WO2021218701A1 - 一种钕铁硼磁体材料、原料组合物及制备方法、应用 - Google Patents

一种钕铁硼磁体材料、原料组合物及制备方法、应用 Download PDF

Info

Publication number
WO2021218701A1
WO2021218701A1 PCT/CN2021/088319 CN2021088319W WO2021218701A1 WO 2021218701 A1 WO2021218701 A1 WO 2021218701A1 CN 2021088319 W CN2021088319 W CN 2021088319W WO 2021218701 A1 WO2021218701 A1 WO 2021218701A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
content
iron boron
neodymium iron
magnet material
Prior art date
Application number
PCT/CN2021/088319
Other languages
English (en)
French (fr)
Inventor
王金磊
黄清芳
黎国妃
汤志辉
黄佳莹
Original Assignee
厦门钨业股份有限公司
福建省长汀金龙稀土有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门钨业股份有限公司, 福建省长汀金龙稀土有限公司 filed Critical 厦门钨业股份有限公司
Publication of WO2021218701A1 publication Critical patent/WO2021218701A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Definitions

  • the invention relates to a neodymium iron boron magnet material, a raw material composition and a preparation method and application.
  • Nd-Fe-B permanent magnet material is based on Nd 2 Fe l4 B compound, which has the advantages of high magnetic properties, small thermal expansion coefficient, easy processing and low price. Since its introduction, it has grown at an average annual rate of 20-30%. Become the most widely used permanent magnet material. According to the preparation method, Nd-Fe-B permanent magnets can be divided into three types: sintering, bonding and hot pressing. Among them, sintered magnets account for more than 80% of the total output and are the most widely used.
  • Co is the most used and most effective element. This is because the addition of Co can reduce the reversible temperature coefficient of magnetic induction, effectively increase the Curie temperature, and can improve the corrosion resistance of the NdFeB magnet. However, the addition of Co easily causes a sharp drop in coercivity, and the cost of Co is relatively high.
  • Al is one of the effective elements to improve the coercivity of sintered Nd-Fe-B magnets, the addition of Al can reduce the infiltration angle between the main phase and the surrounding liquid phase during the sintering process, thereby improving the gap between the main phase and the Nd-rich phase.
  • the microstructure improves the coercivity, and the addition of Al may compensate for the decrease in the coercivity caused by the addition of Co. However, excessive addition of Al will deteriorate the remanence and Curie temperature.
  • the invention aims to overcome the prior art NdFeB magnets by adding Co to increase the Curie temperature and corrosion resistance, and Co easily causes a sharp drop in coercivity and expensive defects, and Al will deteriorate the remanence and Curie.
  • the temperature defect provides a neodymium iron boron magnet material, raw material composition, preparation method and application.
  • the magnet material of the present invention has the advantages of high remanence, high coercivity and good high-temperature performance.
  • the present invention provides a raw material composition of neodymium iron boron magnet material A, which comprises:
  • the R is a rare earth element and includes the rare earth metal R1 for smelting and the rare earth metal R2 for grain boundary diffusion; the R1 includes Nd and Ho, but does not include Dy and/or Tb; the R2 includes Dy and/or Tb; The content of R2 is 0.2-1wt%;
  • Ga 0 ⁇ 0.35wt%, and not 0;
  • X 0.05 to 0.45 wt%; the type of X includes one or more of Ti, Nb, Zr, Hf, V, Mo, W, Ta and Cr;
  • wt% is the weight percentage of each element in the raw material composition of the neodymium iron boron magnet material A;
  • Gd is not contained in the raw material composition.
  • the content of R is preferably 30-32 wt%, for example, 30.7 wt%, 30.93 wt%, 31 wt%, 31.4 wt%, 31.5 wt%, or 31.7 wt%.
  • the Nd content in R1 can be conventional in the art, preferably 16-32wt%, more preferably 16.8wt%, 17.925wt%, 18wt%, 19wt%, 19.4475wt%, 19.05wt% , 19.5% by weight, 20.175% by weight, 21.3% by weight, 21.75% by weight, 26.375% by weight, or 31% by weight.
  • the addition form of Nd in R1 is conventional in the art, for example, in the form of PrNd, or in the form of pure Nd, or in the form of a mixture of pure Pr and Nd, or in the form of PrNd, pure The mixture of Pr and Nd is added jointly.
  • the weight ratio of Pr to Nd in PrNd is 25:75 or 20:80.
  • the amount of PrNd is preferably 0.5 to 29wt%, more preferably 1wt%, 22.4wt%, 23.9wt%, 24wt%, 25.4wt% , 25.93wt%, 26wt%, 26.9wt% or 28.4wt%, and wt% is the weight percentage of the element in the raw material composition of the neodymium iron boron magnet material A.
  • the content of Ho in R1 is preferably 0-10wt%, and not 0, more preferably 0.1-10wt%, most preferably 1-9wt%, such as 1.3wt%, 2.5wt% , 4wt%, 4.5wt%, 5.5wt%, 6.4wt%, 6.7wt%, 7wt% or 8.5wt%.
  • the R1 preferably does not contain heavy rare earth metals other than Ho.
  • the definitions or types of the heavy rare earth metals are conventional in the art.
  • the heavy rare earth metals may include, for example, gadolinium and gadolinium followed by terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, and yttrium.
  • the R1 may also include other conventional rare earth elements in the art, such as Pr and/or Sm.
  • the form of Pr addition is conventional in the art, for example, in the form of PrNd, or in the form of a mixture of pure Pr and Nd, or combined with a mixture of PrNd and pure Pr and Nd Add to.
  • the weight ratio of Pr to Nd in PrNd is 25:75 or 20:80.
  • the content of Pr is preferably 0-16 wt%, and not 0, more preferably 0.2-15 wt%, such as 0.325 wt%, 2.75 wt%, 3.3 wt% , 5.6wt%, 5.975wt%, 6wt%, 6.35wt%, 6.4825wt%, 6.5wt%, 6.725wt% or 7.1wt%, wherein the percentage is the total weight of the raw material composition of the neodymium iron boron magnet material A Percentage.
  • the content of Sm is preferably 0-3wt%, for example 2wt%, where the percentage is the percentage of the total weight of the raw material composition of the neodymium iron boron magnet material A.
  • the content of R2 is preferably 0.2-0.9 wt%, such as 0.4 wt%, 0.5 wt%, 0.6 wt%, or 0.8 wt%.
  • the content of Dy is preferably 0.2-0.9 wt%, more preferably 0.25-0.75 wt%, for example 0.5 wt%.
  • the content of Tb is preferably 0.4-0.9wt%, more preferably 0.25-0.8wt%, such as 0.2wt%, 0.5wt%, 0.6wt% or 0.7wt%.
  • the weight ratio of Dy and Tb can be conventional in the art, generally 1:99-99:1, such as 50:50, 60:40, 25:75 Or 40:60.
  • the R2 may also include DyCuGa alloy and/or TbCuGa alloy.
  • the rare earth elements in the alloy can form a shell layer that diffuses the rare earth elements through the principle of grain boundary diffusion.
  • the content of Dy is ⁇ 75wt%, and the above percentage is the percentage of the amount of Dy in the total weight of the DyCuGa alloy.
  • the TbCuGa alloy preferably, the Tb content is ⁇ 75wt%, and the above percentage is the percentage of the amount of Tb in the total weight of the TbCuGa alloy.
  • the content of Co is preferably in the range of 0.02-0.45 wt%, for example, 0.1 wt%, 0.2 wt%, 0.25 wt%, 0.3 wt%, 0.35 wt%, or 0.4 wt%.
  • the content of B is preferably 0.92-1.02wt%, such as 0.94wt%, 0.9wt% or 0.99wt%.
  • the content of Cu is preferably 0.05-0.3wt%, more preferably 0.1-0.3wt%, for example 0.15wt%, 0.2wt% or 0.25wt%.
  • the content of Ga is preferably 0.02-0.3wt%, for example 0.05wt%, 0.1wt%, 0.15wt%, 0.2wt% or 0.25wt%.
  • the content of Al is preferably 0-0.3wt%, more preferably 0-0.1wt%, most preferably 0-0.04wt%, such as 0wt%, 0.02wt%, 0.03wt% Or 0.04wt%.
  • the content of Al may be the range of the Al content of impurities introduced in the process of preparing the neodymium iron boron material, or it may also be the content of additional Al added.
  • the range may be the range of the content of Al as an impurity introduced in the process of preparing the neodymium iron boron material.
  • the type of X is preferably one or more of Ti, Nb, Zr and Hf, and more preferably Ti, Nb, Zr or Hf.
  • the type of X can be "a mixture of Cr and Ti", “a mixture of Nb, Mo, W and Ta", “a mixture of Hf, W, Ta and Cr” or "a mixture of Nb and V” .
  • the type of X may be V, Mo, W, Ta or Cr.
  • the content of X is preferably 0.1-0.4wt%, such as 0.14wt%, 0.15wt%, 0.18wt%, 0.2wt%, 0.25wt% or 0.33wt%.
  • the content of Zr is preferably 0.05-0.25 wt%, for example, 0.1 wt% or 0.2 wt%.
  • the content of Ti is preferably 0.05-0.2 wt%, for example, 0.08 wt%, 0.1 wt%, 0.14 wt%, or 0.15 wt%.
  • the content of Nb is preferably 0.02-0.4 wt%, for example, 0.1 wt%, 0.15 wt%, or 0.25 wt%.
  • the content of Hf is preferably 0.02-0.1 wt%, for example, 0.03 wt% or 0.1 wt%.
  • the content of V is preferably 0.02-0.1 wt%, for example, 0.03 wt%.
  • the content of Mo is preferably 0.008-0.05 wt%, for example, 0.01 wt%.
  • the content of W is preferably 0.01-0.1 wt%, for example, 0.05 wt%.
  • the content of Ta is preferably 0.01-0.1 wt%, for example, 0.05 wt%.
  • the content of Cr is preferably 0.05-0.15 wt%, for example, 0.1 wt%.
  • the weight of Cr and Ti is preferably 1:(0.5-1.0), for example, 1:0.8.
  • the weight of Nb, Mo, W, and Ta is preferably (0.15-0.25): (0.8-1.2): (0.8-1.2):1, for example 2: 1:1:1.
  • the weight of Hf, W, Ta, and Cr is preferably (0.25-0.35):(0.8-1.2):(0.8-1.2):1, for example 3: 1:1:1.
  • the weight of Nb and V is preferably (35-45):5, such as 40;5.
  • the raw material composition of the neodymium iron boron magnet material A may further include Mn.
  • the content of Mn is preferably ⁇ 0.035wt%, more preferably ⁇ 0.0175wt%, and the above percentage is the weight percentage of Mn relative to the total amount of the raw material composition.
  • the raw material composition of the neodymium iron boron magnet material A includes:
  • R 30.5-32wt%; said R is a rare earth element and includes rare earth metal R1 for smelting and rare earth metal R2 for grain boundary diffusion;
  • R1 includes PrNd and Ho, but does not include Dy and/or Tb; PrNd: 22.9-29wt%; Ho: 2.5-8.5wt%;
  • R2 includes Dy and/or Tb; R2: 0.25-0.8wt%;
  • Ga 0.05 ⁇ 0.35wt%
  • X 0.05-0.25 wt%; the type of X includes one or more of Ti, Nb, Zr, and Hf;
  • wt% is the weight percentage of each element in the raw material composition of the neodymium iron boron magnet material A;
  • the raw material composition does not contain Gd
  • the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material A includes:
  • R 30.5-32wt%; said R is a rare earth element and includes rare earth metal R1 for smelting and rare earth metal R2 for grain boundary diffusion;
  • R1 includes PrNd and Ho, but does not include Dy and/or Tb; PrNd: 22.9-29wt%; Ho: 2.5-8.5wt%;
  • R2 includes Dy and/or Tb; R2: 0.3-0.6wt%;
  • Ga 0.05 ⁇ 0.35wt%
  • X 0.1 ⁇ 0.2wt%; the type of X includes Ti and/or Zr;
  • wt% is the weight percentage of each element in the raw material composition of the neodymium iron boron magnet material A;
  • the raw material composition does not contain Gd
  • the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material A can be any one of the following numbers 1-17 (wt%):
  • the present invention also provides a preparation method of neodymium iron boron magnet material A, which adopts the above-mentioned raw material composition for preparation.
  • the preparation method is a conventional diffusion method in the art, wherein the R1 element It is added in the step, and the R2 element is added in the grain boundary diffusion step.
  • the preparation method preferably includes the steps of: smelting, pulverizing, molding, and sintering elements in the raw material composition of the neodymium iron boron magnet material A to obtain a sintered body, and then The mixture of the sintered body and the R2 may diffuse through the grain boundary.
  • the smelting operation and conditions can be conventional smelting processes in the field.
  • the elements other than R 2 in the neodymium iron boron magnet material A are smelted and casted by ingot casting process and quick-setting sheet process, Obtain alloy flakes.
  • an additional 0-0.3wt% rare earth element ( Generally Nd element), the percentage is the weight percentage of the content of the additional rare earth element to the total content of the raw material composition; in addition, the content of this part of the additional rare earth element is not included in the category of the raw material composition.
  • the melting temperature may be 1300-1700°C.
  • the smelting equipment is generally a high frequency vacuum melting furnace and/or an intermediate frequency vacuum melting furnace, such as an intermediate frequency vacuum induction rapid-solidifying belt spinning furnace.
  • the operation and conditions of the pulverizing can be conventional pulverizing processes in the field, and generally include hydrogen crushing and/or jet milling.
  • the hydrogen crushing and pulverizing generally includes hydrogen absorption, dehydrogenation and cooling treatment.
  • the temperature of the hydrogen absorption is generally 20 to 200°C.
  • the temperature of the dehydrogenation is generally 400-650°C.
  • the pressure of the hydrogen absorption is generally 50 to 600 kPa.
  • the air-jet milling powder is generally carried out under the conditions of 0.1-2 MPa, preferably 0.5-0.7 MPa (for example, 0.65 MPa).
  • the gas stream in the gas stream milling powder can be, for example, nitrogen gas and/or argon gas.
  • the efficiency of the jet milling powder may vary according to different equipment, for example, it may be 30-400 kg/h, preferably 200 kg/h.
  • the molding operation and conditions can be conventional molding processes in the field.
  • the magnetic field forming method for example, the magnetic field forming method.
  • the magnetic field strength of the magnetic field forming method is generally above 1.5T.
  • the sintering operation and conditions can be conventional sintering processes in the art, such as vacuum sintering process and/or inert atmosphere sintering process.
  • the vacuum sintering process or the inert atmosphere sintering process are conventional operations in the art.
  • an inert atmosphere sintering process is used, the initial stage of the sintering can be performed under the condition of a vacuum degree of less than 5 ⁇ 10 ⁇ 1 Pa.
  • the inert atmosphere may be an atmosphere containing inert gas conventional in the art, such as helium and argon.
  • the sintering temperature may be 1000-1200°C, preferably 1030-1090°C.
  • the sintering time may be 0.5-10h, preferably 2-8h.
  • the operation of attaching the R2 to the surface of the substrate is generally included before the grain boundary diffusion.
  • the R2 is attached to the surface of the substrate by the following method: coating or spraying, magnetron plasma sputtering or evaporation method.
  • the R2 is generally coated or sprayed on the surface of the substrate in the form of fluoride or low melting point alloy.
  • the R2 includes Tb, preferably, Tb is coated or sprayed on the surface of the substrate in the form of Tb alloy or fluoride.
  • the R2 contains Dy, preferably, Dy is coated or sprayed on the surface of the substrate in the form of Dy alloy or fluoride.
  • the R2 is generally attached to the surface of the substrate through the following steps: bombarding the target material containing the R2 with an inert gas to generate ions containing the R2, and controlling the magnetic field Evenly adhere to the surface of the substrate.
  • the R2 is generally attached to the surface of the substrate through the following steps: under a certain vacuum and temperature, the heavy rare earth containing the R2 generates steam containing the R2, so The R2 is enriched on the surface of the substrate.
  • the degree of vacuum may be conventional in the art, and is preferably 5 Pa-5 ⁇ 10 -2 Pa.
  • the temperature may be conventional in the art, and is preferably 500-900°C.
  • the operation and conditions of the grain boundary diffusion treatment can be a conventional grain boundary diffusion process in the art.
  • the temperature of the grain boundary diffusion may be 800-1000°C, preferably 850-950°C.
  • the time for the grain boundary diffusion may be 12-90h.
  • heat treatment is also performed according to the conventional practice in the art.
  • the temperature of the heat treatment may be 450°C to 600°C, for example, 480 to 510°C.
  • the heat treatment time may be 1 to 4 hours, for example, 1 to 3 hours.
  • the present invention also provides a neodymium iron boron magnet material A prepared by the above-mentioned preparation method.
  • the present invention also provides a neodymium iron boron magnet material A, which comprises:
  • the R is a rare earth element and includes R1 and R2;
  • the R1 includes Nd and Ho, but does not include Dy and/or Tb;
  • the R2 includes Dy and/or Tb; the content of R2 is 0.2-1wt%;
  • Ga 0 ⁇ 0.35wt%, and not 0;
  • X 0.05 to 0.45 wt%; the type of X includes one or more of Ti, Nb, Zr, Hf, V, Mo, W, Ta and Cr;
  • wt% is the weight percentage of each element in the neodymium iron boron magnet material A
  • the NdFeB magnet material A does not contain Gd
  • the neodymium iron boron magnet material A comprises Nd 2 Fe 14 B crystal grains and its shell layer, grain boundary epitaxial layer and neodymium-rich phase;
  • Ho in the R1 is mainly distributed in the Nd 2 Fe 14 B crystal grains and the grain boundary epitaxial layer, and the R2 is mainly distributed in the shell layer and the neodymium-rich phase;
  • the continuity of the grain boundary of the neodymium iron boron magnet material A is 96% or more.
  • the "main distribution" of "Ho in R1 is mainly distributed in the Nd 2 Fe 14 B crystal grains and the grain boundary epitaxial layer" generally refers to more than 95% of the element, and only a small part is distributed In the neodymium-rich phase.
  • “R2 is mainly distributed in the shell layer and the neodymium-rich phase” can be understood as the main distribution of R2 (generally more than 95%) caused by the conventional grain boundary diffusion process in the art in the shell layer and the main phase grain A small part of the grain boundaries will also diffuse into the main phase grains, for example, at the outer edges of the main phase grains.
  • the grain boundary epitaxial layer generally refers to the two-grain boundary adjacent to the neodymium-rich phase and the main phase particle, and it can also be referred to as the "two-grain boundary” or "the main phase and the neodymium-rich phase.
  • the boundary shell structure
  • the neodymium-rich phase is a neodymium-rich phase conventionally understood in the art. In this field, most of the phase structure in the grain boundary structure is a neodymium-rich phase.
  • the calculation method of grain boundary continuity refers to the ratio of the length occupied by phases other than voids in the grain boundary (for example, the neodymium-rich phase, the same in the grain boundary epitaxial layer) to the total grain boundary length. Grain boundary continuity of more than 96% can be called continuous channel.
  • the grain boundary continuity is preferably 96.2-97.3%, such as 96.2%, 96.3%, 96.4%, 96.5%, 96.6%, 96.7%, 96.8%, 97.1%, 97.2% or 97.3%.
  • the content of R is preferably 30-32 wt%, for example, 30.7 wt%, 30.93 wt%, 31 wt%, 31.4 wt%, 31.5 wt%, or 31.7 wt%.
  • the Nd content in R1 can be conventional in the art, preferably 16-32wt%, more preferably 16.8wt%, 17.925wt%, 18wt%, 19wt%, 19.4475wt%, 19.05wt% , 19.5% by weight, 20.175% by weight, 21.3% by weight, 21.75% by weight, 26.375% by weight, or 31% by weight.
  • the addition form of Nd in R1 is conventional in the art, for example, in the form of PrNd, or in the form of pure Nd, or in the form of a mixture of pure Pr and Nd, or in the form of PrNd, pure The mixture of Pr and Nd is added jointly.
  • the weight ratio of Pr to Nd in PrNd is 25:75 or 20:80.
  • the amount of PrNd is preferably 0.5 to 29wt%, more preferably 1wt%, 22.4wt%, 23.9wt%, 24wt%, 25.4wt% , 25.93wt%, 26wt%, 26.9wt% or 28.4wt%, and the wt% is the weight percentage of each element in the neodymium iron boron magnet material A.
  • the content of Ho in R1 is preferably 0-10wt%, and not 0, more preferably 0.1-10wt%, most preferably 1-9wt%, such as 1.3wt%, 2.5wt% , 4wt%, 4.5wt%, 5.5wt%, 6.4wt%, 6.7wt%, 7wt% or 8.5wt%.
  • the R1 preferably does not contain heavy rare earth metals other than Ho.
  • the definitions or types of the heavy rare earth metals are conventional in the art.
  • the heavy rare earth metals may include, for example, gadolinium and gadolinium followed by terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, and yttrium.
  • the R1 may also include other conventional rare earth elements in the art, such as Pr and/or Sm.
  • the addition form of Pr is conventional in the art, for example, in the form of PrNd, or in the form of a mixture of pure Pr and Nd, or combined with a mixture of PrNd and pure Pr and Nd Add to.
  • the weight ratio of Pr to Nd in PrNd is 25:75 or 20:80.
  • the content of Pr is preferably 0-16 wt%, and not 0, more preferably 0.2-15 wt%, such as 0.325 wt%, 2.75 wt%, 3.3 wt% , 5.6wt%, 5.975wt%, 6wt%, 6.35wt%, 6.4825wt%, 6.5wt%, 6.725wt% or 7.1wt%, wherein the percentage is the percentage of the neodymium iron boron magnet material A.
  • the content of Sm is preferably 0-3wt%, for example 2wt%, where the percentage is the weight percentage of the neodymium iron boron magnet material A.
  • the content of R2 is preferably 0.2-0.9 wt%, such as 0.4 wt%, 0.5 wt%, 0.6 wt%, or 0.8 wt%.
  • the content of Dy is preferably 0.2-0.9 wt%, more preferably 0.25-0.75 wt%, for example 0.5 wt%.
  • the content of Tb is preferably 0.4-0.9wt%, more preferably 0.25-0.8wt%, such as 0.2wt%, 0.5wt%, 0.6wt% or 0.7wt%.
  • the weight ratio of Dy and Tb can be conventional in the art, generally 1:99-99:1, such as 50:50, 60:40, 25:75 Or 40:60.
  • the content of Co is preferably in the range of 0.02-0.45 wt%, for example, 0.1 wt%, 0.2 wt%, 0.25 wt%, 0.3 wt%, 0.35 wt%, or 0.4 wt%.
  • the content of B is preferably 0.92-1.02wt%, such as 0.94wt%, 0.9wt% or 0.99wt%.
  • the content of Cu is preferably 0.05-0.3, more preferably 0.1-0.3wt%, for example 0.15wt%, 0.2wt% or 0.25wt%.
  • the content of Ga is preferably 0.02-0.3wt%, for example 0.05wt%, 0.1wt%, 0.15wt%, 0.2wt% or 0.25wt%.
  • the content of Al is preferably 0-0.3wt%, more preferably 0-0.1wt%, most preferably 0-0.04wt%, such as 0wt%, 0.02wt%, 0.03wt% Or 0.04wt%.
  • the content of Al may be the range of the Al content of impurities introduced in the process of preparing the neodymium iron boron material, or it may be the content of Al added additionally.
  • the range may be the range of the content of Al as an impurity introduced in the process of preparing the neodymium iron boron material.
  • the type of X is preferably one or more of Ti, Nb, Zr and Hf, and more preferably Ti, Nb, Zr or Hf.
  • the type of X can be "a mixture of Cr and Ti", “a mixture of Nb, Mo, W and Ta", “a mixture of Hf, W, Ta and Cr” or "a mixture of Nb and V” .
  • the type of X may be V, Mo, W, Ta or Cr.
  • the content of X is preferably 0.1-0.4wt%, such as 0.14wt%, 0.15wt%, 0.18wt%, 0.2wt%, 0.25wt% or 0.33wt%.
  • the content of Zr is preferably 0.05-0.25 wt%, for example, 0.1 wt% or 0.2 wt%.
  • the content of Ti is preferably 0.05-0.2 wt%, for example, 0.08 wt%, 0.1 wt%, 0.14 wt%, or 0.15 wt%.
  • the content of Nb is preferably 0.02-0.4 wt%, for example, 0.1 wt%, 0.15 wt%, or 0.25 wt%.
  • the content of Hf is preferably 0.02-0.1 wt%, for example, 0.03 wt% or 0.1 wt%.
  • the content of V is preferably 0.02-0.1 wt%, for example, 0.03 wt%.
  • the content of Mo is preferably 0.008-0.05 wt%, for example, 0.01 wt%.
  • the content of W is preferably 0.01-0.1 wt%, for example, 0.05 wt%.
  • the content of Ta is preferably 0.01-0.1 wt%, for example, 0.05 wt%.
  • the content of Cr is preferably 0.05-0.15 wt%, for example, 0.1 wt%.
  • the weight of Cr and Ti is preferably 1:(0.5-1.0), for example, 1:0.8.
  • the weight of Nb, Mo, W, and Ta is preferably (0.15-0.25): (0.8-1.2): (0.8-1.2):1, for example 2: 1:1:1.
  • the weight of Hf, W, Ta, and Cr is preferably (0.25-0.35):(0.8-1.2):(0.8-1.2):1, for example 3: 1:1:1.
  • the weight of Nb and V is preferably (35-45):5, such as 40;5.
  • the neodymium iron boron magnet material A may also include Mn.
  • the content range of Mn is preferably ⁇ 0.035wt%, more preferably ⁇ 0.0175wt%.
  • the above percentage is the weight percentage of Mn relative to the total amount of neodymium iron boron magnet material A.
  • the neodymium iron boron magnet material A includes:
  • R 30.5-32wt%; said R is a rare earth element and includes R1 and R2;
  • R1 includes PrNd and Ho, but does not include Dy and/or Tb; PrNd: 22.9-29wt%; Ho: 2.5-8.5wt%;
  • R2 includes Dy and/or Tb; R2: 0.25-0.8wt%;
  • Ga 0.05 ⁇ 0.35wt%
  • X 0.05-0.25 wt%; the type of X includes one or more of Ti, Nb, Zr, and Hf;
  • wt% is the weight percentage of each element in the neodymium iron boron magnet material A
  • the neodymium iron boron magnet material A does not contain Gd;
  • the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material A includes:
  • R 30.5-32wt%; said R is a rare earth element and includes R1 and R2;
  • R1 includes PrNd and Ho, but does not include Dy and/or Tb; PrNd: 22.9-29wt%; Ho: 2.5-8.5wt%;
  • R2 includes Dy and/or Tb; R2: 0.3-0.6wt%;
  • Ga 0.05 ⁇ 0.35wt%
  • X 0.1 ⁇ 0.2wt%; the type of X includes Ti and/or Zr;
  • wt% is the weight percentage of each element in the neodymium iron boron magnet material A
  • the neodymium iron boron magnet material A does not contain Gd;
  • the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material A can be any one of the following numbers 1-17 (wt%):
  • the present invention also provides a raw material composition of neodymium iron boron magnet material B, which comprises:
  • the R is a rare earth element, and includes Nd and Ho, but does not include Dy and/or Tb;
  • Ga 0 ⁇ 0.35wt%, and not 0;
  • X 0.05 to 0.45 wt%; the type of X includes one or more of Ti, Nb, Zr, Hf, V, Mo, W, Ta and Cr;
  • wt% is the weight percentage of each element in the raw material composition of the neodymium iron boron magnet material B;
  • the raw material composition does not contain Gd.
  • the content of R is preferably 29.1 to 32.46wt%, for example 29.99wt%, 31.01wt%, 31.02wt%, 31.03wt%, 31.04wt%, 31.12wt%, 30.56wt% or 30.63wt %.
  • the Nd content in the R can be conventional in the art, preferably 16-32wt%, more preferably 16.88wt%, 18.02wt%, 18.09wt%, 19.1wt%, 19.15wt%, 19.55 wt%, 19.60 wt%, 20.18 wt%, 20.28 wt%, 21.41 wt%, 26.26 wt%, 21.92%, 26.64%, or 31.16 wt%.
  • the addition form of Nd in the R is conventional in the art, for example, in the form of PrNd, or in the form of pure Nd, or in the form of a mixture of pure Pr and Nd, or in the form of PrNd, pure The mixture of Pr and Nd is added jointly.
  • the weight ratio of Pr to Nd in PrNd is 25:75 or 20:80.
  • the amount of PrNd is preferably 0.5 to 29wt%, more preferably 1wt%, 22.51wt%, 24.02wt%, 24.12wt%, 25.53wt %, 26.06wt%, 26.13wt%, 27.04wt% or 28.54wt%, and wt% is the weight percentage of the element in the raw material composition of the neodymium iron boron magnet material B.
  • the content of Ho in the R is preferably 0-10wt%, and not 0, more preferably 0.1-10wt%, most preferably 1-9wt%, such as 1.3wt%, 2.5wt% , 4wt%, 4.5wt%, 5.5wt%, 6.45wt%, 6.7wt%, 7wt% or 8.5wt%.
  • the R preferably does not contain heavy rare earth metals other than Ho.
  • the definitions or types of the heavy rare earth metals are conventional in the art.
  • the heavy rare earth metals may include, for example, gadolinium and gadolinium followed by terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, and yttrium.
  • the R may also include other conventional rare earth elements in the art, such as Pr and/or Sm.
  • the addition form of Pr is conventional in the art, for example, in the form of PrNd, or in the form of a mixture of pure Pr and Nd, or combined with a mixture of PrNd and pure Pr and Nd Add to.
  • the weight ratio of Pr to Nd in PrNd is 25:75 or 20:80.
  • the content of Pr is preferably 0-16wt%, more preferably 0.2-15wt%, such as 0.33wt%, 2.75wt%, 3.3wt%, 5.63wt%, 6.01wt%, 6.03wt%, 6.38wt%, 6.52wt%, 6.53wt%, 6.76wt% or 7.14wt%, wherein the percentage is the percentage of the total weight of the raw material composition of the neodymium iron boron magnet material B.
  • the content of Sm is preferably 0-3wt%, for example 2.02wt%, where the percentage is the percentage of the total weight of the raw material composition of the neodymium iron boron magnet material B.
  • the content of Co is preferably in the range of 0.02-0.45 wt%, for example, 0.1 wt%, 0.2 wt%, 0.25 wt%, 0.3 wt%, 0.35 wt%, or 0.4 wt%.
  • the content of B is preferably 0.92-1.02wt%, such as 0.94wt%, 0.9wt% or 0.99wt%.
  • the content of Cu is preferably 0.05-0.3wt%, more preferably 0.1-0.3wt%, for example 0.15wt%, 0.2wt% or 0.25wt%.
  • the content of Ga is preferably 0.02-0.3wt%, for example 0.05wt%, 0.1wt%, 0.15wt%, 0.2wt% or 0.25wt%.
  • the content of Al is preferably 0-0.3wt%, more preferably 0-0.1wt%, most preferably 0-0.04wt%, such as 0wt%, 0.02wt%, 0.03wt% Or 0.04wt%.
  • the content of Al may be the range of the Al content of impurities introduced in the process of preparing the neodymium iron boron material, or it may be the content of Al added additionally.
  • the range may be the range of the content of Al as an impurity introduced in the process of preparing the neodymium iron boron material.
  • the type of X is preferably one or more of Ti, Nb, Zr and Hf, and more preferably Ti, Nb, Zr or Hf.
  • the type of X can be "a mixture of Cr and Ti", “a mixture of Nb, Mo, W and Ta", “a mixture of Hf, W, Ta and Cr” or "a mixture of Nb and V” .
  • the type of X may be V, Mo, W, Ta or Cr.
  • the content of X is preferably 0.1-0.4wt%, such as 0.14wt%, 0.15wt%, 0.18wt%, 0.2wt%, 0.25wt% or 0.33wt%.
  • the content of Zr is preferably 0.05-0.25 wt%, for example, 0.1 wt% or 0.2 wt%.
  • the content of Ti is preferably 0.05-0.2 wt%, for example, 0.08 wt%, 0.1 wt%, 0.14 wt%, or 0.15 wt%.
  • the content of Nb is preferably 0.02-0.4 wt%, for example, 0.1 wt%, 0.15 wt%, or 0.25 wt%.
  • the content of Hf is preferably 0.02-0.1 wt%, for example, 0.03 wt% or 0.1 wt%.
  • the content of V is preferably 0.02-0.1 wt%, for example, 0.03 wt%.
  • the content of Mo is preferably 0.008-0.05 wt%, for example, 0.01 wt%.
  • the content of W is preferably 0.01-0.1 wt%, for example, 0.05 wt%.
  • the content of Ta is preferably 0.01-0.1 wt%, for example, 0.05 wt%.
  • the content of Cr is preferably 0.05-0.15 wt%, for example, 0.1 wt%.
  • the weight of Cr and Ti is preferably 1:(0.5-1.0), for example, 1:0.8.
  • the weight of Nb, Mo, W, and Ta is preferably (0.15-0.25): (0.8-1.2): (0.8-1.2):1, for example 2: 1:1:1.
  • the weight of Hf, W, Ta, and Cr is preferably (0.25-0.35):(0.8-1.2):(0.8-1.2):1, for example 3: 1:1:1.
  • the weight of Nb and V is preferably (35-45):5, such as 40;5.
  • the raw material composition of the neodymium iron boron magnet material B may further include Mn.
  • the content of Mn is preferably ⁇ 0.035wt%, more preferably ⁇ 0.0175wt%, and the above percentage is the weight percentage of Mn relative to the total amount of the raw material composition.
  • the raw material composition of the neodymium iron boron magnet material B includes:
  • R 30-32wt%; the R is a rare earth element, and includes PrNd and Ho, but does not include Dy and/or Tb; PrNd: 22.9-29wt%; Ho: 2.5-8.5wt%;
  • Ga 0.05 ⁇ 0.35wt%
  • X 0.05-0.25 wt%; the type of X includes one or more of Ti, Nb, Zr, and Hf;
  • wt% is the weight percentage of each element in the raw material composition of the neodymium iron boron magnet material B;
  • the raw material composition does not contain Gd
  • the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material B includes:
  • R 30.5-31.5 wt%; the R is a rare earth element, and includes PrNd and Ho, but does not include Dy and/or Tb; PrNd: 24-26.5% by weight; Ho: 2.5-8.5% by weight;
  • Ga 0.05 ⁇ 0.35wt%
  • X 0.1 ⁇ 0.2wt%; the type of X includes Ti and/or Zr;
  • wt% is the weight percentage of each element in the raw material composition of the neodymium iron boron magnet material B;
  • the raw material composition does not contain Gd
  • the balance is Fe and unavoidable impurities.
  • the raw material composition of the neodymium iron boron magnet material B can be any one of the following numbers 1-16 (wt%):
  • the present invention also provides a method for preparing the neodymium iron boron magnet material B.
  • the raw material composition of the neodymium iron boron magnet material B is smelted, powdered, formed, and sintered.
  • the present invention also provides a neodymium iron boron magnet material B prepared by the above-mentioned preparation method.
  • the present invention also provides a neodymium iron boron magnet material B, which comprises:
  • the R is a rare earth element, and includes Nd and Ho, but does not include Dy and/or Tb;
  • Ga 0 ⁇ 0.35wt%, and not 0;
  • X 0.05 to 0.45 wt%; the type of X includes one or more of Ti, Nb, Zr, Hf, V, Mo, W, Ta and Cr;
  • wt% is the weight percentage of each element in the neodymium iron boron magnet material B;
  • the NdFeB magnet material B does not contain Gd
  • the neodymium iron boron magnet material B includes Nd 2 Fe 14 B crystal grains and its shell layer, grain boundary epitaxial layer and neodymium-rich phase; Ho in the R is mainly distributed in the Nd 2 Fe 14 B crystal grains and the The grain boundary epitaxial layer.
  • the content of R is preferably 29.1 to 32.46wt%, for example 29.99wt%, 31.01wt%, 31.02wt%, 31.03wt%, 31.04wt%, 31.12wt%, 30.56wt% or 30.63wt %.
  • the Nd content in the R can be conventional in the art, preferably 16-32wt%, more preferably 16.88wt%, 18.02wt%, 18.09wt%, 19.1wt%, 19.15wt%, 19.55 wt%, 19.60 wt%, 20.18 wt%, 20.28 wt%, 21.41 wt%, 26.26 wt%, 21.92%, 26.64%, or 31.16 wt%.
  • the addition form of Nd in the R is conventional in the art, for example, in the form of PrNd, or in the form of pure Nd, or in the form of a mixture of pure Pr and Nd, or in the form of PrNd, pure The mixture of Pr and Nd is added jointly.
  • the weight ratio of Pr to Nd in PrNd is 25:75 or 20:80.
  • the amount of PrNd is preferably 0.5 to 29wt%, more preferably 1wt%, 22.51wt%, 24.02wt%, 24.12wt%, 25.53wt %, 26.06wt%, 26.13wt%, 27.04wt% or 28.54wt%, and the wt% is the weight percentage of each element in the neodymium iron boron magnet material B.
  • the content of Ho in the R is preferably 0-10wt%, and not 0, more preferably 0.1-10wt%, most preferably 1-9wt%, such as 1.3wt%, 2.5wt% , 4wt%, 4.5wt%, 5.5wt%, 6.45wt%, 6.7wt%, 7wt% or 8.5wt%.
  • the R preferably does not contain heavy rare earth metals other than Ho.
  • the definitions or types of the heavy rare earth metals are conventional in the art.
  • the heavy rare earth metals may include, for example, gadolinium and gadolinium followed by terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, and yttrium.
  • the R may also include other conventional rare earth elements in the art, such as Pr and/or Sm.
  • the addition form of Pr is conventional in the art, for example, in the form of PrNd, or in the form of a mixture of pure Pr and Nd, or combined with a mixture of PrNd and pure Pr and Nd Add to.
  • the weight ratio of Pr to Nd in PrNd is 25:75 or 20:80.
  • the content of Pr is preferably 0-16% by weight, and is not 0, more preferably 0.2-15% by weight, such as 0.33% by weight, 2.75% by weight, and 3.3% by weight. , 5.63wt%, 6.01wt%, 6.03wt%, 6.38wt%, 6.52wt%, 6.53wt%, 6.76wt% or 7.14wt%, wherein the percentage is the weight percentage of the neodymium iron boron magnet material B.
  • the content of Sm is preferably 0-3 wt%, for example 2.02 wt%, where the percentage is the weight percentage of the neodymium iron boron magnet material B.
  • the content of Co is preferably in the range of 0.02-0.45 wt%, for example, 0.1 wt%, 0.2 wt%, 0.25 wt%, 0.3 wt%, 0.35 wt%, or 0.4 wt%.
  • the content of B is preferably 0.92-1.02wt%, such as 0.94wt%, 0.9wt% or 0.99wt%.
  • the content of Cu is preferably 0.05-0.3wt%, more preferably 0.1-0.3wt%, for example 0.15wt%, 0.2wt% or 0.25wt%.
  • the content of Ga is preferably 0.02-0.3wt%, for example 0.05wt%, 0.1wt%, 0.15wt%, 0.2wt% or 0.25wt%.
  • the content of Al is preferably 0-0.3wt%, more preferably 0-0.1wt%, most preferably 0-0.04wt%, such as 0wt%, 0.02wt%, 0.03wt% Or 0.04wt%.
  • the content of Al may be the range of the Al content of impurities introduced in the process of preparing the neodymium iron boron material, or it may also be the content of additional Al added.
  • the range may be the range of the content of Al as an impurity introduced in the process of preparing the neodymium iron boron material.
  • the type of X is preferably one or more of Ti, Nb, Zr and Hf, and more preferably Ti, Nb, Zr or Hf.
  • the type of X can be "a mixture of Cr and Ti", “a mixture of Nb, Mo, W and Ta", “a mixture of Hf, W, Ta and Cr” or "a mixture of Nb and V” .
  • the type of X may be V, Mo, W, Ta or Cr.
  • the content of X is preferably 0.1-0.4wt%, such as 0.14wt%, 0.15wt%, 0.18wt%, 0.2wt%, 0.25wt% or 0.33wt%.
  • the content of Zr is preferably 0.05-0.25 wt%, for example, 0.1 wt% or 0.2 wt%.
  • the content of Ti is preferably 0.05-0.2 wt%, for example, 0.08 wt%, 0.1 wt%, 0.14 wt%, or 0.15 wt%.
  • the content of Nb is preferably 0.02-0.4 wt%, for example, 0.1 wt%, 0.15 wt%, or 0.25 wt%.
  • the content of Hf is preferably 0.02-0.1 wt%, for example, 0.03 wt% or 0.1 wt%.
  • the content of V is preferably 0.02-0.1 wt%, for example, 0.03 wt%.
  • the content of Mo is preferably 0.008-0.05 wt%, for example, 0.01 wt%.
  • the content of W is preferably 0.01-0.1 wt%, for example, 0.05 wt%.
  • the content of Ta is preferably 0.01-0.1 wt%, for example, 0.05 wt%.
  • the content of Cr is preferably 0.05-0.15 wt%, for example, 0.1 wt%.
  • the weight of Cr and Ti is preferably 1:(0.5-1.0), for example, 1:0.8.
  • the weight of Nb, Mo, W, and Ta is preferably (0.15-0.25): (0.8-1.2): (0.8-1.2):1, for example 2: 1:1:1.
  • the weight of Hf, W, Ta, and Cr is preferably (0.25-0.35):(0.8-1.2):(0.8-1.2):1, for example 3: 1:1:1.
  • the weight of Nb and V is preferably (35-45):5, such as 40;5.
  • the neodymium iron boron magnet material B may also include Mn.
  • the content of Mn is preferably ⁇ 0.035wt%, more preferably ⁇ 0.0175wt%, and the above percentage is the weight percentage of Mn relative to the total amount of NdFeB magnet material B.
  • the neodymium iron boron magnet material B includes:
  • R 30.5-32wt%; the R is a rare earth element and includes PrNd and Ho, but does not include Dy and/or Tb; PrNd: 22.9-29wt%; Ho: 2.5-8.5wt%;
  • Ga 0.05 ⁇ 0.35wt%
  • X 0.05-0.25 wt%; the type of X includes one or more of Ti, Nb, Zr, and Hf;
  • wt% is the weight percentage of each element in the neodymium iron boron magnet material B;
  • the NdFeB magnet material B does not contain Gd
  • the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material B includes:
  • R 30.5-31.5 wt%; the R is a rare earth element, and includes PrNd and Ho, but does not include Dy and/or Tb; PrNd: 24-26.5% by weight; Ho: 2.5-8.5% by weight;
  • Ga 0.05 ⁇ 0.35wt%
  • X 0.1 ⁇ 0.2wt%; the type of X includes Ti and/or Zr;
  • wt% is the weight percentage of each element in the neodymium iron boron magnet material B;
  • the NdFeB magnet material B does not contain Gd
  • the balance is Fe and unavoidable impurities.
  • the neodymium iron boron magnet material B can be any one of the following numbers 1-16 (wt%):
  • the invention also provides an application of the neodymium iron boron magnet material A and/or the neodymium iron boron magnet material B in the preparation of magnetic steel.
  • the magnetic steel can be 40UH, 42Uh, 40EH or 42EH.
  • the magnet steel can be 40UH or 42UH.
  • the magnet steel can be 40UH, 40EH or 42EH.
  • the total weight of the raw material composition changes.
  • the weight percentage content of existing elements other than Fe does not change, and only the percentage content of Fe element is reduced. That is, when a certain element is newly added, only the percentage of Fe element is adjusted, and the percentages of other existing elements remain unchanged, so that the total content of each element is 100%.
  • the total weight of the neodymium iron boron magnet material A or B changes.
  • the weight percentage content of existing elements other than Fe does not change, and only the percentage content of Fe element is reduced. That is, when a certain element is newly added, only the percentage of Fe element is adjusted, and the percentages of other existing elements remain unchanged, so that the total content of each element is 100%.
  • carbon impurities are generally inevitably introduced in the preparation process, and the amount is generally 0-0.12wt%, and the above-mentioned percentage is the weight percentage of the amount of C element to the total amount.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the remanence and coercivity of the material can be adjusted within a specific range by adjusting the type and amount of each element , And increase its Curie temperature to improve high temperature stability.
  • the Br of the neodymium iron boron magnet material A can be 12.24-13.55 kGs, and the Hcj can be 25.33-31 kOe; the increase in Hcj after diffusion can be 7.5-11.5 kOe.
  • Br can be 10.89 ⁇ 12.1kGs, and Hcj can be 10.89 ⁇ 15.67kOe.
  • the magnetic loss of NdFeB magnet material A in 140°C full open circuit can be 0.12 ⁇ 2.12%, the absolute value of Br temperature coefficient at 140°C can be 0.047 ⁇ 0.102%; the absolute value of Hcj temperature coefficient at 140°C is 0.412 ⁇ 0.5% ; The grain boundary continuity can be 96.2-97.3%.
  • the Br of the neodymium iron boron magnet material B can be 12.3-13.63 kGs, and the Hcj can be 16-20.5 kOe.
  • Fig. 1 is an SEM photograph of the diffused neodymium iron boron magnet material A prepared in Example 2, in which 1, 2, and 3 respectively indicate sampling points at different positions.
  • FIG. 2 is the EPMA spectrum of the diffused neodymium iron boron magnet material A prepared in Example 1.
  • FIG. 3 is the EPMA spectrum of the diffused neodymium iron boron magnet material A prepared in Example 17.
  • FIG. 3 is the EPMA spectrum of the diffused neodymium iron boron magnet material A prepared in Example 17.
  • Fig. 4 is an SEM photograph of the NdFeB magnet material B before diffusion prepared in Example 1, in which the arrow indicates the new phase formed in the shell structure of the grain boundary edge of the main phase and the Nd-rich phase.
  • FIG. 5 is an SEM photograph of the NdFeB magnet material B before diffusion prepared in Comparative Example 2.
  • the equipment used for the magnetic performance evaluation is the PFM-14 magnetic performance measuring instrument manufactured by Hirst, UK.
  • Table 1 The formula and content (wt%) of the raw material composition of the neodymium iron boron magnet material A of Examples 1-19 and Comparative Examples 1-9
  • Airflow milling process Under nitrogen atmosphere, the powder after hydrogen crushing is pulverized under the condition of 0.65MPa in the crushing chamber (the efficiency of airflow milling powder may vary according to the equipment. For example, it can be 200kg/h) to obtain fine powder.
  • each molded body is moved to a sintering furnace for sintering, sintered under a vacuum of less than 0.5 Pa, and sintered at 1030-1090°C for 2-8 hours to obtain a sintered body.
  • R2 such as Tb alloy or fluoride, Dy alloy or fluoride and one or more of DyCuGa and TbCuGa alloy
  • R2 such as Tb alloy or fluoride, Dy alloy or fluoride and one or more of DyCuGa and TbCuGa alloy
  • the surface is diffused at a temperature of 900°C for 5-15h, then cooled to room temperature, and then subjected to low-temperature tempering treatment at a temperature of 460-510°C for 1-3h.
  • Table 2 The formula and content (wt%) of the raw material composition of Examples 1-19 and Comparative Examples 1-9 of NdFeB magnet material B
  • Carbon impurities are generally inevitably introduced in the preparation processes of the examples and comparative examples of the present invention, and the carbon impurities are generally 0-0.12 wt%, and the above-mentioned percentage is the weight percentage of the amount of C element in the total amount.
  • Each component of the neodymium iron boron magnet material is measured using a high-frequency inductively coupled plasma emission spectrometer (ICP-OES, instrument model: Icap6300).
  • ICP-OES high-frequency inductively coupled plasma emission spectrometer
  • Table 3-4 shows the component test results. Taking Example 1 as an example, the types and amounts of elements detected from the neodymium iron boron material A are the same as those of the raw material composition disclosed in Table 1.
  • 140°C open circuit magnetic loss means that after NdFeB magnet material A is baked in an oven at 140°C for a certain period of time (such as 120min), the magnetic flux at 20°C and 140°C is calculated by comparison, and the magnetic flux after 140°C is calculated Open circuit magnetic loss.
  • the indication of the irreversible magnetic loss ⁇ measured at high temperature is as follows: Among them, the normal temperature is 20°C.
  • the calculation method of grain boundary continuity refers to the ratio of the length occupied by phases other than voids in the grain boundary (such as the neodymium-rich phase, the same in the grain boundary epitaxial layer) to the total grain boundary length. That is, by calculating the total grain boundary length of the main phase and the neodymium-rich phase in the SEM electron microscope photos, and the total grain boundary length of other phases except the main phase. Grain boundary continuity of more than 96% can be called continuous channel.
  • FIG. 1 is a SEM photograph of the diffused neodymium iron boron magnet material A prepared in Example 2. Among them, 1, 2, 3 respectively represent sampling points at different locations. SEM-EDS backscattering (instrument model: Hitachi S-3400N) was used to observe the elemental composition of the magnet in the sampling range, see Table 6 below for details.
  • sampling point 1 belongs to the neodymium-rich phase.
  • the content of Ho is 0.82wt%
  • the content of PrNd is 85.43wt%
  • the content of Dy element is 0.55wt%
  • the content of other elements is 13.2 wt%
  • the above percentage is the weight percentage of the content of each element in the sampling range.
  • the Ho and Ho added in the Co-free formula are mainly concentrated in the gray area of the main phase of the substrate (sampling point 3 in Figure 1), followed by the main phase and the neodymium-rich phase.
  • the edge of the grain boundary at the shell structure ie the junction of the main phase and the neodymium-rich phase, it can also be called the two-grain grain boundary or the epitaxial layer of the grain boundary, sampling point 2 in Figure 1), white in the middle of the neodymium-rich phase
  • the distribution of Ho elements in the area is less.
  • Ho mainly exists in the structure of HoFeB, forming the main phase structure of (NdHo)FeB, which can improve the anisotropy field of the main phase to a certain extent and optimize the microstructure of the sintered magnet.
  • Ho replaces Nd in the main phase, making more Nd migrate to the Nd-rich phase, increasing its volume fraction and continuity, and providing more diffusion channels for subsequent Dy or/and Tb diffusion.
  • grain boundary boundary layer refers to the "grain boundary shell structure of the main phase and the neodymium-rich phase"
  • grain boundary layer refers to the "grain boundary shell structure of the main phase and the neodymium-rich phase”
  • the neodymium-rich phase and the grain boundary epitaxial layer are added to increase the proportion of the grain boundary phase.
  • the ratio of the neodymium-rich phase and the grain boundary epitaxial layer to the total grain boundary phase is calculated from the picture above 97% ( “97%” refers to the area ratio of "(Nd-rich phase and grain boundary epitaxial layer)/total grain boundary phase”), which is greater than the ratio of 95% of the conventional Co-containing magnet that the neodymium-rich phase occupies the total grain boundary phase.
  • the proportion of neodymium phase and grain boundary epitaxial layer increases the continuity of the grain boundary, and the coercivity is significantly improved.
  • FIG. 1 is the EPMA spectrum of the diffused neodymium iron boron magnet material A prepared in Example 1 (instrument model: EPMA-1720). The material of Example 1 can be used to prepare 40UH magnetic steel.
  • FIG. 3 is the EPMA spectrum of the diffused neodymium iron boron magnet material A prepared in Example 17.
  • FIG. The material of Example 17 can be used to prepare 40UH magnetic steel.
  • FIG. 4 is an SEM photograph of the NdFeB magnet material B before diffusion prepared in Example 1, in which the arrow indicates the new phase formed in the shell structure of the grain boundary edge of the main phase and the Nd-rich phase. It can be seen from Figure 4 that the neodymium-rich phase is more distributed and evenly distributed around the main phase particles (the black voids are caused by the oxidation and shedding of the neodymium-rich phase). In other words, the neodymium iron boron magnet material B before diffusion forms a grain boundary epitaxial layer structure that is conducive to diffusion (the arrow in FIG. 4), and the grain boundary continuity is high.
  • FIG. 5 is an SEM photograph of the NdFeB magnet material B before diffusion prepared in Comparative Example 2.
  • FIG. The distribution of neodymium-rich phase is not obvious, there is agglomeration phenomenon, the distribution between the main phase particles is less, and it does not play the role of magnetic decoupling, which is not conducive to the improvement of coercive force and the subsequent Dy and/or Tb diffusion process, and it does not provide uniformity. Distribution of neodymium-rich phase diffusion channels. In other words, Comparative Example 2 did not form a grain boundary epitaxial layer structure that is favorable for diffusion. From the comparison of Fig. 5 and Fig.
  • the pre-diffusion NdFeB magnet material B prepared in Example 1 of the present invention has a significantly higher proportion of the neodymium-rich phase than the pre-diffusion NdFeB magnet material B prepared in Comparative Example 2, and is uniform Distributed around the main phase particles.
  • the new phase is a Co-free and Ho-rich grain boundary epitaxial layer structure, which increases the proportion of the grain boundary epitaxial layer, so that the grain boundary continuity is improved, and the Co-free epitaxial layer structure is conducive to the formation of diffusion channels.
  • the formation of new phases, and the increase in the ratio of the neodymium-rich phase and the grain boundary epitaxial layer in the total grain boundary increase the anisotropy field of the main phase grain boundary epitaxial layer, and reduce the formation of magnetization reversal domain nuclei during demagnetization or high temperature. , Helps to significantly improve the effect of subsequent diffusion, so the coercive force is increased more.
  • the prepared NdFeB magnet material B forms a grain boundary epitaxial layer structure (new phase) that is conducive to diffusion, and the grain boundary continuity is higher, which is conducive to Dy and/ Or the Tb grain boundary diffuses, so that the Hcj increases significantly after diffusion, the open circuit magnetic loss is small, and the magnet performance is better at high temperature.
  • the various components cooperate with each other, coupled with the change of the microstructure (the formation of new phases and the specific distribution of each element), so that its high temperature resistance performance is good.
  • Comparative Example 3 Based on Example 1, the amount of Ho exceeds 10 wt%.
  • Comparative Example 4 Based on Example 2, Ga is removed, and Al exceeds 0.5 wt%.
  • Comparative Example 4 the excessive addition of Al will deteriorate the remanence and the Curie temperature, the coercive force will not increase significantly, the remanence and the coercive force are low at high temperature, and the full open circuit magnetic loss is relatively high, and the temperature of Br and Hcj at high temperature The absolute value of the coefficient is larger, and the grain boundary continuity is lower.
  • Comparative Example 5 Based on Example 3, Ga exceeds 0.35% by weight.
  • Comparative Example 6 the remanence is low, the high temperature resistance performance is poor, the high temperature full open circuit magnetic loss is very significant, and the grain boundary continuity is relatively low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种钕铁硼磁体材料、原料组合物及制备方法、应用。钕铁硼磁体材料的原料包括:R:29.5-32.5wt%;R包括熔炼用稀土金属R1和晶界扩散用稀土金属R2;R1包括Nd和Ho、且不包括Dy和/或Tb;R2包括Dy和/或Tb;R2含量为0.2-1wt%;Co:0~0.5wt%;B:0.9-1.05wt%;Cu:0~0.35wt%;Ga:0~0.35wt%;Al:0~0.5wt%;X:0.05~0.45wt%;X包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;不含Gd,Fe:65~70wt%。本发明磁体材料具有高剩磁、高矫顽力以及高温性能好的优势。

Description

一种钕铁硼磁体材料、原料组合物及制备方法、应用 技术领域
本发明涉及一种钕铁硼磁体材料、原料组合物及制备方法、应用。
背景技术
Nd-Fe-B永磁材料以Nd 2Fe l4B化合物为基体,具有磁性能高、热膨胀系数小、易加工和价格低等优点,自问世以来,以平均每年20-30%的速度增长,成为应用最广泛的永磁材料。按制备方法,Nd-Fe-B永磁体可分为烧结、粘结和热压三种,其中烧结磁体占总产量的80%以上,应用最广泛。
随着制备工艺和磁体成分的不断优化,烧结Nd-Fe-B磁体的最大磁能积已接近理论值。随着近年来风力发电、混合动力汽车和变频空调等新兴行业的蓬勃发展对高性能Nd-Fe-B磁体的需求越来越大,同时,这些高温领域的应用也对烧结Nd-Fe-B磁体的性能尤其是高温性能提出了更高的要求。
现有技术中,在制作耐热、耐蚀型烧结Nd-Fe-B磁体时,Co是用得最多而且最有效的元素。这是因为添加Co能够降低磁感可逆温度系数,有效提高居里温度,并且可以提高NdFeB磁体抗腐蚀性能。但是,Co的加入容易造成矫顽力急剧下降,并且Co的成本较高。Al虽然改善烧结Nd-Fe-B磁体矫顽力的有效元素之一,Al的添加能在烧结过程中降低主相与周围液相的浸润角,从而通过改善主相与富Nd相之间的微结构而提高矫顽力,Al添加可以能补偿Co添加造成的矫顽力降低。然而Al的过量加入会恶化剩磁和居里温度。
发明内容
本发明旨在克服现有技术的钕铁硼磁体通过添加Co来提高居里温度和抗腐蚀性能、而Co又容易造成矫顽力急剧下降以及价格昂贵的缺陷以及Al会恶化剩磁和居里温度的缺陷,而提供了一种钕铁硼磁体材料、原料组合物及制备方法、应用。本发明的磁体材料具有高剩磁、高矫顽力以及高温性能好的优势。
本发明是通过以下技术方案来解决上述技术问题的:
本发明提供了一种钕铁硼磁体材料A的原料组合物,其包含:
R:29.5-32.5wt%;
所述R为稀土元素、且包括熔炼用稀土金属R1和晶界扩散用稀土金属R2;所述R1 包括Nd和Ho、且不包括Dy和/或Tb;所述R2包括Dy和/或Tb;所述R2的含量为0.2-1wt%;
Co:0~0.5wt%;
B:0.9-1.05wt%;
Cu:0~0.35wt%、且不为0;
Ga:0~0.35wt%、且不为0;
Al:0~0.5wt%;
X:0.05~0.45wt%;所述X的种类包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;
Fe:65~70wt%;
wt%为各元素占所述钕铁硼磁体材料A的原料组合物的重量百分比;
所述原料组合物中不含Gd。
本发明中,所述R的含量较佳地为30~32wt%,例如30.7wt%、30.93wt%、31wt%、31.4wt%、31.5wt%或者31.7wt%。
本发明中,所述R1中Nd含量可为本领域常规,较佳地为16-32wt%,更佳地为16.8wt%、17.925wt%、18wt%、19wt%、19.4475wt%、19.05wt%、19.5wt%、20.175wt%、21.3wt%、21.75wt%、26.375wt%或者31wt%。
本发明中,所述R1中的Nd的添加形式为本领域常规,例如以PrNd的形式,或者,以纯净的Nd的形式,或者以纯净的Pr和Nd的混合物的形式,或者以PrNd、纯净的Pr和Nd的混合物联合添加。当以PrNd的形式添加时,PrNd中Pr与Nd的重量比为25:75或20:80。
本发明中,所述R1中的Nd以PrNd的形式添加时,PrNd的用量较佳地为0.5~29wt%,更佳地为1wt%、22.4wt%、23.9wt%、24wt%、25.4wt%、25.93wt%、26wt%、26.9wt%或者28.4wt%,wt%为元素占所述钕铁硼磁体材料A的原料组合物的重量百分比。
本发明中,所述R1中Ho含量较佳地为0-10wt%、且不为0,更佳地为0.1~10wt%,最佳地为1~9wt%,例如1.3wt%、2.5wt%、4wt%、4.5wt%、5.5wt%、6.4wt%、6.7wt%、7wt%或者8.5wt%。
本发明中,所述R1较佳地不含有Ho以外的重稀土金属。所述重稀土金属的定义或种类均为本领域常规,所述重稀土金属例如可包括钆及钆以后的铽、镝、钬、铒、铥、镱、镥和钇等9个元素。
本发明中,所述R1还可包括本领域其他常规的稀土元素,例如包括Pr和/或Sm。
其中,当所述R1包含Pr时,Pr的添加形式为本领域常规,例如以PrNd的形式, 或者,以纯净的Pr和Nd的混合物的形式,或者以PrNd、纯净的Pr和Nd的混合物联合添加。当以PrNd的形式添加时,PrNd中Pr与Nd的重量比为25:75或20:80。
其中,当所述R1包含Pr时,所述Pr的含量较佳地为0-16wt%、且不为0,更佳地为0.2~15wt%,例如0.325wt%、2.75wt%、3.3wt%、5.6wt%、5.975wt%、6wt%、6.35wt%、6.4825wt%、6.5wt%、6.725wt%或者7.1wt%,其中百分比为占所述钕铁硼磁体材料A的原料组合物总重量的百分比。
其中,当所述R1包含Sm时,所述Sm的含量较佳地为0-3wt%,例如2wt%,其中百分比为占所述钕铁硼磁体材料A的原料组合物总重量的百分比。
本发明中,所述R2的含量较佳地为0.2-0.9wt%,例如0.4wt%、0.5wt%、0.6wt%或者0.8wt%。
当所述R2包括Dy时,所述Dy的含量较佳地为0.2-0.9wt%,更佳地为0.25-0.75wt%,例如0.5wt%。
当所述R2包括Tb时,所述Tb的含量较佳地为0.4-0.9wt%,更佳地为0.25-0.8wt%,例如0.2wt%、0.5wt%、0.6wt%或者0.7wt%。
本发明中,当所述R2为Dy和Tb的混合物时,Dy和Tb的重量比可为本领域常规,一般为1:99-99:1,例如50:50、60:40、25:75或者40:60。
本发明中,所述R2还可包括DyCuGa合金和/或TbCuGa合金。合金中的稀土元素都可以通过晶界扩散原理,形成扩散稀土元素的壳层。所述DyCuGa合金中,较佳地Dy含量≥75wt%,上述百分比为Dy用量占所述DyCuGa合金总重量的百分比。所述TbCuGa合金中,较佳地Tb含量≥75wt%,上述百分比为Tb用量占所述TbCuGa合金总重量的百分比。
本发明中,所述Co的含量范围较佳地为0.02-0.45wt%,例如0.1wt%、0.2wt%、0.25wt%、0.3wt%、0.35wt%、或者0.4wt%。
本发明中,所述B的含量较佳地为0.92-1.02wt%,例如0.94wt%、0.9wt%或者0.99wt%。
本发明中,所述Cu的含量较佳地为0.05-0.3wt%,更佳地为0.1-0.3wt%,例如0.15wt%、0.2wt%或者0.25wt%。
本发明中,所述Ga的含量较佳地为0.02-0.3wt%,例如0.05wt%、0.1wt%、0.15wt%、0.2wt%或者0.25wt%。
本发明中,所述Al的含量较佳地为0-0.3wt%,更佳地为0~0.1wt%,最佳地为0~0.04wt%,例如0wt%、0.02wt%、0.03wt%或者0.04wt%。其中当Al的含量为0~0.1wt%时, Al的可以为制备钕铁硼材料的过程中引入的杂质Al含量范围,或者也可以为额外添加的Al含量。当Al的含量为0~0.04wt%时,该范围可为制备钕铁硼材料的过程中引入的杂质Al含量范围。
本发明中,所述X的种类较佳地为Ti、Nb、Zr和Hf中的一种或多种,更佳地为Ti、Nb、Zr或Hf。
本发明中,所述X的种类可为“Cr和Ti的混合物”、“Nb、Mo、W和Ta的混合物”、“Hf、W、Ta和Cr的混合物”或者“Nb和V的混合物”。
本发明中,所述X的种类可为V、Mo、W、Ta或者Cr。
本发明中,所述X的含量较佳地为0.1-0.4wt%,例如0.14wt%、0.15wt%、0.18wt%、0.2wt%、0.25wt%或者0.33wt%。
当所述X包括Zr时,所述Zr的含量较佳地为0.05-0.25wt%,例如0.1wt%或者0.2wt%。
当所述X包括Ti时,所述Ti的含量较佳地为0.05-0.2wt%,例如0.08wt%、0.1wt%、0.14wt%或者0.15wt%。
当所述X包括Nb时,所述Nb的含量较佳地为0.02-0.4wt%,例如0.1wt%、0.15wt%或者0.25wt%。
当所述X包括Hf时,所述Hf的含量较佳地为0.02-0.1wt%,例如0.03wt%或者0.1wt%。
当所述X包括V时,所述V的含量较佳地为0.02-0.1wt%,例如0.03wt%。
当所述X包括Mo时,所述Mo的含量较佳地为0.008-0.05wt%,例如0.01wt%。
当所述X包括W时,所述W的含量较佳地为0.01-0.1wt%,例如0.05wt%。
当所述X包括Ta时,所述Ta的含量较佳地为0.01-0.1wt%,例如0.05wt%。
当所述X包括Cr时,所述Cr的含量较佳地为0.05-0.15wt%,例如0.1wt%。
当所述X包括Cr和Ti时,Cr和Ti的重量比较佳地为1:(0.5-1.0),例如1:0.8。
当所述X包括Nb、Mo、W和Ta时,Nb、Mo、W和Ta的重量比较佳地为(0.15-0.25):(0.8-1.2):(0.8-1.2):1,例如2:1:1:1。
当所述X包括Hf、W、Ta和Cr时,Hf、W、Ta和Cr的重量比较佳地为(0.25-0.35):(0.8-1.2):(0.8-1.2):1,例如3:1:1:1。
当所述X包括Nb和V时,Nb和V的重量比较佳地为(35-45):5,例如40;5。
本发明中,所述钕铁硼磁体材料A的原料组合物还可包括Mn。所述Mn的含量范围较佳地≤0.035wt%,更佳地≤0.0175wt%,上述百分比为Mn相对于原料组合物总量的重量百分比。
本发明中,较佳地,所述钕铁硼磁体材料A的原料组合物包括:
R:30.5-32wt%;所述R为稀土元素、且包括熔炼用稀土金属R1和晶界扩散用稀土金属R2;
R1:包括PrNd和Ho、且不包括Dy和/或Tb;PrNd:22.9-29wt%;Ho:2.5-8.5wt%;
R2包括Dy和/或Tb;R2:0.25-0.8wt%;
Co:0~0.25wt%;
B:0.9-1.05wt%;
Cu:0.05~0.35wt%;
Ga:0.05~0.35wt%;
Al:0~0.1wt%;
X:0.05~0.25wt%;所述X的种类包括Ti、Nb、Zr、Hf中的一种或多种;
wt%为各元素占所述钕铁硼磁体材料A的原料组合物的重量百分比;
所述原料组合物中不含Gd;
余量为Fe及不可避免的杂质。
更佳地,所述钕铁硼磁体材料A的原料组合物包括:
R:30.5-32wt%;所述R为稀土元素、且包括熔炼用稀土金属R1和晶界扩散用稀土金属R2;
R1:包括PrNd和Ho、且不包括Dy和/或Tb;PrNd:22.9-29wt%;Ho:2.5-8.5wt%;
R2包括Dy和/或Tb;R2:0.3-0.6wt%;
Co:0~0.1wt%(更佳地为0wt%);
B:0.9-1.0wt%;
Cu:0.05~0.35wt%;
Ga:0.05~0.35wt%;
Al:0~0.5wt%;
X:0.1~0.2wt%;所述X的种类包括Ti和/或Zr;
wt%为各元素占所述钕铁硼磁体材料A的原料组合物的重量百分比;
所述原料组合物中不含Gd;
余量为Fe及不可避免的杂质。
在本发明较佳实施方式中,所述钕铁硼磁体材料A的原料组合物可为下述编号1-17中的任意一种(wt%):
Figure PCTCN2021088319-appb-000001
Figure PCTCN2021088319-appb-000002
本发明还提供了一种钕铁硼磁体材料A的制备方法,其采用如上所述的原料组合物进行制备,所述制备方法为本领域常规的扩散制法,其中,所述R1元素在熔炼步骤中添加,所述R2元素在晶界扩散步骤中添加。
本发明中,所述制备方法较佳地包括如下步骤:将上述钕铁硼磁体材料A的原料组合物中除所述R2以外的元素经熔炼、制粉、成型、烧结得烧结体,接着将所述的烧结体与所述R2的混合物经晶界扩散即可。
本发明中,所述熔炼的操作和条件可为本领域常规的熔炼工艺,一般将所述钕铁硼磁体材料A中除R 2以外的元素采用铸锭工艺和速凝片工艺进行熔炼浇铸,得到合金片。
本领域技术人员知晓,因熔炼和烧结工艺中通常会损耗稀土元素,为保证终产品的质量,一般会在熔炼过程中在原料组合物的配方基础中额外添加0~0.3wt%的稀土元素(一般为Nd元素),百分比为额外添加的稀土元素的含量占所述原料组合物的总含量的重量百分比;另外这部分额外添加的稀土元素的含量不计入原料组合物的范畴。
本发明中,所述熔炼的温度可为1300~1700℃。
本发明中,所述熔炼的设备一般为高频真空熔炼炉和/或中频真空熔炼炉,所述中频真空熔炼炉例如中频真空感应速凝甩带炉。
本发明中,所述制粉的操作和条件可为本领域常规制粉工艺,一般包括氢破制粉和/ 或气流磨制粉。
所述氢破制粉一般包括吸氢、脱氢和冷却处理。所述吸氢的温度一般为20~200℃。所述脱氢的温度一般为400~650℃。所述吸氢的压力一般为50~600kPa。
所述气流磨制粉一般在0.1~2MPa,优选0.5~0.7MPa(例如0.65MPa)的条件下进行气流磨制粉。所述气流磨制粉中的气流例如可为氮气和/或氩气。所述气流磨制粉的效率可根据设备不同有所差别,例如可为30-400kg/h,优选200kg/h。
本发明中,所述成型的操作和条件可为本领域常规的成型工艺。例如磁场成型法。所述的磁场成型法的磁场强度一般在1.5T以上。
本发明中,所述烧结的操作和条件可为本领域常规的烧结工艺,例如真空烧结工艺和/或惰性气氛烧结工艺。所述真空烧结工艺或所述惰性气氛烧结工艺均为本领域常规操作。当采用惰性气氛烧结工艺时,所述烧结开始阶段可在真空度低于5×10 -1Pa的条件下进行。所述惰性气氛可为本领域常规的含有惰性气体的气氛,例如氦气、氩气。
本发明中,所述烧结的温度可为1000~1200℃,较佳地为1030-1090℃。
本发明中,所述烧结的时间可为0.5~10h,较佳地为2-8h。
本发明中,本领域技术人员知晓,在所述的晶界扩散之前一般还包括将所述R2附着在基材表面的操作。较佳地通过下述方法将所述R2附着在基材表面:涂覆或喷涂、磁控等离子溅射或蒸镀法。
当采用涂覆操作时,所述R2一般是以氟化物或低熔点合金的形式涂覆或喷涂在基材表面。当所述R2包括Tb时,较佳地,Tb以Tb的合金或氟化物的形式涂覆或喷涂在基材表面。当所述R2包含Dy时,较佳地,Dy以Dy的合金或氟化物的形式涂覆或喷涂在基材表面。
当采用磁控等离子溅射时,所述R2一般是通过下述步骤附着在所述基材表面:通过惰性气体轰击含有所述R2的靶材,产生含有所述R2的离子,经过磁场的控制均匀附着在基材表面。
当采用蒸镀法的操作时,所述R2一般是通过下述步骤附着在所述基材表面:在一定真空度和温度下,含有所述R2的重稀土产生含有所述R2的蒸汽,所述R2富集到基材表面。所述真空度可为本领域常规,较佳地为5Pa-5×10 -2Pa。所述温度可为本领域常规,较佳地为500-900℃。
本发明中,所述晶界扩散处理的操作和条件可为本领域常规的晶界扩散工艺。
其中,所述晶界扩散的温度可为800~1000℃,优选850-950℃。
其中,所述晶界扩散的时间可为12~90h。
本发明中,所述晶界扩散之后,按照本领域常规还进行热处理。
其中,所述热处理的温度可为450℃~600℃,例如480-510℃。
其中,所述热处理的时间可为1~4h,例如1~3h。
本发明还提供了一种由如上所述的制备方法制得的钕铁硼磁体材料A。
本发明还提供了一种钕铁硼磁体材料A,其包含:
R:29.5-32.5wt%;
所述R为稀土元素、且包括R1和R2;
所述R1包括Nd和Ho、且不包括Dy和/或Tb;
所述R2包括Dy和/或Tb;所述R2的含量为0.2-1wt%;
Co:0~0.5wt%;
B:0.9-1.05wt%;
Cu:0~0.35wt%、且不为0;
Ga:0~0.35wt%、且不为0;
Al:0~0.5wt%;
X:0.05~0.45wt%;所述X的种类包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;
Fe:65~70wt%;
wt%为各元素占所述钕铁硼磁体材料A的重量百分比;
所述钕铁硼磁体材料A中不含有Gd;
所述钕铁硼磁体材料A包含Nd 2Fe l4B晶粒和其壳层、晶界外延层和富钕相;
所述R1中的Ho主要分布在所述Nd 2Fe l4B晶粒和所述晶界外延层,所述R2主要分布在所述壳层和所述富钕相;
所述钕铁硼磁体材料A的晶界连续性为96%以上。
本发明中,“R1中的Ho主要分布在所述Nd 2Fe l4B晶粒和所述晶界外延层”中的“主要分布”一般是指该元素的95%以上,只有少部分会分布在富钕相。“R2主要分布在所述壳层和所述富钕相”可理解为,本领域常规的晶界扩散工艺引起的R2主要分布(一般是指95%以上)在主相晶粒的壳层和晶界,少部分也会扩散进入到主相晶粒中,例如在主相晶粒的外缘。
本发明中,所述晶界外延层一般是指邻接富钕相和主相颗粒的二颗粒晶界处,也可以称为“二颗粒晶界”或者称为“主相和富钕相的晶界边沿壳层结构”。
本发明中,所述富钕相为本领域常规理解的富钕相,本领域中,晶界结构中的相结 构大部分为富钕相。
本发明中,晶界连续性的计算方式是指晶界中除空洞外的物相(例如富钕相、晶界外延层中的相等)占据的长度与总晶界长度的比值。晶界连续性超过96%即可称为连续通道。
本发明中,所述晶界连续性较佳地为96.2~97.3%,例如96.2%、96.3%、96.4%、96.5%、96.6%、96.7%、96.8%、97.1%、97.2%或者97.3%。
本发明中,在所述晶界外延层中(即主相和富钕相的晶界边沿壳层结构中),形成R xHo yCu zX l新的物相结构,其中R为Nd或/和Pr,x=40-85,y=0.1-10,z=0.1-2.0,所述X包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种,l=3-7。
本发明中,所述R的含量较佳地为30~32wt%,例如30.7wt%、30.93wt%、31wt%、31.4wt%、31.5wt%或者31.7wt%。
本发明中,所述R1中Nd含量可为本领域常规,较佳地为16-32wt%,更佳地为16.8wt%、17.925wt%、18wt%、19wt%、19.4475wt%、19.05wt%、19.5wt%、20.175wt%、21.3wt%、21.75wt%、26.375wt%或者31wt%。
本发明中,所述R1中的Nd的添加形式为本领域常规,例如以PrNd的形式,或者,以纯净的Nd的形式,或者以纯净的Pr和Nd的混合物的形式,或者以PrNd、纯净的Pr和Nd的混合物联合添加。当以PrNd的形式添加时,PrNd中Pr与Nd的重量比为25:75或20:80。
本发明中,所述R1中的Nd以PrNd的形式添加时,PrNd的用量较佳地为0.5~29wt%,更佳地为1wt%、22.4wt%、23.9wt%、24wt%、25.4wt%、25.93wt%、26wt%、26.9wt%或者28.4wt%,wt%为各元素占所述钕铁硼磁体材料A的重量百分比。
本发明中,所述R1中Ho含量较佳地为0-10wt%、且不为0,更佳地为0.1~10wt%,最佳地为1~9wt%,例如1.3wt%、2.5wt%、4wt%、4.5wt%、5.5wt%、6.4wt%、6.7wt%、7wt%或者8.5wt%。
本发明中,所述R1较佳地不含有Ho以外的重稀土金属。所述重稀土金属的定义或种类均为本领域常规,所述重稀土金属例如可包括钆及钆以后的铽、镝、钬、铒、铥、镱、镥和钇等9个元素。
本发明中,所述R1还可包括本领域其他常规的稀土元素,例如包括Pr和/或Sm。
其中,当所述R1包含Pr时,Pr的添加形式为本领域常规,例如以PrNd的形式,或者,以纯净的Pr和Nd的混合物的形式,或者以PrNd、纯净的Pr和Nd的混合物联合添加。当以PrNd的形式添加时,PrNd中Pr与Nd的重量比为25:75或20:80。
其中,当所述R1包含Pr时,所述Pr的含量较佳地为0-16wt%、且不为0,更佳地为0.2~15wt%,例如0.325wt%、2.75wt%、3.3wt%、5.6wt%、5.975wt%、6wt%、6.35wt%、6.4825wt%、6.5wt%、6.725wt%或者7.1wt%,其中百分比为占所述钕铁硼磁体材料A的百分比。
其中,当所述R1包含Sm时,所述Sm的含量较佳地为0-3wt%,例如2wt%,其中百分比为占所述钕铁硼磁体材料A的重量百分比。
本发明中,所述R2的含量较佳地为0.2-0.9wt%,例如0.4wt%、0.5wt%、0.6wt%或者0.8wt%。
当所述R2包括Dy时,所述Dy的含量较佳地为0.2-0.9wt%,更佳地为0.25-0.75wt%,例如0.5wt%。
当所述R2包括Tb时,所述Tb的含量较佳地为0.4-0.9wt%,更佳地为0.25-0.8wt%,例如0.2wt%、0.5wt%、0.6wt%或者0.7wt%。
本发明中,当所述R2为Dy和Tb的混合物时,Dy和Tb的重量比可为本领域常规,一般为1:99-99:1,例如50:50、60:40、25:75或者40:60。
本发明中,所述Co的含量范围较佳地为0.02-0.45wt%,例如0.1wt%、0.2wt%、0.25wt%、0.3wt%、0.35wt%、或者0.4wt%。
本发明中,所述B的含量较佳地为0.92-1.02wt%,例如0.94wt%、0.9wt%或者0.99wt%。
本发明中,所述Cu的含量较佳地为0.05-0.3,更佳地为0.1-0.3wt%,例如0.15wt%、0.2wt%或者0.25wt%。
本发明中,所述Ga的含量较佳地为0.02-0.3wt%,例如0.05wt%、0.1wt%、0.15wt%、0.2wt%或者0.25wt%。
本发明中,所述Al的含量较佳地为0-0.3wt%,更佳地为0~0.1wt%,最佳地为0~0.04wt%,例如0wt%、0.02wt%、0.03wt%或者0.04wt%。其中当Al的含量为0~0.1wt%时,Al的可以为制备钕铁硼材料的过程中引入的杂质Al含量范围,或者也可以为额外添加的Al含量。当Al的含量为0~0.04wt%时,该范围可为制备钕铁硼材料的过程中引入的杂质Al含量范围。
本发明中,所述X的种类较佳地为Ti、Nb、Zr和Hf中的一种或多种,更佳地为Ti、Nb、Zr或Hf。
本发明中,所述X的种类可为“Cr和Ti的混合物”、“Nb、Mo、W和Ta的混合物”、“Hf、W、Ta和Cr的混合物”或者“Nb和V的混合物”。
本发明中,所述X的种类可为V、Mo、W、Ta或者Cr。
本发明中,所述X的含量较佳地为0.1-0.4wt%,例如0.14wt%、0.15wt%、0.18wt%、0.2wt%、0.25wt%或者0.33wt%。
当所述X包括Zr时,所述Zr的含量较佳地为0.05-0.25wt%,例如0.1wt%或者0.2wt%。
当所述X包括Ti时,所述Ti的含量较佳地为0.05-0.2wt%,例如0.08wt%、0.1wt%、0.14wt%或者0.15wt%。
当所述X包括Nb时,所述Nb的含量较佳地为0.02-0.4wt%,例如0.1wt%、0.15wt%或者0.25wt%。
当所述X包括Hf时,所述Hf的含量较佳地为0.02-0.1wt%,例如0.03wt%或者0.1wt%。
当所述X包括V时,所述V的含量较佳地为0.02-0.1wt%,例如0.03wt%。
当所述X包括Mo时,所述Mo的含量较佳地为0.008-0.05wt%,例如0.01wt%。
当所述X包括W时,所述W的含量较佳地为0.01-0.1wt%,例如0.05wt%。
当所述X包括Ta时,所述Ta的含量较佳地为0.01-0.1wt%,例如0.05wt%。
当所述X包括Cr时,所述Cr的含量较佳地为0.05-0.15wt%,例如0.1wt%。
当所述X包括Cr和Ti时,Cr和Ti的重量比较佳地为1:(0.5-1.0),例如1:0.8。
当所述X包括Nb、Mo、W和Ta时,Nb、Mo、W和Ta的重量比较佳地为(0.15-0.25):(0.8-1.2):(0.8-1.2):1,例如2:1:1:1。
当所述X包括Hf、W、Ta和Cr时,Hf、W、Ta和Cr的重量比较佳地为(0.25-0.35):(0.8-1.2):(0.8-1.2):1,例如3:1:1:1。
当所述X包括Nb和V时,Nb和V的重量比较佳地为(35-45):5,例如40;5。
本发明中,所述钕铁硼磁体材料A还可包括Mn。所述Mn的含量范围较佳地≤0.035wt%,更佳地≤0.0175wt%,上述百分比为Mn相对于钕铁硼磁体材料A总量的重量百分比。
本发明中,较佳地,所述钕铁硼磁体材料A包括:
R:30.5-32wt%;所述R为稀土元素、且包括R1和R2;
R1:包括PrNd和Ho、且不包括Dy和/或Tb;PrNd:22.9-29wt%;Ho:2.5-8.5wt%;
R2包括Dy和/或Tb;R2:0.25-0.8wt%;
Co:0~0.25wt%;
B:0.9-1.05wt%;
Cu:0.05~0.35wt%;
Ga:0.05~0.35wt%;
Al:0~0.1wt%;
X:0.05~0.25wt%;所述X的种类包括Ti、Nb、Zr、Hf中的一种或多种;
wt%为各元素占所述钕铁硼磁体材料A的重量百分比;
所述钕铁硼磁体材料A中不含Gd;
余量为Fe及不可避免的杂质。
更佳地,所述钕铁硼磁体材料A包括:
R:30.5-32wt%;所述R为稀土元素、且包括R1和R2;
R1:包括PrNd和Ho、且不包括Dy和/或Tb;PrNd:22.9-29wt%;Ho:2.5-8.5wt%;
R2包括Dy和/或Tb;R2:0.3-0.6wt%;
Co:0~0.1wt%(更佳地为0wt%);
B:0.9-1.0wt%;
Cu:0.05~0.35wt%;
Ga:0.05~0.35wt%;
Al:0~0.5wt%;
X:0.1~0.2wt%;所述X的种类包括Ti和/或Zr;
wt%为各元素占所述钕铁硼磁体材料A的重量百分比;
所述钕铁硼磁体材料A中不含Gd;
余量为Fe及不可避免的杂质。
在本发明较佳实施方式中,所述钕铁硼磁体材料A可为下述编号1-17中的任意一种(wt%):
Figure PCTCN2021088319-appb-000003
Figure PCTCN2021088319-appb-000004
本发明还提供了一种钕铁硼磁体材料B的原料组合物,其包含:
R:29-32.5wt%;
所述R为稀土元素、且包括Nd和Ho、且不包括Dy和/或Tb;
Co:0~0.5wt%;
B:0.9-1.05wt%;
Cu:0~0.35wt%、且不为0;
Ga:0~0.35wt%、且不为0;
Al:0~0.5wt%;
X:0.05~0.45wt%;所述X的种类包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;
Fe:66~70wt%;
wt%为各元素占所述钕铁硼磁体材料B的原料组合物的重量百分比;
所述原料组合物中不含有Gd。
本发明中,所述R的含量较佳地为29.1~32.46wt%,例如29.99wt%、31.01wt%、31.02wt%、31.03wt%、31.04wt%、31.12wt%、30.56wt%或者30.63wt%。
本发明中,所述R中Nd含量可为本领域常规,较佳地为16-32wt%,更佳地为16.88wt%、18.02wt%、18.09wt%、19.1wt%、19.15wt%、19.55wt%、19.60wt%、20.18wt%、20.28wt%、21.41wt%、26.26wt%、21.92%、26.64%或者31.16wt%。
本发明中,所述R中的Nd的添加形式为本领域常规,例如以PrNd的形式,或者,以纯净的Nd的形式,或者以纯净的Pr和Nd的混合物的形式,或者以PrNd、纯净的Pr和Nd的混合物联合添加。当以PrNd的形式添加时,PrNd中Pr与Nd的重量比为25:75或20:80。
本发明中,所述R中的Nd以PrNd的形式添加时,PrNd的用量较佳地为0.5~29wt%,更佳地为1wt%、22.51wt%、24.02wt%、24.12wt%、25.53wt%、26.06wt%、26.13wt%、27.04wt%或者28.54wt%,wt%为元素占所述钕铁硼磁体材料B的原料组合物的重量百 分比。
本发明中,所述R中Ho含量较佳地为0-10wt%、且不为0,更佳地为0.1~10wt%,最佳地为1~9wt%,例如1.3wt%、2.5wt%、4wt%、4.5wt%、5.5wt%、6.45wt%、6.7wt%、7wt%或者8.5wt%。
本发明中,所述R较佳地不含有Ho以外的重稀土金属。所述重稀土金属的定义或种类均为本领域常规,所述重稀土金属例如可包括钆及钆以后的铽、镝、钬、铒、铥、镱、镥和钇等9个元素。
本发明中,所述R还可包括本领域其他常规的稀土元素,例如包括Pr和/或Sm。
其中,当所述R包含Pr时,Pr的添加形式为本领域常规,例如以PrNd的形式,或者,以纯净的Pr和Nd的混合物的形式,或者以PrNd、纯净的Pr和Nd的混合物联合添加。当以PrNd的形式添加时,PrNd中Pr与Nd的重量比为25:75或20:80。
其中,当所述R包含Pr时,所述Pr的含量较佳地为0-16wt%,更佳地为0.2~15wt%,例如0.33wt%、2.75wt%、3.3wt%、5.63wt%、6.01wt%、6.03wt%、6.38wt%、6.52wt%、6.53wt%、6.76wt%或者7.14wt%,其中百分比为占所述钕铁硼磁体材料B的原料组合物总重量的百分比。
其中,当所述R包含Sm时,所述Sm的含量较佳地为0-3wt%,例如2.02wt%,其中百分比为占所述钕铁硼磁体材料B的原料组合物总重量的百分比。
本发明中,所述Co的含量范围较佳地为0.02-0.45wt%,例如0.1wt%、0.2wt%、0.25wt%、0.3wt%、0.35wt%、或者0.4wt%。
本发明中,所述B的含量较佳地为0.92-1.02wt%,例如0.94wt%、0.9wt%或者0.99wt%。
本发明中,所述Cu的含量较佳地为0.05-0.3wt%,更佳地为0.1-0.3wt%,例如0.15wt%、0.2wt%或者0.25wt%。
本发明中,所述Ga的含量较佳地为0.02-0.3wt%,例如0.05wt%、0.1wt%、0.15wt%、0.2wt%或者0.25wt%。
本发明中,所述Al的含量较佳地为0-0.3wt%,更佳地为0~0.1wt%,最佳地为0~0.04wt%,例如0wt%、0.02wt%、0.03wt%或者0.04wt%。其中当Al的含量为0~0.1wt%时,Al的可以为制备钕铁硼材料的过程中引入的杂质Al含量范围,或者也可以为额外添加的Al含量。当Al的含量为0~0.04wt%时,该范围可为制备钕铁硼材料的过程中引入的杂质Al含量范围。
本发明中,所述X的种类较佳地为Ti、Nb、Zr和Hf中的一种或多种,更佳地为Ti、 Nb、Zr或Hf。
本发明中,所述X的种类可为“Cr和Ti的混合物”、“Nb、Mo、W和Ta的混合物”、“Hf、W、Ta和Cr的混合物”或者“Nb和V的混合物”。
本发明中,所述X的种类可为V、Mo、W、Ta或者Cr。
本发明中,所述X的含量较佳地为0.1-0.4wt%,例如0.14wt%、0.15wt%、0.18wt%、0.2wt%、0.25wt%或者0.33wt%。
当所述X包括Zr时,所述Zr的含量较佳地为0.05-0.25wt%,例如0.1wt%或者0.2wt%。
当所述X包括Ti时,所述Ti的含量较佳地为0.05-0.2wt%,例如0.08wt%、0.1wt%、0.14wt%或者0.15wt%。
当所述X包括Nb时,所述Nb的含量较佳地为0.02-0.4wt%,例如0.1wt%、0.15wt%或者0.25wt%。
当所述X包括Hf时,所述Hf的含量较佳地为0.02-0.1wt%,例如0.03wt%或者0.1wt%。
当所述X包括V时,所述V的含量较佳地为0.02-0.1wt%,例如0.03wt%。
当所述X包括Mo时,所述Mo的含量较佳地为0.008-0.05wt%,例如0.01wt%。
当所述X包括W时,所述W的含量较佳地为0.01-0.1wt%,例如0.05wt%。
当所述X包括Ta时,所述Ta的含量较佳地为0.01-0.1wt%,例如0.05wt%。
当所述X包括Cr时,所述Cr的含量较佳地为0.05-0.15wt%,例如0.1wt%。
当所述X包括Cr和Ti时,Cr和Ti的重量比较佳地为1:(0.5-1.0),例如1:0.8。
当所述X包括Nb、Mo、W和Ta时,Nb、Mo、W和Ta的重量比较佳地为(0.15-0.25):(0.8-1.2):(0.8-1.2):1,例如2:1:1:1。
当所述X包括Hf、W、Ta和Cr时,Hf、W、Ta和Cr的重量比较佳地为(0.25-0.35):(0.8-1.2):(0.8-1.2):1,例如3:1:1:1。
当所述X包括Nb和V时,Nb和V的重量比较佳地为(35-45):5,例如40;5。
本发明中,所述钕铁硼磁体材料B的原料组合物还可包括Mn。所述Mn的含量范围较佳地≤0.035wt%,更佳地≤0.0175wt%,上述百分比为Mn相对于原料组合物总量的重量百分比。
本发明中,较佳地,所述钕铁硼磁体材料B的原料组合物包括:
R:30-32wt%;所述R为稀土元素、且包括PrNd和Ho、且不包括Dy和/或Tb;PrNd:22.9-29wt%;Ho:2.5-8.5wt%;
Co:0~0.25wt%;
B:0.9-1.05wt%;
Cu:0.05~0.35wt%;
Ga:0.05~0.35wt%;
Al:0~0.1wt%;
X:0.05~0.25wt%;所述X的种类包括Ti、Nb、Zr、Hf中的一种或多种;
wt%为各元素占所述钕铁硼磁体材料B的原料组合物的重量百分比;
所述原料组合物中不含Gd;
余量为Fe及不可避免的杂质。
更佳地,所述钕铁硼磁体材料B的原料组合物包括:
R:30.5-31.5wt%;所述R为稀土元素、且包括PrNd和Ho、且不包括Dy和/或Tb;PrNd:24-26.5wt%;Ho:2.5-8.5wt%;
Co:0~0.1wt%(更佳地为0wt%);
B:0.9-1.0wt%;
Cu:0.05~0.35wt%;
Ga:0.05~0.35wt%;
Al:0~0.5wt%;
X:0.1~0.2wt%;所述X的种类包括Ti和/或Zr;
wt%为各元素占所述钕铁硼磁体材料B的原料组合物的重量百分比;
所述原料组合物中不含Gd;
余量为Fe及不可避免的杂质。
在本发明较佳实施方式中,所述钕铁硼磁体材料B的原料组合物可为下述编号1-16中的任意一种(wt%):
Figure PCTCN2021088319-appb-000005
Figure PCTCN2021088319-appb-000006
本发明还提供了一种钕铁硼磁体材料B的制备方法,将上述钕铁硼磁体材料B的原料组合物经熔炼、制粉、成型、烧结即可。
其中,所述熔炼、所述制粉、所述成型和所述烧结的过程与上述相同。
本发明还提供了一种由如上所述的制备方法制得的钕铁硼磁体材料B。
本发明还提供了一种钕铁硼磁体材料B,其包含:
R:29-32.5wt%;
所述R为稀土元素、且包括Nd和Ho、且不包括Dy和/或Tb;
B:0.9-1.05wt%;
Co:0~0.5wt%;
Cu:0~0.35wt%、且不为0;
Ga:0~0.35wt%、且不为0;
Al:0~0.5wt%;
X:0.05~0.45wt%;所述X的种类包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;
Fe:66~70wt%;
wt%为各元素占所述钕铁硼磁体材料B的重量百分比;
所述钕铁硼磁体材料B中不含Gd;
所述钕铁硼磁体材料B包含Nd 2Fe l4B晶粒和其壳层、晶界外延层和富钕相;所述R中的Ho主要分布在所述Nd 2Fe l4B晶粒和所述晶界外延层。
本发明中,所述钕铁硼磁体材料B包含Nd 2Fe l4B晶粒和其壳层、晶界外延层和富钕相;在所述晶界外延层中(即主相和富钕相的晶界边沿壳层结构中),形成R xHo yCu zX l新的物相结构,其中R为Nd或/和Pr,x=40-85,y=0.1-10,z=0.1-2.0,l=3-7。
本发明中,所述R的含量较佳地为29.1~32.46wt%,例如29.99wt%、31.01wt%、31.02wt%、31.03wt%、31.04wt%、31.12wt%、30.56wt%或者30.63wt%。
本发明中,所述R中Nd含量可为本领域常规,较佳地为16-32wt%,更佳地为16.88wt%、18.02wt%、18.09wt%、19.1wt%、19.15wt%、19.55wt%、19.60wt%、20.18wt%、20.28wt%、21.41wt%、26.26wt%、21.92%、26.64%或者31.16wt%。
本发明中,所述R中的Nd的添加形式为本领域常规,例如以PrNd的形式,或者,以纯净的Nd的形式,或者以纯净的Pr和Nd的混合物的形式,或者以PrNd、纯净的Pr 和Nd的混合物联合添加。当以PrNd的形式添加时,PrNd中Pr与Nd的重量比为25:75或20:80。
本发明中,所述R中的Nd以PrNd的形式添加时,PrNd的用量较佳地为0.5~29wt%,更佳地为1wt%、22.51wt%、24.02wt%、24.12wt%、25.53wt%、26.06wt%、26.13wt%、27.04wt%或者28.54wt%,wt%为各元素占所述钕铁硼磁体材料B的重量百分比。
本发明中,所述R中Ho含量较佳地为0-10wt%、且不为0,更佳地为0.1~10wt%,最佳地为1~9wt%,例如1.3wt%、2.5wt%、4wt%、4.5wt%、5.5wt%、6.45wt%、6.7wt%、7wt%或者8.5wt%。
本发明中,所述R较佳地不含有Ho以外的重稀土金属。所述重稀土金属的定义或种类均为本领域常规,所述重稀土金属例如可包括钆及钆以后的铽、镝、钬、铒、铥、镱、镥和钇等9个元素。
本发明中,所述R还可包括本领域其他常规的稀土元素,例如包括Pr和/或Sm。
其中,当所述R包含Pr时,Pr的添加形式为本领域常规,例如以PrNd的形式,或者,以纯净的Pr和Nd的混合物的形式,或者以PrNd、纯净的Pr和Nd的混合物联合添加。当以PrNd的形式添加时,PrNd中Pr与Nd的重量比为25:75或20:80。
其中,当所述R包含Pr时,所述Pr的含量较佳地为0-16wt%、且不为0,更佳地为0.2~15wt%,例如0.33wt%、2.75wt%、3.3wt%、5.63wt%、6.01wt%、6.03wt%、6.38wt%、6.52wt%、6.53wt%、6.76wt%或者7.14wt%,其中百分比为占所述钕铁硼磁体材料B的重量百分比。
其中,当所述R包含Sm时,所述Sm的含量较佳地为0-3wt%,例如2.02wt%,其中百分比为占所述钕铁硼磁体材料B的重量百分比。
本发明中,所述Co的含量范围较佳地为0.02-0.45wt%,例如0.1wt%、0.2wt%、0.25wt%、0.3wt%、0.35wt%、或者0.4wt%。
本发明中,所述B的含量较佳地为0.92-1.02wt%,例如0.94wt%、0.9wt%或者0.99wt%。
本发明中,所述Cu的含量较佳地为0.05-0.3wt%,更佳地为0.1-0.3wt%,例如0.15wt%、0.2wt%或者0.25wt%。
本发明中,所述Ga的含量较佳地为0.02-0.3wt%,例如0.05wt%、0.1wt%、0.15wt%、0.2wt%或者0.25wt%。
本发明中,所述Al的含量较佳地为0-0.3wt%,更佳地为0~0.1wt%,最佳地为0~0.04wt%,例如0wt%、0.02wt%、0.03wt%或者0.04wt%。其中当Al的含量为0~0.1wt%时, Al的可以为制备钕铁硼材料的过程中引入的杂质Al含量范围,或者也可以为额外添加的Al含量。当Al的含量为0~0.04wt%时,该范围可为制备钕铁硼材料的过程中引入的杂质Al含量范围。
本发明中,所述X的种类较佳地为Ti、Nb、Zr和Hf中的一种或多种,更佳地为Ti、Nb、Zr或Hf。
本发明中,所述X的种类可为“Cr和Ti的混合物”、“Nb、Mo、W和Ta的混合物”、“Hf、W、Ta和Cr的混合物”或者“Nb和V的混合物”。
本发明中,所述X的种类可为V、Mo、W、Ta或者Cr。
本发明中,所述X的含量较佳地为0.1-0.4wt%,例如0.14wt%、0.15wt%、0.18wt%、0.2wt%、0.25wt%或者0.33wt%。
当所述X包括Zr时,所述Zr的含量较佳地为0.05-0.25wt%,例如0.1wt%或者0.2wt%。
当所述X包括Ti时,所述Ti的含量较佳地为0.05-0.2wt%,例如0.08wt%、0.1wt%、0.14wt%或者0.15wt%。
当所述X包括Nb时,所述Nb的含量较佳地为0.02-0.4wt%,例如0.1wt%、0.15wt%或者0.25wt%。
当所述X包括Hf时,所述Hf的含量较佳地为0.02-0.1wt%,例如0.03wt%或者0.1wt%。
当所述X包括V时,所述V的含量较佳地为0.02-0.1wt%,例如0.03wt%。
当所述X包括Mo时,所述Mo的含量较佳地为0.008-0.05wt%,例如0.01wt%。
当所述X包括W时,所述W的含量较佳地为0.01-0.1wt%,例如0.05wt%。
当所述X包括Ta时,所述Ta的含量较佳地为0.01-0.1wt%,例如0.05wt%。
当所述X包括Cr时,所述Cr的含量较佳地为0.05-0.15wt%,例如0.1wt%。
当所述X包括Cr和Ti时,Cr和Ti的重量比较佳地为1:(0.5-1.0),例如1:0.8。
当所述X包括Nb、Mo、W和Ta时,Nb、Mo、W和Ta的重量比较佳地为(0.15-0.25):(0.8-1.2):(0.8-1.2):1,例如2:1:1:1。
当所述X包括Hf、W、Ta和Cr时,Hf、W、Ta和Cr的重量比较佳地为(0.25-0.35):(0.8-1.2):(0.8-1.2):1,例如3:1:1:1。
当所述X包括Nb和V时,Nb和V的重量比较佳地为(35-45):5,例如40;5。
本发明中,所述钕铁硼磁体材料B还可包括Mn。所述Mn的含量范围较佳地≤0.035wt%,更佳地≤0.0175wt%,上述百分比为Mn相对于钕铁硼磁体材料B总量的重量百分比。
本发明中,较佳地,所述钕铁硼磁体材料B包括:
R:30.5-32wt%;所述R为稀土元素、且包括PrNd和Ho、且不包括Dy和/或Tb;PrNd:22.9-29wt%;Ho:2.5-8.5wt%;
Co:0~0.25wt%;
B:0.9-1.05wt%;
Cu:0.05~0.35wt%;
Ga:0.05~0.35wt%;
Al:0~0.1wt%;
X:0.05~0.25wt%;所述X的种类包括Ti、Nb、Zr、Hf中的一种或多种;
wt%为各元素占所述钕铁硼磁体材料B的重量百分比;
所述钕铁硼磁体材料B中不含Gd;
余量为Fe及不可避免的杂质。
更佳地,所述钕铁硼磁体材料B包括:
R:30.5-31.5wt%;所述R为稀土元素、且包括PrNd和Ho、且不包括Dy和/或Tb;PrNd:24-26.5wt%;Ho:2.5-8.5wt%;
Co:0~0.1wt%(更佳地为0wt%);
B:0.9-1.0wt%;
Cu:0.05~0.35wt%;
Ga:0.05~0.35wt%;
Al:0~0.5wt%;
X:0.1~0.2wt%;所述X的种类包括Ti和/或Zr;
wt%为各元素占所述钕铁硼磁体材料B的重量百分比;
所述钕铁硼磁体材料B中不含Gd;
余量为Fe及不可避免的杂质。
在本发明较佳实施方式中,所述钕铁硼磁体材料B可为下述编号1-16中的任意一种(wt%):
Figure PCTCN2021088319-appb-000007
Figure PCTCN2021088319-appb-000008
本发明还提供了一种所述钕铁硼磁体材料A和/或所述钕铁硼磁体材B在制备磁钢中的应用。所述磁钢可为40UH、42Uh、40EH或者42EH。当所述钕铁硼磁体材料采用Dy扩散时,所述磁钢可为40UH或者42UH。当所述钕铁硼磁体材料采用Tb扩散时,所述磁钢可为40UH、40EH或者42EH。
本发明中,所述钕铁硼磁体材料A或B的原料组合物中添加其它元素时,原料组合物的总重量发生变化。此时,对于各元素用量而言,除Fe以外的已有元素的重量百分比含量不发生变化,仅降低Fe元素的百分含量。即新添加某元素时,仅调节Fe元素的百分比,其它已有元素的百分比不变,以实现各元素总含量为100%。
本发明中,所述钕铁硼磁体材料A或B中添加其它元素时,钕铁硼磁体材料A或B的总重量发生变化。此时,对于各元素用量而言,除Fe以外的已有元素的重量百分比含量不发生变化,仅降低Fe元素的百分含量。即新添加某元素时,仅调节Fe元素的百分比,其它已有元素的百分比不变,以实现各元素总含量为100%。
本发明中,在制备工艺中一般会不可避免的引入碳杂质,用量一般为0~0.12wt%,上述百分比为C元素的用量占总量的重量百分比。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:
在Co含量在0-0.5%、Al含量在0-0.5%、Dy和/或Tb在1%以下时,可通过调整各元素种类及用量,调节材料的剩磁、矫顽力在特定范围内,以及提高其居里温度,改善高温稳定性。
在具体实施例中,常温下,钕铁硼磁体材料A的Br可为12.24~13.55kGs,Hcj可为25.33~31kOe;扩散后Hcj增加量可为7.5-11.5kOe。在140℃高温下,Br可为10.89~12.1kGs,Hcj可为10.89~15.67kOe。
钕铁硼磁体材料A的140℃全开路磁损可为0.12~2.12%,140℃时Br温度系数绝对值可为0.047~0.102%;140℃时Hcj温度系数绝对值劲儿为0.412~0.5%;晶界连续性可为96.2~97.3%。
在具体实施例中,常温下,钕铁硼磁体材料B的Br可为12.3~13.63kGs,Hcj可为16~20.5kOe。
附图说明
图1为实施例2制得的扩散后的钕铁硼磁体材料A的SEM的照片其中,1、2、3分别表示不同位置的取样点。
图2为实施例1制得的扩散后钕铁硼磁体材料A的EPMA图谱。
图3为实施例17制得的扩散后钕铁硼磁体材料A的EPMA图谱。
图4为实施例1制得的扩散前钕铁硼磁体材料B的SEM照片,其中箭头标注为在主相和富钕相的晶界边沿壳层结构中,形成的新物相。
图5为对比例2制得的扩散前钕铁硼磁体材料B的SEM照片。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
下述实施例中,磁性能评价所用设备为英国Hirst公司的PFM-14磁性能测量仪。
1、钕铁硼磁体材料A的原料组合物(扩散后配方):
实施例1-19和对比例1~9的钕铁硼磁体材料A的原料组合物如下表1所示。
表1实施例1-19、对比例1-9的钕铁硼磁体材料A的原料组合物的配方和含量(wt%)
Figure PCTCN2021088319-appb-000009
Figure PCTCN2021088319-appb-000010
注:“/”是指不含有该元素。
实施例1-19以及对比例1-9中钕铁硼磁体材料A的制备方法如下:
(1)熔炼和铸造过程:按照表1中的配方,将配制好的除R2以外的原料放入氧化铝的坩埚中,在高频真空熔炼炉中以0.05Pa的真空和1500℃的条件进行真空熔炼。再中频真空感应速凝甩带炉中通入氩气,进行铸造,再急冷合金,得合金片。
(2)氢破制粉过程:在室温下将放置急冷合金的氢破用炉抽真空,而后向氢破用炉内通入纯度为99.9%的氢气,维持氢气的压力90kPa,充分吸氢后,边抽真空边升温,充分脱氢,之后进行冷却,取出氢破粉碎后的粉末。其中,吸氢的温度为室温,脱氢的温度为550℃。
(3)气流磨制粉过程:在氮气气氛下,在粉碎室压力为0.65MPa的条件下对氢破粉碎后的粉末进行气流磨粉碎(气流磨制粉的效率可根据设备不同有所差别,例如可为200kg/h),得到细粉。
(4)成型过程:将经气流磨之后的粉末在1.5T以上的磁场强度中压制成型。
(5)烧结过程:将各成型体搬至烧结炉中进行烧结,烧结在低于0.5Pa的真空下,以1030-1090℃烧结2-8h,得烧结体。
(6)晶界扩散过程:将烧结体表面净化后将R2(例如Tb的合金或氟化物、Dy的合金或氟化物和DyCuGa和TbCuGa合金中的一种或多种)涂覆于烧结体的表面,并以900℃的温度扩散5-15h,之后冷却至室温,再以460-510℃的温度进行低温回火处理1-3h。
2、钕铁硼磁体材料B的原料组合物(扩散前):
实施例1-19和对比例1~9的钕铁硼磁体材料B的原料组合物如下表2所示。
表2实施例1-19、对比例1-9钕铁硼磁体材料B的原料组合物的配方和含量(wt%)
Figure PCTCN2021088319-appb-000011
钕铁硼磁体材料B实施例1-19以及对比例1-9的制备方法中,除了不添加R2元素以外,其他操作和条件均与钕铁硼磁体材料A实施例1相同。
本发明实施例和对比例的制备工艺中一般会不可避免的引入碳杂质,一般为0~0.12wt%,上述百分比为C元素的用量占总量的重量百分比。
效果实施例1
分别取实施例1-19以及对比例1-9中钕铁硼磁体材料A和钕铁硼磁体材料B,测定其磁性能和成分,SEM背散射模式(仪器型号:日立S-3400N)观察其磁体的相组成。
(1)钕铁硼磁体材料的各成分使用高频电感耦合等离子体发射光谱仪(ICP-OES,仪器型号:Icap6300)进行测定。下表3-4所示为成分检测结果。以实施例1为例,钕铁硼材料A检测所得元素种类、用量均与表1中公开的原料组合物的元素种类、用量相同。
表3实施例1-19、对比例1-9钕铁硼磁体材料A的组分和含量(wt%)
Figure PCTCN2021088319-appb-000012
表4实施例1-19、对比例1-9钕铁硼磁体材料B的组分和含量(wt%)
Figure PCTCN2021088319-appb-000013
Figure PCTCN2021088319-appb-000014
注:本发明表1-表4中,“/”是指不含有该元素。
(2)磁性能评价:钕铁硼磁体材料使用英国Hirst公司的PFM-14磁性能测量仪进行磁性能检测(测试样品为直径D10mm*厚度1.8mm圆片);表5所示为磁性能检测结果。
表5钕铁硼材料磁性能检测结果
Figure PCTCN2021088319-appb-000015
Figure PCTCN2021088319-appb-000016
表5数据说明如下:
(I)“扩散前20℃”是指钕铁硼材料B在20℃下的磁性能检测数据。“扩散后20℃”是指钕铁硼材料A在20℃下的磁性能检测数据。“扩散后140℃”是指钕铁硼材料A在20℃和140℃性能对比计算出来剩磁Br的温度系数。“140℃H cj温度系数绝对值β”是指的钕铁硼磁体材料A在20℃和140℃性能对比计算出来剩磁Br的的温度系数。“140℃开路磁损”是指的钕铁硼磁体材料A在烘箱中经过140℃烘烤一定时间后(如120min),对比计算20℃和140℃的磁通,计算出经过140℃后的开路磁损。
(II)钕铁硼磁体材料A的高温性能的测试:计算温度系数。下述公式中常温温度 均为20℃,其中:
Br温度系数α的公式为:
Figure PCTCN2021088319-appb-000017
Hcj温度系数β的公式为
Figure PCTCN2021088319-appb-000018
(III)钕铁硼磁体材料A的开路磁损的数据计算方法:
先测常温下产品的磁通M1,然后在烘箱中加热产品到设定温度140℃,保温120min,再冷却到常温时测定磁通M2,在高温测不可逆磁损β的公示为:
Figure PCTCN2021088319-appb-000019
其中,常温温度均为20℃。
(IV)表5中,晶界连续性的计算方式是指晶界中除空洞外的物相(例如富钕相、晶界外延层中的相等)占据的长度与总晶界长度的比值,也即通过计算SEM电镜照片中总颗粒包括主相和富钕相晶界的长度和除主相之外其他物相的总晶界长度。晶界连续性超过96%即可称为连续通道。
(3)微观结构的测定:
(I)图1为实施例2制得的扩散后的钕铁硼磁体材料A的SEM的照片。其中,1、2、3分别表示不同位置的取样点。采用SEM-EDS背散射(仪器型号:日立S-3400N)观察取样范围内磁体的元素组成,具体见下述表6。
表6
Figure PCTCN2021088319-appb-000020
注:以取样点1为例,其属于富钕相,在小区域的取样范围内,Ho含量为0.82wt%,PrNd含量为85.43wt%,Dy元素含量为0.55wt%,其它元素含量为13.2wt%,上述百分比为该取样范围内,各元素的含量分别占全部元素的含量的重量百分比。
由图1和表6可知,本发明中,在无Co配方中添加的Ho,Ho主要集中在基材主相(图1中取样点3)中灰色区域,其次是主相和富钕相的晶界边沿壳层结构处(即为主相与富钕相交界处,也可称之为二颗粒晶界、晶界外延层,图1中取样点2),在富钕相中 间图中白色区域内Ho元素分布较少。
在主相中,Ho主要以HoFeB的结构存在,形成(NdHo)FeB的主相结构,对主相的各向异性场有一定的提高作用,同时优化烧结磁体的微观组织结构。同时,Ho代替主相中的Nd,使得更多的Nd迁移到富Nd相,增加其体积分数和连续性,为后续Dy或/和Tb扩散提供更多扩散通道。
通过SEM电镜中的EDS测试富钕相、主相及晶界边延层(“晶界边延层”就是指的“主相和富钕相的晶界边沿壳层结构”)的成分,在其无Co富Ho的结构中,增加了富钕相和晶界外延层,增加晶界相的占比,通过图片计算富钕相和晶界外延层占总晶界相的比例97%以上(“97%”是指“(富钕相和晶界外延层)/总晶界相”的面积比),大于常规含Co磁体富钕相占总晶界相的比例95%,即增加了富钕相和晶界外延层占比,增加了晶界连续性,矫顽力提升明显。
(II)用EPMA观察扩散后磁体材料A中扩散元素的分布,图2为实施例1制得的扩散后钕铁硼磁体材料A的EPMA图谱(仪器型号:EPMA-1720)。实施例1的材料可用于制备40UH磁钢。
图3为实施例17制得的扩散后钕铁硼磁体材料A的EPMA图谱。实施例17的材料可用于制备40UH磁钢。
由图2可知,Dy扩散后均匀分散在晶界(主要分布在晶界中的富钕相)和主相壳层结构中,没有进入到主相中。由图3可知,Tb扩散后均匀分散在晶界(主要分布在晶界中的富钕相)和主相壳层结构中,没有进入到主相中。图2-3中,左侧“Conc”代表重量占比,表示这个点中“Dy或Tb”元素在这个位置中的重量占比,不同的颜色代表不同的重量占比。
(III)图4为实施例1制得的扩散前钕铁硼磁体材料B的SEM照片,其中箭头标注为在主相和富钕相的晶界边沿壳层结构中,形成的新物相。由图4可知,富钕相分布较多,均匀分布到主相颗粒周围,(黑色空洞是因为制样是富钕相有氧化脱落造成)。也就是说,扩散前的钕铁硼磁体材料B形成了有利于扩散的晶界外延层结构(图4的箭头处),晶界连续性较高。
图5为对比例2制得的扩散前钕铁硼磁体材料B的SEM照片。富钕相分布不太明显,有团聚现象,主相颗粒之间分布较少,未起到磁去耦合的作用,不利于矫顽力的提高和后续Dy和/或Tb扩散过程,没有提供均匀分布富钕相扩散通道。也就是说,对比例2没有形成了有利于扩散的晶界外延层结构。由图5与图4比较可知,本发明实施例1制得的扩散前钕铁硼磁体材料B富钕相占比明显高于对比例2制得的扩散前钕铁硼磁体材料 B,而且均匀分布于主相颗粒周围。
(IV)根据FE-EPMA测试得到,在主相和富钕相的晶界边沿壳层结构中,形成R xHo yCu zX l新的物相结构(如图4的箭头标记处,该新物相在扩散的步骤之后仍然存在,如图1中箭头2位置),其中R为Nd或/和Pr,x=40-85,y=0.1-10,z=0.1-2.0,l=3-7。新物相为无Co富Ho的晶界外延层结构,增加了晶界外延层占比,使得晶界连续性提高,形成无Co有利于扩散通道形成的外延层结构。新物相的形成,以及富钕相和晶界外延层在总晶界相比例的提高,增加了主相晶界外延层的各向异性场,减少产品在退磁或高温时形成反磁化畴核,有助于显著提升后续扩散的效果,所以矫顽力提升较多。
具体实施例与对比例分析如下:
1)基于本发明对于配方的改进,使得制得的钕铁硼磁体材料B形成了有利于扩散的晶界外延层结构(新的物相),晶界连续性较高,有利于Dy和/或Tb晶界扩散,从而使得扩散后Hcj明显提升,开路磁损较小、高温下磁体性能较好。钕铁硼磁体材料A中,各组分相互协同,再加上微观结构的改变(新物相的形成以及各元素的特定分布),使得其耐高温性能好。
2)对比例1:基于实施例1,去掉Ho且TRE不变。
对比例1中,矫顽力提升不明显,高温下Hcj比较小,全开路磁损失较大,高温下Br、Hcj温度系数绝对值较大,且晶界连续性较低。
3)对比例2:基于实施例1,改变高熔点金属种类为Mn。
对比例2中,仅改变高熔点金属种类,矫顽力提升不明显,高温下Hcj比较小,全开路磁损失较大,高温下Br、Hcj温度系数绝对值较大,且晶界连续性较低。
4)对比例3:基于实施例1,Ho用量超过10wt%。
对比例3中,常温下剩磁稍低,矫顽力提升不明显,高温下剩磁、矫顽力低,全开路磁损失较大,高温下Br、Hcj温度系数绝对值较大,晶界连续性相对较低。
5)对比例4:基于实施例2,去掉Ga,Al超过0.5wt%。
对比例4中,由于Al的过量加入会恶化剩磁和居里温度,矫顽力提升不明显,高温下剩磁、矫顽力低,全开路磁损失相对较高,高温下Br、Hcj温度系数绝对值较大,晶界连续性较低。
6)对比例5:基于实施例3,Ga超过0.35wt%。
对比例5中,扩散前后矫顽力提升不明显,高温下剩磁、矫顽力低,全开路磁损失相对较高,晶界连续性相对较低。
7)对比例6:总稀土含量增大,Al过量,不添加Ga、X,添加了Gd
对比例6中,剩磁较低,耐高温性能较差,高温全开路磁损失非常显著,晶界连续性相对较低。
8)对比例7:基于实施例1,Zr用量增大,总稀土用量减少
对比例7中,扩散前后矫顽力提升不明显,高温下矫顽力较低,全开路磁损失相对较高,高温下Br、Hcj温度系数绝对值较大。
9)对比例8:基于实施例18,去掉Ho/Ga,总TRE保持不变
对比例8中,常温下扩散前Hcj较低,扩散后Br、Hcj均较低,矫顽力提升不明显,耐高温性能依然不好,全开路磁损失明显,高温下Br、Hcj温度系数绝对值较大,晶界连续性较低。
9)对比例9:基于实施例1,添加Co元素,不添加Ho、X、Cu、Ga且总TRE不变,
对比例9中,常温下扩散前Hcj较低,扩散后下Hcj较低,矫顽力提升不明显,耐高温性很差,Hcj损失较大,全开路磁损失明显,高温下Br、Hcj温度系数绝对值较大,晶界连续性较低。

Claims (10)

  1. 一种钕铁硼磁体材料A的原料组合物,其特征在于,其包括:
    R:29.5-32.5wt%;所述R为稀土元素、且包括熔炼用稀土金属R1和晶界扩散用稀土金属R2;所述R1包括Nd和Ho、且不包括Dy和/或Tb;所述R2包括Dy和/或Tb;所述R2的含量为0.2-1wt%;
    Co:0~0.5wt%;
    B:0.9-1.05wt%;
    Cu:0~0.35wt%、且不为0;
    Ga:0~0.35wt%、且不为0;
    Al:0~0.5wt%;
    X:0.05~0.45wt%;所述X的种类包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;
    Fe:65~70wt%;
    wt%为各元素占所述钕铁硼磁体材料A的原料组合物的重量百分比;
    所述原料组合物中不含Gd。
  2. 如权利要求1所述的钕铁硼磁体材料A的原料组合物,其特征在于,所述R的含量为30~32wt%,例如30.7wt%、30.93wt%、31wt%、31.4wt%、31.5wt%或者31.7wt%;
    和/或,所述R1中Nd含量为16-32wt%,较佳地为16.8wt%、17.925wt%、18wt%、19wt%、19.4475wt%、19.05wt%、19.5wt%、20.175wt%、21.3wt%、21.75wt%、26.375wt%或者31wt%;
    所述R1中的Nd以PrNd的形式添加时,PrNd的用量较佳地为0.5~29wt%,更佳地为1wt%、22.4wt%、23.9wt%、24wt%、25.4wt%、25.93wt%、26wt%、26.9wt%或者28.4wt%,wt%为元素占所述钕铁硼磁体材料A的原料组合物的重量百分比;
    和/或,所述R1中Ho含量为0-10wt%、且不为0,较佳地为0.1~10wt%,例如为1~9wt%,例如1.3wt%、2.5wt%、4wt%、4.5wt%、5.5wt%、6.4wt%、6.7wt%、7wt%或者8.5wt%;
    和/或,所述R1不含有Ho以外的重稀土金属;
    和/或,所述R1还包括Pr和/或Sm;
    当所述R1包含Pr时,所述Pr的含量较佳地为0-16wt%、且不为0,更佳地为0.2~15wt%,例如0.325wt%、2.75wt%、3.3wt%、5.6wt%、5.975wt%、6wt%、6.35wt%、6.4825wt%、6.5wt%、6.725wt%或者7.1wt%,其中百分比为占所述钕铁硼磁体材料A的原料组合物总重量的百分比;
    当所述R1包含Sm时,所述Sm的含量较佳地为0-3wt%,例如2wt%,其中百分比 为占所述钕铁硼磁体材料A的原料组合物总重量的百分比;
    和/或,所述R2的含量为0.2-0.9wt%,例如0.4wt%、0.5wt%、0.6wt%或者0.8wt%;
    当所述R2包括Dy时,所述Dy的含量较佳地为0.2-0.9wt%,更佳地为0.25-0.75wt%,例如0.5wt%;
    当所述R2包括Tb时,所述Tb的含量较佳地为0.4-0.9wt%,更佳地为0.25-0.8wt%,例如0.2wt%、0.5wt%、0.6wt%或者0.7wt%;
    当所述R2为Dy和Tb的混合物时,Dy和Tb的重量比为1:99-99:1,例如50:50、60:40、25:75或者40:60;
    和/或,所述Co的含量范围为0.02-0.45wt%,例如0.1wt%、0.2wt%、0.25wt%、0.3wt%、0.35wt%、或者0.4wt%;
    和/或,所述B的含量为0.92-1.02wt%,例如0.94wt%、0.9wt%或者0.99wt%;
    和/或,所述Cu的含量为0.05-0.3wt%,较佳地为0.1-0.3wt%,例如0.15wt%、0.2wt%或者0.25wt%;
    和/或,所述Ga的含量为0.02-0.3wt%,例如0.05wt%、0.1wt%、0.15wt%、0.2wt%或者0.25wt%;
    和/或,所述Al的含量为0-0.3wt%,较佳地为0~0.1wt%,更佳地为0~0.04wt%,例如0wt%、0.02wt%、0.03wt%或者0.04wt%;
    和/或,所述X的种类为Ti、Nb、Zr和Hf中的一种或多种,较佳地为Ti、Nb、Zr或Hf;
    所述X的种类较佳地为“Cr和Ti的混合物”、“Nb、Mo、W和Ta的混合物”、“Hf、W、Ta和Cr的混合物”或者“Nb和V的混合物”;
    所述X的种类较佳地为V、Mo、W、Ta或者Cr;
    和/或,所述X的含量为0.1-0.4wt%,例如0.14wt%、0.15wt%、0.18wt%、0.2wt%、0.25wt%或者0.33wt%;
    当所述X包括Zr时,所述Zr的含量较佳地为0.05-0.25wt%,例如0.1wt%或者0.2wt%;
    当所述X包括Ti时,所述Ti的含量较佳地为0.05-0.2wt%,例如0.08wt%、0.1wt%、0.14wt%或者0.15wt%;
    当所述X包括Nb时,所述Nb的含量较佳地为0.02-0.4wt%,例如0.1wt%、0.15wt%或者0.25wt%;
    当所述X包括Hf时,所述Hf的含量较佳地为0.02-0.1wt%,例如0.03wt%或者0.1wt%;
    当所述X包括V时,所述V的含量较佳地为0.02-0.1wt%,例如0.03wt%;
    当所述X包括Mo时,所述Mo的含量较佳地为0.008-0.05wt%,例如0.01wt%;
    当所述X包括W时,所述W的含量较佳地为0.01-0.1wt%,例如0.05wt%;
    当所述X包括Ta时,所述Ta的含量较佳地为0.01-0.1wt%,例如0.05wt%;
    当所述X包括Cr时,所述Cr的含量较佳地为0.05-0.15wt%,例如0.1wt%;
    当所述X包括Cr和Ti时,Cr和Ti的重量比较佳地为1:(0.5-1.0),例如1:0.8;
    当所述X包括Nb、Mo、W和Ta时,Nb、Mo、W和Ta的重量比较佳地为(0.15-0.25):(0.8-1.2):(0.8-1.2):1,例如2:1:1:1;
    当所述X包括Hf、W、Ta和Cr时,Hf、W、Ta和Cr的重量比较佳地为(0.25-0.35):(0.8-1.2):(0.8-1.2):1,例如3:1:1:1;
    当所述X包括Nb和V时,Nb和V的重量比较佳地为(35-45):5,例如40;5;
    较佳地,所述钕铁硼磁体材料A的原料组合物还包括Mn,所述Mn的含量范围较佳地≤0.035wt%,更佳地≤0.0175wt%,上述百分比为Mn相对于原料组合物总量的重量百分比;
    较佳地,所述钕铁硼磁体材料A的原料组合物包括:R:30.5-32wt%;所述R为稀土元素、且包括熔炼用稀土金属R1和晶界扩散用稀土金属R2;R1:包括PrNd和Ho、且不包括Dy和/或Tb;PrNd:22.9-29wt%;Ho:2.5-8.5wt%;R2包括Dy和/或Tb;R2:0.25-0.8wt%;
    Co:0~0.25wt%;B:0.9-1.05wt%;Cu:0.05~0.35wt%;Ga:0.05~0.35wt%;Al:0~0.1wt%;X:0.05~0.25wt%;所述X的种类包括Ti、Nb、Zr、Hf中的一种或多种;wt%为各元素占所述钕铁硼磁体材料A的原料组合物的重量百分比;所述原料组合物中不含Gd;
    余量为Fe及不可避免的杂质;
    更佳地,所述钕铁硼磁体材料A的原料组合物包括:R:30.5-32wt%;所述R为稀土元素、且包括熔炼用稀土金属R1和晶界扩散用稀土金属R2;R1:包括PrNd和Ho、且不包括Dy和/或Tb;PrNd:22.9-29wt%;Ho:2.5-8.5wt%;R2包括Dy和/或Tb;R2:0.3-0.6wt%;
    Co:0~0.1wt%(更佳地为0wt%);B:0.9-1.0wt%;Cu:0.05~0.35wt%;Ga:0.05~0.35wt%;Al:0~0.5wt%;X:0.1~0.2wt%;所述X的种类包括Ti和/或Zr;所述原料组合物中不含Gd;余量为Fe及不可避免的杂质。
  3. 一种钕铁硼磁体材料A的制备方法,其特征在于,其采用如权利要求1或2所述的原料组合物进行制备,所述制备方法为扩散制法,其中,所述R1元素在熔炼步骤中添 加,所述R2元素在晶界扩散步骤中添加;
    较佳地,所述制备方法包括如下步骤:将如权利要求1或2所述的原料组合物中除R 2以外的元素经熔炼、制粉、成型、烧结得烧结体,再将所述烧结体与所述R2的混合物经晶界扩散即可;
    较佳地,所述晶界扩散之后,还进行热处理,所述热处理的温度为450℃~600℃,例如480-510℃;所述热处理的时间较佳地为1~4h,例如1~3h。
  4. 一种如权利要求3所述的钕铁硼磁体材料A的制备方法制得的钕铁硼磁体材料A。
  5. 一种钕铁硼磁体材料A,其特征在于,其包含:R:29.5-32.5wt%;所述R为稀土元素、且包括R1和R2;所述R1包括Nd和Ho、且不包括Dy和/或Tb;所述R2包括Dy和/或Tb;所述R2的含量为0.2-1wt%;
    Co:0~0.5wt%;B:0.9-1.05wt%;Cu:0~0.35wt%、且不为0;Ga:0~0.35wt%、且不为0;Al:0~0.5wt%;X:0.05~0.45wt%;所述X的种类包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;Fe:65~70wt%;wt%为各元素占所述钕铁硼磁体材料A的重量百分比;所述钕铁硼磁体材料A中不含Gd;
    所述钕铁硼磁体材料A包含Nd 2Fe l4B晶粒和其壳层、晶界外延层和富钕相;所述R1中的Ho主要分布在所述Nd 2Fe l4B晶粒和所述晶界外延层,所述R2主要分布在所述壳层和所述富钕相;
    所述钕铁硼磁体材料A的晶界连续性为96%以上。
  6. 如权利要求5所述的钕铁硼磁体材料A,其特征在于,所述晶界连续性为96.2%以上,较佳地为96.2~97.3%,例如96.2%、96.3%、96.4%、96.5%、96.6%、96.7%、96.8%、97.1%、97.2%或者97.3%;
    和/或,所述R的含量为30~32wt%,例如30.7wt%、30.93wt%、31wt%、31.4wt%、31.5wt%或者31.7wt%;
    和/或,所述R1中Nd含量为16-32wt%,较佳地为16.8wt%、17.925wt%、18wt%、19wt%、19.4475wt%、19.05wt%、19.5wt%、20.175wt%、21.3wt%、21.75wt%、26.375wt%或者31wt%;
    所述R1中的Nd以PrNd的形式添加时,PrNd含量较佳地为0.5~29wt%,更佳地为1wt%、22.4wt%、23.9wt%、24wt%、25.4wt%、25.93wt%、26wt%、26.9wt%或者28.4wt%,wt%为元素占所述钕铁硼磁体材料A的重量百分比;
    和/或,所述R1中Ho含量为0-10wt%、且不为0,较佳地为0.1~10wt%,例如为1~9wt%,例如1.3wt%、2.5wt%、4wt%、4.5wt%、5.5wt%、6.4wt%、6.7wt%、7wt%或者8.5wt%;
    和/或,所述R1不含有Ho以外的重稀土金属;
    和/或,所述R1还包括Pr和/或Sm;
    当所述R1包含Pr时,所述Pr的含量较佳地为0-16wt%、且不为0,更佳地为0.2~15wt%,例如0.325wt%、2.75wt%、3.3wt%、5.6wt%、5.975wt%、6wt%、6.35wt%、6.4825wt%、6.5wt%、6.725wt%或者7.1wt%,其中百分比为占所述钕铁硼磁体材料A的重量百分比;
    当所述R1包含Sm时,所述Sm的含量较佳地为0-3wt%,例如2wt%,其中百分比为占所述钕铁硼磁体材料A的重量百分比;
    和/或,所述R2的含量为0.2-0.9wt%,例如0.4wt%、0.5wt%、0.6wt%或者0.8wt%;
    当所述R2包括Dy时,所述Dy的含量较佳地为0.2-0.9wt%,更佳地为0.25-0.75wt%,例如0.5wt%;
    当所述R2包括Tb时,所述Tb的含量较佳地为0.4-0.9wt%,更佳地为0.25-0.8wt%,例如0.2wt%、0.5wt%、0.6wt%或者0.7wt%;
    当所述R2为Dy和Tb的混合物时,Dy和Tb的重量比为1:99-99:1,例如50:50、60:40、25:75或者40:60;
    和/或,所述Co的含量范围为0.02-0.45wt%,例如0.1wt%、0.2wt%、0.25wt%、0.3wt%、0.35wt%、或者0.4wt%;
    和/或,所述B的含量为0.92-1.02wt%,例如0.94wt%、0.9wt%或者0.99wt%;
    和/或,所述Cu的含量为0.05-0.3wt%,较佳地为0.1-0.3wt%,例如0.15wt%、0.2wt%或者0.25wt%;
    和/或,所述Ga的含量为0.02-0.3wt%,例如0.05wt%、0.1wt%、0.15wt%、0.2wt%或者0.25wt%;
    和/或,所述Al的含量为0-0.3wt%,较佳地为0~0.1wt%,更佳地为0~0.04wt%,例如0wt%、0.02wt%、0.03wt%或者0.04wt%;
    和/或,所述X的种类为Ti、Nb、Zr和Hf中的一种或多种,较佳地为Ti、Nb、Zr或Hf;
    所述X的种类较佳地为“Cr和Ti的混合物”、“Nb、Mo、W和Ta的混合物”、“Hf、W、Ta和Cr的混合物”或者“Nb和V的混合物”;
    所述X的种类较佳地为V、Mo、W、Ta或者Cr;
    和/或,所述X的含量为0.1-0.4wt%,例如0.14wt%、0.15wt%、0.18wt%、0.2wt%、0.25wt%或者0.33wt%;
    当所述X包括Zr时,所述Zr的含量较佳地为0.05-0.25wt%,例如0.1wt%或者0.2wt%;
    当所述X包括Ti时,所述Ti的含量较佳地为0.05-0.2wt%,例如0.08wt%、0.1wt%、0.14wt%或者0.15wt%;
    当所述X包括Nb时,所述Nb的含量较佳地为0.02-0.4wt%,例如0.1wt%、0.15wt%或者0.25wt%;
    当所述X包括Hf时,所述Hf的含量较佳地为0.02-0.1wt%,例如0.03wt%或者0.1wt%;
    当所述X包括V时,所述V的含量较佳地为0.02-0.1wt%,例如0.03wt%;
    当所述X包括Mo时,所述Mo的含量较佳地为0.008-0.05wt%,例如0.01wt%;
    当所述X包括W时,所述W的含量较佳地为0.01-0.1wt%,例如0.05wt%;
    当所述X包括Ta时,所述Ta的含量较佳地为0.01-0.1wt%,例如0.05wt%;
    当所述X包括Cr时,所述Cr的含量较佳地为0.05-0.15wt%,例如0.1wt%;
    当所述X包括Cr和Ti时,Cr和Ti的重量比较佳地为1:(0.5-1.0),例如1:0.8;
    当所述X包括Nb、Mo、W和Ta时,Nb、Mo、W和Ta的重量比较佳地为(0.15-0.25):(0.8-1.2):(0.8-1.2):1,例如2:1:1:1;
    当所述X包括Hf、W、Ta和Cr时,Hf、W、Ta和Cr的重量比较佳地为(0.25-0.35):(0.8-1.2):(0.8-1.2):1,例如3:1:1:1;
    当所述X包括Nb和V时,Nb和V的重量比较佳地为(35-45):5,例如40;5;
    较佳地,所述钕铁硼磁体材料A还包括Mn;所述Mn的含量范围较佳地≤0.035wt%,更佳地≤0.0175wt%,上述百分比为Mn相对于钕铁硼磁体材料A总量的重量百分比;
    较佳地,所述钕铁硼磁体材料A包括:
    R:30.5-32wt%;所述R为稀土元素、且包括R1和R2;R1:包括PrNd和Ho、且不包括Dy和/或Tb;PrNd:22.9-29wt%;Ho:2.5-8.5wt%;R2包括Dy和/或Tb;R2:0.25-0.8wt%;
    Co:0~0.25wt%;B:0.9-1.05wt%;Cu:0.05~0.35wt%;Ga:0.05~0.35wt%;Al:0~0.1wt%;X:0.05~0.25wt%;所述X的种类包括Ti、Nb、Zr、Hf中的一种或多种;wt%为各元素占所述钕铁硼磁体材料A的重量百分比;所述钕铁硼磁体材料A中不含Gd;余量为Fe及不可避免的杂质;
    更佳地,所述钕铁硼磁体材料A包括:
    R:30.5-32wt%;所述R为稀土元素、且包括R1和R2;R1:包括PrNd和Ho、且不包括Dy和/或Tb;PrNd:22.9-29wt%;Ho:2.5-8.5wt%;R2包括Dy和/或Tb;R2:0.3-0.6wt%;
    Co:0~0.1wt%(更佳地为0wt%);B:0.9-1.0wt%;Cu:0.05~0.35wt%;Ga:0.05~0.35wt%;Al:0~0.5wt%;X:0.1~0.2wt%;所述X的种类包括Ti和/或Zr;所述钕铁硼磁体材料A中不含Gd;余量为Fe及不可避免的杂质。
  7. 一种钕铁硼磁体材料B的原料组合物,其特征在于,其包括:R:29-32.5wt%;所述R为稀土元素、且包括Nd和Ho、且不包括Dy和/或Tb;
    Co:0~0.5wt%;B:0.9-1.05wt%;Cu:0~0.35wt%、且不为0;Ga:0~0.35wt%、且不为0;Al:0~0.5wt%;X:0.05~0.45wt%;所述X的种类包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;Fe:66~70wt%;
    wt%为各元素占所述钕铁硼磁体材料B的原料组合物的重量百分比;
    所述原料组合物中不含Gd;
    较佳地,所述R的含量为29.1~32.46wt%,例如29.99wt%、31.01wt%、31.02wt%、31.03wt%、31.04wt%、31.12wt%、30.56wt%或者30.63wt%;
    较佳地,所述R中Nd含量为16-32wt%,例如16.88wt%、18.02wt%、18.09wt%、19.1wt%、19.15wt%、19.55wt%、19.60wt%、20.18wt%、20.28wt%、21.41wt%、26.26wt%、21.92%、26.64%或者31.16wt%;
    所述R中的Nd以PrNd的形式添加时,PrNd的用量为0.5~29wt%,例如1wt%、22.51wt%、24.02wt%、24.12wt%、25.53wt%、26.06wt%、26.13wt%、27.04wt%或者28.54wt%,wt%为元素占所述钕铁硼磁体材料B的原料组合物的重量百分比;
    较佳地,所述R中Ho含量为0-10wt%、且不为0,较佳地为0.1~10wt%,更佳地为1~9wt%,例如1.3wt%、2.5wt%、4wt%、4.5wt%、5.5wt%、6.45wt%、6.7wt%、7wt%或者8.5wt%;
    较佳地,所述R不含有Ho以外的重稀土金属;
    较佳地,所述R包括Pr和/或Sm;
    当所述R包含Pr时,所述Pr的含量为0-16wt%、且不为0,较佳地为0.2~15wt%,例如0.33wt%、2.75wt%、3.3wt%、5.63wt%、6.01wt%、6.03wt%、6.38wt%、6.52wt%、6.53wt%、6.76wt%或者7.14wt%,其中百分比为占所述钕铁硼磁体材料B的原料组合物总重量的百分比;
    当所述R包含Sm时,所述Sm的含量为0-3wt%,例如2.02wt%,其中百分比为占所述钕铁硼磁体材料B的原料组合物总重量的百分比;
    较佳地,所述Co的含量范围为0.02-0.45wt%,例如0.1wt%、0.2wt%、0.25wt%、0.3wt%、0.35wt%、或者0.4wt%;
    较佳地,所述B的含量为0.92-1.02wt%,例如0.94wt%、0.9wt%或者0.99wt%;
    较佳地,所述Cu的含量为0.05-0.3wt%,较佳地为0.1-0.3wt%,例如0.15wt%、0.2wt%或者0.25wt%;
    较佳地,所述Ga的含量为0.02-0.3wt%,例如0.05wt%、0.1wt%、0.15wt%、0.2wt%或者0.25wt%;
    较佳地,所述Al的含量为0-0.3wt%,较佳地为0~0.1wt%,更佳地为0~0.04wt%,例如0wt%、0.02wt%、0.03wt%或者0.04wt%;
    较佳地,所述X的种类为Ti、Nb、Zr和Hf中的一种或多种,较佳地为Ti、Nb、Zr或Hf;
    所述X的种类较佳地为“Cr和Ti的混合物”、“Nb、Mo、W和Ta的混合物”、“Hf、W、Ta和Cr的混合物”或者“Nb和V的混合物”;
    所述X的种类较佳地为V、Mo、W、Ta或者Cr;
    较佳地,所述X的含量为0.1-0.4wt%,例如0.14wt%、0.15wt%、0.18wt%、0.2wt%、0.25wt%或者0.33wt%;
    当所述X包括Zr时,所述Zr的含量较佳地为0.05-0.25wt%,例如0.1wt%或者0.2wt%;
    当所述X包括Ti时,所述Ti的含量较佳地为0.05-0.2wt%,例如0.08wt%、0.1wt%、0.14wt%或者0.15wt%;
    当所述X包括Nb时,所述Nb的含量较佳地为0.02-0.4wt%,例如0.1wt%、0.15wt%或者0.25wt%;
    当所述X包括Hf时,所述Hf的含量较佳地为0.02-0.1wt%,例如0.03wt%或者0.1wt%;
    当所述X包括V时,所述V的含量较佳地为0.02-0.1wt%,例如0.03wt%;
    当所述X包括Mo时,所述Mo的含量较佳地为0.008-0.05wt%,例如0.01wt%;
    当所述X包括W时,所述W的含量较佳地为0.01-0.1wt%,例如0.05wt%;
    当所述X包括Ta时,所述Ta的含量较佳地为0.01-0.1wt%,例如0.05wt%;
    当所述X包括Cr时,所述Cr的含量较佳地为0.05-0.15wt%,例如0.1wt%;
    当所述X包括Cr和Ti时,Cr和Ti的重量比较佳地为1:(0.5-1.0),例如1:0.8;
    当所述X包括Nb、Mo、W和Ta时,Nb、Mo、W和Ta的重量比较佳地为(0.15-0.25):(0.8-1.2):(0.8-1.2):1,例如2:1:1:1;
    当所述X包括Hf、W、Ta和Cr时,Hf、W、Ta和Cr的重量比较佳地为(0.25-0.35):(0.8-1.2):(0.8-1.2):1,例如3:1:1:1;
    当所述X包括Nb和V时,Nb和V的重量比较佳地为(35-45):5,例如40;5;
    较佳地,所述钕铁硼磁体材料B的原料组合物还包括Mn,所述Mn的含量范围较佳地≤0.035wt%,更佳地≤0.0175wt%,上述百分比为Mn相对于原料组合物总量的重量百分比。
  8. 一种钕铁硼磁体材料B,其特征在于,其包含:R:29-32.5wt%;所述R为稀土元素、且包括Nd和Ho、且不包括Dy和/或Tb;
    Co:0~0.5wt%;B:0.9-1.05wt%;Cu:0~0.35wt%、且不为0;Ga:0~0.35wt%、且不为0;Al:0~0.5wt%;X:0.05~0.45wt%;所述X的种类包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;Fe:66~70wt%;
    wt%为各元素占所述钕铁硼磁体材料B的重量百分比;
    所述钕铁硼磁体材料B中不含Gd;
    所述钕铁硼磁体材料B包含Nd 2Fe l4B晶粒和其壳层、晶界外延层和富钕相;所述R中的Ho主要分布在所述Nd 2Fe l4B晶粒和所述晶界外延层;
    较佳地,所述R的含量为29.1~32.46wt%,例如29.99wt%、31.01wt%、31.02wt%、31.03wt%、31.04wt%、31.12wt%、30.56wt%或者30.63wt%;
    较佳地,所述R中Nd含量为16-32wt%,例如16.88wt%、18.02wt%、18.09wt%、19.1wt%、19.15wt%、19.55wt%、19.60wt%、20.18wt%、20.28wt%、21.41wt%、26.26wt%、21.92%、26.64%或者31.16wt%;
    所述R中的Nd以PrNd的形式添加时,PrNd的用量较佳地为0.5~29wt%,例如为1wt%、22.51wt%、24.02wt%、24.12wt%、25.53wt%、26.06wt%、26.13wt%、27.04wt%或者28.54wt%,wt%为各元素占所述钕铁硼磁体材料B的重量百分比;
    较佳地,所述R中Ho含量为0-10wt%、且不为0,更佳地为0.1~10wt%,最佳地为1~9wt%,例如1.3wt%、2.5wt%、4wt%、4.5wt%、5.5wt%、6.45wt%、6.7wt%、7wt%或者8.5wt%;
    较佳地,所述R不含有Ho以外的重稀土金属;
    较佳地,所述R还包括Pr和/或Sm;
    当所述R包含Pr时,所述Pr的含量较佳地为0-16wt%、且不为0,更佳地为0.2~15wt%,例如0.33wt%、2.75wt%、3.3wt%、5.63wt%、6.01wt%、6.03wt%、6.38wt%、6.52wt%、6.53wt%、6.76wt%或者7.14wt%,其中百分比为占所述钕铁硼磁体材料B的重量百分比;
    当所述R包含Sm时,所述Sm的含量较佳地为0-3wt%,例如2.02wt%,其中百分比为占所述钕铁硼磁体材料B的重量百分比;
    较佳地,所述Co的含量范围为0.02-0.45wt%,例如0.1wt%、0.2wt%、0.25wt%、0.3wt%、0.35wt%、或者0.4wt%;
    较佳地,所述B的含量为0.92-1.02wt%,例如0.94wt%、0.9wt%或者0.99wt%;
    较佳地,所述Cu的含量为0.05-0.3wt%,更佳地为0.1-0.3wt%,例如0.15wt%、0.2wt%或者0.25wt%;
    较佳地,所述Ga的含量为0.02-0.3wt%,例如0.05wt%、0.1wt%、0.15wt%、0.2wt%或者0.25wt%;
    较佳地,所述Al的含量为0-0.3wt%,更佳地为0~0.1wt%,最佳地为0~0.04wt%,例如0wt%、0.02wt%、0.03wt%或者0.04wt%;
    较佳地,所述X的种类为Ti、Nb、Zr和Hf中的一种或多种,更佳地为Ti、Nb、Zr或Hf;
    较佳地,所述X的种类为“Cr和Ti的混合物”、“Nb、Mo、W和Ta的混合物”、“Hf、W、Ta和Cr的混合物”或者“Nb和V的混合物”;
    较佳地,所述X的种类为V、Mo、W、Ta或者Cr;
    较佳地,所述X的含量为0.1-0.4wt%,例如0.14wt%、0.15wt%、0.18wt%、0.2wt%、0.25wt%或者0.33wt%;
    当所述X包括Zr时,所述Zr的含量较佳地为0.05-0.25wt%,例如0.1wt%或者0.2wt%;
    当所述X包括Ti时,所述Ti的含量较佳地为0.05-0.2wt%,例如0.08wt%、0.1wt%、0.14wt%或者0.15wt%;
    当所述X包括Nb时,所述Nb的含量较佳地为0.02-0.4wt%,例如0.1wt%、0.15wt%或者0.25wt%;
    当所述X包括Hf时,所述Hf的含量较佳地为0.02-0.1wt%,例如0.03wt%或者0.1wt%;
    当所述X包括V时,所述V的含量较佳地为0.02-0.1wt%,例如0.03wt%;
    当所述X包括Mo时,所述Mo的含量较佳地为0.008-0.05wt%,例如0.01wt%;
    当所述X包括W时,所述W的含量较佳地为0.01-0.1wt%,例如0.05wt%;
    当所述X包括Ta时,所述Ta的含量较佳地为0.01-0.1wt%,例如0.05wt%;
    当所述X包括Cr时,所述Cr的含量较佳地为0.05-0.15wt%,例如0.1wt%;
    当所述X包括Cr和Ti时,Cr和Ti的重量比较佳地为1:(0.5-1.0),例如1:0.8;
    当所述X包括Nb、Mo、W和Ta时,Nb、Mo、W和Ta的重量比较佳地为(0.15-0.25):(0.8-1.2):(0.8-1.2):1,例如2:1:1:1;
    当所述X包括Hf、W、Ta和Cr时,Hf、W、Ta和Cr的重量比较佳地为(0.25-0.35): (0.8-1.2):(0.8-1.2):1,例如3:1:1:1;
    当所述X包括Nb和V时,Nb和V的重量比较佳地为(35-45):5,例如40;5;
    较佳地,所述钕铁硼磁体材料B还包括Mn,所述Mn的含量范围较佳地≤0.035wt%,更佳地≤0.0175wt%,上述百分比为Mn相对于钕铁硼磁体材料B总量的重量百分比;
    较佳地,所述钕铁硼磁体材料B包括:
    R:30.5-32wt%;所述R为稀土元素、且包括PrNd和Ho、且不包括Dy和/或Tb;PrNd:22.9-29wt%;Ho:2.5-8.5wt%;
    Co:0~0.25wt%;B:0.9-1.05wt%;Cu:0.05~0.35wt%;Ga:0.05~0.35wt%;Al:0~0.1wt%;X:0.05~0.25wt%;所述X的种类包括Ti、Nb、Zr、Hf中的一种或多种;wt%为各元素占所述钕铁硼磁体材料B的重量百分比;所述钕铁硼磁体材料B中不含Gd;余量为Fe及不可避免的杂质;
    更佳地,所述钕铁硼磁体材料B包括:
    R:30.5-31.5wt%;所述R为稀土元素、且包括PrNd和Ho、且不包括Dy和/或Tb;PrNd:24-26.5wt%;Ho:2.5-8.5wt%;
    Co:0~0.1wt%(更佳地为0wt%);B:0.9-1.0wt%;Cu:0.05~0.35wt%;Ga:0.05~0.35wt%;Al:0~0.5wt%;X:0.1~0.2wt%;所述X的种类包括Ti和/或Zr;所述钕铁硼磁体材料B中不含Gd;余量为Fe及不可避免的杂质。
  9. 一种钕铁硼磁体材料B,其特征在于,其制备方法包括以下步骤:将如权利要求7所述的钕铁硼磁体材料B的原料组合物经熔炼、制粉、成型、烧结即可。
  10. 一种钕铁硼磁体材料在制备磁钢中的应用,其特征在于,所述钕铁硼磁体材料为如权利要4~6任一项所述的钕铁硼磁体材料A和/或如权利要求8或9所述的钕铁硼磁体材料B。
PCT/CN2021/088319 2020-04-30 2021-04-20 一种钕铁硼磁体材料、原料组合物及制备方法、应用 WO2021218701A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010365891.6 2020-04-30
CN202010365891.6A CN111524674A (zh) 2020-04-30 2020-04-30 一种钕铁硼磁体材料、原料组合物及制备方法、应用

Publications (1)

Publication Number Publication Date
WO2021218701A1 true WO2021218701A1 (zh) 2021-11-04

Family

ID=71905663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088319 WO2021218701A1 (zh) 2020-04-30 2021-04-20 一种钕铁硼磁体材料、原料组合物及制备方法、应用

Country Status (2)

Country Link
CN (1) CN111524674A (zh)
WO (1) WO2021218701A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111524674A (zh) * 2020-04-30 2020-08-11 福建省长汀金龙稀土有限公司 一种钕铁硼磁体材料、原料组合物及制备方法、应用
CN113871122A (zh) 2021-09-24 2021-12-31 烟台东星磁性材料股份有限公司 低重稀土磁体及制造方法
CN114373593B (zh) * 2022-03-18 2022-07-05 宁波科宁达工业有限公司 一种r-t-b磁体及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101256861A (zh) * 2007-12-08 2008-09-03 宁波科田磁业有限公司 用钬代替镝烧结钕铁硼永磁材料
CN102592777A (zh) * 2012-03-15 2012-07-18 宁德市星宇科技有限公司 一种低成本烧结钕铁硼磁体及其制备方法
JP2018029160A (ja) * 2016-08-19 2018-02-22 インターメタリックス株式会社 RFeB系磁石製造方法
CN110619984A (zh) * 2018-06-19 2019-12-27 厦门钨业股份有限公司 一种低B含量的R-Fe-B系烧结磁铁及其制备方法
CN110797157A (zh) * 2019-11-21 2020-02-14 厦门钨业股份有限公司 钕铁硼磁体材料、原料组合物及制备方法和应用
CN110828089A (zh) * 2019-11-21 2020-02-21 厦门钨业股份有限公司 钕铁硼磁体材料、原料组合物及制备方法和应用
CN110853855A (zh) * 2019-11-21 2020-02-28 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用
CN111524674A (zh) * 2020-04-30 2020-08-11 福建省长汀金龙稀土有限公司 一种钕铁硼磁体材料、原料组合物及制备方法、应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109509605B (zh) * 2019-01-11 2019-12-13 宁波复能新材料股份有限公司 一种多层结构稀土永磁体及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101256861A (zh) * 2007-12-08 2008-09-03 宁波科田磁业有限公司 用钬代替镝烧结钕铁硼永磁材料
CN102592777A (zh) * 2012-03-15 2012-07-18 宁德市星宇科技有限公司 一种低成本烧结钕铁硼磁体及其制备方法
JP2018029160A (ja) * 2016-08-19 2018-02-22 インターメタリックス株式会社 RFeB系磁石製造方法
CN110619984A (zh) * 2018-06-19 2019-12-27 厦门钨业股份有限公司 一种低B含量的R-Fe-B系烧结磁铁及其制备方法
CN110797157A (zh) * 2019-11-21 2020-02-14 厦门钨业股份有限公司 钕铁硼磁体材料、原料组合物及制备方法和应用
CN110828089A (zh) * 2019-11-21 2020-02-21 厦门钨业股份有限公司 钕铁硼磁体材料、原料组合物及制备方法和应用
CN110853855A (zh) * 2019-11-21 2020-02-28 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用
CN111524674A (zh) * 2020-04-30 2020-08-11 福建省长汀金龙稀土有限公司 一种钕铁硼磁体材料、原料组合物及制备方法、应用

Also Published As

Publication number Publication date
CN111524674A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
JP7220330B2 (ja) R-t-b系永久磁石材料、製造方法、並びに応用
WO2021218701A1 (zh) 一种钕铁硼磁体材料、原料组合物及制备方法、应用
WO2021169891A1 (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
TWI755152B (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
WO2021169888A1 (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
WO2021169886A1 (zh) 一种钕铁硼磁体材料、原料组合物及制备方法和应用
WO2021244312A1 (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
WO2021244311A1 (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
WO2021244315A1 (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
WO2021169887A1 (zh) 一种钕铁硼磁体材料、原料组合物及制备方法和应用
WO2021169889A1 (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
WO2021169890A1 (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
WO2021169893A1 (zh) 一种钕铁硼磁体材料、原料组合物及制备方法和应用
WO2021244321A1 (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
WO2021218698A1 (zh) 一种钕铁硼磁体材料、原料组合物及制备方法、应用
WO2021218699A1 (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
WO2021218700A1 (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
WO2021169892A1 (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
WO2021244316A1 (zh) 一种r-t-b系永磁材料、原料组合物及其制备方法和应用
WO2021244314A1 (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
CN116469634A (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21797370

Country of ref document: EP

Kind code of ref document: A1