WO2015022945A1 - R-t-b系焼結磁石 - Google Patents

R-t-b系焼結磁石 Download PDF

Info

Publication number
WO2015022945A1
WO2015022945A1 PCT/JP2014/071228 JP2014071228W WO2015022945A1 WO 2015022945 A1 WO2015022945 A1 WO 2015022945A1 JP 2014071228 W JP2014071228 W JP 2014071228W WO 2015022945 A1 WO2015022945 A1 WO 2015022945A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
amount
sintered magnet
phase
grain boundary
Prior art date
Application number
PCT/JP2014/071228
Other languages
English (en)
French (fr)
Inventor
西内 武司
喬之 神田
倫太郎 石井
國吉 太
鉄兵 佐藤
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to EP14836459.9A priority Critical patent/EP3038116B1/en
Priority to US14/911,597 priority patent/US10847290B2/en
Priority to JP2015531815A priority patent/JP6398977B2/ja
Priority to CN201480043012.0A priority patent/CN105453194B/zh
Publication of WO2015022945A1 publication Critical patent/WO2015022945A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present disclosure relates to an RTB based sintered magnet.
  • RTB-based sintered magnet having R 2 T 14 B type compound as a main phase (R is composed of light rare earth element RL and heavy rare earth element RH, RL is Nd and / or Pr, RH is Dy and / or Tb and T are at least one of transition metal elements and must contain Fe), and are known as the most powerful magnets among permanent magnets, and are used for hybrid vehicles, electric vehicles, and home appliances. Used in motors.
  • the RTB -based sintered magnet has a reduced coercive force H cJ (hereinafter sometimes simply referred to as “H cJ ”) at high temperatures, causing irreversible thermal demagnetization. Therefore, especially when used for a hybrid vehicle or an electric vehicle motor, it is required to maintain a high HcJ even at high temperatures.
  • H cJ coercive force
  • Dy has problems such as unstable supply and price fluctuations due to the fact that it originally has a small amount of resources and its production area is limited. Therefore, (as small as possible amount) without using much as possible heavy rare earth element such as Dy, while suppressing a decrease in B r, it is required to obtain a high H cJ.
  • the amount of B is made lower than that of a normal RTB-based alloy, and at least one metal element M selected from Al, Ga, and Cu is contained, thereby allowing R 2 T 17
  • the coercive force is suppressed while the content of Dy is suppressed by sufficiently securing the volume fraction of the transition metal rich phase (R 6 T 13 M) generated by using the R 2 T 17 phase as a raw material. It is described that an RTB-based rare earth sintered magnet having a high C can be obtained.
  • Patent Document 2 as well as defining the effective rare earth content and effective boron content, Co, a high coercivity H cJ alloy containing Cu and Ga as compared with the conventional alloys with the same remanence B r It is described that it has. At this time, it is shown that Ga contributes to the generation of a nonmagnetic compound, Co contributes to the improvement of the temperature coefficient of the residual magnetic flux density, and Cu contributes to the suppression of the magnetic property degradation due to the Laves phase accompanying the addition of Co.
  • R-T-B rare earth sintered magnet according to the Patent Documents 1 and 2 R, B, Ga, since the content of Cu is not optimal, not obtain a high B r and high H cJ.
  • the present disclosure has been made to solve the above problems, aims while suppressing the content of Dy, provides R-T-B based sintered magnet having a high B r and high H cJ And
  • Aspect 1 of the present invention is represented by the following formula (1).
  • R consists of a light rare earth element RL and a heavy rare earth element RH, RL is Nd and / or Pr, RH is Dy and / or Tb, the balance T is Fe, and 10 mass% or less of Fe is Co.
  • RH is 5% by mass or less of the RTB-based sintered magnet, and satisfies the following formulas (2) to (6): 0.4 ⁇ x ⁇ 1.0 (2) 0.07 ⁇ y ⁇ 1.0 (3) 0.05 ⁇ z ⁇ 0.5 (4) 0 ⁇ q ⁇ 0.1 (5) 0.100 ⁇ y / (x + y) ⁇ 0.340 (6)
  • the oxygen content (mass%) of the RTB-based sintered magnet is ⁇
  • the nitrogen content (mass%) is ⁇
  • the carbon content (mass%) is ⁇
  • v u ⁇ (6 ⁇ + 10 ⁇ + 8 ⁇ )
  • V and w satisfy the following formulas (7) to (9): an RTB-based sintered magnet.
  • Aspect 2 of the present invention is an RTB-based sintered magnet according to aspect 1, wherein the following formulas (10) and (11) are satisfied. 0.4 ⁇ x ⁇ 0.7 (10) 0.1 ⁇ y ⁇ 0.7 (11)
  • Aspect 3 of the present invention is an RTB-based sintered magnet according to aspect 1 or 2, wherein the following formula (12) is satisfied. 0.4 ⁇ x ⁇ 0.6 (12)
  • Aspect 4 of the present invention is an RTB-based sintered magnet characterized by satisfying the following formula (13) in any of the aspects 1 to 3. v ⁇ 28.5 (13)
  • Aspect 5 of the present invention is an RTB-based sintered magnet characterized by satisfying the following formula (14) in any of the aspects 1 to 4. 0.90 ⁇ w ⁇ 0.93 (14)
  • FIG. 2A and 2B are schematic views for explaining a method for measuring the thickness of the first grain boundary.
  • a photograph of an image by SE that is emitted when a cross section of an RTB-based sintered magnet is irradiated with an electron beam having a high acceleration voltage is a photograph of an image by SE that is emitted when a cross section of an RTB-based sintered magnet is irradiated with an electron beam having a high acceleration voltage.
  • R, B, Ga, Cu, Al, and optionally M optimize content, by further containing Ga and Cu in specific ratios, R-T-B based sintered magnet having a high B r and high H cJ was found that the resulting.
  • the first grain boundary existing between the two main phases (hereinafter sometimes referred to as “two-grain grain boundary”) has R Is 70% by mass or more, and it is found that there is a phase in which Ga and Cu are concentrated more than the composition of the entire magnet (hereinafter sometimes referred to as R-Ga-Cu phase), and further analysis As a result, it was found that R was 65% by mass or less and a two-grain grain boundary in which a phase containing T and Ga (hereinafter, sometimes referred to as RT-Ga phase) does not exist was included.
  • R-T-B based sintered magnet can be improved B r by increasing the existence ratio of R 2 T 14 B type compound as the main phase.
  • R amount, T amounts although the B amount should brought close to the stoichiometric ratio of R 2 T 14 B type compound, R 2 T 14 B-type
  • the amount of B for forming the compound is lower than the stoichiometric ratio, a soft magnetic R 2 T 17 phase is precipitated at the grain boundary, and H cJ is rapidly decreased.
  • Ga contained in the magnet composition, a RT-Ga phase is generated instead of the R 2 T 17 phase, and a decrease in H cJ can be suppressed.
  • the decrease in H cJ due to the generation of the R—T—Ga phase is due to the absence of the R 2 T 17 phase that causes a rapid decrease in H cJ and the generated R—T—Ga phase being magnetic. It was assumed that this is because it does not have or is very weak in magnetism.
  • the cases R-T-Ga phase also has a magnetic there, the grain boundary, when the R-T-Ga phase there are many particularly in the secondary particle grain boundaries responsible for H cJ, is preventing the H cJ increased I understood.
  • the present inventors have found that HcJ is improved by generating an RT-Ga phase and generating an R-Ga-Cu phase at the grain boundary.
  • the amount of R 2 T 17 phase generated can be reduced by setting the amounts of R and B within appropriate ranges.
  • part of R is consumed in combination with oxygen, nitrogen and carbon in the manufacturing process of RTB-based sintered magnets, so it is actually used for the R 2 T 17 phase and RT-Ga phase.
  • the amount of R changes in the manufacturing process. Accordingly, it has been difficult to suppress the production amounts of the R 2 T 17 phase and the RT-Ga phase.
  • the R amount corrected by the amounts of oxygen, nitrogen, and carbon specifically In the R amount (u), when the oxygen amount (mass%) in the RTB-based sintered magnet is ⁇ , the nitrogen amount (mass%) is ⁇ , and the carbon amount (mass%) is ⁇ , 6 ⁇ + 10 ⁇ + 8 ⁇ is obtained. It was found that by using the subtracted value (v), it is possible to control the amount of R 2 T 17 phase or RT-Ga phase produced within an appropriate range.
  • the value (v) obtained by subtracting 6 ⁇ + 10 ⁇ + 8 ⁇ from the R amount (u), the B amount, the Ga amount, the Cu amount, and the Al amount are contained at a specific ratio, and further, Ga and Cu are made to have a specific ratio.
  • high H cJ can be obtained and, at this time, it is possible to an amount that does not lower the amount of R and B amounts greatly existence ratio of the main phase was found to obtain a high B r.
  • the entire RTB-based sintered magnet there are many R—Ga—Cu phases at the two-grain boundaries, and there are many two-grain boundaries where there is almost no RT-Ga phase. It is thought that it is an organization.
  • Patent Document 1 since the oxygen content, the nitrogen content, and the carbon content are not considered with respect to the R content, it is difficult to suppress the generation amount of the R 2 T 17 phase or the RT-Ga phase. .
  • the technique described in Patent Document 1 improves HcJ by promoting the generation of the RT—Ga phase, and there is no technical idea of suppressing the amount of RT—Ga phase generated. Therefore, Patent Document 1 contains R, B, Ga, Cu, and Al at an optimal ratio capable of generating the R—Ga—Cu phase while suppressing the amount of R—T—Ga phase generated. Orazu, thereby, a high B r and high H cJ is considered not obtained.
  • the “thickness of the first grain boundary (two grain grain boundary)” in the present invention is the thickness of the first grain boundary existing between the two main phases, and more specifically, among the grain boundaries. It means the maximum value of the thickness when the region with the largest thickness is measured. “The thickness of the first grain boundary (two-grain grain boundary)” is evaluated by the following procedure, for example. 1) By scanning electron microscope (SEM) observation, five or more visual fields including a two-particle grain boundary having a length of 3 ⁇ m or more in the observation cross section are randomly selected.
  • SEM scanning electron microscope
  • FIG. 2A is a diagram schematically showing an example of the first grain boundary
  • FIG. 2B is a diagram schematically showing an example of the first grain boundary
  • the first grain boundary 20 may include a region 22 having a large thickness and a region 24 having a small thickness. In such a case, the maximum thickness of the region 22 having a large thickness is obtained. The value is the thickness of the first grain boundary 20.
  • the second grain boundary 30 existing between the first grain boundary 20 and the three or more main phases 40 may be connected.
  • the “thickness of the first grain boundary” refers to the vicinity of a boundary (for example, the first grain boundary 20 and the first grain boundary 20) that changes from the first grain boundary 20 to the second grain boundary 30 in the cross section of the magnet whose thickness is to be measured. It is assumed that the thickness of a region separated by about 0.5 ⁇ m from the boundaries 35 ⁇ / b> A and 35 ⁇ / b> B with the second grain boundary 30 is not measured. This is because the boundary is considered to be affected by the thickness of the second grain boundary 30.
  • the measurement range of the thickness of the first grain boundary 20 has a length of 2 ⁇ m or more in a range excluding a region separated by about 0.5 ⁇ m from the boundaries 35A and 35B.
  • the range indicated by the braces denoted by reference numeral 20 in FIG. 2B indicates the range in which the first grain boundary 20 extends, and the measurement range of the thickness of the first grain boundary 20 is not necessarily limited. It should be noted that it does not indicate (that is, a range excluding a region separated by about 0.5 ⁇ m from the boundaries 35A and 35B).
  • the first grain boundary thickness by a 5nm or 30nm or less, it is possible to obtain a higher B r and H cJ.
  • the thickness of the first grain boundary can be 5 nm or more and 30 nm or less.
  • a more preferable range of the thickness of the first grain boundary is 10 nm or more and 30 nm or less.
  • the thickness of the first grain boundary can be simplified by acquiring a secondary electron image of a sample cross section using, for example, a high acceleration voltage electron beam mounted on a STEM apparatus, as shown in an example described later. Can be evaluated.
  • composition of RTB-based sintered magnet In an embodiment according to the present invention, the formula: uRwBxGayCuzAlqM (100-uwxyzzq) T (1) (R consists of a light rare earth element RL and a heavy rare earth element RH, RL is Nd and / or Pr, RH is Dy and / or Tb, the balance T is Fe, and 10 mass% or less of Fe is Co.
  • M is Nb and / or Zr, and contains unavoidable impurities, u, w, x, y, z, q and 100-uwxyzzq indicate mass% )
  • the RH is 5% by mass or less of the RTB-based sintered magnet, 0.4 ⁇ x ⁇ 1.0 (2) 0.07 ⁇ y ⁇ 1.0 (3) 0.05 ⁇ z ⁇ 0.5 (4) 0 ⁇ q ⁇ 0.1 (5) 0.100 ⁇ y / (x + y) ⁇ 0.340 (6)
  • the oxygen content (mass%) of the RTB-based sintered magnet is ⁇
  • the nitrogen content (mass%) is ⁇
  • the carbon content (mass%) is ⁇
  • v u ⁇ (6 ⁇ + 10 ⁇ + 8 ⁇ ) , V, w v ⁇ 32.0 (7) 0.84 ⁇ w ⁇ 0.93 (8) ⁇ 12.5w + 38.75 ⁇ v ⁇ ⁇ 62.5w +
  • the RTB-based sintered magnet of the present invention may contain inevitable impurities.
  • the effects of the present invention can be achieved even if inevitable impurities normally contained in didymium alloy (Nd—Pr), electrolytic iron, ferroboron, and the like are contained.
  • Inevitable impurities include, for example, trace amounts of La, Ce, Cr, Mn, Si and the like.
  • R is composed of a light rare earth element RL and a heavy rare earth element RH
  • RL is Nd and / or Pr
  • RH is Dy and / or Tb.
  • RH is 5% by mass or less of the RTB-based sintered magnet. Because the present invention can obtain a high B r and high H cJ without using a heavy rare earth elements, it can reduce the amount of RH even be asked a higher H cJ, typically 2.5 It can be made into the mass% or less.
  • T is Fe, and 10% by mass or less, typically 2.5% by mass or less of Fe can be substituted with Co.
  • B is boron.
  • R in the RTB-based sintered magnet according to one aspect of the present invention is composed of a light rare earth element RL and a heavy rare earth element RH, where RL is Nd and / or Pr, RH is Dy and / Or Tb and RH is 5% by mass or less of the RTB-based sintered magnet. ”Completely excludes the case where R contains a rare earth element other than Nd, Pr, Dy and Tb. This means that rare earth elements other than Nd, Pr, Dy and Tb may be contained as long as they are in an impurity level.
  • R, B, Ga combined with a range according to one aspect of the respectively present invention Cu, and, by the ratio, according to one embodiment of the present invention the Ga and Cu, obtain a high B r and high H cJ be able to. If it deviates from the above range, the main phase ratio is significantly reduced, or the generation of the RTB-Ga phase is excessively suppressed. It becomes difficult to generate a Ga—Cu phase, or conversely, there are fewer two-grain boundaries where no RT—Ga phase exists (a two-grain boundary where there are many RT-Ga phases becomes dominant) not obtain a high B r and high H cJ.
  • Ga contributes to the formation of a thick two-grain grain boundary by dissolving the vicinity of the main phase surface by being present in the liquid phase introduced into the two-grain grain boundary. It is thought that. Furthermore, Ga is also necessary for the formation of the RT-Ga phase, which is considered to be involved in the formation of the R-Ga-Cu phase.
  • Ga or Cu is not more than the specified value of the present invention, that is, when the Ga content (x) is less than 0.4 mass% or the Cu content (y) is less than 0.07 mass%, R—Ga at the grain boundary is The formation of the -Cu phase becomes insufficient, the effects of the respective elements cannot be sufficiently exhibited, and high HcJ cannot be obtained. Therefore, the Ga amount (x) is set to 0.4% by mass or more, or the Cu amount (y) is set to 0.07% by mass or more. A preferable amount of Cu (y) is 0.1% by mass or more.
  • the Ga amount (x) is 0.7% by mass or less
  • the Cu amount (y) is 0.7% by mass or less
  • the Ga amount (x) is 0.6% by mass or less
  • the Cu amount (y ) Is 0.4 mass% or less.
  • y / (x + y) i.e., ⁇ Cu> / ⁇ Ga + Cu> (where ⁇ Cu> is the amount of Cu expressed in mass%, and ⁇ Ga + Cu> is the total amount of Ga and Cu expressed in mass%).
  • ⁇ Cu> is the amount of Cu expressed in mass%
  • ⁇ Ga + Cu> is the total amount of Ga and Cu expressed in mass%.
  • the amount of Ga introduced into the two-grain grain boundary is reduced, and Ga existing in the second grain boundary existing between three or more main phases (hereinafter sometimes referred to as “multi-point grain boundary”).
  • the amount of liquid phase containing increases. Accordingly, since the dissolution of the second near the grain boundary of the main phase becomes conspicuous by the liquid phase containing Ga, not only H cJ is not sufficiently improved, leading to reduction in B r.
  • ⁇ Cu> / ⁇ Ga + Cu> exceeds 0.34, the Ga abundance ratio in the liquid phase is too small, and the main phase is not sufficiently dissolved by the liquid phase introduced into the two-particle grain boundary. Therefore , the two-grain grain boundary does not become thick and high HcJ cannot be obtained.
  • the mass ratio of ⁇ Cu> / ⁇ Ga + Cu> is 0.1 or more and 0.3 or less.
  • Al 0.05 mass% or more and 0.5 mass% or less
  • HcJ HcJ
  • Al is usually contained in an amount of 0.05% by mass or more as an inevitable impurity in the production process, but it may be contained in an amount of 0.5% by mass or less in total of the amount contained by the inevitable impurity and the amount intentionally added. Good.
  • Nb and / or Zr may be contained in a total amount of 0.1% by mass or less.
  • the oxygen content (mass%), the nitrogen content (mass%), and the carbon content (mass%) are the content in the RTB-based sintered magnet (that is, RTB).
  • Content when the total mass of the system magnet is 100% by mass) the oxygen content is the gas melting-infrared absorption method, the nitrogen content is the gas melting-heat conduction method, and the carbon content is the combustion-infrared absorption method , Can be measured using a gas analyzer.
  • the present invention uses a value (v) obtained by subtracting the amount consumed by combining with oxygen, nitrogen and carbon from the amount of R (u) by the method described below. This makes it possible to adjust the amount of R 2 T 17 phase or RT-Ga phase generated.
  • the v is determined by subtracting 6 ⁇ + 10 ⁇ + 8 ⁇ from the R amount (u), where ⁇ is the oxygen amount (% by mass), ⁇ is the nitrogen amount (% by mass), and ⁇ is the carbon amount (% by mass).
  • 6 ⁇ is defined because R having a mass approximately six times that of oxygen is consumed as an oxide, assuming that an oxide of R 2 O 3 is mainly produced as an impurity.
  • 10 ⁇ is defined by the fact that R having a mass approximately 10 times that of nitrogen is consumed as nitride, assuming that RN nitride is mainly produced.
  • 8 ⁇ is defined because R, which is approximately eight times the mass of carbon, is consumed as carbides, assuming that R 2 C 3 carbides are mainly produced.
  • the oxygen content, nitrogen content, and carbon content are obtained by measurement using the above-described gas analyzer, whereas those of R, B, Ga, Cu, Al, and M shown in Formula (1)
  • the respective contents (mass%) u, w, x, y, z and q may be measured by using a high frequency inductively coupled plasma optical emission spectrometry (ICP emission spectroscopic analysis, ICP-OES).
  • the content (mass%) of the balance T shown in the formula (1) is 100-uwxyzzq, and u, w, x, y, obtained by ICP emission spectroscopy You may obtain
  • the formula (1) defines that the total amount of elements that can be measured by ICP emission spectroscopy is 100% by mass.
  • the amount of oxygen, the amount of nitrogen and the amount of carbon cannot be measured by ICP emission spectroscopy. Therefore, in the embodiment according to the present invention, u, w, x, y, z, q and 100-uwxyzz defined by the formula (1), oxygen amount ⁇ , nitrogen The sum of the amount ⁇ and the carbon amount ⁇ is allowed to exceed 100% by mass.
  • v and w are related as follows. v ⁇ 32.0 (7) 0.84 ⁇ w ⁇ 0.93 (8) ⁇ 12.5w + 38.75 ⁇ v ⁇ ⁇ 62.5w + 86.125 (9) When v exceeds 32.0% by mass, the abundance ratio of the main phase is lowered, and high Br cannot be obtained. In order to obtain a higher B r is, v ⁇ 28.5 is preferred.
  • FIG. 1 shows the scope of the present invention for v and w that satisfy the above equations (7) to (9).
  • v is a value obtained by subtracting 6 ⁇ + 10 ⁇ + 8 ⁇ from the R amount (u), where the oxygen amount (% by mass) is ⁇ , the nitrogen amount (% by mass) is ⁇ , and the carbon amount (% by mass) is ⁇ .
  • B value B value.
  • the R—T—Ga phase includes R: 15% by mass to 65% by mass, T: 20% by mass to 80% by mass, Ga: 2% by mass to 20% by mass. Including, for example, R 6 Fe 13 Ga 1 compound.
  • the R—Ga—Cu phase means R: 70% by mass to 95% by mass, Ga: 5% by mass to 30% by mass, Cu: 1% by mass to 30% by mass, and Fe: 20% by mass or less. (Including 0), for example, R 3 (Ga, Cu) 1 compound.
  • the RT-Ga phase may contain Cu, Al, or the like.
  • the R—Ga—Cu phase may contain Al or Co.
  • Al includes what is inevitably introduced from a crucible or the like when the raw material alloy is melted.
  • the two-grain grain boundary has a dhcp structure (double hexagonal close-packed structure) containing Fe: 20% by mass or less (including 0) and a trace amount of Ga and Cu.
  • An Nd phase may also exist, but this phase is also non-magnetic or extremely weak (small) and can exist as a thick two-grain grain boundary phase. Therefore, the coercivity can be reduced by weakening the magnetic coupling between the main phases. It is thought that it contributes to improvement.
  • the manufacturing method of the RTB-based sintered magnet includes a process of obtaining alloy powder, a forming process, a sintering process, and a heat treatment process. Hereinafter, each step will be described.
  • Step of obtaining alloy powder A metal or alloy of each element is prepared so as to have a predetermined composition, and a flaky alloy is manufactured using the strip casting method or the like.
  • the obtained flaky alloy is hydrogen crushed so that the size of the coarsely pulverized powder is 1.0 mm or less, for example.
  • the coarsely pulverized powder is finely pulverized by a jet mill or the like, so that, for example, finely pulverized powder (alloy powder) having a particle size D 50 (volume-based median diameter obtained by a laser diffraction method by an air flow dispersion method) of 3-7 ⁇ m )
  • a known lubricant may be used as an auxiliary agent for the coarsely pulverized powder before jet mill pulverization and the alloy powder during and after jet mill pulverization.
  • Forming step Using the obtained alloy powder, forming in a magnetic field is performed to obtain a formed body.
  • a dry alloy method in which a dry alloy powder is inserted into a mold cavity and molded while applying a magnetic field, a slurry in which the alloy powder is dispersed is injected into the mold cavity, Any known forming method in a magnetic field may be used, including a wet forming method of forming while discharging the slurry dispersion medium.
  • a sintered magnet is obtained by sintering a molded object.
  • a known method can be used for sintering the molded body.
  • the atmosphere gas is preferably an inert gas such as helium or argon.
  • the obtained sintered magnet is subjected to heat treatment for the purpose of improving magnetic properties.
  • the Nd 6 Fe 13 Ga phase is represented by the heat treatment performed after the sintering. It is considered that the RT-Ga phase is mainly formed in the multipoint grain boundary and the R-Ga-Cu phase is formed in the two-grain grain boundary.
  • the heat treatment temperature is typically 440 ° C. or higher and 540 ° C. or lower. This temperature is lower than the Nd—Fe—Ga ternary eutectic temperature (580 ° C.).
  • the RT—Ga phase is mainly converted into a multipoint grain boundary phase. And a liquid phase containing both Ga and Cu and relatively rich in Cu is generated, and the liquid phase is introduced into the two-grain grain boundary, whereby the R—Ga—Cu phase is formed. It is believed that high H cJ is obtained when formed. Furthermore, it has been found that in an RTB-based sintered magnet that has been heat-treated at 440 ° C. or higher and 540 ° C. or lower, the R—Ga—Cu phase may become amorphous.
  • the obtained sintered magnet may be subjected to machining such as grinding in order to adjust the magnet dimensions.
  • the heat treatment may be performed before or after machining.
  • the surface treatment may be a known surface treatment, and for example, a surface treatment such as Al deposition, electric Ni plating or resin coating can be performed.
  • the resulting coarsely pulverized powder was mixed with an airflow pulverizer (jet mill device). was dry milled in a nitrogen stream, the particle size D 50 was obtained finely pulverized powder of 4 ⁇ m (the alloy powder).
  • the oxygen concentration in the nitrogen gas at the time of pulverization was set to 50 ppm or less so that the finally obtained sintered magnet had an oxygen content of about 0.1 mass%.
  • the particle diameter D 50 is a value obtained by laser diffraction method using air flow dispersion method (volume-based median diameter).
  • the molded powder was molded in a magnetic field to obtain a molded body.
  • molding apparatus lateral magnetic field shaping
  • molding apparatus in which the magnetic field application direction and the pressurization direction orthogonally crossed was used for the shaping
  • the obtained molded body was sintered in vacuum at 1020 ° C. for 4 hours and then rapidly cooled to obtain a sintered magnet.
  • the density of the sintered magnet was 7.5 Mg / m 3 or more.
  • the components of the obtained sintered magnet and the results of gas analysis are shown in Table 1.
  • the contents of Nd, Pr, B, Ga, Cu, Al, Co, Nb, and Zr as components in Table 1 were measured using high frequency inductively coupled plasma optical emission spectrometry (ICP-OES). .
  • the balance (the balance obtained by subtracting the contents of Nd, Pr, B, Ga, Cu, Al, Co, Nb, and Zr obtained by measurement from 100% by mass) was taken as the content of Fe.
  • O oxygen
  • N nitrogen amount
  • C carbon amount
  • the total amount of Nd and Pr is the R amount (u). The same applies to all the tables below.
  • the obtained sintered magnet was heated, held at 800 ° C. for 2 hours and then cooled to room temperature, and then held at 500 ° C. for 2 hours and then cooled to room temperature.
  • vertical 7 mm, transverse 7 mm, to prepare a sample having a thickness of 7 mm it was magnetized with a pulse magnetic field of 3.2 MA / m, by B-H tracer in each sample B r And H cJ were measured. The measurement results are shown in Table 2.
  • V in Table 2 is a value obtained by subtracting 6 ⁇ + 10 ⁇ + 8 ⁇ obtained from ⁇ , ⁇ , and ⁇ in Table 1 from u. For u and w, the amounts of R and B in Table 1 are directly transferred. The same applies to Table 4, Table 6, Table 8, and Table 10 below.
  • 1-2, 1-3, 1-12, 1-17, 1-20 to 1-22, 1-28) have higher B r (1.376 T or more), and v is 28.
  • Samples of 5 or less (No. 1-2, 1-3, 1-20 to 22, 1-28) have higher B r (1.393 T or more).
  • the particle diameter D 50 is a value obtained by laser diffraction method using air flow dispersion method (volume-based median diameter).
  • the finely pulverized powder was molded and sintered in the same manner as in Experimental Example 1 to obtain a sintered magnet.
  • the density of the sintered magnet was 7.5 Mg / m 3 or more.
  • Components of the obtained sintered magnet and gas analysis (O (oxygen amount), N (nitrogen amount), C (carbon amount)) were performed in the same manner as in Experimental Example 1. The results are shown in Table 3.
  • the resultant sintered magnet was heat-treated in the same manner as in Experimental Example 1 were measured B r and H cJ in the same manner as in Experimental Example 1. Table 4 shows the measurement results.
  • the particle diameter D 50 is a value obtained by laser diffraction method using air flow dispersion method (volume-based median diameter).
  • the finely pulverized powder was molded and sintered in the same manner as in Experimental Example 1 to obtain a sintered magnet.
  • the density of the sintered magnet was 7.5 Mg / m 3 or more.
  • Components of the obtained sintered magnet and gas analysis (O (oxygen amount), N (nitrogen amount), C (carbon amount)) were performed in the same manner as in Experimental Example 1. The results are shown in Table 5.
  • the resultant sintered magnet was heat-treated in the same manner as in Experimental Example 1 were measured B r and H cJ in the same manner as in Experimental Example 1. Table 6 shows the measurement results.
  • the resulting coarsely pulverized powder was mixed with an airflow pulverizer (jet mill device). was dry milled in a nitrogen stream, the particle size D 50 was obtained finely pulverized powder of 4 ⁇ m (the alloy powder).
  • the oxygen amount of the finally obtained sintered magnet was set to about 0.4% by mass.
  • the particle diameter D 50 is a value obtained by laser diffraction method using air flow dispersion method (volume-based median diameter).
  • the finely pulverized powder was molded and sintered in the same manner as in Experimental Example 1 to obtain a sintered magnet.
  • the density of the sintered magnet was 7.5 Mg / m 3 or more.
  • Components of the obtained sintered magnet and gas analysis (O (oxygen amount), N (nitrogen amount), C (carbon amount)) were performed in the same manner as in Experimental Example 1. The results are shown in Table 7.
  • the resultant sintered magnet was heat-treated in the same manner as in Experimental Example 1 were measured B r and H cJ in the same manner as in Experimental Example 1. Table 8 shows the measurement results.
  • Example 5 Nd metal, Pr metal, Dy metal, Tb metal, ferroboron alloy, electrolytic Co, Al metal, Cu metal, Ga metal, and electrolytic iron (all metals have a purity of 99% or more) so as to have a predetermined composition
  • a coarsely pulverized powder was prepared in the same manner as in Experimental Example 4. After adding and mixing 0.04% by mass of zinc stearate as a lubricant with respect to 100% by mass of the coarsely pulverized powder, the resulting coarsely pulverized powder was mixed with nitrogen using an airflow pulverizer (jet mill device). dry milled in an air stream, the particle size D 50 was obtained finely pulverized powder of 4 ⁇ m (the alloy powder).
  • the particle diameter D 50 is a value obtained by laser diffraction method using air flow dispersion method (volume-based median diameter).
  • the finely pulverized powder was molded and sintered in the same manner as in Experimental Example 1 to obtain a sintered magnet.
  • the density of the sintered magnet was 7.5 Mg / m 3 or more.
  • Components of the obtained sintered magnet and gas analysis (O (oxygen amount), N (nitrogen amount), C (carbon amount)) were performed in the same manner as in Experimental Example 1. The results are shown in Table 9.
  • the resultant sintered magnet was heat-treated in the same manner as in Experimental Example 1 were measured B r and H cJ in the same manner as in Experimental Example 1. Table 10 shows the measurement results.
  • Example Sample No. of the present invention produced in Experimental Example 1 1-20 and Comparative Sample No. 1-1 was cut by machining and the cross section was polished, followed by observation with a scanning electron microscope (SEM), and the first grain boundary existing between two main phases having a length in the observation cross section of 3 ⁇ m or more (two Grain boundary) is randomly assigned to sample no. 1-20, No. 1 1-1, 5 fields of view were selected, and a slice was processed using a focused ion beam (FIB) to prepare a sample for a transmission electron microscope (TEM).
  • SEM scanning electron microscope
  • the obtained sample was observed with a TEM, and the thickness of the grain boundary was measured. After confirming that the length of the two-grain boundary in the sample is 3 ⁇ m or more, exclude the region about 0.5 ⁇ m away from the vicinity of the boundary with the second grain boundary existing between three or more main phases.
  • the thickness of the grain boundary in the region (the length was 2 ⁇ m or more) was evaluated, and the maximum value was defined as the thickness of the grain boundary phase.
  • the measurement was performed with a high TEM magnification in order to accurately measure the thickness. The same analysis was performed on all five sampled first grain boundary phases, and the average value was obtained.
  • the two-grain grain boundary is evaluating the area
  • Comparative Sample No. 1-1 was 1 nm to 3 nm.
  • Example Sample No. 1-20 R is 65% by mass or less, and there is no RT-Ga phase containing T and Ga. At least a part of the grain boundary is Nd: 52% by mass, Pr: 26% by mass %, Ga: 5% by mass, Cu: 4% by mass, Fe: 7% by mass, Co: 3% by mass, which is an R—Ga—Cu phase characteristic of the magnet of the present invention. It was confirmed. Further, as a result of electron beam diffraction in this region, it was found to be amorphous. On the other hand, Comparative Sample No. In 1-1, no R—Ga—Cu phase was confirmed.
  • Example 4 in which Nd metal, Pr metal, ferroboron alloy, electrolytic Co, Al metal, Cu metal, Ga metal, and electrolytic iron were used (all metals had a purity of 99% or more) and were mixed to have a predetermined composition.
  • a coarsely pulverized powder was prepared in the same manner as described above. After adding and mixing 0.04% by mass of zinc stearate as a lubricant with respect to 100% by mass of the coarsely pulverized powder, the resulting coarsely pulverized powder was mixed with nitrogen using an airflow pulverizer (jet mill device). dry milled in an air stream, the particle size D 50 was obtained finely pulverized powder of 4.5 ⁇ m (the alloy powder).
  • the particle diameter D 50 is a value obtained by laser diffraction method using air flow dispersion method (volume-based median diameter).
  • the finely pulverized powder was molded and sintered in the same manner as in Experimental Example 1 to obtain a sintered magnet.
  • the density of the sintered magnet was 7.5 Mg / m 3 or more.
  • Components of the obtained sintered magnet and gas analysis (O (oxygen amount), N (nitrogen amount), C (carbon amount)) were performed in the same manner as in Experimental Example 1. The results are shown in Table 11.
  • the obtained sintered magnet was heated, held at 800 ° C. for 2 hours, cooled to room temperature, and then held at 480 ° C. for 1 hour and then cooled to room temperature.
  • vertical 7 mm, transverse 7 mm, to prepare a sample having a thickness of 7 mm it was magnetized with a pulse magnetic field of 3.2mA / m, B-H tracer with a sample B r and HcJ was measured. Table 12 shows the measurement results.
  • Example 7 Example No. 6-1
  • SEM scanning electron microscope
  • the microsampling process by the focused ion beam (FIB) was performed so that it might be obtained.
  • STEM scanning transmission electron microscope
  • an electron beam with an acceleration voltage of 200 kV (high acceleration voltage) is irradiated onto the sample surface using a secondary electron detector attached to the microscope.
  • Images of secondary electrons (SE) emitted (contrast is obtained by the difference in phase) were taken.
  • An example of an SE image obtained with an electron beam having a high acceleration voltage is shown in FIG.
  • a thick two-grain boundary can be clearly confirmed at a magnification of about 10,000 times.
  • the grain boundary phase of 10 nm or more was dominant.
  • the sintered magnet sample was broken in an ultra-high vacuum to evaluate spin polarization (magnetization) due to 3d electrons (mainly derived from Fe) of the two-grain grain boundary phase exposed on the surface, Thereafter, the two-grain boundary phase was removed by sputtering, and the main phase was similarly evaluated.
  • spin polarization magnetization
  • 3d electrons mainly derived from Fe
  • the sintered magnet (No. 6-1) of Experimental Example 7 has a lower magnetization and a thick two-grain grain boundary phase than a general Nd—Fe—B based sintered magnet.
  • the fact that the magnetic coupling between the main phases is greatly weakened is considered to have led to a higher coercive force.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

 Dyの含有量を抑制しつつ、高いBと高いHcJを有するR-T-B系焼結磁石を提供する。 式uRwBxGayCuzAlqM残部T(RはRLとRHからなり、RLはNd及び/又はPr、RHはDy及び/又はTb、TはFeでありFeの10質量%以下をCoで置換でき、MはNb及び/又はZrであり、および不可避的不純物を含み、u、w、x、y、z、qは質量%を示す)によって表され、RHはR-T-B系焼結磁石の5質量%以下、0.4≦x≦1.0、0.07≦y≦1.0、0.05≦z≦0.5、0≦q≦0.1、0.100≦y/(x+y)≦0.340であり、酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしたとき、v=u-(6α+10β+8γ)であって、v、wが、v≦32.0、0.84≦w≦0.93、-12.5w+38.75≦v≦-62.5w+86.125、を満足するR-T-B系焼結磁石。

Description

R-T-B系焼結磁石
 本開示は、R-T-B系焼結磁石に関する。
 R14B型化合物を主相とするR-T-B系焼結磁石(Rは軽希土類元素RLと重希土類元素RHからなり、RLはNdおよび/またはPr、RHはDyおよび/またはTb、Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む)は、永久磁石の中で最も高性能な磁石として知られており、ハイブリッド自動車用、電気自動車用や家電製品用などの各種モータ等に使用されている。
 R-T-B系焼結磁石は、高温で保磁力HcJ(以下、単に「HcJ」と記載する場合がある)が低下し、不可逆熱減磁が起こる。そのため、特にハイブリッド自動車用や電気自動車用モータに使用される場合、高温下でも高いHcJを維持することが要求されている。
 従来、HcJ向上のために、R-T-B系焼結磁石に重希土類元素(主としてDy)が多量に添加されていたが、残留磁束密度B(以下、単に「B」と記載する場合がある)が低下するという問題があった。そのため、近年、R-T-B系焼結磁石の表面から内部に重希土類元素を拡散させて主相結晶粒の外殻部に重希土類元素を濃化させることでBの低下を抑制しつつ、高いHcJを得る方法が採られている。
 しかし、Dyは、もともと資源量が少ないうえに産出地が限定されている等の理由から、供給が不安定であったり、価格が変動するなどの問題を有している。そのため、Dyなどの重希土類元素をできるだけ使用せず(使用量をできるだけ少なくして)、Bの低下を抑制しつつ、高いHcJを得ることが求められている。
 特許文献1には、通常のR-T-B系合金よりもB量を低くするとともに、Al、Ga、Cuのうちから選ばれる1種以上の金属元素Mを含有させることによりR17相を生成させ、該R17相を原料として生成させた遷移金属リッチ相(R13M)の体積率を充分に確保することにより、Dyの含有量を抑制しつつ、保磁力の高いR-T-B系希土類焼結磁石が得られることが記載されている。
 また、特許文献2には、有効希土類含有量と有効硼素含有量を規定するとともに、Co、Cu及びGaを含有した合金は従来の合金に比べて同じ残留磁化Bで高い抗磁力HcJを有することが記載されている。このとき、Gaは非磁性化合物の生成に、Coは残留磁束密度の温度係数の改善に、CuはCoの添加に伴うラーベス相による磁気特性低下の抑制に寄与することが示されている。
国際公開第2013/008756号 特表2003-510467号公報
 しかし、特許文献1、2に係るR-T-B系希土類焼結磁石は、R、B、Ga、Cuの含有割合が最適でないため、高いBと高いHcJが得られていない。
 本開示は、上記問題を解決するためになされたものであり、Dyの含有量を抑制しつつ、高いBと高いHcJを有するR-T-B系焼結磁石を提供することを目的とする。
 本発明の態様1は、下記式(1)によって表され
 
  uRwBxGayCuzAlqM(100-u-w-x-y-z-q)T (1)
  (Rは軽希土類元素RLと重希土類元素RHからなり、RLはNdおよび/またはPr、RHはDyおよび/またはTbであり、残部であるTはFeでありFeの10質量%以下をCoで置換でき、MはNbおよび/またはZrであり、u、w、x、y、z、qおよび100-u-w-x-y-z-qは質量%を示す)
 
 前記RHはR-T-B系焼結磁石の5質量%以下であり、下記式(2)~(6)を満足し、
 
  0.4≦x≦1.0 (2)
  0.07≦y≦1.0 (3)
  0.05≦z≦0.5 (4)
  0≦q≦0.1 (5)
  0.100≦y/(x+y)≦0.340 (6)
 
 R-T-B系焼結磁石の酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしたとき、v=u-(6α+10β+8γ)であって、v、wが、下記式(7)~(9)を満足することを特徴とする、R-T-B系焼結磁石である。
 
  v≦32.0 (7)
  0.84≦w≦0.93 (8)
  -12.5w+38.75≦v≦-62.5w+86.125 (9)
 本発明の態様2は、態様1において、下記式(10)および(11)を満足することを特徴とする、R-T-B系焼結磁石である。
 
  0.4≦x≦0.7 (10)
  0.1≦y≦0.7 (11)
 本発明の態様3は、態様1または態様2において、下記式(12)を満足することを特徴とするR-T-B系焼結磁石である。
 
  0.4≦x≦0.6 (12)
 本発明の態様4は、態様1から態様3のいずれかにおいて、下記式(13)を満足することを特徴とするR-T-B系焼結磁石である。
 
  v≦28.5 (13)
 本発明の態様5は、態様1から態様4のいずれかにおいて、下記式(14)を満足することを特徴とするR-T-B系焼結磁石である。
 
  0.90≦w≦0.93 (14)
 本発明に係る態様により、DyやTbの含有量を抑制しつつ、高いBと高いHcJを有するR-T-B系焼結磁石を提供することができる。
本発明の1つの態様において、vとwの範囲を示す説明図である。 図2(a)、(b)は、第一の粒界の厚みの測定方法を説明する模式図である。 本発明の1つの態様において、R-T-B系焼結磁石の断面に高加速電圧の電子線を照射したときに放出するSEによる像の写真である。
 本発明者らは、上記問題を解決するために鋭意検討を重ねた結果、例えば、前記本発明の態様1に示すように、R、B、Ga、Cu、Al、および必要に応じてM、の含有量を最適化し、さらにGaとCuを特定の比で含有させることにより、高いBと高いHcJを有するR-T-B系焼結磁石が得られることを見出した。そして、得られたR-T-B系焼結磁石を解析した結果、二つの主相間に存在する第一の粒界(以下、「二粒子粒界」と記載する場合がある)に、Rが70質量%以上で、Ga、Cuが磁石全体の組成よりも濃化した相(以下、R-Ga-Cu相と記載する場合がある)が存在することを知見し、さらに、詳細に解析した結果、Rが65質量%以下で、T、Gaを含む相(以下、R-T-Ga相と記載する場合がある)が存在しない二粒子粒界が含まれていることを知見した。
 二粒子粒界にR-Ga-Cu相が存在すること、および、R-T-Ga相が存在しない二粒子粒界が含まれていることにより高いBと高いHcJが得られるメカニズムについては、未だ不明な点もある。現在までに得られている知見を基に本発明者らが考えるメカニズムについて以下に説明する。以下のメカニズムについての説明は本発明の技術的範囲を制限することを目的とするものではないことに留意されたい。
 R-T-B系焼結磁石は、主相であるR14B型化合物の存在比率を高めることによりBを向上させることができる。R14B型化合物の存在比率を高めるためには、R量、T量、B量をR14B型化合物の化学量論比に近づければよいが、R14B型化合物を形成するためのB量が化学量論比を下回ると、粒界に軟磁性のR17相が析出しHcJが急激に低下する。しかし、磁石組成にGaが含有されていると、R17相の代わりにR-T-Ga相が生成され、HcJの低下を抑制することができると考えられていた。
 当初、R-T-Ga相の生成によりHcJの低下が抑制されるのは、HcJの急激な低下を招くR17相がなくなるとともに、生成されたR-T-Ga相が磁性を有していないかあるいは磁性が極めて弱いからであると想定していた。しかし、R-T-Ga相も磁性を有する場合が有り、粒界、特にHcJを担う二粒子粒界にR-T-Ga相が多く存在すると、HcJ向上の妨げになっていることが分かった。そこで、本発明者らは鋭意検討の結果、R-T-Ga相を生成させるとともに二粒子粒界にR-Ga-Cu相を生成させることによりHcJが向上することを知見した。これは二粒子粒界にR-Ga-Cu相が生成されることにより、5nm以上の厚い二粒子粒界が形成され、かつR-Ga-Cu相は非磁性もしくは極めて磁化が弱いため、主相間の磁気的な結合を弱めるからであると考えられる。このように、二粒子粒界を介した主相間の磁気的な結合が弱まれば、結晶粒界を超えた磁化反転の伝搬が抑制され、これが、バルク磁石としてのHcJ向上に寄与していると考えられる。そこで、R-T-B系焼結磁石全体においてR-T-Ga相の生成量を抑えつつ、R-Ga-Cu相を二粒子粒界に優先的に生成することができれば、さらにHcJを向上できると想定した。
 R-T-B系焼結磁石において、R-T-Ga相の生成量を低く抑えるためには、R量とB量とを適切な範囲にすることによってR17相の生成量を低くするとともに、R量とGa量をR17相の生成量に応じた最適な範囲にする必要がある。しかし、Rの一部はR-T-B系焼結磁石の製造過程において酸素、窒素、炭素と結合し消費されてしまうため、R17相やR-T-Ga相に使われる実際のR量は製造過程で変化してしまう。従って、R17相およびR-T-Ga相の生成量を抑制することが困難であった。そこで、本発明者が鋭意検討した結果、R-T-Ga相を生成させつつ、その生成量を適切な範囲で制御するには、酸素、窒素、炭素の量で補正したR量、具体的には、R量(u)からR-T-B系焼結磁石における酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしたとき6α+10β+8γを差し引いた値(v)を用いることにより、R17相やR-T-Ga相の生成量を適切な範囲で制御することが可能であることを知見した。そして、R量(u)から6α+10β+8γを差し引いた値(v)とB量とGa量とCu量とAl量を特定の割合で含有させるとともに、さらに、GaとCuを特定の比にすることにより、高いHcJが得られ、また、このとき、R量やB量を主相の存在比率を大幅に低下させない程度の量にすることができるため、高いBを得られることがわかった。これにより、R-T-B系焼結磁石全体において二粒子粒界にR-Ga-Cu相が多く存在し、さらに、R-T-Ga相がほとんど存在しない二粒子粒界が多く存在するという組織になっているものと考えられる。
 特許文献1に記載の技術ではR量に関し、酸素量、窒素量、炭素量を考慮していないため、R17相やR-T-Ga相の生成量を抑制することは困難である。そもそも、特許文献1に記載の技術はR-T-Ga相の生成を促進することによってHcJを向上させるものであり、R-T-Ga相の生成量を抑制するという技術思想はない。そのため、特許文献1は、R-T-Ga相の生成量を抑制しつつ、R-Ga-Cu相を生成させることができる最適な割合でR、B、Ga、Cu、Alを含有しておらず、これにより、高いBと高いHcJが得られていないと考えられる。また、特許文献2に記載の技術では酸素量、窒素量、炭素量の値は考慮されているものの、Gaについては、R17相の生成を抑制してGa含有相(本願のR-T-Ga相に相当すると考えられる)を生成することによりHcJを向上させることが記載されているため、特許文献1と同様に、R-T-Ga相の生成量を抑制するという技術思想はない。そのため、特許文献1と同様に最適な割合でR、B、Ga、Cu、Alを含有しておらず、そのため、高いBと高いHcJが得られていないと考えられる。
 本発明における「第一の粒界(二粒子粒界)の厚み」とは、二つの主相間に存在する第一の粒界の厚みのことであり、より詳細には、該粒界のうち厚みが最も大きい領域を測定した場合の厚みの最大値のことをいう。「第一の粒界(二粒子粒界)の厚み」は、例えば、以下の手順で評価する。
 1)走査電子顕微鏡(SEM)観察で、観察断面における長さが3μm以上ある二粒子粒界を含む視野をランダムに5視野以上選択する。
 2)それぞれの視野に対して、収束イオンビーム(FIB)を用いたマイクロサンプリング法により、前記二粒子粒界相を含むように試料を加工した後、さらに、厚さ方向が80nm以下となるまで薄片加工する。
 3)得られた薄片試料を透過電子顕微鏡(TEM)観察し、個々の二粒子粒界における最大値を求める。当然ながら、選択した前記二粒子粒界のうち厚みが最も大きい領域を決定した後、当該領域の厚みの最大値を測定する時は、精度良く測定するためにTEMの倍率を高めてもよい。
 4)1)~3)の手順で観察したすべての二粒子粒界の最大値の平均値を求める。
 図2(a)は、第一の粒界の例を模式的に示す図であり、図2(b)は、図2(a)の点線で囲んだ部分を拡大した図である。
 図2(b)に示すように、第一の粒界20は厚みが大きい領域22と小さい領域24が混在している場合があるが、このような場合、厚みが大きい領域22の厚みの最大値を第一の粒界20の厚みとする。また、図2(b)に示すように、第一の粒界20と三つ以上の主相40間に存在する第二の粒界30はつながっている場合がある。この場合、「第一の粒界の厚み」とは、厚みを測定する磁石の断面において第一の粒界20から第二の粒界30にかわる境目近傍(例えば、第一の粒界20と第二の粒界30との境目35A、35Bから、0.5μm程度離れた領域)の厚みは測定しないこととする。前記境目は、第二の粒界30の厚みの影響をうけている可能性があると考えられるためである。第一の粒界20の厚みの測定範囲は、境目35A、35Bから0.5μm程度離れた領域を除いた範囲で2μm以上の長さがあることとする。ここで、図2(b)において符号20を付した中括弧が示す範囲は、第一の粒界20が延在する範囲を示すものであり、必ずしも第一の粒界20の厚みの測定範囲(すなわち、境目35A、35Bから0.5μm程度離れた領域を除いた範囲)を示すものではないことに留意されたい。
 本発明に係る一つの態様では、第一の粒界の厚みを5nm以上30nm以下とすることにより、より高いBとHcJを得ることができる。本発明に係る態様の組成を適用することにより、第一の粒界の厚みを5nm以上30nm以下とすることができる。また、第一の粒界の厚みのより好ましい範囲は10nm以上30nm以下である。
 なお、第一の粒界の厚みに関しては、後述する実施例で示すように、例えばSTEM装置に装着された高加速電圧の電子線を用いた試料断面の二次電子像を取得することで簡易的に評価することができる。
[R-T-B系焼結磁石の組成]
 本発明に係る態様では
 式:uRwBxGayCuzAlqM(100-u-w-x-y-z-q)T (1)
 (Rは軽希土類元素RLと重希土類元素RHからなり、RLはNdおよび/またはPr、RHはDyおよび/またはTbであり、残部であるTはFeでありFeの10質量%以下をCoで置換できる、MはNbおよび/またはZrである、および不可避的不純物を含み、u、w、x、y、z、qおよび100-u-w-x-y-z-qは質量%を示す)
によって表され、
 前記RHはR-T-B系焼結磁石の5質量%以下であり、
  0.4≦x≦1.0 (2)
  0.07≦y≦1.0 (3)
  0.05≦z≦0.5 (4)
  0≦q≦0.1 (5)
  0.100≦y/(x+y)≦0.340 (6)
であり、
 R-T-B系焼結磁石の酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしたとき、v=u-(6α+10β+8γ)であって、v、wが、
  v≦32.0 (7)
  0.84≦w≦0.93 (8)
  -12.5w+38.75≦v≦-62.5w+86.125 (9)
を満足することを特徴とする、R-T-B系焼結磁石である。
 本発明のR-T-B系焼結磁石は不可避的不純物を含んでよい。例えば、ジジム合金(Nd-Pr)、電解鉄、フェロボロンなどに通常含有される不可避的不純物を含有していても本発明の効果を奏することができる。不可避的不純物として例えば、La、Ce、Cr、Mn、Siなどを微量に含む。
 本発明に係る1つの態様では、R-T-B系焼結磁石を上記式で表される組成にすることにより、高いBと高いHcJが得られるという効果を奏することができる。以下に詳述する。
 本発明の1つの態様に係るR-T-B系焼結磁石におけるRは、軽希土類元素RLと重希土類元素RHからなり、RLはNdおよび/またはPr、RHはDyおよび/またはTbであり、RHはR-T-B系焼結磁石の5質量%以下である。本発明は重希土類元素を使用しなくても高いBと高いHcJを得ることができるため、より高いHcJを求められる場合でもRHの添加量を削減でき、典型的には2.5質量%以下とすることができる。TはFeであり、Feの10質量%以下、典型的には2.5質量%以下をCoで置換できる。Bはボロンである。
 なお、特定の希土類元素を得ようとすると精錬等の過程で、不純物として意図しない他の種類の希土類元素が不純物として含まれてしまうことが広く知られている。従って、上述の「本発明の1つの態様に係るR-T-B系焼結磁石におけるRは、軽希土類元素RLと重希土類元素RHからなり、RLはNdおよび/またはPr、RHはDyおよび/またはTbであり、RHはR-T-B系焼結磁石の5質量%以下である。」は、Rが、Nd、Pr、DyおよびTb以外の希土類元素を含む場合を完全に排除するものではなく、Nd、Pr、DyおよびTb以外の希土類元素についても不純物レベルの量であれば含有してもよいことを意味している。
 R、B、Ga、Cuをそれぞれ本発明の1つの態様に係る範囲で組み合わせ、かつ、GaとCuを本発明の1つの態様に係る比にすることにより、高いBと高いHcJを得ることができる。上記範囲からはずれると、主相比率の大幅な低下を招いたり、R-T-Ga相の生成が抑制され過ぎて、R-T-B系焼結磁石全体において、二粒子粒界にR-Ga-Cu相が生成され難くなったり、逆にR-T-Ga相が存在しない二粒子粒界が少なくなり(R-T-Ga相が多く存在する二粒子粒界が支配的となり)、高いBと高いHcJが得られなくなる。
 なお、発明者らが詳細に検討した結果、Cuは後述する熱処理において生成した液相中に存在することで主相と液相の界面エネルギーを低下させ、その結果、二粒子粒界に効率的に液相を導入することに寄与し、Gaは二粒子粒界に導入された液相中に存在することで主相の表面近傍を溶解して厚い二粒子粒界を形成することに寄与していると考えられる。さらに、R-Ga-Cu相の形成と関与すると考えられるR-T-Ga相の形成にもGaは必要である。GaまたはCuが本発明の規定値以下、すなわち、Ga量(x)が0.4質量%未満またはCu量(y)が0.07質量%未満のときは、二粒子粒界におけるR-Ga-Cu相の形成が不十分となり、それぞれの元素の効果を十分発揮することができず、高いHcJが得られない。従って、Ga量(x)を0.4質量%以上またはCu量(y)を0.07質量%以上とする。好ましいCu量(y)は、0.1質量%以上である。
 一方、Ga量(x)が1.0質量%を超えるときまたはCu量(y)が1.0質量%を超えるときは、Ga、Cu量が過剰となり、これら非磁性元素の割合が高くなることに加え、Gaを含む液相により主相の溶解が顕著になり、主相の存在比率が低くなるため、高いBが得られない。好ましくはGa量(x)が0.7質量%以下、Cu量(y)が0.7質量%以下であり、さらに好ましくはGa量(x)が0.6質量%以下、Cu量(y)が0.4質量%以下である。
 本発明においてy/(x+y)(すなわち<Cu>/<Ga+Cu>(ここで、<Cu>は質量%で表したCu量であり、<Ga+Cu>は質量%で表したGaとCuの合計量である))を質量比で0.1以上0.34以下に設定する。前記比にすることにより、高いBと高いHcJを得ることができる。<Cu>/<Ga+Cu>が0.1未満の場合には、Ga量に対してCu量が少なすぎるため、熱処理時に二粒子粒界への液相の導入が十分に起こらずR-Ga-Cu相を適切に形成させることができない。また、二粒子粒界へのGaの導入が少なくなる分、三つ以上の主相間に存在する第二の粒界(以下、「多重点粒界」と記載する場合がある)に存在するGaを含む液相の量が多くなる。これにより、第二の粒界近傍の主相の溶解がGaを含む液相によって顕著になるため、HcJが十分向上しないだけでなく、Bの低下を招く。一方、<Cu>/<Ga+Cu>が0.34を超える場合には、液相中のGa存在比が小さすぎて、二粒子粒界に導入された液相による主相の溶解が十分起こらないために二粒子粒界が厚くならず、高いHcJが得られない。好ましくは、<Cu>/<Ga+Cu>の質量比は、0.1以上0.3以下である。
 更に、通常含有される程度のAl(0.05質量%以上0.5質量%以下)を含有する。Alを含有することにより、HcJを向上させることができる。Alは通常、製造工程で不可避的不純物として0.05質量%以上含有されるが、不可避的不純物で含有される量と意図的に添加した量の合計で0.5質量%以下含有してもよい。
 また、一般的に、R-T-B系焼結磁石において、Nbおよび/またはZrを含有させることで焼結時における結晶粒の異常粒成長が抑制されることが知られている。本発明においても、Nbおよび/またはZrを合計で0.1質量%以下含有してもよい。Nbおよび/またはZrの含有量が合計で0.1質量%を超えると不要なNbやZrが存在することにより、主相の体積比率が低下してBが低下する恐れがある。
 また、本発明に係る態様における酸素量(質量%)、窒素量(質量%)、炭素量(質量%)は、R-T-B系焼結磁石における含有量(すなわち、R-T-B系磁石全体の質量を100質量%とした場合の含有量)であり、酸素量は、ガス融解-赤外線吸収法、窒素量は、ガス融解-熱伝導法、炭素量は、燃焼-赤外線吸収法、によるガス分析装置を使用して測定することができる。本発明は、R量(u)から酸素、窒素、炭素と結合し消費された量を以下に説明する方法により差し引いた値(v)を使用する。これによりR17相やR-T-Ga相の生成量を調整することが可能となる。前記vは、酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしてR量(u)から6α+10β+8γを差し引くことにより求める。6αは、不純物として主にRの酸化物が生成されるとして、酸素のおよそ6倍の質量のRが酸化物として消費されることから規定したものである。10βは、主にRNの窒化物が生成されるとして、窒素のおよそ10倍の質量のRが窒化物として消費されることから規定したものである。8γは、主にRの炭化物が生成されるとして、炭素のおよそ8倍の質量のRが炭化物として消費されることから規定したものである。
 なお、酸素量、窒素量および炭素量は、それぞれ、上述のガス分析装置による測定により得ているのに対して、式(1)に示されるR、B、Ga、Cu、AlおよびMのそれそれぞれの含有量(質量%)であるu、w、x、y、zおよびqは、高周波誘導結合プラズマ発光分光分析法(ICP発光分光分析法、ICP-OES)を用いて測定してよい。式(1)に示される残部Tの含有量(質量%)である100-u-w-x-y-z-qは、ICP発光分光分析法により得られたu、w、x、y、zおよびqの測定値を用いて計算により求めてよい。
 従って、式(1)は、ICP発光分光分析法により測定可能な元素の合計量が100質量%となるように規定している。一方、酸素量、窒素量および炭素量はICP発光分光分析法では測定不可能である。
 このため、本発明に係る態様においては、式(1)で規定するu、w、x、y、z、q及び100-u-w-x-y-z-qと、酸素量α、窒素量βおよび炭素量γとを合計すると100質量%を超えることが許容される。
 更に、本発明の1つの態様はvとwを以下の関係とする。
 
  v≦32.0 (7)
  0.84≦w≦0.93 (8)
  -12.5w+38.75≦v≦-62.5w+86.125 (9)
 
 vが32.0質量%を超えると、主相の存在比率が低くなり高いBが得られない。より高いBを得るためには、v≦28.5が好ましい。wが0.84質量%未満であると、主相の体積比率が低下して高いBが得られず、wが0.93質量%を超えると、R-T-Ga相の生成量が少なすぎるため、R-Ga-Cu相の生成量も少なくなり、高いHcJを得ることができない。より高いBを得るためには、0.90≦w≦0.93が好ましい。そして、vとwは-12.5w+38.75≦v≦-62.5w+86.125の関係を満足する。
 図1に上記式(7)~(9)を満足するvとwの本発明の範囲を示す。図1中のvは、R量(u)から酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとして6α+10β+8γを差し引いた値であり、wは、B量の値である。本発明の1つの態様に係る範囲である式(9)、すなわち、-12.5w+38.75≦v≦-62.5w+86.125は直線1と直線2に挟まれた範囲である。vとwを本発明の範囲にするにすることにより、高いBと高いHcJを得ることができる。本発明の範囲からはずれた領域10(直線2から図中下の領域)は、wに対してvが少なすぎるためR-T-Ga相の生成量が少なくなり、R17相を無くすことができなかったり、R-Ga-Cu相の生成量が少なくなると考えられる。これにより高いHcJが得られない。逆に、本発明の範囲から外れた領域20(直線1から図中上の領域)は、wに対してvが多すぎるため、相対的にFe量が不足する。Fe量が不足するとRおよびBが余ることになり、その結果R-T-Ga相が十分生成されずにRFeが生成され易くなると考えられる。これによりR-Ga-Cu相の生成量も少なくなり、高いHcJが得られない。
 本発明の1つの態様において、R-T-Ga相とは、R:15質量%以上65質量%以下、T:20質量%以上80質量%以下、Ga:2質量%以上20質量%以下を含むものであって、例えばRFe13Ga化合物が挙げられる。また、R-Ga-Cu相とは、R:70質量%以上95質量%以下、Ga:5質量%以上30質量%以下、Cu:1質量%以上30質量%以下、Fe:20質量%以下(0を含む)を含むものであって、例えばR(Ga,Cu)化合物が挙げられる。なお、本発明において、R-T-Ga相には、CuやAlなどを含む場合がある。また、R-Ga-Cu相には、AlやCoを含む場合がある。ここで、Alは原料合金の溶解時に坩堝などから不可避に導入されるものを含む。また、二粒子粒界には、R-Ga-Cu相と同様に、Fe:20質量%以下(0を含む)で、微量のGaやCuを含むdhcp構造(二重六方最密構造)のNd相も存在する場合があるが、この相も非磁性もしくは極めて磁化が弱く(小さく)、かつ、厚い二粒子粒界相として存在できるため、主相間の磁気的な結合を弱めることで保磁力向上に寄与していると考えられる。
[R-T-B系焼結磁石の製造方法]
 R-T-B系焼結磁石の製造方法の一例を説明する。R-T-B系焼結磁石の製造方法は、合金粉末を得る工程、成形工程、焼結工程、熱処理工程を有する。以下、各工程について説明する。
(1)合金粉末を得る工程
 所定の組成となるようにそれぞれの元素の金属または合金を準備し、これらをストリップキャスティング法等を用いてフレーク状の合金を製造する。得られたフレーク状の合金を水素粉砕し、粗粉砕粉のサイズを例えば1.0mm以下とする。次に、粗粉砕粉をジェットミル等により微粉砕することで、例えば粒径D50(気流分散法によるレーザー回折法で得られた体積基準メジアン径)が3~7μmの微粉砕粉(合金粉末)を得る。なお、ジェットミル粉砕前の粗粉砕粉、ジェットミル粉砕中およびジェットミル粉砕後の合金粉末に助剤として既知の潤滑剤を使用してもよい。
(2)成形工程
 得られた合金粉末を用いて磁界中成形を行い、成形体を得る。磁界中成形は、金型のキャビティー内に乾燥した合金粉末を挿入し、磁界を印加しながら成形する乾式成形法、金型のキャビティー内に該合金粉末を分散させたスラリーを注入し、スラリーの分散媒を排出しながら成形する湿式成形法を含む既知の任意の磁界中成形方法を用いてよい。
(3)焼結工程
 成形体を焼結することにより焼結磁石を得る。成形体の焼結は既知の方法を用いることができる。なお、焼結時の雰囲気による酸化を防止するために、焼結は、真空雰囲気中または雰囲気ガス中で行うことが好ましい。雰囲気ガスは、ヘリウム、アルゴンなどの不活性ガスを用いることが好ましい。
(4)熱処理工程
 得られた焼結磁石に対し、磁気特性を向上させることを目的とした熱処理を行う。態様1に示すR量、B量、Ga量、Cu量およびGaとCuの特定の比にした本発明の組成では、焼結後に施される熱処理で、NdFe13Ga相に代表されるR-T-Ga相が主に多重点粒界中に形成されるとともに、R-Ga-Cu相が二粒子粒界に形成されると考えられる。熱処理温度は典型的には440℃以上540℃以下である。この温度は、Nd-Fe-Ga三元共晶温度(580℃)よりも低い温度であり、このような温度で熱処理を行うことにより、R-T-Ga相が主に多重点粒界相中に形成されるとともに、Ga、Cuの両方を含み、かつ比較的Cuに富んだ液相が生成され、前記液相が二粒子粒界に導入されることにより、R-Ga-Cu相が形成されて高いHcJが得られると考えられる。さらに、440℃以上540℃以下の熱処理を行ったR-T-B系焼結磁石では、R-Ga-Cu相が非晶質になる場合があることがわかった。このような非晶質の粒界相の存在は主相最外部の磁気異方性低下の原因となる結晶性の悪化を抑制し、結果、保磁力の向上に寄与すると考えられる。
 得られた焼結磁石に磁石寸法の調整のため、研削などの機械加工を施してもよい。その場合、熱処理は機械加工前でも機械加工後でもよい。さらに、得られた焼結磁石に、表面処理を施してもよい。表面処理は、既知の表面処理で良く、例えばAl蒸着や電気Niめっきや樹脂塗装などの表面処理を行うことができる。
 本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。
<実験例1>
 Ndメタル、Prメタル、フェロボロン合金、電解Co、Alメタル、Cuメタル、Gaメタル、フェロニオブ合金、フェロジルコニウム合金および電解鉄を用いて(メタルはいずれも純度99%以上)、所定の組成となるように配合し、それらの原料を溶解してストリップキャスト法により鋳造し、厚み0.2~0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金に水素加圧雰囲気で水素脆化させた後、550℃まで真空中で加熱、冷却する脱水素処理を施し、粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100質量%に対して0.04質量%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、本検討では、粉砕時の窒素ガス中の酸素濃度は50ppm以下とすることにより、最終的に得られる焼結磁石の酸素量が0.1質量%前後となるようにした。なお、粒径D50は、気流分散法によるレーザー回折法で得られた値(体積基準メジアン径)である。
 前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100質量%に対して0.05質量%添加、混合した後、磁界中で成形し、成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交する、いわゆる直角磁界成形装置(横磁界成形装置)を用いた。
 得られた成形体を、真空中、1020℃で4時間焼結した後急冷し、焼結磁石を得た。焼結磁石の密度は7.5Mg/m以上であった。得られた焼結磁石の成分、ガス分析(O(酸素量)、N(窒素量)、C(炭素量))の結果を表1に示す。なお、表1における各成分であるNd、Pr、B、Ga、Cu、Al、Co、NbおよびZrの含有量は、高周波誘導結合プラズマ発光分光分析法(ICP-OES)を使用して測定した。そして、残部(100質量%から測定により得たNd、Pr、B、Ga、Cu、Al、Co、NbおよびZrの含有量を引いて得た残り)をFeの含有量とした。また、O(酸素量)は、ガス融解-赤外線吸収法、N(窒素量)ガス融解-熱伝導法、C(炭素量)は、燃焼-赤外線吸収法、によるガス分析装置を使用して測定した。また、表1において、Nd、Prの量を合計した値がR量(u)である。以下の全ての表も同様である。
Figure JPOXMLDOC01-appb-T000001
 得られた焼結磁石を加熱し、800℃で2時間保持した後室温まで冷却し、次いで500℃で2時間保持した後室温まで冷却する熱処理を施した。熱処理後の焼結磁石に機械加工を施し、縦7mm、横7mm、厚み7mmの試料を作製し、3.2MA/mのパルス磁界で着磁した後、B-Hトレーサによって各試料のB及びHcJを測定した。測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2におけるvは、表1におけるα、β、γを用いて得られる6α+10β+8γをuから差し引いた値である。uおよびwは、表1のRおよびB量をそのまま転記した。以下の表4、表6、表8、表10も同様である。
 また、表2における「vとwの関係(判定)」は、vとwの関係が、本発明の1つの態様に係る範囲である-12.5w+38.75≦v≦-62.5w+86.125を満足している場合は「○」、満足していない場合は「×」としている。以下の表4、表6、表8、表10も同様である。
 また、表2における「xとyの関係(判定)」は、y/(x+y)の値が本発明の1つの態様に係る範囲である0.100≦y/(x+y)≦0.34を満足しているときは「○」、満足していない時は「×」としている。以下の表4、表6、表8、表10も同様である。
 表2に示すように、酸素量0.1質量%前後の焼結磁石において、本発明の条件を満足している組成の焼結磁石(実施例)は、いずれも1.312T以上の高いB、かつ、1428kA/m以上の高いHcJを有している。これに対し、vの値が本発明の範囲から外れているサンプル(No.1-24)、wの値が本発明の範囲から外れているサンプル(例えば、No.1-23、1-25)、vとwの関係が本発明の範囲から外れているサンプル(例えば、No.1-11と1-27)、xとyの関係が本発明の範囲から外れているサンプル(例えば、No.1-4、1-9)、表1に示すGa量が本発明の範囲から外れているサンプル(例えば、No.1-26)ではいずれも高いB、高いHcJが得られなかった。また、Ga量を変えた一連のサンプル(No.1-1から1-4、1-28)の評価結果から、Ga=0.7質量%でも本発明の効果となる十分に高い磁気特性が得られるが、Ga=0.6で磁気特性が最大になり、これ以上Gaが増加すると磁気特性が低下する傾向を示した。
 さらに、本発明の条件を満足している組成の焼結磁石(実施例)のうち、w(B量)が、0.90以上(0.90≦w≦0.93)のサンプル(No.1-2、1-3、1-12、1-17、1-20~1-22、1-28)は、より高いB(1.376T以上)が得られており、vが28.5以下のサンプル(No.1-2、1-3、1-20~22、1-28)は、さらに高いB(1.393T以上)が得られている。
<実験例2>
 Ndメタル、Prメタル、フェロボロン合金、電解Co、Alメタル、Cuメタル、Gaメタル、および電解鉄を用いて(メタルはいずれも純度99%以上)、所定の組成となるように配合し、実験例1と同様の方法で粗粉砕粉を作製した。得られた粗粉粉砕に対し、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100質量%に対して0.04質量%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。このとき粉砕時の窒素ガス中の酸素濃度を制御することにより、最終的に得られる焼結磁石の酸素量が0.25質量%前後となるようにした。なお、粒径D50は、気流分散法によるレーザー回折法で得られた値(体積基準メジアン径)である。
 前記微粉砕粉を実験例1と同様の方法で成形、焼結し、焼結磁石を得た。焼結磁石の密度は7.5Mg/m以上であった。得られた焼結磁石の成分、ガス分析(O(酸素量)、N(窒素量)、C(炭素量))を実験例1と同様の方法で行った。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 得られた焼結磁石を実験例1と同様の方法で熱処理し、実験例1と同様の方法でBおよびHcJを測定した。測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、酸素量0.25質量%前後の焼結磁石において、本発明の条件を満足している組成の焼結磁石(実施例)は、いずれも1.347T以上の高いB、かつ、1380kA/m以上の高いHcJを有している。これに対し、vとwの関係が本発明の範囲から外れているサンプルNo.2-6、xとyの関係が本発明の範囲から外れているサンプルNo.2-4、2-5の比較例では、高いB、高いHcJが得られなかった。
<実験例3>
 Ndメタル、Prメタル、フェロボロン合金、電解Co、Alメタル、Cuメタル、Gaメタル、および電解鉄を用いて(メタルはいずれも純度99%以上)、所定の組成となるように配合し、実験例1と同様の方法で粗粉砕粉を作製した。得られた粗粉粉砕に対し、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100質量%に対して0.04質量%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。このとき粉砕時の窒素ガス中の酸素濃度を制御することにより、最終的に得られる焼結磁石の酸素量が0.4質量%前後となるようにした。なお、粒径D50は、気流分散法によるレーザー回折法で得られた値(体積基準メジアン径)である。
 前記微粉砕粉を実験例1と同様の方法で成形、焼結し、焼結磁石を得た。焼結磁石の密度は7.5Mg/m以上であった。得られた焼結磁石の成分、ガス分析(O(酸素量)、N(窒素量)、C(炭素量))を実験例1と同様の方法で行った。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 得られた焼結磁石を実験例1と同様の方法で熱処理し、実験例1と同様の方法でBおよびHcJを測定した。測定結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、酸素量0.40質量%前後の焼結磁石において、本発明の条件を満足している組成の焼結磁石(実施例)は、いずれも1.305T以上の高いB、かつ、1340kA/m以上の高いHcJを有している。これに対し、vとwの関係が本発明の範囲から外れているサンプルNo.3-7と3-8、yおよびxとyの関係が本発明の範囲から外れているサンプルNo.3-5、xとyの関係が本発明の範囲から外れているサンプルNo3-6では高いB、高いHcJが得られなかった。
<実験例4>
 Ndメタル、Prメタル、Dyメタル、Tbメタル、フェロボロン合金、電解Co、Alメタル、Cuメタル、Gaメタル、および電解鉄を用いて(メタルはいずれも純度99%以上)、所定の組成となるように配合し、それらの原料を溶解してストリップキャスト法により鋳造し、厚み0.2~0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金に水素加圧雰囲気で水素脆化させた後、550℃まで真空中で加熱、冷却する脱水素処理を施し、粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100質量%に対して0.04質量%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。このとき粉砕時の窒素ガス中の酸素濃度を制御することにより、最終的に得られる焼結磁石の酸素量が0.4質量%前後となるようにした。なお、粒径D50は、気流分散法によるレーザー回折法で得られた値(体積基準メジアン径)である。
 前記微粉砕粉を実験例1と同様の方法で成形、焼結し、焼結磁石を得た。焼結磁石の密度は7.5Mg/m以上であった。得られた焼結磁石の成分、ガス分析(O(酸素量)、N(窒素量)、C(炭素量))を実験例1と同様の方法で行った。その結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 得られた焼結磁石を実験例1と同様の方法で熱処理し、実験例1と同様の方法でBおよびHcJを測定した。測定結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、DyやTbを含有した場合においても、実施例は、高いBと高いHcJを得ることができる。例えば、本発明の条件で行った実施例のサンプルNo.4-3と、サンプルNo.4-3とGa量が本発明の範囲と異なること以外は同じ組成である比較例のサンプルNo.4-4を比べると、サンプルNo.4-3の方が、Bは近い値であるにもかかわらず、HcJが大幅に向上している。
<実験例5>
 Ndメタル、Prメタル、Dyメタル、Tbメタル、フェロボロン合金、電解Co、Alメタル、Cuメタル、Gaメタル、および電解鉄を用いて(メタルはいずれも純度99%以上)、所定の組成となるように配合し実験例4と同様の方法で粗粉砕粉を作成した。得られた粗粉粉砕に対し、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100質量%に対して0.04質量%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。このとき粉砕時の窒素ガス中の酸素濃度を制御することにより、最終的に得られる焼結磁石の酸素量が0.4質量%前後となるようにした。なお、粒径D50は、気流分散法によるレーザー回折法で得られた値(体積基準メジアン径)である。
 前記微粉砕粉を実験例1と同様の方法で成形、焼結し、焼結磁石を得た。焼結磁石の密度は7.5Mg/m以上であった。得られた焼結磁石の成分、ガス分析(O(酸素量)、N(窒素量)、C(炭素量))を実験例1と同様の方法で行った。その結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 得られた焼結磁石を実験例1と同様の方法で熱処理し、実験例1と同様の方法でBおよびHcJを測定した。測定結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 表10に示すように、実施例であるサンプルNo.5-1は、高いBとHcJを得ることができる。一方、本発明の範囲から外れているサンプルNo.5-2は、実施例と同等の磁気特性を得るために、Dyを2質量%より多量に添加する必要があることがわかった。
<実験例6>
 実験例1で作製した本発明の実施例サンプルNo.1-20および比較例サンプルNo.1-1を機械加工により切断し、断面を研磨した後、走査電子顕微鏡(SEM)観察を行い、観察断面における長さが3μm以上ある、二つの主相間に存在する第一の粒界(二粒子粒界)をランダムにサンプルNo.1-20、No.1-1それぞれ、5視野選択して、収束イオンビーム(FIB)を用いて薄片加工し、透過型電子顕微鏡(TEM)用のサンプルを作製した。
 得られたサンプルをTEM観察し、二粒子粒界の厚みを測定した。サンプル中の二粒子粒界の長さが3μm以上であることを確認した上で、三つ以上の主相間に存在する第二の粒界との境目近傍から0.5μm程度離れた領域を除外した領域(長さは2μm以上)の粒界の厚さを評価し、その最大値をその粒界相の厚さとした。二粒子粒界の厚みが最も大きい領域を決定した後、二粒子粒界の厚みの最大値を測定する時は、精度良く厚みを測定するため、TEMの倍率を高くして測定を行った。同様の解析をサンプリングした5つすべての第一の粒界相に対して行い、その平均値を求めた。二粒子粒界は図2に模式的に示すように、厚みが大きい領域と小さい領域が混在しているケースが見られたが、このような場合は、厚みが大きい領域の厚みを二粒子粒界の厚みと規定する。また二粒子粒界は、TEMの観察視野において確認される第二の粒界から少なくとも0.5μm離れた領域を評価している。
 5つのサンプルに対するTEM観察の結果、本発明の実施例サンプルNo.1-20の二粒子粒界は5nmから30nmの厚い粒界相を有していることを確認した。これに対し、比較例サンプルNo.1-1は、1nmから3nmであった。
 さらに、TEM観察を行った第一の粒界(二粒子粒界)の一つについて、組成をエネルギー分散X線分光(EDX)で測定した結果、本発明の実施例サンプルNo.1-20は、Rが65質量%以下で、T、Gaを含むR-T-Ga相が存在せず、少なくとも二粒子粒界の一部の領域はNd:52質量%、Pr:26質量%、Ga:5質量%、Cu:4質量%、Fe:7質量%、Co:3質量%となっていたことから、本発明の磁石に特徴的にみられるR-Ga-Cu相であることを確認した。また、この領域において電子線回折を行った結果、非晶質であることがわかった。これに対し、比較例サンプルNo.1-1は、R-Ga-Cu相は確認されなかった。
<実験例7>
 Ndメタル、Prメタル、フェロボロン合金、電解Co、Alメタル、Cuメタル、Gaメタル、および電解鉄を用いて(メタルはいずれも純度99%以上)、所定の組成となるように配合し実験例4と同様の方法で粗粉砕粉を作成した。得られた粗粉粉砕に対し、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100質量%に対して0.04質量%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4.5μmの微粉砕粉(合金粉末)を得た。このとき粉砕時の窒素ガス中の酸素濃度を制御することにより、最終的に得られる焼結磁石の酸素量が0.08質量%前後となるようにした。なお、粒径D50は、気流分散法によるレーザー回折法で得られた値(体積基準メジアン径)である。
 前記微粉砕粉を実験例1と同様の方法で成形、焼結し、焼結磁石を得た。焼結磁石の密度は7.5Mg/m以上であった。得られた焼結磁石の成分、ガス分析(O(酸素量)、N(窒素量)、C(炭素量))を実験例1と同様の方法で行った。その結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 得られた焼結磁石を加熱し、800℃で2時間保持した後室温まで冷却し、次いで、480℃で1時間保持した後室温まで冷却する熱処理を施した。熱処理後の焼結磁石に機械加工を施し、縦7mm、横7mm、厚み7mmの試料を作製し、3.2mA/mのパルス磁界で着磁した後、B-Hトレーサによって試料のBおよびHcJを測定した。測定結果を表12に示す。
Figure JPOXMLDOC01-appb-T000012
 実験例7のサンプル(実施例No.6-1)を機械加工により切断し、断面を研磨した後、走査電子顕微鏡(SEM)観察を行い、SEM装置内で、60μm×30μm程度の観察面が得られるように、収束イオンビーム(FIB)によるマイクロサンプリング加工をした。得られたサンプルを走査透過電子顕微鏡(STEM)にセットし、顕微鏡に付属している二次電子検出器を用いて、加速電圧200kV(高加速電圧)の電子線を試料表面に照射したときに放出される二次電子(SE)による像(相の違いによりコントラストが得られる)を撮影した。高加速電圧の電子線で得られたSE像の一例を図3に示す。10000倍程度の倍率で厚い二粒子粒界が明瞭に確認できる。得られた像から二粒子粒界の厚さを測定した結果、10nm以上の粒界相が支配的であった。
 一方、実験例7のサンプルにおいて二粒子粒界に存在する磁化の値を測定するため、スピン偏極走査電子顕微鏡(spinSEM)による評価を行った。具体的には、1mm(配向方向)×1mm×10mm程度に機械加工した焼結磁石をspinSEM装置に導入し、文献1(”The magnetism at the grain boundaries of NdFeB sintered magnet studied by spin-polarized scanning electron microscopy (spin SEM)”,T. Kohashi, K. Motai, T. Nishiuchi and S. Hirosawa, Applied Physics Letters 104 (2014) 232408.)で報告されている手法を用いて、二粒子粒界相の磁化の大きさを測定した。具体的には、超高真空中で焼結磁石試料を破断して、表面に露出した二粒子粒界相の3d電子(主にFeに由来)起因のスピン偏極(磁化)を評価し、その後、スパッタリングで二粒子粒界相を除去して主相について同様の評価を行った。
 上記文献1で示されている一般的なNd-Fe-B系焼結磁石(HcJ=934kA/m)における二粒子粒界相の3d電子起因の磁化の値は、主相の約30%以上である。これに対し、実験例7で得られた焼結磁石サンプル(No.6-1)について、19カ所を測定した結果、すべての測定点で3d電子起因の磁化の値が主相の25%以下となり、それらの平均値は11.3%とかなり低い値になっていることがわかった。
 これらの結果から、実験例7の焼結磁石(No.6-1)は、一般的なNd-Fe-B系焼結磁石よりも低磁化でかつ、厚い二粒子粒界相が形成されていることが確認され、主相間の磁気的な結合が大幅に弱められていることが高保磁力化につながったものと考えられる。
 本出願は、出願日が2013年8月12日である日本国特許出願、特願第2013-167332号を基礎出願とする優先権主張と伴う。特願第2013-167332号は参照することにより本明細書に取り込まれる。
 20:第一の粒界
 22:厚みが大きい領域
 24:厚みが小さい領域
 30:第二の粒界
 35A、35B:境目
 40:主相

Claims (5)

  1.  下記式(1)によって表され、
     
      uRwBxGayCuzAlqM(100-u-w-x-y-z-q)T (1)
      (Rは軽希土類元素RLと重希土類元素RHからなり、RLはNdおよび/またはPr、RHはDyおよび/またはTbであり、残部であるTはFeでありFeの10質量%以下をCoで置換でき、MはNbおよび/またはZrであり、u、w、x、y、z、qおよび100-u-w-x-y-z-qは質量%を示す)
     
     前記RHはR-T-B系焼結磁石の5質量%以下であり、下記式(2)~(6)を満足し、
     
      0.4≦x≦1.0 (2)
      0.07≦y≦1.0 (3)
      0.05≦z≦0.5 (4)
      0≦q≦0.1 (5)
      0.100≦y/(x+y)≦0.340 (6)
     
     R-T-B系焼結磁石の酸素量(質量%)をα、窒素量(質量%)をβ、炭素量(質量%)をγとしたとき、v=u-(6α+10β+8γ)であって、
     v、wが、下記式(7)~(9)を満足することを特徴とする、R-T-B系焼結磁石。
     
      v≦32.0 (7)
      0.84≦w≦0.93 (8)
      -12.5w+38.75≦v≦-62.5w+86.125 (9)
  2.  下記式(10)および(11)を満足することを特徴とする、請求項1に記載のR-T-B系焼結磁石。
     
      0.4≦x≦0.7 (10)
      0.1≦y≦0.7 (11)
  3.  下記式(12)を満足することを特徴とする、請求項1または2に記載のR-T-B系焼結磁石。
     
      0.4≦x≦0.6 (12)
  4.  下記式(13)を満足することを特徴とする、請求項1から3のいずれか1項に記載のR-T-B系焼結磁石。
     
      v≦28.5 (13)
  5.  下記式(14)を満足することを特徴とする、請求項1から4のいずれか1項に記載のR-T-B系焼結磁石。
     
      0.90≦w≦0.93 (14)
PCT/JP2014/071228 2013-08-12 2014-08-11 R-t-b系焼結磁石 WO2015022945A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14836459.9A EP3038116B1 (en) 2013-08-12 2014-08-11 R-t-b system sintered magnet
US14/911,597 US10847290B2 (en) 2013-08-12 2014-08-11 R-T-B based sintered magnet
JP2015531815A JP6398977B2 (ja) 2013-08-12 2014-08-11 R−t−b系焼結磁石
CN201480043012.0A CN105453194B (zh) 2013-08-12 2014-08-11 R-t-b系烧结磁体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-167332 2013-08-12
JP2013167332 2013-08-12

Publications (1)

Publication Number Publication Date
WO2015022945A1 true WO2015022945A1 (ja) 2015-02-19

Family

ID=52468331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071228 WO2015022945A1 (ja) 2013-08-12 2014-08-11 R-t-b系焼結磁石

Country Status (5)

Country Link
US (1) US10847290B2 (ja)
EP (1) EP3038116B1 (ja)
JP (1) JP6398977B2 (ja)
CN (1) CN105453194B (ja)
WO (1) WO2015022945A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016213233A (ja) * 2015-04-30 2016-12-15 株式会社Ihi 希土類永久磁石および希土類永久磁石の製造方法
JPWO2015030231A1 (ja) * 2013-09-02 2017-03-02 日立金属株式会社 R−t−b系焼結磁石の製造方法
JP2018056188A (ja) * 2016-09-26 2018-04-05 信越化学工業株式会社 R−Fe−B系焼結磁石
WO2018101239A1 (ja) * 2016-12-02 2018-06-07 信越化学工業株式会社 R-Fe-B系焼結磁石及びその製造方法
JP2018152526A (ja) * 2017-03-15 2018-09-27 インターメタリックス株式会社 RFeB系焼結磁石の製造方法
JP2019036707A (ja) * 2017-08-10 2019-03-07 煙台首鋼磁性材料株式有限公司 R−t−b系焼結永久磁石
JP2019050284A (ja) * 2017-09-08 2019-03-28 Tdk株式会社 R−t−b系永久磁石
US10381139B2 (en) 2014-03-31 2019-08-13 Xiamen Tungsten Co., Ltd. W-containing R—Fe—B—Cu sintered magnet and quenching alloy
JP2021516870A (ja) * 2018-06-19 2021-07-08 シアメン タングステン カンパニー リミテッド 低B含有R−Fe−B系焼結磁石及び製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6572550B2 (ja) * 2015-02-04 2019-09-11 Tdk株式会社 R−t−b系焼結磁石
CN109754970B (zh) * 2017-11-01 2023-01-10 北京中科三环高技术股份有限公司 一种稀土磁体及其制备方法
JP6992634B2 (ja) * 2018-03-22 2022-02-03 Tdk株式会社 R-t-b系永久磁石
JP7180095B2 (ja) * 2018-03-23 2022-11-30 Tdk株式会社 R‐t‐b系焼結磁石
CN110444386B (zh) * 2019-08-16 2021-09-03 包头天和磁材科技股份有限公司 烧结体、烧结永磁体及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10289813A (ja) * 1997-04-16 1998-10-27 Hitachi Metals Ltd 希土類磁石
JP2003510467A (ja) 1999-09-24 2003-03-18 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング 硼素分の少ないNd−Fe−B合金と該合金からなる永久磁石の製造方法
JP2005197533A (ja) * 2004-01-08 2005-07-21 Tdk Corp R−t−b系希土類永久磁石
WO2013008756A1 (ja) 2011-07-08 2013-01-17 昭和電工株式会社 R-t-b系希土類焼結磁石用合金、r-t-b系希土類焼結磁石用合金の製造方法、r-t-b系希土類焼結磁石用合金材料、r-t-b系希土類焼結磁石、r-t-b系希土類焼結磁石の製造方法およびモーター

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7199690B2 (en) * 2003-03-27 2007-04-03 Tdk Corporation R-T-B system rare earth permanent magnet
JP2011211056A (ja) 2010-03-30 2011-10-20 Tdk Corp 希土類焼結磁石、モーター及び自動車
JP2011258935A (ja) 2010-05-14 2011-12-22 Shin Etsu Chem Co Ltd R−t−b系希土類焼結磁石
CN104395971B (zh) * 2012-06-22 2017-05-17 Tdk株式会社 烧结磁铁
CN105074837B (zh) * 2013-03-29 2018-05-18 日立金属株式会社 R-t-b系烧结磁体
ES2674370T3 (es) * 2013-03-29 2018-06-29 Hitachi Metals, Ltd. Imán sinterizado a base de R-T-B
US10388442B2 (en) * 2013-08-12 2019-08-20 Hitachi Metals, Ltd. R-T-B based sintered magnet and method for producing R-T-B based sintered magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10289813A (ja) * 1997-04-16 1998-10-27 Hitachi Metals Ltd 希土類磁石
JP2003510467A (ja) 1999-09-24 2003-03-18 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング 硼素分の少ないNd−Fe−B合金と該合金からなる永久磁石の製造方法
JP2005197533A (ja) * 2004-01-08 2005-07-21 Tdk Corp R−t−b系希土類永久磁石
WO2013008756A1 (ja) 2011-07-08 2013-01-17 昭和電工株式会社 R-t-b系希土類焼結磁石用合金、r-t-b系希土類焼結磁石用合金の製造方法、r-t-b系希土類焼結磁石用合金材料、r-t-b系希土類焼結磁石、r-t-b系希土類焼結磁石の製造方法およびモーター

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
T. KOHASHI; K. MOTAI; T. NISHIUCHI; S. HIROSAWA: "The magnetism at the grain boundaries of NdFeB sintered magnet studied by spin-polarized scanning electron microscopy (spin SEM", APPLIED PHYSICS LETTERS, vol. 104, 2014, pages 232408

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015030231A1 (ja) * 2013-09-02 2017-03-02 日立金属株式会社 R−t−b系焼結磁石の製造方法
US10381139B2 (en) 2014-03-31 2019-08-13 Xiamen Tungsten Co., Ltd. W-containing R—Fe—B—Cu sintered magnet and quenching alloy
JP2016213233A (ja) * 2015-04-30 2016-12-15 株式会社Ihi 希土類永久磁石および希土類永久磁石の製造方法
JP2018056188A (ja) * 2016-09-26 2018-04-05 信越化学工業株式会社 R−Fe−B系焼結磁石
US11410805B2 (en) 2016-09-26 2022-08-09 Shin-Etsu Chemical Co., Ltd. R-Fe-B sintered magnet
US10720271B2 (en) 2016-09-26 2020-07-21 Shin-Etsu Chemical Co., Ltd. R-Fe-B sintered magnet
WO2018101239A1 (ja) * 2016-12-02 2018-06-07 信越化学工業株式会社 R-Fe-B系焼結磁石及びその製造方法
JPWO2018101239A1 (ja) * 2016-12-02 2018-11-29 信越化学工業株式会社 R−Fe−B系焼結磁石及びその製造方法
US11600413B2 (en) 2016-12-02 2023-03-07 Shin-Etsu Chemical Co., Ltd. R—Fe—B sintered magnet and production method therefor
JP7052201B2 (ja) 2017-03-15 2022-04-12 大同特殊鋼株式会社 RFeB系焼結磁石の製造方法
JP2018152526A (ja) * 2017-03-15 2018-09-27 インターメタリックス株式会社 RFeB系焼結磁石の製造方法
JP2019036707A (ja) * 2017-08-10 2019-03-07 煙台首鋼磁性材料株式有限公司 R−t−b系焼結永久磁石
JP2019050284A (ja) * 2017-09-08 2019-03-28 Tdk株式会社 R−t−b系永久磁石
JP2021516870A (ja) * 2018-06-19 2021-07-08 シアメン タングステン カンパニー リミテッド 低B含有R−Fe−B系焼結磁石及び製造方法

Also Published As

Publication number Publication date
CN105453194A (zh) 2016-03-30
CN105453194B (zh) 2018-10-16
US20160189838A1 (en) 2016-06-30
EP3038116B1 (en) 2019-11-27
JPWO2015022945A1 (ja) 2017-03-02
JP6398977B2 (ja) 2018-10-03
EP3038116A1 (en) 2016-06-29
EP3038116A4 (en) 2017-03-22
US10847290B2 (en) 2020-11-24

Similar Documents

Publication Publication Date Title
JP6398977B2 (ja) R−t−b系焼結磁石
JP6319299B2 (ja) R−t−b系焼結磁石
JP6288076B2 (ja) R−t−b系焼結磁石
JP6501038B2 (ja) R−t−b系焼結磁石
JP6406255B2 (ja) R−t−b系焼結磁石およびr−t−b系焼結磁石の製造方法
TWI673729B (zh) R-Fe-B系燒結磁石及其製造方法
JP6090550B1 (ja) R−t−b系焼結磁石およびその製造方法
WO2015129861A1 (ja) R-t-b系焼結磁石およびその製造方法
JP6489201B2 (ja) R−t−b系焼結磁石の製造方法
JPWO2018143230A1 (ja) R−t−b系焼結磁石の製造方法
JP2016152246A (ja) 希土類系永久磁石
JP2015119130A (ja) 希土類磁石
JP6541038B2 (ja) R−t−b系焼結磁石
JP6213697B1 (ja) R−t−b系焼結磁石の製造方法
JP2015119131A (ja) 希土類磁石
US9548149B2 (en) Rare earth based magnet
JP6474043B2 (ja) R−t−b系焼結磁石
JP2016149397A (ja) R−t−b系焼結磁石
JP2018125445A (ja) R−t−b系焼結磁石
JP6229938B2 (ja) R−t−b系焼結磁石
JP2016164958A (ja) R−t−b系焼結磁石
JP6610957B2 (ja) R−t−b系焼結磁石の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480043012.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836459

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015531815

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14911597

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014836459

Country of ref document: EP