WO2021244311A1 - 钕铁硼磁体材料、原料组合物及其制备方法和应用 - Google Patents

钕铁硼磁体材料、原料组合物及其制备方法和应用 Download PDF

Info

Publication number
WO2021244311A1
WO2021244311A1 PCT/CN2021/095073 CN2021095073W WO2021244311A1 WO 2021244311 A1 WO2021244311 A1 WO 2021244311A1 CN 2021095073 W CN2021095073 W CN 2021095073W WO 2021244311 A1 WO2021244311 A1 WO 2021244311A1
Authority
WO
WIPO (PCT)
Prior art keywords
mas
content
iron boron
neodymium iron
balance
Prior art date
Application number
PCT/CN2021/095073
Other languages
English (en)
French (fr)
Inventor
王金磊
黄佳莹
黎国妃
汤志辉
黄清芳
Original Assignee
厦门钨业股份有限公司
福建省长汀金龙稀土有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门钨业股份有限公司, 福建省长汀金龙稀土有限公司 filed Critical 厦门钨业股份有限公司
Publication of WO2021244311A1 publication Critical patent/WO2021244311A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • B22F1/0003
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Definitions

  • the invention relates to a neodymium iron boron magnet material, a raw material composition, and a preparation method and application thereof.
  • Nd-Fe-B permanent magnet material is based on Nd2Fel4B compound, which has the advantages of high magnetic performance, low thermal expansion coefficient, easy processing and low price. Since its introduction, it has grown at an average annual rate of 20-30% and has become the most widely used Of permanent magnet materials. According to the preparation method, Nd-Fe-B permanent magnets can be divided into three types: sintering, bonding and hot pressing. Among them, sintered magnets account for more than 80% of the total output and are the most widely used.
  • Co is the most used and most effective element. This is because the addition of Co can reduce the reversible temperature coefficient of magnetic induction, effectively increase the Curie temperature, and can improve the corrosion resistance of the NdFeB magnet.
  • the addition of Co easily causes the coercivity to decrease, and the cost of Co is higher.
  • the Al element can reduce the infiltration angle between the main phase and the surrounding liquid phase during the sintering process, and improve the coercivity by improving the microstructure between the main phase and the Nd-rich phase. Therefore, in the prior art, the addition of Al is usually used to increase the coercivity. Compensate the decrease in coercivity caused by the addition of Co. However, excessive addition of Al will deteriorate the remanence and Curie temperature.
  • the defect of internal temperature provides a neodymium iron boron magnet material, raw material composition, and preparation method and application thereof.
  • the neodymium iron boron magnet material of the present invention has good grain boundary continuity, high remanence, high coercivity, good high temperature performance, and good corrosion resistance.
  • a raw material composition of neodymium iron boron magnet material comprising a first component and a second component, the first component is an element added during smelting, and the second component is an element added during grain boundary diffusion element;
  • the first component includes:
  • Light rare earth element LR said LR includes Nd;
  • X 0.05 ⁇ 0.5mas%; said X includes one or more of Ti, Nb, Zr, Hf, V, Mo, W, Ta and Cr;
  • the balance is Fe;
  • the first component does not include other heavy rare earth elements except Ho;
  • the second component includes: Dy and/or Tb, 0.2-1mas%;
  • mas% is the mass percentage of each element in the raw material composition of the neodymium iron boron magnet material.
  • the Nd content is preferably 16-27 mas%, such as 16.2 mas%, 21 mas%, 21.4 mas%, 24 mas%, 25.8 mas%, 26 mas% or 26.5 mas%.
  • the LR may also include other conventional light rare earth elements in the art, such as Pr and/or Sm.
  • Pr light rare earth elements
  • the content of Pr may be 0-16 mas%, and not 0; preferably 3-7 mas%, such as 5 mas%.
  • the added form of Pr may be pure Pr and/or PrNd, preferably PrNd.
  • PrNd is an alloy of Pr and Nd, and the mass ratio of Pr to Nd in PrNd is generally 25:75 or 20:80.
  • the content of Sm may be 0-5 mas%, and not 0; for example, 2.5 mas%.
  • the Ho content is preferably 0.5-8mas%, such as 1mas%, 2mas%, 4mas%, 4.5mas% or 6mas%.
  • the Cu content is preferably in the range of 0.4 to 0.55 mas%, such as 0.45 mas%, 0.5 mas% or 0.52 mas%.
  • the content of C is preferably 0.07-0.2 mas%, such as 0.098 mas%, 0.12 mas%, 0.15 mas% or 0.16 mas%.
  • C may be the impurity C introduced in the process of preparing the neodymium iron boron material.
  • lubricants are generally added during the preparation process to introduce the C impurity.
  • the content of Ga is preferably in the range of 0.06 to 0.3 mas%, such as 0.07 mas%, 0.09 mas% or 0.15 mas%.
  • the content of Al is preferably 0-0.3 mas%, more preferably 0-0.1 mas%, such as 0.01 mas%, 0.02 mas%, 0.04 mas% or 0.05 mas%.
  • Al may be impurity Al introduced in the process of preparing the neodymium iron boron material and/or additional Al added.
  • Al is generally the impurity Al introduced in the process of preparing the neodymium iron boron material.
  • the content of X is preferably 0.25-0.465 mas%, for example, 0.42 mas%, 0.43 mas% or 0.46 mas%.
  • the type of X is preferably one or more of Ti, Nb, Zr and Hf, more preferably Ti and Nb, or Nb and Zr, or Ti, Nb and Zr.
  • the content of the Zr preferably ranges from 0.01 to 0.3 mas%, such as 0.1 mas%, 0.25 mas% or 0.28 mas%.
  • the content of Ti preferably ranges from 0.1 to 0.3 mas%, for example, 0.14 mas% or 0.2 mas%.
  • the content of Nb is preferably in the range of 0.04-0.31 mas%, such as 0.12 mas%, 0.15 mas%, 0.2 mas% or 0.3 mas%.
  • the mass ratio of Ti and Nb can be conventional in the art, generally (0.01-100):1, preferably (0.1-10):1, such as 1:2, 2:1 , 2:3 or 5:2.
  • the mass ratio of Nb and Zr can be conventional in the art, and is generally 1: (0.01-100), preferably 1: (0.1-10), such as 1: 0.25, or 1: 0.5, or 1:1.4.
  • the mass ratio of Ti, Nb and Zr can be conventional in the art, generally (0.01-100): 1: (0.01-100), preferably (0.1-10): 1: (0.1-10), for example, 1:2:1.
  • the X may also include Mn, and the content of Mn ranges from 0 to 0.03 mas%, such as 0.01 mas%, 0.015 mas% or 0.02 mas%.
  • the content of Co is preferably 0-0.2 mas%, such as 0.1 mas%.
  • the content of B is preferably in the range of 0.955 to 0.98 mas%, such as 0.96 mas% or 0.964 mas%.
  • the content of Dy and/or Tb in the second component preferably ranges from 0.5 to 0.8 mas%.
  • the content of Dy preferably ranges from 0.2 to 1 mas%, such as 0.5 mas% or 0.8 mas%.
  • the addition form of Dy in the second component may be one or more of pure Dy, Dy alloy and Dy fluoride.
  • the Dy alloy is preferably DyGaCu; in the DyGaCu alloy, the Dy content is preferably ⁇ 75mas%, more preferably ⁇ 95mas%, and the above percentage is the percentage of Dy content in the total mass of the DyGaCu alloy.
  • the content of Tb preferably ranges from 0.2 to 1 mas%, such as 0.5 mas%.
  • the addition form of Tb in the second component may be one or more of pure Tb, Tb alloy and Tb fluoride.
  • the Tb alloy is preferably a TbGaCu alloy; in the TbGaCu alloy, the Tb content is preferably ⁇ 75mas%, more preferably ⁇ 95mas%, and the above percentage is the percentage of the amount of Tb in the total mass of the TbGaCu alloy.
  • the mass ratio of Dy and Tb can be any value, generally 1: (0.01-100), preferably 1: (0.3-3), for example, 1. :1.
  • the total rare earth content in the raw material composition of the neodymium iron boron magnet material is generally 29.5-32.5mas%, such as 30mas%, 30.3mas%, 30.6mas%, 30.8mas%, 30.9mas%, 31.2mas% Or 32mas%.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: Nd, 27 mas%; Ho, 4.5 mas%; Cu, 0.52 mas%; C, 0.07 mas%; Ga, 0.15mas%; Ti, 0.3mas%; Nb, 0.12mas%; B, 0.96mas%; the second component: Tb, 0.5mas%; the balance is Fe.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: Nd, 26.5mas%; Sm, 2.5mas%; Ho, 0.5mas%; Cu, 0.5mas%; C, 0.16mas%; Ga, 0.2mas%; Zr, 0.25mas%; B, 0.96mas%; the second component: Dy, 0.5mas%; the balance is Fe.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd, 28.5 mas%; Ho, 1 mas%; Cu, 0.4 mas%; Ga, 0.42 mas%; Al, 0.05mas%; Ti, 0.14mas%; Nb, 0.31mas%; Mn, 0.01mas%; B, 0.98mas%; the second component: Dy, 0.8mas%; the balance is Fe .
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: Nd, 24mas%; Pr, 4.5mas%; Ho, 2mas%; Cu, 0.4mas %; C, 0.15mas%; Ga, 0.09mas%; Al, 0.01mas%; Ti, 0.1mas%; Nb, 0.2mas%; Zr, 0.2mas%; Mn, 0.03mas%; B, 0.98mas%;
  • the second component Dy, 0.2mas%; Tb, 0.2mas%; the balance is Fe.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: Nd, 25.8mas%; Ho, 4mas%; Cu, 0.55mas%; C, 0.098 mas%; Ga, 0.24mas%; Ti, 0.2mas%; Nb, 0.3mas%; B, 0.955mas%; the second component: Tb, 1mas%; the balance is Fe.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: Nd, 26mas%; Ho, 6mas%; Cu, 0.55mas%; C, 0.2mas %; Ga, 0.07mas%; Al, 0.04mas%; Co, 0.1mas%; Nb, 0.04mas%; Zr, 0.01mas%; B, 0.955mas%;
  • the second component Dy, 0.5mas% ;
  • the balance is Fe.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: PrNd, 21.6 mas%; Ho, 8 mas%; Cu, 0.6 mas%; C, 0.12 mas%; Ga, 0.3mas%; Al, 0.1mas%; Ti, 0.3mas%; Nb, 0.15mas%; B, 0.964mas%; the second component: Dy, 1mas%; the balance is Fe.
  • the raw material composition of the neodymium iron boron magnet material includes: the first component: Nd, 21 mas%; Ho, 10 mas%; Cu, 0.6 mas%; C, 0.32 mas %; Ga, 0.06mas%; Al, 0.02mas%; Co, 0.2mas%; Nb, 0.2mas%; Zr, 0.28mas%; Mn, 0.02mas%; B, 0.964mas%; the second component : Dy, 0.2mas%; the balance is Fe.
  • the raw material composition of the neodymium iron boron magnet material may contain inevitable impurities.
  • the balance is Fe does not exclude that the raw material composition of the neodymium iron boron magnet material also includes other elements in addition to the elements mentioned in the present invention.
  • the amount of Fe is adjusted accordingly, so that the raw material composition of the neodymium iron boron magnet material
  • the mass percentage content of elements other than Fe is within the range defined by the present invention.
  • the present invention also provides a preparation method of neodymium iron boron magnet material, which adopts the raw material composition of the neodymium iron boron magnet material as described above, and the preparation method includes the following steps:
  • step S2 using the second component to perform grain boundary diffusion on the neodymium iron boron sintered body obtained in step S1;
  • the smelting operation and conditions can be a conventional smelting process in the field, generally, each element of the first component is smelted and casted by an ingot process or a quick-setting sheet process to obtain Alloy flakes.
  • the smelting temperature in step S1, may be 1300-1700°C, for example 1500°C.
  • the melting equipment is generally a high frequency vacuum melting furnace and/or an intermediate frequency vacuum melting furnace.
  • the intermediate frequency vacuum smelting furnace may be an intermediate frequency vacuum induction rapid solidification belt spinning furnace.
  • an additional 0-0.3mas% rare earth element ( Generally Nd element), the percentage is the mass percentage of the content of the additional rare earth element to the total content of the raw material composition; in addition, the content of this part of the additional rare earth element is not included in the category of the raw material composition.
  • step S1 the operation and conditions of the pulverizing can be conventional pulverizing processes in the art, and generally include hydrogen crushing pulverizing and/or jet milling pulverizing.
  • the hydrogen crushing and pulverizing generally includes hydrogen absorption, dehydrogenation and cooling treatment.
  • the temperature of the hydrogen absorption is generally 20 to 200°C, preferably 20 to 40°C (ie, room temperature).
  • the pressure of the hydrogen absorption is generally 50 to 600 kPa, such as 90 kPa.
  • the temperature of the dehydrogenation is generally 400-650°C, such as 550°C.
  • the gas stream in the gas stream milling powder can be, for example, nitrogen gas and/or argon gas.
  • the pressure of the air jet milling powder is generally 0.1-2 MPa, preferably 0.5-0.7 MPa, for example 0.65 MPa.
  • the efficiency of the jet milling powder may vary according to different equipment, for example, it may be 30-400 kg/h, preferably 200 kg/h.
  • the molding operation and conditions can be a conventional molding process in the field, such as a magnetic field molding method.
  • the magnetic field strength of the magnetic field forming method is generally above 1.5T.
  • the sintering operation and conditions can be a conventional sintering process in the art, such as a vacuum sintering process and/or an inert atmosphere sintering process.
  • the vacuum sintering process or the inert atmosphere sintering process are conventional operations in the art.
  • an inert atmosphere sintering process is used, the initial stage of the sintering can be performed under the condition of a vacuum degree of less than 0.5 Pa.
  • the inert atmosphere may be an atmosphere containing inert gas conventional in the art, such as helium or argon.
  • the sintering temperature may be 1000-1200°C, preferably 1030-1090°C.
  • the sintering time may be 0.5-10h, preferably 2-8h.
  • step S2 the operation and conditions of the grain boundary diffusion can be a conventional grain boundary diffusion process in the art, and generally the second component is applied to the neodymium iron boron sintered body for heat preservation.
  • the application method can be coating, magnetron plasma sputtering or evaporation.
  • the second component is coated on the neodymium iron boron sintered body in the form of a fluoride or a low melting point alloy.
  • the second component includes Tb, preferably, Tb is coated in the form of a fluoride or a low melting point alloy of Tb.
  • the second component contains Dy, preferably, Dy is coated in the form of Dy fluoride or a low melting point alloy.
  • the operation and conditions of the magnetron plasma sputtering can be conventional in the art.
  • the target material of the second component is bombarded by an inert gas to generate Dy and/or Tb ions, which are uniformly attached to the target through the control of a magnetic field.
  • the surface of the neodymium iron boron sintered body is a known in the art.
  • the operating conditions and the conventional art can be deposited, typically by a metal of the second component is made of a shaped evacuated to a set value (e.g., 5 ⁇ 10 5Pa to diffusion in a vacuum oven - 2 Pa) and heating to a set temperature (such as 500-900° C.) to generate Dy and/or Tb vapor, thereby enriching the surface of the neodymium iron boron sintered body.
  • a set value e.g., 5 ⁇ 10 5Pa to diffusion in a vacuum oven - 2 Pa
  • a set temperature such as 500-900° C.
  • the temperature of the grain boundary diffusion may be 800-1000°C, preferably 850-950°C, more preferably 900°C.
  • the time for the grain boundary diffusion may be 12 to 90 hours, such as 24 hours.
  • the temperature of the heat treatment may be 480°C to 510°C.
  • the heat treatment time may be 2 to 4 hours.
  • the invention also provides a neodymium iron boron magnet material, which is prepared by the method for preparing the neodymium iron boron magnet material.
  • the present invention also provides a neodymium iron boron magnet material, which includes:
  • Light rare earth element LR said LR includes Nd;
  • X 0.05 ⁇ 0.5mas%; said X includes one or more of Ti, Nb, Zr, Hf, V, Mo, W, Ta and Cr;
  • the balance is Fe;
  • mas% is the mass percentage of each element in the neodymium iron boron magnet material
  • the microstructure of the neodymium iron boron magnet material includes a main phase, a grain boundary epitaxial layer and a neodymium-rich phase; the main phase and the grain boundary epitaxial layer are distributed with Ho, and the main phase has no Dy or Tb distribution, and The neodymium-rich phase is distributed with Cu and Dy and/or Tb, and the continuity of the grain boundary of the neodymium-iron-boron magnet material is above 96.5%.
  • the main structure of the main phase is conventional Nd 2 Fe 14 B crystal grains in the art.
  • the grain boundary epitaxial layer generally refers to the two-grain boundary adjacent to the neodymium-rich phase and the main phase, and can also be called the "two-grain boundary” or the "grain boundary shell structure of the main phase and the neodymium-rich phase"".
  • the neodymium-rich phase is a neodymium-rich phase conventionally understood in the art, and most of the phase structures in the grain boundary structure in the art are neodymium-rich phases.
  • more than 95% of the total mass of the Ho element is preferably distributed in the main phase and the grain boundary epitaxial layer. In other words, only a small part of the Ho element is distributed in the neodymium-rich phase.
  • more than 70% of the total mass of Cu element is preferably distributed in the neodymium-rich phase.
  • the calculation method of the grain boundary continuity refers to the ratio of the length occupied by phases other than voids in the grain boundary (for example, the neodymium-rich phase, the same in the grain boundary epitaxial layer) to the total grain boundary length.
  • the grain boundary continuity is preferably 96.7%-97.8%, such as 96.8%, 97.2%, 97.3%, 97.4% or 97.7%.
  • the Nd content is preferably 16-27 mas%, such as 16.2 mas%, 21 mas%, 21.4 mas%, 24 mas%, 25.8 mas%, 26 mas% or 26.5 mas%.
  • the LR may also include other conventional light rare earth elements in the art, such as Pr and/or Sm.
  • Pr light rare earth elements
  • the content of Pr may be 0-16 mas%, and not 0; preferably 3-7 mas%, such as 5 mas%.
  • the content of Sm may be 0-5 mas%, and not 0; for example, 2.5 mas%.
  • the Ho content is preferably 0.5-8mas%, such as 1mas%, 2mas%, 4mas%, 4.5mas% or 6mas%.
  • the content of Dy and/or Tb is preferably 0.5-0.8 mas%.
  • the content of the Dy preferably ranges from 0.2 to 1 mas%, such as 0.5 mas% or 0.8 mas%.
  • the content of Tb preferably ranges from 0.2 to 1 mas%, such as 0.5 mas%.
  • the mass ratio of Dy and Tb can be any value, generally 1: (0.01-100), preferably 1: (0.3-3), for example 1:1.
  • the Cu content is preferably in the range of 0.4 to 0.55 mas%, such as 0.45 mas%, 0.5 mas% or 0.52 mas%.
  • the content of C is preferably 0.07-0.2 mas%, such as 0.098 mas%, 0.12 mas%, 0.15 mas% or 0.16 mas%.
  • C may be the impurity C introduced in the process of preparing the neodymium iron boron material.
  • lubricants are generally added during the preparation process to introduce the C impurity.
  • the Ga content range is preferably 0.06-0.3mas%, such as 0.07mas%, 0.09mas%, 0.15mas%.
  • the content of Al is preferably 0-0.3 mas%, more preferably 0-0.1 mas%, such as 0.01 mas%, 0.02 mas%, 0.04 mas% or 0.05 mas%.
  • Al may be impurity Al introduced in the process of preparing the neodymium iron boron material and/or additional Al added.
  • Al is generally the impurity Al introduced in the process of preparing the neodymium iron boron material.
  • the content of X is preferably 0.25-0.465 mas%, for example, 0.42 mas%, 0.43 mas% or 0.46 mas%.
  • the type of X is preferably one or more of Ti, Nb, Zr and Hf, more preferably Ti and Nb, or Nb and Zr, or Ti, Nb and Zr.
  • the content of the Zr preferably ranges from 0.01 to 0.3 mas%, such as 0.1 mas%, 0.25 mas% or 0.28 mas%.
  • the content of Ti preferably ranges from 0.1 to 0.3 mas%, for example, 0.14 mas% or 0.2 mas%.
  • the content of Nb is preferably 0.04-0.31mas%, such as 0.12mas%, 0.15mas%, 0.2mas% or 0.3mas%
  • the mass ratio of Ti and Nb can be conventional in the art, generally (0.01-100):1, preferably (0.1-10):1, such as 1:2, 2:1 , 2:3 or 5:2.
  • the mass ratio of Nb and Zr can be conventional in the art, generally 1: (0.01-100), preferably 1: (0.1-10), such as 1: 0.25, or 1: 0.5, or 1:1.4.
  • the mass ratio of Ti, Nb and Zr can be conventional in the art, generally (0.01-100): 1: (0.01-100), preferably (0.1-10): 1: (0.1-10), for example, 1:2:1.
  • the X may also include Mn, and the content of Mn ranges from 0 to 0.03 mas%, such as 0.01 mas%, 0.015 mas% or 0.02 mas%.
  • the content of Co is preferably 0-0.2 mas%, such as 0.1 mas%.
  • the content of B is preferably in the range of 0.955 to 0.98 mas%, such as 0.96 mas% or 0.964 mas%.
  • the total rare earth content in the raw material composition of the neodymium iron boron magnet material is generally 29.5-32.5mas%, such as 30mas%, 30.3mas%, 30.6mas%, 30.8mas%, 30.9mas%, 31.2mas% Or 32mas%.
  • the neodymium iron boron magnet material includes: Nd, 27mas%; Ho, 4.5mas%; Tb, 0.5mas%; Cu, 0.52mas%; C, 0.07mas%; Ga, 0.15mas%; Ti, 0.3mas%; Nb, 0.12mas%; B, 0.96mas%; the balance is Fe.
  • the neodymium iron boron magnet material includes: Nd, 26.5mas%; Sm, 2.5mas%; Ho, 0.5mas%; Dy, 0.5mas%; Cu, 0.5mas%; C , 0.16mas%; Ga, 0.2mas%; Zr, 0.25mas%; B, 0.96mas%; the balance is Fe.
  • the neodymium iron boron magnet material includes: Nd, 21.4mas%; Pr, 7.1mas%; Ho, 1mas%; Dy, 0.8mas%; Cu, 0.4mas%; Ga, 0.42mas%; Al, 0.05mas%; Ti, 0.14mas%; Nb, 0.31mas%; Mn, 0.01mas%; B, 0.98mas%; the balance is Fe.
  • the neodymium iron boron magnet material includes: Nd, 24mas%; Pr, 4.5mas%; Ho, 2mas%; Dy, 0.2mas%; Tb, 0.2mas%; Cu, 0.4 mas%; C, 0.15mas%; Ga, 0.09mas%; Al, 0.01mas%; Ti, 0.1mas%; Nb, 0.2mas%; Zr, 0.2mas%; Mn, 0.03mas%; B, 0.98mas% ; The balance is Fe.
  • the neodymium iron boron magnet material includes: Nd, 25.8mas%; Ho, 4mas%; Tb, 1mas%; Cu, 0.55mas%; C, 0.098mas%; Ga, 0.24 mas%; Ti, 0.2mas%; Nb, 0.3mas%; B, 0.955mas%; the balance is Fe.
  • the neodymium iron boron magnet material includes: Nd, 26mas%; Ho, 6mas%; Dy, 0.5mas%; Cu, 0.55mas%; C, 0.2mas%; Ga, 0.07 mas%; Al, 0.04mas%; Co, 0.1mas%; Nb, 0.04mas%; Zr, 0.01mas%; B, 0.955mas%; the balance is Fe.
  • the neodymium iron boron magnet material includes: Nd, 16.2mas%; Pr, 5.4mas%; Ho, 8mas%; Dy, 1mas%; Cu, 0.6mas%; C, 0.12 mas%; Ga, 0.3mas%; Al, 0.1mas%; Ti, 0.3mas%; Nb, 0.15mas%; B, 0.964mas%; the balance is Fe.
  • the neodymium iron boron magnet material includes: Nd, 21mas%; Ho, 10mas%; Dy, 0.2mas%; Cu, 0.6mas%; C, 0.32mas%; Ga, 0.06 mas%; Al, 0.02mas%; Co, 0.2mas%; Nb, 0.2mas%; Zr, 0.28mas%; Mn, 0.02mas%; B, 0.964mas%; the balance is Fe.
  • the neodymium iron boron magnet material may contain inevitable impurities.
  • the balance is Fe does not exclude that the neodymium iron boron magnet material also includes other elements in addition to the elements mentioned in the present invention.
  • the amount of Fe should be adjusted accordingly, so that the mass of the elements other than Fe in the neodymium iron boron magnet material is 100%.
  • the component content is within the range defined by the present invention.
  • the present invention also provides a raw material composition of the neodymium iron boron sintered body, which includes:
  • Light rare earth element LR said LR includes Nd;
  • X 0.05 ⁇ 0.5mas%; said X includes one or more of Ti, Nb, Zr, Hf, V, Mo, W, Ta and Cr;
  • the raw material composition of the neodymium iron boron sintered body does not include other heavy rare earth elements except Ho;
  • the balance is Fe;
  • mas% is the mass percentage of each element in the raw material composition of the neodymium iron boron sintered body.
  • the Nd content is preferably 16-27 mas%, such as 16.2 mas%, 21 mas%, 21.4 mas%, 24 mas%, 25.8 mas%, 26 mas% or 26.5 mas%.
  • the LR may also include other conventional light rare earth elements in the art, such as Pr and/or Sm.
  • Pr light rare earth elements
  • the content of Pr may be 0-16 mas%, and not 0; preferably 3-7 mas%, such as 5 mas%.
  • the added form of Pr may be pure Pr and/or PrNd, preferably PrNd.
  • PrNd is an alloy of Pr and Nd, and the mass ratio of Pr to Nd in PrNd is generally 25:75 or 20:80.
  • the content of Sm may be 0-5 mas%, and not 0; for example, 2.5 mas%.
  • the Ho content is preferably 0.5-8mas%, such as 1mas%, 2mas%, 4mas%, 4.5mas% or 6mas%.
  • the Cu content is preferably in the range of 0.4 to 0.55 mas%, such as 0.45 mas%, 0.5 mas% or 0.52 mas%.
  • the content of C is preferably 0.07-0.2 mas%, such as 0.098 mas%, 0.12 mas%, 0.15 mas% or 0.16 mas%.
  • C may be the impurity C introduced in the process of preparing the neodymium iron boron material.
  • lubricants are generally added during the preparation process to introduce the C impurity.
  • the Ga content range is preferably 0.06-0.3mas%, such as 0.07mas%, 0.09mas%, 0.15mas%.
  • the content of Al is preferably 0-0.3 mas%, more preferably 0-0.1 mas%, such as 0.01 mas%, 0.02 mas%, 0.04 mas% or 0.05 mas%.
  • Al may be the impurity Al introduced during the preparation of the neodymium iron boron sintered body and/or the additional Al added.
  • Al is generally the impurity Al introduced in the process of preparing the neodymium iron boron sintered body.
  • the content of X is preferably 0.25-0.465 mas%, for example, 0.42 mas%, 0.43 mas% or 0.46 mas%.
  • the type of X is preferably one or more of Ti, Nb, Zr and Hf, more preferably Ti and Nb, or Nb and Zr, or Ti, Nb and Zr.
  • the content of the Zr preferably ranges from 0.01 to 0.3 mas%, such as 0.1 mas%, 0.25 mas% or 0.28 mas%.
  • the content of Ti preferably ranges from 0.1 to 0.3 mas%, for example, 0.14 mas% or 0.2 mas%.
  • the content of Nb is preferably in the range of 0.04-0.31 mas%, such as 0.12 mas%, 0.15 mas%, 0.2 mas% or 0.3 mas%.
  • the mass ratio of Ti and Nb can be conventional in the art, generally (0.01-100):1, preferably (0.1-10):1, such as 1:2, 2:1 , 2:3 or 5:2.
  • the mass ratio of Nb and Zr can be conventional in the art, and is generally 1: (0.01-100), preferably 1: (0.1-10), such as 1: 0.25, or 1: 0.5, or 1:1.4.
  • the mass ratio of Ti, Nb and Zr can be conventional in the art, generally (0.01-100): 1: (0.01-100), preferably (0.1-10): 1: (0.1-10), for example, 1:2:1.
  • the X may also include Mn, and the content of Mn ranges from 0 to 0.03 mas%, such as 0.01 mas%, 0.015 mas% or 0.02 mas%.
  • the content of Co is preferably 0-0.2 mas%, such as 0.1 mas%.
  • the content of B is preferably in the range of 0.955 to 0.98 mas%, such as 0.96 mas% or 0.964 mas%.
  • the total rare earth content in the raw material composition of the neodymium iron boron magnet material is generally 28.5-32.3mas%, such as 29.5mas%, 29.6mas%, 29.8mas%, 30.5mas%, 31mas%, 31.5mas% Or 32mas%.
  • the raw material composition of the neodymium iron boron sintered body includes: Nd, 27mas%; Ho, 4.5mas%; Cu, 0.52mas%; C, 0.07mas%; Ga, 0.15mas %; Ti, 0.3mas%; Nb, 0.12mas%; B, 0.96mas%; the balance is Fe.
  • the raw material composition of the neodymium iron boron sintered body includes: Nd, 26.5 mas%; Sm, 2.5 mas%; Ho, 0.5 mas%; Cu, 0.5 mas%; C, 0.16 mas%; Ga, 0.2mas%; Zr, 0.25mas%; B, 0.96mas%; the balance is Fe.
  • the raw material composition of the neodymium iron boron sintered body includes: PrNd, 28.5mas%; Ho, 1mas%; Cu, 0.4mas%; Ga, 0.42mas%; Al, 0.05mas %; Ti, 0.14mas%; Nb, 0.31mas%; Mn, 0.01mas%; B, 0.98mas%; the balance is Fe.
  • the raw material composition of the neodymium iron boron sintered body includes: Nd, 24mas%; Pr, 4.5mas%; Ho, 2mas%; Cu, 0.4mas%; C, 0.15mas% ; Ga, 0.09mas%; Al, 0.01mas%; Ti, 0.1mas%; Nb, 0.2mas%; Zr, 0.2mas%; Mn, 0.03mas%; B, 0.98mas%; the balance is Fe.
  • the raw material composition of the neodymium iron boron sintered body includes: Nd, 25.8mas%; Ho, 4mas%; Cu, 0.55mas%; C, 0.098mas%; Ga, 0.24mas %; Ti, 0.2mas%; Nb, 0.3mas%; B, 0.955mas%; the balance is Fe.
  • the raw material composition of the neodymium iron boron sintered body includes: Nd, 26mas%; Ho, 6mas%; Cu, 0.55mas%; C, 0.2mas%; Ga, 0.07mas% ; Al, 0.04mas%; Co, 0.1mas%; Nb, 0.04mas%; Zr, 0.01mas%; B, 0.955mas%; the balance is Fe.
  • the raw material composition of the neodymium iron boron sintered body includes: PrNd, 21.6mas%; Ho, 8mas%; Cu, 0.6mas%; C, 0.12mas%; Ga, 0.3mas %; Al, 0.1mas%; Ti, 0.3mas%; Nb, 0.15mas%; B, 0.964mas%; the balance is Fe.
  • the raw material composition of the neodymium iron boron sintered body includes: Nd, 21mas%; Ho, 10mas%; Cu, 0.6mas%; C, 0.32mas%; Ga, 0.06mas% ; Al, 0.02mas%; Co, 0.2mas%; Nb, 0.2mas%; Zr, 0.28mas%; Mn, 0.02mas%; B, 0.964mas%; the balance is Fe.
  • the raw material composition of the neodymium iron boron sintered body may contain inevitable impurities.
  • the balance is Fe does not exclude that the raw material composition of the neodymium iron boron sintered body also includes other elements in addition to the elements mentioned in the present invention.
  • the amount of Fe is adjusted accordingly so that the raw material composition of the neodymium iron boron magnet material
  • the mass percentage content of elements other than Fe is within the range defined by the present invention.
  • the present invention also provides a method for preparing the neodymium iron boron sintered body, which includes smelting, powdering, molding, and sintering the raw material composition of the neodymium iron boron sintered body.
  • a method for preparing the neodymium iron boron sintered body which includes smelting, powdering, molding, and sintering the raw material composition of the neodymium iron boron sintered body.
  • the processes of the smelting, the powder making, the forming and the sintering are the same as the above.
  • the present invention also provides a neodymium iron boron sintered body, which is prepared by the method for preparing the neodymium iron boron sintered body.
  • the present invention also provides a neodymium iron boron sintered body, which comprises:
  • Light rare earth element LR said LR includes Nd;
  • X 0.05 ⁇ 0.5mas%; said X includes one or more of Ti, Nb, Zr, Hf, V, Mo, W, Ta and Cr;
  • the NdFeB sintered body does not include other heavy rare earth elements except Ho;
  • the balance is Fe;
  • mas% is the mass percentage of each element in the neodymium iron boron sintered body
  • the microstructure of the neodymium iron boron sintered body includes a main phase, a grain boundary epitaxial layer and a neodymium-rich phase; the main phase and the grain boundary epitaxial layer are distributed with Ho, the neodymium-rich phase is distributed with Cu, and the neodymium
  • the grain boundary continuity of the iron-boron sintered body is 96% or more.
  • the definition and description of the main phase, the grain boundary epitaxial layer, the neodymium-rich phase and the grain boundary continuity are as described above.
  • the Nd content is preferably 16-27 mas%, such as 16.2 mas%, 21 mas%, 21.4 mas%, 24 mas%, 25.8 mas%, 26 mas% or 26.5 mas%.
  • the LR may also include other conventional light rare earth elements in the art, such as Pr and/or Sm.
  • Pr light rare earth elements
  • the content of Pr may be 0-16 mas%, and not 0; preferably 3-7 mas%, such as 5 mas%.
  • the content of Sm may be 0-5 mas%, and not 0; for example, 2.5 mas%.
  • the Ho content is preferably 0.5-8mas%, such as 1mas%, 2mas%, 4mas%, 4.5mas% or 6mas%.
  • the Cu content is preferably in the range of 0.4 to 0.55 mas%, such as 0.45 mas%, 0.5 mas% or 0.52 mas%.
  • the content of C is preferably 0.07-0.2 mas%, such as 0.098 mas%, 0.12 mas%, 0.15 mas% or 0.16 mas%.
  • C may be the impurity C introduced in the process of preparing the neodymium iron boron material.
  • lubricants are generally added during the preparation process to introduce the C impurity.
  • the Ga content range is preferably 0.06-0.3mas%, such as 0.07mas%, 0.09mas%, 0.15mas%.
  • the content of Al is preferably 0-0.3 mas%, more preferably 0-0.1 mas%, such as 0.01 mas%, 0.02 mas%, 0.04 mas% or 0.05 mas%.
  • Al may be impurity Al introduced in the process of preparing the neodymium iron boron sintered body and/or additional Al added.
  • Al is generally the impurity Al introduced in the process of preparing the neodymium iron boron sintered body.
  • the content of X is preferably 0.25-0.465 mas%, for example, 0.42 mas%, 0.43 mas% or 0.46 mas%.
  • the type of X is preferably one or more of Ti, Nb, Zr and Hf, more preferably Ti and Nb, or Nb and Zr, or Ti, Nb and Zr.
  • the content of the Zr preferably ranges from 0.01 to 0.3 mas%, such as 0.1 mas%, 0.25 mas% or 0.28 mas%.
  • the content of Ti preferably ranges from 0.1 to 0.3 mas%, for example, 0.14 mas% or 0.2 mas%.
  • the content of Nb is preferably 0.04-0.31mas%, such as 0.12mas%, 0.15mas%, 0.2mas% or 0.3mas%
  • the mass ratio of Ti and Nb can be conventional in the art, generally (0.01-100):1, preferably (0.1-10):1, such as 1:2, 2:1 , 2:3 or 5:2.
  • the mass ratio of Nb and Zr can be conventional in the art, and is generally 1: (0.01-100), preferably 1: (0.1-10), such as 1: 0.25, or 1: 0.5, or 1:1.4.
  • the mass ratio of Ti, Nb and Zr can be conventional in the art, generally (0.01-100): 1: (0.01-100), preferably (0.1-10): 1: (0.1-10), for example, 1:2:1.
  • X may also include Mn, and the content of Mn ranges from 0 to 0.03 mas%, such as 0.01 mas%, 0.015 mas% or 0.02 mas%.
  • the content of Co is preferably 0-0.2 mas%, such as 0.1 mas%.
  • the content of B is preferably in the range of 0.955 to 0.98 mas%, such as 0.96 mas% or 0.964 mas%.
  • the total rare earth content in the neodymium iron boron magnet material is generally 28.5-32.3mas%, such as 29.5mas%, 29.6mas%, 29.8mas%, 30.5mas%, 31mas%, 31.5mas% or 32mas%.
  • the neodymium iron boron sintered body includes: Nd, 27mas%; Ho, 4.5mas%; Cu, 0.52mas%; C, 0.07mas%; Ga, 0.15mas%; Ti, 0.3mas%; Nb, 0.12mas%; B, 0.96mas%; the balance is Fe.
  • the neodymium iron boron sintered body includes: Nd, 26.5mas%; Sm, 2.5mas%; Ho, 0.5mas%; Cu, 0.5mas%; C, 0.16mas%; Ga , 0.2mas%; Zr, 0.25mas%; B, 0.96mas%; the balance is Fe.
  • the neodymium iron boron sintered body includes: Nd, 21.4mas%; Pr, 7.1mas%; Ho, 1mas%; Cu, 0.4mas%; Ga, 0.42mas%; Al, 0.05mas%; Ti, 0.14mas%; Nb, 0.31mas%; Mn, 0.01mas%; B, 0.98mas%; the balance is Fe.
  • the neodymium iron boron sintered body includes: Nd, 24mas%; Pr, 4.5mas%; Ho, 2mas%; Cu, 0.4mas%; C, 0.15mas%; Ga, 0.09 mas%; Al, 0.01mas%; Ti, 0.1mas%; Nb, 0.2mas%; Zr, 0.2mas%; Mn, 0.03mas%; B, 0.98mas%; the balance is Fe.
  • the neodymium iron boron sintered body includes: Nd, 25.8mas%; Ho, 4mas%; Cu, 0.55mas%; C, 0.098mas%; Ga, 0.24mas%; Ti, 0.2mas%; Nb, 0.3mas%; B, 0.955mas%; the balance is Fe.
  • the neodymium iron boron sintered body includes: Nd, 26mas%; Ho, 6mas%; Cu, 0.55mas%; C, 0.2mas%; Ga, 0.07mas%; Al, 0.04 mas%; Co, 0.1mas%; Nb, 0.04mas%; Zr, 0.01mas%; B, 0.955mas%; the balance is Fe.
  • the neodymium iron boron sintered body includes: Nd, 16.2mas%; Pr, 5.4mas%; Ho, 8mas%; Cu, 0.6mas%; C, 0.12mas%; Ga, 0.3mas%; Al, 0.1mas%; Ti, 0.3mas%; Nb, 0.15mas%; B, 0.964mas%; the balance is Fe.
  • the neodymium iron boron sintered body includes: Nd, 21mas%; Ho, 10mas%; Cu, 0.6mas%; C, 0.32mas%; Ga, 0.06mas%; Al, 0.02 mas%; Co, 0.2mas%; Nb, 0.2mas%; Zr, 0.28mas%; Mn, 0.02mas%; B, 0.964mas%; the balance is Fe.
  • the neodymium iron boron sintered body may contain inevitable impurities.
  • the balance is Fe does not exclude that the neodymium iron boron sintered body also includes other elements in addition to the elements mentioned in the present invention.
  • the amount of Fe should be adjusted accordingly, so that the quality of the elements other than Fe in the NdFeB magnet material is 100%.
  • the component content is within the range defined by the present invention.
  • the present invention also provides the application of the neodymium iron boron magnet material or the neodymium iron boron sintered body in the preparation of magnetic steel.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the remanence Br of the neodymium iron boron magnet material of the present invention can be 11.8-14.2kGs, and the magnetic polarization coercivity Hcj is 26.7-30.8kOe; at high temperature (140°C), Br is 10.45-12.55kGs, Hcj is 12.8 ⁇ 16.3kOe.
  • the Br of the neodymium iron boron sintered body of the present invention is 11.85-14.24kGs, Hcj is 16.5-21.8kOe; the increase of Hcj after diffusion is 8-11.7kOe.
  • the elements are matched, and the high temperature resistance performance is good: the absolute value of the Br temperature coefficient ⁇ of the neodymium iron boron magnet material is 0.088 ⁇ 0.096%, and the absolute value of the Hcj temperature coefficient ⁇ is 0.39% ⁇ 0.436% , The magnetic loss of full open circuit is 0.05% ⁇ 0.78%.
  • the neodymium iron boron magnet material of the present invention also has good corrosion resistance.
  • Fig. 1 is an SEM image of a neodymium iron boron sintered body in Example 1 of the present invention
  • Fig. 2 is an EPMA chart of the neodymium iron boron magnet material prepared in Example 1 of the present invention.
  • neodymium iron boron magnet materials in Examples 1-19 and Comparative Examples 1-8 were prepared according to the following preparation process:
  • the first component is smelted, powdered, formed, and sintered, as follows:
  • Hydrogen breaking powder place the alloy flakes in a hydrogen breaking furnace, vacuum the hydrogen breaking furnace at room temperature, and then pass 99.9% hydrogen into the hydrogen breaking furnace to maintain the hydrogen pressure 90kPa, make the alloy flakes fully absorb hydrogen; then, while vacuuming, the temperature is raised to 550°C to make the alloy flakes fully dehydrogenate; then, cooling treatment is performed to obtain powder.
  • Jet milling powder under the condition of a nitrogen atmosphere and a pressure of 0.65 MPa, the powder obtained by hydrogen crushing is pulverized by jet milling (the efficiency of jet milling powder can be different according to the equipment, for example, it can be: 200kg/h) to obtain fine powder.
  • Magnetic field molding the fine powder obtained by airflow milling is compressed and molded in a magnetic field strength above 1.5T to obtain a molded body.
  • Inert atmosphere sintering transfer the molded body to a sintering furnace, and sinter it at a temperature of 1030 ⁇ 1090°C for 2 ⁇ 8h under a helium atmosphere under the condition of a vacuum degree of less than 0.5Pa to obtain neodymium iron boron Sintered body.
  • the surface of the neodymium iron boron sintered body obtained in step S1 is purified, the second component is coated on the surface of the neodymium iron boron sintered body, and diffused at a temperature of 900° C. for 24 hours, and then cooled to room temperature.
  • Heat treatment heat treatment at a temperature of 480 to 510°C for 3 hours to obtain a neodymium iron boron magnet material.
  • Table 1 The formula and content of the raw material composition of the neodymium iron boron magnet material (mas%)
  • ICP-OES inductively coupled plasma emission spectrometer
  • Fig. 1 is an SEM image of the NdFeB sintered body prepared in Example 1.
  • the NdFeB sintered body contains Cu (0.52mas%) and does not contain Al and Co, and the heavy rare earth element is Ho.
  • the NdFeB sintered body contains main phase 1 (dark gray area), grain boundary epitaxial layer 2 (light gray area) and neodymium-rich phase 3 (white area).
  • the neodymium-rich phase is more evenly distributed in the main phase. Among the phase particles, the neodymium-rich phase occupies a relatively large proportion.
  • the neodymium-rich phase uniformly distributed along the grain boundary can reduce the ferromagnetism of the main phase boundary phase, which is more conducive to the magnetic isolation of the main phase and effectively prevents the expansion of the reverse magnetic domain on the main phase, and promotes the subsequent diffusion element Dy or/ And the diffusion of Tb enhances the coercivity of the product.
  • sampling point 1 it belongs to the main phase.
  • the Nd content is 26.51mas%
  • the Ho content is 4.54mas%
  • the Cu content is 0.28mas%
  • the C content is 0.075mas%
  • the mass of each element accounts for the mass percentage of the total mass of all elements.
  • the Ho element mainly enters the main phase, and Ho can improve the anisotropy field of the main phase to a certain extent, which can increase Hcj.
  • the Ho element due to the entry of the Ho element, it partially replaces the Nd in the main phase, causing more Nd to migrate to the neodymium-rich phase, increasing the proportion of the neodymium-rich phase, and providing more diffusion channels for subsequent Dy or/and Tb diffusion.
  • Ho element also has a certain distribution in the grain boundary epitaxial layer.
  • the concentration of heavy rare earth elements increases, and the concentration difference between the diffused heavy rare earth elements and the main phase is reduced during the diffusion process, so as to avoid the diffusion of the diffused elements to the main phase, and preferentially diffuse along the grain boundary epitaxial layer, thereby increasing the diffusion weight Rare earth elements diffuse along the neodymium-rich phase, increasing the diffusion depth and diffusion speed.
  • the Cu element is mainly distributed in the neodymium-rich phase.
  • the addition of Cu can reduce the melting point of the neodymium-rich phase, resulting in better wetting between the neodymium-rich phase and the main phase, and improving the distribution of the neodymium-rich phase.
  • Cu also forms a non-corrosive NdCu 2 compound with Nd to increase the corrosion resistance of the material.
  • NdCu 2 compound with Nd to increase the corrosion resistance of the material.
  • the content of Cu is too much (more than 0.6 mas%), because more Nd is consumed, the amount of Nd used to form the neodymium-rich phase decreases, the number of grain boundaries formed decreases, and the coercive force of the product drops sharply.
  • FIG. 2 shows the distribution of Tb in the NdFeB magnet material. It can be seen from Figure 2 that after the NdFeB sintered body of Example 1 is diffused by Tb, the Tb element does not enter the main phase, but is mainly concentrated in the rich neodymium In phase. After Tb diffuses, the grain boundary neodymium-rich phase is clearly clear, and the proportion of neodymium-rich phase and grain boundary epitaxial layer is increased. The replaced Nd is more distributed around the main phase, which increases the continuity of the grain boundary and hinders the main phase. Direct exchange coupling improves the coercivity significantly.
  • Grain boundary continuity refers to the ratio of the length occupied by phases (such as neodymium-rich phase, grain boundary epitaxial layer) in the grain boundary other than voids to the total grain boundary length. Grain boundary continuity exceeding 96% can be called continuous channel. Based on the SEM images of the neodymium iron boron magnet materials of the respective examples and comparative examples, the grain boundary continuity was calculated. The grain boundary continuity of the neodymium iron boron magnet materials in Examples 1 to 8 and Comparative Examples 1 to 4 are shown in Table 6.
  • the grain boundary continuity of the neodymium iron boron magnet materials of Examples 1 to 8 is all above 96.5%, and the grain boundary continuity of the neodymium iron boron magnet materials of Comparative Examples 1 to 4 are all below 96.5%.
  • test sample is a disc with diameter D10mm*thickness 1.8mm
  • test results are shown in Table 7.
  • Br (kGs) Residual magnetism, that is, the magnetism that the permanent magnet material can maintain after the external magnetic field is removed after saturation magnetization.
  • Hcj Magnetic polarization intensity coercive force, also known as intrinsic coercive force.
  • ⁇ Hcj (kOe) refers to the increase in the coercive force of the magnetic polarization strength Hcj of the NdFeB magnet material after diffusion relative to the coercive force of the magnetic polarization strength of the NdFeB sintered body before diffusion at room temperature (20°C) value.
  • Hcj temperature coefficient ⁇ (%) refers to the temperature coefficient calculated based on the magnetic polarization coercivity Hcj of the neodymium iron boron magnet material at room temperature (20°C) and high temperature (140°C). The calculation formula is:
  • Full open circuit magnetic loss refers to the full open circuit magnetism calculated on the basis of the change of the magnetic flux of the neodymium iron boron magnet material before and after baking after the NdFeB magnet material is baked for a certain period of time (such as 120min) at high temperature (140°C) Loss, the calculation formula is:
  • the magnetic flux of the neodymium iron boron magnet material is measured at normal temperature (20°C), which is recorded as M1; then the neodymium iron boron magnet material is heated in an oven to the set temperature of 140°C, kept for 120 minutes, and then cooled to room temperature to measure the magnetic flux , Marked as M2.
  • Example 7 At room temperature, compared with Example 7, the Br and Hcj of the NdFeB sintered body and the NdFeB magnet material in Comparative Example 1 are slightly reduced, and the coercive force increase ( ⁇ Hcj) after diffusion is small (approximately 0.55 times of Example 7).
  • the Hcj of the NdFeB magnet material in Comparative Example 1 is smaller, the absolute value of the Br temperature coefficient ⁇ and the absolute value of the Hcj temperature coefficient ⁇ are larger, and the full open circuit magnetic loss is larger (approximately 4.5 times of Example 7), the high temperature performance is poor.
  • Example 4 At room temperature, compared with Example 4, the Br and Hcj of the NdFeB sintered body and NdFeB magnet material in Comparative Example 2 are slightly reduced, and the coercive force increase ( ⁇ Hcj) after diffusion is small (approximately 0.8 times of Example 4).
  • the Hcj of the NdFeB magnet material in Comparative Example 2 is smaller, the absolute value of the Br temperature coefficient ⁇ and the absolute value of the Hcj temperature coefficient ⁇ are larger, and the full open circuit magnetic loss is larger (approximately 8.7 times of Example 4), the high temperature performance is poor.
  • Example 3 At room temperature, compared to Example 3, the Br and Hcj of the NdFeB sintered body and NdFeB magnet material in Comparative Example 3 are slightly reduced, and the coercive force increase ( ⁇ Hcj) after diffusion is small (approximately 0.7 times of Example 3).
  • the Hcj of the NdFeB magnet material in Comparative Example 3 is smaller, the absolute value of the Br temperature coefficient ⁇ and the absolute value of the Hcj temperature coefficient ⁇ are larger, and the full open circuit magnetic loss is larger (about implementation 13.8 times of Example 4), the high temperature performance is poor.
  • Example 6 At room temperature, compared with Example 6, the Br and Hcj of the NdFeB sintered body and NdFeB magnet material in Comparative Example 4 are slightly reduced, and the coercive force increase ( ⁇ Hcj) after diffusion is small (approximately 0.8 times of Example 3).
  • the Hcj of the NdFeB magnet material in Comparative Example 4 is smaller, the absolute value of the Br temperature coefficient ⁇ and the absolute value of the Hcj temperature coefficient ⁇ are larger, and the full open circuit magnetic loss is larger (approximately 63 times of Example 4), the high temperature performance is poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种钕铁硼磁体材料、原料组合物及其制备方法和应用。该钕铁硼磁体材料的原料组合物,其包含:第一组分:轻稀土元素LR,所述LR包括Nd;Ho,0~10mas%、且不为0;Cu,0.35~0.6mas%;C,0~0.32mas%;Ga,0~0.42mas%,且不为0;Co,0~0.5mas%;Al,0~0.5mas%;X,0.05~0.5mas%;B,0.9~1.05mas%;余量为Fe;第一组分不包括除Ho外的其他重稀土元素;第二组分:Dy和/或Tb,0.2~1mas%。本发明的钕铁硼磁体材料晶界连续性好,具有高剩磁、高矫顽力和良好的高温性能,且具有良好的耐腐蚀性。

Description

钕铁硼磁体材料、原料组合物及其制备方法和应用 技术领域
本发明涉及一种钕铁硼磁体材料、原料组合物及其制备方法和应用。
背景技术
Nd-Fe-B永磁材料以Nd2Fel4B化合物为基体,具有磁性能高、热膨胀系数小、易加工和价格低等优点,自问世以来,以平均每年20-30%的速度增长,成为应用最广泛的永磁材料。按制备方法,Nd-Fe-B永磁体可分为烧结、粘结和热压三种,其中烧结磁体占总产量的80%以上,应用最广泛。
随着制备工艺和磁体成分的不断优化,烧结Nd-Fe-B磁体的最大磁能积已接近理论值。随着近年来风力发电、混合动力汽车和变频空调等新兴行业的蓬勃发展对高性能Nd-Fe-B磁体的需求越来越大,同时,这些高温领域的应用也对烧结Nd-Fe-B磁体的高温性能提出了更高的要求。
现有技术中,在制作耐热、耐蚀型烧结Nd-Fe-B磁体时,Co是用得最多而且最有效的元素。这是因为添加Co能够降低磁感可逆温度系数,有效提高居里温度,并且可以提高NdFeB磁体抗腐蚀性能。但是,Co的加入容易造成矫顽力下降,并且Co的成本较高。Al元素能在烧结过程中降低主相与周围液相的浸润角,通过改善主相与富Nd相之间的微结构而提高矫顽力,因此,现有技术中也通常通过Al的添加来补偿Co添加造成的矫顽力降低。然而Al的过量加入会恶化剩磁和居里温度。
发明内容
本发明为了克服现有技术的钕铁硼磁体通过添加Co来提高居里温度和抗腐蚀性能、而Co又容易造成矫顽力急剧下降以及价格昂贵的缺陷以及Al的过量加入恶化剩磁和居里温度的缺陷,从而提供了一种钕铁硼磁体材料、原料组合物及其制备方法和应用。本发明的钕铁硼磁体材料晶界连续性好, 具有高剩磁、高矫顽力和良好的高温性能,且具有良好的耐腐蚀性。
为了实现上述目的,本发明采用以下技术方案:
一种钕铁硼磁体材料的原料组合物,其包含第一组分和第二组分,所述第一组分为熔炼时添加的元素,所述第二组分为晶界扩散时添加的元素;
所述第一组分包括:
轻稀土元素LR,所述LR包括Nd;
Ho,0~10mas%、且不为0;
Cu,0.35~0.6mas%;
C,0~0.32mas%;
Ga,0~0.42mas%,且不为0;
Co,0~0.5mas%;
Al,0~0.5mas%;
X,0.05~0.5mas%;所述X包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;
B,0.9~1.05mas%;
余量为Fe;
所述第一组分不包括除Ho外的其他重稀土元素;
所述第二组分包括:Dy和/或Tb,0.2~1mas%;
mas%为各元素占所述钕铁硼磁体材料的原料组合物的质量百分比。
本发明中,所述Nd的含量较佳地为16~27mas%,例如16.2mas%、21mas%、21.4mas%、24mas%、25.8mas%、26mas%或26.5mas%。
本发明中,所述LR还可包括本领域其他常规的轻稀土元素,例如包括Pr和/或Sm。其中,当所述LR包含Pr时,所述Pr的含量可为0~16mas%、且不为0;较佳地为3~7mas%,例如5mas%。所述Pr的添加形式可为纯净Pr和/或PrNd,较佳地为PrNd。所述PrNd为Pr和Nd的合金,PrNd中Pr与Nd的质量比一般为25:75或20:80。当所述LR包含Sm时,所述Sm的含量可为0~5mas%,且不为0;例如2.5mas%。
本发明中,所述Ho含量较佳地为0.5~8mas%,例如1mas%、2mas%、4mas%、4.5mas%或6mas%。
本发明中,所述Cu的含量范围较佳地为0.4~0.55mas%,例如0.45mas%、0.5mas%或0.52mas%。
本发明中,所述C的含量范围较佳地为0.07~0.2mas%,例如0.098mas%、0.12mas%、0.15mas%或0.16mas%。其中,当C的含量为0~0.12mas%时,C可以为制备钕铁硼材料的过程中引入的杂质C,例如,在制备工艺中一般会添加润滑剂等而引入C杂质。
本发明中,所述Ga的含量范围较佳地为0.06~0.3mas%,例如0.07mas%、0.09mas%或0.15mas%。
本发明中,所述Al的含量范围较佳地为0~0.3mas%,更佳地为0~0.1mas%,例如0.01mas%、0.02mas%、0.04mas%或0.05mas%。其中当Al的含量为0~0.1mas%时,Al可以为制备钕铁硼材料的过程中引入的杂质Al和/或额外添加的Al。当Al的含量为0~0.04mas%时,Al一般为制备钕铁硼材料的过程中引入的杂质Al。
本发明中,所述X的含量较佳地为0.25~0.465mas%,例如为0.42mas%、0.43mas%或0.46mas%。
本发明中,所述X的种类较佳地为Ti、Nb、Zr和Hf中的一种或多种,更佳地为Ti和Nb,或Nb和Zr,或Ti、Nb和Zr。
当所述X包括Zr时,所述Zr的含量范围较佳地为0.01~0.3mas%,例如0.1mas%,0.25mas%或0.28mas%。
当所述X包括Ti时,所述Ti的含量范围较佳地为0.1~0.3mas%,例如0.14mas%或0.2mas%。
当所述X包括Nb时,所述Nb的含量范围较佳地为0.04~0.31mas%,例如0.12mas%、0.15mas%、0.2mas%或0.3mas%。
当X包括Ti和Nb时,Ti和Nb的质量比可为本领域常规,一般为(0.01~100):1,较佳地为(0.1~10):1,例如1:2,2:1,2:3或5:2。
当X包括Nb和Zr时,Nb和Zr的质量比可为本领域常规,一般为1:(0.01~100),较佳地为1:(0.1~10),例如1:0.25,或1:0.5,或1:1.4。
当X包括Ti、Nb和Zr时,Ti、Nb和Zr的质量比可为本领域常规,一般为(0.01~100):1:(0.01~100),较佳地为(0.1~10):1:(0.1~10),例如1:2:1。
本发明中,所述X还可包括Mn,所述Mn的含量范围为0~0.03mas%,例如0.01mas%、0.015mas%或0.02mas%。
本发明中,所述Co的含量较佳地为0~0.2mas%,例如0.1mas%。
本发明中,所述B的含量范围较佳地为0.955~0.98mas%,例如0.96mas%或0.964mas%。
本发明中,所述第二组分中Dy和/或Tb的含量范围较佳地为0.5~0.8mas%。
当所述第二组分包括Dy时,所述Dy的含量范围较佳地为0.2~1mas%,例如0.5mas%或0.8mas%。所述第二组分中Dy的添加形式可为纯净Dy、Dy合金和Dy氟化物中的一种或多种。其中,所述Dy合金较佳地为DyGaCu;所述DyGaCu合金中,较佳地Dy含量≥75mas%,更佳地≥95mas%,上述百分比为Dy用量占所述DyGaCu合金总质量的百分比。
当所述第二组分包括Tb时,所述Tb的含量范围较佳地为0.2~1mas%,例如0.5mas%。所述第二组分中Tb的添加形式可为纯净Tb、Tb合金和Tb氟化物中的一种或多种。所述Tb合金较佳地为TbGaCu合金;所述TbGaCu合金中,较佳地Tb含量≥75mas%,更佳地≥95mas%,上述百分比为Tb用量占所述TbGaCu合金总质量的百分比。
当所述第二组分包括Dy和Tb的混合物时,Dy和Tb的质量比可为任意值,一般为1:(0.01~100),较佳地为1:(0.3~3),例如1:1。
本发明中,所述钕铁硼磁体材料的原料组合物中总稀土含量一般为29.5~32.5mas%,例如30mas%、30.3mas%、30.6mas%、30.8mas%、30.9mas%、31.2mas%或32mas%。
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:Nd,27mas%;Ho,4.5mas%;Cu,0.52mas%;C,0.07mas%;Ga,0.15mas%;Ti,0.3mas%;Nb,0.12mas%;B,0.96mas%;所述第二组分:Tb,0.5mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:Nd,26.5mas%;Sm,2.5mas%;Ho,0.5mas%;Cu,0.5mas%;C,0.16mas%;Ga,0.2mas%;Zr,0.25mas%;B,0.96mas%;所述第二组分:Dy,0.5mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:PrNd,28.5mas%;Ho,1mas%;Cu,0.4mas%;Ga,0.42mas%;Al,0.05mas%;Ti,0.14mas%;Nb,0.31mas%;Mn,0.01mas%;B,0.98mas%;所述第二组分:Dy,0.8mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:Nd,24mas%;Pr,4.5mas%;Ho,2mas%;Cu,0.4mas%;C,0.15mas%;Ga,0.09mas%;Al,0.01mas%;Ti,0.1mas%;Nb,0.2mas%;Zr,0.2mas%;Mn,0.03mas%;B,0.98mas%;所述第二组分:Dy,0.2mas%;Tb,0.2mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:Nd,25.8mas%;Ho,4mas%;Cu,0.55mas%;C,0.098mas%;Ga,0.24mas%;Ti,0.2mas%;Nb,0.3mas%;B,0.955mas%;所述第二组分:Tb,1mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:Nd,26mas%;Ho,6mas%;Cu,0.55mas%;C,0.2mas%;Ga,0.07mas%;Al,0.04mas%;Co,0.1mas%;Nb,0.04mas%;Zr,0.01mas%;B,0.955mas%;所述第二组分:Dy,0.5mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:PrNd,21.6mas%;Ho,8mas%;Cu,0.6mas%;C,0.12mas%; Ga,0.3mas%;Al,0.1mas%;Ti,0.3mas%;Nb,0.15mas%;B,0.964mas%;所述第二组分:Dy,1mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:Nd,21mas%;Ho,10mas%;Cu,0.6mas%;C,0.32mas%;Ga,0.06mas%;Al,0.02mas%;Co,0.2mas%;Nb,0.2mas%;Zr,0.28mas%;Mn,0.02mas%;B,0.964mas%;所述第二组分:Dy,0.2mas%;余量为Fe。
本发明中,所述钕铁硼磁体材料的原料组合物中可含有不可避免的杂质。
本发明中,所述“余量为Fe”并不排除所述钕铁硼磁体材料的原料组合物中还包括除本发明所提及的各元素外的其他元素。当所述钕铁硼磁体材料的原料组合物中还包括除本发明所提及的各元素外的其他元素时,相应调整Fe的用量,以使所述钕铁硼磁体材料的原料组合物中除Fe以外的元素的质量百分含量在本发明限定的范围内。
本发明还提供了一种钕铁硼磁体材料的制备方法,其采用如上所述钕铁硼磁体材料的原料组合物进行,所述制备方法包括如下步骤:
S1、将所述第一组分熔炼、制粉、成型、烧结,得钕铁硼烧结体;
S2、采用所述第二组分对步骤S1所得的钕铁硼烧结体进行晶界扩散;
S3、热处理,即得钕铁硼磁体材料。
本发明中,步骤S1中,所述熔炼的操作和条件可为本领域常规的熔炼工艺,一般为将所述第一组分的各元素采用铸锭工艺或速凝片工艺进行熔炼浇铸,得到合金片。
本发明中,步骤S1中,所述熔炼的温度可为1300~1700℃,例如1500℃。
本发明中,步骤S1中,所述熔炼的设备一般为高频真空熔炼炉和/或中频真空熔炼炉。所述中频真空熔炼炉可为中频真空感应速凝甩带炉。
本领域技术人员知晓,因熔炼和烧结工艺中通常会损耗稀土元素,为保证终产品的质量,一般会在熔炼过程中在原料组合物的配方基础中额外添加0~0.3mas%的稀土元素(一般为Nd元素),百分比为额外添加的稀土元素的含量占所述原料组合物的总含量的质量百分比;另外这部分额外添加的稀土 元素的含量不计入原料组合物的范畴。
本发明中,步骤S1中,所述制粉的操作和条件可为本领域常规制粉工艺,一般包括氢破制粉和/或气流磨制粉。
所述氢破制粉一般包括吸氢、脱氢和冷却处理。所述吸氢的温度一般为20~200℃,较佳地为20~40℃(即室温)。所述吸氢的压力一般为50~600kPa,例如90kPa。所述脱氢的温度一般为400~650℃,例如550℃。
所述气流磨制粉中的气流例如可为氮气和/或氩气。所述气流磨制粉的压力一般为0.1~2MPa,优选0.5~0.7MPa,例如0.65MPa。所述气流磨制粉的效率可根据设备不同有所差别,例如可为30-400kg/h,优选200kg/h。
本发明中,步骤S1中,所述成型的操作和条件可为本领域常规的成型工艺,例如磁场成型法。所述的磁场成型法的磁场强度一般在1.5T以上。
本发明中,步骤S1中,所述烧结的操作和条件可为本领域常规的烧结工艺,例如真空烧结工艺和/或惰性气氛烧结工艺。所述真空烧结工艺或所述惰性气氛烧结工艺均为本领域常规操作。当采用惰性气氛烧结工艺时,所述烧结开始阶段可在真空度低于0.5Pa的条件下进行。所述惰性气氛可为本领域常规的含有惰性气体的气氛,例如氦气或氩气。
本发明中,步骤S1中,所述烧结的温度可为1000~1200℃,较佳地为1030~1090℃。
本发明中,步骤S1中,所述烧结的时间可为0.5~10h,较佳地为2~8h。
本发明中,步骤S2中,所述晶界扩散的操作和条件可为本领域常规的晶界扩散工艺,一般为将所述第二组分施加于所述钕铁硼烧结体上保温即可。其中,所述施加方式可为涂覆、磁控等离子溅射或蒸镀。
所述涂覆的操作和条件可为本领域常规,一般将所述第二组分以氟化物或低熔点合金的形式涂覆到所述钕铁硼烧结体上。当所述第二组分包括Tb时,较佳地,Tb以Tb的氟化物或低熔点合金的形式涂覆。当所述第二组分包含Dy时,较佳地,Dy以Dy的氟化物或低熔点合金的形式涂覆。
所述磁控等离子溅射的操作和条件可为本领域常规,一般是通过惰性气 体轰击所述第二组分的靶材,产生Dy和/或Tb离子,经过磁场的控制均匀附着在所述钕铁硼烧结体的表面。
所述蒸镀的操作和条件可为本领域常规,一般是通过将所述第二组分的金属做成一定形状,在真空扩散炉中抽真空到设定值(如5Pa到5×10 -2Pa)并加热到设定温度下(如500~900℃)产生Dy和/或Tb的蒸气,从而富集到所述钕铁硼烧结体的表面。
本发明中,步骤S2中,所述晶界扩散的温度可为800~1000℃,优选850~950℃,更佳地为900℃。所述晶界扩散的时间可为12~90h,例如24h。
本发明中,步骤S3中,所述热处理的温度可为480℃~510℃。所述热处理的时间可为2~4小时。
本发明还提供了一种钕铁硼磁体材料,其如所述钕铁硼磁体材料的制备方法制得。
本发明还提供了一种钕铁硼磁体材料,其包括:
轻稀土元素LR,所述LR包括Nd;
Ho,0~10mas%、且不为0;
Dy和/或Tb,0.2~1mas%;
Cu,0.35~0.6mas%;
C,0~0.32mas%;
Ga,0~0.42mas%,且不为0;
Co,0~0.5mas%;
Al,0~0.5mas%;
X,0.05~0.5mas%;所述X包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;
B,0.9~1.05mas%;
余量为Fe;
mas%为各元素占所述钕铁硼磁体材料的质量百分比;
所述钕铁硼磁体材料的微观结构包含主相、晶界外延层和富钕相;所述 主相和所述晶界外延层分布有Ho,所述主相无Dy或Tb分布,所述富钕相分布有Cu以及Dy和/或Tb,所述钕铁硼磁体材料的晶界连续性为96.5%以上。
本发明中,所述主相的主要结构为本领域常规的Nd 2Fe l4B晶粒。所述晶界外延层一般是指邻接富钕相和主相的二颗粒晶界处,也可以称为“二颗粒晶界”或者称为“主相和富钕相的晶界边沿壳层结构”。所述富钕相为本领域常规理解的富钕相,本领域中晶界结构中的相结构大部分为富钕相。
本发明中,所述主相和所述晶界外延层中较佳地分布有Ho元素的总质量的95%以上。也就是说,只有少部分Ho元素分布在富钕相。
本发明中,所述富钕相中较佳地分布有Cu元素总质量的70%以上。
本发明中,所述晶界连续性的计算方式是指晶界中除空洞外的物相(例如富钕相、晶界外延层中的相等)占据的长度与总晶界长度的比值。所述晶界连续性较佳地为96.7%~97.8%,例如96.8%、97.2%、97.3%、97.4%或97.7%。
本发明中,所述Nd的含量较佳地为16~27mas%,例如16.2mas%、21mas%、21.4mas%、24mas%、25.8mas%、26mas%或26.5mas%。
本发明中,所述LR还可包括本领域其他常规的轻稀土元素,例如包括Pr和/或Sm。其中,当所述LR包含Pr时,所述Pr的含量可为0~16mas%、且不为0;较佳地为3~7mas%,例如5mas%。当所述LR包含Sm时,所述Sm的含量可为0~5mas%,且不为0;例如2.5mas%。
本发明中,所述Ho含量较佳地为0.5~8mas%,例如1mas%、2mas%、4mas%、4.5mas%或6mas%。
本发明中,所述Dy和/或Tb的含量范围较佳地为0.5~0.8mas%。
当所述钕铁硼磁体材料包括Dy时,所述Dy的含量范围较佳地为0.2~1mas%,例如0.5mas%或0.8mas%。
当所述钕铁硼磁体材料包括Tb时,所述Tb的含量范围较佳地为0.2~1mas%,例如0.5mas%。
当所述钕铁硼磁体材料包括Dy和Tb的混合物时,Dy和Tb的质量比 可为任意值,一般为1:(0.01~100),较佳地为1:(0.3~3),例如1:1。
本发明中,所述Cu的含量范围较佳地为0.4~0.55mas%,例如0.45mas%、0.5mas%或0.52mas%。
本发明中,所述C的含量范围较佳地为0.07~0.2mas%,例如0.098mas%、0.12mas%、0.15mas%或0.16mas%。其中,当C的含量为0~0.12mas%时,C可以为制备钕铁硼材料的过程中引入的杂质C,例如,在制备工艺中一般会添加润滑剂等而引入C杂质。
本发明中,所述Ga的含量范围较佳地为0.06~0.3mas%,例如0.07mas%、0.09mas%、0.15mas%。
本发明中,所述Al的含量范围较佳地为0~0.3mas%,更佳地为0~0.1mas%,例如0.01mas%、0.02mas%、0.04mas%或0.05mas%。其中当Al的含量为0~0.1mas%时,Al可以为制备钕铁硼材料的过程中引入的杂质Al和/或额外添加的Al。当Al的含量为0~0.04mas%时,Al一般为制备钕铁硼材料的过程中引入的杂质Al。
本发明中,所述X的含量较佳地为0.25~0.465mas%,例如为0.42mas%、0.43mas%或0.46mas%。
本发明中,所述X的种类较佳地为Ti、Nb、Zr和Hf中的一种或多种,更佳地为Ti和Nb,或Nb和Zr,或Ti、Nb和Zr。
当所述X包括Zr时,所述Zr的含量范围较佳地为0.01~0.3mas%,例如0.1mas%,0.25mas%或0.28mas%。
当所述X包括Ti时,所述Ti的含量范围较佳地为0.1~0.3mas%,例如0.14mas%或0.2mas%。
当所述X包括Nb时,所述Nb的含量范围较佳地为0.04~0.31mas%,例如0.12mas%、0.15mas%、0.2mas%或0.3mas%
当X包括Ti和Nb时,Ti和Nb的质量比可为本领域常规,一般为(0.01~100):1,较佳地为(0.1~10):1,例如1:2,2:1,2:3或5:2。
当X包括Nb和Zr时,Nb和Zr的质量比可为本领域常规,一般为1: (0.01~100),较佳地为1:(0.1~10),例如1:0.25,或1:0.5,或1:1.4。
当X包括Ti、Nb和Zr时,Ti、Nb和Zr的质量比可为本领域常规,一般为(0.01~100):1:(0.01~100),较佳地为(0.1~10):1:(0.1~10),例如1:2:1。
本发明中,所述X还可包括Mn,所述Mn的含量范围为0~0.03mas%,例如0.01mas%、0.015mas%或0.02mas%。
本发明中,所述Co的含量较佳地为0~0.2mas%,例如0.1mas%。
本发明中,所述B的含量范围较佳地为0.955~0.98mas%,例如0.96mas%或0.964mas%。
本发明中,所述钕铁硼磁体材料的原料组合物中总稀土含量一般为29.5~32.5mas%,例如30mas%、30.3mas%、30.6mas%、30.8mas%、30.9mas%、31.2mas%或32mas%。
在本发明一较佳实施方式中,所述钕铁硼磁体材料包括:Nd,27mas%;Ho,4.5mas%;Tb,0.5mas%;Cu,0.52mas%;C,0.07mas%;Ga,0.15mas%;Ti,0.3mas%;Nb,0.12mas%;B,0.96mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼磁体材料包括:Nd,26.5mas%;Sm,2.5mas%;Ho,0.5mas%;Dy,0.5mas%;Cu,0.5mas%;C,0.16mas%;Ga,0.2mas%;Zr,0.25mas%;B,0.96mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼磁体材料包括:Nd,21.4mas%;Pr,7.1mas%;Ho,1mas%;Dy,0.8mas%;Cu,0.4mas%;Ga,0.42mas%;Al,0.05mas%;Ti,0.14mas%;Nb,0.31mas%;Mn,0.01mas%;B,0.98mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼磁体材料包括:Nd,24mas%;Pr,4.5mas%;Ho,2mas%;Dy,0.2mas%;Tb,0.2mas%;Cu,0.4mas%;C,0.15mas%;Ga,0.09mas%;Al,0.01mas%;Ti,0.1mas%;Nb,0.2mas%;Zr,0.2mas%;Mn,0.03mas%;B,0.98mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼磁体材料包括:Nd,25.8mas%; Ho,4mas%;Tb,1mas%;Cu,0.55mas%;C,0.098mas%;Ga,0.24mas%;Ti,0.2mas%;Nb,0.3mas%;B,0.955mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼磁体材料包括:Nd,26mas%;Ho,6mas%;Dy,0.5mas%;Cu,0.55mas%;C,0.2mas%;Ga,0.07mas%;Al,0.04mas%;Co,0.1mas%;Nb,0.04mas%;Zr,0.01mas%;B,0.955mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼磁体材料包括:Nd,16.2mas%;Pr,5.4mas%;Ho,8mas%;Dy,1mas%;Cu,0.6mas%;C,0.12mas%;Ga,0.3mas%;Al,0.1mas%;Ti,0.3mas%;Nb,0.15mas%;B,0.964mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼磁体材料包括:Nd,21mas%;Ho,10mas%;Dy,0.2mas%;Cu,0.6mas%;C,0.32mas%;Ga,0.06mas%;Al,0.02mas%;Co,0.2mas%;Nb,0.2mas%;Zr,0.28mas%;Mn,0.02mas%;B,0.964mas%;余量为Fe。
本发明中,所述钕铁硼磁体材料中可含有不可避免的杂质。
本发明中,所述“余量为Fe”并不排除所述钕铁硼磁体材料中还包括除本发明所提及的各元素外的其他元素。当所述钕铁硼磁体材料中还包括除本发明所提及的各元素外的其他元素时,相应调整Fe的用量,以使所述钕铁硼磁体材料中除Fe以外的元素的质量百分含量在本发明限定的范围内。
本发明还提供了一种钕铁硼烧结体的原料组合物,其包括:
轻稀土元素LR,所述LR包括Nd;
Ho,0~10mas%、且不为0;
Cu,0.35~0.6mas%;
C,0~0.32mas%;
Ga,0~0.42mas%,且不为0;
Co,0~0.5mas%;
Al,0~0.5mas%;
X,0.05~0.5mas%;所述X包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;
B,0.9~1.05mas%;
所述钕铁硼烧结体的原料组合物不包括除Ho外的其他重稀土元素;
余量为Fe;
mas%为各元素占所述钕铁硼烧结体的原料组合物的质量百分比。
本发明中,所述Nd的含量较佳地为16~27mas%,例如16.2mas%、21mas%、21.4mas%、24mas%、25.8mas%、26mas%或26.5mas%。
本发明中,所述LR还可包括本领域其他常规的轻稀土元素,例如包括Pr和/或Sm。其中,当所述LR包含Pr时,所述Pr的含量可为0~16mas%、且不为0;较佳地为3~7mas%,例如5mas%。所述Pr的添加形式可为纯净Pr和/或PrNd,较佳地为PrNd。所述PrNd为Pr和Nd的合金,PrNd中Pr与Nd的质量比一般为25:75或20:80。当所述LR包含Sm时,所述Sm的含量可为0~5mas%,且不为0;例如2.5mas%。
本发明中,所述Ho含量较佳地为0.5~8mas%,例如1mas%、2mas%、4mas%、4.5mas%或6mas%。
本发明中,所述Cu的含量范围较佳地为0.4~0.55mas%,例如0.45mas%、0.5mas%或0.52mas%。
本发明中,所述C的含量范围较佳地为0.07~0.2mas%,例如0.098mas%、0.12mas%、0.15mas%或0.16mas%。其中,当C的含量为0~0.12mas%时,C可以为制备钕铁硼材料的过程中引入的杂质C,例如,在制备工艺中一般会添加润滑剂等而引入C杂质。
本发明中,所述Ga的含量范围较佳地为0.06~0.3mas%,例如0.07mas%、0.09mas%、0.15mas%。
本发明中,所述Al的含量范围较佳地为0~0.3mas%,更佳地为0~0.1mas%,例如0.01mas%、0.02mas%、0.04mas%或0.05mas%。其中当Al的含量为0~0.1mas%时,Al可以为制备钕铁硼烧结体的过程中引入的杂质Al 和/或额外添加的Al。当Al的含量为0~0.04mas%时,Al一般为制备钕铁硼烧结体的过程中引入的杂质Al。
本发明中,所述X的含量较佳地为0.25~0.465mas%,例如为0.42mas%、0.43mas%或0.46mas%。
本发明中,所述X的种类较佳地为Ti、Nb、Zr和Hf中的一种或多种,更佳地为Ti和Nb,或Nb和Zr,或Ti、Nb和Zr。
当所述X包括Zr时,所述Zr的含量范围较佳地为0.01~0.3mas%,例如0.1mas%,0.25mas%或0.28mas%。
当所述X包括Ti时,所述Ti的含量范围较佳地为0.1~0.3mas%,例如0.14mas%或0.2mas%。
当所述X包括Nb时,所述Nb的含量范围较佳地为0.04~0.31mas%,例如0.12mas%、0.15mas%、0.2mas%或0.3mas%。
当X包括Ti和Nb时,Ti和Nb的质量比可为本领域常规,一般为(0.01~100):1,较佳地为(0.1~10):1,例如1:2,2:1,2:3或5:2。
当X包括Nb和Zr时,Nb和Zr的质量比可为本领域常规,一般为1:(0.01~100),较佳地为1:(0.1~10),例如1:0.25,或1:0.5,或1:1.4。
当X包括Ti、Nb和Zr时,Ti、Nb和Zr的质量比可为本领域常规,一般为(0.01~100):1:(0.01~100),较佳地为(0.1~10):1:(0.1~10),例如1:2:1。
本发明中,所述X还可包括Mn,所述Mn的含量范围为0~0.03mas%,例如0.01mas%、0.015mas%或0.02mas%。
本发明中,所述Co的含量较佳地为0~0.2mas%,例如0.1mas%。
本发明中,所述B的含量范围较佳地为0.955~0.98mas%,例如0.96mas%或0.964mas%。
本发明中,所述钕铁硼磁体材料的原料组合物中总稀土含量一般为28.5~32.3mas%,例如29.5mas%、29.6mas%、29.8mas%、30.5mas%、31mas%、31.5mas%或32mas%。
在本发明一较佳实施方式中,所述钕铁硼烧结体的原料组合物包括:Nd,27mas%;Ho,4.5mas%;Cu,0.52mas%;C,0.07mas%;Ga,0.15mas%;Ti,0.3mas%;Nb,0.12mas%;B,0.96mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼烧结体的原料组合物包括:Nd,26.5mas%;Sm,2.5mas%;Ho,0.5mas%;Cu,0.5mas%;C,0.16mas%;Ga,0.2mas%;Zr,0.25mas%;B,0.96mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼烧结体的原料组合物包括:PrNd,28.5mas%;Ho,1mas%;Cu,0.4mas%;Ga,0.42mas%;Al,0.05mas%;Ti,0.14mas%;Nb,0.31mas%;Mn,0.01mas%;B,0.98mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼烧结体的原料组合物包括:Nd,24mas%;Pr,4.5mas%;Ho,2mas%;Cu,0.4mas%;C,0.15mas%;Ga,0.09mas%;Al,0.01mas%;Ti,0.1mas%;Nb,0.2mas%;Zr,0.2mas%;Mn,0.03mas%;B,0.98mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼烧结体的原料组合物包括:Nd,25.8mas%;Ho,4mas%;Cu,0.55mas%;C,0.098mas%;Ga,0.24mas%;Ti,0.2mas%;Nb,0.3mas%;B,0.955mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼烧结体的原料组合物包括:Nd,26mas%;Ho,6mas%;Cu,0.55mas%;C,0.2mas%;Ga,0.07mas%;Al,0.04mas%;Co,0.1mas%;Nb,0.04mas%;Zr,0.01mas%;B,0.955mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼烧结体的原料组合物包括:PrNd,21.6mas%;Ho,8mas%;Cu,0.6mas%;C,0.12mas%;Ga,0.3mas%;Al,0.1mas%;Ti,0.3mas%;Nb,0.15mas%;B,0.964mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼烧结体的原料组合物包括:Nd,21mas%;Ho,10mas%;Cu,0.6mas%;C,0.32mas%;Ga,0.06mas%;Al,0.02mas%;Co,0.2mas%;Nb,0.2mas%;Zr,0.28mas%;Mn,0.02mas%;B,0.964mas%;余量为Fe。
本发明中,所述钕铁硼烧结体的原料组合物中可含有不可避免的杂质。
本发明中,所述“余量为Fe”并不排除所述钕铁硼烧结体的原料组合物中还包括除本发明所提及的各元素外的其他元素。当所述钕铁硼烧结体的原料组合物中还包括除本发明所提及的各元素外的其他元素时,相应调整Fe的用量,以使所述钕铁硼磁体材料的原料组合物中除Fe以外的元素的质量百分含量在本发明限定的范围内。
本发明还提供了一种钕铁硼烧结体的制备方法,其包括将上述钕铁硼烧结体的原料组合物经熔炼、制粉、成型、烧结即可。其中,所述熔炼、所述制粉、所述成型和所述烧结的过程与上述相同。
本发明还提供了一种钕铁硼烧结体,其如所述钕铁硼烧结体的制备方法制得。
本发明还提供了一种钕铁硼烧结体,其包括:
轻稀土元素LR,所述LR包括Nd;
Ho,0~10mas%、且不为0;
Cu,0.35~0.6mas%;
C,0~0.32mas%;
Ga,0~0.42mas%,且不为0;
Co,0~0.5mas%;
Al,0~0.5mas%;
X,0.05~0.5mas%;所述X包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;
B,0.9~1.05mas%;
所述钕铁硼烧结体不包括除Ho外的其他重稀土元素;
余量为Fe;
mas%为各元素占所述钕铁硼烧结体的质量百分比;
所述钕铁硼烧结体的微观结构包含主相、晶界外延层和富钕相;所述主相和所述晶界外延层分布有Ho,所述富钕相分布有Cu,所述钕铁硼烧结体 的晶界连续性为96%以上。
其中,所述主相、所述晶界外延层、所述富钕相和所述晶界连续性的定义和说明如前所述。
本发明中,所述Nd的含量较佳地为16~27mas%,例如16.2mas%、21mas%、21.4mas%、24mas%、25.8mas%、26mas%或26.5mas%。
本发明中,所述LR还可包括本领域其他常规的轻稀土元素,例如包括Pr和/或Sm。其中,当所述LR包含Pr时,所述Pr的含量可为0~16mas%、且不为0;较佳地为3~7mas%,例如5mas%。当所述LR包含Sm时,所述Sm的含量可为0~5mas%,且不为0;例如2.5mas%。
本发明中,所述Ho含量较佳地为0.5~8mas%,例如1mas%、2mas%、4mas%、4.5mas%或6mas%。
本发明中,所述Cu的含量范围较佳地为0.4~0.55mas%,例如0.45mas%、0.5mas%或0.52mas%。
本发明中,所述C的含量范围较佳地为0.07~0.2mas%,例如0.098mas%、0.12mas%、0.15mas%或0.16mas%。其中,当C的含量为0~0.12mas%时,C可以为制备钕铁硼材料的过程中引入的杂质C,例如,在制备工艺中一般会添加润滑剂等而引入C杂质。
本发明中,所述Ga的含量范围较佳地为0.06~0.3mas%,例如0.07mas%、0.09mas%、0.15mas%。
本发明中,所述Al的含量范围较佳地为0~0.3mas%,更佳地为0~0.1mas%,例如0.01mas%、0.02mas%、0.04mas%或0.05mas%。其中当Al的含量为0~0.1mas%时,Al可以为制备钕铁硼烧结体的过程中引入的杂质Al和/或额外添加的Al。当Al的含量为0~0.04mas%时,Al一般为制备钕铁硼烧结体的过程中引入的杂质Al。
本发明中,所述X的含量较佳地为0.25~0.465mas%,例如为0.42mas%、0.43mas%或0.46mas%。
本发明中,所述X的种类较佳地为Ti、Nb、Zr和Hf中的一种或多种, 更佳地为Ti和Nb,或Nb和Zr,或Ti、Nb和Zr。
当所述X包括Zr时,所述Zr的含量范围较佳地为0.01~0.3mas%,例如0.1mas%,0.25mas%或0.28mas%。
当所述X包括Ti时,所述Ti的含量范围较佳地为0.1~0.3mas%,例如0.14mas%或0.2mas%。
当所述X包括Nb时,所述Nb的含量范围较佳地为0.04~0.31mas%,例如0.12mas%、0.15mas%、0.2mas%或0.3mas%
当X包括Ti和Nb时,Ti和Nb的质量比可为本领域常规,一般为(0.01~100):1,较佳地为(0.1~10):1,例如1:2,2:1,2:3或5:2。
当X包括Nb和Zr时,Nb和Zr的质量比可为本领域常规,一般为1:(0.01~100),较佳地为1:(0.1~10),例如1:0.25,或1:0.5,或1:1.4。
当X包括Ti、Nb和Zr时,Ti、Nb和Zr的质量比可为本领域常规,一般为(0.01~100):1:(0.01~100),较佳地为(0.1~10):1:(0.1~10),例如1:2:1。
本发明中,所X还可包括Mn,所述Mn的含量范围为0~0.03mas%,例如0.01mas%、0.015mas%或0.02mas%。
本发明中,所述Co的含量较佳地为0~0.2mas%,例如0.1mas%。
本发明中,所述B的含量范围较佳地为0.955~0.98mas%,例如0.96mas%或0.964mas%。
本发明中,所述钕铁硼磁体材料中总稀土含量一般为28.5~32.3mas%,例如29.5mas%、29.6mas%、29.8mas%、30.5mas%、31mas%、31.5mas%或32mas%。
在本发明一较佳实施方式中,所述钕铁硼烧结体包括:Nd,27mas%;Ho,4.5mas%;Cu,0.52mas%;C,0.07mas%;Ga,0.15mas%;Ti,0.3mas%;Nb,0.12mas%;B,0.96mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼烧结体包括:Nd,26.5mas%;Sm,2.5mas%;Ho,0.5mas%;Cu,0.5mas%;C,0.16mas%;Ga,0.2mas%; Zr,0.25mas%;B,0.96mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼烧结体包括:Nd,21.4mas%;Pr,7.1mas%;Ho,1mas%;Cu,0.4mas%;Ga,0.42mas%;Al,0.05mas%;Ti,0.14mas%;Nb,0.31mas%;Mn,0.01mas%;B,0.98mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼烧结体包括:Nd,24mas%;Pr,4.5mas%;Ho,2mas%;Cu,0.4mas%;C,0.15mas%;Ga,0.09mas%;Al,0.01mas%;Ti,0.1mas%;Nb,0.2mas%;Zr,0.2mas%;Mn,0.03mas%;B,0.98mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼烧结体包括:Nd,25.8mas%;Ho,4mas%;Cu,0.55mas%;C,0.098mas%;Ga,0.24mas%;Ti,0.2mas%;Nb,0.3mas%;B,0.955mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼烧结体包括:Nd,26mas%;Ho,6mas%;Cu,0.55mas%;C,0.2mas%;Ga,0.07mas%;Al,0.04mas%;Co,0.1mas%;Nb,0.04mas%;Zr,0.01mas%;B,0.955mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼烧结体包括:Nd,16.2mas%;Pr,5.4mas%;Ho,8mas%;Cu,0.6mas%;C,0.12mas%;Ga,0.3mas%;Al,0.1mas%;Ti,0.3mas%;Nb,0.15mas%;B,0.964mas%;余量为Fe。
在本发明一较佳实施方式中,所述钕铁硼烧结体包括:Nd,21mas%;Ho,10mas%;Cu,0.6mas%;C,0.32mas%;Ga,0.06mas%;Al,0.02mas%;Co,0.2mas%;Nb,0.2mas%;Zr,0.28mas%;Mn,0.02mas%;B,0.964mas%;余量为Fe。
本发明中,所述钕铁硼烧结体中可含有不可避免的杂质。
本发明中,所述“余量为Fe”并不排除所述钕铁硼烧结体中还包括除本发明所提及的各元素外的其他元素。当所述钕铁硼烧结体中还包括除本发明所提及的各元素外的其他元素时,相应调整Fe的用量,以使所述钕铁硼磁体材料中除Fe以外的元素的质量百分含量在本发明限定的范围内。
本发明还提供了所述钕铁硼磁体材料或所述钕铁硼烧结体在制备磁钢 中的应用。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:
1、本发明通过在熔炼时添加适当用量的Cu,以及添加适当用量的重稀土元素Ho,在无或低Co且无或低Al时,调节材料的剩磁、矫顽力在特定范围内,同时改善高温稳定性,具体地:
1)常温下,本发明钕铁硼磁体材料的剩磁Br可为11.8~14.2kGs,磁极化强度矫顽力Hcj为26.7~30.8kOe;高温(140℃)下,Br为10.45~12.55kGs,Hcj为12.8~16.3kOe。
2)常温下,本发明钕铁硼烧结体的Br为11.85~14.24kGs,Hcj为16.5~21.8kOe;扩散后Hcj增加量为8~11.7kOe。
3)基于本申请的配方组分,各元素相配合,耐高温性能好:钕铁硼磁体材料的Br温度系数α绝对值为0.088~0.096%,Hcj温度系数β绝对值为0.39%~0.436%,全开路磁损0.05%~0.78%。
2、本发明的钕铁硼磁体材料还具有良好的耐腐蚀性能。
附图说明
图1为本发明实施例1中钕铁硼烧结体的SEM图;
其中,1、主相,2、晶界外延层,3、富钕相。
图2为本发明实施例1制得的钕铁硼磁体材料的EPMA图谱。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
制备实施例
按照如下制备过程制备实施例1~19和对比例1~8中的钕铁硼磁体材料:
S1、将第一组分熔炼、制粉、成型、烧结,具体如下:
(1)熔炼浇铸:将表1中第一组分的各元素(也即表2中的各元素)放入氧化铝的坩埚中,在高频真空熔炼炉中以0.05Pa的真空和1500℃的条件进行真空熔炼;转移至中频真空感应速凝甩带炉中,通入氩气,进行铸造,急冷,得合金片。
(2)氢破制粉:将合金片放置在氢破用炉中,在室温下将氢破用炉抽真空,而后向氢破用炉内通入纯度为99.9%的氢气,维持氢气的压力90kPa,使合金片充分吸氢;接着,边抽真空边升温至550℃,使合金片充分脱氢;之后进行冷却处理,得粉末。
(3)气流磨制粉:在氮气气氛下,压力为0.65MPa的条件下对氢破制粉得到的粉末进行气流磨粉碎(气流磨制粉的效率可根据设备不同有所差别,例如可为200kg/h),得到细粉。
(4)磁场成型:将气流磨制粉得到的细粉在1.5T以上的磁场强度中压制成型,得成型体。
(5)惰性气氛烧结:将成型体转移至烧结炉中,在氦气气氛下,在真空度低于0.5Pa的条件下,在1030~1090℃的温度下烧结2~8h,得钕铁硼烧结体。
S2、采用表1中的第二组分对所述钕铁硼烧结体进行晶界扩散,具体如下:
将步骤S1得到的钕铁硼烧结体的表面净化,将第二组分涂覆于钕铁硼烧结体的表面,并以900℃的温度扩散24h,之后冷却至室温。
S3、热处理:在480~510℃的温度进行热处理3h,即得钕铁硼磁体材料。
表1钕铁硼磁体材料的原料组合物的配方和含量(mas%)
Figure PCTCN2021095073-appb-000001
*PrNd合金中Pr与Nd的质量比为25:75。
表2钕铁硼烧结体的原料组合物的配方和含量(mas%)
Figure PCTCN2021095073-appb-000002
*PrNd合金中Pr与Nd的质量比为25:75。
效果实施例1:材料成分测定
采用本领域常规的方法,使用高频电感耦合等离子体发射光谱仪(ICP-OES)对实施例和对比例中的钕铁硼磁体材料(扩散后)和钕铁硼烧结体(扩散前)的各成分进行测定,测定结果分别如表3和表4所示。
表3钕铁硼磁体材料的组分和含量(mas%)
Figure PCTCN2021095073-appb-000003
表4钕铁硼烧结体的组分和含量(mas%)
Figure PCTCN2021095073-appb-000004
效果实施例2:微观结构测定
1、SEM分析
采用SEM-EDS背散射仪(仪器型号:日立S-3400N)测定实施例1~8和对比例1~4中的钕铁硼烧结体和钕铁硼磁体材料的SEM图。实施例1制得的钕铁硼烧结体的SEM图如图1所示。
图1为实施例1制得的钕铁硼烧结体的SEM图,该钕铁硼烧结体中含有Cu(0.52mas%)且不含Al和Co,所含重稀土元素为Ho。由图1可见,该钕铁硼烧结体包含主相1(深灰色区域)、晶界外延层2(浅灰色区域)和富钕相3(白色区域),富钕相较为均匀地分布在主相颗粒之间,且富钕相占比较大。沿着晶界均匀分布的富钕相可以降低主相边界相的铁磁性,更有利于对主相的隔磁作用和有效阻止主相上反向磁畴的扩展,促进后续扩散元素Dy或/和Tb的扩散,提升产品的矫顽力。
2、SEM-EDS分析
在图1的基础上,通过SEM电镜中的EDS测试,计算实施例1制得的钕铁硼烧结体在取样范围内的元素组成,结果见表5。
表5
Figure PCTCN2021095073-appb-000005
注:以取样点1为例,其属于主相,在该取样范围内,Nd含量为26.51mas%,Ho含量为4.54mas%,Cu含量为0.28mas%,C含量为0.075mas%,上述百分比为在该取样范围内,各元素质量分别占全部元素总质量的质量百分比。
由表5可知,Ho元素主要进入主相,Ho对主相的各向异性场有一定的提高作用,可提高Hcj。同时,由于Ho元素的进入,部分代替主相中的Nd,使得更多的Nd迁移到富钕相,增加富钕相占比,为后续Dy或/和Tb扩散 提供更多扩散通道。Ho元素在晶界外延层中也有一定的分布。在晶界外延层中,重稀土元素浓度增加,在扩散过程中减少扩散重稀土元素与主相的浓度差,避免扩散元素向主相扩散,优先沿着晶界外延层扩散,进而增加扩散重稀土元素沿着富钕相扩散,增加扩散深度和扩散速度。
Cu元素主要分布在富钕相,Cu的添加可以降低富钕相的熔点,造成富钕相与主相之间具有较好的润湿作用,改善富钕相的分布。另外,Cu还和Nd形成不易腐蚀的NdCu 2化合物,增加材料的抗腐蚀性。然而,当Cu的含量过多时(超过0.6mas%),由于消耗的Nd较多,用于形成富钕相的Nd的量减少,形成晶界数量减少,产品的矫顽力急剧下降。
3、EPMA分析
采用微区X射线光谱分析仪(仪器型号:EPMA-1720)测得实施例1制得的钕铁硼磁体材料的EPMA图谱,见图2。图2显示了钕铁硼磁体材料中Tb的分布情况,从图2中可以看出,实施例1的钕铁硼烧结体经过Tb扩散后,Tb元素未进入主相,而主要集中到富钕相中。Tb扩散后晶粒边界富钕相明显清晰,同时增加了富钕相和晶界外延层占比,置换的Nd更多沿着主相周围分布,增加了晶界连续性,阻碍主相之间直接交换耦合,矫顽力提升明显。
4、晶界连续性
晶界连续性是指晶界中除空洞外的物相(例如富钕相、晶界外延层)占据的长度与总晶界长度的比值。晶界连续性超过96%即可称为连续通道。基于各实施例和对比例的钕铁硼磁体材料的SEM图,计算晶界连续性。实施例1~8和对比例1~4中的钕铁硼磁体材料的晶界连续性,如表6所示。实施例1~8的钕铁硼磁体材料的晶界连续性均在96.5%以上,对比例1~4中的钕铁硼磁体材料的晶界连续性均在96.5%以下。
表6钕铁硼磁体材料的晶界连续性
Figure PCTCN2021095073-appb-000006
效果实施例3:磁性能测试
使用英国Hirst公司的PFM-14磁性能测量仪,对实施例和对比例中的各个样品进行磁性能测试(测试样品为直径D10mm*厚度1.8mm圆片),测试结果如表7所示。
表7磁性能测试结果
Figure PCTCN2021095073-appb-000007
表7中数据说明如下:
1、Br(kGs):剩磁,即永磁材料经过饱和磁化后,撤去外磁场所能保持的磁性。
2、Hcj(kOe):磁极化强度矫顽力,又称内禀矫顽力。
3.ΔHcj(kOe):指常温(20℃)下,扩散后的钕铁硼磁体材料的磁极化强度矫顽力Hcj相对于扩散前的钕铁硼烧结体的磁极化强度矫顽力的增加值。
4.Br温度系数α绝对值(%):指基于钕铁硼磁体材料在常温(20℃)和高温(140℃)的剩磁Br计算出来的温度系数,计算公式为:
Figure PCTCN2021095073-appb-000008
5.Hcj温度系数β绝对值(%):指基于钕铁硼磁体材料在常温(20℃)和高温(140℃)的磁极化强度矫顽力Hcj计算出来的温度系数,计算公式为:
Figure PCTCN2021095073-appb-000009
6.全开路磁损(%):指钕铁硼磁体材料在高温(140℃)烘烤一定时间(如120min),基于烘烤前后钕铁硼磁体材料的磁通变化计算出来的全开路磁损,计算公式为:
Figure PCTCN2021095073-appb-000010
其中,在常温(20℃)下测定钕铁硼磁体材料的磁通,记为M1;然后在烘箱中加热钕铁硼磁体材料到设定温度140℃,保温120min,再冷却到常温测定磁通,记为M2。
对表7中磁性能测试结果的分析:
1)对比例1:基于实施例7,增加Cu的含量使之过量,其他条件不变。
常温下,相对于实施例7,对比例1中的钕铁硼烧结体和钕铁硼磁体材料的Br、Hcj均略有降低,且扩散后矫顽力提升(ΔHcj)较小(约为实施例7的0.55倍)。高温下,相对于实施例7,对比例1中的钕铁硼磁体材料的Hcj较小,Br温度系数α绝对值和Hcj温度系数β绝对值较大,全开路磁 损失较大(约为实施例7的4.5倍),高温性能较差。
2)对比例2:基于实施例4,增加C的含量使之过量,其他条件不变。
常温下,相对于实施例4,对比例2中的钕铁硼烧结体和钕铁硼磁体材料的Br、Hcj均略有降低,且扩散后矫顽力提升(ΔHcj)较小(约为实施例4的0.8倍)。高温下,相对于实施例4,对比例2中的钕铁硼磁体材料的Hcj较小,Br温度系数α绝对值和Hcj温度系数β绝对值较大,全开路磁损失较大(约为实施例4的8.7倍),高温性能较差。
3)对比例3:基于实施例3,增加Ga的含量使之过量,其他条件不变。
常温下,相对于实施例3,对比例3中的钕铁硼烧结体和钕铁硼磁体材料的Br、Hcj均略有降低,且扩散后矫顽力提升(ΔHcj)较小(约为实施例3的0.7倍)。高温下,相对于实施例3,对比例3中的钕铁硼磁体材料的Hcj较小,Br温度系数α绝对值和Hcj温度系数β绝对值较大,全开路磁损失较大(约为实施例4的13.8倍),高温性能较差。
4)对比例4:基于实施例6,不含X元素,其他条件不变。
常温下,相对于实施例6,对比例4中的钕铁硼烧结体和钕铁硼磁体材料的Br、Hcj均略有降低,且扩散后矫顽力提升(ΔHcj)较小(约为实施例3的0.8倍)。高温下,相对于实施例6,对比例4中的钕铁硼磁体材料的Hcj较小,Br温度系数α绝对值和Hcj温度系数β绝对值较大,全开路磁损失较大(约为实施例4的63倍),高温性能较差。

Claims (10)

  1. 一种钕铁硼磁体材料的原料组合物,其包含第一组分和第二组分,所述第一组分为熔炼时添加的元素,所述第二组分为晶界扩散时添加的元素;
    所述第一组分包括:
    轻稀土元素LR,所述LR包括Nd;
    Ho,0~10mas%、且不为0;
    Cu,0.35~0.6mas%;
    C,0~0.32mas%;
    Ga,0~0.42mas%,且不为0;
    Co,0~0.5mas%;
    Al,0~0.5mas%;
    X,0.05~0.5mas%;所述X包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;
    B,0.9~1.05mas%;
    余量为Fe;
    所述第一组分不包括除Ho外的其他重稀土元素;
    所述第二组分包括:Dy和/或Tb,0.2~1mas%;
    mas%为各元素占所述钕铁硼磁体材料的原料组合物的质量百分比。
  2. 根据权利要求1所述的钕铁硼磁体材料的原料组合物,其特征在于,
    所述Nd的含量为16~27mas%,例如16.2mas%、21mas%、21.4mas%、24mas%、25.8mas%、26mas%或26.5mas%;
    和/或,所述LR还包括Pr和/或Sm;其中,当所述LR包含Pr时,所述Pr的含量为0~16mas%、且不为0mas%;较佳地为3~7mas%,例如5mas%;所述Pr的添加形式为Pr和/或PrNd,较佳地为PrNd;当所述LR包含Sm时,所述Sm的含量为0~5mas%,且不为0,例如2.5mas%;
    和/或,所述Ho含量为0.5~8mas%,例如1mas%、2mas%、4mas%、4.5mas%或6mas%;
    和/或,所述Cu的含量范围为0.4~0.55mas%,例如0.45mas%、0.5mas% 或0.52mas%;
    和/或,所述C的含量范围为0.07~0.2mas%,例如0.098mas%、0.12mas%、0.15mas%或0.16mas%;
    和/或,所述Ga的含量范围为0.06~0.3mas%,例如0.07mas%、0.09mas%或0.15mas%;
    和/或,所述Co的含量为0~0.2mas%,例如0.1mas%;
    和/或,所述Al的含量范围为0~0.3mas%,较佳地为0~0.1mas%,例如0.01mas%、0.02mas%、0.04mas%或0.05mas%;
    和/或,所述X的含量为0.25~0.465mas%,例如为0.42mas%、0.43mas%或0.46mas%;
    和/或,所述X为Ti、Nb、Zr和Hf中的一种或多种,较佳地为Ti和Nb,或Nb和Zr,或Ti、Nb和Zr;
    当所述X包括Zr时,所述Zr的含量范围较佳地为0.01~0.3mas%,例如0.1mas%,0.25mas%或0.28mas%;
    当所述X包括Ti时,所述Ti的含量范围较佳地为0.1~0.3mas%,例如0.14mas%或0.2mas%;
    当所述X包括Nb时,所述Nb的含量范围较佳地为0.04~0.31mas%,例如0.12mas%、0.15mas%、0.2mas%或0.3mas%;
    当X包括Ti和Nb时,Ti和Nb的质量比为(0.01~100):1,较佳地为(0.1~10):1,例如1:2,2:1,2:3或5:2;
    当X包括Nb和Zr时,Nb和Zr的质量比为1:(0.01~100),较佳地为1:(0.1~10),例如1:0.25,或1:0.5,或1:1.4;
    当X包括Ti、Nb和Zr时,Ti、Nb和Zr的质量比为(0.01~100):1:(0.01~100),较佳地为(0.1~10):1:(0.1~10),例如1:2:1;
    和/或,所述X还包括Mn,所述Mn的含量范围为0~0.03mas%,例如0.01mas%、0.015mas%或0.02mas%;
    和/或,所述B的含量范围为0.955~0.98mas%,例如0.96mas%或 0.964mas%;
    和/或,所述第二组分中Dy和/或Tb的含量范围为0.5~0.8mas%;
    和/或,当所述第二组分包括Dy时,所述Dy的含量范围为0.2~1mas%,例如0.5mas%或0.8mas%;所述第二组分中Dy的添加形式为Dy、Dy合金和Dy氟化物中的一种或多种;其中,所述Dy合金较佳地为DyGaCu;所述DyGaCu合金中,较佳地Dy含量≥75mas%,更佳地≥95mas%,上述百分比为Dy质量占所述DyGaCu合金总质量的百分比;
    和/或,当所述第二组分包括Tb时,所述Tb的含量范围为0.2~1mas%,例如0.5mas%;所述第二组分中Tb的添加形式为Tb、Tb合金和Tb氟化物中的一种或多种;所述Tb合金较佳地为TbGaCu合金;所述TbGaCu合金中,较佳地Tb含量≥75mas%,更佳地≥95mas%,上述百分比为Tb用量占所述TbGaCu合金总质量的百分比;
    和/或,当所述第二组分包括Dy和Tb的混合物时,Dy和Tb的质量比为1:(0.01~100),较佳地为1:(0.3~3),例如1:1;
    和/或,所述钕铁硼磁体材料的原料组合物中总稀土含量为29.5~32.5mas%,例如30mas%、30.3mas%、30.6mas%、30.8mas%、30.9mas%、31.2mas%或32mas%;
    较佳地,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:Nd,27mas%;Ho,4.5mas%;Cu,0.52mas%;C,0.07mas%;Ga,0.15mas%;Ti,0.3mas%;Nb,0.12mas%;B,0.96mas%;所述第二组分:Tb,0.5mas%;余量为Fe;
    较佳地,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:Nd,26.5mas%;Sm,2.5mas%;Ho,0.5mas%;Cu,0.5mas%;C,0.16mas%;Ga,0.2mas%;Zr,0.25mas%;B,0.96mas%;所述第二组分:Dy,0.5mas%;余量为Fe;
    较佳地,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:PrNd,28.5mas%;Ho,1mas%;Cu,0.4mas%;Ga,0.42mas%;Al,0.05mas%; Ti,0.14mas%;Nb,0.31mas%;Mn,0.01mas%;B,0.98mas%;所述第二组分:Dy,0.8mas%;余量为Fe;
    较佳地,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:Nd,24mas%;Pr,4.5mas%;Ho,2mas%;Cu,0.4mas%;C,0.15mas%;Ga,0.09mas%;Al,0.01mas%;Ti,0.1mas%;Nb,0.2mas%;Zr,0.2mas%;Mn,0.03mas%;B,0.98mas%;所述第二组分:Dy,0.2mas%;Tb,0.2mas%;余量为Fe;
    较佳地,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:Nd,25.8mas%;Ho,4mas%;Cu,0.55mas%;C,0.098mas%;Ga,0.24mas%;Ti,0.2mas%;Nb,0.3mas%;B,0.955mas%;所述第二组分:Tb,1mas%;余量为Fe;
    较佳地,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:Nd,26mas%;Ho,6mas%;Cu,0.55mas%;C,0.2mas%;Ga,0.07mas%;Al,0.04mas%;Co,0.1mas%;Nb,0.04mas%;Zr,0.01mas%;B,0.955mas%;所述第二组分:Dy,0.5mas%;余量为Fe;
    较佳地,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:PrNd,21.6mas%;Ho,8mas%;Cu,0.6mas%;C,0.12mas%;Ga,0.3mas%;Al,0.1mas%;Ti,0.3mas%;Nb,0.15mas%;B,0.964mas%;所述第二组分:Dy,1mas%;余量为Fe;
    较佳地,所述钕铁硼磁体材料的原料组合物包括:所述第一组分:Nd,21mas%;Ho,10mas%;Cu,0.6mas%;C,0.32mas%;Ga,0.06mas%;Al,0.02mas%;Co,0.2mas%;Nb,0.2mas%;Zr,0.28mas%;Mn,0.02mas%;B,0.964mas%;所述第二组分:Dy,0.2mas%;余量为Fe。
  3. 一种钕铁硼磁体材料的制备方法,其采用根据权利要求1或2所述钕铁硼磁体材料的原料组合物进行,所述制备方法包括如下步骤:
    S1、将所述第一组分熔炼、制粉、成型、烧结,得钕铁硼烧结体;
    S2、采用所述第二组分对步骤S1所得的钕铁硼烧结体进行晶界扩散;
    S3、热处理,即得钕铁硼磁体材料;
    步骤S1中,所述熔炼的操作和条件较佳地为将所述第一组分的各元素采用铸锭工艺或速凝片工艺进行熔炼浇铸,得到合金片;
    步骤S1中,所述熔炼的温度较佳地为1300~1700℃,例如1500℃;
    步骤S1中,所述熔炼的设备较佳地为高频真空熔炼炉和/或中频真空熔炼炉;所述中频真空熔炼炉较佳地为中频真空感应速凝甩带炉;
    步骤S1中,所述制粉的操作和条件较佳地包括氢破制粉和/或气流磨制粉;其中,
    所述氢破制粉较佳地包括吸氢、脱氢和冷却处理;所述吸氢的温度较佳地为20~200℃,更佳地为20~40℃;所述吸氢的压力较佳地为50~600kPa,例如90kPa;所述脱氢的温度较佳地为400~650℃,例如550℃;
    所述气流磨制粉中的气流较佳地为氮气和/或氩气;所述气流磨制粉的压力较佳地为0.1~2MPa,更佳地为0.5~0.7MPa,例如0.65MPa;所述气流磨制粉的效率较佳地为30-400kg/h,例如200kg/h;
    步骤S1中,所述成型的操作和条件较佳地为磁场成型法,所述的磁场成型法的磁场强度较佳地在1.5T以上;
    步骤S1中,所述烧结的操作和条件较佳地为真空烧结工艺和/或惰性气氛烧结工艺;
    步骤S1中,所述烧结的温度较佳地为1000~1200℃,更佳地为1030~1090℃;
    步骤S1中,所述烧结的时间较佳地为0.5~10h,更佳地为2~8h;
    步骤S2中,所述晶界扩散的操作和条件较佳地为将所述第二组分施加于所述钕铁硼烧结体上保温即可,其中,所述施加方式较佳地为涂覆、磁控等离子溅射或蒸镀;所述晶界扩散的温度较佳地为800~1000℃,更佳地为850~950℃,更佳地为900℃;
    步骤S2中,所述晶界扩散的时间较佳地为12~90h,例如24h;
    步骤S3中,所述热处理的温度较佳地为480℃~510℃;所述热处理的 时间较佳地为2~4小时。
  4. 一种钕铁硼磁体材料,其根据权利要求3所述的钕铁硼磁体材料的制备方法制得。
  5. 一种钕铁硼磁体材料,其包括:
    轻稀土元素LR,所述LR包括Nd;
    Ho,0~10mas%、且不为0;
    Dy和/或Tb,0.2~1mas%;
    Cu,0.35~0.6mas%;
    C,0~0.32mas%;
    Ga,0~0.42mas%,且不为0;
    Co,0~0.5mas%;
    Al,0~0.5mas%;
    X,0.05~0.5mas%;所述X包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;
    B,0.9~1.05mas%;
    余量为Fe;
    mas%为各元素占所述钕铁硼磁体材料的质量百分比;
    所述钕铁硼磁体材料的微观结构包含主相、晶界外延层和富钕相;所述主相和所述晶界外延层分布有Ho,所述主相无Dy或Tb分布,所述富钕相分布有Cu以及Dy和/或Tb,所述钕铁硼磁体材料的晶界连续性为96.5%以上;
    较佳地,所述钕铁硼磁体材料中总稀土含量为29.5~32.5mas%,例如30mas%、30.3mas%、30.6mas%、30.8mas%、30.9mas%、31.2mas%或32mas%;
    较佳地,所述Nd的含量为16~27mas%,例如16.2mas%、21mas%、21.4mas%、24mas%、25.8mas%、26mas%或26.5mas%;
    可选地,所述LR还包括Pr和/或Sm;其中,当所述LR包含Pr时,所述Pr的含量为0~16mas%、且不为0;较佳地为3~7mas%,例如5mas%; 当所述LR包含Sm时,所述Sm的含量为0~5mas%,且不为0,例如2.5mas%;
    较佳地,所述Ho含量为0.5~8mas%,例如1mas%、2mas%、4mas%、4.5mas%或6mas%;
    较佳地,所述Dy和/或Tb的含量范围为0.5~0.8mas%;
    当所述钕铁硼磁体材料包括Dy时,所述Dy的含量范围较佳地为0.2~1mas%,例如0.5mas%或0.8mas%;
    当所述钕铁硼磁体材料包括Tb时,所述Tb的含量范围较佳地为0.2~1mas%,例如0.5mas%;
    当所述钕铁硼磁体材料包括Dy和Tb的混合物时,Dy和Tb的质量比为1:(0.01~100),较佳地为1:(0.3~3),例如1:1;
    较佳地,所述Cu的含量范围为0.4~0.55mas%,例如0.45mas%、0.5mas%或0.52mas%;
    较佳地,所述C的含量范围为0.07~0.2mas%,例如0.098mas%、0.12mas%、0.15mas%或0.16mas%;
    较佳地,所述Ga的含量范围为0.06~0.3mas%,例如0.07mas%、0.09mas%或0.15mas%;
    较佳地,所述Co的含量为0~0.2mas%,例如0.1mas%;
    较佳地,所述Al的含量范围为0~0.3mas%,较佳地为0~0.1mas%,例如0.01mas%、0.02mas%、0.04mas%或0.05mas%;
    较佳地,所述X的含量为0.25~0.465mas%,例如为0.42mas%、0.43mas%或0.46mas%;
    较佳地,所述X为Ti、Nb、Zr和Hf中的一种或多种,更佳地为Ti和Nb,或Nb和Zr,或Ti、Nb和Zr;
    当所述X包括Zr时,所述Zr的含量范围较佳地为0.01~0.3mas%,例如0.1mas%,0.25mas%或0.28mas%;
    当所述X包括Ti时,所述Ti的含量范围较佳地为0.1~0.3mas%,例如0.14mas%或0.2mas%;
    当所述X包括Nb时,所述Nb的含量范围较佳地为0.04~0.31mas%,例如0.12mas%、0.15mas%、0.2mas%或0.3mas%;
    当X包括Ti和Nb时,Ti和Nb的质量比为(0.01~100):1,较佳地为(0.1~10):1,例如1:2,2:1,2:3或5:2;
    当X包括Nb和Zr时,Nb和Zr的质量比为1:(0.01~100),较佳地为1:(0.1~10),例如1:0.25,或1:0.5,或1:1.4;
    当X包括Ti、Nb和Zr时,Ti、Nb和Zr的质量比为(0.01~100):1:(0.01~100),较佳地为(0.1~10):1:(0.1~10),例如1:2:1;
    可选地,所述X还包括Mn,所述Mn的含量范围为0~0.03mas%,例如0.01mas%、0.015mas%或0.02mas%;
    较佳地,所述B的含量范围为0.955~0.98mas%,例如0.96mas%或0.964mas%;
    较佳地,所述钕铁硼磁体材料包括:Nd,27mas%;Ho,4.5mas%;Tb,0.5mas%;Cu,0.52mas%;C,0.07mas%;Ga,0.15mas%;Ti,0.3mas%;Nb,0.12mas%;B,0.96mas%;余量为Fe;
    较佳地,所述钕铁硼磁体材料包括:Nd,26.5mas%;Sm,2.5mas%;Ho,0.5mas%;Dy,0.5mas%;Cu,0.5mas%;C,0.16mas%;Ga,0.2mas%;Zr,0.25mas%;B,0.96mas%;余量为Fe;
    较佳地,所述钕铁硼磁体材料包括:Nd,21.4mas%;Pr,7.1mas%;Ho,1mas%;Dy,0.8mas%;Cu,0.4mas%;Ga,0.42mas%;Al,0.05mas%;Ti,0.14mas%;Nb,0.31mas%;Mn,0.01mas%;B,0.98mas%;余量为Fe;
    较佳地,所述钕铁硼磁体材料包括:Nd,24mas%;Pr,4.5mas%;Ho,2mas%;Dy,0.2mas%;Tb,0.2mas%;Cu,0.4mas%;C,0.15mas%;Ga,0.09mas%;Al,0.01mas%;Ti,0.1mas%;Nb,0.2mas%;Zr,0.2mas%;Mn,0.03mas%;B,0.98mas%;余量为Fe;
    较佳地,所述钕铁硼磁体材料包括:Nd,25.8mas%;Ho,4mas%;Tb,1mas%;Cu,0.55mas%;C,0.098mas%;Ga,0.24mas%;Ti,0.2mas%; Nb,0.3mas%;B,0.955mas%;余量为Fe;
    较佳地,所述钕铁硼磁体材料包括:Nd,26mas%;Ho,6mas%;Dy,0.5mas%;Cu,0.55mas%;C,0.2mas%;Ga,0.07mas%;Al,0.04mas%;Co,0.1mas%;Nb,0.04mas%;Zr,0.01mas%;B,0.955mas%;余量为Fe;
    较佳地,所述钕铁硼磁体材料包括:Nd,16.2mas%;Pr,5.4mas%;Ho,8mas%;Dy,1mas%;Cu,0.6mas%;C,0.12mas%;Ga,0.3mas%;Al,0.1mas%;Ti,0.3mas%;Nb,0.15mas%;B,0.964mas%;余量为Fe;
    较佳地,所述钕铁硼磁体材料包括:Nd,21mas%;Ho,10mas%;Dy,0.2mas%;Cu,0.6mas%;C,0.32mas%;Ga,0.06mas%;Al,0.02mas%;Co,0.2mas%;Nb,0.2mas%;Zr,0.28mas%;Mn,0.02mas%;B,0.964mas%;余量为Fe。
  6. 一种钕铁硼烧结体的原料组合物,其包括:
    轻稀土元素LR,所述LR包括Nd;
    Ho,0~10mas%、且不为0;
    Cu,0.35~0.6mas%;
    C,0~0.32mas%;
    Ga,0~0.42mas%,且不为0;
    Co,0~0.5mas%;
    Al,0~0.5mas%;
    X,0.05~0.5mas%;所述X包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;
    B,0.9~1.05mas%;
    所述钕铁硼烧结体的原料组合物不包括除Ho外的其他重稀土元素;
    余量为Fe;
    mas%为各元素占所述钕铁硼烧结体的原料组合物的质量百分比;
    较佳地,所述钕铁硼烧结体的原料组合物中总稀土含量为28.5~32.3mas%,例如29.5mas%、29.6mas%、29.8mas%、30.5mas%、31mas%、 31.5mas%或32mas%;
    较佳地,所述Nd的含量为16~27mas%,例如16.2mas%、21mas%、21.4mas%、24mas%、25.8mas%、26mas%或26.5mas%;
    可选地,所述LR还包括Pr和/或Sm;其中,当所述LR包含Pr时,所述Pr的含量为0~16mas%、且不为0mas%;较佳地为3~7mas%,例如5mas%;所述Pr的添加形式为Pr和/或PrNd,较佳地为PrNd;当所述LR包含Sm时,所述Sm的含量为0~5mas%,且不为0,例如2.5mas%;
    较佳地,所述Ho含量为0.5~8mas%,例如1mas%、2mas%、4mas%、4.5mas%或6mas%;
    较佳地,所述Cu的含量范围为0.4~0.55mas%,例如0.45mas%、0.5mas%或0.52mas%;
    较佳地,所述C的含量范围为0.07~0.2mas%,例如0.098mas%、0.12mas%、0.15mas%或0.16mas%;
    较佳地,所述Ga的含量范围0.06~0.3mas%,例如0.07mas%、0.09mas%、0.15mas%;
    较佳地,所述Co的含量为0~0.2mas%,例如0.1mas%;
    较佳地,所述Al的含量范围为0~0.3mas%,更佳地为0~0.1mas%,例如0.01mas%、0.02mas%、0.04mas%或0.05mas%;
    较佳地,所述X的含量为0.25~0.465mas%,例如为0.42mas%、0.43mas%或0.46mas%;
    较佳地,所述X为Ti、Nb、Zr和Hf中的一种或多种,更佳地为Ti和Nb,或Nb和Zr,或Ti、Nb和Zr;
    当所述X包括Zr时,所述Zr的含量范围较佳地为0.01~0.3mas%,例如0.1mas%,0.25mas%或0.28mas%;
    当所述X包括Ti时,所述Ti的含量范围较佳地为0.1~0.3mas%,例如0.14mas%或0.2mas%;
    当所述X包括Nb时,所述Nb的含量范围较佳地为0.04~0.31mas%, 例如0.12mas%、0.15mas%、0.2mas%或0.3mas%;
    当X包括Ti和Nb时,Ti和Nb的质量比为(0.01~100):1,较佳地为(0.1~10):1,例如1:2,2:1,2:3或5:2;
    当X包括Nb和Zr时,Nb和Zr的质量比为1:(0.01~100),较佳地为1:(0.1~10),例如1:0.25,或1:0.5,或1:1.4;
    当X包括Ti、Nb和Zr时,Ti、Nb和Zr的质量比为(0.01~100):1:(0.01~100),较佳地为(0.1~10):1:(0.1~10),例如1:2:1;
    可选地,所述X还包括Mn,所述Mn的含量范围为0~0.03mas%,例如0.01mas%、0.015mas%或0.02mas%;
    较佳地,所述B的含量范围为0.955~0.98mas%,例如0.96mas%或0.964mas%;
    较佳地,所述钕铁硼烧结体的原料组合物包括:Nd,27mas%;Ho,4.5mas%;Cu,0.52mas%;C,0.07mas%;Ga,0.15mas%;Ti,0.3mas%;Nb,0.12mas%;B,0.96mas%;余量为Fe;
    较佳地,所述钕铁硼烧结体的原料组合物包括:Nd,26.5mas%;Sm,2.5mas%;Ho,0.5mas%;Cu,0.5mas%;C,0.16mas%;Ga,0.2mas%;Zr,0.25mas%;B,0.96mas%;余量为Fe;
    较佳地,所述钕铁硼烧结体的原料组合物包括:PrNd,28.5mas%;Ho,1mas%;Cu,0.4mas%;Ga,0.42mas%;Al,0.05mas%;Ti,0.14mas%;Nb,0.31mas%;Mn,0.01mas%;B,0.98mas%;余量为Fe;
    较佳地,所述钕铁硼烧结体的原料组合物包括:Nd,24mas%;Pr,4.5mas%;Ho,2mas%;Cu,0.4mas%;C,0.15mas%;Ga,0.09mas%;Al,0.01mas%;Ti,0.1mas%;Nb,0.2mas%;Zr,0.2mas%;Mn,0.03mas%;B,0.98mas%;余量为Fe;
    较佳地,所述钕铁硼烧结体的原料组合物包括:Nd,25.8mas%;Ho,4mas%;Cu,0.55mas%;C,0.098mas%;Ga,0.24mas%;Ti,0.2mas%;Nb,0.3mas%;B,0.955mas%;余量为Fe;
    较佳地,所述钕铁硼烧结体的原料组合物包括:Nd,26mas%;Ho,6mas%;Cu,0.55mas%;C,0.2mas%;Ga,0.07mas%;Al,0.04mas%;Co,0.1mas%;Nb,0.04mas%;Zr,0.01mas%;B,0.955mas%;余量为Fe;
    较佳地,所述钕铁硼烧结体的原料组合物包括:PrNd,21.6mas%;Ho,8mas%;Cu,0.6mas%;C,0.12mas%;Ga,0.3mas%;Al,0.1mas%;Ti,0.3mas%;Nb,0.15mas%;B,0.964mas%;余量为Fe;
    较佳地,所述钕铁硼烧结体的原料组合物包括:Nd,21mas%;Ho,10mas%;Cu,0.6mas%;C,0.32mas%;Ga,0.06mas%;Al,0.02mas%;Co,0.2mas%;Nb,0.2mas%;Zr,0.28mas%;Mn,0.02mas%;B,0.964mas%;余量为Fe。
  7. 一种钕铁硼烧结体的制备方法,其包括:将根据权利要求6所述的钕铁硼烧结体的原料组合物经熔炼、制粉、成型、烧结即可;所述熔炼、制粉、成型、烧结如权利要求3所述。
  8. 一种钕铁硼烧结体,其根据权利要求7所述的钕铁硼烧结体的制备方法制得。
  9. 一种钕铁硼烧结体,其包括:
    轻稀土元素LR,所述LR包括Nd;
    Ho,0~10mas%、且不为0;
    Cu,0.35~0.6mas%;
    C,0~0.32mas%;
    Ga,0~0.42mas%,且不为0;
    Co,0~0.5mas%;
    Al,0~0.5mas%;
    X,0.05~0.5mas%;所述X包括Ti、Nb、Zr、Hf、V、Mo、W、Ta和Cr中的一种或多种;
    B,0.9~1.05mas%;
    所述钕铁硼烧结体不包括除Ho外的其他重稀土元素;
    余量为Fe;
    mas%为各元素占所述钕铁硼烧结体的质量百分比;
    所述钕铁硼烧结体的微观结构包含主相、晶界外延层和富钕相;所述主相和所述晶界外延层分布有Ho,所述富钕相分布有Cu,所述钕铁硼烧结体的晶界连续性为96%以上;
    较佳地,所述钕铁硼烧结体中总稀土含量为28.5~32.3mas%,例如29.5mas%、29.6mas%、29.8mas%、30.5mas%、31mas%、31.5mas%或32mas%;
    较佳地,所述Nd的含量为16~27mas%,例如16.2mas%、21mas%、21.4mas%、24mas%、25.8mas%、26mas%或26.5mas%;
    可选地,所述LR还包括Pr和/或Sm;其中,当所述LR包含Pr时,所述Pr的含量为0~16mas%、且不为0;较佳地为3~7mas%,例如5mas%;当所述LR包含Sm时,所述Sm的含量为0~5mas%,且不为0,例如2.5mas%;
    较佳地,所述Ho含量为0.5~8mas%,例如1mas%、2mas%、4mas%、4.5mas%或6mas%;
    较佳地,所述Cu的含量范围为0.4~0.55mas%,例如0.45mas%、0.5mas%或0.52mas%;
    较佳地,所述C的含量范围为0.07~0.2mas%,例如0.098mas%、0.12mas%、0.15mas%或0.16mas%;
    较佳地,所述Ga的含量范围0.06~0.3mas%,例如0.07mas%、0.09mas%、0.15mas%;
    较佳地,所述Co的含量为0~0.2mas%,例如0.1mas%;
    较佳地,所述Al的含量范围为0~0.3mas%,更佳地为0~0.1mas%,例如0.01mas%、0.02mas%、0.04mas%或0.05mas%;
    较佳地,所述X的含量为0.25~0.465mas%,例如为0.42mas%、0.43mas%或0.46mas%;
    较佳地,所述X为Ti、Nb、Zr和Hf中的一种或多种,更佳地为Ti和Nb,或Nb和Zr,或Ti、Nb和Zr;
    当所述X包括Zr时,所述Zr的含量范围较佳地为0.01~0.3mas%,例如0.1mas%,0.25mas%或0.28mas%;
    当所述X包括Ti时,所述Ti的含量范围较佳地为0.1~0.3mas%,例如0.14mas%或0.2mas%;
    当所述X包括Nb时,所述Nb的含量范围较佳地为0.04~0.31mas%,例如0.12mas%、0.15mas%、0.2mas%或0.3mas%;
    当X包括Ti和Nb时,Ti和Nb的质量比为(0.01~100):1,较佳地为(0.1~10):1,例如1:2,2:1,2:3或5:2;
    当X包括Nb和Zr时,Nb和Zr的质量比为1:(0.01~100),较佳地为1:(0.1~10),例如1:0.25,或1:0.5,或1:1.4;
    当X包括Ti、Nb和Zr时,Ti、Nb和Zr的质量比为(0.01~100):1:(0.01~100),较佳地为(0.1~10):1:(0.1~10),例如1:2:1;
    可选地,所述X还包括Mn,所述Mn的含量范围为0~0.03mas%,例如0.01mas%、0.015mas%或0.02mas%;
    较佳地,所述B的含量范围为0.955~0.98mas%,例如0.96mas%或0.964mas%;
    较佳地,所述钕铁硼烧结体包括:Nd,27mas%;Ho,4.5mas%;Cu,0.52mas%;C,0.07mas%;Ga,0.15mas%;Ti,0.3mas%;Nb,0.12mas%;B,0.96mas%;余量为Fe;
    较佳地,所述钕铁硼烧结体包括:Nd,26.5mas%;Sm,2.5mas%;Ho,0.5mas%;Cu,0.5mas%;C,0.16mas%;Ga,0.2mas%;Zr,0.25mas%;B,0.96mas%;余量为Fe;
    较佳地,所述钕铁硼烧结体包括:Nd,21.4mas%;Pr,7.1mas%;Ho,1mas%;Cu,0.4mas%;Ga,0.42mas%;Al,0.05mas%;Ti,0.14mas%;Nb,0.31mas%;Mn,0.01mas%;B,0.98mas%;余量为Fe;
    较佳地,所述钕铁硼烧结体包括:Nd,24mas%;Pr,4.5mas%;Ho,2mas%;Cu,0.4mas%;C,0.15mas%;Ga,0.09mas%;Al,0.01mas%;Ti, 0.1mas%;Nb,0.2mas%;Zr,0.2mas%;Mn,0.03mas%;B,0.98mas%;余量为Fe;
    较佳地,所述钕铁硼烧结体包括:Nd,25.8mas%;Ho,4mas%;Cu,0.55mas%;C,0.098mas%;Ga,0.24mas%;Ti,0.2mas%;Nb,0.3mas%;B,0.955mas%;余量为Fe;
    较佳地,所述钕铁硼烧结体包括:Nd,26mas%;Ho,6mas%;Cu,0.55mas%;C,0.2mas%;Ga,0.07mas%;Al,0.04mas%;Co,0.1mas%;Nb,0.04mas%;Zr,0.01mas%;B,0.955mas%;余量为Fe;
    较佳地,所述钕铁硼烧结体包括:Nd,16.2mas%;Pr,5.4mas%;Ho,8mas%;Cu,0.6mas%;C,0.12mas%;Ga,0.3mas%;Al,0.1mas%;Ti,0.3mas%;Nb,0.15mas%;B,0.964mas%;余量为Fe;
    较佳地,所述钕铁硼烧结体包括:Nd,21mas%;Ho,10mas%;Cu,0.6mas%;C,0.32mas%;Ga,0.06mas%;Al,0.02mas%;Co,0.2mas%;Nb,0.2mas%;Zr,0.28mas%;Mn,0.02mas%;B,0.964mas%;余量为Fe。
  10. 一种根据权利要求4或5所述钕铁硼磁体材料或根据权利要求8或9所述钕铁硼烧结体在制备磁钢中的应用。
PCT/CN2021/095073 2020-06-01 2021-05-21 钕铁硼磁体材料、原料组合物及其制备方法和应用 WO2021244311A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010486381.4A CN111599565B (zh) 2020-06-01 2020-06-01 钕铁硼磁体材料、原料组合物及其制备方法和应用
CN202010486381.4 2020-06-01

Publications (1)

Publication Number Publication Date
WO2021244311A1 true WO2021244311A1 (zh) 2021-12-09

Family

ID=72185959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095073 WO2021244311A1 (zh) 2020-06-01 2021-05-21 钕铁硼磁体材料、原料组合物及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN111599565B (zh)
WO (1) WO2021244311A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111599565B (zh) * 2020-06-01 2022-04-29 福建省长汀金龙稀土有限公司 钕铁硼磁体材料、原料组合物及其制备方法和应用
CN113161094B (zh) * 2021-03-17 2023-12-05 福建省长汀金龙稀土有限公司 一种r-t-b磁体及其制备方法
CN112992460B (zh) * 2021-03-17 2023-04-14 福建省长汀金龙稀土有限公司 一种r-t-b磁体及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107039135A (zh) * 2015-10-07 2017-08-11 Tdk株式会社 R‑t‑b系烧结磁铁
CN107871602A (zh) * 2016-09-26 2018-04-03 厦门钨业股份有限公司 一种R‑Fe‑B系稀土烧结磁铁的晶界扩散方法、HRE扩散源及其制备方法
CN111599565A (zh) * 2020-06-01 2020-08-28 福建省长汀金龙稀土有限公司 钕铁硼磁体材料、原料组合物及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101582317B (zh) * 2008-05-15 2012-09-19 三环瓦克华(北京)磁性器件有限公司 新型烧结钕铁硼稀土永磁材料及其制造方法
JP2012099523A (ja) * 2010-10-29 2012-05-24 Shin Etsu Chem Co Ltd 異方性希土類焼結磁石及びその製造方法
JP2018056188A (ja) * 2016-09-26 2018-04-05 信越化学工業株式会社 R−Fe−B系焼結磁石
CN110164644A (zh) * 2019-06-04 2019-08-23 浙江英洛华磁业有限公司 一种高性能钕铁硼磁体的制备方法
CN110828089B (zh) * 2019-11-21 2021-03-26 厦门钨业股份有限公司 钕铁硼磁体材料、原料组合物及制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107039135A (zh) * 2015-10-07 2017-08-11 Tdk株式会社 R‑t‑b系烧结磁铁
CN107871602A (zh) * 2016-09-26 2018-04-03 厦门钨业股份有限公司 一种R‑Fe‑B系稀土烧结磁铁的晶界扩散方法、HRE扩散源及其制备方法
CN111599565A (zh) * 2020-06-01 2020-08-28 福建省长汀金龙稀土有限公司 钕铁硼磁体材料、原料组合物及其制备方法和应用

Also Published As

Publication number Publication date
CN111599565A (zh) 2020-08-28
CN111599565B (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
JP7220330B2 (ja) R-t-b系永久磁石材料、製造方法、並びに応用
WO2021244311A1 (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
WO2021244315A1 (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
WO2021244312A1 (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
WO2021169886A1 (zh) 一种钕铁硼磁体材料、原料组合物及制备方法和应用
TWI755152B (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
WO2021169891A1 (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
WO2021218701A1 (zh) 一种钕铁硼磁体材料、原料组合物及制备方法、应用
WO2021169887A1 (zh) 一种钕铁硼磁体材料、原料组合物及制备方法和应用
TWI751788B (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
WO2021169888A1 (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
WO2021169893A1 (zh) 一种钕铁硼磁体材料、原料组合物及制备方法和应用
TW202106896A (zh) 稀土永磁材料及其原料組合物、製備方法和應用
WO2021169890A1 (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
WO2021169889A1 (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
WO2021218700A1 (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
WO2021218698A1 (zh) 一种钕铁硼磁体材料、原料组合物及制备方法、应用
WO2021218699A1 (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
WO2021169892A1 (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
WO2021244314A1 (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
TW202127476A (zh) R-t-b系永磁材料、原料組合物、製備方法、應用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21818103

Country of ref document: EP

Kind code of ref document: A1