CN110660553A - 一种各向同性热压钕铁硼快淬磁粉及其制备方法 - Google Patents

一种各向同性热压钕铁硼快淬磁粉及其制备方法 Download PDF

Info

Publication number
CN110660553A
CN110660553A CN201910841352.2A CN201910841352A CN110660553A CN 110660553 A CN110660553 A CN 110660553A CN 201910841352 A CN201910841352 A CN 201910841352A CN 110660553 A CN110660553 A CN 110660553A
Authority
CN
China
Prior art keywords
alloy
iron
purity
neodymium
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910841352.2A
Other languages
English (en)
Inventor
蔺继荣
王志刚
王瑞刚
任建新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BAOTOU KERUI WEICI NEW MATERIAL Co Ltd
Original Assignee
BAOTOU KERUI WEICI NEW MATERIAL Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BAOTOU KERUI WEICI NEW MATERIAL Co Ltd filed Critical BAOTOU KERUI WEICI NEW MATERIAL Co Ltd
Priority to CN201910841352.2A priority Critical patent/CN110660553A/zh
Publication of CN110660553A publication Critical patent/CN110660553A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/048Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by pulverising a quenched ribbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种各向同性热压钕铁硼快淬磁粉及其制备方法,涉及稀土永磁材料应用领域,该各向同性热压钕铁硼快淬磁粉的制备方法包括:将原料放入中频真空感应炉中在高真空充氩气条件下熔炼和精炼,去除合金中的有害杂质;然后将合金溶液浇铸成合金锭;之后将制得的合金锭放入真空感应快淬炉中,在流动的氩气保护下感应加热熔化,合金熔液在重力作用下经铜或铜镍导流棒引导从氧化铝坩锅底部氮化硼喷嘴的小孔喷射到高速旋转的水冷快淬轮表面瞬间凝固成钕铁硼快淬合金片;最后将合金片放入万能破碎机,在氩气保护下破碎,经过40目振动筛筛分;通过该方法制得的磁粉可用于制造热压各向同性钕铁硼磁体和热挤压各向异性钕铁硼磁体。

Description

一种各向同性热压钕铁硼快淬磁粉及其制备方法
技术领域
本发明涉及稀土永磁材料应用领域,特别涉及一种各向同性热压钕铁硼快淬磁粉及其制备方法。
背景技术
现有的钕铁硼稀土磁性材料按照生产工艺分为四种类型;第一种是粉末冶金工艺的烧结钕铁硼磁体,第二种是磁粉和热固性树脂模压固化工艺的粘接钕铁硼磁体,第三种是磁粉和热塑性树脂造粒注射成型工艺的注塑钕铁硼磁体,第四种是磁粉冷压、热压和热挤压成型工艺的热压钕铁硼磁体;由于热压钕铁硼磁体具有磁性能高、耐热性好、耐腐蚀性优良,不用或少用稀缺元素镝、可以挤压成型为薄壁筒状,材料利用率高等优势,特别适合用于微小型电机,近年来发展很快。
热压钕铁硼磁体的基本原料称为各向同性热压钕铁硼快淬磁粉,各向同性热压钕铁硼快淬磁粉的基本原料是稀土镨钕、金属铁和硼,添加其他元素改性;工艺过程可以概括为:合金熔炼、合金快淬、快淬合金片粉碎与筛分、磁粉混合与包装;各向同性热压钕铁硼快淬磁粉的生产工艺非常复杂,涉及许多方面的技术基础和工业基础,它的生产技术一直被国外公司所垄断。
我公司在生产钕铁硼粘接磁粉的工艺方法基础上,自主研发出一种高性能的各向同性热压钕铁硼快淬磁粉的成分组成和规模化生产该高性能快淬钕铁硼磁粉的生产工艺;生产出的磁粉具有优异的磁性能。
发明内容
本发明的目的在于提供一种高性能各向同性热压钕铁硼快淬磁粉的成分组成和规模化生产该高性能快淬钕铁硼磁粉的生产工艺。
本发明采用的技术方案如下:一种各向同性热压钕铁硼快淬磁粉,其特征是,其原子比通式为
(Nd1-w-xPrwDyxα(Fe1-y-zCoyGaz)100-α-βBβ
式中:Nd为钕元素,Pr为镨元素,Dy为镝元素,Fe为铁元素,Co为钴元素,Ga为镓元素,B为硼元素,α是介于12-16间的任意数,β是介于4-7间的任意数,x是介于0-0.2间的任意数,y是介于0-0.1间的任意数,z是介于0-0.01间的任意数数,w是介于0-1间的任意数,单位是原子比。
一种各向同性热压钕铁硼快淬磁粉的制备方法,其特征是,包括如下步骤:
S1:合金熔炼
按照原子比通式中各元素原子比备原料,原料为含有通式中元素的金属或合金,将原料放入中频真空感应炉中在高真空充氩气条件下熔炼和精炼,氩气条件下可防止氧化,熔炼温度为1500ºC,然后在1450ºC和200帕氩气气氛下精炼20-30分钟,去除合金中的有害杂质;用ICP(电感耦合等离子光谱仪)测量合金成分,并与初始设定的各元素原子比进行比对,如果差异较大,说明生产过程中存在操作失误,此时需要重新熔炼,若测量合金成分与初始设定的各元素原子比基本相同,则将合金溶液浇铸成合金锭;
S2:合金快淬
将S1步骤制得的合金锭放入真空感应快淬炉中,在流动的氩气保护下感应加热熔化,氩气气压2000-3000帕,保温温度1420ºC,合金熔液在重力作用下经铜或铜镍导流棒引导从氧化铝坩锅底部氮化硼喷嘴的小孔喷射到高速旋转的水冷快淬轮表面瞬间凝固成钕铁硼快淬合金片,氮化硼小孔直径0.6-2.0毫米,水冷快淬轮外表面线速度为20-50米/秒;水冷快淬轮材料为钼或TZM合金;
S3:粉碎与筛分
将S2步骤制得的合金片放入万能破碎机,在氩气保护下破碎,经过40目振动筛筛分,大于40目粉返回破碎,得到本发明的钕铁硼快淬磁粉。
进一步,上述制备方法中的其中一种方案为:原子比通式中w=0.2556,x=0,α=13.4875,β=5.4723,y=0.0479,z=0.0052,所用原料包括:
镨钕合金,其钕含量为74.4%,余量为镨;
硼铁合金,其硼含量为19.4%,余量为铁;
纯度为99.99%金属钴;
纯度为99.99%金属镓;
99.9%纯度的原料纯铁。
进一步,上述制备方法中的其中一种方案为:原子比通式中w=0,x=0,α=13.8248,β=5.5946,y=0.0554,z=0.0053,所用原料包括:
99.9%纯度的金属钕;
硼铁合金,其硼含量为19.4%,余量铁;
纯度为99.99%金属钴;
纯度为99.99%金属镓;
99.9%纯度的原料纯铁。
进一步,上述制备方法中的其中一种方案为:原子比通式中w=0,x=0,α=14.2610,β=5.4420,y=0.0154,z=0.0063,所用原料包括:
99.9%纯度的金属钕;
硼铁合金,其硼含量为19.4%,余量铁;
纯度为99.99%金属钴;
纯度为99.99%金属镓;
99.9%纯度的原料纯铁。
进一步,上述制备方法中的其中一种方案为:原子比通式中w=0.5849,x=0.0616,α=13.7731,β=5.5236,y=0.0538,z=0.0055,所用原料包括:
镨钕合金,其钕含量为74.4%,余量为镨;
99.9%纯度的金属镨;
镝铁合金,其镝含量为80%,余量铁;
硼铁合金,其硼含量为19.4%,余量铁;
纯度为99.99%金属钴;
纯度为99.99%金属镓;
99.9%纯度的原料纯铁。
进一步,上述制备方法中的其中一种方案为:原子比通式中w=0,x=0.1074,α=13.5513,β=5.6505,y=0.0276,z=0.0064,所用原料包括:
镝铁合金,其镝含量80%,余量为铁;
99.9%纯度的金属钕;
硼铁合金,其硼含量为19.4%,余量为铁;
纯度为99.99%金属钴;
纯度为99.99%金属镓;
99.9%纯度的原料纯铁。
本发明的有益效果在于:本发明提供了一种高性能的各向同性热压钕铁硼快淬磁粉的成分组成和规模化生产该高性能快淬钕铁硼磁粉的生产工艺;生产出的磁粉具有优异的磁性能,用VSM(震动样品磁强计)测得的Br在720-784mT之间,Hci在1492-1834KA/m之间,(BH)max在84-99KJ/m3之间;该粉体无需进一步处理即可直接用于生产热压磁体,磁体磁性能高,耐热性高、耐腐蚀性好、磁性均匀。
具体的,该粉体可用于热压各向同性钕铁硼磁体和热挤压各向异性钕铁硼磁体;磁粉经过热压得到与原始合金密度相当的高密度各向同性磁体,将磁体在高温下镦锻挤压加工,产生热塑性变形,晶粒在加工方向排列,得到各向异性磁体,而且很适合制造辐射取向薄壁磁环,这种磁体的密度和磁性能高于粘接磁体,与烧结磁体性能相当。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合实施例对本发明的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下面对本发明实施例的各向同性热压钕铁硼快淬磁粉及其制备方法进行具体说明。
一种各向同性热压钕铁硼快淬磁粉,其原子比通式为
(Nd1-w-xPrwDyxα(Fe1-y-zCoyGaz)100-α-βBβ
式中:Nd为钕元素,Pr为镨元素,Dy为镝元素,Fe为铁元素,Co为钴元素,Ga为镓元素,B为硼元素,α是介于12-16间的任意数,β是介于4-7间的任意数,x是介于0-0.2间的任意数,y是介于0-0.1间的任意数,z是介于0-0.01间的任意数数,w是介于0-1间的任意数,单位是原子比。
一种上述各向同性热压钕铁硼快淬磁粉的制备方法,包括如下步骤:
S1:合金熔炼
按照上述原子比通式中各元素原子比备原料,原料包括金属钕、镨钕合金、金属镨、镝铁合金、原料纯铁、金属钴、金属镓、硼铁合金;
更具体地,使用99.9%纯度的稀土金属钕和金属镨,它们的成分中碳含量小于300ppm,硅、锰、铝含量小于500ppm,铁含量小于1000ppm;使用的镨钕合金,其成分中钕含量75±2%,余量为镨,碳含量小于300ppm,硅、锰、铝含量小于500ppm,铁含量小于1000ppm,并且用料时需要考虑到金属钕、金属镨和镨钕合金的挥发损失补偿;使用的镝铁合金,其成分中镝含量80±2%,余量铁,碳含量小于300ppm,硅、锰、铝含量小于500ppm;使用99.9%纯度的原料纯铁,其成分中碳含量小于50ppm,锰含量小于200ppm,硅含量小于500ppm;使用的硼铁合金,其成分中硼含量为20±1%,余量铁,碳含量小于1000ppm,锰、铝含量小于500ppm,硅含量小于3000pm;使用纯度为99.99%金属钴;使用纯度为99.99%金属镓。
每个批次配料180公斤,放入200kg中频真空感应炉中在高真空充氩气条件下熔炼和精炼,氩气条件下可防止氧化,熔炼温度为1500ºC,然后在1450ºC和200帕氩气气氛下精炼20-30分钟,去除合金中的有害杂质;用ICP(电感耦合等离子光谱仪)测量合金成分,并与初始设定的各元素原子比进行比对,如果差异较大,说明生产过程中存在操作失误,此时需要重新熔炼,若测量合金成分与初始设定的各元素原子比基本相同,则将合金溶液浇铸成4个45公斤左右的合金锭。
S2:合金快淬
将S1步骤制得的合金锭依次放入50公斤真空感应快淬炉中,在流动的氩气保护下感应加热熔化,氩气气压2000-3000帕,保温温度1420ºC,合金熔液在重力作用下经铜或铜镍导流棒引导从氧化铝坩锅底部氮化硼喷嘴的小孔喷射到高速旋转的水冷快淬轮表面瞬间凝固成钕铁硼快淬合金片,氮化硼小孔直径0.6-2.0毫米,水冷快淬轮外表面线速度为20-50米/秒;水冷快淬轮材料为钼或TZM(钼、钛、锆、碳)合金。
S3:粉碎与筛分
将S2步骤制得的合金片放入万能破碎机,在氩气保护下破碎,经过40目振动筛筛分,大于40目粉返回破碎,得到本发明的钕铁硼快淬磁粉;之后用VSM(震动样品磁强计)测量磁性能。
实施例1
按照原子组分比例(Nd1-w-xPrwDyxα(Fe1-y-zCoyGaz)100-α-βBβ备原料,其中w=0.2556,x=0,α=13.4875,β=5.4723,y=0.0479,z=0.0052,即
(Nd0.7444Pr0.255613.4875(Fe0.9469Co0.0479Ga0.0052)81.0402B5.4723
具体的,使用镨钕合金,其钕含量为74.4%,余量为镨;使用硼铁合金,其硼含量为19.4%,余量为铁;使用纯度为99.99%金属钴;使用纯度为99.99%金属镓;使用99.9%纯度的原料纯铁;配料180公斤,按本发明工艺,投入200kg真空熔炼炉中,按照本发明合金熔炼工艺熔炼和精炼,取样用ICP(电感耦合等离子光谱仪)测量合金成分后,浇铸形成4个圆柱状合金锭;合金锭依次放入50公斤连续快淬炉中,按照本发明所提供合金快淬工艺进行快淬;之后将快淬合金片按照本发明工艺破碎筛分,制成各向同性热压钕铁硼快淬磁粉;快淬磁粉取样,用VSM(震动样品磁强计)测量磁性能,测得Br=784mT,Hci=1492KA/m,(BH)max=99KJ/m3
实施例2
按照原子组分比例(Nd1-w-xPrwDyxα(Fe1-y-zCoyGaz)100-α-βBβ备原料,其中w=0,x=0,α=13.8248,β=5.5946,y=0.0554,z=0.0053,即
(Nd113.8248(Fe0.9393Co0.0554Ga0.0053)80.5806B5.5946
具体的,使用金属钕;使用硼铁合金,其硼含量为19.4%,余量铁;使用纯度为99.99%金属钴;使用纯度为99.99%金属镓;使用99.9%纯度的原料纯铁。配料180公斤,按本发明工艺,投入200kg真空熔炼炉中,按照本发明合金熔炼工艺熔炼和精炼,取样用ICP(电感耦合等离子光谱仪)测量合金成分后,浇铸形成4个圆柱状合金锭。合金锭依次放入50公斤连续快淬炉中,按照本发明所提供合金快淬工艺进行快淬。将快淬合金片按照本发明工艺破碎筛分,制成各向同性热压钕铁硼快淬磁粉。快淬磁粉取样,用VSM(震动样品磁强计)测量磁性能,测得Br=771mT,Hci=1641KA/m,(BH)max=99KJ/m3
实施例3
按照原子组分比例(Nd1-w-xPrwDyxα(Fe1-y-zCoyGaz)100-α-βBβ备原料,其中w=0,x=0,α=14.2610,β=5.4420,y=0.0154,z=0.0063,即
(Nd114.2610(Fe0.9783Co0.0154Ga0.0063)80.297B5.442
具体的,使用金属钕;使用硼铁合金,其硼含量为19.4%,余量铁;使用纯度为99.99%金属钴;使用纯度为99.99%金属镓;使用99.9%纯度的原料纯铁。配料180公斤,按本发明工艺,投入200kg真空熔炼炉中,按照本发明合金熔炼工艺熔炼和精炼,取样用ICP(电感耦合等离子光谱仪)测量合金成分后,浇铸形成4个圆柱状合金锭。合金锭依次放入50公斤连续快淬炉中,按照本发明所提供合金快淬工艺进行快淬。将快淬合金片按照本发明工艺破碎筛分,制成各向同性热压钕铁硼快淬磁粉。快淬磁粉取样,用VSM(震动样品磁强计)测量磁性能,测得Br=763mT,Hci=1667KA/m,(BH)max=97KJ/m3
实施例4
按照原子组分比例(Nd1-w-xPrwDyxα(Fe1-y-zCoyGaz)100-α-βBβ备原料,其中w=0.5849,x=0.0616,α=13.7731,β=5.5236,y=0.0538,z=0.0055,即
(Nd0.3535Pr0.5849Dy0.061613.7731(Fe0.9407Co0.0538Ga0.0055)80.7033B5.5236
具体的,使用镨钕合金,其钕含量为74.4%,余量为镨;使用金属镨;使用镝铁合金,其镝含量为80%,余量铁;使用硼铁合金,其硼含量为19.4%,余量铁;使用纯度为99.99%金属钴;使用纯度为99.99%金属镓;使用99.9%纯度的原料纯铁。配料180公斤,按本发明工艺,投入200kg真空熔炼炉中,按照本发明合金熔炼工艺熔炼和精炼,取样用ICP(电感耦合等离子光谱仪)测量合金成分后,浇铸形成4个圆柱状合金锭。合金锭依次放入50公斤连续快淬炉中,按照本发明所提供合金快淬工艺进行快淬。将快淬合金片按照本发明工艺破碎筛分,制成各向同性热压钕铁硼快淬磁粉。快淬磁粉取样,用VSM(震动样品磁强计)测量磁性能,测得Br=732mT,Hci=1812KA/m,(BH)max=84KJ/m3
实施例5
按照原子组分比例(Nd1-w-xPrwDyxα(Fe1-y-zCoyGaz)100-α-βBβ备原料,其中w=0,x=0.1074,α=13.5513,β=5.6505,y=0.0276,z=0.0064,即
(Nd0.8926Dy0.107413.5513(Fe0.966Co0.0276Ga0.0064)80.7982B5.6505
具体的,使用镝铁合金,其镝含量80%,余量为铁;使用金属钕;使用硼铁合金,其硼含量为19.4%,余量为铁;使用纯度为99.99%金属钴;使用纯度为99.99%金属镓;使用99.9%纯度的原料纯铁。配料180公斤,按本发明工艺,投入200kg真空熔炼炉中,按照本发明合金熔炼工艺熔炼和精炼,取样用ICP(电感耦合等离子光谱仪)测量合金成分后,浇铸形成4个圆柱状合合金锭依次放入50公斤连续快淬炉中,按照本发明所提供合金快淬工艺进行快淬。将快淬合金片按照本发明工艺破碎筛分,制成各向同性热压钕铁硼快淬磁粉。快淬磁粉取样,用VSM(震动样品磁强计)测量磁性能,测得Br=720mT,Hci=1834KA/m,(BH)max=87KJ/m3
尽管参照前述实例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种各向同性热压钕铁硼快淬磁粉,其特征是,其原子比通式为
(Nd1-w-xPrwDyxα(Fe1-y-zCoyGaz)100-α-βBβ
式中:Nd为钕元素,Pr为镨元素,Dy为镝元素,Fe为铁元素,Co为钴元素,Ga为镓元素,B为硼元素,α是介于12-16间的任意数,β是介于4-7间的任意数,x是介于0-0.2间的任意数,y是介于0-0.1间的任意数,z是介于0-0.01间的任意数数,w是介于0-1间的任意数,单位是原子比。
2.根据权利要求1所述的各向同性热压钕铁硼快淬磁粉的制备方法,其特征是,包括如下步骤:
S1:合金熔炼
按照原子比通式中各元素原子比备原料,原料为含有通式中元素的金属或合金,将原料放入中频真空感应炉中在高真空充氩气条件下熔炼和精炼,熔炼温度为1500ºC,然后在1450ºC和200帕氩气气氛下精炼20-30分钟,去除合金中的有害杂质;用ICP(电感耦合等离子光谱仪)测量合金成分,并与初始设定的各元素原子比进行比对,如果差异较大,说明生产过程中存在操作失误,此时需要重新熔炼,若测量合金成分与初始设定的各元素原子比基本相同,则将合金溶液浇铸成合金锭;
S2:合金快淬
将S1步骤制得的合金锭放入真空感应快淬炉中,在流动的氩气保护下感应加热熔化,氩气气压2000-3000帕,保温温度1420ºC,合金熔液在重力作用下经铜或铜镍导流棒引导从氧化铝坩锅底部氮化硼喷嘴的小孔喷射到高速旋转的水冷快淬轮表面瞬间凝固成钕铁硼快淬合金片,氮化硼小孔直径0.6-2.0毫米,水冷快淬轮外表面线速度为20-50米/秒;水冷快淬轮材料为钼或TZM合金;
S3:粉碎与筛分
将S2步骤制得的合金片放入万能破碎机,在氩气保护下破碎,经过40目振动筛筛分,大于40目粉返回破碎,得到本发明的钕铁硼快淬磁粉。
3.根据权利要求2所述的各向同性热压钕铁硼快淬磁粉的制备方法,其特征是,原子比通式中w=0.2556,x=0,α=13.4875,β=5.4723,y=0.0479,z=0.0052,所用原料包括:
镨钕合金,其钕含量为74.4%,余量为镨;
硼铁合金,其硼含量为19.4%,余量为铁;
纯度为99.99%金属钴;
纯度为99.99%金属镓;
99.9%纯度的原料纯铁。
4.根据权利要求2所述的各向同性热压钕铁硼快淬磁粉的制备方法,其特征是,原子比通式中w=0,x=0,α=13.8248,β=5.5946,y=0.0554,z=0.0053,所用原料包括:
99.9%纯度的金属钕;
硼铁合金,其硼含量为19.4%,余量铁;
纯度为99.99%金属钴;
纯度为99.99%金属镓;
99.9%纯度的原料纯铁。
5.根据权利要求2所述的各向同性热压钕铁硼快淬磁粉的制备方法,其特征是,原子比通式中w=0,x=0,α=14.2610,β=5.4420,y=0.0154,z=0.0063,所用原料包括:
99.9%纯度的金属钕;
硼铁合金,其硼含量为19.4%,余量铁;
纯度为99.99%金属钴;
纯度为99.99%金属镓;
99.9%纯度的原料纯铁。
6.根据权利要求2所述的各向同性热压钕铁硼快淬磁粉的制备方法,其特征是,原子比通式中w=0.5849,x=0.0616,α=13.7731,β=5.5236,y=0.0538,z=0.0055,所用原料包括:
镨钕合金,其钕含量为74.4%,余量为镨;
99.9%纯度的金属镨;
镝铁合金,其镝含量为80%,余量铁;
硼铁合金,其硼含量为19.4%,余量铁;
纯度为99.99%金属钴;
纯度为99.99%金属镓;
99.9%纯度的原料纯铁。
7.根据权利要求2所述的各向同性热压钕铁硼快淬磁粉的制备方法,其特征是,原子比通式中w=0,x=0.1074,α=13.5513,β=5.6505,y=0.0276,z=0.0064,所用原料包括:
镝铁合金,其镝含量80%,余量为铁;
99.9%纯度的金属钕;
硼铁合金,其硼含量为19.4%,余量为铁;
纯度为99.99%金属钴;
纯度为99.99%金属镓;
99.9%纯度的原料纯铁。
CN201910841352.2A 2019-09-06 2019-09-06 一种各向同性热压钕铁硼快淬磁粉及其制备方法 Pending CN110660553A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910841352.2A CN110660553A (zh) 2019-09-06 2019-09-06 一种各向同性热压钕铁硼快淬磁粉及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910841352.2A CN110660553A (zh) 2019-09-06 2019-09-06 一种各向同性热压钕铁硼快淬磁粉及其制备方法

Publications (1)

Publication Number Publication Date
CN110660553A true CN110660553A (zh) 2020-01-07

Family

ID=69037951

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910841352.2A Pending CN110660553A (zh) 2019-09-06 2019-09-06 一种各向同性热压钕铁硼快淬磁粉及其制备方法

Country Status (1)

Country Link
CN (1) CN110660553A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112481543A (zh) * 2020-10-20 2021-03-12 胡建青 一种高性能钕铁硼材料及其制备方法
CN113035559A (zh) * 2021-04-01 2021-06-25 包头市科锐微磁新材料有限责任公司 一种高性能钕铁硼各向同性磁粉的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765848A (en) * 1984-12-31 1988-08-23 Kaneo Mohri Permanent magnent and method for producing same
CN101894646A (zh) * 2010-07-14 2010-11-24 麦格昆磁(天津)有限公司 高性能的各向异性磁性材料及其制备方法
CN104979092A (zh) * 2015-07-13 2015-10-14 天津海特磁性材料有限公司 快淬钕铁硼磁粉的真空破碎生产工艺及其用途
CN107424695A (zh) * 2017-04-21 2017-12-01 华南理工大学 一种双合金纳米晶稀土永磁体及其制备方法
CN108242307A (zh) * 2018-01-08 2018-07-03 北京工业大学 一种基于高耐温粘结体系的各向同性粘结NdFeB磁体及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765848A (en) * 1984-12-31 1988-08-23 Kaneo Mohri Permanent magnent and method for producing same
CN101894646A (zh) * 2010-07-14 2010-11-24 麦格昆磁(天津)有限公司 高性能的各向异性磁性材料及其制备方法
CN104979092A (zh) * 2015-07-13 2015-10-14 天津海特磁性材料有限公司 快淬钕铁硼磁粉的真空破碎生产工艺及其用途
CN107424695A (zh) * 2017-04-21 2017-12-01 华南理工大学 一种双合金纳米晶稀土永磁体及其制备方法
CN108242307A (zh) * 2018-01-08 2018-07-03 北京工业大学 一种基于高耐温粘结体系的各向同性粘结NdFeB磁体及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112481543A (zh) * 2020-10-20 2021-03-12 胡建青 一种高性能钕铁硼材料及其制备方法
CN113035559A (zh) * 2021-04-01 2021-06-25 包头市科锐微磁新材料有限责任公司 一种高性能钕铁硼各向同性磁粉的制备方法
CN113035559B (zh) * 2021-04-01 2022-07-08 包头市科锐微磁新材料有限责任公司 一种高性能钕铁硼各向同性磁粉的制备方法
EP4066964A1 (en) * 2021-04-01 2022-10-05 Baotou Kerui Micro Magnet New Materials Co., Ltd. Method for preparing a high-performance nd-fe-b isotropic magnetic powder
US20220319772A1 (en) * 2021-04-01 2022-10-06 Baotou Kerui Micro Magnet New Materials Co., Ltd. Method for preparing a high-performance nd-fe-b isotropic magnetic powder
JP2022158836A (ja) * 2021-04-01 2022-10-17 バオトウ ケルイ マイクロ マグネット ニュー マテリアルズ カンパニー リミテッド 高性能ネオジム鉄ホウ素等方性磁性粉末の製造方法
JP7234326B2 (ja) 2021-04-01 2023-03-07 バオトウ ケルイ マイクロ マグネット ニュー マテリアルズ カンパニー リミテッド 高性能ネオジム鉄ホウ素等方性磁性粉末の製造方法

Similar Documents

Publication Publication Date Title
CN108831650B (zh) 一种钕铁硼磁体及其制备方法
KR101378090B1 (ko) R-t-b계 소결 자석
JP7220300B2 (ja) 希土類永久磁石材料、原料組成物、製造方法、応用、モーター
CN108063045A (zh) 一种无重稀土钕铁硼永磁材料及其制备方法
JPH0421744A (ja) 熱間加工性の良好な希土類磁石合金
CN110660553A (zh) 一种各向同性热压钕铁硼快淬磁粉及其制备方法
CN105825991A (zh) 一种少组元低成本高饱和磁感应强度的铁基软磁非晶合金及其制备工艺
CN102296228A (zh) 一种添加碳的永磁合金块体及制备方法
JPH04134804A (ja) 希土類永久磁石の製造方法
JP2725004B2 (ja) 永久磁石の製造方法
JP2631514B2 (ja) 永久磁石の製造方法
CN113345672B (zh) 一种烧结钕铁硼磁体及其制备工艺
CN109457166A (zh) 一种铁基块体非晶合金的制备及热塑性成型方法
JP2893705B2 (ja) 永久磁石の製造方法
KR930002559B1 (ko) 영구자석 및 그 제조방법
CN115692008A (zh) 一种无稀土永磁体的制备方法
CN102191428A (zh) 一种具有高矫顽力的Fe-Co基块体永磁合金及其制备方法
JPH06244046A (ja) 永久磁石の製造方法
JP2631513B2 (ja) 磁性合金の製造法
JP2992808B2 (ja) 永久磁石
JPH06151219A (ja) 永久磁石の製造方法
JPH06302451A (ja) 希土類永久磁石の製造方法
JPH05315112A (ja) 永久磁石の製造方法
JPH06260311A (ja) 希土類永久磁石の製造方法
JPH05315113A (ja) 永久磁石の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200107

RJ01 Rejection of invention patent application after publication