラン、γ-メタクリロイルプロピルトリメトキシシラン、γ-メタクリロイルプロピルトリエトキシシラン、γ-メタクリロイルプロピルメチルジメトキシシラン、γ-メタクリロイルプロピルメチルジエトキシシラン、γ-アクリロイルプロピルメチルジメトキシシラン又はγ-アクリロイルプロピルメチルジエトキシシランが挙げられる。
 オルガノシラン化合物の加水分解反応条件は適宜設定すればよいが、例えば、溶媒中、オルガノシラン化合物に酸触媒及び水を1~180分かけて添加した後、室温~110℃で1~180分反応させることが好ましい。このような条件で加水分解反応を行うことにより、急激な反応を抑制することができる。反応温度は、30~105℃が好ましい。また、加水分解反応は、酸触媒の存在下で行うことが好ましい。酸触媒としては、蟻酸、酢酸又はリン酸を含む酸性水溶液が好ましい。これら酸触媒の含有量は、加水分解反応時に使用される全オルガノシラン化合物100重量部に対して、0.1~5重量部が好ましい。酸触媒の含有量を上記範囲とすることで、加水分解反応が必要かつ十分に進行するよう容易に制御できる。縮合反応の条件としては、オルガノシラン化合物の加水分解反応によりシラノール化合物を得た後、反応液をそのまま50℃~溶媒の沸点で1~100時間加熱することが好ましい。また、ポリシロキサンの重合度を上げるために、再加熱又は塩基触媒を添加しても構わない。また、必要に応じて加水分解反応後に、生成アルコール等を加熱及び/又は減圧によって適量を留出、除去し、その後に任意溶媒を添加しても構わない。
 膜Bに含まれるポリシロキサン樹脂の重量平均分子量(Mw)は、GPCで測定されるポリスチレン換算で、1000~100000であることが好ましい。Mwを上記範囲とすることで、塗布特性及びパターン形成する際の現像液への溶解性が良好となる。
 <無機酸化物粒子>
 ポリシロキサン樹脂を含む膜Bは無機酸化物粒子を含有する。無機酸化物粒子を含有することで、膜BのCTEを低下させることができ、膜Bを膜Aの少なくとも一方に形成することによって樹脂積層体のCTEを低下させることが可能である。
 無機酸化物粒子の数平均粒子径は1~200nmであることが好ましく、透過率の高い硬化膜を得るためには、1~70nmであることがより好ましい。ここで無機酸化物粒子の数平均粒子径は、以下のようにして算出することができる。膜B表面をSEM(走査型電子顕微鏡)を用いて倍率一万倍で観察し、粒子の画像をイメージアナライザー(たとえばケンブリッジインストルメント製QTM900)に結び付ける。観察箇所を変えてデータを取り込み、合計粒子数5000個以上となったところで次の数値処理を行ない、それによって求めた数平均径dを平均粒径(直径)とする。
 d=Σdi /N
 ここでdi は粒子の等価円直径(粒子の断面積と同じ面積を持つ円の直径)、Nは個数
である。
 無機酸化物の種類としては各種のものが例示され、特に制限されないが、好ましくは酸化珪素(シリカ)、中空シリカ、酸化アルミニウム(アルミナ)、酸化チタン、酸化アンチモン、酸化亜鉛、酸化錫、酸化ジルコニウムなどが用いられる。中でもポリシロキサン樹脂に分散させた際の透明性、CTE低減、価格、入手し易さの観点から二酸化ケイ素が好ましい。
 これらの無機酸化物は、1種又は2種以上が適宜選択して用いられる。添加する無機酸化物の形態は特に限定されないが、粉体、ゾル等の形態が好適である。
 無機酸化物粒子は適当なナノ粒子粉体を調達し、ビーズミル等の分散機を用いて粉砕又は分散することができる。市販品のナノ粒子粉体としては、例えば、REA200,RA200SH,RA200H(シリカ;日本アエロジル社製)、T-BTO-020RF(チタン酸バリウム;戸田工業株式会社製)、UEP-100(酸化ジルコニウム;第一稀元素化学工業株式会社製)又はSTR-100N(酸化チタン;堺化学工業株式会社製)が挙げられる。また、分散体として調達することもできる。シリカ粒子として、数平均粒子径12nmのIPA-ST、MIBK-ST、数平均粒子径45nmのIPA-ST-L、数平均粒子径100nmのIPA-ST-ZL、数平均粒子径15nmのPGM-ST(以上、商品名、日産化学工業(株)製)、数平均粒子径12nmの“オスカル(登録商標)”101、数平均粒子径60nmの“オスカル”105、数平均粒子径120nmの“オスカル”106、数平均粒子径5~80nmの“カタロイド(登録商標)”-S(以上、商品名、触媒化成工業(株)製)、数平均粒子径16nmの“クォートロン(登録商標)”PL-2L-PGME、数平均粒子径17nmの“クォートロン”PL-2L-BL、“クォートロン”PL-2L-DAA、数平均粒子径18~20nmの“クォートロン”PL-2L、GP-2L(以上、商品名、扶桑化学工業(株)製)、数平均粒子径100nmのシリカ(SIO)SG-SO100(商品名、共立マテリアル(株)製)、数平均粒子径5~50nmの“レオロシール(登録商標)”(商品名、(株)トクヤマ製)などが挙げられる。また、数平均粒子径60nmの中空シリカ粒子である“スルーリア”4110が挙げられる。酸化ケイ素-酸化チタン粒子としては、例えば、“オプトレイク”(登録商標)TR-502、“オプトレイク”TR-503、“オプトレイク”TR-504、“オプトレイク”TR-513、“オプトレイク”TR-520、“オプトレイク”TR-527、“オプトレイク”TR-528、“オプトレイク”TR-529、“オプトレイク”TR-544又は“オプトレイク”TR-550(いずれも日揮触媒化成工業(株)製)が挙げられる。酸化ジルコニウム としては、例えば、バイラールZr-C20(平均粒径=20nm;多木化学(株)製)、ZSL-10A(平均粒径=60-100nm;第一稀元素株式会社製)、ナノユースOZ-30M(平均粒径=7nm;日産化学工業(株)製)、SZR-M若しくはSZR-K(いずれも堺化学(株)製)又はHXU-120JC(住友大阪セメント(株)製)が挙げられる。
 無機酸化物粒子の含有量は、特に限定はされないが、膜B中20~80重量%の範囲が好ましい。また、耐クラック性の観点から、20~65重量%がより好ましい。含有量がこの範囲であると、膜Bのクラック発生をより抑えられ、積層体のCTEがより低減される。
 <膜Bの形成に用いられるポリシロキサン樹脂組成物>
 膜Bの形成に用いるポリシロキサン樹脂組成物の固形分濃度は、膜厚が制御し易いことから、5~35wt%が好ましい。
 ポリシロキサン樹脂組成物は、感光剤を含有していてもよい。ポリシロキサン樹脂組成物を感光化させることにより、一回の露光及び現像にて一括で膜AおよびBよりなる樹脂積層体をパターン加工して得ることができる。より具体的には、膜A’(ポリイミド前駆体樹脂を含む膜)上に、膜B’形成用の感光性ポリシロキサン樹脂組成物を塗布し、露光、現像及びキュアすることにより、パターン加工された膜A及び膜Bを得ることができる。感光性樹脂組成物がポジ型の場合、感光性を付与する成分としては、キノンジアジド化合物が好ましい。キノンジアジド化合物とアルカリ可溶性樹脂との混合物は、露光及びアルカリ現像によってポジ型を形成する。キノンジアジド化合物としては、フェノール性水酸基を有する化合物にナフトキノンジアジドスルホン酸がエステル結合した化合物が好ましく、該化合物のフェノール性水酸基のオルト位、及びパラ位にそれぞれ独立して水素又は下記一般式(13)で表される置換基を有する化合物が用いられる。
Figure JPOXMLDOC01-appb-C000010
 R~Rはそれぞれ同じでも異なっていてもよく、炭素数1~10のアルキル基、カルボキシル基、フェニル基又は置換フェニル基のいずれかを示すか、あるいは、RとR、RとRまたはRとRで環を形成しても構わない。
 一般式(13)で表される置換基において、R~Rはそれぞれ同じでも異なっていてもよく、炭素数1~10の置換若しくは無置換アルキル基、カルボキシル基、フェニル基又は置換フェニル基のいずれかを示す。アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、トリフルオロメチル基又は2-カルボキシエチル基が挙げられる。フェニル基の水素を置換する置換基としては、水酸基が挙げられる。また、RとR、RとRまたはRとRで形成される環としては、例えば、シクロペンタン環、シクロヘキサン環、アダマンタン環又はフルオレン環が挙げられる。
 フェノール性水酸基のオルト位及びパラ位が水素又は一般式(13)で表される置換基以外の場合、熱硬化によって酸化分解が起こり、キノイド構造に代表される共役系化合物が形成され、硬化膜が着色して無色透明性が低下してしまう。なお、キノンジアジド化合物は、フェノール性水酸基を有する化合物と、ナフトキノンジアジドスルホン酸クロリドとの公知のエステル化反応により合成することができる。
 フェノール性水酸基を有する化合物としては、例えば、以下の化合物が挙げられる(本州化学工業(株)製)。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 ナフトキノンジアジドスルホン酸としては、例えば、4-ナフトキノンジアジドスルホン酸又は5-ナフトキノンジアジドスルホン酸が挙げられる。4-ナフトキノンジアジドスルホン酸エステル化合物はi線(波長365nm)領域に吸収を持つため、i線露光に適している。また、5-ナフトキノンジアジドスルホン酸エステル化合物は広範囲の波長領域に吸収が存在するため、広範囲の波長での露光に適している。露光する波長によって、4-ナフトキノンジアジドスルホン酸エステル化合物又は5-ナフトキノンジアジドスルホン酸エステル化合物を適宜選択することが好ましい。4-ナフトキノンジアジドスルホン酸エステル化合物と5-ナフトキノンジアジドスルホン酸エステル化合物とを混合して用いても構わない。
 ナフトキノンジアジド化合物の分子量は、300~1500が好ましく、350~1200がより好ましい。ナフトキノンジアジド化合物の分子量が1500より大きいと、4~10重量%の添加量ではパターン形成ができなくなる可能性がある。一方、ナフトキノンジアジド化合物の分子量が300より小さいと、無色透明性が低下する可能性がある。
 感光性ポリシロキサン組成物がネガ型の場合、感光性を付与する成分としては、光重合開始剤及び多官能モノマーが好ましい。
 感光性を付与する成分である光重合開始剤は、光(紫外線及び電子線を含む)により分解及び/又は反応し、ラジカルを発生させるものが好ましい。光により分解及び/又は反応し、ラジカルを発生させる光重合開始剤としては、例えば、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2,4,6-トリメチルベンゾイルフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-(2,4,4-トリメチルペンチル)-フォスフィンオキサイド、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、1-フェニル-1,2-ブタジオン-2-(o-メトキシカルボニル)オキシム、1,3-ジフェニルプロパントリオン-2-(o-エトキシカルボニル)オキシム、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)、4,4-ビス(ジメチルアミノ)ベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、p-ジメチルアミノ安息香酸エチル、2-エチルヘキシル-p-ジメチルアミノベンゾエート、p-ジエチルアミノ安息香酸エチル、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4,4-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アルキル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、4-ベンゾイル-N,N-ジメチル-N-[2-(1-オキソ-2-プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4-ベンゾイルベンジル)トリメチルアンモニウムクロリド、2-ヒドロキシ-3-(4-ベンゾイルフェノキシ)-N,N,N-トリメチル-1-プロペンアミニウムクロリド一水塩、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、2-ヒドロキシ-3-(3,4-ジメチル-9-オキソ-9H-チオキサンテン-2-イロキシ)-N,N,N-トリメチル-1-プロパナミニウムクロリド、2,2’-ビス(o-クロロフェニル)-4,5,4’,5’-テトラフェニル-1,2-ビイミダゾール、10-ブチル-2-クロロアクリドン、2-エチルアンスラキノン、ベンジル、9,10-フェナンスレンキノン、カンファーキノン、メチルフェニルグリオキシエステル、η5-シクロペンタジエニル-η6-クメニル-アイアン(1+)-ヘキサフルオロフォスフェイト(1-)、ジフェニルスルフィド誘導体、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、4-ベンゾイル-4-メチルフェニルケトン、ジベンジルケトン、フルオレノン、2,3-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニル-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、p-t-ブチルジクロロアセトフェノン、ベンジルメトキシエチルアセタール、アントラキノン、2-t-ブチルアントラキノン、2-アミノアントラキノン、β-クロルアントラキノン、アントロン、ベンズアントロン、ジベンズスベロン、メチレンアントロン、4-アジドベンザルアセトフェノン、2,6-ビス(p-アジドベンジリデン)シクロヘキサン、2,6-ビス(p-アジドベンジリデン)-4-メチルシクロヘキサノン、ナフタレンスルフォニルクロライド、キノリンスルホニルクロライド、N-フェニルチオアクリドン、ベンズチアゾールジスルフィド、トリフェニルホスフィン、四臭素化炭素、トリブロモフェニルスルホン、過酸化ベンゾイル又はエオシン若しくはメチレンブルー等の光還元性の色素とアスコルビン酸若しくはトリエタノールアミン等の還元剤との組み合わせが挙げられる。また、これらを2種以上含有しても構わない。硬化膜の硬化性をより高くするためには、α-アミノアルキルフェノン化合物、アシルホスフィンオキサイド化合物、オキシムエステル化合物、アミノ基を有するベンゾフェノン化合物又はアミノ基を有する安息香酸エステル化合物が好ましい。
 α-アミノアルキルフェノン化合物としては、例えば、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン又は2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1が挙げられる。アシルホスフィンオキサイド化合物としては、例えば、2,4,6-トリメチルベンゾイルフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド又はビス(2,6-ジメトキシベンゾイル)-(2,4,4-トリメチルペンチル)-フォスフィンオキサイドが挙げられる。オキシムエステル化合物のとしては例えば、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、1-フェニル-1,2-ブタジオン-2-(o-メトキシカルボニル)オキシム、1,3-ジフェニルプロパントリオン-2-(o-エトキシカルボニル)オキシム又はエタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)が挙げられる。アミノ基を有するベンゾフェノン化合物としては、例えば、4,4-ビス(ジメチルアミノ)ベンゾフェノン又は4,4-ビス(ジエチルアミノ)ベンゾフェノン等が挙げられる。アミノ基を有する安息香酸エステル化合物としては、例えば、p-ジメチルアミノ安息香酸エチル、2-エチルヘキシル-p-ジメチルアミノベンゾエート又はp-ジエチルアミノ安息香酸エチルが挙げられる。
 感光性を付与する成分である多官能モノマーとしては、例えば、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジメタクリレート、トリメチロールプロパントリメタクリレート、1,3-ブタンジオールジアクリレート、1,3-ブタンジオールジメタクリレート、ネオペンチルグリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジアクリレート、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリペンタエリスリトールヘプタアクリレート、トリペンタエリスリトールオクタアクリレート、テトラペンタエリスリトールノナアクリレート、テトラペンタエリスリトールデカアクリレート、ペンタペンタエリスリトールウンデカアクリレート、ペンタペンタエリスリトールドデカアクリレート、トリペンタエリスリトールヘプタメタクリレート、トリペンタエリスリトールオクタメタクリレート、テトラペンタエリスリトールノナメタクリレート、テトラペンタエリスリトールデカメタクリレート、ペンタペンタエリスリトールウンデカメタクリレート、ペンタペンタエリスリトールドデカメタクリレート、ジメチロール-トリシクロデカンジアクリレート、エトキシ化ビスフェノールAジアクリレート、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-メタクリロイルオキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-メタクリロイルオキシエトキシ)-3-メチルフェニル]フルオレン、(2-アクリロイルオキシプロポキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-アクリロイルオキシエトキシ)-3、5-ジメチルフェニル]フルオレン又は9,9-ビス[4-(2-メタクリロイルオキシエトキシ)-3、5-ジメチルフェニル]フルオレン、が挙げられるが、感度向上の観点から、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリペンタエリスリトールヘプタアクリレート又はトリペンタエリスリトールオクタアクリレートが好ましく、疎水性向上の観点から、ジメチロール-トリシクロデカンジアクリレート、ジメチロール-トリシクロデカンジメタクリレート、エトキシ化ビスフェノールAジアクリレート又は9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレンが好ましい。
 その他の多官能モノマーとしては、例えば、多官能エポキシ化合物と(メタ)アクリル酸とを反応して得られるエポキシ(メタ)アクリレートが挙げられる。多官能エポキシ化合物としては、例えば、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 本発明で用いる膜Bの3%重量減少温度(Td3)は300℃以上であることが好ましい。これにより脱ガスが抑制され、例えば本発明の樹脂積層体上にガスバリア膜を製膜した際に脱ガスによるガスバリア膜へのクラック発生が抑制され、ディスプレイの表示性能が向上する。ここで言う3%重量減少温度(Td3)とは、第1段階で、昇温レート3.5℃/minで150℃まで昇温して試料の吸着水を除去し、第2段階で、降温レート10℃/minで40℃まで冷却し、40度まで冷却した時の重量を測定し、その重量に対し第3段階で昇温レート10℃/minで本測定を実施した際に重量が3%減少した時の温度のことを言う。
 <膜Bの透過色度座標>
 膜Bの樹脂層の透過色度座標は0.300≦x≦0.325および0.305≦y≦0.325の範囲にあることが好ましい。これにより、樹脂積層体を通して視認される透過光を白色に近い色調とすることができる。この透過色度座標は0.300≦x≦0.310および0.305≦y≦0.315の範囲にあることがより好ましい。ここで、「透過色度座標」とは、C光源、2度視野で測定したCIE1931表色系における透過色度の座標のことをいう。
 <着色剤>
 膜Bの樹脂層は、その透過色度座標を上記範囲とするため、着色剤を含有することが好ましい。着色剤としては、例えば、有機顔料、無機顔料、又は染料が挙げられるが、透過光の色調調整のためには、青色顔料、青色染料、紫色顔料又は紫色染料が好ましい。
 青色顔料としては、例えば、C.I.ピグメントブルー1、1:2、9、14、15、15:1、15:2、15:3、15:4、15:6、16、17、19、25、27、28、29、33、35、36、56、56:1、60、61、61:1、62、63、66、67、68、71、72、73、74、75、76、78又は79が挙げられるが、C.I.ピグメントブルー15、15:1、15:2、15:3、15:4、15:6又は60が好ましく、C.I.ピグメントブルー15:6がより好ましい。
 紫色顔料としては、例えば、C.I.ピグメントバイオレット1、1:1、2、2:2、3、3:1、3:3、5、5:1、14、15、16、19、23、25、27、29、31、32、37、39、42、44、47、49又は50が挙げられるが、C.I.ピグメントバイオレット19又は23が好ましく、C.I.ピグメントバイオレット23がより好ましい。
 これらの顔料は、必要に応じて、ロジン処理、酸性基処理又は塩基性処理等の表面処理がされていても構わず、分散剤として顔料誘導体が添加されていても構わない。
 染料の形態としては、油溶性染料、酸性染料、直接染料、塩基性染料、媒染染料、又は酸性媒染染料等の各種染料のいずれかの形態を有するものが挙げられる。また、前記染料をレーキ化して用いる場合や、染料と含窒素化合物との造塩化合物等の形態であっても良い。
 染料としては、一般的に染料と言われるものであれば特に制約はないが、中でも、トリフェニルメタン系染料、ジフェニルメタン系染料、キノリン系染料、チアジン系染料、チアゾール系染料、キサンテン系染料、フラビン系染料、オーラミン系染料、サフラニン系染料、フロキシン系染料、メチレンブルー系染料、ローダミン系染料等を好ましく用いることができる。具体的には、C.I.ソルベントブルー2、3、4、5、718、25、26、35、36、37、38、43、44、45、48、51、58、59、59:1、63、64、67、68、69、70、78、79、83、94、97、98、100、101、102、104、105、111、112、122、124、128、129、132、136、137、138、139、143、C.I.アシッドブルー22、25、40、78、78、92、113、129、167、230、C.I.ベーシックブルー3、7、9、17、41、66、C.I.ソルベントバイオレット2、8、9、11、13、14、21、21:1、26、31、36、37、38、45、46、47、48、49、50、51、55、56、57、58、59、60、61、C.I.アシッドレッド52、87、91、92、94、289等が挙げられる。
 塩基性染料の形態の場合は、有機酸や過塩素酸を用いて造塩化した造塩化合物であることが好ましい。有機酸としては、有機スルホン酸、有機カルボン酸であることが好ましい。中でもトビアス酸等のナフタレンスルホン酸、過塩素酸であることが耐性の面で好ましい。
 また、酸性染料、直接染料、の形態の場合は、四級アンモニウム塩化合物、三級アミン化合物、二級アミン化合物、一級アミン化合物等、及びこれらの官能基を有する樹脂成分を用いて造塩化した造塩化合物であること、あるいはスルホンアミド化してスルホン酸アミド化合物とした造塩化合物であることが耐性の面で好ましい。
 これらの着色剤は、単独で用いられてもよいが、透過光を白色に近づけることが容易になるため、2種類以上組み合わせて用いられることが好ましい。着色剤の組み合わせとしては、例えば、C.I.ピグメントブルー15:6、C.I.ピグメントバイオレット23、C.Iアシッドレッド289からなる群から選ばれる着色剤の組み合わせが好ましい。
 膜Bは、これら青色顔料、青色染料、紫色顔料又は紫色染料に加えて、透過色調をより的確に調整するために他の顔料又は染料を含有してもかまわない。他の顔料としては、例えば、赤色顔料、緑色顔料、黄色顔料又はオレンジ色顔料が挙げられる。
 膜Bに占める着色剤の割合は、色調の調整が容易になることから、固形分に対して0.0001~10重量%が好ましく、0.001~1重量%がより好ましい。
 膜Bには、分散剤として顔料誘導体又は高分子分散剤が含まれることが好ましい。
 <樹脂積層体の作製>
 本発明の樹脂積層体の作製方法は、特に限定は無いが、以下の工程を含むことが好ましい。
(1)支持基板上にポリイミド前駆体樹脂を含む樹脂溶液を塗布して膜A’を得る工程。
(2)前記膜A’上にポリシロキサン樹脂組成物を塗布して膜B’を得る工程。
(3)前記膜A’と前記膜B’とをそれぞれ加熱して樹脂積層体を得る工程。
 各工程について説明する。まず、(1)の工程において支持基板としては特に制限はないが、無アルカリガラス、シリコンウエハー、セラミックス類、ガリウムヒ素、ソーダ石灰硝子などを用いることができる。
 塗布方法は、例えば、スリットコート法、スピンコート法、スプレーコート法、ロールコート法、バーコート法などの方法があり、これらの手法を組み合わせて塗布してもかまわない。
 次に、乾燥によって前記樹脂ワニス中の溶剤を除去する。乾燥はホットプレート、オーブン、赤外線、真空チャンバーなどを使用する。ホットプレートを用いる場合、プレート上に直接、もしくは、プレート上に設置したプロキシピン等の治具上に被加熱体を保持して加熱する。プロキシピンの材質としては、アルミニウムやステレンレス等の金属材料、あるいはポリイミド樹脂や“テフロン(登録商標)”等の合成樹脂があり、いずれの材質のプロキシピンを用いてもかまわない。プロキシピンの高さは、基板のサイズ、被加熱体である樹脂層の種類、加熱の目的等により様々であるが、例えば300mm×350mm×0.7mmのガラス基板上に塗布した樹脂層を加熱する場合、プロキシピンの高さは2~12mm程度が好ましい。
 中でも、真空チャンバーを用いて真空乾燥させることが好ましく、真空乾燥後にさらに乾燥のための加熱を行ったり、真空乾燥しながら乾燥のための加熱を行ったりすることがさらに好ましい。これにより、乾燥処理時間の短縮が可能となり、さらに、均一な塗布膜を得ることができる。乾燥のための加熱の温度は被加熱体の種類や目的により様々であり、室温から170℃の範囲で1分から数時間行うことが好ましい。室温とは通常20~30℃であるが好ましくは25℃である。さらに、乾燥工程は同一の条件、又は異なる条件で複数回行ってもよい。このようにして膜A’が形成される。
 続いて、(2)の工程において上記膜A’と同様の手法により、ポリシロキサン樹脂組成物を膜A’上に塗布し、乾燥工程を行い、膜B’を膜A’上に形成できる。
 次に(3)の工程において、前記樹脂塗膜を180℃以上500℃以下の範囲で加熱して、膜Aおよび膜Bよりなる樹脂積層体を得る。なお、加熱工程は、上記乾燥工程の後に何らかの工程を経てから行われても構わない。
 加熱工程の雰囲気は特に限定されず、空気でも窒素やアルゴン等の不活性ガスでもよい。ただし、酸素濃度が高い雰囲気で加熱を行うと、酸化劣化により膜Aおよび膜Bが脆くなるなど、機械特性が低下する。このような、機械特性の低下を抑制するためには、酸素濃度が5%以下の雰囲気で加熱して熱硬化を行うことが好ましい。一方で、ppmオーダーでの酸素濃度管理は、製造現場では困難であることが多い。本発明の樹脂膜は、加熱時の酸素濃度が5%以下であればより高い機械特性を保つことができるため好ましい。
 なお、膜B’の形成に用いる樹脂組成物が感光性樹脂組成物であって、塗布膜B’の形成後にパターニングを施す場合は、膜B’を得る工程の後、膜B’を露光及び現像する工程を追加することができる。ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナー(PLA)等の露光機を用いて、10mJ/m以上1000mJ以下/m以下(波長365nm露光量変換)、の光を所望のマスクを介してあるいは介さずに照射する。光源に制限はなく、i線、g線、h線等の紫外線や、KrF(波長248nm)レーザー、ArF(波長193nm)レーザー等を用いることができる。
 次に、現像により未露光部、または露光部を溶解させ、パターンを形成することができる。現像方法としては、シャワー、ディッピング、パドル等の方法で現像液に5秒間以上、10分間以内で浸漬することが好ましい。
 現像液としては、公知のアルカリ現像液を用いることができる。具体例としてはアルカリ金属の水酸化物、炭酸塩、リン酸塩、ケイ酸塩、ホウ酸塩、等の無機アルカリ、2-ジメチルアミノエタノール、モノエタノールアミン、ジエタノールアミン等のアミン類、テトラメチルアンモニウムヒドロキサイド、コリン等の4級アンモニウム塩を1種あるいは2種以上含有する水溶液等が挙げられる。現像後、水でリンスすることが好ましく、続いて50℃以上、150℃以下の範囲で乾燥ベークを行うこともできる。
 前述の、ポリイミド樹脂を含む膜Aおよびポリシロキサン樹脂を含む膜Bよりなる積層体は、以下のような2段階の製膜プロセスを経て作製してもよい。まず(1)の工程としてポリイミド前駆体樹脂を含む樹脂溶液を支持基板上に塗布した後に、(3)の工程として加熱を行い、膜Aを形成する。その後、(2)の工程としてポリシロキサン樹脂組成物を膜Aの上に塗布し、1層目と同様に(3)の工程として加熱を行う。
 上述の樹脂積層体は、カラーフィルター、有機EL素子、オンチップ型の基板、封止樹脂、タッチパネル、回路基板、液晶パネル、PDPパネル、電子ペーパー、シースルーディスプレイ等に適用可能なディスプレイ用支持基板として利用される。
 本発明の樹脂積層体は線熱膨張係数(CTE)が40ppm/℃以下であることが好ましい。これにより、カラーフィルターを作成する際のBM位置ズレ量を低減することができるだけでなく、ガスバリア層を本樹脂積層体上に形成した際にガスバリア層にクラックが入るのを抑制する事が出来、ディスプレイの表示性能を向上させることができる。より好ましくは線膨張係数(CTE)が35ppm/℃以下である。
 ここで言う線膨張係数とは、第1段階で昇温レート5℃/minで150℃まで昇温して試料の吸着水を除去し、第2段階で降温レート5℃/minで室温まで空冷し、第3段階で、昇温レート5℃/minで本測定を行い、50~200℃の線膨張係数の平均から求まる値を指す。
 <カラーフィルター>
 樹脂積層体がカラーフィルター用に利用される場合は、膜B上に少なくともブラックマトリックスおよび着色画素を備えてカラーフィルターとされる。樹脂積層体が有機EL素子に利用される場合は、膜B上に少なくともTFT、電極および有機層を備えて有機EL素子とされる。これらは、それぞれ膜A側に支持基板を備えていてもよい。
 本発明のディスプレイ用支持基板を利用したカラーフィルターは、前記(1)~(3)の工程に加え、更に下記の工程を経て製造することができる。
(4)前記樹脂積層体上にブラックマトリックスを形成する工程。
(5)前記樹脂積層体上に着色画素を形成する工程。
(6)支持基板から前記樹脂積層体を剥離する工程。
 ブラックマトリックスは、黒色顔料を樹脂に分散した樹脂ブラックマトリックスであることが好ましい。黒色顔料の例としては、カーボンブラック、チタンブラック、酸化チタン、酸化窒化チタン、窒化チタン又は四酸化鉄が挙げられる。特に、カーボンブラック、チタンブラックが好適である。また赤顔料、緑顔料、青顔料を混合して黒色顔料として用いることもできる。
 樹脂ブラックマトリックスに使用する樹脂としては、細いパターンが形成し易いため、ポリイミド樹脂が好ましい。ポリイミド樹脂は、酸無水物とジアミンとから合成されたポリアミック酸を、パターン加工後に熱硬化してポリイミド樹脂とすることが好ましい。
酸無水物、ジアミンおよび溶剤の例としては、前述のポリイミド樹脂で挙げたものを用いることができる。
 樹脂ブラックマトリックスに使用する樹脂としては、感光性アクリル樹脂も好ましい。これを用いた樹脂ブラックマトリックスは、黒色顔料分散した、アルカリ可溶性のアクリル樹脂、光重合性モノマーおよび高分子分散剤および添加剤を含む。
 アルカリ可溶性樹脂の例としては、不飽和カルボン酸とエチレン性不飽和化合物との共重合体が挙げられる。不飽和カルボン酸の例としては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、ビニル酢酸又は酸無水物が挙げられる。
 光重合性モノマーの例としては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリアクリルホルマール、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート又はジペンタエリスリトールペンタ(メタ)アクリレートが挙げられる。
 光重合開始剤の例としては、ベンゾフェノン、N,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、2,2-ジエトキシアセトフェノン、α-ヒドロキシイソブチルフェノン、チオキサントン又は2-クロロチオキサントンが挙げられる。
 感光性アクリル樹脂を溶解するための溶媒の例としては、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、アセト酢酸エチル、メチル-3-メトキシプロピオネート、エチル-3-エトキシプロピオネート、メトキシブチルアセテート又は3-メチル-3-メトキシブチルアセテートが挙げられる。
 前記樹脂膜の上に、黒色顔料を分散したポリアミック酸からなる樹脂ブラックマトリックス用黒色樹脂組成物をスピンコーター又はダイコーター等の方法でキュア後の膜厚が1μmになるように塗布し、60Pa以下まで減圧乾燥した後に、110~140℃の熱風オーブン又はホットプレートでセミキュアを行う。
 ポジ型レジストをスピンコーター又はダイコーター等の方法で、プリベーク後の膜厚が1.2μmになるように塗布後、80Paまで減圧乾燥を行い、80~110℃の熱風オーブン又はホットプレートでプリベークを行い、レジスト膜を形成する。その後、プロキシミティ露光機又はプロジェクション露光機等により、フォトマスクを介して紫外線により選択的に露光を行った後、1.5~3.0重量%の水酸化カリウム又はテトラメチルアンモニウムヒドロキシド等のアルカリ現像液に20~300秒浸漬することにより露光部を除去する。剥離液を用いてポジレジストを剥離後、200~300℃の熱風オーブン又はホットプレートで10~60分加熱することで、ポリアミック酸をポリイミドに転換させることで、前記樹脂膜に黒色顔料を分散した樹脂ブラックマトリックスを形成する。なお、感光性樹脂で形成する場合は、ポジ型レジストを塗布することなく露光、現像を行うことができる。
 樹脂ブラックマトリックスを形成した後に、着色画素を形成する。着色画素は、一般的には、赤、緑、青の3色の着色画素からなる。また3色の着色画素に加えて、無色透明または、ごく薄く薄着した第4色の画素を形成することで、表示装置の白色表示の明るさを向上させることもできる。
 カラーフィルターの着色画素は、着色剤として顔料または染料を含む樹脂が用いられる。
 赤の着色画素に使用する顔料の例としては、PR254、PR149、PR166、PR177、PR209、PY138、PY150又はPYP139が挙げられ、緑の着色画素に使用する顔料の例としては、PG7、PG36、PG58、PG37、PB16、PY129、PY138、PY139、PY150又はPY185が挙げられ、青の着色画素に使用する顔料の例としては、PB15:6又はPV23が挙げられる。
 青色染料の例としては、C.I.ベーシックブルー(BB)5、BB7、BB9又はBB26が挙げられ、赤色染料の例としては、C.I.アシッドレッド(AR)51、AR87又はAR289が挙げられる。
 赤緑青の着色画素に使用する樹脂の例としては、アクリル系樹脂、エポキシ系樹脂又はポリイミド系樹脂が挙げられるが、カラーフィルターの製造コストを安くできるため、感光性アクリル系樹脂が好ましい。感光性アクリル系樹脂は、アルカリ可溶性樹脂、光重合性モノマーおよび光重合開始剤を含有することが一般的である。
 アルカリ可溶性樹脂の例としては、不飽和カルボン酸とエチレン性不飽和化合物との共重合体が挙げられる。不飽和カルボン酸の例としては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、ビニル酢酸又は酸無水物が挙げられる。
 光重合性モノマーの例としては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリアクリルホルマール、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート又はジペンタエリスリトールペンタ(メタ)アクリレートが挙げられる。
 光重合開始剤の例としては、ベンゾフェノン、N,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、2,2-ジエトキシアセトフェノン、α-ヒドロキシイソブチルフェノン、チオキサントン又は2-クロロチオキサントンが挙げられる。
 感光性アクリル系樹脂を溶解するための溶媒の例としては、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、アセト酢酸エチル、メチル-3-メトキシプロピオネート、エチル-3-エトキシプロピオネート、メトキシブチルアセテート又は3-メチル-3-メトキシブチルアセテートが挙げられる。
 カラーフィルターの着色画素は、着色剤と樹脂とを用いて作製する。着色剤として顔料を使用する場合には、顔料に高分子分散剤および溶媒を混合して分散処理を行った後、アルカリ可溶性樹脂、モノマーおよび光重合開始剤等を添加して作製する。一方、着色剤として染料を使用する場合には、染料に溶媒、アルカリ可溶性樹脂、モノマーおよび光重合性開始剤等を添加して作製する。この場合の全固形分は、樹脂成分である高分子分散剤、アルカリ可溶性樹脂およびモノマーと、着色剤との合計である。
 得られた着色剤組成物を、樹脂ブラックマトリックスが形成された透明基板上に、スピンコーター又はダイコーター等の方法で加熱処理後の膜厚が0.8~3.0μmの目的の膜厚になるように塗布後、80Paまで減圧乾燥を行い、80~110℃の熱風オーブン又はホットプレートでプリベークを行い、着色剤の塗膜を形成する。
 次に、プロキシミティ露光機又はプロジェクション露光機等によりフォトマスクを介して、紫外線等により選択的に露光を行う。その後、0.02~1.0重量%の水酸化カリウム水溶液又はテトラメチルアンモニウムヒドロキシド水溶液等のアルカリ現像液に20~300秒浸漬することにより未露光部を除去する。得られた塗膜パターンを180~250℃の熱風オーブン又はホットプレートで5~40分加熱処理することで、着色画素を形成する。着色画素の色毎に作製した着色剤組成物を使用して、上記のようなパターニング工程を赤の着色画素、緑の着色画素および青の着色画素について順次行う。
 前記樹脂膜とブラックマトリックス/着色画素層の間に、前述したガスバリア膜を形成してもよい。
 さらに、前記カラーフィルターに平坦化層を設けてもよい。平坦化層の形成に使用する樹脂の例としては、エポキシ樹脂、アクリルエポキシ樹脂、アクリル樹脂、シロキサン樹脂又はポリイミド樹脂が挙げられる。平坦化層の膜厚としては、表面が平坦になる膜厚が好ましく、0.5~5.0μmがより好ましく、1.0~3.0μmがさらに好ましい。
 前記カラーフィルターの剥離方法は樹脂積層体の周囲に切り込みを入れて剥離することが好ましい。
 上記の工程を経て前記ディスプレイ用支持基板を利用したカラーフィルターを製造することができる。なお、着色画素のパターンニングの順序は特に限定されない。
 <有機EL素子>
 本発明のディスプレイ用支持基板を利用した有機EL素子は、前記(1)~(3)の工程に加え、更に下記の工程を経て製造することができる。
(4)前記樹脂積層体上に有機EL素子を形成する工程。
(5)支持基板から前記樹脂積層体を剥離する工程。
 有機EL素子の形成は、例えば以下のように行うことができる。まず、前述した樹脂積層体の膜Bの上に水蒸気や酸素などのガスの透過を抑制するためのガスバリア膜を形成する。好ましいガスバリア膜としては、例えば、ケイ素、アルミニウム、マグネシウム、亜鉛、ジルコニウム、チタン、イットリウム、およびタンタルからなる群から選ばれる1種または2種以上の金属を主成分とする金属酸化物、ケイ素、アルミニウム、ホウ素の金属窒化物またはこれらの混合物を挙げることができる。中でも、ガスバリア性、透明性、表面平滑性、屈曲性、膜応力、コスト等の点からケイ素の酸化物、窒化物、または酸窒化物を主成分とすることが好ましい。
 これらガスバリア膜は例えばスパッタリング法、真空蒸着法、イオンプレーティング法、プラズマCVD法等の気相中より材料を堆積させて膜を形成する気相堆積法により作製することができる。中でも、特に優れたガスバリア性が得られるという観点から、スパッタリング法が好ましい。
 また、ガスバリア膜の厚さは10~300nmであることが好ましく、30~200nmであることがさらに好ましい。高いガスバリア性を得るためには、ガスバリア膜の製膜温度は高い方が好ましく、300℃以上が好ましく、より好ましくは400℃以上、さらに好ましくは500℃以上が好ましい。
 ガスバリア膜の上にTFTを形成する。TFTを形成するための半導体層としては、アモルファスシリコン半導体、多結晶シリコン半導体、InGaZnOに代表される酸化物半導体、ペンタセンやポリチオフェンに代表される有機物半導体が挙げられる。例えば、本発明の積層体を基材として、ガスバリア膜、ゲート電極、ゲート絶縁膜、多結晶シリコン半導体層、エッチングストッパ膜、ソース・ドレイン電極を公知の方法によって順次形成してボトムゲート型TFTを作製する。
 次に、TFT上に平坦化層を備える。平坦化層の形成に使用する樹脂の例としては、エポキシ樹脂、アクリルエポキシ樹脂、アクリル樹脂、ポリシロキサン樹脂又はポリイミド樹脂が挙げられる。さらに、その上に電極および有機層を形成する。具体的には、Al/ITOなどからなる第一電極、第一電極の端部を被覆する絶縁膜を有し、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層からなる白色有機EL発光層を設け、ITOなどからなる第二電極を形成し、封止膜を形成する。前記の工程を経て作製した後、支持基板から樹脂膜を剥離することによって有機EL素子を得ることができる。
 また、このようにして得られた有機EL素子上に上述の手法にて直接カラーフィルターを形成することでオンチップ型の基板を作製することもできる。
<デバイス>
 本発明のディスプレイ用支持基板は、液晶ディスプレイ、有機ELディスプレイ、電子ペーパー、PDPディスプレイ、LEDディスプレイ、シースルーディスプレイといった表示デバイス、カラーフィルター、タッチパネル、太陽電池、CMOSなどの受光デバイス等に使用することができる。特に、これらの表示デバイスや受光デバイスを折り曲げ可能なフレキシブルデバイスとして活用する上で、本発明のディスプレイ用支持基板が好ましく用いられる。
 フレキシブルデバイスの製造工程の一例としては、基板上に形成した樹脂膜の上に、表示デバイスや受光デバイスに必要な回路を形成し、前述のように切り込みを入れて物理的に剥がして樹脂積層体を基板から剥離することが挙げられる。
 本発明において作製されたカラーフィルターおよび有機EL素子は、フレキシブルな樹脂積層体を基材とすることから、フレキシブルカラーフィルター、フレキシブル有機EL素子とすることができる。そして、これらのフレキシブルカラーフィルター、フレキシブル有機EL素子を用いてフレキシブル有機ELディスプレイを作製することができる。例えば、本発明のフレキシブル基板を利用したカラーフィルターに発光デバイスを貼り合わせることにより、フルカラー表示のフレキシブル表示デバイスを得ることができる。特に、本発明のフレキシブル基板を利用した有機EL素子とカラーフィルターを組み合わせたフレキシブル有機ELディスプレイが好ましい。
 以下実施例等をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。
 (1)樹脂積層体(ガラス基板上)の作製(透過率測定)
 50mm×50mm×1.1mm厚のガラス基板(テンパックス)に、ミカサ(株)製のスピンコーターMS-A200を用いて140℃×4分のプリベーク後の厚さが表1記載の厚さになるようにポリイミド前駆体樹脂溶液をスピン塗布した。その後、大日本スクリーン(株)製ホットプレートD-SPINを用いて140℃×4分のプリベーク処理を行った。続いて、同様にミカサ(株)製のスピンコーターMS-A200を用いて100℃×2分のプリベーク後の厚さが表1に記載の厚さになるようにポリシロキサン樹脂組成物をスピン塗布した。プリベーク処理後の塗膜をイナートオーブン(光洋サーモシステム(株)製INH-21CD)を用いて窒素気流下(酸素濃度20ppm以下)、3.5℃/minで300℃まで昇温し、30分間保持し、5℃/minで50℃まで冷却し、樹脂積層体(ガラス基板上)を作製した。
 (2)耐熱性樹脂膜(シリコン基板上)の作製(複屈折測定)
 1/4に切断した4インチシリコン基板に、ミカサ(株)製のスピンコーターMS-A200を用いてプリベーク後の膜厚が5±0.5μmになるようにポリイミド前駆体樹脂またはポリシロキサン樹脂組成物をスピン塗布した。その後、大日本スクリーン(株)製ホットプレートD-SPINを用いてプリベーク処理を行った。(ポリイミド前駆体樹脂は140℃×4分、ポリシロキサン樹脂組成物は100℃×2分の条件でプリベークを行った。)プリベーク膜をイナートオーブン(光洋サーモシステム株式会社製 INH-21CD)を用いて窒素気流下(酸素濃度20ppm以下)、3.5℃/minで300℃又は350℃まで昇温し、30分間保持し、5℃/minで50℃まで冷却し耐熱性樹脂膜(シリコン基板上)を作製した。
 (3)樹脂積層体の作製(TMA測定)
 6インチシリコン基板上に、東京エレクトロン(株)製の塗布現像装置Mark-7を用いて、140℃×4分のプリベーク後の厚さが表1に記載の厚さになるようにポリイミド前駆体樹脂溶液をスピン塗布した。その後、同じくMark-7のホットプレートを用いて140℃×4分のプリベーク処理を行った。続いて、ミカサ(株)製のスピンコーターMS-A200を用いて100℃×2分のプリベーク後の厚さが表1に記載の厚さになるようにポリシロキサン樹脂組成物をスピン塗布した。プリベーク処理後の塗膜をイナートオーブン(光洋サーモシステム(株)製INH-21CD)を用いて窒素気流下(酸素濃度20ppm以下)、3.5℃/minで300℃まで昇温し、30分間保持し、5℃/minで50℃まで冷却し樹脂積層体を作製した。続いて、得られた樹脂積層体の周囲に切り込みを入れ、65℃のお湯に1~4分間浸漬した後に物理的に引っ張って樹脂積層体を基板から剥離し、風乾した。
 (4)光透過率(T)の測定
 紫外可視分光光度計((株)島津製作所製 MultiSpec1500)を用い、波長400nmにおける光透過率を測定した。なお、測定には(1)で作製したガラス基板上樹脂積層体を用いた。
 (5)線熱膨張係数(CTE)の測定
 熱機械分析装置(エスアイアイ・ナノテクノロジー株式会社製 EXSTAR6000 TMA/SS6000)を用いて、窒素気流下で測定を行った。昇温方法は、以下の条件にて行った。第1段階で昇温レート5℃/minで150℃まで昇温して試料の吸着水を除去し、第2段階で降温レート5℃/minで室温まで空冷した。第3段階で、昇温レート5℃/minで本測定を行い、50~200℃の線膨張係数の平均から線膨張係数(CTE)を求めた。なお、測定には(3)で作製した樹脂積層体を用い、以下の評価方法にて判定した。
優良(A):35ppm/℃以下
良(B):35ppm/℃超40ppm/℃以下
不良(C):40ppm/℃超。
 (6)複屈折の測定
 プリズムカプラー(METRICON社製、PC2010)を用い、波長632.8nmのTE屈折率(n(TE))およびTM屈折率(n(TM))を測定した。n(TE)、n(TM)は、それぞれ膜面に対して、平行、垂直方向の屈折率である。複屈折はn(TE)とn(TM)の差(n(TE)-n(TM))として計算し、膜Aの複屈折をΔN、膜Bの複屈折をΔNとした。なお、測定には(2)で作製した樹脂膜を用いた。
 (7)3%重量減少温度(Td3)の測定
 (2)で作成したポリシロキサン樹脂膜を削り取り、アルミセルに約15mg入れ、熱重量測定装置(株式会社島津製作所製 TGA-50)を用いて窒素気流下で測定を行った。昇温方法は、以下の条件にて行った。第1段階で、昇温レート3.5℃/minで150℃まで昇温して試料の吸着水を除去し、第2段階で、降温レート10℃/minで40℃まで冷却し第3段階で昇温レート10℃/minで本測定を実施し、重量が3%減少した時の温度(Td3)を求めた。
 (8)色度の測定
 無アルカリガラス(ガラス厚み0.7mm)上に形成された膜Bの、XYZ表色系色度図における透過色度座標を大塚電子(株)製、顕微分光光度計“MCPD-2000”を用いて測定した。
 また、ポリイミド樹脂を含有する膜Aに無アルカリガラス(ガラス厚み0.7mm)を備えた樹脂積層体基板を作製した。樹脂積層体基板のC光源(L)色空間を、大塚電子(株)製、顕微分光光度計“MCPD-2000”を用いて測定し、以下のように透過色調を判定した。
A(非常に良好:◎):a、bの値が、0≦|a|≦0.5かつ0≦|b|≦1.0
B(良好:○):a、bの値が、0≦|a|≦1.0かつ1.0<|b|≦1.8
C(可:△):a、bの値が、0≦|a|≦1.5かつ1.8<|b|≦2.5
D(不良:×):a、bの値が、|a|>1.5又は|b|>2.5。
(9)フレキシブルカラーフィルターの耐屈曲性評価
 フレキシブルカラーフィルターの耐屈曲性を以下の手法で測定した。まず、ガラス基板から剥離したカラーフィルターを100mm×140mmにサンプリングし、面上の中央部に直径30mmの金属円柱を固定し、この円柱に沿って、円柱の抱き角0°(サンプルが平面の状態)の状態に置き(図1参照)、円柱への抱き角が180°(円柱で折り返した状態)となる範囲(図2参照)で、100回折り曲げ動作を行った。耐屈曲性は、曲げ動作前後の膜Bにおけるクラック発生の有無を指標とし、試験後に光学顕微鏡(Nikon(製)、OPTIPHOT300)を用いて目視で100枚観察を行った。
 (10)ブラックマトリックス(BM)の位置精度の評価
 ガラス基板付きカラーフィルターにおけるBMの理想格子からのズレ量を、SMIC-800(ソキア・トプコン社製)を用い、以下のように測定した。まず、形成箇所をガラス基板上とすること以外は実施例1[2]に記載されたのと同様にして、ガラス基板上にBMパターンを作成した。そのBMパターンの24箇所について、理想格子からのズレ量を測定した。次に、各実施例および比較例で得られたカラーフィルターにおけるBMパターンの24箇所について、理想格子からのズレ量を測定した。いずれも、測定により得られたズレ量の絶対値の平均を計算により求め、得られた値をその水準におけるBMの理想格子からのズレ量とした。各実施例および比較例におけるズレ量の値を評価するとともに、BMパターンをガラス基板上に作製した場合と樹脂積層体上に作製した場合でズレ量にどの程度の違いがあるかを評価し、以下の評価方法にて判定した。
優良(A):BM位置ずれ量が1.8μm以下
良(B):BM位置ずれ量が1.8μm超2.4μm以下
不良(C):BM位置ずれ量が2.4μm超。
 (11)発光効率の測定
 作製直後の有機EL素子、高温高湿試験後の有機EL素子、および屈曲試験に続く高温高湿試験後の有機EL素子における輝度1000cd/mでの電流効率(cd/A)を測定した。前記、屈曲試験はガラス基板から剥離した有機EL素子を100mm×140mmにサンプリングし、面上の中央部に直径30mmの金属円柱を固定し、この円柱に沿って、円柱の抱き角0°(サンプルが平面の状態)の状態に置き(図1参照)、円柱への抱き角が180°(円柱で折り返した状態)となる範囲(図2参照)で、100回折り曲げることにより行った。また、前記、高温高湿試験はガラス基板から剥離した有機EL素子を内温85℃、湿度85%の高温高湿槽に24時間入れて行った。
 合成例1:透明ポリイミド前駆体樹脂溶液(I)の合成
 乾燥窒素気流下、200mL4つ口フラスコに4,4’-オキシジフタル酸無水物(ODPA)16.66g(53.7mmol)、2,2-ビス[3-(3-アミノベンズアミド)-4-ヒドロキシフェニル]ヘキサフルオロプロパン(HFHA)32.46g(53.7mmol)、N-メチル-2-ピロリドン100gを入れて65℃で加熱撹拌した。6時間後、冷却して透明ポリイミド前駆体樹脂溶液(I)とした。
 合成例2:透明ポリイミド前駆体樹脂溶液(II)の合成
 乾燥窒素気流下、200mL4つ口フラスコに3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)11.53g(39.2mmol)、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)1.92g(9.79mmol)、trans-1,4-ジアミノシクロへキサン(CHDA)5.59g(49.0mmol)、N-メチル-2-ピロリドン100gを入れて65℃で加熱撹拌した。6時間後、冷却して透明ポリイミド前駆体樹脂溶液(II)とした。
 合成例3:透明ポリイミド前駆体樹脂溶液(III)の合成
 乾燥窒素気流下、200mL4つ口フラスコに3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)7.90g(26.4mmol)、2,2-ビス(4-(3,4-ジカルボキシフェノキシ)フェニル)プロパン二無水物(BSAA)14.01g(26.4mmol)、trans-1,4-ジアミノシクロへキサン(CHDA)6.1375g(53.7mmol)、N-メチル-2-ピロリドン100gを入れて65℃で加熱撹拌した。6時間後、冷却して透明ポリイミド前駆体樹脂溶液(III)とした。
 合成例4:透明ポリイミド前駆体樹脂溶液(IV)の合成
 乾燥窒素気流下、200mL4つ口フラスコに3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)13.72g(46.6mmol)、trans-1,4-ジアミノシクロへキサン(CHDA)5.33g(46.6mmol)、N-メチル-2-ピロリドン100gを入れて65℃で加熱撹拌した。6時間後、冷却して透明ポリイミド前駆体樹脂溶液(IV)とした。
 合成例5:透明ポリイミド前駆体樹脂溶液(V)の合成
 乾燥窒素気流下、200mL4つ口フラスコに1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)7.23g(36.9mmol)、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)11.81g(36.9mmol)、N-メチル-2-ピロリドン100gを入れて65℃で加熱撹拌した。6時間後、冷却して透明ポリイミド前駆体樹脂溶液(V)とした。
 合成例6:透明ポリイミド前駆体樹脂溶液(VI)の合成
 乾燥窒素気流下、200mL4つ口フラスコに1,2,4,5‐シクロヘキサンテトラカルボン酸二無水物(PMDA-HS)12.04g(53.7mmol)、2,2-ビス[3-(3-アミノベンズアミド)-4-ヒドロキシフェニル]ヘキサフルオロプロパン(HFHA)32.46g(53.7mmol)、N-メチル-2-ピロリドン100gを入れて65℃で加熱撹拌した。6時間後、冷却して透明ポリイミド前駆体樹脂溶液(VI)とした。
 合成例7:ポリイミド前駆体樹脂溶液(VII)の合成
 乾燥窒素気流下、200mL4つ口フラスコにピロメリット酸無水物(PMDA)7.03g(32.2mmol)、4,4’-ビフタル酸無水物(BPDA)6.32g(21.5mmol)、1、4-フェニレンジアミン(PDA)5.81g(53.7mmol)、N-メチル-2-ピロリドン100gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体樹脂溶液(VII)とした。
 合成例8ポリイミド前駆体樹脂溶液(VIII)の合成
 乾燥窒素気流下、200mL4つ口フラスコに4,4’-ビフタル酸無水物(BPDA)10.21g(34.7mmol)、trans-1,4-ジアミノシクロヘキサン(CHDA)1.59g(13.9mmol)、9,9-ビス(4-アミノフェニル)フルオレン(FDA)7.26g(20.8mmol)、N-メチル-2-ピロリドン100gを入れて65℃で加熱撹拌した。6時間後、冷却してポリイミド前駆体樹脂溶液(VIII)とした。
 合成例9;ポリイミド前駆体樹脂溶液(VIIII)の合成
 乾燥窒素気流下、4,4’-ジアミノフェニルエーテル(ODA)60.07g(300.0mmol)、1、4-フェニレンジアミン(PDA)70.33g(650.4mmol)および1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン12.43g(50.0mmol)を、850gのγ-ブチロラクトンおよび850gのN-メチル-2-ピロリドンと共に仕込み、3,3’,4,4’-オキシジフタルカルボン酸二無水物(ODPA)309.43g(997.5mmol)を添加し、80℃で3時間反応させた。無水マレイン酸1.96g(20.0mmol)を添加し、更に80℃で1時間反応させ、ポリイミド前駆体樹脂溶液(VIIII)を得た。
 合成例10:ポリシロキサン樹脂溶液(I)の合成
 500mlの三口フラスコにメチルトリメトキシシランを46.05g(0.34mo
l)、フェニルトリメトキシシランを83.79g(0.42mol)、(2-(3,
4-エポキシシクロヘキシル)エチルトリメトキシシランを20.82g(0.08mo
l)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)を151.68136.51g、メタノール15.17g仕込み、室温で攪拌しながら水47.21g(加水分解に必要な理論量)にリン酸0.45g(仕込みモノマーに対して0.3重量%)を溶かしたリン酸水溶液を滴下ロートで10分かけて添加した。その後、フラスコを40℃のオイルバスに浸けて30分攪拌した後、オイルバスを30分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌し(内温は100~110℃)、ポリシロキサン溶液(I)を得た。なお、加熱攪拌中、窒素を0.05l(リットル)/min流した。反応中に副生成物であるメタノール、水、および溶媒が合計105g留出した。得られたポリシロキサンのPGMEA溶液に、ポリマー濃度が40wt%となるようにPGMEAを加え、ポリシロキサン溶液(I)を得た(Mw=5500(ポリスチレン換算))。固形分濃度はアルミカップにポリシロキサン樹脂溶液を1g秤取し、ホットプレートを用いて250℃で30分間加熱して液分を蒸発させ、加熱後のアルミカップに残った固形分を秤量して求めた。また、重量平均分子量はGPC(Waters社製410型RI検出器、流動層:テトラヒドロフラン)にてポリスチレン換算により求めた。
 合成例11:ポリシロキサン樹脂溶液(II)の合成
 500mLのフラスコに47.67g(0.35mol)のメチルトリメトキシシリル、39.66g(0.20mol)のフェニルトリメトキシシラン、82.04g(0.35mol)のγ-アクリロイルプロピルトリメトキシシラン、26.23(0.1mol)の3-トリメトキシシリルプロピルコハク酸無水物及び195.6gのダイアセトンアルコール(DAA)を仕込み、40℃のオイルバスに漬けて撹拌しながら55.8gの水(加水分解に必要な理論量)に0.39gのリン酸(仕込みモノマーに対して0.2重量部)を溶かしたリン酸水溶液を滴下ロートで10分かけて添加した。40℃で1時間撹拌した後、オイルバス温度を70℃に設定して1時間撹拌し、さらにオイルバスを30分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱撹拌した(内温は100~110℃)。反応中に副生成物であるメタノール、水が合計127g留出した。得られたポリシロキサン樹脂のDAA溶液に、ポリマー濃度が40wt%となるようにDAAを加え、ポリシロキサン樹脂溶液(II)を得た(Mw=4500(ポリスチレン換算))。
 調製例1:ポリシロキサン樹脂組成物1の調製
 合成例10で得られたポリシロキサン溶液(I)7.42g、無機酸化物粒子としてPMA-ST(日産化学工業(株)製;二酸化ケイ素プロピレングリコールモニメチルエーテルアセテート分散液;固形分濃度=30wt%)2.66g、レベリング剤としてメガファックF-477(DIC製)0.01g、溶剤としてPGMEA4.94g、ジエチレングリコールエチルメチルエーテル(EDM)4.80gを混合、攪拌して均一溶液とした後、0.45μmのフィルターで濾過してシリカ粒子のワニス固形分中の含有率が20wt%であるポリシロキサン樹脂組成物1を調製した。
 調製例2:ポリシロキサン樹脂組成物2の調製
 黄色灯下にて、1.995gのPMA-ST(日産化学工業(株)製;二酸化珪素プロピレングリコールモノメチルエーテルアセテート分散液;固形分濃度=30wt%)、0.0898gのイルガキュアOXE-02及び0.0299gのハイドロキノンメチルエーテル(HQME)を加え、6.00gのDAA及び1.44gのPGMEAに溶解させ撹拌した。そこへ、ジペンタエリスリトールヘキサアクリレート(DPHA)の50wt%PGMEA溶液を1.257g、ポリシロキサン溶液(II)を4.115g、BYK-333のPGMEA1wt%溶液を0.075g、それぞれ加えて、撹拌した。次いで0.45μmのフィルターで濾過を行い、シリカ粒子のワニス固形分中の含有率が20wt%であるネガ型感光性のポリシロキサン樹脂組成物2を得た。
 調整例3:黄色灯下にて、1.995gのPMA-ST(日産化学工業(株)製;二酸化珪素プロピレングリコールモノメチルエーテルアセテート分散液;固形分濃度=30wt%)、0.1197gのイルガキュアOXE-02及び0.0299gのハイドロキノンメチルエーテル(HQME)を加え、6.00gのDAA及び2.38gのPGMEAに溶解させ撹拌した。そこへ、ジペンタエリスリトールヘキサアクリレート(DPHA)の50wt%PGMEA溶液を0.599g、ポリシロキサン溶液(II)を2.24g、エポキシエステル3002A(共栄社(株)製)の50%PGMEA溶液を1.018g、M-510(東亞合成(株)製)の50wt%PGMEA溶液を0.539g、BYK-333の1wt%PGMEA溶液を0.075g、それぞれ加えて、撹拌した。次いで0.45μmのフィルターで濾過を行い、シリカ粒子のワニス固形分中の含有率が20wt%であるネガ型感光性のポリシロキサン樹脂組成物3を得た。
 調製例4;ブラックマトリックスを形成するための黒色樹脂組成物の作製
 合成例9のポリイミド前駆体樹脂溶液(VIIII)250gに、50gのカーボンブラック(MA100;三菱化学(株)製)および200gのN-メチル-2-ピロリドンを混合し、ダイノーミルKDL-Aを用いて、直径0.3mmのジルコニアビーズを使用して、3200rpmで3時間の分散処理を行い、黒色樹脂分散液を得た。
 この黒色分散液を50gに、49.9gのN-メチル-2-ピロリドンおよび0.1gの界面活性剤(LC951;楠本化学(株)製)を添加して、非感光性の黒色樹脂組成物を得た。
 調製例5:感光性カラーレジストの作製
 ピグメントレッドPR177、8.05gを3-メチル-3-メトキシブタノール50gとともに仕込み、ホモジナイザーを用い、7000rpmで5時間分散後、ガラスビーズを濾過し、除去した。アクリル共重合体溶液(ダイセル化学工業(株)製“サイクロマー”P、ACA-250、43wt%溶液)70.00g、多官能モノマーとしてペンタエリスリトールテトラメタクリレート30.00g、光重合開始剤として“イルガキュア”369、15.00gにシクロペンタノン260.00gを加えた濃度20重量%の感光性アクリル樹脂溶液(AC)134.75gを加え、感光性赤レジストを得た。同様にして、ピグメントグリーンPG38とピグメントイエローPY138からなる感光性緑レジスト、ピグメントブルーPB15:6からなる感光性青レジストを得た。
 調製例6:透明保護膜を形成するための樹脂組成物の作製
 65.05gのトリメリット酸に、280gのGBLおよび74.95gのγ-アミノプロピルトリエトキシシランを添加し、120℃で2時間加熱した。得られた溶液20gに、7.00gのビスフェノキシエタノールフルオレンジグリシジルエーテルおよび15.00gのジエチレングリコールジメチルエーテルを添加し、樹脂組成物を得た。
 調製例7:顔料分散液(d1)の調製
 PB15:6 65g、PV23 35g、分散剤としてbic chemie社“BYK2001”40g及びプロピレングリコールモノメチルアセテート860gを、直径0.3mmのジルコニアビーズ1000gとともにホモジナイザーを用いて、7000rpmで30分間分散処理後、ジルコニアビーズを濾過により除去し、顔料分散液(d1)を得た。
 実施例1 ディスプレイ用支持基板を用いたカラーフィルターおよび有機EL素子の作成(図3および図4)
 [1]樹脂積層体の作製
 300mm×400mm×0.7mm厚のガラス基板1(AN100(旭硝子(株)製))に、合成例1で得られた透明ポリイミド前駆体樹脂溶液(I)を、140℃で10分間プリベーク後の厚さが15±0.5μmになるようにスピン塗布した。その後、送風乾燥器を用いて140℃で10分間プリベーク処理を行った。続いて、ポリイミド樹脂膜上に調製例1で得られたポリシロキサン樹脂組成物1を、100℃で2分間プリベーク後の厚さが1.2μmになるようにスピン塗布した。その後、送風乾燥器を用いて100℃で2分間プリベーク処理を行った。その後、窒素気流下(酸素濃度20ppm以下)300℃に加熱したイナートオーブン(光洋サーモシステム(株)製 INH-21CD)で30分間加熱し、ポリイミド樹脂を含む膜A10μm、ポリシロキサン樹脂を含む膜B1μmよりなる樹脂積層体を作製した。得られた樹脂積層体の波長400nmにおける可視光透過率、CTEを測定したところ、透過率は87.8%、CTEは30ppm/℃であった。また、前述の方法で複屈折の測定、耐屈曲性評価、3%重量減少温度の測定、色度の測定を行った。結果を表1に示す。
 [2]樹脂ブラックマトリクスの作製
 [1]で作製した積層体のポリシロキサン樹脂を含む膜Bの上に調整例4で作製した黒色樹脂組成物をスピン塗布し、ホットプレートで130℃、10分間乾燥し、黒色の樹脂塗膜を形成した。ポジ型フォトレジスト(シプレー社製、“SRC-100”)をスピン塗布、ホットプレートで120℃、5分間プリベークし、超高圧水銀灯を用いて100mJ/cm(i線換算)紫外線照射してマスク露光した後、2.38%のテトラメチルアンモニウムヒドロキシド水溶液を用いて、フォトレジストの現像と黒色の樹脂塗膜のエッチングを同時に行い、パターンを形成、メチルセロソルブアセテートでレジスト剥離し、ホットプレートで280℃、10分間加熱させることでイミド化させ、ポリイミド樹脂にカーボンブラックを分散した樹脂ブラックマトリクスを形成した。ブラックマトリクスの厚さを測定したところ、1.4μmであった。また、前述の方法でブラックマトリックスの位置精度の評価を行ったところ、BM位置ずれ量が1.7μmであった。
 [3]着色層の作製
 [1]、[2]で作製した、ブラックマトリクスがパターン加工された樹脂積層体に、調製例5で調整した感光性赤レジストを、熱処理後のブラックマトリクス開口部での膜厚が2.0μmになるようにスピン塗布し、ホットプレートで100℃、10分間プリベークすることにより、赤色着色層を得た。次に、キャノン(株)製、紫外線露光機“PLA-5011”を用い、ブラックマトリクス開口部とブラックマトリクス上の一部の領域についてアイランド状に光が透過するクロム製フォトマスクを介して、100mJ/cm(i線換算)で露光した。露光後に0.2%のテトラメチルアンモニウムヒドロキシド水溶液からなる現像液に浸漬を行い現像し、続いて純水洗浄後、230℃のオーブンで30分間加熱処理し、赤画素7Rを作製した。同様にして、調製例4で調整した感光性緑レジストからなる緑画素7G、感光性青レジストからなる青画素7Bを作製し、カラーフィルター(図3)を得た。続いて、熱処理後の着色層部での厚さが2.5μmになるようにスピナーの回転数を調整し、調整例6で作製した樹脂組成物を塗布した。その後、230℃のオーブンで30分間加熱処理し、オーバーコート層を作製した。
 [4]TFT基板の作製
 [1]の方法で作製した樹脂積層体(ガラス基板上)のポリシロキサン樹脂を含む膜B上に、プラズマCVD法を用いてSiOから成る無機ガスバリア膜を製膜した。その後、ボトムゲート型のTFTを形成し、このTFTを覆う状態でSiから成る絶縁膜を形成した。次に、この絶縁膜に、コンタクトホールを形成した後、このコンタクトホールを介してTFTに接続される配線(高さ1.0μm)を絶縁膜上に形成した。この配線は、TFT間または、後の工程で形成される有機EL素子とTFTとを接続するためのものである。
 さらに、配線の形成による凹凸を平坦化するために、配線による凹凸を埋め込む状態で絶縁膜上へ平坦化層を形成した。平坦化層の形成は、感光性ポリイミドワニスを基板上にスピンコートし、ホットプレート上でプリベーク(120℃、3分間)した後、所望のパターンのマスクを介して露光、現像し、空気フロー下において230℃で60分間加熱処理することにより行った。ワニスを塗布する際の塗布性は良好で、露光、現像、加熱処理の後に得られた平坦化層にはしわやクラックの発生は認められなかった。さらに、配線の平均段差は500nm、作製した平坦化層には5μm四方のコンタクトホールが形成され、厚さは約2μmであった。
 [5]白色発光型有機EL素子(図4)の作製
 上記の方法で得られたTFTの平坦化層上に、トップエミッション型の有機EL素子を形成した。まず、平坦化層上に、Al/ITO(Al:反射電極)からなる第一電極を、コンタクトホールを介して配線に接続させて形成した。その後、レジストを塗布、プリベークし、所望のパターンのマスクを介して露光し、現像した。このレジストパターンをマスクとして、ITOエッチャント用いたウエットエッチングにより第一電極のパターン加工を行った。その後、レジスト剥離液(モノエタノールアミンとジエチレングリコールモノブチルエーテルの混合液)を用いて該レジストパターンを剥離した。剥離後の基板を水洗し、200℃で30分間加熱脱水して平坦化層付き電極基板を得た。平坦化層の厚さの変化は、剥離液処理前に対して加熱脱水後で1%未満であった。こうして得られた第一電極は、有機EL素子の陽極に相当する。
 次に、第一電極の端部を覆う形状の絶縁層を形成した。絶縁層には、同じく感光性ポリイミドワニスを用いた。この絶縁層を設けることによって、第一電極とこの後の工程で形成する第二電極との間のショートを防止することができる。
 さらに、真空蒸着装置内で所望のパターンマスクを介して、正孔輸送層、有機発光層、電子輸送層を順次蒸着して、白色有機EL発光層を設けた。次いで、基板上方の全面にMg/ITOからなる第二電極を形成した。さらにCVD成膜によりSiON封止膜を形成し、有機EL素子(図4)を得た。
 得られた有機EL素子について、前述の方法で発光効率の測定を行ったところ、作製直後、高温高湿試験後とも発光効率は5cd/Aであった。
 実施例2
 ポリイミド前駆体樹脂溶液(I)の代わりに合成例2で得られたポリイミド前駆体樹脂溶液(II)を使用した以外、実施例1と同様にして樹脂積層体、カラーフィルターおよび有機EL素子を作製した。樹脂積層体の波長400nmにおける可視光透過率、CTEはそれぞれ85.5%、20ppmであった。また、前述の方法で複屈折の測定、耐屈曲性評価、3%重量減少温度の測定、色度の測定、ブラックマトリックスの位置精度の評価および発光効率の測定を行った。結果を表1に示す。
 実施例3
 ポリイミド前駆体樹脂溶液(I)の代わりに合成例3で得られたポリイミド前駆体樹脂溶液(III)を使用した以外、実施例1と同様にして樹脂積層体、カラーフィルターおよび有機EL素子を作製した。樹脂積層体の波長400nmにおける可視光透過率、CTEはそれぞれ91.0%、32ppmであった。また、前述の方法で複屈折の測定、耐屈曲性評価、3%重量減少温度の測定、色度の測定、ブラックマトリックスの位置精度の評価および発光効率の測定を行った。結果を表1に示す。
 実施例4
 ポリイミド前駆体樹脂溶液(I)の代わりに合成例4で得られたポリイミド前駆体樹脂溶液(IV)を使用した以外、実施例1と同様にして樹脂積層体、カラーフィルターおよび有機EL素子を作製した。樹脂積層体の波長400nmにおける可視光透過率、CTEはそれぞれ86.8%、9.0ppmであった。また、前述の方法で複屈折の測定、耐屈曲性評価、3%重量減少温度の測定、色度の測定、ブラックマトリックスの位置精度の評価および発光効率の測定を行った。結果を表1に示す。
 実施例5
 ポリイミド前駆体樹脂溶液(I)の代わりに合成例5で得られたポリイミド前駆体樹脂溶液(V)を使用した以外、実施例1と同様にして樹脂積層体、カラーフィルターおよび有機EL素子を作製した。樹脂積層体の波長400nmにおける可視光透過率、CTEはそれぞれ95.3%、19ppmであった。また、前述の方法で複屈折の測定、耐屈曲性評価、3%重量減少温度の測定、色度の測定、ブラックマトリックスの位置精度の評価および発光効率の測定を行った。結果を表1に示す。
 実施例6
 ポリイミド前駆体樹脂溶液(I)の代わりに合成例6で得られたポリイミド前駆体樹脂溶液(VI)を使用した以外、実施例1と同様にして樹脂積層体、カラーフィルターおよび有機EL素子を作製した。樹脂積層体の波長400nmにおける可視光透過率、CTEはそれぞれ96.1%、29ppmであった。また、前述の方法で複屈折の測定、耐屈曲性評価、3%重量減少温度の測定、色度の測定、ブラックマトリックスの位置精度の評価および発光効率の測定を行った。結果を表1に示す。
 実施例7
 ポリイミド前駆体樹脂溶液(I)の代わりに合成例7で得られたポリイミド前駆体樹脂溶液(VII)を使用した以外、実施例1と同様にして樹脂積層体、カラーフィルターおよび有機EL素子を作製した。樹脂積層体の波長400nmにおける可視光透過率、CTEはそれぞれ2.4%、6.0ppmであった。また、前述の方法で複屈折の測定、耐屈曲性評価、3%重量減少温度の測定、色度の測定、ブラックマトリックスの位置精度の評価および発光効率の測定を行った。結果を表1に示す。
 実施例8
 ポリイミド前駆体樹脂溶液(I)の代わりに合成例8で得られたポリイミド前駆体樹脂溶液(VIII)を使用した以外、実施例1と同様にして樹脂積層体、カラーフィルターおよび有機EL素子を作製した。樹脂積層体の波長400nmにおける可視光透過率、CTEはそれぞれ65.2%、23ppmであった。また、前述の方法で複屈折の測定、耐屈曲性評価、3%重量減少温度の測定、色度の測定、ブラックマトリックスの位置精度の評価および発光効率の測定を行った。結果を表1に示す。
 実施例9
 ポリシロキサン樹脂組成物1の代わりに調製例2で得られたポリシロキサン樹脂組成物2を使用し、ポリシロキサン樹脂組成物2の塗布、プリベークに続いてキャノン(株)製、紫外線露光機“PLA-5011”を用い、塗布膜全面に150mJ/cm(i線換算)で露光し、膜B’の光硬化を行った後に、0.2%のテトラメチルアンモニウムヒドロキシド水溶液からなる現像液に1分間浸漬を行い現像し、続いて純水洗浄したこと以外、実施例1と同様にして樹脂積層体、カラーフィルターおよび有機EL素子を作製した。樹脂積層体の波長400nmにおける可視光透過率、CTEはそれぞれ87.4%、30ppmであった。また、前述の方法で複屈折の測定、耐屈曲性評価、3%重量減少温度の測定、色度の測定、ブラックマトリックスの位置精度の評価および発光効率の測定を行った。結果を表1に示す。
 実施例10
 調製例1において、顔料分散液(d1)を0.1g添加した以外、実施例1と同様にして樹脂積層体、カラーフィルターおよび有機EL素子作製した。樹脂積層体の波長400nmにおける可視光透過率、CTEはそれぞれ87.7%、30ppmであった。また、前述の方法で複屈折の測定、耐屈曲性評価、3%重量減少温度の測定、色度の測定、ブラックマトリックスの位置精度の評価および発光効率の測定を行った。結果を表1に示す。
 実施例11
 実施例1において、膜Aの膜厚を20μmに、膜Bの膜厚を3μmに変えたこと以外、実施例1と同様にして樹脂積層体、カラーフィルターおよび有機EL素子を作製した。樹脂積層体の波長400nmにおける可視光透過率、CTEはそれぞれ76.3%、29ppmであった。また、前述の方法で複屈折の測定、耐屈曲性評価、3%重量減少温度の測定、色度の測定、ブラックマトリックスの位置精度の評価および発光効率の測定を行った。結果を表2に示す。
 実施例12
 実施例1において、膜Aの膜厚を5μmに、膜Bの膜厚を3μmに変えたこと以外、実施例1と同様にして樹脂積層体、カラーフィルターおよび有機EL素子を作製した。樹脂積層体の波長400nmにおける可視光透過率、CTEはそれぞれ91.1%、25ppmであった。また、前述の方法で複屈折の測定、耐屈曲性評価、3%重量減少温度の測定、色度の測定、ブラックマトリックスの位置精度の評価および発光効率の測定を行った。結果を表2に示す。
 実施例13
 実施例1において、膜Aの膜厚を10μmに、膜Bの膜厚を2.5μmに変えたこと以外、実施例1と同様にして樹脂積層体、カラーフィルターおよび有機EL素子を作製した。樹脂積層体の波長400nmにおける可視光透過率、CTEはそれぞれ85.6%、28ppmであった。また、前述の方法で複屈折の測定、耐屈曲性評価、3%重量減少温度の測定、色度の測定、ブラックマトリックスの位置精度の評価および発光効率の測定を行った。結果を表2に示す。
 実施例14
 実施例1において、膜Aの膜厚を15μmに、膜Bの膜厚を1.5μmに変えたこと以外、実施例1と同様にして樹脂積層体、カラーフィルターおよび有機EL素子を作製した。樹脂積層体の波長400nmにおける可視光透過率、CTEはそれぞれ82.2%、31ppmであった。また、前述の方法で複屈折の測定、耐屈曲性評価、3%重量減少温度の測定、色度の測定、ブラックマトリックスの位置精度の評価および発光効率の測定を行った。結果を表2に示す。
 実施例15
 実施例1において、膜Aの膜厚を19μmに変えたこと以外、実施例1と同様にして樹脂積層体、カラーフィルターおよび有機EL素子を作製した。樹脂積層体の波長400nmにおける可視光透過率、CTEはそれぞれ77.1%、36ppmであった。また、前述の方法で複屈折の測定、耐屈曲性評価、3%重量減少温度の測定、色度の測定、ブラックマトリックスの位置精度の評価および発光効率の測定を行った。結果を表2に示す。
 実施例16
 実施例1において、膜Aの膜厚を24μmに変えたこと以外、実施例1と同様にして樹脂積層体、カラーフィルターおよび有機EL素子を作製した。樹脂積層体の波長400nmにおける可視光透過率、CTEはそれぞれ75.8%、38ppmであった。また、前述の方法で複屈折の測定、耐屈曲性評価、3%重量減少温度の測定、色度の測定、ブラックマトリックスの位置精度の評価および発光効率の測定を行った。結果を表2に示す。
 実施例17 ポリシロキサン樹脂組成物1の代わりに調製例3で得られたポリシロキサン樹脂組成物2を使用し、ポリシロキサン樹脂組成物2の塗布、プリベークに続いてキャノン(株)製、紫外線露光機“PLA-5011”を用い、塗布膜全面に150mJ/cm(i線換算)で露光し、膜B’の光硬化を行った後に、0.2%のテトラメチルアンモニウムヒドロキシド水溶液からなる現像液に1分間浸漬を行い現像し、続いて純水洗浄したこと以外、実施例1と同様にして樹脂積層体、カラーフィルターおよび有機EL素子を作製した。樹脂積層体の波長400nmにおける可視光透過率、CTEはそれぞれ87.6%、30ppmであった。また、前述の方法で複屈折の測定、耐屈曲性評価、3%重量減少温度の測定、色度の測定、ブラックマトリックスの位置精度の評価および発光効率の測定を行った。結果を表2に示す。
 実施例18
 調製例1において、シリカ粒子のワニス固形分中の含有率を65wt%にした以外、実施例1と同様にして樹脂積層体、カラーフィルターおよび有機EL素子を作製した。樹脂積層体の波長400nmにおける可視光透過率、CTEはそれぞれ88.0%、29ppmであった。また、前述の方法で複屈折の測定、耐屈曲性評価、3%重量減少温度の測定、色度の測定、ブラックマトリックスの位置精度の評価および発光効率の測定を行った。結果を表2に示す。
 実施例19
 調製例1において、シリカ粒子のワニス固形分中の含有率を80wt%にした以外、実施例1と同様にして樹脂積層体、カラーフィルターおよび有機EL素子を作製した。樹脂積層体の波長400nmにおける可視光透過率、CTEはそれぞれ88.1%、27ppmであった。また、前述の方法で複屈折の測定、耐屈曲性評価、3%重量減少温度の測定、色度の測定、ブラックマトリックスの位置精度の評価および発光効率の測定を行った。結果を表2に示す。
 実施例20 調製例1において、PMA-STをTR-513(日揮触媒化成製;二酸化チタンγ-ブチロラクトン分散液;固形分濃度=30wt%)に変えたこと以外、実施例1と同様にして樹脂積層体、カラーフィルターおよび有機EL素子を作製した。樹脂積層体の波長400nmにおける可視光透過率、CTEはそれぞれ83.5%、36ppmであった。また、前述の方法で複屈折の測定、耐屈曲性評価、3%重量減少温度の測定、色度の測定、ブラックマトリックスの位置精度の評価および発光効率の測定を行った。結果を表2に示す。
 実施例21
 実施例1において、膜Bの膜厚を0.4μmに変えたこと以外、実施例1と同様にして樹脂積層体、カラーフィルターおよび有機EL素子を作製した。樹脂積層体の波長400nmにおける可視光透過率、CTEはそれぞれ88.5%、39ppmであった。また、前述の方法で複屈折の測定、耐屈曲性評価、3%重量減少温度の測定、色度の測定、ブラックマトリックスの位置精度の評価および発光効率の測定を行った。結果を表2に示す。
 実施例22
 調製例1において、シリカ粒子のワニス固形分中の含有率を90wt%にした以外、実施例1と同様にして樹脂積層体、カラーフィルターおよび有機EL素子を作製した。樹脂積層体の波長400nmにおける可視光透過率、CTEはそれぞれ86.2%、25ppm/℃であった。88.5%、25ppmであった。また、前述の方法で複屈折の測定、耐屈曲性評価、3%重量減少温度の測定、色度の測定、ブラックマトリックスの位置精度の評価および発光効率の測定を行った。結果を表2に示す。
 比較例1
 実施例1において、膜Bを形成しなかったこと以外、実施例1と同様にして樹脂積層体、カラーフィルターおよび有機EL素子を作製した。樹脂積層体の波長400nmにおける可視光透過率、CTEはそれぞれ88.0%、48ppmであった。また、前述の方法で複屈折の測定、耐屈曲性評価、3%重量減少温度の測定、色度の測定、ブラックマトリックスの位置精度の評価および発光効率の測定を行った。結果を表2に示す。
 比較例2
 調製例1において、PMA-STを添加しなかったこと以外、実施例1と同様にして樹脂積層体、カラーフィルターおよび有機EL素子を作製した。樹脂積層体の波長400nmにおける可視光透過率、CTEはそれぞれ87.7%、53ppmであった。また、前述の方法で複屈折の測定、耐屈曲性評価、3%重量減少温度の測定、色度の測定、ブラックマトリックスの位置精度の評価および発光効率の測定を行った。結果を表2に示す。
 比較例3
 実施例1において、膜Aの膜厚を25μmに、膜Bの膜厚を0.5μmに変えたこと以外、実施例1と同様にして樹脂積層体、カラーフィルターおよび有機EL素子を作製した。樹脂積層体の波長400nmにおける可視光透過率、CTEはそれぞれ73.4%、42ppmであった。また、前述の方法で複屈折の測定、耐屈曲性評価、3%重量減少温度の測定、色度の測定、ブラックマトリックスの位置精度の評価および発光効率の測定を行った。結果を表2に示す。
 比較例4
 実施例1において、膜Aの膜厚を4.0μmに、膜Bの膜厚を3.0μmに変えたこと以外、実施例1と同様にして樹脂積層体、カラーフィルターおよび有機EL素子を作製した。樹脂積層体の波長400nmにおける可視光透過率、CTEはそれぞれ92.1%、23ppmであった。また、前述の方法で複屈折の測定、耐屈曲性評価、3%重量減少温度の測定、色度の測定、ブラックマトリックスの位置精度の評価および発光効率の測定を行った。結果を表2に示す。
 実施例1~22、比較例1~4のディスプレイ用支持基板の透過率、CTE、複屈折、耐屈曲試験、透過色度座標、カラーフィルターのBM位置ずれ量および有機EL素子の発光効率の結果を表1、2に示す。膜A上に無機酸化物微粒子を含有する膜Bを有することで透過率、耐屈曲性を損なうことなく樹脂積層体のCTEが低減され、BMの位置精度が向上するとともに、高温高湿試験を実施した際に有機EL素子の発光効率低下が抑制されることが分かる。比較例4においては積層体における膜Bの膜厚比率が大きいため、耐屈曲試験を実施した際に多くのクラック発生が見られ、十分な可撓性を確認することができなかった。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 実施例23 有機ELディスプレイの作製(図5)
 [1]ガラス基板付きカラーフィルターおよび白色発光型有機EL素子の作製
 実施例1に記載の方法で、ガラス基板上にカラーフィルターおよび白色発光型有機EL素子を作製した。
 [2]有機ELディスプレイの作製
 上記[1]で得られたガラス基板付きカラーフィルターとガラス基板付き白色発光型有機EL素子を、粘着層を介して貼り合わせた。続いて、エキシマレーザー(波長308nm)をガラス基板側から照射することにより、ガラス基板からカラーフィルターと白色発光型有機EL素子を剥離した。続いて、カラーフィルター側の膜Aに円偏光フィルムを貼り付け、有機ELディスプレイ(図5)を作製した。
 実施例24
 実施例10で作製したカラーフィターを用いた以外は実施例23と同様にして有機ELディスプレイを作製した。
 実施例25
 実施例4で作製したカラーフィターを用いた以外は実施例23と同様にして有機ELディスプレイを作製した。
 実施例26
 実施例8で作製したカラーフィターを用いた以外は実施例23と同様にして有機ELディスプレイを作製した。
 参考例1:ポリイミド樹脂膜の作製
 300mm×400mm×0.7mm厚のガラス基板1(AN100(旭硝子(株)))に、合成例7で得たポリイミド前駆体樹脂溶液(VII)を、140℃で10分間プリベーク後の厚さが15±0.5μmになるようにスピン塗布した。その後、送風乾燥器を用いて140℃で10分間プリベーク処理を行った。基板の温度が室温に下がった後、窒素気流下(酸素濃度20ppm以下)300℃に加熱したイナートオーブン(光洋サーモシステム(株)製 INH-21CD)で30分間加熱し、ポリイミド樹脂膜を作製した。得られた樹脂膜の波長400nmの可視光透過率、CTEを測定したところ、透過率は2.5%、CTEは6ppm/℃であった。
 実施例27 有機ELディスプレイの作製
 [1]ガラス基板付きカラーフィルターの作製
 実施例1に記載の方法で、ガラス基板上にカラーフィルターを作製した。
 [2]ガラス基板付き白色発光型有機EL素子の作製
 (1)ポリイミド樹脂膜の作製
 参考例1に記載の方法で、ガラス基板上に樹脂膜を作製した。
 (2)TFT用支持基板の作製
 上記(1)で作製したポリイミド樹脂膜上に実施例1の[4]と同様にしてTFT用支持基板を作製した。
 (3)白色発光型有機EL素子の作製
 上記(2)で作製したTFT基板上に実施例1の[5]と同様にして白色発光型有機EL素子を作製した。
 [3]有機ELディスプレイの作製
 上記[1]で得られたガラス基板付きカラーフィルターと[2]で得られたガラス基板付き白色発光型有機EL素子を、粘着層を介して貼り合わせた。続いて、エキシマレーザー(波長308nm)をガラス基板側から照射することにより、ガラス基板からカラーフィルターと白色発光型有機EL素子を剥離し、有機ELディスプレイを作製した。
 実施例28
 実施例16で作製したカラーフィターを用いた以外は実施例23と同様にして有機ELディスプレイを作製した。
 実施例29
 実施例20で作製したカラーフィターを用いた以外は実施例23と同様にして有機ELディスプレイを作製した。
 比較例5
 比較例1で作製したカラーフィターを用いた以外は実施例23と同様にして有機ELディスプレイを作製した。
 比較例6
 比較例1で作製した白色発光型有機EL素子を用いた以外は実施例23と同様にして有機ELディスプレイを作製した。
 各実施例、比較例のディスプレイについて以下の評価を実施した。結果を表3に示す。
 (有機ELディスプレイの視認性評価)
 有機ELディスプレイを白色表示したときの色目を目視で観察し、視認性を以下のように判定した。
優良(A):白色に見える
良(B):やや着色しているように見えるが、気にならない程度の白色に見える
不良(C):明らかに着色しており、白色とは言えない。
 (有機ELディスプレイの外光反射抑止性能評価)
 各実施例、比較例のディスプレイについて駆動回路を介して電圧を印加し、晴天の日の屋外におけるディスプレイの視認性について確認した。
優良(A):外光反射が十分に抑制され、視認性に優れている。
良(B):外光反射低減効果がやや劣るものの、視認性良好である。
不良(C):外光反射が低減されず、視認性に劣る。
 (有機ELディスプレイの表示性能評価)
各実施例、比較例のディスプレイについて駆動回路を介して電圧を印加し、ディスプレイの鮮明さ、コントラストについて確認した。
優良(A):鮮明でコントラストに優れたディスプレイである。
良(B):鮮明さに劣るものの全体として表示良好なディスプレイである。
不良(C):欠陥が多数見られ、表示性能に劣るディスプレイである。
Figure JPOXMLDOC01-appb-T000017
 実施例23、24、27の有機ELディスプレイはカラーフィルターの位置ずれが少なく、かつ有機EL素子の劣化も見られず、鮮明でコントラストの高いディスプレイを作製することが可能であった。実施例24においては膜Bに用いる樹脂膜の透過色度を調整することにより、ディスプレイ用支持基板の着色が低減され、視認性が良好なディスプレイを作成することが可能であった。
 実施例25においては外光反射低減効果がやや劣るものの、視認性、表示性能が良好なディスプレイを作成することが可能であった。
 実施例28、29においてはカラーフィルターの一部に欠陥が見られたが、全体として表示良好なディスプレイであった。
 実施例26においてはカラーフィルター用支持基板の透明性がやや低いため鮮明さは劣るものの、全体として表示良好なディスプレイであった。
 比較例5の有機ELディスプレイにおいてはカラーフィルターの位置精度が悪いため、多くの画素欠陥が見られた。比較例6の有機ELディスプレイにおいては白色発光素子に劣化、欠陥が見られ、鮮明さに劣るディスプレイであった。比較例5、6については欠陥が多くみられたため、視認性(色、外光反射低減効果)を確認することができなかった。
1 金属円柱
2 フレキシブルカラーフィルター
3 ガラス基板
4 膜A
5 膜B
6 ブラックマトリックス
7R 赤色画素
7G 緑色画素
7B 青色画素
8 オーバーコート層
9 平坦化層
10 第一電極
11 絶縁層
12 白色EL素子
13 第二電極
14 封止層
15 TFT層
16 ガスバリア層
17 粘着層
18 円偏光フィルム
19 フレキシブルカラーフィルター
20 フレキシブル有機EL素子

Claims (23)

  1. ポリイミド樹脂を含む膜Aの少なくとも片面にポリシロキサン樹脂を含む膜Bを有するディスプレイ用支持基板であって、前記膜Bに無機酸化物粒子を含むことを特徴とするディスプレイ用支持基板。
  2. 前記膜Aと前記膜Bの膜厚比率が膜A/膜B=25/1~1.5/1であることを特徴とする請求項1に記載のディスプレイ用支持基板。
  3. 前記ディスプレイ用支持基板の線膨張係数が40ppm/℃以下である請求項1または2に記載のディスプレイ用支持基板。
  4. 前記膜Aの複屈折をΔN、前記膜Bの複屈折をΔNとした時に(ΔN-ΔN)≦0.065である請求項1~3のいずれかに記載のディスプレイ用支持基板。
  5. 前記膜B中の前記無機酸化物粒子の含有量が20~80重量%である請求項1~4のいずれかに記載のディスプレイ用支持基板。
  6. 前記無機酸化物粒子が二酸化ケイ素である請求項1~5のいずれかに記載のディスプレイ用支持基板。
  7. 透明であることを特徴とする請求項1~6のいずれかに記載のディスプレイ用支持基板。
  8. 前記膜Aの膜厚が5.0μm以上20μm以下であり、前記膜Bの膜厚が0.2μm以上3.0μm以下である請求項1~7のいずれかに記載のディスプレイ用支持基板。
  9. 前記ポリイミド樹脂が、トリフルオロメチル基および脂環式炭化水素基から選ばれる少なくとも1種の基を有する、請求項1~8のいずれかに記載のディスプレイ用支持基板。
  10. 前記ポリイミド樹脂に含まれるジアミン残基の全量に対して、トリフルオロメチル基および脂環式炭化水素基から選ばれる少なくとも1種の基を有するジアミン残基が50モル%以上含まれることを特徴とする、請求項1~9のいずれかに記載のディスプレイ用支持基板。
  11. 前記ポリイミド樹脂が一般式(1)~(3)で表される繰り返し構造単位の少なくとも1つを主成分とするポリイミドである請求項1~10のいずれかに記載のディスプレイ用支持基板。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)~(3)中、Rは(4)~(9)で表される少なくとも一種類以上の基である。)
    Figure JPOXMLDOC01-appb-C000002
  12. 前記ポリイミド樹脂が一般式(10)で表される繰り返し構造単位を主成分とするポリイミドである請求項1~10のいずれかに記載のディスプレイ用支持基板。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(10)中、Rは(4)~(9)で表される少なくとも一種類以上の基である。)
    Figure JPOXMLDOC01-appb-C000004
  13. 前記膜Bの3%重量減少温度が300℃以上である請求項1~12のいずれかに記載のディスプレイ用支持基板。
  14. 前記膜BのXYZ表色系色度図における透過色度座標が0.300≦x≦0.325および0.305≦y≦0.325の範囲にある請求項1~13のいずれかに記載のディスプレイ用支持基板。
  15. 請求項1~14のいずれかに記載のディスプレイ用支持基板の前記膜B上にブラックマトリックスおよび着色画素を備えたカラーフィルター。
  16. 前記カラーフィルターの前記膜A側に支持基板を備えた請求項15記載のカラーフィルター。
  17. 少なくとも下記(1)~(6)の工程を含むカラーフィルターの製造方法。
    (1)支持基板上にポリイミド前駆体樹脂を含む樹脂溶液を塗布して塗布膜A’を得る工程。
    (2)前記膜A’上にポリシロキサン樹脂組成物を塗布して膜B’を得る工程。
    (3)前記膜A’と前記膜B’とをそれぞれ加熱して樹脂積層体を得る工程。
    (4)前記樹脂積層体上にブラックマトリックスを形成する工程。
    (5)前記樹脂積層体上に着色画素を形成する工程。
    (6)支持基板から前記樹脂積層体を剥離する工程。
  18. 前記膜B’を得るための樹脂組成物が感光性樹脂組成物であって、前記膜B’を得る工程の後、膜B’を露光及び現像する工程を含む、請求15記載のカラーフィルターの製造方法。
  19. 請求項1~14のいずれかに記載のディスプレイ用支持基板の膜B上に有機EL素子を備えた有機EL素子。
  20. 前有機EL素子の膜A側に支持基板を備えた請求項19に記載の有機EL素子。
  21. 少なくとも下記(1)~(5)の工程を含む有機EL素子の製造方法。
    (1)支持基板上にポリイミド前駆体樹脂を含む樹脂溶液を塗布して塗布膜A’を得る工程。
    (2)前記膜A’上にポリシロキサン樹脂組成物を塗布して膜B’を得る工程。
    (3)前記膜A’と前記膜B’とをそれぞれ加熱して樹脂積層体を得る工程。
    (4)前記樹脂積層体上に有機EL素子を形成する工程。
    (5)支持基板から前記樹脂積層体を剥離する工程。
  22. 前記膜B’を得るための樹脂組成物が感光性樹脂組成物であって、前記膜B‘を得る工程の後、膜B’を露光及び現像する工程を含む、請求項19記載の有機EL素子の製造方法。
  23. 請求項15に記載のカラーフィルターおよび/または請求項19に記載の有機EL素子を備えたフレキシブル有機ELディスプレイ。
       
PCT/JP2015/077070 2014-09-30 2015-09-25 ディスプレイ用支持基板、それを用いたカラーフィルターおよびその製造方法、有機el素子およびその製造方法、ならびにフレキシブル有機elディスプレイ WO2016052323A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177007256A KR20170066340A (ko) 2014-09-30 2015-09-25 디스플레이용 지지 기판, 그것을 이용한 컬러 필터 및 그 제조 방법, 유기 el 소자 및 그 제조 방법, 및 플렉시블 유기 el 디스플레이
SG11201702467QA SG11201702467QA (en) 2014-09-30 2015-09-25 Support substrate for display, color filter employing same and method for manufacturing same, organic led element and method for manufacturing same, and flexible organic el display
US15/515,729 US10431753B2 (en) 2014-09-30 2015-09-25 Substrate for display, color filter using the same and method for the production thereof, organic EL element and method for the production thereof, and flexible organic EL display
CN201580052928.7A CN107073914A (zh) 2014-09-30 2015-09-25 显示器用支承基板、使用其的滤色片及其制造方法、有机el元件及其制造方法以及柔性有机el显示器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-200267 2014-09-30
JP2014200266A JP6503674B2 (ja) 2014-09-30 2014-09-30 樹脂積層体、それを用いた有機el素子基板、カラーフィルター基板及びそれらの製造方法ならびにフレキシブル有機elディスプレイ
JP2014200267 2014-09-30
JP2014-200266 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016052323A1 true WO2016052323A1 (ja) 2016-04-07

Family

ID=55630361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077070 WO2016052323A1 (ja) 2014-09-30 2015-09-25 ディスプレイ用支持基板、それを用いたカラーフィルターおよびその製造方法、有機el素子およびその製造方法、ならびにフレキシブル有機elディスプレイ

Country Status (6)

Country Link
US (1) US10431753B2 (ja)
KR (1) KR20170066340A (ja)
CN (1) CN107073914A (ja)
SG (1) SG11201702467QA (ja)
TW (1) TW201612012A (ja)
WO (1) WO2016052323A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017191830A1 (ja) * 2016-05-02 2017-11-09 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミド樹脂組成物、及びポリイミドフィルム
CN107356998A (zh) * 2016-05-10 2017-11-17 住友化学株式会社 光学膜和使用该光学膜的柔性设备
WO2017221776A1 (ja) * 2016-06-24 2017-12-28 東レ株式会社 ポリイミド樹脂、ポリイミド樹脂組成物、それを用いたタッチパネルおよびその製造方法、カラーフィルタおよびその製造方法、液晶素子およびその製造方法、有機el素子およびその製造方法
US20200207918A1 (en) * 2018-06-21 2020-07-02 Lg Chem, Ltd. Branched copolymer, and photosensitive resin composition, photosensitive resin film and optical device using the same

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101730537B1 (ko) * 2015-11-30 2017-04-26 엘지디스플레이 주식회사 표시장치와 그의 제조방법
KR102457437B1 (ko) * 2016-03-31 2022-10-24 소니그룹주식회사 표시 장치 및 전자 기기
KR102554183B1 (ko) 2016-07-29 2023-07-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 박리 방법, 표시 장치, 표시 모듈, 및 전자 기기
US10930710B2 (en) * 2017-05-04 2021-02-23 Apple Inc. Display with nanostructure angle-of-view adjustment structures
CN110945079B (zh) 2017-08-02 2022-10-28 旭化成株式会社 聚酰亚胺清漆及其制造方法
WO2019082964A1 (ja) * 2017-10-26 2019-05-02 三井化学株式会社 硬化性組成物
KR20200096487A (ko) * 2017-12-04 2020-08-12 도레이 카부시키가이샤 기판, 광 확산 방지용 수지 조성물 및 화상 표시 장치
KR102198801B1 (ko) * 2017-12-07 2021-01-05 삼성에스디아이 주식회사 색 변환 패널 및 색 변환 패널의 제조 방법
CN108107639B (zh) * 2017-12-29 2020-05-19 南京优写智能科技有限公司 一种高导电液晶调光膜的制备方法
JP2019121734A (ja) 2018-01-10 2019-07-22 株式会社Joled 半導体装置および表示装置
CN108365119A (zh) * 2018-02-07 2018-08-03 上海瀚莅电子科技有限公司 硅基微显示器及其制备方法
CN112640117A (zh) * 2018-08-01 2021-04-09 深圳市柔宇科技股份有限公司 显示器件及其制备方法
CN110112192B (zh) * 2019-04-29 2021-07-13 云谷(固安)科技有限公司 一种有机发光显示模组及电子设备
CN114008147B (zh) * 2019-06-26 2023-05-02 日产化学株式会社 电荷传输性清漆
CN114144467B (zh) * 2019-06-28 2023-05-23 三菱瓦斯化学株式会社 树脂组合物、树脂片、层叠体、带树脂组合物层的半导体晶圆、基板和半导体装置
CN118393771A (zh) * 2019-10-08 2024-07-26 群创光电股份有限公司 电子装置
JP7398934B2 (ja) * 2019-11-22 2023-12-15 エルジー・ケム・リミテッド 表示装置用支持基板、有機el表示装置、および有機el表示装置の製造方法
CN111403335A (zh) * 2020-03-26 2020-07-10 武汉华星光电半导体显示技术有限公司 显示器件及其制作方法
CN111430428B (zh) * 2020-04-10 2023-02-07 京东方科技集团股份有限公司 柔性显示面板及其制作方法、显示装置
CN114071903B (zh) * 2020-07-31 2024-04-05 群创光电股份有限公司 可挠性电子装置
JP2023521590A (ja) * 2020-09-21 2023-05-25 エルジー・ケム・リミテッド フレキシブルディスプレイ装置製造用複合基板、これを利用したフレキシブルディスプレイ装置の製造方法、およびフレキシブルディスプレイ装置用積層体
JPWO2022085620A1 (ja) * 2020-10-22 2022-04-28
CN112859517A (zh) * 2020-12-25 2021-05-28 吉林奥来德光电材料股份有限公司 一种光敏树脂组合物及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045054A (ja) * 2006-08-18 2008-02-28 New Japan Chem Co Ltd 脂環系ポリイミド共重合体及びその製造方法
WO2011024690A1 (ja) * 2009-08-27 2011-03-03 旭硝子株式会社 フレキシブル基材-支持体の積層構造体、支持体付き電子デバイス用パネル、および電子デバイス用パネルの製造方法
JP2012146905A (ja) * 2011-01-14 2012-08-02 Kaneka Corp 可溶性ポリイミド樹脂フィルムの利用
JP2013060005A (ja) * 2011-08-09 2013-04-04 Mitsubishi Plastics Inc 透明基板用積層フィルム
JP2014026969A (ja) * 2012-06-19 2014-02-06 Nippon Steel & Sumikin Chemical Co Ltd 表示装置及びその製造方法
JP2014046463A (ja) * 2012-08-29 2014-03-17 Mitsubishi Plastics Inc 透明積層フィルム
JP2014151496A (ja) * 2013-02-06 2014-08-25 Mitsubishi Plastics Inc 透明積層フィルム及び透明基板

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292635A (ja) * 1999-04-02 2000-10-20 Reiko Udagawa フッ素化ポリイミド樹脂およびそれらを用いた光導波路
JP4525903B2 (ja) 2004-05-26 2010-08-18 三菱瓦斯化学株式会社 カラーフィルター基板
JP4629367B2 (ja) * 2004-05-31 2011-02-09 東レ・ダウコーニング株式会社 活性エネルギー線硬化型オルガノポリシロキサン樹脂組成物、光伝送部材およびその製造方法
JP2006063133A (ja) 2004-08-25 2006-03-09 Fuji Photo Film Co Ltd 光学フィルムおよび画像表示装置
JP5092426B2 (ja) 2006-07-21 2012-12-05 東レ株式会社 位相差薄膜用樹脂組成物、液晶表示装置用カラーフィルター基板、および液晶表示装置、並びに位相差薄膜付き液晶表示装置用カラーフィルター基板の製造方法
JP5298760B2 (ja) 2008-10-21 2013-09-25 日立化成株式会社 絶縁体フィルム、樹脂組成物、および表示装置
JP2011111596A (ja) 2009-11-30 2011-06-09 Kaneka Corp ポリイミドフィルムの製造方法及びポリイミドフィルム
JP2011205177A (ja) * 2010-03-24 2011-10-13 Sumitomo Electric Ind Ltd 基地局装置
CN106279689B (zh) * 2010-07-22 2019-05-21 宇部兴产株式会社 聚酰亚胺前体、聚酰亚胺及其制备中所用的材料
JP2013157228A (ja) 2012-01-31 2013-08-15 Mitsui Chemicals Inc 有機elデバイス、および有機elデバイスの製造方法
KR20150023728A (ko) 2012-06-19 2015-03-05 신닛테츠 수미킨 가가쿠 가부시키가이샤 표시장치 및 그 제조방법, 그리고 표시장치 지지기재용 폴리이미드 필름 및 그 제조방법
JP5980019B2 (ja) * 2012-07-09 2016-08-31 キヤノン株式会社 画像形成装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045054A (ja) * 2006-08-18 2008-02-28 New Japan Chem Co Ltd 脂環系ポリイミド共重合体及びその製造方法
WO2011024690A1 (ja) * 2009-08-27 2011-03-03 旭硝子株式会社 フレキシブル基材-支持体の積層構造体、支持体付き電子デバイス用パネル、および電子デバイス用パネルの製造方法
JP2012146905A (ja) * 2011-01-14 2012-08-02 Kaneka Corp 可溶性ポリイミド樹脂フィルムの利用
JP2013060005A (ja) * 2011-08-09 2013-04-04 Mitsubishi Plastics Inc 透明基板用積層フィルム
JP2014026969A (ja) * 2012-06-19 2014-02-06 Nippon Steel & Sumikin Chemical Co Ltd 表示装置及びその製造方法
JP2014046463A (ja) * 2012-08-29 2014-03-17 Mitsubishi Plastics Inc 透明積層フィルム
JP2014151496A (ja) * 2013-02-06 2014-08-25 Mitsubishi Plastics Inc 透明積層フィルム及び透明基板

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017191830A1 (ja) * 2016-05-02 2019-03-07 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミド樹脂組成物、及びポリイミドフィルム
US11332578B2 (en) 2016-05-02 2022-05-17 Mitsubishi Gas Chemical Company, Inc. Polyimide resin, polyimide resin composition, and polyimide film
WO2017191830A1 (ja) * 2016-05-02 2017-11-09 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミド樹脂組成物、及びポリイミドフィルム
JP7003914B2 (ja) 2016-05-02 2022-02-10 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミド樹脂組成物、及びポリイミドフィルム
CN107356998A (zh) * 2016-05-10 2017-11-17 住友化学株式会社 光学膜和使用该光学膜的柔性设备
JP6292351B1 (ja) * 2016-06-24 2018-03-14 東レ株式会社 ポリイミド樹脂、ポリイミド樹脂組成物、それを用いたタッチパネルおよびその製造方法、カラーフィルタおよびその製造方法、液晶素子およびその製造方法、有機el素子およびその製造方法
KR20190022487A (ko) * 2016-06-24 2019-03-06 도레이 카부시키가이샤 폴리이미드 수지, 폴리이미드 수지 조성물, 그것을 사용한 터치 패널 및 그의 제조 방법, 컬러 필터 및 그의 제조 방법, 액정 소자 및 그의 제조 방법, 유기 el 소자 및 그의 제조 방법
KR102134263B1 (ko) 2016-06-24 2020-07-15 도레이 카부시키가이샤 폴리이미드 수지, 폴리이미드 수지 조성물, 그것을 사용한 터치 패널 및 그의 제조 방법, 컬러 필터 및 그의 제조 방법, 액정 소자 및 그의 제조 방법, 유기 el 소자 및 그의 제조 방법
CN109348718B (zh) * 2016-06-24 2021-03-12 东丽株式会社 聚酰亚胺树脂、聚酰亚胺树脂组合物及其用途
CN109348718A (zh) * 2016-06-24 2019-02-15 东丽株式会社 聚酰亚胺树脂、聚酰亚胺树脂组合物、使用其的触摸面板及其制造方法、滤色片及其制造方法、液晶元件及其制造方法、有机el元件及其制造方法
WO2017221776A1 (ja) * 2016-06-24 2017-12-28 東レ株式会社 ポリイミド樹脂、ポリイミド樹脂組成物、それを用いたタッチパネルおよびその製造方法、カラーフィルタおよびその製造方法、液晶素子およびその製造方法、有機el素子およびその製造方法
US20200207918A1 (en) * 2018-06-21 2020-07-02 Lg Chem, Ltd. Branched copolymer, and photosensitive resin composition, photosensitive resin film and optical device using the same
US11981775B2 (en) * 2018-06-21 2024-05-14 Lg Chem, Ltd. Branched copolymer, and photosensitive resin composition, photosensitive resin film and optical device using the same

Also Published As

Publication number Publication date
TW201612012A (en) 2016-04-01
US20170309844A1 (en) 2017-10-26
SG11201702467QA (en) 2017-04-27
KR20170066340A (ko) 2017-06-14
US10431753B2 (en) 2019-10-01
CN107073914A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
WO2016052323A1 (ja) ディスプレイ用支持基板、それを用いたカラーフィルターおよびその製造方法、有機el素子およびその製造方法、ならびにフレキシブル有機elディスプレイ
JP6746888B2 (ja) ディスプレイ用支持基板、それを用いたカラーフィルターおよびその製造方法、有機el素子およびその製造方法、ならびにフレキシブル有機elディスプレイ
JP6503674B2 (ja) 樹脂積層体、それを用いた有機el素子基板、カラーフィルター基板及びそれらの製造方法ならびにフレキシブル有機elディスプレイ
JP6680315B2 (ja) ネガ型感光性樹脂組成物、硬化膜、硬化膜を具備する素子及び表示装置、並びにその製造方法
JP6787124B2 (ja) 樹脂積層膜、それを含む積層体、tft基板、有機el素子カラーフィルターならびにそれらの製造方法。
EP2865702B1 (en) Polyimide precursor, polyimide, flexible substrate using same, color filter and manufacturing method therefor, and flexible display device
JP6292351B1 (ja) ポリイミド樹脂、ポリイミド樹脂組成物、それを用いたタッチパネルおよびその製造方法、カラーフィルタおよびその製造方法、液晶素子およびその製造方法、有機el素子およびその製造方法
KR102207439B1 (ko) 폴리이미드 전구체, 그것으로부터 얻어지는 폴리이미드 수지막, 및 그것을 포함하는 표시 소자, 광학 소자, 수광 소자, 터치 패널, 회로 기판, 유기 el 디스플레이, 및 유기 el 소자 및 컬러 필터의 제조 방법
CN108604062B (zh) 负型感光性树脂组合物、固化膜、具有固化膜的显示装置、及其制造方法
WO2013146130A1 (ja) シランカップリング剤、感光性樹脂組成物、硬化膜及びタッチパネル部材
CN114460809A (zh) 负型感光性树脂组合物、固化膜、具备固化膜的显示装置、及其制造方法
JP6206071B2 (ja) 樹脂組成物、それを用いたポリイミド樹脂膜、それを含むカラーフィルタ、tft基板、表示デバイスおよびそれらの製造方法
JP6369141B2 (ja) 樹脂膜、それを含む積層体、それを用いた有機el素子基板、カラーフィルター基板およびそれらの製造方法ならびにフレキシブル有機elディスプレイ
JP2008208342A (ja) 樹脂組成物、硬化膜、および硬化膜を有するカラーフィルタ
WO2018003808A1 (ja) ネガ型感光性樹脂組成物、硬化膜、硬化膜を具備する素子、素子を具備する表示装置、及び有機elディスプレイ
JP6331314B2 (ja) フレキシブルカラーフィルター、その製造方法ならびにそれを用いたフレキシブル発光デバイス
WO2018029766A1 (ja) 樹脂積層膜、それを含む積層体、tft基板、有機el素子カラーフィルターならびにそれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845933

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177007256

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15515729

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15845933

Country of ref document: EP

Kind code of ref document: A1