JP2018152526A - RFeB系焼結磁石の製造方法 - Google Patents

RFeB系焼結磁石の製造方法 Download PDF

Info

Publication number
JP2018152526A
JP2018152526A JP2017049451A JP2017049451A JP2018152526A JP 2018152526 A JP2018152526 A JP 2018152526A JP 2017049451 A JP2017049451 A JP 2017049451A JP 2017049451 A JP2017049451 A JP 2017049451A JP 2018152526 A JP2018152526 A JP 2018152526A
Authority
JP
Japan
Prior art keywords
raw material
material powder
sintered magnet
rfeb
based sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017049451A
Other languages
English (en)
Other versions
JP7052201B2 (ja
Inventor
康裕 宇根
Yasuhiro Une
康裕 宇根
博一 久保
Hiroichi Kubo
博一 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intermetallics Co Ltd
Original Assignee
Intermetallics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intermetallics Co Ltd filed Critical Intermetallics Co Ltd
Priority to JP2017049451A priority Critical patent/JP7052201B2/ja
Publication of JP2018152526A publication Critical patent/JP2018152526A/ja
Application granted granted Critical
Publication of JP7052201B2 publication Critical patent/JP7052201B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

【課題】R6Fe13Gaを含有する粒界層が形成されたRFeB系焼結磁石において、従来よりも保磁力を高くすることができるRFeB系焼結磁石を製造する方法を提供する。【解決手段】本発明に係るRFeB系焼結磁石製造方法は、Gaを含有する金属から成る第1原料粉末111と、希土類元素R、Fe及びBを含有する合金から成る粉末である第2原料粉末112を、Rの含有率が30.0〜33.0質量%、Feの含有率が65.0〜68.0質量%、Bの含有率が0.8〜0.9質量%、Gaの含有率が0.2〜0.6質量%となるように混合した混合原料粉末11を作製する混合原料粉末作製工程と、混合原料粉末11を磁界中で配向する配向工程と、前記配向工程を行った混合原料粉末11を焼結する焼結工程とを有する。【選択図】図1

Description

本発明は、R(希土類元素)、Fe(鉄)及びB(硼素)を含有するRFeB系焼結磁石の製造方法に関し、特に、保磁力を高くするためにGa(ガリウム)が添加されたRFeB系焼結磁石の製造方法に関する。
RFeB系焼結磁石は、1982年に佐川眞人らによって見出されたものであり、残留磁束密度等の多くの磁気特性がそれまでの永久磁石よりもはるかに高いという特長を有する。そのため、RFeB系焼結磁石はハイブリッド自動車や電気自動車の駆動用モータ、電動補助型自転車用モータ、産業用モータ、ハードディスク等のボイスコイルモータ、スピーカー、ヘッドホン、永久磁石式磁気共鳴診断装置等、様々な製品に使用されている。
初期のRFeB系焼結磁石は種々の磁気特性のうち保磁力が比較的低いという欠点を有していた。保磁力は磁化の向きとは逆向きの磁界が磁石に印加されたときに磁化が反転することに耐える力を表しており、保磁力が高い方がモータ等の用途に適した磁石であるといえる。そのため、従来より、RFeB系焼結磁石の保磁力を高くするための様々な手法が提案されてきた。
その手法の1つとして、特許文献1には、Gaが添加されたRFeB系焼結磁石が記載されている。Gaが添加されたRFeB系焼結磁石では、組成式がR2Fe14Bで表され、強磁性を有する結晶粒同士の間に、La6Co11Ga3型結晶構造を有し組成式がR6Fe13Gaで表され、強磁性とは異なる磁性を有する物質を含有する層(以下、これを「粒界層」と呼ぶ。)が形成される。これにより、隣接する結晶粒同士の磁気的相互作用が粒界層で分断され、1つの結晶粒内で磁化の反転が生じても、その影響によって当該結晶粒に隣接する結晶粒で磁化の反転が生じ難くなる。そのため、Gaが添加されたRFeB系焼結磁石は、Gaが添加されていない場合よりも保磁力が高くなる。
特開2014-209546号公報 特開2006-019521号公報
特許文献1では、最終製品と同じ組成を有する原料合金板をストリップキャスト法により作製し、原料合金板を粉砕することにより原料合金粉末を作製している。しかし、この方法により作製された原料合金粉末を用いて製造されたRFeB系焼結磁石では、粒界層の厚みが小さい箇所も多く存在する。粒界層の厚みが小さい箇所では、たとえ粒界層が強磁性とは異なる磁性を有するR6Fe13Gaを含有していても、隣接する結晶粒同士の磁気的相互作用を十分に分断することができない。そのため、この方法で製造されたRFeB系焼結磁石は保磁力を十分に高くすることができない。
本発明が解決しようとする課題は、R6Fe13Gaを含有する粒界層が形成されたRFeB系焼結磁石において、従来よりも保磁力を高くすることができるRFeB系焼結磁石を製造する方法を提供することである。
上記課題を解決するために成された本発明に係るRFeB系焼結磁石の製造方法は、
Gaを含有する金属から成る第1原料粉末と、希土類元素R、Fe及びBを含有する合金から成る粉末である第2原料粉末を、Rの含有率が30.0〜33.0質量%、Feの含有率が65.0〜68.0質量%、Bの含有率が0.8〜0.9質量%、Gaの含有率が0.2〜0.6質量%となるように混合した混合原料粉末を作製する混合原料粉末作製工程と、
前記混合原料粉末を磁界中で配向する配向工程と、
前記配向工程を行った混合原料粉末を焼結する焼結工程と
を有することを特徴とする。
なお、前記混合原料粉末は、上記R、Fe、B及びGa以外の元素を含有していてもよい。そのため、これらR、Fe、B及びGaの含有率の合計は100質量%を下回ってもよい。
本発明に係るRFeB系焼結磁石の製造方法によれば、Gaを含有する金属から成る第1原料粉末と、R、Fe及びBを含有する合金から成る第2原料粉末を混合した混合原料粉末を用いた、いわゆる二合金法によりRFeB系焼結磁石を製造することにより、R、Fe、B及びGaの比が同じであって単一の合金から作製した原料粉末を用いて製造した(一合金法)RFeB系焼結磁石よりも保磁力が高くなる。その理由は明らかではないものの、一合金法よりも二合金法で製造した方が、Gaが結晶粒内に取り込まれることなくR6Fe13Gaとなって、3個の結晶粒で囲まれた粒界である粒界三重点に存在しやすくなり、それにより、R2Fe14BよりもRの含有率が高いRリッチ層である二粒子粒界の厚みがRFeB系焼結磁石の全体に亘って、磁気的相互作用を十分に分断できる程度に大きくなることによると推測される。
本発明では、RFeB系焼結磁石の保磁力を高める効果を奏するために、混合原料粉末中のGaの含有率は0.2質量%以上とする。一方、混合原料粉末中のGaの含有率が0.6質量%を超えると、0.6質量%以下の場合よりも保磁力が向上しないうえに他の磁気特性が低下する。そのため、混合原料粉末中のGaの含有率は0.2〜0.6質量%とする。また、Gaを含有しないR2Fe14BにおけるBの含有率は約1.0質量%であるが、本発明ではR及びFeを含有しBを含有しないR6Fe13Gaが粒界に形成されることから、本発明における混合原料粉末中のBの含有率はR2Fe14Bにおける値よりも低い0.8〜0.9質量%とする。
なお、上記のB及びGaの含有率はいずれも有効数字を1桁として規定しており、含有率を2桁目で四捨五入することで上記の範囲内となれば、本発明に含まれる。例えば、Gaの含有率は、有効数字が2桁の場合には、0.15〜0.64質量%の範囲内であれば、2桁目で四捨五入すると0.2〜0.6質量%の範囲内となるため、本発明に含まれる。R及びFeの含有率はいずれも有効数字を3桁として規定しており、含有率を4桁目で四捨五入することで上記の範囲内となれば、本発明に含まれる。
混合原料粉末中の各元素の含有率は、第1原料粉末及び第2原料粉末における各元素の含有率、並びに第1原料粉末と第2原料粉末の混合比により調整することができる。
本発明において、第1原料粉末と第2原料粉末を混合した混合原料粉末は、Gaを含有する金属とR、Fe及びBを含有する合金を別々に粉砕することにより第1原料粉末と第2原料粉末を別々に作製した後に、第1原料粉末と第2原料粉末を混合することにより作製してもよいし、Gaを含有する金属とR、Fe及びBを含有する合金を一緒に粉砕することにより作製してもよい。
第1原料粉末はGa以外の元素を含有していてもよいし、第2原料粉末はR、Fe及びB以外の元素を含有していてもよい。例えば、第1原料粉末は、Gaの他に、RFeB系焼結磁石の主な構成元素であるR、Fe及び/又はBを含有していてもよい。
前記混合原料粉末は、Cuを0.05〜0.3質量%、及び/又はAlを0.1〜0.4質量%含有していることが望ましい。これらCuやAlを含有させることにより、RFeB系焼結磁石の保磁力をより高くすることができる。Cu及び/又はAlは、第1原料粉末及び第2原料粉末のいずれに含有させてもよいし、これら第1原料粉末及び第2原料粉末の双方に含有させてもよい。あるいは、第1原料粉末及び第2原料粉末とは異なる、Cu及び/又はAlを含有する粉末を用意し、該粉末と第1原料粉末及び第2原料粉末を混合することにより混合原料粉末を作製してもよい。なお、これらB及びGaの含有率はいずれも有効数字を1桁として規定しており、含有率を2桁目で四捨五入することで上記の範囲内となれば上記要件を満たす。
本発明において混合原料粉末を磁界中で配向する際の磁界の強度や、混合原料粉末を焼結する際の温度は、従来のRFeB焼結磁石を製造する場合と同様でよい。例えば磁界の強度は2〜5Tとすればよく、焼結時の温度は800〜1100℃とすればよい。
本発明において、配向工程の際に混合原料粉末に圧力を印加することで圧縮成形を行ってもよい(プレス法)が、混合原料粉末に圧力を印加することなく配向工程及びその後の焼結工程を行うこと(press-less process:PLP法)が望ましい。これにより、保磁力をより一層高くすることができる(特許文献2参照)。
本発明に係るRFeB系焼結磁石方法により、R6Fe13Gaを含有する粒界層が形成されたRFeB系焼結磁石において、従来よりも保磁力を高くすることができる。
本発明に係るRFeB系焼結磁石の製造方法の一実施形態の工程を示す概略図。 本実施形態のRFeB系焼結磁石の製造方法の変形例につき、工程の一部を示す概略図。 本実施形態の方法により得られたRFeB系焼結磁石と、比較例により得られたRFeB系焼結磁石の、温度180℃における磁化曲線を示すグラフ。
図1〜図3を用いて、本発明に係るRFeB系焼結磁石の製造方法の実施形態を説明する。
図1に、本実施形態のRFeB系焼結磁石の工程の概略を示す。まず、以下のように、第1原料粉末111及び第2原料粉末112を作製する(a)。
第1原料粉末111は、Gaを含有する金属を粉砕することにより作製する。Gaを含有する金属には、単体のGa、Cu及び/又はAlとGaの合金、R, Fe及び/又はBとGaの合金、GaとCu及び/又はAlとR, Fe及び/又はBとGaの合金等を用いることができる。これらの金属はストリップキャスト法により好適に作製することができる。Gaを含有する金属を粉砕する際には、まず、金属に水素を吸蔵させることで該金属を脆化したうえで粗粉砕し、その後、ジェットミルを用いて微粉砕することにより、好適に作製することができる。第1原料粉末111の平均粒径は、レーザ法により測定した値で0.5〜5.0μmとすることが望ましい。
第2原料粉末112は、R, Fe及びBを含有しGaを含有しない合金を粉砕することにより作製する。この合金には、R, Fe及びBのみを含有するものや、これら3種の元素の他にCu及び/又はAlを含有するもの等を用いることができる。これらの金属も第1原料粉末111の場合と同様にストリップキャスト法により好適に作製することができる。また、合金の粉砕にも第1原料粉末111の場合と同様の方法を用いることができる。第2原料粉末112の平均粒径は、レーザ法により測定した値で0.5〜5.0μmとすることが望ましい。
次に、第1原料粉末111と第2原料粉末112を混合することにより、混合原料粉末11を作製する(b)。その際、第1原料粉末111及び第2原料粉末112の元素の含有率に応じて、混合後のRの含有率が30.0〜33.0質量%、Feの含有率が65.0〜68.0質量%、Bの含有率が0.8〜0.9質量%、Gaの含有率が0.2〜0.6質量%となるように、第1原料粉末111と第2原料粉末112の混合比を調整する。
なお、ここまでは、第1原料粉末111と第2原料粉末112を別々に作製した後に混合する場合について説明したが、図2に示すように、第1原料粉末111の原料であるGaを含有するGa含有金属101と、第2原料粉末112の原料であるR, Fe及びBを含有しGaを含有しないRFeB含有合金102を一緒に粉砕することにより、混合原料粉末11を作製してもよい。このような方法で作製した混合原料粉末11も、第1原料粉末111と第2原料粉末112が混合した状態となるため、本発明における混合原料粉末の要件を満たす。
次に、得られた混合原料粉末11を容器12のキャビティ121に充填する(c)。容器12のキャビティ121は、作製しようとするRFeB系焼結磁石の形状に対応した形状を有している。容器12は、後述の焼結温度(1100℃)での耐熱性を有する材料から成る。この材料には、例えば黒鉛等の炭素材料を好適に用いることができる。本実施例では、キャビティ121に充填する際の混合原料粉末11の充填密度は、自然充填した際の密度かそれよりもやや高くするが、混合原料粉末11の圧縮成形は行わない。キャビティ121に混合原料粉末11を充填した後、キャビティ121の開口を蓋122で覆う。
次に、容器12のキャビティ121に充填された混合原料粉末11に2〜5Tの磁界を印加することにより、混合原料粉末11中の強磁性を有する粒子であるNd2Fe14Bの粒子を配向させる(d)。その際、混合原料粉末11には機械的な圧力を印加しない。
その後、混合原料粉末11を容器12のキャビティ121に充填したままの状態で800〜1100℃に加熱することにより、混合原料粉末11を焼結する(e)。その際にも、混合原料粉末11には機械的な圧力を印加しない。ここまでの操作により、RFeB系焼結磁石Mが得られる(f)。
なお、ここまでは各工程において混合原料粉末11を圧縮成形しないPLP法の場合について説明したが、本発明では、プレス法を用いてもよい。
[実施例]
次に、本実施形態の方法(PLP法)によりRFeB系焼結磁石を作製した実施例を説明する。この実施例では、表1に示す組成を有しストリップキャストで作製した合金1(図2のGa含有金属101)と、同表に示す組成を有しストリップキャストで作製した合金2(同・RFeB含有合金102)を一緒に粉砕することで作製した混合原料粉末11を用いた。混合原料粉末11の平均粒径は1.34μm(レーザ法で測定)とした。合金1と合金2の混合比は、重量比で1:1とした。配向時の磁界の強度は4T、焼結時の加熱温度は880℃とした。比較例として、表1に示す組成を有しストリップキャストで作製した合金3を粉砕することで作製した平均粒径1.29μm(レーザ法で測定)の原料粉末のみを用いた一合金法により、RFeB系焼結磁石を作製した。比較例における配向時の磁界の強度及び焼結時の加熱温度は、実施例の場合と同じとした。上記のように合金1と合金2を重量比1:1で混合することにより、実施例の混合原料粉末11の組成は、比較例の原料粉末の組成とほぼ同じになる。
Figure 2018152526
作製した実施例及び比較例のRFeB系焼結磁石につき、残留磁束密度及び保磁力を測定した。測定は、室温と、自動車の駆動用モータで要求される耐熱温度である180℃でそれぞれ行った。測定結果を表2に示す。併せて、180℃における磁化曲線を図3に示す。
Figure 2018152526
これらの測定結果から、原料粉末の組成はほぼ同じであるにも関わらず、比較例よりも実施例の方が、室温及び180℃のいずれにおいても保磁力が高いことがわかる。残留磁束密度は、比較例よりも実施例の方がやや値が小さいが、実用上差し支えはない。
上記実施例において、合金1と合金2の混合率を1:1(50:50)とする代わりに45:55とすることにより、Ga及びCuの含有率を比較例の原料粉末よりも少なくした混合原料粉末11を作製し、この混合原料粉末11を用いて上記と同様の方法によりRFeB系焼結磁石を作製した。得られたRFeB系焼結磁石の残留磁束密度は、室温において13.8kG、180℃において10.8kGであった。また、このRFeB系焼結磁石の保磁力は、室温において21.4kOe、180℃において5.5kOeであった。このように、このRFeB系焼結磁石は、Ga及びCuの含有率が比較例の場合よりも少ないにも関わらず、180℃における保磁力が比較例よりも高いことから、本実施形態の方法がGaを用いた保磁力の向上に効果的であることがわかる。
ここまでで述べた実施形態は本発明の例であって、種々の変更が可能であることは言うまでもない。
11…混合原料粉末
111…第1原料粉末
112…第2原料粉末
12…容器
121…キャビティ
122…蓋
M…RFeB系焼結磁石

Claims (4)

  1. Gaを含有する金属から成る第1原料粉末と、希土類元素R、Fe及びBを含有する合金から成る粉末である第2原料粉末を、Rの含有率が30.0〜33.0質量%、Feの含有率が65.0〜68.0質量%、Bの含有率が0.8〜0.9質量%、Gaの含有率が0.2〜0.6質量%となるように混合した混合原料粉末を作製する混合原料粉末作製工程と、
    前記混合原料粉末を磁界中で配向する配向工程と、
    前記配向工程を行った混合原料粉末を焼結する焼結工程と
    を有することを特徴とするRFeB系焼結磁石の製造方法。
  2. 前記混合原料粉末がCuを0.05〜0.3質量%含有することを特徴とする請求項1に記載のRFeB系焼結磁石の製造方法。
  3. 前記混合原料粉末がAlを0.1〜0.4質量%含有することを特徴とする請求項1又は2に記載のRFeB系焼結磁石の製造方法。
  4. 前記混合原料粉末に圧力を印加することなく前記配向工程及び前記焼結工程を行うことを特徴とする請求項1〜3のいずれかに記載のRFeB系焼結磁石の製造方法。
JP2017049451A 2017-03-15 2017-03-15 RFeB系焼結磁石の製造方法 Active JP7052201B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017049451A JP7052201B2 (ja) 2017-03-15 2017-03-15 RFeB系焼結磁石の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017049451A JP7052201B2 (ja) 2017-03-15 2017-03-15 RFeB系焼結磁石の製造方法

Publications (2)

Publication Number Publication Date
JP2018152526A true JP2018152526A (ja) 2018-09-27
JP7052201B2 JP7052201B2 (ja) 2022-04-12

Family

ID=63681806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017049451A Active JP7052201B2 (ja) 2017-03-15 2017-03-15 RFeB系焼結磁石の製造方法

Country Status (1)

Country Link
JP (1) JP7052201B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114242438A (zh) * 2021-11-15 2022-03-25 天津三环乐喜新材料有限公司 一种高性能低B高Ga烧结Re-Fe-B的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08288112A (ja) * 1995-04-19 1996-11-01 Hitachi Metals Ltd 希土類永久磁石及びその製造方法
WO2013008756A1 (ja) * 2011-07-08 2013-01-17 昭和電工株式会社 R-t-b系希土類焼結磁石用合金、r-t-b系希土類焼結磁石用合金の製造方法、r-t-b系希土類焼結磁石用合金材料、r-t-b系希土類焼結磁石、r-t-b系希土類焼結磁石の製造方法およびモーター
WO2014157451A1 (ja) * 2013-03-29 2014-10-02 日立金属株式会社 R-t-b系焼結磁石
WO2015020180A1 (ja) * 2013-08-09 2015-02-12 Tdk株式会社 R-t-b系焼結磁石、および回転機
WO2015022945A1 (ja) * 2013-08-12 2015-02-19 日立金属株式会社 R-t-b系焼結磁石
JP2016086078A (ja) * 2014-10-27 2016-05-19 日立金属株式会社 R−t−b系焼結磁石の製造方法
WO2016111346A1 (ja) * 2015-01-09 2016-07-14 インターメタリックス株式会社 RFeB系焼結磁石の製造方法
JP2016184720A (ja) * 2015-03-25 2016-10-20 昭和電工株式会社 R−t−b系希土類焼結磁石及びその製造方法
JP2017017121A (ja) * 2015-06-30 2017-01-19 日立金属株式会社 R−t−b系焼結磁石の製造方法およびr−t−b系焼結磁石

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08288112A (ja) * 1995-04-19 1996-11-01 Hitachi Metals Ltd 希土類永久磁石及びその製造方法
WO2013008756A1 (ja) * 2011-07-08 2013-01-17 昭和電工株式会社 R-t-b系希土類焼結磁石用合金、r-t-b系希土類焼結磁石用合金の製造方法、r-t-b系希土類焼結磁石用合金材料、r-t-b系希土類焼結磁石、r-t-b系希土類焼結磁石の製造方法およびモーター
WO2014157451A1 (ja) * 2013-03-29 2014-10-02 日立金属株式会社 R-t-b系焼結磁石
WO2015020180A1 (ja) * 2013-08-09 2015-02-12 Tdk株式会社 R-t-b系焼結磁石、および回転機
WO2015022945A1 (ja) * 2013-08-12 2015-02-19 日立金属株式会社 R-t-b系焼結磁石
JP2016086078A (ja) * 2014-10-27 2016-05-19 日立金属株式会社 R−t−b系焼結磁石の製造方法
WO2016111346A1 (ja) * 2015-01-09 2016-07-14 インターメタリックス株式会社 RFeB系焼結磁石の製造方法
JP2016184720A (ja) * 2015-03-25 2016-10-20 昭和電工株式会社 R−t−b系希土類焼結磁石及びその製造方法
JP2017017121A (ja) * 2015-06-30 2017-01-19 日立金属株式会社 R−t−b系焼結磁石の製造方法およびr−t−b系焼結磁石

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114242438A (zh) * 2021-11-15 2022-03-25 天津三环乐喜新材料有限公司 一种高性能低B高Ga烧结Re-Fe-B的制备方法
CN114242438B (zh) * 2021-11-15 2022-05-13 天津三环乐喜新材料有限公司 一种高性能低B高Ga烧结Re-Fe-B的制备方法

Also Published As

Publication number Publication date
JP7052201B2 (ja) 2022-04-12

Similar Documents

Publication Publication Date Title
Sugimoto Current status and recent topics of rare-earth permanent magnets
JP5754232B2 (ja) 高保磁力NdFeB磁石の製法
CN101847487B (zh) 梯度矫顽力钕铁硼磁体及其生产方法
JP6037128B2 (ja) R−t−b系希土類磁石粉末、r−t−b系希土類磁石粉末の製造方法、及びボンド磁石
JP5120710B2 (ja) RL−RH−T−Mn−B系焼結磁石
WO2012161189A1 (ja) 希土類-鉄-窒素系合金材、希土類-鉄-窒素系合金材の製造方法、希土類-鉄系合金材、及び希土類-鉄系合金材の製造方法
JPWO2015020182A1 (ja) R−t−b系焼結磁石、および、モータ
CN107424695B (zh) 一种双合金纳米晶稀土永磁体及其制备方法
JP2016152246A (ja) 希土類系永久磁石
EP2481502A1 (en) Powder for magnet
JP2023509225A (ja) 重希土類合金、ネオジム鉄ホウ素永久磁石材料、原料及び製造方法
JP2013149862A (ja) 希土類磁石の製造方法
JP2014130888A (ja) R−t−b系焼結磁石およびその製造方法
JP6613730B2 (ja) 希土類磁石の製造方法
JP6484994B2 (ja) Sm−Fe−N系磁石成形体およびその製造方法
CN110942879B (zh) 磁性粒子和磁性粒子成型体及其制造方法
US11915861B2 (en) Method for manufacturing rare earth permanent magnet
JP2020155634A (ja) R−t−b系永久磁石
JP2013115156A (ja) R−t−b系永久磁石の製造方法
JP5743458B2 (ja) R−t−b系希土類永久磁石用合金材料、r−t−b系希土類永久磁石の製造方法およびモーター
JP7052201B2 (ja) RFeB系焼結磁石の製造方法
JP6623998B2 (ja) R−t−b系焼結磁石の製造方法
JP2014192460A (ja) R−t−x系圧粉磁石の製造方法、及びr−t−x系圧粉磁石
JP2015026795A (ja) 磁石用粉末、希土類磁石、磁石用粉末の製造方法及び希土類磁石の製造方法
JPH07176418A (ja) 高性能のホットプレス済み磁石

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200303

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220314

R150 Certificate of patent or registration of utility model

Ref document number: 7052201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150