CN114373593B - 一种r-t-b磁体及其制备方法 - Google Patents

一种r-t-b磁体及其制备方法 Download PDF

Info

Publication number
CN114373593B
CN114373593B CN202210271193.9A CN202210271193A CN114373593B CN 114373593 B CN114373593 B CN 114373593B CN 202210271193 A CN202210271193 A CN 202210271193A CN 114373593 B CN114373593 B CN 114373593B
Authority
CN
China
Prior art keywords
equal
phase
magnet
less
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210271193.9A
Other languages
English (en)
Other versions
CN114373593A (zh
Inventor
魏方允
王登兴
朱伟
杜飞
胡蝶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NINGBO KONIT INDUSTRIES Inc
Beijing Zhong Ke San Huan High Tech Co Ltd
Original Assignee
NINGBO KONIT INDUSTRIES Inc
Beijing Zhong Ke San Huan High Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NINGBO KONIT INDUSTRIES Inc, Beijing Zhong Ke San Huan High Tech Co Ltd filed Critical NINGBO KONIT INDUSTRIES Inc
Priority to CN202210271193.9A priority Critical patent/CN114373593B/zh
Publication of CN114373593A publication Critical patent/CN114373593A/zh
Application granted granted Critical
Publication of CN114373593B publication Critical patent/CN114373593B/zh
Priority to PCT/CN2023/082340 priority patent/WO2023174430A1/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0553Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Abstract

本公开涉及一种R‑T‑B磁体及其制备方法,所述R‑T‑B磁体的元素组成为:R1xR2yT100‑x‑y‑z‑u‑a‑b‑cBzTiuCuaGabAc,R1为轻稀土元素中的至少一种,所述轻稀土元素包括Pr和Nd,R2为重稀土元素中的至少一种,所述重稀土元素包括Dy和Tb,T包括Fe和Co;A包括Al、Nb、Zr、Sn、Mn中的至少一种;其中,x、y、z、u、a、b、c为质量百分比,且满足:28%≤x+y≤30.5%,0.88%≤z≤0.92%,0.12%≤u≤0.15%,0≤a≤0.15%,0.15%≤b≤0.25%,0≤c≤2%。本公开通过Ti、B、Ga等元素的协同添加,解决了R2T17相比例较高的问题,使磁体具备高矫顽力和剩磁。

Description

一种R-T-B磁体及其制备方法
技术领域
本公开涉及稀土永磁材料领域,具体地,涉及一种R-T-B磁体及其制备方法。
背景技术
钕铁硼磁体目前被视为节能和性能改进所必需的功能材料,它的应用范围和生产量正在逐年扩大。由于许多应用场景是在高温中使用,因此对磁体的需求越来越苛刻,不仅具有高剩磁,而且需要具有高矫顽力。另一方面,由于在升高温度的情况下,钕铁硼磁体的矫顽力容易显著降低,因此需要提高室温下的矫顽力才足以使得在工作温度下能维持相应的矫顽力。
作为提高钕铁硼磁体矫顽力的方法,可以用Dy或者Tb置换作为主相的Nd2Fe14B化合物中的部分Nd。但Dy、Tb资源储备较少,价格较高且不稳定,具有大幅波动的风险。在这种环境下,需要开发出一种具有高矫顽力和高剩磁的R-Fe-B磁体的新工艺和新组成,包括最大程度降低Dy和Tb的含量。
专利文献CN106024235B公开了一种R-T-B系烧结磁体,并具体公开各组成的范围,包括Ga=0.3~0.8质量%,B=0.8~0.92质量%,Al=0.05~0.5质量%,Ti=0.15~0.29质量%,C=0.10~0.30质量%,此组成采用比一般的R-T-B系烧结磁体减少B量,且又添加了Ga等,使R2T17相的生成受到抑制,从而生成R-T-Ga相,烧结磁体能够获得高的HcJ。但是专利中也指出问题,当Ti小于0.15质量%时,无法抑制由B量的变化所致的HcJ的担忧,此外,当Ga小于0.3质量%时,R-T-Ga相的生成量过少,无法使R2T17相消失,无法获得高的HcJ
发明内容
本公开的目的是提供一种高剩磁和高矫顽力,并能够抑制磁体矫顽力波动的磁体。
为了实现上述目的,本公开第一方面提供一种R-T-B磁体,所述R-T-B磁体的元素组成为:R1xR2yT100-x-y-z-u-a-b-cBzTiuCuaGabAc,R1为轻稀土元素,所述轻稀土元素包括Pr和Nd中的至少一种;R2为重稀土元素,所述重稀土元素包括Dy和Tb中的至少一种;T包括Fe和Co;A包括Al、Nb、Zr、Sn、Mn中的至少一种;其中,x、y、z、u、a、b、c为质量百分比,且满足:28%≤x+y≤30.5%,0.88%≤z≤0.92%,0.12%≤u≤0.15%,0≤a≤0.15%,0.15%≤b≤0.25%,0≤c≤2%。
可选地,所述R-T-B磁体中,Cu元素的质量百分比为0.12~0.15%,Co元素的质量百分比为0.5~2.5%;优选地,所述重金属元素R2的质量百分比低于2%。
可选地,所述R-T-B磁体包括主相和晶界相,其中,所述晶界相包括R-T-M-Ti相,所述R-T-M-Ti相中包括类delt相,其中,所述R-T-M-Ti相占所述晶界相的20~30 %,R/T=0.2~0.46的类delt相占所述R-T-M-Ti相的40~50 %。
可选地,所述R-T-M-Ti相的元素组成为:R3mR4nT100-m-n-v-eMvTie,R3选自Pr和/或Nd,R4选自Dy和/或Tb,M中包括Ga和/或其他金属元素,所述其他金属元素为Cu和/或A,A包括Al、Nb、Zr、Sn、Mn中的至少一种,T为Fe和Co中的至少一种,其中,m、n、v、e为原子百分比,且满足:14%≤m+n≤60%,0.1%≤v≤11%,0.01%≤e≤9%。
可选地,所述类delt相中R3+R4的含量为18~29 at%、T的含量为59~74 at%、M的含量为0.01~5 at%,Ti的含量大于1 at%。
可选地,所述R-T-M-Ti相中,Ga/M大于70 %的晶界相占R-T-M-Ti相的60~65 %。
本公开第二方面提供一种制备所述的R-T-B磁体的方法,所述方法包括:
S1、将符合所述元素组成的合金原料置于真空感应炉中熔炼和浇铸,得到合金片;
S2、将所述合金片吸氢破碎处理后进行微粉碎处理,得到合金细粉;
S3、将所述合金细粉置于磁场中进行取向成型处理后,在真空环境下进行烧结处理和时效处理。
可选地,所述合金细粉的粒度为3.2~4.2μm。
可选地,步骤S1中,所述真空感应炉的真空度为10-2~10-1Pa,熔炼温度为1300~1500℃,熔炼时间为30~60min;浇铸温度为1400℃~1500℃,浇铸时间为10~15min;步骤S2中,所述吸氢破碎处理的条件包括:吸氢压力为0.3~0.4MPa,脱氢温度为560℃~600℃;所述微粉碎处理的气流磨研磨室压力为0.5~0.7MPa;步骤S3中,所述烧结处理的条件包括:烧结温度为1000℃~1100℃,烧结时间为5h~8.5h;所述时效处理的条件包括:时效温度为400℃~500℃,时效时间为7.5h~8.5h。
本公开的第三方面提供一种根据上述方法制备得到的R-T-B磁体,所述R-T-B磁体中的C含量为600~800ppm。
可选地,所述R-T-B磁体中的O含量为600~1200ppm,N含量为100~300ppm。
通过上述技术方案,本公开的技术方案通过Ti、B、Ga等元素的协同添加,通过使晶界相中生成类delt相,解决了R2T17相比例较高的问题,使磁体具备高矫顽力和剩磁。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是实施例1的磁体SEM图(点1~4);
图2是实施例1的磁体SEM图(点5~8);
图3是实施例1的磁体SEM图(点9~10)。
具体实施方式
以下对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。本公开中的at%是atom%的简写,即以原子含量计算的比例。
本公开第一方面提供一种R-T-B磁体,所述R-T-B磁体的元素组成为:R1xR2yT100-x-y-z-u-a-bBzTiuCuaGabAc,R1为轻稀土元素,所述轻稀土元素包括Pr和Nd中的至少一种;R2为重稀土元素,所述重稀土元素包括Dy和Tb中的至少一种;T包括Fe和Co;A包括Al、Nb、Zr、Sn、Mn中的至少一种;其中,x、y、z、u、a、b、c为质量百分比,且满足:28%≤x+y≤30.5%,0.88%≤z≤0.92%,0.12%≤u≤0.15%,0≤a≤0.15%,0.15%≤b≤0.25%,0≤c≤2%。
本公开的发明人经过大量实验发现,现有技术中Ti含量较高,Ti与B结合形成较多高强度高硬度的TiB2或TiB化合物分布在晶粒边界中,由于TiB2或TiB硬度较高,造成切割加工时切割效率较低。因此,要提高批量加工时的切割效率,需要降低TiB2或TiB在磁体中的含量。而B含量微小改变带来的HcJ波动大问题是磁体中形成R-T-Ga相在晶界相中比例变化所致,R-T-Ga相形成对于热处理温度比较敏感,热处理温度不均匀影响R-T-Ga形成比例。本公开通过调整R-T-B磁体的元素组成,Ti、B、Ga等元素的协同添加,从而解决了R2T17相比例较高的问题,使磁体具备高矫顽力和剩磁。
作为本公开的一种优选地实施方式,所述R-T-B磁体中,Cu元素的质量百分比为0.12~0.15%,Co元素的质量百分比为0.5~2.5%;进一步优选地,当Dy和/或Tb的含量低于2%时,可制备出Br >13.8kGs,HcJ>19.5kOe的综合性能优异的磁体。
作为本公开的一种优选地实施方式,所述R-T-B磁体包括主相和晶界相,其中,所述晶界相包括R-T-M-Ti相,所述R-T-M-Ti相中包括类delt相,其中,所述R-T-M-Ti相占所述晶界相比例的20~30 %,R/T=0.2~0.46的类delt相占R-T-M-Ti相的40~50 %。
本公开的发明人进一步发现,Ti及C含量降低,这样磁体的切割效率会得到一定程度的提高。此外,Ti可以替代主相中Fe原子,Ti含量较高时,则有可能生成的R2T17相增加,造成磁体HcJ降低。因此,降低Ti含量,可以减少R2T17相析出,进而可以提高HcJ减少HcJ波动。对于Ga含量降低,HcJ可以得到提高,其原因可能是虽然R-T-Ga相生成量减少,但经过分析发现在磁体晶界相形成一种成分上非常接近R-T-Ga的组织,即Ti含量高于1at%的R-T-M-Ti相,其相比R-T-Ga相,R含量相对较低,此外R-T-M-Ti相中还包括类delt相。发明人认为HcJ得到提高的原因可能是由于Ti可以替代部分R,则有更多R在晶粒边界生成富稀土相薄层,使得晶粒间间隔,进而可以提高HcJ。因此,本公开通过Ti、B、Ga等元素的协同添加,通过使晶界相中生成特定比例的R-T-M-Ti相和类delt相,解决了R2T17相比例较高的问题,使磁体具备高矫顽力和剩磁。
本公开的一种具体的实施方式,所述R-T-M-Ti相的元素组成可以为:R3mR4nT100-m-n-v-eMvTie,R3选自Pr和/或Nd,R4选自Dy和/或Tb,M中包括Ga和其他金属元素,所述其他金属元素为Cu和/或A,A包括Al、Nb、Zr、Sn、Mn中的至少一种,T包括Fe和Co,其中,m、n、v、e为原子百分比,且满足:14%≤m+n≤60%,0.1%≤v≤11%,0.01%≤e≤9%。
本公开的一种优选地实施方式,本公开的所述类delt相中R3+R4的含量在18-29at%的区间内、T的含量在59-74 at%的区间内、M的含量在0.01-5 at%的区间内,Ti的含量大于1 at%。
本公开的一种优选地实施方式,所述R-T-M-Ti相中,Ga/M大于70 %的晶界相占R-T-M-Ti相的60~65 %。
本公开第二方面提供一种制备所述的R-T-B磁体的方法,所述方法包括:
S1、将符合所述元素组成的合金原料置于真空感应炉中熔炼和浇铸,得到合金片;
S2、将所述合金片吸氢破碎处理后进行微粉碎处理,得到合金细粉;
S3、将所述合金细粉置于磁场中进行取向成型处理后,在真空环境下进行烧结处理和时效处理。
根据本公开,所述合金细粉的粒度可以为3.2~4.2μm。
根据本公开,步骤S1中,所述真空感应炉的真空度可以为10-2~10-1Pa,熔炼温度可以为1300~1500℃,熔炼时间可以为30~60min;浇铸温度可以为1400℃~1500℃,浇铸时间可以为10~15min;步骤S2中,所述吸氢破碎处理的条件可以包括:吸氢压力为0.3~0.4MPa,脱氢温度为560℃~600℃;所述微粉碎处理的气流磨研磨室压力可以为0.5~0.7MPa;步骤S3中,所述烧结处理的条件可以包括:烧结温度为1000℃~1100℃,烧结时间为5h~8.5h;所述时效处理的条件可以包括:时效温度为400℃~500℃,时效时间为7.5h~8.5h。
本公开的第三方面提供一种根据上述方法制备得到的R-T-B磁体,所述R-T-B磁体中的C含量通常在600~800ppm。
优选地,所述R-T-B磁体中的O含量通常在600~1200ppm,N含量通常在100~300ppm。
下面通过实施例来进一步说明本公开,但是本公开并不因此而受到任何限制。实施例中所用到的原材料均可通过商购途径获得。
实施例1
将本实施例的R-T-B磁体原料依次经过熔炼、甩带、氢破、微粉碎、成型、烧结时效得到本实施例的R-T-B磁体,具体原料的配比见表1。
其中,本实施例的具体制备工艺如下:
(1)熔炼:在真空度为7*10-2的高频真空感应熔炼炉中熔炼,熔炼的温度为1400℃。
(2)甩带:采用速凝工艺,获得厚度为0.28mm的合金片,浇铸温度为1450℃。
(3)氢破:经过吸氢、脱氢、冷却处理,吸氢在氢气压力0.3MPa的条件下进行。脱氢在边抽真空边升温的条件下进行,脱氢温度为500℃。
(4)微粉碎:在真空气氛下进行气流磨粉碎获得粉末粒度为3.5μm的细粉,气流磨粉碎研磨室压力为0.68MPa,粉碎后添加润滑剂硬脂酸锌,添加量为粉末重量的0.12%。
(5)成型:在一定的磁场强度和氮气气氛下进行。
(6)烧结:在真空条件下、1050℃下烧结8h,并缓慢风冷。
(7)时效:在真空条件下、500℃下时效处理8.5h,并冷却至室温。
对实施例1制备成的磁体进行磁性能测试和微观结构测试。
实施例2
本实施例的R-T-B磁体的制备方法同实施例1,具体原料的配比见表1。
实施例3
将本实施例的R-T-B磁体原料分为主合金和辅合金,主合金成分为R129Fe67.99B0.92Ti0.14Cu0.13Ga0.2Co1.62,辅合金成分为R119Dy10Fe68.64B0.92Ti0.14Cu0.1Ga0.2Co(R1为Pr和Nd)分别熔炼、甩带、氢破、微粉碎后,按照主合金:辅合金=4:1混合,再经成型、烧结时效得到本实施例的R-T-B磁体。
对比例1
本对比例1的R-T-B磁体的制备方法同实施例1,具体原料的配比见表1,其中Ti含量为0.16wt%。
对比例2
本对比例2的R-T-B磁体的制备方法同实施例2,具体原料的配比见表1,其中Ga含量为0.4wt%。
表1
Figure 788978DEST_PATH_IMAGE001
测试例1
对实施例和对比例制备得到的R-T-B磁体进行微观结构测试,具体的微观结构测试方法为:对磁体不同视野进行扫描电镜分析,并通过单点定量分析确定磁体晶界相中各元素的含量,图1~图3是实施例1的磁体SEM图,通过元素测定确定晶间三角区的物相,并进一步计算物相的面积占比,实施例1的点1~10中各元素含量如表2所示。
表2
Figure 834295DEST_PATH_IMAGE002
通过统计SEM图中所有晶界相中各元素含量和面积值,并经过进一步计算,实施例1的烧结磁体的晶界相中, R-T-M-Ti相占晶界相的22.5%。实施例2的烧结磁体的晶界相中,得出R-T-M-Ti相占晶界相的比例为26.1%,此外,晶界相中存在类delt相,类delt相中R/T=0.2~0.46的晶界相占R-T-M-Ti相的47.5%,R-T-M-Ti相中,Ga/M大于70%的晶界相占R-T-M-Ti相的65%。对比例1的烧结磁体的晶界相中,R-T-M-Ti相占晶界相的16.7%,且类delt相中R/T=0.2~0.46的晶界相仅占R-T-M-Ti相的13.2%。
测试例2
对实施例1~3制备得到的R-T-B磁体进行C含量测试及磁性能测试,具体的磁性能测试方法为:在室温条件20℃下,使用脉冲式BH退磁曲线测试设备进行测试,得到磁体的剩磁(Br)、矫顽力(HcJ)数据,测试结果如表3所示。
表3
Figure 432766DEST_PATH_IMAGE003
本公开的R-T-B磁体的制备方法可以制备得到剩磁、矫顽力均在较高水平、综合性能优异的磁体。对比实施例和对比例可看到,由各元素含量在本公开范围内所制备的实施例1的磁体剩磁和矫顽力均高于对比例1,且经过进一步的微观结构分析发现,实施例1的晶界相中生成了R-T-M-Ti相,且其在晶界相中的占比高于20%。对比实施例1和实施例2可看到,通过在晶界相生成类delt相,并使R/T=0.2~0.46的晶界相形成特定的面积占比,实施例2的磁体的磁能积和矫顽力之和高于实施例1,可获得综合性能更优异的磁体。因此,由上述实施例和对比例可看出,本公开经制备成磁体后,在磁体晶间三角区形成了特定面积占比的类delt相,该物相的存在是由于Ti、B、Ga三者的协同添加并结合相应的生产工艺所产生的,该物相可抑制在特定B量时、由于Ti的减少而产生的HcJ不稳定的问题,当Ga含量降低时,抑制R2T17相的生成,烧结磁体的HcJ提升非常明显。
此外,通过实施例与对比例制备磁体的C含量可看出,实施例1~3的C含量在600~800ppm,而对比例1~2制备磁体的C含量则高于900ppm,将实施例1和对比例1制备的磁体分别进行机加工,实施例1的线切割速度最高可达0.5mm/min,而对比例1制备的磁体线切割速度最高仅为0.25mm/min,切割效率较低,实施例1不仅可达到较佳的磁性能,且切割效率得到了一定程度的提高。
以上详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (8)

1.一种R-T-B磁体,其特征在于,所述R-T-B磁体的元素组成为:R1xR2yT100-x-y-z-u-a-b- cBzTiuCuaGabAc,R1为轻稀土元素,所述轻稀土元素包括Pr和Nd中的至少一种;R2为重稀土元素,所述重稀土元素包括Dy和Tb中的至少一种;T包括Fe和Co;A包括Al、Nb、Zr、Sn、Mn中的至少一种;其中,x、y、z、u、a、b、c为质量百分比,且满足:28%≤x+y≤30.5%,0.88%≤z≤0.92%,0.12%≤u≤0.14%,0≤a≤0.15%,0.15%≤b≤0.25%,0≤c≤2%;所述重稀土元素R2的质量百分比低于2%,所述R-T-B磁体中的C含量为600~800ppm。
2.根据权利要求1所述的R-T-B磁体,其中,所述R-T-B磁体中,Cu元素的质量百分比为0.12~0.15%,Co元素的质量百分比为0.5~2.5%。
3.根据权利要求1所述的R-T-B磁体,所述R-T-B磁体包括主相和晶界相,其中,所述晶界相包括R-T-M-Ti相,所述R-T-M-Ti相中包括类delt相,其中,所述R-T-M-Ti相占所述晶界相的20~30 %,R/T=0.2~0.46的类delt相占所述R-T-M-Ti相的40~50 %;所述类delt相中R3+R4的含量为18~29 at%、T的含量为59~74 at%、M的含量为0.01~5 at%,Ti的含量大于1 at%;R3选自Pr和/或Nd,R4选自Dy和/或Tb,M中包括Ga和/或其他金属元素,所述其他金属元素为Cu和/或A,A包括Al、Nb、Zr、Sn、Mn中的至少一种,T包括Fe和Co。
4.根据权利要求3所述的R-T-B磁体,其中,所述R-T-M-Ti相的元素组成为:R3mR4nT100-m-n-v-eMvTie,其中,m、n、v、e为原子百分比,且满足:14%≤m+n≤60%,0.1%≤v≤11%,0.01%≤e≤9%。
5.根据权利要求1所述的R-T-B磁体,其中,所述R-T-B磁体中的O含量为600~1200ppm,N含量为100~300ppm。
6.根据权利要求4所述的R-T-B磁体,其中,所述R-T-M-Ti相中,Ga/M大于70 %的晶界相占R-T-M-Ti相的60~65%。
7.一种制备权利要求1-6中任意一项所述的R-T-B磁体的方法,其特征在于,所述方法包括:
S1、将符合所述元素组成的合金原料置于真空感应炉中熔炼和浇铸,得到合金片;
S2、将所述合金片吸氢破碎处理后进行微粉碎处理,得到合金细粉;
S3、将所述合金细粉置于磁场中进行取向成型处理后,在真空环境下进行烧结处理和时效处理。
8.根据权利要求7所述的方法,其中,步骤S1中,所述真空感应炉的真空度为10-2~10- 1Pa,熔炼温度为1300~1500℃,熔炼时间为30~60min;浇铸温度为1400℃~1500℃,浇铸时间为10~15min;
步骤S2中,所述合金细粉的粒度为3.2~4.2μm;所述吸氢破碎处理的条件包括:吸氢压力为0.3~0.4MPa,脱氢温度为560℃~600℃;所述微粉碎处理的气流磨研磨室压力为0.5~0.7MPa;
步骤S3中,所述烧结处理的条件包括:烧结温度为1000℃~1100℃,烧结时间为5h~8.5h;所述时效处理的条件包括:时效温度为400℃~500℃,时效时间为7.5h~8.5h。
CN202210271193.9A 2022-03-18 2022-03-18 一种r-t-b磁体及其制备方法 Active CN114373593B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210271193.9A CN114373593B (zh) 2022-03-18 2022-03-18 一种r-t-b磁体及其制备方法
PCT/CN2023/082340 WO2023174430A1 (zh) 2022-03-18 2023-03-17 一种r-t-b磁体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210271193.9A CN114373593B (zh) 2022-03-18 2022-03-18 一种r-t-b磁体及其制备方法

Publications (2)

Publication Number Publication Date
CN114373593A CN114373593A (zh) 2022-04-19
CN114373593B true CN114373593B (zh) 2022-07-05

Family

ID=81145218

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210271193.9A Active CN114373593B (zh) 2022-03-18 2022-03-18 一种r-t-b磁体及其制备方法

Country Status (2)

Country Link
CN (1) CN114373593B (zh)
WO (1) WO2023174430A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114373593B (zh) * 2022-03-18 2022-07-05 宁波科宁达工业有限公司 一种r-t-b磁体及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101236815A (zh) * 2007-12-07 2008-08-06 烟台正海磁性材料有限公司 一种耐高温R-Fe-B系烧结永磁材料及其制造方法
CN103187133A (zh) * 2013-03-20 2013-07-03 钢铁研究总院 一种稀土永磁合金及其磁性相复合制备方法
EP2760032A1 (en) * 2013-01-29 2014-07-30 Yantai Shougang Magnetic Materials Inc. R-T-B-M-C sintered magnet and manufacturing method thereof
CN104051101A (zh) * 2013-03-12 2014-09-17 北京中科三环高技术股份有限公司 一种稀土永磁体及其制备方法
CN106128673A (zh) * 2016-06-22 2016-11-16 烟台首钢磁性材料股份有限公司 一种烧结钕铁硼磁体及其制备方法
CN107130183A (zh) * 2016-02-26 2017-09-05 Tdk株式会社 R‑t‑b系永久磁铁
CN109935432A (zh) * 2017-12-05 2019-06-25 Tdk株式会社 R-t-b系永久磁铁
CN110335733A (zh) * 2019-06-05 2019-10-15 宁波合力磁材技术有限公司 一种耐高温的钕铁硼磁体及其制备方法
CN110556223A (zh) * 2019-09-30 2019-12-10 厦门钨业股份有限公司 一种钕铁硼磁体材料及其制备方法和应用
CN110880392A (zh) * 2019-11-28 2020-03-13 厦门钨业股份有限公司 钕铁硼合金粉末、钕铁硼磁体材料及制备方法和应用
CN111081444A (zh) * 2019-12-31 2020-04-28 厦门钨业股份有限公司 R-t-b系烧结磁体及其制备方法
CN111636035A (zh) * 2020-06-11 2020-09-08 福建省长汀金龙稀土有限公司 重稀土合金、钕铁硼永磁材料、原料和制备方法
CN113593799A (zh) * 2020-04-30 2021-11-02 烟台正海磁性材料股份有限公司 一种细晶、高矫顽力烧结钕铁硼磁体及其制备方法
CN113871121A (zh) * 2021-09-24 2021-12-31 烟台东星磁性材料股份有限公司 耐高温磁体及其制造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101071667B (zh) * 2007-04-12 2010-11-24 北京中科三环高技术股份有限公司 含钆的钕铁硼稀土永磁材料及其制造方法
WO2010113465A1 (ja) * 2009-03-31 2010-10-07 日立金属株式会社 R-t-b-m系焼結磁石用合金及びその製造方法
CN110517838A (zh) * 2019-08-16 2019-11-29 厦门钨业股份有限公司 一种钕铁硼永磁材料及其原料组合物、制备方法和应用
CN111261355B (zh) * 2020-02-26 2021-09-28 厦门钨业股份有限公司 钕铁硼磁体材料、原料组合物、制备方法、应用
CN111326306B (zh) * 2020-02-29 2021-08-27 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用
CN111524674A (zh) * 2020-04-30 2020-08-11 福建省长汀金龙稀土有限公司 一种钕铁硼磁体材料、原料组合物及制备方法、应用
CN114373593B (zh) * 2022-03-18 2022-07-05 宁波科宁达工业有限公司 一种r-t-b磁体及其制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101236815A (zh) * 2007-12-07 2008-08-06 烟台正海磁性材料有限公司 一种耐高温R-Fe-B系烧结永磁材料及其制造方法
EP2760032A1 (en) * 2013-01-29 2014-07-30 Yantai Shougang Magnetic Materials Inc. R-T-B-M-C sintered magnet and manufacturing method thereof
CN104051101A (zh) * 2013-03-12 2014-09-17 北京中科三环高技术股份有限公司 一种稀土永磁体及其制备方法
CN103187133A (zh) * 2013-03-20 2013-07-03 钢铁研究总院 一种稀土永磁合金及其磁性相复合制备方法
CN107130183A (zh) * 2016-02-26 2017-09-05 Tdk株式会社 R‑t‑b系永久磁铁
CN106128673A (zh) * 2016-06-22 2016-11-16 烟台首钢磁性材料股份有限公司 一种烧结钕铁硼磁体及其制备方法
CN109935432A (zh) * 2017-12-05 2019-06-25 Tdk株式会社 R-t-b系永久磁铁
CN110335733A (zh) * 2019-06-05 2019-10-15 宁波合力磁材技术有限公司 一种耐高温的钕铁硼磁体及其制备方法
CN110556223A (zh) * 2019-09-30 2019-12-10 厦门钨业股份有限公司 一种钕铁硼磁体材料及其制备方法和应用
CN110880392A (zh) * 2019-11-28 2020-03-13 厦门钨业股份有限公司 钕铁硼合金粉末、钕铁硼磁体材料及制备方法和应用
CN111081444A (zh) * 2019-12-31 2020-04-28 厦门钨业股份有限公司 R-t-b系烧结磁体及其制备方法
CN113593799A (zh) * 2020-04-30 2021-11-02 烟台正海磁性材料股份有限公司 一种细晶、高矫顽力烧结钕铁硼磁体及其制备方法
CN111636035A (zh) * 2020-06-11 2020-09-08 福建省长汀金龙稀土有限公司 重稀土合金、钕铁硼永磁材料、原料和制备方法
CN113871121A (zh) * 2021-09-24 2021-12-31 烟台东星磁性材料股份有限公司 耐高温磁体及其制造方法

Also Published As

Publication number Publication date
WO2023174430A1 (zh) 2023-09-21
CN114373593A (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
EP4016558A1 (en) R-t-b permanent magnet material and preparation method therefor and use thereof
JP7379362B2 (ja) 低B含有R-Fe-B系焼結磁石及び製造方法
EP3182423B1 (en) Neodymium iron boron magnet and preparation method thereof
CN101364465B (zh) 稀土永磁材料及其制备方法
JP7418598B2 (ja) 重希土類合金、ネオジム鉄ホウ素永久磁石材料、原料及び製造方法
CN111223627B (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
CN108154988B (zh) R-t-b系永久磁铁
EP3940724A1 (en) Rtb-based permanent magnet material, preparation method thereof, and application thereof
US20230021772A1 (en) R-t-b-based sintered magnet and preparation method therefor
JP2019036707A (ja) R−t−b系焼結永久磁石
JPH06275414A (ja) Nd−Fe−B系永久磁石
US20210296028A1 (en) High temperature resistant neodymium-iron-boron magnets and method for producing the same
CN110895985A (zh) 混合稀土烧结钕铁硼永磁体及其制备方法
CN111261355B (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
CN112086255A (zh) 一种高矫顽力、耐高温烧结钕铁硼磁体及其制备方法
CN110060833B (zh) 一种高剩磁、高矫顽力r-t-b永磁材料及其制备方法
CN114373593B (zh) 一种r-t-b磁体及其制备方法
JP2005150503A (ja) 焼結磁石の製造方法
CN111223628B (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
EP4287220A1 (en) Method of preparing a ndfeb magnet and a ndfeb magnet obtained thereby
KR20220041189A (ko) R-t-b계 영구자석 재료, 원료조성물, 제조방법, 응용
EP4287227A1 (en) Diffusion source material and its use for preparation of ndfeb magnets
WO2022193818A1 (zh) 一种r-t-b磁体及其制备方法
JP2023515331A (ja) R-t-b系永久磁石材料、製造方法、並びに応用
US11837390B2 (en) R-T-B based permanent magnet material and method for preparing the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant