WO2015022946A1 - R-t-b系焼結磁石およびr-t-b系焼結磁石の製造方法 - Google Patents

R-t-b系焼結磁石およびr-t-b系焼結磁石の製造方法 Download PDF

Info

Publication number
WO2015022946A1
WO2015022946A1 PCT/JP2014/071229 JP2014071229W WO2015022946A1 WO 2015022946 A1 WO2015022946 A1 WO 2015022946A1 JP 2014071229 W JP2014071229 W JP 2014071229W WO 2015022946 A1 WO2015022946 A1 WO 2015022946A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
sintered magnet
alloy powder
rtb
based sintered
Prior art date
Application number
PCT/JP2014/071229
Other languages
English (en)
French (fr)
Inventor
倫太郎 石井
國吉 太
鉄兵 佐藤
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to ES14836886T priority Critical patent/ES2717445T3/es
Priority to JP2015531816A priority patent/JP6406255B2/ja
Priority to EP14836886.3A priority patent/EP3035346B1/en
Priority to CN201480043014.XA priority patent/CN105453195B/zh
Priority to US14/911,517 priority patent/US10388442B2/en
Publication of WO2015022946A1 publication Critical patent/WO2015022946A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • B22F2301/355Rare Earth - Fe intermetallic alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present disclosure relates to an RTB-based sintered magnet and an RTB-based sintered magnet manufacturing method.
  • RTB-based sintered magnet having an R 2 T 14 B type compound as a main phase (R is composed of a light rare earth element RL and a heavy rare earth element RH, where RL is Nd and / or Pr, RH is Dy, Tb, Gd and Ho are at least one of Td and T is at least one of transition metal elements and must contain Fe), and are known as the most powerful magnets among permanent magnets. Used in various motors for home appliances and home appliances.
  • the RTB -based sintered magnet has a reduced coercive force H cJ (hereinafter sometimes simply referred to as “H cJ ”) at high temperatures, causing irreversible thermal demagnetization. Therefore, especially when used for a hybrid vehicle or an electric vehicle motor, it is required to maintain a high HcJ even at high temperatures.
  • H cJ coercive force
  • Dy has problems such as unstable supply and fluctuations in price due to the limited production area. Therefore, there is a demand for a technique for improving the HcJ of an RTB -based sintered magnet without using a heavy rare earth element such as Dy as much as possible (by reducing the amount used).
  • the amount of B is made lower than that of a normal RTB-based alloy, and at least one metal element M selected from Al, Ga, and Cu is contained, thereby allowing R 2 T 17
  • the coercive force is suppressed while the content of Dy is suppressed by sufficiently securing the volume fraction of the transition metal rich phase (R 6 T 13 M) generated by using the R 2 T 17 phase as a raw material. It is described that an RTB-based rare earth sintered magnet having a high C can be obtained.
  • the present disclosure has been made to solve the above problems, while suppressing the content of Dy, provides the R-T-B-based sintered magnet and a method of manufacturing the same having high B r and high H cJ The purpose is to do.
  • Aspect 1 of the present invention is represented by the following formula (1): uRwBxGayCuzAlqM (100-uwxyzzq) T (1) (R is composed of light rare earth element RL and heavy rare earth element RH, RL is Nd and / or Pr, RH is at least one of Dy, Tb, Gd and Ho, T is Fe, and the mass ratio of Fe is 10%.
  • the RH is 5% by mass or less of the RTB-based sintered magnet, and satisfies the following formulas (2) to (5): 0.20 ⁇ x ⁇ 0.70 (2) 0.07 ⁇ y ⁇ 0.2 (3) 0.05 ⁇ z ⁇ 0.5 (4) 0 ⁇ q ⁇ 0.1 (5)
  • the oxygen content (mass%) of the RTB-based sintered magnet is ⁇
  • the nitrogen content (mass%) is ⁇
  • the carbon content (mass%) is ⁇
  • v u ⁇ (6 ⁇ + 10 ⁇ + 8 ⁇ )
  • the RTB-based sintered magnet preferably has an oxygen content of 0.15% by mass or less.
  • Aspect 3 of the present invention is a preferred aspect in the method for producing an RTB-based sintered magnet according to aspect 1. It is represented by the following formula (1), uRwBxGayCuzAlqM (100-uwxyzzq) T (1) (R is composed of light rare earth element RL and heavy rare earth element RH, RL is Nd and / or Pr, RH is at least one of Dy, Tb, Gd and Ho, T is Fe and 10% or less of Fe.
  • the RH is 5% by mass or less of the RTB-based sintered magnet, and satisfies the following formulas (2) to (5): 0.20 ⁇ x ⁇ 0.70 (2) 0.07 ⁇ y ⁇ 0.2 (3) 0.05 ⁇ z ⁇ 0.5 (4) 0 ⁇ q ⁇ 0.1 (5)
  • the oxygen content (mass%) of the RTB-based sintered magnet is ⁇
  • the nitrogen content (mass%) is ⁇
  • the carbon content (mass%) is ⁇
  • v u ⁇ (6 ⁇ + 10 ⁇ + 8 ⁇ )
  • Each of the one or more additive alloy powders is represented by the following formula (13) and has a composition satisfying the following formulas (14) to (20): aRbBcGadCueAlfM (100-abbcddf) T (13) (R consists of a light rare earth element RL and a heavy rare earth element RH, RL is Nd and / or Pr, RH is at least one of Dy, Tb, Gd and Ho, and the balance T is Fe and has a mass ratio.
  • the one or more main alloy powders are a method for producing an RTB-based sintered magnet, wherein the Ga content is 0.4 mass% or less.
  • Aspect 4 of the present invention is a preferred aspect in the method for producing an RTB-based sintered magnet according to aspect 2.
  • v and w satisfy the following formulas (11) and (7), 50w-18.5 ⁇ v ⁇ 50w-16.25 (11) ⁇ 12.5w + 38.75 ⁇ v ⁇ ⁇ 62.5w + 86.125 (7)
  • v and w satisfy the following formulas (12) and (9), and x satisfies the following formula (10): It is a manufacturing method of a B type sintered magnet.
  • the RTB-based sintered magnet preferably has an oxygen content of 0.15% by mass or less.
  • FIG. 4 is an explanatory diagram in which the values of v and w of the example sample and the comparative example sample according to “ ⁇ Example 1>” are plotted in FIG. 1.
  • 4 is a photograph of a BSE image obtained by observing a cross section of an RTB-based sintered magnet with an FE-SEM.
  • 4 is a photograph of a BSE image obtained by observing a cross section of an RTB-based sintered magnet with an FE-SEM.
  • the present inventors have made intensive studies in order to solve the above problems, by a composition represented by the formula shown in embodiment 1 or embodiment 2 of the present invention, a high B r and high H cJ It has been found that an RTB-based sintered magnet can be obtained. That is, the present invention is an RTB-based sintered magnet containing R, B, Ga, Cu, Al, and optionally M, in a specific ratio shown in the first or second aspect.
  • the RTB-based sintered magnet of the present invention shown in aspect 1 or aspect 2 can be manufactured using a known manufacturing method.
  • As a preferred mode for producing an RTB-based sintered magnet as in Mode 3 or Mode 4, one or more additive alloy powders and one or more main alloy powders are mixed in a specific mixing amount and then molded.
  • R-T-B based sintered magnet can be improved B r by increasing the existence ratio of R 2 T 14 B type compound as the main phase.
  • R amount, T amounts although the B amount should brought close to the stoichiometric ratio of R 2 T 14 B type compound, R 2 T 14 B-type
  • the amount of B for forming the compound is lower than the stoichiometric ratio, a soft magnetic R 2 T 17 phase is precipitated at the grain boundary, and H cJ is rapidly decreased.
  • an RT-Ga phase is generated instead of the R 2 T 17 phase, and a decrease in H cJ can be prevented.
  • the RTB -Ga phase also has some magnetism, and is considered to affect grain boundaries, particularly mainly HcJ , in RTB -based sintered magnets. It can be seen that the presence of a large amount of RT-Ga phase at the grain boundary existing between the two main phases (hereinafter sometimes referred to as “two-grain grain boundary”) hinders the improvement of H cJ. It was. It was also found that, along with the generation of the RT-Ga phase, an R-Ga phase and an R-Ga-Cu phase were generated at the two-grain grain boundary.
  • the present inventors assumed that HcJ is improved by the presence of the R—Ga phase and the R—Ga—Cu phase at the two-particle grain boundary of the RTB -based sintered magnet.
  • HcJ is improved by the presence of the R—Ga phase and the R—Ga—Cu phase at the two-particle grain boundary of the RTB -based sintered magnet.
  • it is necessary to generate the R—T—Ga phase but a high H cJ is obtained. Assumed that it was necessary to keep the production amount low. If the generation of the RT-Ga phase can be suppressed as much as possible while generating the R—Ga phase and the R—Ga—Cu phase, especially at the two-grain grain boundary, the H cJ can be further improved. Assumed.
  • the amount of R 2 T 17 phase generated can be reduced by setting the amounts of R and B within appropriate ranges. In addition to lowering, it is necessary to set the R amount and the Ga amount within an optimal range according to the amount of R 2 T 17 phase generated. However, part of R is consumed in combination with oxygen, nitrogen and carbon in the manufacturing process of RTB-based sintered magnets, so it is actually used for the R 2 T 17 phase and RT-Ga phase. The amount of R changes in the manufacturing process.
  • the inventors have changed the amount of oxygen (mass%) in the RTB-based sintered magnet from the amount of R (u) to ⁇ , nitrogen as described in the embodiment 1 or embodiment 2.
  • the amount (mass%) is ⁇ and the carbon content (mass%) is ⁇
  • the value (v) obtained by subtracting 6 ⁇ + 10 ⁇ + 8 ⁇ is used to adjust the amount of R 2 T 17 phase or RT-Ga phase generated. It was found that it was possible.
  • a preferred embodiment for producing the RTB-based sintered magnet is mixing one or more additive alloy powders and one or more main alloy powders in a specific mixing amount.
  • a high Br It has been found that an RTB -based sintered magnet having high HcJ can be obtained. This will be described in detail below.
  • the composition of the additive alloy powder shown in Aspect 3 or Aspect 4 of the present invention is a composition having more R and B than the R 2 T 14 B stoichiometric composition of the RTB-based sintered magnet. Therefore, R and B are relatively larger than T relative to R 2 T 14 B stoichiometric composition. As a result, the R 1 T 4 B 4 phase, the R—Ga phase, and the R—Ga—Cu phase are more easily generated than the R—T—Ga phase. And since the main alloy powder contains much Ga in the additive alloy powder, the amount of Ga in the main phase alloy powder can be suppressed. Therefore, the generation of the RT—Ga phase in the main alloy powder is also suppressed.
  • the amount of RT—Ga phase produced at the stage of the alloy powder can be extremely reduced.
  • the amount of RTB-Ga phase generated in the alloy powder stage is suppressed, the amount of RTB-Ga phase generated in the finally obtained RTB-based sintered magnet is suppressed. It is considered possible.
  • the oxygen content, the nitrogen content, and the carbon content are not considered with respect to the R content, it is difficult to suppress the generation amount of the R 2 T 17 phase or the RT-Ga phase. .
  • Patent Document 1 improves HcJ by promoting the generation of the RT—Ga phase, and there is no technical idea of suppressing the amount of RT—Ga phase generated. Therefore, in Patent Document 1, in order to promote the generation of the R 2 T 17 phase that is the raw material of the RT-Ga phase, the amount of B is made lower than before, and the generation of the RT-Ga phase is promoted. In addition, since it is necessary to increase the amount of R, it is considered that the existence ratio of the main phase is greatly reduced and high Br is not obtained. Further, in Patent Document 1, there is no technical idea of mixing additive alloy powder and main alloy powder.
  • R is composed of light rare earth element RL and heavy rare earth element RH, RL is Nd and / or Pr, RH is at least one of Dy, Tb, Gd and Ho, T is Fe and 10% or less of Fe.
  • Co can be substituted, M is Nb and / or Zr, u, w, x, y, z, q, and 100-uwxyzzq indicate mass%, and unavoidable impurities Including) Represented by
  • the RH is 5% by mass or less of the RTB-based sintered magnet, 0.20 ⁇ x ⁇ 0.70 (2) 0.07 ⁇ y ⁇ 0.2 (3) 0.05 ⁇ z ⁇ 0.5 (4) 0 ⁇ q ⁇ 0.1 (5)
  • the oxygen content (mass%) of the RTB-based sintered magnet is ⁇
  • the nitrogen content (mass%) is ⁇
  • the carbon content (mass%) is ⁇
  • v u ⁇ (6 ⁇ + 10 ⁇ + 8 ⁇ )
  • 0.40 ⁇ x ⁇ 0.70, v and w are 50w-18.5 ⁇ v ⁇ 50w-14 (6) ⁇ 12.5w + 38.75 ⁇ v ⁇ ⁇ 62.5w + 86.125 (7)
  • Co can be substituted, M is Nb and / or Zr, u, w, x, y, z, q, and 100-uwxyzzq indicate mass%, and unavoidable impurities Including) Represented by
  • the RH is 5% by mass or less of the RTB-based sintered magnet, 0.20 ⁇ x ⁇ 0.70 (2) 0.07 ⁇ y ⁇ 0.2 (3) 0.05 ⁇ z ⁇ 0.5 (4) 0 ⁇ q ⁇ 0.1 (5)
  • the oxygen content (mass%) of the RTB-based sintered magnet is ⁇
  • the nitrogen content (mass%) is ⁇
  • the carbon content (mass%) is ⁇
  • v u ⁇ (6 ⁇ + 10 ⁇ + 8 ⁇ )
  • 0.40 ⁇ x ⁇ 0.70, v and w are 50w-18.5 ⁇ v ⁇ 50w-16.25 (11) ⁇ 12.5w + 38.75 ⁇ v ⁇ ⁇ 62.5w + 86.125
  • the RTB-based sintered magnet of the present invention may contain inevitable impurities.
  • the effects of the present invention can be achieved even if inevitable impurities normally contained in didymium alloy (Nd—Pr), electrolytic iron, ferroboron, and the like are contained.
  • Inevitable impurities include, for example, trace amounts of La, Ce, Cr, Mn, Si and the like.
  • R is composed of a light rare earth element RL and a heavy rare earth element RH, where RL is Nd and / or Pr, and RH is Dy, Tb, Gd, and Ho. And RH is 5% by mass or less of the RTB-based sintered magnet. Because the present invention can obtain a high B r and high H cJ without using a heavy rare-earth element, it can be reduced the amount of RH even be asked a higher H cJ.
  • T is Fe, and 10% or less of Fe by mass ratio can be substituted with Co.
  • B is boron.
  • R in the RTB-based sintered magnet according to one aspect of the present invention is composed of a light rare earth element RL and a heavy rare earth element RH, where RL is Nd and / or Pr, RH is Dy, At least one of Tb, Gd, and Ho, and RH is 5% by mass or less of the RTB-based sintered magnet.
  • R is other than Nd, Pr, Dy, Tb, Gd, and Ho.
  • the case where the rare earth element is contained is not completely excluded, and it means that the rare earth element other than Nd, Pr, Dy, Tb, Gd and Ho may be contained as long as it is in an impurity level.
  • the oxygen content (mass%), nitrogen content (mass%), and carbon content (mass%) are the contents in the RTB system sintered magnet (that is, RTB system magnet).
  • Content when the total mass is 100% by mass) oxygen amount is gas melting-infrared absorption method
  • nitrogen amount is gas melting-heat conduction method
  • carbon amount is combustion-infrared absorption method It can be measured using a gas analyzer.
  • the present invention uses a value (v) obtained by subtracting the amount consumed by combining with oxygen, nitrogen and carbon from the amount of R (u) by the method described below. This makes it possible to adjust the amount of R 2 T 17 phase or RT-Ga phase generated.
  • the v is determined by subtracting 6 ⁇ + 10 ⁇ + 8 ⁇ from the R amount (u), where ⁇ is the oxygen amount (% by mass), ⁇ is the nitrogen amount (% by mass), and ⁇ is the carbon amount (% by mass).
  • 6 ⁇ is defined because R having a mass approximately six times that of oxygen is consumed as an oxide, assuming that an oxide of R 2 O 3 is mainly produced as an impurity.
  • 10 ⁇ is defined by the fact that R having a mass approximately 10 times that of nitrogen is consumed as nitride, assuming that RN nitride is mainly produced.
  • 8 ⁇ is defined because R, which is approximately eight times the mass of carbon, is consumed as carbides, assuming that R 2 C 3 carbides are mainly produced.
  • the oxygen content, nitrogen content, and carbon content are obtained by measurement using the above-described gas analyzer, whereas those of R, B, Ga, Cu, Al, M, and T shown in Formula (1) are used.
  • those of R, B, Ga, Cu, Al, M, and T shown in Formula (1) are used.
  • u, w, x, y, z, q and 100-uwxxyzq, u, w, x, y, z and q are Measurement may be performed using inductively coupled plasma emission spectroscopy (ICP emission spectroscopy). Further, 100-uwxyzzq may be obtained by calculation using measured values of u, w, x, y, z, and q obtained by ICP emission spectroscopy.
  • ICP emission spectroscopy inductively coupled plasma emission spectroscopy
  • Formula (1) defines that the total amount of elements that can be measured by ICP emission spectrometry is 100% by mass.
  • the amount of oxygen, the amount of nitrogen and the amount of carbon cannot be measured by ICP emission spectroscopy. Therefore, in the embodiment according to the present invention, u, w, x, y, z, q and 100-uwxyzz defined by the formula (1), oxygen amount ⁇ , nitrogen The sum of the amount ⁇ and the carbon amount ⁇ is allowed to exceed 100% by mass.
  • the amount of oxygen in the RTB-based sintered magnet is preferably 0.15% by mass or less. Since v is a value obtained by subtracting 6 ⁇ + 10 ⁇ + 8 ⁇ from the R amount (u), assuming that the oxygen amount (mass%) is ⁇ , the nitrogen amount (mass%) is ⁇ , and the carbon amount (mass%) is ⁇ , for example, the oxygen amount ⁇ is When there are many, it is necessary to increase R amount in the raw material alloy stage. In particular, among regions 1 and 2 according to one embodiment of the present invention in FIG. 1 to be described later, region 1 has a relatively high v compared to region 2, and therefore, when the amount of oxygen ⁇ is large, at the stage of the raw material alloy The amount of R may be very large. As a result, the abundance ratio of the main phase is lowered and Br may be lowered. In particular, in the region 1 of the present invention shown in FIG. 1, the oxygen amount is preferably 0.15% by mass or less.
  • Ga is 0.20 mass% or more and 0.70 mass% or less. However, when Ga is 0.40 mass% or more and 0.70 mass% or less and when it is 0.20 mass% or more and less than 0.40 mass%, the ranges of v and w are different. This will be described in detail below.
  • v and w when Ga is 0.40% by mass or more and 0.70% by mass or less, v and w have the following relationship. 50w-18.5 ⁇ v ⁇ 50w-14 (6) ⁇ 12.5w + 38.75 ⁇ v ⁇ ⁇ 62.5w + 86.125 (7)
  • FIG. 1 shows the range of v and w that satisfies the above equations (6) and (7).
  • v is a value obtained by subtracting 6 ⁇ + 10 ⁇ + 8 ⁇ from the R amount (u), where the oxygen amount (% by mass) is ⁇ , the nitrogen amount (% by mass) is ⁇ , and the carbon amount (% by mass) is ⁇ .
  • B value the oxygen amount (% by mass) is ⁇ .
  • Equation (6) that is, 50w-18.5 ⁇ v ⁇ 50w-14, is a straight line including points A and B (a straight line connecting points A and B) and a straight line including points C and D (points) in FIG. (Straight line connecting C and point D), and formula (7), that is, ⁇ 12.5w + 38.75 ⁇ v ⁇ ⁇ 62.5w + 86.125, points D, F, B and G This is a range between the straight line including the straight line including the point C, the point E, the point A, and the point G. Regions 1 and 2 (regions surrounded by point A, point B, point D, and point C) that satisfy both of these are the ranges according to one aspect of the present invention.
  • the region 10 deviated from the range of the regions 1 and 2 (the lower region in the figure from the straight line including the point D, the point F, the point B, and the point G) has too little v with respect to w, so the RT-Ga phase It is considered that the production amount of R 2 T 17 cannot be eliminated, and the production amounts of the R—Ga phase and the R—Ga—Cu phase are reduced. Thereby, high HcJ cannot be obtained.
  • the region 20 outside the range of the regions 1 and 2 (the region in the figure from the straight line including the point C, the point E, the point A, and the point G) has too many vs relative to w. Insufficient Fe content. If the amount of Fe is insufficient, R and B are left over. As a result, it is considered that the R 1 Fe 4 B 4 phase is easily generated without generating the RT-Ga phase. As a result, the amount of R-Ga phase and R-Ga-Cu phase produced is reduced, and high HcJ cannot be obtained.
  • the region 30 (the region in the figure from the straight line including the points C and D) deviated from the range of the regions 1 and 2 has too much v and too little w, so that the RT-Ga phase or R Although the —Ga phase and R—Ga—Cu phase are produced, the abundance ratio of the main phase is lowered, and high Br cannot be obtained.
  • the region 40 (the region excluding the regions 1 and 2 from the region surrounded by the points C, D, and G) that is out of the range of the regions 1 and 2 has a small amount of R and a large amount of B. Although the abundance ratio is high, almost no R—T—Ga phase is generated, and the amount of R—Ga phase and R—Ga—Cu phase produced is small, so that high H cJ cannot be obtained.
  • v and w are in the following relationship. 50w-18.5 ⁇ v ⁇ 50w-15.5 (8) ⁇ 12.5w + 39.125 ⁇ v ⁇ ⁇ 62.5w + 86.125 (9)
  • FIG. 2 shows the scope of the present invention for v and w satisfying the equations (8) and (9).
  • Expression (8) that is, 50w-18.5 ⁇ v ⁇ 50w ⁇ 15.5 is a range between the straight line including the point A and the point L and the straight line including the point J and the point K in FIG.
  • FIG. 3 shows the position of FIG. 1 (when Ga is 0.40 mass% or more and 0.70 mass% or less) and FIG. 2 (when Ga is 0.20 mass% or more and less than 0.40 mass%).
  • the relationship (relative relationship between the range shown in FIG. 1 and the range shown in FIG. 2) is shown.
  • x is in the range of the following formula (10) according to v and w. ⁇ (62.5w + v ⁇ 81.625) /15+0.5 ⁇ x ⁇ (62.5w + v ⁇ 81.625) /15+0.8 (10)
  • x is in the range of the following formula (10) according to v and w.
  • (62.5w + v ⁇ 81.625) /15+0.5 ⁇ x ⁇ (62.5w + v ⁇ 81.625) /15+0.8 (10)
  • v and w have the following relationship. 50w-18.5 ⁇ v ⁇ 50w-16.25 (11) ⁇ 12.5w + 38.75 ⁇ v ⁇ ⁇ 62.5w + 86.125 (7)
  • FIG. 1 shows the range of v and w that satisfies the above equations (11) and (7).
  • Expression (11), that is, 50w-18.5 ⁇ v ⁇ 50w-16.25 is a range sandwiched between a straight line including point A and point B and a straight line including point E and point F
  • expression (7) That is, ⁇ 12.5w + 38.75 ⁇ v ⁇ ⁇ 62.5w + 86.125 is sandwiched between a straight line including point D, point F, point B, and point G, and a straight line including point C, point E, point A, and point G. It is a range.
  • region 2 area
  • x and w are more preferably represented by the following formulas (12) and (9).
  • FIG. 2 shows a range that satisfies the above equations (12) and (9).
  • Expression (12) that is, 50w-18.5 ⁇ v ⁇ 50w ⁇ 17.0 is a range sandwiched between a straight line including point A and point L and a straight line including point H and point I
  • expression (9) That is, ⁇ 12.5w + 39.125 ⁇ v ⁇ ⁇ 62.5w + 86.125 is a range sandwiched between a straight line including point K, point I and point L, and a straight line including point J, point H and point A.
  • region 4 area
  • FIG. 3 shows a relative range of FIG.
  • FIG. 1 (Ga is 0.40 mass% or more and 0.70 mass% or less) and FIG. 2 (Ga is 0.20 mass% or more and less than 0.40 mass%).
  • x is ⁇ (62.5w + v ⁇ 81.625) /15+0.5 ⁇ x ⁇ ( 62.5w + v ⁇ 81.625) /15+0.8
  • the amount of RT-Ga phase can be secured while v can be lowered and w can be increased.
  • the ratio is not lowered, and a higher Br can be obtained.
  • the Cu content is more preferably 0.08% by mass or more and 0.15% by mass or less.
  • Al 0.05 mass% or more and 0.5 mass% or less
  • HcJ HcJ
  • Al is usually contained in an amount of 0.05% by mass or more as an inevitable impurity in the production process, but it may be contained in an amount of 0.5% by mass or less in total of the amount contained by the inevitable impurity and the amount intentionally added. Good.
  • an RTB-based sintered magnet contains Nb and / or Zr to suppress abnormal grain growth during sintering.
  • Nb and / or Zr may be contained in a total amount of 0.1% by mass or less. By the content of Nb and / or Zr is present unwanted Nb and Zr exceeds 0.1 mass% in total, there is a possibility that the volume ratio of the main phase is lowered B r drops.
  • the R—T—Ga phase includes R: 15% by mass to 65% by mass, T: 20% by mass to 80% by mass, Ga: 2% by mass to 20% by mass. Including, for example, R 6 Fe 13 Ga 1 compound.
  • the RT-Ga phase may contain Al, Cu, and Si as unavoidable impurities, for example, an R 6 Fe 13 (Ga 1-x-yz Cu x Al y Si z ) compound is included. It may be.
  • the R—Ga phase includes R: 70% by mass or more and 95% by mass or less, Ga: 5% by mass or more and 30% by mass or less, and T (Fe): 20% by mass or less (including 0). Examples thereof include R 3 Ga 1 compounds.
  • the R—Ga—Cu phase is one in which part of Ga in the R—Ga phase is substituted with Cu, and examples thereof include R 3 (Ga, Cu) 1 compounds.
  • the RTB-based sintered magnet of the present invention shown in Mode 1 or Mode 2 may be manufactured using a known manufacturing method.
  • An example of a method for producing the RTB-based sintered magnet of the present invention will be described.
  • the manufacturing method of the RTB-based sintered magnet includes a process of obtaining alloy powder, a forming process, a sintering process, and a heat treatment process. Hereinafter, each step will be described.
  • Step of obtaining alloy powder One kind of alloy powder (single alloy powder) may be used as the alloy powder, or alloy powder (mixed alloy powder) is obtained by mixing two or more kinds of alloy powder. A so-called two-alloy method may be used, and an alloy powder having the composition of the present invention may be obtained using a known method.
  • a metal or an alloy of each element is prepared so as to have a predetermined composition, and a flaky alloy is manufactured by using a strip casting method or the like.
  • the obtained flaky raw material alloy is hydrogen pulverized so that the size of the coarsely pulverized powder is 1.0 mm or less, for example.
  • the coarsely pulverized powder is finely pulverized by a jet mill or the like, so that, for example, finely pulverized powder (single alloy powder) having a particle diameter D50 (volume-based median diameter obtained by a laser diffraction method by an air flow dispersion method) of 3 to 7 ⁇ m )
  • a known lubricant may be used as an auxiliary agent for the coarsely pulverized powder before jet mill pulverization and the alloy powder during and after jet mill pulverization.
  • a mixed alloy powder When using a mixed alloy powder, as a preferred embodiment, as shown below, first, one or more additive alloy powders and one or more main alloy powders are prepared, and one or more additive alloy powders and one or more kinds of alloy powders are prepared.
  • the main alloy powder is mixed in a specific mixing amount to obtain a mixed alloy powder.
  • One or more kinds of additive alloy powders and one or more kinds of main alloy powders are prepared for each element metal or alloy so as to have a predetermined composition described in detail below, and as in the case of the single alloy powder described above, First, a flaky alloy is produced, and then the flaky alloy is hydrogen crushed to obtain a coarsely pulverized powder.
  • the obtained additive alloy powder (coarse pulverized powder of additive alloy powder) and main alloy powder (coarse pulverized powder of main alloy powder) are put into a V-type mixer or the like and mixed to obtain mixed alloy powder.
  • the obtained mixed alloy powder is finely pulverized by a jet mill or the like to obtain a finely pulverized powder and a mixed alloy powder.
  • the additive alloy powder and the main alloy powder may be finely pulverized by a jet mill or the like to form a finely pulverized powder, and then mixed to obtain a mixed alloy powder.
  • the additive alloy powder has a composition within the range described in detail below. Multiple types of additive alloy powders may be used, in which case each type of additive alloy powder has a composition within the range detailed below.
  • the “main alloy powder” has a composition that is outside the range of the composition of the additive alloy powder and, when mixed with the additive alloy powder, the composition of the RTB-based sintered magnet described above. It means adjusted alloy powder. A plurality of types of main alloy powders may be used.
  • the composition of each type of main alloy powder is outside the range of the composition of the additive alloy powder, and the plurality of types of main alloy powders are added.
  • the alloy powder By mixing with the alloy powder, the alloy powder must be adjusted so as to have the composition of the above-described RTB-based sintered magnet.
  • T is composed of a light rare earth element RL and a heavy rare earth element RH, RL is Nd and / or Pr, RH is at least one of Dy, Tb, Gd and Ho, T is Fe and 10 of Fe.
  • the ratio exceeds 50%, the amount of R is too large, which may cause oxidation problems, leading to deterioration of magnetic properties and risk of ignition, which may cause production problems.
  • B (b) is less than 0.2% by mass, the amount of B is relatively small with respect to the R 2 T 14 B stoichiometric composition, so that R—T— is more than the R 1 T 4 B 4 phase. There is a possibility that a Ga phase is easily generated. If Ga (c) is less than 0.7% by mass, the R—Ga phase may be difficult to be formed. If it exceeds 12% by mass, Ga segregates and RTB has a high H cJ. There is a possibility that a sintered system magnet cannot be obtained.
  • the additive alloy powder satisfies the formula (20), that is, the relationship of 100-abbcdfef ⁇ 72.4b.
  • B is larger composition than T (Fe) with respect to R 2 T 14 B stoichiometry. Therefore, the R 1 T 4 B 4 phase and the R—Ga phase are easily generated, and the generation of the R—T—Ga phase can be suppressed.
  • the additive alloy powder has a Ga content higher than that of the main alloy powder. This is because if the Ga content of the additive alloy powder is lower than that of the main alloy powder, it may not be possible to suppress the generation of the RT—Ga phase in the main alloy powder.
  • the additive alloy powder may be one kind of alloy powder or may be composed of two or more kinds of alloy powders having different compositions. When two or more kinds of additive alloy powders are used, all the additive alloy powders are within the range of the above composition.
  • the Ga content of the main alloy powder is 0.4% by mass or less, and is adjusted so as to be an RTB-based sintered magnet having the composition of the present invention by mixing with the additive alloy powder.
  • the main alloy powder is prepared with the desired composition. If the Ga content of the main alloy powder exceeds 0.4% by mass, the production of the RT—Ga phase in the main alloy powder may not be suppressed.
  • the main alloy powder may be one kind of alloy powder or may be composed of two or more kinds of alloy powders having different compositions.
  • the mixing amount of the additive alloy powder in the mixed alloy powder is in the range of 0.5 mass% to 40 mass% in 100 mass% of the mixed alloy powder.
  • R-T-B based sintered magnet of the mixing amount of the additive alloy powder was prepared in the above range, it is possible to obtain a high B r and high H cJ.
  • Forming step Using the obtained alloy powder (single alloy powder or mixed alloy powder), forming in a magnetic field to obtain a formed body.
  • Molding in a magnetic field is a dry molding method in which a dry alloy powder is inserted into a mold cavity and molding is performed while a magnetic field is applied.
  • Any known molding method in a magnetic field may be used, including a wet molding method in which molding is performed while the slurry dispersion medium is discharged.
  • a sintered compact is obtained by sintering a molded object.
  • a well-known method can be used for sintering of a molded object.
  • the atmosphere gas is preferably an inert gas such as helium or argon.
  • the obtained sintered body is preferably subjected to heat treatment for the purpose of improving magnetic properties.
  • heat treatment temperature can be adopted for the heat treatment temperature, the heat treatment time, and the like.
  • the obtained sintered magnet may be subjected to machining such as grinding in order to adjust the magnet dimensions. In that case, the heat treatment may be performed before or after machining.
  • the surface treatment may be a known surface treatment, and for example, a surface treatment such as Al vapor deposition, electric Ni plating, or resin coating can be performed.
  • Example 1 Using Nd metal, Pr metal, Dy metal, Tb metal, ferroboron alloy, electrolytic Co, Al metal, Cu metal, Ga metal, ferroniobium alloy, ferrozirconium alloy and electrolytic iron (all metals have a purity of 99% or more) They were blended so as to have a predetermined composition, and these raw materials were melted and cast by a strip casting method to obtain a flaky raw material alloy having a thickness of 0.2 to 0.4 mm. The obtained flaky raw material alloy was hydrogen embrittled in a hydrogen-pressurized atmosphere, and then subjected to a dehydrogenation treatment in which it was heated and cooled in vacuum to 550 ° C. to obtain coarsely pulverized powder.
  • the resulting coarsely pulverized powder was mixed with an airflow pulverizer (jet mill device). Then, dry pulverization was performed in a nitrogen stream to obtain finely pulverized powder (alloy powder) having a particle diameter D50 of 4 ⁇ m. Note that the oxygen concentration in the nitrogen gas during pulverization was adjusted by mixing the atmosphere with nitrogen gas during pulverization. When the atmosphere is not mixed, the oxygen concentration in the nitrogen gas during pulverization is 50 ppm or less.
  • the particle diameter D50 is a volume-based median diameter obtained by a laser diffraction method using an airflow dispersion method.
  • Table 1 a gas analyzer using the gas melting-infrared absorption method for O (oxygen amount), gas melting-heat conduction method for N (nitrogen amount), and combustion-infrared absorption method for C (carbon amount) is used. Measured.
  • the molded powder was molded in a magnetic field to obtain a molded body.
  • molding apparatus lateral magnetic field shaping
  • molding apparatus in which the magnetic field application direction and the pressurization direction orthogonally cross was used for the shaping
  • the obtained molded body was sintered in vacuum at 1020 ° C. for 4 hours and then rapidly cooled to obtain an RTB-based sintered magnet.
  • the density of the sintered magnet was 7.5 Mg / m 3 or more.
  • Table 1 shows the results of measuring the contents of Nd, Pr, Dy, Tb, B, Co, Al, Cu, Ga, Nb, and Zr by ICP emission spectroscopy in order to determine the components of the obtained sintered magnet. Shown in The balance (the balance obtained by subtracting the contents of Nd, Pr, Dy, Tb, B, Co, Al, Cu, Ga, Nb, and Zr obtained by measurement from 100% by mass) was defined as the Fe content. . Further, Table 1 shows the gas analysis results (O, N, and C).
  • the sintered body was heated at 800 ° C. for 2 hours and then cooled to room temperature, and then held at 500 ° C. for 2 hours and then cooled to room temperature.
  • vertical 7 mm, transverse 7 mm, to prepare a sample having a thickness of 7 mm were measured B r and H cJ of the sample by B-H tracer. The measurement results are shown in Table 2.
  • u is a value obtained by summing the amounts of Nd, Pr, Dy, and Tb in Table 1
  • v is an oxygen amount (% by mass) in Table 1
  • is a nitrogen amount (% by mass), and carbon.
  • w the amount of B in Table 1 is directly transferred.
  • the area in Table 2 indicates where v and w are in FIG. 1. When the area is 1 in FIG. 1, the area is 1 and 2 in FIG. 1. The case was described as 2. Furthermore, when it exists in the area
  • FIG. 4 is an explanatory diagram in which the values of v and w of the example sample and the comparative example sample (that is, the sample described in Table 2) according to “ ⁇ Example 1>” are plotted in FIG. It can be easily understood from FIG. 4 that the example sample is in the range of the region 1 or 2 and the comparative example sample is out of the region 1 and 2.
  • v and w are contained in the following ratio.
  • the range of v and w when contained in the proportion corresponds to the region 1 and 2 or 2 in FIG.
  • Sample No. 08 is the range of Ga of the present invention when Ga is 0.20 mass% or more and less than 0.40 mass% ( ⁇ (62.5w + v ⁇ 81.625) /15+0.5 ⁇ x (Ga) ⁇ ⁇ (62 .5w + v ⁇ 81.625) /15+0.8), it is impossible to generate the minimum RT-Ga phase necessary for obtaining high magnetic properties, and the H cJ is greatly reduced. It is thought that there is.
  • H cJ can be increased.
  • B r decreases approximately 0.024T when containing 1 mass% of Dy and Tb.
  • HcJ increases by about 160 kA / m when 1% by mass of Dy is contained, and increases by about 240 kA / m when 1% by mass of Tb is contained. Therefore, the present invention has magnetic properties of B r ⁇ 1.340T and H cJ ⁇ 1300 kA / m when the raw material alloy does not contain Dy and Tb as described above.
  • Sample No. 5 is a comparative example having the same composition except that it is 0.18% by mass lower than 54.
  • Sample No. 55 is a range of Ga of the present invention when Ga is 0.20% by mass or more and less than 0.40% by mass ( ⁇ (62.5w + v ⁇ 81.625) /15+0.5 ⁇ x (Ga) ⁇ ⁇ (62 .5w + v ⁇ 81.625) /15+0.8), it is impossible to generate the minimum RT-Ga phase necessary for obtaining high magnetic properties, and the H cJ is greatly reduced. It is thought that there is.
  • the 1 2 (1 region in FIG. 1) region than towards the (second region in FIG. 1) is higher B r (material alloy regions in the present invention Dy
  • B r material alloy regions in the present invention
  • Dy When Tb is not contained, B r ⁇ 1.360T, and when Dy and Tb are contained, B r ⁇ 1.360T ⁇ 0.024 [Dy] ⁇ 0.024 [Tb]) can be obtained.
  • [Dy] [Tb] indicates the content (% by mass) of Dy and Tb, respectively.
  • Example 2 Using Nd metal, Pr metal, Dy metal, Tb metal, ferroboron alloy, electrolytic Co, Al metal, Cu metal, Ga metal, ferroniobium alloy, ferrozirconium alloy and electrolytic iron (all metals have a purity of 99% or more) The mixture was blended so as to have a predetermined composition, and finely pulverized powder (alloy powder) having a particle diameter D50 of 4 ⁇ m was obtained in the same manner as in Example 1. Note that the oxygen concentration in the nitrogen gas during pulverization was adjusted by mixing the atmosphere with nitrogen gas during pulverization. When the atmosphere is not mixed, the oxygen concentration in the nitrogen gas during pulverization is 50 ppm or less.
  • the particle diameter D50 is a volume-based median diameter obtained by a laser diffraction method using an airflow dispersion method.
  • O oxygen amount
  • N nitrogen amount
  • C carbon amount
  • Example 1 After adding and mixing 0.05% by mass of zinc stearate as a lubricant with respect to 100% by mass of the finely pulverized powder to the finely pulverized powder, a molded body was produced in the same manner as in Example 1, and further performed. Sintering and heat treatment were performed in the same manner as in Example 1. By machining the sintered magnet after the heat treatment was measured B r and H cJ of each sample in the same manner as in Example 1. Table 4 shows the measurement results.
  • U in Table 4 is a value obtained by summing the amounts (mass%) of Nd, Pr, Dy, and Tb in Table 2, and v is ⁇ and nitrogen quantity (mass%) in Table 3. Is the value obtained by subtracting 6 ⁇ + 10 ⁇ + 8 ⁇ from u, where ⁇ is ⁇ and the carbon content (% by mass) is ⁇ .
  • w the amount of B in Table 3 was directly transferred.
  • the area in Table 4 shows where v and w are in FIG. 2, where 3 is in the area 3 in FIG. 2 and 4 is in the area in FIG. It was described as 4. Furthermore, when it exists in the area
  • example samples are: In any case, B r ⁇ 1.377T and H cJ ⁇ 1403 kA / m, which is carried out regardless of the amount of Ga smaller than that of the example sample of Example 1 (x (Ga) 0.40 mass% or more). Compared to Example 1, it has high magnetic properties equivalent to or higher.
  • v and w are outside the range of the present invention (regions other than 3 or 4 in FIG. 2).
  • No. 89 has high magnetic properties such as B r ⁇ 1.377 T and H cJ ⁇ 1403 kA / m.
  • Example 3 The result of observation of the structure of the RTB-based sintered magnet is shown.
  • 5 shows the sample No. of Example 1.
  • 34 RTB sintered magnets were polished by 2 mm on the entire surface by machining, then cut from the center, and the cross section was observed with an FE-SEM (field emission electron microscope). Show the image.
  • the white region corresponds to the grain boundary phase
  • the light gray region corresponds to the oxide phase
  • the dark gray region corresponds to the main phase.
  • FIG. 6 grain boundary phase-enhanced contrast image
  • FIG. 6 is a diagram in which the contrast is adjusted to classify the grain boundary phase in detail.
  • FIG. 5 shows the sample No. of Example 1.
  • 34 RTB sintered magnets were polished by 2 mm on the entire surface by machining, then cut from the center, and the cross section was observed with an FE-SEM (field emission electron microscope). Show the image.
  • the white region corresponds to the grain boundary phase
  • the light gray region corresponds to the oxide phase
  • the main phase and the oxide phase are expressed in black, the RT-Ga phase is expressed in dark gray, the R-Ga phase is expressed in light gray, and the R-rich phase is expressed in white.
  • portions corresponding to the respective phases (R—Ga phase: I, II, R rich phase: III, oxide phase: IV, RT-Ga phase: V, main phase: VI) were cut off, Analysis by TEM-EDX (energy dispersive X-ray spectroscopy) confirmed that the phases were as described above. The analysis results are shown in Table 5.
  • I and II are R: 70% by mass or more and 95% by mass or less, Ga: 5% by mass or more and 30% by mass or less, and Fe: 20% by mass or less, it can be understood that they are R—Ga phases. Furthermore, no. Since V is R: 15 mass% or more and 65 mass% or less, Fe: 20 mass% or more and 80 mass% or less, Ga: 2 mass% or more and 20 mass% or less, it turns out that it is a RT-Ga phase. . No. III has a large amount of R. Since IV has a large amount of oxygen (O), it can be seen that it is an R-rich phase and an oxide phase, respectively.
  • O oxygen
  • the area ratio of the RT-Ga phase in the cross-sectional image was determined using image analysis software.
  • the area ratio A the ratio of the number of pixels in the gray portion to the total number of pixels
  • the area ratio B of the black portion corresponding to the main phase + oxide phase the area ratio C of the dark gray portion corresponding to the RT-Ga phase
  • the R—Ga phase The area ratio D of the light gray portion corresponding to, and the area ratio E of the white portion corresponding to the R-rich phase were calculated.
  • the area ratio of the RT-Ga phase was defined as “100 ⁇ C / (B + C + D + EA)”.
  • Sample No. 70, 75, and 34 have an area ratio of the RT-Ga phase in the range of 1.5% to 7.0%.
  • sample No. which is a comparative example. 15 and Sample No. 42 is outside the range. Therefore, sample no. No. 15 is considered that high H cJ could not be obtained due to too little RT-Ga phase. In No. 42, it is considered that a high Br was not obtained due to a decrease in the abundance ratio of the main phase because there were too many RT-Ga phases.
  • Example 4 Using Nd metal, Pr metal, Dy metal, ferroboron alloy, electrolytic Co, Al metal, Cu metal, Ga metal, ferroniobium alloy, ferrozirconium alloy and electrolytic iron (all metals have a purity of 99% or more), Table 7
  • the additive alloy powder and the main alloy powder were blended so as to have the composition shown, and the raw materials were melted and cast by a strip casting method to obtain a flaky raw material alloy having a thickness of 0.2 to 0.4 mm.
  • the obtained flaky raw material alloy was hydrogen embrittled in a hydrogen-pressurized atmosphere, and then subjected to a dehydrogenation treatment in which it was heated and cooled in vacuum to 550 ° C. to obtain coarsely pulverized powder.
  • the obtained coarsely pulverized powder of the additive alloy and the coarsely pulverized powder of the main alloy were put into a V-type mixer in a predetermined mixing amount and mixed to obtain a mixed alloy powder.
  • the mixed alloy powder obtained was mixed in a nitrogen stream using an airflow pulverizer (jet mill device).
  • An airflow pulverizer jet mill device
  • the particle diameter D50 is a volume-based median diameter obtained by a laser diffraction method using an airflow dispersion method. Further, O (oxygen amount), N (nitrogen amount), and C (carbon amount) in Table 8 were measured in the same manner as in Example 1.
  • Table 7 shows the composition of the additive alloy powder and the main alloy powder used in the production method of the present invention.
  • Table 8 shows the composition of the RTB-based sintered magnet obtained by mixing the additive alloy powder of Table 7 and the main alloy powder.
  • Sample No. in Table 8 100 is an RTB-based sintered magnet produced using a mixed alloy powder obtained by mixing the A alloy powder (addition alloy powder) and the A-1 alloy powder (main alloy powder) in Table 7. The mixing amount of the additive alloy powder in the mixed alloy powder is 4% by mass in 100% by mass of the mixed alloy powder.
  • sample no. 101 is an RTB-based sintered magnet produced using a mixed alloy powder obtained by mixing the A alloy powder (addition alloy powder) and the A-2 alloy powder (main alloy powder) in Table 7.
  • the mixing amount of the additive alloy powder in the mixed alloy powder is 4% by mass in 100% by mass of the mixed alloy powder.
  • the composition of the additive alloy powder and the main alloy powder shown in Table 7 and the mixing amount of the additive alloy powder shown in Table 8 are all within the range of the preferred embodiments (Aspect 3 and Aspect 4) of the present invention. Further, the composition of the RTB-based sintered magnet shown in Table 8 is all within the composition range of the RTB-based sintered magnet of the present invention.
  • sample No. 1 was prepared by mixing an additive alloy powder and a main alloy powder to produce an RTB-based sintered magnet. All of 100 to 140 have high magnetic properties of B r ⁇ 1.343T and H cJ ⁇ 1458 kA / m.
  • Example 5 Using Nd metal, Pr metal, Dy metal, ferroboron alloy, electrolytic Co, Al metal, Cu metal, Ga metal, and electrolytic iron (all metals have a purity of 99% or more) so that the composition shown in Table 10 is obtained.
  • the additive alloy powder and the main alloy powder were blended, and the raw materials were melted and cast by a strip casting method to obtain a flaky raw material alloy having a thickness of 0.2 to 0.4 mm.
  • the obtained flaky raw material alloy was hydrogen embrittled in a hydrogen-pressurized atmosphere, and then subjected to a dehydrogenation treatment in which it was heated and cooled in vacuum to 550 ° C. to obtain coarsely pulverized powder.
  • the obtained coarsely pulverized powder of the additive alloy and the coarsely pulverized powder of the main alloy were put into a V-type mixer in a predetermined mixing amount and mixed to obtain a mixed alloy powder.
  • the mixed alloy powder obtained was mixed in a nitrogen stream using an airflow pulverizer (jet mill device).
  • An airflow pulverizer jet mill device
  • the particle diameter D50 is a volume-based median diameter obtained by a laser diffraction method using an airflow dispersion method.
  • O oxygen amount
  • N nitrogen amount
  • C carbon amount
  • Example 12 After adding and mixing 0.05 mass% of zinc stearate as a lubricant with respect to 100 mass% of the finely pulverized powder, to the finely pulverized powder (mixed alloy powder) obtained by mixing the additive alloy powder and the main alloy powder A molded body was produced by the same method as in Example 1, and further sintered and heat-treated by the same method as in Example 1. By machining the sintered magnet after the heat treatment was measured B r and H cJ of each sample in the same manner as in Example 1. Table 12 shows the measurement results.
  • Table 10 shows the composition of the additive alloy powder and the main alloy powder used in the production method of the present invention.
  • Table 11 shows the composition of the RTB-based sintered magnet obtained by mixing the additive alloy powder of Table 10 and the main alloy powder.
  • Sample No. in Table 11 150 shows an RTB-based firing using a mixed alloy powder obtained by mixing F alloy powder (addition alloy powder), F-1 alloy powder (main alloy powder) and F-2 (main alloy powder) in Table 10. A magnet was produced, and the amount of mixed alloy powder mixed was 100% by mass of the mixed alloy powder: 4% added alloy powder (F), 48% main alloy powder (F-1), main alloy powder ( F-2) 48%. Furthermore, sample no.
  • 151 shows a RTB using a mixed alloy powder obtained by mixing F alloy powder (addition alloy powder), F-3 alloy powder (main alloy powder) and F-4 alloy powder (main alloy powder) in Table 10.
  • the amount of additive alloy powder mixed in the mixed alloy powder is 4% additive alloy powder (F): main alloy powder (F-1) 48 in 100% by mass of the mixed alloy powder. %, Main alloy powder (F-2) 48%.
  • Sample No. Similarly, 152 to 158 were prepared with the mixed alloy powder combinations shown in Table 11 and the mixed alloy powder mixing amount. That is, in this example, an RTB-based sintered magnet is produced using a mixed alloy powder obtained by mixing one kind of additive alloy powder and two kinds of main alloy powders.
  • composition of the additive alloy powder and the main alloy powder shown in Table 10 and the mixing amount of the additive alloy powder shown in Table 11 are all within the range of the preferred embodiments (Aspect 3 and Aspect 4) of the present invention.
  • composition of the RTB-based sintered magnet shown in Table 11 is all within the composition range of the RTB-based sintered magnet of the present invention.
  • sample No. 1 was prepared by mixing one type of additive alloy powder and two types of main alloy powders to produce an RTB-based sintered magnet. All of 150 to 158 have high magnetic properties of B r ⁇ 1.429T and H cJ ⁇ 1495 kA / m.
  • the RTB-based sintered magnet according to the present invention can be suitably used for a hybrid vehicle or electric vehicle motor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

 Dyの含有量を抑制しつつ、高いBrと高いHcJを有するR-T-B系焼結磁石およびその製造方法を提供する。 式 uRwBxGayCuzAlqMTによって表わされ、0.20≦x≦0.70、0.07≦y≦0.2、0.05≦z≦0.5、0≦q≦0.1であり、酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしたとき、v=u-(6α+10β+8γ)であって、0.40≦x≦0.70のとき、v、wが、50w-18.5≦v≦50w-14、-12.5w+38.75≦v≦-62.5w+86.125、を満足し、0.20≦x<0.40のとき、v、wが、50w-18.5≦v≦50w-15.5、-12.5w+39.125≦v≦-62.5w+86.125であり、xが、-(62.5w+v-81.625)/15+0.5≦x≦-(62.5w+v-81.625)/15+0.8を満足するR-T-B系焼結磁石。

Description

R-T-B系焼結磁石およびR-T-B系焼結磁石の製造方法
 本開示は、R-T-B系焼結磁石およびR-T-B系焼結磁石の製造方法に関する。
 R14B型化合物を主相とするR-T-B系焼結磁石(Rは軽希土類元素RLと重希土類元素RHからなり、RLはNdおよび/またはPr、RHはDy、Tb、GdおよびHoのうち少なくとも一種であり、Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む)は、永久磁石の中で最も高性能な磁石として知られており、ハイブリッド自動車用、電気自動車用や家電製品用の各種モータ等に使用されている。
 R-T-B系焼結磁石は、高温で保磁力HcJ(以下、単に「HcJ」と記載する場合がある)が低下し、不可逆熱減磁が起こる。そのため、特にハイブリッド自動車用や電気自動車用モータに使用される場合、高温下でも高いHcJを維持することが要求されている。
 従来、HcJ向上のために、R-T-B系焼結磁石に重希土類元素(主としてDy)が多量に添加されていたが、残留磁束密度B(以下、単に「B」と記載する場合がある)が低下するという問題があった。そのため、近年、R-T-B系焼結磁石の表面から内部に重希土類元素を拡散させて主相結晶粒の外殻部に重希土類元素を濃化してBの低下を抑制しつつ、高いHcJを得る方法が採られている。
 しかし、Dyは、産出地が限定されている等の理由から、供給が不安定である、および価格が変動するなどの問題を有している。そのため、Dyなどの重希土類元素をできるだけ使用せずに(使用量をできるだけ少なくして)R-T-B系焼結磁石のHcJを向上させる技術が求められている。
 特許文献1には、通常のR-T-B系合金よりもB量を低くするとともに、Al、Ga、Cuのうちから選ばれる1種以上の金属元素Mを含有させることによりR17相を生成させ、該R17相を原料として生成させた遷移金属リッチ相(R13M)の体積率を充分に確保することにより、Dyの含有量を抑制しつつ、保磁力の高いR-T-B系希土類焼結磁石が得られることが記載されている。
国際公開第2013/008756号
 しかし、特許文献1に係るR-T-B系希土類焼結磁石は、従来よりもR量を多くB量を少なくしているため、主相の存在比率が低くなりBrが大幅に低下するという問題があった。
 本開示は、上記問題を解決するためになされたものであり、Dyの含有量を抑制しつつ、高いBと高いHcJを有するR-T-B系焼結磁石およびその製造方法を提供することを目的とする。
 本発明の態様1は、下記式(1)によって表わされ、
  uRwBxGayCuzAlqM(100-u-w-x-y-z-q)T (1)
  (Rは軽希土類元素RLと重希土類元素RHからなり、RLはNdおよび/またはPr、RHはDy、Tb、GdおよびHoのうち少なくとも一種であり、TはFeであり質量比でFeの10%以下をCoで置換でき、MはNbおよび/またはZrであり、u、w、x、y、z、q及び100-u-w-x-y-z-qは質量%を示す。)
 前記RHはR-T-B系焼結磁石の5質量%以下であり、下記式(2)~(5)を満足し、
  0.20≦x≦0.70 (2)
  0.07≦y≦0.2 (3)
  0.05≦z≦0.5 (4)
  0≦q≦0.1 (5)

 R-T-B系焼結磁石の酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしたとき、v=u-(6α+10β+8γ)であって、
 0.40≦x≦0.70のとき、v、wが、下記式(6)および(7)を満足し、
  50w-18.5≦v≦50w-14 (6)
  -12.5w+38.75≦v≦-62.5w+86.125 (7)

 0.20≦x<0.40のとき、v、wが、下記式(8)および(9)を満足し、xが、下記式(10)を満足することを特徴とするR-T-B系焼結磁石である。
  50w-18.5≦v≦50w-15.5 (8)
  -12.5w+39.125≦v≦-62.5w+86.125 (9)
  -(62.5w+v-81.625)/15+0.5≦x≦-(62.5w+v-81.625)/15+0.8 (10)
 本発明の態様2は、0.40≦x≦0.70のとき、v、wが、下記式(11)および(7)を満足し、
  50w-18.5≦v≦50w-16.25 (11)
  -12.5w+38.75≦v≦-62.5w+86.125 (7)
       
 0.20≦x<0.40のとき、v、wが、下記式(12)および(9)を満足し、xが、下記式(10)を満足することを特徴とする態様1のR-T-B系焼結磁石である。
  50w-18.5≦v≦50w-17.0 (12)
  -12.5w+39.125≦v≦-62.5w+86.125 (9)
  -(62.5w+v-81.625)/15+0.5≦x≦-(62.5w+v-81.625)/15+0.8 (10)
 態様1および2において、R-T-B系焼結磁石の酸素量が0.15質量%以下であることが好ましい。
 本発明の態様3は、前記態様1のR-T-B系焼結磁石の製造方法における好ましい態様であり、
 下記式(1)によって表わされ、
  uRwBxGayCuzAlqM(100-u-w-x-y-z-q)T (1)
  (Rは軽希土類元素RLと重希土類元素RHからなり、RLはNdおよび/またはPr、RHはDy、Tb、GdおよびHoのうち少なくとも一種であり、TはFeでありFeの10%以下をCoで置換でき、MはNbおよび/またはZrであり、u、w、x、y、z、q及び100-u-w-x-y-z-qは質量%を示す。)

 前記RHはR-T-B系焼結磁石の5質量%以下であり、下記式(2)~(5)を満足し、
  0.20≦x≦0.70 (2)
  0.07≦y≦0.2 (3)
  0.05≦z≦0.5 (4)
  0≦q≦0.1 (5)

 R-T-B系焼結磁石の酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしたとき、v=u-(6α+10β+8γ)であって、
 0.40≦x≦0.70のとき、v、wが、下記式(6)および(7)を満足し、
  50w-18.5≦v≦50w-14 (6)
  -12.5w+38.75≦v≦-62.5w+86.125 (7)

 0.20≦x<0.40のとき、v、wが、下記式(8)および(9)を満足し、xが、下記式(10)を満足することを特徴とするR-T-B系焼結磁石の製造方法であって、
  50w-18.5≦v≦50w-15.5 (8)
  -12.5w+39.125≦v≦-62.5w+86.125 (9)
  -(62.5w+v-81.625)/15+0.5≦x≦-(62.5w+v-81.625)/15+0.8 (10)

 1種以上の添加合金粉末と1種以上の主合金粉末とを準備する工程と、
 1種以上の添加合金粉末を、混合後の混合合金粉末100質量%のうち0.5質量%以上40質量%以下で混合し、1種以上の添加合金粉末と1種以上の主合金粉末との混合合金粉末を得る工程と、
 前記混合合金粉末を成形し成形体を得る成形工程と、
 前記成形体を焼結し焼結体を得る焼結工程と、
 前記焼結体に熱処理を施す熱処理工程と、
を含み、
 前記1種以上の添加合金粉末は、それぞれ、下記式(13)により表され、下記式(14)~(20)を満足する組成を有し、
  aRbBcGadCueAlfM(100-a-b-c-d-e-f)T (13)
  (Rは、軽希土類元素RLと重希土類元素RHからなり、RLはNdおよび/またはPr、RHはDy、Tb、GdおよびHoのうち少なくとも一種であり、残部であるTはFeであり質量比でFeの10%以下をCoで置換でき、Mは、Nbおよび/またはZrであり、a、b、c、d、e、f及び100-a-b-c-d-e-fは質量%を示す。)

  32%≦a≦66% (14)
  0.2%≦b (15)
  0.7%≦c≦12% (16)
  0%≦d≦4% (17)
  0%≦e≦10% (18)
  0%≦f≦2% (19)
  100-a-b-c-d-e-f≦72.4b (20)

 前記1種以上の主合金粉末は、Ga含有量が0.4質量%以下である、R-T-B系焼結磁石の製造方法である。
 本発明の態様4は、前記態様2のR-T-B系焼結磁石の製造方法における好ましい態様であり、
 0.40≦x≦0.70のとき、v、wが、下記式(11)および(7)を満足し、
  50w-18.5≦v≦50w-16.25 (11)
  -12.5w+38.75≦v≦-62.5w+86.125 (7)

 0.20≦x<0.40のとき、v、wが、下記式(12)および(9)を満足し、xが、下記式(10)を満足することを特徴とするR-T-B系焼結磁石の製造方法である。
  50w-18.5≦v≦50w-17.0 (12)
  -12.5w+39.125≦v≦-62.5w+86.125 (9)
  -(62.5w+v-81.625)/15+0.5≦x≦-(62.5w+v-81.625)/15+0.8 (10)
 本発明の態様3および4において、R-T-B系焼結磁石の酸素量が0.15質量%以下であることが好ましい。
 本発明に係る態様により、DyやTbの含有量を抑制しつつ、高いBと高いHcJを有するR-T-B系焼結磁石およびその製造方法を提供することができる。
本発明の1つの態様において、Gaが0.40質量%以上0.70質量%以下の場合のvとwの範囲を示す説明図である。 本発明の1つの態様において、Gaが0.20質量%以上0.40質量%未満の場合のvとwの範囲を示す説明図である。 図1に示す範囲と図2に示す範囲の相対的な関係を示す説明図である。 図4は、図1に「<実施例1>」に係る実施例試料と比較例試料それぞれのv、wの値をプロットした説明図である。 R-T-B系焼結磁石の断面をFE-SEMで観察したBSE像の写真である。 R-T-B系焼結磁石の断面をFE-SEMで観察したBSE像の写真である。
 本発明者らは、上記問題を解決するために鋭意検討を重ねた結果、前記本発明の態様1または態様2に示す式で表される組成とすることにより、高いBと高いHcJを有するR-T-B系焼結磁石が得られることを見出したものである。すなわち、本発明は、態様1または態様2に示す特定の割合で、R、B、Ga、Cu、Al、および必要に応じてMを含有させたR-T-B系焼結磁石である。また、態様1または態様2に示す本発明のR-T-B系焼結磁石は、公知の製造方法を用いて作製することができるが、本発明者らは、態様1または態様2に示すR-T-B系焼結磁石を製造する好ましい態様として、態様3または態様4のように、1種以上の添加合金粉末と1種以上の主合金粉末を特定の混合量で混合した後成形、焼結し、熱処理する方法において、特定組成の添加合金粉末を用いることにより、高いBと高いHcJを有するR-T-B系焼結磁石が得られることを見出したものである。
 本発明の態様1または態様2に示す割合の組成とすることにより、高いBと高いHcJを有するR-T-B系焼結磁石が得られるメカニズムおよび態様3または態様4のように、1種以上の添加合金粉末と1種以上の主合金粉末とを特定の混合量で混合した後成形、焼結し、熱処理する方法において、特定組成の添加合金粉末を用いることにより、高いBと高いHcJを有するR-T-B系焼結磁石が得られるメカニズムについては未だ不明な点もある。現在までに得られている知見を基に本発明者らが考えるメカニズムについて以下に説明する。以下のメカニズムについての説明は本発明の技術的範囲を制限することを目的とするものではないことに留意されたい。
 R-T-B系焼結磁石は、主相であるR14B型化合物の存在比率を高めることによりBを向上させることができる。R14B型化合物の存在比率を高めるためには、R量、T量、B量をR14B型化合物の化学量論比に近づければよいが、R14B型化合物を形成するためのB量が化学量論比を下回ると、粒界に軟磁性のR17相が析出しHcJが急激に低下する。しかし、磁石組成にGaが含有されていると、R17相の代わりにR-T-Ga相が生成され、HcJの低下を防止することができると考えられていた。
 しかし、本発明者らが検討の結果、R-T-Ga相も若干の磁性を有しており、R-T-B系焼結磁石における粒界、特に主にHcJに影響すると考えられる、二つの主相間に存在する粒界(以下、「二粒子粒界」と記載する場合がある)にR-T-Ga相が多く存在すると、HcJ向上の妨げになっていることが分かった。また、R-T-Ga相の生成とともに、二粒子粒界にR-Ga相およびR-Ga-Cu相が生成されていることが分かった。そこで、本発明者らは、R-T-B系焼結磁石の二粒子粒界にR-Ga相およびR-Ga-Cu相が存在することによりHcJが向上すると想定した。また、R-Ga相およびR-Ga-Cu相を生成させるため、さらにはR17相を無くすためにはR-T-Ga相を生成させる必要はあるものの、高いHcJを得るにはその生成量を低く抑える必要があると想定した。そして、特に二粒子粒界において、R-Ga相およびR-Ga-Cu相を生成させつつ、R-T-Ga相の生成を極力抑えることができれば、さらにHcJを向上させることができると想定した。
 R-T-B系焼結磁石において、R-T-Ga相の生成量を低く抑えるためには、R量とB量とを適切な範囲にすることによってR17相の生成量を低くするとともに、R量とGa量をR17相の生成量に応じた最適な範囲にする必要がある。しかし、Rの一部はR-T-B系焼結磁石の製造過程において酸素、窒素、炭素と結合し消費されてしまうため、R17相やR-T-Ga相に使われる実際のR量は製造過程で変化してしまう。そのため、R-T-Ga相を生成させつつ、その生成量を低く抑えるために、R量の調整によりR17相やR-T-Ga相の生成量を抑制することは困難であることがわかった。本発明者らは、検討を重ねた結果、前記態様1または態様2に記載のように、R量(u)からR-T-B系焼結磁石における酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしたとき6α+10β+8γを差し引いた値(v)を用いることにより、R17相やR-T-Ga相の生成量を調整することが可能であることを知見した。そして、R量(u)から6α+10β+8γを差し引いた値(v)とBとGaとCuとAlを特定の割合で含有させれば、高いBと高いHcJが得られることがわかった。これにより、R-T-B系焼結磁石全体において二粒子粒界にR-Ga相およびR-Ga-Cu相が多く存在し、さらに、R-T-Ga相がほとんど存在しない二粒子粒界が多く存在する組織を得ることができると考えられる。このような組織が得られることでR-T-Ga相によるHcJ低下が抑えられ、さらに、R-T-Ga相の生成量を抑えた結果、R量やB量を主相の存在比率を大幅に低下させない程度にすることができるため、高いBを得ることができると考えられる。
 また、本発明者らは検討の結果、前記R-T-B系焼結磁石を製造する好ましい態様として、1種以上の添加合金粉末と1種以上の主合金粉末を特定の混合量で混合した後成形、焼結し、熱処理する方法において、特定組成からなる組成を有する添加合金粉末と、Gaの含有量が0.4質量%以下である主合金粉末を用いることにより、高いBと高いHcJを有するR-T-B系焼結磁石が得られることを見出した。以下に詳述する。
 本発明の態様3または態様4に示す添加合金粉末の組成は、R-T-B系焼結磁石のR14B化学量論組成よりもRおよびBが多い組成である。そのため、R14B化学量論組成に対して相対的にTよりもRやBが多くなる。これにより、R-T-Ga相よりもR相やR-Ga相およびR-Ga-Cu相が生成され易くなる。そして、主合金粉末は、添加合金粉末にGaを多く含有するため、主相合金粉末のGa量を抑制することができる。そのため、主合金粉末におけるR-T-Ga相の生成も抑制される。前記添加合金粉末と前記主合金粉末を用いることで、合金粉末の段階におけるR-T-Ga相の生成量を極めて少なくすることができる。そして、合金粉末の段階でR-T-Ga相の生成量が抑制されることで、最終的に得られるR-T-B系焼結磁石におけるR-T-Ga相の生成量を抑制することができると考えられる。
 特許文献1に記載の技術ではR量に関し、酸素量、窒素量、炭素量を考慮していないため、R17相やR-T-Ga相の生成量を抑制することは困難である。そもそも、特許文献1に記載の技術はR-T-Ga相の生成を促進することによってHcJを向上させるものであり、R-T-Ga相の生成量を抑制するという技術思想はない。よって、特許文献1はR-T-Ga相の原料となるR17相の生成を促進するためにB量を従来よりも低くするとともに、R-T-Ga相の生成を促進するためにR量を多くする必要があるため、主相の存在比率が大きく低下して高いBが得られていないと考えられる。さらに、特許文献1では、添加合金粉末と主合金粉末を混合するという技術思想もない。
[R-T-B系焼結磁石]
 本発明に係る態様では、
 式:uRwBxGayCuzAlqM(100-u-w-x-y-z-q)T (1)
 (Rは軽希土類元素RLと重希土類元素RHからなり、RLはNdおよび/またはPr、RHはDy、Tb、GdおよびHoのうち少なくとも一種であり、TはFeでありFeの10%以下をCoで置換でき、MはNbおよび/またはZrであり、u、w、x、y、z、q及び100-u-w-x-y-z-qは質量%を示し、不可避的不純物を含む)
によって表わされ、
 前記RHはR-T-B系焼結磁石の5質量%以下であり、
 0.20≦x≦0.70 (2)
 0.07≦y≦0.2 (3)
 0.05≦z≦0.5 (4)
 0≦q≦0.1 (5)
であり、
 R-T-B系焼結磁石の酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしたとき、v=u-(6α+10β+8γ)であって、
 0.40≦x≦0.70のとき、v、wが、
  50w-18.5≦v≦50w-14 (6)
  -12.5w+38.75≦v≦-62.5w+86.125 (7)
を満足し、
 0.20≦x<0.40のとき、v、wが、
  50w-18.5≦v≦50w-15.5 (8)
  -12.5w+39.125≦v≦-62.5w+86.125 (9)
であり、かつ、
 xが、
  -(62.5w+v-81.625)/15+0.5≦x≦-(62.5w+v-81.625)/15+0.8 (10)
を満足することを特徴とするR-T-B系焼結磁石。
 あるいは、
 式:uRwBxGayCuzAlqM(100-u-w-x-y-z-q)T (1)
 (Rは軽希土類元素RLと重希土類元素RHからなり、RLはNdおよび/またはPr、RHはDy、Tb、GdおよびHoのうち少なくとも一種であり、TはFeでありFeの10%以下をCoで置換でき、MはNbおよび/またはZrであり、u、w、x、y、z、q及び100-u-w-x-y-z-qは質量%を示し、不可避的不純物を含む)
によって表わされ、
 前記RHはR-T-B系焼結磁石の5質量%以下であり、
 0.20≦x≦0.70 (2)
 0.07≦y≦0.2 (3)
 0.05≦z≦0.5 (4)
 0≦q≦0.1 (5)
であり、
 R-T-B系焼結磁石の酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしたとき、v=u-(6α+10β+8γ)であって、
 0.40≦x≦0.70のとき、v、wが、
  50w-18.5≦v≦50w-16.25 (11)
  -12.5w+38.75≦v≦-62.5w+86.125 (7)
を満足し、
  0.20≦x<0.40のとき、v、wが、
  50w-18.5≦v≦50w-17.0 (12)
  -12.5w+39.125≦v≦-62.5w+86.125 (9)
であり、かつ、
 xが、
  -(62.5w+v-81.625)/15+0.5≦x≦-(62.5w+v-81.625)/15+0.8 (10)
を満足することを特徴とするR-T-B系焼結磁石である。
 本発明のR-T-B系焼結磁石は不可避的不純物を含んでよい。例えば、ジジム合金(Nd-Pr)、電解鉄、フェロボロンなどに通常含有される不可避的不純物を含有していても本発明の効果を奏することができる。不可避的不純物として例えば、La、Ce、Cr、Mn、Siなどを微量に含む。
 本発明に係る1つの態様では、R-T-B系焼結磁石を上記式で表される組成にすることにより、高いBと高いHcJが得られるという効果を奏することができる。以下に詳述する。
 本発明の1つの態様に係るR-T-B系焼結磁石におけるRは、軽希土類元素RLと重希土類元素RHからなり、RLはNdおよび/またはPr、RHはDy、Tb、GdおよびHoのうち少なくとも一種であり、RHはR-T-B系焼結磁石の5質量%以下である。本発明は重希土類元素を使用しなくても高いBと高いHcJを得ることができるため、より高いHcJを求められる場合でもRHの添加量を削減できる。TはFeであり、質量比でFeの10%以下をCoで置換できる。Bはボロンである。
 なお、特定の希土類元素を得ようとすると精錬等の過程で、不純物として意図しない他の種類の希土類元素が不純物として含まれてしまうことが広く知られている。従って、上述の「本発明の1つの態様に係るR-T-B系焼結磁石におけるRは、軽希土類元素RLと重希土類元素RHからなり、RLはNdおよび/またはPr、RHはDy、Tb、GdおよびHoのうち少なくとも一種であり、RHはR-T-B系焼結磁石の5質量%以下である。」は、Rが、Nd、Pr、Dy、Tb、GdおよびHo以外の希土類元素を含む場合を完全に排除するものではなく、Nd、Pr、Dy、Tb、GdおよびHo以外の希土類元素についても不純物レベルの量であれば含有してもよいことを意味している。
 本発明に係る態様における酸素量(質量%)、窒素量(質量%)、炭素量(質量%)は、R-T-B系焼結磁石における含有量(すなわち、R-T-B系磁石全体の質量を100質量%とした場合の含有量)であり、酸素量は、ガス融解-赤外線吸収法、窒素量は、ガス融解-熱伝導法、炭素量は、燃焼-赤外線吸収法、によるガス分析装置を使用して測定することができる。本発明は、R量(u)から酸素、窒素、炭素と結合し消費された量を以下に説明する方法により差し引いた値(v)を使用する。これによりR17相やR-T-Ga相の生成量を調整することが可能となる。前記vは、酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしてR量(u)から6α+10β+8γを差し引くことにより求める。6αは、不純物として主にRの酸化物が生成されるとして、酸素のおよそ6倍の質量のRが酸化物として消費されることから規定したものである。10βは、主にRNの窒化物が生成されるとして、窒素のおよそ10倍の質量のRが窒化物として消費されることから規定したものである。8γは、主にRの炭化物が生成されるとして、炭素のおよそ8倍の質量のRが炭化物として消費されることから規定したものである。
 なお、酸素量、窒素量および炭素量は、それぞれ、上述のガス分析装置による測定により得るのに対して、式(1)に示されるR、B、Ga、Cu、Al、MおよびTのそれそれぞれの含有量(質量%)であるu、w、x、y、z、qおよび100-u-w-x-y-z-qのうち、u、w、x、y、zおよびqは、誘導結合プラズマ発光分光分析法(ICP発光分光分析法)を用いて測定してよい。また、100-u-w-x-y-z-qは、ICP発光分光分析法により得た、u、w、x、y、zおよびqの測定値を用いて計算により求めてよい。
 従って、式(1)は、ICP発光分析法により測定可能な元素の合計量が100質量%となるように規定している。一方、酸素量、窒素量および炭素量はICP発光分光分析法では測定不可能である。
 このため、本発明に係る態様においては、式(1)で規定するu、w、x、y、z、q及び100-u-w-x-y-z-qと、酸素量α、窒素量βおよび炭素量γとを合計すると100質量%を超えることが許容される。
 R-T-B系焼結磁石の酸素量は、0.15質量%以下が好ましい。vは酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしてR量(u)から6α+10β+8γを差し引いた値であるため、例えば、酸素量αが多い場合は、原料合金の段階におけるR量を多くしておく必要がある。特に、後述する図1における本発明の1つの態様に係る領域1と2のうち領域1は、領域2と比べて相対的にvが高いため、酸素量αが多い場合、原料合金の段階におけるR量が非常に多くなる恐れがある。これによって主相の存在比率が低くなりBが低下する恐れがあるため、特に、図1の本発明の領域1においては、酸素量は0.15質量%以下が好ましい。
 Gaは、0.20質量%以上0.70質量%以下である。但し、Gaが、0.40質量%以上0.70質量%以下のときと、0.20質量%以上0.40質量%未満のときとでは、v、wの範囲等が異なる。以下に詳述する。
 本発明の1つの態様ではGaが0.40質量%以上0.70質量%以下の場合、vとwを以下の関係とする。
 50w-18.5≦v≦50w-14 (6)
 -12.5w+38.75≦v≦-62.5w+86.125 (7)
 図1に上記式(6)および(7)を満足するvとwの範囲を示す。図1中のvは、R量(u)から酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとして6α+10β+8γを差し引いた値であり、wは、B量の値である。式(6)、すなわち50w-18.5≦v≦50w-14は図1の点Aと点Bを含む直線(点Aと点Bを結ぶ直線)と点Cと点Dを含む直線(点Cと点Dを結ぶ直線)に挟まれた範囲であり、式(7)、すなわち-12.5w+38.75≦v≦-62.5w+86.125は点Dと点Fと点Bと点Gを含む直線と点Cと点Eと点Aと点Gを含む直線に挟まれた範囲である。そしてこの両方を満たす領域1と2(点Aと点Bと点Dと点Cで囲まれる領域)が本発明の1つの態様に係る範囲である。vとwを領域1と2の範囲にすることにより、高いBと高いHcJを得ることができる。領域1と2の範囲からはずれた領域10(点Dと点Fと点Bと点Gを含む直線から図中下の領域)は、wに対してvが少なすぎるためR-T-Ga相の生成量が少なくなり、R17相を無くすことができなかったり、R-Ga相およびR-Ga-Cu相の生成量が少なくなると考えられる。これにより、高いHcJが得られない。逆に、領域1と2の範囲から外れた領域20(点Cと点Eと点Aと点Gを含む直線から図中上の領域)は、wに対してvが多すぎるため、相対的にFe量が不足する。Fe量が不足するとRおよびBが余ることになり、その結果R-T-Ga相が生成されずにRFe相が生成され易くなると考えられる。これによりR-Ga相およびR-Ga-Cu相の生成量も少なくなり、高いHcJが得られない。さらに、領域1と2の範囲からはずれた領域30(点Cと点Dを含む直線から図中上の領域)は、vが多すぎ且つwが少なすぎるため、R-T-Ga相やR-Ga相およびR-Ga-Cu相は生成されるが、主相の存在比率が低くなり、高いBが得られない。さらに領域1と2の範囲からはずれた領域40(点Cと点Dと点Gで囲まれる領域から領域1と2を除いた領域)は、Rが少なく且つBが多すぎるため、主相の存在比率は高いが、R-T-Ga相がほとんど生成されず、R-Ga相およびR-Ga-Cu相の生成量も少なくなるため高いHcJが得られない。
 本発明の1つの態様では、Gaが0.20質量%以上0.40質量%未満の場合、vとwを以下の関係とする。
 50w-18.5≦v≦50w-15.5 (8)
 -12.5w+39.125≦v≦-62.5w+86.125 (9)
 図2に式(8)および(9)を満足するvとwの本発明の範囲を示す。式(8)、すなわち50w-18.5≦v≦50w-15.5は図2の点Aと点Lを含む直線と点Jと点Kを含む直線に挟まれた範囲であり、式(9)、すなわち-12.5w+39.125≦v≦-62.5w+86.125は点Kと点Iと点Lを含む直線と点Jと点Hと点Aを含む直線に挟まれた範囲である。そしてこの両方を満たす領域3と4(点Aと点Lと点Kと点Jで囲まれる領域)が本発明の1つの態様に係る範囲である。参考までに、図3に図1(Gaが0.40質量%以上0.70質量%以下の場合)と図2(Gaが0.20質量%以上0.40質量%未満の場合)の位置関係(図1に示す範囲と図2に示す範囲の相対的な関係)を示す。x(Ga)が0.20質量%以上0.40質量%未満であっても、上記範囲(点Aと点Lと点Kと点Jで囲まれる領域3と4)であれば、後述するv、wに応じた適切なxを設定することで高いBと高いHcJを得ることができる。
 xが0.20質量%以上0.40質量%未満の場合、本発明の1つの態様では、v、wに応じてxを以下の式(10)の範囲にする。
 -(62.5w+v-81.625)/15+0.5≦x≦-(62.5w+v-81.625)/15+0.8 (10)
 xをvとwに応じた上記式(10)の範囲にすることにより、高い磁気特性を得るために最低限必要なR-T-Ga相を生成させることができる。xが上記範囲未満であると、R-T-Ga相の生成量が少なすぎるためHcJが低下する恐れがある。逆に、xが上記範囲を超えると不要なGaが存在することになり、主相の存在比率が低下してBが低下する恐れがある。
 本発明は、Gaが0.40質量%以上0.70質量%以下の場合、更に好ましくは、vとwを以下の関係とする。
 50w-18.5≦v≦50w-16.25 (11)
 -12.5w+38.75≦v≦-62.5w+86.125 (7)
 図1に上記式(11)および(7)を満足するvとwの範囲を示す。式(11)、すなわち50w-18.5≦v≦50w-16.25は点Aと点Bを含む直線と点Eと点Fを含む直線に挟まれた範囲であり、式(7)、すなわち-12.5w+38.75≦v≦-62.5w+86.125は点Dと点Fと点Bと点Gを含む直線と点Cと点Eと点Aと点Gを含む直線に挟まれた範囲である。そしてこの両方を満たす領域2(点Aと点Bと点Fと点Eで囲まれる領域)が本発明の範囲である。上記範囲とすることにより、R-T-Ga相の生成量を確保しつつ、vを低く、wを高くすることができるため、主相の存在比率が低くならず、より高いBを得ることができる。
 本発明は、Gaが0.20質量%以上0.40質量%未満の場合、更に好ましくは、xとwを以下の式(12)および(9)の関係とする。
 50w-18.5≦v≦50w-17.0 (12)
 -12.5w+39.125≦v≦-62.5w+86.125 (9)
図2に上記式(12)および(9)を満足する範囲を示す。式(12)、すなわち50w-18.5≦v≦50w-17.0は点Aと点Lを含む直線と点Hと点Iを含む直線に挟まれた範囲であり、式(9)、すなわち-12.5w+39.125≦v≦-62.5w+86.125は点Kと点Iと点Lを含む直線と点Jと点Hと点Aを含む直線に挟まれた範囲である。そしてこの両方を満たす領域4(点Aと点Lと点Iと点Hで囲まれる領域)が本発明1つの態様に係る範囲である。参考までに、図3に図1(Gaが0.40質量%以上0.70質量%以下)と図2(Gaが0.20質量%以上0.40質量%未満)の範囲の相対的な位置関係を示す。上記範囲(点Aと点Lと点Iと点Hで囲まれる領域4)にして、かつ、上述したようにxを-(62.5w+v-81.625)/15+0.5≦x≦-(62.5w+v-81.625)/15+0.8の範囲とすることにより、R-T-Ga相の生成量を確保しつつ、vを低く、wを高くすることができるため、主相の存在比率が低くならず、より高いBを得ることができる。
 Cuは、0.07質量%以上0.2質量%以下含有させることが好ましい。Cuの含有量が0.07質量%未満であると、二粒子粒界にR-Ga相およびR-Ga-Cu相が生成され難くなり、高いHcJが得られない恐れがある。また、0.2質量%を超えると、Cuの含有量が多すぎるため、焼結ができなくなる恐れがある。Cuの含有量は、0.08質量%以上0.15質量%以下がさらに好ましい。
 更に、通常含有される程度のAl(0.05質量%以上0.5質量%以下)を含有する。Alを含有することにより、HcJを向上させることができる。Alは通常、製造工程で不可避的不純物として0.05質量%以上含有されるが、不可避的不純物で含有される量と意図的に添加した量の合計で0.5質量%以下含有してもよい。
 また、一般的に、R-T-B系焼結磁石において、Nbおよび/またはZrを含有することにより焼結時における結晶粒の異常粒成長が抑制されることが知られている。本発明においても、Nbおよび/またはZrを合計で0.1質量%以下含有してもよい。Nbおよび/またはZrの含有量が合計で0.1質量%を超えると不要なNbやZrが存在することにより、主相の体積比率が低下してBが低下する恐れがある。
 本発明の1つの態様において、R-T-Ga相とは、R:15質量%以上65質量%以下、T:20質量%以上80質量%以下、Ga:2質量%以上20質量%以下を含むものであって、例えばRFe13Ga化合物が挙げられる。なお、R-T-Ga相は、不可避的不純物としてAlやCu、Siが混入する場合があるため、例えばRFe13(Ga1-x-y-zCuAlSi)化合物になっている場合がある。また、R-Ga相とは、R:70質量%以上95質量%以下、Ga:5質量%以上30質量%以下、T(Fe):20質量%以下(0を含む)を含むものであって、例えばRGa化合物が挙げられる。さらに、R-Ga-Cu相とは、前記R-Ga相のGaの一部がCuで置換されたものであって、例えばR(Ga,Cu)化合物が挙げられる。
[R-T-B系焼結磁石の製造方法]
 上述したように、態様1または態様2に示す本発明のR-T-B系焼結磁石は、公知の製造方法を用いて作製すればよい。
 本発明のR-T-B系焼結磁石の製造方法の一例を説明する。R-T-B系焼結磁石の製造方法は、合金粉末を得る工程、成形工程、焼結工程、熱処理工程を有する。以下、各工程について説明する。
(1)合金粉末を得る工程
 合金粉末は、1種類の合金粉末(単合金粉末)を用いてもよいし、2種類以上の合金粉末を混合することにより合金粉末(混合合金粉末)を得る、いわゆる2合金法を用いてもよく、公知の方法を用いて本発明の組成を有する合金粉末を得ればよい。
 単合金粉末の場合、所定の組成となるようにそれぞれの元素の金属または合金を準備し、これらをストリップキャスティング法等を用いてフレーク状の合金を製造する。得られたフレーク状の原料合金を水素粉砕し、粗粉砕粉のサイズを例えば1.0mm以下とする。次に、粗粉砕粉をジェットミル等により微粉砕することで、例えば粒径D50(気流分散法によるレーザー回折法で得られた体積基準メジアン径)が3~7μmの微粉砕粉(単合金粉末)を得る。なお、ジェットミル粉砕前の粗粉砕粉、ジェットミル粉砕中およびジェットミル粉砕後の合金粉末に助剤として公知の潤滑剤を使用してもよい。
 混合合金粉末を用いる場合、好ましい態様として、以下に示すように、まず1種以上の添加合金粉末と1種以上の主合金粉末とを準備し、1種以上の添加合金粉末と1種以上の主合金粉末とを特定の混合量で混合し混合合金粉末を得る。
 1種以上の添加合金粉末と1種以上の主合金粉末を以下に詳述する所定の組成となるようにそれぞれの元素の金属または合金を準備し、上述した単合金粉末の場合と同様に、まずフレーク状の合金を製造し、次にフレーク状の合金を水素粉砕し粗粉砕粉末を得る。得られた添加合金粉末(添加合金粉末の粗粉砕粉末)と主合金粉末(主合金粉末の粗粉砕粉末)をV型混合機等に投入して混合し、混合合金粉末を得る。このように粗粉砕粉末の段階で混合した場合は、得られた混合合金粉末をジェットミル等により微粉砕し微粉砕粉末となし混合合金粉末を得る。もちろん、添加合金粉末と主合金粉末をそれぞれジェットミル等により微粉砕し微粉砕粉末となした後混合し混合合金粉末を得てもよい。ただし、添加合金粉末のR量が多い場合は、微粉砕時に発火しやすいため、添加合金粉末と主合金粉末を混合後に微粉砕を行うことが好ましい。
 なお、ここで「添加合金粉末」は、下記に詳述する範囲内の組成を有する。複数の種類の添加合金粉末を用いてよい、その場合は、それぞれの種類の添加合金粉末が、下記に詳述する範囲内の組成を有する。「主合金粉末」は、その組成が、添加合金粉末の組成の範囲外であり、かつ、添加合金粉末と混合することにより、上述したR-T-B系焼結磁石の組成となるように調整された合金粉末を意味する。複数の種類の主合金粉末を用いてよいが、その場合は、それぞれの種類の主合金粉末の組成が、添加合金粉末の組成の範囲外で、かつ、当該複数の種類の主合金粉末と添加合金粉末と混合することにより、上述したR-T-B系焼結磁石の組成となるように調整された合金粉末でなければならない。
 [添加合金粉末]
 好ましい態様として、添加合金粉末は、
 式:aRbBcGadCueAlfM(100-a-b-c-d-e-f)T (13)
によって表わされ、
 32%≦a≦66% (14)
 0.2%≦b (15)
 0.7%≦c≦12% (16)
 0%≦d≦4% (17)
 0%≦e≦10% (18)
 0%≦f≦2% (19)
 100-a-b-c-d-e-f≦72.4b (20)
 残部T(Rは、軽希土類元素RLと重希土類元素RHからなり、RLはNdおよび/またはPr、RHはDy、Tb、GdおよびHoのうち少なくとも一種であり、TはFeでありFeの10質量%以下をCoで置換でき、Mは、Nbおよび/またはZrであり、a、b、c、d、e、f及び100-a-b-c-d-e-fは質量%を示し、不可避的不純物を含む)によって表わされる組成を有する。
 上記組成とすることにより、添加合金粉末はR14B化学量論組成よりも相対的にRおよびBが多い組成となる。そのため、R-T-Ga相よりもR相やR-Ga相が生成され易くなる。
 R(a)は、32質量%未満であるとR14B化学量論組成に対して相対的にR量が少なすぎるため、R-Ga相が生成され難くなる恐れがあり、66質量%を超えるとR量が多すぎるため、酸化の問題が発生して磁気特性の低下や発火の危険等を招き生産上問題となる恐れがある。
 B(b)は、0.2質量%未満であるとR14B化学量論組成に対して相対的にB量が少なすぎるため、R相よりもR-T-Ga相が生成され易くなる恐れがある。
 Ga(c)が0.7質量%未満であると、R-Ga相が生成され難くなる恐れがあり、12質量%を超えると、Gaが偏析して高いHcJを有するR-T-B系焼結磁石が得られない恐れがある。
 また、添加合金粉末は、式(20)、すなわち100-a-b-c-d-e-f≦72.4bの関係を満たす。式(20)の関係を満たすことにより、R14B化学量論組成に対してT(Fe)よりもBが多い組成となる。そのためR相やR-Ga相が生成され易くなりR-T-Ga相の生成を抑制させることができる。
 添加合金粉末は、主合金粉末よりもGa含有量を高い。添加合金粉末のGa含有量が主合金粉末よりも低いと、主合金粉末におけるR-T-Ga相の生成を抑制できない恐れがあるからである。なお、添加合金粉末は1種の合金粉末でもよいし、組成が異なる2種以上の合金粉末から構成されていてもよい。2種類以上の添加合金粉末を使用するときは、全ての添加合金粉末を上記組成の範囲内とする。
[主合金粉末]
 好ましい態様として、主合金粉末のGa含有量は0.4質量%以下であり、前記添加合金粉末と混合することで本発明の組成を有するR-T-B系焼結磁石となるように調整した任意の組成で主合金粉末を作製する。主合金粉末のGa含有量が0.4質量%を超えると、主合金粉末におけるR-T-Ga相の生成を抑制できない恐れがある。なお、主合金粉末は1種の合金粉末でもよいし、組成が異なる2種以上の合金粉末から構成されていてもよい。
 本発明の好ましい態様として、混合合金粉末における添加合金粉末の混合量は、混合合金粉末100質量%のうち0.5質量%以上40質量%以下の範囲である。添加合金粉末の混合量を前記範囲内にして作製したR-T-B系焼結磁石は、高いBと高いHcJを得ることができる。
(2)成形工程
 得られた合金粉末(単合金粉末または混合合金粉末)を用いて磁界中成形を行い、成形体を得る。磁界中成形は、金型のキャビティー内に乾燥した合金粉末を挿入し、磁界を印加しながら成形する乾式成形法、金型のキャビティー内にスラリー(分散媒中に合金粉末が分散している)を注入し、スラリーの分散媒を排出しながら成形する湿式成形法を含む既知の任意の磁界中成形方法を用いてよい。
(3)焼結工程
 成形体を焼結することにより焼結体を得る。成形体の焼結は公知の方法を用いることができる。なお、焼結時の雰囲気による酸化を防止するために、焼結は真空雰囲気中または雰囲気ガス中で行うことが好ましい。雰囲気ガスは、ヘリウム、アルゴンなどの不活性ガスを用いることが好ましい。
(4)熱処理工程
 得られた焼結体に対し、磁気特性を向上させることを目的とした熱処理を行うことが好ましい。熱処理温度、熱処理時間などは公知の条件を採用することができる。得られた焼結磁石に磁石寸法の調整のため、研削などの機械加工を施してもよい。その場合、熱処理は機械加工前でも機械加工後でもよい。さらに、得られた焼結磁石に、表面処理を施してもよい。表面処理は、公知の表面処理で良く、例えばAl蒸着や電気Niめっきや樹脂塗装などの表面処理を行うことができる。
 本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。
<実施例1>
 Ndメタル、Prメタル、Dyメタル、Tbメタル、フェロボロン合金、電解Co、Alメタル、Cuメタル、Gaメタル、フェロニオブ合金、フェロジルコニウム合金および電解鉄を用いて(メタルはいずれも純度99%以上)、所定の組成となるように配合し、それらの原料を溶解してストリップキャスト法により鋳造し、厚み0.2~0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金に水素加圧雰囲気で水素脆化させた後、550℃まで真空中で加熱、冷却する脱水素処理を施し、粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100質量%に対して0.04質量%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粉砕時に窒素ガスに大気を混合することにより粉砕時の窒素ガス中の酸素濃度を調節した。大気を混合しない場合の粉砕時の窒素ガス中の酸素濃度は50ppm以下であり、大気を混合することで窒素ガス中の酸素濃度を最大5000ppmまで増加させ、様々な酸素量の微粉砕粉を作製した。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積基準メジアン径である。また、表1におけるO(酸素量)はガス融解-赤外線吸収法、N(窒素量)はガス融解-熱伝導法、C(炭素量)は燃焼-赤外線吸収法、によるガス分析装置を使用して測定した。
 前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100質量%に対して0.05質量%添加、混合した後、磁界中で成形し、成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交する、いわゆる直角磁界成形装置(横磁界成形装置)を用いた。
 得られた成形体を、真空中、1020℃で4時間焼結した後急冷し、R-T-B系焼結磁石を得た。焼結磁石の密度は7.5Mg/m以上であった。得られた焼結磁石の成分を求めるために、Nd、Pr、Dy、Tb、B、Co、Al、Cu、Ga、NbおよびZrの含有量をICP発光分光分析法により測定した結果を表1に示す。そして、残部(100質量%から測定により得たNd、Pr、Dy、Tb、B、Co、Al、Cu、Ga、NbおよびZrの含有量を引いて得た残り)をFeの含有量とした。さらにガス分析結果(O、NおよびC)を表1に示す。焼結体に、800℃で2時間保持した後室温まで冷却し、次いで500℃で2時間保持した後室温まで冷却する熱処理を施した。熱処理後の焼結磁石に機械加工を施し、縦7mm、横7mm、厚み7mmの試料を作製し、B-Hトレーサによって各試料のB及びHcJを測定した。測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2におけるuは、表1におけるNd、Pr、Dy、Tbの量を合計した値であり、vは、表1における酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしたとき6α+10β+8γをuから差し引いた値である。wは、表1のB量をそのまま転記した。また、表2における領域は、vとwが図1中のどの位置にあるか示したものであり、図1中の1の領域にある場合は1と、図1中の2の領域にある場合は2と記載した。さらに、図1中の1、2の領域以外にある場合はその位置に応じて10、20、30、40のいずれかを記載した。例えばNo.01は、vが28.27質量%であり、wが0.910質量%であるため図1中の2の領域である。そのため2と記載した。また、No.21は、vが29.16質量%であり、wが0.894質量%であるため図1中の1の領域である。そのため1と記載した。さらに、No.47は、vが28.44質量%であり、wが0.940質量%であるため図1中の20の領域である。よって20と記載した。
 図4は、図1に「<実施例1>」に係る実施例試料と比較例試料(すなわち、表2に記載の試料)それぞれのv、wの値をプロットした説明図である。図4から実施例試料が領域1または2の範囲内にあり、比較例試料が領域1および2の範囲外にあることが容易に理解できる。
 上述したように、本発明は、xが0.40質量%以上0.70質量%以下の場合、vとwを以下の割合で含有させる。
 50w-18.5≦v≦50w-14 (6)
 -12.5w+38.75≦v≦-62.5w+86.125 (7)
 好ましくは、
 50w-18.5≦v≦50w-16.25 (11)
 -12.5w+38.75≦v≦-62.5w+86.125 (7)
 当該割合で含有させた場合の前記vとwの範囲が図1中の1と2または2の領域に相当する。
 表2に示す様に、原料合金にDy、Tbを含有していない場合、vとwの関係が本発明の領域(図1中の1と2の領域)に位置し、かつ、0.40≦x(Ga)≦0.70、0.07≦y(Cu)≦0.2、0.05≦z(Al)≦0.5、0≦q(M)(Nbおよび/またはZr)≦0.1である実施例試料(試料No.48、49、53、54、57以外の実施例試料)は、いずれもB≧1.340T、かつ、HcJ≧1300kA/mの高い磁気特性を有している。これに対し、Ga、Cu、Alの量が本発明の範囲内であっても、vとwが本発明の範囲外(図1中の1または2以外の領域)となっている比較例(例えば、試料No.12、16、22、35)および、vとwが本発明の範囲内(図1中の1または2の領域)であってもGa、Cuの量が本発明の範囲外である比較例(例えば、試料No.08、30、36、40、42)は、B≧1.340T、かつ、HcJ≧1300kA/mの高い磁気特性が得られていない。特に、実施例である試料No.07とGaの含有量が試料No.07と比べて0.17質量%低い以外は同じ組成の比較例である試料No.08から明らかなように、vとwが本発明の範囲内であっても、Gaが本発明の範囲外であるとHcJが大きく低下している。なお、試料No.08は、Gaが0.20質量%以上0.40質量%未満の場合における本発明のGaの範囲(-(62.5w+v-81.625)/15+0.5≦x(Ga)≦-(62.5w+v-81.625)/15+0.8)から外れるため、高い磁気特性を得るために最低限必要なR-T-Ga相を生成させることができず、そのため、HcJが大きく低下していると考えられる。
 原料合金にDy、Tbを含有する場合はDy、Tbの含有量に応じてBが低下して、HcJが向上する。この場合、BはDyやTbを1質量%含有すると0.024T程度減少する。HcJはDyが1質量%含有されると160kA/m程度、Tbが1質量%含有されると240kA/m程度上昇する。
 そのため、本発明は、上述したように原料合金にDy、Tbを含有しない場合はB≧1.340T、かつ、HcJ≧1300kA/mの磁気特性を有しているので、Dy、Tbの含有量に応じてB(T)≧1.340-0.024[Dy]-0.024[Tb]、かつ、HcJ(kA/m)≧1300+160[Dy]+240[Tb]の磁気特性を有することになる。なお、[Dy][Tb]は、それぞれDy、Tbの含有量(質量%)を示す。
 表2に示すように、原料合金にDy、Tbを含有する実施例(試料No.48、49、53、54、57)は、いずれもB(T)≧1.340-0.024[Dy]-0.024[Tb]、かつ、HcJ(kA/m)≧1300+160[Dy]+240[Tb]の高い磁気特性を有している。これに対し、比較例(試料No.47、50、51、52、55)は、いずれもB(T)≧1.340-0.024[Dy]-0.024[Tb]、かつ、HcJ(kA/m)≧1300+160[Dy]+240[Tb]の高い磁気特性を有していない。特に、実施例である試料No.54と、Gaの含有量が試料No.54に比べて0.18質量%低い以外は同じ組成の比較例である試料No.55とから明らかなように、vとwが本発明の範囲内であっても、Gaが本発明の範囲外であるとHcJが大きく低下している。なお、試料No.55は、Gaが0.20質量%以上0.40質量%未満の場合における本発明のGaの範囲(-(62.5w+v-81.625)/15+0.5≦x(Ga)≦-(62.5w+v-81.625)/15+0.8)から外れるため、高い磁気特性を得るために最低限必要なR-T-Ga相を生成させることができず、そのため、HcJが大きく低下していると考えられる。
 さらに、表2に示すように、本発明において領域の1(図1中の1の領域)よりも領域の2(図1中の2の領域)の方が更に高いB(原料合金にDy、Tbを含有しない場合B≧1.360T、Dy、Tbを含有する場合、B≧1.360T-0.024[Dy]-0.024[Tb])を得ることができる。なお、[Dy][Tb]は、それぞれDy、Tbの含有量(質量%)を示す。
<実施例2>
 Ndメタル、Prメタル、Dyメタル、Tbメタル、フェロボロン合金、電解Co、Alメタル、Cuメタル、Gaメタル、フェロニオブ合金、フェロジルコニウム合金および電解鉄を用いて(メタルはいずれも純度99%以上)、所定の組成となるように配合し、実施例1と同様の方法により粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粉砕時に窒素ガスに大気を混合することにより粉砕時の窒素ガス中の酸素濃度を調節した。大気を混合しない場合の粉砕時の窒素ガス中の酸素濃度は50ppm以下であり、大気を混合することで窒素ガス中の酸素濃度を最大1500ppmまで増加させ、様々な酸素量の微粉砕粉を作製した。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積基準メジアン径である。また、表3におけるO(酸素量)、N(窒素量)、C(炭素量)は実施例1と同様の方法で測定した。
 前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100質量%に対して0.05質量%添加、混合した後、実施例1と同様の方法で、成形体を作製し、さらに実施例1と同様の方法で焼結、熱処理を行った。熱処理後の焼結磁石に機械加工を施し、実施例1と同様の方法で各試料のB及びHcJを測定した。測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表4におけるuは、表2におけるNd、Pr、Dy、Tbの量(質量%)を合計した値であり、vは、表3における酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしたとき6α+10β+8γをuから差し引いた値である。wは、表3のB量をそのまま転記した。表4における領域は、vとwが図2中のどの位置にあるか示したものであり、図2中の3の領域にある場合は3と、図2中の4の領域にある場合は4と記載した。さらに、図2中の3、4の領域以外にある場合は×と記載した。
 表4に示す様に、原料合金にDy、Tbを含有していない場合、0.20≦x(Ga)<0.40のとき、vとwの関係が本発明の領域(図2中の3と4の領域)に位置し、かつ、-(62.5w+v-81.625)/15+0.5≦x≦-(62.5w+v-81.625)/15+0.8、0.07≦y(Cu)≦0.2、0.05≦z(Al)≦0.5、0≦q(Nbおよび/またはZr)≦0.1である実施例(試料No81以外の本発明)は、いずれもB≧1.377T、かつ、HcJ≧1403kA/mであり、実施例1の実施例試料(x(Ga)0.40質量%以上)よりも少ないGaの量に係らず、実施例1と比較して同等以上の高い磁気特性を有している。これに対し、Ga、Cu、Alの量が本発明の範囲内であっても、vとwが本発明の範囲外(図2中の3または4以外の領域)である比較例試料No.87、88および、vとwが本発明の範囲内(図2中の3または4の領域)であってもGaが本発明の範囲外である比較例試料No.89は、B≧1.377T、かつ、HcJ≧1403kA/mの高い磁気特性が得られていない。
 表4に示す様に、原料合金にDy、Tbを含有していない場合、0.20≦x(Ga)<0.40のとき、vとwの関係が本発明の領域(図2中の3と4の領域)に位置し、かつ、-(62.5w+v-81.625)/15+0.5≦x≦-(62.5w+v-81.625)/15+0.8、0.07≦y(Cu)≦0.2、0.05≦z(Al)≦0.5、0≦q(Nbおよび/またはZr)≦0.1である実施例試料(試料No81以外の実施例試料)は、いずれもB≧1.377T、かつ、HcJ≧1403kA/mであり、実施例1の実施例試料(x(Ga)0.40質量%以上)よりも少ないGaの量に係らず、実施例1と比較して同等以上の高い磁気特性を有している。これに対し、Ga、Cu、Alの量が本発明の範囲内であっても、vとwが本発明の範囲外(図2中の3または4以外の領域)である比較例試料No.87、88および、vとwが本発明の範囲内(図2中の3または4の領域)であってもGaが本発明の範囲外である比較例試料No.89は、B≧1.377T、かつ、HcJ≧1403kA/mの高い磁気特性が得られていない。
<実施例3>
 R-T-B系焼結磁石の組織観察を行った結果を示す。図5は、実施例1の試料No.34のR-T-B系焼結磁石に対し、機械加工により全面2mmずつ研磨を施した後、中央部から切断を行い、断面をFE-SEM(電界放射型電子顕微鏡)にて観察したBSE像を示す。図5(ハイコントラスト像)において、白色の領域が粒界相、淡灰色の領域が酸化物相、濃灰色の領域が主相に相当する。さらに、粒界相を詳細に区分するためにコントラストを調整した図が、図6(粒界相強調コントラスト像)である。図6においては主相と酸化物相は黒色で表され、R-T-Ga相は濃灰色で表され、R-Ga相は淡灰色で表され、Rリッチ相は白色で表される。なお、図6における各相に相当する箇所(R-Ga相:I、II、Rリッチ相:III、酸化物相:IV、R-T-Ga相:V、主相:VI)を切取り、TEM-EDX(エネルギー分散型X線分光法)にて分析し、上述の通りの相であることを確認した。分析結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示す様に、No.I、IIは、R:70質量%以上95質量%以下、Ga:5質量%以上30質量%以下、Fe:20質量%以下であるため、R-Ga相であることが分かる。さらに、No.Vは、R:15質量%以上65質量%以下、Fe:20質量%以上80質量%以下、Ga:2質量%以上20質量%以下であるため、R-T-Ga相であることが分かる。また、No.IIIは、R量が多く、No.IVは、酸素量(O)が多いため、それぞれ、Rリッチ相、酸化物相であることが分かる。
 画像解析ソフトを用いて、前記断面画像におけるR-T-Ga相の面積比率を求めた。まず図5(ハイコントラスト像)において酸化物相に相当する灰色領域の面積比A(全ピクセル数に対する灰色部分のピクセル数の割合)を算出した。その後に図6(粒界相強調コントラスト像)において主相+酸化物相に相当する黒色部分の面積比B、R-T-Ga相に相当する濃灰色部分の面積比C、R-Ga相に相当する淡灰色部分の面積比D、Rリッチ相に相当する白色部分の面積比Eを算出した。ここで、R-T-Ga相の面積比率=「100×C /(B+C+D+E-A)」と定義した。実施例1の試料No.15、42、実施例2の試料No.70、75においても同様の方法でR-T-Ga相の面積比率を求めた。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、実施例である試料No.70、75、34は、R-T-Ga相の面積比率が、1.5%~7.0%の範囲となっている。これに対し、比較例である試料No.15および試料No.42は、前記範囲外である。そのため、試料No.15は、R-T-Ga相が少なすぎるため、高いHcJが得られなかったと考えられ、逆に試料No.42は、R-T-Ga相が多すぎるため、主相の存在比率が低下して高いBが得られなかったと考えられる。
<実施例4>
 Ndメタル、Prメタル、Dyメタル、フェロボロン合金、電解Co、Alメタル、Cuメタル、Gaメタル、フェロニオブ合金、フェロジルコニウム合金および電解鉄を用いて(メタルはいずれも純度99%以上)、表7に示す組成となるように添加合金粉末および主合金粉末を配合し、それらの原料を溶解してストリップキャスト法により鋳造し、厚み0.2~0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金に水素加圧雰囲気で水素脆化させた後、550℃まで真空中で加熱、冷却する脱水素処理を施し、粗粉砕粉を得た。得られた添加合金の粗粉砕粉末と主合金の粗粉砕粉末を所定の混合量でV型混合機に投入して混合し、混合合金粉末を得た。得られた混合合金粉末に潤滑剤としてステアリン酸亜鉛を粗粉砕粉100質量%に対して0.04質量%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉となした混合合金粉末を得た。なお、粉砕時に窒素ガスに大気を混合することにより粉砕時の窒素ガス中の酸素濃度を調節した。大気を混合しない場合の粉砕時の窒素ガス中の酸素濃度は50ppm以下であり、大気を混合することで窒素ガス中の酸素濃度を最大1600ppmまで増加させ、様々な酸素量の微粉砕粉を作製した。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積基準メジアン径である。また、表8におけるO(酸素量)、N(窒素量)、C(炭素量)は実施例1と同様の方法で測定した。
 添加合金粉末と主合金粉末を混合して得られた微粉砕粉(混合合金粉末)に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100質量%に対して0.05質量%添加、混合した後、実施例1と同様の方法で、成形体を作製し、さらに実施例1と同様の方法で焼結、熱処理を行った。熱処理後の焼結磁石に機械加工を施し、実施例1と同様の方法で各試料のB及びHcJを測定した。測定結果を表9に示す。
 作製した本発明の製造方法に用いる添加合金粉末と主合金粉末の組成を表7に示す。さらに、表7の添加合金粉末と主合金粉末を混合して得られたR-T-B系焼結磁石の組成を表8に示す。表8における試料No.100は、表7のA合金粉末(添加合金粉末)とA-1合金粉末(主合金粉末)を混合した混合合金粉末を用いてR-T-B系焼結磁石を作製したものであり、混合合金粉末における添加合金粉末の混合量は、混合合金粉末100質量%のうち4質量%である。さらに試料No.101は、表7のA合金粉末(添加合金粉末)とA-2合金粉末(主合金粉末)を混合した混合合金粉末を用いてR-T-B系焼結磁石を作製したものであり、混合合金粉末における添加合金粉末の混合量は、混合合金粉末100質量%のうち4質量%である。試料No.102~140も同様に表8に示す混合合金粉末の組合せおよび添加合金粉末の混合量にて作製した。なお、表7に示す添加合金粉末および主合金粉末の組成、表8に示す添加合金粉末の混合量は、全て本発明の好ましい態様(態様3および態様4)の範囲内である。さらに、表8に示すR-T-B系焼結磁石の組成は、全て本発明のR-T-B系焼結磁石の組成範囲内である。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表9に示すように、添加合金粉末と主合金粉末を混合してR-T-B系焼結磁石を作製した試料No.100~140は、いずれもB≧1.343T、かつ、HcJ≧1458kA/mの高い磁気特性を有している。
<実施例5>
 Ndメタル、Prメタル、Dyメタル、フェロボロン合金、電解Co、Alメタル、Cuメタル、Gaメタル、および電解鉄を用いて(メタルはいずれも純度99%以上)、表10に示す組成となるように添加合金粉末および主合金粉末を配合し、それらの原料を溶解してストリップキャスト法により鋳造し、厚み0.2~0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金に水素加圧雰囲気で水素脆化させた後、550℃まで真空中で加熱、冷却する脱水素処理を施し、粗粉砕粉を得た。得られた添加合金の粗粉砕粉末と主合金の粗粉砕粉末を所定の混合量でV型混合機に投入して混合し、混合合金粉末を得た。得られた混合合金粉末に潤滑剤としてステアリン酸亜鉛を粗粉砕粉100質量%に対して0.04質量%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉となした混合合金粉末を得た。なお、粉砕時に窒素ガスに大気を混合することにより粉砕時の窒素ガス中の酸素濃度を調節した。大気を混合しない場合の粉砕時の窒素ガス中の酸素濃度は50ppm以下であり、大気を混合することで窒素ガス中の酸素濃度を最大1600ppmまで増加させ、様々な酸素量の微粉砕粉を作製した。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積基準メジアン径である。また、表11におけるO(酸素量)、N(窒素量)、C(炭素量)は実施例1と同様の方法で測定した。
 添加合金粉末と主合金粉末を混合して得られた微粉砕粉(混合合金粉末)に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100質量%に対して0.05質量%添加、混合した後、実施例1と同様の方法で、成形体を作製し、さらに実施例1と同様の方法で焼結、熱処理を行った。熱処理後の焼結磁石に機械加工を施し、実施例1と同様の方法で各試料のB及びHcJを測定した。測定結果を表12に示す。
 作製した本発明の製造方法に用いる添加合金粉末と主合金粉末の組成を表10に示す。さらに、表10の添加合金粉末と主合金粉末を混合して得られたR-T-B系焼結磁石の組成を表11に示す。表11における試料No.150は、表10のF合金粉末(添加合金粉末)とF-1合金粉末(主合金粉末)とF-2(主合金粉末)を混合した混合合金粉末を用いてR-T-B系焼結磁石を作製したものであり、混合合金粉末の混合量は、混合合金粉末100質量%のうち添加合金粉末(F):4%、主合金粉末(F-1)48%、主合金粉末(F-2)48%である。さらに試料No.151は、表10のF合金粉末(添加合金粉末)とF-3合金粉末(主合金粉末)とF-4合金粉末(主合金粉末)を混合した混合合金粉末を用いてR-T-B系焼結磁石を作製したものであり、混合合金粉末における添加合金粉末の混合量は、混合合金粉末100質量%のうち添加合金粉末(F):4%、主合金粉末(F-1)48%、主合金粉末(F-2)48%である。試料No.152~158も同様に表11に示す混合合金粉末の組合せおよび混合合金粉末の混合量にて作製した。すなわち、本実施例は、1種類の添加合金粉末と2種類の主合金粉末を混合した混合合金粉末を用いてR-T-B系焼結磁石を作製したものである。なお、表10に示す添加合金粉末および主合金粉末の組成、表11に示す添加合金粉末の混合量は、全て本発明の好ましい態様(態様3および態様4)の範囲内である。さらに、表11に示すR-T-B系焼結磁石の組成は、全て本発明のR-T-B系焼結磁石の組成範囲内である。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 表12に示すように、1種類の添加合金粉末と2種類の主合金粉末を混合してR-T-B系焼結磁石を作製した試料No.150~158は、いずれもB≧1.429T、かつ、HcJ≧1495kA/mの高い磁気特性を有している。
 本発明によるR-T-B系焼結磁石は、ハイブリッド自動車用や電気自動車用モータに好適に利用することができる。

Claims (6)

  1.  下記式(1)によって表わされ、
      uRwBxGayCuzAlqM(100-u-w-x-y-z-q)T (1)
      (Rは軽希土類元素RLと重希土類元素RHからなり、RLはNdおよび/またはPr、RHはDy、Tb、GdおよびHoのうち少なくとも一種であり、TはFeであり質量比でFeの10%以下をCoで置換でき、MはNbおよび/またはZrであり、u、w、x、y、z、q及び100-u-w-x-y-z-qは質量%を示す。)

     前記RHはR-T-B系焼結磁石の5質量%以下であり、下記式(2)~(5)を満足し、
      0.20≦x≦0.70 (2)
      0.07≦y≦0.2 (3)
      0.05≦z≦0.5 (4)
      0≦q≦0.1 (5)

     R-T-B系焼結磁石の酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしたとき、v=u-(6α+10β+8γ)であって、
     0.40≦x≦0.70のとき、v、wが、下記式(6)および(7)を満足し、
      50w-18.5≦v≦50w-14 (6)
      -12.5w+38.75≦v≦-62.5w+86.125 (7)

     0.20≦x<0.40のとき、v、wが、下記式(8)および(9)を満足し、xが、下記式(10)を満足することを特徴とするR-T-B系焼結磁石。
      50w-18.5≦v≦50w-15.5 (8)
      -12.5w+39.125≦v≦-62.5w+86.125 (9)
      -(62.5w+v-81.625)/15+0.5≦x≦-(62.5w+v-81.625)/15+0.8 (10)
  2.  0.40≦x≦0.70のとき、v、wが、下記式(11)および(7)を満足し、
      50w-18.5≦v≦50w-16.25 (11)
      -12.5w+38.75≦v≦-62.5w+86.125 (7)
           
     0.20≦x<0.40のとき、v、wが、下記式(12)および(9)を満足し、xが、下記式(10)を満足することを特徴とする請求項1に記載のR-T-B系焼結磁石。
      50w-18.5≦v≦50w-17.0 (12)
      -12.5w+39.125≦v≦-62.5w+86.125 (9)
      -(62.5w+v-81.625)/15+0.5≦x≦-(62.5w+v-81.625)/15+0.8 (10)
  3.  酸素量が0.15質量%以下であることを特徴とする請求項1または2に記載のR-T-B系焼結磁石。
  4.  下記式(1)によって表わされ、
      uRwBxGayCuzAlqM(100-u-w-x-y-z-q)T (1)
      (Rは軽希土類元素RLと重希土類元素RHからなり、RLはNdおよび/またはPr、RHはDy、Tb、GdおよびHoのうち少なくとも一種であり、TはFeでありFeの10%以下をCoで置換でき、MはNbおよび/またはZrであり、u、w、x、y、z、q及び100-u-w-x-y-z-qは質量%を示す。)

     前記RHはR-T-B系焼結磁石の5質量%以下であり、下記式(2)~(5)を満足し、
      0.20≦x≦0.70 (2)
      0.07≦y≦0.2 (3)
      0.05≦z≦0.5 (4)
      0≦q≦0.1 (5)

     R-T-B系焼結磁石の酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしたとき、v=u-(6α+10β+8γ)であって、
     0.40≦x≦0.70のとき、v、wが、下記式(6)および(7)を満足し、
      50w-18.5≦v≦50w-14 (6)
      -12.5w+38.75≦v≦-62.5w+86.125 (7)

     0.20≦x<0.40のとき、v、wが、下記式(8)および(9)を満足し、xが、下記式(10)を満足することを特徴とするR-T-B系焼結磁石の製造方法であって、
      50w-18.5≦v≦50w-15.5 (8)
      -12.5w+39.125≦v≦-62.5w+86.125 (9)
      -(62.5w+v-81.625)/15+0.5≦x≦-(62.5w+v-81.625)/15+0.8 (10)

     1種以上の添加合金粉末と1種以上の主合金粉末とを準備する工程と、
     1種以上の添加合金粉末を、混合後の混合合金粉末100質量%のうち0.5質量%以上40質量%以下で混合し、1種以上の添加合金粉末と1種以上の主合金粉末との混合合金粉末を得る工程と、
     前記混合合金粉末を成形し成形体を得る成形工程と、
     前記成形体を焼結し焼結体を得る焼結工程と、
     前記焼結体に熱処理を施す熱処理工程と、
    を含み、
     前記1種以上の添加合金粉末は、それぞれ、下記式(13)により表され、下記式(14)~(20)を満足する組成を有し、
      aRbBcGadCueAlfM(100-a-b-c-d-e-f)T (13)
      (Rは、軽希土類元素RLと重希土類元素RHからなり、RLはNdおよび/またはPr、RHはDy、Tb、GdおよびHoのうち少なくとも一種であり、残部であるTはFeであり質量比でFeの10%以下をCoで置換でき、Mは、Nbおよび/またはZrであり、a、b、c、d、e、f及び100-a-b-c-d-e-fは質量%を示す。)
      32%≦a≦66% (14)
      0.2%≦b (15)
      0.7%≦c≦12% (16)
      0%≦d≦4% (17)
      0%≦e≦10% (18)
      0%≦f≦2% (19)
      100-a-b-c-d-e-f≦72.4b (20)

     前記1種以上の主合金粉末は、Ga含有量が0.4質量%以下である、R-T-B系焼結磁石の製造方法。
  5.  0.40≦x≦0.70のとき、v、wが、下記式(11)および(7)を満足し、
      50w-18.5≦v≦50w-16.25 (11)
      -12.5w+38.75≦v≦-62.5w+86.125 (7)

     0.20≦x<0.40のとき、v、wが、下記式(12)および(9)を満足し、xが、下記式(10)を満足することを特徴とする請求項4に記載のR-T-B系焼結磁石の製造方法。
      50w-18.5≦v≦50w-17.0 (12)
      -12.5w+39.125≦v≦-62.5w+86.125 (9)
      -(62.5w+v-81.625)/15+0.5≦x≦-(62.5w+v-81.625)/15+0.8 (10)
  6.  R-T-B系焼結磁石の酸素量が0.15質量%以下である、請求項4または5に記載のR-T-B系焼結磁石の製造方法。
PCT/JP2014/071229 2013-08-12 2014-08-11 R-t-b系焼結磁石およびr-t-b系焼結磁石の製造方法 WO2015022946A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES14836886T ES2717445T3 (es) 2013-08-12 2014-08-11 Imán sinterizado R-T-B y método para producir un imán sinterizado R-T-B
JP2015531816A JP6406255B2 (ja) 2013-08-12 2014-08-11 R−t−b系焼結磁石およびr−t−b系焼結磁石の製造方法
EP14836886.3A EP3035346B1 (en) 2013-08-12 2014-08-11 R-t-b sintered magnet and method for producing r-t-b sintered magnet
CN201480043014.XA CN105453195B (zh) 2013-08-12 2014-08-11 R-t-b系烧结磁体及r-t-b系烧结磁体的制造方法
US14/911,517 US10388442B2 (en) 2013-08-12 2014-08-11 R-T-B based sintered magnet and method for producing R-T-B based sintered magnet

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-167333 2013-08-12
JP2013167333 2013-08-12
JP2013243497 2013-11-26
JP2013-243497 2013-11-26
JP2014037836 2014-02-28
JP2014-037836 2014-02-28

Publications (1)

Publication Number Publication Date
WO2015022946A1 true WO2015022946A1 (ja) 2015-02-19

Family

ID=52468332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071229 WO2015022946A1 (ja) 2013-08-12 2014-08-11 R-t-b系焼結磁石およびr-t-b系焼結磁石の製造方法

Country Status (6)

Country Link
US (1) US10388442B2 (ja)
EP (1) EP3035346B1 (ja)
JP (1) JP6406255B2 (ja)
CN (1) CN105453195B (ja)
ES (1) ES2717445T3 (ja)
WO (1) WO2015022946A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015103681A (ja) * 2013-11-26 2015-06-04 日立金属株式会社 R−t−b系焼結磁石
CN104966608A (zh) * 2015-07-22 2015-10-07 宁波永久磁业有限公司 一种提高烧结钕铁硼磁体方形度的制备方法及产品
WO2016133067A1 (ja) * 2015-02-17 2016-08-25 日立金属株式会社 R-t-b系焼結磁石の製造方法
JP2016169438A (ja) * 2015-03-13 2016-09-23 昭和電工株式会社 R−t−b系希土類焼結磁石及びr−t−b系希土類焼結磁石用合金
JP2016184720A (ja) * 2015-03-25 2016-10-20 昭和電工株式会社 R−t−b系希土類焼結磁石及びその製造方法
JPWO2015030231A1 (ja) * 2013-09-02 2017-03-02 日立金属株式会社 R−t−b系焼結磁石の製造方法
CN106710766A (zh) * 2015-11-18 2017-05-24 信越化学工业株式会社 R‑(Fe,Co)‑B烧结磁体及制造方法
CN107533893A (zh) * 2015-04-30 2018-01-02 株式会社Ihi 稀土类永久磁铁及稀土类永久磁铁的制造方法
CN107710351A (zh) * 2015-06-25 2018-02-16 日立金属株式会社 R‑t‑b系烧结磁体及其制造方法
JP2018082040A (ja) * 2015-11-18 2018-05-24 信越化学工業株式会社 R−(Fe,Co)−B系焼結磁石及びその製造方法
JP2018174323A (ja) * 2017-03-30 2018-11-08 Tdk株式会社 永久磁石及び回転機
US10428408B2 (en) 2015-03-13 2019-10-01 Tdk Corporation R-T-B-based rare earth sintered magnet and alloy for R-T-B-based rare earth sintered magnet
JP2022056372A (ja) * 2020-09-29 2022-04-08 煙台東星磁性材料株式有限公司 結晶粒界を調整可能なNd-Fe-B系磁性体の製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3038116B1 (en) * 2013-08-12 2019-11-27 Hitachi Metals, Ltd. R-t-b system sintered magnet
CN107507687B (zh) * 2016-06-14 2019-12-27 有研稀土新材料股份有限公司 高耐腐蚀性稀土永磁粉及其制备方法
JP6852351B2 (ja) * 2016-10-28 2021-03-31 株式会社Ihi 希土類永久磁石の製造方法
WO2018101402A1 (ja) * 2016-12-01 2018-06-07 日立金属株式会社 R-t-b系焼結磁石およびその製造方法
CN110431646B (zh) * 2017-03-29 2021-09-14 日立金属株式会社 R-t-b系烧结磁体的制造方法
CN107369512A (zh) * 2017-08-10 2017-11-21 烟台首钢磁性材料股份有限公司 一种r‑t‑b类烧结永磁体
CN110619984B (zh) 2018-06-19 2021-12-07 厦门钨业股份有限公司 一种低B含量的R-Fe-B系烧结磁铁及其制备方法
JP7059995B2 (ja) * 2019-03-25 2022-04-26 日立金属株式会社 R-t-b系焼結磁石
CN111048273B (zh) * 2019-12-31 2021-06-04 厦门钨业股份有限公司 一种r-t-b系永磁材料、原料组合物、制备方法、应用
CN111243809B (zh) * 2020-02-29 2021-07-30 厦门钨业股份有限公司 一种钕铁硼材料及其制备方法和应用
CN111524672B (zh) * 2020-04-30 2021-11-26 福建省长汀金龙稀土有限公司 钕铁硼磁体材料、原料组合物、制备方法、应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10289813A (ja) * 1997-04-16 1998-10-27 Hitachi Metals Ltd 希土類磁石
WO2009004994A1 (ja) * 2007-06-29 2009-01-08 Tdk Corporation 希土類磁石
JP2009260338A (ja) * 2008-03-28 2009-11-05 Tdk Corp 希土類磁石
WO2013008756A1 (ja) 2011-07-08 2013-01-17 昭和電工株式会社 R-t-b系希土類焼結磁石用合金、r-t-b系希土類焼結磁石用合金の製造方法、r-t-b系希土類焼結磁石用合金材料、r-t-b系希土類焼結磁石、r-t-b系希土類焼結磁石の製造方法およびモーター
WO2013054845A1 (ja) * 2011-10-13 2013-04-18 Tdk株式会社 R-t-b系合金薄片、並びにr-t-b系焼結磁石及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2302646B1 (en) * 2008-06-13 2018-10-31 Hitachi Metals, Ltd. R-t-cu-mn-b type sintered magnet
WO2010082492A1 (ja) * 2009-01-16 2010-07-22 日立金属株式会社 R-t-b系焼結磁石の製造方法
JP2011211056A (ja) * 2010-03-30 2011-10-20 Tdk Corp 希土類焼結磁石、モーター及び自動車
WO2013122255A1 (ja) * 2012-02-13 2013-08-22 Tdk株式会社 R-t-b系焼結磁石
DE112013000958T5 (de) * 2012-02-13 2014-10-30 Tdk Corporation Gesinterter Magnet auf R-T-B-Basis
EP2985768B8 (en) 2013-03-29 2019-11-06 Hitachi Metals, Ltd. R-t-b-based sintered magnet
WO2014157448A1 (ja) 2013-03-29 2014-10-02 日立金属株式会社 R-t-b系焼結磁石

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10289813A (ja) * 1997-04-16 1998-10-27 Hitachi Metals Ltd 希土類磁石
WO2009004994A1 (ja) * 2007-06-29 2009-01-08 Tdk Corporation 希土類磁石
JP2009260338A (ja) * 2008-03-28 2009-11-05 Tdk Corp 希土類磁石
WO2013008756A1 (ja) 2011-07-08 2013-01-17 昭和電工株式会社 R-t-b系希土類焼結磁石用合金、r-t-b系希土類焼結磁石用合金の製造方法、r-t-b系希土類焼結磁石用合金材料、r-t-b系希土類焼結磁石、r-t-b系希土類焼結磁石の製造方法およびモーター
WO2013054845A1 (ja) * 2011-10-13 2013-04-18 Tdk株式会社 R-t-b系合金薄片、並びにr-t-b系焼結磁石及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3035346A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015030231A1 (ja) * 2013-09-02 2017-03-02 日立金属株式会社 R−t−b系焼結磁石の製造方法
JP2015103681A (ja) * 2013-11-26 2015-06-04 日立金属株式会社 R−t−b系焼結磁石
JPWO2016133067A1 (ja) * 2015-02-17 2017-11-30 日立金属株式会社 R−t−b系焼結磁石の製造方法
WO2016133067A1 (ja) * 2015-02-17 2016-08-25 日立金属株式会社 R-t-b系焼結磁石の製造方法
US10428408B2 (en) 2015-03-13 2019-10-01 Tdk Corporation R-T-B-based rare earth sintered magnet and alloy for R-T-B-based rare earth sintered magnet
JP2016169438A (ja) * 2015-03-13 2016-09-23 昭和電工株式会社 R−t−b系希土類焼結磁石及びr−t−b系希土類焼結磁石用合金
JP2016184720A (ja) * 2015-03-25 2016-10-20 昭和電工株式会社 R−t−b系希土類焼結磁石及びその製造方法
CN107533893A (zh) * 2015-04-30 2018-01-02 株式会社Ihi 稀土类永久磁铁及稀土类永久磁铁的制造方法
EP3291251A4 (en) * 2015-04-30 2018-12-12 IHI Corporation Rare earth permanent magnet and method for producing rare earth permanent magnet
CN107710351A (zh) * 2015-06-25 2018-02-16 日立金属株式会社 R‑t‑b系烧结磁体及其制造方法
CN107710351B (zh) * 2015-06-25 2019-10-25 日立金属株式会社 R-t-b系烧结磁体及其制造方法
CN104966608A (zh) * 2015-07-22 2015-10-07 宁波永久磁业有限公司 一种提高烧结钕铁硼磁体方形度的制备方法及产品
CN106710766A (zh) * 2015-11-18 2017-05-24 信越化学工业株式会社 R‑(Fe,Co)‑B烧结磁体及制造方法
JP2018082040A (ja) * 2015-11-18 2018-05-24 信越化学工業株式会社 R−(Fe,Co)−B系焼結磁石及びその製造方法
JP2018174323A (ja) * 2017-03-30 2018-11-08 Tdk株式会社 永久磁石及び回転機
JP7180096B2 (ja) 2017-03-30 2022-11-30 Tdk株式会社 永久磁石及び回転機
JP2022056372A (ja) * 2020-09-29 2022-04-08 煙台東星磁性材料株式有限公司 結晶粒界を調整可能なNd-Fe-B系磁性体の製造方法
JP7250410B2 (ja) 2020-09-29 2023-04-03 煙台東星磁性材料株式有限公司 結晶粒界を調整可能なNd-Fe-B系磁性体の製造方法
JP7409754B2 (ja) 2020-09-29 2024-01-09 煙台東星磁性材料株式有限公司 結晶粒界を調整可能なNd-Fe-B系磁性体の製造方法

Also Published As

Publication number Publication date
EP3035346B1 (en) 2019-03-13
EP3035346A4 (en) 2017-04-26
EP3035346A1 (en) 2016-06-22
US10388442B2 (en) 2019-08-20
JPWO2015022946A1 (ja) 2017-03-02
CN105453195A (zh) 2016-03-30
CN105453195B (zh) 2018-11-16
US20160189837A1 (en) 2016-06-30
ES2717445T3 (es) 2019-06-21
JP6406255B2 (ja) 2018-10-17

Similar Documents

Publication Publication Date Title
JP6406255B2 (ja) R−t−b系焼結磁石およびr−t−b系焼結磁石の製造方法
CN109478452B (zh) R-t-b系烧结磁体
JP6288076B2 (ja) R−t−b系焼結磁石
JP6090550B1 (ja) R−t−b系焼結磁石およびその製造方法
US10410775B2 (en) R—Fe—B sintered magnet and making method
JP6288095B2 (ja) R−t−b系焼結磁石の製造方法
WO2014157448A1 (ja) R-t-b系焼結磁石
JP6489201B2 (ja) R−t−b系焼結磁石の製造方法
WO2016133067A1 (ja) R-t-b系焼結磁石の製造方法
JP6443757B2 (ja) R−t−b系焼結磁石の製造方法
JP6541038B2 (ja) R−t−b系焼結磁石
JP6432718B1 (ja) R−t−b系焼結磁石の製造方法
JP2018028123A (ja) R−t−b系焼結磁石の製造方法
JP6474043B2 (ja) R−t−b系焼結磁石
JP2018029108A (ja) R−t−b系焼結磁石の製造方法
JP6229938B2 (ja) R−t−b系焼結磁石
JP6623998B2 (ja) R−t−b系焼結磁石の製造方法
WO2019065481A1 (ja) R-t-b系焼結磁石の製造方法
JP2018060997A (ja) R−t−b系焼結磁石の製造方法
JP2018125445A (ja) R−t−b系焼結磁石
JP6610957B2 (ja) R−t−b系焼結磁石の製造方法
JP2020155657A (ja) R−t−b系焼結磁石の製造方法
JP2019169560A (ja) R−t−b系焼結磁石の製造方法
JP2024072521A (ja) R-t-b系焼結磁石
JP2021155783A (ja) R−t−b系焼結磁石の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480043014.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836886

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015531816

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14911517

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014836886

Country of ref document: EP