WO2013008756A1 - R-t-b系希土類焼結磁石用合金、r-t-b系希土類焼結磁石用合金の製造方法、r-t-b系希土類焼結磁石用合金材料、r-t-b系希土類焼結磁石、r-t-b系希土類焼結磁石の製造方法およびモーター - Google Patents

R-t-b系希土類焼結磁石用合金、r-t-b系希土類焼結磁石用合金の製造方法、r-t-b系希土類焼結磁石用合金材料、r-t-b系希土類焼結磁石、r-t-b系希土類焼結磁石の製造方法およびモーター Download PDF

Info

Publication number
WO2013008756A1
WO2013008756A1 PCT/JP2012/067367 JP2012067367W WO2013008756A1 WO 2013008756 A1 WO2013008756 A1 WO 2013008756A1 JP 2012067367 W JP2012067367 W JP 2012067367W WO 2013008756 A1 WO2013008756 A1 WO 2013008756A1
Authority
WO
WIPO (PCT)
Prior art keywords
rtb
rare earth
alloy
atomic
sintered magnet
Prior art date
Application number
PCT/JP2012/067367
Other languages
English (en)
French (fr)
Inventor
中島 健一朗
貴司 山崎
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to DE112012002150.9T priority Critical patent/DE112012002150T5/de
Priority to CN201280027546.5A priority patent/CN103582715B/zh
Priority to US14/126,770 priority patent/US20140132377A1/en
Publication of WO2013008756A1 publication Critical patent/WO2013008756A1/ja
Priority to US15/219,110 priority patent/US11024448B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/0536Alloys characterised by their composition containing rare earth metals sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C

Definitions

  • the present invention relates to an alloy for RTB system rare earth sintered magnet, a method for producing an alloy for RTB system rare earth sintered magnet, an alloy material for RTB system rare earth sintered magnet, RT -B system rare earth sintered magnet, method of manufacturing RTB system rare earth sintered magnet and motor, in particular, RTB system rare earth sintered having excellent magnetic properties and suitable for motor
  • the present invention relates to an alloy for an RTB-based rare earth sintered magnet and an alloy material for an RTB-based rare earth sintered magnet from which a sintered magnet can be obtained.
  • the present application includes Japanese Patent Application No. 2011-151815 filed in Japan on July 8, 2011, Japanese Patent Application No. 2011-229289 filed in Japan on October 18, 2011, and Japan on March 16, 2012. Claiming priority based on Japanese Patent Application No. 2012-060259 filed and Japanese Patent Application No. 2012-149560 filed in Japan on July 3, 2012, the contents of which are incorporated herein.
  • RTB-based rare earth sintered magnets (hereinafter sometimes referred to as “RTB-based magnets”) have been used for voice coil motors for hard disk drives, engine motors for hybrid vehicles and electric vehicles, etc. Used in motors.
  • An RTB-based magnet is obtained by molding and sintering an RTB-based alloy powder mainly composed of Nd, Fe, and B.
  • R is Nd and a part of Nd substituted with other rare earth elements such as Pr, Dy, and Tb.
  • T is obtained by substituting Fe and a part of Fe with another transition metal such as Co or Ni.
  • B is boron, and a part thereof can be substituted with C or N.
  • the structure of a general RTB-based magnet is mainly composed of a main phase composed of R2T14B and an R-rich phase present at the grain boundary of the main phase and having a higher Nd concentration than the main phase.
  • the R-rich phase is also called a grain boundary phase.
  • the composition of the RTB-based alloy is usually such that the ratio of Nd, Fe, and B is as close to R2T14B as possible in order to increase the proportion of the main phase in the structure of the RTB-based magnet. (For example, refer nonpatent literature 1).
  • the R—T—B system alloy may contain an R2T17 phase.
  • the R2T17 phase is known to cause a reduction in coercive force and squareness of an RTB-based magnet (see, for example, Patent Document 1). For this reason, conventionally, when the R2T17 phase is present in the RTB-based alloy, it is extinguished during the sintering process for manufacturing the RTB-based magnet.
  • an RTB-based magnet having a sufficiently high coercive force can be obtained even when a metal element such as Al, Si, Ga, or Sn is added to the RTB-based alloy. There was a case that could not be done. As a result, it was necessary to increase the Dy concentration even when the metal element was added. For this reason, it is required to supply an RTB-based alloy from which an RTB-based magnet having a high coercive force can be obtained without increasing the content of Dy contained in the RTB-based alloy. It had been.
  • the present invention has been made in view of the above circumstances, and it is possible to obtain an RTB magnet having a high coercivity without increasing the content of Dy contained in the RTB alloy.
  • the RTB-based magnet has a main phase mainly containing R2Fe14B and a grain boundary phase containing more R than the main phase, and the grain boundary phase has a conventionally recognized high rare earth element concentration.
  • RT- with high coercive force by including a grain boundary phase (R-rich phase) and a grain boundary phase (transition metal-rich phase) having a lower rare earth element concentration and a higher transition metal element concentration than the conventional grain boundary phase
  • a B-based magnet can be obtained.
  • the coercive force is improved as the volume fraction of the transition metal rich phase contained in the RTB-based magnet increases.
  • an RTB-based alloy includes an RTB-based alloy in order to effectively exert the effect of improving the coercive force by containing Dy in an RTB-based magnet including a transition metal-rich phase.
  • the composition was examined as shown below. That is, the transition metal rich phase has a lower total atomic concentration of rare earth elements and a higher atomic concentration of Fe than other grain boundary phases. Therefore, studies were made such as increasing the Fe concentration or decreasing the B concentration. As a result, it was found that the coercive force is maximized at a specific B concentration. Furthermore, it has been found that the optimum B concentration varies depending on the Dy concentration.
  • R which is a rare earth element
  • T which is a transition metal essential for Fe
  • M a metal element containing one or more metals selected from Al, Ga and Cu
  • B is contained in 4.5 to 6.2 atomic%
  • M is contained in 0.1 to 2.4 atomic%
  • T is the balance
  • the ratio of Dy in all rare earth elements Is an RTB-based rare earth sintered magnet alloy, characterized by satisfying the following (formula 1).
  • Equation 1 The RTB-based rare earth sintered magnet alloy according to (1), wherein the alloy contains 0.7 to 1.4 atomic% of the M.
  • the area ratio of the region containing the R2T17 phase is not less than 0.1% and not more than 50%, and the RTB rare earth firing according to any one of (1) to (3) Alloy for magnets.
  • R which is a rare earth element
  • T which is an essential transition metal
  • B and inevitable impurities, including 13 to 15 atomic% of R and 4.5 to 6.2 atomic% of B
  • T is the balance
  • the ratio of Dy in the total rare earth elements is 0 to 65 atomic%
  • an RTB-based alloy satisfying the following (formula 1): An alloy material for an RTB-based rare earth sintered magnet containing one or more metal elements M selected from Al, Ga, and Cu or an additive metal made of an alloy containing the metal element M, An alloy material for an RTB-based rare earth sintered magnet comprising the metal element M in an amount of 0.1 to 2.4 atomic% in the alloy material for an RTB-based rare earth sintered magnet.
  • R which is a rare earth element
  • T which is a transition metal essential for Fe, one or more first metals selected from Al, Ga and Cu, B and inevitable impurities, 13 to 15 atomic%, B is included to 4.5 to 6.2 atomic%, T is the balance, the proportion of Dy in all rare earth elements is 0 to 65 atomic%, and the following (formula 1) An RTB-based alloy to satisfy, An alloy material for an RTB-based rare earth sintered magnet including one or more second metals selected from Al, Ga and Cu or an additive metal made of an alloy containing the second metal, The RTB-based rare earth sintered magnet alloy material contains the first metal and the second metal in a total amount of 0.1 to 2.4 atomic%. Alloy material for rare earth sintered magnets.
  • Equation 1 The RTB-based rare earth sintered magnet alloy material according to (5) or (6), further comprising Si. (8) The RTB according to (7), wherein the content of Si in the RTB-based rare earth sintered magnet alloy material is 0.7 to 1.5 atomic%. Alloy material for B-based rare earth sintered magnet.
  • the area ratio of the region including the R2T17 phase in the RTB-based alloy is 0.1% to 50%, as described in any one of (5) to (8) RTB-based rare earth sintered magnet alloy material.
  • the RTB-based rare earth sintered magnet alloy according to any one of (1) to (4) or the RTB according to any one of (5) to (9) A method for producing an RTB rare earth sintered magnet, comprising molding and sintering an alloy material for a rare earth sintered magnet.
  • a diffusion step in which Dy metal or Tb metal, or Dy compound or Tb compound is attached to the surface of the sintered RTB-based magnet and heat-treated is performed (10) or The method for producing an RTB rare earth sintered magnet according to (11).
  • R which is a rare earth element
  • T which is a transition metal essential for Fe
  • M a metal element M containing one or more metals selected from Al, Ga and Cu
  • B is contained in 4.5 to 6.2 atomic%
  • M is contained in 0.1 to 2.4 atomic%
  • T is the balance
  • the ratio of Dy in all rare earth elements Is an RTB-based rare earth sintered magnet satisfying the following (formula 1):
  • the sintered body is provided with a main phase mainly including R2Fe14B and a grain boundary phase containing more R than the main phase, and the grain boundary phase includes a phase having a total atomic concentration of rare earth elements of 70 atomic% or more
  • An RTB-based rare earth sintered magnet comprising a phase having a total atomic concentration of rare earth elements of 25 to 35 atomic%.
  • TB rare earth sintered magnet 17.
  • a motor comprising the RTB-based rare earth sintered magnet according to any one of (13) to (16).
  • R which is a rare earth element
  • T which is a transition metal essential for Fe
  • M a metal element M containing one or more metals selected from Al, Ga and Cu
  • B is contained in 5.0 to 6.0 atomic%
  • M is contained in 0.1 to 2.4 atomic%
  • T is the balance, and the ratio of Dy in all rare earth elements
  • R is from 0 to 65 atomic%
  • a main phase mainly containing R2Fe14B, and an alloy grain boundary phase containing more R than the main phase, and an interval between the alloy grain boundary phases is 3 ⁇ m or less.
  • R which is a rare earth element
  • T which is a transition metal essential for Fe
  • M a metal element M containing one or more metals selected from Al, Ga and Cu
  • B is contained in 5.0 to 6.0 atomic%
  • M is contained in 0.1 to 2.4 atomic%
  • T is the balance, and the ratio of Dy in all rare earth elements
  • the RTB-based rare earth permanent magnet alloy material of the present invention has a B content that satisfies the above (formula 1) and contains 0.1 to 2.4 atomic% of a metal element.
  • the RTB of the present invention having a high coercive force while being able to sufficiently secure the volume fraction of the transition metal rich phase of the sintered RTB rare earth permanent magnet and suppressing the Dy content.
  • a -B rare earth permanent magnet is obtained.
  • the RTB-based rare earth sintered magnet of the present invention has a high coercive force, and therefore can be suitably used for a motor or the like.
  • the alloy for R—T—B system rare earth permanent magnet of the present invention is one or more metals selected from R which is a rare earth element, T which is a transition metal essential for Fe, and Al, Ga and Cu.
  • the ratio of Dy in the total rare earth element is 0 to 65 atomic%, comprising a main phase mainly containing R2Fe14B and an alloy grain boundary phase containing more R than the main phase, the alloy grain boundary phase
  • the alloy grain boundary phase When the distance between the particles is 3 ⁇ m or less, the alloy grain boundary phase is adhered to the periphery of the powder when pulverized to a particle size of 3 ⁇ m or less, so the distribution of the alloy grain boundary phase in the powder becomes uniform.
  • the present invention has a high coercive force because the grain boundary phase is
  • the method for producing an RTB-based rare earth sintered magnet alloy of the present invention has a constant time of 10 seconds to 120 seconds until a cast alloy having a temperature exceeding 800 ° C. reaches a temperature lower than 500 ° C. in the casting process.
  • the volume ratio of the transition metal rich phase of the RTB-based rare earth permanent magnet formed by sintering the RTB-based alloy thus obtained is a method of performing a temperature holding step of maintaining the temperature.
  • an RTB-based rare earth permanent magnet with high coercive force can be obtained while suppressing the content of Dy.
  • FIG. 2 is a plot of the relationship between B / TRE (total concentration of rare earth elements) and Hcj (coercive force) of a sintered magnet produced using an alloy with Dy ⁇ 3.8 atomic%.
  • FIG. 3 is a plot of the relationship between B / TRE (total concentration of rare earth elements) and Hcj (coercive force) of a sintered magnet produced using an alloy with Dy ⁇ 8.3 atomic%.
  • FIG. 4 is a plot of the relationship between the Dy concentration at the point where the coercive force becomes maximum and B / TRE (total concentration of rare earth elements).
  • FIG. 5 is an RTB system ternary phase diagram.
  • FIG. 6 is a backscattered electron image of the alloy F.
  • FIG. 7 is an enlarged view of the R2T17 phase generation region.
  • FIG. 8 is a photomicrograph of the RTB system magnet, which is a backscattered electron image of the RTB system magnet of Experimental Example 9.
  • FIG. 9 is a photomicrograph of the RTB system magnet, which is a reflected electron image of the RTB system magnet of Experimental Example 6.
  • FIG. 10A is a photomicrograph of the RTB system magnet of the present invention, a backscattered electron image of the RTB system magnet of Experimental Example 23, and FIG. FIG. 3 is a schematic diagram for explaining a micrograph of an RTB-based magnet shown in FIG.
  • FIG. 11 is a schematic front view showing an example of an alloy manufacturing apparatus.
  • FIG. 12A is a graph showing the relationship between the distance between the alloy grain boundary phases and the B concentration
  • FIG. 12B is a graph showing the relationship between the distance between the alloy grain boundary phases and B / TRE.
  • FIG. 12C is a graph showing the relationship between the distance between the alloy grain boundary phases and Fe / B.
  • FIG. 12A is a graph showing the relationship between the distance between the alloy grain boundary phases and the B concentration
  • FIG. 12B is a graph showing the relationship between the distance between the alloy grain boundary phases and B / TRE.
  • FIG. 12C is a graph showing the relationship between the distance between the alloy grain boundary phases and Fe / B.
  • FIG. 13A is a micrograph of a cross section of a cast alloy flake with 15.5 Fe / B
  • FIG. 13B is a micrograph of a cross section of the cast alloy flake with 16.4 Fe / B. is there.
  • FIG. 14 is a graph showing the distance between the alloy grain boundary phases of Experimental Example 35 and the distance between the alloy grain boundary phases of Experimental Example 36.
  • FIG. 15 is a graph showing the relationship between the elapsed time and temperature of the manufactured cast alloy from 1200 ° C. to 50 ° C., and FIG. 15 (a) shows the range of the elapsed time from 0 to 1 second.
  • FIG. 15B shows a range from 0 to 250 seconds elapsed time, and FIG.
  • FIG. 15C shows a range from 0 to 700 seconds elapsed time.
  • FIG. 16A is a graph showing the coercivity (Hcj) of the RTB system magnets of Experimental Example 37 to Experimental Example 40
  • FIG. 16B is the graph of Experimental Example 37 to Experimental Example 40.
  • FIG. 16C is a graph showing the magnetization (Br) of the RTB system magnet
  • FIG. 16C shows the magnetization (Br) and the coercive force (RT) of the RTB system magnets of Experimental Examples 37 to 40. It is the graph which showed the relationship with Hcj).
  • FIG. 17A is a graph showing the second quadrant of the hysteresis curve measured by the BH curve tracer of Experimental Example 47 and Experimental Example 48.
  • 17B is a graph of Experimental Example 50 of Experimental Example 49. It is the graph which showed the 2nd quadrant of the hysteresis curve measured with the BH curve tracer, a vertical axis is magnetization J, and a horizontal axis is magnetic field H.
  • RTB-based rare earth sintered magnet alloy The RTB-based rare earth sintered magnet alloy of the present embodiment (hereinafter abbreviated as “RTB-based alloy”) is molded and sintered to form a main phase mainly containing R2Fe14B. And a grain boundary phase comprising a grain boundary phase containing more R than the main phase, wherein the grain boundary phase is an R rich phase and a grain boundary phase having a lower rare earth element concentration and a higher transition metal element concentration than the R rich phase.
  • the RTB-based rare earth sintered magnet of the present invention (hereinafter abbreviated as “RTB-based magnet”) containing the transition metal-rich phase is obtained.
  • the R-rich phase is a phase in which the total atomic concentration of R, which is a rare earth element, is 70 atomic% or more.
  • the transition metal rich phase is a phase in which the total atomic concentration of the rare earth element R is 25 to 35 atomic%.
  • the transition metal rich phase preferably contains 50 to 70 atomic% of T, which is a transition metal essentially containing Fe.
  • the RTB-based alloy of this embodiment is a metal containing at least one metal selected from R, which is a rare earth element, T, which is an essential transition metal, and Al, Ga, and Cu. It consists of the element M, B and inevitable impurities, including 13 to 15 atomic% R, including 4.5 to 6.2 atomic%, including 0.1 to 2.4 atomic%, and T being the balance An RTB-based alloy that satisfies the following (formula 1).
  • the RTB-based alloy of this embodiment is an alloy in which the proportion of Dy in all rare earth elements is 0 to 65 atomic%.
  • the coercive force of the RTB-based magnet obtained by using this is insufficient.
  • the R content exceeds 15 atomic%, the residual magnetization of the RTB-based magnet obtained by using this becomes low, making it unsuitable as a magnet.
  • the content of Dy in all rare earth elements of the RTB-based alloy is set to 0 to 65 atomic%.
  • the coercive force is improved by including the transition metal rich phase, it is not necessary to include Dy, and even when Dy is included, a sufficiently high coercive force with a content of 65 atomic% or less. A magnetic force improving effect is obtained.
  • Examples of the rare earth elements other than Dy in the RTB-based alloy include Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Ho, Er, Tm, Yb, and Lu. Of these, Nd, Pr, and Tb are particularly preferably used. Further, R in the R—T—B system alloy preferably contains Nd as a main component.
  • B contained in the RTB-based alloy is boron, and a part thereof can be substituted with C or N.
  • the B content is 4.5 atomic% or more and 6.2 atomic% or less, and satisfies the above (Formula 1).
  • the content of B is more preferably 4.8 atomic% or more, and more preferably 5.5 atomic% or less. If the content of B contained in the RTB-based alloy is less than 4.5 atomic%, the coercive force of the RTB-based magnet obtained using this will be insufficient. When the content of B exceeds the range of the above (Formula 1), the amount of transition metal rich phase generated becomes insufficient, and the coercive force is not sufficiently improved.
  • the RTB-based alloy of this embodiment includes a main phase mainly containing R2Fe14B and an alloy grain boundary phase containing more R than the main phase.
  • the alloy grain boundary phase can be observed with a backscattered electron image of an electron microscope.
  • the alloy grain boundary phase there are those that are substantially composed only of R and those that contain RTM.
  • the B content contained in the RTB-based alloy is 5.0 atomic% or more, 6 0.0 atomic% or less.
  • the B content is preferably 5.5 atomic% or less.
  • the content of B contained in the RTB-based alloy is less than 5.0 atomic%, the interval between adjacent alloy grain boundary phases of the RTB-based alloy increases rapidly, and the alloy It becomes difficult to obtain a fine alloy structure having a grain boundary phase interval of 3 ⁇ m or less.
  • the spacing between adjacent alloy grain boundary phases of the RTB-based alloy increases, and the alloy particles increase.
  • B rich phase is contained in a sintered magnet because B becomes excessive. For this reason, when the B content exceeds 6.0 atomic%, the coercive force of the R—T—B system magnet manufactured using this may be insufficient.
  • the Fe content relative to the B content included in the RTB-based alloy is preferably 13-16.
  • the generation of the transition metal rich phase is effectively promoted in the manufacturing process of the RTB-based alloy and / or the manufacturing process of the RTB-based magnet. It will be a thing.
  • Fe / B exceeds 16, the interval between the adjacent alloy grain boundary phases of the RTB-based alloy increases rapidly, and a fine alloy structure in which the interval between the alloy grain boundary phases is 3 ⁇ m or less is obtained. It becomes difficult.
  • B / TRE is set to 0.355 to 0.38 in order to refine the grain size of the alloy structure and improve the coercive force of the RTB-based magnet manufactured using the alloy structure. It is preferable. It is more preferable that B / TRE is 0.36 or less so as to obtain a fine alloy structure which is more excellent in grindability and has an alloy grain boundary phase interval of 3 ⁇ m or less.
  • B / TRE is less than 0.355, the interval between adjacent alloy grain boundary phases of the RTB-based alloy is abruptly widened, and a fine alloy structure in which the interval between alloy grain boundary phases is 3 ⁇ m or less is obtained. It becomes difficult to be.
  • T contained in the RTB-based alloy is a transition metal in which Fe is essential.
  • the transition metal other than Fe contained in T of the RTB-based alloy various group 3 to 11 elements can be used.
  • Tc urie temperature
  • FIG. 4 is a plot of the relationship between the Dy concentration at the point where the coercive force is maximized and B / TRE.
  • FIG. 5 is an RTB system ternary phase diagram.
  • the vertical axis indicates the B concentration
  • the horizontal axis indicates the Nd concentration. The lower the B and Nd concentrations in FIG. 5, the higher the Fe concentration.
  • an alloy is cast with a composition in the filled region (for example, a composition indicated by a black mark ⁇ in FIG. 5) to produce an RTB-based magnet composed of a main phase and an R-rich phase. ing.
  • the composition of the RTB-based alloy of the present invention that satisfies the above (Formula 1) is in a region shifted from the above region to the low B concentration side, as indicated by ⁇ in FIG.
  • the R2T17 phase is easily generated in the alloy.
  • the R2T17 phase is known to cause a decrease in coercive force and squareness of the RTB-based magnet, and an RTB-based alloy is usually manufactured under conditions where the R2T17 phase is not generated.
  • the R2T17 phase is considered to be a raw material for the transition metal rich phase in the manufacturing process of the RTB-based alloy and / or the manufacturing process of the RTB-based magnet.
  • the area ratio of the region containing the R2T17 phase is preferably 0.1 to 50%, more preferably 0.1 to 25%.
  • the area ratio of the region including the R2T17 phase is in the above range, the generation of the transition metal rich phase is effectively promoted, and the RTB-based magnet having a sufficiently high coercive force sufficiently including the transition metal rich phase is obtained.
  • the area ratio of the region including the R2T17 phase is 50% or more, the R2T17 phase cannot be completely consumed in the manufacturing process of the RTB system magnet, and the coercive force of the RTB system magnet Squareness may be reduced.
  • the RTB-based alloy of this embodiment when the area ratio of the region including the R2T17 phase is 0.1 to 50%, very excellent pulverizability can be obtained. Since the R2T17 phase is brittle compared to the R2T14B phase, the RTB alloy of the present invention is easily pulverized when the area containing the R2T17 phase includes an area ratio of 0.1 to 50%. Fine particles having a particle diameter of about 2 ⁇ m can be obtained.
  • the area ratio of the region including the R2T17 phase can be obtained by observing a cross section of a cast alloy flake to be an RTB-based alloy under a microscope. Specifically, it is obtained by the following procedure. The cast alloy flakes are embedded in resin, shaved in the thickness direction of the cast alloy flakes, mirror-polished, and then gold or carbon is vapor-deposited to give conductivity to obtain an observation sample. A reflected electron image of this sample is taken with a scanning electron microscope at a magnification of 300 or 350.
  • FIG. 6 shows a backscattered electron image taken at 350 times the cross section of the alloy F shown in Table 1 as an example.
  • a gray R2T14B phase and a white linear R-rich phase are observed.
  • a region where a dotted R-rich phase is observed is referred to as a region including the R2T17 phase.
  • the proportion of the area in the cross-sectional photograph is referred to as the area ratio of the region including the R2T17 phase.
  • FIG. 7 is a high-magnification photograph of the R2T17 phase generation region. When the contrast is emphasized, black R2T17 phase (2-17 phase), white R-rich phase and gray main phase (2-14-1 phase) are generated in the R2T17 phase generation region. I understand that.
  • the metal element M contained in the RTB-based alloy of this embodiment is a step of temporarily reducing the cooling rate of the cast alloy flakes after casting performed during the manufacture of the RTB-based alloy (described later). It is presumed that it promotes the generation of a transition metal rich phase during the temperature maintaining step of the cast alloy) and the sintering and heat treatment for producing the RTB-based magnet.
  • the metal element M contains one or more metals selected from Al, Ga, and Cu, and is contained in an RTB-based alloy in an amount of 0.1 to 2.4 atomic%. Since the RTB-based alloy of the present embodiment contains 0.1 to 2.4 atomic% of the metal element M, the R-rich phase and the transition metal-rich are sintered by sintering this. An RTB-based magnet containing a phase is obtained.
  • One or more metals selected from Al, Ga, and Cu contained in the metal element M can be used in the temperature holding process of the cast alloy without interfering with other magnetic properties, or in the RTB system.
  • the coercivity (Hcj) is effectively improved by promoting the formation of a transition metal rich phase during magnet sintering and heat treatment.
  • the metal element M is less than 0.1 atomic%, the effect of promoting the generation of the transition metal rich phase is insufficient, and the transition metal rich phase is not formed in the RTB-based magnet. There is a possibility that the coercive force (Hcj) of the B-system magnet cannot be sufficiently improved.
  • the metal element M exceeds 2.4 atomic%, the magnetic properties such as magnetization (Br) and maximum energy product (BHmax) of the RTB-based magnet are deteriorated.
  • the content of the metal element M is more preferably 0.7 atomic percent or more, and more preferably 1.4 atomic percent or less.
  • the concentration of Cu is preferably 0.07 to 1 atomic%.
  • the Cu concentration is less than 0.07 atomic%, the magnet is difficult to sinter.
  • the Cu concentration exceeds 1 atomic%, the magnetization (Br) of the RTB-based magnet decreases, which is not preferable.
  • the RTB-based alloy of this embodiment is a metal containing at least one metal selected from R, which is a rare earth element, T, which is an essential transition metal, and Al, Ga, and Cu.
  • R which is a rare earth element
  • T which is an essential transition metal
  • Si may further be included.
  • the Si content is preferably in the range of 0.7 to 1.5 atomic%. By containing Si within the above range, the coercive force is further improved. Even if the Si content is less than 0.7 atomic% or exceeds 1.5 atomic%, the effect of containing Si is reduced.
  • the total concentration of oxygen, nitrogen and carbon contained in the RTB-based alloy is high, these elements and the rare earth element R are bonded in the step of sintering the RTB-based magnet described later. Thus, the rare earth element R is consumed. Therefore, among the rare earth elements R contained in the RTB-based alloy, the rare earth elements used as a raw material for the transition metal-rich phase in the heat treatment after sintering into an RTB-based magnet The amount of R is reduced. As a result, the amount of transition metal rich phase produced is reduced, and the coercivity of the RTB-based magnet may be insufficient. Therefore, in the present embodiment, the total concentration of oxygen, nitrogen, and carbon contained in the RTB-based alloy is preferably 0.5 wt% or less. By making said total density
  • Hcj coercive force
  • the RTB-based alloy of the present invention is produced by casting a molten alloy having a predetermined composition, for example, at a temperature of about 1450 ° C., for example, by the SC (strip casting) method. At this time, the cooling rate of the cast alloy flakes after casting may be temporarily reduced at 700 to 900 ° C. to perform a process for promoting the diffusion of components in the alloy (temperature maintaining step). Thereafter, the cast alloy flakes obtained are crushed by a hydrogen crushing method or the like and pulverized by a pulverizer to obtain an RTB-based alloy.
  • FIG. 11 is a schematic front view showing an example of an alloy manufacturing apparatus.
  • the alloy manufacturing apparatus 1 shown in FIG. 11 includes a casting apparatus 2, a crushing apparatus 21, a heating apparatus 3 disposed below the crushing apparatus 21, and a storage container 4 disposed below the heating apparatus 3. ing.
  • the crushing device 21 crushes the cast alloy lump cast by the casting device 2 to make a cast alloy flake.
  • a hopper 7 is provided between the crushing device 21 and the open / close type stage group 32 to guide the cast alloy flakes onto the open / close type stage group 32 of the heating device 3.
  • the heating device 3 includes a heater 31 and a container 5.
  • the container 5 includes a storage container 4 and an openable / closable stage group 32 installed on the upper part of the storage container 4.
  • the openable stage group 32 includes a plurality of openable stages 33.
  • the openable stage 33 is for placing the cast alloy flakes supplied from the crushing device 21 when “closed”, and for sending the cast alloy flakes to the storage container 4 when “open”.
  • the manufacturing apparatus 1 is provided with a belt conveyor 51 (movable device) that makes the container 5 movable, and the container 5 can be moved in the left-right direction in FIG. 11 by the belt conveyor 51.
  • the chamber 6 includes a casting chamber 6a and a heat insulation / storage chamber 6b that is installed below the casting chamber 6a and communicates with the casting chamber 6a.
  • a casting apparatus 2 is accommodated in the casting chamber 6a, and a heating apparatus 3 is accommodated in the heat insulation / storage chamber 6b.
  • an alloy melt having a predetermined composition at a temperature of about 1450 ° C. is prepared in a melting device (not shown).
  • the obtained molten alloy is supplied to a cooling roll 22 made of a water-cooled copper roll of the casting apparatus 2 using a dundish not shown, and solidified to obtain a cast alloy.
  • the cast alloy is separated from the cooling roll 22 and crushed through the crushing rolls of the crushing device 21 to obtain cast alloy flakes.
  • the crushed cast alloy flakes pass through the hopper 7 and are deposited on the open / close stage 33 in the “closed” state of the open / close stage group 32 disposed under the hopper 7.
  • the cast alloy flakes deposited on the open / close stage 33 are heated by the heater 31.
  • a temperature holding step is performed in which the produced cast alloy of over 800 ° C. is maintained at a constant temperature for 10 seconds to 120 seconds until the temperature reaches a temperature of less than 500 ° C.
  • cast alloy flakes in the temperature range of 800 ° C. to 500 ° C. are supplied onto the open / close stage 33, and heating by the heater 31 starts when the cast alloy flakes are deposited on the open / close stage 33. Is done.
  • a temperature holding process for maintaining the cast alloy at a constant temperature for 10 to 120 seconds is started.
  • the cast alloy flakes deposited on the open / close stage 33 are dropped into the storage container 4 with the open / close stage 33 being in an “open” state when a predetermined time has elapsed. As a result, the heat of the heater 31 does not reach the cast alloy flakes, the cooling of the cast alloy flakes is resumed, and the temperature holding process ends.
  • the metal element M containing one or more metals selected from Al, Ga, and Cu by rearrangement of the elements included in the cast alloy moves in the cast alloy, and B It is estimated that the replacement of the components with Thereby, a part of B contained in the region that becomes the alloy grain boundary phase moves to the main phase, and a part of the metal element M contained in the region that becomes the main phase moves to the alloy grain boundary phase. It is estimated to move. As a result, the original magnetic properties of the main phase can be exhibited, and it is estimated that the coercive force of the RTB-based magnet using this increases.
  • the alloy structure When the temperature of the cast alloy in the temperature holding process is higher than 800 ° C., the alloy structure may be coarsened. Further, if the time for maintaining at a constant temperature exceeds 120 seconds, productivity may be hindered. Also, when the temperature of the cast alloy in the temperature holding step is less than 500 ° C. or when the time for maintaining at a constant temperature is less than 10 seconds, the effect of element rearrangement by performing the temperature holding step is sufficiently obtained. It may not be possible.
  • the temperature holding step is performed by the method in which the cast alloy flakes deposited on the open / close stage 33 within the temperature range of 800 ° C. to 500 ° C. are heated by the heater 31. Is not limited to this method as long as it can be maintained at a constant temperature for 10 seconds to 120 seconds until the cast alloy having a temperature higher than 800 ° C. reaches a temperature lower than 500 ° C.
  • the inside of the chamber 6 for manufacturing the RTB-based alloy has a reduced-pressure atmosphere of inert gas. Furthermore, in this embodiment, it is preferable to perform at least a part of the casting process in an atmosphere containing helium. Helium has a higher ability to extract heat from the cast alloy than argon, and the cooling rate of the cast alloy can be easily increased.
  • Examples of a method for performing at least a part of the casting process in an atmosphere containing helium include a method of supplying helium as an inert gas into the casting chamber 6a of the chamber 6 at a predetermined flow rate.
  • the inside of the casting chamber 6a is an atmosphere containing helium
  • the surface of the casting alloy cast by the casting apparatus 2 and rapidly cooled by the cooling roll 22 that is not in contact with the cooling roll 22 can be efficiently cooled. Accordingly, the cooling rate of the cast alloy is increased, the grain size of the alloy structure is refined, and the grindability is excellent, and a fine alloy structure with an alloy grain boundary phase interval of 3 ⁇ m or less can be easily obtained.
  • the cooling rate of the casting alloy is increased, so that the temperature of the cast alloy flakes deposited on the openable stage 33 can be easily set to 800 ° C. or less. Can do.
  • the cast alloy flakes after the temperature holding step are cooled in an atmosphere containing helium.
  • the cooling rate of the cast alloy flakes which is the cast alloy after the temperature holding step, is increased, so that the alloy structure is further refined, the grindability is excellent, and the distance between the alloy grain boundary phases is 3 ⁇ m or less.
  • An alloy structure can be easily obtained.
  • a method for cooling the cast alloy flakes after the temperature holding step in an atmosphere containing helium for example, helium is supplied at a predetermined flow rate into the storage container 4 in which the cast alloy flakes dropped from the openable stage 33 are accommodated. The method of supplying is mentioned.
  • the RTB-based alloy used in the present invention is manufactured using the SC method. It is not limited to the thing.
  • the RTB-based alloy may be cast using a centrifugal casting method, a book mold method, or the like.
  • the hydrogen crushing method allows hydrogen to be stored in a cast alloy flake at room temperature, heat-treated in hydrogen at a temperature of about 300 ° C, degassed by depressurization, and then heat-treated at a temperature of about 500 ° C. And removing hydrogen from the cast alloy flakes.
  • the cast alloy flakes in which hydrogen is occluded in the hydrogen crushing method expands in volume, so that a large number of cracks (cracks) are easily generated inside the alloy and crushed.
  • a jet mill or the like is used as a method for pulverizing the hydrogen-crushed cast alloy flakes.
  • the cast alloy flakes crushed by hydrogen are put into a jet mill pulverizer, and pulverized to a mean particle size of 1 to 4.5 ⁇ m using high pressure nitrogen of 0.6 MPa, for example, to obtain a powder.
  • the coercive force of the sintered magnet can be improved by reducing the average particle size of the powder. However, if the particle size is too small, the powder surface is easily oxidized, and conversely, the coercive force is lowered.
  • the RTB-based alloy powder of the present embodiment is added to the powder of 0.02% by mass to 0.03% by mass as a lubricant.
  • examples include a method in which zinc stearate is added, press-molded using a molding machine in a transverse magnetic field, sintered in vacuum, and then heat-treated.
  • the R2T17 phase is generated in the RTB-based alloy by satisfying the above (Formula 1).
  • the R2T17 phase is presumed to be used as a raw material for the transition metal rich phase in the heat treatment after the RTB-based alloy is sintered into an RTB-based magnet.
  • the heat treatment after sintering may be performed only once or twice or more. For example, when the heat treatment after sintering is performed only once, it is preferable to perform the heat treatment at 500 ° C. to 530 ° C. Further, when the heat treatment after sintering is performed twice, it is preferable to perform the heat treatment at two stages of temperatures of 530 ° C. to 800 ° C. and 400 ° C. to 500 ° C. When heat treatment is performed at two stages of temperature, it is presumed that an RTB magnet having a more excellent coercive force can be obtained because the formation of a transition metal rich phase is promoted as shown below.
  • the R-rich phase turns into a liquid phase around the main phase (2-14-1 phase) in the first heat treatment at 530 to 800 ° C.
  • the reaction between the R-rich phase, the 2-17 phase (R2T17 phase), and the metal element M is promoted, and the generation of the transition metal-rich phase is promoted.
  • the B content satisfies the above (formula 1) as the RTB-based alloy, and the metal element M is 0.1 to 2.4 atomic%. Since the inclusion is used, it is made of a sintered body having a main phase mainly containing R2Fe14B and a grain boundary phase containing more R than the main phase, and the grain boundary phase has a total atomic concentration of rare earth elements of 70 atoms.
  • % Of the R-rich phase of the present invention including an R-rich phase of at least 50% and a transition metal-rich phase having a total atomic concentration of rare earth elements of 25 to 35 atomic%.
  • the type and amount of metal elements contained in the RTB-based alloy of this embodiment, the volume ratio of the region including the R2T17 phase, and the composition of the RTB-based alloy are adjusted within the scope of the present invention.
  • the volume ratio of the transition metal rich phase in the RTB-based magnet can be easily adjusted to a preferred range of 0.005 to 3% by volume. it can.
  • an RTB-based magnet having a predetermined coercive force according to the application while suppressing the Dy content can be obtained. can get.
  • the effect of improving the coercive force (Hcj) obtained in the RTB-based magnet of the present invention is due to the fact that a transition metal rich phase containing Fe at a high concentration is formed in the grain boundary phase. Presumed.
  • the volume ratio of the transition metal rich phase contained in the RTB-based magnet of the present invention is preferably 0.005 to 3% by volume, more preferably 0.1% to 2% by volume.
  • the volume fraction of the transition metal rich phase is within the above range, the coercive force improving effect due to the inclusion of the transition metal rich phase in the grain boundary phase can be obtained more effectively.
  • the volume fraction of the transition metal rich phase is less than 0.1% by volume, the effect of improving the coercive force (Hcj) may be insufficient.
  • the volume fraction of the transition metal rich phase exceeds 3% by volume, the residual magnetization (Br) and the maximum energy product ((BH) max) are adversely affected.
  • the atomic concentration of Fe in the transition metal rich phase is preferably 50 to 70 atomic%.
  • the effect due to the inclusion of the transition metal rich phase can be obtained more effectively.
  • the atomic concentration of Fe in the transition metal rich phase is less than the above range, the effect of improving the coercive force (Hcj) due to the inclusion of the transition metal rich phase in the grain boundary phase becomes insufficient. Fear arises.
  • the atomic concentration of Fe in the transition metal rich phase exceeds the above range, the R2T17 phase or Fe may precipitate and adversely affect the magnetic properties.
  • the volume ratio of the transition metal rich phase of the RTB-based magnet is examined by the following method. First, an RTB-based magnet is embedded in a conductive resin, a surface parallel to the orientation direction is cut out, and mirror-polished. Next, the mirror-polished surface is observed with a backscattered electron image at a magnification of about 1500 times, and the main phase, R-rich phase, and transition metal-rich phase are discriminated based on the contrast. Thereafter, the area ratio per cross section of the transition metal rich phase is calculated, and the volume ratio is calculated on the assumption that this is spherical.
  • the RTB-based magnet of this embodiment is formed of an RTB-based alloy having a B / TRE content satisfying the above (formula 1) and containing 0.1 to 2.4 atomic% of the metal element M.
  • the grain boundary phase includes an R-rich phase and a transition metal-rich phase, and the transition metal-rich phase has a lower total atomic concentration of rare earth elements than the R-rich phase, and the R-rich phase. Since the atomic concentration of Fe is higher, it has a high coercive force while suppressing the content of Dy, and has excellent magnetic properties suitable for use in a motor.
  • the sintered magnet is obtained by attaching Dy metal or a Dy compound to the surface of the sintered RTB-based magnet and heat-treating it, and diffusing Dy inside the sintered magnet.
  • An RTB magnet having a surface Dy concentration higher than the internal Dy concentration may be used to further improve the coercive force.
  • Specific examples of the method for producing an RTB-based magnet in which the Dy concentration on the surface of the sintered magnet is higher than the internal Dy concentration include the following methods. For example, a sintered RTB-based magnet is immersed in a coating solution obtained by mixing a solvent such as ethanol and dysprosium fluoride (DyF 3 ) at a predetermined ratio, thereby allowing RT— A coating solution is applied to the B system magnet.
  • a solvent such as ethanol and dysprosium fluoride (DyF 3 )
  • a diffusion process is performed in which the RTB-based magnet coated with the coating solution is subjected to a two-step heat treatment.
  • the first heat treatment is performed by heating the RTB-based magnet coated with the coating solution in an argon atmosphere at a temperature of 900 ° C. for about one hour, and the RTB after the first heat treatment is performed.
  • the system magnet is once cooled to room temperature.
  • the RTB-based magnet is again subjected to a second heat treatment of heating at a temperature of 500 ° C. for about one hour in an argon atmosphere, and cooled to room temperature.
  • Dy metal or Dy compound can be attached to the surface of the sintered RTB system magnet by vaporizing the metal and attaching these films to the magnet surface.
  • a method of attaching a film to the surface may be used.
  • Tb metal or Tb compound may be attached to the surface of the sintered RTB-based magnet for heat treatment.
  • the surface of the sintered magnet is obtained by applying a coating solution containing a fluoride of Tb to the surface of the sintered RTB-based magnet and heat-treating it to diffuse Tb into the sintered magnet.
  • the coercive force may be further improved by vapor-depositing metal Dy or metal Tb on the surface of the RTB-based magnet and performing heat treatment to diffuse Dy or Tb into the sintered magnet.
  • vapor-depositing metal Dy or metal Tb on the surface of the RTB-based magnet and performing heat treatment to diffuse Dy or Tb into the sintered magnet.
  • Such a technique can be used for the RTB magnet of this embodiment without any trouble.
  • the magnet when used as a magnet for an electric power steering motor of an automobile or the like, the magnet is preferably 20 kOe or more. When used as, it is preferably 30 kOe or more. When the coercive force (Hcj) is less than 30 kOe in a motor magnet of an electric vehicle, the heat resistance as a motor may be insufficient.
  • an RTB-based magnet is manufactured using an RTB-based alloy containing a metal element.
  • Alloy material for RTB-based rare earth sintered magnet containing powdered RTB-based alloy not containing metal element and additive metal hereinafter abbreviated as “RTB-based alloy material”.
  • RTB-based alloy material Alloy material for RTB-based rare earth sintered magnet containing powdered RTB-based alloy not containing metal element and additive metal
  • the RTB-based alloy material of the present embodiment is composed of R, which is a rare earth element, T, which is a transition metal essential for Fe, B, and unavoidable impurities, and contains 13 to 15 atomic% of R. 4.5 to 6.2 atomic%, T is the balance, the proportion of Dy in all rare earth elements is 0 to 65 atomic%, and satisfies the following (formula 1) And an RTB-based alloy material containing one or more metal elements M selected from Al, Ga and Cu or an additive metal made of an alloy containing the metal element M, The B alloy material contains 0.1 to 2.4 atomic% of the metal element M.
  • the RTB-based alloy is the same as the RTB-based alloy of the first embodiment except that the metal element M is not included. Used and can be manufactured in the same manner as the RTB-based alloy of the first embodiment. Therefore, the description of the RTB-based alloy included in the RTB-based alloy material of the present embodiment is omitted.
  • the area of the region including the R2T17 phase is the same as the RTB-based alloy of the first embodiment.
  • the rate is preferably from 0.1 to 50%, more preferably from 0.1 to 25%.
  • the area ratio of the region including the R2T17 phase is in the above range, the generation of the transition metal rich phase is effectively promoted, and the RTB-based magnet having a sufficiently high coercive force sufficiently including the transition metal rich phase is obtained. . If the area ratio of the region including the R2T17 phase is 50% or more, the R2T17 phase cannot be completely consumed in the manufacturing process of the RTB system magnet, and the coercive force of the RTB system magnet Squareness may be reduced.
  • the RTB-based alloy included in the RTB-based alloy material of the present embodiment is very excellent when the area ratio of the region including the R2T17 phase is 0.1 to 50%. Since pulverization is obtained, it can be easily pulverized into fine particles having a particle size of about 2 ⁇ m.
  • the area ratio of the region including the R2T17 phase of the RTB-based alloy included in the RTB-based alloy material of the present embodiment is the same as that of the RTB-based alloy of the first embodiment. Is required.
  • the additive metal contained in the RTB-based alloy material of the present embodiment is made of one or more metal elements M selected from Al, Ga and Cu or an alloy containing the metal element M.
  • the metal element M is presumed to promote the generation of a transition metal rich phase during the sintering and heat treatment for producing the RTB-based magnet.
  • the metal element M is contained in the RTB-based alloy material in an amount of 0.1 to 2.4 atomic%.
  • the content of the metal element M is more preferably 0.7 atomic percent or more, and more preferably 1.4 atomic percent or less. Since the RTB-based alloy material of the present embodiment contains 0.1 to 2.4 atomic% of the metal element M, by sintering this, the R-rich phase, the transition metal-rich phase, An RTB-based magnet containing can be obtained.
  • One or more metals selected from Al, Ga and Cu contained in the metal element M transition during sintering and heat treatment of RTB-based magnets without affecting other magnetic properties.
  • the generation of the metal rich phase is promoted to effectively improve the coercive force (Hcj).
  • the metal element M is less than 0.1 atomic%, the effect of promoting the generation of the transition metal rich phase is insufficient, and the transition metal rich phase is not formed in the RTB-based magnet. There is a possibility that the coercive force (Hcj) of the B-system magnet cannot be sufficiently improved.
  • the metal element M exceeds 2.4 atomic%, the magnetic properties such as magnetization (Br) and maximum energy product (BHmax) of the RTB-based magnet are deteriorated.
  • the Cu concentration is preferably 0.07 to 1 atomic%.
  • the Cu concentration is less than 0.07 atomic%, the magnet is difficult to sinter.
  • the Cu concentration exceeds 1 atomic%, the magnetization (Br) of the RTB-based magnet decreases, which is not preferable.
  • the RTB-based alloy material of this embodiment may further contain Si in addition to the RTB-based alloy and the additive metal.
  • Si is contained in the RTB-based alloy material
  • the Si content is preferably in the range of 0.7 to 1.5 atomic%.
  • the coercive force is further improved. Even if the Si content is less than 0.7 atomic% or exceeds 1.5 atomic%, the effect of containing Si is reduced.
  • RTB-based alloy material The RTB-based alloy contained in the RTB-based alloy material of the present invention can be manufactured in the same manner as the RTB-based alloy of the first embodiment. Then, the RTB-based alloy material is obtained by mixing the RTB-based alloy powder and the additive metal powder. "Method for manufacturing RTB rare earth sintered magnet” Using the RTB-based alloy material of the present embodiment thus obtained, the RTB-B alloy is used in the same manner as when the RTB-based alloy of the first embodiment is used. A system magnet can be manufactured.
  • the particle size of the RTB-based alloy powder is usually set to 4 to 5 ⁇ m at d50.
  • the coercive force can be further improved by reducing the size of the particles in the TB system magnet.
  • the surface of the RTB-based magnet is coated with Dy or Tb fluoride and heat-treated, and Dy or Tb is placed inside the sintered magnet.
  • the coercive force may be further improved by diffusing. Further, the coercive force may be further improved by vapor-depositing metal Dy or metal Tb on the surface of the RTB-based magnet and performing heat treatment to diffuse Dy or Tb into the sintered magnet.
  • the B content satisfies the above (formula 1), and the metal element M is 0.1 to 2.4 atoms. Therefore, the grain boundary phase has a total atomic concentration of the rare earth elements of 70.
  • the sintered body has a main phase mainly containing R2Fe14B and a grain boundary phase containing more R than the main phase.
  • the RTB-based magnet of the present invention including an R-rich phase of at least atomic% and a transition metal-rich phase having a total atomic concentration of rare earth elements of 25 to 35 atomic% can be obtained.
  • the type and amount of the metal element M contained in the RTB-based alloy material of the present embodiment, the volume ratio of the region including the R2T17 phase, and the composition of the RTB-based alloy are within the scope of the present invention.
  • the volume ratio of the transition metal rich phase in the RTB-based magnet can be easily adjusted to a preferable range of 0.005 to 3% by volume. Can be adjusted.
  • an RTB-based magnet having a predetermined coercive force according to the application while suppressing the Dy content can be obtained. can get.
  • the RTB-based magnet of this embodiment is formed by molding an RTB-based alloy material in which the B / TRE content satisfies the above (formula 1) and contains 0.2 to 5 atomic% of the metal element M.
  • the grain boundary phase includes an R-rich phase and a transition metal-rich phase, and the transition metal-rich phase has a lower total atomic concentration of rare earth elements than the R-rich phase, and is less than the R-rich phase. Since the atomic concentration of Fe is high, it has a high coercive force while suppressing the content of Dy, and has excellent magnetic properties suitable for use in a motor.
  • the RTB-based alloy material including the powdered RTB-based alloy containing no metal element and the additive metal has been described.
  • the metal element is contained.
  • An RTB-based alloy material containing an RTB-based alloy and an additive metal will be described. That is, in the present invention, the metal element may be included in the RTB-based alloy material at the stage of casting the RTB-based alloy, or the RTB-based alloy may be sintered. It may be a stage before ligation, or a metal element may be added in both stages.
  • a part of the metal element contained in the RTB-based alloy material is included in the RTB-based alloy, and the powder of the RTB-based alloy and the remaining metal elements are included.
  • the RTB-based alloy material of the present embodiment is molded and sintered in the same manner as in the first and second embodiments described above, so that the first and second embodiments described above are performed.
  • the RTB magnet of the embodiment can be obtained.
  • the RTB-based alloy material of the present embodiment includes one or more first metals selected from R which is a rare earth element, T which is a transition metal essential for Fe, and Al, Ga and Cu. And B and inevitable impurities, including R in an amount of 13 to 15 atom%, including B in an amount of 4.5 to 6.2 atom%, T being the balance, and the ratio of Dy in the total rare earth element being 0 to 65 atoms % And an RTB-based alloy satisfying the following (formula 1), and one or more second metals selected from Al, Ga and Cu, or an additive metal comprising the second metal
  • the RTB-based alloy material includes the first metal and the second metal in a total amount of 0.1 to 2.4 atomic%. .
  • Each of the first metal and the second metal is one or more metals selected from Al, Ga, and Cu, and the total of the first metal and the second metal, the first embodiment and the first described above.
  • the composition is the same as that of the metal element M in the second embodiment. Further, the total content of the first metal and the second metal in the RTB-based alloy material is the same as that of the metal element M in the first embodiment and the second embodiment described above.
  • the RTB-based alloy material of the present embodiment is the same as that of the second embodiment except that the RTB-based alloy contains the first metal, and the RTB-based magnet Is the same as in the first and second embodiments. Therefore, the description is omitted.
  • the transition metal rich phase contained in the RTB-based magnet of the present invention is used for the manufacturing process of the RTB-based alloy and / or R— It is considered that the transition metal rich phase is generated by being used as a raw material for the transition metal rich phase of the RTB magnet in one or more heat treatments performed in the manufacturing process of the TB magnet.
  • the conditions of the heat treatment for generating the transition metal rich phase include the type and amount of the metal element M used together with the R2T17 phase as a raw material for the transition metal rich phase, the R-TB alloy and / or R after sintering. It is determined according to the amount of R2T17 phase produced in the -TB system magnet, the composition of the RTB magnet, the required amount of transition metal rich phase produced, and the like.
  • the heat treatment for generating the transition metal rich phase is preferably performed at a temperature of 400 to 800 ° C. with respect to the RTB-based alloy being manufactured and / or the RTB-based magnet being manufactured. More preferably, it can be carried out once or a plurality of times at a temperature of 450 to 650 ° C., and it is 0 in total in the manufacturing process of the RTB-based alloy and / or the manufacturing process of the RTB-based magnet. It is preferably performed for 5 to 5 hours, more preferably 1 to 3 hours.
  • the temperature of the heat treatment for generating the transition metal rich phase is less than 400 ° C., the reaction between the rare earth element R, the 2-17 phase (R2T17 phase) and the metal element M during the heat treatment becomes insufficient, and the transition metal rich phase is It may not be generated enough.
  • the temperature of the heat treatment for generating the transition metal rich phase exceeds 800 ° C., rearrangement of atoms occurs, and the transition metal rich phase may not be sufficiently generated.
  • the total time of the heat treatment for generating the transition metal rich phase is less than 0.5 hour, the reaction between the rare earth element R, the 2-17 phase (R2T17 phase) and the metal element M becomes insufficient during the heat treatment. In some cases, the amount of transition metal-rich phase produced becomes insufficient. If the total time of the heat treatment for generating the transition metal rich phase exceeds 5 hours, the long heat treatment time is not preferable because the productivity is hindered.
  • the heat treatment for generating the transition metal rich phase is performed once or a plurality of times in the manufacturing process of the RTB-based alloy and / or the manufacturing process of the RTB-based magnet.
  • the heat treatment for the purpose of generating only may be used, or the heat treatment performed for other purposes such as sintering may also serve as the heat treatment for generating the transition metal rich phase.
  • the number of heat treatments for generating the transition metal rich phase is not particularly limited, but is preferably performed a plurality of times in order to sufficiently generate the transition metal rich phase.
  • the heat treatment for generating the transition metal rich phase the cooling rate of the cast alloy flakes after casting performed when producing the RTB-based alloy is temporarily reduced to reduce the components in the alloy.
  • Treatment for promoting diffusion (temperature holding step) heat treatment for sintering the RTB system magnet performed when manufacturing the RTB system magnet, RTB system after sintering
  • One or more treatments selected from a heat treatment for generating a transition metal rich phase in the magnet and a heat treatment for diffusing Dy and Tb in the sintered RTB-based magnet are included.
  • the heat treatment for generating the transition metal rich phase is preferably performed at a temperature of 400 to 800 ° C., but the optimum temperature within the above range is the RTB-based alloy or RTB to be heat-treated. Since it differs depending on the structure of the system magnet, for example, it is different before and after sintering, and the RTB system magnet is completed from the process of casting the RTB system alloy. It is determined as appropriate depending on which process during the heat treatment. In addition, the amount of transition metal rich phase produced by the heat treatment for generating the transition metal rich phase tends to increase with an increase in the heat treatment time for generating the transition metal rich phase.
  • the RTB-based alloy or RTB-based magnet is heated to a temperature higher than the decomposition temperature of the transition metal-rich phase in the process after the heat treatment for generating the transition metal-rich phase. In some cases, a part or all of the produced transition metal rich phase is decomposed and reduced.
  • the reaction shown in the following (Formula 3) and / or (Formula 4) proceeds. More specifically, the metal element M used as a raw material for the transition metal rich phase in the heat treatment is present alone in the RTB-based alloy or RTB-based magnet that is the heat-treated material. If it is, it is presumed that the reaction shown in the following (formula 3) proceeds in the heat treatment for generating the transition metal rich phase.
  • the reaction shown in (Formula 3) and the reaction shown in (Formula 4) proceed simultaneously.
  • it is performed when an RTB-based magnet is manufactured using an RTB-based alloy material containing an RTB-based alloy containing a metal element and an additive metal. Examples include heat treatment for sintering.
  • the size of the R2T17 phase in the RTB-based alloy should be small. If the size of the R2T17 phase is large, the R2T17 phase cannot be completely lost even if the reaction shown in (Formula 3) or (Formula 4) occurs, and the R2T17 phase remains in the RTB system magnet. As a result, the coercive force or the squareness may deteriorate.
  • the size of the R2T17 phase is preferably 10 ⁇ m or less, and more preferably 3 ⁇ m or less.
  • the size of the R2T17 phase is the size of the R2T17 phase alone, not the size of the R2T17 phase existing region.
  • the R2T17 phase and the rare earth element including the metal element M are obtained as shown in (Formula 3) and / or (Formula 4). It is presumed that a transition metal rich phase of an RTB-based magnet is generated using R (or metal element M and rare earth element R) as raw materials.
  • the Si content described in the alloy composition shown in Table 1 is not actively contained in the alloy, but is the Si content contained as an impurity in the alloy.
  • the alloy N is prepared without intentionally containing the metal element M
  • the alloy O is only Al as the metal element M
  • the alloy P is only Ga as the metal element M
  • the alloy Q is the metal element M.
  • only Cu was intentionally added.
  • Al contained in the alloys N, P and Q is not intentionally added but is mixed from an alumina crucible.
  • the cast alloy flakes were crushed by the hydrogen crushing method shown below.
  • the cast alloy flakes were roughly pulverized so as to have a diameter of about 5 mm, and inserted into hydrogen at room temperature to occlude hydrogen.
  • the cast alloy flakes coarsely pulverized and occluded with hydrogen were subjected to a heat treatment in which hydrogen was heated to 300 ° C. in hydrogen. Thereafter, the pressure was reduced and the hydrogen was deaerated, and further heat treatment was performed to heat to 500 ° C. to release and remove hydrogen in the cast alloy flakes, which were then crushed by cooling to room temperature.
  • the area ratios of the R2T17 phases of the alloys A to L, N to Q, and T to Z thus obtained were examined by the following method.
  • the cast alloy flakes with a thickness within ⁇ 10% of the average thickness are embedded in resin, the cross section is cut in the thickness direction, the cross section is mirror-polished, and then gold or carbon is added to impart conductivity.
  • Vapor deposition was used as an observation sample. This sample was photographed as a reflected electron image with a scanning electron microscope (JEOL JSM-5310) at a magnification of 350 times.
  • FIG. 6 shows a reflected electron image of the alloy F as an example.
  • Table 4 shows the area ratio of the R2T17 phase of the measured alloys among the alloys A to L, N to Q, and T to Z. In Table 4,-represents unmeasured.
  • the RTB-based alloy powder thus obtained was press-molded at a molding pressure of 0.8 t / cm 2 using a transverse magnetic field molding machine to obtain a green compact. Thereafter, the obtained green compact was sintered at a temperature of 900 to 1200 ° C. in a vacuum. Thereafter, the RTB magnets of Experimental Examples 1 to 17 and Experimental Examples 41 to 46 were manufactured by heat treatment at two temperatures of 800 ° C. and 500 ° C. and cooling.
  • the particle size of the Si powder was measured with a laser diffractometer.
  • Hcj is the coercive force
  • Br is the remanent magnetization
  • Sq is the squareness
  • BHmax is the maximum energy product.
  • the values of these magnetic characteristics are the average of the measured values of five RTB system magnets.
  • the volume ratio of the transition metal rich phase of the RTB-based magnets of Experimental Examples 3 to 28 and Experimental Example 34 was examined by the following method.
  • An RTB-based magnet was embedded in a conductive resin, a surface parallel to the orientation direction was cut out, and mirror-polished. This surface was observed with a reflected electron image at a magnification of about 1500 times, and the main phase, R-rich phase, and transition metal-rich phase were discriminated based on the contrast.
  • FIGS. 9 and 11 are backscattered electron images of RTB magnets obtained in Experimental Examples 6 and 23, respectively. 9 and 11, it can be seen that a white R-rich phase and a light gray transition metal-rich phase are present at the grain boundary of the gray R2T14B phase.
  • the area ratio per cross section of the transition metal rich phase was calculated from the reflected electron image, and the volume ratio of each experimental example was calculated on the assumption that it was spherical.
  • Tables 4-6 In Tables 4 to 6, “-” represents unmeasured.
  • the RTB magnets of Experimental Example 18 to Experimental Example 34 are R2Fe14B. It was confirmed that it was mainly composed of a main phase mainly containing R, an R-rich phase, and a transition metal-rich phase.
  • FIG. 1 is a graph showing the relationship between B / TRE (total concentration of rare earth elements) and coercive force (Hcj) in Experimental Examples 1 to 4 and 18 to 21.
  • the RTB-type magnets of Experimental Examples 1 to 4 and 18 to 21 do not contain Dy, but Si, which is an additive metal, is added as shown in Experimental Examples 18 to 21 (Experimental Examples 18 to 21), the coercive force (Hcj) is high.
  • the optimum B / TRE width is estimated to be about ⁇ 0.1 with respect to the peak.
  • FIG. 2 is a graph showing the relationship between the B content (total concentration of rare earth elements) and the coercive force (Hcj) of Experimental Examples 5 to 9 and 22 to 25.
  • the RTB-based magnets of Experimental Examples 5 to 9 and 22 to 25 contain about 3.8 atomic% of Dy. Since the B content is different, the coercive force is different, but the B / TRE is 0.37 and the coercive force is maximized. Further, as shown in Experimental Examples 22 to 25, it can be seen that the coercive force is increased by adding Si as an additional metal (Experimental Examples 22 to 25). At this time, the optimum B / TRE width is estimated to be about ⁇ 0.1 with respect to the peak.
  • FIG. 3 is a graph showing the relationship between the B content (total concentration of rare earth elements) and the coercive force (Hcj) of Experimental Examples 10 to 12 and 26 to 28.
  • the RTB type magnets of Experimental Examples 10 to 12 and 26 to 28 contain about 8.3 atomic% of Dy. Since the B content is different, the coercive force is different, but the coercive force is maximized when B / TRE is 0.39. It can also be seen that the coercive force is increased by adding Si as an additive metal (Experimental Examples 24 to 26). At this time, the optimum B / TRE width is estimated to be about ⁇ 0.1 with respect to the peak.
  • Experimental Example 14 was prepared without adding Cu, Al, Ga, and Si, and its coercive force was significantly lower than that of Experimental Example 6 having the closest composition.
  • Experimental Example 17 in which only Cu was added to the components of Experimental Example 14 were compared with Experimental Example 14.
  • the coercive force is high. It is shown that any one of Al, Ga, and Cu is essential for increasing the coercive force.
  • Experimental Examples 30 to 33 in which Si is added to the alloys N to Q the coercive force is high, indicating that it is preferable to add two or more kinds of metals M.
  • Experimental Example 33 in which Si powder was added to Alloy Q, a significant improvement in coercive force was observed. Further, Experimental Example 33 has a coercive force of 2 kOe or higher even when compared with Experimental Example 24 having a similar composition, indicating that it is particularly preferable to add Cu and Si.
  • Experimental Example 14 Comparing Experimental Examples 14 to 17 having approximately the same Dy concentration, Experimental Example 14 in which the concentration of the metal element M is 0.08 atomic% has a low coercive force, but the concentration of the metallic element M is 0.1 atomic% or more. In Experimental Examples 15 to 17, the coercive force is high. Further, comparing Experimental Example 41 to Experimental Example 46 not containing Dy, in Experimental Example 43 (the concentration of the metallic element M is 2.43 atomic%), the Experimental Example 41 (the concentration of the metallic element M is 0.75). Atomic%) The coercive force is lower than in Experimental Example 42 (the concentration of the metal element M is 1.00 atomic%). From the above, it is shown that the content of the metal element M is preferably 0.1 to 2.4 atomic%.
  • the high coercive force is that of the experimental examples 41, 42, and 44 to 46 (the concentration of the metal element M is 0. 0). 72 to 1.34 atomic%). This indicates that the content of the metal element M is more preferably in the range of 0.7 to 1.4 atomic%.
  • Experimental Example 34 shown in Tables 3 and 6 all metal elements were added at the stage of alloy casting. Comparing Experimental Example 5 and Experimental Example 34 in Tables 1 and 4 with the same Dy content, it can be seen that Experimental Example 34 shows a higher coercive force than Experimental Example 5. From the results in Tables 1 to 6, it can be seen that the effect of improving the coercive force of the magnet can be obtained even when the metal element is cast by alloying or when the alloy and the additive metal are mixed.
  • FIGS. 8A to 10A are photomicrographs of the RTB-based magnet.
  • FIG. 8 is an experiment example 9
  • FIG. 9 is an experiment example 6, and FIG. It is.
  • FIG. 10B is a schematic diagram for explaining a micrograph of the RTB system magnet shown in FIG.
  • the gray portion is the R2T14B phase
  • the white portion is the R-rich phase
  • the light gray portion is the transition. It is a metal rich phase.
  • B / TRE of Experimental Example 9 is higher than the range of the present invention.
  • B / TRE in Experimental Example 6 is a value within the range of the present invention, and Experimental Example 23 is obtained by adding Si to Experimental Example 6.
  • FIG. 8 almost no transition metal rich phase was observed.
  • FIG. 9 a slight transition metal rich phase is generated, and in FIG. 10 (a), it can be seen that more transition metal rich phases are generated. From FIG. 8 to FIG. 10A, it can be seen that the generation of the transition metal rich phase can be increased by appropriately selecting B / TRE and further appropriately adding the additive metal.
  • FIG. 8 several pulverized particles are fused to form a main phase.
  • the pulverized particles individually form the main phase without fusing.
  • FIG. 10A it can be clearly observed that the grain boundary phase surrounds the main phase formed by the pulverized individual particles.
  • cast alloy flakes were produced using the alloy production apparatus 1 shown in FIG. 11 (casting process).
  • a high-frequency vacuum induction furnace melting apparatus
  • Ar heating apparatus
  • the obtained molten alloy was supplied to a water-cooled copper roll rotating at a roll peripheral speed of 1.0 m / sec and solidified to obtain a cast alloy.
  • the cast alloy was separated from the cooling roll 22 and crushed through the crushing roll of the crushing device 21 to obtain a cast alloy flake having an average thickness of 0.3 mm.
  • the casting process was performed in an argon atmosphere.
  • the crushed cast alloy flakes are passed through the hopper 7 and deposited on the open / closed stage 33 which is in the “closed” state and heated by the heater 31, and the cast alloy at 800 ° C. is kept at a constant temperature for 60 seconds.
  • the temperature holding process to maintain was performed, and the temperature holding process was completed by putting the openable stage 33 in the “open” state.
  • the cast alloy flakes of Experimental Example 35 obtained in this way were embedded in resin, and the mirror-polished cross section was observed at a magnification of 350 times with a reflected electron image, and the main phase and the alloy grain boundary phase were discriminated based on the contrast. Then, the distance between adjacent alloy grain boundary phases was examined as shown below. That is, a straight line was drawn at 10 ⁇ m intervals parallel to the casting surface on each image of the backscattered electron image at a magnification of 350 times of the cast alloy flake of Experimental Example 35, and the distance between the alloy grain boundary phases crossing the straight line was measured. The average value was calculated. The shorter the distance between adjacent alloy grain boundary phases, the better the grindability.
  • a plurality of cast alloy flakes were prepared in the same manner as the cast alloy flakes of Experimental Example 35 except that the concentrations of B element and Fe element having the alloy composition shown in Table 7 were changed. Similar to the flakes, the distance between adjacent alloy grain boundary phases was investigated. The results are shown in FIGS. 12 (a) to 12 (c), 13 (a), and 13 (b).
  • FIG. 12A is a graph showing the relationship between the distance between the alloy grain boundary phases of the cast alloy flakes and the B concentration
  • FIG. 12B shows the distance between the alloy grain boundary phases of the cast alloy flakes and the B /
  • FIG. 12C is a graph showing a relationship with TRE (B is the concentration of boron element (atomic%), TRE is the total concentration of rare earth elements (atomic%))
  • FIG. 12C is an alloy of cast alloy flakes.
  • a graph showing the relationship between the distance between grain boundary phases and Fe / B ratio of Fe content to B content (B is the concentration of boron element (atomic%), Fe is the concentration of iron element (atomic%))
  • FIG. 12 (a) shows that when the B content is 5.0 atomic% or more and 6.0 atomic% or less, the distance between the alloy grain boundary phases is short and fine. It can also be seen that when the B content is less than 5.0 atomic%, the interval between the alloy grain boundary phases is rapidly increased.
  • FIG. 12 (b) shows that when B / TRE is 0.355 to 0.38, the distance between the alloy grain boundary phases is short and fine. Moreover, when B / TRE becomes less than 0.355, it turns out that the space
  • FIG. 13A is a micrograph of a cross section of a cast alloy flake with 15.5 Fe / B
  • FIG. 13B is a micrograph of a cross section of the cast alloy flake with 16.4 Fe / B. is there.
  • the gray portion is the main phase
  • the white portion is the alloy grain boundary phase.
  • the alloy grain boundary phase is formed in a fine network.
  • the cast alloy flakes shown in FIG. 13 (b) acicular alloy grain boundary phases and island-like main phases are observed.
  • FIG. 12 (c) shows that the distance between the alloy grain boundary phases becomes narrower as Fe / B increases from 13, and in the case of 15 to 16, the distance between the alloy grain boundary phases becomes particularly short. Further, from FIG. 12 (c), FIG. 13 (a) and FIG. 13 (b), when Fe / B is 13 to 16, the inter-alloy grain boundary phase is smaller than when Fe / B exceeds 16. It can be seen that the distance is short and fine. Further, FIG. 12 (c) shows that when Fe / B exceeds 16, the interval between the alloy grain boundary phases becomes abruptly wide.
  • Example 36 Experimental Example 35 except that the alloy composition shown in Table 7 was weighed and loaded into an alumina crucible and the atmosphere during the casting process was changed to the following atmosphere using the alloy manufacturing apparatus 1 shown in FIG. In the same manner, cast alloy flakes were produced (casting process). That is, the casting process is performed while supplying helium in an argon atmosphere, the casting alloy is cooled by the cooling roll 22 in an atmosphere containing helium, and the cast alloy flakes housed in the storage container 4 after the temperature holding process. Was cooled in an atmosphere containing helium.
  • FIG. 14 shows the result of examining the distance between the alloy grain boundary phases of Experimental Example 35 and Experimental Example 36.
  • black ⁇ is the result of Experimental Example 35
  • is the result of Experimental Example 36.
  • Experimental Example 36 which is a cast alloy flake in which the casting process is performed in an atmosphere containing helium
  • Experimental Example 35 which is a cast alloy flake in which the casting process is performed in an argon atmosphere
  • the distance between the alloy grain boundary phases is narrow. From this, it can be seen that by performing the casting process in an atmosphere containing helium, the grain size of the alloy structure is refined and the grindability is excellent.
  • Example 37 The alloy F is weighed so as to have the composition of alloy F shown in Table 1, loaded into an alumina crucible, and cooled using the alloy production apparatus 1 shown in FIG. 11 to 1200 ° C. to 50 ° C. Cast alloy flakes were produced in the same manner as in Experimental Example 35 except that the temperature history was changed to the conditions (a) shown in FIGS. 15 (a) to 15 (c) and Table 8 (casting process). The casting process was performed in an argon atmosphere.
  • the cast alloy flakes were crushed by the hydrogen crushing method in the same manner as in Experimental Example 1 to obtain the RTB-based alloy powder of Experimental Example 37.
  • the average particle size (d50) of the RTB-based alloy powder was 4.5 ⁇ m.
  • the RTB-based alloy powder of Experimental Example 37 obtained in this manner was press-molded at a molding pressure of 0.8 t / cm 2 using a molding machine in a transverse magnetic field to obtain a green compact. Thereafter, the obtained green compact was sintered at a temperature of 900 to 1200 ° C. in a vacuum. Thereafter, heat treatment was performed at two stages of 800 ° C. and 500 ° C., and the RTB magnets of Experimental Example 37 were manufactured.
  • the magnetic properties of the obtained RTB system magnets of Experimental Example 37 were measured with a BH curve tracer (Toei Kogyo TPM2-10). The results are shown in FIGS. 16 (a) to 16 (c).
  • Example 38 Experimental Example 37, except that the history of the cooling temperature of the produced cast alloy from 1200 ° C. to 50 ° C. was set to the conditions (b) shown in FIGS. 15 (a) to 15 (c) and Table 8. A cast alloy flake was produced in the same manner as described above, and using this, an RTB-based alloy powder of Experimental Example 38 was obtained in the same manner as Experimental Example 37. The average particle size (d50) of the RTB-based alloy powder was 4.5 ⁇ m.
  • Example 39 A powder made of an RTB-based alloy obtained in Experimental Example 37 and a Si powder having an average particle size (d50) of 4.35 ⁇ m were prepared, and both were prepared so as to have the composition of Experimental Example 23 shown in Table 2.
  • the RTB alloy material of Experimental Example 39 was manufactured by mixing. The particle size of the Si powder was measured with a laser diffractometer.
  • Example 40 A powder made of an RTB-based alloy obtained in Experimental Example 38 and an Si powder having an average particle size (d50) of 4.35 ⁇ m were prepared, and both were prepared so as to have the composition of Experimental Example 23 shown in Table 2.
  • the RTB alloy material of Experimental Example 40 was manufactured by mixing.
  • the particle size of the Si powder was measured with a laser diffractometer.
  • FIG. 16A is a graph showing the coercivity (Hcj) of the RTB system magnets of Experimental Example 37 to Experimental Example 40
  • FIG. 16B is the graph of Experimental Example 37 to Experimental Example 40
  • FIG. 16C is a graph showing the magnetization (Br) of the RTB system magnet
  • FIG. 16C shows the magnetization (Br) and the coercive force (RT) of the RTB system magnets of Experimental Examples 37 to 40. It is the graph which showed the relationship with Hcj).
  • the dotted line shown in FIG.16 (c) is an equivalent line.
  • is the result of Experimental Example 37
  • is the result of Experimental Example 38
  • black ⁇ is the result of Experimental Example 39
  • is the result of Experimental Example 40.
  • Experimental Example 38 and Experimental Example 40 in which the temperature holding process for maintaining the cast alloy at 800 ° C. at a constant temperature for 60 seconds, are conducted in Experimental Example 37 and Experiment in which the temperature holding process is not performed.
  • the coercive force (Hcj) increased.
  • the RTB-based magnet of Experimental Example 40 using the RTB-based alloy material to which Si is added the R—B of Experimental Example 38 using the RTB-based alloy to which Si is not added is used.
  • the coercive force (Hcj) was higher than that of the TB magnet.
  • Experimental Example 38 and Experimental Example 40 in which the temperature holding process was performed are located on the right side of the equivalent line, and the coercive force is higher than that in the case where the temperature holding process is not performed. I understand that.
  • Example 47 An RTB-based alloy powder manufactured to have the composition of the sintered magnet of Experimental Example 47 shown in Table 9 was press-molded at a molding pressure of 0.8 t / cm 2 using a molding machine in a transverse magnetic field. To obtain a green compact. Thereafter, the obtained green compact was sintered at a temperature of 900 ° C. to 1200 ° C. in a vacuum. Thereafter, heat treatment was performed at two stages of 800 ° C. and 500 ° C., and the RTB magnet of Experimental Example 47 was obtained by cooling.
  • Example 48 A coating solution containing Dy was applied to the surface of a heat-treated RTB magnet produced in the same manner as in Experimental Example 47.
  • a coating solution containing Dy a mixture in which ethanol and dysprosium fluoride (DyF 3 ) were mixed at a weight ratio of 1: 1 was used.
  • the coating liquid applied to the surface of the RTB-based magnet is obtained by dispersing the sintered RTB-based magnet in the container while ultrasonically dispersing the coating liquid placed in the container. This was done by immersing for a minute.
  • the RTB magnet on which the coating solution was applied was subjected to a first heat treatment in which argon was supplied at a flow rate of 100 ml / min for 1 hour at a temperature of 900 ° C., and cooled to room temperature. . Thereafter, a second heat treatment was performed by heating at a temperature of 500 ° C. for 1 hour in the same atmosphere as the first heat treatment, followed by cooling to room temperature (diffusion process), and the RTB system magnet of Experimental Example 48 was obtained.
  • Example 49 In the same manner as in Experimental Example 47, except that an RTB-based alloy powder manufactured to have the composition of the sintered magnet of Experimental Example 49 shown in Table 9 was used, the RT- A B-type magnet was obtained.
  • Example 50 In the same manner as in Experimental Example 48, a diffusion process in which a coating solution containing Dy is applied and heat-treated is performed on the surface of the heat-treated RTB-based magnet manufactured in the same manner as in Experimental Example 49. An RTB magnet was obtained.
  • the composition of the RTB-based magnets of Experimental Examples 47 to 50 obtained in this manner is the same as that of rare earth, iron, copper, cobalt, aluminum, gallium, and boron.
  • the oxygen was measured using a gas analyzer, and the other trace impurity elements were measured using a plasma emission analysis (ICP).
  • the results are shown in Table 9. Comparing Experimental Example 47 and Experimental Example 48 shown in Table 9, the Dy concentration contained in the RTB-based magnet is increased by performing a diffusion process in which a coating solution containing Dy is applied and heat-treated. Yes. Further, when Experimental Example 49 and Experimental Example 50 shown in Table 9 are compared, the concentration of Dy contained in the RTB-based magnet is increased by performing the above diffusion step. Further, the magnet compositions of Experimental Example 47 and Experimental Example 48 shown in Table 9 are within the scope of the present invention, and the magnetic compositions of Experimental Example 49 and Experimental Example 50 have a value of “B / TRE” within the scope of the present invention. Outside.
  • the RTB magnets of Experimental Example 47 and Experimental Example 48 were each embedded in a conductive resin, and the surface parallel to the orientation direction was cut out and mirror-polished. This surface was observed with a reflected electron image at a magnification of about 1500 times, and the main phase, R-rich phase, and transition metal-rich phase were discriminated based on the contrast. Further, for the RTB-based magnets of Experimental Example 47 and Experimental Example 48, the main phase and the grain boundary phase (R-rich phase, transition metal, respectively) using FE-EPMA (Electron Probe Micro Analyzer). The composition of the rich phase was confirmed.
  • FE-EPMA Electro Probe Micro Analyzer
  • the RTB magnets of Experimental Example 47 and Experimental Example 48 which are examples of the present invention, had a main phase, an R-rich phase, and a transition metal-rich phase.
  • FIG. 17A is a graph showing the second quadrant of the hysteresis curve of Experimental Example 47 and Experimental Example 48
  • FIG. 17B shows the second quadrant of the hysteresis curve of Experimental Example 49 and Experimental Example 50. It is the shown graph.
  • the vertical axis is the magnetization J
  • the horizontal axis is the magnetic field H.
  • the hysteresis curves shown in FIGS. 17A and 17B were measured with a BH curve tracer (Toei Kogyo TPM2-10).
  • the point where the curve intersects the horizontal axis indicates the value of the coercive force “Hcj”
  • the point where the curve intersects the vertical axis indicates the residual magnetization “Br”. .
  • the present invention provides an RTB-based rare earth sintered magnet alloy and an RTB-based alloy, which have excellent magnetic properties and are used to obtain an RTB-based rare earth sintered magnet suitable for use in a motor. It can be applied to rare earth sintered magnet alloy materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Continuous Casting (AREA)
  • Powder Metallurgy (AREA)

Abstract

R-T-B系合金に含まれるDyの含有量を高くすることなく、保磁力の高いR-T-B系磁石の得られるR-T-B系希土類焼結磁石用合金が提供される。そのようなR-T-B系希土類焼結磁石用合金は、希土類元素であるRと、Feを必須とする遷移金属であるTと、Al、Ga、Cuのうちから選ばれる1種以上の金属を含む金属元素Mと、Bおよび不可避不純物からなり、Rを13~15原子%含み、Bを4.5~6.2原子%含み、Mを0.1~2.4原子%含み、Tが残部であり、全希土類元素中のDyの割合が0~65原子%であり、かつ下記(式1)を満たすことを特徴とする。 0.0049Dy+0.34≦B/TRE≦0.0049Dy+0.36・・(式1) (式1)において、DyはDy元素の濃度(原子%)、Bはボロン元素の濃度(原子%)、TREは希土類元素合計の濃度(原子%)を表す。

Description

R-T-B系希土類焼結磁石用合金、R-T-B系希土類焼結磁石用合金の製造方法、R-T-B系希土類焼結磁石用合金材料、R-T-B系希土類焼結磁石、R-T-B系希土類焼結磁石の製造方法およびモーター
 本発明は、R-T-B系希土類焼結磁石用合金、R-T-B系希土類焼結磁石用合金の製造方法、R-T-B系希土類焼結磁石用合金材料、R-T-B系希土類焼結磁石、R-T-B系希土類焼結磁石の製造方法およびモーターに係り、特に、優れた磁気特性を有し、モーターに好適に用いられるR-T-B系希土類焼結磁石の得られるR-T-B系希土類焼結磁石用合金およびR-T-B系希土類焼結磁石用合金材料に関するものである。
  本願は、2011年7月8日に日本に出願された特願2011-151815号、2011年10月18日に日本に出願された特願2011-229289号、2012年3月16日に日本に出願された特願2012-060259号、および2012年7月3日に日本に出願された特願2012-149560号に基づき優先権を主張し、それらの内容をここに援用する。
 従来から、R-T-B系希土類焼結磁石(以下、「R-T-B系磁石」という場合がある)は、ハードディスクドライブのボイスコイルモーター、ハイブリッド自動車や電気自動車のエンジン用モーターなどのモーターに使用されている。
 R-T-B系磁石は、Nd、Fe、Bを主成分とするR-T-B系合金粉末を成形して焼結することによって得られる。通常、R-T-B系合金においてRは、Ndと、Ndの一部をPr、Dy、Tb等の他の希土類元素で置換したものである。Tは、FeとFeの一部をCo、Ni等の他の遷移金属で置換したものである。Bはホウ素であり、一部をCまたはNで置換できる。
 一般的なR-T-B系磁石の組織は、主に、R2T14Bで構成される主相と、主相の粒界に存在して主相よりもNd濃度の高いRリッチ相とからなる。Rリッチ相は粒界相とも呼ばれている。
 また、R-T-B系合金の組成は、通常、R-T-B系磁石の組織における主相の割合を高めるために、NdとFeとBとの比が、できる限りR2T14Bに近くなるようにされている(例えば、非特許文献1参照)。
 また、R-T-B系合金には、R2T17相が含まれている場合がある。R2T17相は、R-T-B系磁石の保磁力や角形性を低下させる原因となることが知られている(例えば、特許文献1参照)。このため、従来、R-T-B系合金にR2T17相が存在する場合、R-T-B系磁石を製造するための焼結過程で消滅させている。
 また、自動車用モーターに用いられるR-T-B系磁石は、モーター内で高温に曝されるため、高い保磁力(Hcj)が要求される。
 R-T-B系磁石の保磁力を向上させる技術としては、R-T-B系合金のRをNdからDyに置換する技術がある。しかしながら、Dyは資源が偏在しているうえ、産出量も限られているためにその供給に不安が生じている。このため、R-T-B系合金に含まれるDyの含有量を多くすることなく、R-T-B系磁石の保磁力を向上させる技術が検討されている。
 R-T-B系磁石の保磁力(Hcj)を向上させるために、Al,Si,Ga,Snなどの金属元素を添加する技術がある(例えば、特許文献2参照)。また、特許文献2に記載されているように、Al,Siは、不可避的不純物としてR-T-B系磁石に混入することが知られている。また、R-T-B系合金に不純物として含有されているSiの含有量が5%を超えると、R-T-B系磁石の保磁力が低下することが知られている(例えば、特許文献3参照)。
特開2007-119882号公報 特開2009-231391号公報 特開平5-112852号公報
佐川 眞人、永久磁石-材料科学と応用-2008年11月30日、初版第2刷発行、256ページ~261ページ
 しかしながら、従来の技術では、R-T-B系合金にAl,Si,Ga,Snなどの金属元素を添加したとしても、充分に保磁力(Hcj)の高いR-T-B系磁石を得ることができない場合があった。その結果、上記金属元素を添加してもDy濃度を高くする必要があった。このため、R-T-B系合金に含まれるDyの含有量を高くすることなく、保磁力の高いR-T-B系磁石の得られるR-T-B系合金を供給することが要求されていた。
 本発明は、上記事情に鑑みてなされたものであり、R-T-B系合金に含まれるDyの含有量を高くすることなく、保磁力の高いR-T-B系磁石の得られるR-T-B系希土類焼結磁石用合金、R-T-B系希土類焼結磁石用合金材料およびこれを用いたR-T-B系希土類焼結磁石およびその製造方法を提供することを目的とする。
 また、上記のR-T-B系希土類焼結磁石を用いたモーターを提供することを目的とする。
 本発明者らは、上記課題を解決するために、鋭意検討を重ねた。
 その結果、R-T-B系磁石が、R2Fe14Bを主として含む主相と、主相よりRを多く含む粒界相とを備え、粒界相が、従来から認められている希土類元素濃度の高い粒界相(Rリッチ相)と、従来の粒界相よりも希土類元素濃度が低く遷移金属元素濃度が高い粒界相(遷移金属リッチ相)とを含むことで保磁力の高いR-T-B系磁石が得られることを見出した。さらに、R-T-B系磁石に含まれる遷移金属リッチ相の体積率が多くなるほど、保磁力が向上することを見出した。
 また、本発明者らは、遷移金属リッチ相を含むR-T-B系磁石において、Dyを含有させることによる保磁力向上効果を効果的に発揮させるために、R-T-B系合金の組成について、以下に示すように検討した。
 すなわち、遷移金属リッチ相は、他の粒界相に比べて希土類元素の合計原子濃度が低く、かつFeの原子濃度が高いものである。そこで、Feの濃度を増加させる、またはBの濃度を減少させる等の検討を行った。
 その結果、特定のB濃度のときに保磁力が最大になることを見出した。さらに、Dy濃度によって最適B濃度が変化することを見出した。
(1) 希土類元素であるRと、Feを必須とする遷移金属であるTと、Al、Ga、Cuのうちから選ばれる1種以上の金属を含む金属元素Mと、Bおよび不可避不純物からなり、Rを13~15原子%含み、Bを4.5~6.2原子%含み、Mを0.1~2.4原子%含み、Tが残部であり、全希土類元素中のDyの割合が0~65原子%であり、かつ下記(式1)を満たすことを特徴とするR-T-B系希土類焼結磁石用合金。
 0.0049Dy+0.34≦B/TRE≦0.0049Dy+0.36・・(式1)(式1)において、DyはDy元素の濃度(原子%)、Bはボロン元素の濃度(原子%)、TREは希土類元素合計の濃度(原子%)を表す。
(2) 前記Mを0.7~1.4原子%含むことを特徴とする(1)に記載のR-T-B系希土類焼結磁石用合金。
(3) さらにSiを含むことを特徴とする(1)または(2)に記載のR-T-B系希土類焼結磁石用合金。
(4) R2T17相を含む領域の面積率が0.1%以上50%以下であることを特徴とする(1)~(3)のいずれか一項に記載のR-T-B系希土類焼結磁石用合金。
(5) 希土類元素であるRと、Feを必須とする遷移金属であるTと、Bおよび不可避不純物からなり、Rを13~15原子%含み、Bを4.5~6.2原子%含み、Tが残部であり、全希土類元素中のDyの割合が0~65原子%であり、かつ下記(式1)を満たすR-T-B系合金と、
 Al、Ga、Cuのうちから選ばれる1種以上の金属元素Mまたは前記金属元素Mを含む合金からなる添加金属とを含むR-T-B系希土類焼結磁石用合金材料であって、
 前記R-T-B系希土類焼結磁石用合金材料中に前記金属元素Mを0.1~2.4原子%含むことを特徴とするR-T-B系希土類焼結磁石用合金材料。
 0.0049Dy+0.34≦B/TRE≦0.0049Dy+0.36・・(式1)
 (式1)において、DyはDy元素の濃度(原子%)、Bはボロン元素の濃度(原子%)、TREは希土類元素合計の濃度(原子%)を表す。
(6) 希土類元素であるRと、Feを必須とする遷移金属であるTと、Al、Ga、Cuのうちから選ばれる1種以上の第1金属と、Bおよび不可避不純物からなり、Rを13~15原子%含み、Bを4.5~6.2原子%含み、Tが残部であり、全希土類元素中のDyの割合が0~65原子%であり、かつ下記(式1)を満たすR-T-B系合金と、
 Al、Ga、Cuのうちから選ばれる1種以上の第2金属または前記第2金属を含む合金からなる添加金属とを含むR-T-B系希土類焼結磁石用合金材料であって、
 前記R-T-B系希土類焼結磁石用合金材料は、前記第1金属と前記第2金属とを合計で0.1~2.4原子%含むことを特徴とするR-T-B系希土類焼結磁石用合金材料。
 0.0049Dy+0.34≦B/TRE≦0.0049Dy+0.36・・(式1)(式1)において、DyはDy元素の濃度(原子%)、Bはボロン元素の濃度(原子%)、TREは希土類元素合計の濃度(原子%)を表す。
(7) さらにSiを含むことを特徴とする(5)または(6)に記載のR-T-B系希土類焼結磁石用合金材料。
(8) 前記R-T-B系希土類焼結磁石用合金材料中のSiの含有量が0.7~1.5原子%であることを特徴とする(7)に記載のR-T-B系希土類焼結磁石用合金材料。
(9) R-T-B系合金中のR2T17相を含む領域の面積率が0.1%以上50%以下であることを特徴とする(5)~(8)のいずれか一項に記載のR-T-B系希土類焼結磁石用合金材料。
(10) (1)~(4)のいずれか一項に記載のR-T-B系希土類焼結磁石用合金または、(5)~(9)のいずれかに記載のR-T-B系希土類焼結磁石用合金材料を成形して焼結することを特徴とするR-T-B系希土類焼結磁石の製造方法。
(11) 前記焼結を800℃~1200℃で行った後、400℃~800℃で熱処理を行うことを特徴とする(10)に記載のR-T-B系希土類焼結磁石の製造方法。
(12) 前記焼結後のR-T-B系磁石の表面に、Dy金属またはTb金属、もしくはDy化合物またはTb化合物を付着させて熱処理する拡散工程を行うことを特徴とする(10)または(11)に記載のR-T-B系希土類焼結磁石の製造方法。
(13) 希土類元素であるRと、Feを必須とする遷移金属であるTと、Al、Ga、Cuのうちから選ばれる1種以上の金属を含む金属元素Mと、Bおよび不可避不純物からなり、Rを13~15原子%含み、Bを4.5~6.2原子%含み、Mを0.1~2.4原子%含み、Tが残部であり、全希土類元素中のDyの割合が0~65原子%であり、かつ下記(式1)を満たすR-T-B系希土類焼結磁石であって、
 R2Fe14Bを主として含む主相と、主相よりRを多く含む粒界相とを備えた焼結体からなり、前記粒界相が、希土類元素の合計原子濃度が70原子%以上の相と、前記希土類元素の合計原子濃度が25~35原子%の相とを含むことを特徴とするR-T-B系希土類焼結磁石。
 0.0049Dy+0.34≦B/TRE≦0.0049Dy+0.36・・(式1)
 (式1)において、DyはDy元素の濃度(原子%)、Bはボロン元素の濃度(原子%)、TREは希土類元素合計の濃度(原子%)を表す。
(14) さらにSiを含むことを特徴とする(13)に記載のR-T-B系希土類焼結磁石。
(15) 前記希土類元素の合計原子濃度が25~35原子%の相の体積率が0.005~3体積%であることを特徴とする(13)または(14)に記載のR-T-B系希土類焼結磁石。
(16) 焼結磁石表面のDyまたはTbの濃度が、内部のDyまたはTbの濃度よりも高いものであることを特徴とする(13)~(15)のいずれか一項に記載のR-T-B系希土類焼結磁石。
(17) (13)~(16)のいずれか一項に記載のR-T-B系希土類焼結磁石を備えることを特徴とするモーター。
(18) 希土類元素であるRと、Feを必須とする遷移金属であるTと、Al、Ga、Cuのうちから選ばれる1種以上の金属を含む金属元素Mと、Bおよび不可避不純物からなり、Rを13~15原子%含み、Bを5.0~6.0原子%含み、Mを0.1~2.4原子%含み、Tが残部であり、全希土類元素中のDyの割合が0~65原子%であり、R2Fe14Bを主として含む主相と、主相よりRを多く含む合金粒界相とを備え、前記合金粒界相の間隔が3μm以下であることを特徴とするR-T-B系希土類焼結磁石用合金。
(19) さらにSiを含むことを特徴とする(18)に記載のR-T-B系希土類焼結磁石用合金。
(20) B含有量に対するFe含有量の比(Fe/B)が13~16であることを特徴とする(18)または(19)に記載のR-T-B系希土類焼結磁石用合金。
(21) B/TRE(Bはボロン元素の濃度(原子%)、TREは希土類元素合計の濃度(原子%)を表す。)が0.355~0.38であることを特徴とする(18)~(20)のいずれか一項に記載のR-T-B系希土類焼結磁石用合金。
(22) 希土類元素であるRと、Feを必須とする遷移金属であるTと、Al、Ga、Cuのうちから選ばれる1種以上の金属を含む金属元素Mと、Bおよび不可避不純物からなり、Rを13~15原子%含み、Bを5.0~6.0原子%含み、Mを0.1~2.4原子%含み、Tが残部であり、全希土類元素中のDyの割合が0~65原子%である合金溶湯を、冷却ロールを用いて冷却するストリップキャスト法により鋳造して鋳造合金を製造する鋳造工程を備え、
 前記鋳造工程において、800℃超の鋳造合金が500℃未満の温度となるまでの間に、10秒~120秒間一定の温度で維持する温度保持工程を行うことを特徴とするR-T-B系希土類焼結磁石用合金の製造方法。
(23) 前記合金溶湯がSiを含むことを特徴とする(22)に記載のR-T-B系希土類焼結磁石用合金の製造方法。
(24) 前記鋳造工程の少なくとも一部を、ヘリウムを含む雰囲気中で行うことを特徴とする(22)または(23)に記載のR-T-B系希土類焼結磁石用合金の製造方法。
 尚、本明細書においては、R-T-B系希土類焼結磁石用合金の粒界相とR-T-B系希土類焼結磁石の粒界相とを識別する為に、磁石用合金の粒界相を合金粒界相という。
 本発明のR-T-B系希土類永久磁石用合金材料は、B含有量が上記(式1)を満たし、金属元素を0.1~2.4原子%含むものであるので、これを成形して焼結してなるR-T-B系希土類永久磁石の遷移金属リッチ相の体積率を充分に確保することができ、Dyの含有量を抑制しつつ、保磁力の高い本発明のR-T-B系希土類永久磁石が得られる。
 また、本発明のR-T-B系希土類焼結磁石は、高い保磁力を有するものであるので、モーターなどに好適に用いることができる。
 本発明のR-T-B系希土類永久磁石用合金が、希土類元素であるRと、Feを必須とする遷移金属であるTと、Al、Ga、Cuのうちから選ばれる1種以上の金属を含む金属元素Mと、Bおよび不可避不純物からなり、Rを13~15原子%含み、Bを5.0~6.0原子%含み、Mを0.1~2.4原子%含み、Tが残部であり、全希土類元素中のDyの割合が0~65原子%であり、R2Fe14Bを主として含む主相と、主相よりRを多く含む合金粒界相とを備え、前記合金粒界相の間隔が3μm以下であるものである場合、3μm以下の粒径に微粉砕したときに合金粒界相が粉末の周囲に付着した形状となるため粉末中の合金粒界相の分布が均一となり、焼結体中にも均一に粒界相が分布することになるので保磁力の高い本発明のR-T-B系希土類永久磁石が得られる。その結果、Dyの含有量を抑制できる。
 本発明のR-T-B系希土類焼結磁石用合金の製造方法は、鋳造工程において、800℃超の鋳造合金が500℃未満の温度となるまでの間に、10秒~120秒間一定の温度で維持する温度保持工程を行う方法であるので、得られたR-T-B系合金を成形して焼結してなるR-T-B系希土類永久磁石の遷移金属リッチ相の体積率を充分に確保することができ、Dyの含有量を抑制しつつ、保磁力の高いR-T-B系希土類永久磁石が得られる。
Dy=0原子%の合金を用いて作製した焼結磁石の、B/TRE(希土類元素合計の濃度)とHcj(保磁力)との関係をプロットしたものである。 図2は、Dy≒3.8原子%の合金を用いて作製した焼結磁石の、B/TRE(希土類元素合計の濃度)とHcj(保磁力)との関係をプロットしたものである。 図3はDy≒8.3原子%の合金を用いて作製した焼結磁石の、B/TRE(希土類元素合計の濃度)とHcj(保磁力)との関係をプロットしたものである。 図4は保磁力が最大になる点のDy濃度とB/TRE(希土類元素合計の濃度)との関係をプロットしたものである。 図5はR-T-B系3元状態図である。 図6は合金Fの断面の反射電子像である。 図7はR2T17相生成領域を拡大したものである。 図8は、R-T-B系磁石の顕微鏡写真であり、実験例9のR-T-B系磁石の反射電子像である。 図9は、R-T-B系磁石の顕微鏡写真であり、実験例6のR-T-B系磁石の反射電子像である。 図10(a)は、本発明のR-T-B系磁石の顕微鏡写真であり、実験例23のR-T-B系磁石の反射電子像であり、図10(b)は、図10(a)に示したR-T-B系磁石の顕微鏡写真を説明するための模式図である。 図11は、合金の製造装置の一例を示す正面模式図である。 図12(a)は、合金粒界相間の距離とB濃度との関係を示したグラフであり、図12(b)は、合金粒界相間の距離とB/TREとの関係を示したグラフであり、図12(c)は、合金粒界相間の距離とFe/Bとの関係を示したグラフである。 図13(a)はFe/Bが15.5である鋳造合金薄片の断面の顕微鏡写真であり、図13(b)はFe/Bが16.4である鋳造合金薄片の断面の顕微鏡写真である。 図14は、実験例35の合金粒界相間の距離と実験例36の合金粒界相間の距離とを示したグラフである。 図15は、製造した鋳造合金が1200℃から50℃となるまでの間の経過時間と温度との関係を示したグラフであり、図15(a)は経過時間0~1秒までの範囲を示し、図15(b)は経過時間0~250秒までの範囲を示し、図15(c)は経過時間0~700秒までの範囲を示している。 図16(a)は、実験例37~実験例40のR-T-B系磁石の保磁力(Hcj)を示したグラフであり、図16(b)は、実験例37~実験例40のR-T-B系磁石の磁化(Br)を示したグラフであり、図16(c)は、実験例37~実験例40のR-T-B系磁石の磁化(Br)と保磁力(Hcj)との関係を示したグラフである。 図17(a)は、実験例47と実験例48のBHカーブトレーサーにて測定したヒステリシス曲線の第二象限を示したグラフであり、図17(b)は、実験例49の実験例50のBHカーブトレーサーにて測定したヒステリシス曲線の第二象限を示したグラフであり、縦軸は磁化Jであり、横軸は磁界Hである。
 以下、本発明の実施形態について詳細に説明する。
 〔第1の実施形態〕
 「R-T-B系希土類焼結磁石用合金」
 本実施形態のR-T-B系希土類焼結磁石用合金(以下、「R-T-B系合金」と略記する)は、成形して焼結することにより、R2Fe14Bを主として含む主相と、主相よりRを多く含む粒界相とを備えた焼結体からなり、粒界相が、Rリッチ相と、Rリッチ相よりも希土類元素濃度が低く遷移金属元素濃度が高い粒界相である遷移金属リッチ相とを含む、本発明のR-T-B系希土類焼結磁石(以下、「R-T-B系磁石」と略記する。)が得られるものである。
 本実施形態において、Rリッチ相は、希土類元素であるRの合計原子濃度が70原子%以上の相である。遷移金属リッチ相は、希土類元素Rの合計原子濃度が25~35原子%の相である。遷移金属リッチ相は、Feを必須とする遷移金属であるTを50~70原子%含むものであることが好ましい。
 本実施形態のR-T-B系合金は、希土類元素であるRと、Feを必須とする遷移金属であるTと、Al、Ga、Cuのうちから選ばれる1種以上の金属を含む金属元素Mと、Bおよび不可避不純物からなり、Rを13~15原子%含み、Bを4.5~6.2原子%含み、Mを0.1~2.4原子%含み、Tが残部であるR-T-B系合金であって、下記(式1)を満たすものである。また、本実施形態のR-T-B系合金は、全希土類元素中のDyの割合が0~65原子%である合金である。
 0.0049Dy+0.34≦B/TRE≦0.0049Dy+0.36・・(式1)
 (式1)において、DyはDy元素の濃度(原子%)、Bはボロン元素の濃度(原子%)、TREは希土類元素合計の濃度(原子%)を表す。
 R-T-B系合金に含まれるRの含有量が13原子%未満であると、これを用いて得られたR-T-B系磁石の保磁力が不十分となる。また、Rの含有量が15原子%を超えると、これを用いて得られたR-T-B系磁石の残留磁化が低くなり磁石として不適合になる。
 R-T-B系合金の全希土類元素中のDyの含有量は0~65原子%とされている。本実施形態においては、遷移金属リッチ相を含むことにより、保磁力を向上させているので、Dyを含まなくても良いし、Dyを含む場合でも65原子%以下の含有量で充分に高い保磁力向上効果が得られる。
 R-T-B系合金のDy以外の希土類元素としては、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Ho、Er、Tm、Yb、Luが挙げられ、中でも特に、Nd、Pr、Tbが好ましく用いられる。また、R-T-B系合金のRは、Ndを主成分とすることが好ましい。
 また、R-T-B系合金に含まれるBは、ホウ素であり、一部をCまたはNで置換できる。B含有量は4.5原子%以上、6.2原子%以下であり、かつ上記(式1)を満たしている。Bの含有量は、4.8原子%以上であることがより好ましく、5.5原子%以下であることがより好ましい。R-T-B系合金に含まれるBの含有量が4.5原子%未満であると、これを用いて得られたR-T-B系磁石の保磁力が不十分となる。Bの含有量が上記(式1)の範囲を超えると、遷移金属リッチ相の生成量が不十分となり、保磁力が十分に向上しない。
 本実施形態のR-T-B系合金は、R2Fe14Bを主として含む主相と、主相よりRを多く含む合金粒界相とを備えている。合金粒界相は、電子顕微鏡の反射電子像で観測できる。合金粒界相には、実質的にRのみからなるものと、R-T-Mを含むものとが存在する。
 本実施形態のR-T-B系合金において、合金粒界相の間隔を3μm以下とするには、R-T-B系合金に含まれるB含有量を、5.0原子%以上、6.0原子%以下とする。B含有量を上記範囲とすることで、合金組織の粒径が微細化されて粉砕性が向上し、これを用いて製造されたR-T-B系磁石において粒界相が均一に分布され、優れた保磁力が得られる。より粉砕性に優れ、合金粒界相の間隔が3μm以下の微細な合金組織が得られるようにするためには、Bの含有量を5.5原子%以下とすることが好ましい。しかし、R-T-B系合金に含まれるBの含有量が5.0原子%未満である場合、R-T-B系合金の隣接する合金粒界相間の間隔が急激に広くなり、合金粒界相の間隔が3μm以下の微細な合金組織が得られにくくなる。また、R-T-B系合金に含まれるBの含有量が増大するのに伴って、R-T-B系合金の隣接する合金粒界相間の間隔が広くなり、合金粒子が大きくなる。また、Bが過剰となることで焼結磁石中にBリッチ相が含まれる。このため、Bの含有量が6.0原子%を超えた場合、これを用いて製造されたR-T-B系磁石の保磁力が不十分となる恐れがある。
 また、合金組織の粒径を微細化し、これを用いて製造されたR-T-B系磁石の保磁力を向上させるために、R-T-B系合金に含まれるB含有量に対するFe含有量の比(Fe/B)は13~16であることが好ましい。また、Fe/Bが13~16である場合、R-T-B系合金の製造工程および/またはR-T-B系磁石の製造工程において遷移金属リッチ相の生成が効果的に促進されるものとなる。しかし、Fe/Bが16を超えると、R-T-B系合金の隣接する合金粒界相間の間隔が急激に広くなり、合金粒界相の間隔が3μm以下の微細な合金組織が得られにくくなる。
 また、Fe/Bが13未満になると、Fe/Bが減少するのに伴って、R-T-B系合金の隣接する合金粒界相間の間隔が広くなり、合金粒子が大きくなる。このため、Fe/Bが13未満である場合、これを用いて製造されたR-T-B系磁石の保磁力が不十分となる恐れがある。
 また、合金組織の粒径を微細化して、これを用いて製造されたR-T-B系磁石の保磁力を向上させるために、B/TREが0.355~0.38とされていることが好ましい。より粉砕性に優れ、合金粒界相の間隔が3μm以下の微細な合金組織が得られるように、B/TREは0.36以下であることがより好ましい。B/TREが0.355未満である場合、R-T-B系合金の隣接する合金粒界相間の間隔が急激に広くなり、合金粒界相の間隔が3μm以下の微細な合金組織が得られにくくなる。また、B/TREが増大するのに伴って、R-T-B系合金の隣接する合金粒界相間の間隔が広くなり、合金粒子が大きくなる。このため、B/TREが0.38を超えた場合、これを用いて製造されたR-T-B系磁石の保磁力が不十分となる恐れがある。
 また、R-T-B系合金に含まれるTは、Feを必須とする遷移金属である。R-T-B系合金のTに含まれるFe以外の遷移金属としては、種種の3~11族元素を用いることができる。R-T-B系合金のTがFe以外にCoを含む場合、Tc(キュリー温度)を改善することができ好ましい。
 図1は、Dy=0原子%の合金を用いて作製した焼結磁石の、B/TRE(希土類元素合計の濃度)とHcj(保磁力)との関係をプロットしたものである。図1では、B/TRE=0.35のときに保磁力が最大となっている。
 図2は、Dy=3.8原子%の合金を用いて作製した焼結磁石の、B/TRE(希土類元素合計の濃度)とHcj(保磁力)との関係をプロットしたものである。図2では、B/TRE=0.37のときに保磁力が最大となっている。
 図3はDy=8.2原子%の合金を用いて作製した焼結磁石の、B/TRE(希土類元素合計の濃度)とHcj(保磁力)との関係をプロットしたものである。図3では、B/TRE=0.39のときに保磁力が最大となっている。
 保磁力が最大になる点のDy濃度とB/TREとの関係をプロットすると、図4のようになる。図4の直線から、下記の式が導かれる。
 B/TRE=0.0049Dy+0.35・・・(式2)
 保磁力が最大値から最大値の90%未満に低下するB/TREの幅は、図2及び図3から、最大値の±0.01の外側の範囲であることがわかる。つまり、上記(式2)の-0.01以上、+0.01以下の範囲内であれば、最大保磁力の90%以上の保磁力が得られることになる。この範囲を適正なB/TREとすれば、適正なB/TREの範囲は次式(式1)となる。
 0.0049Dy+0.34≦B/TRE≦0.0049Dy+0.36・・(式1)
 上記(式1)を満たす合金は、従来のR-T-B系合金よりもFe濃度が高くB濃度が低いものとなる。図5はR-T-B系3元状態図である。図5において、縦軸はBの濃度を示し、横軸はNdの濃度を示しており、図5におけるBおよびNdの濃度が低いほど、Fe濃度が高くなることを示している。通常は塗り潰された領域内の組成(例えば、図5において黒塗りの符号△で示される組成)で合金を鋳造し、主相とRリッチ相とからなるR-T-B系磁石を作製している。しかし、上記(式1)を満たす本発明のR-T-B系合金の組成は、図5において○で示すように、上記の領域から低B濃度側にはずれた領域にある。
 上記(式1)を満たすR-T-B系合金を作製するとR2T17相が合金中に生成しやすくなる。R2T17相は、R-T-B系磁石の保磁力や角形性を低下させる原因となることが知られており、通常、R2T17相が生成しない条件でR-T-B系合金が製造される。しかしながら、本発明においては、R2T17相は、R-T-B系合金の製造工程および/またはR-T-B系磁石の製造工程において遷移金属リッチ相の原料となるものと考えられる。
 本発明のR-T-B系合金は、R2T17相を含む領域の面積率が0.1~50%のものであることが好ましく、0.1~25%のものであることがより好ましい。R2T17相を含む領域の面積率が上記範囲である場合、遷移金属リッチ相の生成が効果的に促進され、遷移金属リッチ相を十分に含む保磁力の高いR-T-B系磁石が得られる。R2T17相を含む領域の面積率が50%以上であると、R-T-B系磁石の製造工程においてR2T17相を完全に消費することができず、R-T-B系磁石の保磁力や角形性が低下する場合がある。
 さらに、本実施形態のR-T-B系合金では、R2T17相を含む領域の面積率が0.1~50%である場合、非常に優れた粉砕性が得られる。R2T17相は、R2T14B相と比較して脆いものであるため、本発明のR-T-B系合金がR2T17相を含む領域を面積率で0.1~50%含む場合、容易に粉砕されて粒径2μm程度の微粒子とすることができる。
 R2T17相を含む領域の面積率は、R-T-B系合金となる鋳造合金薄片の断面を顕微鏡観察することによって求められる。具体的には次のような手順で求められる。
 鋳造合金薄片を樹脂に埋込み、鋳造合金薄片の厚さ方向に削りだし、鏡面研磨した後、導電性を付与するために金あるいは炭素を蒸着して観察試料とする。この試料を走査電子顕微鏡で倍率を300倍あるいは350倍として反射電子像を撮影する。
 図6に一例として表1に示す合金Fの断面の350倍で撮影した反射電子像を示す。この像には、灰色のR2T14B相と、白い線状のRリッチ相とが観察されている。このほかに、点状のRリッチ相が観察される領域がある(白線で囲まれた領域)。本願ではこの領域をR2T17相を含む領域と称する。この面積が断面写真中のどれだけの比率を占めるかをR2T17相を含む領域の面積率と称する。
 図7はR2T17相生成領域の高倍率の写真である。ここでコントラストを強調すると上記R2T17相生成領域には、黒い点状のR2T17相(2-17相)、白色のRリッチ相および灰色の主相(2-14-1相)が生成していることが分かる。
 本実施形態のR-T-B系合金に含まれる金属元素Mは、R-T-B系合金の製造時に行われる鋳造後の鋳造合金薄片の冷却速度を一時的に遅くする工程(後述する鋳造合金の温度保持工程)や、R-T-B系磁石を製造するための焼結および熱処理の際に、遷移金属リッチ相の生成を促進するものであると推定される。金属元素Mは、Al、Ga、Cuのうちから選ばれる1種以上の金属を含むものであり、R-T-B系合金に0.1~2.4原子%含まれている。
 本実施形態のR-T-B系合金は、金属元素Mが0.1~2.4原子%含まれているものであるので、これを焼結することで、Rリッチ相と遷移金属リッチ相とを含むR-T-B系磁石が得られる。
 金属元素Mに含まれるAl、Ga、Cuのうちから選ばれる1種以上の金属は、他の磁気特性に支障を来たすことなく、鋳造合金の温度保持工程の際や、R-T-B系磁石の焼結および熱処理の際に遷移金属リッチ相の生成を促進させて保磁力(Hcj)を効果的に向上させる。
 金属元素Mが0.1原子%未満であると、遷移金属リッチ相の生成を促進させる効果が不足して、R-T-B系磁石に遷移金属リッチ相が形成されず、R-T-B系磁石の保磁力(Hcj)を十分に向上させることができない恐れがある。また、金属元素Mが2.4原子%を超えると、R-T-B系磁石の磁化(Br)や最大エネルギー積(BHmax)などの磁気特性が低下する。金属元素Mの含有量は0.7原子%以上であることがより好ましく、1.4原子%以下であることがより好ましい。
 R-T-B系合金中にCuが含まれる場合、Cuの濃度は、0.07~1原子%であることが好ましい。Cuの濃度が0.07原子%未満の場合は、磁石が焼結しにくくなる。
また、Cuの濃度が1原子%を超える場合は、R-T-B系磁石の磁化(Br)が低下するので好ましくない。
 本実施形態のR-T-B系合金は、希土類元素であるRと、Feを必須とする遷移金属であるTと、Al、Ga、Cuのうちから選ばれる1種以上の金属を含む金属元素Mと、Bの他に、さらにSiを含むものであってもよい。R-T-B系合金中にSiが含まれる場合、Si含有量は0.7~1.5原子%の範囲であることが好ましい。Siを上記範囲内で含有させることにより、保磁力がより一層向上する。Si含有量が0.7原子%未満であっても1.5原子%を超えても、Siを含有させることによる効果が低下する。
 また、R-T-B系合金中に含まれる酸素と窒素と炭素の合計濃度が高いと、後述するR-T-B系磁石を焼結する工程において、これら元素と希土類元素Rとが結合して希土類元素Rが消費される。このため、R-T-B系合金中に含まれる希土類元素Rのうち、焼結してR-T-B系磁石とした後の熱処理において、遷移金属リッチ相の原料として利用される希土類元素Rの量が少なくなる。その結果、遷移金属リッチ相の生成量が少なくなり、R-T-B系磁石の保磁力が不十分となる恐れがある。したがって、本実施形態においては、R-T-B系合金中に含まれる酸素と窒素と炭素の合計濃度は0.5wt%以下であることが好ましい。上記の合計濃度を上記の濃度以下にすることで、希土類元素Rが消費されるのを抑制して保磁力(Hcj)を効果的に向上させることができる。
「R-T-B系合金の製造方法」
 本発明のR-T-B系合金は、例えば、SC(ストリップキャスト)法により、例えば、1450℃程度の温度の所定の組成の合金溶湯を鋳造して鋳造合金薄片を製造する。この時、鋳造後の鋳造合金薄片の冷却速度を700~900℃で一時的に遅くして合金内の成分の拡散を促す処理(温度保持工程)を行っても良い。
 その後、得られた鋳造合金薄片を、水素解砕法などにより解砕し、粉砕機により粉砕することによってR-T-B系合金が得られる。
 本実施形態においては、本発明のR-T-B系合金を製造する方法の一例として、図11に示す製造装置を用いて製造する方法について説明する。
(合金の製造装置)
 図11は、合金の製造装置の一例を示す正面模式図である。
 図11に示す合金の製造装置1は、鋳造装置2と、破砕装置21と、破砕装置21の下方に配置された加熱装置3と、加熱装置3の下方に配置された貯蔵容器4とを備えている。
 破砕装置21は、鋳造装置2によって鋳造された鋳造合金塊を破砕して鋳造合金薄片にするものである。図11に示すように、破砕装置21と開閉式ステージ群32との間には、鋳造合金薄片を加熱装置3の開閉式ステージ群32上に案内するホッパ7が備えられている。
 加熱装置3は、加熱ヒータ31とコンテナ5とから構成されている。コンテナ5は、貯蔵容器4と、貯蔵容器4の上部に設置された開閉式ステージ群32とを備えている。開閉式ステージ群32は、複数の開閉式ステージ33からなるものである。開閉式ステージ33は、「閉」のときに破砕装置21から供給された鋳造合金薄片を載置させ、「開」のときに鋳造合金薄片を貯蔵容器4に送出させるものである。
 また、製造装置1にはコンテナ5を可動自在にするベルトコンベア51(可動装置)が備えられており、ベルトコンベア51によってコンテナ5が図11中の左右方向に移動できるようになっている。
 また、図11に示す製造装置1には、チャンバ6が備えられている。チャンバ6は、鋳造室6aと、鋳造室6aの下方に設置されて鋳造室6aと連通する保温・貯蔵室6bとを備えている。鋳造室6aには鋳造装置2が収納され、保温・貯蔵室6bには加熱装置3が収納されている。
 本実施形態においてR-T-B系合金を製造するには、まず、図示しない溶解装置において1450℃程度の温度の所定の組成の合金溶湯を調製する。次いで、得られた合金溶湯を、図示しないダンディッシュを用いて鋳造装置2の水冷銅ロールからなる冷却ロール22に供給して凝固させ、鋳造合金とする。その後、鋳造合金を冷却ロール22から離脱させ、破砕装置21の破砕ロールの間を通して破砕することにより、鋳造合金薄片とする。
 破砕された鋳造合金薄片は、ホッパ7を通過して、ホッパ7の下に配置された開閉式ステージ群32の「閉」の状態とされた開閉式ステージ33上に堆積される。開閉式ステージ33上に堆積された鋳造合金薄片は、加熱ヒータ31によって加熱される。
 本実施形態においては、製造された800℃超の鋳造合金が500℃未満の温度となるまでの間に、10秒~120秒間一定の温度で維持する温度保持工程を行う。本実施形態では、開閉式ステージ33上に800℃~500℃の温度範囲内の鋳造合金薄片が供給され、鋳造合金薄片が開閉式ステージ33上に堆積された時点から加熱ヒータ31による加熱が開始される。このことによって、鋳造合金を一定の温度で10秒~120秒間維持する温度保持工程が開始される。
 そして、開閉式ステージ33上に堆積された鋳造合金薄片は、所定の時間が経過した時点で、開閉式ステージ33が「開」の状態とされて貯蔵容器4に落下される。このことにより、加熱ヒータ31の熱が鋳造合金薄片に到達しなくなり、鋳造合金薄片の冷却が再開され、温度保持工程が終了する。
 温度保持工程を行った場合、鋳造合金に含まれる元素が鋳造合金内で移動する元素の再配置により、Al、Ga、Cuのうちから選ばれる1種以上の金属を含む金属元素Mと、Bとの成分の入れ替えが促されると推定される。このことにより、合金粒界相となる領域に含まれていたBの一部が主相へと移動し、主相となる領域に含まれていた金属元素Mの一部が合金粒界相へと移動すると推定される。これにより、主相本来の磁石特性を発揮することができるので、これを用いたR-T-B系磁石の保磁力が高くなると推定される。
 温度保持工程における鋳造合金の温度が800℃超である場合、合金組織が粗大化する恐れがある。また、一定の温度で維持する時間が120秒を超える場合、生産性に支障を来す場合がある。
 また、温度保持工程における鋳造合金の温度が500℃未満である場合や一定の温度で維持する時間が10秒未満である場合、温度保持工程を行うことによる元素の再配置の効果が充分に得られない場合がある。
 なお、本実施形態においては、800℃~500℃の温度範囲内で開閉式ステージ33上に堆積された鋳造合金薄片を加熱ヒータ31で加熱する方法により温度保持工程を行ったが、温度保持工程は、800℃超の鋳造合金が500℃未満の温度となるまでの間に、10秒~120秒間一定の温度で維持することができればよく、この方法に限定されない。
 また、本実施形態のR-T-B系合金の製造方法においては、R-T-B系合金を製造するチャンバ6内を不活性ガスの減圧雰囲気とすることが好ましい。さらに、本実施形態においては、鋳造工程の少なくとも一部を、ヘリウムを含む雰囲気中で行うことが好ましい。ヘリウムはアルゴンと比較して鋳造合金から抜熱する能力が高く、鋳造合金の冷却速度を容易に速くすることができる。
 鋳造工程の少なくとも一部を、ヘリウムを含む雰囲気中で行う方法としては、例えば、チャンバ6の鋳造室6a内に所定の流量で不活性ガスとしてヘリウムを供給する方法が挙げられる。この場合、鋳造室6a内がヘリウムを含む雰囲気となるので、鋳造装置2によって鋳造され、冷却ロール22によって急冷されている鋳造合金における冷却ロール22と接触していない面を効率よく冷却できる。したがって、鋳造合金の冷却速度が速くなり、合金組織の粒径が微細化され、粉砕性に優れるものとなり、合金粒界相の間隔が3μm以下の微細な合金組織が容易に得られ、これを用いて製造されたR-T-B系磁石の保磁力を向上させることができる。また、鋳造室6a内を、ヘリウムを含む雰囲気とした場合、鋳造合金の冷却速度が速くなるので、開閉式ステージ33上に堆積される鋳造合金薄片の温度を、容易に800℃以下にすることができる。
 また、本実施形態のR-T-B系合金の製造方法においては、温度保持工程後の鋳造合金薄片を、ヘリウムを含む雰囲気中で冷却することが好ましい。このことにより、温度保持工程後の鋳造合金である鋳造合金薄片の冷却速度が速くなるので、より一層合金組織が微細化され、粉砕性に優れ、合金粒界相の間隔が3μm以下の微細な合金組織が容易に得られる。温度保持工程後の鋳造合金薄片を、ヘリウムを含む雰囲気中で冷却する方法としては、例えば、開閉式ステージ33から落下された鋳造合金薄片の収容される貯蔵容器4内に所定の流量でヘリウムを供給する方法が挙げられる。
 なお、本実施形態においては、SC法を用いてR-T-B系合金を製造する場合について説明したが、本発明において用いられるR-T-B系合金は、SC法を用いて製造されるものに限定されるものではない。例えば、R-T-B系合金は、遠心鋳造法、ブックモールド法などを用いて鋳造してもよい。
 水素解砕法は、例えば、室温で鋳造合金薄片に水素を吸蔵させ、300℃程度の温度で水素中で熱処理した後、減圧して水素を脱気し、その後、500℃程度の温度で熱処理して鋳造合金薄片中の水素を除去するという手順で行われる。水素解砕法において水素が吸蔵された鋳造合金薄片は、体積が膨張するので、合金内部に容易に多数のひび割れ(クラック)が発生し、解砕される。
 また、水素解砕された鋳造合金薄片を粉砕する方法としては、ジェットミルなどが用いられる。水素解砕された鋳造合金薄片をジェットミル粉砕機に入れ、例えば0.6MPaの高圧窒素を用いて平均粒度1~4.5μmに微粉砕して粉末とする。粉末の平均粒度を小さくした方が、焼結磁石の保磁力を向上させることができる。しかし、粒度をあまり小さくすると、粉末表面が酸化されやすくなり、逆に保磁力が低下してしまう。
「R-T-B系希土類焼結磁石の製造方法」
 次に、このようにして得られた本実施形態のR-T-B系合金を用いてR-T-B系磁石を製造する方法を説明する。
 本実施形態のR-T-B系磁石を製造する方法としては、例えば、本実施形態のR-T-B系合金の粉末に、潤滑剤として0.02質量%~0.03質量%のステアリン酸亜鉛を添加し、横磁場中成型機などを用いてプレス成形して、真空中で焼結し、その後、熱処理する方法などが挙げられる。
 焼結を800℃~1200℃、より好ましくは900℃~1200℃で行った後、400℃~800℃で熱処理を行った場合、R-T-B系磁石に遷移金属リッチ相がより一層生成されやすくなり、より一層保磁力の高いR-T-B系磁石が得られる。
 本実施形態においては、上記(式1)を満たすことによってR-T-B系合金中にR2T17相が生成されている。R2T17相は、R-T-B系合金を焼結してR-T-B系磁石とした後の熱処理において、遷移金属リッチ相の原料として使用されると推測される。
 焼結後の熱処理は、1回だけでもよいし2回以上であってもよい。例えば、焼結後の熱処理を1回だけ行う場合には、500℃~530℃で熱処理を行うことが好ましい。また、焼結後の熱処理を2回行う場合には、530℃~800℃の温度と、400℃~500℃の温度の2段階の温度で熱処理を行うことが好ましい。
 2段階の温度で熱処理を行う場合、以下に示すように、遷移金属リッチ相の生成が促進されるため、より保磁力の優れたR-T-B系磁石が得られると推定される。
 すなわち、2段階の温度で熱処理を行う場合、1回目の530~800℃の熱処理において、Rリッチ相が液相となって主相(2-14-1相)の周囲に回り込む。このことによって、2回目の400~500℃の熱処理において、Rリッチ相と2-17相(R2T17相)と金属元素Mとの反応が促進され、遷移金属リッチ相の生成が促進される。
 本実施形態のR-T-B系磁石の製造方法では、R-T-B系合金として、B含有量が上記(式1)を満たし、金属元素Mを0.1~2.4原子%含むものを用いているので、R2Fe14Bを主として含む主相と、主相よりRを多く含む粒界相とを備えた焼結体からなり、粒界相が、希土類元素の合計原子濃度が70原子%以上のRリッチ相と、希土類元素の合計原子濃度が25~35原子%の遷移金属リッチ相とを含む本発明のR-T-B系磁石が得られる。
 さらに、本実施形態のR-T-B系合金に含まれる金属元素の種類や使用量、R2T17相を含む領域の体積率、R-T-B系合金の組成を本発明の範囲で調節するとともに、焼結温度や焼結後の熱処理などの条件を調整することにより、R-T-B系磁石における遷移金属リッチ相の体積率を0.005~3体積%の好ましい範囲に容易に調節できる。
そして、R-T-B系磁石における遷移金属リッチ相の体積率を調整することによって、Dyの含有量を抑制しつつ、用途に応じた所定の保磁力を有するR-T-B系磁石が得られる。
 また、本発明のR-T-B系磁石において得られる保磁力(Hcj)を向上させる効果は、粒界相中にFeを高濃度で含む遷移金属リッチ相が形成されていることによるものと推定される。本発明のR-T-B系磁石に含まれる遷移金属リッチ相の体積率は、0.005~3体積%であることが好ましく、0.1%~2体積%であることがより好ましい。
遷移金属リッチ相の体積率が上記範囲内であると、粒界相中に遷移金属リッチ相が含まれていることによる保磁力向上効果が、より一層効果的に得られる。これに対し、遷移金属リッチ相の体積率が0.1体積%未満であると、保磁力(Hcj)を向上させる効果が不十分となる恐れが生じる。また、遷移金属リッチ相の体積率が3体積%を超えると、残留磁化(Br)や最大エネルギー積((BH)max)が低下するなど磁気特性に悪影響を及ぼすため、好ましくない。
 遷移金属リッチ相中のFeの原子濃度は、50~70原子%であることが好ましい。遷移金属リッチ相中のFeの原子濃度が上記範囲内であると、遷移金属リッチ相が含まれていることによる効果が、より一層効果的に得られる。これに対し、遷移金属リッチ相のFeの原子濃度が上記範囲未満であると、粒界相中に遷移金属リッチ相が含まれていることによる保磁力(Hcj)向上効果が、不十分となる恐れが生じる。また、遷移金属リッチ相のFeの原子濃度が上記範囲を超えると、R2T17相あるいはFeが析出して磁気特性に悪影響を及ぼす恐れがある。
 本発明においては、R-T-B系磁石の遷移金属リッチ相の体積率は、以下に示す方法により調べる。まず、R-T-B系磁石を導電性の樹脂に埋込み、配向方向に平行な面を削りだし、鏡面研磨する。次いで、鏡面研磨した表面を反射電子像にて1500倍程度の倍率で観察し、そのコントラストにより主相、Rリッチ相、遷移金属リッチ相を判別する。その後、遷移金属リッチ相について断面あたりの面積率を算出し、さらにこれが球状であると仮定して体積率を算出する。
 本実施形態のR-T-B系磁石は、B/TRE含有量が上記(式1)を満たし、金属元素Mを0.1~2.4原子%含むR-T-B系合金を成形して焼結してなるものであり、粒界相が、Rリッチ相と遷移金属リッチ相とを含み、遷移金属リッチ相は、Rリッチ相より希土類元素の合計原子濃度が低く、Rリッチ相よりFeの原子濃度が高いものであるので、Dyの含有量を抑制しつつ、高い保磁力を有し、モーターに好適に用いられる優れた磁気特性を有するものとなる。
 なお、本実施形態においては、焼結後のR-T-B系磁石の表面に、Dy金属もしくはDy化合物を付着させて熱処理し、Dyを焼結磁石内部に拡散させることにより、焼結磁石表面のDy濃度が内部のDy濃度よりも高いR-T-B系磁石とし、さらに保磁力を向上させてもよい。
 焼結磁石表面のDy濃度が内部のDy濃度よりも高いR-T-B系磁石を製造する方法としては、具体的には、以下に示す方法が挙げられる。例えば、エタノールなどの溶媒とフッ化ジスプロシウム(DyF)とを所定の割合で混合してなる塗布液中に、焼結後のR-T-B系磁石を浸漬させることにより、R-T-B系磁石に塗布液を塗布する。その後、塗布液の塗布されたR-T-B系磁石に対して、2段階の熱処理を行う拡散工程を行う。具体的には、塗布液の塗布されたR-T-B系磁石を、アルゴン雰囲気中で900℃の温度で一時間程度加熱する第1熱処理を行い、第1熱処理後のR-T-B系磁石を一旦室温まで冷却する。その後、再びR-T-B系磁石を、アルゴン雰囲気中で500℃の温度で一時間程度加熱する第2熱処理を行って、室温まで冷却する。
 上記方法以外の焼結後のR-T-B系磁石の表面に、Dy金属もしくはDy化合物を付着させる方法として、金属を気化させて磁石表面にこれらの膜を付着させる方法、有機金属を分解させて表面に膜を付着させる方法などを用いても良い。
 なお、焼結後のR-T-B系磁石の表面には、Dy金属もしくはDy化合物に代えて、Tb金属もしくはTb化合物を付着させて熱処理してもよい。この場合、例えば、焼結後のR-T-B系磁石の表面にTbのフッ化物を含む塗布液を塗布して熱処理し、Tbを焼結磁石内部に拡散させることにより、焼結磁石表面のTb濃度が内部のTb濃度よりも高いR-T-B系磁石とすることができ、さらに保磁力を向上させることができる。
 また、R-T-B系磁石の表面に、金属Dyや金属Tbを蒸着させて熱処理し、DyやTbを焼結磁石内部に拡散させることにより、さらに保磁力を向上させてもよい。本実施形態のR-T-B系磁石には、このような技術を何ら支障なく使用することができる。
 R-T-B系磁石の保磁力(Hcj)は、高いほど好ましいが、自動車などの電動パワーステアリングのモーター用の磁石として用いる場合、20kOe以上であることが好ましく、電気自動車のモーター用の磁石として用いる場合、30kOe以上であることが好ましい。電気自動車のモーター用の磁石において保磁力(Hcj)が30kOe未満であると、モーターとしての耐熱性が不足する場合がある。
〔第2の実施形態〕
 第1の実施形態では、金属元素を含有するR-T-B系合金を用いてR-T-B系磁石を製造したが、第2の実施形態では、第1の実施形態とは異なり、金属元素を含有しない粉末のR-T-B系合金と添加金属とを含むR-T-B系希土類焼結磁石用合金材料(以下、「R-T-B系合金材料」と略記する)を用いてR-T-B系磁石を製造する。
 本実施形態のR-T-B系合金材料は、上述した第1の実施形態と同様に成形して焼結することにより、上述した第1の実施形態のR-T-B系磁石が得られるものである。
 本実施形態のR-T-B系合金材料は、希土類元素であるRと、Feを必須とする遷移金属であるTと、Bおよび不可避不純物からなり、Rを13~15原子%含み、Bを4.5~6.2原子%含み、Tが残部であり、全希土類元素中のDyの割合が0~65原子%であり、かつ下記(式1)を満たすR-T-B系合金と、Al、Ga、Cuのうちから選ばれる1種以上の金属元素Mまたは前記金属元素Mを含む合金からなる添加金属とを含むR-T-B系合金材料であって、R-T-B系合金材料中に金属元素Mを0.1~2.4原子%含むものである。
 0.0049Dy+0.34≦B/TRE≦0.0049Dy+0.36・・(式1)
 (式1)において、DyはDy元素の濃度、Bはボロン元素の濃度、TREは希土類元素合計の濃度(原子%)を表す。
 本実施形態のR-T-B系合金材料においては、R-T-B系合金として、金属元素Mを含まないこと以外は第1の実施形態のR-T-B系合金と同じものが用いられ、第1の実施形態のR-T-B系合金と同様にして製造できる。したがって、本実施形態のR-T-B系合金材料に含まれるR-T-B系合金についての説明を省略する。
 本実施形態のR-T-B系合金材料に含まれるR-T-B系合金おいても、第1の実施形態のR-T-B系合金と同様に、R2T17相を含む領域の面積率が0.1~50%のものであることが好ましく、0.1~25%のものであることがより好ましい。R2T17相を含む領域の面積率が上記範囲である場合、遷移金属リッチ相の生成が効果的に促進され、遷移金属リッチ相を十分に含む保磁力の高いR-T-B系磁石が得られる。R2T17相を含む領域の面積率が50%以上であると、R-T-B系磁石の製造工程においてR2T17相を完全に消費することができず、R-T-B系磁石の保磁力や角形性が低下する場合がある。
 さらに、本実施形態のR-T-B系合金材料に含まれるR-T-B系合金においても、R2T17相を含む領域の面積率が0.1~50%である場合、非常に優れた粉砕性が得られるため、容易に粉砕されて粒径2μm程度の微粒子とすることができる。
 なお、本実施形態のR-T-B系合金材料に含まれるR-T-B系合金のR2T17相を含む領域の面積率は、第1の実施形態のR-T-B系合金と同様にして求められる。
 本実施形態のR-T-B系合金材料に含まれる添加金属は、Al、Ga、Cuのうちから選ばれる1種以上の金属元素Mまたは前記金属元素Mを含む合金からなるものである。
金属元素Mは、R-T-B系磁石を製造するための焼結および熱処理の際に、遷移金属リッチ相の生成を促進するものであると推定される。
 金属元素Mは、R-T-B系合金材料中に0.1~2.4原子%含まれている。金属元素Mの含有量は0.7原子%以上であることがより好ましく、1.4原子%以下であることがより好ましい。本実施形態のR-T-B系合金材料は、金属元素Mが0.1~2.4原子%含まれているので、これを焼結することで、Rリッチ相と遷移金属リッチ相とを含むR-T-B系磁石が得られる。
 金属元素Mに含まれるAl、Ga、Cuのうちから選ばれる1種以上の金属は、他の磁気特性に支障を来たすことなく、R-T-B系磁石の焼結および熱処理の際に遷移金属リッチ相の生成を促進させて保磁力(Hcj)を効果的に向上させる。
 金属元素Mが0.1原子%未満であると、遷移金属リッチ相の生成を促進させる効果が不足して、R-T-B系磁石に遷移金属リッチ相が形成されず、R-T-B系磁石の保磁力(Hcj)を十分に向上させることができない恐れがある。また、金属元素Mが2.4原子%を超えると、R-T-B系磁石の磁化(Br)や最大エネルギー積(BHmax)などの磁気特性が低下する。
 R-T-B系合金材料中にCuが含まれる場合、Cuの濃度は、0.07~1原子%であることが好ましい。Cuの濃度が0.07原子%未満の場合は、磁石が焼結しにくくなる。また、Cuの濃度が1原子%を超える場合は、R-T-B系磁石の磁化(Br)が低下するので好ましくない。
 本実施形態のR-T-B系合金材料は、R-T-B系合金と、添加金属の他に、さらにSiを含むものであってもよい。R-T-B系合金材料中にSiが含まれる場合、Si含有量は0.7~1.5原子%の範囲であることが好ましい。Siを上記範囲内で含有させることにより、保磁力がより一層向上する。Si含有量が0.7原子%未満であっても1.5原子%を超えても、Siを含有させることによる効果が低下する。
「R-T-B系合金材料の製造方法」
 本発明のR-T-B系合金材料に含まれるR-T-B系合金は、第1の実施形態のR-T-B系合金と同様にして製造できる。そして、得られたR-T-B系合金の粉末と、添加金属の粉末とを混合することにより、R-T-B系合金材料が得られる。
「R-T-B系希土類焼結磁石の製造方法」
 このようにして得られた本実施形態のR-T-B系合金材料を用いて、第1の実施形態のR-T-B系合金を用いた場合と同様にして、R-T-B系磁石を製造できる。
 なお、R-T-B系磁石の保磁力を向上させるため、通常はR-T-B系合金の粉末の粒度をd50で4~5μmとするが、この大きさをさらに小さくしてR-T-B系磁石中の粒子の大きさを小さくするとさらに保磁力を向上させることができる。
 なお、本実施形態においても、第1の実施形態と同様に、R-T-B系磁石の表面に、DyやTbのフッ化物を塗布して熱処理し、DyやTbを焼結磁石内部に拡散させることにより、さらに保磁力を向上させてもよい。また、R-T-B系磁石の表面に、金属Dyや金属Tbを蒸着させて熱処理し、DyやTbを焼結磁石内部に拡散させることにより、さらに保磁力を向上させてもよい。
 本実施形態のR-T-B系磁石の製造方法では、R-T-B系合金材料として、B含有量が上記(式1)を満たし、金属元素Mを0.1~2.4原子%含むものを用いているので、R2Fe14Bを主として含む主相と、主相よりRを多く含む粒界相とを備えた焼結体からなり、粒界相が、希土類元素の合計原子濃度が70原子%以上のRリッチ相と、希土類元素の合計原子濃度が25~35原子%の遷移金属リッチ相とを含む本発明のR-T-B系磁石が得られる。
 さらに、本実施形態のR-T-B系合金材料に含まれる金属元素Mの種類や使用量、R2T17相を含む領域の体積率、R-T-B系合金の組成を本発明の範囲で調節するとともに、焼結温度や焼結後の熱処理などの条件を調整することにより、R-T-B系磁石における遷移金属リッチ相の体積率を0.005~3体積%の好ましい範囲に容易に調節できる。そして、R-T-B系磁石における遷移金属リッチ相の体積率を調整することによって、Dyの含有量を抑制しつつ、用途に応じた所定の保磁力を有するR-T-B系磁石が得られる。
 本実施形態のR-T-B系磁石は、B/TRE含有量が上記(式1)を満たし、金属元素Mを0.2~5原子%含むR-T-B系合金材料を成形して焼結してなるものであり、粒界相が、Rリッチ相と遷移金属リッチ相とを含み、遷移金属リッチ相は、Rリッチ相より希土類元素の合計原子濃度が低く、Rリッチ相よりFeの原子濃度が高いものであるので、Dyの含有量を抑制しつつ、高い保磁力を有し、モーターに好適に用いられる優れた磁気特性を有するものとなる。
〔第3の実施形態〕
 第2の実施形態では、金属元素を含有しない粉末のR-T-B系合金と添加金属とを含むR-T-B系合金材料について説明したが、本実施形態においては、金属元素を含有するR-T-B系合金と添加金属とを含むR-T-B系合金材料について説明する。すなわち、本発明において、R-T-B系合金材料に金属元素を含有させるのは、R-T-B系合金を鋳造する段階であってもよいし、R-T-B系合金を焼結する前の段階であってもよく、双方の段階で金属元素を添加してもよい。
 第3の実施形態では、R-T-B系合金材料に含有させる金属元素の一部をR-T-B系合金に含有させ、このR-T-B系合金の粉末と残りの金属元素とを混合することにより、R-T-B系合金材料とし、これを用いてR-T-B系磁石を製造する。
 本実施形態のR-T-B系合金材料は、上述した第1の実施形態及び第2の実施形態と同様に成形して焼結することにより、上述した第1の実施形態及び第2の実施形態のR-T-B系磁石が得られるものである。
 本実施形態のR-T-B系合金材料は、希土類元素であるRと、Feを必須とする遷移金属であるTと、Al、Ga、Cuのうちから選ばれる1種以上の第1金属と、Bおよび不可避不純物からなり、Rを13~15原子%含み、Bを4.5~6.2原子%含み、Tが残部であり、全希土類元素中のDyの割合が0~65原子%であり、かつ下記(式1)を満たすR-T-B系合金と、Al、Ga、Cuのうちから選ばれる1種以上の第2金属または前記第2金属を含む合金からなる添加金属とを含むR-T-B系合金材料であって、前記R-T-B系合金材料は、前記第1金属と前記第2金属とを合計で0.1~2.4原子%含むものである。
 0.0049Dy+0.34≦B/TRE≦0.0049Dy+0.36・・(式1)
 (式1)において、DyはDy元素の濃度、Bはボロン元素の濃度、TREは希土類元素合計の濃度(原子%)を表す。
 第1金属および第2金属は、いずれもAl、Ga、Cuのうちから選ばれる1種以上の金属であり、第1金属と第2金属との合計で、上述した第1の実施形態及び第2の実施形態における金属元素Mと同じ組成となるものである。
 また、第1金属と第2金属との合計のR-T-B系合金材料中の含有量は、上述した第1の実施形態及び第2の実施形態における金属元素Mと同じである。
 本実施形態のR-T-B系合金材料は、R-T-B系合金が第1金属を含有していること以外は第2の実施形態と同じであり、R-T-B系磁石は第1の実施形態及び第2の実施形態と同様である。したがって、説明を省略する。
 ここで、本発明のR-T-B系磁石に含まれる遷移金属リッチ相を生成させる方法について詳細に説明する。
 本発明においては、製造途中のR-T-B系合金および/または製造途中のR-T-B系磁石に含まれるR2T17相が、R-T-B系合金の製造工程および/またはR-T-B系磁石の製造工程において行われる一回または複数回の熱処理において、R-T-B系磁石の遷移金属リッチ相の原料として使用され、遷移金属リッチ相が生成されると考えられる。
 遷移金属リッチ相を生成させる熱処理の条件は、遷移金属リッチ相の原料としてR2T17相とともに使用される金属元素Mの種類や使用量、R-T-B系合金中および/または焼結後のR-T-B系磁石中に含まれるR2T17相の生成量、R-T-B系磁石の組成、必要とされる遷移金属リッチ相の生成量などに応じて決定される。
 遷移金属リッチ相を生成させる熱処理は、具体的には、製造途中のR-T-B系合金および/または製造途中のR-T-B系磁石に対して、好ましくは400~800℃の温度で、より好ましくは、450~650℃の温度で一回または複数回行うことができ、R-T-B系合金の製造工程および/またはR-T-B系磁石の製造工程において合計で0.5~5時間行うことが好ましく、1~3時間行うことがより好ましい。
 遷移金属リッチ相を生成させる熱処理の温度が400℃未満であると、熱処理時における希土類元素Rと2-17相(R2T17相)と金属元素Mとの反応が不十分となり、遷移金属リッチ相が十分に生成されない場合がある。遷移金属リッチ相を生成させる熱処理の温度が800℃を超えると、原子の再配置が生じて、遷移金属リッチ相が十分に生成されない場合がある。
 また、遷移金属リッチ相を生成させる熱処理の合計時間が、0.5時間未満であると、熱処理時における希土類元素Rと2-17相(R2T17相)と金属元素Mとの反応が不十分となり、遷移金属リッチ相の生成量が不十分となる場合がある。遷移金属リッチ相を生成させる熱処理の合計時間が5時間を越えると、熱処理時間が長時間であることにより生産性に支障を来すため好ましくない。
 遷移金属リッチ相を生成させる熱処理は、R-T-B系合金の製造工程および/またはR-T-B系磁石の製造工程において一回または複数回行われるものであり、遷移金属リッチ相を生成させることのみを目的とする熱処理であってもよいし、焼結など他の目的で行われる熱処理が遷移金属リッチ相を生成させる熱処理を兼ねてもよい。遷移金属リッチ相を生成させる熱処理の回数は、特に限定されるものではないが、遷移金属リッチ相を十分に生成させるために、複数回行うことが好ましい。
 具体的には、遷移金属リッチ相を生成させる熱処理として、R-T-B系合金を製造する際に行われる鋳造後の鋳造合金薄片の冷却速度を一時的に遅くして合金内の成分の拡散を促す処理(温度保持工程)や、R-T-B系磁石を製造する際に行われるR-T-B系磁石を焼結するための熱処理、焼結後のR-T-B系磁石に遷移金属リッチ相を生成させるための熱処理、焼結後のR-T-B系磁石の内部にDyやTbを拡散させるための熱処理から選ばれる1以上の処理などが挙げられる。
 なお、遷移金属リッチ相を生成させる熱処理は、400~800℃の温度で行うことが好ましいが、上記範囲内での最適温度は、熱処理されるR-T-B系合金またはR-T-B系磁石の組織の状態によって異なるものであるため、例えば、焼結前と焼結後とでは異なっており、R-T-B系合金を鋳造する工程からR-T-B系磁石が完成するまでの間のどの工程において行われる熱処理であるかによって適宜決定される。
 また、遷移金属リッチ相を生成させる熱処理によって得られる遷移金属リッチ相の生成量は、遷移金属リッチ相を生成させる熱処理時間の増大に伴って増加する傾向にある。しかし、遷移金属リッチ相を生成させる熱処理を行った後の工程において、R-T-B系合金またはR-T-B系磁石が、遷移金属リッチ相の分解温度以上の高温とされた場合には、生成された遷移金属リッチ相の一部または全部が分解されて減少する可能性がある。
 遷移金属リッチ相を生成させる熱処理においては、下記の(式3)および/または(式4)に示す反応が進行するものと推測される。
 より詳細には、熱処理において遷移金属リッチ相の原料として使用される金属元素Mが、被熱処理材料であるR-T-B系合金中またはR-T-B系磁石中に単独で存在しているものである場合、遷移金属リッチ相を生成させる熱処理において下記の(式3)に示す反応が進行すると推定される。
 R(希土類元素)+R2T17(R2T17相)+M(金属元素)→R6T13M(遷移金属リッチ相)    ・・・(式3)
 金属元素Mが、被熱処理材料中に単独で存在している場合としては、例えば、金属元素を含有しないR-T-B系合金と添加金属とを含むR-T-B系合金材料を用いてR-T-B系磁石を製造する際に行う、焼結するための熱処理などが挙げられる。
 また、金属元素Mが、被熱処理材料中の合金粒界相内または粒界相内に含有されている場合、遷移金属リッチ相を生成させる熱処理において下記の(式4)に示す反応が進行すると推定される。
 RM(金属元素を含む希土類元素)+R2T17(R2T17相)→R6T13M(遷移金属リッチ相)    ・・・(式4)
 金属元素Mが、被熱処理材料中の合金粒界相内または粒界相内に含有されている場合としては、例えば、金属元素を含有するR-T-B系合金を用いてR-T-B系磁石を製造する際に行う、焼結するための熱処理などが挙げられる。
 金属元素Mが、被熱処理材料中に単独で存在しているものと、合金粒界相内または粒界相内に含有されているものの両方を含む場合、遷移金属リッチ相を生成させる熱処理において上記の(式3)に示す反応と(式4)に示す反応とが同時に進行すると推定される。この場合としては、例えば、金属元素を含有するR-T-B系合金と添加金属とを含むR-T-B系合金材料を用いてR-T-B系磁石を製造する際に行う、焼結するための熱処理などが挙げられる。
 R-T-B系合金中のR2T17相の大きさは小さい方がよい。R2T17相の大きさが大きいと、(式3)あるいは(式4)に示す反応が生じても完全にR2T17相を消失させることができず、R-T-B系磁石内にR2T17相が残留して保磁力あるいは角形性が悪化する場合がある。具体的には、R2T17相の大きさは10μm以下であることが好ましく、3μm以下であることがより好ましい。なお、ここでのR2T17相の大きさとは、R2T17相単体の大きさであり、R2T17相の存在領域の大きさではない。
 このように本発明においては、上記の遷移金属リッチ相を生成させる熱処理を行うことで、(式3)および/または(式4)に示すように、R2T17相と、金属元素Mを含む希土類元素R(または金属元素Mと希土類元素R)とを原料として、R-T-B系磁石の遷移金属リッチ相が生成されるものと推測される。
「実験例1~17、41~46」
 Ndメタル(純度99wt%以上)、Prメタル(純度99wt%以上)、Dyメタル(純度99wt%以上)、フェロボロン(Fe80%、B20w%)、鉄塊(純度99%wt以上)、Alメタル(純度99wt%以上)、Gaメタル(純度99wt%以上)、Cuメタル(純度99wt%)を表1に示す合金A~L、N~Q及びT~Zの合金組成になるように秤量し、さらに、Coメタル(純度99wt%以上)を2.3原子%秤量し、アルミナるつぼに装填した。
 なお、表1に示す合金組成に記載のSi含有量は、合金に積極的に含有させたものではなく、合金中に不純物として含まれるSi含有量である。また、合金Nは金属元素Mを意図的に含有させずに作製したものであり、合金Oは金属元素MとしてAlのみを、合金Pは金属元素MとしてGaのみを、合金Qは金属元素MとしてCuをのみを意図的に添加して作製したものである。また、合金N、P及びQに含まれるAlは意図的に添加したものではなく、アルミナルツボから混入したものである。
 その後、アルミナるつぼの入れられた高周波真空誘導炉の炉内をArで置換し、1450℃まで加熱して溶融させて水冷銅ロールに溶湯を注ぎ、ロール周速度1.0m/秒、平均厚み0.3mm程度となるようにSC(ストリップキャスト)法により、鋳造合金薄片を得た。
 次に、鋳造合金薄片を以下に示す水素解砕法により解砕した。まず、鋳造合金薄片を直径5mm程度になるように粗粉砕し、室温の水素中に挿入して水素を吸蔵させた。続いて、粗粉砕して水素を吸蔵させた鋳造合金薄片を300℃まで水素中で加熱する熱処理を行った。その後、減圧して水素を脱気し、さらに500℃まで加熱する熱処理を行って鋳造合金薄片中の水素を放出除去し、室温まで冷却する方法により解砕した。
 次に、水素解砕された鋳造合金薄片に、潤滑剤としてステアリン酸亜鉛0.025wt%を添加し、ジェットミル(ホソカワミクロン100AFG)により、0.6MPaの高圧窒素を用いて、水素解砕された鋳造合金薄片を平均粒度(d50)4.5μmに微粉砕してR-T-B系合金粉末を得た。
 このようにして得られた合金A~L、N~Q及びT~ZのR2T17相の面積率を以下に示す方法により調べた。
 鋳造合金薄片のうち平均厚みの±10%以内の厚みのものを樹脂に埋込み、厚さ方向に断面を削りだし、その断面を鏡面研磨して、その後導電性を付与するために金あるいは炭素を蒸着して観察試料とした。この試料を走査電子顕微鏡(日本電子JSM-5310)で倍率を350倍として反射電子像にて撮影した。
 図6に一例として合金Fの反射電子像を示す。また、合金A~L、N~Q及びT~Zのうち、測定した合金のR2T17相の面積率を表4に示す。表4中、-は未測定を表す。
 次に、このようにして得られたR-T-B系合金粉末を、横磁場中成型機を用いて成型圧力0.8t/cmでプレス成型して圧粉体とした。その後、得られた圧粉体を真空中で900~1200℃の温度で焼結した。その後800℃と500℃の2段階の温度で熱処理して冷却することにより、実験例1~実験例17、実験例41~実験例46のR-T-B系磁石を作製した。
 そして、得られた実験例1~実験例17、実験例41~実験例46のR-T-B系磁石それぞれの磁気特性をBHカーブトレーサー(東英工業TPM2-10)で測定した。その結果を表4に示す。
「実験例18~33」
 実験例1~17で得られたR-T-B系合金からなる粉末(合金A~H、J~L、N~Q)及び合金Rの粉末と、平均粒度(d50)4.35μmのSi粉末とを準備し、表2に示す焼結磁石の組成となるように両者を混合して実験例18~実験例33のR-T-B系合金材料を製造した。なお、Si粉末の粒度は、レーザ回析計によって測定した。
 次に、このようにして得られたR-T-B系合金材料を用いて、実験例1~実験例15と同一手順でR-T-B系磁石を作製した。
 そして、得られた実験例18~実験例33のR-T-B系磁石それぞれの磁気特性を、実験例1~実験例17と同様にして、BHカーブトレーサー(東英工業TPM2-10)で測定した。その結果を表5に示す。
「実験例34」
 Ndメタル(純度99wt%以上)、Prメタル(純度99wt%以上)、Dyメタル(純度99wt%以上)、フェロボロン(Fe80%、B20w%)、鉄塊(純度99%wt以上)、Siメタル(純度99%wt以上)、Alメタル(純度99wt%以上)、Gaメタル(純度99wt%以上)、Cuメタル(純度99wt%)を表3に示す合金Sの成分組成になるように秤量し、さらに、Coメタル(純度99wt%以上)を2.3原子%秤量し、アルミナるつぼに装填し、実験例1~17と同一手順により、R-T-B系合金粉末を得、これを用いて実験例1~17と同一手順により、R-T-B系磁石を作製した。
 そして、得られた実験例34のR-T-B系磁石の磁気特性を、実験例1~実験例17と同様にして、BHカーブトレーサー(東英工業TPM2-10)で測定した。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表4~表6において「Hcj」とは保磁力であり、「Br」とは残留磁化であり、「Sq」とは角形性であり、「BHmax」とは最大エネルギー積である。また、これらの磁気特性の値は、それぞれ5個のR-T-B系磁石の測定値の平均である。
 また、実験例3~実験例28、実験例34のR-T-B系磁石の遷移金属リッチ相の体積率を以下に示す方法により調べた。
 R-T-B系磁石を導電性の樹脂に埋込み、配向方向に平行な面を削りだし、鏡面研磨した。この表面を反射電子像にて1500倍程度の倍率で観察し、そのコントラストにより主相、Rリッチ相、遷移金属リッチ相を判別した。
 例えば、図9、11は、それぞれ、実験例6、23で得られたR-T-B系磁石の反射電子像である。図9、11から、灰色のR2T14B相の粒界に白色のRリッチ相、薄い灰色の遷移金属リッチ相が存在していることが分かる。
 このような反射電子像から遷移金属リッチ相について断面あたりの面積率を算出し、さらにこれが球状であると仮定して、各実験例の体積率を算出した。
 その結果を表4~表6に示す。表4~表6中、-は未測定を表す。
 また、FE-EPMA(電子プローブマイクロアナライザー(Electron Probe Micro Analyzer)を用いて主相および粒界相の組成を調べることにより、実験例18~実験例34のR-T-B系磁石が、R2Fe14Bを主として含む主相と、Rリッチ相、遷移金属リッチ相からおもに構成されていることを確認した。
 表1および表4に示すように、Bが(式1)を満たしていない実験例8及び9では、Dyの含有量が同程度であって、Bが(式1)を満たしている実験例6と比較して、保磁力(Hcj)が低くなっている。
 Siの添加量が0.7~1.5原子%の範囲である実験例23では、添加金属の含有量が本発明の上限を超える実験例29と比較して、保磁力(Hcj)が高くなっている。
 また、図1は、実験例1~4、18~21のB/TRE(希土類元素合計の濃度)と保磁力(Hcj)との関係を示したグラフである。実験例1~4、18~21のR-T-B系磁石は、Dyを含有しないものであるが、実験例18~21に示すように添加金属であるSiを添加させる(実験例18~21)ことで、保磁力(Hcj)が高くなっている。
 このとき、最適なB/TREの幅はピークに対して±0.1程度と見積もれる。
 また、図2は、実験例5~9、22~25のB含有量(希土類元素合計の濃度)と保磁力(Hcj)との関係を示したグラフである。実験例5~9、22~25のR-T-B系磁石は、Dyを3.8原子%程度含有するものである。B含有量が異なっているため、保磁力が異なっているが、B/TREが0.37で保磁力が最大になっている。また、実験例22~25に示すように添加金属であるSiを添加させる(実験例22~25)ことで、保磁力が高くなっていることが分かる。このとき、最適なB/TREの幅はピークに対して±0.1程度と見積もれる。
 また、図3は、実験例10~12、26~28のB含有量(希土類元素合計の濃度)と保磁力(Hcj)との関係を示したグラフである。実験例10~12、26~28のR-T-B系磁石は、Dyを8.3原子%程度含有するものである。B含有量が異なっているため、保磁力が異なっているが、B/TREが0.39で保磁力が最大になっている。
また、添加金属であるSiを添加させる(実験例24~26)ことで、保磁力が高くなっていることが分かる。このとき、最適なB/TREの幅はピークに対して±0.1程度と見積もれる。
 実験例14はCu、Al、Ga、Siを添加せずに作製したものであり、最も近い組成である実験例6と比較して保磁力が大幅に低くなっている。実験例14の成分にAlのみを添加した実験例15、実験例14の成分にGaのみを添加した実験例16、実験例14の成分にCuのみを添加した実験例17では実験例14と比較して保磁力が高くなっている。保磁力を高めるために、Al、Ga、Cuのいずれかが必須であることが示されている。
 さらに、合金N~QにSiを添加した実験例30~33では保磁力が高くなっており、金属Mを2種類以上添加することが好ましいことを示している。特に合金QにSi粉末を添加した実験例33では大幅な保磁力の向上が見られた。また、実験例33は、組成が近い実験例24と比較しても保磁力は2kOe以上高くなっており、CuとSiを添加することが特に好ましいことが示されている。
 Dy濃度がほぼ等しい実験例14~17を比較すると、金属元素Mの濃度が0.08原子%の実験例14では保磁力が低いが、金属元素Mの濃度が0.1原子%以上である実験例15~17では保磁力が高くなっている。
 また、Dyを含有していない実験例41~実験例46を比較すると、実験例43(金属元素Mの濃度は2.43原子%)では、実験例41(金属元素Mの濃度は0.75原子%)実験例42(金属元素Mの濃度は1.00原子%)に比べて保磁力が低下している。
 以上のことから、金属元素Mの含有量は、0.1~2.4原子%が好ましいことが示されている。
 Dyを含有していない実験例1~4、実験例41~46の中で、高い保磁力を有しているのは、実験例41、42、44~46(金属元素Mの濃度が0.72~1.34原子%)である。このことから、金属元素Mの含有量が0.7~1.4原子%の範囲にあることがより好ましいことが示されている。
 表3および表6に示す実験例34は、合金鋳造の段階で全ての金属元素を添加させたものである。Dyの含有量が同程度である表1および表4の実験例5と実験例34とを比較すると、実験例34は実験例5よりも高い保磁力を示すことが分かる。
 表1~表6の結果から、金属元素を合金鋳造した場合であっても、合金と添加金属とを混合した場合であっても、磁石の保磁力を向上させる効果が得られることが分かる。
 図8~図10(a)は、R-T-B系磁石の顕微鏡写真であり、図8は実験例9、図9は実験例6、図10(a)は実験例23の反射電子像である。また、図10(b)は、図10(a)に示したR-T-B系磁石の顕微鏡写真を説明するための模式図である。図8~図10(a)に示す反射電子像および図10(b)に示す模式図において、灰色の部分はR2T14B相であり、白色の部分はRリッチ相であり、薄い灰色の部分は遷移金属リッチ相である。
 表1および表2に示すように、実験例6、9、23のR-T-B系磁石は、Dyの含有量が同程度である。実験例9のB/TREは本願発明の範囲よりも高いものである。一方、実験例6のB/TREは本願発明の範囲内の値であり、実験例23は実験例6にSiを添加したものである。図8では遷移金属リッチ相の生成がほとんど見られなかった。図9ではわずかに遷移金属リッチ相の生成が見られ、図10(a)ではさらに多くの遷移金属リッチ相が生成していることが分かる。図8~図10(a)より、B/TREを適切に選定し、さらに添加金属を適切に添加することで、遷移金属リッチ相の生成を増加させることが可能なことが分かる。
 図8では、数個の粉砕した粒子が融合して主相を形成している。図9では、粉砕した粒子が融合せずに個々に主相を形成している。図10(a)では、粉砕した個々の粒子が形成する主相を、粒界相が取り囲んでいる様子が、明確に観察できる。
「実験例35」
 Ndメタル(純度99wt%以上)、Prメタル(純度99wt%以上)、Dyメタル(純度99wt%以上)、Alメタル(純度99wt%以上)、フェロボロン(Fe80%、B20w%)、鉄塊(純度99%wt以上)、Gaメタル(純度99wt%以上)、Cuメタル(純度99wt%)、Coメタル(純度99wt%以上)を表7に示す合金組成になるように秤量し、アルミナるつぼに装填した。
Figure JPOXMLDOC01-appb-T000007
 その後、図11に示す合金の製造装置1を用いて、鋳造合金薄片を製造した(鋳造工程)。まず、アルミナるつぼの入れられた高周波真空誘導炉(溶解装置)の炉内をArで置換し、1450℃まで加熱して合金溶湯とした。次いで、得られた合金溶湯を、ロール周速度1.0m/秒で回転する水冷銅ロールに供給して凝固させ、鋳造合金とした。その後、鋳造合金を冷却ロール22から離脱させ、破砕装置21の破砕ロールの間を通して破砕することにより、平均厚み0.3mmの鋳造合金薄片を得た。なお、鋳造工程は、アルゴン雰囲気で行った。
 破砕された鋳造合金薄片を、ホッパ7を通過して「閉」の状態とされた開閉式ステージ33上に堆積させて加熱ヒータ31によって加熱し、800℃の鋳造合金を60秒間一定の温度で維持する温度保持工程を行い、開閉式ステージ33を「開」の状態とすることにより温度保持工程を終了した。
 このようにして得られた実験例35の鋳造合金薄片を樹脂に埋込み、鏡面研磨した断面を反射電子像にて350倍の倍率で観察し、そのコントラストにより主相と合金粒界相とを判別し、以下に示すようにして、隣接する合金粒界相間の距離を調べた。すなわち、実験例35の鋳造合金薄片の350倍の倍率の反射電子像の各画像上に鋳造面と平行に10μm間隔で直線を引き、その直線を横切った合金粒界相の間隔をそれぞれ測定し、その平均値を算出した。隣接する合金粒界相間の距離が短いほど、粉砕性に優れている。
 また、表7に示す合金組成のB元素およびFe元素の濃度を変化させたこと以外は、実験例35の鋳造合金薄片と同様にして複数の鋳造合金薄片を作成し、実験例35の鋳造合金薄片と同様にして隣接する合金粒界相間の距離を調べた。その結果を図12(a)~図12(c)、図13(a)、図13(b)に示す。
 図12(a)は、鋳造合金薄片の合金粒界相間の距離とB濃度との関係を示したグラフであり、図12(b)は、鋳造合金薄片の合金粒界相間の距離とB/TRE(Bはボロン元素の濃度(原子%)、TREは希土類元素合計の濃度(原子%)を表す。)との関係を示したグラフであり、図12(c)は、鋳造合金薄片の合金粒界相間の距離とFe/B(B含有量に対するFe含有量の比(Bはボロン元素の濃度(原子%)、Feは鉄元素の濃度(原子%))との関係を示したグラフである。
 図12(a)より、B含有量が5.0原子%以上、6.0原子%以下である場合、合金粒界相間の距離が短く、微細になることが分かる。また、B含有量が5.0原子%未満になると、合金粒界相間の間隔が急激に広くなることが分かる。
 図12(b)より、B/TREが0.355~0.38である場合、合金粒界相間の距離が短く、微細になることが分かる。また、B/TREが0.355未満になると、合金粒界相間の間隔が急激に広くなることが分かる。
 図13(a)はFe/Bが15.5である鋳造合金薄片の断面の顕微鏡写真であり、図13(b)はFe/Bが16.4である鋳造合金薄片の断面の顕微鏡写真である。図13(a)および図13(b)に示す反射電子像おいて、灰色の部分は主相であり、白色の部分は合金粒界相である。図13(a)に示す鋳造合金薄片では、合金粒界相が細かい網目状に形成されていることが分かる。これに対し、図13(b)に示す鋳造合金薄片では、針状の合金粒界相と島状の主相が観察される。
 図12(c)より、Fe/Bが13から増えるにつれて合金粒界相の間隔が狭くなっており、15~16である場合、合金粒界相間の距離が特に短くなっていることが分かる。また、図12(c)、図13(a)および図13(b)より、Fe/Bが13~16である場合、Fe/Bが16を超える場合と比較して、合金粒界相間の距離が短く、微細になることが分かる。また、図12(c)より、Fe/Bが16を超えると、合金粒界相間の間隔が急激に広くなることが分かる。
「実験例36」
 表7に示す合金組成になるように秤量し、アルミナるつぼに装填し、図11に示す合金の製造装置1を用いて、鋳造工程中の雰囲気を以下の雰囲気としたこと以外は、実験例35と同様にして、鋳造合金薄片を製造した(鋳造工程)。
 すなわち、鋳造工程は、アルゴン雰囲気中にヘリウムを供給しながら行い、ヘリウムを含む雰囲気中で冷却ロール22によって鋳造合金を冷却するとともに、温度保持工程後、貯蔵容器4内に収容された鋳造合金薄片を、ヘリウムを含む雰囲気中で冷却した。
 このようにして得られた実験例36の鋳造合金薄片について、実験例35と同様にして、隣接する合金粒界相間の距離を調べた。実験例35と実験例36の合金粒界相間の距離を調べた結果を図14に示す。図14において、黒△は実験例35の結果であり、●は実験例36の結果である。
 図14に示すグラフは、実験例35および実験例36の鋳造合金薄片をそれぞれ5枚用意し、上記と同様にして合金粒界相の間隔をそれぞれ測定して、各合金粒界相の間隔の測定値を0.2μm毎の範囲に分類し、合金粒界相の間隔の全測定数に対し、各範囲の測定値が出現する割合((各範囲の測定値の出現数/全測定数)×100(%))を算出した結果を示したものである。
 図14に示すように、鋳造工程をヘリウムを含む雰囲気中で行った鋳造合金薄片である実験例36では、鋳造工程をアルゴン雰囲気中で行った鋳造合金薄片である実験例35と比較して、合金粒界相間の間隔が狭くなっている。このことから、鋳造工程をヘリウムを含む雰囲気中で行うことにより、合金組織の粒径が微細化され、粉砕性に優れるものとなることがわかる。
「実験例37」
 表1に示す合金Fの組成になるように秤量し、アルミナるつぼに装填し、図11に示す合金の製造装置1を用い、製造した鋳造合金の1200℃から50℃となるまでの間の冷却温度の履歴を図15(a)~図15(c)および表8に示す(a)条件としたこと以外は、実験例35と同様にして、鋳造合金薄片を製造した(鋳造工程)。なお、鋳造工程は、アルゴン雰囲気で行った。
Figure JPOXMLDOC01-appb-T000008
 次に、鋳造合金薄片を実験例1と同様にして水素解砕法により解砕して実験例37のR-T-B系合金粉末を得た。
 なお、R-T-B系合金粉末の平均粒度(d50)は、4.5μmであった。
 このようにして得られた実験例37のR-T-B系合金粉末を、横磁場中成型機を用いて成型圧力0.8t/cmでプレス成型して圧粉体とした。その後、得られた圧粉体を真空中で900~1200℃の温度で焼結した。その後800℃と500℃の2段階の温度で熱処理して冷却することにより、複数の実験例37のR-T-B系磁石を作製した。
 得られた複数の実験例37のR-T-B系磁石の磁気特性をそれぞれBHカーブトレーサー(東英工業TPM2-10)で測定した。その結果を図16(a)~図16(c)に示す。
「実験例38」
 製造した鋳造合金の1200℃から50℃となるまでの間の冷却温度の履歴を図15(a)~図15(c)および表8に示す(b)条件としたこと以外は、実験例37と同様にして、鋳造合金薄片を製造し、これを用いて実験例37と同様にして実験例38のR-T-B系合金粉末を得た。
 なお、R-T-B系合金粉末の平均粒度(d50)は、4.5μmであった。
 このようにして得られた実験例38のR-T-B系合金粉末を用いて、実験例37と同様にして、複数の実験例38のR-T-B系磁石を作製し、磁気特性をそれぞれBHカーブトレーサー(東英工業TPM2-10)で測定した。その結果を図16(a)~図16(c)に示す。
「実験例39」
 実験例37で得られたR-T-B系合金からなる粉末と、平均粒度(d50)4.35μmのSi粉末とを準備し、表2に示す実験例23の組成となるように両者を混合して実験例39のR-T-B系合金材料を製造した。なお、Si粉末の粒度は、レーザ回析計によって測定した。
「実験例40」
 実験例38で得られたR-T-B系合金からなる粉末と、平均粒度(d50)4.35μmのSi粉末とを準備し、表2に示す実験例23の組成となるように両者を混合して実験例40のR-T-B系合金材料を製造した。なお、Si粉末の粒度は、レーザ回析計によって測定した。
 次に、このようにして得られた実験例39および実験例40のR-T-B系合金材料を用いて、実験例37と同様にして、それぞれ複数の実験例39および実験例40のR-T-B系磁石を作製した。
 そして、得られた複数の実験例39および実験例40のR-T-B系磁石それぞれの磁気特性を、実験例37と同様にして、BHカーブトレーサー(東英工業TPM2-10)で測定した。その結果を図16(a)~図16(c)に示す。
 図16(a)は、実験例37~実験例40のR-T-B系磁石の保磁力(Hcj)を示したグラフであり、図16(b)は、実験例37~実験例40のR-T-B系磁石の磁化(Br)を示したグラフであり、図16(c)は、実験例37~実験例40のR-T-B系磁石の磁化(Br)と保磁力(Hcj)との関係を示したグラフである。なお、図16(c)に示す点線は、等価ラインである。また、図16において、△は実験例37の結果であり、○は実験例38の結果であり、黒△は実験例39の結果であり、●は実験例40の結果である。
 図16(a)に示すように、800℃の鋳造合金を60秒間一定の温度で維持する温度保持工程を行った実験例38および実験例40は、温度保持工程を行わない実験例37および実験例39と比較して、保磁力(Hcj)が高くなった。また、Siを添加したR-T-B系合金材料を用いた実験例40のR-T-B系磁石では、Siを添加しないR-T-B系合金を用いた実験例38のR-T-B系磁石と比較して、保磁力(Hcj)が高くなった。
 図16(b)に示すように、温度保持工程を行った実験例38および実験例40と、温度保持工程を行わない実験例37および実験例39とを比較しても、Siを添加したR-T-B系合金材料を用いた実験例39および実験例40のR-T-B系磁石と、Siを添加しないR-T-B系合金を用いた実験例37および実験例38のR-T-B系磁石とを比較しても、磁化(Br)の差は小さかった。
 図16(c)に示すように、温度保持工程を行った実験例38および実験例40は等価ラインよりも右側に位置しており、温度保持工程を行わない場合と比較して保磁力が高いことが分かる。
「実験例47」
 表9に示す実験例47の焼結磁石の組成となるように製造したR-T-B系合金の粉末を、横磁場中成型機を用いて成型圧力0.8t/cmでプレス成形して圧粉体とした。その後、得られた圧粉体を真空中で900℃~1200℃の温度で焼結した。その後、800℃と500℃の2段階の温度で熱処理して冷却することにより、実験例47のR-T-B系磁石を得た。
Figure JPOXMLDOC01-appb-T000009
「実験例48」
 実験例47と同様にして製造した熱処理後のR-T-B系磁石の表面に、Dyを含む塗布液を塗布した。Dyを含む塗布液としては、エタノールとフッ化ジスプロシウム(DyF)とを重量比1:1で混合した混合物を用いた。また、R-T-B系磁石の表面への塗布液の塗布は、容器中に入れられた塗布液を超音波分散させながら、焼結後のR-T-B系磁石を容器中に1分間浸漬させることにより行った。
 続いて、塗布液の塗布されたR-T-B系磁石を、アルゴンを流量100ml/minで供給するアルゴン雰囲気中で900℃の温度で一時間加熱する第1熱処理を行い、室温まで冷却した。その後、第1熱処理と同じ雰囲気中で500℃の温度で一時間加熱する第2熱処理を行なって室温まで冷却し(拡散工程)、実験例48のR-T-B系磁石を得た。
「実験例49」
 表9に示す実験例49の焼結磁石の組成となるように製造したR-T-B系合金の粉末を用いたこと以外は、実験例47と同様にして実験例49のR-T-B系磁石を得た。
「実験例50」
 実験例49と同様にして製造した熱処理後のR-T-B系磁石の表面に、実験例48と同様にしてDyを含む塗布液を塗布して熱処理する拡散工程を行い、実験例50のR-T-B系磁石を得た。
 このようにして得られた実験例47~50のR-T-B系磁石の組成を、希土類、鉄、銅、コバルト、アルミニウム、ガリウム、ホウ素については蛍光X線分析(XRF)、炭素、窒素、酸素についてはガス分析装置、それ以外の微量不純物元素についてはプラズマ発光分析(ICP)を用いて測定した。その結果を表9に示す。
 表9に示す実験例47と実験例48とを比較すると、Dyを含む塗布液を塗布して熱処理する拡散工程を行うことにより、R-T-B系磁石に含まれるDy濃度が高くなっている。また、表9に示す実験例49と実験例50とを比較すると、上記の拡散工程を行うことにより、R-T-B系磁石に含まれるDy濃度が高くなっている。
 また、表9に示す実験例47および実験例48の磁石組成は、本発明の範囲内であり、実験例49および実験例50の磁石組成は、「B/TRE」の値が本発明の範囲外である。
 また、実験例47および実験例48のR-T-B系磁石を、それぞれ導電性の樹脂に埋込み、配向方向に平行な面を削りだし、鏡面研磨した。この表面を反射電子像にて1500倍程度の倍率で観察し、そのコントラストにより主相、Rリッチ相、遷移金属リッチ相を判別した。
 さらに、実験例47および実験例48のR-T-B系磁石について、それぞれFE-EPMA(電子プローブマイクロアナライザー(Electron Probe Micro Analyzer)を用いて主相および粒界相(Rリッチ相、遷移金属リッチ相)の組成を確認した。
 その結果、本発明の実施例である実験例47と実験例48のR-T-B系磁石は、主相、Rリッチ相、遷移金属リッチ相が存在していた。
 また、実験例47~実験例50のR-T-B系磁石の磁気特性をそれぞれBHカーブトレーサー(東英工業TPM2-10)で測定した。その結果を図17(a)、図17(b)、表10および表11に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表10および表11において「Hcj」とは保磁力であり、「Br」とは残留磁化である。また、これらの磁気特性の値は、それぞれ5個のR-T-B系磁石の測定値の平均である。
 図17(a)は、実験例47と実験例48のヒステリシス曲線の第二象限を示したグラフであり、図17(b)は、実験例49と実験例50のヒステリシス曲線の第二象限を示したグラフである。ここで、縦軸は磁化Jであり、横軸は磁界Hである。図17(a)および図17(b)に示すヒステリシス曲線はBHカーブトレーサー(東英工業TPM2-10)で測定した。図17(a)および図17(b)において、曲線が横軸と交わる点が保磁力「Hcj」の値を示しており、曲線が縦軸と交わる点が残留磁化「Br」を示している。
 図17(a)および表10に示すように、拡散工程を行った実験例48では、実験例47と比較して保磁力が大幅に改善されている。また、実験例47と実験例48とを比較すると、残留磁化の変化はわずかである。
 図17(b)および表11に示すように、拡散工程を行った実験例50では、実験例49と比較して保磁力が改善されているが、図17(a)および表10に示す実験例47と実験例48との差よりも変化が小さく、保磁力改善効果が小さくなっている。また、実験例50と実験例49とを比較すると、残留磁化の変化はわずかであった。
 本発明は、優れた磁気特性を有し、モーターに好適に用いられるR-T-B系希土類焼結磁石の得られるR-T-B系希土類焼結磁石用合金およびR-T-B系希土類焼結磁石用合金材料に適用できる。
1…製造装置、
2…鋳造装置、
3…加熱装置、
4…貯蔵容器、
5…コンテナ、
6…チャンバ、
6a…鋳造室、
6b…保温・貯蔵室、
7…ホッパ、
21…破砕装置、
31…加熱ヒータ、
32…開閉式ステージ群、
33…開閉式ステージ。

Claims (24)

  1.  希土類元素であるRと、Feを必須とする遷移金属であるTと、Al、Ga、Cuのうちから選ばれる1種以上の金属を含む金属元素Mと、Bおよび不可避不純物からなり、Rを13~15原子%含み、Bを4.5~6.2原子%含み、Mを0.1~2.4原子%含み、Tが残部であり、全希土類元素中のDyの割合が0~65原子%であり、かつ下記(式1)を満たすことを特徴とするR-T-B系希土類焼結磁石用合金。
     0.0049Dy+0.34≦B/TRE≦0.0049Dy+0.36・・(式1)
     (式1)において、DyはDy元素の濃度(原子%)、Bはボロン元素の濃度(原子%)、TREは希土類元素合計の濃度(原子%)を表す。
  2.  前記Mを0.7~1.4原子%含むことを特徴とする請求項1に記載のR-T-B系希土類焼結磁石用合金。
  3.  さらにSiを含むことを特徴とする請求項1または2に記載のR-T-B系希土類焼結磁石用合金。
  4.  R2T17相を含む領域の面積率が0.1%以上50%以下であることを特徴とする請求項1または2に記載のR-T-B系希土類焼結磁石用合金。
  5.  希土類元素であるRと、Feを必須とする遷移金属であるTと、Bおよび不可避不純物からなり、Rを13~15原子%含み、Bを4.5~6.2原子%含み、Tが残部であり、全希土類元素中のDyの割合が0~65原子%であり、かつ下記(式1)を満たすR-T-B系合金と、
     Al、Ga、Cuのうちから選ばれる1種以上の金属元素Mまたは前記金属元素Mを含む合金からなる添加金属とを含むR-T-B系希土類焼結磁石用合金材料であって、
     前記R-T-B系希土類焼結磁石用合金材料中に前記金属元素Mを0.1~2.4原子%含むことを特徴とするR-T-B系希土類焼結磁石用合金材料。
     0.0049Dy+0.34≦B/TRE≦0.0049Dy+0.36・・(式1)
     (式1)において、DyはDy元素の濃度(原子%)、Bはボロン元素の濃度(原子%)、TREは希土類元素合計の濃度(原子%)を表す。
  6.  希土類元素であるRと、Feを必須とする遷移金属であるTと、Al、Ga、Cuのうちから選ばれる1種以上の第1金属と、Bおよび不可避不純物からなり、Rを13~15原子%含み、Bを4.5~6.2原子%含み、Tが残部であり、全希土類元素中のDyの割合が0~65原子%であり、かつ下記(式1)を満たすR-T-B系合金と、
     Al、Ga、Cuのうちから選ばれる1種以上の第2金属または前記第2金属を含む合金からなる添加金属とを含むR-T-B系希土類焼結磁石用合金材料であって、
     前記R-T-B系希土類焼結磁石用合金材料は、前記第1金属と前記第2金属とを合計で0.1~2.4原子%含むことを特徴とするR-T-B系希土類焼結磁石用合金材料。
     0.0049Dy+0.34≦B/TRE≦0.0049Dy+0.36・・(式1)
     (式1)において、DyはDy元素の濃度(原子%)、Bはボロン元素の濃度(原子%)、TREは希土類元素合計の濃度(原子%)を表す。
  7.  さらにSiを含むことを特徴とする請求項5または6に記載のR-T-B系希土類焼結磁石用合金材料。
  8.  前記R-T-B系希土類焼結磁石用合金材料中のSiの含有量が0.7~1.5原子%であることを特徴とする請求項7に記載のR-T-B系希土類焼結磁石用合金材料。
  9.  前記R-T-B系合金中のR2T17相を含む領域の面積率が0.1%以上50%以下であることを特徴とする請求項5または6に記載のR-T-B系希土類焼結磁石用合金材料。
  10.  請求項1または2に記載のR-T-B系希土類焼結磁石用合金または、請求項5または6に記載のR-T-B系希土類焼結磁石用合金材料を成形して焼結することを特徴とするR-T-B系希土類焼結磁石の製造方法。
  11.  前記焼結を800℃~1200℃で行った後、400℃~800℃で熱処理を行うことを特徴とする請求項10に記載のR-T-B系希土類焼結磁石の製造方法。
  12.  前記焼結後のR-T-B系磁石の表面に、Dy金属またはTb金属、もしくはDy化合物またはTb化合物を付着させて熱処理する拡散工程を行うことを特徴とする請求項10に記載のR-T-B系希土類焼結磁石の製造方法。
  13.  希土類元素であるRと、Feを必須とする遷移金属であるTと、Al、Ga、Cuのうちから選ばれる1種以上の金属を含む金属元素Mと、Bおよび不可避不純物からなり、Rを13~15原子%含み、Bを4.5~6.2原子%含み、Mを0.1~2.4原子%含み、Tが残部であり、全希土類元素中のDyの割合が0~65原子%であり、かつ下記(式1)を満たすR-T-B系希土類焼結磁石であって、
     R2Fe14Bを主として含む主相と、主相よりRを多く含む粒界相とを備えた焼結体からなり、前記粒界相が、希土類元素の合計原子濃度が70原子%以上の相と、前記希土類元素の合計原子濃度が25~35原子%の相とを含むことを特徴とするR-T-B系希土類焼結磁石。
     0.0049Dy+0.34≦B/TRE≦0.0049Dy+0.36・・(式1)
     (式1)において、DyはDy元素の濃度(原子%)、Bはボロン元素の濃度(原子%)、TREは希土類元素合計の濃度(原子%)を表す。
  14.  さらにSiを含むことを特徴とする請求項13に記載のR-T-B系希土類焼結磁石。
  15.  前記希土類元素の合計原子濃度が25~35原子%の相の体積率が0.005~3体積%であることを特徴とする請求項13または14に記載のR-T-B系希土類焼結磁石。
  16.  焼結磁石表面のDyまたはTbの濃度が、内部のDyまたはTbの濃度よりも高いものであることを特徴とする請求項13または14に記載のR-T-B系希土類焼結磁石。
  17.  請求項13または14に記載のR-T-B系希土類焼結磁石を備えることを特徴とするモーター。
  18.  希土類元素であるRと、Feを必須とする遷移金属であるTと、Al、Ga、Cuのうちから選ばれる1種以上の金属を含む金属元素Mと、Bおよび不可避不純物からなり、Rを13~15原子%含み、Bを5.0~6.0原子%含み、Mを0.1~2.4原子%含み、Tが残部であり、全希土類元素中のDyの割合が0~65原子%であり、R2Fe14Bを主として含む主相と、主相よりRを多く含む合金粒界相とを備え、前記合金粒界相の間隔が3μm以下であることを特徴とするR-T-B系希土類焼結磁石用合金。
  19.  さらにSiを含むことを特徴とする請求項18に記載のR-T-B系希土類焼結磁石用合金。
  20.  B含有量に対するFe含有量の比(Fe/B)が13~16であることを特徴とする請求項18または19に記載のR-T-B系希土類焼結磁石用合金。
  21.  B/TRE(Bはボロン元素の濃度(原子%)、TREは希土類元素合計の濃度(原子%)を表す。)が0.355~0.38であることを特徴とする請求項18または19に記載のR-T-B系希土類焼結磁石用合金。
  22.  希土類元素であるRと、Feを必須とする遷移金属であるTと、Al、Ga、Cuのうちから選ばれる1種以上の金属を含む金属元素Mと、Bおよび不可避不純物からなり、Rを13~15原子%含み、Bを5.0~6.0原子%含み、Mを0.1~2.4原子%含み、Tが残部であり、全希土類元素中のDyの割合が0~65原子%である合金溶湯を、冷却ロールを用いて冷却するストリップキャスト法により鋳造して鋳造合金を製造する鋳造工程を備え、
     前記鋳造工程において、800℃超の鋳造合金が500℃未満の温度となるまでの間に、10秒~120秒間一定の温度で維持する温度保持工程を行うことを特徴とするR-T-B系希土類焼結磁石用合金の製造方法。
  23.  前記合金溶湯がSiを含むことを特徴とする請求項22に記載のR-T-B系希土類焼結磁石用合金の製造方法。
  24.  前記鋳造工程の少なくとも一部を、ヘリウムを含む雰囲気中で行うことを特徴とする請求項22または23に記載のR-T-B系希土類焼結磁石用合金の製造方法。
     
PCT/JP2012/067367 2011-07-08 2012-07-06 R-t-b系希土類焼結磁石用合金、r-t-b系希土類焼結磁石用合金の製造方法、r-t-b系希土類焼結磁石用合金材料、r-t-b系希土類焼結磁石、r-t-b系希土類焼結磁石の製造方法およびモーター WO2013008756A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112012002150.9T DE112012002150T5 (de) 2011-07-08 2012-07-06 Legierung für gesinterte Magneten auf R-T-B-Seltenerdbasis, Verfahren zur Herstellung einer Legierung für gesinterte Magneten auf R-T-B-Seltenerdbasis, Legierungsmaterial für gesinterte Magneten auf R-T-B-Seltenerdbasis, gesinterte Magneten auf R-T-B-Seltenerdbasis, Verfahren zum Herstellen von gesinterten Magneten auf R-T-B-Seltenerdbasis, und Motor
CN201280027546.5A CN103582715B (zh) 2011-07-08 2012-07-06 R-t-b系稀土族烧结磁铁用合金、r-t-b系稀土族烧结磁铁用合金的制造方法、r-t-b系稀土族烧结磁铁用合金材料、r-t-b系稀土族烧结磁铁、r-t-b系稀土族烧结磁铁的制造方法和电动机
US14/126,770 US20140132377A1 (en) 2011-07-08 2012-07-06 Alloy for r-t-b-based rare earth sintered magnet, process of producing alloy for r-t-b-based rare earth sintered magnet, alloy material for r-t-b-based rare earth sintered magnet, r-t-b-based rare earth sintered magnet, process of producing r-t-b-based rare earth sintered magnet, and motor
US15/219,110 US11024448B2 (en) 2011-07-08 2016-07-25 Alloy for R-T-B-based rare earth sintered magnet, process of producing alloy for R-T-B-based rare earth sintered magnet, alloy material for R-T-B-based rare earth sintered magnet, R-T-B-based rare earth sintered magnet, process of producing R-T-B-based rare earth sintered magnet, and motor

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011151815 2011-07-08
JP2011-151815 2011-07-08
JP2011-229289 2011-10-18
JP2011229289 2011-10-18
JP2012-060259 2012-03-16
JP2012060259 2012-03-16
JP2012-149560 2012-07-03
JP2012149560A JP5572673B2 (ja) 2011-07-08 2012-07-03 R−t−b系希土類焼結磁石用合金、r−t−b系希土類焼結磁石用合金の製造方法、r−t−b系希土類焼結磁石用合金材料、r−t−b系希土類焼結磁石、r−t−b系希土類焼結磁石の製造方法およびモーター

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/126,770 A-371-Of-International US20140132377A1 (en) 2011-07-08 2012-07-06 Alloy for r-t-b-based rare earth sintered magnet, process of producing alloy for r-t-b-based rare earth sintered magnet, alloy material for r-t-b-based rare earth sintered magnet, r-t-b-based rare earth sintered magnet, process of producing r-t-b-based rare earth sintered magnet, and motor
US15/219,110 Division US11024448B2 (en) 2011-07-08 2016-07-25 Alloy for R-T-B-based rare earth sintered magnet, process of producing alloy for R-T-B-based rare earth sintered magnet, alloy material for R-T-B-based rare earth sintered magnet, R-T-B-based rare earth sintered magnet, process of producing R-T-B-based rare earth sintered magnet, and motor

Publications (1)

Publication Number Publication Date
WO2013008756A1 true WO2013008756A1 (ja) 2013-01-17

Family

ID=47506046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067367 WO2013008756A1 (ja) 2011-07-08 2012-07-06 R-t-b系希土類焼結磁石用合金、r-t-b系希土類焼結磁石用合金の製造方法、r-t-b系希土類焼結磁石用合金材料、r-t-b系希土類焼結磁石、r-t-b系希土類焼結磁石の製造方法およびモーター

Country Status (5)

Country Link
US (2) US20140132377A1 (ja)
JP (1) JP5572673B2 (ja)
CN (4) CN104900361B (ja)
DE (1) DE112012002150T5 (ja)
WO (1) WO2013008756A1 (ja)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114892A1 (ja) * 2012-02-02 2013-08-08 中電レアアース株式会社 R-T-B-Ga系磁石用原料合金およびその製造方法
JP2013236071A (ja) * 2012-04-11 2013-11-21 Shin Etsu Chem Co Ltd 希土類焼結磁石及びその製造方法
US20140292453A1 (en) * 2013-03-28 2014-10-02 Tdk Corporation Rare earth based magnet
WO2014157448A1 (ja) 2013-03-29 2014-10-02 日立金属株式会社 R-t-b系焼結磁石
WO2014157451A1 (ja) 2013-03-29 2014-10-02 日立金属株式会社 R-t-b系焼結磁石
DE102014104425A1 (de) 2013-03-28 2014-10-02 Tdk Corporation Seltenerdbasierter Magnet
WO2015022946A1 (ja) 2013-08-12 2015-02-19 日立金属株式会社 R-t-b系焼結磁石およびr-t-b系焼結磁石の製造方法
WO2015022945A1 (ja) 2013-08-12 2015-02-19 日立金属株式会社 R-t-b系焼結磁石
WO2015030231A1 (ja) 2013-09-02 2015-03-05 日立金属株式会社 R-t-b系焼結磁石の製造方法
JP2015103681A (ja) * 2013-11-26 2015-06-04 日立金属株式会社 R−t−b系焼結磁石
CN104733147A (zh) * 2013-12-20 2015-06-24 Tdk株式会社 稀土类磁铁
CN104733145A (zh) * 2013-12-20 2015-06-24 Tdk株式会社 稀土类磁铁
DE102014118984A1 (de) 2013-12-20 2015-06-25 Tdk Corporation Seltenerdenmetall-Magnet
US20150248954A1 (en) * 2014-05-11 2015-09-03 Shenyang General Magnetic Co., Ltd High-performance NdFeB rare earth permanent magnet with composite main phase and manufacturing method thereof
US20150270041A1 (en) * 2013-07-16 2015-09-24 Tdk Corporation Rare earth based magnet
CN105189805A (zh) * 2013-04-24 2015-12-23 中央电气工业株式会社 R-t-b系磁体用原料合金
US20160012946A1 (en) * 2014-07-08 2016-01-14 Showa Denko K.K. Method of manufacturing alloy for r-t-b-based rare earth sintered magnet and method of manufacturing r-t-b-based rare earth sintered magnet
US20160284452A1 (en) * 2015-03-25 2016-09-29 Showa Denko K.K. R-t-b-based rare earth sintered magnet and method of manufacturing same
JP2017045828A (ja) * 2015-08-26 2017-03-02 日立金属株式会社 R−t−b系焼結磁石
JPWO2015147053A1 (ja) * 2014-03-26 2017-04-13 日立金属株式会社 R−t−b系焼結磁石の製造方法
US20170162305A1 (en) * 2015-12-03 2017-06-08 Showa Denko K.K. Alloy for r-t-b-based rare earth sintered magnet and manufacturing method thereof, and manufacturing method of r-t-b-based rare earth sintered magnet
JPWO2016133067A1 (ja) * 2015-02-17 2017-11-30 日立金属株式会社 R−t−b系焼結磁石の製造方法
JP2018152526A (ja) * 2017-03-15 2018-09-27 インターメタリックス株式会社 RFeB系焼結磁石の製造方法
US10242781B2 (en) 2015-12-24 2019-03-26 Hitachi Metals, Ltd. Method for manufacturing R-T-B based sintered magnet
US10446306B2 (en) 2014-09-17 2019-10-15 Hitachi Metals, Ltd. Method for manufacturing R-T-B based sintered magnet
US10497497B2 (en) 2012-02-02 2019-12-03 Santoku Corporation R-T-B—Ga-based magnet material alloy and method of producing the same
WO2019242581A1 (zh) 2018-06-19 2019-12-26 厦门钨业股份有限公司 一种低B含量的R-Fe-B系烧结磁铁及其制备方法
US10916373B2 (en) 2016-12-01 2021-02-09 Hitachi Metals, Ltd. R-T-B sintered magnet and production method therefor
US10923256B2 (en) 2015-06-25 2021-02-16 Hitachi Metals, Ltd. R-T-B-based sintered magnet and method for producing same
US10984930B2 (en) 2017-09-28 2021-04-20 Hitachi Metals, Ltd. Method for producing sintered R—T—B based magnet and diffusion source
WO2021135142A1 (zh) 2019-12-31 2021-07-08 厦门钨业股份有限公司 一种r-t-b系永磁材料、原料组合物、制备方法、应用
US11174537B2 (en) 2016-08-17 2021-11-16 Hitachi Metals, Ltd. R-T-B sintered magnet
US11177069B2 (en) 2015-07-30 2021-11-16 Hitachi Metals, Ltd. Method for producing R-T-B system sintered magnet
EP4270421A1 (en) 2022-04-28 2023-11-01 Shin-Etsu Chemical Co., Ltd. Sintered rare-earth magnet and method of manufacture

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10262779B2 (en) 2013-03-29 2019-04-16 Santoku Corporation R-T-B-based magnet material alloy and method for producing the same
CN104674115A (zh) * 2013-11-27 2015-06-03 厦门钨业股份有限公司 一种低b的稀土磁铁
US20170018342A1 (en) * 2014-02-28 2017-01-19 Hitachi Metals, Ltd. R-t-b based sintered magnet and method for producing same
CN104952574A (zh) 2014-03-31 2015-09-30 厦门钨业股份有限公司 一种含W的Nd-Fe-B-Cu系烧结磁铁
JP6572550B2 (ja) * 2015-02-04 2019-09-11 Tdk株式会社 R−t−b系焼結磁石
US10428408B2 (en) 2015-03-13 2019-10-01 Tdk Corporation R-T-B-based rare earth sintered magnet and alloy for R-T-B-based rare earth sintered magnet
JP6672753B2 (ja) * 2015-03-13 2020-03-25 Tdk株式会社 R−t−b系希土類焼結磁石及びr−t−b系希土類焼結磁石用合金
JP6489052B2 (ja) 2015-03-31 2019-03-27 信越化学工業株式会社 R−Fe−B系焼結磁石及びその製造方法
JP6555170B2 (ja) 2015-03-31 2019-08-07 信越化学工業株式会社 R−Fe−B系焼結磁石及びその製造方法
TWI673729B (zh) 2015-03-31 2019-10-01 日商信越化學工業股份有限公司 R-Fe-B系燒結磁石及其製造方法
JP6493138B2 (ja) * 2015-10-07 2019-04-03 Tdk株式会社 R−t−b系焼結磁石
EP3179487B1 (en) 2015-11-18 2021-04-28 Shin-Etsu Chemical Co., Ltd. R-(fe,co)-b sintered magnet and making method
JP6645219B2 (ja) * 2016-02-01 2020-02-14 Tdk株式会社 R−t−b系焼結磁石用合金、及びr−t−b系焼結磁石
US10672546B2 (en) 2016-02-26 2020-06-02 Tdk Corporation R-T-B based permanent magnet
US10943717B2 (en) 2016-02-26 2021-03-09 Tdk Corporation R-T-B based permanent magnet
US10784028B2 (en) 2016-02-26 2020-09-22 Tdk Corporation R-T-B based permanent magnet
JP6724865B2 (ja) 2016-06-20 2020-07-15 信越化学工業株式会社 R−Fe−B系焼結磁石及びその製造方法
JP2018056188A (ja) 2016-09-26 2018-04-05 信越化学工業株式会社 R−Fe−B系焼結磁石
JP6614084B2 (ja) 2016-09-26 2019-12-04 信越化学工業株式会社 R−Fe−B系焼結磁石の製造方法
WO2018101239A1 (ja) 2016-12-02 2018-06-07 信越化学工業株式会社 R-Fe-B系焼結磁石及びその製造方法
JP6414653B1 (ja) * 2017-01-31 2018-10-31 日立金属株式会社 R−t−b系焼結磁石の製造方法
CN110106334B (zh) * 2018-02-01 2021-06-22 福建省长汀金龙稀土有限公司 一种连续进行晶界扩散和热处理的装置以及方法
JP6992634B2 (ja) 2018-03-22 2022-02-03 Tdk株式会社 R-t-b系永久磁石
JP7110662B2 (ja) 2018-03-28 2022-08-02 Tdk株式会社 R‐t‐b系焼結磁石
JP7248017B2 (ja) * 2018-03-29 2023-03-29 株式会社プロテリアル R-t-b系焼結磁石の製造方法
US20190378651A1 (en) * 2018-06-08 2019-12-12 Shenzhen Radimag Magnets Co.,Ltd Permeating treatment method for radially oriented sintered magnet, magnet, and composition for magnet permeation
JP7196514B2 (ja) * 2018-10-04 2022-12-27 信越化学工業株式会社 希土類焼結磁石
JP6773150B2 (ja) * 2019-02-15 2020-10-21 Tdk株式会社 R−t−b系希土類焼結磁石用合金、r−t−b系希土類焼結磁石
JP7188172B2 (ja) * 2019-02-21 2022-12-13 Tdk株式会社 R‐t‐b系永久磁石
CN110335735A (zh) * 2019-07-18 2019-10-15 宁波科田磁业有限公司 一种r-t-b永磁材料及其制备方法
CN110571007B (zh) * 2019-09-03 2021-06-11 厦门钨业股份有限公司 一种稀土永磁材料、原料组合物、制备方法、应用、电机
CN111009369B (zh) * 2019-10-29 2021-08-27 厦门钨业股份有限公司 一种稀土永磁材料及其制备方法和应用
CN110993232B (zh) * 2019-12-04 2021-03-26 厦门钨业股份有限公司 一种r-t-b系永磁材料、制备方法和应用
CN111326304B (zh) * 2020-02-29 2021-08-27 厦门钨业股份有限公司 一种稀土永磁材料及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153006A (ja) * 1989-11-10 1991-07-01 Hitachi Metals Ltd 永久磁石および永久磁石原料
JPH0411703A (ja) * 1990-04-28 1992-01-16 Nippon Steel Corp 希土類磁石の製造方法
JPH04206805A (ja) * 1990-11-30 1992-07-28 Kobe Steel Ltd 磁気特性および耐食性の優れた希土類元素―Fe―B系磁石の製造方法
JPH06302419A (ja) * 1993-04-13 1994-10-28 Seiko Epson Corp 希土類永久磁石およびその製造方法
JP2004165482A (ja) * 2002-11-14 2004-06-10 Shin Etsu Chem Co Ltd R−Fe−B系焼結磁石
JP2007119882A (ja) * 2005-10-31 2007-05-17 Showa Denko Kk R−t−b系合金及びr−t−b系合金薄片の製造方法、r−t−b系希土類永久磁石用微粉、r−t−b系希土類永久磁石
JP2007277655A (ja) * 2006-04-07 2007-10-25 Showa Denko Kk 合金の製造装置
JP2007305878A (ja) * 2006-05-12 2007-11-22 Ulvac Japan Ltd 永久磁石及び永久磁石の製造方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684406A (en) 1983-05-21 1987-08-04 Sumitomo Special Metals Co., Ltd. Permanent magnet materials
JPH089752B2 (ja) 1983-08-04 1996-01-31 住友特殊金属株式会社 R1R2FeCoB系永久磁石の製造方法
JPH076025B2 (ja) 1986-03-22 1995-01-25 住友特殊金属株式会社 永久磁石材料の製造方法
DE3774333D1 (de) * 1986-06-16 1991-12-12 Tokin Corp Dauermagnet-material und verfahren zur herstellung.
JPH0831365B2 (ja) 1987-04-23 1996-03-27 住友特殊金属株式会社 耐食性永久磁石の製造方法
JPH05315120A (ja) * 1992-05-08 1993-11-26 Seiko Epson Corp 希土類焼結磁石およびその製造方法
JPH06260316A (ja) * 1993-03-03 1994-09-16 Hitachi Metals Ltd Nd−Fe−B型焼結磁石
DE69318147T2 (de) 1993-07-06 1998-11-12 Sumitomo Spec Metals R-Fe-B Dauermagnetmaterialien und ihre Herstellungsverfahren
JP3405806B2 (ja) 1994-04-05 2003-05-12 ティーディーケイ株式会社 磁石およびその製造方法
US5666635A (en) 1994-10-07 1997-09-09 Sumitomo Special Metals Co., Ltd. Fabrication methods for R-Fe-B permanent magnets
DE69815146T2 (de) 1998-08-28 2004-02-26 Showa Denko K.K. Legierung zur verwendung bei der herstellung von gesinterten magneten auf r-t-b-basis und verfahren zur herstellung von gesinterten magneten auf r-t-b-basis
JP2000223306A (ja) 1998-11-25 2000-08-11 Hitachi Metals Ltd 角形比を向上したr―t―b系希土類焼結磁石およびその製造方法
DE60335331D1 (de) * 2002-10-08 2011-01-27 Hitachi Metals Ltd R-Fe-B gesinterter Permanentmagnet und Verfahren zu dessen Herstellung
CN1225750C (zh) 2002-12-26 2005-11-02 烟台正海磁性材料有限公司 含微量氧的R-Fe-B系烧结磁体及其制造方法
EP1562203A4 (en) * 2003-03-12 2009-08-05 Hitachi Metals Ltd R-T-B SINTERED MAGNET AND PROCESS FOR ITS MANUFACTURE
EP2518742B1 (en) * 2003-06-27 2016-11-30 TDK Corporation R-T-B system permanent magnet
JP4605013B2 (ja) 2003-08-12 2011-01-05 日立金属株式会社 R−t−b系焼結磁石および希土類合金
JP4179973B2 (ja) * 2003-11-18 2008-11-12 Tdk株式会社 焼結磁石の製造方法
JP4260087B2 (ja) * 2004-09-27 2009-04-30 日立金属株式会社 希土類焼結磁石及びその製造方法
JP4955217B2 (ja) 2005-03-23 2012-06-20 Tdk株式会社 R−t−b系焼結磁石用原料合金及びr−t−b系焼結磁石の製造方法
US7846273B2 (en) 2005-10-31 2010-12-07 Showa Denko K.K. R-T-B type alloy, production method of R-T-B type alloy flake, fine powder for R-T-B type rare earth permanent magnet, and R-T-B type rare earth permanent magnet
JP5274781B2 (ja) 2007-03-22 2013-08-28 昭和電工株式会社 R−t−b系合金及びr−t−b系合金の製造方法、r−t−b系希土類永久磁石用微粉、r−t−b系希土類永久磁石
JP5328161B2 (ja) * 2008-01-11 2013-10-30 インターメタリックス株式会社 NdFeB焼結磁石の製造方法及びNdFeB焼結磁石
JP2009231391A (ja) 2008-03-19 2009-10-08 Hitachi Metals Ltd R−t−b系焼結磁石
US8317941B2 (en) * 2008-03-31 2012-11-27 Hitachi Metals, Ltd. R-T-B-type sintered magnet and method for production thereof
EP2302646B1 (en) * 2008-06-13 2018-10-31 Hitachi Metals, Ltd. R-t-cu-mn-b type sintered magnet
JP2011021269A (ja) * 2009-03-31 2011-02-03 Showa Denko Kk R−t−b系希土類永久磁石用合金材料、r−t−b系希土類永久磁石の製造方法およびモーター
JP2012079726A (ja) 2010-09-30 2012-04-19 Hitachi Metals Ltd R−t−b−m系焼結磁石用合金の製造方法およびr−t−b−m系焼結磁石の製造方法
CN102568809B (zh) 2012-03-01 2013-10-23 烟台正海磁性材料股份有限公司 一种制备耐腐蚀高性能烧结钕铁硼磁体的方法
JP6238444B2 (ja) * 2013-01-07 2017-11-29 昭和電工株式会社 R−t−b系希土類焼結磁石、r−t−b系希土類焼結磁石用合金およびその製造方法
JP2016017203A (ja) * 2014-07-08 2016-02-01 昭和電工株式会社 R−t−b系希土類焼結磁石用合金の製造方法及びr−t−b系希土類焼結磁石の製造方法
US10428408B2 (en) * 2015-03-13 2019-10-01 Tdk Corporation R-T-B-based rare earth sintered magnet and alloy for R-T-B-based rare earth sintered magnet
CN106024236B (zh) * 2015-03-25 2020-02-07 Tdk株式会社 R-t-b系稀土类烧结磁铁及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153006A (ja) * 1989-11-10 1991-07-01 Hitachi Metals Ltd 永久磁石および永久磁石原料
JPH0411703A (ja) * 1990-04-28 1992-01-16 Nippon Steel Corp 希土類磁石の製造方法
JPH04206805A (ja) * 1990-11-30 1992-07-28 Kobe Steel Ltd 磁気特性および耐食性の優れた希土類元素―Fe―B系磁石の製造方法
JPH06302419A (ja) * 1993-04-13 1994-10-28 Seiko Epson Corp 希土類永久磁石およびその製造方法
JP2004165482A (ja) * 2002-11-14 2004-06-10 Shin Etsu Chem Co Ltd R−Fe−B系焼結磁石
JP2007119882A (ja) * 2005-10-31 2007-05-17 Showa Denko Kk R−t−b系合金及びr−t−b系合金薄片の製造方法、r−t−b系希土類永久磁石用微粉、r−t−b系希土類永久磁石
JP2007277655A (ja) * 2006-04-07 2007-10-25 Showa Denko Kk 合金の製造装置
JP2007305878A (ja) * 2006-05-12 2007-11-22 Ulvac Japan Ltd 永久磁石及び永久磁石の製造方法

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013114892A1 (ja) * 2012-02-02 2015-05-11 中央電気工業株式会社 R−T−B−Ga系磁石用原料合金およびその製造方法
WO2013114892A1 (ja) * 2012-02-02 2013-08-08 中電レアアース株式会社 R-T-B-Ga系磁石用原料合金およびその製造方法
US10497497B2 (en) 2012-02-02 2019-12-03 Santoku Corporation R-T-B—Ga-based magnet material alloy and method of producing the same
JP2013236071A (ja) * 2012-04-11 2013-11-21 Shin Etsu Chem Co Ltd 希土類焼結磁石及びその製造方法
US20140292453A1 (en) * 2013-03-28 2014-10-02 Tdk Corporation Rare earth based magnet
US10096412B2 (en) 2013-03-28 2018-10-09 Tdk Corporation Rare earth based magnet
DE102014104425A1 (de) 2013-03-28 2014-10-02 Tdk Corporation Seltenerdbasierter Magnet
JP2014209546A (ja) * 2013-03-28 2014-11-06 Tdk株式会社 希土類磁石
US10546672B2 (en) * 2013-03-28 2020-01-28 Tdk Corporation Rare earth based magnet
DE102014104425B4 (de) 2013-03-28 2021-09-16 Tdk Corporation Seltenerdbasierter Magnet
WO2014157451A1 (ja) 2013-03-29 2014-10-02 日立金属株式会社 R-t-b系焼結磁石
CN105074837A (zh) * 2013-03-29 2015-11-18 日立金属株式会社 R-t-b系烧结磁体
CN105190793A (zh) * 2013-03-29 2015-12-23 日立金属株式会社 R-t-b系烧结磁体
CN105190793B (zh) * 2013-03-29 2018-07-24 日立金属株式会社 R-t-b系烧结磁体
WO2014157448A1 (ja) 2013-03-29 2014-10-02 日立金属株式会社 R-t-b系焼結磁石
CN105189805A (zh) * 2013-04-24 2015-12-23 中央电气工业株式会社 R-t-b系磁体用原料合金
CN105189805B (zh) * 2013-04-24 2017-06-30 株式会社三德 R‑t‑b系磁体用原料合金
US20150270041A1 (en) * 2013-07-16 2015-09-24 Tdk Corporation Rare earth based magnet
WO2015022946A1 (ja) 2013-08-12 2015-02-19 日立金属株式会社 R-t-b系焼結磁石およびr-t-b系焼結磁石の製造方法
US10388442B2 (en) 2013-08-12 2019-08-20 Hitachi Metals, Ltd. R-T-B based sintered magnet and method for producing R-T-B based sintered magnet
US10847290B2 (en) 2013-08-12 2020-11-24 Hitachi Metals, Ltd. R-T-B based sintered magnet
WO2015022945A1 (ja) 2013-08-12 2015-02-19 日立金属株式会社 R-t-b系焼結磁石
JPWO2015022945A1 (ja) * 2013-08-12 2017-03-02 日立金属株式会社 R−t−b系焼結磁石
CN105453194A (zh) * 2013-08-12 2016-03-30 日立金属株式会社 R-t-b系烧结磁体
CN105453195A (zh) * 2013-08-12 2016-03-30 日立金属株式会社 R-t-b系烧结磁体及r-t-b系烧结磁体的制造方法
JPWO2015022946A1 (ja) * 2013-08-12 2017-03-02 日立金属株式会社 R−t−b系焼結磁石およびr−t−b系焼結磁石の製造方法
US10658108B2 (en) 2013-09-02 2020-05-19 Hitachi Metals, Ltd. Method for producing R-T-B based sintered magnet
WO2015030231A1 (ja) 2013-09-02 2015-03-05 日立金属株式会社 R-t-b系焼結磁石の製造方法
JPWO2015030231A1 (ja) * 2013-09-02 2017-03-02 日立金属株式会社 R−t−b系焼結磁石の製造方法
JP2015103681A (ja) * 2013-11-26 2015-06-04 日立金属株式会社 R−t−b系焼結磁石
US10256016B2 (en) 2013-12-20 2019-04-09 Tdk Corporation Rare earth based magnet
US10083783B2 (en) 2013-12-20 2018-09-25 Tdk Corporation Rare earth based magnet
CN104733147A (zh) * 2013-12-20 2015-06-24 Tdk株式会社 稀土类磁铁
CN104733145A (zh) * 2013-12-20 2015-06-24 Tdk株式会社 稀土类磁铁
DE102014119040A1 (de) 2013-12-20 2015-06-25 Tdk Corporation Seltenerdbasierter Magnet
DE102014119055A1 (de) 2013-12-20 2015-06-25 Tdk Corporation Seltenerdenmetall-magnet
DE102014118984A1 (de) 2013-12-20 2015-06-25 Tdk Corporation Seltenerdenmetall-Magnet
JP2015119130A (ja) * 2013-12-20 2015-06-25 Tdk株式会社 希土類磁石
JP2015119132A (ja) * 2013-12-20 2015-06-25 Tdk株式会社 希土類磁石
JP2015119131A (ja) * 2013-12-20 2015-06-25 Tdk株式会社 希土類磁石
US10090087B2 (en) 2013-12-20 2018-10-02 Tdk Corporation Rare earth based magnet
DE102014119055B4 (de) 2013-12-20 2018-08-30 Tdk Corporation Seltenerdbasierter Magnet
DE102014118984B4 (de) 2013-12-20 2018-08-30 Tdk Corporation Seltenerdbasierter Magnet
DE102014119040B4 (de) 2013-12-20 2018-09-06 Tdk Corporation Seltenerdbasierter Magnet
DE112015001405B4 (de) 2014-03-26 2018-07-26 Hitachi Metals, Ltd. Verfahren zum Herstellen eines R-T-B-basierten Sintermagneten
US9972435B2 (en) 2014-03-26 2018-05-15 Hitachi Metals, Ltd. Method for manufacturing R-T-B based sintered magnet
JPWO2015147053A1 (ja) * 2014-03-26 2017-04-13 日立金属株式会社 R−t−b系焼結磁石の製造方法
US20150248954A1 (en) * 2014-05-11 2015-09-03 Shenyang General Magnetic Co., Ltd High-performance NdFeB rare earth permanent magnet with composite main phase and manufacturing method thereof
US9863021B2 (en) * 2014-05-11 2018-01-09 Shenyang General Magnetic Co., Ltd High-performance NdFeB rare earth permanent magnet with composite main phase and manufacturing method thereof
US20160012946A1 (en) * 2014-07-08 2016-01-14 Showa Denko K.K. Method of manufacturing alloy for r-t-b-based rare earth sintered magnet and method of manufacturing r-t-b-based rare earth sintered magnet
US10446306B2 (en) 2014-09-17 2019-10-15 Hitachi Metals, Ltd. Method for manufacturing R-T-B based sintered magnet
JPWO2016133067A1 (ja) * 2015-02-17 2017-11-30 日立金属株式会社 R−t−b系焼結磁石の製造方法
US20160284452A1 (en) * 2015-03-25 2016-09-29 Showa Denko K.K. R-t-b-based rare earth sintered magnet and method of manufacturing same
US10923256B2 (en) 2015-06-25 2021-02-16 Hitachi Metals, Ltd. R-T-B-based sintered magnet and method for producing same
US11177069B2 (en) 2015-07-30 2021-11-16 Hitachi Metals, Ltd. Method for producing R-T-B system sintered magnet
JP2017045828A (ja) * 2015-08-26 2017-03-02 日立金属株式会社 R−t−b系焼結磁石
US10490324B2 (en) * 2015-12-03 2019-11-26 Tdk Corporation Alloy for R-T-B-based rare earth sintered magnet and manufacturing method thereof, and manufacturing method of R-T-B-based rare earth sintered magnet
US20170162305A1 (en) * 2015-12-03 2017-06-08 Showa Denko K.K. Alloy for r-t-b-based rare earth sintered magnet and manufacturing method thereof, and manufacturing method of r-t-b-based rare earth sintered magnet
US10242781B2 (en) 2015-12-24 2019-03-26 Hitachi Metals, Ltd. Method for manufacturing R-T-B based sintered magnet
US11174537B2 (en) 2016-08-17 2021-11-16 Hitachi Metals, Ltd. R-T-B sintered magnet
US10916373B2 (en) 2016-12-01 2021-02-09 Hitachi Metals, Ltd. R-T-B sintered magnet and production method therefor
JP2018152526A (ja) * 2017-03-15 2018-09-27 インターメタリックス株式会社 RFeB系焼結磁石の製造方法
JP7052201B2 (ja) 2017-03-15 2022-04-12 大同特殊鋼株式会社 RFeB系焼結磁石の製造方法
US10984930B2 (en) 2017-09-28 2021-04-20 Hitachi Metals, Ltd. Method for producing sintered R—T—B based magnet and diffusion source
WO2019242581A1 (zh) 2018-06-19 2019-12-26 厦门钨业股份有限公司 一种低B含量的R-Fe-B系烧结磁铁及其制备方法
WO2021135142A1 (zh) 2019-12-31 2021-07-08 厦门钨业股份有限公司 一种r-t-b系永磁材料、原料组合物、制备方法、应用
EP4270421A1 (en) 2022-04-28 2023-11-01 Shin-Etsu Chemical Co., Ltd. Sintered rare-earth magnet and method of manufacture

Also Published As

Publication number Publication date
US20140132377A1 (en) 2014-05-15
US11024448B2 (en) 2021-06-01
DE112012002150T5 (de) 2014-04-10
CN104894470A (zh) 2015-09-09
CN103582715A (zh) 2014-02-12
CN103582715B (zh) 2016-01-20
JP5572673B2 (ja) 2014-08-13
JP2013216965A (ja) 2013-10-24
CN104900361A (zh) 2015-09-09
CN104900361B (zh) 2017-10-24
CN105018845A (zh) 2015-11-04
US20170025207A1 (en) 2017-01-26
CN104894470B (zh) 2017-05-31
CN105018845B (zh) 2017-07-04

Similar Documents

Publication Publication Date Title
JP5572673B2 (ja) R−t−b系希土類焼結磁石用合金、r−t−b系希土類焼結磁石用合金の製造方法、r−t−b系希土類焼結磁石用合金材料、r−t−b系希土類焼結磁石、r−t−b系希土類焼結磁石の製造方法およびモーター
CN107871581B (zh) 制备R-Fe-B烧结磁体的方法
JP5515539B2 (ja) 磁石成形体およびその製造方法
EP2752857B1 (en) R-T-B rare earth sintered magnet
JP6202722B2 (ja) R−t−b系希土類焼結磁石、r−t−b系希土類焼結磁石の製造方法
EP2388350B1 (en) Method for producing r-t-b sintered magnet
US10020097B2 (en) R-T-B rare earth sintered magnet and method of manufacturing the same
US20130068992A1 (en) Method for producing rare earth permanent magnets, and rare earth permanent magnets
JP2017147427A (ja) R−Fe−B系焼結磁石及びその製造方法
JP6582940B2 (ja) R−t−b系希土類焼結磁石及びその製造方法
CN106024236B (zh) R-t-b系稀土类烧结磁铁及其制造方法
JP2012015169A (ja) R−t−b系希土類永久磁石、モーター、自動車、発電機、風力発電装置
JP6451900B2 (ja) R−Fe−B系焼結磁石及びその製造方法
JP2016017203A (ja) R−t−b系希土類焼結磁石用合金の製造方法及びr−t−b系希土類焼結磁石の製造方法
JP2012079726A (ja) R−t−b−m系焼結磁石用合金の製造方法およびr−t−b−m系焼結磁石の製造方法
JP2012253247A (ja) 複合磁性材及びその製造方法
WO2003066922A1 (fr) Aimant constitue par de la poudre d'alliage de bore et de fer des terres rares
JP5744286B2 (ja) R−t−b系希土類焼結磁石用合金及びr−t−b系希土類焼結磁石用合金の製造方法
JP7247670B2 (ja) R-t-b系永久磁石およびその製造方法
JP5743458B2 (ja) R−t−b系希土類永久磁石用合金材料、r−t−b系希土類永久磁石の製造方法およびモーター
US10428408B2 (en) R-T-B-based rare earth sintered magnet and alloy for R-T-B-based rare earth sintered magnet
JP7167484B2 (ja) R-t-b系希土類焼結磁石用鋳造合金薄片
JP6672753B2 (ja) R−t−b系希土類焼結磁石及びr−t−b系希土類焼結磁石用合金
JP7387992B2 (ja) R-t-b系永久磁石
JP2021097067A (ja) 希土類焼結磁石

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12812113

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112012002150

Country of ref document: DE

Ref document number: 1120120021509

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14126770

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12812113

Country of ref document: EP

Kind code of ref document: A1