WO2021238783A1 - 一种钕铁硼永磁材料、其原料组合物、其制备方法和应用 - Google Patents

一种钕铁硼永磁材料、其原料组合物、其制备方法和应用 Download PDF

Info

Publication number
WO2021238783A1
WO2021238783A1 PCT/CN2021/095068 CN2021095068W WO2021238783A1 WO 2021238783 A1 WO2021238783 A1 WO 2021238783A1 CN 2021095068 W CN2021095068 W CN 2021095068W WO 2021238783 A1 WO2021238783 A1 WO 2021238783A1
Authority
WO
WIPO (PCT)
Prior art keywords
mas
permanent magnet
neodymium iron
magnet material
iron boron
Prior art date
Application number
PCT/CN2021/095068
Other languages
English (en)
French (fr)
Inventor
蓝琴
黄佳莹
牟维国
Original Assignee
厦门钨业股份有限公司
福建省长汀金龙稀土有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门钨业股份有限公司, 福建省长汀金龙稀土有限公司 filed Critical 厦门钨业股份有限公司
Priority to JP2022548091A priority Critical patent/JP7418599B2/ja
Publication of WO2021238783A1 publication Critical patent/WO2021238783A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Definitions

  • the invention relates to a neodymium iron boron permanent magnet material, its raw material composition, its preparation method and application.
  • Permanent magnet materials have been developed as a key material for supporting electronic devices, and the development direction is towards the direction of high magnetic energy product and high coercivity.
  • RTB-based permanent magnet materials (R is at least one of rare earth elements) are known as the highest performance magnets among permanent magnets, and are used in voice coil motors (VCM) of hard disk drives and electric vehicles (EV, HV, PHV) Etc.)
  • VCM voice coil motors
  • EV HV, PHV
  • Etc electric vehicles
  • motors such as motors, industrial equipment motors and home appliances, etc.
  • the existing NdFeB magnet material has a relatively narrow heat treatment temperature zone.
  • the performance of the sintered magnet will change depending on the loading position. The changes are not conducive to mass production.
  • R-T-B permanent magnet material that can guarantee the magnetic properties (residual magnetism and coercivity), good demagnetization resistance, and heat treatment temperature zone.
  • the technical problem to be solved by the present invention is to overcome the defect that the NdFeB permanent magnet material in the prior art cannot guarantee the magnetic performance, the anti-demagnetization performance and the heat treatment temperature zone at the same time, and to provide a NdFeB permanent magnet material, a raw material composition, Preparation method and application.
  • the present invention provides the following technical solutions:
  • One of the objectives of the present invention is to provide a raw material composition for preparing neodymium iron boron permanent magnet materials, which includes the following components in terms of mass percentage:
  • mas% refers to the mass percentage in the raw material composition.
  • the raw material composition generally contains Nd and rare earth metal R other than Nd; the total content of the Nd and the R is generally in the range of 29-33 mas%.
  • the content of B in the raw material composition is generally 0.85-1.2 mas%.
  • Fe generally increases or decreases according to the content of each component of the raw material composition in the neodymium iron boron permanent magnet material, so as to satisfy the sum of the content of each component to be 100 mas%, generally 63.95-68.65 mas%. Therefore, the raw material composition is formulated according to the general understanding of those skilled in the art.
  • the total content of Nd and R is preferably 29.5-32mas%, for example, 30.4mas%, 30.5mas%, 29.8mas%, 30.7mas% or 31.7mas%, and mas% refers to the raw material The mass percentage in the composition.
  • the R may also include Pr.
  • the content of Pr can range from 0-8mas%, such as 0.7mas% or 0.2mas%, and mas% refers to the mass percentage in the raw material composition.
  • the R preferably further includes a heavy rare earth element RH, and the heavy rare earth element RH refers to an element with an atomic number greater than or equal to 64 in the lanthanide series.
  • the content of the RH is preferably 0-1.2mas%, and is not 0, such as 0.2mas%, 1.1mas%, 0.4mas% or 0.5mas%, mas% refers to the content in the raw material composition The mass percentage.
  • the RH generally refers to one or more heavy rare earth elements among Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc.
  • the RH includes Dy and/or Tb. More preferably, the RH further includes Ho and/or Gd. More preferably, the RH is Dy and/or Tb.
  • the content of Dy is preferably in the range of 0.1-0.5 mas%, such as 0.2 mas% or 0.3 mas%, and mas% refers to the mass percentage in the raw material composition.
  • the content of Tb is preferably in the range of 0.1-1 mas%, such as 0.5 mas%, and mas% refers to the mass percentage in the raw material composition.
  • the content of B in the raw material composition can be conventional in the art.
  • the content of B is in the range of 0.9-1.05 mas%, such as 0.98 mas% or 0.94 mas%, and mas% refers to The mass percentage in the raw material composition.
  • the Nb content ranges from 0.3-0.5 mas%, such as 0.33 mas% or 0.41 mas%, and mas% refers to the mass percentage in the raw material composition.
  • the Cu content ranges from 0.6-0.8 mas%, and mas% refers to the mass percentage in the raw material composition.
  • the raw material composition may also include Co.
  • the content of Co may be conventional in the art.
  • the content of Co is 0.5-2.0 mas%, such as 0.7 mas% or 1 mas%, and mas% refers to the mass percentage in the raw material composition.
  • the raw material composition may further include M, and the M includes one or more of Al, Ga, Zr, Ti, and Hf.
  • the content of M is preferably in the range of 0-2.0 mas%, and mas% refers to the mass percentage in the raw material composition.
  • the M preferably includes one or more of Al, Ga, Zr and Ti.
  • the content of Ti may range from 0-0.2 mas%, and not 0, and mas% refers to the mass percentage in the raw material composition.
  • the content of Al may range from 0-0.5 mas%, and not 0, and mas% refers to the mass percentage in the raw material composition.
  • the content of Ga may be in the range of 0-0.3 mas% and not 0, and mas% refers to the mass percentage in the raw material composition.
  • the content of the Zr may range from 0-0.2 mas%, and not 0, and mas% refers to the mass percentage in the raw material composition.
  • the raw material composition preferably consists of the following components:
  • Nd 29-30.5mas%; Tb, 0.5-1.2mas%; B, 0.925-0.94mas%; Nb, 0.25-0.3mas%; Cu, 0.55-0.6mas%; Co, 0.5-1mas%; the balance is Fe.
  • the components and content of the raw material composition can be any one of the following numbers 1-6 (mas%):
  • the second objective of the present invention is to provide an alloy sheet of neodymium iron boron permanent magnet material, which comprises the following components in terms of mass percentage:
  • mas% refers to the mass percentage in the alloy sheet of the neodymium iron boron permanent magnet material.
  • the phase structure of the alloy sheet of the neodymium iron boron permanent magnet material includes a columnar crystal main phase and a grain boundary phase, and the grain boundary phase contains a Cu-rich Nb-rich phase.
  • “Rich” means that the content of the element in the grain boundary is higher than the content of the element in the main phase, and the Cu-rich and Nb-rich phase means that the content of both Cu and Nb is higher at this position.
  • the alloy sheet of the neodymium iron boron permanent magnet material refers to the raw material composition for preparing the neodymium iron boron permanent magnet material through smelting and casting.
  • the alloy sheet of the neodymium iron boron permanent magnet material generally contains Nd and rare earth metal R other than Nd; the total content of the Nd and the R ranges from 29-33mas% .
  • the content of B is generally 0.85-1.2mas%.
  • Fe generally increases or decreases according to the content of each component in the alloy sheet of the neodymium iron boron permanent magnet material, so as to meet the total content of each component to be 100 mas%, generally 63.95-68.65 mas%. Therefore, the alloy sheet of the neodymium iron boron permanent magnet material is prepared by batching according to the general understanding of those skilled in the art.
  • the total content of Nd and R is preferably 29.5-32mas%, such as 30.4mas%, 30.5mas%, 29.8mas%, 30.7mas% or 31.7mas%, mas% refers to the neodymium The mass percentage in the alloy sheet of iron-boron permanent magnet material.
  • the R may also include Pr.
  • the content of Pr can range from 0-8mas%, such as 0.7mas% or 0.2mas%, and mas% refers to the mass percentage in the alloy sheet of the neodymium iron boron permanent magnet material.
  • the R preferably further includes a heavy rare earth element RH, and the heavy rare earth element RH is generally. Elements in the lanthanide series with atomic number greater than or equal to 64
  • the RH content range is preferably 0-1.2mas%, and not 0, such as 0.2mas%, 1.1mas%, 0.4mas% or 0.5mas%, mas% refers to the neodymium iron boron permanent magnet The mass percentage in the alloy sheet of the material.
  • the RH generally refers to one or more heavy rare earth elements among Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc.
  • the RH includes Dy and/or Tb. More preferably, the RH further includes Ho and/or Gd. More preferably, the RH is Dy and/or Tb.
  • the content of Dy is preferably in the range of 0.1-0.5mas%, such as 0.2mas% or 0.3mas%, and mas% refers to the alloy sheet of the neodymium iron boron permanent magnet material The percentage of mass.
  • the content of Tb is preferably in the range of 0.1-1 mas%, such as 0.5 mas%, and mas% refers to the mass percentage in the alloy sheet of the neodymium iron boron permanent magnet material.
  • the content of B in the alloy sheet of the neodymium iron boron permanent magnet material can be conventional in the art.
  • the content of B is in the range of 0.9-1.05 mas%, such as 0.98 mas% or 0.94 mas%
  • Mas% refers to the mass percentage in the alloy sheet of the neodymium iron boron permanent magnet material.
  • the Nb content ranges from 0.3-0.5mas%, such as 0.33mas% or 0.41mas%, and mas% refers to the mass percentage in the alloy sheet of the neodymium iron boron permanent magnet material .
  • the Cu content ranges from 0.6-0.8 mas%, and mas% refers to the mass percentage in the alloy sheet of the neodymium iron boron permanent magnet material.
  • the alloy sheet of the neodymium iron boron permanent magnet material may also include Co.
  • the content of Co can be conventional in the art.
  • the content of Co is 0.5-2.0 mas%, such as 0.7 mas% or 1 mas%, and mas% refers to the alloy of the neodymium iron boron permanent magnet material The percentage of mass in the film.
  • the alloy sheet of the neodymium iron boron permanent magnet material may further include M, and the M includes one or more of Al, Ga, Zr, Ti, and Hf.
  • the content of M is preferably 0-2.0 mas%, and mas% refers to the mass percentage in the alloy sheet of the neodymium iron boron permanent magnet material.
  • the M preferably includes one or more of Al, Ga, Zr and Ti.
  • the content of Ti may range from 0-0.2 mas% and not 0.
  • the mas% refers to the mass percentage in the alloy sheet of the neodymium iron boron permanent magnet material.
  • the content of Al may range from 0-0.5 mas% and not 0.
  • the mas% refers to the mass percentage in the alloy sheet of the neodymium iron boron permanent magnet material.
  • the content of Ga may be in the range of 0-0.3 mas% and not 0.
  • the mas% refers to the mass percentage in the alloy sheet of the neodymium iron boron permanent magnet material.
  • the content of the Zr can range from 0-0.2mas% and not 0, such as 0.01mas% or 0.07mas%, and mas% refers to the content of the neodymium iron boron permanent magnet material The mass percentage in the alloy flakes.
  • the alloy sheet of the neodymium iron boron permanent magnet material is prepared according to the following preparation method: the above-mentioned raw material composition is smelted.
  • the thickness of the alloy sheet is 0.2mm-0.4mm, such as 0.3mm;
  • the melting temperature is 1300-1700°C.
  • the alloy sheet of the neodymium iron boron permanent magnet material preferably consists of the following components:
  • Nd 29-30.5mas%; Tb, 0.5-1.2mas%; B, 0.925-0.94mas%; Nb, 0.25-0.3mas%; Cu, 0.55-0.6mas%; Co, 0.5-1mas%; the balance is Fe.
  • composition and content of the alloy sheet of the neodymium iron boron permanent magnet material can be any one of the following numbers 1-6 (mas%):
  • the third objective of the present invention is to provide a neodymium iron boron permanent magnet material matrix, which includes the following components in terms of mass percentage:
  • mas% refers to the mass percentage in the matrix of the neodymium iron boron permanent magnet material.
  • the matrix of the neodymium iron boron permanent magnet material generally contains Nd and rare earth metal R other than Nd; the total content of Nd and R generally ranges from 29-33mas% .
  • the content of B is generally 0.85-1.2mas%.
  • Fe generally increases or decreases according to the content of each component in the matrix of the neodymium iron boron permanent magnet material, so as to satisfy the sum of the content of each component to be 100 mas%, generally 63.95-68.65 mas%. Therefore, the matrix of the neodymium iron boron permanent magnet material is prepared by batching according to the general understanding of those skilled in the art.
  • the total content of Nd and R is preferably 29.5-32mas%, such as 30.4mas%, 30.5mas%, 29.8mas%, 30.7mas% or 31.7mas%, mas% refers to the neodymium The mass percentage of the iron-boron permanent magnet material in the matrix.
  • the R may also include Pr.
  • the content of Pr can range from 0-8mas%, such as 0.7mas% or 0.2mas%, and mas% refers to the mass percentage in the matrix of the neodymium iron boron permanent magnet material.
  • the R preferably further includes a heavy rare earth element RH, and the heavy rare earth element RH is generally. Elements in the lanthanide series with atomic number greater than or equal to 64
  • the RH content range is preferably 0-1.2mas%, and not 0, such as 0.2mas%, 1.1mas%, 0.4mas% or 0.5mas%, mas% refers to the neodymium iron boron permanent magnet The mass percentage in the matrix of the material.
  • the RH generally refers to one or more heavy rare earth elements among Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc.
  • the RH includes Dy and/or Tb. More preferably, the RH further includes Ho and/or Gd. More preferably, the RH is Dy and/or Tb.
  • the content of Dy is preferably in the range of 0.1-0.5mas%, such as 0.2mas% or 0.3mas%, and mas% refers to the content in the matrix of the neodymium iron boron permanent magnet material The mass percentage.
  • the content of Tb is preferably in the range of 0.1-1 mas%, such as 0.5 mas%, and mas% refers to the mass percentage in the matrix of the neodymium iron boron permanent magnet material.
  • the content of B in the matrix of the neodymium iron boron permanent magnet material can be conventional in the art.
  • the content of B is in the range of 0.9-1.05 mas%, such as 0.98 mas% or 0.94 mas%, mas% refers to the mass percentage in the matrix of the neodymium iron boron permanent magnet material.
  • the Nb content ranges from 0.3-0.5 mas%, such as 0.33 mas% or 0.41 mas%, and mas% refers to the mass percentage in the matrix of the neodymium iron boron permanent magnet material.
  • the Cu content ranges from 0.6-0.8 mas%, and mas% refers to the mass percentage in the matrix of the neodymium iron boron permanent magnet material.
  • the matrix of the neodymium iron boron permanent magnet material may further include C.
  • the content of C is preferably 0.1-0.2 mas%, such as 0.11 mas%, 0.12 mas% or 0.15 mas%, and mas% refers to the mass percentage in the matrix of the neodymium iron boron permanent magnet material.
  • the matrix of the neodymium iron boron permanent magnet material may also include O; the content of O is preferably in the range of 0.04-0.13mas% or 0.07-0.13mas%, such as 0.11mas% or 0.12mas%, mas% refers to the mass percentage in the matrix of the neodymium iron boron permanent magnet material.
  • the matrix of the neodymium iron boron permanent magnet material may also include Co.
  • the content of Co can be conventional in the art.
  • the content of Co is 0.5-2.0 mas%, such as 0.7 mas% or 1 mas%, and mas% refers to the matrix of the neodymium iron boron permanent magnet The mass percentage in.
  • the matrix of the neodymium iron boron permanent magnet material may further include M, and the M includes one or more of Al, Ga, Zr, Ti, and Hf.
  • the content of M is preferably 0-2.0 mas%, and mas% refers to the mass percentage in the matrix of the neodymium iron boron permanent magnet material.
  • the M preferably includes one or more of Al, Ga, Zr and Ti.
  • the content of Ti may range from 0-0.2 mas% and not 0.
  • the mas% refers to the mass percentage in the matrix of the neodymium iron boron permanent magnet material.
  • the content of Al may range from 0-0.5 mas% and not 0.
  • the mas% refers to the mass percentage in the matrix of the neodymium iron boron permanent magnet material.
  • the content of Ga may range from 0-0.3 mas%, and not 0.
  • the mas% refers to the mass percentage in the matrix of the neodymium iron boron permanent magnet material.
  • the content of the Zr may range from 0 to 0.2 mas%, and not 0.
  • the mas% refers to the mass percentage in the matrix of the neodymium iron boron permanent magnet material.
  • the matrix of the neodymium iron boron permanent magnet material preferably consists of the following components:
  • Nd 29-30mas%; Tb, 0.5-1.2mas%; B, 0.925-0.94mas%; Nb, 0.25-0.3mas%; Cu, 0.55-0.6mas%; C, 0.011-0.02mas%; O, 0.07 -0.13mas%; Co, 0.5-1mas%; the balance is Fe.
  • composition and content of the matrix of the neodymium iron boron permanent magnet material can be any one of the following numbers 1-6 (mas%):
  • the fourth objective of the present invention is to provide a neodymium iron boron permanent magnet material, which comprises the following components in terms of mass percentage:
  • mas% refers to the mass percentage of the neodymium iron boron permanent magnet material.
  • the neodymium iron boron permanent magnet material generally includes Nd and rare earth metal R other than Nd, and the R includes the RH; the Nd and rare earth other than Nd
  • the total content of metal R is generally 29-33mas%.
  • the content of B is generally 0.85-1.2mas%.
  • Fe generally increases or decreases according to the content of each component in the neodymium iron boron permanent magnet material, so as to meet the total content of each component to be 100 mas%, generally 63.95-68.65 mas%. Therefore, the neodymium iron boron permanent magnet material is compounded according to the general understanding of those skilled in the art.
  • the rare earth metal R generally includes a light rare earth element and the heavy rare earth element RH.
  • the light rare earth element refers to a rare earth element with a lower atomic number and a smaller mass; and the heavy rare earth element RH generally refers to a rare earth element with a relatively low atomic number.
  • Rare earth elements with high atomic number and greater mass are rare earth elements with high atomic number and greater mass.
  • the total content range of the Nd and the R is preferably 30-32.5mas%, for example, 30.8mas%, 30.9mas%, 30.1mas%, 31.1mas% or 32.1mas%, and mas% refers to the The mass percentage of neodymium iron boron permanent magnet materials.
  • the R may also include Pr.
  • the content of Pr can range from 0-8mas%, such as 0.7mas% or 0.2mas%, and mas% refers to the mass percentage in the neodymium iron boron permanent magnet material.
  • the RH content range is preferably 0.6-2.5mas%, such as 0.8mas%, 1.7mas%, 0.9mas%, 1.1mas% or 2.1mas%, preferably 0.6-1.8mas%
  • Mas% refers to the mass percentage in the neodymium iron boron permanent magnet material.
  • the RH generally refers to one or more heavy rare earth elements among Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Sc.
  • the RH includes Dy and/or Tb. More preferably, the RH further includes Ho and/or Gd. More preferably, the RH is Dy and/or Tb.
  • the content of Dy is preferably in the range of 0.1-0.8 mas%, such as 0.2 mas%, 0.3 mas% or 0.7 mas%.
  • the mass percentage in the magnetic material is preferably in the range of 0.1-0.8 mas%, such as 0.2 mas%, 0.3 mas% or 0.7 mas%.
  • the content of Tb is preferably 0.6-1.2mas%, such as 0.6mas%, 1mas% or 1.1mas%, and mas% refers to the NdFeB permanent magnet The mass percentage in the material.
  • the content of B in the neodymium iron boron permanent magnet material can be conventional in the art.
  • the content of B is in the range of 0.9-1.05 mas%, such as 0.98 mas% or 0.94 mas%, mas% Refers to the mass percentage in the neodymium iron boron permanent magnet material.
  • the Nb content ranges from 0.3-0.5 mas%, such as 0.33 mas% or 0.41 mas%, and mas% refers to the mass percentage in the neodymium iron boron permanent magnet material.
  • the Cu content ranges from 0.6-0.8 mas%, and mas% refers to the mass percentage in the neodymium iron boron permanent magnet material.
  • the neodymium iron boron permanent magnet material may also include O; the content of O is preferably 0.04-0.13mas% or 0.07-0.13mas%, such as 0.11mas% or 0.12mas%, mas% Refers to the mass percentage in the neodymium iron boron permanent magnet material.
  • the neodymium iron boron permanent magnet material may also include Co.
  • the content of Co can be conventional in the art.
  • the content of Co is 0.5-2.0 mas%, such as 0.7 mas% or 1 mas%, and mas% refers to the content in the neodymium iron boron permanent magnet material The mass percentage.
  • the neodymium iron boron permanent magnet material may also include C.
  • the content of C is preferably 0.1-0.2 mas%, such as 0.11 mas%, 0.12 mas% or 0.15 mas%, and mas% refers to the mass percentage in the neodymium iron boron permanent magnet material.
  • the neodymium iron boron permanent magnet material may further include M, and the M includes one or more of Al, Ga, Zr, Ti, and Hf.
  • the content of M is preferably 0-2.0 mas%, and mas% refers to the mass percentage in the neodymium iron boron permanent magnet material.
  • the M preferably includes one or more of Al, Ga, Zr and Ti.
  • the content of Ti may range from 0-0.2 mas%, and not 0.
  • the mas% refers to the mass percentage in the neodymium iron boron permanent magnet material.
  • the content of Al may range from 0-0.5 mas%, and not 0.
  • the mas% refers to the mass percentage in the neodymium iron boron permanent magnet material.
  • the content of Ga may range from 0-0.3 mas%, and not 0.
  • the mas% refers to the mass percentage in the neodymium iron boron permanent magnet material.
  • the content of the Zr may range from 0-0.2 mas%, and not 0.
  • the mas% refers to the mass percentage in the neodymium iron boron permanent magnet material.
  • the neodymium iron boron permanent magnet material preferably consists of the following components:
  • Nd 29-30mas%; Tb, 0.6-1.2mas%; B, 0.925-0.94mas%; Nb, 0.25-0.3mas%; Cu, 0.55-0.6mas%; C, 0.11-0.12mas%; O, 0.07 -0.13mas%; Co, 0.5-1mas%; the balance is Fe.
  • the composition and content of the neodymium iron boron permanent magnet material can be any one of the following numbers 1-5 (mas%):
  • the fifth objective of the present invention is to provide a method for preparing a matrix of a neodymium iron boron permanent magnet material.
  • the preparation method includes the following steps: smelting the above-mentioned raw material composition for preparing the neodymium iron boron permanent magnet material, The alloy flakes are obtained; the alloy flakes are powdered, formed, and sintered.
  • the thickness of the alloy sheet may be 0.2mm-0.4mm, for example 0.3mm.
  • the alloy sheet is an alloy sheet of the above-mentioned neodymium iron boron permanent magnet material.
  • the smelting operation and conditions can be conventional smelting processes in the field.
  • the raw material composition of the neodymium iron boron permanent magnet material is smelted and casted by an ingot process and a quick-setting sheet process to obtain alloy flakes .
  • an additional 0-0.3mas% rare earth element ( Generally Nd element), the percentage is the mass percentage of the content of the additional rare earth element to the total content of the raw material composition; in addition, the content of this part of the additional rare earth element is not included in the category of the raw material composition.
  • the melting temperature may be 1300-1700°C.
  • the smelting equipment is generally a high-frequency vacuum smelting furnace, such as a high-frequency vacuum induction quick-setting ribbon spinning furnace.
  • the smelting process may also introduce a small part of oxygen element, such as 0-0.013wt%.
  • the operation and conditions of the pulverizing can be conventional pulverizing processes in the field, and generally include hydrogen crushing pulverizing and jet milling pulverizing.
  • the hydrogen crushing and pulverizing generally includes hydrogen absorption, dehydrogenation and cooling treatment.
  • the temperature of the hydrogen absorption is generally 20-200°C.
  • the temperature of the dehydrogenation is generally 400-650°C.
  • the pressure of the hydrogen absorption is generally 50-600 kPa.
  • the air-jet milling powder is generally carried out under the conditions of 0.1-2 MPa, preferably 0.5-0.7 MPa.
  • the gas stream in the gas stream milling powder can be, for example, nitrogen gas and/or argon gas.
  • the efficiency of the air jet milling powder may vary according to different equipment, for example, it may be 30-400 kg/h, and for example 200 kg/h.
  • the particle size of the powder after the airflow milling may be D50 3 ⁇ m-8 ⁇ m, for example, D50 4 ⁇ m.
  • the oxygen content in the airflow milling process, it is generally necessary to control the oxygen content to below 100 ppm.
  • the means for controlling the oxygen content can be conventional in the field.
  • the molding operation and conditions can be conventional molding processes in the field.
  • the magnetic field forming method for example, the magnetic field forming method.
  • the magnetic field strength of the magnetic field forming method is generally above 1.5T.
  • the sintering operation and conditions can be conventional sintering processes in the field, such as vacuum sintering process and/or inert atmosphere sintering process.
  • the vacuum sintering process or the inert atmosphere sintering process are conventional operations in the art.
  • an inert atmosphere sintering process is adopted, the initial stage of the sintering can be performed under the condition of a vacuum degree of less than 5 ⁇ 10 -3 Pa.
  • the inert atmosphere may be a conventional atmosphere containing inert gas in the art, and is not limited to helium and argon.
  • the sintering temperature may be 1000-1200°C, preferably 1030-1090°C.
  • the sintering time may be 0.5-10h, preferably 2-8h.
  • the sixth object of the present invention is to provide a neodymium iron boron permanent magnet material matrix, which is prepared according to the above-mentioned preparation method.
  • the seventh objective of the present invention is to provide a method for preparing a neodymium iron boron permanent magnet material.
  • the preparation method includes the following steps: subjecting the matrix of the neodymium iron boron permanent magnet material to a grain boundary diffusion treatment.
  • the grain boundary diffusion treatment can be processed according to conventional processes in the field, for example, the grain boundary diffusion treatment can be realized by a heavy rare earth metal coating operation, a vapor phase physical precipitation operation, or an evaporation operation.
  • the heavy rare earth metal includes Dy and/or Tb.
  • the content of the heavy rare earth metal is preferably 0-0.6 mas% and not 0.
  • the mas% refers to the mass percentage in the raw material composition of the neodymium iron boron permanent magnet material.
  • the heavy rare earth metal is generally coated in the form of fluoride, such as terbium fluoride or dysprosium fluoride, and the introduced fluorine element is not included in the element range of the final magnet composition.
  • the gas phase physical precipitation operation generally refers to magnetron plasma sputtering, in which the heavy rare earth Dy and/or Tb target is bombarded by an inert gas to generate heavy rare earth Dy and/or Tb ions, which are uniformly attached to the surface of the substrate under the control of a magnetic field.
  • the vapor deposition method generally refers to the production of heavy rare earth Dy and/or Tb vapor at a certain vacuum degree (such as 5-0.05 Pa) and a certain temperature (such as 500-900°C) by heavy rare earth Dy and/or Tb.
  • the heavy rare earth elements are enriched on the surface of the substrate.
  • the temperature of the grain boundary diffusion may be 800-1000°C, for example, 900°C.
  • the time for the grain boundary diffusion may be 12-90h, such as 24h.
  • heat treatment is also performed according to the conventional practice in the art.
  • the temperature of the heat treatment may be 470°C-510°C.
  • the heat treatment time may be 2-4 hours, for example, 3 hours.
  • the C and O impurities introduced due to the influence of the purity of the raw materials and the preparation process are not included in the raw material composition range and the alloy flakes.
  • Lubricants are generally added in the preparation process, and the content of carbon impurities introduced is conventional in the art, generally 0.1-0.2 mas%.
  • the content of oxygen impurities introduced is conventional in the art, and is generally below 1300 ppm.
  • the eighth object of the present invention is to provide a neodymium iron boron permanent magnet material, which is prepared according to the above-mentioned preparation method.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the squareness of the neodymium iron boron permanent magnet material of the present invention is better, all of which are more than 99%;
  • the neodymium iron boron permanent magnet material of the present invention has good temperature performance, and the temperature coefficient of Hcj at 20-150°C
  • the heat treatment temperature range of the NdFeB permanent magnet material of the present invention is wide, which is 470-510°C;
  • the neodymium iron boron permanent magnet material Br of the present invention is greater than or equal to 14 kGs, and the coercive force is greater than or equal to 25 kOe.
  • Figure 1 is the microstructure of the alloy sheet of the neodymium iron boron permanent magnet material in Example 2.
  • NdFeB permanent magnet material The preparation method of NdFeB permanent magnet material is as follows:
  • Airflow milling process in a nitrogen atmosphere (the oxygen content needs to be controlled below 100ppm), the hydrogen crushed powder is pulverized by airflow under the condition of the pressure of the crushing chamber of 0.65MPa.
  • the efficiency can be different according to different equipment, for example, it can be 200kg/h) to obtain fine powder with a particle size of D50 4 ⁇ m.
  • each molded body is moved to a sintering furnace for sintering, sintered under a vacuum of less than 0.5 Pa, and sintered at 1030-1090°C for 2-8 hours to obtain a neodymium iron boron permanent magnet material matrix.
  • Example 1-5 Take the NdFeB permanent magnet materials in Example 1-5 and Comparative Example 1-5, respectively, measure their magnetic properties, composition and temperature coefficient, and observe the microscopic appearance of the alloy sheet of the NdFeB permanent magnet material in Example 2 using EPMA organization.
  • Magnetic performance evaluation The sintered magnet uses the NIM-10000H BH bulk rare earth permanent magnet non-destructive measurement system of China Metrology Institute for magnetic performance testing. Table 3 below shows the magnetic performance testing results.
  • Temperature stability test is generally expressed by the temperature variation coefficient of various magnetic properties, which refers to the percentage of the change in magnetic properties for every 1°C change in temperature, which characterizes the magnetic properties of permanent magnet materials in the external temperature field.
  • Microstructure inspection of alloy sheet Take the alloy sheet of Example 2 for FE-EPMA inspection.
  • the test method is: inlay and polish the section of the alloy piece, and use the field emission electron probe microanalyzer (FE-EPMA) (JEOL, 8530F) for detection.
  • FE-EPMA field emission electron probe microanalyzer
  • the distribution of Nb and Cu elements in the alloy sheet was determined by surface scanning. In Figure 1, there is a Cu-rich Nb-rich phase at the grain boundary.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

本发明公开了钕铁硼永磁材料、其原料组合物、其制备方法。用于制备钕铁硼永磁材料的原料组合物,包括以下组分:Nb,0.25-0.5mas%;Cu,0.55-0.8mas%。由该原料组合物制得的钕铁硼永磁材料方形度均为99%以上;20-150℃Hcj温度系数绝对值均在0.422%以下;热处理温区为470-510℃;Br≥14kGs,矫顽力≥25kOe。

Description

一种钕铁硼永磁材料、其原料组合物、其制备方法和应用 技术领域
本发明涉及一种钕铁硼永磁材料、其原料组合物、其制备方法和应用。
背景技术
永磁材料作为支撑电子器件的关键材料被开发出来,发展方向向着高磁能积及高矫顽力的方向进行。R-T-B系永磁材料(R为稀土类元素中的至少一种)已知为永久磁铁中性能最高的磁铁,被用于硬盘驱动器的音圈电机(VCM)、电动车用(EV、HV、PHV等)电机、工业设备用电机等各种电机和家电制品等。
现有技术中,面临的技术难题之一:当高熔点金属,例如Nb、Ti和Zr等含量较低时,会导致烧结困难,从而磁体矫顽力下降。但高熔点金属含量较高时,也会导致剩磁降低。
面临的技术难题之二:现有的钕铁硼磁体材料的热处理温区较窄,在大热处理炉中对钕铁硼磁体材料进行热处理时,根据装载位置的不同,烧结磁铁的性能会发生大的变动,不利于批量生产。
因此,亟需一种既能保证磁性能(剩磁和矫顽力),且抗退磁性能好,又能够保证热处理温区的R-T-B系永磁材料。
发明内容
本发明要解决的技术问题是克服现有技术中钕铁硼永磁材料不能同时保证磁性能、抗退磁性能和热处理温区的缺陷,而提供一种钕铁硼永磁材料、原料组合物、制备方法和应用。
为解决上述技术问题,本发明提供以下技术方案:
本发明的目的之一,提供一种用于制备钕铁硼永磁材料的原料组合物,以质量百分比计,其包括以下组分:
Nb,0.25-0.5mas%;
Cu,0.55-0.8mas%;
mas%是指在所述原料组合物中的质量百分比。
本发明中,本领域技术人员均知晓,所述原料组合物一般包含Nd和除Nd之外的稀土金属R;所述Nd和所述R总含量范围一般为29-33mas%。原料组合物中的B的含量一般为0.85-1.2mas%。Fe一般根据钕铁硼永磁材料中的原料组合物各组分含量而增大或减小,以满足各组分含量之和为100mas%,一般为63.95-68.65mas%。故所述原料组合物按照本领域技术人员的一般理解进行配料。
其中,所述Nd和所述R总含量范围较佳地为29.5-32mas%,例如30.4mas%、30.5mas%、29.8mas%、30.7mas%或31.7mas%,mas%是指在所述原料组合物中的质量百分比。
其中,所述R还可包括Pr。所述Pr的含量范围可为0-8mas%,例如0.7mas%或0.2mas%,mas%是指在所述原料组合物中的质量百分比。
其中,所述R较佳地还包括重稀土元素RH,所述重稀土元素RH是指镧系元素中原子序数大于等于64的元素。
所述RH的含量范围较佳地为0-1.2mas%、且不为0,例如0.2mas%、1.1mas%、0.4mas%或0.5mas%,mas%是指在所述原料组合物中的质量百分比。
所述RH一般是指Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu和Sc中的一种或多种重稀土元素。较佳地,所述RH包括Dy和/或Tb。更佳地,所述RH还包括Ho和/或Gd。更佳地,所述RH为Dy和/或Tb。
当所述RH包括Dy时,所述Dy的含量范围较佳地为0.1-0.5mas%,例如0.2mas%或0.3mas%,mas%是指在所述原料组合物中的质量百分比。
当所述RH包括Tb时,所述Tb的含量范围较佳地为0.1-1mas%,例如0.5mas%,mas%是指在所述原料组合物中的质量百分比。
本发明中,所述原料组合物中的B含量可为本领域常规,较佳地,所述 B的含量范围为0.9-1.05mas%,例如0.98mas%或0.94mas%,mas%是指在所述原料组合物中的质量百分比。
本发明中,较佳地,所述Nb的含量范围为0.3-0.5mas%,例如0.33mas%或0.41mas%,mas%是指在所述原料组合物中的质量百分比。
本发明中,较佳地,所述Cu的含量范围为0.6-0.8mas%,mas%是指在所述原料组合物中的质量百分比。
本发明中,所述原料组合物还可包括Co。所述Co的含量可为本领域常规,较佳地,所述Co的含量为0.5-2.0mas%,例如0.7mas%或1mas%,mas%是指在所述原料组合物中的质量百分比。
本发明中,所述原料组合物还可包括M,所述M包括Al、Ga、Zr、Ti和Hf中的一种或多种。所述M的含量范围较佳地为0-2.0mas%,mas%是指在所述原料组合物中的质量百分比。
其中,所述M较佳地包括Al、Ga、Zr和Ti中的一种或多种。
当所述M包括Ti时,所述Ti的含量范围可为0-0.2mas%、且不为0,mas%是指在所述原料组合物中的质量百分比。
当所述M包括Al时,所述Al的含量范围可为0-0.5mas%、且不为0,mas%是指在所述原料组合物中的质量百分比。
当所述M包括Ga时,所述Ga的含量范围可为0-0.3mas%、且不为0,mas%是指在所述原料组合物中的质量百分比。
当所述M包括Zr时,所述Zr的含量范围可为0-0.2mas%、且不为0,mas%是指在所述原料组合物中的质量百分比。
本发明中,以质量百分比计,所述原料组合物较佳地由以下组分组成:
Nd,29-30.5mas%;Tb,0.5-1.2mas%;B,0.925-0.94mas%;Nb,0.25-0.3mas%;Cu,0.55-0.6mas%;Co,0.5-1mas%;余量为Fe。
在本发明较佳实施方式中,所述原料组合物的组分和含量可为下述编号1-6中的任意一种(mas%):
Figure PCTCN2021095068-appb-000001
Figure PCTCN2021095068-appb-000002
本发明的目的之二,提供一种钕铁硼永磁材料的合金片,以质量百分比计,其包括以下组分:
Nb,0.25-0.5mas%;
Cu,0.55-0.8mas%;
mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比。
本发明中,较佳地,所述钕铁硼永磁材料的合金片的相结构包含柱状晶主相和晶界相,所述晶界相中含有富Cu富Nb相。“富”表示该元素在晶界中的含量高于该元素在主相中的含量,富Cu富Nb相表示在该位置Cu和Nb均含量较高。
本发明中,所述钕铁硼永磁材料的合金片是指由所述用于制备钕铁硼永磁材料的原料组合物经熔炼、铸造所得。
本发明中,本领域技术人员均知晓,所述钕铁硼永磁材料的合金片一般包含Nd和除Nd之外的稀土金属R;所述Nd和所述R总含量范围为29-33mas%。B的含量一般为0.85-1.2mas%。Fe一般根据钕铁硼永磁材料的合金片中的各组分含量而增大或减小,以满足各组分含量之和为100mas%,一般为63.95-68.65mas%。故所述钕铁硼永磁材料的合金片按照本领域技术人员的一般理解进行配料制得。
其中,所述Nd和所述R总含量范围较佳地为29.5-32mas%,例如30.4mas%、30.5mas%、29.8mas%、30.7mas%或31.7mas%,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比。
其中,所述R还可包括Pr。所述Pr的含量范围可为0-8mas%,例如0.7mas%或0.2mas%,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比。
其中,所述R较佳地还包括重稀土元素RH,所述重稀土元素RH一般是。镧系元素中原子序数大于等于64的元素
所述RH的含量范围较佳地为0-1.2mas%、且不为0,例如0.2mas%、1.1mas%、0.4mas%或0.5mas%,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比。
所述RH一般是指Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu和Sc中的一种或多种重稀土元素。较佳地,所述RH包括Dy和/或Tb。更佳地,所述RH还包括Ho和/或Gd。更佳地,所述RH为Dy和/或Tb。
当所述RH包括Dy时,所述Dy的含量范围较佳地为0.1-0.5mas%,例如0.2mas%或0.3mas%,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比。
当所述RH包括Tb时,所述Tb的含量范围较佳地为0.1-1mas%,例如0.5mas%,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比。
本发明中,所述钕铁硼永磁材料的合金片中的B含量可为本领域常规,较佳地,所述B的含量范围为0.9-1.05mas%,例如0.98mas%或0.94mas%,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比。
本发明中,较佳地,所述Nb的含量范围为0.3-0.5mas%,例如0.33mas%或0.41mas%,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比。
本发明中,较佳地,所述Cu的含量范围为0.6-0.8mas%,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比。
本发明中,所述钕铁硼永磁材料的合金片还可包括Co。所述Co的含量可为本领域常规,较佳地,所述Co的含量为0.5-2.0mas%,例如0.7mas%或1mas%,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比。
本发明中,所述钕铁硼永磁材料的合金片还可包括M,所述M包括Al、Ga、Zr、Ti和Hf中的一种或多种。所述M的含量范围较佳地为0-2.0mas%,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比。
其中,所述M较佳地包括Al、Ga、Zr和Ti中的一种或多种。
当所述M包括Ti时,所述Ti的含量范围可为0-0.2mas%、且不为0,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比。
当所述M包括Al时,所述Al的含量范围可为0-0.5mas%、且不为0,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比。
当所述M包括Ga时,所述Ga的含量范围可为0-0.3mas%、且不为0,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比。
当所述M包括Zr时,所述Zr的含量范围可为0-0.2mas%、且不为0,例如0.01mas%或者0.07mas%,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比。
本发明中,较佳地,所述钕铁硼永磁材料的合金片按照以下制备方法制得:将上述原料组合物经熔炼即可。
其中,较佳地,所述合金片的厚度为0.2mm-0.4mm,例如0.3mm;
其中,较佳地,所述熔炼的温度为1300-1700℃。
本发明中,以质量百分比计,所述钕铁硼永磁材料的合金片较佳地由以下组分组成:
Nd,29-30.5mas%;Tb,0.5-1.2mas%;B,0.925-0.94mas%;Nb,0.25-0.3mas%;Cu,0.55-0.6mas%;Co,0.5-1mas%;余量为Fe。
在本发明较佳实施方式中,忽略损耗,所述钕铁硼永磁材料的合金片的组分和含量可为下述编号1-6中的任意一种(mas%):
Figure PCTCN2021095068-appb-000003
本发明的目的之三,提供一种钕铁硼永磁材料的基体,以质量百分比计,其包括以下组分:
Nb,0.25-0.5mas%;
Cu,0.55-0.8mas%;
mas%是指在所述钕铁硼永磁材料的基体中的质量百分比。
本发明中,本领域技术人员均知晓,所述钕铁硼永磁材料的基体一般包含Nd和除Nd之外的稀土金属R;所述Nd和所述R总含量范围一般为29-33mas%。B的含量一般为0.85-1.2mas%。Fe一般根据钕铁硼永磁材料的基体中的各组分含量而增大或减小,以满足各组分含量之和为100mas%,一般为63.95-68.65mas%。故所述钕铁硼永磁材料的基体按照本领域技术人员的一般理解进行配料制得。
其中,所述Nd和所述R总含量范围较佳地为29.5-32mas%,例如30.4mas%、30.5mas%、29.8mas%、30.7mas%或31.7mas%,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比。
其中,所述R还可包括Pr。所述Pr的含量范围可为0-8mas%,例如0.7mas%或0.2mas%,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比。
其中,所述R较佳地还包括重稀土元素RH,所述重稀土元素RH一般是。镧系元素中原子序数大于等于64的元素
所述RH的含量范围较佳地为0-1.2mas%、且不为0,例如0.2mas%、1.1mas%、0.4mas%或0.5mas%,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比。
所述RH一般是指Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu和Sc中的一种或多种重稀土元素。较佳地,所述RH包括Dy和/或Tb。更佳地,所述RH还包括Ho和/或Gd。更佳地,所述RH为Dy和/或Tb。
当所述RH包括Dy时,所述Dy的含量范围较佳地为0.1-0.5mas%,例如0.2mas%或0.3mas%,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比。
当所述RH包括Tb时,所述Tb的含量范围较佳地为0.1-1mas%,例如0.5mas%,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比。
本发明中,所述钕铁硼永磁材料的基体中的B含量可为本领域常规,较佳地,所述B的含量范围为0.9-1.05mas%,例如0.98mas%或0.94mas%, mas%是指在所述钕铁硼永磁材料的基体中的质量百分比。
本发明中,较佳地,所述Nb的含量范围为0.3-0.5mas%,例如0.33mas%或0.41mas%,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比。
本发明中,较佳地,所述Cu的含量范围为0.6-0.8mas%,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比。
本发明中,所述钕铁硼永磁材料的基体还可包括C。所述C的含量范围较佳地为0.1-0.2mas%,例如0.11mas%、0.12mas%或者0.15mas%,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比。
本发明中,所述钕铁硼永磁材料的基体还可包括O;所述O的含量范围较佳地为0.04-0.13mas%或者0.07-0.13mas%,例如0.11mas%或者0.12mas%,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比。
本发明中,所述钕铁硼永磁材料的基体还可包括Co。所述Co的含量可为本领域常规,较佳地,所述Co的含量为0.5-2.0mas%,例如0.7mas%或1mas%,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比。
本发明中,所述钕铁硼永磁材料的基体还可包括M,所述M包括Al、Ga、Zr、Ti和Hf中的一种或多种。所述M的含量范围较佳地为0-2.0mas%,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比。
其中,所述M较佳地包括Al、Ga、Zr和Ti中的一种或多种。
当所述M包括Ti时,所述Ti的含量范围可为0-0.2mas%、且不为0,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比。
当所述M包括Al时,所述Al的含量范围可为0-0.5mas%、且不为0,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比。
当所述M包括Ga时,所述Ga的含量范围可为0-0.3mas%、且不为0,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比。
当所述M包括Zr时,所述Zr的含量范围可为0-0.2mas%、且不为0,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比。
本发明中,以质量百分比计,所述钕铁硼永磁材料的基体较佳地由以下 组分组成:
Nd,29-30mas%;Tb,0.5-1.2mas%;B,0.925-0.94mas%;Nb,0.25-0.3mas%;Cu,0.55-0.6mas%;C,0.011-0.02mas%;O,0.07-0.13mas%;Co,0.5-1mas%;余量为Fe。
在本发明较佳实施方式中,忽略损耗,所述钕铁硼永磁材料的基体的组分和含量可为下述编号1-6中的任意一种(mas%):
Figure PCTCN2021095068-appb-000004
本发明的目的之四,提供一种钕铁硼永磁材料,以质量百分比计,其包括以下组分:
重稀土金属RH;
Nb,0.25-0.5mas%;
Cu,0.55-0.8mas%;
mas%是指在所述钕铁硼永磁材料的质量百分比。
本发明中,本领域技术人员均知晓,所述钕铁硼永磁材料一般包含Nd和除Nd之外的稀土金属R、所述R包含所述RH;所述Nd和除Nd之外的稀土金属R总含量一般为29-33mas%。B的含量一般为0.85-1.2mas%。Fe一般根据钕铁硼永磁材料中的各组分含量而增大或减小,以满足各组分含量之和为100mas%,一般为63.95-68.65mas%。故所述钕铁硼永磁材料按照本领域技术人员的一般理解进行配料。
其中,所述稀土金属R一般包括轻稀土元素和所述重稀土元素RH,轻稀土元素是指具有较低的原子序数和较小质量的稀土元素;所述重稀土元素RH一般是指具有较高的原子序数的较大质量的稀土元素。
其中,所述Nd和所述R总含量范围较佳地为30-32.5mas%,例如30.8mas%、30.9mas%、30.1mas%、31.1mas%或32.1mas%,mas%是指在所述 钕铁硼永磁材料中的质量百分比。
其中,所述R还可包括Pr。所述Pr的含量范围可为0-8mas%,例如0.7mas%或0.2mas%,mas%是指在所述钕铁硼永磁材料中的质量百分比。
本发明中,所述RH的含量范围较佳地为0.6-2.5mas%,例如0.8mas%、1.7mas%、0.9mas%、1.1mas%或2.1mas%,较佳地为0.6-1.8mas%,mas%是指在所述钕铁硼永磁材料中的质量百分比。
本发明中,所述RH一般是指Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu和Sc中的一种或多种重稀土元素。较佳地,所述RH包括Dy和/或Tb。更佳地,所述RH还包括Ho和/或Gd。更佳地,所述RH为Dy和/或Tb。
其中,当所述RH包括Dy时,所述Dy的含量范围较佳地为0.1-0.8mas%,例如0.2mas%、0.3mas%或0.7mas%,mas%是指在所述钕铁硼永磁材料中的质量百分比。
其中,当所述RH包括Tb时,所述Tb的含量范围较佳地为0.6-1.2mas%,例如0.6mas%、1mas%或1.1mas%,mas%是指在所述钕铁硼永磁材料中的质量百分比。
本发明中,所述钕铁硼永磁材料中的B含量可为本领域常规,较佳地,所述B的含量范围为0.9-1.05mas%,例如0.98mas%或0.94mas%,mas%是指在所述钕铁硼永磁材料中的质量百分比。
本发明中,较佳地,所述Nb的含量范围为0.3-0.5mas%,例如0.33mas%或0.41mas%,mas%是指在所述钕铁硼永磁材料中的质量百分比。
本发明中,较佳地,所述Cu的含量范围为0.6-0.8mas%,mas%是指在所述钕铁硼永磁材料中的质量百分比。
本发明中,所述钕铁硼永磁材料还可包括O;所述O的含量范围较佳地为0.04-0.13mas%或者0.07-0.13mas%,例如0.11mas%或者0.12mas%,mas%是指在所述钕铁硼永磁材料中的质量百分比。
本发明中,所述钕铁硼永磁材料还可包括Co。所述Co的含量可为本领域常规,较佳地,所述Co的含量为0.5-2.0mas%,例如0.7mas%或1mas%, mas%是指在所述钕铁硼永磁材料中的质量百分比。
本发明中,所述钕铁硼永磁材料还可包括C。所述C的含量范围较佳地为0.1-0.2mas%,例如0.11mas%、0.12mas%或者0.15mas%,mas%是指在所述钕铁硼永磁材料中的质量百分比。
本发明中,所述钕铁硼永磁材料还可包括M,所述M包括Al、Ga、Zr、Ti和Hf中的一种或多种。所述M的含量范围较佳地为0-2.0mas%,mas%是指在所述钕铁硼永磁材料中的质量百分比。
其中,所述M较佳地包括Al、Ga、Zr和Ti中的一种或多种。
当所述M包括Ti时,所述Ti的含量范围可为0-0.2mas%、且不为0,mas%是指在所述钕铁硼永磁材料中的质量百分比。
当所述M包括Al时,所述Al的含量范围可为0-0.5mas%、且不为0,mas%是指在所述钕铁硼永磁材料中的质量百分比。
当所述M包括Ga时,所述Ga的含量范围可为0-0.3mas%、且不为0,mas%是指在所述钕铁硼永磁材料中的质量百分比。
当所述M包括Zr时,所述Zr的含量范围可为0-0.2mas%、且不为0,mas%是指在所述钕铁硼永磁材料中的质量百分比。
本发明中,以质量百分比计,所述钕铁硼永磁材料较佳地由以下组分组成:
Nd,29-30mas%;Tb,0.6-1.2mas%;B,0.925-0.94mas%;Nb,0.25-0.3mas%;Cu,0.55-0.6mas%;C,0.11-0.12mas%;O,0.07-0.13mas%;Co,0.5-1mas%;余量为Fe。
在本发明较佳实施方式中,所述钕铁硼永磁材料的组分和含量可为下述编号1-5中的任意一种(mas%):
Figure PCTCN2021095068-appb-000005
本发明的目的之五,提供了一种钕铁硼永磁材料的基体的制备方法,所述制备方法包括下述步骤:将上述用于制备钕铁硼永磁材料的原料组合物经熔炼,即得合金片;将所述合金片制粉、成型、烧结即可。
本发明中,所述合金片的厚度可为0.2mm-0.4mm,例如0.3mm。
本发明中,较佳地,所述合金片为上述钕铁硼永磁材料的合金片。
本发明中,所述熔炼的操作和条件可为本领域常规的熔炼工艺,一般将所述钕铁硼永磁材料的原料组合物采用铸锭工艺和速凝片工艺进行熔炼浇铸,得到合金片。
本领域技术人员知晓,因熔炼和烧结工艺中通常会损耗稀土元素,为保证终产品的质量,一般会在熔炼过程中在原料组合物的配方基础中额外添加0-0.3mas%的稀土元素(一般为Nd元素),百分比为额外添加的稀土元素的含量占所述原料组合物的总含量的质量百分比;另外这部分额外添加的稀土元素的含量不计入原料组合物的范畴。
本发明中,所述熔炼的温度可为1300-1700℃。
本发明中,所述熔炼的设备一般为高频真空熔炼炉,例如高频真空感应速凝甩带炉。熔炼过程也可能引入很小一部分氧元素,例如0-0.013wt%。
本发明中,所述制粉的操作和条件可为本领域常规制粉工艺,一般包括氢破制粉和气流磨制粉。
其中,所述氢破制粉一般包括吸氢、脱氢和冷却处理。所述吸氢的温度一般为20-200℃。所述脱氢的温度一般为400-650℃。所述吸氢的压力一般为50-600kPa。
其中,所述气流磨制粉一般在0.1-2MPa,优选0.5-0.7MPa的条件下进行气流磨制粉。所述气流磨制粉中的气流例如可为氮气和/或氩气。所述气流磨制粉的效率可根据设备不同有所差别,例如可为30-400kg/h,再例如200kg/h。
其中,所述气流磨制粉后的粉末粒径可为D50 3μm-8μm,例如D50 4μm。
本发明中,在所述气流磨制粉过程中,一般需要控制氧含量至100ppm 以下即可。控制氧含量的手段可为本领域常规。
本发明中,所述成型的操作和条件可为本领域常规的成型工艺。例如磁场成型法。所述的磁场成型法的磁场强度一般在1.5T以上。
本发明中,所述烧结的操作和条件可为本领域常规的烧结工艺,例如真空烧结工艺和/或惰性气氛烧结工艺。所述真空烧结工艺或所述惰性气氛烧结工艺均为本领域常规操作。当采用惰性气氛烧结工艺时,所述烧结开始阶段可在真空度低于5×10 -3Pa的条件下进行。所述惰性气氛可为本领域常规的含有惰性气体的气氛,不限于氦气、氩气。
本发明中,所述烧结的温度可为1000-1200℃,优选为1030-1090℃。所述烧结的时间可为0.5-10h,优选为2-8h。
本发明的目的之六,提供了一种钕铁硼永磁材料的基体,其按上述制备方法制得。
本发明的目的之七,提供了一种钕铁硼永磁材料的制备方法,所述制备方法包括下述步骤:将上述钕铁硼永磁材料的基体经晶界扩散处理即可。
本发明中,所述晶界扩散处理可按本领域常规的工艺进行处理,例如通过重稀土金属涂覆操作、气相物理沉淀操作或蒸镀操作实现晶界扩散处理。
其中,所述重稀土金属包括Dy和/或Tb。所述重稀土金属的含量范围较佳地为0-0.6mas%、且不为0,mas%是指在所述钕铁硼永磁材料的原料组合物中的质量百分比。
其中,所述重稀土金属一般是以氟化物形式涂覆,例如氟化铽或氟化镝,引入的氟元素不计入最终磁体成分的元素范围。
所述气相物理沉淀操作一般是指磁控等离子溅射,通过惰性气体轰击重稀土Dy和/或Tb靶材,产生重稀土Dy和/或Tb离子,经过磁场的控制均匀附着在基材表面。所述蒸镀法一般是指通过重稀土Dy和/或Tb在一定真空度(如5-0.05Pa)和一定温度下(如500-900℃),产生重稀土Dy和/或Tb的蒸气,重稀土元素富集到基材表面。
本发明中,所述晶界扩散的温度可为800-1000℃,例如900℃。
本发明中,所述晶界扩散的时间可为12-90h,例如24h。
本发明中,所述晶界扩散之后,按照本领域常规还进行热处理。
本发明中,所述热处理的温度可为470℃-510℃。
本发明中,所述热处理的时间可为2-4小时,例如3小时。
本发明中,由于原料的纯度和制备工艺的影响引入的C和O杂质不计入原料组合物范和合金片围内。在制备工艺中一般会添加润滑剂等,引入的碳杂质含量为本领域常规,一般为0.1-0.2mas%。引入的氧杂质含量为本领域常规,一般为1300ppm以下。
本发明的目的之八,提供了一种钕铁硼永磁材料,其按照上述的制备方法制得。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:
1)本发明的钕铁硼永磁材料方形度较好,均为99%以上;
2)本发明的钕铁硼永磁材料温度性能好,20-150℃Hcj温度系数|β|均在0.422%以下;
3)本发明的钕铁硼永磁材料热处理温区宽,为470-510℃;
4)本发明的钕铁硼永磁材料Br≥14kGs,矫顽力≥25kOe。
附图说明
图1为实施例2中钕铁硼永磁材料的合金片的微观组织。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
表1 用于制备钕铁硼永磁材料的原料组合物(mas%)
Figure PCTCN2021095068-appb-000006
“/”表示不含有该元素。
钕铁硼永磁材料的制备方法如下:
本发明的实施例和对比例中,引入的碳杂质和氧杂质含量为本领域常规。
(1)熔炼和铸造过程:按照表1中的配方,将配制好的表1原料放入氧化铝的坩埚中,在高频真空熔炼炉中以0.05Pa的真空和1500℃的条件进行真空熔炼。在高频真空感应速凝甩带炉中通入氩气,进行铸造,再急冷合金,得合金片,合金片的厚度为0.3mm。
(2)氢破制粉过程:在室温下将放置急冷合金的氢破用炉抽真空,而后向氢破用炉内通入纯度为99.9%的氢气,维持氢气的压力90kPa,充分吸氢后,边抽真空边升温,充分脱氢,之后进行冷却,取出氢破粉碎后的粉末。其中,吸氢的温度为室温,脱氢的温度为550℃。
(3)气流磨制粉过程:在氮气气氛下(需要控制氧含量在100ppm以下),在粉碎室压力为0.65MPa的条件下对氢破粉碎后的粉末进行气流磨粉碎(气流磨制粉的效率可根据设备不同有所差别,例如可为200kg/h),得到细粉,粒径为D50 4μm。
(4)成型过程:将经气流磨之后的粉末中添加润滑剂(例如硬脂酸锌,引入碳杂质),在1.5T以上的磁场强度中压制成型。
(5)烧结过程:将各成型体搬至烧结炉中进行烧结,烧结在低于0.5Pa的真空下,以1030-1090℃烧结2-8h,得钕铁硼永磁材料的基体。
(6)晶界扩散过程:钕铁硼永磁材料的基体表面净化后,分别使用Dy或Tb氟化物配制成的原料,全面喷雾涂覆在磁铁上,将涂覆后的磁铁干燥,然后在高纯度Ar气氛中,以850℃的温度扩散热处理24小时。冷却至室温。再以470-510℃的温度进行热处理3h,即得钕铁硼永磁材料,钕铁硼永磁材料的组分含量如下表2所示。
效果实施例
分别取实施例1-5以及对比例1-5中钕铁硼永磁材料,测定其磁性能、成分和温度系数,并采用EPMA观察实施例2中钕铁硼永磁材料的合金片的微观组织。
(1)钕铁硼永磁材料的各成分使用高频电感耦合等离子体发射光谱仪(ICP-OES,Icap6300)进行测定,下表2所示为成分检测结果。
表2 钕铁硼永磁材料(mas%)
Figure PCTCN2021095068-appb-000007
“/”表示不含有该元素。
(2)磁性能评价:烧结磁铁使用中国计量院的NIM-10000H型BH大块稀土永磁无损测量系统进行磁性能检测,下表3所示为磁性能的检测结果。
(3)温度稳定性能的测试:温度稳定性一般用各项磁性能的温度变化系数来表示,是指温度每变化1℃,磁性能变化的百分数,表征永磁材料的磁性能在外部温度场下保持不变的能力,其绝对值越小越好;温度系数绝对值的计算公式为:
Figure PCTCN2021095068-appb-000008
计算结果如表3所示。
表3
Figure PCTCN2021095068-appb-000009
“Br”是指剩余磁通密度,“Hcj”是指矫顽力。
(4)合金片微观组织检测:取实施例2的合金片进行FE-EPMA检测。测试方式为:将合金片断面镶嵌、抛光,采用场发射电子探针显微分析仪(FE-EPMA)(日本电子株式会社(JEOL),8530F)进行检测。通过面扫描确定合金片中Nb、Cu元素的分布。在图1中,晶界处存在富Cu富Nb相。

Claims (10)

  1. 一种用于制备钕铁硼永磁材料的原料组合物,其特征在于,以质量百分比计,其包括以下组分:
    Nb,0.25-0.5mas%;
    Cu,0.55-0.8mas%;mas%是指在所述原料组合物中的质量百分比。
  2. 如权利要求1所述的原料组合物,其特征在于,所述原料组合物还包除Nd之外的稀土金属R;较佳地,所述Nd和除Nd之外的稀土金属R总含量为29-33mas%;
    和/或,所述原料组合物中的B含量为0.85-1.2mas%,较佳地,所述B的含量范围为0.9-1.05mas%,例如0.98mas%或0.94mas%,mas%是指在所述原料组合物中的质量百分比;
    和/或,所述原料组合物中的Fe含量为63.95-68.65mas%;
    较佳地,所述Nd和所述R总含量范围为29.5-32mas%,例如30.4mas%、30.5mas%、29.8mas%、30.7mas%或31.7mas%,mas%是指在所述原料组合物中的质量百分比;
    较佳地,所述R包括Pr,所述Pr的含量范围较佳地为0-8mas%,例如0.7mas%或0.2mas%,mas%是指在所述原料组合物中的质量百分比;
    较佳地,所述R还包括重稀土元素RH;所述RH的含量范围较佳地为0-1.2mas%、且不为0,例如0.2mas%、1.1mas%、0.4mas%或0.5mas%,mas%是指在所述原料组合物中的质量百分比;
    较佳地,所述RH包括Dy和/或Tb;更佳地,所述RH还包括Ho和/或Gd;更佳地,所述RH为Dy和/或Tb;
    当所述RH包括Dy时,所述Dy的含量范围较佳地为0.1-0.5mas%,例如0.2mas%或0.3mas%,mas%是指在所述原料组合物中的质量百分比;
    当所述RH包括Tb时,所述Tb的含量范围较佳地为0.1-1mas%,例如0.5mas%,mas%是指在所述原料组合物中的质量百分比;
    较佳地,所述Nb的含量范围为0.3-0.5mas%,例如0.33mas%或0.41mas%,mas%是指在所述原料组合物中的质量百分比;
    较佳地,所述Cu的含量范围为0.6-0.8mas%,mas%是指在所述原料组合物中的质量百分比;
    较佳地,所述原料组合物还包括Co;较佳地,所述Co的含量为0.5-2.0mas%,例如0.7mas%或1mas%,mas%是指在所述原料组合物中的质量百分比;
    较佳地,所述原料组合物还包括M,所述M包括Al、Ga、Zr、Ti和Hf中的一种或多种;所述M的含量范围较佳地为0-2.0mas%,mas%是指在所述原料组合物中的质量百分比;
    更佳地,所述M包括Al、Ga、Zr和Ti中的一种或多种;
    当所述M包括Ti时,所述Ti的含量范围较佳地为0-0.2mas%、且不为0,mas%是指在所述原料组合物中的质量百分比;
    当所述M包括Al时,所述Al的含量范围较佳地为0-0.5mas%、且不为0,mas%是指在所述原料组合物中的质量百分比;
    当所述M包括Ga时,所述Ga的含量范围较佳地为0-0.3mas%、且不为0,mas%是指在所述原料组合物中的质量百分比;
    当所述M包括Zr时,所述Zr的含量范围较佳地为0-0.2mas%、且不为0,mas%是指在所述原料组合物中的质量百分比;
    较佳地,以质量百分比计,所述原料组合物由以下组分组成:
    Nd,29-30.5mas%;Tb,0.5-1.2mas%;B,0.925-0.94mas%;Nb,0.25-0.3mas%;Cu,0.55-0.6mas%;Co,0.5-1mas%;余量为Fe;
    更佳地,以质量百分比计,所述原料组合物由以下组分组成:
    Nd,30.2mas%;Tb,0.5mas%;B,0.94mas%;Nb,0.25mas%;Cu,0.55mas%;Co,1mas%;余量为Fe;
    较佳地,以质量百分比计,所述原料组合物由以下组分组成:
    Nd,30.2mas%;Dy,0.2mas%;B,1.05mas%;Nb,0.41mas%;Cu,0.55mas%;Co,0.3mas%;Ga,0.3mas%;余量为Fe;
    或者,以质量百分比计,所述原料组合物由以下组分组成:
    Nd,28.7mas%;Pr,0.7mas%;Dy,0.1mas%;Tb,1mas%;B,0.9mas%;Nb,0.5mas%;Cu,0.8mas%;Co,0.5mas%;Al,0.5mas%;余量为Fe;
    或者,以质量百分比计,所述原料组合物由以下组分组成:
    Nd,29.2mas%;Pr,0.2mas%;Dy,0.3mas%;Tb,0.1mas%;B,0.98mas%;Nb,0.33mas%;Cu,0.6mas%;Co,0.7mas%;Ti,0.01mas%;Zr,0.07mas%;余量为Fe;
    或者,以质量百分比计,所述原料组合物由以下组分组成:
    Nd,30.2mas%;Ho,1mas%;Tb,0.5mas%;B,0.94mas%;Nb,0.25mas%;Cu,0.55mas%;Co,2mas%;Zr,0.01mas%;余量为Fe。
  3. 一种钕铁硼永磁材料的合金片,其特征在于,以质量百分比计,其包括以下组分:
    Nb,0.25-0.5mas%;
    Cu,0.55-0.8mas%;
    mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比;
    较佳地,所述钕铁硼永磁材料的合金片的相结构包含柱状晶主相和晶界相,所述晶界相中含有富Cu富Nb相。
  4. 如权利要求3所述的钕铁硼永磁材料的合金片,其特征在于,所述钕铁硼永磁材料的合金片包含Nd和除Nd之外的稀土金属R;较佳地,所述Nd和除Nd之外的稀土金属R总含量为29-33mas%;
    和/或,所述钕铁硼永磁材料的合金片中的B含量为0.85-1.2mas%,较佳地,所述B的含量范围为0.9-1.05mas%,例如0.98mas%或0.94mas%,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比;
    和/或,所述钕铁硼永磁材料的合金片中的Fe含量为63.95-68.65mas%;
    较佳地,所述Nd和所述R总含量范围为29.5-32mas%,例如30.4mas%、30.5mas%、29.8mas%、30.7mas%或31.7mas%,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比;
    较佳地,所述R还包括Pr,所述Pr的含量范围较佳地为0-8mas%,例 如0.7mas%或0.2mas%,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比;
    较佳地,所述R还包括重稀土元素RH;所述RH的含量范围较佳地为0-1.2mas%、且不为0,例如0.2mas%、1.1mas%、0.4mas%或0.5mas%,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比;
    较佳地,所述RH包括Dy和/或Tb;更佳地,所述RH还包括Ho和/或Gd;更佳地,所述RH为Dy和/或Tb;
    当所述RH包括Dy时,所述Dy的含量范围较佳地为0.1-0.5mas%,例如0.2mas%或0.3mas%,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比;
    当所述RH包括Tb时,所述Tb的含量范围较佳地为0.1-1mas%,例如0.5mas%,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比;
    较佳地,所述Nb的含量范围为0.3-0.5mas%,例如0.33mas%或0.41mas%,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比;
    较佳地,所述Cu的含量范围为0.6-0.8mas%,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比;
    较佳地,所述钕铁硼永磁材料的合金片还包括Co;较佳地,所述Co的含量为0.5-2.0mas%,例如0.7mas%或1mas%,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比;
    较佳地,所述钕铁硼永磁材料的合金片还包括M,所述M包括Al、Ga、Zr、Ti和Hf中的一种或多种;所述M的含量范围较佳地为0-2.0mas%,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比;
    更佳地,所述M包括Al、Ga、Zr和Ti中的一种或多种;
    当所述M包括Ti时,所述Ti的含量范围较佳地为0-0.2mas%、且不为0,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比;
    当所述M包括Al时,所述Al的含量范围较佳地为0-0.5mas%、且不为0,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比;
    当所述M包括Ga时,所述Ga的含量范围较佳地为0-0.3mas%、且不为0,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比;
    当所述M包括Zr时,所述Zr的含量范围较佳地为0-0.2mas%、且不为0,mas%是指在所述钕铁硼永磁材料的合金片中的质量百分比;
    较佳地,所述钕铁硼永磁材料的合金片按照以下制备方法制得:将如权利要求1或2所述的原料组合物经熔炼即可;
    更佳地,所述合金片的厚度为0.2mm-0.4mm,例如0.3mm;
    更佳地,所述熔炼的温度为1300-1700℃。
    较佳地,以质量百分比计,所述钕铁硼永磁材料的合金片由以下组分组成:
    Nd,29-30.5mas%;Tb,0.5-1.2mas%;B,0.925-0.94mas%;Nb,0.25-0.3mas%;Cu,0.55-0.6mas%;Co,0.5-1mas%;余量为Fe;
    更佳地,以质量百分比计,所述钕铁硼永磁材料的合金片由以下组分组成:
    Nd,30.2mas%;Tb,0.5mas%;B,0.94mas%;Nb,0.25mas%;Cu,0.55mas%;Co,1mas%;余量为Fe;
    较佳地,以质量百分比计,所述钕铁硼永磁材料的合金片由以下组分组成:
    Nd,30.2mas%;Dy,0.2mas%;B,1.05mas%;Nb,0.41mas%;Cu,0.55mas%;Co,0.3mas%;Ga,0.3mas%;余量为Fe;
    或者,以质量百分比计,所述钕铁硼永磁材料的合金片由以下组分组成:
    Nd,28.7mas%;Pr,0.7mas%;Dy,0.1mas%;Tb,1mas%;B,0.9mas%;Nb,0.5mas%;Cu,0.8mas%;Co,0.5mas%;Al,0.5mas%;余量为Fe;
    或者,以质量百分比计,所述钕铁硼永磁材料的合金片由以下组分组成:
    Nd,29.2mas%;Pr,0.2mas%;Dy,0.3mas%;Tb,0.1mas%;B,0.98mas%;Nb,0.33mas%;Cu,0.6mas%;Co,0.7mas%;Ti,0.01mas%;Zr,0.07mas%;余量为Fe;
    或者,以质量百分比计,所述钕铁硼永磁材料的合金片由以下组分组成:
    Nd,30.2mas%;Ho,1mas%;Tb,0.5mas%;B,0.94mas%;Nb,0.25mas%;Cu,0.55mas%;Co,2mas%;Zr,0.01mas%;余量为Fe。
  5. 一种钕铁硼永磁材料的基体,其特征在于,以质量百分比计,其包括以下组分:
    Nb,0.25-0.5mas%;
    Cu,0.55-0.8mas%;
    mas%是指在所述钕铁硼永磁材料的基体中的质量百分比;
    较佳地,所述钕铁硼永磁材料的基体包含Nd和除Nd之外的稀土金属R;较佳地,所述Nd和除Nd之外的稀土金属R总含量为29-33mas%,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比;
    较佳地,所述钕铁硼永磁材料的基体中的B含量为0.85-1.2mas%,较佳地,所述B的含量范围为0.9-1.05mas%,例如0.98mas%或0.94mas%,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比;
    较佳地,所述钕铁硼永磁材料的基体中的Fe含量为63.95-68.65mas%,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比;
    较佳地,所述Nd和所述R总含量范围为29.5-32mas%,例如30.4mas%、30.5mas%、29.8mas%、30.7mas%或31.7mas%,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比;
    较佳地,所述R还包括Pr,所述Pr的含量范围较佳地为0-8mas%,例如0.7mas%或0.2mas%,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比;
    较佳地,所述R还包括重稀土元素RH;所述RH的含量范围较佳地为0-1.2mas%、且不为0,例如0.2mas%、1.1mas%、0.4mas%或0.5mas%,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比;
    较佳地,所述RH包括Dy和/或Tb;更佳地,所述RH还包括Ho和/或Gd;更佳地,所述RH为Dy和/或Tb;
    当所述RH包括Dy时,所述Dy的含量范围较佳地为0.1-0.5mas%,例如0.2mas%或0.3mas%,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比;
    当所述RH包括Tb时,所述Tb的含量范围较佳地为0.1-1mas%,例如0.5mas%,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比;
    较佳地,所述Nb的含量范围为0.3-0.5mas%,例如0.33mas%或0.41mas%,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比;
    较佳地,所述Cu的含量范围为0.6-0.8mas%,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比;
    较佳地,所述钕铁硼永磁材料的基体还包括C;所述C的含量范围较佳地为0.1-0.2mas%,例如0.11mas%、0.12mas%或者0.15mas%,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比;
    较佳地,所述钕铁硼永磁材料的基体还包括O;所述O的含量范围较佳地为0.04-0.13mas%或者0.07-0.13mas%,例如0.11mas%或者0.12mas%,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比;
    较佳地,所述钕铁硼永磁材料的基体还包括Co;较佳地,所述Co的含量为0.5-2.0mas%,例如0.7mas%或1mas%,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比;
    较佳地,所述钕铁硼永磁材料的基体还包括M,所述M包括Al、Ga、Zr、Ti和Hf中的一种或多种;所述M的含量范围较佳地为0-2.0mas%,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比;
    更佳地,所述M包括Al、Ga、Zr和Ti中的一种或多种;
    当所述M包括Ti时,所述Ti的含量范围较佳地为0-0.2mas%、且不为0,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比;
    当所述M包括Al时,所述Al的含量范围较佳地为0-0.5mas%、且不为0,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比;
    当所述M包括Ga时,所述Ga的含量范围较佳地为0-0.3mas%、且不 为0,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比;
    当所述M包括Zr时,所述Zr的含量范围较佳地为0-0.2mas%、且不为0,mas%是指在所述钕铁硼永磁材料的基体中的质量百分比;
    较佳地,以质量百分比计,所述钕铁硼永磁材料的基体由以下组分组成:
    Nd,29-30.5mas%;Tb,0.5-1.2mas%;B,0.925-0.94mas%;Nb,0.25-0.3mas%;Cu,0.55-0.6mas%;C,0.1-0.2mas%;O,0.07-0.13mas%;Co,1-2mas%;余量为Fe;
    更佳地,以质量百分比计,所述钕铁硼永磁材料的基体由以下组分组成:
    Nd,30.2mas%;Tb,0.5mas%;B,0.94mas%;Nb,0.25mas%;Cu,0.55mas%;C,0.12mas%;O,0.07mas%;Co,1mas%;余量为Fe;
    较佳地,以质量百分比计,所述钕铁硼永磁材料的基体由以下组分组成:
    Nd,30.2mas%;Dy,0.2mas%;B,1.05mas%;Nb,0.41mas%;Cu,0.55mas%;C,0.1mas%;O,0.04mas%;Co,0.3mas%;Ga,0.3mas%;余量为Fe;
    或者,以质量百分比计,所述钕铁硼永磁材料的基体由以下组分组成:
    Nd,28.7mas%;Pr,0.7mas%;Dy,0.1mas%;Tb,1mas%;B,0.9mas%;Nb,0.5mas%;Cu,0.8mas%;C,0.11mas%;O,0.13mas%;Co,0.5mas%;Al,0.5mas%;余量为Fe;
    或者,以质量百分比计,所述钕铁硼永磁材料的基体由以下组分组成:
    Nd,29.2mas%;Pr,0.2mas%;Dy,0.3mas%;Tb,0.1mas%;B,0.98mas%;Nb,0.33mas%;Cu,0.6mas%;C,0.15mas%;O,0.12mas%;Co,0.7mas%;Ti,0.01mas%;Zr,0.07mas%;余量为Fe;
    或者,以质量百分比计,所述钕铁硼永磁材料的基体由以下组分组成:
    Nd,30.2mas%;Ho,1mas%;Tb,0.5mas%;B,0.94mas%;Nb,0.25mas%;Cu,0.55mas%;C,0.11mas%;O,0.11mas%;Co,2mas%;Zr,0.01mas%;余量为Fe。
  6. 一种钕铁硼永磁材料,其特征在于,以质量百分比计,其包括以下组 分:
    重稀土金属RH;
    Nb,0.25-0.5mas%;
    Cu,0.55-0.8mas%;
    mas%是指在所述钕铁硼永磁材料的质量百分比;
    较佳地,所述钕铁硼永磁材料包含Nd和除Nd之外的稀土金属R、且所述R包含所述RH;较佳地,所述Nd和除Nd之外的稀土金属R总含量为29-33mas%,mas%是指在所述钕铁硼永磁材料中的质量百分比;
    较佳地,所述钕铁硼永磁材料中的B含量为0.85-1.2mas%,较佳地,所述B的含量范围为0.9-1.05mas%,例如0.98mas%或0.94mas%,mas%是指在所述钕铁硼永磁材料中的质量百分比;
    较佳地,所述钕铁硼永磁材料中的Fe含量为63.95-68.65mas%,mas%是指在所述钕铁硼永磁材料中的质量百分比;
    较佳地,所述Nd和所述R总含量范围为30-32.5mas%,例如30.8mas%、30.9mas%、30.1mas%、31.1mas%或32.1mas%,mas%是指在所述钕铁硼永磁材料中的质量百分比;
    较佳地,所述R还包括Pr,所述Pr的含量范围较佳地为0-8mas%,例如0.7mas%或0.2mas%,mas%是指在所述钕铁硼永磁材料中的质量百分比;
    较佳地,所述RH的含量范围为0.6-2.5mas%,例如0.8mas%、1.7mas%、0.9mas%、1.1mas%或2.1mas%,较佳地为0.6-1.8mas%,mas%是指在所述钕铁硼永磁材料中的质量百分比;
    较佳地,所述RH包括Dy和/或Tb;更佳地,所述RH还包括Ho和/或Gd;更佳地,所述RH为Dy和/或Tb;
    当所述RH包括Dy时,所述Dy的含量范围较佳地为0.1-0.8mas%,例如0.2mas%、0.3mas%或0.7mas%,mas%是指在所述钕铁硼永磁材料中的质量百分比;
    当所述RH包括Tb时,所述Tb的含量范围较佳地为0.6-1.2mas%,例 如0.6mas%、1mas%或1.1mas%,mas%是指在所述钕铁硼永磁材料中的质量百分比;
    较佳地,所述Nb的含量范围为0.3-0.5mas%,例如0.33mas%或0.41mas%,mas%是指在所述钕铁硼永磁材料中的质量百分比;
    较佳地,所述Cu的含量范围为0.6-0.8mas%,mas%是指在所述钕铁硼永磁材料中的质量百分比;
    较佳地,所述钕铁硼永磁材料还包括C;所述C的含量范围较佳地为0.1-0.2mas%,例如0.11mas%、0.12mas%或者0.15mas%,mas%是指在所述钕铁硼永磁材料中的质量百分比;
    较佳地,所述钕铁硼永磁材料还包括O;所述O的含量范围较佳地为0.04-0.13mas%或者0.07-0.13mas%,例如0.11mas%或者0.12mas%,mas%是指在所述钕铁硼永磁材料中的质量百分比;
    较佳地,所述钕铁硼永磁材料还包括Co;较佳地,所述Co的含量为0.5-2.0mas%,例如0.7mas%或1mas%,mas%是指在所述钕铁硼永磁材料中的质量百分比;
    较佳地,所述钕铁硼永磁材料还包括M,所述M包括Al、Ga、Zr、Ti和Hf中的一种或多种;所述M的含量范围较佳地为0-2.0mas%,mas%是指在所述钕铁硼永磁材料中的质量百分比;
    更佳地,所述M包括Al、Ga、Zr和Ti中的一种或多种;
    当所述M包括Ti时,所述Ti的含量范围较佳地为0-0.2mas%、且不为0,mas%是指在所述钕铁硼永磁材料中的质量百分比;
    当所述M包括Al时,所述Al的含量范围较佳地为0-0.5mas%、且不为0,mas%是指在所述钕铁硼永磁材料中的质量百分比;
    当所述M包括Ga时,所述Ga的含量范围较佳地为0-0.3mas%、且不为0,mas%是指在所述钕铁硼永磁材料中的质量百分比;
    当所述M包括Zr时,所述Zr的含量范围较佳地为0-0.2mas%、且不为0,mas%是指在所述钕铁硼永磁材料中的质量百分比;
    较佳地,以质量百分比计,所述钕铁硼永磁材料由以下组分组成:
    Nd,29-30mas%;Tb,0.5-1.2mas%;B,0.925-0.94mas%;Nb,0.25-0.3mas%;Cu,0.55-0.6mas%;C,0.1-0.2mas%;O,0.07-0.13mas%;Co,1-2mas%;余量为Fe;
    更佳地,以质量百分比计,所述钕铁硼永磁材料由以下组分组成:
    Nd,30mas%;Tb,1.1mas%;B,0.94mas%;Nb,0.25mas%;Cu,0.55mas%;C,0.12mas%;O,0.07mas%;Co,1mas%;余量为Fe;
    较佳地,以质量百分比计,所述钕铁硼永磁材料由以下组分组成:
    Nd,30mas%;Dy,0.2mas%;Tb,0.6mas%;B,1.05mas%;Nb,0.41mas%;Cu,0.55mas%;C,0.1mas%;O,0.04mas%;Co,0.3mas%;Ga,0.3mas%;余量为Fe;
    或者,以质量百分比计,所述钕铁硼永磁材料由以下组分组成:
    Nd,28.5mas%;Pr,0.7mas%;Dy,0.7mas%;Tb,1mas%;B,0.9mas%;Nb,0.5mas%;Cu,0.8mas%;C,0.11mas%;O,0.13mas%;Co,0.5mas%;Al,0.5mas%;余量为Fe;
    或者,以质量百分比计,所述钕铁硼永磁材料由以下组分组成:
    Nd,29mas%;Pr,0.2mas%;Dy,0.3mas%;Tb,0.6mas%;B,0.98mas%;Nb,0.33mas%;Cu,0.6mas%;C,0.15mas%;O,0.12mas%;Co,0.7mas%;Ti,0.01mas%;Zr,0.07mas%;余量为Fe;
    或者,以质量百分比计,所述钕铁硼永磁材料由以下组分组成:
    Nd,30mas%;Ho,1mas%;Tb,1.1mas%;B,0.94mas%;Nb,0.25mas%;Cu,0.55mas%;C,0.11mas%;O,0.11mas%;Co,2mas%;Zr,0.01mas%;余量为Fe。
  7. 一种钕铁硼永磁材料的基体的制备方法,其特征在于,所述制备方法包括下述步骤:将如权利要求1或2所述的原料组合物经熔炼,即得合金片;将所述合金片制粉、成型、烧结即可;
    较佳地,所述合金片的厚度为0.2mm-0.4mm,例如0.3mm;
    较佳地,所述合金片为如权利要求3或4所述的钕铁硼永磁材料的合金片;
    较佳地,所述熔炼的温度为1300-1700℃;
    较佳地,所述制粉包括氢破制粉和气流磨制粉;所述氢破制粉较佳地包括吸氢、脱氢和冷却处理;所述吸氢的温度较佳地为20-200℃;所述脱氢的温度较佳地为400-650℃;
    较佳地,所述气流磨制粉后的粉末粒径为D50 3μm-8μm,例如D50 4μm;
    较佳地,所述烧结的温度为1000-1200℃,更佳地为1030-1090℃;所述烧结的时间较佳地为0.5-10h,更佳地为2-8h。
  8. 一种钕铁硼永磁材料的基体,其特征在于,其按照权利要求7所述的制备方法制得。
  9. 一种钕铁硼永磁材料的制备方法,其特征在于,所述制备方法包括下述步骤:将如权利要求5或8所述的钕铁硼永磁材料的基体经晶界扩散处理即可;
    所述晶界扩散处理采用的重稀土金属较佳地包括Dy和/或Tb;所述重稀土金属的含量范围较佳地为0-0.6mas%、且不为0,mas%是指在所述钕铁硼永磁材料质量百分比;
    较佳地,所述晶界扩散的温度为800-1000℃,例如850℃;
    较佳地,所述晶界扩散的时间为12-90h,例如24h;
    较佳地,所述晶界扩散之后,还进行热处理;所述热处理的温度较佳地为470℃-510℃;
    较佳地,所述热处理的时间为2-4小时,例如3小时。
  10. 一种钕铁硼永磁材料,其特征在于,其按照权利要求9所述的制备方法制得。
PCT/CN2021/095068 2020-05-29 2021-05-21 一种钕铁硼永磁材料、其原料组合物、其制备方法和应用 WO2021238783A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022548091A JP7418599B2 (ja) 2020-05-29 2021-05-21 ネオジム鉄ホウ素永久磁石材料、その原料組成物、その製造方法、並びに応用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010478497.3A CN111599562B (zh) 2020-05-29 2020-05-29 一种钕铁硼永磁材料、其原料组合物、其制备方法和应用
CN202010478497.3 2020-05-29

Publications (1)

Publication Number Publication Date
WO2021238783A1 true WO2021238783A1 (zh) 2021-12-02

Family

ID=72184280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095068 WO2021238783A1 (zh) 2020-05-29 2021-05-21 一种钕铁硼永磁材料、其原料组合物、其制备方法和应用

Country Status (3)

Country Link
JP (1) JP7418599B2 (zh)
CN (1) CN111599562B (zh)
WO (1) WO2021238783A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111599562B (zh) * 2020-05-29 2024-03-29 福建省金龙稀土股份有限公司 一种钕铁硼永磁材料、其原料组合物、其制备方法和应用
CN112992463B (zh) * 2021-03-17 2023-11-21 福建省长汀金龙稀土有限公司 一种r-t-b磁体及其制备方法
CN113674944B (zh) * 2021-07-29 2023-10-20 福建省长汀金龙稀土有限公司 一种钕铁硼磁体材料及其制备方法和应用
CN113674943B (zh) * 2021-07-29 2023-01-24 福建省长汀金龙稀土有限公司 一种钕铁硼磁体材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120169170A1 (en) * 2009-09-11 2012-07-05 Kabushiki Kaisha Toshiba Magnet material, permanent magnet, motor and electric generator
CN107610858A (zh) * 2017-08-18 2018-01-19 浙江中元磁业股份有限公司 一种含铈量高的低成本n35钕铁硼磁体及其烧结方法
CN110853855A (zh) * 2019-11-21 2020-02-28 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用
CN110993234A (zh) * 2019-12-24 2020-04-10 厦门钨业股份有限公司 高Cu高Al的钕铁硼磁体及其制备方法
CN111081443A (zh) * 2020-01-07 2020-04-28 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用
CN111599562A (zh) * 2020-05-29 2020-08-28 福建省长汀金龙稀土有限公司 一种钕铁硼永磁材料、其原料组合物、其制备方法和应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3951099B2 (ja) * 2000-06-13 2007-08-01 信越化学工業株式会社 R−Fe−B系希土類永久磁石材料
JP5524553B2 (ja) 2009-09-24 2014-06-18 矢崎総業株式会社 バスバーへの溶接構造、およびバスバーへの溶接方法
WO2011070847A1 (ja) * 2009-12-09 2011-06-16 愛知製鋼株式会社 希土類異方性磁石粉末およびその製造方法とボンド磁石
JP5573444B2 (ja) * 2010-07-14 2014-08-20 トヨタ自動車株式会社 角形性に優れた希土類磁石の製造方法
EP3182423B1 (en) * 2015-12-18 2019-03-20 JL Mag Rare-Earth Co., Ltd. Neodymium iron boron magnet and preparation method thereof
US10672546B2 (en) * 2016-02-26 2020-06-02 Tdk Corporation R-T-B based permanent magnet
JP2018186134A (ja) * 2017-04-24 2018-11-22 ミネベアミツミ株式会社 Re−t−b系磁石粉末、等方性バルク磁石および等方性バルク磁石の製造方法
CN106910586B (zh) * 2017-05-03 2019-08-27 南京信息工程大学 一种磁性复合材料及制备方法
CN111180159B (zh) * 2019-12-31 2021-12-17 厦门钨业股份有限公司 一种钕铁硼永磁材料、制备方法、应用
CN111161949B (zh) * 2019-12-31 2022-02-11 浙江大学 一种YCe共掺的纳米晶稀土永磁体及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120169170A1 (en) * 2009-09-11 2012-07-05 Kabushiki Kaisha Toshiba Magnet material, permanent magnet, motor and electric generator
CN107610858A (zh) * 2017-08-18 2018-01-19 浙江中元磁业股份有限公司 一种含铈量高的低成本n35钕铁硼磁体及其烧结方法
CN110853855A (zh) * 2019-11-21 2020-02-28 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用
CN110993234A (zh) * 2019-12-24 2020-04-10 厦门钨业股份有限公司 高Cu高Al的钕铁硼磁体及其制备方法
CN111081443A (zh) * 2020-01-07 2020-04-28 厦门钨业股份有限公司 一种r-t-b系永磁材料及其制备方法和应用
CN111599562A (zh) * 2020-05-29 2020-08-28 福建省长汀金龙稀土有限公司 一种钕铁硼永磁材料、其原料组合物、其制备方法和应用

Also Published As

Publication number Publication date
JP7418599B2 (ja) 2024-01-19
CN111599562A (zh) 2020-08-28
JP2023510633A (ja) 2023-03-14
CN111599562B (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
WO2021238783A1 (zh) 一种钕铁硼永磁材料、其原料组合物、其制备方法和应用
CN110571007B (zh) 一种稀土永磁材料、原料组合物、制备方法、应用、电机
US20220328218A1 (en) Neodymium-iron-boron magnet material, raw material composition,preparation method therefor and use thereof
US20220165462A1 (en) Rare earth permanent magnet material and raw material composition,preparation method therefor and use thereof
TWI751788B (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
TWI730930B (zh) R-t-b系永磁材料、原料組合物、製備方法、應用
TW202123262A (zh) R-t-b系永磁材料、製備方法和應用
CN111326306B (zh) 一种r-t-b系永磁材料及其制备方法和应用
WO2021244318A1 (zh) 一种r-t-b系永磁材料、原料组合物及其制备方法和应用
WO2021244317A1 (zh) 一种r-t-b系永磁材料、原料组合物及其制备方法和应用
CN111613403B (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
WO2021244319A1 (zh) 一种r-t-b系永磁材料、原料组合物及其制备方法和应用
WO2021244316A1 (zh) 一种r-t-b系永磁材料、原料组合物及其制备方法和应用
WO2021218699A1 (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
WO2021218700A1 (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
TWI742969B (zh) R-t-b系永磁材料、原料組合物、製備方法、應用
WO2021238784A1 (zh) 钕铁硼永磁材料、其原料组合物、其制备方法
KR102606749B1 (ko) R-t-b계 영구자석 재료, 원료조성물, 제조방법, 응용
CN111540557B (zh) 一种钕铁硼磁体材料、原料组合物及制备方法、应用
WO2023093495A1 (zh) 稀土永磁体、烧结磁铁类材料、制备方法、应用
TWI816317B (zh) 一種r-t-b磁體及其製備方法
CN114220622A (zh) 抗氧化组合物、稀土永磁体、烧结磁铁类材料、制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812458

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022548091

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812458

Country of ref document: EP

Kind code of ref document: A1