WO2021218699A1 - 钕铁硼磁体材料、原料组合物、制备方法、应用 - Google Patents

钕铁硼磁体材料、原料组合物、制备方法、应用 Download PDF

Info

Publication number
WO2021218699A1
WO2021218699A1 PCT/CN2021/088311 CN2021088311W WO2021218699A1 WO 2021218699 A1 WO2021218699 A1 WO 2021218699A1 CN 2021088311 W CN2021088311 W CN 2021088311W WO 2021218699 A1 WO2021218699 A1 WO 2021218699A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
iron boron
neodymium iron
content
boron magnet
Prior art date
Application number
PCT/CN2021/088311
Other languages
English (en)
French (fr)
Inventor
王金磊
黄清芳
黎国妃
汤志辉
黄佳莹
Original Assignee
厦门钨业股份有限公司
福建省长汀金龙稀土有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门钨业股份有限公司, 福建省长汀金龙稀土有限公司 filed Critical 厦门钨业股份有限公司
Publication of WO2021218699A1 publication Critical patent/WO2021218699A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Definitions

  • the invention relates to a neodymium iron boron magnet material, raw material composition, preparation method and application.
  • Nd-Fe-B permanent magnet material is based on Nd 2 Fe l4 B compound, which has the advantages of high magnetic properties, small thermal expansion coefficient, easy processing and low price. Since its introduction, it has grown at an average annual rate of 20-30%. Become the most widely used permanent magnet material. According to the preparation method, Nd-Fe-B permanent magnets can be divided into three types: sintering, bonding and hot pressing. Among them, sintered magnets account for more than 80% of the total output and are the most widely used.
  • Co is the most used and most effective element. This is because the addition of Co can reduce the reversible temperature coefficient of magnetic induction, effectively increase the Curie temperature, and can improve the corrosion resistance of the NdFeB magnet. However, the addition of Co easily causes a sharp drop in coercivity, and the cost of Co is relatively high.
  • Al is one of the effective elements to improve the coercivity of sintered Nd-Fe-B magnets, the addition of Al can reduce the infiltration angle between the main phase and the surrounding liquid phase during the sintering process, thereby improving the gap between the main phase and the Nd-rich phase.
  • the microstructure improves the coercivity, and the addition of Al may compensate for the decrease in the coercivity caused by the addition of Co. However, excessive addition of Al will deteriorate the remanence and Curie temperature.
  • the invention aims to overcome the prior art NdFeB magnets by adding Co to increase the Curie temperature and corrosion resistance, and Co easily causes a sharp drop in coercivity and expensive defects, and Al will deteriorate the remanence and Curie.
  • the temperature defect provides a neodymium iron boron magnet material, raw material composition, preparation method and application.
  • the magnet material of the present invention has the advantages of high remanence and high coercivity.
  • a raw material composition of neodymium iron boron magnet material I which comprises:
  • the R is a rare earth element and includes the rare earth metal R1 for smelting and the rare earth metal R2 for grain boundary diffusion, and the content of the R2 is 0.2 to 1 wt%;
  • the R1 includes Nd, Ho and Gd, but does not include Dy and/or Tb;
  • the R2 includes Dy and/or Tb
  • Ga 0 ⁇ 0.35wt%, and not 0;
  • X includes one or more of Ti, Nb, Zr, Hf, V, Mo, W, Ta and Cr;
  • the wt% is the mass percentage of each element in the raw material composition of the neodymium iron boron magnet material I.
  • the total weight of the raw material composition changes.
  • the weight percentage content of existing elements other than Fe does not change, and only the percentage content of Fe element is reduced. That is, when a certain element is newly added, only the percentage of Fe element is adjusted, and the percentages of other existing elements remain unchanged, so that the total content of each element is 100%.
  • the content of R is preferably in the range of 29.9 to 32 wt%, such as 29.95 wt%, 30.2 wt%, 30.5 wt%, 31.5 wt% or 31.8 wt%, and wt% means that each element accounts for the neodymium iron
  • wt% means that each element accounts for the neodymium iron
  • the Nd content in the R1 is preferably 19.3 to 32 wt%, such as 31 wt%, 20 wt%, 21 wt% or 26 wt%, and wt% is the raw material composition of the neodymium iron boron magnet material I. The percentage of mass.
  • the Ho content in the R1 is preferably 0-10% by weight, and not 0; for example, 7.5% by weight, 5.5% by weight, 4% by weight, 2.5% by weight, 0.5% by weight, 6.7% by weight, and 1% by weight. , 1.2wt% or 8.4wt%, more preferably 0.5-4wt% or 5.5-8.5wt%, and wt% is the mass percentage of each element in the raw material composition of the neodymium iron boron magnet material I.
  • the content of Gd in R1 is preferably 0-5wt%, and not 0; for example, 1wt%, 0.5wt%, 0.4wt%, 3wt%, 0.2wt% or 0.7wt%, more preferably It is 0-3wt% and is not 0, such as 1wt%, and the wt% is the mass percentage of each element in the raw material composition of the neodymium iron boron magnet material I.
  • the total added mass of Gd and Ho preferably does not exceed 10 wt%.
  • the R1 preferably does not contain heavy rare earth metals other than Ho and Gd.
  • the definitions or types of the heavy rare earth metals are conventional in the art.
  • the heavy rare earth metals may include, for example, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, and yttrium after gadolinium.
  • the R1 may also include other conventional rare earth elements in the art, such as Pr and/or Sm.
  • the addition form of Pr can be conventional in the art, for example, in the form of PrNd, or in the form of a mixture of pure Pr and Nd, or in the form of PrNd, a mixture of pure Pr and Nd Jointly added.
  • the weight ratio of Pr to Nd in PrNd is 25:75 or 20:80, such as 25:75.
  • the Nd addition form of R1 can be conventional in the art, for example, in the form of PrNd, or in the form of pure Nd, or in the form of a mixture of pure Pr and Nd, or in the form of PrNd, pure The mixture of Pr and Nd is added jointly.
  • the weight ratio of Pr to Nd in PrNd is 25:75 or 20:80, such as 25:75.
  • the amount of PrNd is preferably 0.5-27.5wt%, such as 22.5wt%, 24.5wt%, 26wt%, 27.5wt%, 5.5 wt%, 1 wt%, or 0.5 wt%, and wt% is the weight percentage of each element in the raw material composition of the neodymium iron boron magnet material I.
  • the content of the Pr is preferably 0-16% by weight, and not 0, more preferably 0.2-7% by weight, and the weight% is that each element accounts for the neodymium iron boron magnet
  • the content of Sm is preferably 0-3wt%, for example 0.7wt%, and wt% is the mass percentage of each element in the raw material composition of the neodymium iron boron magnet material I .
  • the content of R2 is preferably in the range of 0.2 to 0.85 wt%, such as 0.5 wt% or 0.7 wt%, and wt% is the mass percentage of each element in the raw material composition of the neodymium iron boron magnet material I .
  • the content of Dy is preferably in the range of 0.2 to 0.8 wt%, such as 0.2 wt%, 0.4 wt%, or 0.5 wt%, and wt% means that each element accounts for the neodymium iron boron magnet material The mass percentage of the raw material composition of I.
  • the content of Tb is preferably in the range of 0.05 to 0.7 wt%, such as 0.5 wt%, 0.3 wt% or 0.4 wt%, and wt% means that each element accounts for the neodymium iron boron magnet material The mass percentage of the raw material composition of I.
  • the weight ratio of Dy and Tb can be conventional in the art, and is generally 1:99 to 99:1, such as 1:1, 3:2, 16:1 Or 2:3.
  • the content of Co preferably ranges from 0 to 0.47% by weight, such as 0.22% by weight or 0.35% by weight, and the weight% is the mass percentage of each element in the raw material composition of the neodymium iron boron magnet material I .
  • the content of B is preferably in the range of 0.94 to 1.02 wt%, such as 0.99 wt% or 1 wt%, and wt% is the mass percentage of each element in the raw material composition of the neodymium iron boron magnet material I.
  • the content of Cu is preferably 0-0.3wt%, such as 0.02wt%, 0.05wt%, 0.11wt%, 0.15wt% or 0.3wt%; more preferably 0.02-0.15wt% , Wt% is the mass percentage of each element in the raw material composition of the neodymium iron boron magnet material I.
  • the Ga content range is preferably 0 to 0.3 wt%, for example, 0.05 wt%, 0.15 wt%, 0.2 wt% or 0.21 wt%; more preferably 0.05 to 0.15 wt%, wt% It is the mass percentage of each element in the raw material composition of the neodymium iron boron magnet material I.
  • the Al content ranges from 0 to 0.3 wt%, more preferably 0 to 0.1 wt%, such as 0.02 wt%, 0.04 wt% or 0.08 wt%; more preferably 0 to 0.04 wt%,
  • the wt% is the mass percentage of each element in the raw material composition of the neodymium iron boron magnet material I.
  • the content of Al may be the range of the Al content of impurities introduced in the process of preparing the neodymium iron boron material, or it may also be the content of additional Al added.
  • this range is the range of the content of Al as an impurity introduced in the process of preparing the neodymium iron boron material.
  • the content of X is 0.05-0.3wt% or 0.33wt%, for example 0.2wt%, 0.3wt% or 0.07wt%.
  • the type of X is preferably one or more of Ti, Nb, Zr and Hf.
  • the content of Zr preferably ranges from 0.02 to 0.3 wt%, such as 0.2 wt%, and wt% is the mass percentage of each element in the raw material composition of the neodymium iron boron magnet material I.
  • the content of Ti is preferably in the range of 0 to 0.2 wt%, and is not 0, for example, 0.02 wt%, and wt% is the raw material composition of the neodymium iron boron magnet material I. The percentage of mass.
  • the content of Nb preferably ranges from 0 to 0.4 wt%, and is not 0, such as 0.03 wt%, 0.1 wt%, and wt% means that each element accounts for the neodymium iron boron magnet material I
  • the mass percentage of the raw material composition preferably ranges from 0 to 0.4 wt%, and is not 0, such as 0.03 wt%, 0.1 wt%, and wt% means that each element accounts for the neodymium iron boron magnet material I The mass percentage of the raw material composition.
  • the content of Hf is preferably in the range of 0 to 0.1 wt%, and is not 0, such as 0.03 wt% or 0.05 wt%, and wt% means that each element accounts for the neodymium iron boron magnet material I The mass percentage of the raw material composition.
  • the weight ratio of Ti and Nb can be conventional in the art, and is generally 1:99 to 99:1, such as 2:1 or 2:3.
  • the weight ratio of Hf and Zr can be conventional in the art, and is generally 1:99 to 99:1, such as 1:10 or 5:2.
  • the weight ratio of Hf and Nb can be conventional in the art, and is generally 1:99 to 99:1, such as 1:8.
  • the raw material composition of the neodymium iron boron magnet material I may also include Mn.
  • the Mn content range is ⁇ 0.035wt%, more preferably ⁇ 0.0175wt%.
  • the raw material composition of the neodymium iron boron magnet material I includes:
  • R1 PrNd: 5.5 ⁇ 27.5wt%; Ho: 2.5 ⁇ 10wt%; Gd: 0 ⁇ 3wt% and not 0; R2: 0.2 ⁇ 0.8wt%; B: 0.94 ⁇ 1.02wt%; Cu:0 ⁇ 0.3wt%; Ga: 0 ⁇ 0.3wt%; Al: 0 ⁇ 0.1wt%; Zr: 0.02 ⁇ 0.3wt%; the balance is Fe and unavoidable impurities;
  • the raw material composition of the neodymium iron boron magnet material I includes:
  • R1 PrNd: 22.5wt%, Ho: 7.5wt%, Gd: 1wt%, R2: Dy: 0.5wt%, B: 0.94wt%, Cu: 0.15wt%, Ga: 0.15wt%, Al: 0.04 wt%, Zr: 0.2wt%, the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material I includes:
  • R1 PrNd: 24.5wt%, Ho: 5.5wt%, Gd: 1wt%, R2: Dy: 0.5wt%, B: 0.94wt%, Cu: 0.15wt%, Ga: 0.15wt%, Al: 0.04 wt%, Zr: 0.2wt%, the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material I includes:
  • R1 PrNd: 26wt%, Ho: 4wt%, Gd: 1wt%, R2: Dy: 0.5wt%, B: 0.94wt%, Cu: 0.15wt%, Ga: 0.15wt%, Al: 0.04wt% , Zr: 0.2wt%, the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material I includes:
  • R1 PrNd: 27.5wt%, Ho: 2.5wt%, Gd: 1wt%, R2: Dy: 0.5wt%, B: 0.94wt%, Cu: 0.15wt%, Ga: 0.15wt%, Al: 0.04 wt%, Zr: 0.2wt%, the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material I includes:
  • R1 PrNd: 22.5wt%, Ho: 7.5wt%, Gd: 1wt%, R2: Dy: 0.5wt%, Co: 0.22wt%, B: 0.94wt%, Cu: 0.15wt%, Ga: 0.15 wt%, Al: 0.04wt%, Zr: 0.2wt%, the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material I includes:
  • R1 PrNd: 24.5wt%, Ho: 5.5wt%, Gd: 1wt%, in R2: Dy: 0.5wt%, Co: 0.47wt%, B: 0.94wt%, Cu: 0.15wt%, Ga: 0.15 wt%, Al: 0.04wt%, Zr: 0.2wt%, the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material I includes:
  • Nd 19.3 ⁇ 32wt%; Ho: 0 ⁇ 10wt% and not 0; Gd: 0 ⁇ 5wt% and not 0;
  • R2 0.2 ⁇ 0.8wt%; B: 0.94 ⁇ 1.02wt%; Cu: 0 ⁇ 0.3wt%; Ga: 0 ⁇ 0.3wt%; Al: 0 ⁇ 0.1wt%;
  • the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material I includes:
  • R1 Nd: 31wt%
  • Ho 0.5wt%
  • Gd 0.5wt%
  • R2 Tb: 0.5wt%
  • B 0.9wt%
  • Cu 0.05wt%
  • Ga 0.05wt%
  • Al 0.1 wt%
  • Ti 0.2wt%
  • Nb 0.1wt%
  • the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material I includes:
  • R1 Nd: 19.3wt%, Pr: 3.3wt%, Ho: 6.7wt%, Gd: 0.4wt%, R2: Dy: 0.2wt%, Tb: 0.3wt%, B: 0.99wt%, Cu: 0.02wt%, Ga: 0.2wt%, Al: 0.5wt%, Ti: 0.02wt%, Nb: 0.03wt%, the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material I includes:
  • R1 Nd: 19.3 to 32 wt%; Ho: 0 to 10 wt% and not 0; Gd: 0 to 5 wt% and not 0;
  • R2 0.2 ⁇ 0.8wt%; B: 0.94 ⁇ 1.02wt%; Cu: 0 ⁇ 0.3wt%; Ga: 0 ⁇ 0.3wt%; Al: 0 ⁇ 0.1wt%;
  • the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material I includes:
  • R1 Nd: 20wt%, PrNd: 5.5wt%, Ho: 1.2wt%, Gd: 3wt%, R2: Dy: 0.4wt%, Tb: 0.4wt%, B: 1wt%, Cu: 0.11wt% , Ga: 0.3wt%, Al: 0.3wt%, Hf: 0.03wt%, Zr: 0.3wt%, the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material I includes:
  • R1 Nd: 26wt%, Pr: 0.2wt%, PrNd: 0.5wt%, Ho: 1wt%, Gd: 0.7wt%, Sm: 0.7wt%, R2: Dy: 0.8wt%, Tb: 0.05wt %, B: 1.02wt%, Cu: 0.3wt%, Ga: 0.21wt%, Al: 0.02wt%, Zr: 0.02wt%, Hf: 0.05wt%, the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material I includes:
  • Nd 19.3 ⁇ 32wt%; Ho: 0 ⁇ 10wt% and not 0; Gd: 0 ⁇ 5wt% and not 0;
  • R2 0.2 ⁇ 0.8wt%; B: 0.94 ⁇ 1.02wt%; Cu: 0 ⁇ 0.3wt%; Ga: 0 ⁇ 0.3wt%; Al: 0 ⁇ 0.1wt%;
  • the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material I includes:
  • R1 Nd: 21wt%, Pr: 0.5wt%, PrNd: 1wt%, Ho: 8.4wt%, Gd: 0.2wt%, R2: Tb: 0.7wt%, B: 1.02wt%, Cu: 0.3wt %, Ga: 0.21wt%, Al: 0.08wt%, Nb: 0.4wt%, Hf: 0.05wt%, the balance is Fe and unavoidable impurities.
  • the present invention also provides a preparation method of neodymium iron boron magnet material I, which adopts the above-mentioned raw material composition.
  • the preparation method is a conventional diffusion method in the art, wherein the R1 element is in the smelting step.
  • the R2 element is added in the grain boundary diffusion step.
  • the preparation method preferably includes the following steps: the elements other than R2 in the raw material composition of the neodymium iron boron magnet material I are smelted, powdered, molded, and sintered to obtain a sintered body, and then the The mixture of the sintered body and the R2 diffuses through the grain boundary.
  • the smelting operation and conditions can be conventional smelting processes in the field.
  • the elements other than R2 in the raw material composition of the neodymium iron boron magnet material I are carried out by ingot casting process and quick-setting flake process. Melting and casting to obtain alloy flakes.
  • an additional 0-0.3wt% rare earth element ( Generally Nd element), the percentage is the mass percentage of the content of the additional rare earth element to the total content of the raw material composition; in addition, the content of this part of the additional rare earth element is not included in the scope of the raw material composition.
  • the melting temperature may be 1300-1700°C.
  • the smelting equipment is generally an intermediate frequency vacuum smelting furnace, such as an intermediate frequency vacuum induction rapid-solidifying belt spinning furnace.
  • the operation and conditions of the pulverizing can be conventional pulverizing processes in the field, and generally include hydrogen crushing pulverizing and/or jet milling pulverizing.
  • the hydrogen crushing and pulverizing generally includes hydrogen absorption, dehydrogenation and cooling treatment.
  • the temperature of the hydrogen absorption is generally 20 to 200°C.
  • the temperature of the dehydrogenation is generally 400-650°C.
  • the pressure of the hydrogen absorption is generally 50 to 600 kPa.
  • the air-jet milling powder is generally carried out under the conditions of 0.1-2 MPa, preferably 0.5-0.7 MPa.
  • the gas stream in the gas stream milling powder can be, for example, nitrogen gas and/or argon gas.
  • the efficiency of the air jet milling powder may vary according to different equipment, for example, it may be 30-400 kg/h, and for example, 200 kg/h.
  • the molding operation and conditions can be conventional molding processes in the field.
  • the magnetic field forming method for example, the magnetic field forming method.
  • the magnetic field strength of the magnetic field forming method is generally above 1.5T.
  • the sintering operation and conditions can be conventional sintering processes in the art, such as vacuum sintering process and/or inert atmosphere sintering process.
  • the vacuum sintering process or the inert atmosphere sintering process are conventional operations in the art.
  • an inert atmosphere sintering process is used, the initial stage of the sintering can be performed under the condition of a vacuum degree of less than 5 ⁇ 10 ⁇ 1 Pa.
  • the inert atmosphere may be a conventional atmosphere containing inert gas in the art, and is not limited to helium and argon.
  • the sintering temperature may be 1000-1200°C, preferably 1030-1090°C.
  • the sintering time may be 0.5-10h, preferably 2-8h.
  • the grain boundary diffusion treatment can be processed according to a conventional process in the art, for example, the grain boundary diffusion treatment can be realized by an R2 coating operation, a vapor-phase physical precipitation operation or an evaporation operation.
  • the R2 is generally coated in the form of fluoride or low melting point alloy, such as Tb alloy or fluoride.
  • the R2 further includes Dy, preferably, Dy is coated in the form of an alloy or fluoride of Dy.
  • the gas phase physical precipitation operation generally refers to magnetron plasma sputtering, in which heavy rare earth Dy and/or Tb ions are bombarded by an inert gas to generate heavy rare earth Dy and/or Tb ions, which are uniformly attached to the surface of the substrate under the control of a magnetic field.
  • the vapor deposition method generally refers to the production of heavy rare earth Dy and/or Tb vapor at a certain vacuum degree (such as 5 to 0.05 Pa) and a certain temperature (such as 500-900°C) by heavy rare earth Dy and/or Tb.
  • the heavy rare earth elements are enriched on the surface of the substrate.
  • the temperature of the grain boundary diffusion may be 800-1000°C, such as 900°C.
  • the time for the grain boundary diffusion may be 12 to 90 hours, such as 24 hours.
  • heat treatment is also performed according to the conventional practice in the art.
  • the temperature of the heat treatment may be 450°C to 600°C, for example, 480 to 510°C.
  • the heat treatment time may be 2 to 4 hours, for example, 3 hours.
  • the invention also provides a neodymium iron boron magnet material I prepared by the above-mentioned preparation method.
  • the present invention also provides a neodymium iron boron magnet material I, which comprises:
  • the R is a rare-earth element and includes the rare-earth element R1 and the rare-earth element R2, and the content of the R2 is 0.2 to 1 wt%;
  • the R1 includes Nd, Ho and Gd, but does not include Dy and/or Tb;
  • the R2 includes Dy and/or Tb
  • Ga 0 ⁇ 0.35wt%, and not 0;
  • X includes one or more of Ti, Nb, Zr, Hf, V, Mo, W, Ta and Cr;
  • Fe 66-70 wt%; wt% is the mass percentage of each element in the neodymium iron boron magnet material I;
  • the neodymium iron boron magnet material I includes Nd 2 Fe 14 B crystal grains and its shell layer, grain boundary epitaxial layer and neodymium-rich phase;
  • Ho in the R1 is mainly distributed in the Nd 2 Fe 14 B crystal grains and the grain boundary epitaxial layer, and the R2 is mainly distributed in the shell layer and the neodymium-rich phase;
  • the continuity of the grain boundary of the neodymium iron boron magnet material is 96.5% or more.
  • the total weight of the raw material composition changes.
  • the weight percentage content of existing elements other than Fe does not change, and only the percentage content of Fe element is reduced. That is, when a certain element is newly added, only the percentage of Fe element is adjusted, and the percentages of other existing elements remain unchanged, so that the total content of each element is 100%.
  • the "main distribution" of "Ho in R1 is mainly distributed in the Nd 2 Fe 14 B crystal grains and the grain boundary epitaxial layer" generally refers to more than 95% of the element, and only a small part is distributed In the neodymium-rich phase.
  • “R2 is mainly distributed in the shell layer and the neodymium-rich phase” can be understood as the main distribution of R2 (generally more than 95%) caused by the conventional grain boundary diffusion process in the art in the shell layer and the main phase grain A small part of the grain boundaries will also diffuse into the main phase grains, for example, at the outer edges of the main phase grains.
  • the grain boundary epitaxial layer generally refers to the two-grain boundary adjacent to the neodymium-rich phase and the main phase particle, and it can also be referred to as the "two-grain boundary” or "the main phase and the neodymium-rich phase.
  • the boundary shell structure
  • the neodymium-rich phase is a neodymium-rich phase conventionally understood in the art. In this field, most of the phase structure in the grain boundary structure is a neodymium-rich phase.
  • the calculation method of grain boundary continuity refers to the ratio of the length occupied by phases other than voids in the grain boundary (for example, the neodymium-rich phase, the same in the grain boundary epitaxial layer) to the total grain boundary length. Grain boundary continuity of more than 96% can be called continuous channel.
  • the grain boundary continuity is preferably above 96.6%, for example, 96.8%, 96.9%, 96.66%, 97.1%, 97.2% or 96.7%.
  • the grain boundary epitaxial layer contains a phase structure of R 40-85 Ho 0.1-10 Gd 0.1-5 Cu 0.1-2.0 X 3-7 , wherein the types of R and X are as described above .
  • the content of R preferably ranges from 29.9 to 31.8 wt%, for example, 29.95 wt%, 30.2 wt%, 30.5 wt% or 31.5 wt%, and wt% means that each element accounts for the neodymium iron boron magnet material The mass percentage of I.
  • the Nd content in the R1 is preferably 19.3 to 32 wt%, such as 31 wt%, 20 wt%, 21 wt% or 26 wt%, and wt% is the mass percentage of each element in the neodymium iron boron magnet material I.
  • the Ho content in the R1 is preferably 0-10% by weight, and not 0; for example, 7.5% by weight, 5.5% by weight, 4% by weight, 2.5% by weight, 0.5% by weight, 6.7% by weight, and 1% by weight. , 1.2wt% or 8.4wt%, more preferably 0.5-4wt% or 5.5-8.5wt%, and wt% is the mass percentage of each element in the neodymium iron boron magnet material I.
  • the content of Gd in R1 is preferably 0-5wt%, and not 0; for example, 1wt%, 0.5wt%, 0.4wt%, 3wt%, 0.2wt% or 0.7wt%, more preferably It is 0-3wt% and is not 0, such as 1wt%, and the wt% is the mass percentage of each element in the neodymium iron boron magnet material I.
  • the total added mass of Gd and Ho preferably does not exceed 10 wt%.
  • the R1 preferably does not contain heavy rare earth metals other than Ho and Gd.
  • the definitions or types of the heavy rare earth metals are conventional in the art.
  • the heavy rare earth metals may include, for example, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, and yttrium after gadolinium.
  • the R1 may also include other conventional rare earth elements in the art, such as Pr and/or Sm.
  • the addition form of Pr can be conventional in the art, for example, in the form of PrNd, or in the form of a mixture of pure Pr and Nd, or in the form of PrNd, a mixture of pure Pr and Nd Jointly added.
  • the weight ratio of Pr to Nd in PrNd is 25:75 or 20:80, such as 25:75.
  • the Nd addition form of R1 can be conventional in the art, for example, in the form of PrNd, or in the form of pure Nd, or in the form of a mixture of pure Pr and Nd, or in the form of PrNd, pure The mixture of Pr and Nd is added jointly.
  • the weight ratio of Pr to Nd in PrNd is 25:75 or 20:80, such as 25:75.
  • the amount of PrNd is preferably 0.5-27.5wt%, such as 22.5wt%, 24.5wt%, 26wt%, 27.5wt%, 5.5 wt%, 1 wt%, or 0.5 wt%, and wt% is the weight percentage of each element in the raw material composition of the neodymium iron boron magnet material I.
  • the content of the Pr is preferably 0-16% by weight, and not 0, more preferably 0.2-7% by weight, and the weight% is that each element accounts for the neodymium iron boron magnet
  • the mass percentage of material I is preferably 0-16% by weight, and not 0, more preferably 0.2-7% by weight, and the weight% is that each element accounts for the neodymium iron boron magnet The mass percentage of material I.
  • the content of Sm is preferably 0-3 wt%, for example 0.7 wt%, and wt% is the mass percentage of each element in the neodymium iron boron magnet material I.
  • the content of R2 is preferably in the range of 0.2 to 0.85 wt%, such as 0.5 wt%, 0.7 wt% or 0.8 wt%, and wt% is the mass percentage of each element in the neodymium iron boron magnet material I .
  • the content of Dy is preferably in the range of 0.2 to 0.8 wt%, such as 0.2 wt%, 0.4 wt%, or 0.5 wt%, and wt% means that each element accounts for the neodymium iron boron magnet material The mass percentage of I.
  • the content of Tb is preferably in the range of 0.05 to 0.7 wt%, such as 0.5 wt%, 0.3 wt% or 0.4 wt%, and wt% means that each element accounts for the neodymium iron boron magnet material The mass percentage of I.
  • the weight ratio of Dy and Tb can be conventional in the art, and is generally 1:99 to 99:1, such as 1:1, 3:2, 16:1 Or 2:3.
  • the content of Co preferably ranges from 0 to 0.47% by weight, such as 0.22% by weight or 0.35% by weight, and the weight% is the mass percentage of each element in the neodymium iron boron magnet material I.
  • the content of B is preferably in the range of 0.94 to 1.02 wt%, such as 0.99 wt% or 1 wt%, and wt% is the mass percentage of each element in the neodymium iron boron magnet material I.
  • the content of Cu is preferably 0-0.3wt%, such as 0.02wt%, 0.05wt%, 0.11wt%, 0.15wt% or 0.3wt%; more preferably 0.02-0.15wt% , Wt% is the mass percentage of each element in the neodymium iron boron magnet material I.
  • the Ga content range is preferably 0 to 0.3 wt%, for example, 0.05 wt%, 0.15 wt%, 0.2 wt% or 0.21 wt%; more preferably 0.05 to 0.15 wt%, wt% Is the mass percentage of each element in the neodymium iron boron magnet material I.
  • the Al content ranges from 0 to 0.3 wt%, more preferably 0 to 0.1 wt%, such as 0.02 wt%, 0.04 wt% or 0.08 wt%; more preferably 0 to 0.04 wt%,
  • the wt% is the mass percentage of each element in the neodymium iron boron magnet material I.
  • the content of Al may be the range of the Al content of impurities introduced during the preparation of the neodymium iron boron material, or may also be the content of additional Al added.
  • this range is the range of the content of Al as an impurity introduced in the process of preparing the neodymium iron boron material.
  • the content of X is 0.05-0.3wt% or 0.33wt%, for example 0.2wt%, 0.3wt% or 0.07wt%.
  • the type of X is preferably one or more of Ti, Nb, Zr and Hf.
  • the content of Zr preferably ranges from 0.02 to 0.3 wt%, such as 0.2 wt%, and wt% is the mass percentage of each element in the neodymium iron boron magnet material I.
  • the content of Ti preferably ranges from 0 to 0.2 wt%, such as 0.02 wt%, and wt% is the mass percentage of each element in the neodymium iron boron magnet material I.
  • the content of Nb preferably ranges from 0 to 0.4 wt%, such as 0.03 wt%, 0.1 wt%, and wt% is the mass percentage of each element in the neodymium iron boron magnet material I.
  • the content of Hf preferably ranges from 0 to 0.1 wt%, such as 0.03 wt% or 0.05 wt%, and wt% is the mass percentage of each element in the neodymium iron boron magnet material I.
  • the weight ratio of Ti and Nb can be conventional in the art, and is generally 1:99 to 99:1, such as 2:1 or 2:3.
  • the weight ratio of Hf and Zr can be conventional in the art, and is generally 1:99 to 99:1, such as 1:10 or 5:2.
  • the weight ratio of Hf and Nb can be conventional in the art, and is generally 1:99 to 99:1, such as 1:8.
  • the neodymium iron boron magnet material I may also include Mn.
  • the Mn content range is ⁇ 0.035wt%, more preferably ⁇ 0.0175wt%.
  • the neodymium iron boron magnet material I includes:
  • R1 PrNd: 5.5 ⁇ 27.5wt%; Ho: 2.5 ⁇ 10wt%; Gd: 0 ⁇ 3wt% and not 0; R2: 0.2 ⁇ 0.8wt%; B: 0.94 ⁇ 1.02wt%; Cu:0 ⁇ 0.3wt%; Ga: 0-0.3wt%; Al: 0-0.1wt%; Zr: 0.02-0.3wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material I includes:
  • R1 PrNd: 22.5wt%, Ho: 7.5wt%, Gd: 1wt%, R2: Dy: 0.5wt%, B: 0.94wt%, Cu: 0.15wt%, Ga: 0.15wt%, Al: 0.04 wt%, Zr: 0.2wt%, grain boundary continuity is 96.8%, the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material I includes:
  • R1 PrNd: 24.5wt%, Ho: 5.5wt%, Gd: 1wt%, R2: Dy: 0.5wt%, B: 0.94wt%, Cu: 0.15wt%, Ga: 0.15wt%, Al: 0.04 wt%, Zr: 0.2wt%, grain boundary continuity is 96.9%, the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material I includes:
  • R1 PrNd: 26wt%, Ho: 4wt%, Gd: 1wt%, R2: Dy: 0.5wt%, B: 0.94wt%, Cu: 0.15wt%, Ga: 0.15wt%, Al: 0.04wt% , Zr: 0.2wt%, the grain boundary continuity is 96.66%, the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material I includes:
  • R1 PrNd: 27.5wt%, Ho: 2.5wt%, Gd: 1wt%, R2: Dy: 0.5wt%, B: 0.94wt%, Cu: 0.15wt%, Ga: 0.15wt%, Al: 0.04 wt%, Zr: 0.2wt%, grain boundary continuity is 97.1%, the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material I includes:
  • R1 PrNd: 22.5wt%, Ho: 7.5wt%, Gd: 1wt%
  • Dy 0.5wt%, Co: 0.22wt%, B: 0.94wt%, Cu: 0.15wt%, Ga: 0.15 wt%, Al: 0.04 wt%, Zr: 0.2 wt%
  • the grain boundary continuity is 96.3%
  • the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material I includes:
  • R1 PrNd: 24.5wt%, Ho: 5.5wt%, Gd: 1wt%, in R2: Dy: 0.5wt%, Co: 0.47wt%, B: 0.94wt%, Cu: 0.15wt%, Ga: 0.15 wt%, Al: 0.04 wt%, Zr: 0.2 wt%, the grain boundary continuity is 96.1%, and the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material I includes:
  • Nd 19.3 ⁇ 32wt%; Ho: 0 ⁇ 10wt% and not 0; Gd: 0 ⁇ 5wt% and not 0;
  • R2 0.2 ⁇ 0.8wt%; B: 0.94 ⁇ 1.02wt%; Cu: 0 ⁇ 0.3wt%; Ga: 0 ⁇ 0.3wt%; Al: 0 ⁇ 0.1wt%;
  • the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material I includes:
  • R1 Nd: 31wt%
  • Ho 0.5wt%
  • Gd 0.5wt%
  • R2 Tb: 0.5wt%
  • B 0.9wt%
  • Cu 0.05wt%
  • Ga 0.05wt%
  • Al 0.1 wt%
  • Ti 0.2wt%
  • Nb 0.1wt%
  • the grain boundary continuity is 97.2%
  • the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material I includes:
  • R1 Nd: 19.3wt%, Pr: 3.3wt%, Ho: 6.7wt%, Gd: 0.4wt%, R2: Dy: 0.2wt%, Tb: 0.3wt%, B: 0.99wt%, Cu: 0.02wt%, Ga: 0.2wt%, Al: 0.5wt%, Ti: 0.02wt%, Nb: 0.03wt%, the grain boundary continuity is 96.5%, the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material I includes:
  • Nd 19.3 ⁇ 32wt%; Ho: 0 ⁇ 10wt% and not 0; Gd: 0 ⁇ 5wt% and not 0;
  • R2 0.2 ⁇ 0.8wt%; B: 0.94 ⁇ 1.02wt%; Cu: 0 ⁇ 0.3wt%; Ga: 0 ⁇ 0.3wt%; Al: 0 ⁇ 0.1wt%;
  • the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material I includes:
  • R1 Nd: 20wt%, PrNd: 5.5wt%, Ho: 1.2wt%, Gd: 3wt%, R2: Dy: 0.4wt%, Tb: 0.4wt%, B: 1wt%, Cu: 0.11wt% , Ga: 0.3wt%, Al: 0.3wt%, Hf: 0.03wt%, Zr: 0.3wt%, grain boundary continuity is 96.7%, the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material I includes:
  • R1 Nd: 26wt%, Pr: 0.2wt%, PrNd: 0.5wt%, Ho: 1wt%, Gd: 0.7wt%, Sm: 0.7wt%, R2: Dy: 0.8wt%, Tb: 0.05wt %, B: 1.02wt%, Cu: 0.3wt%, Ga: 0.21wt%, Al: 0.02wt%, Zr: 0.02wt%, Hf: 0.05wt%, grain boundary continuity is 97.1%, the balance is Fe And inevitable impurities.
  • the neodymium iron boron magnet material I includes:
  • Nd 19.3 ⁇ 32wt%; Ho: 0 ⁇ 10wt% and not 0; Gd: 0 ⁇ 5wt% and not 0;
  • R2 0.2 ⁇ 0.8wt%; B: 0.94 ⁇ 1.02wt%; Cu: 0 ⁇ 0.3wt%; Ga: 0 ⁇ 0.3wt%; Al: 0 ⁇ 0.1wt%;
  • the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material I includes:
  • R1 Nd: 21wt%, Pr: 0.5wt%, PrNd: 1wt%, Ho: 8.4wt%, Gd: 0.2wt%, R2: Tb: 0.7wt%, B: 1.02wt%, Cu: 0.3wt %, Ga: 0.21wt%, Al: 0.08wt%, Nb: 0.4wt%, Hf: 0.05wt%, the grain boundary continuity is 96.8%, the balance is Fe and unavoidable impurities.
  • the present invention also provides a raw material composition of neodymium iron boron magnet material II, which comprises:
  • the R is a rare earth element, and includes Nd, Ho, and Gd, but does not include Dy and/or Tb;
  • Ga 0 ⁇ 0.35wt%, and not 0;
  • X includes one or more of Ti, Nb, Zr, Hf, V, Mo, W, Ta and Cr;
  • the wt% is the mass percentage of each element in the raw material composition of the neodymium iron boron magnet material II.
  • the total weight of the raw material composition changes.
  • the weight percentage content of existing elements other than Fe does not change, and only the percentage content of Fe element is reduced. That is, when a certain element is newly added, only the percentage of Fe element is adjusted, and the percentages of other existing elements remain unchanged, so that the total content of each element is 100%.
  • the content of R ranges from 29.1 to 31.2% by weight, such as 29.3% by weight, 31% by weight, 31.1% by weight, 29.9% by weight or 29.8% by weight, and weight% means that each element accounts for the neodymium iron boron magnet material
  • weight% means that each element accounts for the neodymium iron boron magnet material
  • the Nd content in the R is preferably 19.3 to 32 wt%, such as 31.2 wt%, 19.4 wt%, 20.2 wt%, 21.1 wt% or 26.2 wt%, and wt% means that each element accounts for the neodymium iron
  • the mass percentage of the raw material composition of the boron magnet material II is preferably 19.3 to 32 wt%, such as 31.2 wt%, 19.4 wt%, 20.2 wt%, 21.1 wt% or 26.2 wt%, and wt% means that each element accounts for the neodymium iron
  • the mass percentage of the raw material composition of the boron magnet material II is preferably 19.3 to 32 wt%, such as 31.2 wt%, 19.4 wt%, 20.2 wt%, 21.1 wt% or 26.2 wt%, and wt% means that each element accounts for the neodymium iron
  • the Ho content in the R is preferably 0-10% by weight, and not 0; for example, 7.5% by weight, 5.5% by weight, 4% by weight, 2.5% by weight, 0.5% by weight, 6.7% by weight, and 1% by weight. , 1.2wt% or 8.5wt%, more preferably 0.5-4wt% or 5.5-8.5wt%, and wt% is the mass percentage of each element in the raw material composition of the neodymium iron boron magnet material II.
  • the content of Gd in R is preferably 0-5wt%, and not 0; for example, 1wt%, 0.5wt%, 0.4wt%, 3wt%, 0.2wt% or 0.7wt%, more preferably It is 0-3wt% and is not 0, such as 1wt%, and the wt% is the mass percentage of each element in the raw material composition of the neodymium iron boron magnet material II.
  • the total added mass of Gd and Ho preferably does not exceed 10 wt%.
  • the R preferably does not contain heavy rare earth metals other than Ho and Gd.
  • the definitions or types of the heavy rare earth metals are conventional in the art.
  • the heavy rare earth metals may include, for example, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, and yttrium after gadolinium.
  • the R may also include other conventional rare earth elements in the art, such as Pr and/or Sm.
  • the addition form of Pr can be conventional in the art, for example, in the form of PrNd, or in the form of a mixture of pure Pr and Nd, or in the form of PrNd, a mixture of pure Pr and Nd Jointly added.
  • the weight ratio of Pr to Nd in PrNd is 25:75 or 20:80, such as 25:75.
  • the Nd addition form of R can be conventional in the art, for example, in the form of PrNd, or in the form of pure Nd, or in the form of a mixture of pure Pr and Nd, or in the form of PrNd, pure The mixture of Pr and Nd is added jointly.
  • the weight ratio of Pr to Nd in PrNd is 25:75 or 20:80, such as 25:75.
  • the amount of PrNd is preferably 0.5-27.5wt%, such as 22.5wt%, 24.5wt%, 26wt%, 27.5wt%, 5.5wt%, 1wt%, or 0.5wt%, and wt% is the weight percentage of each element in the raw material composition of the neodymium iron boron magnet material II.
  • the content of the Pr is preferably 0-16% by weight, and not 0, more preferably 0.2-7% by weight, and the weight% is that each element accounts for the neodymium iron boron magnet
  • the content of Sm is preferably 0-3wt%, for example 0.7wt%, and wt% is the mass percentage of each element in the raw material composition of the neodymium iron boron magnet material II .
  • the content of Co preferably ranges from 0 to 0.47% by weight, such as 0.22% by weight or 0.35% by weight, and the weight% is the mass percentage of each element in the raw material composition of the neodymium iron boron magnet material II. .
  • the content of B is preferably 0.94 to 1.02 wt%, for example, 0.99 wt% or 1 wt%, and wt% is the mass percentage of each element in the raw material composition of the neodymium iron boron magnet material II.
  • the content of Cu is preferably 0-0.3wt%, such as 0.02wt%, 0.05wt%, 0.11wt%, 0.15wt% or 0.3wt%; more preferably 0.02-0.15wt% , Wt% is the mass percentage of each element in the raw material composition of the neodymium iron boron magnet material II.
  • the Ga content range is preferably 0 to 0.3 wt%, for example, 0.05 wt%, 0.15 wt%, 0.2 wt% or 0.21 wt%; more preferably 0.05 to 0.15 wt%, wt% It is the mass percentage of each element in the raw material composition of the neodymium iron boron magnet material II.
  • the Al content ranges from 0 to 0.3 wt%, more preferably 0 to 0.1 wt%, such as 0.02 wt%, 0.04 wt% or 0.08 wt%; more preferably 0 to 0.04 wt%,
  • the wt% is the mass percentage of each element in the raw material composition of the neodymium iron boron magnet material II.
  • the content of Al may be the range of the Al content of impurities introduced in the process of preparing the neodymium iron boron material, or may also be the content of additional Al added.
  • this range is the range of the content of Al as an impurity introduced in the process of preparing the neodymium iron boron material.
  • the content of X is 0.05-0.3wt% or 0.33wt%, for example 0.2wt%, 0.3wt% or 0.07wt%.
  • the type of X is preferably one or more of Ti, Nb, Zr and Hf.
  • the content of Zr preferably ranges from 0.02 to 0.3 wt%, such as 0.2 wt%, and wt% is the mass percentage of each element in the raw material composition of the neodymium iron boron magnet material II.
  • the content of Ti is preferably in the range of 0 to 0.2 wt%, and is not 0, for example, 0.02 wt%, and wt% is the raw material composition of the neodymium iron boron magnet material II. The percentage of mass.
  • the content of Nb preferably ranges from 0 to 0.4 wt%, and is not 0, such as 0.03 wt%, 0.1 wt%, and wt% means that each element accounts for the neodymium iron boron magnet material II The mass percentage of the raw material composition.
  • the content of Hf preferably ranges from 0 to 0.1 wt%, and is not 0, such as 0.03 wt% or 0.05 wt%, and wt% means that each element accounts for the neodymium iron boron magnet material II The mass percentage of the raw material composition.
  • the weight ratio of Ti and Nb can be conventional in the art, and is generally 1:99 to 99:1, such as 2:1 or 2:3.
  • the weight ratio of Hf and Zr can be conventional in the art, and is generally 1:99 to 99:1, such as 1:10 or 5:2.
  • the weight ratio of Hf and Nb can be conventional in the art, and is generally 1:99 to 99:1, such as 1:8.
  • the raw material composition of the neodymium iron boron magnet material II may also include Mn.
  • the Mn content range is ⁇ 0.035wt%, more preferably ⁇ 0.0175wt%.
  • the raw material composition of the neodymium iron boron magnet material II includes:
  • PrNd 5.5 ⁇ 27.5wt%; Ho: 2.5 ⁇ 10wt%; Gd: 0 ⁇ 3wt% and not 0; B: 0.94 ⁇ 1.02wt%; Cu: 0 ⁇ 0.3wt%; Ga: 0 ⁇ 0.3wt% ; Al: 0 ⁇ 0.1wt%; Zr: 0.02 ⁇ 0.3wt%; the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material II includes:
  • PrNd 22.6wt%
  • Ho 7.5wt%
  • Gd 1wt%
  • B 0.94wt%
  • Cu 0.15wt%
  • Ga 0.15wt%
  • Al 0.04wt%
  • Zr 0.2wt%
  • the balance is Fe and inevitable impurities.
  • the raw material composition of the neodymium iron boron magnet material II includes:
  • PrNd 24.6wt%, Ho: 5.5wt%, Gd: 1wt%, B: 0.94wt%, Cu: 0.15wt%, Ga: 0.15wt%, Al: 0.04wt%, Zr: 0.2wt%, the balance is Fe and inevitable impurities.
  • the raw material composition of the neodymium iron boron magnet material II includes:
  • PrNd 26.1wt%, Ho: 4wt%, Gd: 1wt%, B: 0.94wt%, Cu: 0.15wt%, Ga: 0.15wt%, Al: 0.04wt%, Zr: 0.2wt%, the balance is Fe And inevitable impurities.
  • the raw material composition of the neodymium iron boron magnet material II includes:
  • PrNd 27.6wt%
  • Ho 2.5wt%
  • Gd 1wt%
  • B 0.94wt%
  • Cu 0.15wt%
  • Ga 0.15wt%
  • Al 0.04wt%
  • Zr 0.2wt%
  • the balance is Fe and inevitable impurities.
  • the raw material composition of the neodymium iron boron magnet material II includes:
  • PrNd 22.6wt%
  • Ho 7.5wt%
  • Gd 1wt%
  • Co 0.22wt%
  • B 0.94wt%
  • Cu 0.15wt%
  • Ga 0.15wt%
  • Al 0.04wt%
  • Zr 0.2 wt%
  • the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material II includes:
  • PrNd 24.6wt%, Ho: 5.5wt%, Gd: 1wt%, Co: 0.47wt%, B: 0.94wt%, Cu: 0.15wt%, Ga: 0.15wt%, Al: 0.04wt%, Zr: 0.2 wt%, the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material II includes:
  • Nd 19.3 ⁇ 32wt%; Ho: 0 ⁇ 10wt% and not 0; Gd: 0 ⁇ 5wt% and not 0; B: 0.94 ⁇ 1.02wt%; Cu: 0 ⁇ 0.3wt%; Ga:0 ⁇ 0.3wt%; Al: 0 ⁇ 0.1wt%; Ti: 0 ⁇ 0.2wt% and not 0; Nb: 0 ⁇ 0.4wt% and not 0;
  • the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material II includes:
  • Nd 31wt%
  • Ho 0.5wt%
  • Gd 0.5wt%
  • Tb 0.5wt%
  • B 0.9wt%
  • Cu 0.05wt%
  • Ga 0.05wt%
  • Al 0.1wt%
  • Ti 0.2 wt%
  • Nb 0.1wt%
  • the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material II includes:
  • Nd 19.3wt%
  • Pr 3.3wt%
  • Ho 6.7wt%
  • Gd 0.4wt%
  • B 0.99wt%
  • Cu 0.02wt%
  • Ga 0.2wt%
  • Al 0.5wt%
  • Ti 0.02wt%
  • Nb 0.03wt%
  • the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material II includes:
  • Nd 19.3 ⁇ 32wt%; Ho: 0 ⁇ 10wt% and not 0; Gd: 0 ⁇ 5wt% and not 0; B: 0.94 ⁇ 1.02wt%; Cu: 0 ⁇ 0.3wt%; Ga:0 ⁇ 0.3wt%; Al: 0 ⁇ 0.1wt%; Zr: 0.02 ⁇ 0.3wt%; Hf: 0 ⁇ 0.1wt%, and not 0;
  • the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material II includes:
  • Nd 20wt%
  • PrNd 5.5wt%
  • Ho 1.2wt%
  • Gd 3wt%
  • B 1wt%
  • Cu 0.11wt%
  • Ga 0.3wt%
  • Al 0.3wt%
  • Hf 0.03wt%
  • Zr 0.3wt%
  • the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material II includes:
  • Nd 26wt%
  • Pr 0.2wt%
  • PrNd 0.5wt%
  • Ho 1wt%
  • Gd 0.7wt%
  • Sm 0.7wt%
  • B 1.02wt%
  • Cu 0.3wt%
  • Ga 0.21wt %
  • Al 0.02wt%
  • Zr 0.02wt%
  • Hf 0.05wt%
  • the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material II includes:
  • Nd 19.3 to 32 wt%; Ho: 0 to 10 wt% and not 0; Gd: 0 to 5 wt% and not 0;
  • B 0.94 ⁇ 1.02wt%; Cu: 0 ⁇ 0.3wt%; Ga: 0 ⁇ 0.3wt%; Al: 0 ⁇ 0.1wt%; Hf: 0 ⁇ 0.1wt% and not 0; Nb: 0 ⁇ 0.4 wt%, and not 0;
  • the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material II includes:
  • Nd 21wt%
  • Pr 0.5wt%
  • PrNd 1wt%
  • Ho 8.5wt%
  • Gd 0.2wt%
  • B 1.02wt%
  • Cu 0.3wt%
  • Ga 0.21wt%
  • Al 0.08wt %
  • Nb 0.4wt%
  • Hf 0.05wt%
  • the balance is Fe and unavoidable impurities.
  • the present invention also provides a method for preparing the neodymium iron boron magnet material II.
  • the raw material composition of the neodymium iron boron magnet material II is smelted, powdered, formed, and sintered.
  • the invention also provides a neodymium iron boron magnet material II prepared by the above-mentioned preparation method.
  • the present invention also provides a neodymium iron boron magnet material II, which comprises:
  • the R is a rare earth element, and includes Nd, Ho, and Gd, but does not include Dy and/or Tb;
  • Ga 0 ⁇ 0.35wt%, and not 0;
  • X includes one or more of Ti, Nb, Zr, Hf, V, Mo, W, Ta and Cr;
  • the wt% is the mass percentage of each element in the neodymium iron boron magnet material II.
  • the neodymium iron boron magnet material II comprises main phase particles, a neodymium-rich phase and a grain boundary epitaxial layer, and the grain boundary epitaxial layer contains R 40-85 Ho 0.1-10 Gd 0.1-5
  • the total weight of the raw material composition changes.
  • the weight percentage content of existing elements other than Fe does not change, and only the percentage content of Fe element is reduced. That is, when a certain element is newly added, only the percentage of Fe element is adjusted, and the percentages of other existing elements remain unchanged, so that the total content of each element is 100%.
  • the content of R ranges from 29.1 to 31.2% by weight, such as 29.3% by weight, 31% by weight, 31.1% by weight, 29.9% by weight or 29.8% by weight, and weight% means that each element accounts for the neodymium iron boron magnet material The mass percentage of II.
  • the Nd content in the R is preferably 19.3 to 32 wt%, such as 31.2 wt%, 19.4 wt%, 20.2 wt%, 21.1 wt% or 26.2 wt%, and wt% means that each element accounts for the neodymium iron The mass percentage of boron magnet material II.
  • the Ho content in the R is preferably 0-10% by weight, and not 0; for example, 7.5% by weight, 5.5% by weight, 4% by weight, 2.5% by weight, 0.5% by weight, 6.7% by weight, and 1% by weight. , 1.2wt% or 8.5wt%, more preferably 0.5-4wt% or 5.5-8.5wt%, and wt% is the mass percentage of each element in the neodymium iron boron magnet material II.
  • the content of Gd in R is preferably 0-5wt%, and not 0; for example, 1wt%, 0.5wt%, 0.4wt%, 3wt%, 0.2wt% or 0.7wt%, more preferably It is 0-3wt%, and is not 0, for example, 1wt%, and wt% is the mass percentage of each element in the neodymium iron boron magnet material II.
  • the total added mass of Gd and Ho preferably does not exceed 10 wt%.
  • the R preferably does not contain heavy rare earth metals other than Ho and Gd.
  • the definitions or types of the heavy rare earth metals are conventional in the art.
  • the heavy rare earth metals may include, for example, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, and yttrium after gadolinium.
  • the R may also include other conventional rare earth elements in the art, such as Pr and/or Sm.
  • the addition form of Pr can be conventional in the art, for example, in the form of PrNd, or in the form of a mixture of pure Pr and Nd, or in the form of PrNd, a mixture of pure Pr and Nd Jointly added.
  • the weight ratio of Pr to Nd in PrNd is 25:75 or 20:80, such as 25:75.
  • the Nd addition form of R can be conventional in the art, for example, in the form of PrNd, or in the form of pure Nd, or in the form of a mixture of pure Pr and Nd, or in the form of PrNd, pure The mixture of Pr and Nd is added jointly.
  • the weight ratio of Pr to Nd in PrNd is 25:75 or 20:80, such as 25:75.
  • the amount of PrNd is preferably 0.5-27.5wt%, such as 22.5wt%, 24.5wt%, 26wt%, 27.5wt%, 5.5wt%, 1wt%, or 0.5wt%, and wt% is the weight percentage of each element in the raw material composition of the neodymium iron boron magnet material II.
  • the content of the Pr is preferably 0-16% by weight, and not 0, more preferably 0.2-7% by weight, and the weight% is that each element accounts for the neodymium iron boron magnet
  • the mass percentage of material II is preferably 0-16% by weight, and not 0, more preferably 0.2-7% by weight, and the weight% is that each element accounts for the neodymium iron boron magnet The mass percentage of material II.
  • the content of Sm is preferably 0-3 wt%, for example 0.7 wt%, and wt% is the mass percentage of each element in the neodymium iron boron magnet material II.
  • the content of Co preferably ranges from 0 to 0.47% by weight, such as 0.22% by weight or 0.35% by weight, and the weight% is the mass percentage of each element in the neodymium iron boron magnet material II.
  • the content of B is preferably in the range of 0.94 to 1.02 wt%, such as 0.99 wt% or 1 wt%, and wt% is the mass percentage of each element in the neodymium iron boron magnet material II.
  • the content of Cu is preferably 0-0.3wt%, such as 0.02wt%, 0.05wt%, 0.11wt%, 0.15wt% or 0.3wt%; more preferably 0.02-0.15wt% , Wt% is the mass percentage of each element in the neodymium iron boron magnet material II.
  • the Ga content range is preferably 0 to 0.3 wt%, for example, 0.05 wt%, 0.15 wt%, 0.2 wt% or 0.21 wt%; more preferably 0.05 to 0.15 wt%, wt% Is the mass percentage of each element in the neodymium iron boron magnet material II.
  • the Al content ranges from 0 to 0.3 wt%, more preferably 0 to 0.1 wt%, such as 0.02 wt%, 0.04 wt% or 0.08 wt%; more preferably 0 to 0.04 wt%,
  • the wt% is the mass percentage of each element in the neodymium iron boron magnet material II.
  • the content of Al may be the range of the Al content of impurities introduced during the preparation of the neodymium iron boron material, or may also be the content of additional Al added.
  • this range is the range of the content of Al as an impurity introduced in the process of preparing the neodymium iron boron material.
  • the content of X is 0.05-0.3wt% or 0.33wt%, for example 0.2wt%, 0.3wt% or 0.07wt%.
  • the type of X is preferably one or more of Ti, Nb, Zr and Hf.
  • the content of Zr preferably ranges from 0.02 to 0.3 wt%, such as 0.2 wt%, and wt% is the mass percentage of each element in the neodymium iron boron magnet material II.
  • the content of Ti preferably ranges from 0 to 0.2 wt% and is not 0, such as 0.02 wt%, and wt% is the mass percentage of each element in the neodymium iron boron magnet material II.
  • the content of Nb preferably ranges from 0 to 0.4 wt%, and is not 0, such as 0.03 wt%, 0.1 wt%, and wt% means that each element accounts for the neodymium iron boron magnet material II The percentage of mass.
  • the content of Hf preferably ranges from 0 to 0.1 wt%, and is not 0, for example, 0.03 wt% or 0.05 wt%, and wt% means that each element accounts for the neodymium iron boron magnet material II The percentage of mass.
  • the weight ratio of Ti and Nb can be conventional in the art, and is generally 1:99 to 99:1, such as 2:1 or 2:3.
  • the weight ratio of Hf and Zr can be conventional in the art, and is generally 1:99 to 99:1, such as 1:10 or 5:2.
  • the weight ratio of Hf and Nb can be conventional in the art, and is generally 1:99 to 99:1, such as 1:8.
  • the neodymium iron boron magnet material II may also include Mn.
  • the Mn content range is ⁇ 0.035wt%, more preferably ⁇ 0.0175wt%.
  • the neodymium iron boron magnet material II includes:
  • Nd 19.3 ⁇ 32wt%; Ho: 0 ⁇ 10wt% and not 0; Gd: 0 ⁇ 5wt% and not 0; B: 0.94 ⁇ 1.02wt%; Cu: 0 ⁇ 0.3wt%; Ga:0 ⁇ 0.3wt%; Al: 0 ⁇ 0.1wt%; Zr: 0.02 ⁇ 0.3wt%;
  • the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material II includes:
  • PrNd 5.5 ⁇ 27.5wt%; Ho: 2.5 ⁇ 10wt%; Gd: 0 ⁇ 3wt% and not 0; B: 0.94 ⁇ 1.02wt%; Cu: 0 ⁇ 0.3wt%; Ga: 0 ⁇ 0.3wt% ; Al: 0 ⁇ 0.1wt%; Zr: 0.02 ⁇ 0.3wt%; the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material II includes:
  • Nd 19.3 ⁇ 32wt%; Ho: 0 ⁇ 10wt% and not 0; Gd: 0 ⁇ 5wt% and not 0; B: 0.94 ⁇ 1.02wt%; Cu: 0 ⁇ 0.3wt%; Ga:0 ⁇ 0.3wt%; Al: 0 ⁇ 0.1wt%; Zr: 0.02 ⁇ 0.3wt%; Hf: 0 ⁇ 0.1wt%, and not 0;
  • the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material II includes:
  • Nd 19.3 ⁇ 32wt%; Ho: 0 ⁇ 10wt% and not 0; Gd: 0 ⁇ 5wt% and not 0; B: 0.94 ⁇ 1.02wt%; Cu: 0 ⁇ 0.3wt%; Ga:0 ⁇ 0.3wt%; Al: 0 ⁇ 0.1wt%; Hf: 0 ⁇ 0.1wt% and not 0; Nb: 0 ⁇ 0.4wt% but not 0;
  • the balance is Fe and unavoidable impurities.
  • the present invention also provides an application of a neodymium iron boron magnet material in the preparation of magnetic steel.
  • the neodymium iron boron magnet material is the neodymium iron boron magnet material I and/or the neodymium iron boron magnet material II.
  • Dy is used for diffusion
  • the magnetic steel can be 35UH and 38UH.
  • Tb is used for diffusion
  • the magnetic steel can be 35EH and 38EH.
  • lubricants and the like are generally added during the preparation process, and the content of carbon impurities introduced is conventional in the art, and is generally 0 to 0.12 wt%.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the Br of the neodymium iron boron magnet material II of the present invention can be 12.45-13.9kGs, and the Hcj is 14.55-19.89kOe;
  • the Br of the neodymium iron boron magnet material I of the present invention is 12.4-13.83kGs, Hcj is 25.2 ⁇ 32.21kOe; the increase of Hcj after diffusion is 8.1-12.32kOe; the grain boundary continuity is 96.5-97.2%;
  • the elements are matched and the high temperature resistance is good: the open circuit magnetic loss of the neodymium iron boron magnet material I is 0.1 to 3.56%, the absolute value of the Br temperature coefficient is 0.079 to 0.1%; the Hcj temperature coefficient is absolute The value is 0.381 to 0.473%.
  • Figure 1 is an SEM photograph of the NdFeB magnet material (II) before diffusion prepared in Example 1.
  • Fig. 3 is an SEM photograph of the diffused neodymium iron boron magnet material (I) prepared in Example 1.
  • FIG. 4 is an EPMA photograph of Tb diffusion in the NdFeB magnet material (I) after diffusion prepared in Example 1.
  • FIG. 4 is an EPMA photograph of Tb diffusion in the NdFeB magnet material (I) after diffusion prepared in Example 1.
  • Table 1 The formula and content of the raw material composition of neodymium iron boron magnet material II (wt%)
  • NdFeB magnet materials I and II are as follows:
  • the content of carbon impurities introduced is conventional in the art, that is, 0-0.12 wt%.
  • Airflow milling process Under nitrogen atmosphere, the powder after hydrogen crushing is pulverized under the condition of 0.65MPa in the crushing chamber (the efficiency of airflow milling powder may vary according to the equipment. For example, it can be 200kg/h) to obtain fine powder.
  • each molded body is moved to a sintering furnace for sintering, sintered under a vacuum of less than 0.5 Pa, and sintered at 1030-1090°C for 2-8 hours to obtain neodymium iron boron magnet material II.
  • R2 such as Tb alloy or fluoride, Dy alloy or fluoride and one or more of DyCuGa and TbCuGa alloy
  • R2 such as Tb alloy or fluoride, Dy alloy or fluoride and one or more of DyCuGa and TbCuGa alloy
  • the components of the neodymium iron boron magnet material I and the neodymium iron boron magnet material II are measured using a high-frequency inductively coupled plasma emission spectrometer (ICP-OES, Icap6300). Table 3 below shows the component test results.
  • the magnetic flux M1 (fluxmeter HT707) of the neodymium-iron-boron magnet material I at room temperature, then heat the product in an oven to the set temperature to 140°C, keep it for 60 minutes, and then measure the magnetic flux M2 when it is cooled to room temperature.
  • the formula for calculating open circuit magnetic loss at high temperature is: Among them, the normal temperature is 20°C.
  • the calculation method of grain boundary continuity refers to the ratio of the length occupied by phases other than voids in the grain boundary (such as the neodymium-rich phase and the equal in the grain boundary epitaxial layer) to the total grain boundary length.
  • test result at room temperature 20°C before diffusion refers to the performance of NdFeB magnet material II (that is, “before diffusion"), and the others refer to the performance of NdFeB magnet material I after diffusion.
  • Figure 2 shows that the NdFeB permanent magnet material before diffusion does not form a grain boundary epitaxial layer structure that is conducive to diffusion, resulting in poor grain boundary continuity.
  • FIG. 4 shows that Tb diffuses and is mainly uniformly dispersed in the neodymium-rich phase and the main phase shell structure.
  • sampling point 1 belongs to the neodymium-rich phase.
  • the content of Ho is 0.73wt%
  • the content of Gd is 0.02wt%
  • the content of PrNd is 81.47wt%
  • the content of other elements is 17.78wt. %
  • the above percentage is the weight percentage of the content of each element in the sampling range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种钕铁硼磁体材料、原料组合物、制备方法、应用,钕铁硼磁体材料Ⅰ的原料组合物包含:R:29.5~32.5wt%;R为稀土元素、且包括熔炼用稀土金属R1和晶界扩散用稀土金属R2,R2的含量为0.2~1wt%;R1包括Nd、Ho和Gd,且不包括Dy和/或Tb;R2包括Dy和/或Tb;Co:0~0.5wt%;B:0.9~1.05wt%;Cu:0~0.35wt%、且不为0;Ga:0~0.35wt%、且不为0;Al:0~0.5wt%;X:0.05~0.45wt%;X包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;Fe:66~70wt%。磁体材料晶界连续性高,磁性能好。

Description

钕铁硼磁体材料、原料组合物、制备方法、应用 技术领域
本发明涉及一种钕铁硼磁体材料、原料组合物、制备方法、应用。
背景技术
Nd-Fe-B永磁材料以Nd 2Fe l4B化合物为基体,具有磁性能高、热膨胀系数小、易加工和价格低等优点,自问世以来,以平均每年20-30%的速度增长,成为应用最广泛的永磁材料。按制备方法,Nd-Fe-B永磁体可分为烧结、粘结和热压三种,其中烧结磁体占总产量的80%以上,应用最广泛。
随着制备工艺和磁体成分的不断优化,烧结Nd-Fe-B磁体的最大磁能积已接近理论值。随着近年来风力发电、混合动力汽车和变频空调等新兴行业的蓬勃发展对高性能Nd-Fe-B磁体的需求越来越大,同时,这些高温领域的应用也对烧结Nd-Fe-B磁体的性能尤其是矫顽力提出了更高的要求。
现有技术中,在制作耐热、耐蚀型烧结Nd-Fe-B磁体时,Co是用得最多而且最有效的元素。这是因为添加Co能够降低磁感可逆温度系数,有效提高居里温度,并且可以提高NdFeB磁体抗腐蚀性能。但是,Co的加入容易造成矫顽力急剧下降,并且Co的成本较高。Al虽然改善烧结Nd-Fe-B磁体矫顽力的有效元素之一,Al的添加能在烧结过程中降低主相与周围液相的浸润角,从而通过改善主相与富Nd相之间的微结构而提高矫顽力,Al添加可以能补偿Co添加造成的矫顽力降低。然而Al的过量加入会恶化剩磁和居里温度。
发明内容
本发明旨在克服现有技术的钕铁硼磁体通过添加Co来提高居里温度和抗腐蚀性能、而Co又容易造成矫顽力急剧下降以及价格昂贵的缺陷以及Al会恶化剩磁和居里温度的缺陷,而提供了一种钕铁硼磁体材料、原料组合物、制备方法、应用。本发明的磁体材料具有高剩磁高矫顽力的优势。
本发明是通过以下技术方案来解决上述技术问题的:
一种钕铁硼磁体材料Ⅰ的原料组合物,其包含:
R:29.5~32.5wt%;
所述R为稀土元素、且包括熔炼用稀土金属R1和晶界扩散用稀土金属R2,所述R2 的含量为0.2~1wt%;
所述R1包括Nd、Ho和Gd,且不包括Dy和/或Tb;
所述R2包括Dy和/或Tb;
Co:0~0.5wt%;
B:0.9~1.05wt%;
Cu:0~0.35wt%、且不为0;
Ga:0~0.35wt%、且不为0;
Al:0~0.5wt%;
X:0.05~0.45wt%;
X包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;
Fe:66~70wt%;
wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比。
本发明中,所述钕铁硼磁体材料Ⅰ的原料组合物中添加其它元素时,所述原料组合物的总重量发生变化。此时,对于各元素用量而言,除Fe以外的已有元素的重量百分比含量不发生变化,仅降低Fe元素的百分含量。即新添加某元素时,仅调节Fe元素的百分比,其它已有元素的百分比不变,以实现各元素总含量为100%。
本发明中,所述R的含量范围较佳地为29.9~32wt%,例如29.95wt%、30.2wt%、30.5wt%、31.5wt%或31.8wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比。
本发明中,所述R1中Nd含量较佳地为19.3~32wt%,例如31wt%、20wt%、21wt%或26wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比。
本发明中,所述R1中Ho含量较佳地为0~10wt%、且不为0;例如7.5wt%、5.5wt%、4wt%、2.5wt%、0.5wt%、6.7wt%、1wt%、1.2wt%或8.4wt%,更佳地为0.5~4wt%或5.5~8.5wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比。
本发明中,所述R1中Gd含量较佳地为0~5wt%、且不为0;例如1wt%、0.5wt%、0.4wt%、3wt%、0.2wt%或0.7wt%,更佳地为0~3wt%、且不为0,例如1wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比。
其中,Gd和Ho的添加总质量较佳地不超过10wt%。
本发明中,所述R1较佳地不含有Ho和Gd以外的重稀土金属。所述重稀土金属的定义或种类均为本领域常规,所述重稀土金属例如可包括钆以后的铽、镝、钬、铒、铥、镱、镥和钇等9个元素。
本发明中,所述R1还可包括本领域其他常规的稀土元素,例如包括Pr和/或Sm。
其中,当所述R1包含Pr时,Pr的添加形式可为本领域常规,例如以PrNd的形式,或者,以纯净的Pr和Nd的混合物的形式,或者以PrNd、纯净的Pr和Nd的混合物联合添加。当以PrNd的形式添加时,PrNd中Pr与Nd的重量比为25:75或20:80,例如25:75。
本发明中,所述R1的Nd的添加形式可为本领域常规,例如以PrNd的形式,或者,以纯净的Nd的形式,或者以纯净的Pr和Nd的混合物的形式,或者以PrNd、纯净的Pr和Nd的混合物联合添加。当以PrNd的形式添加时,PrNd中Pr与Nd的重量比为25:75或20:80,例如25:75。
本发明中,所述R1中的Nd和/或Pr以PrNd的形式添加时,PrNd的用量较佳地为0.5~27.5wt%,例如22.5wt%、24.5wt%、26wt%、27.5wt%、5.5wt%、1wt%、或者0.5wt%,wt%为各元素占占所述钕铁硼磁体材料Ⅰ的原料组合物的重量百分比。
其中,当所述R1包含Pr时,所述Pr的含量较佳地为0~16wt%、且不为0,更佳地为0.2~7wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比。
其中,当所述R1包含Sm时,所述Sm的含量较佳地为0~3wt%,例如0.7wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比。
本发明中,所述R2的含量范围较佳地为0.2~0.85wt%,例如0.5wt%或者0.7wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比。
当所述R2包括Dy时,所述Dy的含量范围较佳地为0.2~0.8wt%,例如0.2wt%、0.4wt%或0.5wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比。
当所述R2包括Tb时,所述Tb的含量范围较佳地为0.05~0.7wt%,例如0.5wt%、0.3wt%或0.4wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比。
本发明中,当所述R2为Dy和Tb的混合物时,Dy和Tb的重量比可为本领域常规,一般为1:99~99:1,例如1:1、3:2、16:1或者2:3。
本发明中,所述Co的含量范围较佳地为0~0.47wt%,例如0.22wt%或0.35wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比。
本发明中,所述B的含量范围较佳地为0.94~1.02wt%,例如0.99wt%或1wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比。
本发明中,所述Cu的含量范围较佳地为0~0.3wt%,例如0.02wt%、0.05wt%、0.11wt%、0.15wt%或0.3wt%;更佳地为0.02~0.15wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比。
本发明中,所述Ga的含量范围较佳地为0~0.3wt%,例如,0.05wt%、0.15wt%、0.2 wt%或0.21wt%;更佳地为0.05~0.15wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比。
本发明中,所述Al的含量范围为0~0.3wt%,更佳地为0~0.1wt%,例如0.02wt%、0.04wt%或0.08wt%;更佳地为0~0.04wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比。其中当Al的含量为0~0.1wt%时,Al含量的可以为制备钕铁硼材料的过程中引入的杂质Al含量范围,或者也可以为额外添加的Al含量。当Al的含量为0~0.04wt%时,该范围为制备钕铁硼材料的过程中引入的杂质Al含量范围。
本发明中,较佳地,所述X的含量为0.05~0.3wt%或者0.33wt%,例如0.2wt%、0.3wt%或者0.07wt%。
本发明中,所述X的种类较佳地为Ti、Nb、Zr和Hf中的一种或多种。
当X包括Zr时,所述Zr的含量范围较佳地为0.02~0.3wt%,例如0.2wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比。
当X包括Ti时,所述Ti的含量范围较佳地为0~0.2wt%、且不为0,例如0.02wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比。
当X包括Nb时,所述Nb的含量范围较佳地为0~0.4wt%、且不为0,例如0.03wt%、0.1wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比。
当X包括Hf时,所述Hf的含量范围较佳地为0~0.1wt%、且不为0,例如0.03wt%或0.05wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比。
当X包括Ti和Nb时,Ti和Nb的重量比可为本领域常规,一般为1:99~99:1,例如2:1或2:3。
当X包括Hf和Zr时,Hf和Zr的重量比可为本领域常规,一般为1:99~99:1,例如1:10或5:2。
当X包括Hf和Nb时,Hf和Nb的重量比可为本领域常规,一般为1:99~99:1,例如1:8。
本发明中,所述钕铁硼磁体材料Ⅰ的原料组合物还可包括Mn。所述Mn的含量范围≤0.035wt%,更佳地≤0.0175wt%。
本发明中,较佳地,所述钕铁硼磁体材料Ⅰ的原料组合物包括:
R1中:PrNd:5.5~27.5wt%;Ho:2.5~10wt%;Gd:0~3wt%、且不为0;R2:0.2~0.8wt%;B:0.94~1.02wt%;Cu:0~0.3wt%;Ga:0~0.3wt%;Al:0~0.1wt%;Zr:0.02~0.3wt%;余量为Fe及不可避免的杂质;
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅰ的原料组合物包括:
R1中:PrNd:22.5wt%,Ho:7.5wt%,Gd:1wt%,R2中:Dy:0.5wt%,B:0.94wt%,Cu:0.15wt%,Ga:0.15wt%,Al:0.04wt%,Zr:0.2wt%,余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅰ的原料组合物包括:
R1中:PrNd:24.5wt%,Ho:5.5wt%,Gd:1wt%,R2中:Dy:0.5wt%,B:0.94wt%,Cu:0.15wt%,Ga:0.15wt%,Al:0.04wt%,Zr:0.2wt%,余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅰ的原料组合物包括:
R1中:PrNd:26wt%,Ho:4wt%,Gd:1wt%,R2中:Dy:0.5wt%,B:0.94wt%,Cu:0.15wt%,Ga:0.15wt%,Al:0.04wt%,Zr:0.2wt%,余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅰ的原料组合物包括:
R1中:PrNd:27.5wt%,Ho:2.5wt%,Gd:1wt%,R2中:Dy:0.5wt%,B:0.94wt%,Cu:0.15wt%,Ga:0.15wt%,Al:0.04wt%,Zr:0.2wt%,余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅰ的原料组合物包括:
R1中:PrNd:22.5wt%,Ho:7.5wt%,Gd:1wt%,R2中:Dy:0.5wt%,Co:0.22wt%,B:0.94wt%,Cu:0.15wt%,Ga:0.15wt%,Al:0.04wt%,Zr:0.2wt%,余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅰ的原料组合物包括:
R1中:PrNd:24.5wt%,Ho:5.5wt%,Gd:1wt%,R2中:Dy:0.5wt%,Co:0.47wt%,B:0.94wt%,Cu:0.15wt%,Ga:0.15wt%,Al:0.04wt%,Zr:0.2wt%,余量为Fe及不可避免的杂质。
本发明中,较佳地,所述钕铁硼磁体材料Ⅰ的原料组合物包括:
R1中:Nd:19.3~32wt%;Ho:0~10wt%、且不为0;Gd:0~5wt%、且不为0;
R2:0.2~0.8wt%;B:0.94~1.02wt%;Cu:0~0.3wt%;Ga:0~0.3wt%;Al:0~0.1wt%;
Ti:0~0.2wt%、且不为0;Nb:0~0.4wt%、且不为0;
余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅰ的原料组合物包括:
R1中:Nd:31wt%,Ho:0.5wt%,Gd:0.5wt%,R2中:Tb:0.5wt%,B:0.9wt%,Cu:0.05wt%,Ga:0.05wt%,Al:0.1wt%,Ti:0.2wt%,Nb:0.1wt%,余量为Fe及 不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅰ的原料组合物包括:
R1中:Nd:19.3wt%,Pr:3.3wt%,Ho:6.7wt%,Gd:0.4wt%,R2中:Dy:0.2wt%,Tb:0.3wt%,B:0.99wt%,Cu:0.02wt%,Ga:0.2wt%,Al:0.5wt%,Ti:0.02wt%,Nb:0.03wt%,余量为Fe及不可避免的杂质。
本发明中,较佳地,所述钕铁硼磁体材料Ⅰ的原料组合物包括:
R1中:Nd:19.3~32wt%;Ho:0~10wt%、且不为0;Gd:0~5wt%、且不为0;
R2:0.2~0.8wt%;B:0.94~1.02wt%;Cu:0~0.3wt%;Ga:0~0.3wt%;Al:0~0.1wt%;
Zr:0.02~0.3wt%;Hf:0~0.1wt%、且不为0;
余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅰ的原料组合物包括:
R1中:Nd:20wt%,PrNd:5.5wt%,Ho:1.2wt%,Gd:3wt%,R2中:Dy:0.4wt%,Tb:0.4wt%,B:1wt%,Cu:0.11wt%,Ga:0.3wt%,Al:0.3wt%,Hf:0.03wt%,Zr:0.3wt%,余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅰ的原料组合物包括:
R1中:Nd:26wt%,Pr:0.2wt%,PrNd:0.5wt%,Ho:1wt%,Gd:0.7wt%,Sm:0.7wt%,R2中:Dy:0.8wt%,Tb:0.05wt%,B:1.02wt%,Cu:0.3wt%,Ga:0.21wt%,Al:0.02wt%,Zr:0.02wt%,Hf:0.05wt%,余量为Fe及不可避免的杂质。
本发明中,较佳地,所述钕铁硼磁体材料Ⅰ的原料组合物包括:
R1中:Nd:19.3~32wt%;Ho:0~10wt%、且不为0;Gd:0~5wt%、且不为0;
R2:0.2~0.8wt%;B:0.94~1.02wt%;Cu:0~0.3wt%;Ga:0~0.3wt%;Al:0~0.1wt%;
Hf:0~0.1wt%、且不为0;Nb:0~0.4wt%、且不为0;
余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅰ的原料组合物包括:
R1中:Nd:21wt%,Pr:0.5wt%,PrNd:1wt%,Ho:8.4wt%,Gd:0.2wt%,R2中:Tb:0.7wt%,B:1.02wt%,Cu:0.3wt%,Ga:0.21wt%,Al:0.08wt%,Nb:0.4wt%,Hf:0.05wt%,余量为Fe及不可避免的杂质。
本发明还提供了一种钕铁硼磁体材料Ⅰ的制备方法,其采用如上所述的原料组合物进行,所述制备方法为本领域常规的扩散制法,其中,所述R1元素在熔炼步骤中添加,所述R2元素在晶界扩散步骤中添加。
本发明中,所述制备方法较佳地包括如下步骤:将上述钕铁硼磁体材料Ⅰ的原料组 合物中除R2以外的元素经熔炼、制粉、成型、烧结得烧结体,接着将所述的烧结体与所述R2的混合物经晶界扩散即可。
本发明中,所述熔炼的操作和条件可为本领域常规的熔炼工艺,一般将所述钕铁硼磁体材料Ⅰ的原料组合物中除R2以外的元素采用铸锭工艺和速凝片工艺进行熔炼浇铸,得到合金片。
本领域技术人员知晓,因熔炼和烧结工艺中通常会损耗稀土元素,为保证终产品的质量,一般会在熔炼过程中在原料组合物的配方基础中额外添加0~0.3wt%的稀土元素(一般为Nd元素),百分比为额外添加的稀土元素的含量占所述原料组合物的总含量的质量百分比;另外这部分额外添加的稀土元素的含量不计入原料组合物的范畴。
本发明中,所述熔炼的温度可为1300~1700℃。
本发明中,所述熔炼的设备一般为中频真空熔炼炉,例如中频真空感应速凝甩带炉。
其中,所述制粉的操作和条件可为本领域常规制粉工艺,一般包括氢破制粉和/或气流磨制粉。
所述氢破制粉一般包括吸氢、脱氢和冷却处理。所述吸氢的温度一般为20~200℃。所述脱氢的温度一般为400~650℃。所述吸氢的压力一般为50~600kPa。
所述气流磨制粉一般在0.1~2MPa,优选0.5~0.7MPa的条件下进行气流磨制粉。所述气流磨制粉中的气流例如可为氮气和/或氩气。所述气流磨制粉的效率可根据设备不同有所差别,例如可为30~400kg/h,再例如200kg/h。
其中,所述成型的操作和条件可为本领域常规的成型工艺。例如磁场成型法。所述的磁场成型法的磁场强度一般在1.5T以上。
本发明中,所述烧结的操作和条件可为本领域常规的烧结工艺,例如真空烧结工艺和/或惰性气氛烧结工艺。所述真空烧结工艺或所述惰性气氛烧结工艺均为本领域常规操作。当采用惰性气氛烧结工艺时,所述烧结开始阶段可在真空度低于5×10 -1Pa的条件下进行。所述惰性气氛可为本领域常规的含有惰性气体的气氛,不限于氦气、氩气。
其中,所述烧结的温度可为1000~1200℃,优选为1030-1090℃。
所述烧结的时间可为0.5~10h,优选为2-8h。
其中,所述晶界扩散处理可按本领域常规的工艺进行处理,例如通过R2涂覆操作、气相物理沉淀操作或蒸镀操作实现晶界扩散处理。所述R2一般是以氟化物或低熔点合金的形式涂覆,例如Tb的合金或氟化物。当所述R2还包含Dy时,较佳地,Dy以Dy的合金或氟化物的形式涂覆。
所述气相物理沉淀操作一般是指磁控等离子溅射,通过惰性气体轰击重稀土Dy和/ 或Tb靶材,产生重稀土Dy和/或Tb离子,经过磁场的控制均匀附着在基材表面。所述蒸镀法一般是指通过重稀土Dy和/或Tb在一定真空度(如5~0.05Pa)和一定温度下(如500-900℃),产生重稀土Dy和/或Tb的蒸气,重稀土元素富集到基材表面。
其中,所述晶界扩散的温度可为800~1000℃,例如900℃。
其中,所述晶界扩散的时间可为12~90h,例如24h。
其中,所述晶界扩散之后,按照本领域常规还进行热处理。
其中,所述热处理的温度可为450℃~600℃,例如480-510℃。
其中,所述热处理的时间可为2~4小时,例如3小时。
本发明还提供了一种由上所述的制备方法制得的钕铁硼磁体材料Ⅰ。
本发明还提供了一种钕铁硼磁体材料Ⅰ,其包含:
R:29.5~32.5wt%;
所述R为稀土元素、且包含稀土元素R1和稀土元素R2,所述R2的含量为0.2~1wt%;
所述R1包括Nd、Ho和Gd,且不包括Dy和/或Tb;
所述R2包括Dy和/或Tb;
Co:0~0.5wt%;
B:0.9~1.05wt%;
Cu:0~0.35wt%、且不为0;
Ga:0~0.35wt%、且不为0;
Al:0~0.5wt%;
X:0.05~0.45wt%;
X包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;
Fe:66~70wt%;wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比;
所述钕铁硼磁体材料Ⅰ包含Nd 2Fe l4B晶粒和其壳层、晶界外延层和富钕相;
所述R1中的Ho主要分布在所述Nd 2Fe l4B晶粒和所述晶界外延层,所述R2主要分布在所述壳层和所述富钕相;
所述钕铁硼磁体材料的晶界连续性为96.5%以上。
本发明中,所述钕铁硼磁体材料Ⅰ中添加其它元素时,所述原料组合物的总重量发生变化。此时,对于各元素用量而言,除Fe以外的已有元素的重量百分比含量不发生变化,仅降低Fe元素的百分含量。即新添加某元素时,仅调节Fe元素的百分比,其它已有元素的百分比不变,以实现各元素总含量为100%。
本发明中,“R1中的Ho主要分布在所述Nd 2Fe l4B晶粒和所述晶界外延层”中的“主 要分布”一般是指该元素的95%以上,只有少部分会分布在富钕相。“R2主要分布在所述壳层和所述富钕相”可理解为,本领域常规的晶界扩散工艺引起的R2主要分布(一般是指95%以上)在主相晶粒的壳层和晶界,少部分也会扩散进入到主相晶粒中,例如在主相晶粒的外缘。
本发明中,所述晶界外延层一般是指邻接富钕相和主相颗粒的二颗粒晶界处,也可以称为“二颗粒晶界”或者称为“主相和富钕相的晶界边沿壳层结构”。
本发明中,所述富钕相为本领域常规理解的富钕相,本领域中,晶界结构中的相结构大部分为富钕相。
本发明中,晶界连续性的计算方式是指晶界中除空洞外的物相(例如富钕相、晶界外延层中的相等)占据的长度与总晶界长度的比值。晶界连续性超过96%即可称为连续通道。
本发明中,所述晶界连续性较佳地为96.6%以上,例如96.8%、96.9%、96.66%、97.1%、97.2%或者96.7%。
本发明中,较佳地,所述晶界外延层中含有R 40-85Ho 0.1-10Gd 0.1-5Cu 0.1-2.0X 3-7的物相结构,其中R、X的种类如上所述。
本发明中,所述R的含量范围较佳地为29.9~31.8wt%,例如29.95wt%、30.2wt%、30.5wt%或31.5wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比。
本发明中,所述R1中Nd含量较佳地为19.3~32wt%,例如31wt%、20wt%、21wt%或26wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比。
本发明中,所述R1中Ho含量较佳地为0~10wt%、且不为0;例如7.5wt%、5.5wt%、4wt%、2.5wt%、0.5wt%、6.7wt%、1wt%、1.2wt%或8.4wt%,更佳地为0.5~4wt%或5.5~8.5wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比。
本发明中,所述R1中Gd含量较佳地为0~5wt%、且不为0;例如1wt%、0.5wt%、0.4wt%、3wt%、0.2wt%或0.7wt%,更佳地为0~3wt%、且不为0,例如1wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比。
其中,Gd和Ho的添加总质量较佳地不超过10wt%。
本发明中,所述R1较佳地不含有Ho和Gd以外的重稀土金属。所述重稀土金属的定义或种类均为本领域常规,所述重稀土金属例如可包括钆以后的铽、镝、钬、铒、铥、镱、镥和钇等9个元素。
本发明中,所述R1还可包括本领域其他常规的稀土元素,例如包括Pr和/或Sm。
其中,当所述R1包含Pr时,Pr的添加形式可为本领域常规,例如以PrNd的形式, 或者,以纯净的Pr和Nd的混合物的形式,或者以PrNd、纯净的Pr和Nd的混合物联合添加。当以PrNd的形式添加时,PrNd中Pr与Nd的重量比为25:75或20:80,例如25:75。
本发明中,所述R1的Nd的添加形式可为本领域常规,例如以PrNd的形式,或者,以纯净的Nd的形式,或者以纯净的Pr和Nd的混合物的形式,或者以PrNd、纯净的Pr和Nd的混合物联合添加。当以PrNd的形式添加时,PrNd中Pr与Nd的重量比为25:75或20:80,例如25:75。
本发明中,所述R1中的Nd和/或Pr以PrNd的形式添加时,PrNd的用量较佳地为0.5~27.5wt%,例如22.5wt%、24.5wt%、26wt%、27.5wt%、5.5wt%、1wt%、或者0.5wt%,wt%为各元素占占所述钕铁硼磁体材料Ⅰ的原料组合物的重量百分比。
其中,当所述R1包含Pr时,所述Pr的含量较佳地为0~16wt%、且不为0,更佳地为0.2~7wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比。
其中,当所述R1包含Sm时,所述Sm的含量较佳地为0~3wt%,例如0.7wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比。
本发明中,所述R2的含量范围较佳地为0.2~0.85wt%,例如0.5wt%、0.7wt%或0.8wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比。
当所述R2包括Dy时,所述Dy的含量范围较佳地为0.2~0.8wt%,例如0.2wt%、0.4wt%或0.5wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比。
当所述R2包括Tb时,所述Tb的含量范围较佳地为0.05~0.7wt%,例如0.5wt%、0.3wt%或0.4wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比。
本发明中,当所述R2为Dy和Tb的混合物时,Dy和Tb的重量比可为本领域常规,一般为1:99~99:1,例如1:1、3:2、16:1或者2:3。
本发明中,所述Co的含量范围较佳地为0~0.47wt%,例如0.22wt%或0.35wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比。
本发明中,所述B的含量范围较佳地为0.94~1.02wt%,例如0.99wt%或1wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比。
本发明中,所述Cu的含量范围较佳地为0~0.3wt%,例如0.02wt%、0.05wt%、0.11wt%、0.15wt%或0.3wt%;更佳地为0.02~0.15wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比。
本发明中,所述Ga的含量范围较佳地为0~0.3wt%,例如,0.05wt%、0.15wt%、0.2wt%或0.21wt%;更佳地为0.05~0.15wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比。
本发明中,所述Al的含量范围为0~0.3wt%,更佳地为0~0.1wt%,例如0.02wt%、0.04wt%或0.08wt%;更佳地为0~0.04wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比。其中当Al的含量为0~0.1wt%时,Al的含量可以为制备钕铁硼材料的过程中引入的杂质Al含量范围,或者也可以为额外添加的Al含量。当Al的含量为0~0.04wt%时,该范围为制备钕铁硼材料的过程中引入的杂质Al含量范围。
本发明中,较佳地,所述X的含量为0.05~0.3wt%或者0.33wt%,例如0.2wt%、0.3wt%或者0.07wt%。
本发明中,所述X的种类较佳地为Ti、Nb、Zr和Hf中的一种或多种。
当X包括Zr时,所述Zr的含量范围较佳地为0.02~0.3wt%,例如0.2wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比。
当X包括Ti时,所述Ti的含量范围较佳地为0~0.2wt%,例如0.02wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比。
当X包括Nb时,所述Nb的含量范围较佳地为0~0.4wt%,例如0.03wt%、0.1wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比。
当X包括Hf时,所述Hf的含量范围较佳地为0~0.1wt%,例如0.03wt%或0.05wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比。
当X包括Ti和Nb时,Ti和Nb的重量比可为本领域常规,一般为1:99~99:1,例如2:1或2:3。
当X包括Hf和Zr时,Hf和Zr的重量比可为本领域常规,一般为1:99~99:1,例如1:10或5:2。
当X包括Hf和Nb时,Hf和Nb的重量比可为本领域常规,一般为1:99~99:1,例如1:8。
本发明中,所述钕铁硼磁体材料Ⅰ还可包括Mn。所述Mn的含量范围≤0.035wt%,更佳地≤0.0175wt%。
本发明中,较佳地,所述钕铁硼磁体材料Ⅰ包括:
R1中:PrNd:5.5~27.5wt%;Ho:2.5~10wt%;Gd:0~3wt%、且不为0;R2:0.2~0.8wt%;B:0.94~1.02wt%;Cu:0~0.3wt%;Ga:0~0.3wt%;Al:0~0.1wt%;Zr:0.02~0.3wt%;余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅰ包括:
R1中:PrNd:22.5wt%,Ho:7.5wt%,Gd:1wt%,R2中:Dy:0.5wt%,B:0.94wt%,Cu:0.15wt%,Ga:0.15wt%,Al:0.04wt%,Zr:0.2wt%,晶界连续性为96.8%,余量 为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅰ包括:
R1中:PrNd:24.5wt%,Ho:5.5wt%,Gd:1wt%,R2中:Dy:0.5wt%,B:0.94wt%,Cu:0.15wt%,Ga:0.15wt%,Al:0.04wt%,Zr:0.2wt%,晶界连续性为96.9%,余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅰ包括:
R1中:PrNd:26wt%,Ho:4wt%,Gd:1wt%,R2中:Dy:0.5wt%,B:0.94wt%,Cu:0.15wt%,Ga:0.15wt%,Al:0.04wt%,Zr:0.2wt%,晶界连续性为96.66%,余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅰ包括:
R1中:PrNd:27.5wt%,Ho:2.5wt%,Gd:1wt%,R2中:Dy:0.5wt%,B:0.94wt%,Cu:0.15wt%,Ga:0.15wt%,Al:0.04wt%,Zr:0.2wt%,晶界连续性为97.1%,余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅰ包括:
R1中:PrNd:22.5wt%,Ho:7.5wt%,Gd:1wt%,R2中:Dy:0.5wt%,Co:0.22wt%,B:0.94wt%,Cu:0.15wt%,Ga:0.15wt%,Al:0.04wt%,Zr:0.2wt%,晶界连续性为96.3%,余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅰ包括:
R1中:PrNd:24.5wt%,Ho:5.5wt%,Gd:1wt%,R2中:Dy:0.5wt%,Co:0.47wt%,B:0.94wt%,Cu:0.15wt%,Ga:0.15wt%,Al:0.04wt%,Zr:0.2wt%,晶界连续性为96.1%,余量为Fe及不可避免的杂质。
本发明中,较佳地,所述钕铁硼磁体材料Ⅰ包括:
R1中:Nd:19.3~32wt%;Ho:0~10wt%、且不为0;Gd:0~5wt%、且不为0;
R2:0.2~0.8wt%;B:0.94~1.02wt%;Cu:0~0.3wt%;Ga:0~0.3wt%;Al:0~0.1wt%;
Ti:0~0.2wt%、且不为0;Nb:0~0.4wt%、且不为0;
余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅰ包括:
R1中:Nd:31wt%,Ho:0.5wt%,Gd:0.5wt%,R2中:Tb:0.5wt%,B:0.9wt%,Cu:0.05wt%,Ga:0.05wt%,Al:0.1wt%,Ti:0.2wt%,Nb:0.1wt%,晶界连续性为97.2%,余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅰ包括:
R1中:Nd:19.3wt%,Pr:3.3wt%,Ho:6.7wt%,Gd:0.4wt%,R2中:Dy:0.2wt%,Tb:0.3wt%,B:0.99wt%,Cu:0.02wt%,Ga:0.2wt%,Al:0.5wt%,Ti:0.02wt%,Nb:0.03wt%,晶界连续性为96.5%,余量为Fe及不可避免的杂质。
本发明中,较佳地,所述钕铁硼磁体材料Ⅰ包括:
R1中:Nd:19.3~32wt%;Ho:0~10wt%、且不为0;Gd:0~5wt%、且不为0;
R2:0.2~0.8wt%;B:0.94~1.02wt%;Cu:0~0.3wt%;Ga:0~0.3wt%;Al:0~0.1wt%;
Zr:0.02~0.3wt%;Hf:0~0.1wt%、且不为0;
余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅰ包括:
R1中:Nd:20wt%,PrNd:5.5wt%,Ho:1.2wt%,Gd:3wt%,R2中:Dy:0.4wt%,Tb:0.4wt%,B:1wt%,Cu:0.11wt%,Ga:0.3wt%,Al:0.3wt%,Hf:0.03wt%,Zr:0.3wt%,晶界连续性为96.7%,余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅰ包括:
R1中:Nd:26wt%,Pr:0.2wt%,PrNd:0.5wt%,Ho:1wt%,Gd:0.7wt%,Sm:0.7wt%,R2中:Dy:0.8wt%,Tb:0.05wt%,B:1.02wt%,Cu:0.3wt%,Ga:0.21wt%,Al:0.02wt%,Zr:0.02wt%,Hf:0.05wt%,晶界连续性为97.1%,余量为Fe及不可避免的杂质。
本发明中,较佳地,所述钕铁硼磁体材料Ⅰ包括:
R1中:Nd:19.3~32wt%;Ho:0~10wt%、且不为0;Gd:0~5wt%、且不为0;
R2:0.2~0.8wt%;B:0.94~1.02wt%;Cu:0~0.3wt%;Ga:0~0.3wt%;Al:0~0.1wt%;
Hf:0~0.1wt%、且不为0;Nb:0~0.4wt%、且不为0;
余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅰ包括:
R1中:Nd:21wt%,Pr:0.5wt%,PrNd:1wt%,Ho:8.4wt%,Gd:0.2wt%,R2中:Tb:0.7wt%,B:1.02wt%,Cu:0.3wt%,Ga:0.21wt%,Al:0.08wt%,Nb:0.4wt%,Hf:0.05wt%,晶界连续性为96.8%,余量为Fe及不可避免的杂质。
本发明还提供了一种钕铁硼磁体材料Ⅱ的原料组合物,其包含:
R:29~32.2wt%;
所述R为稀土元素、且包括Nd、Ho和Gd、且不包括Dy和/或Tb;
Co:0~0.5wt%;
B:0.9~1.05wt%;
Cu:0~0.35wt%、且不为0;
Ga:0~0.35wt%、且不为0;
Al:0~0.5wt%;
X:0.05~0.45wt%;
X包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;
Fe:66.6~70wt%;
wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比。
本发明中,所述钕铁硼磁体材料Ⅱ的原料组合物中添加其它元素时,所述原料组合物的总重量发生变化。此时,对于各元素用量而言,除Fe以外的已有元素的重量百分比含量不发生变化,仅降低Fe元素的百分含量。即新添加某元素时,仅调节Fe元素的百分比,其它已有元素的百分比不变,以实现各元素总含量为100%。
本发明中,所述R的含量范围为29.1~31.2wt%,例如29.3wt%、31wt%、31.1wt%、29.9wt%或29.8wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比。
本发明中,所述R中Nd含量较佳地为19.3~32wt%,例如31.2wt%、19.4wt%、20.2wt%、21.1wt%或26.2wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比。
本发明中,所述R中Ho含量较佳地为0~10wt%、且不为0;例如7.5wt%、5.5wt%、4wt%、2.5wt%、0.5wt%、6.7wt%、1wt%、1.2wt%或8.5wt%,更佳地为0.5~4wt%或5.5~8.5wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比。
本发明中,所述R中Gd含量较佳地为0~5wt%、且不为0;例如1wt%、0.5wt%、0.4wt%、3wt%、0.2wt%或0.7wt%,更佳地为0~3wt%、且不为0,例如1wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比。
其中,Gd和Ho的添加总质量较佳地不超过10wt%。
本发明中,所述R较佳地不含有Ho和Gd以外的重稀土金属。所述重稀土金属的定义或种类均为本领域常规,所述重稀土金属例如可包括钆以后的铽、镝、钬、铒、铥、镱、镥和钇等9个元素。
本发明中,所述R还可包括本领域其他常规的稀土元素,例如包括Pr和/或Sm。
其中,当所述R包含Pr时,Pr的添加形式可为本领域常规,例如以PrNd的形式,或者,以纯净的Pr和Nd的混合物的形式,或者以PrNd、纯净的Pr和Nd的混合物联合添加。当以PrNd的形式添加时,PrNd中Pr与Nd的重量比为25:75或20:80,例如25:75。
本发明中,所述R的Nd的添加形式可为本领域常规,例如以PrNd的形式,或者, 以纯净的Nd的形式,或者以纯净的Pr和Nd的混合物的形式,或者以PrNd、纯净的Pr和Nd的混合物联合添加。当以PrNd的形式添加时,PrNd中Pr与Nd的重量比为25:75或20:80,例如25:75。
本发明中,所述R1中的Nd和/或Pr以PrNd的形式添加时,PrNd的用量较佳地为0.5~27.5wt%,例如22.5wt%、24.5wt%、26wt%、27.5wt%、5.5wt%、1wt%、或者0.5wt%,wt%为各元素占占所述钕铁硼磁体材料Ⅱ的原料组合物的重量百分比。
其中,当所述R包含Pr时,所述Pr的含量较佳地为0~16wt%、且不为0,更佳地为0.2~7wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比。
其中,当所述R包含Sm时,所述Sm的含量较佳地为0~3wt%,例如0.7wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比。
本发明中,所述Co的含量范围较佳地为0~0.47wt%,例如0.22wt%或0.35wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比。
本发明中,所述B的含量范围较佳地为0.94~1.02wt%,例如0.99wt%或1wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比。
本发明中,所述Cu的含量范围较佳地为0~0.3wt%,例如0.02wt%、0.05wt%、0.11wt%、0.15wt%或0.3wt%;更佳地为0.02~0.15wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比。
本发明中,所述Ga的含量范围较佳地为0~0.3wt%,例如,0.05wt%、0.15wt%、0.2wt%或0.21wt%;更佳地为0.05~0.15wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比。
本发明中,所述Al的含量范围为0~0.3wt%,更佳地为0~0.1wt%,例如0.02wt%、0.04wt%或0.08wt%;更佳地为0~0.04wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比。其中当Al的含量为0~0.1wt%时,Al的含量可以为制备钕铁硼材料的过程中引入的杂质Al含量范围,或者也可以为额外添加的Al含量。当Al的含量为0~0.04wt%时,该范围为制备钕铁硼材料的过程中引入的杂质Al含量范围。
本发明中,较佳地,所述X的含量为0.05~0.3wt%或者0.33wt%,例如0.2wt%、0.3wt%或者0.07wt%。
本发明中,所述X的种类较佳地为Ti、Nb、Zr和Hf中的一种或多种。
当X包括Zr时,所述Zr的含量范围较佳地为0.02~0.3wt%,例如0.2wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比。
当X包括Ti时,所述Ti的含量范围较佳地为0~0.2wt%、且不为0,例如0.02wt%, wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比。
当X包括Nb时,所述Nb的含量范围较佳地为0~0.4wt%、且不为0,例如0.03wt%、0.1wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比。
当X包括Hf时,所述Hf的含量范围较佳地为0~0.1wt%、且不为0,例如0.03wt%或0.05wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比。
当X包括Ti和Nb时,Ti和Nb的重量比可为本领域常规,一般为1:99~99:1,例如2:1或2:3。
当X包括Hf和Zr时,Hf和Zr的重量比可为本领域常规,一般为1:99~99:1,例如1:10或5:2。
当X包括Hf和Nb时,Hf和Nb的重量比可为本领域常规,一般为1:99~99:1,例如1:8。
本发明中,所述钕铁硼磁体材料Ⅱ的原料组合物还可包括Mn。所述Mn的含量范围≤0.035wt%,更佳地≤0.0175wt%。
本发明中,较佳地,所述钕铁硼磁体材料Ⅱ的原料组合物包括:
PrNd:5.5~27.5wt%;Ho:2.5~10wt%;Gd:0~3wt%、且不为0;B:0.94~1.02wt%;Cu:0~0.3wt%;Ga:0~0.3wt%;Al:0~0.1wt%;Zr:0.02~0.3wt%;余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅱ的原料组合物包括:
PrNd:22.6wt%,Ho:7.5wt%,Gd:1wt%,B:0.94wt%,Cu:0.15wt%,Ga:0.15wt%,Al:0.04wt%,Zr:0.2wt%,余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅱ的原料组合物包括:
PrNd:24.6wt%,Ho:5.5wt%,Gd:1wt%,B:0.94wt%,Cu:0.15wt%,Ga:0.15wt%,Al:0.04wt%,Zr:0.2wt%,余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅱ的原料组合物包括:
PrNd:26.1wt%,Ho:4wt%,Gd:1wt%,B:0.94wt%,Cu:0.15wt%,Ga:0.15wt%,Al:0.04wt%,Zr:0.2wt%,余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅱ的原料组合物包括:
PrNd:27.6wt%,Ho:2.5wt%,Gd:1wt%,B:0.94wt%,Cu:0.15wt%,Ga:0.15wt%,Al:0.04wt%,Zr:0.2wt%,余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅱ的原料组合物包括:
PrNd:22.6wt%,Ho:7.5wt%,Gd:1wt%,Co:0.22wt%,B:0.94wt%,Cu:0.15wt%, Ga:0.15wt%,Al:0.04wt%,Zr:0.2wt%,余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅱ的原料组合物包括:
PrNd:24.6wt%,Ho:5.5wt%,Gd:1wt%,Co:0.47wt%,B:0.94wt%,Cu:0.15wt%,Ga:0.15wt%,Al:0.04wt%,Zr:0.2wt%,余量为Fe及不可避免的杂质。
本发明中,较佳地,所述钕铁硼磁体材料Ⅱ的原料组合物包括:
Nd:19.3~32wt%;Ho:0~10wt%、且不为0;Gd:0~5wt%、且不为0;B:0.94~1.02wt%;Cu:0~0.3wt%;Ga:0~0.3wt%;Al:0~0.1wt%;Ti:0~0.2wt%、且不为0;Nb:0~0.4wt%、且不为0;
余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅱ的原料组合物包括:
Nd:31wt%,Ho:0.5wt%,Gd:0.5wt%,Tb:0.5wt%,B:0.9wt%,Cu:0.05wt%,Ga:0.05wt%,Al:0.1wt%,Ti:0.2wt%,Nb:0.1wt%,余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅱ的原料组合物包括:
Nd:19.3wt%,Pr:3.3wt%,Ho:6.7wt%,Gd:0.4wt%,B:0.99wt%,Cu:0.02wt%,Ga:0.2wt%,Al:0.5wt%,Ti:0.02wt%,Nb:0.03wt%,余量为Fe及不可避免的杂质。
本发明中,较佳地,所述钕铁硼磁体材料Ⅱ的原料组合物包括:
Nd:19.3~32wt%;Ho:0~10wt%、且不为0;Gd:0~5wt%、且不为0;B:0.94~1.02wt%;Cu:0~0.3wt%;Ga:0~0.3wt%;Al:0~0.1wt%;Zr:0.02~0.3wt%;Hf:0~0.1wt%、且不为0;
余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅱ的原料组合物包括:
Nd:20wt%,PrNd:5.5wt%,Ho:1.2wt%,Gd:3wt%,B:1wt%,Cu:0.11wt%,Ga:0.3wt%,Al:0.3wt%,Hf:0.03wt%,Zr:0.3wt%,余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅱ的原料组合物包括:
Nd:26wt%,Pr:0.2wt%,PrNd:0.5wt%,Ho:1wt%,Gd:0.7wt%,Sm:0.7wt%,B:1.02wt%,Cu:0.3wt%,Ga:0.21wt%,Al:0.02wt%,Zr:0.02wt%,Hf:0.05wt%,余量为Fe及不可避免的杂质。
本发明中,较佳地,所述钕铁硼磁体材料Ⅱ的原料组合物包括:
Nd:19.3~32wt%;Ho:0~10wt%、且不为0;Gd:0~5wt%、且不为0;
B:0.94~1.02wt%;Cu:0~0.3wt%;Ga:0~0.3wt%;Al:0~0.1wt%;Hf:0~0.1wt%、 且不为0;Nb:0~0.4wt%、且不为0;
余量为Fe及不可避免的杂质。
在本发明一较佳实施方式中,所述钕铁硼磁体材料Ⅱ的原料组合物包括:
Nd:21wt%,Pr:0.5wt%,PrNd:1wt%,Ho:8.5wt%,Gd:0.2wt%,B:1.02wt%,Cu:0.3wt%,Ga:0.21wt%,Al:0.08wt%,Nb:0.4wt%,Hf:0.05wt%,余量为Fe及不可避免的杂质。
本发明还提供了一种钕铁硼磁体材料Ⅱ的制备方法,将上述钕铁硼磁体材料Ⅱ的原料组合物经熔炼、制粉、成型、烧结即可。
其中,所述熔炼、所述制粉、所述成型和所述烧结的过程与上述相同。
本发明还提供了一种由如上所述的制备方法制得的钕铁硼磁体材料Ⅱ。
本发明还提供了一种钕铁硼磁体材料Ⅱ,其包含:
R:29~32.2wt%;
所述R为稀土元素、且包括Nd、Ho和Gd、且不包括Dy和/或Tb;
Co:0~0.5wt%;
B:0.9~1.05wt%;
Cu:0~0.35wt%、且不为0;
Ga:0~0.35wt%、且不为0;
Al:0~0.5wt%;
X:0.05~0.45wt%;
X包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;
Fe:66.6~70wt%;
wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比。
本发明中,较佳地,所述钕铁硼磁体材料Ⅱ包含主相颗粒、富钕相和晶界外延层,所述晶界外延层中含有R 40-85Ho 0.1-10Gd 0.1-5Cu 0.1-2.0X 3-7的物相结构,其中R、X的种类如上所述。
本发明中,所述钕铁硼磁体材料Ⅱ中添加其它元素时,所述原料组合物的总重量发生变化。此时,对于各元素用量而言,除Fe以外的已有元素的重量百分比含量不发生变化,仅降低Fe元素的百分含量。即新添加某元素时,仅调节Fe元素的百分比,其它已有元素的百分比不变,以实现各元素总含量为100%。
本发明中,所述R的含量范围为29.1~31.2wt%,例如29.3wt%、31wt%、31.1wt%、29.9wt%或29.8wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比。
本发明中,所述R中Nd含量较佳地为19.3~32wt%,例如31.2wt%、19.4wt%、20.2wt%、21.1wt%或26.2wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比。
本发明中,所述R中Ho含量较佳地为0~10wt%、且不为0;例如7.5wt%、5.5wt%、4wt%、2.5wt%、0.5wt%、6.7wt%、1wt%、1.2wt%或8.5wt%,更佳地为0.5~4wt%或5.5~8.5wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比。
本发明中,所述R中Gd含量较佳地为0~5wt%、且不为0;例如1wt%、0.5wt%、0.4wt%、3wt%、0.2wt%或0.7wt%,更佳地为0~3wt%、且不为0,例如1wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比。
其中,Gd和Ho的添加总质量较佳地不超过10wt%。
本发明中,所述R较佳地不含有Ho和Gd以外的重稀土金属。所述重稀土金属的定义或种类均为本领域常规,所述重稀土金属例如可包括钆以后的铽、镝、钬、铒、铥、镱、镥和钇等9个元素。
本发明中,所述R还可包括本领域其他常规的稀土元素,例如包括Pr和/或Sm。
其中,当所述R包含Pr时,Pr的添加形式可为本领域常规,例如以PrNd的形式,或者,以纯净的Pr和Nd的混合物的形式,或者以PrNd、纯净的Pr和Nd的混合物联合添加。当以PrNd的形式添加时,PrNd中Pr与Nd的重量比为25:75或20:80,例如25:75。
本发明中,所述R的Nd的添加形式可为本领域常规,例如以PrNd的形式,或者,以纯净的Nd的形式,或者以纯净的Pr和Nd的混合物的形式,或者以PrNd、纯净的Pr和Nd的混合物联合添加。当以PrNd的形式添加时,PrNd中Pr与Nd的重量比为25:75或20:80,例如25:75。
本发明中,所述R1中的Nd和/或Pr以PrNd的形式添加时,PrNd的用量较佳地为0.5~27.5wt%,例如22.5wt%、24.5wt%、26wt%、27.5wt%、5.5wt%、1wt%、或者0.5wt%,wt%为各元素占占所述钕铁硼磁体材料Ⅱ的原料组合物的重量百分比。
其中,当所述R包含Pr时,所述Pr的含量较佳地为0~16wt%、且不为0,更佳地为0.2~7wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比。
其中,当所述R包含Sm时,所述Sm的含量较佳地为0~3wt%,例如0.7wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比。
本发明中,所述Co的含量范围较佳地为0~0.47wt%,例如0.22wt%或0.35wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比。
本发明中,所述B的含量范围较佳地为0.94~1.02wt%,例如0.99wt%或1wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比。
本发明中,所述Cu的含量范围较佳地为0~0.3wt%,例如0.02wt%、0.05wt%、0.11wt%、0.15wt%或0.3wt%;更佳地为0.02~0.15wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比。
本发明中,所述Ga的含量范围较佳地为0~0.3wt%,例如,0.05wt%、0.15wt%、0.2wt%或0.21wt%;更佳地为0.05~0.15wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比。
本发明中,所述Al的含量范围为0~0.3wt%,更佳地为0~0.1wt%,例如0.02wt%、0.04wt%或0.08wt%;更佳地为0~0.04wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比。其中当Al的含量为0~0.1wt%时,Al的含量可以为制备钕铁硼材料的过程中引入的杂质Al含量范围,或者也可以为额外添加的Al含量。当Al的含量为0~0.04wt%时,该范围为制备钕铁硼材料的过程中引入的杂质Al含量范围。
本发明中,较佳地,所述X的含量为0.05~0.3wt%或者0.33wt%,例如0.2wt%、0.3wt%或者0.07wt%。
本发明中,所述X的种类较佳地为Ti、Nb、Zr和Hf中的一种或多种。
当X包括Zr时,所述Zr的含量范围较佳地为0.02~0.3wt%,例如0.2wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比。
当X包括Ti时,所述Ti的含量范围较佳地为0~0.2wt%、且不为0,例如0.02wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比。
当X包括Nb时,所述Nb的含量范围较佳地为0~0.4wt%、且不为0,例如0.03wt%、0.1wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比。
当X包括Hf时,所述Hf的含量范围较佳地为0~0.1wt%、且不为0,例如0.03wt%或0.05wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比。
当X包括Ti和Nb时,Ti和Nb的重量比可为本领域常规,一般为1:99~99:1,例如2:1或2:3。
当X包括Hf和Zr时,Hf和Zr的重量比可为本领域常规,一般为1:99~99:1,例如1:10或5:2。
当X包括Hf和Nb时,Hf和Nb的重量比可为本领域常规,一般为1:99~99:1,例如1:8。
本发明中,所述钕铁硼磁体材料Ⅱ还可包括Mn。所述Mn的含量范围≤0.035wt%,更佳地≤0.0175wt%。
本发明中,较佳地,所述钕铁硼磁体材料Ⅱ包括:
Nd:19.3~32wt%;Ho:0~10wt%、且不为0;Gd:0~5wt%、且不为0;B:0.94~1.02wt%;Cu:0~0.3wt%;Ga:0~0.3wt%;Al:0~0.1wt%;Zr:0.02~0.3wt%;
余量为Fe及不可避免的杂质。
本发明中,较佳地,所述钕铁硼磁体材料Ⅱ包括:
PrNd:5.5~27.5wt%;Ho:2.5~10wt%;Gd:0~3wt%、且不为0;B:0.94~1.02wt%;Cu:0~0.3wt%;Ga:0~0.3wt%;Al:0~0.1wt%;Zr:0.02~0.3wt%;余量为Fe及不可避免的杂质。
本发明中,较佳地,所述钕铁硼磁体材料Ⅱ包括:
Nd:19.3~32wt%;Ho:0~10wt%、且不为0;Gd:0~5wt%、且不为0;B:0.94~1.02wt%;Cu:0~0.3wt%;Ga:0~0.3wt%;Al:0~0.1wt%;Zr:0.02~0.3wt%;Hf:0~0.1wt%、且不为0;
余量为Fe及不可避免的杂质。
本发明中,较佳地,所述钕铁硼磁体材料Ⅱ包括:
Nd:19.3~32wt%;Ho:0~10wt%、且不为0;Gd:0~5wt%、且不为0;B:0.94~1.02wt%;Cu:0~0.3wt%;Ga:0~0.3wt%;Al:0~0.1wt%;Hf:0~0.1wt%、且不为0;Nb:0~0.4wt%、且不为0;
余量为Fe及不可避免的杂质。
本发明还提供了一种钕铁硼磁体材料在制备磁钢中的应用,所述钕铁硼磁体材料为所述钕铁硼磁体材料Ⅰ和/或所述钕铁硼磁体材料Ⅱ。当用Dy扩散时,所述磁钢可为35UH和38UH。当用Tb扩散时,所述磁钢可为35EH和38EH。
本发明中,在制备工艺中一般会添加润滑剂等,引入的碳杂质含量为本领域常规,一般为0~0.12wt%。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:
1)本发明钕铁硼磁体材料Ⅱ的Br可为12.45~13.9kGs,Hcj为14.55~19.89kOe;
2)常温下,本发明钕铁硼磁体材料Ⅰ的Br为12.4~13.83kGs,Hcj为25.2~32.21kOe;扩散后Hcj增加量为8.1~12.32kOe;晶界连续性为96.5~97.2%;
3)基于本申请的配方组分,各元素相配合,耐高温性能好:钕铁硼磁体材料Ⅰ的开路磁损0.1~3.56%,Br温度系数绝对值为0.079~0.1%;Hcj温度系数绝对值为0.381~0.473%。
附图说明
图1为实施例1制得的扩散前钕铁硼磁体材料(Ⅱ)的SEM照片。
图2为对比例8制得的扩散前钕铁硼磁体材料(Ⅱ)的SEM照片。
图3为实施例1制得的扩散后钕铁硼磁体材料(Ⅰ)的SEM照片。
图4为实施例1制得的扩散后钕铁硼磁体材料(Ⅰ)中Tb扩散的EPMA照片。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
表1 钕铁硼磁体材料Ⅱ的原料组合物的配方和含量(wt%)
Figure PCTCN2021088311-appb-000001
注:“/”是指不含有该元素。
表2 钕铁硼磁体材料Ⅰ的原料组合物的配方和含量(wt%)
Figure PCTCN2021088311-appb-000002
Figure PCTCN2021088311-appb-000003
注:“/”是指不含有该元素。
钕铁硼磁体材料I、II的制备方法如下:
本发明的实施例和对比例中,引入的碳杂质含量为本领域常规,即0~0.12wt%。
(1)熔炼和铸造过程:分别按照表1-2中的配方,将配制好的除R2以外的原料(或者表1中的原料)放入氧化铝的坩埚中,在高频真空熔炼炉中以0.05Pa的真空和1500℃的条件进行真空熔炼。再中频真空感应速凝甩带炉中通入氩气,进行铸造,再急冷合金,得合金片。
(2)氢破制粉过程:在室温下将放置急冷合金的氢破用炉抽真空,而后向氢破用炉内通入纯度为99.9%的氢气,维持氢气的压力90kPa,充分吸氢后,边抽真空边升温,充分脱氢,之后进行冷却,取出氢破粉碎后的粉末。其中,吸氢的温度为室温,脱氢的温度为550℃。
(3)气流磨制粉过程:在氮气气氛下,在粉碎室压力为0.65MPa的条件下对氢破粉碎后的粉末进行气流磨粉碎(气流磨制粉的效率可根据设备不同有所差别,例如可为200kg/h),得到细粉。
(4)成型过程:将经气流磨之后的粉末在1.5T以上的磁场强度中压制成型。
(5)烧结过程:将各成型体搬至烧结炉中进行烧结,烧结在低于0.5Pa的真空下,以1030-1090℃烧结2-8h,得钕铁硼磁体材料Ⅱ。
(6)晶界扩散过程:将钕铁硼磁体材料Ⅱ表面净化后将R2(例如Tb的合金或氟化物、Dy的合金或氟化物和DyCuGa和TbCuGa合金中的一种或多种)涂覆于烧结体的表面,并以900℃的温度扩散24h,之后冷却至室温,再以480-510℃的温度进行热处理3h,即得钕铁硼磁体材料Ⅰ。
效果实施例
分别取实施例1-11以及对比例1-8中钕铁硼磁体材料Ⅰ和钕铁硼磁体材料Ⅱ,测定其磁性能和成分,采用EPMA-1720观察其磁体的相组成。
(1)钕铁硼磁体材料Ⅰ和钕铁硼磁体材料Ⅱ的各成分使用高频电感耦合等离子体发射光谱仪(ICP-OES,Icap6300)进行测定。下表3所示为成分检测结果。
表3 钕铁硼磁体材料Ⅱ的组分和含量(wt%)
Figure PCTCN2021088311-appb-000004
注:“/”是指不含有该元素。
表4 钕铁硼磁体材料Ⅰ的组分和含量(wt%)
Figure PCTCN2021088311-appb-000005
Figure PCTCN2021088311-appb-000006
注:“/”是指不含有该元素。
(2)磁性能评价:钕铁硼磁体材料Ⅰ(也就是“扩散后”)和Ⅱ(也就是“扩散前”)使用英国Hirst公司的PFM-14磁性能测量仪进行磁性能检测;下表5所示为磁性能检测结果。
(3)钕铁硼磁体材料Ⅰ的高温性能的测试:计算温度系数的公式为:
Figure PCTCN2021088311-appb-000007
以及
Figure PCTCN2021088311-appb-000008
计算结果如表5所示。
(4)开路磁损的数据计算方法:
先测常温下钕铁硼磁体材料Ⅰ产品的磁通M1(磁通计HT707),然后在烘箱中加热产品到设定温度至140℃,保温60min,再冷却到常温时测定磁通M2,则高温时的开路磁损的计算公式为:
Figure PCTCN2021088311-appb-000009
其中,常温温度均为20℃。
(5)微观结构的测定:测试结果如表5所示,其中R 40-85Ho 0.1-10Gd 0.1-5Cu 0.1-2.0X 3-7新物相(在图1中箭头所指的晶界外延层结构中)根据FE-EPMA测试得到。由图1中可知,实施例1中扩散前的钕铁硼磁体材料形成了有利于扩散的晶界外延层结构,晶界连续性较高。
其中,晶界连续性的计算方式是指晶界中除空洞外的物相(例如富钕相、晶界外延层中的相等)占据的长度与总晶界长度的比值。
表5 钕铁硼磁体材料的测试结果
Figure PCTCN2021088311-appb-000010
Figure PCTCN2021088311-appb-000011
上表中“扩散前常温20℃检测结果”是指钕铁硼磁体材料Ⅱ(也就是“扩散前”)的性能,其他均是指扩散后钕铁硼磁体材料Ⅰ的性能。
图2中表明扩散前钕铁硼永磁材料并没有形成有利于扩散的晶界外延层结构,导致晶界连续性较差。
图4中表明Tb扩散后主要均匀分散在富钕相和主相壳层结构中。
表6
图3中取样点 各物相 Ho(wt%) Gd(wt%) PrNd(wt%) 其它(wt%)
1 富钕相 0.73 0.02 81.47 17.78
2 晶界外延层 5.54 0.86 53.22 40.38
3 主相 7.55 1.02 20.54 70.89
注:以取样点1为例,其属于富钕相,在小区域的取样范围内,Ho含量为0.73wt%,Gd含量为0.02wt%,PrNd含量为81.47wt%,其它元素含量为17.78wt%,上述百分比为该取样范围内,各元素的含量分别占全部元素的含量的重量百分比。
由图3和表6可知,在实施例1中扩散后的钕铁硼磁体材料中,Ho和Gd主要集中在基材主相(深灰色区域)中,其次是晶界外延层处(即为主相与富钕相交界处,也可 称之为二颗粒晶界),在富钕相中间图中灰白色区域内Ho和Gd元素分布较少。
通过SEM电镜中的EDS测试富钕相、主相及晶界边延层的成分,在低Co富Ho的结构中,通过图片计算“(富钕相和晶界外延层)/总晶界相”的面积比例为96.5%以上,大于常规含Co(一般为1%以上)磁体富钕相占总晶界相的比例95%,即增加了富钕相和晶界外延层占比,增加了晶界连续性,矫顽力提升明显。
1)由图1和表5可知,扩散前钕铁硼磁体材料的晶界外延层结构中形成了新的物相,晶界连续性提高,有利于Dy和/或Tb晶界扩散,从而使得扩散后Hcj明显提升,开路磁损较小;本申请配方中的各元素相配合,耐高温性能好(实施例1~11)。
2)基于本申请的配方,去掉Ho且TRE不变,矫顽力提升不明显,高温下磁损失较大,且晶界连续性较低(对比例1)。
3)基于本申请的配方,去掉X元素后,矫顽力提升不明显,高温下磁损失较大,且晶界连续性较低(对比例2)。
4)基于本申请的配方,Ho含量超过10wt%,剩磁下降明显,矫顽力提升不明显,磁损失不明显,晶界连续性相对较低(对比例3)。
5)基于本申请的配方,去掉Ga,Al超过0.5wt%,由于Al的过量加入会恶化剩磁和居里温度,磁损失相对较高,晶界连续性较低(对比例4)。
6)基于本申请的配方,Ga超过0.35wt%,矫顽力提升不明显,磁损失不明显,晶界连续性相对较低(对比例5)。
7)基于本申请的配方,改变TRE含量,添加Al,不添加Ga和X,剩磁较低,耐高温性能较差,磁损失非常显著,晶界连续性相对较低(对比例6)。
8)基于本申请的配方,去掉Ho,总TRE保持不变,矫顽力提升不明显,耐高温性能依然不好,磁损失明显,晶界连续性较低(对比例7)。
9)基于本申请的配方,不添加Ho、X、Cu、Ga且总TRE不变,矫顽力提升不明显,耐高温性很差,磁损失较大,晶界连续性较低(对比例8)。

Claims (10)

  1. 一种钕铁硼磁体材料Ⅰ的原料组合物,其特征在于,其包含:
    R:29.5~32.5wt%;
    所述R为稀土元素、且包括熔炼用稀土金属R1和晶界扩散用稀土金属R2,所述R2的含量为0.2~1wt%;
    所述R1包括Nd、Ho和Gd,且不包括Dy和/或Tb;
    所述R2包括Dy和/或Tb;
    Co:0~0.5wt%;
    B:0.9~1.05wt%;
    Cu:0~0.35wt%、且不为0;
    Ga:0~0.35wt%、且不为0;
    Al:0~0.5wt%;
    X:0.05~0.45wt%;
    X包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;
    Fe:66~70wt%;
    wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比;
    较佳地,所述R的含量范围为29.9~32wt%,例如29.95wt%、30.2wt%、30.5wt%、31.5wt%或31.8wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比;
    较佳地,所述R1中Nd含量为19.3~32wt%,例如31wt%、20wt%、21wt%或26wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比;
    较佳地,所述R1中Ho含量为0~10wt%、且不为0;例如7.5wt%、5.5wt%、4wt%、2.5wt%、0.5wt%、6.7wt%、1wt%、1.2wt%或8.4wt%,更佳地为0.5~4wt%或5.5~8.5wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比;
    较佳地,所述R1中Gd含量为0~5wt%、且不为0;例如1wt%、0.5wt%、0.4wt%、3wt%、0.2wt%或0.7wt%,更佳地为0~3wt%、且不为0,例如1wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比;
    较佳地,所述R1中,Gd和Ho的添加总质量不超过10wt%;
    较佳地,所述R1不含有Ho和Gd以外的重稀土金属;
    较佳地,所述R1还包括Pr和/或Sm;
    较佳地,所述R2的含量范围为0.2~0.85wt%,例如0.5wt%、0.7wt%或0.8wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比;
    较佳地,所述Co的含量范围为0~0.47wt%,例如0.22wt%或0.35wt%,wt%为各 元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比;
    较佳地,所述B的含量范围为0.94~1.02wt%,例如0.99wt%或1wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比;
    较佳地,所述Cu的含量范围为0~0.3wt%,例如0.02wt%、0.05wt%、0.11wt%、0.15wt%或0.3wt%;更佳地为0.02~0.15wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比;
    较佳地,所述Ga的含量范围为0~0.3wt%,例如,0.05wt%、0.15wt%、0.2wt%或0.21wt%;更佳地为0.05~0.15wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比;
    较佳地,所述Al的含量范围为0~0.3wt%,更佳地为0~0.1wt%,例如0.02wt%、0.04wt%或0.08wt%;更佳地为0~0.04wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比;
    较佳地,所述X的含量为0.05~0.3wt%或者0.33wt%,例如0.2wt%、0.3wt%或者0.07wt%;
    较佳地,所述X的种类为Ti、Nb、Zr和Hf中的一种或多种。
  2. 如权利要求1所述的钕铁硼磁体材料Ⅰ的原料组合物,其特征在于,
    当所述R1包含Pr时,Pr的添加形式为以PrNd的形式,或者,以纯净的Pr和Nd的混合物的形式,或者以PrNd、纯净的Pr和Nd的混合物联合添加;所述Pr的含量较佳地为0~16wt%、且不为0,更佳地为0.2~7wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的原料组合物的质量百分比;
    较佳地,当所述R1包含Sm时,所述Sm的含量为0~3wt%,例如0.7wt%;
    较佳地,当所述R2包括Dy时,所述Dy的含量范围为0.2~0.8wt%,例如0.2wt%、0.4wt%或0.5wt%;
    较佳地,当所述R2包括Tb时,所述Tb的含量范围为0.05~0.7wt%,例如0.5wt%、0.3wt%或0.4wt%;
    较佳地,当所述R2为Dy和Tb的混合物时,Dy和Tb的重量比为1:99~99:1,例如1:1、3:2、16:1或者2:3;
    较佳地,当X包括Zr时,所述Zr的含量范围为0.02~0.3wt%,例如0.2wt%;
    较佳地,当X包括Ti时,所述Ti的含量范围为0~0.2wt%、且不为0,例如0.02wt%;
    较佳地,当X包括Nb时,所述Nb的含量范围为0~0.4wt%、且不为0,例如0.03wt%、0.1wt%;
    较佳地,当X包括Hf时,所述Hf的含量范围为0~0.1wt%、且不为0,例如0.03wt%或0.05wt%;
    较佳地,当X包括Ti和Nb时,Ti和Nb的重量比为1:99~99:1,例如2:1或2:3;
    较佳地,当X包括Hf和Zr时,Hf和Zr的重量比为1:99~99:1,例如1:10或5:2;
    较佳地,当X包括Hf和Nb时,Hf和Nb的重量比为1:99~99:1,例如1:8;
    较佳地,所述钕铁硼磁体材料Ⅰ的原料组合物还包括Mn;所述Mn的含量范围较佳地≤0.035wt%,更佳地≤0.0175wt%;
    较佳地,所述钕铁硼磁体材料Ⅰ的原料组合物包括:
    R1中:PrNd:5.5~27.5wt%;Ho:2.5~10wt%;Gd:0~3wt%、且不为0;R2:0.2~0.8wt%;B:0.94~1.02wt%;Cu:0~0.3wt%;Ga:0~0.3wt%;Al:0~0.1wt%;Zr:0.02~0.3wt%;余量为Fe及不可避免的杂质;
    更佳地,所述钕铁硼磁体材料Ⅰ的原料组合物包括:
    R1中:PrNd:22.5wt%,Ho:7.5wt%,Gd:1wt%,R2中:Dy:0.5wt%,B:0.94wt%,Cu:0.15wt%,Ga:0.15wt%,Al:0.04wt%,Zr:0.2wt%,余量为Fe及不可避免的杂质。
  3. 一种钕铁硼磁体材料Ⅰ的制备方法,其特征在于,其采用如权利要求1或2所述的原料组合物进行制备,所述制备方法为扩散制法,其中,所述R1元素在熔炼步骤中添加,所述R2元素在晶界扩散步骤中添加;
    较佳地,所述制备方法包括如下步骤:将如权利要求1或2所述的原料组合物中除R2以外的元素经熔炼、制粉、成型、烧结得烧结体,再将所述烧结体与所述R2的混合物经晶界扩散即可;
    较佳地,所述晶界扩散之后,还进行热处理,所述热处理的温度为450℃~600℃,例如480-510℃。
  4. 一种如权利要求3所述的制备方法制得的钕铁硼磁体材料Ⅰ。
  5. 一种钕铁硼磁体材料Ⅰ,其特征在于,其包含:
    R:29.5~32.5wt%;
    所述R为稀土元素、且包含稀土元素R1和稀土元素R2,所述R2的含量为0.2~1wt%;
    所述R1包括Nd、Ho和Gd,且不包括Dy和/或Tb;
    所述R2包括Dy和/或Tb;
    Co:0~0.5wt%;
    B:0.9~1.05wt%;
    Cu:0~0.35wt%、且不为0;
    Ga:0~0.35wt%、且不为0;
    Al:0~0.5wt%;
    X:0.05~0.45wt%;
    X包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;
    Fe:66~70wt%;wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比;
    所述钕铁硼磁体材料Ⅰ包含Nd 2Fe l4B晶粒和其壳层、晶界外延层和富钕相;
    所述R1中的Ho主要分布在所述Nd 2Fe l4B晶粒和所述晶界外延层,所述R2主要分布在所述壳层和所述富钕相;
    所述钕铁硼磁体材料的晶界连续性为96.5%以上;
    较佳地,所述晶界连续性为96.6%以上,例如96.8%、96.9%、96.66%、97.1%、97.2%、96.7%;
    较佳地,所述R的含量范围为29.9~31.8wt%,例如29.95wt%、30.2wt%、30.5wt%或31.5wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比;
    较佳地,所述R1中Nd含量为19.3~32wt%,例如31wt%、20wt%、21wt%或26wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比;
    较佳地,所述R1中Ho含量为0~10wt%、且不为0;例如7.5wt%、5.5wt%、4wt%、2.5wt%、0.5wt%、6.7wt%、1wt%、1.2wt%或8.4wt%,更佳地为0.5~4wt%或5.5~8.5wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比;
    较佳地,所述R1中Gd含量为0~5wt%、且不为0;例如1wt%、0.5wt%、0.4wt%、3wt%、0.2wt%或0.7wt%,更佳地为0~3wt%、且不为0,例如1wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比;
    较佳地,Gd和Ho的添加总质量不超过10wt%;
    较佳地,所述R1不含有Ho和Gd以外的重稀土金属;
    较佳地,所述R1还包括Pr和/或Sm;
    较佳地,所述R2的含量范围为0.2~0.85wt%,例如0.5wt%、0.7wt%或0.8wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比;
    较佳地,所述Co的含量范围为0~0.47wt%,例如0.22wt%或0.35wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比;
    较佳地,所述B的含量范围为0.94~1.02wt%,例如0.99wt%或1wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比;
    较佳地,所述Cu的含量范围为0~0.3wt%,例如0.02wt%、0.05wt%、0.11wt%、0.15wt%或0.3wt%;更佳地为0.02~0.15wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比;
    较佳地,所述Ga的含量范围为0~0.3wt%,例如,0.05wt%、0.15wt%、0.2wt%或0.21wt%;更佳地为0.05~0.15wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比;
    较佳地,所述Al的含量范围为0~0.3wt%,更佳地为0~0.1wt%,例如0.02wt%、0.04wt%或0.08wt%;更佳地为0~0.04wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比;
    较佳地,所述X的含量为0.05~0.3wt%或者0.33wt%,例如0.2wt%、0.3wt%或者0.07wt%;
    较佳地,所述X的种类为Ti、Nb、Zr和Hf中的一种或多种。
  6. 如权利要求5所述的钕铁硼磁体材料Ⅰ,其特征在于,当所述R1包含Pr时,Pr的添加形式为以PrNd的形式,或者,以纯净的Pr和Nd的混合物的形式,或者以PrNd、纯净的Pr和Nd的混合物联合添加;所述Pr的含量较佳地为0~16wt%、且不为0,更佳地为0.2~7wt%,wt%为各元素占所述钕铁硼磁体材料Ⅰ的质量百分比;
    较佳地,当所述R1包含Sm时,所述Sm的含量为0~3wt%,例如0.7wt%;
    较佳地,当所述R2包括Dy时,所述Dy的含量范围为0.2~0.8wt%,例如0.2wt%、0.4wt%或0.5wt%;
    较佳地,当所述R2包括Tb时,所述Tb的含量范围为0.05~0.7wt%,例如0.5wt%、0.3wt%或0.4wt%;
    较佳地,当所述R2为Dy和Tb的混合物时,Dy和Tb的重量比为1:99~99:1,例如1:1、3:2、16:1或者2:3;
    较佳地,当X包括Zr时,所述Zr的含量范围为0.02~0.3wt%,例如0.2wt%;
    较佳地,当X包括Ti时,所述Ti的含量范围为0~0.2wt%,例如0.02wt%;
    较佳地,当X包括Nb时,所述Nb的含量范围为0~0.4wt%,例如0.03wt%或0.1wt%;
    较佳地,当X包括Hf时,所述Hf的含量范围为0~0.1wt%,例如0.03wt%或0.05wt%;
    较佳地,当X包括Ti和Nb时,Ti和Nb的重量比为1:99~99:1,例如2:1或2:3;
    较佳地,当X包括Hf和Zr时,Hf和Zr的重量比为1:99~99:1,例如1:10或5:2;
    较佳地,当X包括Hf和Nb时,Hf和Nb的重量比为1:99~99:1,例如1:8;
    较佳地,所述钕铁硼磁体材料Ⅰ还包括Mn;所述Mn的含量范围较佳地≤0.035wt%, 更佳地≤0.0175wt%;
    较佳地,所述钕铁硼磁体材料Ⅰ包括:
    R1中:PrNd:5.5~27.5wt%;Ho:2.5~10wt%;Gd:0~3wt%、且不为0;R2:0.2~0.8wt%;B:0.94~1.02wt%;Cu:0~0.3wt%;Ga:0~0.3wt%;Al:0~0.1wt%;Zr:0.02~0.3wt%;余量为Fe及不可避免的杂质;
    更佳地,所述钕铁硼磁体材料Ⅰ包括:
    R1中:PrNd:22.5wt%,Ho:7.5wt%,Gd:1wt%,R2中:Dy:0.5wt%,B:0.94wt%,Cu:0.15wt%,Ga:0.15wt%,Al:0.04wt%,Zr:0.2wt%,晶界连续性为96.8%,余量为Fe及不可避免的杂质。
  7. 一种钕铁硼磁体材料Ⅱ的原料组合物,其特征在于,其包含:
    R:29~32.2wt%;
    所述R为稀土元素、且包括Nd、Ho和Gd、且不包括Dy和/或Tb;
    Co:0~0.5wt%;
    B:0.9~1.05wt%;
    Cu:0~0.35wt%、且不为0;
    Ga:0~0.35wt%、且不为0;
    Al:0~0.5wt%;
    X:0.05~0.45wt%;
    X包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;
    Fe:66.6~70wt%;
    wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比;
    较佳地,所述R的含量范围为29.1~31.2wt%,例如29.3wt%、31wt%、31.1wt%、29.9wt%或29.8wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比;
    较佳地,所述R中Nd含量为19.3~32wt%,例如31.2wt%、19.4wt%、20.2wt%、21.1wt%或26.2wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比;
    较佳地,所述R中Ho含量为0~10wt%、且不为0;例如7.5wt%、5.5wt%、4wt%、2.5wt%、0.5wt%、6.7wt%、1wt%、1.2wt%或8.5wt%,更佳地为0.5~4wt%或5.5~8.5wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比;
    较佳地,所述R中Gd含量为0~5wt%、且不为0;例如1wt%、0.5wt%、0.4wt%、3wt%、0.2wt%或0.7wt%,更佳地为0~3wt%、且不为0,例如1wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比;
    较佳地,Gd和Ho的添加总质量不超过10wt%;
    较佳地,所述R不含有Ho和Gd以外的重稀土金属;
    较佳地,所述R还包括Pr和/或Sm;
    当所述R包含Pr时,Pr的添加形式较佳地为以PrNd的形式,或者,以纯净的Pr和Nd的混合物的形式,或者以PrNd、纯净的Pr和Nd的混合物联合添加;所述Pr的含量较佳地为0~16wt%、且不为0,更佳地为0.2~7wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比;
    当所述R包含Sm时,所述Sm的含量较佳地为0~3wt%,例如0.7wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比;
    较佳地,所述Co的含量范围为0~0.47wt%,例如0.22wt%或0.35wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比;
    较佳地,所述B的含量范围为0.94~1.02wt%,例如0.99wt%或1wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比;
    较佳地,所述Cu的含量范围为0~0.3wt%,例如0.02wt%、0.05wt%、0.11wt%、0.15wt%或0.3wt%;更佳地为0.02~0.15wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比;
    较佳地,所述Ga的含量范围为0~0.3wt%,例如,0.05wt%、0.15wt%、0.2wt%或0.21wt%;更佳地为0.05~0.15wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比;
    较佳地,所述Al的含量范围为0~0.3wt%,更佳地为0~0.1wt%,例如0.02wt%、0.04wt%或0.08wt%;更佳地为0~0.04wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比;
    较佳地,所述X的含量为0.05~0.3wt%或者0.33wt%,例如0.2wt%、0.3wt%或者0.07wt%;
    较佳地,所述X的种类为Ti、Nb、Zr和Hf中的一种或多种;
    当X包括Zr时,所述Zr的含量范围较佳地为0.02~0.3wt%,例如0.2wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比;
    当X包括Ti时,所述Ti的含量范围较佳地为0~0.2wt%、且不为0,例如0.02wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比;
    当X包括Nb时,所述Nb的含量范围较佳地为0~0.4wt%、且不为0,例如0.03wt%、0.1wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比;
    当X包括Hf时,所述Hf的含量范围较佳地为0~0.1wt%、且不为0,例如0.03wt%或0.05wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的原料组合物的质量百分比;
    当X包括Ti和Nb时,Ti和Nb的重量比较佳地为1:99~99:1,例如2:1或2:3;
    当X包括Hf和Zr时,Hf和Zr的重量比较佳地为1:99~99:1,例如1:10或5:2;
    当X包括Hf和Nb时,Hf和Nb的重量比较佳地为1:99~99:1,例如1:8;
    较佳地,所述钕铁硼磁体材料Ⅱ的原料组合物还包括Mn;所述Mn的含量范围较佳地≤0.035wt%,更佳地≤0.0175wt%。
  8. 一种钕铁硼磁体材料Ⅱ,其特征在于,其包含:R:29~32.2wt%;
    所述R为稀土元素、且包括Nd、Ho和Gd、且不包括Dy和/或Tb;
    Co:0~0.5wt%;
    B:0.9~1.05wt%;
    Cu:0~0.35wt%、且不为0;
    Ga:0~0.35wt%、且不为0;
    Al:0~0.5wt%;
    X:0.05~0.45wt%;
    X包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;
    Fe:66.6~70wt%;
    wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比;
    较佳地,所述R的含量范围为所述R的含量范围为29.1~31.2wt%,例如29.3wt%、31wt%、31.1wt%、29.9wt%或29.8wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比;
    较佳地,所述R中Nd含量为19.3~32wt%,例如31.2wt%、19.4wt%、20.2wt%、21.1wt%或26.2wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比;
    较佳地,所述R中Ho含量为0~10wt%、且不为0;例如7.5wt%、5.5wt%、4wt%、2.5wt%、0.5wt%、6.7wt%、1wt%、1.2wt%或8.5wt%,更佳地为0.5~4wt%或5.5~8.5wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比;
    较佳地,所述R中Gd含量为0~5wt%、且不为0;例如1wt%、0.5wt%、0.4wt%、3wt%、0.2wt%或0.7wt%,更佳地为0~3wt%、且不为0,例如1wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比;
    较佳地,Gd和Ho的添加总质量不超过10wt%;
    较佳地,所述R不含有Ho和Gd以外的重稀土金属;
    较佳地,所述R还包括Pr和/或Sm;
    当所述R包含Pr时,Pr的添加形式较佳地为以PrNd的形式,或者,以纯净的Pr和Nd的混合物的形式,或者以PrNd、纯净的Pr和Nd的混合物联合添加;所述Pr的含量较佳地为0~16wt%、且不为0,更佳地为0.2~7wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比;
    当所述R包含Sm时,所述Sm的含量较佳地为0~3wt%,例如0.7wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比;
    较佳地,所述Co的含量范围为0~0.47wt%,例如0.22wt%或0.35wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比;
    较佳地,所述B的含量范围为0.94~1.02wt%,例如0.99wt%或1wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比;
    较佳地,所述Cu的含量范围为0~0.3wt%,例如0.02wt%、0.05wt%、0.11wt%、0.15wt%或0.3wt%;更佳地为0.02~0.15wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比;
    较佳地,所述Ga的含量范围为0~0.3wt%,例如,0.05wt%、0.15wt%、0.2wt%或0.21wt%;更佳地为0.05~0.15wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比;
    较佳地,所述Al的含量范围为0~0.3wt%,更佳地为0~0.1wt%,例如0.02wt%、0.04wt%或0.08wt%;更佳地为0~0.04wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比;
    较佳地,所述X的含量为0.05~0.3wt%或者0.33wt%,例如0.2wt%、0.3wt%或者0.07wt%;
    较佳地,所述X的种类为Ti、Nb、Zr和Hf中的一种或多种;
    当X包括Zr时,所述Zr的含量范围较佳地为0.02~0.3wt%,例如0.2wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比;
    当X包括Ti时,所述Ti的含量范围较佳地为0~0.2wt%、且不为0,例如0.02wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比;
    当X包括Nb时,所述Nb的含量范围较佳地为0~0.4wt%、且不为0,例如0.03wt%、0.1wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比;
    当X包括Hf时,所述Hf的含量范围较佳地为0~0.1wt%、且不为0,例如0.03wt%或0.05wt%,wt%为各元素占所述钕铁硼磁体材料Ⅱ的质量百分比;
    当X包括Ti和Nb时,Ti和Nb的重量比较佳地为1:99~99:1,例如2:1或2:3;
    当X包括Hf和Zr时,Hf和Zr的重量比较佳地为1:99~99:1,例如1:10或5:2;
    当X包括Hf和Nb时,Hf和Nb的重量比较佳地为1:99~99:1,例如1:8;
    较佳地,所述钕铁硼磁体材料Ⅱ还包括Mn;所述Mn的含量范围较佳地≤0.035wt%,更佳地≤0.0175wt%。
  9. 一种钕铁硼磁体材料Ⅱ,其特征在于,其制备方法包括以下步骤:将如权利要求7所述的钕铁硼磁体材料Ⅱ的原料组合物经熔炼、制粉、成型、烧结即可。
  10. 一种钕铁硼磁体材料在制备磁钢中的应用,其特征在于,所述钕铁硼磁体材料为如权利要4~6任一项所述的钕铁硼磁体材料Ⅰ和/或如权利要求8或9所述的钕铁硼磁体材料Ⅱ。
PCT/CN2021/088311 2020-04-30 2021-04-20 钕铁硼磁体材料、原料组合物、制备方法、应用 WO2021218699A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010364133.2A CN111524672B (zh) 2020-04-30 2020-04-30 钕铁硼磁体材料、原料组合物、制备方法、应用
CN202010364133.2 2020-04-30

Publications (1)

Publication Number Publication Date
WO2021218699A1 true WO2021218699A1 (zh) 2021-11-04

Family

ID=71908632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088311 WO2021218699A1 (zh) 2020-04-30 2021-04-20 钕铁硼磁体材料、原料组合物、制备方法、应用

Country Status (2)

Country Link
CN (1) CN111524672B (zh)
WO (1) WO2021218699A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117438207A (zh) * 2023-12-20 2024-01-23 江西金力永磁科技股份有限公司 一种提升高牌号烧结钕铁硼磁体表面镀层结合力的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111524672B (zh) * 2020-04-30 2021-11-26 福建省长汀金龙稀土有限公司 钕铁硼磁体材料、原料组合物、制备方法、应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105453195A (zh) * 2013-08-12 2016-03-30 日立金属株式会社 R-t-b系烧结磁体及r-t-b系烧结磁体的制造方法
CN109509605A (zh) * 2019-01-11 2019-03-22 宁波复能新材料股份有限公司 一种多层结构稀土永磁体及其制备方法
CN111524672A (zh) * 2020-04-30 2020-08-11 福建省长汀金龙稀土有限公司 钕铁硼磁体材料、原料组合物、制备方法、应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320007A (ja) * 1989-03-31 1991-01-29 Casio Comput Co Ltd 磁性体薄膜の製造方法
CN101409121B (zh) * 2008-08-05 2011-01-05 中钢集团安徽天源科技股份有限公司 电机用钕铁硼永磁体及其制造方法
CN101552062A (zh) * 2008-12-09 2009-10-07 宁波同创强磁材料有限公司 钆钬复合添加的中高牌号钕铁硼磁体
CN103887028B (zh) * 2012-12-24 2017-07-28 北京中科三环高技术股份有限公司 一种烧结钕铁硼磁体及其制造方法
CN110828089B (zh) * 2019-11-21 2021-03-26 厦门钨业股份有限公司 钕铁硼磁体材料、原料组合物及制备方法和应用
CN110993232B (zh) * 2019-12-04 2021-03-26 厦门钨业股份有限公司 一种r-t-b系永磁材料、制备方法和应用
CN110993233B (zh) * 2019-12-09 2021-08-27 厦门钨业股份有限公司 一种r-t-b系永磁材料、原料组合物、制备方法、应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105453195A (zh) * 2013-08-12 2016-03-30 日立金属株式会社 R-t-b系烧结磁体及r-t-b系烧结磁体的制造方法
CN109509605A (zh) * 2019-01-11 2019-03-22 宁波复能新材料股份有限公司 一种多层结构稀土永磁体及其制备方法
CN111524672A (zh) * 2020-04-30 2020-08-11 福建省长汀金龙稀土有限公司 钕铁硼磁体材料、原料组合物、制备方法、应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117438207A (zh) * 2023-12-20 2024-01-23 江西金力永磁科技股份有限公司 一种提升高牌号烧结钕铁硼磁体表面镀层结合力的方法
CN117438207B (zh) * 2023-12-20 2024-04-12 江西金力永磁科技股份有限公司 一种提升高牌号烧结钕铁硼磁体表面镀层结合力的方法

Also Published As

Publication number Publication date
CN111524672A (zh) 2020-08-11
CN111524672B (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
WO2021169891A1 (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
WO2021169888A1 (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
WO2021169886A1 (zh) 一种钕铁硼磁体材料、原料组合物及制备方法和应用
TWI755152B (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
WO2021218701A1 (zh) 一种钕铁硼磁体材料、原料组合物及制备方法、应用
WO2021169887A1 (zh) 一种钕铁硼磁体材料、原料组合物及制备方法和应用
WO2021244315A1 (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
WO2021244312A1 (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
WO2021244311A1 (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
WO2021169890A1 (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
WO2021169893A1 (zh) 一种钕铁硼磁体材料、原料组合物及制备方法和应用
WO2021169889A1 (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
TWI751788B (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
WO2021238783A1 (zh) 一种钕铁硼永磁材料、其原料组合物、其制备方法和应用
WO2021218699A1 (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
WO2021218698A1 (zh) 一种钕铁硼磁体材料、原料组合物及制备方法、应用
WO2021218700A1 (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
WO2021169892A1 (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
EP3975212A1 (en) A method for preparation of a sintered type ndfeb permanent magnet with an adjusted grain boundary
WO2021244314A1 (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
WO2021238784A1 (zh) 钕铁硼永磁材料、其原料组合物、其制备方法
WO2022178958A1 (zh) 一种R-T-B-Si-M-A系稀土永磁体
CN116469634A (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21795271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21795271

Country of ref document: EP

Kind code of ref document: A1