CN109972027A - 一种通过低熔点PrCu晶间相添加制备各向异性CeFeB永磁合金的方法 - Google Patents

一种通过低熔点PrCu晶间相添加制备各向异性CeFeB永磁合金的方法 Download PDF

Info

Publication number
CN109972027A
CN109972027A CN201811579003.XA CN201811579003A CN109972027A CN 109972027 A CN109972027 A CN 109972027A CN 201811579003 A CN201811579003 A CN 201811579003A CN 109972027 A CN109972027 A CN 109972027A
Authority
CN
China
Prior art keywords
cefeb
prcu
alloy
magnet
anisotropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811579003.XA
Other languages
English (en)
Inventor
侯育花
李志浩
黄有林
葛现金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Hangkong University
Original Assignee
Nanchang Hangkong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Hangkong University filed Critical Nanchang Hangkong University
Priority to CN201811579003.XA priority Critical patent/CN109972027A/zh
Publication of CN109972027A publication Critical patent/CN109972027A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/0697Accessories therefor for casting in a protected atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种通过低熔点PrCu晶间相添加制备各向异性CeFeB永磁合金的方法,其步骤为:选取单质元素:按化学计量比配比CeFeB合金与PrCu合金;熔炼甩带:分别将配比好的Ce、Fe、B单质和Pr、Cu单质在氩气气氛下电弧熔炼以确保成分均匀;后在氩气环境下,分别将CeFeB合金铸锭和PrCu合金铸锭通过熔体快淬技术制备成合金薄带;退火热处理:将熔体快淬制备的初始薄带进行退火热处理。粗破碎与机械混合:放电等离子烧结(SPS):将机械混合后的粉末装入石墨模具中,采用放电等离子烧结技术制备各向同性块体材料;热变形:将SPS烧结块体放入真空热压炉中进行热变形,获得各向异性CeFeB永磁合金。

Description

一种通过低熔点PrCu晶间相添加制备各向异性CeFeB永磁合 金的方法
技术领域
本发明涉及各向异性CeFeB永磁合金的制备及其性能研究,尤其涉及一种通过低熔点PrCu晶间相添加制备各向异性CeFeB永磁合金的方法。
背景技术
钕铁硼磁体的广泛应用促使中低丰度稀土元素钕、镨、镝、铽等被大量消耗。然而,以铈(Ce)、镧(La)为主的高丰度稀土元素在永磁领域中仍未获得大量应用,造成稀土资源的不平衡利用。从原材料成本和国家战略安全角度考虑,高性价比的高丰度稀土永磁的研究开发势在必行。
热变形法是对有一定致密度的磁体进行镦粗或挤压等的加工方式,已经成功应用于制备高性能各向异性Nd-Fe-B磁体。目前针对CeFeB永磁块体材料的研究多以烧结磁体为主,通过热变形技术制备各向异性CeFeB磁体的相关研究不多,特别是通过晶间相添加同时达到改善塑性变形能力和提高各向异性的研究更加匮乏。
本发明通过在烧结过程中添加低熔点PrCu合金,在大为提高磁体致密度和磁性能的同时,对改善磁体的塑性变形能力和增加磁各向异性方面都能起到良好作用。特别是对于后期通过晶界扩散提高磁性能方面,低熔点PrCu合金可以作为晶界扩散通道,大为改善扩散效率,因此本发明技术具有一定的应用价值。
发明内容
本发明的目的在于提供了低熔点PrCu晶间相添加制备各向异性CeFeB永磁合金的方法,它具有高各向异性及磁性能优异等优点。
本发明是这样来实现的,方法步骤为:
(一)配比母合金样品成分:根据CeFeB与PrCu相图,分别配比Ce13.5+xFe81-xB5.5(0<x<3.5)与Pr68Cu32合金,采用纯度为99.40%的单质Ce、纯度为99.95%的单质Fe和硼铁(B(19.67wt.%),Fe(78.98wt.%))为原材料。
(二)熔炼甩带:将称量配比好的单质元素放入高真空水冷式铜坩埚电弧炉中进行熔炼,真空抽至2.0×10-3Pa后充入1个大气压的高纯氩气,熔炼时先熔Zr块体,使其吸收炉内残余的氧气,为使得成分更加均匀,需反复熔炼6~7次;后用砂轮机打磨铸锭,以去除其表面氧化层,再经机械破碎后装入石英管,在高纯氩气保护的气氛下感应加热成液体并用高速氩气流使其从石英管管口中喷出,迅速喷出的液滴滴在30~40m/s快速旋转的铜辊上,最终制备得到CeFeB薄带和PrCu薄带。
(三)退火热处理:将薄带状CeFeB样品用石英管密封,其内部为高真空状态,使用高温电阻炉把密封后的薄带进行退火热处理,然后在600℃退火5~15min。
(四)粗破碎与机械混合:使用玛瑙钵和杵在手套箱中分别将退火后的CeFeB薄带和PrCu薄带研磨至100~300μm,按照5~20wt.%的PrCu合金配比,使用混合机将CeFeB粉末与PrCu粉末均匀混合。其中,为了防止合金粉末的氧化,需在高纯度氩气气氛中混合。
(五)放电等离子烧结(SPS):将15~20g混合后的粉末装入石墨模具中,利用放电等离子烧结系统,在600~750℃、30~50MPa和5~10min的高真空烧结条件下,制得圆柱形CeFeB永磁体。
(六)热变形:将放电等离子烧结CeFeB磁体放入热压炉进行热变形,变形温度为650~800℃,变形量为50~80%,即可制得各向异性CeFeB永磁合金。
步骤(一)所述单质元素由北京中诺新材订购所得,Ce元素纯度为99.40%,Fe元素纯度为99.95%,配样之前,两种单质表面需充分打磨至银白色金属光泽。
步骤(二)所述熔炼甩带都需将真空度抽至2.0×10-3Pa,在高纯氩气的氛围下完成。电弧熔炼时,电流不应太大且要调整好钨针与样品之间的距离,以防样品飞溅或起弧失败;快淬甩带时,感应电流需缓慢增加,使样品受热均匀至熔融状态时,将熔体喷射至旋转铜辊获得所需合金薄带。
步骤(三)所述退火热处理需要挑选具有银白色金属光泽且毛刺较少的合金薄带,然后将其放入一端封闭的石英管中,将此石英管抽至2.0×10-3Pa的高真空状态,使用乙炔焰迅速烧断石英管;最后将封有薄带的石英管置于高温电阻炉中进行退火热处理。
步骤(四)所述粗破碎与机械混合,在使用玛瑙钵和杵研磨时,需将样品放置于充入高纯氩气的手套箱内进行操作,目的是减缓CeFeB粉末和PrCu粉末的氧化。机械混合也应在高纯氩气气氛下进行。
步骤(五)所述放电等离子烧结需在高真空状态下完成,烧结温度由插入石墨模具中的热电偶测量,烧结压力由所用模具的截面积计算获得。
步骤(六)所述热变形是在真空热压炉中进行,热变形时需缓慢增加压力,当加压行程与预设变形量一致时,变形阶段结束,随炉冷却,最终获得各向异性磁体。
本发明的技术效果是:本发明通过在烧结过程中添加低熔点PrCu合金,可有效提高前驱烧结磁体的致密度和磁性能,较大程度的改善了磁体的塑性变形能力,非常有利于通过热变形技术制备各向异性CeFeB磁体。同时,对于后期通过晶界扩散提高磁性能方面,低熔点PrCu晶间相也可以作为晶界扩散通道,大为改善扩散效率,因此本发明技术具有一定的应用价值。
附图说明
图1添加和未添加PrCu热变形CeFeB磁体的XRD图谱图。
图2添加和未添加PrCu热变形CeFeB磁体的外形图。
图3添加有PrCu热变形CeFeB磁体平行及垂直于压力方向的磁滞回线图。
图4添加有PrCu热变形CeFeB磁体的SEM图,(a)扩散前,(b)扩散后。
具体实施方式
实施例1
(一)配比母合金样品成分:根据CeFeB与PrCu相图,分别配比名义成分为Ce13.5Fe81B5.5与Pr68Cu32的合金,采用纯度为99.40%的单质Ce、纯度为99.95%的单质Fe和硼铁B(19.67wt.%),Fe(78.98wt.%))为原材料。
(二)熔炼甩带:将称量配比好的单质元素放入高真空水冷式铜坩埚电弧炉中进行熔炼,真空抽至2.0×10-3Pa后充入1个大气压的高纯氩气,熔炼时先熔Zr块体,使其吸收炉内残余的氧气,为使其成分更加均匀,需反复熔炼6次;后用砂轮机打磨铸锭,以去除其表面的氧化层,再经机械破碎后装入石英管,在高纯氩气保护的气氛下感应加热成液体并用高速氩气流使其从石英管管口中喷出,迅速喷出的液滴滴在35m/s快速旋转的铜辊上,最终制备得到Ce13.5Fe81B5.5与Pr68Cu32合金薄带。
(三)退火热处理:将Ce13.5Fe81B5.5合金薄带用石英管密封,其内部为高真空状态,使用高温电阻炉把密封后的薄带进行退火热处理,其热处理温度和时间分别为600℃和5min。
(四)粗破碎与机械混合:使用玛瑙钵和杵在手套箱中分别将退火后的CeFeB薄带和PrCu薄带研磨至100μm,按照15wt.%的PrCu合金配比,使用混合机将CeFeB粉末与PrCu粉末均匀混合。其中,为了防止合金粉末的氧化,需在高纯度氩气气氛中混合。
(五)放电等离子烧结(SPS):将20g混合后的粉末装入石墨模具中,利用放电等离子烧结系统,在650℃/50MPa/5min的高真空烧结条件下,制得圆柱形CeFeB磁体。
(六)热变形:将放电等离子烧结CeFeB磁体放入热压炉进行热变形,变形温度为700℃,变形量为59%,即可制得各向异性CeFeB永磁合金。
实施例2
(一)配比母合金样品成分:根据CeFeB与PrCu相图,分别配比名义成分为Ce17Fe77.5B5.5与Pr68Cu32的合金,采用纯度为99.40%的单质Ce、纯度为99.95%的单质Fe和硼铁B(19.67wt.%),Fe(78.98wt.%))为原材料。
(二)熔炼甩带:将称量配比好的单质元素放入高真空水冷式铜坩埚电弧炉中进行熔炼,真空抽至2.0×10-3Pa后充入1个大气压的高纯氩气,熔炼时先熔Zr块体,使其吸收炉内残余的氧气,为使其成分更加均匀,需反复熔炼7次;后用砂轮机打磨铸锭,以去除其表面的氧化层,再经机械破碎后装入石英管,在高纯氩气保护的气氛下感应加热成液体并用高速氩气流使其从石英管管口中喷出,迅速喷出的液滴滴在30m/s快速旋转的铜辊上,最终制备得到Ce17Fe77.5B5.5与Pr68Cu32合金薄带。
(三)退火热处理:将Ce17Fe77.5B5.5合金薄带用石英管密封,其内部为高真空状态,使用高温电阻炉把密封后的薄带进行退火热处理,其热处理温度和时间分别为600℃和15min。
(四)粗破碎与机械混合:使用玛瑙钵和杵在手套箱中分别将退火后的CeFeB薄带和PrCu薄带研磨至300μm,按照5wt.%的PrCu合金配比,使用混合机将CeFeB粉末与PrCu粉末均匀混合。其中,为了防止合金粉末的氧化,需在高纯度氩气气氛中混合。
(五)放电等离子烧结(SPS):将15g混合后的粉末装入石墨模具中,利用放电等离子烧结系统,在600℃/40MPa/10min的高真空烧结条件下,制得圆柱形CeFeB磁体。
(六)热变形:将放电等离子烧结CeFeB磁体放入热压炉进行热变形,变形温度为900℃,变形量为80%,即可制得各向异性CeFeB永磁合金。
实施例3
(一)配比母合金样品成分:根据CeFeB与PrCu相图,分别配比名义成分为Ce14.5Fe80B5.5与Pr68Cu32的合金,采用纯度为99.40%的单质Ce、纯度为99.95%的单质Fe和硼铁B(19.67wt.%),Fe(78.98wt.%))为原材料。
(二)熔炼甩带:将称量配比好的单质元素放入高真空水冷式铜坩埚电弧炉中进行熔炼,真空抽至2.0×10-3Pa后充入1个大气压的高纯氩气,熔炼时先熔Zr块体,使其吸收炉内残余的氧气,为使其成分更加均匀,需反复熔炼7次;后用砂轮机打磨铸锭,以去除其表面的氧化层,再经机械破碎后装入石英管,在高纯氩气保护的气氛下感应加热成液体并用高速氩气流使其从石英管管口中喷出,迅速喷出的液滴滴在40m/s快速旋转的铜辊上,最终制备得到Ce14.5Fe80B5.5与Pr68Cu32合金薄带。
(三)退火热处理:将Ce14.5Fe80B5.5合金薄带用石英管密封,其内部为高真空状态,使用高温电阻炉把密封后的薄带进行退火热处理,其热处理温度和时间分别为600℃和10min。
(四)粗破碎与机械混合:使用玛瑙钵和杵在手套箱中分别将退火后的CeFeB薄带和PrCu薄带研磨至200μm,按照20wt.%的PrCu合金配比,使用混合机将CeFeB粉末与PrCu粉末均匀混合。其中,为了防止合金粉末的氧化,需在高纯度氩气气氛中混合。
(五)放电等离子烧结(SPS):将17g混合后的粉末装入石墨模具中,利用放电等离子烧结系统,在750℃/30MPa/7min的高真空烧结条件下,制得圆柱形CeFeB磁体。
(六)热变形:将放电等离子烧结CeFeB磁体放入热压炉进行热变形,变形温度为650℃,变形量为50%,即可制得各向异性CeFeB永磁合金。
本实施方式通过添加低熔点PrCu晶间相,一方面,低熔点PrCu晶间相的添加可以提高前驱烧结磁体的致密度和改善磁性能;另一方面,低熔点PrCu相可以充当CeFeB磁体热变形时的媒介,从而达到提高磁体塑性变形能力和增加磁各向异性的目的;此外,对于后期通过晶界扩散提高磁性能方面,低熔点PrCu晶间相也可以作为晶界扩散通道,大为改善扩散效率,极大地提高磁体磁性能。
虽然介绍和描述了本发明的具体实施方式,但是本发明并不局限于此,而是还能以除了所附权利要求中定义的技术方案范围内的其他方式来具体实现,比如可通过调节变形温度与变形量,以希望能够改变各向异性的程度或CeFeB磁体的永磁性能,同时也可调节合金的成分或将其他元素掺杂到CeFeB合金中,进一步探索烧结与热压工艺对磁体各向异性等磁性能的影响。

Claims (3)

1.一种通过低熔点PrCu晶间相添加制备各向异性CeFeB永磁合金的方法,其特征在于,所述方法包括以下步骤:
(一)配比母合金样品成分:根据CeFeB与PrCu相图,分别配比Ce13.5+xFe81-xB5.5与Pr68Cu32合金,其中,x=0~3.5,采用纯度为99.40%的单质Ce、纯度为99.95%的单质Fe和硼铁为原材料,硼铁中B和Fe的纯度分别为19.67wt.%和78.98wt.%;
(二)熔炼甩带:将称量配比好的单质元素放入高真空水冷式铜坩埚电弧炉中进行熔炼,真空抽至2.0×10-3Pa后充入1个大气压的高纯氩气,熔炼时先熔Zr块体,使其吸收炉内残余的氧气,为确保成分均匀,反复熔炼6~7次;后用砂轮机打磨铸锭,以去除其表面氧化层,再经机械破碎后装入石英管,在高纯氩气保护的气氛下感应加热成液体并用高速氩气流使其从石英管管口中喷出,迅速喷出的液滴滴在30~40m/s快速旋转的铜辊上,最终制备得到CeFeB薄带和PrCu薄带;
(三)退火热处理:将薄带状CeFeB样品用石英管密封,其内部为高真空状态,使用高温电阻炉把密封后的薄带进行退火热处理,然后在600℃退火5~15min;
(四)粗破碎与机械混合:使用玛瑙研钵和研杵在手套箱中分别将退火后的CeFeB薄带和PrCu薄带研磨至100~300μm,按照5~20wt.%的PrCu合金配比,使用混合机将CeFeB粉末与PrCu粉末均匀混合;其中,为防止合金粉末的氧化,需在高纯度氩气气氛中混合;
(五)放电等离子烧结SPS:将15~20g混合后的粉末装入石墨模具中,利用放电等离子烧结系统,在600~750℃、30~50MPa和5~10min的高真空烧结条件下,制得圆柱形CeFeB永磁体;
(六)热变形:将放电等离子烧结CeFeB磁体放入热压炉进行热变形,变形温度为650~900℃,变形量为50~80%,即可制得各向异性CeFeB永磁合金。
2.根据权利要求1所述的一种通过低熔点PrCu晶间相添加制备各向异性CeFeB永磁合金的方法,其特征在于,所述的低熔点晶间相PrCu的添加量不能超过20wt.%,否则不利于磁体性能的改善。
3.根据权利要求1所述的一种通过低熔点PrCu晶间相添加制备各向异性CeFeB永磁合金的方法,其特征在于,所述的热变形温度不能高于900℃,否则不利于磁体性能的提高,步骤(一)所述Ce元素纯度为99.40%,Fe元素纯度为99.95%,配样之前,两种单质表面需充分打磨至银白色金属光泽。
CN201811579003.XA 2018-12-24 2018-12-24 一种通过低熔点PrCu晶间相添加制备各向异性CeFeB永磁合金的方法 Pending CN109972027A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811579003.XA CN109972027A (zh) 2018-12-24 2018-12-24 一种通过低熔点PrCu晶间相添加制备各向异性CeFeB永磁合金的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811579003.XA CN109972027A (zh) 2018-12-24 2018-12-24 一种通过低熔点PrCu晶间相添加制备各向异性CeFeB永磁合金的方法

Publications (1)

Publication Number Publication Date
CN109972027A true CN109972027A (zh) 2019-07-05

Family

ID=67076344

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811579003.XA Pending CN109972027A (zh) 2018-12-24 2018-12-24 一种通过低熔点PrCu晶间相添加制备各向异性CeFeB永磁合金的方法

Country Status (1)

Country Link
CN (1) CN109972027A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112885550A (zh) * 2021-01-14 2021-06-01 沈阳新橡树磁性材料有限公司 一种高密度铈基热压稀土磁钢的制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344405B2 (zh) * 1984-09-04 1991-07-05 Tokin Corp
CN102388343A (zh) * 2009-02-10 2012-03-21 卡尔蔡司Smt有限责任公司 用于投射曝光系统的具有至少一个磁体的致动器、致动器的制造方法、以及具有磁体的投射曝光系统
CN102655050A (zh) * 2012-05-04 2012-09-05 江苏大学 一种高性能耐高温纳米复合永磁体的制备方法
CN103280290A (zh) * 2013-06-09 2013-09-04 钢铁研究总院 含铈低熔点稀土永磁液相合金及其永磁体制备方法
CN104584147A (zh) * 2012-07-10 2015-04-29 罗伯特·博世有限公司 磁性材料、其应用及其制造方法
CN106298137A (zh) * 2016-10-10 2017-01-04 北京工业大学 一种热变形法制备掺杂PrCu合金的PrFeB/PrCo5复合永磁体的方法
CN106298136A (zh) * 2016-10-10 2017-01-04 北京工业大学 一种热变形法制备掺杂PrCu合金的NdFeB/SmCo5复合永磁体的方法
CN106548844A (zh) * 2016-12-06 2017-03-29 中国科学院宁波材料技术与工程研究所 一种热变形稀土永磁材料及其制备方法
CN107424695A (zh) * 2017-04-21 2017-12-01 华南理工大学 一种双合金纳米晶稀土永磁体及其制备方法
CN107470622A (zh) * 2017-08-24 2017-12-15 南昌航空大学 一种通过热变形制备无稀土各向异性Mn‑Al‑C永磁合金的方法
CN107785141A (zh) * 2017-10-24 2018-03-09 南昌航空大学 一种通过放电等离子烧结技术提高非稀土MnBi永磁合金高温稳定性的方法
CN108133799A (zh) * 2017-12-20 2018-06-08 江西理工大学 一种高性能纳米晶热变形钕铁硼永磁体及其制备方法
CN108346498A (zh) * 2018-03-09 2018-07-31 南昌航空大学 一种通过添加LaAl低熔点相提高LaFeSi磁热性能的方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344405B2 (zh) * 1984-09-04 1991-07-05 Tokin Corp
CN102388343A (zh) * 2009-02-10 2012-03-21 卡尔蔡司Smt有限责任公司 用于投射曝光系统的具有至少一个磁体的致动器、致动器的制造方法、以及具有磁体的投射曝光系统
CN102655050A (zh) * 2012-05-04 2012-09-05 江苏大学 一种高性能耐高温纳米复合永磁体的制备方法
CN104584147A (zh) * 2012-07-10 2015-04-29 罗伯特·博世有限公司 磁性材料、其应用及其制造方法
CN103280290A (zh) * 2013-06-09 2013-09-04 钢铁研究总院 含铈低熔点稀土永磁液相合金及其永磁体制备方法
CN106298136A (zh) * 2016-10-10 2017-01-04 北京工业大学 一种热变形法制备掺杂PrCu合金的NdFeB/SmCo5复合永磁体的方法
CN106298137A (zh) * 2016-10-10 2017-01-04 北京工业大学 一种热变形法制备掺杂PrCu合金的PrFeB/PrCo5复合永磁体的方法
CN106548844A (zh) * 2016-12-06 2017-03-29 中国科学院宁波材料技术与工程研究所 一种热变形稀土永磁材料及其制备方法
CN107424695A (zh) * 2017-04-21 2017-12-01 华南理工大学 一种双合金纳米晶稀土永磁体及其制备方法
CN107470622A (zh) * 2017-08-24 2017-12-15 南昌航空大学 一种通过热变形制备无稀土各向异性Mn‑Al‑C永磁合金的方法
CN107785141A (zh) * 2017-10-24 2018-03-09 南昌航空大学 一种通过放电等离子烧结技术提高非稀土MnBi永磁合金高温稳定性的方法
CN108133799A (zh) * 2017-12-20 2018-06-08 江西理工大学 一种高性能纳米晶热变形钕铁硼永磁体及其制备方法
CN108346498A (zh) * 2018-03-09 2018-07-31 南昌航空大学 一种通过添加LaAl低熔点相提高LaFeSi磁热性能的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112885550A (zh) * 2021-01-14 2021-06-01 沈阳新橡树磁性材料有限公司 一种高密度铈基热压稀土磁钢的制备方法

Similar Documents

Publication Publication Date Title
CN102737801B (zh) 一种Sm-Fe-N各向异性磁粉的制备方法
JP7502494B2 (ja) 希土類永久磁石材料及びその原料組成物、製造方法、並びに応用
EP4020505B1 (en) Preparation method for a neodymium-iron-boron magnet
JP7342281B2 (ja) ネオジム鉄ホウ素磁石材料、原料組成物及び製造方法、並びに応用
CN104576028A (zh) 富铈各向异性纳米晶稀土永磁体的制备方法
WO2021169886A1 (zh) 一种钕铁硼磁体材料、原料组合物及制备方法和应用
CN103014477B (zh) 一种冶炼铁基纳米晶母合金的方法
CN109346258B (zh) 一种纳米双主相磁体及其制备方法
CN104575901A (zh) 一种添加铽粉的钕铁硼磁体及其制备方法
JP7342280B2 (ja) ネオジム鉄ホウ素磁石材料、原料組成物及び製造方法、並びに応用
CN103545079A (zh) 双主相含钇永磁磁体及其制备方法
CN106384637A (zh) 一种改善边界结构制备高性能钕铁硼磁体的方法
WO2021244315A1 (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
CN104575903A (zh) 一种添加Dy粉末的钕铁硼磁体及其制备方法
CN110534279A (zh) 一种纯高丰度稀土Ce,La,Y基多元纳米晶永磁合金及制备
CN108517455B (zh) 一种具有双主相结构的纳米晶稀土永磁材料及其制备方法
KR20140141509A (ko) R-Fe-B계 소결 자성체 제조방법
JP2012049492A (ja) 希土類永久磁石の製造方法
CN107799256A (zh) 一种永磁复合材料及制备方法
CN107470622A (zh) 一种通过热变形制备无稀土各向异性Mn‑Al‑C永磁合金的方法
WO2021218699A1 (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
CN106328331B (zh) 烧结钕铁硼磁体用辅助合金铸片及其制备方法
CN107785141A (zh) 一种通过放电等离子烧结技术提高非稀土MnBi永磁合金高温稳定性的方法
CN109243797A (zh) 一种含Ce的纳米晶稀土永磁材料的制备方法
CN109972027A (zh) 一种通过低熔点PrCu晶间相添加制备各向异性CeFeB永磁合金的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190705