CN113035559B - 一种高性能钕铁硼各向同性磁粉的制备方法 - Google Patents

一种高性能钕铁硼各向同性磁粉的制备方法 Download PDF

Info

Publication number
CN113035559B
CN113035559B CN202110356690.4A CN202110356690A CN113035559B CN 113035559 B CN113035559 B CN 113035559B CN 202110356690 A CN202110356690 A CN 202110356690A CN 113035559 B CN113035559 B CN 113035559B
Authority
CN
China
Prior art keywords
alloy
magnetic powder
iron boron
neodymium iron
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110356690.4A
Other languages
English (en)
Other versions
CN113035559A (zh
Inventor
蔺继荣
王瑞刚
王志刚
任建新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baotou Kerui Weici New Material Co ltd
Original Assignee
Baotou Kerui Weici New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baotou Kerui Weici New Material Co ltd filed Critical Baotou Kerui Weici New Material Co ltd
Priority to CN202110356690.4A priority Critical patent/CN113035559B/zh
Publication of CN113035559A publication Critical patent/CN113035559A/zh
Priority to JP2021159497A priority patent/JP7234326B2/ja
Priority to EP21202284.2A priority patent/EP4066964B1/en
Priority to US17/522,701 priority patent/US20220319772A1/en
Application granted granted Critical
Publication of CN113035559B publication Critical patent/CN113035559B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/048Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by pulverising a quenched ribbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • B22F2201/11Argon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • B22F2301/355Rare Earth - Fe intermetallic alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)
  • Continuous Casting (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

本发明公开了一种高性能钕铁硼各向同性磁粉的制备方法,包括S1合金熔炼:将配料在真空条件下熔炼和精炼,得到合金锭,将合金锭粉碎,得到合金块;所述熔炼的温度为1350‑1450℃;所述精炼的条件为在1335‑1430℃和1000Pa惰性气体气氛下精炼3‑7分钟;S2合金快淬:将步骤S1得到的合金块熔化,得到合金溶液,合金溶液冷却凝固成钕铁硼快淬合金片;S3合金片破碎;S4晶化热处理:将步骤S3得到的磁粉在惰性气体氛围中进行晶化热处理,冷却,得到所述钕铁硼各向同性磁粉。本发明可以有效降低磁粉的氧含量,提高快淬磁粉的磁性能,同时,无需额外使用有机试剂,运行成本低,更绿色环保,适合大规模推广应用。

Description

一种高性能钕铁硼各向同性磁粉的制备方法
技术领域
本发明涉及稀土永磁材料技术领域,具体来说,涉及一种高性能钕铁硼各向同性磁粉的制备方法。
背景技术
钕铁硼稀土磁性材料按照生产工艺,基本上可以分为两种类型。一种是烧结钕铁硼,另一种是各向同性钕铁硼。各向同性钕铁硼磁体的基本原料称为钕铁硼快淬磁粉,快淬磁粉的大规模生产应用始于上世纪八十年代末。钕铁硼快淬磁粉的基本原料是稀土鐠钕金属,硼和金属铁。快淬磁粉的生产工艺非常复杂,主要包括合金熔炼、合金快淬、磁粉粉碎和磁粉晶化等步骤。
我国在这方面的开发研究已经有20多年的历史,但是基于上述方面的原因,在关键技术上尚没有最后突破。特别是在如何控制熔融合金快速凝固速率方面,进展缓慢。因此,国内除少数厂家可以小规模生产,尚没有形成生产高性能磁粉的能力和规模。
申请人一直在研究开发各种高性能快淬钕铁硼磁粉的生产工艺,通过大量的实验研究发现,快淬钕铁硼磁粉熔融合金在快淬凝固过程中,即便使用强大的真空机组让快淬炉保持很高的真空状态,得到的磁粉的氧含量仍然很高,从而磁粉的磁性能不高。同时发现,在高真空状态下,真空炉壁和坩埚等材料在高温状态下会不断释放出大量的氧气和氮气,而这些杂质气体在被排出之前,会有很大的机会与喷嘴以及坩埚内的高温钕铁硼发生氧化反应,从而提高了磁粉的氧含量,破坏了钕铁硼晶格结构,降低了磁粉的磁性能。因此,如何降低磁粉中的氧含量,是生产高性能磁粉的重要途径之一。
如,CN103862052A公开了一种各向同性钕铁硼磁体的成形方法,该方法通过将合金原料熔炼成预合金铸锭、对预合金铸锭进行非晶化处理获得快淬合金、对所述快淬合金进行球磨获得粉末、将所述粉末与粘结剂混合形成浆料以及所述浆料形成磁体的步骤,以及用表面处理剂对所述粉末表面进行处理的步骤可以降低各向同性钕铁硼的氧含量。
CN111755237A公开了一种钕铁硼磁体和调控钕铁硼磁体粗晶层晶粒尺寸及粒径分布的方法,该方法以酸性溶液对钕铁硼快淬磁粉进行酸洗处理,并进行洗涤干燥,使钕铁硼快淬磁粉表面的氧含量至少降低200ppm,该方法制备的快淬磁粉可以提高各向同性钕铁硼磁体和各向异性钕铁硼磁体的矫顽力。
上述现有技术均通过试剂对快淬磁粉进行表面处理,虽然可以在一定程度上降低氧含量,但是效果并不佳,同时存在需要改进现有生产工艺,运行成本高等问题,无法规模化推广。
发明内容
为了解决以上技术问题,本发明提供了一种高性能钕铁硼各向同性磁粉的制备方法,该制备方法通过控制快淬炉内的惰性气体的气压值和流量等参数,可以有效降低氧含量,制备的快淬磁粉与同类磁粉相比性能提高了10%以上。
为了实现上述目的,本发明采用以下技术方案:
一种高性能钕铁硼各向同性磁粉的制备方法,包括以下步骤:
S1、合金熔炼:
将配料在真空条件下熔炼和精炼,得到合金锭,将合金锭粉碎,得到合金块;
所述熔炼的温度为1350-1450℃;所述精炼的条件为:在1335-1430℃和900-1100Pa惰性气体气氛下精炼3-7分钟;
S2、合金快淬
将步骤S1得到的合金块熔化,得到合金溶液,合金溶液冷却凝固成钕铁硼快淬合金片;
S3、合金片破碎
将步骤S2得到的钕铁硼快淬合金片破碎,得到磁粉;
S4、晶化热处理
将步骤S3得到的磁粉在惰性气体氛围中进行晶化热处理,冷却,得到所述钕铁硼各向同性磁粉。
优选地,步骤S1中所述熔炼的温度为1395℃;所述精炼的条件为:在1380℃和1000Pa氩气气氛下精炼5分钟。
优选地,步骤S1中所述合金块的粒径为10-50mm;进一步优选为15-45mm。
优选地,步骤S2中所述合金快淬的条件为:控制惰性气体的充入流量为0.2-1.5m3/min,保持压力为200-2000Pa。
进一步优选地,步骤S2中所述合金快淬的条件为:控制惰性气体的充入流量为0.4-1.0m3/min,保持压力为400-1900Pa。
优选地,步骤S3中所述磁粉的粒径为45-380μm;进一步优选为58-250μm。
优选地,步骤S4中所述热处理为:在630-700℃下保持9-18min;进一步优选为:在650-680℃下保持10-15min;
优选地,步骤S1和S4中所述惰性气体为氩气。
本发明还提供了上述制备方法制备的高性能钕铁硼各向同性磁粉。
本发明还提供了一种钕铁硼磁体,利用上述制备方法制备的钕铁硼各向同性磁粉制备而成。
本发明的有益效果为:
(1)本发明通过对合金熔炼、精炼、快淬炉内惰性气体的气压值和流量等参数的改进,可以有效降低磁粉的氧含量,提高快淬磁粉的磁性能。
(2)本发明无需对现有工艺设备进行改造,同时,无需额外使用有机试剂,运行成本低,更绿色环保,适合大规模推广应用。
具体实施方式
以下实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对所公开的实施例的下述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例中,而是可以应用于符合与本文所公开的原理和新颖特点相一致的更宽的范围。虽然在本发明的实施或测试中可以使用与本发明中所述相似或等价的任何方法和材料,本文在此处列举优选的方法和材料。
除非另外定义,本文中使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同意义。
本发明实施例中所采用的配料包括以下重量百分比的组分:稀土金属鐠钕26.2%、硼铁4.7%、金属铌0.2%、金属钴2.0%和电工纯铁余量,具体地,所述稀土金属鐠钕的纯度为99.9%,其中氧含量小于400ppm,氮含量小于60ppm;所述电工纯铁的碳含量小于400ppm,硅含量小于1500ppm;所述硼铁中硼含量为20.2%;所述金属铌的纯度为99.5%;所述金属钴的纯度为99.9%,其中,氧含量小于500ppm;氮含量小于70ppm。
基础实施例一种高性能钕铁硼各向同性磁粉及其制备方法
一种高性能钕铁硼各向同性磁粉的制备方法,包括以下步骤:
S1、合金熔炼:
将配料加入中频真空感应炉中熔炼和精炼,浇筑成合金锭,并将合金锭粉碎,得到粒径为10-50mm的合金块;
所述熔炼的温度为1350-1450℃;所述精炼的条件为:在1335-1430℃和900-1100Pa惰性气体气氛下精炼3-7分钟;
S2、合金快淬
将步骤S1得到的合金块加入真空感应熔融快淬炉中,熔化,得到合金溶液,合金溶液冷却凝固成钕铁硼快淬合金片;
所述合金快淬的条件为:通过真空球阀充入氩气,保持氩气的充入流量为0.2-1.5m3/min,调节真空蝶阀,气压保持在200-2000Pa;
S3、合金片破碎
将步骤S2得到的钕铁硼快淬合金片破碎,得到粒径为45-380μm的磁粉;
S4、晶化热处理
将步骤S3得到的磁粉在氩气气体氛围中进行晶化热处理,冷却,得到所述钕铁硼各向同性磁粉;
所述晶化热处理的条件为:在630-700℃下保持9-18min。
实施例1-5一种高性能钕铁硼各向同性磁粉及其制备方法
所述高性能钕铁硼各向同性磁粉的制备方法中的工艺参数如表1所示。
表1
Figure BDA0003003552820000051
对比例1一种高性能钕铁硼各向同性磁粉及其制备方法
本对比例与实施例5的区别在于:步骤S2中合金快淬的条件为:真空感应熔融快淬炉的真空度为2x10-2Pa,不充入氩气。
对比例2一种高性能钕铁硼各向同性磁粉及其制备方法
本对比例与实施例5的区别在于:步骤S2中合金快淬的条件为:通过真空球阀充入氩气至氩气为1330Pa,关闭排气真空蝶阀。
对比例3一种高性能钕铁硼各向同性磁粉及其制备方法
本对比例与实施例5的区别在于:步骤S2中合金快淬的条件为:通过真空球阀充入氩气至氩气为3000Pa,关闭排气真空蝶阀。
对比例4一种高性能钕铁硼各向同性磁粉及其制备方法
一种高性能钕铁硼各向同性磁粉的制备方法,包括以下步骤:
S1、合金熔炼:
将配料加入中频真空感应炉中熔炼和精炼,浇筑成合金锭,并将合金锭粉碎,得到粒径为40mm的合金块;
所述熔炼的温度为1500℃;所述精炼的条件为:在1450℃和200Pa惰性气体气氛下精炼25分钟;
S2、合金快淬
将步骤S1得到的合金块加入真空感应熔融快淬炉中,熔化,得到合金溶液,合金溶液冷却凝固成钕铁硼快淬合金片;
所述合金快淬的条件为:通过真空球阀充入氩气,保持氩气的充入流量为3m3/min,调节真空蝶阀,气压保持在2500Pa;
S3、合金片破碎
将步骤S2得到的钕铁硼快淬合金片破碎,得到粒径为200μm的磁粉;
S4、晶化热处理
将步骤S3得到的磁粉在氩气气体氛围中进行晶化热处理,冷却,得到所述钕铁硼各向同性磁粉;
所述晶化热处理的条件为:在720℃下保持10min。
对比例5一种高性能钕铁硼各向同性磁粉及其制备方法
一种高性能钕铁硼各向同性磁粉的制备方法,包括以下步骤:
S1、合金熔炼:
将配料加入中频真空感应炉中熔炼和精炼,浇筑成合金锭,并将合金锭粉碎,得到粒径为40mm的合金块;
所述熔炼的温度为1300℃;所述精炼的条件为:在1285℃和1500Pa惰性气体气氛下精炼10分钟;
S2、合金快淬
将步骤S1得到的合金块加入真空感应熔融快淬炉中,熔化,得到合金溶液,合金溶液冷却凝固成钕铁硼快淬合金片;
所述合金快淬的条件为:通过真空球阀充入氩气,保持氩气的充入流量为0.1m3/min,调节真空蝶阀,气压保持在80Pa;
S3、合金片破碎
将步骤S2得到的钕铁硼快淬合金片破碎,得到粒径为200μm的磁粉;
S4、晶化热处理
将步骤S3得到的磁粉在氩气气体氛围中进行晶化热处理,冷却,得到所述钕铁硼各向同性磁粉;
所述晶化热处理的条件为:在600℃下保持20min。
对实施例1-5和对比例1-5制备的钕铁硼各向同性磁粉进行含氧量分析和磁性分析(VSM测量),结果如表2所示。
表2钕铁硼各向同性磁粉磁性能
Figure BDA0003003552820000071
Figure BDA0003003552820000081
申请人发现,在高真空气氛条件下,当快淬炉中由于各种原因出现了氧分子,它的平均自由程会很长。例如,在1.33x10-2Pa时,理想情况下的氧分子平均自由程为0.52米。也就是说,作为平均速率为450米/秒的氧分子,一旦出现在真空炉里,在它被真空机组抽走以前,它有足够的机会到达喷嘴下方的钕铁硼流注或者到达坩埚液面,和钕铁硼中的钕原子发生反应,这就是采用高真空手段无法降低磁粉中氧含量的原因。
同时申请人发现,如果在快淬炉里充入并且保留少量氩气,当压力达到133帕时候,氧气分子的平均自由程就迅速降到了0.052毫米,到快淬炉内的氩气压力达到2000帕之后,同样的温度下氧原子的平均自由程降到了2.0微米以下。氩气这样的惰性气体在钕铁硼液体周围形成了完全的保护层。这个时候,气体分子之间的碰撞频率达到每秒钟七千万次!所以,快淬炉内如果出现了氧原子,绝大部分的氧原子在还没有机会到达钕铁硼液体表面以前,就被真空泵排出快淬炉。连续冲入氩气的同时,真空泵排除污染的氩气,带走氧和氮等有害分子,能有效降低快淬炉内氧和氮等有害分子的量。
经过一系列试验和研究表明,如果在快淬炉内连续充入氩气,同时用真空泵持续地将炉内气体抽出,保持一个持续的流动和交换,使得压力保持在200帕以上,快淬磁粉的氧含量大大降低,当氩气压力为1330帕时,磁粉的氧含量最低。同时实验证明,在炉体底部充入氩气,在炉体顶部抽出气体,带走有害气体,效果会更好。但是,炉内压力也不能够过高,否则由于快淬轧辊的高速旋转带来的气体旋流,使得氧含量不再降低,气体旋流也会使得快淬工艺变得更加复杂并影响磁性能。
综上所述,本发明通过对合金熔炼、精炼、快淬炉内惰性气体的气压值和流量等参数的改进,可以有效降低磁粉的氧含量,提高快淬磁粉的磁性能。
同时,本发明无需对现有工艺设备进行改造,无需额外使用有机试剂,运行成本低,更绿色环保,适合大规模推广应用。
以上是结合具体实施例对本发明进一步的描述,但这些实施例仅仅是范例性的,并不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明技术方案的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。

Claims (7)

1.一种钕铁硼各向同性磁粉的制备方法,其特征在于,包括以下步骤:
S1、合金熔炼
将配料在真空条件下熔炼和精炼,得到合金锭,将合金锭粉碎,得到合金块;
所述配料包括以下重量百分比的组分:稀土金属鐠钕26.2%、硼铁4.7%、金属铌0.2%、金属钴2.0%和电工纯铁余量,
所述熔炼的温度为1350-1450℃;所述精炼的条件为:在1335-1430℃和900-1100Pa惰性气体气氛下精炼3-7分钟;
S2、合金快淬
将步骤S1得到的合金块熔化,得到合金溶液,合金溶液冷却凝固成钕铁硼快淬合金片;
步骤S2中所述合金快淬的条件为:控制惰性气体的充入流量为0.2-1.5m3/min,保持压力为200-2000Pa;
S3、合金片破碎
将步骤S2得到的钕铁硼快淬合金片破碎,得到磁粉;
S4、晶化热处理
将步骤S3得到的磁粉在惰性气体氛围中进行晶化热处理,冷却,得到所述钕铁硼各向同性磁粉;
步骤S4中所述晶化热处理为:在630-700℃下保持9-18min。
2.根据权利要求1所述的制备方法,其特征在于,步骤S1中所述合金块的粒径为10-50mm。
3.根据权利要求1所述的制备方法,其特征在于,步骤S2中所述合金快淬的条件为:控制惰性气体的充入流量为0.4-1.0m3/min,保持压力为400-1900Pa。
4.根据权利要求1所述的制备方法,其特征在于,步骤S3中所述磁粉的粒径为45-380μm。
5.根据权利要求1所述的制备方法,其特征在于,步骤S1和S4中所述惰性气体为氩气。
6.根据权利要求1-5任一项所述的制备方法制备的钕铁硼各向同性磁粉。
7.一种钕铁硼磁体,其特征在于,利用权利要求1-5任一项制备方法制备的钕铁硼各向同性磁粉制备而成。
CN202110356690.4A 2021-04-01 2021-04-01 一种高性能钕铁硼各向同性磁粉的制备方法 Active CN113035559B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202110356690.4A CN113035559B (zh) 2021-04-01 2021-04-01 一种高性能钕铁硼各向同性磁粉的制备方法
JP2021159497A JP7234326B2 (ja) 2021-04-01 2021-09-29 高性能ネオジム鉄ホウ素等方性磁性粉末の製造方法
EP21202284.2A EP4066964B1 (en) 2021-04-01 2021-10-12 Method for preparing a high-performance nd-fe-b isotropic magnetic powder
US17/522,701 US20220319772A1 (en) 2021-04-01 2021-11-09 Method for preparing a high-performance nd-fe-b isotropic magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110356690.4A CN113035559B (zh) 2021-04-01 2021-04-01 一种高性能钕铁硼各向同性磁粉的制备方法

Publications (2)

Publication Number Publication Date
CN113035559A CN113035559A (zh) 2021-06-25
CN113035559B true CN113035559B (zh) 2022-07-08

Family

ID=76454341

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110356690.4A Active CN113035559B (zh) 2021-04-01 2021-04-01 一种高性能钕铁硼各向同性磁粉的制备方法

Country Status (4)

Country Link
US (1) US20220319772A1 (zh)
EP (1) EP4066964B1 (zh)
JP (1) JP7234326B2 (zh)
CN (1) CN113035559B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102205417A (zh) * 2010-03-29 2011-10-05 有研稀土新材料股份有限公司 一种快淬合金的制造方法及设备
CN103567453A (zh) * 2012-07-30 2014-02-12 江苏巨鑫磁业有限公司 一种钕铁硼快淬粉晶化方法
CN107464645A (zh) * 2017-09-16 2017-12-12 江苏新旭磁电科技有限公司 一种低退磁率钕铁硼NdFeB合金超细永磁粉的制备方法
CN110660553A (zh) * 2019-09-06 2020-01-07 包头市科锐微磁新材料有限责任公司 一种各向同性热压钕铁硼快淬磁粉及其制备方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246319A (ja) * 1988-03-25 1989-10-02 Namiki Precision Jewel Co Ltd 永久磁石材料の製造方法
CN1037176A (zh) * 1988-04-25 1989-11-15 刘慧斌 高磁能积钕镨永磁合金及其工艺
CN1062232A (zh) * 1990-12-04 1992-06-24 北京科技大学 用稀土铁硼废料制取稀土铁硼永磁材料的方法
JPH07224314A (ja) * 1994-02-14 1995-08-22 Nisshin Steel Co Ltd CO脱酸を利用したAlフリー脱酸鋼の製造方法
JP4106099B2 (ja) * 1995-03-29 2008-06-25 日立金属株式会社 R−Fe−B系磁石合金用鋳片の製造方法
JP3488354B2 (ja) * 1996-09-06 2004-01-19 住友特殊金属株式会社 微細結晶永久磁石合金及び等方性永久磁石粉末の製造方法
CN1254029A (zh) * 1998-11-12 2000-05-24 宁波韵升强磁材料有限公司 金属实收率高的稀土-铁-硼熔炼工艺
DE60131561T2 (de) * 2000-10-06 2008-03-06 Neomax Co., Ltd. Verfahren zur herstellung einer rohlegierung durch bandgiessen für dauermagnete aus nanoverbundwerkstoff
US6790296B2 (en) * 2000-11-13 2004-09-14 Neomax Co., Ltd. Nanocomposite magnet and method for producing same
JP4023138B2 (ja) * 2001-02-07 2007-12-19 日立金属株式会社 鉄基希土類合金粉末および鉄基希土類合金粉末を含むコンパウンドならびにそれを用いた永久磁石
CN1220989C (zh) * 2001-02-07 2005-09-28 株式会社新王磁材 制造铁基稀土磁体用合金材料的方法
JP4754739B2 (ja) * 2001-09-03 2011-08-24 昭和電工株式会社 希土類磁石用合金塊、その製造方法および焼結磁石
JP3602120B2 (ja) * 2002-08-08 2004-12-15 株式会社Neomax ナノコンポジット磁石用急冷合金の製造方法
CN1805071A (zh) * 2002-08-08 2006-07-19 株式会社新王磁材 磁体用急冷合金的制造方法
CN100424791C (zh) * 2005-12-19 2008-10-08 锦州东方微纳科技有限公司 一种高稳定性高磁性快淬R-Fe-B基永磁合金粉
CN100485063C (zh) * 2006-01-24 2009-05-06 东北大学 一种强磁场下高温处理装置
CN101894646A (zh) * 2010-07-14 2010-11-24 麦格昆磁(天津)有限公司 高性能的各向异性磁性材料及其制备方法
WO2012105399A1 (ja) 2011-01-31 2012-08-09 日立金属株式会社 R-t-b系焼結磁石の製造方法
JP2013179195A (ja) 2012-02-28 2013-09-09 Daihatsu Motor Co Ltd 磁性材料
CN102990057B (zh) * 2012-11-26 2014-11-26 包头市科锐微磁新材料有限责任公司 一种生产钕铁硼粘接磁粉的工艺方法
CN103862052B (zh) 2012-12-17 2017-10-31 北京中科三环高技术股份有限公司 一种各向同性钕铁硼磁体的成形方法
CN103714928B (zh) * 2013-12-30 2017-12-26 钢铁研究总院 一种铈铁基快淬永磁粉及其制备方法
CN104979092A (zh) * 2015-07-13 2015-10-14 天津海特磁性材料有限公司 快淬钕铁硼磁粉的真空破碎生产工艺及其用途
CN106486227B (zh) 2015-09-01 2018-10-19 中国科学院宁波材料技术与工程研究所 一种镧铈铁基永磁粉及其制备方法
WO2017053712A1 (en) * 2015-09-24 2017-03-30 Lenlok Holdings, Llc Pipe fitting with sensor
CN111755237B (zh) 2020-07-23 2022-08-02 中国科学院宁波材料技术与工程研究所 一种钕铁硼磁体和调控钕铁硼磁体粗晶层晶粒尺寸及粒径分布的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102205417A (zh) * 2010-03-29 2011-10-05 有研稀土新材料股份有限公司 一种快淬合金的制造方法及设备
CN103567453A (zh) * 2012-07-30 2014-02-12 江苏巨鑫磁业有限公司 一种钕铁硼快淬粉晶化方法
CN107464645A (zh) * 2017-09-16 2017-12-12 江苏新旭磁电科技有限公司 一种低退磁率钕铁硼NdFeB合金超细永磁粉的制备方法
CN110660553A (zh) * 2019-09-06 2020-01-07 包头市科锐微磁新材料有限责任公司 一种各向同性热压钕铁硼快淬磁粉及其制备方法

Also Published As

Publication number Publication date
EP4066964A1 (en) 2022-10-05
EP4066964A8 (en) 2022-12-28
EP4066964B1 (en) 2023-10-04
JP7234326B2 (ja) 2023-03-07
CN113035559A (zh) 2021-06-25
JP2022158836A (ja) 2022-10-17
US20220319772A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
EP3109869A1 (en) Preparation of rare earth permanent magnet material
CN103093916B (zh) 一种钕铁硼磁性材料及其制备方法
CN107240470A (zh) 一种低失重烧结钕铁硼磁体及制作方法
CN107393711A (zh) 一种高矫顽力磁体的制备方法
CN1757773A (zh) 等轴晶铝镍钴钛永磁合金的制造工艺
CN104575901A (zh) 一种添加铽粉的钕铁硼磁体及其制备方法
CN104575902A (zh) 一种添加铈的钕铁硼磁体及其制备方法
CN106756446A (zh) 低氧稀土钢用稀土铁中间合金的制备方法
CN103000324A (zh) 一种烧结稀土永磁材料及其制备方法
CN113035559B (zh) 一种高性能钕铁硼各向同性磁粉的制备方法
CN102982935A (zh) 一种无重稀土永磁材料及其热压制备方法
CN107785141A (zh) 一种通过放电等离子烧结技术提高非稀土MnBi永磁合金高温稳定性的方法
CN109550945B (zh) 一种利用白云鄂博共伴生原矿混合稀土制备的永磁材料及其制备方法
CN110993235A (zh) 一种高铁低铜型钐钴永磁材料及其制备方法
CN114300210B (zh) 稀土氢化金属粉末、钕铁硼磁体及其制备方法
CN105702406A (zh) 一种MnAlC基高矫顽力永磁材料及其制备方法
WO2023280259A1 (zh) 一种耐腐蚀、高性能钕铁硼烧结磁体及其制备方法和用途
CN113436819A (zh) 一种低温度系数钐钴烧结永磁材料的制备方法
CN113871120A (zh) 一种混合稀土永磁材料及其制备方法
CN113957405A (zh) 一种用于磁控溅射晶界扩散的稀土合金靶材及其制备方法
CN109087802A (zh) 一种稀土永磁体回收利用方法
CN111968815A (zh) 一种基于白云鄂博混合稀土的高性能永磁体及其制备方法
CN112877615B (zh) 一种高磁感应铁基非晶软磁合金及其制备方法
CN117144162B (zh) 一种铜锰合金材料制备方法
CN113151719B (zh) 一种无稀土MnAlIn永磁合金及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A preparation method for high-performance neodymium iron boron isotropic magnetic powder

Granted publication date: 20220708

Pledgee: Baotou Branch of Bank of China Ltd.

Pledgor: BAOTOU KERUI WEICI NEW MATERIAL Co.,Ltd.

Registration number: Y2024150000009