CN107424695B - 一种双合金纳米晶稀土永磁体及其制备方法 - Google Patents

一种双合金纳米晶稀土永磁体及其制备方法 Download PDF

Info

Publication number
CN107424695B
CN107424695B CN201710267419.7A CN201710267419A CN107424695B CN 107424695 B CN107424695 B CN 107424695B CN 201710267419 A CN201710267419 A CN 201710267419A CN 107424695 B CN107424695 B CN 107424695B
Authority
CN
China
Prior art keywords
rare earth
magnetic powder
alloy
permanent magnet
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710267419.7A
Other languages
English (en)
Other versions
CN107424695A (zh
Inventor
刘仲武
张振扬
钟喜春
邱万奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jincihaina New Material Technology Nantong Co ltd
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201710267419.7A priority Critical patent/CN107424695B/zh
Publication of CN107424695A publication Critical patent/CN107424695A/zh
Application granted granted Critical
Publication of CN107424695B publication Critical patent/CN107424695B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Abstract

本发明公开了一种双合金纳米晶稀土永磁体及其制备方法,包括如下步骤:(1)制备快淬ARE‑Fe‑B磁粉,其中ARE含量≥12%,ARE为La、Ce和Y中的一种稀土或两种以上的混合稀土;制备快淬PRE‑Fe‑B磁粉,其中Fe含量≥82%,PRE为稀土Nd和/或Pr;(2)将上述两种磁粉混合,进行放电等离子烧结,获得各向同性纳米晶稀土永磁体。本发明通过使用低成本富稀土合金和贫稀土富铁纳米复合合金两种成分的磁粉作为原料,降低了磁体的材料成本;改善了合金的烧结性能和热变形性能;利用放电等离子烧结技术使性能差别较大的两种磁粉实现很好的融合,得到具有单合金磁体特征的磁滞回线,改善回线方形度,实现磁性能的优化。

Description

一种双合金纳米晶稀土永磁体及其制备方法
技术领域
本发明涉及稀土永磁材料领域,尤其涉及一种由富稀土的纳米晶稀土-铁-硼和富铁的纳米复合稀土-铁-硼两种磁粉通过放电等离子烧结技术制备的低成本高性价比纳米晶稀土永磁体及其制备方法。
背景技术
钕铁硼作为目前应用最广泛的稀土永磁材料,由于其优异的磁性能而被成为“磁王”。每年大量的钕铁硼材料用在核磁共振成像、电动自行车、电动汽车、扬声器、磁记录、磁分离系统等。随着钕铁硼产业的不断壮大,钕铁硼磁体所用原材料Nd和Pr合金资源也越来越紧缺。La、Ce、Y等作为丰量稀土元素(RE),储量丰富,价格比Nd便宜,并且可以形成RE2Fe14B硬磁相,因此用含这些元素的RE-Fe-B合金部分替代Nd-Fe-B制备永磁材料可以显著降低成本。此外,传统的烧结钕铁硼材料由富稀土(稀土含量>12%)钕铁硼磁粉经压制烧结而成,含有RE2Fe14B(原子百分数接近RE12Fe82B6)硬磁相和非磁性相富RE相。富Nd相的目的是促进烧结,同时提高矫顽力。
纳米复合钕铁硼合金由硬磁相RE2Fe14B和软磁相α-Fe组成,结合了软磁相高饱和磁化强度和稀土金属间化合物高各向异性场的优点,具有较高的剩磁和磁能积,但矫顽力相对较低。并且由于缺少富稀土相,这一类成分的磁粉无法烧结成型,并且无法通过SPS获得高致密磁体,也无法通过热变形形成各向异性磁体来提高磁性能。
发明内容
为了减少贵稀土Nd、Pr等的用量,降低材料成本。本发明将富稀土ARE-Fe-B磁粉和富铁PRE-Fe-B磁粉混合,通过放电等离子烧结技术制备出双合金各向同性稀土永磁体,亦可通过后续热变形制备各向异性双合金磁体。获得的磁体的具有更低的材料成本和制造成本。同时解决了纳米复合磁体(Nd2Fe14B+α-Fe)无法烧结及热变形的问题,提高了磁体的致密度。
为实现上述目的,本发明采用如下技术方案:
一种双合金纳米晶稀土永磁体的制备方法,包括如下步骤:
(1)快淬磁粉的制备及混合
制备快淬ARE-Fe-B磁粉,其中ARE含量≥12%,ARE为La、Ce和Y中的一种稀土或两种以上的混合稀土;
制备快淬PRE-Fe-B磁粉,其中Fe含量≥82%,PRE为稀土Nd和/或Pr;
然后将上述两种磁粉混合;
(2)放电等离子烧结
将步骤(1)中获得的混合磁粉放入石墨模具中,利用放电等离子烧结炉,进行放电等离子真空烧结,最后获得各向同性纳米晶稀土永磁体;
步骤(1)快淬磁粉的制备方法:利用真空电弧熔炼或感应熔炼制备合金锭,利用单辊熔体快淬制备非晶或部分非晶薄带,利用真空热处理获得纳米晶薄带,在保护气氛下将合金薄带破碎成粉末。过筛后得到颗粒大小为45~300μm的粉末。
所述ARE-Fe-B磁粉的成分为:12-24at.%ARE、5-7at.%B、余量Fe;PRE-Fe-B磁粉的成分为5-12at.%PRE、5-7at.%B、余量Fe。
所述ARE-Fe-B磁粉和PRE-Fe-B磁粉中的部分Fe可用Co替代。
步骤(1)混合磁粉中ARE-Fe-B磁粉的质量百分比范围为20-80%。
步骤(2)中所述烧结的压力为30-100MPa;所述烧结的温度为600-850℃。
步骤(2)中所述烧结的升温时间为5-30min,烧结的保温时间为5-30min。
本发明还包括热变形处理:将步骤(2)中获得的各向同性纳米晶稀土永磁体置于真空热压炉进行热变形,最后获得各向异性纳米晶稀土永磁体。
所述热变形温度为650-850℃,变形量30-90%。
本发明将可烧结的富稀土低成本纳米晶RE-Fe-B磁粉和贫稀土(富铁)成分的高性能纳米复合RE-Fe-B磁粉相结合,制备双合金磁体,既利用了富稀土成分的可烧结型,又利用纳米复合成分的高性能,同时还通过使用丰量稀土元素减少了昂贵稀土Nd、Pr的用量,降低了材料成本。
本发明采用放电等离子烧结本发明中使用放电等离子烧结技术(Spark PlasmaSintering,简称SPS),在烧结时既可以保持磁粉内部的纳米晶结构,又能实现粉末接触区域的致密化,对获得高致密、高剩磁磁体至关重要。SPS磁体为各向同性,通过后续的热变形可以在磁体中获得c轴织构,得到各向异性磁体,进一步提高磁性能。
本发明将可烧结的富稀土低成本纳米晶RE-Fe-B磁粉和贫稀土(富铁)成分的高性能纳米复合RE-Fe-B磁粉相结合,制备双合金磁体,具有以下优点:
第一、提升磁体的致密度,致密度的提升可以提高磁体的磁性能。烧结时通过低熔点的富Ce/La相的熔化和流动增加致密度,富Ce/La相具有比传统富Nd相更低的熔点,同时富Ce、La相在烧结过程中以液态的形式存在,能够填充磁体内部的孔洞,提高致磁体密度和磁性能。
第二、使用双主相烧结,一种为低成本富稀土纳米晶合金,另一种为低稀土含量纳米复合合金,实现对低稀土含量高性能纳米复合钕铁硼合金的烧结,可以克服高性能纳米复合RE-Fe-B合金无法烧结及进行后续热变形等缺点,既利用了富稀土成分的可烧结性,又利用纳米复合成分的高磁性能,并可进行后续热变形。
第三、通过使用丰量稀土元素减少了昂贵稀土Nd、Pr的用量,降低了材料成本。
第四、本发明采用放电等离子烧结(SPS)技术,具有升温速度快、保温时间短的优点。在烧结过程中,可以保持磁粉内部的晶粒尺寸,促进晶粒间的交换耦合作用,使性能差别较大的两种磁粉实现很好的融合,退磁曲线光滑。得到具有单合金磁体特征的磁滞回线和较好的磁性能。还可通过SPS+热变形工艺得到各向异性磁体进一步提高磁性能。采用放电等离子烧结,粉末接触的边界区域由于接触电阻较大,产生的焦耳热也较多,使粉末边界区域局部或者全部融化从而实现焊合提高致密度和机械性能。
附图说明
图1为放电等离子烧结获得磁体的表面(a)和侧面(b)图。
图2为1-4号样外加磁场到6T时PPMS测得的室温M-H曲线。
具体实施方式
以下结合实例与附图对本发明作进一步的具体说明,但本发明的实施方式不限于此。
利用本发明所述方法制备双主相纳米晶稀土永磁体。
实施例1
将商业纳米复合Nd-Fe-B(稀土10%,Fe 84%、B 6%)磁粉过筛,筛选粒度在105~300μm的磁粉。取10g磁粉放入直径为20mm的石墨模具中,然后在SPS-825型放电等离子烧结设备上进行烧结。烧结压力为50MPa。设置烧结温度Tsps为650℃,升温时间为7min,烧结保温时间tsps为7min,烧结时的真空度小于6Pa。此烧结样品记为1号样。
实施例2
根据合金成分配比Ce17Fe78B6(原子百分数)称取纯度大于99.95%的Ce、Fe和FeB合金,将称取的合金放入电弧熔炼炉中熔炼成纽扣状铸锭。将铸锭破碎成3~5g的小块。在甩带机中,Ar气保护和辊速为18m/s下,采用熔体快淬技术获得合金薄带。
将获得的Ce17Fe78B6合金薄带放入手套箱中,用研钵磨成磁粉,然后过筛筛选粒度在105~300μm的磁粉。取质量为10g的Ce17Fe78B6磁粉放入直径为20mm的石墨模具中,然后在SPS-825型放电等离子烧结设备上进行烧结。烧结压力为50MPa。设置烧结温度Tsps为650℃,升温时间为7min,烧结保温时间tsps为7min,烧结时的真空度小于6Pa。此烧结样品记为2号样。
实施例3
将粒度在105~300μm,质量分数50%的MQ磁粉(实施例1)和50%的Ce17Fe78B6磁粉(实施例2)共10g放入直径为20mm的石墨模具中,在SPS-825型放电等离子烧结设备上进行烧结。烧结压力为50MPa。设置烧结温度Tsps为650℃,升温时间为7min,烧结保温时间tsps为7min,烧结时的真空度小于6Pa。此烧结样品记为3号样。
实施例4
将粒度在105~300μm,质量分数80%的MQ磁粉(实施例1)和20%的Ce17Fe78B6磁粉(实施例2)共10g放入直径为20mm的石墨模具中,在SPS-825型放电等离子烧结设备上进行烧结。烧结压力为50MPa。设置烧结温度Tsps为650℃,升温时间为7min,烧结保温时间tsps为7min,烧结时的真空度小于6Pa。此烧结样品记为4号样。
实施例5
对实施例1-4中的1-4号样进行磁性能和密度测试。磁性能测试采用振动样品磁强计测试样品室温下的磁性能。测试时将放电等离子烧结样品用线切割切出的圆柱试样进行磁性能分析。密度测试采用阿基德排水法测试。
图1中烧结磁体的直径约为20mm,厚度约为5mm。
图2中看出,1号样磁性能最好,但退磁曲线上有台阶,这是由于1号样为纳米复合富α-Fe钕铁硼磁体,其中的软磁相α-Fe相在烧结过程中长大,使软硬磁相的交换耦合作用减弱而形成的。这是由于纳米复合钕铁硼磁体不含富稀土相,烧结时没有液相,无法得到致密磁体,导致磁粉的磁性能没有得到充分利用。2号样、3号样和4号样的曲线形状较光滑,尤其是3号样和4号样。表明通过双合金SPS烧结可以很好地促进两者的磁性能融合,促进纳米晶晶粒间的交换耦合作用,呈现单一磁体特征的M-H曲线。样品的磁性能及其变化原因将在表1中说明。
表1.不同比例混合后在650℃SPS烧结7min磁体的磁性能
表2.不同比例混合后在650℃SPS烧结7min磁体的密度
表1为1-4号样在外加磁场到6T时PPMS测得的室温磁性能。从表中可以看出,1号样的剩磁和矫顽力最高,2号样的剩磁和矫顽力最低,3、4号样的剩磁和矫顽力处于以上两者中间。2号样剩磁和矫顽力较低是因为磁体中Ce2Fe14B硬磁相磁晶各向异性等内禀性比1号样中的Nd2Fe14B硬磁相低。3号样和4号样为两种磁粉的混合磁体,双合金烧结后退磁曲线光滑,两种磁粉的磁性能实现很好的耦合,尤其是4号样,获得的磁能积最高。由于永磁体在空气中产生磁体的强弱通常用磁能积表示,并且Ce比Nd便宜十倍,通过双主相放电等离子烧结,成功制备出高性价比磁体。
表2为1-4号样品的密度,1号样的密度最低,2号样的密度最高,3、4号样的密度处于两者之间。钕铁硼的理论密度为7.6g/cm3,1-4号样的密度都在90%以上,表明放电等离子烧结后磁体的致密度较高。富稀土相可以在烧结时液化并且流动来填充磁体的孔隙,2号样稀土含量最多故密度最高,随着样品中稀土含量的逐渐减小,密度也逐渐减小。

Claims (6)

1.一种双合金纳米晶稀土永磁体的制备方法,其特征在于,包括如下步骤:
(1)快淬磁粉的制备
制备快淬富稀土Ce17Fe78B6磁粉和快淬贫稀土纳米复合Nd10Fe84B6磁粉;
(2)放电等离子烧结
将步骤(1)中粒度为105~300μm的两种磁粉混合,混合磁粉进行放电等离子烧结,所述烧结的压力为30-50MPa,所述烧结的温度为600-850℃,烧结的升温时间为5-30min,保温时间为5-30min,获得各向同性纳米晶稀土永磁体;混合磁粉中Ce17Fe78B6磁粉的质量百分比为20%。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)快淬磁粉的制备方法:利用真空电弧熔炼或感应熔炼制备合金锭,利用单辊熔体快淬制备非晶或部分非晶薄带,利用真空热处理获得纳米晶薄带,在保护气氛下将合金薄带破碎成粉末。
3.根据权利要求1所述的制备方法,其特征在于,所述Ce17Fe78B6磁粉和Nd10Fe84B6磁粉中的部分Fe用Co替代。
4.根据权利要求1或2或3所述的制备方法,其特征在于,还包括热变形处理:将步骤(2)中获得的各向同性纳米晶稀土永磁体置于真空热压炉进行热变形,最后获得各向异性纳米晶稀土永磁体。
5.根据权利要求4所述的制备方法,其特征在于,所述热变形温度为650-850℃,变形量30-90%。
6.权利要求1~5任意一项所述方法制备的双合金纳米晶稀土永磁体。
CN201710267419.7A 2017-04-21 2017-04-21 一种双合金纳米晶稀土永磁体及其制备方法 Active CN107424695B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710267419.7A CN107424695B (zh) 2017-04-21 2017-04-21 一种双合金纳米晶稀土永磁体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710267419.7A CN107424695B (zh) 2017-04-21 2017-04-21 一种双合金纳米晶稀土永磁体及其制备方法

Publications (2)

Publication Number Publication Date
CN107424695A CN107424695A (zh) 2017-12-01
CN107424695B true CN107424695B (zh) 2019-12-10

Family

ID=60423210

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710267419.7A Active CN107424695B (zh) 2017-04-21 2017-04-21 一种双合金纳米晶稀土永磁体及其制备方法

Country Status (1)

Country Link
CN (1) CN107424695B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108517455B (zh) * 2018-05-18 2020-07-14 江西理工大学 一种具有双主相结构的纳米晶稀土永磁材料及其制备方法
CN109243797A (zh) * 2018-08-31 2019-01-18 江西理工大学 一种含Ce的纳米晶稀土永磁材料的制备方法
CN109346258B (zh) * 2018-09-08 2020-12-18 江西理工大学 一种纳米双主相磁体及其制备方法
CN109972027A (zh) * 2018-12-24 2019-07-05 南昌航空大学 一种通过低熔点PrCu晶间相添加制备各向异性CeFeB永磁合金的方法
CN110660553A (zh) * 2019-09-06 2020-01-07 包头市科锐微磁新材料有限责任公司 一种各向同性热压钕铁硼快淬磁粉及其制备方法
CN111180158A (zh) * 2019-12-30 2020-05-19 宁波韵升股份有限公司 一种r-t-b系烧结永磁体及其制备方法
CN113496816A (zh) * 2020-03-18 2021-10-12 中国科学院宁波材料技术与工程研究所 钐钴基永磁块体的生产方法及钐钴基永磁块体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07197182A (ja) * 1994-06-17 1995-08-01 Sumitomo Special Metals Co Ltd 希土類−鉄−ボロン系合金薄板、合金粉末及び永久磁石材料の製造方法
CN104576028A (zh) * 2014-12-30 2015-04-29 四川大学 富铈各向异性纳米晶稀土永磁体的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07197182A (ja) * 1994-06-17 1995-08-01 Sumitomo Special Metals Co Ltd 希土類−鉄−ボロン系合金薄板、合金粉末及び永久磁石材料の製造方法
CN104576028A (zh) * 2014-12-30 2015-04-29 四川大学 富铈各向异性纳米晶稀土永磁体的制备方法

Also Published As

Publication number Publication date
CN107424695A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
CN107424695B (zh) 一种双合金纳米晶稀土永磁体及其制备方法
KR101306880B1 (ko) 희토류 자석의 제조 방법
KR101378089B1 (ko) R-t-b계 소결 자석
KR101378090B1 (ko) R-t-b계 소결 자석
JP6419812B2 (ja) 熱的安定性が向上したマンガンビスマス系焼結磁石及びそれらの製造方法
US10199145B2 (en) Rare-earth magnet and method for producing the same
KR20140045289A (ko) 높은 내식성의 소결된 NdFeB 자석과 자석 준비 방법
WO2012000294A1 (zh) 梯度矫顽力钕铁硼磁体及其生产方法
JPH07307211A (ja) 異方性粉末から形成されたホットプレス磁石
EP2767992B1 (en) Manufacturing method for magnetic powder for forming sintered body of rare-earth magnet precursor
JP2596835B2 (ja) 希土類系異方性粉末および希土類系異方性磁石
CN103928204A (zh) 一种低稀土含量的各向异性纳米晶NdFeB致密磁体及其制备方法
CN102766835B (zh) 一种制备高性能SmCo永磁材料的方法
JP6613730B2 (ja) 希土類磁石の製造方法
US5536334A (en) Permanent magnet and a manufacturing method thereof
JPS62203302A (ja) 鋳造希土類―鉄系永久磁石の製造方法
CN105280319A (zh) 由工业纯混合稀土制备的稀土铁硼材料及其制备方法和应用
JPH07176418A (ja) 高性能のホットプレス済み磁石
CN109637768A (zh) 一种含钇的稀土永磁材料及其制备方法
Renquan et al. Effect of crushing methods on morphology and magnetic properties of anisotropic NdFeB powders
JP2018152526A (ja) RFeB系焼結磁石の製造方法
JPH023201A (ja) 永久磁石
CN107845467B (zh) 一种烧结钕铁硼磁钢及其制备方法
CN107546025B (zh) 一种剪切力热变形模具和钕铁硼磁体的制备方法
JPH07123083B2 (ja) 鋳造希土類―鉄系永久磁石の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200909

Address after: No. 201, building C, micro think tank Industrial Park, No. 8, Xianke 1st Road, Xiutang village, Huadong Town, Huadu District, Guangzhou City, Guangdong Province

Patentee after: JOINCHINA ADVANCED MATERIALS TECHNOLOGY Co.,Ltd.

Address before: 510640 Tianhe District, Guangdong, No. five road, No. 381,

Patentee before: SOUTH CHINA University OF TECHNOLOGY

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220620

Address after: 226000 Room 501, building 201, Dasheng entrepreneurship Park, Haimen street, Haimen District, Nantong City, Jiangsu Province

Patentee after: Jincihaina new material technology (Nantong) Co.,Ltd.

Address before: 510890 No. 201, building C, micro think tank Industrial Park, No. 8, Xianke 1st Road, Xiutang village, Huadong Town, Huadu District, Guangzhou, Guangdong (Airport Huadu)

Patentee before: JOINCHINA ADVANCED MATERIALS TECHNOLOGY Co.,Ltd.